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Abstract Small random perturbations may have a dramatic impact on the long
time evolution of dynamical systems, and large deviation theory is often the right
theoretical framework to understand these effects. At the core of the theory lies
the minimization of an action functional, which in many cases of interest has to be
computed by numerical means. Here we review the theoretical and computational
aspects behind these calculations, and propose an algorithm that simplifies the
geometric minimum action method to minimize the action in the space of arc-length
parametrized curves. We then illustrate this algorithm’s capabilities by applying it
to various examples from material sciences, fluid dynamics, atmosphere/ocean sci-
ences, and reaction kinetics. In terms of models, these examples involve stochastic
(ordinary or partial) differential equations with multiplicative noise, Markov jump
processes, and systems with fast and slow degrees of freedom, which all violate
detailed balance, so that simpler computational methods are not applicable.

1 Introduction

Small random perturbations often have a lasting effect on the long-time evolution
of dynamical systems. For example, they give rise to transitions between otherwise
stable equilibria, a phenomenon referred to as metastability that is observed in a
wide variety of contexts, e.g. phase separation, population dynamics, chemical reac-
tions, climate regimes, neuroscience, or fluid dynamics. Since the time-scale over
which these transition events occurs is typically exponentially large in some control
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parameter (for example the noise amplitude), a brute-force simulation approach
to compute these events quickly becomes infeasible. Fortunately, it is possible to
exploit the fact that the mechanism of these transitions is often predictable when
the random perturbations have small amplitude: with high probability the transitions
occur by their path of maximum likelihood (PML), and knowledge of this PML also
permits to estimate their rate. This is the essence of large deviation theory (LDT)
[20], which applies in a wide variety of contexts. For example, systems whose
evolution is governed by a stochastic (ordinary or partial) differential equation
driven by a small noise or by a Markov jump process in which jumps occur often
but lead to small changes of the system state, or slow/fast systems in which the fast
variables are randomly driven and the slow ones feel these perturbations through the
effect fast variables only, all fit within the framework of LDT. Note that, typically,
the dynamics of these systems fail to exhibit microscopic reversibility (detailed
balance) and the transitions therefore occur out-of-equilibrium. Nevertheless, LDT
still applies.

LDT also indicates that the PML is computable as the minimizer of a specific
objective function (action): the large deviation rate function of the problem at
hand. This is a non-trivial numerical optimization problem which calls for tailor-
made techniques for its solution. Here we will focus on one such technique, the
geometric minimum action method (gMAM, [26, 39, 39]), which is based on the
minimum action method and its variants [17, 41, 44], and was designed to perform
the action minimization over both the transition path location and its duration. This
computation gives the so-called quasipotential, whose role is key to understand the
long time effect of the random perturbations on the system, including the mechanism
of transitions events induced by these perturbations. Our purpose here is twofold.
First, we would like to briefly review the theoretical aspects behind LDT that
lead to the rate function minimization problem and, in particular, to the geometric
variant of it that is central in gMAM. Second, we would like to discuss in some
details the computational issues this minimization entails, and remedy a drawback
of gMAM, namely its somewhat complicated descent step that requires higher
order derivatives of the large deviation Hamiltonian. Here, we propose a simpler
algorithm, minimizing the geometric action functional, but requiring only first order
derivatives of the Hamiltonian. The power of this algorithm is then illustrated via
applications to a selection of problems:

1. the Maier-Stein model, which is a toy non-gradient stochastic ordinary differen-
tial equation that breaks detailed balance;

2. a stochastic Allen-Cahn/Cahn-Hilliard partial differential equation motivated by
population dynamics;

3. the stochastic Burgers-Huxley PDE, related to fluid dynamics and neuroscience;
4. Egger’s and Charney-DeVore equations, introduced as climate models displaying

noise-induced transitions between metastable regimes;
5. a generalized voter/Ising model with multiplicative noise;
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6. metastable networks of chemical reaction equations and reaction-diffusion equa-
tions;

7. a fast/slow system displaying transitions of the slow variables induced by the
effects of the fast ones.

The remainder of this paper is organized as follows. In Sect. 2 we briefly review
the key concepts of LDT that we will use (Sect. 2.1) and give a geometrical point
of view of the theory that led to the action used in gMAM (Sect. 2.2). In Sect. 3 we
discuss the numerical aspects related to the minimization of the geometric action,
propose a simplified algorithm to perform this calculation, and compare it to existing
algorithms. We also discuss further simplifications of the algorithm that apply in
regularly occurring special cases, such as additive or multiplicative Gaussian noise.
Finally, in Sect. 4 we present the applications listed above.

2 Freidlin-Wentzell Large Deviation Theory (LDT)

Here we first give a brief overview of LDT [20], focusing mainly on stochastic
differential equations (SDEs) for simplicity, but indicating also how the theory can
be extended to other models, such as Markov jump processes or fast/slow systems.
Then we discuss the geometric reformulation of the action minimization problem
that is used in gMAM.

2.1 Some Key Concepts in LDT

Consider the following SDE for X 2 R
n

dX D b.X/dt C p
��.X/dW; (1)

where b W Rn ! R
n denotes the drift term, W is a standard Wiener process in R

n,
� W Rn ! R

n � R
n is related to the diffusion tensor via a.x/ D .���/.x/, and � > 0

is a parameter measuring the noise amplitude. Suppose that we want to estimate the
probability of an event, such as finding the solution in a set B � R

n at time T given
that it started at X.0/ D x at time t D 0. LDT indicates that, in the limit as � ! 0,
this probability can be estimated via a minimization problem:

P
x .X.T/ 2 B/ � exp

�
���1 min

�2C ST.�/

�
: (2)

Here � denotes log-asymptotic equivalence (i.e. the ratio of the logarithms of
both sides tends to 1 as � ! 0), the minimum is taken over the set C D f� 2
C.Œ0;T�;Rn/ W �.0/ D x; �.T/ 2 Bg, and we defined the action functional
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ST.�/ D
( R T

0
L.�; P�/ dt if the integral converges

1 otherwise:
(3)

Here

L.�; P�/ D 1
2
h P� � b.�/; .a.�//�1 . P� � b.�//i; (4)

where we assumed for simplicity that a.�/ is invertible and h�; �i denotes the
Euclidean inner product in R

n. LDT also indicates that, as � ! 0, when the event
occurs, it does so with X being arbitrarily close to the minimizer

�� D argmin
�2C

ST.�/ (5)

in the sense that

8ı > 0 W lim
�!0

P
x
�

sup
0�t�T

jX.t/ � ��.t/ j < ı
ˇ̌̌
X.T/ 2 B

�
D 1

Thus, from a computational viewpoint, the main question becomes how to perform
the minimization in (5). Note that, if we define the Hamiltonian associated with the
Lagrangian (4)

H.�; �/ D hb.�/; �i C 1
2
h�; a.�/�i (6)

such that

L.�; P�/ D sup
�

�h P�; �i � H.�; �/
�
; (7)

this minimization reduces to the solution of Hamilton’s equations of motion,

( P� D H� .�; �/ D b.�/C a.�/�
P� D �H�.�; �/ D �.b�.�//T� C 1

2
h�; a�.�/�i; (8)

where subscripts denote differentiation and we use the convention .b�/ij D @bi=@�j.
What makes the problem nonstandard, however, is the fact that these equations must
be solved as a boundary value problem, with �.0/ D x and �.T/ D y 2 B. We will
come back to this issue below.

If the minimum of the action in (2) is nonzero, this equation indicates that the
probability of finding the solution in B at time T is exponentially small in �, i.e. it is
a rare event. This is typically the case if one considers events that occur on a finite
time interval, T < 1 fixed. LDT, however, also permits to analyze the effects of the
perturbations over an infinite time span, in which case they become ubiquitous. In
this context, the central object in LDT is the quasipotential defined as
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V.x; y/ D inf
T>0

min
�2Cx;y

ST.�/; (9)

where Cx;y D f� 2 C.Œ0;T�;Rn/ W �.0/D x; �.T/D yg. The quasipotential permits
to answer several questions about the long time behavior of the system. For
example, if we assume that the deterministic equation associated with (1), PX D b.X/,
possesses a single stable fixed point, xa, as unique stable structure, and that (1)
admits a unique invariant distribution, the density associated with this distribution
can estimated as �! 0 as

�.x/ � exp
����1V.xa; x/

�
: (10)

Similarly, if PX D b.X/ possesses two stable fixed points, xa and xb, whose basins
of attraction have a common boundary, we can estimate the mean first passage time
the system takes to travel for one fixed point to the other as

E	a!b � exp
�
��1V.xa; xb/

�
; (11)

where

	a!b D infft W X.t/ 2 Bı.xb/;X.0/ D xag; (12)

in which Bı.xb/ denotes the ball of radius ı around xb, with ı small enough so
that this ball is contained in the basin of attraction of xb. In this setup, we can also
estimate the ratio of the stationary probabilities to find the system in the basins of
attraction of xa or xb. Denoting these probabilities by pa and pb, respectively, we
have

pa

pb
� E	a!b

E	b!a
� exp

�
��1.V.xa; xb/ � V.xb; xa//

�
: (13)

These statements can be generalized to many other situations, e.g. if PX D b.X/
possesses more than two stable fixed points, or attracting structures that are more
complicated than points, such as limit cycles. They can also be generalized to
dynamical systems other than (1), e.g. if this equation is replaced by a stochastic
partial differential equation (SPDE), or for Markov jump processes in which the
jump rates are fast but lead to small changes of the system’s state [20, 35], or in
slow/fast systems where the slow variables feels random perturbations through the
effect the fast variables have on them [6, 19, 28, 29, 40]. In all cases, LDT provides us
with an action functional like (3), but in which the Lagrangian is different from (4)
if the system’s dynamics is not governed by an S(P)DE. Typically, the theory yields
an expression for the Hamiltonian (6), which may be non-quadratic in the momenta,
or even such that the Legendre transform in (7) is not available analytically. This
per se is not an issue, since we can in principle minimize the action by solving
Hamilton’s equations (8). However, these calculations face two difficulties. The first,
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already mentioned above, is that (8) must be solved as a boundary value problem.
The second, which is specific to the calculation of the quasipotential in (9), is that
the time span over which (8) are solved must be varied as well since (9) involves a
minimization over T , and typically the minimum is reached as T ! 1 (i.e. there
is a minimizing sequence but no minimizer) which complicates matters even more.
These issues motivate a geometric reformulation of the problem, which was first
proposed in [25] and we recall next.

2.2 Geometric Action Functional

As detailed in [25] (see Proposition 2.1 in that paper), the quasipotential defined
in (9) can also be expressed as

V.x; y/ D min
'2 OCx;y

OS.'/; (14)

where OCx;y D f' 2 C.Œ0; 1�;Rn/ W '.0/ D x; '.1/ D yg and OS.'/ is the geometric
action that can be defined in the following equivalent ways:

OS.'/ D sup
#WH.';#/D0

Z 1

0

h'0; #ids (15a)

OS.'/ D
Z 1

0

h'0; #�.'; '0/ids (15b)

OS.'/ D
Z 1

0

1


.'; '0/
L.'; 
'0/ds; (15c)

where #�.'; '0/ and 
.'; '0/ are the solutions to

H.'; #�.'; '0// D 0; H#.'; #�.'; '0// D 
.'; '0/'0 with 
 � 0: (16)

The action OS.'/ has the property that its value is left invariant by reparametrization
of the path ', i.e. it is an action on the space of continuous curves. In particular, one
is free to choose arclength-parametrization for ', e.g. j'0j D 1=L for

R j'0j ds D L.
This also means that the minimizer of (14) exists in more general cases (namely as
long as the path has finite length), which makes the minimization problem easier to
handle numerically, as shown next.
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3 Numerical Minimization of the Geometric Action

From (14), we see that the calculation of the quasipotential reduces to a minimiza-
tion problem, whose Euler-Lagrange equation is simply

D�
OS.'/ D 0; (17)

where D' denotes the functional gradient with respect to '. The main issue then
becomes how to find the solution '� to (17) that minimize the action OS.'/. In this
section, we first briefly review how the gMAM achieves this task. We will then
introduce a simplified variant of the gMAM algorithm that in its simplest form relies
solely on first order derivatives of the Hamiltonian. Subsequently, we also analyze
several special cases where the numerical treatment can be simplified even further.

3.1 Geometric Minimum Action Method

The starting point of gMAM is the following expression involving D�
OS.'/ that can

be calculated directly from formula (15b) for the action functional:

�
H##D'
OS.'/ D 
2'00 � 
H#''

0 C H##H' C 

0'0: (18)

This is derived as Proposition 3.1 in Appendix E of [25], and we will show below
how this expression can be intuitively understood. Since H## is assumed to be
positive definite and 
 � 0, we can use (18) directly to compute the solution of (17)
that minimizes OS.'/ via a relaxation method in virtual time 	 , that is, using the
equation:

@'

@	
D �
H##D'

OS.'/

D 
2'00 � 
H#''
0 C H##H' C 

0'0: (19)

This equation is the main equation used in the original gMAM. Note that the
computation of the right hand-side of this equation requires the computation of H' ,
H#' and H## , where the second derivatives of the Hamiltonian possibly become
unsightly for more complicated systems that arise naturally when trying to use
gMAM in practical applications. In Sect. 3.2 we propose a simplification of this
algorithm that reduces the terms necessary to only first order derivatives of the
Hamiltonian, H# and H' .

Coming back to (18), it can be intuitively understood by using the associ-
ated Hamiltonian system. Consider a reparametrization of the original minimizer
'�.s.t// D ��.t/. In the following we are using a dot in order to denote partial
derivatives with respect to time and a prime in order to denote a partial derivative
with respect to the parametrization s, hence Pv � @v=@t and v0 � @v=@s. With this
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notation, we find for 
�1 D t0.s/ that P�� D 
'0� as well as P�� D H� ; P�� D �H� ,
and therefore

R�� D H��
P�� C H��

P��
D 
H��'

0� � H��H�

but also, since @=@t D 
 @=@s,

R�� D @.
'0�/=@t

D 

0'0� C 
2'00�

so in total

�

0'0� C 
H��'
0� � H��H� � 
2'00� D 0 D 
H��D'

OS.'/;

i.e. indeed the gradient vanishes at the minimizer.

3.2 A Simplified gMAM

In contrast to the previous section, we start from the form (15a) of the geometric
action. We want to solve the mixed optimization problem, i.e. find a trajectory '�
such that

'� D argmin
'2 OCx;y

sup
#WH.';#/D0

E.'; #/; (20)

where

E.'; #/ D
Z 1

0

h'0; #i ds: (21)

Let

E�.'/ D sup
#WH.';#/D0

E.'; #/ (22)

and #�.'/ such that E�.'/ D E.'; #�.'//. This implies that #� fulfills the Euler-
Lagrange equation associated with the constrained optimization problem in (22),
that is,

D#E.'; #�/ D �H#.'; #�/; (23)
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where on the right-hand side �.s/ is the Lagrange multiplier added to enforce the
constraint H.'; #�/ D 0. In particular, at # D #�, we have

� D kD#Ek2
hhD#E;H#ii D k'0k2

hh'0;H#ii ; (24)

where the inner product hh�; �ii and its induced norm k�k can be chosen appropriately,
for example as h�; �i or h�;H�1

## �i.
At the minimizer '�, the variation of E� with respect to ' vanishes. Using (23)

we conclude

0 D D'E�.'�/ D D'E.'�; #�/C �
D#ED'#

	
.';#/D.'�;#�/

D �# 0� C �
�
H#D'#

	
.';#/D.'�;#�/

D �# 0� � �H'.'�; #�/; (25)

where in the last step we used H.'; #�/ D 0 and therefore

H'.'; #�/ D �H#.'; #�/D'#:

Multiplying the gradient (25) with any positive definite matrix as pre-conditioner
yields a descent direction. It is necessary to choose ��1 as pre-conditioner to ensure
convergence around critical points, where '0 D 0.

Summarizing, we have reduced the minimization of the geometric action into
two separate tasks:

1. For a given ', find #�.'/ by solving the constrained optimization problem

#�.'/ D argmax
#;H.';#/D0

E.'; #/; (26)

which is equivalent to solving

D#E.'; #�/ D '0 D �H#.'; #�/ (27)

for .�; #�/ under the constraint H.'; #�/ D 0. This can be done via

• gradient descent;
• a second order algorithm for faster convergence (e.g. Newton-Raphson, as

employed in [25]);
• in many cases, analytically (see below).

2. Find '� by solving the optimization problem

'� D argmin
'2 OCx;y

E�.'/; (28)
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for example by pre-conditioned gradient descent, using as direction

���1D'E� D ��1# 0�.'/C H'.'; #�.'//; (29)

with ��1 as pre-conditioner. The constraint on the parametrization, e.g.
j'0j D const, must be fulfilled during this descent (see below).

3.3 Connection to gMAM

The problem of finding #�.'/ is equivalent to (16) from gMAM and the same
methods are applicable. In particular note that the Lagrange multiplier � which
enforces H.'�; #�/ D 0 is identical to 
�1.

It is also easy to see that, at .'�; #�/, the combined optimization problem
fD#E D �H# ;D'E� D 0g is identical to the geometric equations of motion,

(
D#E D '0 D �H#

D'E� D �# 0 � �H' D 0:
(30)

On the other hand, none of the formulas in the above section use higher
derivatives of the Hamiltonian: Only H' and H# are needed, which is a significant
simplification. This is obviously also true for the equations of motion (8) and their
geometric variant (30), which is the basis for the efficiency of algorithms like
[11, 21, 22].

3.4 Simplifications for SDEs with Additive Noise

For an SDE of the form

dX D b.X/dt C p
� dW; (31)

where � D Id, the equations of gMAM become significantly simpler. In the
following, we derive explicit expressions for this case, as it arises in numerous
applications.

The corresponding Hamiltonian is given by

H.'; #/ D hb; #i C 1

2
h#; #i D 0 (32)

and we find directly

H' D .b'/
T#; H# D b C #:
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In many cases, we consider exits from stable fixed points of the deterministic system
where we have H D 0 which, if we also use D#E D �H# , permits to conclude that

jH# j2 D jb C #j2 D jbj2 C 2hb; #i C h#; #i D jbj2 C 2H D jbj2: (33)

As a result

� D jD#Ej
jH# j D j'0j

jb C #j D j'0j
jbj ; (34)

i.e. we can compute � without the knowledge of # . On the other hand (27) implies

'0 D �H# D �.b C #/ ) # D ��1'0 � b: (35)

The whole algorithm therefore reduces to the gradient descent

@'

@	
D ��1# 0� C .b'/

T#�; (36)

with�; #� given by (34) and (35). Examples in this class will be treated in Sects. 4.1,
4.2, and 4.4 below.

3.5 Simplifications for General SDEs (Multiplicative Noise)

As a slightly more complicated case, consider the following SDE with multiplicative
noise:

dX D b.X/ dt C p
��.X/ dW; (37)

where a.'/ D �.'/��.'/. Then the Hamiltonian reads

H.'; #/ D hb; #i C 1
2
h#; a#i (38)

and

H' D .b'/
T# C 1

2
h#; .a'/#i; H# D b C a#: (39)

Defining an inner product and norm induced by the correlation, hu; via D hu; a�1vi
and juja D hu; ui1=2a yields, as before,

jH# ja D jbja ) � D j'0ja
jbja (40)
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and

# D a�1.��1'0 � b/: (41)

In the case of multiplicative noise, the algorithm therefore reads

@'

@	
D ��1# 0� C �

.b'/
T#� C 1

2
h#�; .a'/#�i� ; (42)

with �; #� given by (40) and (41). An example in this will be treated in Sect. 4.5.
It is also worth pointing out that we encounter difficulties as soon as the noise

correlation a is not invertible. This is equivalent to stating that some degrees of
freedom are not subject to noise and thus behave deterministically. The adjoint field
# has to be equal to zero on these modes, and they fulfill the deterministic equation
'0 D b exactly. This translates into additional constraints for the minimization
procedure, which have to be enforced numerically.

3.6 Comments on Improving the Numerical Efficiency

To increase the numerical efficiency of the algorithm, some alterations are
possible:

• Arc-length parametrization, j'0j D const, can be enforced trivially and without
introducing a stiff Lagrange multiplier term by interpolation along the trajectory
every (or every few) iterations. As additional benefit of this method all terms of
the relaxation dynamics which are proportional to '0 can be discarded, as they
are canceled by the reparametrization. This is of particular use in applications
that involve PDEs (see Sect. 3.7), as shown in examples below.

• Stability in the relaxation parameter can be greatly increased if one treats
the stiffest term of the relaxation equation implicitly. In ODE systems, the
stiffest term usually is H�1

##'
00, which is contained in # 0. For simplicity of

implementation, it is sufficient to compute #� in the usual way, apply # 0� in the
descent step, but subtract H�1

##'
00
n and add H�1

##'
00
nC1 here. This approach also

extends to the case of general Hamiltonians, where the dependence of #� on '0
is less obvious.

In our implementation, the relaxation step is conducted by computing

'nC1 D �
1 � h��2H�1

##@
2
s

��1
Rn; (43)

where

Rn D �
'n C h.��1# 0�.'n/C H'.'n; #�.'n// � ��2H�1

##'
00
n /
�
:
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This division into an implicit treatment of the stiffest term and explicit treatment
of the rest is the simplest case of Strang splitting [36] and the implementation
of (43) is only first order accurate. The splitting can be taken to arbitrary order
[43] under additional computational cost.

Note that the above modification, while increasing efficiency, at the same time
increases complexity, as the computation of the second derivative H## becomes
necessary. In practice, if the Hamiltonian is not too complex, we find that the
benefits outweigh the implementation costs, and some problems, especially PDE
systems, are not tractable at all with the inefficient but simpler choice of explicit
relaxation. If the PDE system contains higher-order spatial derivatives, even more
terms should possibly be treated with a stable integrator, as is discussed in the
next section.

• Depending on the problem, it might be beneficial to choose a different scalar
product in the descent. In case of traditional gMAM, the descent is done using
h�; .�2H##/

�1 �i, but other choices are also feasible. Note that it is possible to
choose the metric such that at least one term at the right-hand side disappears,
as it becomes parallel to the trajectory and is canceled by reparametrization, as
outlined above.

• Some insight about the nature of the transition can be obtained by first finding
the heteroclinic orbits defined geometrically as

'0 k b.'/: (44)

This calculation can be done very efficiently even for complicated problems
via the string method [16]. Even though the heteroclinic orbit differs from the
transition path for systems that violate detailed balance, it does correctly predict
the transition from the saddle point onward (the “downhill” portion, which
happens deterministically). The method put forward here can then be used to
find the transition path up to the saddle (the “uphill” portion) only. If there are
several saddles to be taken into account, it is not known a priori which one will
be visited by the transition pathway. In this case, the strategy has to be modified
accordingly, for example by computing one heteroclinic orbit per saddle. To
highlight the relation between the string and the minimizer, we compute and
compare the two in many of the applications below. We denote with “string” the
heteroclinic orbits connecting the fixed points to the saddle point of relevance
found via the string method.

3.7 SPDEs with Additive Noise

In this section, we discuss the application to SPDE systems. For simplicity, we focus
on the case of SPDEs with additive noise that can be written formally as

Ut D B.U/C p
� �.x; t/; (45)
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where the drift term is given by the operator B.U/ and � denotes spatio-temporal
white-noise. It is a non-trivial task to make mathematical sense of such SPDEs
under spatially irregular noise due to the possible ill-posedness of non-linear
terms, especially if the spatial dimension is higher than one. This may require
to renormalize the equation, which can be done rigorously in certain cases using
the theory of regularity structures [23]. The renormalization procedure typically
involves mollifying the noise term on a scale ı, and adding terms in the equation
that counterbalance divergences that may occur as one lets ı ! 0. In the context
of LDT, the main issue is whether these renormalizing terms subsist if we also let
� ! 0. In [24], it was shown in the context of the stochastic Allen-Cahn equation in
2 or 3 spatial dimensions that the action of the mollified equation converges towards
the action associated with the (possibly formal) equation in (45) in which the noise
is white-in-space provided that � is sent to zero fast enough as ı ! 0. This action
reads

ST.�/ D 1

2

Z T

0

k�t � B.�/k2L2dt; (46)

where k�kL2 denotes the L2-norm. This leads to expressions for the geometric action
that are similar to those in (15) but with the Euclidean inner product replaced by the
L2-inner product. In the sequel we will not dwell further on these mathematical
issues and always assume that (46) and the associated geometric action are the
relevant one to study.

The gradient descent for the minimizer of this geometric action is similar to the
one in (36) but with the term .b'/T replaced by the functional derivative of the
operator B with respect to '.

@'

@	
D ��1# 0� C �

D'B
�T
#� : (47)

In practice, however, this equation needs to be rewritten in order to allow for
numerical stability. This is due to the fact that the scheme will contain derivatives of
high orders, and their corresponding stability condition (CFL condition) will limit
the rate of convergence of the scheme. We therefore want to treat the most restrictive
terms either implicitly or with exponential integrators. To this end, let us focus on
the following class of problems where the drift B can be written as

B D L' C R.'/; (48)

where L is a linear self-adjoint operator containing higher-order derivatives that does
not depend on time explicitly, and R.'/ is the rest, possibly nonlinear. Recall that
#� can be computed from '0 via

#� D ��1'0 � B D ��1'0 � L' � R.'/: (49)
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On the other hand, we have also a term proportional to L in

D'B D D'R C L (50)

and, therefore, the relaxation formula (47) for ' actually contains a term L2'. If
L contains higher-order derivatives, this term will likely be the most restrictive
in terms of numerical stability. It is therefore advantageous to treat it separately.
Introducing an auxiliary variable Q#� defined by

Q#� D ��1'0 � R.'/ D #� C L' (51)

we can rewrite the relaxation formula as

@'

@	
D ��1# 0� C �

D'B
�T
#�

D ��1 Q# 0� � ��1L'0 C �
D'R

�T
#� C L#�

D Q��1# 0� � ��1L'0 C �
D'R

�T
#� C L. Q#� � L'/

D ��1 Q# 0� � ��1L'0 C �
D'R

�T
#� C L Q#� � L2'

D ��1 Q# 0� C �
D'R

�T
#� � LR.'/ � L2':

The term L2' is now separated and can be treated independently. Since it is linear by
definition, it can be treated very efficiently with an integrating factor by employing
exponential time differencing (ETD) [5]. For an equation with a deterministic term
of the form (48), multiplying by the integrating factor e�L	 and integrating from 	n

to 	nC1 D 	n C h, one obtains the exact formula

'nC1 D eLh'n C eLh
Z h

0

e�L	R.'.tn C 	// d	; (52)

which can be approximated by

'nC1 D eLh'n C .eLh � Id/L�1R.'n/; (53)

when treating the linear part of the equation exactly and approximating the integral
to first order. This scheme can be taken to higher order [12] and its stability improved
[27], but a first order scheme proved to be sufficient for the examples given below.
For the descent (47) we want to treat the stiffest part �L2' with ETD, so the
integrating factor here becomes e�L2	 .

A complete relaxation step then consists of

1. compute #� and Q#� using the explicit formulas

Q#� D ��1'0 � R.'/; #� D Q#� � L' I
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2. compute the explicit step


 D ��1 Q# 0� C �
D'R

�T
#� � LR.'/ � ��2H�1

##'
00
n ;

where as in the SDE case, if needed, we can subtract the term ��2H�1
##'

00
n to treat

it implicitly later;
3. perform an ETD step

N' D e�L2h'n � .e�L2h � Id/.L2/�1
 I

4. apply the second derivative in arc-length direction implicitly,

'nC1 D .1 � h��2H�1
##@

2
t /

�1 N':

Note that the integral factors e�L2h and .e�L2h � Id/.�L2/�1 are possibly costly
to compute, as they contain matrix-exponentials and inversions. However, the
computation can be done once before starting the iteration, so that the associated
computational cost becomes negligible. In contrast, this is not true in general for the
implicit step 4, since ��2H�1

## might depend on the fields in a complicated way and
has to be recomputed at every iteration.

4 Illustrative Applications

In what follows we apply our simplified gMAM to the series of examples listed
in the introduction. These examples illustrate specific questions encountered in
practical applications arising in a variety of fields, in which the computation of the
rate and mechanism of transitions is of interest. Note that all these examples involve
non-equilibrium systems whose dynamics break detailed balance, so that simpler
methods of computation are not readily available.

In the following, we will break our notation convention and instead use the
notation of the respective fields to minimize confusion.

4.1 Maier-Stein Model

Maier and Stein’s model [31] is a simple system often used as benchmark in LDT
calculations. It reads

(
du D .u � u3 � ˇuv2/dt C p

�dWu

dv D �.1C u2/vdt C p
�dWv;

(54)
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Fig. 1 Maier-Stein model, ˇ D 10. Left: PML and heteroclinic orbit. The arrows denote the
direction of the deterministic flow, the shading its magnitude. The solid line depicts the minimizer,
the dashed line the heteroclinic orbit. Dots are located at the fixed points (circle: stable; square:
saddle). Right: Action density along the minimizer and the heteroclinic orbit

where ˇ is a parameter. For all values of ˇ, the deterministic system has the two
stable fixed points, '� D .�1; 0/ and 'C D .1; 0/, and a unique unstable critical
point 's D .0; 0/. However it satisfies detailed balance only for ˇ D 1. In this case,
we can write the drift in gradient form, b.'/ D r'U.'/, and the minimizers of
the geometric action that connects '� to 'C and vice-versa are the time-reverse of
each other and lie on the location of the heteroclinic orbit where '0 k rU. Here,
we use ˇ D 10, in which case detailed balance is broken and the forward and
backward transition pathways are no longer identical. Since the noise is additive,
the system (54) falls into the category discussed in Sect. 3.4 and can be solved with
the simplest variant of the algorithm. The minimizer of the action connecting '�
to 'C and the value of the action along it are shown in Fig. 1. Since the system is
invariant under the transformation v ! �v, there is also a minimizer with identical
action in the v < 0 half-plane. Similarly, the paths from 'C to '� can be obtained
via the transformation u ! �u. The numerical parameters used in these calculations
were h D 10�1, Ns D 210, where Ns denotes the number of configurations along the
transition trajectory or the number of images.

4.2 Allen-Cahn/Cahn-Hilliard System

Pattern formation in motile micro-organisms is often driven by non-equilibrium
forces, leading to visible patterns in cellular colonies [8, 34]. For example, E. coli
in a uniform suspension separates into a bacteria-rich and a bacteria-poor phase if
the swim speed decreases sufficiently rapidly with density [37]. Here we study a
model inspired by these phenomena. We note that this model does not permit the
thermodynamic mapping used in [37], so that understanding the non-equilibrium
transitions in the model requires minimization of the geometric action of LDT.
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Fig. 2 Allen-Cahn/Cahn-
Hilliard toy ODE model,
˛ D 0:01. The arrows denote
the direction of the
deterministic flow, the color
its magnitude. The white
dashed line corresponds to the
slow manifold. The solid line
depicts the minimizer, the
dashed line the heteroclinic
orbit. Markers are located at
the fixed points (circle:
stable; square: saddle)
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4.2.1 Reduced Allen-Cahn/Cahn-Hilliard Model

Consider the SDE system

d� D
 
1

˛
Q.� � �3

!
� �/dt C p

�dW (55)

with � D .�1; �2/ and the matrix Q D ..1;�1/; .�1; 1//. This system does not
satisfy detailed balance, as its drift is made of two gradient terms with incompatible
mobility operators (namely Q and Id). Model (55) can be seen as a 2-dimensional
reduction to a discretized version of the continuous Allen-Cahn/Cahn-Hilliard
model discussed later in Sect. 4.2.2.

The deterministic flowlines of (55) are depicted in Fig. 2. The deterministic
dynamics has two stable fixed points, �A D .�1; 1/ and �B D .1;�1/, and an
unstable critical point, �S D .0; 0/, lying on the separatrix where �1 D �2 between
the basins of �A and �B. The location of the heteroclinic orbits connecting �S to
�A and �B is a straight line between these points. When ˛ is small in (55), there
exists a “slow manifold”, comprised of all points where Q.� � �3/ D 0 which is
shown as a white dashed line in Fig. 2. On this manifold, the deterministic dynamics
are of order O.1/, which is small in comparison to the dynamics of the Q-term,
which are of order O.1=˛/. This suggests that for small enough ˛ the transition
trajectory will follow this slow manifold on which the drift is small, rather than the
heteroclinic orbit, to escape the basin of the stable fixed points. This is confirmed
in Fig. 2 where we show the action minimizer connecting �B to �A. As can be seen,
the minimizer first tracks the slow manifold, and it approaches the separatrix at a
point far from �S. It then follows closely the separatrix towards �S (which has to be
part of the transition) to cross into the other basin and then relax (deterministically)
towards �A.
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Fig. 3 Left: Action density along the path for the 2-dimensional reduced model. Path parameter
is normalized to s 2 .0; 1/. For the second half of the transition, the action density is zero. Right:
Minimizers of the action functional for different values of ˛. For ˛ ! 0, the minimizer approaches
the slow manifold. Note that the switch to a straight line minimizer happens at a finite value ˛ �
1:12

The action along the minimizer and the paths made of the heteroclinic orbits are
depicted in Fig. 3 (left). Notably, due to its movement along the slow manifold, the
action along the minimizer is smaller by a factor of order ˛. Minimizers for different
values of ˛ are shown in Fig. 3 (right). Note that in the opposite limit ˛ 	 0 the
switch to a straight line happens at a finite value ˛ 
 1:12.

In these computations, we used Ns D 214, h D 10�2.

4.2.2 Full Allen-Cahn/Cahn-Hilliard Model

Consider next the SPDE

�t D 1

˛
P.��xx C � � �3/ � � C p

��.x; t/; (56)

where P is an operator with zero spatial mean and �.x; t/ a spatio-temporal white-
noise. This model is again of the form of two competing gradient flows with different
mobilities:

�t D �M1D�V1.�/ � M2D�V2.�/C p
�M1=2

2 �.x; t/; (57)

with

V1.�/ D 1

2
�j�xj2 C 1

2
j�j2 � 1

4
j�j4; M1 D 1

˛
P (58a)

V2.�/ D �1
2

j�j2; M2 D Id: (58b)
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For P D �@2x the system is a mixture of a stochastic Allen-Cahn [2] and Cahn-
Hilliard [7] equation. Here we will consider P.�/ D � � �R � dx, which is similar
in most aspects discussed below but simpler to handle numerically. We are again
interested in situations where ˛ is small, and the time scales associated with V1
and V2 differ significantly. In this case it will turn out that transition pathways are
very different from the heteroclinic orbits, in that the separatrix between the basins
of attraction is approached far from the unstable critical point of the deterministic
system. This behavior is reminiscent of the 2-dimensional example discussed above,
but in an SPDE setting.

The fixed points of the deterministic (� D 0) dynamics of system (56) are the
solutions of

P.��xx C � � �3/ � ˛� D 0: (59)

The only constant solution of this equation is the trivial fixed point �.x/ D 0, whose
stability depends on ˛ and �. In the following, we choose ˛ D 10�2 and � D
2 � 10�2, in which case �.x/ D 0 is unstable. The two stable fixed points obtained
by solving (59) for these values of ˛ and � are depicted in Fig. 4 as �A and �B, with
�A D ��B. An unstable fixed point configuration on the separatrix between �A and
�B is also shown as �S.

For finite but small ˛, the deterministic part of (56) has a “slow manifold” made
of the solutions of

P.��xx C � � �3/ D 0: (60)

On this manifold the motion is driven solely by changing the mean via the slow
terms, �� C p

� �.x; t/, on a time-scale of order O.1/ in ˛. After two integrations
in space, (60) can be written as

��xx C � � �3 D 
; (61)

where 
 is a parameter. As a result the slow manifold can be described as one-
parameter families of solutions parametrized by 
 2 R—in general there is more
than one family because the manifold can have different branches corresponding to
solutions of (59) with a different number of domain walls. The configuration labeled
as �X in Fig. 4 shows the field at the intersection of one of these branches with the
separatrix. Since the deterministic drift along the slow manifold is small compared
to the O.1=˛/ drift induced by the Cahn-Hilliard term, one expects that the most
probable transition pathway will use this manifold as channel to escape the basin
of attraction of the stable fixed points �A or �B. This intuition is confirmed by the
numerics, as shown next.

Figure 5 (left) shows the heteroclinic orbit connecting the two stable fixed points
�A and �B to the unstable configuration �S. The mean is preserved along this
orbit, which involves a nucleation event at the boundaries followed by domain
wall motion through the domain. The unstable fixed point �s, denoted by S, which
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Fig. 4 The configurations
A;B; S;X in space: �A and �B

are the two stable fixed
points, �S is the unstable
fixed point on the separatrix
in between. At point �X , the
slow manifold intersects the
separatrix
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Fig. 5 Transition pathways between two stable fixed points of equation (56) in the limit � ! 0.
Left: heteroclinic orbit, defining the deterministic relaxation dynamics from the unstable point
S down to either A or B. Right: Minimizer of the geometric action, defining the most probable
transition pathway from A to B, following the slow manifold up to X, where it starts to nearly
deterministically travel close to the separatrix into S

also demarcates the position at which the separatrix is crossed, is the spatially
symmetric configuration with a positive central region and two negative regions
at the boundary. Locations A and B label the two stable fixed points �A and �B.

In contrast, Fig. 5 (right) shows the minimizer of the geometric action, which
is the most probable transition path as � ! 0. It was computed via the algorithm
outlined in Sect. 3.7, with L D 1

˛
P�@2x � Id and R.u/ D 1

˛
P.u � u3/. Starting at the

fixed point A the minimizer takes a very different path than the heteroclinic orbit.
It first moves the domain wall, at vanishing cost for ˛ ! 0, without nucleation.
At the point X the motion changes, tracking closely the separatrix towards the
unstable point S. From this point onward, S ! B, the transition path then follows
the heteroclinic orbit, which is the deterministic relaxation path. In this respect, the
SPDE model (56) resembles closely the 2-dimensional model (55).
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Fig. 6 Projection of the heteroclinic orbit and the minimizer of the action functional into a 2-
dimensional plane. The x-direction is proportional to its component in the direction of the initial
condition �A while the y-direction corresponds to its spatial mean. The stable fixed points are
located at A and B, the unstable fixed point at S. The separatrix is the straight line

R
�.x/�A.x/ dx D

0. The heteroclinic orbit (light) travels A ! S ! B in a horizontal line with vanishing mean,
while the minimizer (dark) travels first along the slow manifold (dashed) A ! X and then tracks
the separatrix from X to S

To further illustrate this resemblance, we choose to project the minimizer and the
heteroclinic orbit onto two coordinates,

1. its mean
R
�.x/ dx, which resembles the direction �1 C �2 of the 2-dimensional

model, and
2. its component in the direction of the initial (or final) state,

R
�.x/�A.x/ dx, which

corresponds to the direction �1 � �2 of the 2-dimensional model.

The transition path and the heteroclinic projected in these reduced coordinates are
depicted in Fig. 6. Note that this figure is not a schematic, but the actual projection
of the heteroclinic orbit and the minimizer of Fig. 5 according to (i) and (ii) above.
The separatrix is the straight line

R
�.x/�A.x/ dx D 0. The movement of the

minimizer (dark) closely along the slow manifold (dashed), A ! X, and the
separatrix, X ! S, (which is also part of the slow manifold) into S highlights its
difference with the heteroclinic orbit (light). The configurations at the points A;B; S
and X are depicted in Fig. 4, while Fig. 7 shows the action density dS along the
transition path. Note that this quantity becomes close to zero already at X, because
the minimizer follows closely the separatrix from X to S, and this motion is therefore
quasi-deterministic.

The numerical parameters we used in these computations are h D 10�1, Ns D
100, Nx D 26, where Nx denotes the number of spatial discretization points.
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Fig. 7 Action along the
minimizer. Note that the
action is non-zero climbing
up the slow-manifold, but
diminishes to zero already at
X when it approaches the
separatrix, before it reaches S
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4.3 Burgers-Huxley Model

As a second example involving an SPDE, we consider

ut C ˛uux � �uxx D f .u; x; t/C p
��.x; t/: (62)

where ˛ > 0 and � > 0 are parameters, and we impose periodic boundary condition
on x 2 Œ0; 1�. Without the term f .u; x; t/, this is the stochastic Burgers equation
which arises in a variety of fields, in particular in the context of compressible gas
dynamics, traffic flow, and fluid dynamics. With the reaction term f .u; x; t/ added
this equation is referred to as the (stochastic) Burgers-Huxley equation [42] , which
has been used e.g. to describe the dynamics of neurons. The addition of a reaction
term makes it possible to obtain multiple stable fixed points. As a particular case,
we will consider (62) with

f .u; x; t/ D �u.1 � u/.1C u/ (63)

so that uC D 1 and u� D �1 are the two stable fixed points of the deterministic
dynamics. We are interested in the mechanism of the noise-induced transitions
between these points.

When ˛ D 0, the system is in detailed balance and therefore the forward and
backward reaction follow the same path. The potential associated with the reaction
term (63) is symmetric under u ! �u, and both states are equally probable.
In contrast, when ˛ ¤ 0 it is not obvious a priori whether uC and u� are
equally probable, since the non-linearity breaks the spatial symmetry, leading to
a steepening of negative gradients into shocks while flattening positive gradients.
A computation of the minimizer of the geometric action in both directions, for
� D 0:01 and ˛ D 1

4
reveals that indeed forward and backward reactions

are equally probable, even though the transition paths do not coincide with the
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Fig. 8 Burgers-Huxley equation: Minimizer switching from u� D �1 to uC D 1. Left: u-
field. The saddle-point is marked with a dashed line. There is a noticeable kink in the dynamics
switching from uphill (s < ssaddle) to downhill (s > ssaddle) dynamics. Right: Action density along
the minimizer

heteroclinic orbits. The transition from u� to uC is depicted in Fig. 8 (left). An
intuitive explanation for the equal probability of uC and u� is given by the fact
that the backward reaction pathways is identical to the forward path under the
transformation u ! �u, x ! �x. The action along this minimizer is depicted
in Fig. 8 (right). The minimizer is computed via the algorithm lined out in Sect. 3.7,
with L D ��@2x and R.u/ D ˛uux C u.1 � u/.1C u/.

The numerical parameters were chosen as Ns D 100, Nx D 28, h D 5 � 10�3.

4.4 Noise-Induced Transitions Between Climate Regimes

Many climate systems exhibit metastability. Examples include the Kuroshio oceanic
current off the coast of Japan, which can be in either a small or a large meander
state and rarely switches between the two [9, 33], or the atmospheric mid-latitude
circulation over the North-Atlantic, which makes rare transitions between a strongly
zonal and a weakly zonal (“blocked”) flow, characterized as “Grosswetterlagen” in
[4]. In these and similar examples, the climate system stays trapped in the vicinity
of the stable regimes most of the time. Random noise, originating either from
physical stresses or from unresolved modes in truncated models, induces rare regime
transitions, which can be captured by large deviation minimizers. The transition
trajectory and their corresponding action allow to make statements about not only
the relative probability of the different regimes and the transition rates, but also the
exact transition pathway taken to switch between regimes.

We want to illustrate the feasibility of our numerical scheme for this particular
field of application by investigating metastability in two simple climate models:
A three-dimensional model for Grosswetterlagen proposed by Egger [18] and the
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six-dimensional Charney-DeVore model [10]. Due to their highly truncated nature,
both models have very limited predictive power, but exemplify the phenomenon of
metastability in climate patterns or regimes.

4.4.1 Metastable Climate Regimes in Egger’s Model

Egger [18] introduces the following SDE system as a crude model to describe
weather regimes in central Europe:

8̂̂
<
ˆ̂:

da D kb.U � ˇ=k2/ dt � �a dt C p
�dWa;

db D �ka.U � ˇ=k2/ dt C UH=k dt � �b dt C p
�dWb;

dU D �bHk=2 dt � �.U � U0/ dt C p
�dWU:

(64)

When � is small, these equation exhibit metastability between a “blocked state”
and a “zonal state”, shown in Fig. 9. We use our gMAM algorithm to compute
the transition paths between these states. The system (64) falls into the category
discussed in Sect. 3.4 and can be solved with the simplest variant of the algorithm.
For H D 12; ˇ D 1:25; � D 2; k D 2 and U0 D 10:5, the fixed points are
approximately .a; b;U/ D .0:465; 1:65; 0:593/ for the blocked, .3:07; 0:392; 8:15/
for the zonal and .2:80; 1:35; 2:38/ for the unstable fixed point (saddle). The
minimizers of the action are show in Fig. 9(left) where they are compared to the
heteroclinic orbits that connects the unstable critical points to the stable ones. The
action density along the transition trajectories and the heteroclinic orbits is depicted
in Fig. 9 (right).

The numerical parameters we used in these computations are Ns D 28, h D 10�3.
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Fig. 9 Egger’s model with H D 12; ˇ D 1:25; � D 2; k D 2;U0 D 10:5 Left: Minimizers and
deterministic relaxation paths. Right: Comparison of the action density
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4.4.2 Metastable Climate Regimes in the Charney-DeVore Model

Egger’s model retains no nonlinear interaction between different fluid modes, which
is believed to be insufficient to explain the transitions between zonal and blocked
states. A more sophisticated model, truncating the barotropic vorticity equation
(BVE) with full nonlinear terms, was introduced by Charney and DeVore [10]. Their
starting point is the two-dimensional BVE on the ˇ-plane,

@

@t
! D u � r! � C.! � !�/: (65)

Here ! D � C ˇy C �h is the total vorticity, where �h is the topography in the
ˇ-plane, with ˇ D 2˝ cos.�/=R for planetary angular velocity ˝, radius R and
latitude � , and � D � is the relative vorticity for the stream-function  . The term
�C.! � !�/ accounts for Ekman damping with coefficient C > 0.

Charney-DeVore considered the vorticity equation (65) in the box Œ0; 2�� �
Œ0; �b� with periodic boundary conditions in x-direction and no-slip boundary
conditions in y-direction. They then projected this equation over 6 Fourier modes
in total, using the following representation for the stream-function  .x; y; t/:

 .x; y; t/ D
X
n;m

 nm.t/�nm.x; y/; (66)

where the sums run on n 2 f�1; 0; 1g and m 2 f1; 2g and

�0m.y/ D p
2 cos.my=b/; �nm.x; y/ D p

2einx sin.my=b/: (67)

Letting xi, i 2 f1; : : : ; 6g be defined as

x1 D 1

b
 01; x2 D 1p

2b
. 11 C  �11/ ; x3 D ip

2b
. 11 �  �11/ ;

x4 D 1

b
 02; x5 D 1p

2b
. 12 C  �12/ ; x6 D ip

2b
. 12 �  �12/ ;

(68)

taking the following form for the topography

h.x; y/ D cos.x/ sin.y=b/; (69)

and choosing !� such that only two parameters x�
1 and x�

4 are free and the other are
set zero, they arrived at the following six-dimensional model
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dx1 D � Q�1x3 � C.x1 � x�
1 /
�

dt C p
2�dW1;

dx2 D .�.˛1x1 � ˇ1/x3 � Cx2 � ı1x4x6/ dt C p
2�dW2;

dx3 D ..˛1x1 � ˇ1/x2 � �1x1 � Cx3 C ı1x4x5/ dt C p
2�dW3;

dx4 D � Q�2x6 � C.x4 � x�
4 /C �.x2x6 � x3x5/

�
dt C p

2�dW4;

dx5 D .�.˛2x1 � ˇ2/x6 � Cx5 � ı2x3x4/ dt C p
2�dW5;

dx6 D ..˛2x1 � ˇ2/x5 � �2x4 � Cx6 C ı2x2x4/ dt C p
2�dW6;

(70)

where, for m 2 f1; 2g,

˛m D 8
p
2

�

m2

4m2 � 1
b2 C m2 � 1

b2 C m2
;

ˇm D ˇb2

b2 C m2
;

�m D �

p
2b

�

4m3

.4m2 � 1/.b2 C m2/
;

Q�m D �

p
2b

�

4m

4m2 � 1 ;

ım D 64
p
2

15�

b2 � m2 C 1

b2 C m2
;

� D 16
p
2

5�
:

(71)

The original Charney-DeVore equation did not contain random forcing terms: here
we added to each equations an independent white noise dWi with amplitude

p
2�.

Choosing b D 1
2
, C D 1

10
, ˇ D 5

4
, � D 1, x�

1 D 9
2
, and x�

4 D � 9
5
, the

6-dimensional stochastic model above possesses two metastable states, shown in
Fig. 10: a zonal state (left) and a blocked state (right). The transition paths from
zonal to blocked and from blocked to zonal are different. They are shown in Figs. 11
and 12, respectively, and they were both calculated by minimizing the geometric
action using our simplified gMAM algorithm. The actions along both paths are
depicted in Fig. 13.

The numerical parameters in these computations were Ns D 100, h D 10�3.
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Fig. 10 Contours of the stream-function  .x; y/ of the two meta-stable configurations of the 6-
dimensional CDV model. Left: Zonal state; Right: Blocked state

4.5 Generalized Voter/Ising Model

To analyze phase transitions in out-of-equilibrium systems, a Langevin equation
was proposed in [1] that models critical phenomena with two absorbing states. This
equation was constructed by requiring that it be symmetric under the transformation
� ! �� and have two absorbing states, arbitrarily chosen to be at ˙1. The presence
of these absorbing states makes the noise multiplicative, with a scaling involving the
square root of the distance to the absorbing boundaries, as suggested by the voter
model [13, 15]. In order to account for Ising-like spontaneous symmetry breaking,
the authors of [1] also added a bi-stable “potential”-term with �V 0.�/ D .a��b�3/
to the equation, which finally lead them to:

�t D �
.1 � �2/.a� � b�3/C D�xx

�
dt C �

p
1 � �2�.x; t/: (72)

In the absence of noise (� D 0) and for a > 0, the � D 0 state is locally unstable,
but b > 0 ensures stable fixed points at � D ˙pa=b. In the limit a=b ! 1, these
fixed points approach the absorbing boundaries, and we are interested in the noise
induced transition between these states.

We stress that making mathematical sense of (72) is non-trivial (see the
discussion in Sect. 3.7). In the present application, we are going to consider a
finite truncation of this SPDE, where the question of spatial regularity disappears.
Specifically, we transform (72) into a two-dimensional stochastic ODE model by
discretizing the spatial direction via the standard 3-point Laplace stencil, and taking
only Nx D 2 discretization points. This yields the stochastic ODE system

8<
:

d�1 D �
.1 � �21/.a�1 � b�31/C D.�1 � �2/

�
dt C �

q
1 � �21 dWx

d�2 D �
.1 � �22/.a�2 � b�32/ � D.�1 � �2/

�
dt C �

q
1 � �22 dWy;

(73)
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Fig. 11 Contours of the stream-function  .x; y/ along the transition trajectory from the zonal to
the blocked meta-stable configuration for the CDV model. The arclength parameter increases in
lexicographic order, with the top left plot being the initial state and the bottom right plot being the
final state. The saddle point configuration is depicted in the center. The colormap is identical to
Fig. 10

where the constant D couples the two degrees of freedom. This SDE poses
an interesting test-case for our numerical scheme, since not only the noise is
multiplicative, but also the computational domain must be restricted. The square
defined by 1 D max.j�1j; j�2j/marks the region in which the noise is defined (real),
and the noise decreases towards zero as it approaches this absorbing barrier. Analog
to the discussion in [1], the choice of the parameters .a; b/ determines the dynamics,
in particular if a > 0; b > 0 the model exhibits bi-stability: There is an unstable
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Fig. 12 Contours of the stream-function  .x; y/ along the transition trajectory from the blocked
to the zonal meta-stable configuration for the CDV model. The arclength parameter increases in
lexicographic order, with the top left plot being the initial state and the bottom right plot being the
final state. The saddle point configuration is depicted in the center. The colormap is identical to
Fig. 10

fixed point at � D .0; 0/ and stable fixed points at � D ˙.pa=b;
p

a=b/. As long
as a < b, these fixed points are inside the allowed region. For a=b ! 1 the two
stable fixed points approach the absorbing boundary. Here, we take b D 1; a D
1� 10�4;D D 0:4, so that

p
a=b 
 0:99995 is located close to the barrier at 1. The

minimizer and corresponding action are shown in Fig. 14.
The numerical parameters were chosen as Ns D 28, h D 10�3.
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Fig. 13 Action density dS
along the transition pathways
from zonal to blocked
(forward) and from blocked
to zonal (backward). In both
directions, after passing the
saddle point, the action
becomes zero since the
motion is deterministic
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Fig. 14 Generalized voter/Ising model. Left: The arrows denote the direction of the deterministic
flow, the shading its magnitude. The solid line depicts the minimizer, the dashed line the
heteroclinic orbit. Markers are located at the fixed points (circle: stable; square: saddle). Right:
Action density along the minimizers for the two trajectories, with normalized path parameter
s 2 .0; 1/

4.6 Bi-Stable Reaction-Diffusion Model

In the context of chemical reactions and birth-death processes, one considers
networks of several reactants in a container of volume V which is considered well-
stirred. As an example case, we consider the bi-stable chemical reaction network

A
k0�
k1

X; 2X C B
k2�
k3
3X

with rates ki > 0, and where the concentrations of A and B are held constant.
This system was introduced in [32] as a prototypical model for a bi-stable reaction
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network. Its dynamics can be modeled as a Markov jump process (MJP) with
generator

.LRf /.n/ D AC.n/ .f .n C 1/ � f .n//C A�.n/ .f .n � 1/ � f .n// (74)

with the propensity functions



AC.n/ D k0V C .k2=V/n.n � 1/
A�.n/ D k1n C .k3=V2/n.n � 1/.n � 2/: (75)

The model above satisfies a large deviation principle in the following scaling
limit: Denote by c D n=V the concentration of X, and normalize it by a typical
concentration, � D c=c0. Now, in the limit of a large number of particles per cell
˝ D c0V and simultaneously rescaling time by 1=˝, we obtain

.LR
� f /.�/ D 1

�

�
aC.�/ .f .�C �/ � f .�//C a�.�/ .f .� � �/ � f .�//

�
; (76)

where � D 1=˝ is a small parameter. Here, we defined ki D 
i.c0/1�i, and

(
aC.�/ D 
0 C 
2�

2

a�.�/ D 
1�C 
3�
3:

(77)

The large deviation principle for (76) can be formally obtained via WKB analysis,
that is, by setting f .�/ D e�

�1G.�/ in (76) and expanding in � [14]. To leading order
in �, this gives an Hamilton-Jacobi operator associated with an Hamiltonian that is
also the one rigorously derived in LDT [35]. It reads

H.�; #/ D aC.�/.e# � 1/C a�.�/.e�# � 1/: (78)

This is an example of a system whose Hamiltonian is not quadratic in the conjugate
momentum # . Therefore the computation of #� by (26) can not be performed
explicitly in general. For parameters 
0 D 0:8; 
1 D 2:9; 
2 D 3:1; 
3 D 1, the
system has two stable fixed points �˙ and a saddle �s at �C D 8

5
; �� D 1

2
; �s D 1.

Since transitions in 1D are fairly trivial, we want to consider the case of
N neighboring reaction compartments, each well-stirred, but with random jumps
possible between neighboring compartments. This situation was analyzed in [38] via
direct sampling, but we are interested in the computation of the transition trajectory.
Denote by �i the concentration in the i-th compartment and refer to the vector � as
the complete state, � D PN

iD0 �i Oei. In this case, we obtain a diffusive part of the
generator, LD, coupling neighboring compartments. For a diffusivity D, it is

.LDf /.�/ D D

�

NX
iD1

�i .f .� � �Oei C �Oei�1/C f .� � �Oei C �OeiC1/ � 2f .�// : (79)
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The process associated with this generator also admits a large deviation principle
with Hamiltonian

HD.�; #/ D D
NX

iD1
�i
�
e#i�1�#i C e#iC1�#i � 2� : (80)

Therefore, the full Hamiltonian becomes H.�; #/ D HD.�; #/ C PN
iD1 HR.�i; #i/,

where HR.�i; #i/ is the reactive Hamiltonian in (78), which is summed up over all
the compartments.

We used our new gMAM algorithm to minimize the geometric action and
compute the transition paths between the stable fixed points for the simplest non-
trivial case of N D 2 compartments. Shown in Fig. 15 are the forward and backward
trajectories. Note that the backward transition (.�C; �C/ ! .��; ��/) takes a
special form: It climbs against the deterministic dynamics up to the maximum,
then relaxes along the separatrix down to the saddle. Additionally, we compare
these trajectories with the heteroclinic orbit obtained by the string method. The
action along these trajectories is depicted in Fig. 16. Note how for the backward
minimizer the action is zero already before it hits the saddle, as the movement from
the maximum to the saddle happens deterministically.

The numerical parameters were chosen as Ns D 29, h D 10.
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Fig. 15 Bi-Stable reaction-diffusion model with N D 2 reaction cells. Show are the forward
(red) and backward (green) transitions between the two stable fixed points, in comparison to the
heteroclinic orbit (dashed). The flow-lines depict the deterministic dynamics, their magnitude is
indicated by the background shading
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Fig. 16 Action densities for
the bi-stable
reaction-diffusion model.
Depicted are the actions
corresponding to the forward
(solid) and backward
(dashed) minimizer (dark)
and heteroclinic (light) orbit
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4.7 Slow-Fast Systems

In contrast to a large deviation principle arising in the limit of small noise or large
number of particles, a different class of Hamiltonians arises for systems with a slow
variable X evolving on a timescale O.1/ and a fast variable Y on a time scale O.˛/:

PX D f .X;Y/ (81a)

dY D 1

˛
b.X;Y/dt C 1p

˛
�.X;Y/dW: (81b)

Examples of systems with large timescale separation ˛ � 1 are ubiquitous in
nature, and usually one is interested mostly in the long-time behavior of the slow
variables. In particular, we are concerned with situations where the slow dynamics
exhibits metastability. We want to use our algorithm to compute transition pathways
in this setup for the limit of infinite time scale separation.

In the limit as ˛ ! 0, the fast variables reach statistical equilibrium before any
motion of the slow variables, and these slow variables only experience the average
effect of the fast ones. This behavior can be captured by the following deterministic
limiting equation which is akin to a law of large numbers (LLN) in the present
context and reads

PNX D F. NX/ where F.x/ D lim
T!1

1

T

Z T

0

f .x;Yx.	// d	: (82)

Here Yx.t/ is the solution of (81b) for X.t/ D x fixed [3, 6, 19, 30]. For small but
finite ˛, the slow variables also experience fluctuations through the fast variables. In
particular, the statistics of 
 D .X � NX/=p˛ on O.1/ time scales can be described
by a central limit theorem (CLT) as small Gaussian noise on top of the slow mean NX.
The CLT scaling, however, is inappropriate to describe the fluctuations of the slow
variables that are induced by the effect of the fast variables on longer time scales
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and may, for example, lead to transitions between stable fixed points of the limiting
equation in (82). In particular, the naive procedure of constructing an SDE out of
the LLN and CLT to then compute its LDT fails. Instead, the transitions in the limit
of ˛ ! 0 are captured by an LDP with the Hamiltonian

H.x; #/ D lim
T!1

1

T
logE exp

�
#

Z T

0

f .x;Yx.t// dt

�
: (83)

Except for the special case f .x; y/ D r.x/ C s.y/y (linear dependence on the fast
variable), the Hamiltonian (83) is non-quadratic in � . As a consequence no S(P)DE
with Gaussian noise exists for the slow variable which has an LDP to describe the
transitions correctly.

The implicit nature of the Hamiltonian (83), in particular containing an expecta-
tion, complicates numerical procedures to compute its associated minimizers. Yet, in
the non-trivial case of a quadratic dependence of the slow variable on the fast ones,
for example,

8<
:

PX D Y2 � ˇX

dY D � 1
˛
�.X/Y dt C �p

˛
dW;

(84)

one indeed does obtain an explicit formula for the Hamiltonian (83) (as derived
in [6])

h.x; #/ D �ˇx# C 1
2

�
�.x/ �

p
�2.x/ � 2�2#

�
: (85)

This example is interesting for our purpose not only because the Hamiltonian is
non-quadratic, but furthermore because of the existence of a forbidden region # >
�2=.2�/ where the Hamiltonian is not defined.

Additionally increasing the number of degrees of freedom by combining two
independent multi-stable slow-fast systems and coupling them by a spring with
spring constant D, the full system reads

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

PX1 D Y21 � ˇ1X1 � D.X1 � X2/
PX2 D Y22 � ˇ2X2 � D.X2 � X1/

dY1 D � 1
˛
�.X1/Y1dt C �p

˛
dW1

dY2 D � 1
˛
�.X2/Y2dt C �p

˛
dW2:

(86)

The Hamiltonian for the LDT for this system is

H.x1; x2; #1; #2/ D h.x1; #1/C h.x2; #2/C h�rU.x1; x2/; #i; (87)
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Fig. 17 Coupled slow-fast system ODE model for D D 1:0. Left: The arrows denote the direction
of the deterministic flow, the shading its magnitude. The solid line depicts the minimizer, the
dashed line the relaxation paths from the saddle. Markers are located at the fixed points (circle:
stable; square: saddle). Right: Action density along the minimizers for the two trajectories up to
the saddle, with normalized path parameter s 2 .0; 1/

for U.x; y/ D 1
2
D.x � y/2 and h.x; #/ defined as in equation (85). The choice

�.X/ D .X �5/2C1 ensures two stable fixed points. The deterministic dynamics of
this system (i.e. the evolution of the averaged slow variables) are depicted as white
arrows in Fig. 17 (left). To stress the important portion of the transition trajectory, the
plot is focused only on the initial state up to the saddle. Compared are the minimizer
and the heteroclinic orbits connecting the stable fixed points to the saddle point. The
corresponding actions are shown in Fig. 17 (right). The specific choice of model
parameters for this computation is ˇ1 D 0:6; ˇ2 D 0:3;D D 1:0 and �2 D 10.

The numerical parameters were chosen as Ns D 210, h D 10�2.

5 Concluding Remarks

We have discussed numerical schemes to compute minimizers of large deviation
action functionals, which are based on the geometric minimum action method.
The basis of these schemes is the minimization of a geometric action on the space
of arc-length parametrized curves, which makes it possible to perform the double
minimization over transition time T and action ST that is required to compute the
LDT quasipotential. In particular, transitions between metastable fixed points of a
system, which generally involve T ! 1 and which are not tractable with non-
geometric minimum action methods can be naturally analyzed in this setup.

A simplified gMAM algorithm was proposed here which is based on a particular
formulation of the geometric action leading to a mixed optimization problem.
This new formulation of the gMAM algorithm is easier to implement than the
original method: In its simplest form, only first order derivatives of the Hamiltonian
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H.'; #/ are needed. The algorithm is applicable to a large class of systems, and
does not rely on an explicit formula of the large deviation rate function—only the
Hamiltonian of the theory is needed. We derived specific reductions that are possible
in regularly occurring special cases, such as SDEs with additive or multiplicative
noise. Furthermore, we discussed optimizations for SPDEs with additive noise and
commented on how to improve numerical efficiency.

The performances of the new gMAM algorithm were illustrated in a series of
applications arising from different fields and involving different types of models,
like S(P)DEs with additive and multiplicative Gaussian noises, Markov jump
processes, or slow-fast systems.
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