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Preface

The application of mathematics and statistics in the age of computational science
and engineering has transformed our society and has revolutionized the world we
live in. Being some of the oldest cultural achievements of mankind, nowadays these
disciplines are intrinsic part of our daily life through our activities and technologies,
ranging from our banking and investment systems to new sophisticated electronic
devices, and to our civil infrastructure and environment.

These disciplines continuously grow at their frontiers though new areas of
applications, new theories, and new tools provided by mathematical and statistical
models. As a result, they continue representing the core of human knowledge critical
for new discoveries and innovation, our well-being, and our economic prosperity.

There has been a long and rich interplay between mathematics and statistics on
the one hand and other disciplines on the other, resulting in their fruitful enrich-
ments. With ever-expanding interdisciplinary horizons of applied mathematics and
statistics, we see new progress and modern challenges in their development. This
book is about such progress and challenges in applied mathematics, modelling, and
computational science.

Today, mathematical and statistical models are applied in natural and social
sciences, industry and technology, medicine and finance. They are at the heart of
a multitude of human activities, allowing connecting such activities in a modern
world, where our communication gets better, faster, and cheaper also due to
mathematics-based models. They substantially contribute to our better understand-
ing of complex systems and networks whose components interact in a dynamic
manner. Furthermore, mathematics-based computational technologies enable us
detailed simulations of complex systems in the areas where the knowledge about
such systems has been limited until very recently. Many such systems are functioned
in a competitive, and often uncertain, environment. Therefore, the development of
mathematical and statistical based methodologies of uncertainty quantification, as
well as addressing other associated challenges, is essential.

Along with more traditional applications of mathematics and statistics in physics
and engineering, we are witnessing now substantial contributions of these disci-
plines to new breakthroughs in biology and medicine, finance, and social sciences.
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vi Preface

Equally important, mathematical and statistical models allow us to develop new
important insight and better understanding of environmental and ecological sustain-
ability in our dynamic and complex world.

This book provides details on recent progress and challenges in selected areas of
applied mathematics, modelling, and computational science. It contains 14 chapters
which open to the reader details on state-of-the-art achievements in these selected
areas. The book provides a balance between fundamental theoretical and applied
developments, emphasizing interdisciplinary nature of modern trends in these areas.

Written by 27 experts in their respective fields, the book is aimed at researchers
in academia, practitioners, and graduate students. It can serve as a reference in
the diverse selected areas of applied mathematics, modelling, and computational
science. The book promotes interdisciplinary collaborations in addressing new
challenges in these areas.

We are thankful to the referees of this volume for their invaluable help and
suggestions. We are also very grateful to the Springer editorial team, and in
particular to Dahlia Fisch, for their highly professional support.

Waterloo, ON, Canada Roderick Melnik
Waterloo, ON, Canada Roman Makarov
Montreal, QC, Canada Jacques Belair
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Modern Challenges and Interdisciplinary
Interactions via Mathematical, Statistical,
and Computational Models

Roderick Melnik, Roman Makarov, and Jacques Belair

Abstract We live in an incredible age. Due to extraordinary advances in sciences
and engineering, we better understand the world around us. At the same time, we
witness profound changes in the technology, environment, societal organization, and
economic well-being. We face new challenges never experienced by humans before.
To efficiently address these challenges, the role of interdisciplinary interactions
will continue to increase, as well as the role of mathematical, statistical, and
computational models, providing a central link for such interactions.

1 The Role of Mathematical and Statistical Models

Since the dawn of human civilizations, technological innovations have been devel-
oping hand in hand with progress in mathematical and statistical sciences. Inter-
actions and interdependence of mathematics, physics, engineering, and biology
have been well elucidated in the literature with a number of excellent reviews and
historical accounts (e.g., [12, 13, 19] and references therein). In the heart of these
interactions and interdependence are mathematical and statistical models. Their role
will continue to increase rapidly in both traditional (e.g., physics and engineering)
and many emerging (e.g., health and life sciences) areas of their applications
(e.g., [10, 15, 18] and references therein). Moreover, we are witnessing a dramatic
increase in computing power and breathtaking advances in computational science
and engineering which assist further in developing this trend.

Today, many other disciplines are catching up with this trend too. Indeed,
mathematical and statistical models can be used to describe complex phenomena
and systems such as stock markets, the internet traffic, logistics, supply, and demand

R. Melnik (�) • R. Makarov
Department of Mathematics and MS2Discovery Interdisciplinary Research Institute, Wilfrid
Laurier University, Waterloo, ON, Canada, N2L 3C5
e-mail: rmelnik@wlu.ca

J. Belair
Departement de Mathematiques, Universite de Montreal, Montreal, QC, Canada, H3C 3J7
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4 R. Melnik et al.

of industrial networks, as well as climate change dynamics. Many complex systems
that appear in nature, engineering applications, and society have components that
interact in a remarkably dynamic manner in competitive, and often uncertain,
environments. In order to understand them better, there is a need to develop new
mathematical, including stochastic, models, as well as new methods for uncertainty
quantification.

New challenges in of the modern world and our society require researchers
working on many problems in economics and finance, social, environmental, and
management sciences look for the development of quantitative models based on
mathematical and statistical theories, methods, and tools.

As a result, new scientific, technological, and societal challenges we face in the
twenty-first century can only be efficiently addressed in close collaboration with
mathematicians and statisticians developing such quantitative models. At the same
time, such challenges will stimulate the development of new concepts and theories
in mathematical and statistical sciences, leading to many new breakthroughs in these
two-way interactions between mathematics and statistics on the one hand and other
disciplines on the other.

2 Application Areas and State-of-the-Art Developments

From a wide and increasing spectrum of applications of mathematical, statistical,
and computational models, we selected some representative areas of these appli-
cations. Thus, the rest of the book consists of eight sections based on these areas.
They contain state-of-the-art chapters, written by leading specialists from all over
the world.

In selecting our areas for this book we intended to open to the reader a rich field of
interdisciplinary interactions between many different disciplines with their unifying
thread via mathematical and statistical models. The book provides details on
theoretical advances in these selected areas of applications, as well as representative
examples of modern problems from such applications. It also exposes the reader to
open and emerging problems, and to challenges that lie ahead in addressing such
problems.

Following this introductory section, each remaining section with its chapters
stands alone as an in-depth research or a survey within a specific area of application
of mathematical, statistical and computational modeling. Next, we highlight the
main features of each such chapter within remaining sections of this book.
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2.1 Large Deviation Theory and Random Perturbations
of Dynamical Systems with Applications

Large deviation theory provides an important framework for modern statistical
mechanics and stochastic system/process modelling. It allows us to describe the
asymptotic behaviour of remote tails of sequences of probability distributions.
Within this framework, many concepts of equilibrium statistical mechanics, such as
entropy or free energy, can be considered as large deviation rate functions and can be
generalized to the non-equilibrium case. Moreover, today this theory is considered
to be one of the major tools for our better understanding of statistical information
about complex dynamical systems, including the information on their most probable
states, rare events, extremes, attractors, and typical fluctuations.

It is well known that long-time evolution of dynamical systems can be seriously
affected by small random perturbations, leading to a lasting effect on their evolution.
They can bring metastability, pronounced in transitions between otherwise stable
equilibria [28], the phenomenon that is observed in a wide range of applications
such as fluid dynamics, chemical reactions, population dynamics, and neuroscience.
The mechanism of this phenomenon can also be explored with large deviation
theory. A key element in the application of large deviation theory in this case is
the path of maximum likelihood of such transitions. Moreover, the path itself can be
computable through a numerical optimization problem as the minimizer of a certain
objective function, known as action.

This section of the book, written by T. Grafke, T. Schafer, and E. Vanden-
Eijnden, provides a review of theoretical foundation of large deviation theory that
led to the rate function minimization problem. In particular, the authors are focusing
on the geometric variant of this problem that is fundamental to the geometric
minimum action method. They have proposed a new algorithm that simplifies this
latter method. The authors demonstrate a considerable potential of their developed
algorithm for a range of applied problems, including examples ranging from fluid
dynamics and materials science to reaction kinetics and climate modelling.

2.2 Nonlinear waves, Hyperbolic Problems, and their
Applications

For centuries the development of mathematical models and studies of waves have
fascinated many researchers. Already Pythagoras analyzed waves through the
relation of pitch and length of string in musical instruments. Today, the role of
wave equations in the modern science and engineering is hard to overestimate.
They are applied in classical and quantum mechanics, materials science and biology,
medicine and finance, climate studies and social science. It is also an active area of
theoretical research which includes the development of analytical and computational
techniques and important connection to other areas of mathematics [23].
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Originally presented in the context of physics applications, coherent states
play an important role in nonlinear wave equations. In particular, such states are
considered as quasi-classical states in quantum mechanical applications. Today the
concept has been generalized to a number of other areas of mathematical physics
and beyond (e.g., [5, 27]).

The first chapter of this chapter, written by E. Kirr, starts from a general
Hamiltonian formulation applicable to a large class of models related to wave
propagation. Apart from the classical wave equation, this includes mathematical
models based on Schrödinger’s, Hartree’s, Dirac’s, Klein-Gordon’s, Kortweg-de-
Vries’ equations. The author demonstrates that while large coherent structures can
be found via variational methods (e.g., as minimizers of the energy, subject to a fixed
value on the second conserved property), this is not the case for the problems where
all coherent states are required. To address this challenge the author proposes to
apply the analytical global bifurcation theory for finding all coherent states, as well
as for analyzing orbital stability of such states. Within this framework, the author
provides details on how to study asymptotic stability of coherent states, as well
as on long-time behaviour of nearby solutions, and identifies some open problems
in this field. For example, despite the recent progress in asymptotic stability near
an orbitally stable coherent state, in the general case we still do not know how to
determine the full dynamic picture near a bifurcation point.

Hyperbolic equations are in the heart of discussion in the second chapter of this
section, written by R. Abgrall, who deals with both linear and non-linear problems.
The main focus is on the development of parameter-free methods for scalar
hyperbolic equations that satisfy a local maximum principle. The author presents
a systematic methodology for constructing higher order finite element type methods
satisfying this principle. The results are not limited to the problems with regular
solutions only. A detailed analysis of conditions that guarantee the convergence of
the developed numerical scheme to weak solutions under stability assumptions has
been provided. Furthermore, the author has provided the conditions that guarantee
an arbitrary order of accuracy of the developed scheme. Generalizations of the
proposed methodology have also been discussed in the context to its extensions
to systems, including Euler’s equations and the Navier-Stokes model. Among the
remaining challenges the author highlights the importance of a better design of the
filtering parameter.

2.3 Group-Theoretical Approaches to Conservation Laws
and Their Applications

Numerical integrators, where we preserve exactly one or more properties of the
original differential-equation-based mathematical model, has been a subject of
interest for a long time, with a number of excellent reviews, books, and journal
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special issues published (e.g., [3, 11, 26] and references therein). Given that
geometric properties of the exact flow of the underlying differential equation are
typically preserved in such cases, we call the associated integrators structure-
preserving or geometric numerical integrators. While this type of methodologies
has largely been developed for ordinary differential equations, there are important
results in the development of these ideas to partial differential equations too (e.g., [4,
20, 21]). These methodologies, applied to both deterministic and stochastic systems,
have been developed in parallel, and often independently, from energy-conserving
methods (e.g., [1, 16, 25] and references therein). Such methods are typically
derived for the variational formulation of the problem and can be applied to both
Lagrangian and Hamiltonian dynamics.

The underlying success of variational integrators, leading to their numerous
applications, lies with their group-theoretical foundation and Lie group analy-
sis which has been well elucidated in the literature (e.g., [14] and references
therein). For example, applied to Lagrangian dynamical systems, they preserve a
discrete multisymplectic form, as well as momenta associated to symmetries of the
Lagrangian via Noether’s theorem. As it was pointed out in [17], a prerequisite
of obtaining variational integrators is the existence of a variational formulation
for the considered dynamical system. Not all systems in applications are of this
type. Examples of non-variational mathematical models based on partial differential
equations can be found in such areas as plasma physics, fluid dynamics, as well as
in magnetohydrodynamics, to name just a few. As a result, there is an increasing
interest to a generalization of Noether’s theorem to handle such cases too. Recent
attempts in this direction include a discrete version of the Noether theorem for
formal Lagrangians that yields the discrete momenta preserved by the resulting
numerical schemes [17]. The method, based on the embedding of a dynamical
system into a Lagrangian system by doubling the number of variables, has been
applied to Vlasov-Poisson and magnetohydrodynamic systems, as well as to non-
canonical Hamiltonian systems.

This section is a comprehensive review, written by S. Anco, discussing other
generalizations of Noether’s theorem to non-variational mathematical models based
on partial differential equations. One of the major concepts is that related to
multipliers, the expressions whose summed products with a PDE-based system
yields a local divergence identity. The latter is associated with a continuity equation
involving a conserved density and a spatial flux for solutions of the underlying PDE.
The author demonstrates that when the underlying model is non-variational, such
multipliers are an adjoint counterpart to infinitesimal symmetries. Moreover, the
local divergence identity, that relates a multiplier to a conserved integral, appears
to be an adjoint generalization of the variational identity that underlies Noether’s
theorem. A procedure for computation of multiplies has been described in detail.
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2.4 Materials Science, Engineering, and New Technologies

Computer-aided innovation of new materials is an important area of research in
materials science and engineering. The development of computationally efficient
approaches and modelling in this field has been a subject of immense research
interest ever since our advances in computational power [7, 22]. This includes
innovative superhard materials, as well as smart materials such as superelastic and
shape memory alloys [6]. A large class of such materials are binary alloys. For
binary alloys, the most accurate energy calculations are typically done via the
density functional theory, and as any ab initio calculations this methodology is
computationally very expensive.

The first chapter in this section, written by J. Kristensen, I. Bilionis, and N.
Zabaras, discusses viable alternatives to the above methodology. They argue that in
this area of applications it is important to devise new schemes for the automatic and
maximally informative selection of simulations. They provide a detailed description
of their developed information acquisition policy for learning the ground state
of binary alloys. Starting from the surrogate modelling technique and presenting
the energy computation scheme, the authors describe their theoretical approach,
based on a Bayesian interpretation of the cluster expended energy. Their developed
framework for selecting structures has been extended to account for the effect of
alloy structure costs. By comparisons with other structure acquisition algorithms,
it has been concluded that optimal information acquisition policies should balance
the maximization of the expected improvement of the ground state line and the
minimization of the size of the simulated structure. The developed approach
has been validated for a number of important binary alloys, including NiAl and
TiAl. Once a probabilistic surrogate of the relevant thermodynamic potential is
constructed, the proposed policies can be directly applied to the discovery of generic
phase diagrams.

The second chapter of this section, written by P. Fischer, M. Schmitt, and A.
Tomboulides, presents a comprehensive overview of spectral element methods for
an important class of fluid dynamics problems. Their focus is on incompressible and
low-Mach-number flows in domains with moving boundaries. From applications
of these mathematical models, it is well known that moving boundaries introduce
new sources of nonlinearity and stiffness [9]. For example, in fluid-structure
interaction problems, one of the reasons for that lies with disparate time scales
between the fluid and solid responses. A similar situation holds for other coupled
problems. The authors pay special attention to recent developments addressing these
moving-domain challenges, while keeping the computational efficiency required
for turbulent flow simulations. One of the important features in their discussion
is an arbitrary Lagrangian-Eulerian formulation for low-Mach-number flows that
includes an evolution equation for the background thermodynamic pressure. A rich
selection of numerical examples has also been provided to illustrate main theoretical
results.

The concluding chapter of this section, written by C. Budd, offers an exciting
journey into mathematical foundations of new technologies. The author reviews
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eight such technologies, identified by the UK government as those that would act as
a focus for future scientific research and funding. They are

(a) Big Data
(b) Satellites and space
(c) Robotics and autonomous systems
(d) Synthetic biology
(e) Regenerative medicine
(f) Agricultural science
(g) Advanced materials
(h) Energy and its storage.

Based on a historical account and recent progress, the author demonstrates that
mathematics lies at the heart of all of them, linking them all together. A number
of challenges, both mathematical and interdisciplinary, have been determined and
discussed in the context of future development of these technologies.

2.5 Finance and Systemic Risk

This section contains three chapters. It is opened by a chapter written by Q. Feng
and C. Oosterlee addressing the problem of credit valuation adjustment. The authors
pointed out that this quantity is required in the Third Basel Accord - a global
framework on bank capital adequacy, stress testing, and market liquidity risk -
that came around in the wake of the credit crisis. In calculating credit valuation
adjustment, exposure is a key element. This characteristic is defined as the potential
future loss on a financial contract due to a default event. The chapter describes a
backward-dynamics-based general framework for calculating exposure profiles for
different options, enabling us to analyze the sensitivity of the model to such options.
The authors focus on two models, the Heston and Heston-Hull-White asset dynamic
models, which they consider under European, Bermudan, and barrier options. In
particular, for these models and options they describe their generalization of the
Stochastic Grid Bundling Method for the computation of exposure profiles and
sensitivity for asset dynamics. This generalization provides a flexible valuation
framework for credit valuation adjustment. Details are given for the most important
features of the developed methodology, including the choice of the basis functions
for the local regression, the convergence of the direct and path estimators with
respect to an increased number of bundles, and the associated accuracy. A series
of numerical tests presented in this chapter demonstrated these features in practice,
also showing that the computational efficiency of the developed methodology is
connected to the number of bundles used in the Stochastic Grid Bundling Method.
A drastic reduction in computational time is achieved with a parallel implementation
of the developed algorithm.
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The next chapter is this section, written by T. Bielecki, J. Jakubowski,a nd M.
Nieweglowski, is devoted to recent progress in the emerging theory and practice of
structured dependence between stochastic processes. It is argued that our success in
this field will be dependent on our ability to construct different types of Markov
copulae [2]. The authors of this chapter present a new result on independence
copula for conditional Markov chains. A copula can be used to describe the
dependence between random variables. It is a multivariate probability distribution
for which the marginal probability distribution of each variable is uniform. The
authors of this chapter describe how to construct the conditionally independent
Markov copula (or the conditionally independent multivariate Markov coupling)
for a family of conditional Markov chains. While the reported result is important in
finance applications, e.g. in modelling credit rating migrations, there is a range of its
possible applications in other areas. One of the challenges in this field, identified by
the authors, is to effectively construct weak Markov copulae and weak conditional
Markov chains.

This section is concluded by the chapter devoted to financial systemic risk
models. Written by T. Hurd, its main result is in providing essential foundations
needed to prove rigorous percolation bounds and cascade mapping in assortative
networks. The main premises of the author’s approach are based on the fact that
the network of interbank counterparty relationships can be described as a directed
random graph. When cascade models of financial systemic risk are used, the
structure of this graph (or the skeleton of a financial network) can be thought as
a medium through which financial contagion is propagated. The author focuses on
a particular general class of random graphs—the assortative configuration model.
A new approximate Monte Carlo simulation algorithm for assortative configuration
graphs has been described in detail, and challenges for efficient simulations of such
graphs have been highlighted.

2.6 Life and Environmental Sciences

Many problems in biology and life sciences require consideration of environmental
effects. One class of such problems is related to the analysis of coexistence of
interacting populations in uncertain environment.

This section, written by S. Schreiber, focuses on this class of problems account-
ing for random fluctuations due to both environmental and demographic stochas-
ticities which are experienced by all populations. It is argued that demographic
stochasticity can be represented by Markovian models with a countable num-
ber of states where quasi-stationary distributions of these models characterize
metastable patterns of the system behaviour connected to long-term transients. At
the same time, the effects of environmental stochasticity on population dynamics
can be modelled with stochastic difference equations. The author explains that
for these models, stochastic persistence would correspond to empirical measures
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placing arbitrarily little weight on arbitrarily low population densities. Sufficient
and necessary conditions for such persistence are based on a weighted combination
of Lyapunov exponents. The theory has been developed for both single-species and
multi-species models.

The author has provided the reader with a range of interesting examples to
support the developed theory. This includes the quantification of climatic variability
effects on the dynamics of Bay checkerspot butterflies, the persistence of coupled
sink populations, coexistence of competitors through the storage effect, and stochas-
tic rock-paper-scissor communities. The chapter contains a comprehensive list of
open problems and challenges in this field.

2.7 Number Theory and Algebraic Geometry in Cryptography
and Other Applications

The topic of elliptic curves has an important place in mathematics and its applica-
tions. In the domain of applications this topic came to its new prominence in the late
1970s of the twentieth century when public key cryptography and cryptosystems
become important for private and secure electronic communication [8]. In 1993
it became also known that elliptic curves were used in Andrew Wiles’ proof of
Fermat’s Last Theorem. With the astounding growth of the Internet and new security
challenges of the twenty-first century, there is all evidence to expect increasing
importance of elliptic curves in a number of application areas. Nowadays, the topic
represents a combination of important challenges in practical/algorithmic issues and
the underlying mathematical beauty with a range of open problems.

This section covers both computational/algorithmic and theoretical aspects of
elliptic curves. Written by M. Bennett and A. Rechnitzer, the section provides a
good introduction to ubiquitous nature of these structures in mathematical sciences,
particularly in number theory and algebraic geometry. From a practical viewpoint,
the authors focus on the problem of generating/tabulating elliptic curves with
desired properties. Along with a comprehensive overview of state-of-the-art in the
area, they provide details of an algorithm for computing models for all elliptic
curves with integer coefficients and given conductor. The latter quantity has been
studied since A. Ogg and A. Weil in the late 1960s of the previous century, and
is often considered to be an integral ideal analogous to the Artin conductor of a
Galois representation. In the context of the current section, the authors define it
as an invariant that provides information about how a given elliptic curve behaves
over finite fields. Based on extensive comparisons to existing data, they demonstrate
that although their approach is based on classical ideas, it leads to a very efficient
computational algorithm. Furthermore, given multiple examples and data provided
in this section, the authors challenge the reader with new problems in this exciting
area.
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2.8 Sustainability and Cooperation

In many applications we have to deal with dynamic interactions of several entities,
agents, or players, in such a way that we can achieve a long-term cooperation,
stability, and sustainability. Many problems in economics, social, engineering, and
management sciences are of this type. Additional examples include the interaction
between economic and ecological dynamic systems or other systems where coop-
eration and negotiation on the amount and the allocation of investment could lead
to more sustainable use of natural resources [24]. In many such cases, the dynamic
coalition-formation process can be modelled via a self-organized transition from
unilateral action (Nash equilibria) to multilateral cooperation (Pareto optima).

When we have only a few agents/players with interdependent playoffs, coop-
erating/competing repeatedly over time for resources under uncertainty (e.g., in
demand), the general framework of dynamic games played over event trees is often
most suitable way to formalize such problems mathematically.

In this section, written by G. Zaccour, all principle components of the theory
of dynamic games played over event trees have been reviewed. Starting from a
review of the literature pertinent to the sustainability of cooperation in dynamic
games, the author moves to the details of the approach to achieve a node-consistent
outcome in dynamic games played over event trees. This approach is illustrated
by the node-consistent Shapley value, as well as by the node-consistent core. In a
methodologically consistent manner, the author has demonstrated how sustainable
cooperative solutions can be constructed. The chapter has also highlighted several
open problems. For example, can cooperation still be sustained if the cores in
some of subgames are empty? Another interesting problem is the analysis of node
consistency for dynamic games played over event trees in the case when the end of
the horizon is random.

3 Conclusions

In this section we highlighted a selection of areas, representing part of a broad
spectrum of the interdisciplinary interface where mathematical, statistical, and
computational models play a central role. Such models provide an indispensable
tool for scientific discoveries and innovation in the areas ranging from physics
and biology to economics and finance, from security and defense to sustainability
studies.
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Long Term Effects of Small Random
Perturbations on Dynamical Systems:
Theoretical and Computational Tools

Tobias Grafke, Tobias Schäfer, and Eric Vanden-Eijnden

Abstract Small random perturbations may have a dramatic impact on the long
time evolution of dynamical systems, and large deviation theory is often the right
theoretical framework to understand these effects. At the core of the theory lies
the minimization of an action functional, which in many cases of interest has to be
computed by numerical means. Here we review the theoretical and computational
aspects behind these calculations, and propose an algorithm that simplifies the
geometric minimum action method to minimize the action in the space of arc-length
parametrized curves. We then illustrate this algorithm’s capabilities by applying it
to various examples from material sciences, fluid dynamics, atmosphere/ocean sci-
ences, and reaction kinetics. In terms of models, these examples involve stochastic
(ordinary or partial) differential equations with multiplicative noise, Markov jump
processes, and systems with fast and slow degrees of freedom, which all violate
detailed balance, so that simpler computational methods are not applicable.

1 Introduction

Small random perturbations often have a lasting effect on the long-time evolution
of dynamical systems. For example, they give rise to transitions between otherwise
stable equilibria, a phenomenon referred to as metastability that is observed in a
wide variety of contexts, e.g. phase separation, population dynamics, chemical reac-
tions, climate regimes, neuroscience, or fluid dynamics. Since the time-scale over
which these transition events occurs is typically exponentially large in some control
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parameter (for example the noise amplitude), a brute-force simulation approach
to compute these events quickly becomes infeasible. Fortunately, it is possible to
exploit the fact that the mechanism of these transitions is often predictable when
the random perturbations have small amplitude: with high probability the transitions
occur by their path of maximum likelihood (PML), and knowledge of this PML also
permits to estimate their rate. This is the essence of large deviation theory (LDT)
[20], which applies in a wide variety of contexts. For example, systems whose
evolution is governed by a stochastic (ordinary or partial) differential equation
driven by a small noise or by a Markov jump process in which jumps occur often
but lead to small changes of the system state, or slow/fast systems in which the fast
variables are randomly driven and the slow ones feel these perturbations through the
effect fast variables only, all fit within the framework of LDT. Note that, typically,
the dynamics of these systems fail to exhibit microscopic reversibility (detailed
balance) and the transitions therefore occur out-of-equilibrium. Nevertheless, LDT
still applies.

LDT also indicates that the PML is computable as the minimizer of a specific
objective function (action): the large deviation rate function of the problem at
hand. This is a non-trivial numerical optimization problem which calls for tailor-
made techniques for its solution. Here we will focus on one such technique, the
geometric minimum action method (gMAM, [26, 39, 39]), which is based on the
minimum action method and its variants [17, 41, 44], and was designed to perform
the action minimization over both the transition path location and its duration. This
computation gives the so-called quasipotential, whose role is key to understand the
long time effect of the random perturbations on the system, including the mechanism
of transitions events induced by these perturbations. Our purpose here is twofold.
First, we would like to briefly review the theoretical aspects behind LDT that
lead to the rate function minimization problem and, in particular, to the geometric
variant of it that is central in gMAM. Second, we would like to discuss in some
details the computational issues this minimization entails, and remedy a drawback
of gMAM, namely its somewhat complicated descent step that requires higher
order derivatives of the large deviation Hamiltonian. Here, we propose a simpler
algorithm, minimizing the geometric action functional, but requiring only first order
derivatives of the Hamiltonian. The power of this algorithm is then illustrated via
applications to a selection of problems:

1. the Maier-Stein model, which is a toy non-gradient stochastic ordinary differen-
tial equation that breaks detailed balance;

2. a stochastic Allen-Cahn/Cahn-Hilliard partial differential equation motivated by
population dynamics;

3. the stochastic Burgers-Huxley PDE, related to fluid dynamics and neuroscience;
4. Egger’s and Charney-DeVore equations, introduced as climate models displaying

noise-induced transitions between metastable regimes;
5. a generalized voter/Ising model with multiplicative noise;
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6. metastable networks of chemical reaction equations and reaction-diffusion equa-
tions;

7. a fast/slow system displaying transitions of the slow variables induced by the
effects of the fast ones.

The remainder of this paper is organized as follows. In Sect. 2 we briefly review
the key concepts of LDT that we will use (Sect. 2.1) and give a geometrical point
of view of the theory that led to the action used in gMAM (Sect. 2.2). In Sect. 3 we
discuss the numerical aspects related to the minimization of the geometric action,
propose a simplified algorithm to perform this calculation, and compare it to existing
algorithms. We also discuss further simplifications of the algorithm that apply in
regularly occurring special cases, such as additive or multiplicative Gaussian noise.
Finally, in Sect. 4 we present the applications listed above.

2 Freidlin-Wentzell Large Deviation Theory (LDT)

Here we first give a brief overview of LDT [20], focusing mainly on stochastic
differential equations (SDEs) for simplicity, but indicating also how the theory can
be extended to other models, such as Markov jump processes or fast/slow systems.
Then we discuss the geometric reformulation of the action minimization problem
that is used in gMAM.

2.1 Some Key Concepts in LDT

Consider the following SDE for X 2 Rn

dX D b.X/dt C p
��.X/dW; (1)

where b W Rn ! Rn denotes the drift term, W is a standard Wiener process in Rn,
� W Rn ! Rn � Rn is related to the diffusion tensor via a.x/ D .���/.x/, and � > 0
is a parameter measuring the noise amplitude. Suppose that we want to estimate the
probability of an event, such as finding the solution in a set B � Rn at time T given
that it started at X.0/ D x at time t D 0. LDT indicates that, in the limit as � ! 0,
this probability can be estimated via a minimization problem:

Px .X.T/ 2 B/ � exp

�
���1 min

�2C ST.�/

�
: (2)

Here � denotes log-asymptotic equivalence (i.e. the ratio of the logarithms of
both sides tends to 1 as � ! 0), the minimum is taken over the set C D f� 2
C.Œ0;T�;Rn/ W �.0/ D x; �.T/ 2 Bg, and we defined the action functional
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ST.�/ D
( R T

0
L.�; P�/ dt if the integral converges

1 otherwise:
(3)

Here

L.�; P�/ D 1
2
h P� � b.�/; .a.�//�1 . P� � b.�//i; (4)

where we assumed for simplicity that a.�/ is invertible and h�; �i denotes the
Euclidean inner product in Rn. LDT also indicates that, as � ! 0, when the event
occurs, it does so with X being arbitrarily close to the minimizer

�� D argmin
�2C

ST.�/ (5)

in the sense that

8ı > 0 W lim
�!0P

x
�

sup
0�t�T

jX.t/� ��.t/ j < ı
ˇ̌̌
X.T/ 2 B

�
D 1

Thus, from a computational viewpoint, the main question becomes how to perform
the minimization in (5). Note that, if we define the Hamiltonian associated with the
Lagrangian (4)

H.�; �/ D hb.�/; �i C 1
2
h�; a.�/�i (6)

such that

L.�; P�/ D sup
�

�h P�; �i � H.�; �/
�
; (7)

this minimization reduces to the solution of Hamilton’s equations of motion,

( P� D H� .�; �/ D b.�/C a.�/�
P� D �H�.�; �/ D �.b�.�//T� C 1

2
h�; a�.�/�i; (8)

where subscripts denote differentiation and we use the convention .b�/ij D @bi=@�j.
What makes the problem nonstandard, however, is the fact that these equations must
be solved as a boundary value problem, with �.0/ D x and �.T/ D y 2 B. We will
come back to this issue below.

If the minimum of the action in (2) is nonzero, this equation indicates that the
probability of finding the solution in B at time T is exponentially small in �, i.e. it is
a rare event. This is typically the case if one considers events that occur on a finite
time interval, T < 1 fixed. LDT, however, also permits to analyze the effects of the
perturbations over an infinite time span, in which case they become ubiquitous. In
this context, the central object in LDT is the quasipotential defined as
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V.x; y/ D inf
T>0

min
�2Cx;y

ST.�/; (9)

where Cx;y D f� 2 C.Œ0;T�;Rn/ W �.0/D x; �.T/D yg. The quasipotential permits
to answer several questions about the long time behavior of the system. For
example, if we assume that the deterministic equation associated with (1), PX D b.X/,
possesses a single stable fixed point, xa, as unique stable structure, and that (1)
admits a unique invariant distribution, the density associated with this distribution
can estimated as �! 0 as

�.x/ � exp
����1V.xa; x/

�
: (10)

Similarly, if PX D b.X/ possesses two stable fixed points, xa and xb, whose basins
of attraction have a common boundary, we can estimate the mean first passage time
the system takes to travel for one fixed point to the other as

E	a!b � exp
�
��1V.xa; xb/

�
; (11)

where

	a!b D infft W X.t/ 2 Bı.xb/;X.0/ D xag; (12)

in which Bı.xb/ denotes the ball of radius ı around xb, with ı small enough so
that this ball is contained in the basin of attraction of xb. In this setup, we can also
estimate the ratio of the stationary probabilities to find the system in the basins of
attraction of xa or xb. Denoting these probabilities by pa and pb, respectively, we
have

pa

pb
� E	a!b

E	b!a
� exp

�
��1.V.xa; xb/� V.xb; xa//

�
: (13)

These statements can be generalized to many other situations, e.g. if PX D b.X/
possesses more than two stable fixed points, or attracting structures that are more
complicated than points, such as limit cycles. They can also be generalized to
dynamical systems other than (1), e.g. if this equation is replaced by a stochastic
partial differential equation (SPDE), or for Markov jump processes in which the
jump rates are fast but lead to small changes of the system’s state [20, 35], or in
slow/fast systems where the slow variables feels random perturbations through the
effect the fast variables have on them [6, 19, 28, 29, 40]. In all cases, LDT provides us
with an action functional like (3), but in which the Lagrangian is different from (4)
if the system’s dynamics is not governed by an S(P)DE. Typically, the theory yields
an expression for the Hamiltonian (6), which may be non-quadratic in the momenta,
or even such that the Legendre transform in (7) is not available analytically. This
per se is not an issue, since we can in principle minimize the action by solving
Hamilton’s equations (8). However, these calculations face two difficulties. The first,
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already mentioned above, is that (8) must be solved as a boundary value problem.
The second, which is specific to the calculation of the quasipotential in (9), is that
the time span over which (8) are solved must be varied as well since (9) involves a
minimization over T, and typically the minimum is reached as T ! 1 (i.e. there
is a minimizing sequence but no minimizer) which complicates matters even more.
These issues motivate a geometric reformulation of the problem, which was first
proposed in [25] and we recall next.

2.2 Geometric Action Functional

As detailed in [25] (see Proposition 2.1 in that paper), the quasipotential defined
in (9) can also be expressed as

V.x; y/ D min
'2 OCx;y

OS.'/; (14)

where OCx;y D f' 2 C.Œ0; 1�;Rn/ W '.0/ D x; '.1/ D yg and OS.'/ is the geometric
action that can be defined in the following equivalent ways:

OS.'/ D sup
#WH.';#/D0

Z 1

0

h' 0; #ids (15a)

OS.'/ D
Z 1

0

h' 0; #�.'; ' 0/ids (15b)

OS.'/ D
Z 1

0

1


.'; ' 0/
L.'; 
' 0/ds; (15c)

where #�.'; ' 0/ and 
.'; ' 0/ are the solutions to

H.'; #�.'; ' 0// D 0; H#.'; #�.'; ' 0// D 
.'; ' 0/' 0 with 
 � 0: (16)

The action OS.'/ has the property that its value is left invariant by reparametrization
of the path ', i.e. it is an action on the space of continuous curves. In particular, one
is free to choose arclength-parametrization for ', e.g. j' 0j D 1=L for

R j' 0j ds D L.
This also means that the minimizer of (14) exists in more general cases (namely as
long as the path has finite length), which makes the minimization problem easier to
handle numerically, as shown next.
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3 Numerical Minimization of the Geometric Action

From (14), we see that the calculation of the quasipotential reduces to a minimiza-
tion problem, whose Euler-Lagrange equation is simply

D�
OS.'/ D 0; (17)

where D' denotes the functional gradient with respect to '. The main issue then
becomes how to find the solution '� to (17) that minimize the action OS.'/. In this
section, we first briefly review how the gMAM achieves this task. We will then
introduce a simplified variant of the gMAM algorithm that in its simplest form relies
solely on first order derivatives of the Hamiltonian. Subsequently, we also analyze
several special cases where the numerical treatment can be simplified even further.

3.1 Geometric Minimum Action Method

The starting point of gMAM is the following expression involving D�
OS.'/ that can

be calculated directly from formula (15b) for the action functional:

�
H##D'
OS.'/ D 
2' 00 � 
H#''

0 C H##H' C 

0' 0: (18)

This is derived as Proposition 3.1 in Appendix E of [25], and we will show below
how this expression can be intuitively understood. Since H## is assumed to be
positive definite and 
 � 0, we can use (18) directly to compute the solution of (17)
that minimizes OS.'/ via a relaxation method in virtual time 	 , that is, using the
equation:

@'

@	
D �
H##D'

OS.'/

D 
2' 00 � 
H#''
0 C H##H' C 

0' 0: (19)

This equation is the main equation used in the original gMAM. Note that the
computation of the right hand-side of this equation requires the computation of H' ,
H#' and H## , where the second derivatives of the Hamiltonian possibly become
unsightly for more complicated systems that arise naturally when trying to use
gMAM in practical applications. In Sect. 3.2 we propose a simplification of this
algorithm that reduces the terms necessary to only first order derivatives of the
Hamiltonian, H# and H' .

Coming back to (18), it can be intuitively understood by using the associ-
ated Hamiltonian system. Consider a reparametrization of the original minimizer
'�.s.t// D ��.t/. In the following we are using a dot in order to denote partial
derivatives with respect to time and a prime in order to denote a partial derivative
with respect to the parametrization s, hence Pv � @v=@t and v0 � @v=@s. With this
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notation, we find for 
�1 D t0.s/ that P�� D 
' 0� as well as P�� D H� ; P�� D �H� ,
and therefore

R�� D H��
P�� C H��

P��
D 
H��'

0� � H��H�

but also, since @=@t D 
 @=@s,

R�� D @.
' 0�/=@t

D 

0' 0� C 
2' 00�

so in total

�

0' 0� C 
H��'
0� � H��H� � 
2' 00� D 0 D 
H��D'

OS.'/;

i.e. indeed the gradient vanishes at the minimizer.

3.2 A Simplified gMAM

In contrast to the previous section, we start from the form (15a) of the geometric
action. We want to solve the mixed optimization problem, i.e. find a trajectory '�
such that

'� D argmin
'2 OCx;y

sup
#WH.';#/D0

E.'; #/; (20)

where

E.'; #/ D
Z 1

0

h' 0; #i ds: (21)

Let

E�.'/ D sup
#WH.';#/D0

E.'; #/ (22)

and #�.'/ such that E�.'/ D E.'; #�.'//. This implies that #� fulfills the Euler-
Lagrange equation associated with the constrained optimization problem in (22),
that is,

D#E.'; #�/ D �H#.'; #�/; (23)
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where on the right-hand side �.s/ is the Lagrange multiplier added to enforce the
constraint H.'; #�/ D 0. In particular, at # D #�, we have

� D kD#Ek2
hhD#E;H#ii D k' 0k2

hh' 0;H#ii ; (24)

where the inner product hh�; �ii and its induced norm k�k can be chosen appropriately,
for example as h�; �i or h�;H�1## �i.

At the minimizer '�, the variation of E� with respect to ' vanishes. Using (23)
we conclude

0 D D'E�.'�/ D D'E.'�; #�/C �
D#ED'#

	
.';#/D.'�;#�/

D �# 0� C �
�
H#D'#

	
.';#/D.'�;#�/

D �# 0� � �H'.'�; #�/; (25)

where in the last step we used H.'; #�/ D 0 and therefore

H'.'; #�/ D �H#.'; #�/D'#:

Multiplying the gradient (25) with any positive definite matrix as pre-conditioner
yields a descent direction. It is necessary to choose��1 as pre-conditioner to ensure
convergence around critical points, where ' 0 D 0.

Summarizing, we have reduced the minimization of the geometric action into
two separate tasks:

1. For a given ', find #�.'/ by solving the constrained optimization problem

#�.'/ D argmax
#;H.';#/D0

E.'; #/; (26)

which is equivalent to solving

D#E.'; #�/ D ' 0 D �H#.'; #�/ (27)

for .�; #�/ under the constraint H.'; #�/ D 0. This can be done via

• gradient descent;
• a second order algorithm for faster convergence (e.g. Newton-Raphson, as

employed in [25]);
• in many cases, analytically (see below).

2. Find '� by solving the optimization problem

'� D argmin
'2 OCx;y

E�.'/; (28)
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for example by pre-conditioned gradient descent, using as direction

���1D'E� D ��1# 0�.'/C H'.'; #�.'//; (29)

with ��1 as pre-conditioner. The constraint on the parametrization, e.g.
j' 0j D const, must be fulfilled during this descent (see below).

3.3 Connection to gMAM

The problem of finding #�.'/ is equivalent to (16) from gMAM and the same
methods are applicable. In particular note that the Lagrange multiplier � which
enforces H.'�; #�/ D 0 is identical to 
�1.

It is also easy to see that, at .'�; #�/, the combined optimization problem
fD#E D �H# ;D'E� D 0g is identical to the geometric equations of motion,

(
D#E D ' 0 D �H#

D'E� D �# 0 � �H' D 0:
(30)

On the other hand, none of the formulas in the above section use higher
derivatives of the Hamiltonian: Only H' and H# are needed, which is a significant
simplification. This is obviously also true for the equations of motion (8) and their
geometric variant (30), which is the basis for the efficiency of algorithms like
[11, 21, 22].

3.4 Simplifications for SDEs with Additive Noise

For an SDE of the form

dX D b.X/dt C p
� dW; (31)

where � D Id, the equations of gMAM become significantly simpler. In the
following, we derive explicit expressions for this case, as it arises in numerous
applications.

The corresponding Hamiltonian is given by

H.'; #/ D hb; #i C 1

2
h#; #i D 0 (32)

and we find directly

H' D .b'/
T#; H# D b C #:
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In many cases, we consider exits from stable fixed points of the deterministic system
where we have H D 0 which, if we also use D#E D �H# , permits to conclude that

jH# j2 D jb C #j2 D jbj2 C 2hb; #i C h#; #i D jbj2 C 2H D jbj2: (33)

As a result

� D jD#Ej
jH# j D j' 0j

jb C #j D j' 0j
jbj ; (34)

i.e. we can compute � without the knowledge of # . On the other hand (27) implies

' 0 D �H# D �.b C #/ ) # D ��1' 0 � b: (35)

The whole algorithm therefore reduces to the gradient descent

@'

@	
D ��1# 0� C .b'/

T#�; (36)

with�; #� given by (34) and (35). Examples in this class will be treated in Sects. 4.1,
4.2, and 4.4 below.

3.5 Simplifications for General SDEs (Multiplicative Noise)

As a slightly more complicated case, consider the following SDE with multiplicative
noise:

dX D b.X/ dt C p
��.X/ dW; (37)

where a.'/ D �.'/��.'/. Then the Hamiltonian reads

H.'; #/ D hb; #i C 1
2
h#; a#i (38)

and

H' D .b'/
T# C 1

2
h#; .a'/#i; H# D b C a#: (39)

Defining an inner product and norm induced by the correlation, hu; via D hu; a�1vi
and juja D hu; ui1=2a yields, as before,

jH# ja D jbja ) � D j' 0ja

jbja
(40)
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and

# D a�1.��1' 0 � b/: (41)

In the case of multiplicative noise, the algorithm therefore reads

@'

@	
D ��1# 0� C �

.b'/
T#� C 1

2
h#�; .a'/#�i

�
; (42)

with �; #� given by (40) and (41). An example in this will be treated in Sect. 4.5.
It is also worth pointing out that we encounter difficulties as soon as the noise

correlation a is not invertible. This is equivalent to stating that some degrees of
freedom are not subject to noise and thus behave deterministically. The adjoint field
# has to be equal to zero on these modes, and they fulfill the deterministic equation
' 0 D b exactly. This translates into additional constraints for the minimization
procedure, which have to be enforced numerically.

3.6 Comments on Improving the Numerical Efficiency

To increase the numerical efficiency of the algorithm, some alterations are
possible:

• Arc-length parametrization, j' 0j D const, can be enforced trivially and without
introducing a stiff Lagrange multiplier term by interpolation along the trajectory
every (or every few) iterations. As additional benefit of this method all terms of
the relaxation dynamics which are proportional to ' 0 can be discarded, as they
are canceled by the reparametrization. This is of particular use in applications
that involve PDEs (see Sect. 3.7), as shown in examples below.

• Stability in the relaxation parameter can be greatly increased if one treats
the stiffest term of the relaxation equation implicitly. In ODE systems, the
stiffest term usually is H�1##' 00, which is contained in # 0. For simplicity of
implementation, it is sufficient to compute #� in the usual way, apply # 0� in the
descent step, but subtract H�1##' 00n and add H�1##' 00nC1 here. This approach also
extends to the case of general Hamiltonians, where the dependence of #� on ' 0
is less obvious.

In our implementation, the relaxation step is conducted by computing

'nC1 D �
1 � h��2H�1##@2s

��1
Rn; (43)

where

Rn D �
'n C h.��1# 0�.'n/C H'.'n; #�.'n//� ��2H�1##' 00n /

�
:
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This division into an implicit treatment of the stiffest term and explicit treatment
of the rest is the simplest case of Strang splitting [36] and the implementation
of (43) is only first order accurate. The splitting can be taken to arbitrary order
[43] under additional computational cost.

Note that the above modification, while increasing efficiency, at the same time
increases complexity, as the computation of the second derivative H## becomes
necessary. In practice, if the Hamiltonian is not too complex, we find that the
benefits outweigh the implementation costs, and some problems, especially PDE
systems, are not tractable at all with the inefficient but simpler choice of explicit
relaxation. If the PDE system contains higher-order spatial derivatives, even more
terms should possibly be treated with a stable integrator, as is discussed in the
next section.

• Depending on the problem, it might be beneficial to choose a different scalar
product in the descent. In case of traditional gMAM, the descent is done using
h�; .�2H##/

�1 �i, but other choices are also feasible. Note that it is possible to
choose the metric such that at least one term at the right-hand side disappears,
as it becomes parallel to the trajectory and is canceled by reparametrization, as
outlined above.

• Some insight about the nature of the transition can be obtained by first finding
the heteroclinic orbits defined geometrically as

' 0 k b.'/: (44)

This calculation can be done very efficiently even for complicated problems
via the string method [16]. Even though the heteroclinic orbit differs from the
transition path for systems that violate detailed balance, it does correctly predict
the transition from the saddle point onward (the “downhill” portion, which
happens deterministically). The method put forward here can then be used to
find the transition path up to the saddle (the “uphill” portion) only. If there are
several saddles to be taken into account, it is not known a priori which one will
be visited by the transition pathway. In this case, the strategy has to be modified
accordingly, for example by computing one heteroclinic orbit per saddle. To
highlight the relation between the string and the minimizer, we compute and
compare the two in many of the applications below. We denote with “string” the
heteroclinic orbits connecting the fixed points to the saddle point of relevance
found via the string method.

3.7 SPDEs with Additive Noise

In this section, we discuss the application to SPDE systems. For simplicity, we focus
on the case of SPDEs with additive noise that can be written formally as

Ut D B.U/C p
� �.x; t/; (45)
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where the drift term is given by the operator B.U/ and � denotes spatio-temporal
white-noise. It is a non-trivial task to make mathematical sense of such SPDEs
under spatially irregular noise due to the possible ill-posedness of non-linear
terms, especially if the spatial dimension is higher than one. This may require
to renormalize the equation, which can be done rigorously in certain cases using
the theory of regularity structures [23]. The renormalization procedure typically
involves mollifying the noise term on a scale ı, and adding terms in the equation
that counterbalance divergences that may occur as one lets ı ! 0. In the context
of LDT, the main issue is whether these renormalizing terms subsist if we also let
� ! 0. In [24], it was shown in the context of the stochastic Allen-Cahn equation in
2 or 3 spatial dimensions that the action of the mollified equation converges towards
the action associated with the (possibly formal) equation in (45) in which the noise
is white-in-space provided that � is sent to zero fast enough as ı ! 0. This action
reads

ST.�/ D 1

2

Z T

0

k�t � B.�/k2L2dt; (46)

where k�kL2 denotes the L2-norm. This leads to expressions for the geometric action
that are similar to those in (15) but with the Euclidean inner product replaced by the
L2-inner product. In the sequel we will not dwell further on these mathematical
issues and always assume that (46) and the associated geometric action are the
relevant one to study.

The gradient descent for the minimizer of this geometric action is similar to the
one in (36) but with the term .b'/T replaced by the functional derivative of the
operator B with respect to '.

@'

@	
D ��1# 0� C �

D'B
�T
#� : (47)

In practice, however, this equation needs to be rewritten in order to allow for
numerical stability. This is due to the fact that the scheme will contain derivatives of
high orders, and their corresponding stability condition (CFL condition) will limit
the rate of convergence of the scheme. We therefore want to treat the most restrictive
terms either implicitly or with exponential integrators. To this end, let us focus on
the following class of problems where the drift B can be written as

B D L' C R.'/; (48)

where L is a linear self-adjoint operator containing higher-order derivatives that does
not depend on time explicitly, and R.'/ is the rest, possibly nonlinear. Recall that
#� can be computed from ' 0 via

#� D ��1' 0 � B D ��1' 0 � L' � R.'/: (49)
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On the other hand, we have also a term proportional to L in

D'B D D'R C L (50)

and, therefore, the relaxation formula (47) for ' actually contains a term L2'. If
L contains higher-order derivatives, this term will likely be the most restrictive
in terms of numerical stability. It is therefore advantageous to treat it separately.
Introducing an auxiliary variable Q#� defined by

Q#� D ��1' 0 � R.'/ D #� C L' (51)

we can rewrite the relaxation formula as

@'

@	
D ��1# 0� C �

D'B
�T
#�

D ��1 Q# 0� � ��1L' 0 C �
D'R

�T
#� C L#�

D Q��1# 0� � ��1L' 0 C �
D'R

�T
#� C L. Q#� � L'/

D ��1 Q# 0� � ��1L' 0 C �
D'R

�T
#� C L Q#� � L2'

D ��1 Q# 0� C �
D'R

�T
#� � LR.'/ � L2':

The term L2' is now separated and can be treated independently. Since it is linear by
definition, it can be treated very efficiently with an integrating factor by employing
exponential time differencing (ETD) [5]. For an equation with a deterministic term
of the form (48), multiplying by the integrating factor e�L	 and integrating from 	n

to 	nC1 D 	n C h, one obtains the exact formula

'nC1 D eLh'n C eLh
Z h

0

e�L	R.'.tn C 	// d	; (52)

which can be approximated by

'nC1 D eLh'n C .eLh � Id/L�1R.'n/; (53)

when treating the linear part of the equation exactly and approximating the integral
to first order. This scheme can be taken to higher order [12] and its stability improved
[27], but a first order scheme proved to be sufficient for the examples given below.
For the descent (47) we want to treat the stiffest part �L2' with ETD, so the
integrating factor here becomes e�L2	 .

A complete relaxation step then consists of

1. compute #� and Q#� using the explicit formulas

Q#� D ��1' 0 � R.'/; #� D Q#� � L' I
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2. compute the explicit step

 D ��1 Q# 0� C �
D'R

�T
#� � LR.'/ � ��2H�1##' 00n ;

where as in the SDE case, if needed, we can subtract the term ��2H�1##' 00n to treat
it implicitly later;

3. perform an ETD step

N' D e�L2h'n � .e�L2h � Id/.L2/�1 I

4. apply the second derivative in arc-length direction implicitly,

'nC1 D .1 � h��2H�1##@2t /�1 N':

Note that the integral factors e�L2h and .e�L2h � Id/.�L2/�1 are possibly costly
to compute, as they contain matrix-exponentials and inversions. However, the
computation can be done once before starting the iteration, so that the associated
computational cost becomes negligible. In contrast, this is not true in general for the
implicit step 4, since ��2H�1## might depend on the fields in a complicated way and
has to be recomputed at every iteration.

4 Illustrative Applications

In what follows we apply our simplified gMAM to the series of examples listed
in the introduction. These examples illustrate specific questions encountered in
practical applications arising in a variety of fields, in which the computation of the
rate and mechanism of transitions is of interest. Note that all these examples involve
non-equilibrium systems whose dynamics break detailed balance, so that simpler
methods of computation are not readily available.

In the following, we will break our notation convention and instead use the
notation of the respective fields to minimize confusion.

4.1 Maier-Stein Model

Maier and Stein’s model [31] is a simple system often used as benchmark in LDT
calculations. It reads

(
du D .u � u3 � ˇuv2/dt C p

�dWu

dv D �.1C u2/vdt C p
�dWv;

(54)
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Fig. 1 Maier-Stein model, ˇ D 10. Left: PML and heteroclinic orbit. The arrows denote the
direction of the deterministic flow, the shading its magnitude. The solid line depicts the minimizer,
the dashed line the heteroclinic orbit. Dots are located at the fixed points (circle: stable; square:
saddle). Right: Action density along the minimizer and the heteroclinic orbit

where ˇ is a parameter. For all values of ˇ, the deterministic system has the two
stable fixed points, '� D .�1; 0/ and 'C D .1; 0/, and a unique unstable critical
point 's D .0; 0/. However it satisfies detailed balance only for ˇ D 1. In this case,
we can write the drift in gradient form, b.'/ D r'U.'/, and the minimizers of
the geometric action that connects '� to 'C and vice-versa are the time-reverse of
each other and lie on the location of the heteroclinic orbit where ' 0 k rU. Here,
we use ˇ D 10, in which case detailed balance is broken and the forward and
backward transition pathways are no longer identical. Since the noise is additive,
the system (54) falls into the category discussed in Sect. 3.4 and can be solved with
the simplest variant of the algorithm. The minimizer of the action connecting '�
to 'C and the value of the action along it are shown in Fig. 1. Since the system is
invariant under the transformation v ! �v, there is also a minimizer with identical
action in the v < 0 half-plane. Similarly, the paths from 'C to '� can be obtained
via the transformation u ! �u. The numerical parameters used in these calculations
were h D 10�1, Ns D 210, where Ns denotes the number of configurations along the
transition trajectory or the number of images.

4.2 Allen-Cahn/Cahn-Hilliard System

Pattern formation in motile micro-organisms is often driven by non-equilibrium
forces, leading to visible patterns in cellular colonies [8, 34]. For example, E. coli
in a uniform suspension separates into a bacteria-rich and a bacteria-poor phase if
the swim speed decreases sufficiently rapidly with density [37]. Here we study a
model inspired by these phenomena. We note that this model does not permit the
thermodynamic mapping used in [37], so that understanding the non-equilibrium
transitions in the model requires minimization of the geometric action of LDT.
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Fig. 2 Allen-Cahn/Cahn-
Hilliard toy ODE model,
˛ D 0:01. The arrows denote
the direction of the
deterministic flow, the color
its magnitude. The white
dashed line corresponds to
the slow manifold. The solid
line depicts the minimizer,
the dashed line the
heteroclinic orbit. Markers
are located at the fixed points
(circle: stable; square: saddle)
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4.2.1 Reduced Allen-Cahn/Cahn-Hilliard Model

Consider the SDE system

d� D
 
1

˛
Q.� � �3

!
� �/dt C p

�dW (55)

with � D .�1; �2/ and the matrix Q D ..1;�1/; .�1; 1//. This system does not
satisfy detailed balance, as its drift is made of two gradient terms with incompatible
mobility operators (namely Q and Id). Model (55) can be seen as a 2-dimensional
reduction to a discretized version of the continuous Allen-Cahn/Cahn-Hilliard
model discussed later in Sect. 4.2.2.

The deterministic flowlines of (55) are depicted in Fig. 2. The deterministic
dynamics has two stable fixed points, �A D .�1; 1/ and �B D .1;�1/, and an
unstable critical point, �S D .0; 0/, lying on the separatrix where �1 D �2 between
the basins of �A and �B. The location of the heteroclinic orbits connecting �S to
�A and �B is a straight line between these points. When ˛ is small in (55), there
exists a “slow manifold”, comprised of all points where Q.� � �3/ D 0 which is
shown as a white dashed line in Fig. 2. On this manifold, the deterministic dynamics
are of order O.1/, which is small in comparison to the dynamics of the Q-term,
which are of order O.1=˛/. This suggests that for small enough ˛ the transition
trajectory will follow this slow manifold on which the drift is small, rather than the
heteroclinic orbit, to escape the basin of the stable fixed points. This is confirmed
in Fig. 2 where we show the action minimizer connecting �B to �A. As can be seen,
the minimizer first tracks the slow manifold, and it approaches the separatrix at a
point far from �S. It then follows closely the separatrix towards �S (which has to be
part of the transition) to cross into the other basin and then relax (deterministically)
towards �A.
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Fig. 3 Left: Action density along the path for the 2-dimensional reduced model. Path parameter
is normalized to s 2 .0; 1/. For the second half of the transition, the action density is zero. Right:
Minimizers of the action functional for different values of ˛. For ˛! 0, the minimizer approaches
the slow manifold. Note that the switch to a straight line minimizer happens at a finite value ˛ �
1:12

The action along the minimizer and the paths made of the heteroclinic orbits are
depicted in Fig. 3 (left). Notably, due to its movement along the slow manifold, the
action along the minimizer is smaller by a factor of order ˛. Minimizers for different
values of ˛ are shown in Fig. 3 (right). Note that in the opposite limit ˛ 	 0 the
switch to a straight line happens at a finite value ˛ 
 1:12.

In these computations, we used Ns D 214, h D 10�2.

4.2.2 Full Allen-Cahn/Cahn-Hilliard Model

Consider next the SPDE

�t D 1

˛
P.��xx C � � �3/ � � C p

��.x; t/; (56)

where P is an operator with zero spatial mean and �.x; t/ a spatio-temporal white-
noise. This model is again of the form of two competing gradient flows with different
mobilities:

�t D �M1D�V1.�/� M2D�V2.�/C p
�M1=2

2 �.x; t/; (57)

with

V1.�/ D 1

2
�j�xj2 C 1

2
j�j2 � 1

4
j�j4; M1 D 1

˛
P (58a)

V2.�/ D �1
2

j�j2; M2 D Id: (58b)
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For P D �@2x the system is a mixture of a stochastic Allen-Cahn [2] and Cahn-
Hilliard [7] equation. Here we will consider P.�/ D � � �R � dx, which is similar
in most aspects discussed below but simpler to handle numerically. We are again
interested in situations where ˛ is small, and the time scales associated with V1
and V2 differ significantly. In this case it will turn out that transition pathways are
very different from the heteroclinic orbits, in that the separatrix between the basins
of attraction is approached far from the unstable critical point of the deterministic
system. This behavior is reminiscent of the 2-dimensional example discussed above,
but in an SPDE setting.

The fixed points of the deterministic (� D 0) dynamics of system (56) are the
solutions of

P.��xx C � � �3/� ˛� D 0: (59)

The only constant solution of this equation is the trivial fixed point �.x/ D 0, whose
stability depends on ˛ and �. In the following, we choose ˛ D 10�2 and � D
2 � 10�2, in which case �.x/ D 0 is unstable. The two stable fixed points obtained
by solving (59) for these values of ˛ and � are depicted in Fig. 4 as �A and �B, with
�A D ��B. An unstable fixed point configuration on the separatrix between �A and
�B is also shown as �S.

For finite but small ˛, the deterministic part of (56) has a “slow manifold” made
of the solutions of

P.��xx C � � �3/ D 0: (60)

On this manifold the motion is driven solely by changing the mean via the slow
terms, �� C p

� �.x; t/, on a time-scale of order O.1/ in ˛. After two integrations
in space, (60) can be written as

��xx C � � �3 D 
; (61)

where 
 is a parameter. As a result the slow manifold can be described as one-
parameter families of solutions parametrized by 
 2 R—in general there is more
than one family because the manifold can have different branches corresponding to
solutions of (59) with a different number of domain walls. The configuration labeled
as �X in Fig. 4 shows the field at the intersection of one of these branches with the
separatrix. Since the deterministic drift along the slow manifold is small compared
to the O.1=˛/ drift induced by the Cahn-Hilliard term, one expects that the most
probable transition pathway will use this manifold as channel to escape the basin
of attraction of the stable fixed points �A or �B. This intuition is confirmed by the
numerics, as shown next.

Figure 5 (left) shows the heteroclinic orbit connecting the two stable fixed points
�A and �B to the unstable configuration �S. The mean is preserved along this
orbit, which involves a nucleation event at the boundaries followed by domain
wall motion through the domain. The unstable fixed point �s, denoted by S, which
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Fig. 4 The configurations
A;B; S;X in space: �A and �B

are the two stable fixed
points, �S is the unstable
fixed point on the separatrix
in between. At point �X , the
slow manifold intersects the
separatrix
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Fig. 5 Transition pathways between two stable fixed points of equation (56) in the limit � ! 0.
Left: heteroclinic orbit, defining the deterministic relaxation dynamics from the unstable point
S down to either A or B. Right: Minimizer of the geometric action, defining the most probable
transition pathway from A to B, following the slow manifold up to X, where it starts to nearly
deterministically travel close to the separatrix into S

also demarcates the position at which the separatrix is crossed, is the spatially
symmetric configuration with a positive central region and two negative regions
at the boundary. Locations A and B label the two stable fixed points �A and �B.

In contrast, Fig. 5 (right) shows the minimizer of the geometric action, which
is the most probable transition path as � ! 0. It was computed via the algorithm
outlined in Sect. 3.7, with L D 1

˛
P�@2x � Id and R.u/ D 1

˛
P.u � u3/. Starting at the

fixed point A the minimizer takes a very different path than the heteroclinic orbit.
It first moves the domain wall, at vanishing cost for ˛ ! 0, without nucleation.
At the point X the motion changes, tracking closely the separatrix towards the
unstable point S. From this point onward, S ! B, the transition path then follows
the heteroclinic orbit, which is the deterministic relaxation path. In this respect, the
SPDE model (56) resembles closely the 2-dimensional model (55).
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Fig. 6 Projection of the heteroclinic orbit and the minimizer of the action functional into a 2-
dimensional plane. The x-direction is proportional to its component in the direction of the initial
condition �A while the y-direction corresponds to its spatial mean. The stable fixed points are
located at A and B, the unstable fixed point at S. The separatrix is the straight line

R
�.x/�A.x/ dx D

0. The heteroclinic orbit (light) travels A ! S ! B in a horizontal line with vanishing mean,
while the minimizer (dark) travels first along the slow manifold (dashed) A ! X and then tracks
the separatrix from X to S

To further illustrate this resemblance, we choose to project the minimizer and the
heteroclinic orbit onto two coordinates,

1. its mean
R
�.x/ dx, which resembles the direction �1 C �2 of the 2-dimensional

model, and
2. its component in the direction of the initial (or final) state,

R
�.x/�A.x/ dx, which

corresponds to the direction �1 � �2 of the 2-dimensional model.

The transition path and the heteroclinic projected in these reduced coordinates are
depicted in Fig. 6. Note that this figure is not a schematic, but the actual projection
of the heteroclinic orbit and the minimizer of Fig. 5 according to (i) and (ii) above.
The separatrix is the straight line

R
�.x/�A.x/ dx D 0. The movement of the

minimizer (dark) closely along the slow manifold (dashed), A ! X, and the
separatrix, X ! S, (which is also part of the slow manifold) into S highlights its
difference with the heteroclinic orbit (light). The configurations at the points A;B; S
and X are depicted in Fig. 4, while Fig. 7 shows the action density dS along the
transition path. Note that this quantity becomes close to zero already at X, because
the minimizer follows closely the separatrix from X to S, and this motion is therefore
quasi-deterministic.

The numerical parameters we used in these computations are h D 10�1, Ns D
100, Nx D 26, where Nx denotes the number of spatial discretization points.
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Fig. 7 Action along the
minimizer. Note that the
action is non-zero climbing
up the slow-manifold, but
diminishes to zero already at
X when it approaches the
separatrix, before it reaches S
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4.3 Burgers-Huxley Model

As a second example involving an SPDE, we consider

ut C ˛uux � �uxx D f .u; x; t/C p
��.x; t/: (62)

where ˛ > 0 and � > 0 are parameters, and we impose periodic boundary condition
on x 2 Œ0; 1�. Without the term f .u; x; t/, this is the stochastic Burgers equation
which arises in a variety of fields, in particular in the context of compressible gas
dynamics, traffic flow, and fluid dynamics. With the reaction term f .u; x; t/ added
this equation is referred to as the (stochastic) Burgers-Huxley equation [42] , which
has been used e.g. to describe the dynamics of neurons. The addition of a reaction
term makes it possible to obtain multiple stable fixed points. As a particular case,
we will consider (62) with

f .u; x; t/ D �u.1 � u/.1C u/ (63)

so that uC D 1 and u� D �1 are the two stable fixed points of the deterministic
dynamics. We are interested in the mechanism of the noise-induced transitions
between these points.

When ˛ D 0, the system is in detailed balance and therefore the forward and
backward reaction follow the same path. The potential associated with the reaction
term (63) is symmetric under u ! �u, and both states are equally probable.
In contrast, when ˛ ¤ 0 it is not obvious a priori whether uC and u� are
equally probable, since the non-linearity breaks the spatial symmetry, leading to
a steepening of negative gradients into shocks while flattening positive gradients.
A computation of the minimizer of the geometric action in both directions, for
� D 0:01 and ˛ D 1

4
reveals that indeed forward and backward reactions

are equally probable, even though the transition paths do not coincide with the
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Fig. 8 Burgers-Huxley equation: Minimizer switching from u� D �1 to uC D 1. Left: u-
field. The saddle-point is marked with a dashed line. There is a noticeable kink in the dynamics
switching from uphill (s < ssaddle) to downhill (s > ssaddle) dynamics. Right: Action density along
the minimizer

heteroclinic orbits. The transition from u� to uC is depicted in Fig. 8 (left). An
intuitive explanation for the equal probability of uC and u� is given by the fact
that the backward reaction pathways is identical to the forward path under the
transformation u ! �u, x ! �x. The action along this minimizer is depicted
in Fig. 8 (right). The minimizer is computed via the algorithm lined out in Sect. 3.7,
with L D ��@2x and R.u/ D ˛uux C u.1� u/.1C u/.

The numerical parameters were chosen as Ns D 100, Nx D 28, h D 5 � 10�3.

4.4 Noise-Induced Transitions Between Climate Regimes

Many climate systems exhibit metastability. Examples include the Kuroshio oceanic
current off the coast of Japan, which can be in either a small or a large meander
state and rarely switches between the two [9, 33], or the atmospheric mid-latitude
circulation over the North-Atlantic, which makes rare transitions between a strongly
zonal and a weakly zonal (“blocked”) flow, characterized as “Grosswetterlagen” in
[4]. In these and similar examples, the climate system stays trapped in the vicinity
of the stable regimes most of the time. Random noise, originating either from
physical stresses or from unresolved modes in truncated models, induces rare regime
transitions, which can be captured by large deviation minimizers. The transition
trajectory and their corresponding action allow to make statements about not only
the relative probability of the different regimes and the transition rates, but also the
exact transition pathway taken to switch between regimes.

We want to illustrate the feasibility of our numerical scheme for this particular
field of application by investigating metastability in two simple climate models:
A three-dimensional model for Grosswetterlagen proposed by Egger [18] and the
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six-dimensional Charney-DeVore model [10]. Due to their highly truncated nature,
both models have very limited predictive power, but exemplify the phenomenon of
metastability in climate patterns or regimes.

4.4.1 Metastable Climate Regimes in Egger’s Model

Egger [18] introduces the following SDE system as a crude model to describe
weather regimes in central Europe:

8̂̂
<
ˆ̂:

da D kb.U � ˇ=k2/ dt � �a dt C p
�dWa;

db D �ka.U � ˇ=k2/ dt C UH=k dt � �b dt C p
�dWb;

dU D �bHk=2 dt � �.U � U0/ dt C p
�dWU:

(64)

When � is small, these equation exhibit metastability between a “blocked state”
and a “zonal state”, shown in Fig. 9. We use our gMAM algorithm to compute
the transition paths between these states. The system (64) falls into the category
discussed in Sect. 3.4 and can be solved with the simplest variant of the algorithm.
For H D 12; ˇ D 1:25; � D 2; k D 2 and U0 D 10:5, the fixed points are
approximately .a; b;U/ D .0:465; 1:65; 0:593/ for the blocked, .3:07; 0:392; 8:15/
for the zonal and .2:80; 1:35; 2:38/ for the unstable fixed point (saddle). The
minimizers of the action are show in Fig. 9(left) where they are compared to the
heteroclinic orbits that connects the unstable critical points to the stable ones. The
action density along the transition trajectories and the heteroclinic orbits is depicted
in Fig. 9 (right).

The numerical parameters we used in these computations are Ns D 28, h D 10�3.
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Fig. 9 Egger’s model with H D 12; ˇ D 1:25; � D 2; k D 2;U0 D 10:5 Left: Minimizers and
deterministic relaxation paths. Right: Comparison of the action density
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4.4.2 Metastable Climate Regimes in the Charney-DeVore Model

Egger’s model retains no nonlinear interaction between different fluid modes, which
is believed to be insufficient to explain the transitions between zonal and blocked
states. A more sophisticated model, truncating the barotropic vorticity equation
(BVE) with full nonlinear terms, was introduced by Charney and DeVore [10]. Their
starting point is the two-dimensional BVE on the ˇ-plane,

@

@t
! D u � r! � C.! � !�/: (65)

Here ! D � C ˇy C �h is the total vorticity, where �h is the topography in the
ˇ-plane, with ˇ D 2˝ cos.�/=R for planetary angular velocity ˝ , radius R and
latitude � , and � D � is the relative vorticity for the stream-function  . The term
�C.! � !�/ accounts for Ekman damping with coefficient C > 0.

Charney-DeVore considered the vorticity equation (65) in the box Œ0; 2�� �
Œ0; �b� with periodic boundary conditions in x-direction and no-slip boundary
conditions in y-direction. They then projected this equation over 6 Fourier modes
in total, using the following representation for the stream-function  .x; y; t/:

 .x; y; t/ D
X
n;m

 nm.t/�nm.x; y/; (66)

where the sums run on n 2 f�1; 0; 1g and m 2 f1; 2g and

�0m.y/ D p
2 cos.my=b/; �nm.x; y/ D p

2einx sin.my=b/: (67)

Letting xi, i 2 f1; : : : ; 6g be defined as

x1 D 1

b
 01; x2 D 1p

2b
. 11 C  �11/ ; x3 D ip

2b
. 11 �  �11/ ;

x4 D 1

b
 02; x5 D 1p

2b
. 12 C  �12/ ; x6 D ip

2b
. 12 �  �12/ ;

(68)

taking the following form for the topography

h.x; y/ D cos.x/ sin.y=b/; (69)

and choosing !� such that only two parameters x�1 and x�4 are free and the other are
set zero, they arrived at the following six-dimensional model
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dx1 D � Q�1x3 � C.x1 � x�1 /
�

dt C p
2�dW1;

dx2 D .�.˛1x1 � ˇ1/x3 � Cx2 � ı1x4x6/ dt C p
2�dW2;

dx3 D ..˛1x1 � ˇ1/x2 � �1x1 � Cx3 C ı1x4x5/ dt C p
2�dW3;

dx4 D � Q�2x6 � C.x4 � x�4 /C �.x2x6 � x3x5/
�

dt C p
2�dW4;

dx5 D .�.˛2x1 � ˇ2/x6 � Cx5 � ı2x3x4/ dt C p
2�dW5;

dx6 D ..˛2x1 � ˇ2/x5 � �2x4 � Cx6 C ı2x2x4/ dt C p
2�dW6;

(70)

where, for m 2 f1; 2g,

˛m D 8
p
2

�

m2

4m2 � 1

b2 C m2 � 1
b2 C m2

;

ˇm D ˇb2

b2 C m2
;

�m D �

p
2b

�

4m3

.4m2 � 1/.b2 C m2/
;

Q�m D �

p
2b

�

4m

4m2 � 1 ;

ım D 64
p
2

15�

b2 � m2 C 1

b2 C m2
;

� D 16
p
2

5�
:

(71)

The original Charney-DeVore equation did not contain random forcing terms: here
we added to each equations an independent white noise dWi with amplitude

p
2�.

Choosing b D 1
2
, C D 1

10
, ˇ D 5

4
, � D 1, x�1 D 9

2
, and x�4 D � 9

5
, the

6-dimensional stochastic model above possesses two metastable states, shown in
Fig. 10: a zonal state (left) and a blocked state (right). The transition paths from
zonal to blocked and from blocked to zonal are different. They are shown in Figs. 11
and 12, respectively, and they were both calculated by minimizing the geometric
action using our simplified gMAM algorithm. The actions along both paths are
depicted in Fig. 13.

The numerical parameters in these computations were Ns D 100, h D 10�3.
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Fig. 10 Contours of the stream-function  .x; y/ of the two meta-stable configurations of the 6-
dimensional CDV model. Left: Zonal state; Right: Blocked state

4.5 Generalized Voter/Ising Model

To analyze phase transitions in out-of-equilibrium systems, a Langevin equation
was proposed in [1] that models critical phenomena with two absorbing states. This
equation was constructed by requiring that it be symmetric under the transformation
� ! �� and have two absorbing states, arbitrarily chosen to be at ˙1. The presence
of these absorbing states makes the noise multiplicative, with a scaling involving the
square root of the distance to the absorbing boundaries, as suggested by the voter
model [13, 15]. In order to account for Ising-like spontaneous symmetry breaking,
the authors of [1] also added a bi-stable “potential”-term with �V 0.�/ D .a��b�3/
to the equation, which finally lead them to:

�t D �
.1 � �2/.a� � b�3/C D�xx

�
dt C �

p
1 � �2�.x; t/: (72)

In the absence of noise (� D 0) and for a > 0, the � D 0 state is locally unstable,
but b > 0 ensures stable fixed points at � D ˙pa=b. In the limit a=b ! 1, these
fixed points approach the absorbing boundaries, and we are interested in the noise
induced transition between these states.

We stress that making mathematical sense of (72) is non-trivial (see the
discussion in Sect. 3.7). In the present application, we are going to consider a
finite truncation of this SPDE, where the question of spatial regularity disappears.
Specifically, we transform (72) into a two-dimensional stochastic ODE model by
discretizing the spatial direction via the standard 3-point Laplace stencil, and taking
only Nx D 2 discretization points. This yields the stochastic ODE system

8<
:

d�1 D �
.1 � �21/.a�1 � b�31/C D.�1 � �2/

�
dt C �

q
1 � �21 dWx

d�2 D �
.1 � �22/.a�2 � b�32/ � D.�1 � �2/

�
dt C �

q
1 � �22 dWy;

(73)
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Fig. 11 Contours of the stream-function  .x; y/ along the transition trajectory from the zonal to
the blocked meta-stable configuration for the CDV model. The arclength parameter increases in
lexicographic order, with the top left plot being the initial state and the bottom right plot being the
final state. The saddle point configuration is depicted in the center. The colormap is identical to
Fig. 10

where the constant D couples the two degrees of freedom. This SDE poses
an interesting test-case for our numerical scheme, since not only the noise is
multiplicative, but also the computational domain must be restricted. The square
defined by 1 D max.j�1j; j�2j/marks the region in which the noise is defined (real),
and the noise decreases towards zero as it approaches this absorbing barrier. Analog
to the discussion in [1], the choice of the parameters .a; b/ determines the dynamics,
in particular if a > 0; b > 0 the model exhibits bi-stability: There is an unstable
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Fig. 10

fixed point at � D .0; 0/ and stable fixed points at � D ˙.pa=b;
p

a=b/. As long
as a < b, these fixed points are inside the allowed region. For a=b ! 1 the two
stable fixed points approach the absorbing boundary. Here, we take b D 1; a D
1� 10�4;D D 0:4, so that

p
a=b 
 0:99995 is located close to the barrier at 1. The

minimizer and corresponding action are shown in Fig. 14.
The numerical parameters were chosen as Ns D 28, h D 10�3.
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Fig. 13 Action density dS
along the transition pathways
from zonal to blocked
(forward) and from blocked
to zonal (backward). In both
directions, after passing the
saddle point, the action
becomes zero since the
motion is deterministic
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Fig. 14 Generalized voter/Ising model. Left: The arrows denote the direction of the deterministic
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heteroclinic orbit. Markers are located at the fixed points (circle: stable; square: saddle). Right:
Action density along the minimizers for the two trajectories, with normalized path parameter
s 2 .0; 1/

4.6 Bi-Stable Reaction-Diffusion Model

In the context of chemical reactions and birth-death processes, one considers
networks of several reactants in a container of volume V which is considered well-
stirred. As an example case, we consider the bi-stable chemical reaction network

A
k0�
k1

X; 2X C B
k2�
k3
3X

with rates ki > 0, and where the concentrations of A and B are held constant.
This system was introduced in [32] as a prototypical model for a bi-stable reaction
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network. Its dynamics can be modeled as a Markov jump process (MJP) with
generator

.LRf /.n/ D AC.n/ .f .n C 1/� f .n//C A�.n/ .f .n � 1/� f .n// (74)

with the propensity functions



AC.n/ D k0V C .k2=V/n.n � 1/

A�.n/ D k1n C .k3=V2/n.n � 1/.n � 2/:
(75)

The model above satisfies a large deviation principle in the following scaling
limit: Denote by c D n=V the concentration of X, and normalize it by a typical
concentration, � D c=c0. Now, in the limit of a large number of particles per cell
˝ D c0V and simultaneously rescaling time by 1=˝ , we obtain

.LR
� f /.�/ D 1

�

�
aC.�/ .f .� C �/ � f .�//C a�.�/ .f .� � �/ � f .�//

�
; (76)

where � D 1=˝ is a small parameter. Here, we defined ki D 
i.c0/1�i, and

(
aC.�/ D 
0 C 
2�

2

a�.�/ D 
1�C 
3�
3:

(77)

The large deviation principle for (76) can be formally obtained via WKB analysis,
that is, by setting f .�/ D e�

�1G.�/ in (76) and expanding in � [14]. To leading order
in �, this gives an Hamilton-Jacobi operator associated with an Hamiltonian that is
also the one rigorously derived in LDT [35]. It reads

H.�; #/ D aC.�/.e# � 1/C a�.�/.e�# � 1/: (78)

This is an example of a system whose Hamiltonian is not quadratic in the conjugate
momentum # . Therefore the computation of #� by (26) can not be performed
explicitly in general. For parameters 
0 D 0:8; 
1 D 2:9; 
2 D 3:1; 
3 D 1, the
system has two stable fixed points �˙ and a saddle �s at �C D 8

5
; �� D 1

2
; �s D 1.

Since transitions in 1D are fairly trivial, we want to consider the case of
N neighboring reaction compartments, each well-stirred, but with random jumps
possible between neighboring compartments. This situation was analyzed in [38] via
direct sampling, but we are interested in the computation of the transition trajectory.
Denote by �i the concentration in the i-th compartment and refer to the vector � as
the complete state, � D PN

iD0 �i Oei. In this case, we obtain a diffusive part of the
generator, LD, coupling neighboring compartments. For a diffusivity D, it is

.LDf /.�/ D D

�

NX
iD1

�i .f .� � �Oei C �Oei�1/C f .� � �Oei C �OeiC1/� 2f .�// : (79)
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The process associated with this generator also admits a large deviation principle
with Hamiltonian

HD.�; #/ D D
NX

iD1
�i
�
e#i�1�#i C e#iC1�#i � 2

�
: (80)

Therefore, the full Hamiltonian becomes H.�; #/ D HD.�; #/C PN
iD1 HR.�i; #i/,

where HR.�i; #i/ is the reactive Hamiltonian in (78), which is summed up over all
the compartments.

We used our new gMAM algorithm to minimize the geometric action and
compute the transition paths between the stable fixed points for the simplest non-
trivial case of N D 2 compartments. Shown in Fig. 15 are the forward and backward
trajectories. Note that the backward transition (.�C; �C/ ! .��; ��/) takes a
special form: It climbs against the deterministic dynamics up to the maximum,
then relaxes along the separatrix down to the saddle. Additionally, we compare
these trajectories with the heteroclinic orbit obtained by the string method. The
action along these trajectories is depicted in Fig. 16. Note how for the backward
minimizer the action is zero already before it hits the saddle, as the movement from
the maximum to the saddle happens deterministically.

The numerical parameters were chosen as Ns D 29, h D 10.
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Fig. 15 Bi-Stable reaction-diffusion model with N D 2 reaction cells. Show are the forward
(red) and backward (green) transitions between the two stable fixed points, in comparison to the
heteroclinic orbit (dashed). The flow-lines depict the deterministic dynamics, their magnitude is
indicated by the background shading
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Fig. 16 Action densities for
the bi-stable
reaction-diffusion model.
Depicted are the actions
corresponding to the forward
(solid) and backward
(dashed) minimizer (dark)
and heteroclinic (light) orbit
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4.7 Slow-Fast Systems

In contrast to a large deviation principle arising in the limit of small noise or large
number of particles, a different class of Hamiltonians arises for systems with a slow
variable X evolving on a timescale O.1/ and a fast variable Y on a time scale O.˛/:

PX D f .X;Y/ (81a)

dY D 1

˛
b.X;Y/dt C 1p

˛
�.X;Y/dW: (81b)

Examples of systems with large timescale separation ˛ � 1 are ubiquitous in
nature, and usually one is interested mostly in the long-time behavior of the slow
variables. In particular, we are concerned with situations where the slow dynamics
exhibits metastability. We want to use our algorithm to compute transition pathways
in this setup for the limit of infinite time scale separation.

In the limit as ˛ ! 0, the fast variables reach statistical equilibrium before any
motion of the slow variables, and these slow variables only experience the average
effect of the fast ones. This behavior can be captured by the following deterministic
limiting equation which is akin to a law of large numbers (LLN) in the present
context and reads

PNX D F. NX/ where F.x/ D lim
T!1

1

T

Z T

0

f .x;Yx.	// d	: (82)

Here Yx.t/ is the solution of (81b) for X.t/ D x fixed [3, 6, 19, 30]. For small but
finite ˛, the slow variables also experience fluctuations through the fast variables. In
particular, the statistics of  D .X � NX/=p˛ on O.1/ time scales can be described
by a central limit theorem (CLT) as small Gaussian noise on top of the slow mean NX.
The CLT scaling, however, is inappropriate to describe the fluctuations of the slow
variables that are induced by the effect of the fast variables on longer time scales
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and may, for example, lead to transitions between stable fixed points of the limiting
equation in (82). In particular, the naive procedure of constructing an SDE out of
the LLN and CLT to then compute its LDT fails. Instead, the transitions in the limit
of ˛ ! 0 are captured by an LDP with the Hamiltonian

H.x; #/ D lim
T!1

1

T
logE exp

�
#

Z T

0

f .x;Yx.t// dt

�
: (83)

Except for the special case f .x; y/ D r.x/ C s.y/y (linear dependence on the fast
variable), the Hamiltonian (83) is non-quadratic in � . As a consequence no S(P)DE
with Gaussian noise exists for the slow variable which has an LDP to describe the
transitions correctly.

The implicit nature of the Hamiltonian (83), in particular containing an expecta-
tion, complicates numerical procedures to compute its associated minimizers. Yet, in
the non-trivial case of a quadratic dependence of the slow variable on the fast ones,
for example,

8<
:

PX D Y2 � ˇX

dY D � 1
˛
�.X/Y dt C �p

˛
dW;

(84)

one indeed does obtain an explicit formula for the Hamiltonian (83) (as derived
in [6])

h.x; #/ D �ˇx# C 1
2

�
�.x/�

p
�2.x/� 2�2#

�
: (85)

This example is interesting for our purpose not only because the Hamiltonian is
non-quadratic, but furthermore because of the existence of a forbidden region # >
�2=.2�/ where the Hamiltonian is not defined.

Additionally increasing the number of degrees of freedom by combining two
independent multi-stable slow-fast systems and coupling them by a spring with
spring constant D, the full system reads

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂:

PX1 D Y21 � ˇ1X1 � D.X1 � X2/
PX2 D Y22 � ˇ2X2 � D.X2 � X1/

dY1 D � 1
˛
�.X1/Y1dt C �p

˛
dW1

dY2 D � 1
˛
�.X2/Y2dt C �p

˛
dW2:

(86)

The Hamiltonian for the LDT for this system is

H.x1; x2; #1; #2/ D h.x1; #1/C h.x2; #2/C h�rU.x1; x2/; #i; (87)
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Fig. 17 Coupled slow-fast system ODE model for DD 1:0. Left: The arrows denote the direction
of the deterministic flow, the shading its magnitude. The solid line depicts the minimizer, the
dashed line the relaxation paths from the saddle. Markers are located at the fixed points (circle:
stable; square: saddle). Right: Action density along the minimizers for the two trajectories up to
the saddle, with normalized path parameter s 2 .0; 1/

for U.x; y/ D 1
2
D.x � y/2 and h.x; #/ defined as in equation (85). The choice

�.X/ D .X �5/2C1 ensures two stable fixed points. The deterministic dynamics of
this system (i.e. the evolution of the averaged slow variables) are depicted as white
arrows in Fig. 17 (left). To stress the important portion of the transition trajectory, the
plot is focused only on the initial state up to the saddle. Compared are the minimizer
and the heteroclinic orbits connecting the stable fixed points to the saddle point. The
corresponding actions are shown in Fig. 17 (right). The specific choice of model
parameters for this computation is ˇ1 D 0:6; ˇ2 D 0:3;D D 1:0 and �2 D 10.

The numerical parameters were chosen as Ns D 210, h D 10�2.

5 Concluding Remarks

We have discussed numerical schemes to compute minimizers of large deviation
action functionals, which are based on the geometric minimum action method.
The basis of these schemes is the minimization of a geometric action on the space
of arc-length parametrized curves, which makes it possible to perform the double
minimization over transition time T and action ST that is required to compute the
LDT quasipotential. In particular, transitions between metastable fixed points of a
system, which generally involve T ! 1 and which are not tractable with non-
geometric minimum action methods can be naturally analyzed in this setup.

A simplified gMAM algorithm was proposed here which is based on a particular
formulation of the geometric action leading to a mixed optimization problem.
This new formulation of the gMAM algorithm is easier to implement than the
original method: In its simplest form, only first order derivatives of the Hamiltonian
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H.'; #/ are needed. The algorithm is applicable to a large class of systems, and
does not rely on an explicit formula of the large deviation rate function—only the
Hamiltonian of the theory is needed. We derived specific reductions that are possible
in regularly occurring special cases, such as SDEs with additive or multiplicative
noise. Furthermore, we discussed optimizations for SPDEs with additive noise and
commented on how to improve numerical efficiency.

The performances of the new gMAM algorithm were illustrated in a series of
applications arising from different fields and involving different types of models,
like S(P)DEs with additive and multiplicative Gaussian noises, Markov jump
processes, or slow-fast systems.
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Long Time Dynamics and Coherent States
in Nonlinear Wave Equations

E. Kirr

Abstract We discuss recent progress in finding all coherent states supported by
nonlinear wave equations, their stability and the long time behavior of nearby
solutions.

1 Introduction

Since the discovery of wave equations two and a half centuries ago, many scientist
and mathematicians have tried to understand their most striking feature, the coherent
structures. An exact definition of coherent structures will be given in Sect. 2 but,
formally, they are solutions which propagate without changing shape (or with
periodic change in shape). In the linear case, they are the eigenfunctions of the
corresponding wave operator and, via spectral decomposition, the actual dynamics
becomes a superposition of these coherent states (eigenfunctions) and a projection
onto the remaining (continuous) spectrum. Once the latter had been analyzed via
dispersive estimates or scattering wave operators, it became clear that the following
asymptotic completeness conjecture is true for the linear case.

Asymptotic Completeness Conjecture: Any initial data evolves towards a super-
position of coherent structures plus a part that radiates (scatters) to infinity.

In the nonlinear case, some coherent structures are known either as minimizer
or mountain pass type critical points of the energy subject to certain constraints,
see Sect. 3.1. Other coherent states (sometimes the same ones) can be found via
bifurcations from already known solutions such as the trivial one, see Sect. 3.2. In
many situations the coherent states undergo symmetry breaking phenomena, see
for example [3, 20, 23, 27], which are very important in practical applications. But
none of these results, nor the mathematical methods they rely on can claim that
they can actually identify all coherent states supported by a given nonlinear wave
equation. Consequently, the asymptotic completeness conjecture is wide open with
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two notable exceptions: the case of completely integrable systems (such as the cubic
Schrödinger equation in one dimension) where a scattering transform renders the
problem linear, or the case of weakly nonlinear regimes (i.e. small initial data) where
at most two (small) coherent states are present and one of them is selected after a
long transitional time, see [51–54].

This paper aims to present recent results and new ideas for finding all coherent
states (solitary waves, breathers, kinks, vortices, etc) supported by a given nonlinear
wave equations. As shown in Sect. 3.2, coherent states can be viewed as zeroes
of a map between Banach spaces. Then, the global bifurcation theory, see [8, 45],
allows us to organize them in smooth manifolds which either form loops or can be
extended to the boundary of the domain inside which the linearization of the map
is Fredholm. The new results and ideas concern finding all the limit points of such
manifolds on the boundary of the Fredholm domain. Hence, from these limit points,
the manifolds of coherent states can be found and traced both theoretically and
numerically inside the Fredholm domain. Moreover, by comparing the spectrum
of the linearized operator at the two “end points” of these manifolds we can deduce
whether eigenvalues cross zero which is equivalent with the existence of bifurcations
in this Fredholm region. Once discovered, the bifurcations can be studied using
local bifurcation techniques to determine the new branches (manifolds) emerging
from them and their dynamical stability. Global bifurcation theory now implies
that the new branches have “end points” on the boundary of the Fredholm domain.
Consequently, we are able to find the bifurcations along the new branches and the
process iterates until all these branches are discovered and matched with all possible
limit points.

Results and open problems regarding the orbital stability of the manifolds of
coherent states are discussed in Sect. 3.3 while Sect. 4 discusses their asymptotic
stability. The latter brings us closer to a resolution of the Asymptotic Completeness
Conjecture but, unfortunately, it only describes the dynamics in a neighborhood of
the coherent state manifolds. The last section is reserved for concluding remarks.

2 General Hamiltonian Formulation

Most models related to wave propagation, in particular the Schrödinger, Hartree,
Dirac, Klein-Gordon, Korteweg-de-Vries and the classical wave equation, can be
cast in the following general framework, see [18]. The evolution of the quantity of
interest u is given by:

du

dt
D JDuE .u/; t 2 R; (1)

where X is a real Hilbert space, the energy E W X 7! R is a C2 functional, Du denotes
the Frechet derivative with respect to the variable u; and J W D.J/ � X� 7! X is a
skew-symmetric operator J� D �J; defined on a dense subset of the dual of X:Note
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that even though X is a Hilbert space, its dual is not necessarily identified with X:
The reason is twofold: the applications have a physically important larger Hilbert
space Y for which X ,! Y D Y� ,! X�; where all the embeddings are dense, and
the mathematical analysis of the operators appearing in the applications rely on the
larger Hilbert space Y:

Besides being time independent, the energy is in general invariant under addi-
tional groups of symmetries. These symmetries can be modeled by one or more
(strongly) continuous groups of unitary operators. In what follows we will focus
on one such group of symmetries T.s/ W X 7! X; s 2 R; which leave the energy
functional invariant and commutes with the J operator:

E .T.s/u/ D E .u/; T.s/J D JT�.�s/; for all s 2 R; and u 2 X:

By Noether’s Theorem, see for example [5], the Hamiltonian dynamics has, besides
energy, a second conserved quantity:

Q.u/ D 1

2
hBu; ui; u 2 X (2)

provided that there exists a bounded, self-adjoint, linear operator B W X 7! X� such
that JB extends the infinitesimal generator of the continuous group: T 0.0/:

The coherent states are solutions of (1) of the type:

u.t/ D T.!t/�!

where �! 2 D.T 0.0// � X; ! 2 R are fixed. In applications �! usually gives the
shape of u, so these are solutions which do not change their shape as they propagate.
By plugging in (1) one finds that:

JD�E .�!/ D J!D�Q.�!/:

Consequently the solutions in D.T 0.0// of the stationary equation:

D�E .�/ D !D�Q.�/ (3)

generate coherent states and they are the only possible coherent structures if J is
one-to-one.

Coherent states are orbitally stable if any solution of (1) starting close to the orbit
T.s/�!; s 2 R; of the coherent state, remains close to it at all times. More precisely
for any " there exists a ı such that

inf
s2R ku.0/� T.s/�!k < ı implies sup

t2R
inf
s2R ku.t/� T.s/�!k < ":
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Asymptotic stability means certain convergence of the solutions to the orbit of a
coherent structure and usually takes the form: there exists a Banach space Z; X ,! Z
densely, and ı > 0 such that if infs2R ku.0/� T.s/�!kX

T
Z� < ı then there exists a

coherent structure T.!Ct/�!C
(close to T.!t/�!) with the property:

lim
t!1 inf

s2R ku.t/ � T.s/�!C
kZ D 0:

For example, in the case of the nonlinear Schrödinger equation (NLS) we have
X D H1.Rn/; the Sobolev space of complex valued functions but with the real
Hilbert space structure, X� D H�1; Jv D �iv; T.s/u D e�isu;

E .u/ D 1

2

Z
Rn

jru.x/j2dx C 1

2

Z
Rn

V.x/ju.x/j2dx C �

p C 2

Z
Rn

ju.x/jpC2dx; (4)

Q.u/ D 1

2

Z
Rn

ju.x/j2dx; (5)

hence the evolution equation (1) becomes:

i
@u

@t
D .��C V.x//u.t; x/C � jujpu.t; x/; t 2 R; x 2 Rn; (6)

while the coherent structures are solutions of the form u.t; x/ D eiEt�E.x/; E D
�! 2 R; �E 2 H1.Rn/; and satisfy the equation:

F.�E;E/ D .��C V C E/�E C � j�Ejp�E D 0: (7)

Here V W Rn 7! R is called the potential, � 2 R measures the strength of the
nonlinear interaction while its sign classifies it into attractive for � < 0; and
repelling for � > 0: In this context the coherent states are usually called bound
states or, in the translation invariant case V � 0; solitons. The Hartree Equation has
exactly the same X; J; T and Q but the superquadratic term in the energy becomes
nonlocal:

E .u/ D 1

2

Z
Rn

jru.x/j2dx C 1

2

Z
Rn

V.x/ju.x/j2dx C �

4

Z
Rn

K.x; y/ju.x/j2ju.y/j2dxdy;

(8)
where the kernel K � 0:

3 Coherent States

This section illustrates how one can find all coherent states of equations of type (1)
i.e., all solutions of (3), and how one can determine their orbital stability. Tradi-
tionally, large coherent structures are found via variational methods, for example as
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minimizers of the energy subject to a fixed value of the second conserved quantity.
However, as we shall see in the next subsection, the variational techniques are
not capable of finding all coherent states. Instead we will show in Sect. 3.2 how
bifurcation methods, in particular the analytical global bifurcation theory [8], can
be enhanced to determine all coherent states, and their orbital stability, see Sect. 3.3.

3.1 Variational Methods: Existence and Stability of Ground
States

The coherent states equation (3) coincides with the equation for the critical points
of the energy E restricted to the level sets of the second conserved quantity
Q i.e., it is the Euler-Lagrange equation for the energy subject to the constrain
Q D constant: An important subset of the coherent states are the ground states
which are minimizers of the energy under the constrain:

E .�!/ D min
�2X;Q.�/D�E .�/; and � 2 R (9)

If the energy (subject to the constrain) is bounded from below:

9m 2 R such that E .�/ � m 8� 2 X with Q.�/ D �;

and coercive:

lim
k�kX!1;Q.�/D�

E .�/ D 1;

then minimizing sequences f�ngn2N � X are bounded and, due to the reflexivity
of the Hilbert space X; have at least one weak limit, say �nk * �0: For �0 to be a
ground state it must satisfy

Q.�0/ D � D lim
k!1Q.�nk/; E .�0/  lim

k!1E .�nk / D inf
�2X;Q.�/D�E .�/ (10)

Note that these conditions are not trivially satisfied as Q or E might not be weakly
sequentially continuous even though they are both continuous with respect to the
norm on X: These two issues are resolved by compactness arguments which show
that weakly convergent minimizing sequences are actually strongly convergent i.e.,

�nk

X
* �0 implies lim

k!1 k�nk � �0kX D 0; (11)

see for example [5, 12].
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In NLS with confining potentials V � 0; limjxj!1 V.x/ D 1; the potential
restricts the domain of finite energy to a compact subspace. More precisely we have:

X D


� 2 H1.Rn/ j

Z
Rn

V.x/j�.x/j2dx

�
(12)

is a Hilbert space with scalar product:

with h�; iX D h�; iH1 C
Z
Rn

V.x/�.x/ .x/dx;

which satisfies:

X
compact
,! Lp.Rn/; 2  p <

2n

n � 2
if n � 3; 2  p < 1 if n D 1; 2: (13)

In particular, the above weakly convergent, minimizing subsequence:

�nk

X
* �0 is strongly convergent in Lp.Rn/ i.e., lim

k!1 k�nk ��0kLp D 0; for 2  p <
2n

n � 2
:

Therefore

� D Q.�nk/ D 1

2

Z
�

j�nk.x/j2dx
k!1�! 1

2

Z
�

j�0.x/j2dx D Q.�0/

and
Z
�

j�nk.x/jpC2dx
k!1�!

Z
�

j�0.x/jpC2dx:

Combining the above with the weak lower semicontinuity of the first two (kinetic
and potential) terms in the energy which are convex, we deduce that (10) holds and
�0 is a ground state. Moreover, the following inequality holds

E .�0/ � inf
�2X;Q.�/D�E .�/ D lim

k!1E .�nk /;

which is opposite to (10). Therefore, on this minimizing subsequence, the kinetic
and potential terms must be convergent which combined with the convergence of Q
gives k�nk kX ! k�0kX in addition to �nk * �0: The strong convergence (11) now
follows from the uniform convexity of the Hilbert space X:

Essential in the above argument is the compactness of the embeddings (13).
Heuristically, one might think that

R
Rn V.x/j�.x/j2dx < 1 and limjxj!1 V.x/ D 1

forces a “uniform decay at infinity” on � 2 X which does imply compactness,
see [12, Section 1.7]. But this is not quite correct since if � is a countable sum
of smoothed characteristic functions of disjoint annuli with the same center and
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exterior and interior radius growing to infinity we have limjxj!1 �.x/ 6D 0; but
� 2 X if the Lebesgue measure (volume) of the annuli converges to zero sufficiently
fast. However, the argument in [12, Section 1.7] can be adapted to prove (13) as
follows. Consider an arbitrary bounded sequence

f�ngn2N � X with k�nkX  M; for all n 2 N

Since X is Hilbert the sequence has a weakly convergent subsequence

�nk

X
* �0 2 X:

Then, for each " > 0 we can choose R > 0 such that

V.x/ > 16"�2 max



M2;

Z
Rn

V.x/j�0.x/j2dx

�
; for jxj > R:

Consequently, we have

M2 �
Z
Rn

V.x/j�nk .x/j2dx �
Z
jxj>R

V.x/j�nk.x/j2dx � 16M2

"2

Z
jxj>R

j�nk.x/j2dx;

and
Z
Rn

V.x/k�0.x/k2dx �
Z
jxj>R

V.x/j�0.x/j2dx

� 16
R
Rn V.x/j�0.x/j2dx

"2

Z
jxj>R

j�0.x/j2dx;

which imply

�Z
jxj>R

j�nk.x/� �0.x/j2dx

�1=2

�Z
jxj>R

j�nk.x/j2dx

�1=2

C
�Z
jxj>R

j�0.x/j2dx

�1=2
 "=2:

Now:

k�nk � �0kL2.Rn/ D k�nk � �0kL2.jxj<R/ C k�nk � �0kL2.jxj>R/

< k�nk � �0kL2.jxj<R/ C "=2:

But, by Rellich-Kondrachov Theorem, H1.jxj < R/ is compactly embedded in
L2.jxj < R/ which means that the X hence H1 weakly convergent sequence f�nk g
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is strongly convergent in L2.jxj < R/ and we can choose k."/ 2 N such that
k�nk � �0kL2.jxj<R < "=2 for all k > k."/: All in all, for each " > 0 we can find
k."/ 2 N such that k�nk � �0kL2.Rn/ < " for all k > k."/ i.e., �nk converges strongly
(in norm) in L2.Rn/: Moreover, �nk bounded in X hence in H1.Rn/ also implies,
via Sobolev embedding, that it is bounded in L2n=.n�2/.Rn/ and, by interpolation,
convergent to �0 in Lp; 2  p < 2n=.n � 2/: So, any bounded sequence in X has a
convergent subsequence in Lp.Rn/; 2  p < 2n=.n � 2/ if n � 3; 2  p < 1 if
n D 1; 2; which implies (13).

However, in general, the verification of (10) requires concentration compactness,
see [36, 37] or [12, Section 1.7]. This theory will be discussed in a different context
in the next subsection. Suffices to say that in the NLS example it covers the case
of non-confining potentials: limjxj!1 V.x/ D 0; (when the energy is bounded from
below.)

The main difference between the ground states given by (9) and other solutions
of (3) (called excited states) is that the former are in general stable under the
dynamics:

Theorem 3.1 Fix � 2 R and assume the set of ground states,

G D f�! 2 X j �! solves (9)g;

is non-empty. Fix �0 2 G and further assume that any minimizing sequence of (9)
has a strongly convergent subsequence in X: Then for any " > 0 there exists ı > 0

such that for all u0 2 X with ku0 � �0kX < ı we have that the solution u.t/ of the
wave equation (1) with initial condition u.0/ D u0 remains within " distance from
G for all times.

Proof Suppose contrary, there is an " > 0; a sequence fungn2N � X with kun �
�0kX ! 0 and a sequence of times ftngn2N � R such that the solutions un.t/ of the
wave equation (1) with initial condition u.0/ D un satisfy

dist.un.tn/;G/ D inffku.tn/�  kX j  2 Gg � ":

By continuity of Q; we have Q.un/ ! Q.�0/ D �; and, by using its bilinear
form (2), we can find f
ngn2N � R such that

Q.
nun/ D 
2nQ.un/ D � and 
n ! 1:

We now claim that f
nun.tn/gn2N � X is a minimizing sequence for (9). Indeed, by
conservation of Q along solutions of (1) we have Q.un.t// D Q.un/ for all t 2 R in
particular:

Q.
nun.tn// D 
2nQ.un.tn// D 
2nQ.un/ D �;

while by conservation of the energy we have:
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E .
nun.tn// D E .
nun/ ! E .�0/ D min
�2X;Q.�/D�E .�/;

where the convergence follows from the continuity of E w.r.t. the norm in X:
Now, since f
nun.tn/gn2N � X is a minimizing sequence for (9), it has, by

hypothesis, a convergent subsequence to some �1 2 X i.e., k
nun.tn/ � �1kX ! 0:

But, by continuity of Q and E we have:

Q.�1/ D lim
k!1

Q.
nk unk .tnk // D �; E .�1/ D lim
k!1

E .
nk unk .tnk // D E .�0/ D min
�2X;Q.�/D�

E .�/

i.e. �1 2 G: Therefore we have:

dist.un.tn/;G/  kun.tn/ � �1kX  j1� 
njkunkX C k
nun.tn/� �1kX ! 0;

since 
n ! 1 and k
nun.tn/ � �1kX ! 0: This contradicts our assumption that
dist.un.tn/;G/ � " and finishes the proof of the theorem. ut
Remark 3.1 Note that all examples discussed above satisfy the hypotheses of the
Theorem. Moreover, with the exception of the case V � 0 the set of ground states
is unique up to the symmetries induced by the semigroup T W

G D fT.s/�0 j for some �0 which solves (9) and all s 2 Rg; (14)

provided � is small, see for example [3, 47].

Note that the invariance of both Q and E w.r.t T automatically implies G �
fT.s/�0 W s 2 Rg if �0 solves (9). However the equality between the two sets
implies orbital stability:

Corollary 1 Under the assumptions in Theorem 3.1, if, in addition, (14) holds, then
the ground state �0 is orbitally stable.

Proof By the theorem, for each " > 0 there exists ı > 0 such that for all u0 2 X
with ku0 � �0kX < ı we have:

sup
t2R

dist.u.t/;G/ < ":

But, in this case

dist.u.t/;G/ D inf
s2R ku.t/ � T.s/�0kX

which implies orbital stability, see the definition below (3). ut
Remark 3.2 More generally, the orbital stability result in the previous corollary
holds even if the ground states are not unique (up to the action of T) provided that
the orbit T.s/�0 is separated from the orbits of the other ground states by a fixed
distance d > 0: Just use " < d=2 in the above proof and note that the set of points
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at distance less the d=2 from the orbit of �0 is disjoint from the set of all points
at distance less the d=2 from the orbits of all other ground states while the map
dist.u.t/;G/ is continuous in time.

In the case V � 0; it is necessary to mode out the second (hidden) symmetry,
namely the invariance of both energy and Q with respect to translations, see for
example [12, Section 8.3]. One obtains:

sup
t2R

inf
s2R;y2Rn

ku.t/ � T.s/�0.� C y/k < ":

Another advantage of the global minimization problem (9) over other solutions
of (3) is that certain manipulation of the functions � 2 X; such as symmetrization,
can lower the energy and provide information on the shape of the ground states.
For example, in NLS with spherically symmetric potentials the ground states are
also spherically symmetric, see [12, Chapter 8]. In [3], see also [20] for a related
result, the authors show that the ground states for the Hartree equation must localize
at global minima of the potential in the limit � ! 1; and, consequently, the
following symmetry breaking phenomena occurs:

Theorem 3.2 Consider the Hartree example (8) with an attractive nonlinearity � <
0; and a continuous, bounded potential V which is invariant under a finite group of
Euclidian symmetries on Rn: If the action of the group is nontrivial on any global
minima of V then the are �0  �1 such that the ground states with � < �0 are
invariant under the group of Euclidian symmetries but the ground states with � >
�1 are not invariant.

The disadvantages of the minimization problem (9) are that it cannot give all
coherent states i.e., all solutions of (3), and it may have no solutions. This is the
case when the energy is not be bounded from below (even when constrained to Q D
const) which occurs in the NLS example with critical and supercritical nonlinearities
p � 4=n: The issue is sometimes resolved by reformulating the problem i.e., by
finding the global minimum of a functional different from the energy. In [47] the
authors use the following reformulation:

min
�2X;� 6D0

JE.�/ D
R
Rn jr�.x/j2 C V.x/j�.x/j2 C Ej�.x/j2�R

Rn j�.x/jpC2dx
� 2

pC2

which is equivalent to:

min
�2X;

R
Rn j�.x/jpC2dxD�

Z
Rn

jr�.x/j2 C V.x/j�.x/j2 C Ej�.x/j2; � 2 R;

see [12, Chapter 8] for other possible reformulations. An important result in [47] is
the existence of a solution to (7) for each E > E0 where �E0 is the lowest eigenvalue
of ��CV:However, the method is still limited to finding a subset of solutions of (7)
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and does not provide any direct information regarding their dynamical stability (the
latter may be fixed by combining information on the Hessian of JE at a minima
with the techniques described in Sect. 3.3). One expects that these variational
reformulations will also lead to information on the shape and localization of the
ground states, consequently symmetry breaking results may be proven for critical
and supercritical nonlinearities, see [20]. While other critical points of the energy
or other associated functionals may be found via mountain pass techniques, see
for example [42], the variational methods do not provide a systematic method to
identify all solutions of (3).

3.2 Bifurcation Methods

This section discusses recent progress towards finding all coherent states of a
nonlinear wave equation i.e., all solutions of equation (3). We will focus on the
NLS example for which (3) becomes (7):

F.�E;E/ D .��C V C E/�E C � j�Ejp�E D 0;

where the potential V W Rn 7! R; is first assumed to be non-confining,
limjxj!1 V.x/ D 0; V 2 Lq.Rn/ C L1.Rn/ for some q � 1; q > n=2: The
case of confining potentials is discussed in Remark 3.8. We will assume that the
power of the nonlinearity satisfies 0 < p < 1; if n D 1 or 2 and 0 < p < 4=.n � 2/
if n � 3; which insures local well posedness of the time dependent equation (1)
with initial data in the Sobolev space H1.Rn/: Of special interest are the ground
states which, for the purpose of this presentation, will be defined as coherent states
i.e., solutions of (7) that satisfy �E.x/ > 0; 8x 2 Rn; modulo multiplication by
a complex number of modulus one (modulo rotations). The coherent states can
be viewed as zeroes of the map F W H1.Rn/ � R 7! H�1.Rn/ where the Sobolev
spaces are endowed with their real Hilbert space structure in order for F to be
differentiable. Note that F is equivariant under rotations:

F.ei��;E/ D ei�F.�;E/; � 2 R;

hence the solution set for (7) is invariant under rotations.
We will study the solutions of (7) in the subdomain of H1.Rn/ � R where its

linearization is Fredholm. We have

D�F.�;E/ŒuC iv� D
"
��C V C EC �.pC 1/j�jp � 2�.=�/2j�jp�2 2�.<�/.=�/j�jp�2

2�.<�/.=�/j�jp�2 ��C V C EC � j�jp C 2�.=�/2j�jp�2

#"
u

v

#

where we separated the real and imaginary parts of the complex valued functions
involved into the first and second component. So,
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D�F.�;E/ D
���C E 0

0 ��C E


C V .�/

where, for any � 2 H1.Rn/;

V D
�

V C �.p C 1/j�jp � 2�.=�/2j�jp�2 2�.<�/.=�/j�jp�2
2�.<�/.=�/j�jp�2 V C � j�jp C 2�.=�/2j�jp�2


:

is a relatively compact perturbation of the diagonal operator ��CE on H�1 � H�1
with domain H1 � H1 (or on L2 � L2 with domain H2 � H2), see for example
[46]. Since the latter has essential (continuous) spectrum the interval on the real
line ŒE;1/ we get via Weyl’s Theorem:

Lemma 3.1 D�F.�;E/ is Fredholm (of index zero) iff E > 0: At the left boundary,
E D 0; zero is at the edge of its essential (continuous) spectrum while for E < 0

zero is inside the essential (continuous) spectrum.

We will restrict ourselves to the domain H1 � .0;1/; i.e. fE > 0g; which will now
be called the bifurcation diagram. Note that, for E < 0; by the limiting absorbtion
principle, there are no nontrivial solutions of (7) under mild assumptions on their
decay rates, see [6]. Obviously, .�E � 0;E/; E 2 R solves (7).

For a while we will assume:

(SA) ��C V has at least one negative eigenvalue. The lowest will be denoted by
�E0:

Note that the assumption holds in space dimensions n D 1; 2 for non-trivial,
negative potentials and requires potentials with sufficiently large negative parts in
dimensions n � 3: As shown for example in [27, 29, 44], hypothesis (SA) leads to
a pitchfork bifurcation at .�E0 � 0;E0/; which creates exactly one curve (modulo
rotations) of non-trivial ground states, see Fig. 1. Moreover, if V is invariant under
a group of symmetries then so are the ground states on this branch. In particular, if
V is a symmetric, double well potential, see Fig. 2 top panel, then the profile of the
ground states is equally distributed between the two wells.

Fig. 1 Bifurcation diagram
for bound states. Only the
trivial zero coherent state and
the small ground states are
represented for the attractive
case � < 0: For the repelling
case, � > 0; the branch points
the other way, i.e. E < E0
along the branch

0 E0 E

H1



Long Time Dynamics and Coherent States in Nonlinear Wave Equations 71

−6 −4 −2 0 2 4 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

x

V
(x

)

Symmetric double well potential

E0

1

2
2

E Ly=N

E

2

2

4
3

3

1

1

E

( )1H R

E0

Fig. 2 An one dimensional even potential (top panel) and a sketch of the corresponding symmetric
(bottom left panel) and asymmetric (bottom right panel) ground state branches for subcritical
nonlinearity, p < 2: The number on top of each branch gives the number of negative eigenvalues
for the linearized operator while the shape on the right shows the actual shape of the solution on
the branch

We are going to rely on global bifurcation theory which, besides a Fredholm
linearization, also requires compactness either of the solution set of (7) (in the
analytic case, see [8]) or of the map QF (in the continuous case where degree theory is
used, see [45]) where QF is obtained by transforming (7) into a fixed point problem,
for example:

� D .��C1/�1 ;  D.1�E/��V.x/��� j�jp�
defD QF. ;E/; QF W H�1

�R 7!H�1 (15)

Note that for � defined on a bounded domain, � � Rn; compactness of QF
follows from compactness of Sobolev embeddings H1

0.�/ ,! H�1.�/; Lq.�/ ,!
H�1.�/; 2  q < 2n=.n � 2/; however on Rn the situation is much more delicate.
For repelling nonlinearities, � > 0; the problem is analyzed in [24] where the
authors prove uniform bounds on the solutions of the inequality jF.�.x/;E/j 
‰.x/ to obtain the compactness necessary for defining a degree for QF given in (15).
Then global bifurcation theory implies that from .0;E/; where �E is any negative
eigenvalue of �� C V with odd multiplicity, bifurcate branches of non-trivial
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solutions of (7) which“end up” either at the boundary of the bifurcation diagram, or
at .0;E1/where �E1 is a different eigenvalue of ��CV:Note that the results cannot
give any information on existence of other bifurcation points along this branches, or
on existence of other branches that may not connect to the trivial solution, or on the
exact region or point where each branch ends up. In the particular case of the ground
states bifurcating from .0;E0/; the authors of [25] use further comparison theorems
to infer that the branch approaches the left boundary fE D 0g of the bifurcation
diagram, i.e. the part of the boundary where zero is at the edge of the continuous
spectrum of the linearized operator, see Lemma 3.1 and Fig. 1 but note that for
� > 0 the branch points the other way.

To avoid the difficult issue of bifurcations from continuous spectrum let us focus
first on the attractive case � < 0: Suppose we assume that D�F.�E;E/; E > E0;
is nonsingular along the ground state branch emerging from .0;E0/: If we can now
show that the branch can be uniquely continued for all E > E0; i.e. it approaches
the right boundary of the bifurcation diagram, and we can identify the limit point
limE!1 �E, and if the linearization at the limit point must have two (or more)
negative eigenvalues, then we have a contradiction since the linearization had only
one negative eigenvalue near .0;E0/: Hence the existence of a singular point along
this branch is guaranteed and the resulting bifurcation can give us new branches of
ground states. We have actually sketch a result that not only shows there are ground
states for all E > E0 but improves on the result of Theorem 3.2 by identifying a
symmetry breaking bifurcation:

Theorem 3.3 Consider an attractive nonlinearity � < 0; and a potential V which
is invariant under a finite group of Euclidian symmetries on Rn: Assume that
the action of the group is nontrivial on any critical point of V.x/ different from
x D 0; and assume that x D 0 is a non-degenerate critical point of V different
from a minima. Then the branch of ground states bifurcating from .0;E0/ undergoes
a second bifurcation past which the symmetric bound states become orbitally
unstable. Moreover, one of the new branches emerging from the bifurcation point
is made of asymmetric ground states which are generally orbitally stable.

In particular, for a double well potential, the bifurcation is of pitchfork type and the
emerging branch is made of ground states which localize in one of the two wells,
see Fig. 3 bottom panels and reference [28].

The theorem is proven using three intermediate results which are important
themselves because they determine all ground states provided a few remaining
obstacles are surmounted, see Remarks 3.3, 3.4 and 3.5 below. The first result is:

Theorem 3.4 If a C1 branch of coherent states approaches the top or bottom
boundary of the bifurcation diagram, i.e. E ! E�; 0 < E� < 1; k�EkH1 ! 1;

then we have:

Q.�E/ ! 1;
k�EkpC2

LpC2

Q.�E/
! 0:



Long Time Dynamics and Coherent States in Nonlinear Wave Equations 73

If a C1 branch of coherent states approaches the right boundary E ! 1; then there
exists b > 0 such that

k�EkpC2
LpC2

E2=pC1�n=2
! b;

Q.�E/

E2=p�n=2
! �� .2 � n/p C 4

2p C 4
b;

kr�Ek2
L2

E2=pC1�n=2
! �� npb

2p C 4
:

These estimates are obtained from the ordinary differential equation valid along
these branches:

dE

dE
.�E/ D �E

dQ

dE
.�E/ (16)

combined with the equation (7) and Pohozaev’s identity (essentially the L2-scalar
product between (7) and x � r�E), which leads to closed differential inequalities for
k�EkpC2

LpC2 ; see [28] and [35] for details.

Remark 3.3 The caveat is that the theorem does not yet cover the case of branches
undergoing infinitely many bifurcations in all neighborhoods of the boundary (hence
they cannot be parametrized by a C1 map in E in any neighborhood of the boundary).
However, most of these peculiar situations have been resolved in the sense that they
lead to similar estimates which can be used in the next results, see [35].

The theorem is essential in finding the limit points of the bound state branches at
the boundary of the bifurcation diagram. For example, at the fE ! E�; 0 < E� <
1; k�EkH1 ! 1g part of the boundary, the estimate above, combined with the (15)
form of the equation and the fact that .��C 1/�1 W H�1 7! H1 is an isomorphism
imply that �E=

p
Q.�E/ converges in H1 to a solution of �� C E� D 0: The

latter has only the zero solution which contradicts k�E=
p

Q.�E/kL2 � 1:

A contradiction is also obtained at the E D 0 from hypothesis (SA) and
comparison principles for the linearized (self-adjoint) operator. The comparison
principle relies heavily on the fact that the nonlinearity is always negative, see [35].

At the E ! 1 portion of the boundary the estimates imply that the change of
variables:

 E.x/ D E�1=p�E.E
�1=2x C x0//; x0 2 Rn (17)

leads to a uniformly bounded curve E 7!  E in H1 and transforms (7) into:

�� E C E�1V.E�1=2x C x0/ E C  E C � j Ejp E D 0

which formally converges to

�� C  C � j jp D 0: (18)



74 E. Kirr

The rigorous result is:

Theorem 3.5 There are no coherent states approaching fE D 0g and fE >

0; k � kH1 ! 1g boundary of the bifurcation diagram. Ground states approaching
E ! 1 boundary converge in H1, modulo the re-scaling (17) and rotations in the
complex plane, to a superposition of positive solutions of (18) each localized at a
critical point of the potential V:

Note that the result at E ! 1 has been conjectured in [47]. Our convergence
argument uses concentration compactness [12, Section 1.7] combined with a rather
delicate analysis of bifurcations from infinity, see [35] for details. For example,
if splitting of profiles would occur then at least one of them must move towards
infinity, and since limjxj!1 V.x/ D 0 we can show that the profile converges
to a solution of the equation without potential. But we are dealing with ground
states so this solution must be positive modulo rotations. It is known that, modulo
translations, there is only one such solution and the properties of the linearized
operator at this solution are also known. Using a Lyapunov-Schmidt decomposition
based on the linearized operator we show that there are no bifurcations from
solutions of the translation invariant problem concentrated at infinity into a solution
of our problem with potential under mild hypotheses on the behavior of the potential
at infinity.

Remark 3.4 New solutions of translation invariant NLS equation (18) may be
discovered based on Theorem 3.5. Indeed, the corresponding result for excited states
(i.e., solutions of (7) which are not ground states) is that as E ! 1 the re-scaled
 E either converges strongly to a superposition of positive solutions of (18), some
of them multiplied by �1; and each localized at a critical point of the potential
V; or (18) must have solution that cannot be obtained from the positive one via
translations or rotations in the complex plane. There are no such solutions in
space dimension n D 1 (hence the theorem applies to all coherent states in one
space dimension) but their existence/non-existence in higher dimensions is an open
problem. Note that, in principle, the re-scaled  E can be numerically traced along
excited state branches at large E: If profiles that change sign emerge (instead of
profiles in which the positive part drifts away from the negative part) then the
profile is a new solution of (18). The algorithm can start from excited states of (7)
which bifurcate from zero at the second and higher eigenvalues of the linear operator
��C V: The existence of such eigenvalues is guaranteed for sufficiently negative
potentials.

To obtain all limit points of the ground state branches at E ! 1 we combine
Theorem 3.5 with the local bifurcation result:

Theorem 3.6 At E D 1; from any superposition of positive or negative solutions
of (18) each localized at distinct, non-degenerate, critical points of the potential V
bifurcates, modulo the re-scaling (17) and rotations in the complex plane, exactly
one curve of coherent states for (7). These coherent states have as many nodal
points as the number of sign changes in the superposition. The number of negative
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eigenvalues of the linearization calculated at these coherent states can be computed
with the formula: k C n1 C n2 C � � � C nk where k is the number of profiles and
nj; j D 1; 2; : : : k is the number of negative directions for the Hessian of the potential
calculated at the critical point where the jth profile localizes.

See Fig. 2 for an illustration of this theorem in the case of a double well potential.
The theorem is reminiscent of the result in [43], see also [2, 15], for the

semiclassical limit. Note that we are not in the semiclassical limit, our re-scaled
equation immediately below (17) differ by the E�1 factor in front of the potential
making it an even more degenerate problem. Moreover, our method can be adapted
to the semiclassical case and gives a stronger result by not only showing uniqueness
of such solutions but also providing their parametrizations and spectral properties of
the linearized operator. The extension of Theorem 3.6 to degenerate critical points
is still open.

Remark 3.5 As of now Theorems 3.5–3.6 do not exclude or treat the case of
multiple profiles localizing at the same critical point of V; see [42] for a related
result. For ground states the phenomenon does not occur at local minima, but the
other cases are still open.

The compactness argument at E ! 1 can be extended in the interior of the
bifurcation diagram domain to obtain:

Theorem 3.7 Any set of ground-states .�E;E/ which is bounded in H1.Rn/ �
.E1;1/; where E1 > 0; is relatively compact and any limit point is a solution
of (7).

Now, Theorem 3.3 follows from a contradiction argument. Suppose that along
the symmetric branch starting at .0;E0/ no eigenvalues of the linearized operator
cross zero. Then, by Lemma 3.1 and the implicit function theorem the branch
can be continued and remains symmetric until it reaches the boundary of the
bifurcation diagram. By Theorem 3.5 it will have E ! 1 and, in this limit, it will
converge, modulo re-scaling (17), to a superposition of positive solutions of (18)
each localized at a critical point of V (some may localize at the same critical point).
If the limit is localized at x D 0 then from Theorem 3.6 we deduce that the linearized
operator along this branch at large E has at least two negative eigenvalues (one
plus the number of negative directions for the Hessian of the potential at x D 0)in
contradiction with the fact that it had only one negative eigenvalue near E0: If the
limit has a profile localizing at a non-zero critical point x0; by symmetry it must
have a profile (positive solution of (18)) at each point in the orbit of x0 under the
action of the Euclidian group. In this case the number of negative eigenvalues of the
linearized operator at large E is at least the number of profiles, see Theorem 3.6,
which is at least the number of points in the orbit. By hypothesis the latter is at least
2 and gives a contradiction. Consequently, there must be an E�; E0 < E� < 1; such
that an eigenvalue of D�F.�E;E/ converges to zero as E % E�: By Theorem 3.7
there is a limit point .�E�

;E�/ and local bifurcation theory can be used to analyze
the branches emerging from this point.
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More importantly, for analytic nonlinearities (p an even, positive integer), our
Theorem 3.7 combined with global bifurcation theory imply that ground states
not only organize themselves in smooth manifolds but the manifolds can also
be smoothly continued past their singularity points (i.e. bifurcation points) until
they either form loops or reach the boundary of the bifurcation diagram region
H1.Rn/� .0;1/; see [8, 35]. Note that if we somehow exclude the cases described
in Remarks 3.3 and 3.5 then Theorems 3.5–3.6 give us all the limit points at the
boundary and we can now trace back all ground-states.

For example consider the symmetric double well potential in one space dimen-
sion which has three critical points, see top panel in Fig. 2. We claim that all ground
states of this problem are given by the bottom left panel in Fig. 3. A similar picture
can be obtained for excited states with a fixed number of nodal points (zeroes).
Indeed, by first restricting the analysis to the Banach subspace of even functions in
H1 we get via Theorem 3.6 (and modulo rotations) the three curves near E D 1
in addition to the one given by (SA) near E0; see the left panel of Fig. 2. Global
bifurcation theory says that the latter connects smoothly with one of the former.
Hence, we have three possibilities, two are presented in the upper panels of Fig. 3,
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Fig. 3 Top panel shows two possible ways the even branches connect. The third is similar to the
left panel. Bottom panel shows how the asymmetric branches will bifurcate from the symmetric
ones in the two cases. In all figures the dotted lines show region where the branches are not
completely understood, i.e. “snaking” or pitchfork like bifurcation may occur but the latter must
lead to loops, see the top branch in the bottom right panel
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the third is similar to the left panel. The remaining two curves of symmetric ground
states must connect with each other since, again by Theorem 3.5, they cannot end up
on top or left boundaries of the bifurcation diagram, neither can they end at .0;E0/
due to the uniqueness of the branch emerging from this point. Sturm-Liouville
theory allows only a simple eigenvalue to cross zero at each bifurcation point, so, to
match the number of negative eigenvalue on the symmetric branches we find that, in
the case described in the left panels of Fig. 3, one more bifurcation point is needed
on each (the turning point is already a bifurcation on the top curve). Since each
of these bifurcations correspond to an antisymmetric eigenvector in the kernel of
the linearized operator, one asymmetric branch emerges from each, see bottom left
panel in Fig. 3. They already match the curves of asymmetric ground states given by
Theorem 3.6 at E D 1; hence the picture is complete. A similar counting argument
can be done for the right panels in Fig. 3. Moreover, the same analysis can now be
performed for excited states with one nodal point (one change of sign), two nodal
points, etc, since Theorem 3.5 applies to them in one dimension, see Remark 3.4.

The above analysis did not include the multi-profile ground states which, as
E ! 1; may have more than one profile localizing at the local maxima of the
potential, see Remark 3.5. Recent numerical investigations in [34] show that they are
present and the branch starting from one profile at each minima when E D 1 turns
back and connects to a branch with two profiles both localizing at the local maxima
x D 0; while the branch starting from a profile at each critical point connects to the
branch with three profiles all of them localizing at x D 0: A rigorous understanding
of this phenomena is underway.

Remark 3.6 Theorems 3.4–3.7 are valid in any space dimension, however, to obtain
all ground states, the counting argument described above needs to be adapted
when non-simple eigenvalues of the linearized operator cross zero. In practical
applications the multiplicity of these eigenvalue is due the Euclidian symmetries
of the underlying phenomenon hence its Hamiltonian. The symmetries can be used
to simplify the normal form of the local bifurcation, see [16]. A case by case study
is underway, beginning with potentials invariant under finite group of symmetries
(such as under reflection w.r.t. hyperplanes, or generated by rotations with a fixed
angle) and finishing with potentials invariant under continuous group of symmetries
such as spherical ones.

Remark 3.7 Bifurcations from continuous spectrum may occur in the absence of
the spectral hypothesis (SA). Indeed, the sketch of proof for Theorem 3.5 showed
that (SA) is essential in excluding branches which approach the fE D 0g boundary.
While we can build the picture of all ground states starting now from the branches
given by Theorem 3.6 at large E; some of these branches will end up at fE D 0g: To
complete the picture we need to find all limit points on this boundary, in particular
we need to understand bifurcations from the edge of the continuous spectrum, see
Lemma 3.1. A summary of recent progress in such problems can be found in [56].
Repelling nonlinearities � > 0 also fall in this category as preliminary calculations
show that all branches of coherent states end up at the left boundary fE D 0g;
see [25] for a different method applicable to ground-states only. More complicated
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nonlinearities may also push the coherent states towards this boundary. For example
�j�j2� C j�j4� formally behave like an attractive nonlinearity near .0;E0/ but at
large bound-states the repelling part dominates. Hence a turning point is formed
on the branch starting at .0;E0/ and the conjecture is that it eventually approaches
fE D 0g; see [22]. The study of such nonlinearities and more general ones is in
progress.

Remark 3.8 Confining potentials limjxj!1 V.x/ D 1 allow for stronger results
compared to Theorems 3.4–3.7. Indeed, the bound states now belong to the Banach
space f� 2 H1 W R

Rn V.x/j�.x/j2dx < 1g which embeds compactly in L2; see
the previous subsection. This implies that the linearized operator has purely discrete
spectrum, that the set of solutions of (7) is relatively compact, and that the map QF;
see (15) is compact. In particular Theorems 3.4–3.7 are valid for all coherent states.
Based on this observation a rigorous study vortices in rotating but confined Bose-
Einstein Condensates is underway, see [26] for a recent summary of open problems,
results and applications.

Remark 3.9 Non-analytical nonlinearities require compactness results stronger than
the one given by Theorem 3.7 i.e., valid also for approximate solutions of (7). Such
compactness is needed to construct a degree for the map QF in (15) on which the
global bifurcation theory relies, see [45]. Such results hold for confining potentials,
see remark above, or repelling nonlinearities � > 0; see [24, 25]. The problem for
non confining potentials combined with attractive nonlinearities is open.

3.3 Orbital Stability

Two of the most cited results in orbital stability of coherent structures are the ones
by Grillakis, Shatah and Strauss in [18, 19]. One of its refinements [17], which is
applicable to the Schrödinger and Klein-Gordon equations because of the diagonal
structure of their linearization, implies that, in the example presented in the previous
subsection, all branches with more than one negative eigenvalue in the spectrum
of the linearized operator are unstable while the ones with exactly one negative
eigenvalue are stable provided their L2 norm is strictly increasing in E; see Fig. 3.
However, neither the results in [18, 19] nor their numerous refinements cover all
possible cases. For example, in the Schrödinger case with attractive nonlinearity,
the first excited state bifurcating from zero at the second eigenvalue of ��C V is
outside the scope of the current orbital stability theory. Thanks to hundreds of pages
of proofs based on asymptotic stability techniques, see [53] and [51], we now know
that this branch is unstable in the weakly nonlinear regime provided a resonance
condition is satisfied. Is there a simpler way to study the stability of such coherent
states, one that will not rely on weak nonlinearities and resonance conditions?

In the general framework presented in Sect. 2 the theory uses the Lyapunov
functional: u 7! E .u/� !Q.u/ to study the stability of the coherent states .�!; !/
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which are solutions of (3) hence critical points of the Lyapunov functional. The
results in [18, 19] exploit the fact that Q is invariant under the dynamics and can
be summarized as follows: if �! is a local minimizer of the Lyapunov functional
restricted to the manifold Q.u/ D Q.�!/ then �! is orbitally stable; if �! is a saddle
point of the Lyapunov functional restricted to the manifold Q.u/ D Q.�!/ with an
odd number of negative directions i.e., odd number of negative eigenvalues of the
Hessian restricted to the tangent space of the manifold Q.u/ D Q.�!/ at �!; then
�! is linearly and orbitally unstable. More precisely, for stability the Hessian can
be nonnegative or it can have one negative eigenvalue over the entire space X which
disappears when the domain is restricted to the tangent space of the codimension
one manifold Q.u/ D Q.�!/ which turns out to be equivalent with the condition
@!Q.�!/ < 0 at the particular ! under study. However, the theory leaves open
the cases when the Hessian has more than one negative eigenvalue over the entire
space X and an even number of them remain when restricting to the tangent space of
Q.u/ D Q.�!/: The example in the above paragraph is in the case with two negative
eigenvalues and no recent refinements of the theory can cover it. Also note that none
of the refinements applies to the general framework described in Sect. 2 but to rather
particular cases.

Is it possible to show that if the coherent state �! is a saddle point of
the Lyapunov functional restricted to the manifold Q.u/ D Q.�!/ then it is
orbitally unstable? Note that the Lyapunov functional is actually invariant under the
dynamics, hence initial data on the manifold with energy just below the energy of
the coherent state evolve on a level set that takes it far away from the coherent state.
More precisely, there is a fixed neighborhood of the orbit of the coherent state which
is left by all orbits with initial data approaching the coherent state from a negative
direction of the Hessian. This idea has been partially exploited in [18] but there the
negative direction turns out to be an unstable direction of the linearized dynamics
dv
dt D JD2E.�!/Œv� i.e., an eigenfunction of a positive eigenvalue of JD2E.�!/;
hence an exponential growth of the distance between orbits leads to instability. This
is not the case in the example discussed in the first paragraph of this subsection and
in many others. But the point is that even in the absence of unstable directions for
the linearized dynamics, the presence of negative direction for the Hessian suffices
to prove a (much weaker) linear growth of distance between certain orbits in a small
neighborhood of the coherent state which still implies instability. This work is still
in progress.

Note that, if the answer to the above question is affirmative then the theory
becomes a characterization of orbital stability i.e., in the general framework of (1)
that is only invariant under the action T.s/ of a one dimensional Lie group, s 2 R,
the coherent state �! given by (3) is orbitally stable if and only if it is a local
minimizer of the Lyapunov functional: u 7! E .u/ � !Q.u/ restricted to the
manifold Q.u/ D Q.�!/ i.e., the Hessian over the whole space X of the Lyapunov
functional can have at most one negative eigenvalue (counting multiplicity) and if
it has one then @!Q.�!/ must be negative at the particular ! under study. Since the
Hessian is basically the linearization of the equation for coherent structures (3), its
eigenvalues change continuously along manifolds of solutions and cross zero only
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at bifurcation points. Therefore, the stability properties can now be deduced directly
form the bifurcation diagrams, see for example Fig. 3.

4 Asymptotic Stability of Coherent States

When the techniques proposed in the previous Section lead to a new branch of
orbitally stable coherent states for (1) or a bifurcation point involving both stable
and unstable branches, the question is whether the dynamics of solutions starting
near the branch can be described in detail. In particular, asymptotic stability would
mean that the solutions converge to certain coherent structures on the branch but in
a weaker norm corresponding to a space Z; X ,! Z; see the discussion at the end of
Sect. 2. The methods to uncover the convergence are dynamical in nature and, near a
branch of coherent structures and away from bifurcation points, can be summarized
as follows: one decomposes the solution into a finite dimensional evolution on the
manifold of coherent structures and a correction

u.t/ D T.!.t/t/Œ�!.t/ C ud.t/� (19)

where the parameter !.t/ is to be chosen later. Then the equation for the correction
becomes:

dud

dt
D JL!.t/ud C G.!.t/; ud.t// (20)

where L! is the linearization (with respect to u) of DuE .u/� !DuQ.u/ at �! and G
contains only quadratic and higher order terms in ud:Most of the times equation (20)
is be analyzed via a Duhamel formula using the propagator of a fixed linearization
i.e., W.t/u0 solves:

du

dt
D JL!0u; u.0/ D u0

and

ud.t/ D W.t/ud.0/C
Z t

0

W.t�s/ŒJL!.s/�JL!0 �ud.s/dsC
Z t

0

W.t�s/G.!.s/; ud.s//ds:

(21)
In this case !.t/ is chosen such that ud.t/ is always in the invariant subspace of JL!0
that complements the null space. In the absence of other eigenvalues the invariant
space corresponds to the continuous spectrum, and the advantage is that, on this
subspace, estimates of type:

kW.t/kZ� 7!Z � jtj�˛; ˛ > 0 (22)
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where Z is a Banach space with X ,! Z densely, were already available. The
disadvantage is the presence of the linear term in the second integral. In fact, for
the particular case of NLS, the linear term lead to restrictions on the nonlinearity
to supercritical regimes p > 4=n in (6), see [9–11, 13, 44, 48–50], or, when
Stricharz type estimates were used, to critical and supercritical regimes p � 4=n,
see [21, 39, 40]. The results in [29, 30, 32, 33] show that, for small solitary waves
in NLS, from estimates (22) one can obtain estimates of the same type for the
propagator of the time dependent linear operator in (20). Hence one can use:

ud.t/ D QW.t; 0/ud.0/C
Z t

0

QW.t; s/G.!.s/; ud.s//ds: (23)

where QW.t; s/u0 solves the non-autonomous equation

du

dt
D JL!.t/u; u.s/ D u0 (24)

and now the !.t/ is chosen such that ud.t/ is always in the invariant subspace of
JL!.t/ that complements the null space, hence, in the absence of other eigenvalues,
on this subspace we have:

k QW.t; s/kZ� 7!Z � jt � sj�˛; ˛ > 0 (25)

As a result the restriction to critical and supercritical nonlinearities has been lifted.
Essential in this approach is to obtain estimates (25) from (22). While technical

in nature this step can be generalized to other equations, see [7], because it relies
only on V.t/ D JL!.t/ � JL!0 being a small, localized in space (but time dependent
and maybe complex valued) scatterer (potential) and on strong dispersion of the
linearized equation, i.e.

˛ � 1: (26)

Smallness is not necessary since orbital stability implies that large deviation in V.t/
are only along the orbits of the coherent structures which can be mod out, see [31].
Space localization will always be present when dealing with solitary waves i.e., the
scatterer is a power of the solitary wave. The only hypothesis that cannot yet be
relaxed is (26), in particular the method is inapplicable in one dimensional NLS.

A much more delicate dynamics occurs near an intersection of stable and
unstable manifolds of coherent structures. Section 3.2 shows that existence of
such bifurcation points is generally the rule rather than the exception, hence
understanding the dynamics around bifurcations is a necessary step in studying
asymptotic completeness. Note that finite time behavior of small solitary waves near
the bifurcation point discovered first in [27] has been studied for example in [28] via
an approximation with a finite dimensional dynamical system.
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Unfortunately, the recent progress in asymptotic stability near an orbitally stable
coherent state cannot yet determine the full dynamical picture near a bifurcation
point. Current results, see [4, 14, 57], rely on a spectral assumption for the
linearization JL! which fails at the bifurcation point. More precisely, as one
approaches the bifurcation point .! ! !�/ from a stable branch, two, purely
imaginary and complex conjugate eigenvalues (which can be non-simple) of JL!
approach zero (this corresponds to one eigenvalue, maybe non-simple, of L! D
D2E .�!/ � !D2Q.�!/ approaching zero, see the discussion in Sect. 3.2). Past the
bifurcation point they move from zero back up on the imaginary axis (along on
the stable branch) or into a positive and negative eigenvalue (along the unstable
branch). The above cited results may be applicable for some ! 6D !� along the
stable branch but not to all. This is because the two eigenvalue which approach
zero as ! ! !� have multiples close to any other eigenvalue, therefore violating
the discrete spectrum non-resonance condition required by current results. G. Zhou
has done yet unpublished work that may remove the non-resonance condition. Even
if this work is vetted the results only say that for each ! 6D !� along the stable
branch there is a small ball in the Hilbert space X centered at �! such that initial
data from the ball asymptotically converge (in the weaker norm) to a coherent state
(not necessarily �!). However, the radius of this ball is related to the distance d
between the smallest eigenvalue (in absolute value) and zero, and goes to zero
as ! approaches the bifurcation point because of the 1=d numbers of change of
variable necessary to bring the system in a normal form that uncovers the radiation
damping mechanism which leads to the decay of the projection of the solution onto
the invariant subspace of this smallest eigenvalue via a resonant interaction with
the radiative part corresponding to the projection onto the continuous spectrum. In
conclusion, asymptotic stability can be shown only in a conical neighborhood of the
stable branch with vertex at the bifurcation point (and the vertex excluded).

What happens with initial data in a ball centered at the bifurcation point which,
of course, has relatively large regions not contained in the conical neighborhoods
described above? A first step would be to determine the stable invariant manifolds
along the unstable branch. This is obtained via implicit function theorem type
results from the invariant subspace of the linearization that complements the one
corresponding to the positive eigenvalue. Initial data on this manifold will converge
to an unstable coherent state, see [53] for a related result. Outside this manifold one
can use a spectral decomposition of the dynamics with respect to the linearization
at the bifurcation point JL!�

: Note that the invariant subspace corresponding to
the zero eigenvalue contains the kernel of D2E .�!/ � !D2Q.�!/ which caused
the bifurcation to occur in the first place, moreover the projection on this kernel
parameterizes the branches near the bifurcation point via the standard Lyapunov-
Schmidt decomposition. Since the initial data is away from the stable invariant
manifold corresponding to the unstable branch one expects a short time exponential
growth of the projection onto the direction of the stable branch. Once this projection
becomes dominant a change of variables can be employed in order to use the
linearization and associated spectral decomposition at the (time dependent) stable
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coherent state given (parameterized) by the values of this dominant projection. In
this coordinates the techniques discussed in the above paragraph are expected to lead
to asymptotic convergence towards a stable coherent state. This is work in progress.

5 Conclusions

While variational methods are inappropriate to study all coherent states of a given
nonlinear wave equation (1) recent progress in NLS equation shows promise for
bifurcation methods. We learned from the example described in Sect. 3.2 that one
can start from any known solution of (3) and expect that it is part of a smooth
manifold of solutions that can be extended to the boundary of the domain (subset
of X � R/) inside which the linearization of (3), D2E.u/ � !D2Q.u/; is Fredholm
(a finite dimensional kernel suffices as this is a self-adjoint operator). Such results
are the main theorems of the current global bifurcation theory as developed by
Rabinowitz, Dancer, Toland, Buffoni and others. However, this is not enough to
discover bifurcation points along the manifold or new branches of solutions. But if
one has spectral information about the linearization at the starting point and at the
end point of the manifold (both on the boundary) then existence of bifurcations can
be proven and the branches emerging from them can be studied. Ideally one would
want to find all limit points of manifolds of coherent states at the boundary of the
Fredholm domain. Now, one can start from any such limit point and use the fact that
the manifold approaching it can be continued (via global bifurcation theory) until it
reaches another limit point on the same boundary (or the same point in case a loop
forms). Loops can sometimes be ruled out via bifurcation in cones type arguments,
see [8], and the symmetry or spectral properties of the initial limit point can severely
reduce the choices of the end point such that a numerical investigation or a rigorous
theorem can determine it as in the example. Once the two end points of the manifold
are determined the change in number of negative eigenvalues of the linearized
operator at the two ends can tell us the number of eigenvalues crossing zero hence
the number and type of bifurcations along the manifold. These bifurcations can
now be analyzed via Lyapunov-Schmidt decompositions and normal forms, see for
example the singularity theory in [16]. The emerging branches of solutions have
also limits at the boundary of the Fredholm domain. The process repeats until all
branches of solutions are found.

There are four essential steps in the method summarized above:

(R1) identify the domain in the X � R space where the linearized operator of (3)
is Fredholm;

(R2) inside this domain show relative compactness of either the set of solutions
of (3) or of a map for which the set of fixed points coincides with the set of
solutions of (3);

(R3) identify all limit points of solution branches on the boundary of the
Fredholm domain;
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(R4) find the rules by which the limit points connect via manifolds of solutions
inside the domain and characterize the bifurcation points along these
manifolds.

(R1) is already done for most wave equations as linearization is used in any
analysis or numerical simulation for nonlinear problems. While this method focuses
on finding coherent states inside the domain where the linearization is Fredholm,
note that outside it one can sometimes show non-existence of coherent states with
certain localization properties based on smoothness of the spectral measure of the
linearized operator, see [6].

(R2) is a technical step but an essential assumption in global bifurcation theory.
It also helps with the (R3) step. For problems with real analytic energy, relative
compactness of the solution set of (3) suffices and implies that the only obstacle
for unique continuation of any manifold of coherent states (via implicit function
theorem) is that it either reached the boundary of the Fredholm domain or a
bifurcation (singularity) point. In the latter case, the manifold reemerges on the
other side of the bifurcation point because of the structure of zeroes of analytical
maps. Compactness and structure of zeroes for analytical maps combine again to
prevent the existence of infinitely many singularities in bounded domains. Hence
the manifold either reaches the boundary of the Fredholm domain or forms a
loop, see [8]. If the energy is non-analytical a stronger form of compactness is
required. Equation (3) is transformed into a fixed point problem, for example

� D .�� C 1/�1 ;  D .1 � E/� � V.x/� � � j�jp�
defD QF. ;E/ in the NLS

case (7), and the map QF W X� 7! X� (or from Y to Y where X ,! Y ,! X�) is
required to be relatively compact, see [45].

Note that the stronger type of compactness comes for free when X ,! Y is
compact, which is the case for waves on bounded domains, or when the range
of QF is made of functions with a prescribed decay at infinity, which is the case
for problems with confining potentials, limjxj!1 V.x/ D 1; or with repelling
nonlinearities see [24, 25]. For NLS with attractive nonlinearities, a delicate
argument involving concentration compactness and non-existence of bifurcations
from profiles concentrated at infinity is used in [35] to obtain relative compactness
of the set of solutions. It may be adapted for general wave problems since X;Y are
usually Sobolev spaces.

(R3) can be split into two parts: first obtain rigorous estimates for coherent
structures approaching the boundary of the Fredholm domain and use compactness
arguments to identify possible limit points, then use local bifurcation theory from
these limit points to identify all nearby branches of solutions. For the first part one
can use the energy and charge Q together with the identity dE

d! .�!/ D ! dQ
d! .�!/

and the equation (3) both valid for coherent states. The goal is to obtain closed
differential inequalities for the terms in the energy which can lead estimates
in certain limits i.e., as the branch approaches different parts of the boundary
of the Fredholm domain. In the NLS example with attractive nonlinearity, the
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quadratic terms in the energy (4) grow much faster than the superquadratic term
corresponding to the nonlinearity provided the H1 norm blows up and ! remains
finite. Equation (7) becomes linear in this limit and it turns out that the limiting
equation has no solution, hence the absence of coherent states near this boundary.
At the ! ! �1 boundary the kinetic and nonlinear terms grow faster than the
potential term which leads to the limiting equation (18) via the re-scaling (17).
The limiting points are then among the solutions of the limiting equation. In the
example we were looking at positive coherent structures (ground states) and the
limiting equation has exactly one such solution modulo translations, hence the
limiting points described in Fig. 2. In general, one can focus on examples for which
the limiting equations are well studied. However if the procedure leads to poorly
understood equations this theory is a motivating factor in studying them.

The second part i.e., identify the nearby branches from the limit points, may be
solved via standard local bifurcation theory when the linearization at the limiting
points (which are solutions of the limiting equation) is Fredholm. However, this
is not the case when coherent states approach the part of the boundary where the
linearization has zero at an edge of the essential spectrum. This happens for repelling
nonlinearities, see [24, 25], for attractive nonlinearities when the linearization of (3)
at u D 0 has no discrete spectrum and especially for Dirac equation, regardless
of nonlinearity, since the linear Dirac operator has essential spectrum everywhere
except a bounded interval. In all these cases local bifurcations from the edge of
the essential spectrum must be understood in order to find all limit points on this
boundary and complete the bifurcation diagram. These are notoriously difficult
problems but promising results in this direction are described in [56].

(R4) amounts to grouping the limiting points based on which closed subspace
of X they belong to, usually based on symmetry properties such as the subspace
of even functions in our example. Since global bifurcation theory applies in any
Banach space each limit points must connect to another one in the same group. If
there are more than two in a subgroup then not only numerical simulations can help
but also rigorous arguments combining the mismatch in the negative eigenvalues of
the linearization at the two endpoints with the type of bifurcations supported by the
eigenspaces corresponding to the eigenvalues that cross zero as one moves from one
limiting point to the other. Note that problems invariant under finite and continuous
groups of Euclidian symmetries have non-simple eigenvalues in the spectrum of
the linearized operator. If they cross zero a classification of bifurcations induced by
them is necessary before we can proceed to identify all coherent states.

The bifurcation method relies and provides information on the spectrum of the
linearized operator along the manifolds of coherent states. There is already a rich
theory that uses the spectral information to determine the stability of coherent
states and the long time dynamics of nearby solutions. While a resolution of the
Asymptotic Completeness Conjecture, see Sect. 1, still seems far away, it appears
that a systematic study of all coherent states supported by nonlinear wave equations,
their bifurcation points, their stability and the nearby dynamics is within reach.
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About Non Linear Stabilization for Scalar
Hyperbolic Problems

Rémi Abgrall

Abstract This paper deals with the numerical approximation of linear and non lin-
ear hyperbolic problems. We are mostly interested in the development of parameter
free methods that satisfy a local maximum principle. We focus on the scalar case,
but extensions to systems are relatively straightforward when these techniques are
combined with the ideas contained in Abgrall (J. Comput. Phys., 214(2):773–808,
2006). In a first step, we precise the context, give conditions that guaranty that,
under standard stability assumptions, the scheme will converge to weak solutions.
In a second step, we provide conditions that guaranty an arbitrary order of accuracy.
Then we provide several examples of such schemes and discuss in some details two
versions. Numerical results support correctly our initial requirements: the schemes
are accurate and satisfy a local maximum principle, even in the case of non smooth
solutions.

1 Introduction

In this paper, we are interested in the numerical solution of steady scalar hyperbolic
equations. It is well known that the equations admit discontinuous solutions that
are only bounded in L1, and belongs to L1. We are particularly interested in
the piecewise smooth solutions. Our focus is on methods that use unstructured
conformal meshes with weak Dirichlet boundary conditions. These methods, as
well as any of the methods that are devoted to the solution of these non linear
problems must incorporate, for stability reasons, some dissipation mechanism,
otherwise wild oscillations may develop. There are many classes of high order
methods, and in this paper our focus is on the study of particular class called
residual distribution schemes. These methods can be seen as some generalizations
of classical finite element methods using continuous methods with stabilisation
(such as the SUPG method [16]), but some variants allow to have a genuinely
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non linear dissipation mechanism for which one can guaranty L1 stability bounds.
Unfortunately, straightforward L1 stability procedure may lead to methods that
admits spurious modes, in some circumstances. The main issue of this paper is two
describe two ways of removing these spurious modes while keeping the L1 stability
property, at least at the experimental level. One such technique is already known, see
[1] for example, the second one is new. Having two methods for the same purpose
is, in our opinion, a good thing because it can allow for additional flexibility.

In the following, we focus on steady problems, and to make things simpler, we
focus on the scalar problem:

divf.u/ D 0 (1a)

subject to

min.ruf .u/ � n.x/; 0/.u � g/ D 0 on @˝ (1b)

In (1b), n.x/ is the outward unit vector at x 2 @˝ (thus we assume enough regularity
for˝). We will assume that ˝ is bounded for technical reasons only. Extensions to
the system case can be found in [5] for the pure hyperbolic case and [3, 4] for the
scalar convection diffusion problem and the Navier Stokes equations.

Here the notations are standard: g is a regular enough function, we assume that
˝ has a polyhedric boundary, and moreover ˝h D ˝ for the chosen family of
triangulations Th in order to simplify. These assumptions are by no mean essential.
We denote by Eh the set of edges/faces of Th that are contained in @˝ , and K
stands either for an element K or a face/edge e.

In the finite element setting, there exists several variational formulations of this
class of problems. The classical ones can be defined in three steps. We are given a
family of meshes denoted by .Th/h2H . These meshes are made of elements denoted
generically by K. The parameter h, as usual, denotes the maximum of the diameters
of K, K 2 Th. The meshes can be geometrically conformal or not. Then we need
to define the trial functions space, denoted by Uh and a test functions space Vh. The
last step is to define a bi-linear form a on Uh � Vh, as well as form ` defined on
Vh. As usual, we assume that the spaces Uh and Vh encode some of the boundary
conditions, while the others are encoded in `. The problem is to find uh 2 Uh such
that a for any vh 2 Vh, we have

a.uh; vh/ D `.vh/:

The ideal scheme would certainly be the Galerkin method, where the variational
formulation is defined by: if Of is a consistent upwind numerical flux, we define aGal

and ` for the variational formulation
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aGal.uh; vh/ D �
Z
˝

rvh � f.uh/C
X
e2Eh

Z
e
vh.Ofn.g; uh/ � f.uh/ � n/

`.vh/ D
Z
˝

fvh:

(2)

They are defined for uh; vh/ 2 Uh � Uh where

Uh D UG
h WD fuh 2 H1.˝/;8K 2 Th; uhjK 2 Pr.K/g \ C0.˝/:

This method can be shown (on linear problems) to be formally accurate (i.e. of order
r C 1), but if the boundary conditions are not set in a very precise way (see [8]), it
is also known to be widely unstable. In any case, the nonlinear case is not stable in
the case of discontinuous solutions, as those we are expecting here. So the game has
been since several decades to find ways to stabilize this operator while keeping its
formal accuracy.

A first example is given by the streamline diffusion method [16, 17] for which
there are two possible interpretations. In the first one, we consider a Petrov Galerkin
formulation, .i.e we take uh 2 Uh D UG

h as for (2), but vh 2 Vh where

Vh D VS
h WD fvh 2 L2.˝/;8K 2 Th; 9wh 2 Uh; vh D wh C hK	Kruf.uh/rwhg:

The formulation uses

aSUPG1.uh; vh/ D �
Z
˝

vh � divf.uh/C
X
e2Eh

Z
e
vh.Ofn.g; uh/ � f.uh/ � n/

`.vh/ D
Z
˝

fvh:

(3a)

The second interpretation is to take Vh D UG
h and use, instead of aSUPG1 the form

aSUP2 defined by

aSUPG2.uh; vh/ D �
Z
˝

rvh � f.uh/C
X

K

hK

Z
K

�ruf .uh/rvh
�
	K
�ruf .uh/ruh

�

C
X
e2Eh

Z
e
vh.Ofn.g; uh/ � f.uh/ � n/

`.vh/ D
Z
˝

fvh: (3b)

This can be seen as a Galerkin approximation of a modified equation, namely

divf.u/� div
�

h	divf.u/
�

D 0 (3c)
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In (3), the parameters 	K are positive functions (typically constant per element) and
in (3c) the function 	 is defined by its restrictions on each element, as well as h.

We can play further with the trial and test spaces. If one removes the continuity
assumption, then we have a discontinuous Galerkin formulation, i.e. Uh D Vh with

Uh D UDG
h WD fuh 2 L2.˝/;8K 2 Th; uhjK 2 Pr.K/g

and, for .uh; vh/ 2 UDG
h � UDG

h ,

a.uh; vh/ D
X

K2Th

�
�
Z

K
rvh � f.uh/C

Z
@K
vhOfn

�
.uh/jK ; .uh/jK�

��

`.vh/ D
X

K2Th

Z
K

fvh

(4a)

where K� denotes generically the element(s) that are on the other side of the faces
of @K. Another formulation is, with the same `,

a.uh; vh/ D
X

K2Th

�
�
Z

K
rvh � f.uh/C

Z
@K
vhOfn

�
.uh/jK ; .uh/jK�

��

C
X

K

hK

Z
K

�ruf .uh/rvh
�
	K
�ruf .uh/ruh

� (4b)

In (4), the Dirichlet boundary conditions are set weakly by imposing uh D g on the
parts of @K which belongs to inflow part of @˝ as for (3).

Another example of stable method was initially described in [10]. The idea is to
stabilize the Galerkin operator (2), not by a streamline operator as for the SUPG
method (3), but by a jump operator on the internal edges/faces only: here .uh; vh/ 2
UG

h � UG
h , and

aBurman.uh; vh/ D aGal.uh; vh/C
X
e2eh

�eh2e

Z
e
Œruh�Œrvh�: (5)

In (5), for any function ' which admit traces one each faces of K, Œ'� D 'KC �'K�

where KC and K� are the two elements that share the face e (remember we assume
that the mesh is conformal), he is the measure of e and � is a parameter that has the
dimension of ruf.u/.

The space Uh and Vh can be independently chosen, as well as a and `,
provided the variational problem is consistent with the problem (1), and of course
the numerical method is stable. Formal accuracy is obtained via the choice the
polynomial degree r, and effective accuracy is related to the stability of the scheme
in suitable norm. Hence a natural question is: can we define Uh, Vh and the forms
a and ` such that in addition with consistency and accuracy, we can also have
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non oscillatory properties. In the case of the streamline methods, this last property
is obtained by modifying the formulation by adding a dissipation operator which
is parameter dependent. In the case of the Discontinuous Galerkin method, this
property is obtained via a proper choice of the arguments in Ofn, see [11, 12]. We
note that only the averages in K are controlled. In both cases this stability property
is obtained by introducing some genuine non linearity in the scheme, i.e. even if (1)
is a linear problem, the scheme will be non linear.

In this paper, we show that, by introducing a solution-dependent operator � from
Uh \ C0.˝/ to L2.˝/, the variational problem with a defined by

a.uh; vh/ D
X

K2T h

Z
K
�h

u.vh/divf.uh/C
X
e2E

Z
e
vh.Ofn.g; uh/� f.uh/ � n/

`.vh/ D
X

K2T h

Z
K
�h

u.vh/f

(6)

enables to get all the properties. The rest of this paper is organized as follow:
inspired by a rewriting of (3), we introduce the residual distribution schemes. We
provide a simple criteria which guaranties a Lax-Wendroff type theorem, provide
a simple criteria that guaranties formal accuracy, show how the choice of norms
guaranty the effective accuracy, and provide several examples of schemes. One of
them is new.

2 Formulation of Residual Distribution Schemes

These schemes have original been introduced by P.L. Roe in [21] in one dimension,
and [22] in the multidimensional case. As we see, there are many common points
with the streamline method, the difference is that we try to combine ideas from the
finite element community and from the finite volume one. The first scheme of this
kind was probably designed by R. Ni [20] where he introduces a particular version
of the Lax-Wendroff scheme.

2.1 Definition, Connection to Finite Element Methods

In what follows, K represents either an internal element or a face.
We make the standard remark that, for any internal degree of freedom � , if '� is

the Lagrange basis function associated to � , (3b) can be written as:
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aSUPG2.uh; '�/ D
X

K

�
�
Z

K
r'� � f.uh/C hK

Z
K

�ruf.uh/r'�
�
	K
�ruf.uh/ruh

��

C
X
e2Eh

Z
e
'�.Ofn.g; uh/� f.uh/ � n/:

Since the support of '� is made of all the elements K that share � , we have for any
degree of freedom � :

aSUPG2.uh; '�/ D
X
K3�

�
�
Z

K
r'� � f.uh/C hK

Z
K

�ruf.uh/r'�
�
	K
�ruf.uh/ruh

��

C
X

e2E ;�2e

Z
e
'�.Ofn.g; uh/ � f.uh/ � n/

and notice that

1. for any K,

X
�2K

� Z
K

r'� � f.uh/C hK

Z
K

�ruf.uh/r'�
�
	K
�ruf.uh/ruh

�� D
Z
@K

f.uh/ � n;

2. for any e 2 Eh,

X
�2e

Z
e
'�.Ofn.g; uh/ � f.uh/ � n/ D

Z
e
.Ofn.g; uh/� f.uh/ � n/:

This is true because
P
�2K

'�.x/ D 1 and thus
P
�2K

r'�.x/ D 0 for all x 2 K .

Let us notice that the discontinuous Galerkin schemes can also fit in a similar
framework. Looking back at (4a), we see that we can introduce for the degree of
freedom � 2 K the residual

˚K
� .uh/ D �

Z
K

r'� � f.uh/C
Z
@K
'� Ofn

�
.uh/jK ; .uh/jK�

�
: (7a)

Then, (4a) is nothing more that

a.uh; '�/ D
X
�2K

˚K
� .uh/: (7b)

We also have

X
�2K

˚K
� .uh/ D

Z
@K

Ofn
�
.uh/jK ; .uh/jK�

�
(7c)

where, again, Ofn is a consistent flux. This has been exploited in [2, 7].
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This set of elementary remarks shows that most if not all known numerical
schemes for solving (1) can be set in the Residual distribution setting: Given a
tessellation of ˝ D [K2Th K, we consider the approximation spaces

Uh D
M

K2Th

Pr.K/

or

Uh D
" M

K2Th

Pr.K/

#
\ C0.˝/ D UG

h ;

depending whether we are looking for a global continuous approximation or a
piecewise continuous one.1 The elements of Pr.K/ are defined by a set of unisolvent
degrees of freedom, and we denote by ˙ the set of all degrees of freedom defining
the elements of Uh. Throughout the paper, we consider Lagrange approximation,
but more general approximation sets can be used, see [9] for example. This means
that Uh D UG

h D Vh throughout the paper.
A residual distribution scheme is defined, considering any degree of freedom � ,

by the sub-residuals that are “sent” to � by the elements K (resp. a boundary edge e)
that share this degree of freedom. We denote them by ˚K

� .u
h
jK/ (resp. ˚ e

� .u
h
je/). We

look for uh 2 Uh such that, for any internal degree of freedom � ,

X
K3�

˚K
� .u

h
jK/ D 0; (8a)

and for any degree of freedom on the boundary,

X
K3�

˚K
� .u

h
jK/C

X
e3�

˚ e
� .u

h
je/ D 0: (8b)

We assume that the following structure condition holds true:

X
�2K

˚K
� .u

h
jK/ D

Z
@K

Ofn.u
h
K ; u

h
K�/ (9a)

X
�2e

˚ e
� .u

h
jK/ D

Z
e
.Ofn
�
g; uh/� f.uh/ � n

�
: (9b)

We see that the SUPG method (3) and the Burman method [10] are particular
cases of such scheme. There is a lot of freedom in defining the sub-residuals

1More complex situation can easily been imagined, such as global continous on ˝1 and possibly
discontinuous on ˝2 with˝1 [˝2 D ˝ and ˝1 \˝2 of empty interior.
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˚K
� .u

h
jK/ and ˚ e

� .u
h
e/, we will show how we can take advantage of this freedom to

achieve our goal. Note that in the definition of the sub-residual, we have implicitly
assumed that only the degrees of freedom with K or e are necessary to define these
quantities: the stencil of the method is the most possible compact which is a good
point for the parallelization of the method.

Another example of sub-residual are the Galerkin residuals defined by: on the
element K.2

˚G;K
� D

Z
K
'�divf.uh/ D �

Z
K

r'� � f.uh/C
Z
@K
'� Ofn.u

h
K; u

h
K�/; (10a)

and on the boundary face e:

˚G;e
� D

Z
e
'�
�Ofn.g; uh/ � f.uh/ � n

�
(10b)

We see that both f˚G;K
� g�2K and f˚G;e

� g�2e satisfy (9) with the same value of the
total residual. Unfortunately, the scheme (8) with the Galerkin residual (10) is
widely unstable in the case of continuous elements.

2.2 Structure Conditions

For any wh (not necessarily a solution of (8) if it exists), and any test function vh,
we have (setting vh

� D vh.�/):

X
� 62@˝

vh
�

 X
Th3K3�

˚K
� .w

h
jK/
!

C
X
�2@˝

vh
�

 X
Th3K3�

˚K
� .w

h
jK/C

X
Eh3e3�

˚ e
� .w

h
je/
!

D
X

K2Th

 X
�2K

vh
�˚

K
� .w

h
jK/
!

C
X
e2Eh

 X
�2e

vh
�˚

e
� .w

h
jK/
!

D
X

K2Th

 
�
Z

K
rvh � f.uh/C

Z
@K
vhOfn.u

h
K; u

h
K�/

!

C
X

K2Th

X
�2K

vh
�

�
˚K
� .w

h
jK/� ˚G;K

� .wh
jK/
�

C
X

e�@˝;e2Eh

X
�2e

vh
�

�
˚ e
� .w

h
jK/ �˚G;e

� .wh
jK/
�

(11)

2Of course, in the case of discontinuous approximation, this is nothing more that DG. Since we
have a unified presentation, we need to introduce this.
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thanks to (9).3 In (11), we have used the following implicit convention: On the
boundary edges, uK� D g in order to weakly impose the boundary conditions. Then,
since

X
�2K

�
˚K
� .w

h
jK/ �˚G;K

� .wh
jK/
�

D 0;

(11) becomes, denoting by nK and ne the number of degree of freedom in K and e,
with the convention that wh

K� D g on the boundary of ˝

X
�2˝

vh
�

 X
K 3�

˚K
� .wh

jK/
!

D
X

K2Th

�
�
Z

K
rvh � f.uh/C

Z
@K
vhOfn.u

h
K ; u

h
K� /

C
X

K2Th

1

nK

X
�;� 02K

�
vh
� � vh

� 0/
�
˚K
� .w

h
jK/� ˚G;K

� .wh
jK/
�

C
X

e�@˝

1

ne

X
�;� 02e

�
vh
� � vh

� 0

��
˚e
� .w

h
je/� ˚G;e

� .wh
je/
�

(12)
This relation is fundamental in our analysis.

2.2.1 Conservation

In [6], we prove the following result:

Theorem 1 Assume the family of meshes T D .Th/h2H is shape regular. We
assume that the residuals f˚K

� g�2K , for K an element or a boundary element
of Th, satisfy:

1. For any M 2 RC, there exists a constant C which depends only on the family of
meshes Th and M such that for any uh 2 Uh with jjuhjj1  C.M/, then

j j˚K
� .uhjK / j j  C.M/

X
�;� 02K

juh
� � uh

� 0 j

2. They satisfy the conservation property (9).

Then if there exists a constant Cmax such that the solutions of the scheme (8) satisfy
jjuhjj1  Cmax and a function v 2 L2.˝/ such that .uh/h (or at least a sub-
sequence) converges to v in L2.˝/, then v is a weak solution of (1)

Proof The proof can be found in [6], it uses (12) and some adaptation of the ideas
of [19].

3K represents either an internal element or a face.
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We can also state similar conditions for entropy inequalities:

Proposition 1 Let .U;G/ be an couple entropy-flux for (1) and OGn an upwind
numerical entropy flux consistent with G � n. Assume that the residuals satisfy: for
any element K,

X
�2K

U.u�/ � ˚K
� 

Z
@K

G.uh
jK / � n (13a)

and for any boundary edge e,

X
�2e

U.u�/ � ˚ e
� 

Z
e

� OGn.u
h
je; g/� G.uh

jK/ � n
�
: (13b)

Then, under the assumptions of the theorem 1, the limit weak solution also satisfies
the following entropy inequality: for any ' 2 C1.˝/, ' � 0,

�
Z
˝

r' � G.u/C
Z
@˝

' OGn.u; g/  0:

Proof The proof is similar to that of theorem 1.

2.2.2 Accuracy

In most cases, assuming a smooth solution of (1), the formal accuracy analysis is
done by checking how large is the error made when plugging the exact solution
into the scheme. This is carried out using Taylor expansions, and the geometry of
the computational stencil plays an important role. When the mesh has no particular
symmetry, this leads to nowhere. Instead of looking to how far the numerical scheme
departs from the strong form of the PDE, it is much more flexible to look at how far
it departs its weak form, i.e. instead of checking divf.u/ D 0, it is better to test, for
any ' smooth enough,

R
˝
'divf.u/ D 0, of course after using the Green formula.

In practice, we define the truncation error

E .uh; vh/ D
X
�2˝

vh
�

 X
K 3�

˚K
� .w

h
jK/
!
;

and consider

E .uh/ D max
vh2UG

h ;jjvh jjW1;1D1
E .uh; vh/: (14)
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We can then extend the classical definition of accuracy:

Definition 1 (Accuracy) We say that the scheme (8) is r C 1-th order accurate if,
for any smooth solution uex 2 CrC1.˝/ of (1), E .uh

ex/  C hrC1. The constant C
only depend on the family T , the regularity of f, on the r C 1 derivative of u, and
the boundary conditions.

Remark 1 This definition enables to get bounds on the error uh � uex if a coercivity-
like inequality holds true in some adequate norm. This is well known for the
SUPG/streamline diffusion method, see [17] for example, but we do not have any
general result yet.

Since uex 2 CrC1.˝/, there are no jump across elements. Using (12), we see that,
for any vh:

E .uh
ex; v

h/ D �
Z
˝

rvh � f.uh
ex/C

Z
@˝

vhOfn.u
h
ex; g/ (15)

C
X
K

1

nK

X
�;� 02K

�
vh
� � vh

� 0/
�
˚K
� ..uh

ex/jK /� ˚G;K
� ..uh

ex/jK /
�

(16)

For the steady problem (1), we have the following result:

Lemma 1 Let us recall that ˝ � Rd and is bounded.
If the solution uex of the steady problem (1) is CrC1, then

1. ˚G;K
� ..uh

ex/jK/ D O.hrCd/,
2. ˚G;e

� ..uh
ex/je/ D O.hrCd�1/

3. if the numerical flux Of is Lipschitz, � R˝ rvh �f.uh
ex/C

R
@˝ v

hOfn.g; uh
ex/ D O.hrC1/,

Proof We start by showing the first result. The proof of the second one is similar
and is omitted.

Since uex 2 CrC1, we have divf.uex/ D 0 in a strong sense, thus for any K 2 Th

and any � ,

Z
K
'�divf.uex/ D �

Z
K

r'� � f.uex/C
Z
@K
'� f.uex/ � n D 0:

We can subtract this relation to ˚G;K
� .uh

ex/ and get:

˚G;K
� .uh

ex/ D �
Z

K
r'� �

�
f.uh

ex/� f.uex/

�
C
Z
@K
'�

�
Ofn.u

h
ex;jK ; u

h
ex;K�/� f.uex/ � n

�
:

Since the mesh is regular, we have:

jKj D O.hd/; r'� D O.h�1/; j@Kj D O.hd�1/
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and since the flux f is C1, we have

f.uh
ex/� f.ue/ D O.hkC1/:

Last, the numerical flux is consistent so that,

Ofn.u
h
ex;jK ; u

h
ex;K�/ � f.uex/ � n D O.hkC1/:

Gathering the pieces together, we get:

ˇ̌
ˇ˚G;K

� .uh
ex/
ˇ̌
ˇ  C

�
hd � h�1 � hkC1 C hd�1 � 1 � hkC1

�
D O.hkCd/:

The third inequality is obtained in a similar manner: From (1), we have for any
vh, setting � � D fx 2 @˝;ruf.u/ � n < 0g,

�
Z
˝

rvh � f.uex/C
Z
��

vhf.uex/ � n D 0:

Since the numerical flux Of is upwind, we can rewrite this as:

�
Z
˝

rvh � f.uex/C
Z
@˝

vhOf.g; uex/ � n D 0:

so that

�
Z
˝

rvh � f.uh
ex/C

Z
@˝

vhOfn.g; u
h
ex/

D �
Z
˝

rvh � �f.uh
ex/� f.uex/

�C
Z
@˝

vh

�
Ofn.g; u

h
ex/� f.uh

ex/ � n
�

D .I/C .II/

Using again the same arguments, since the numerical flux is Lipschitz continuous,
we see that both .I/ and .II/ are of the order of O.hkC1/ � jjvhjjW1;1.˝/.

Then, we have:

Proposition 2 Under the assumptions of Lemma 1 and assuming that the family of
meshes F is regular, the residuals satisfy:

for all � and all K D K or e; ˚K
� ..uex/jK / D O.hrCD/ (17)

where D D d for elements K and D D d �1 for e 2 E . The scheme is formally r C1

accurate.

Proof E .uh
ex/ is the sum of

�
Z
˝

rvh � f.uh
ex/C

Z
˝

vhOfn.g; u
h
ex/
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which is O.hrC1/ by lemma 1 and

X
K

1

nK

X
�;� 02K

�
vh
� � vh

� 0/
�
˚K
� .w

h
jK/� ˚G;K

� .wh
jK/
�

C
X
e�˝

1

ne

X
�;� 02e

�
vh
� � vh

� 0

��
˚ e
� .w

h
jK/� ˚G;e

� .wh
jK/
�

Since the mesh is regular, the number of elements in the mesh is O.h�d/ and the
number of boundary elements is O.hd�1/. Since v 2 W1;1, its Lagrange interpolant
satisfy

ˇ̌
vh
� � vh

� 0

ˇ̌  hjjvhjjW1;1

and suph jjvhjjW1;1 is bounded by a constant that depends on T and jjvjj1;1. Then
we see that

ˇ̌̌X
K

1

nK

X
�;� 02K

�
vh
� � vh

� 0/
�
˚K
� .w

h
jK/�˚G;K

� .wh
jK/
�

C
X

e�@˝

1

ne

X
�;� 02e

�
vh
� � vh

� 0

��
˚ e
� .w

h
jK/� ˚G;e

� .wh
jK/
�ˇ̌ˇ

 C
�
h�d � h � hdCr C h�dC1 � h � hrCd�1�

 ChrC1:

We can estimate the boundary terms in a similar way. This ends the proof.

3 Construction of Monotonicity Preserving Arbitrary
Accurate Schemes

This section aims at showing how one can combine formal accuracy and non
oscillatory properties of the solution. This relies on the use of a discrete local
maximum principle. By this we mean the following. Considering a scheme which
update the degrees of freedom fum

� g that describe the solution at time tm, m 2 N. We
assume the structure: for any � ,

unC1
� D �.un

� ; fun
� 0 ; �

0 2 N�g; ��/
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where N� is the set of neighbors of � and�� a set of discretisation parameters. The
precise definition of N� depends on the operator �. Doing so we have in mind a
graph connecting together the degrees of freedom, and the notion of neighbors has
to be understood as the degrees of freedom that are connected for this graph to � . In
the RD schemes, this set of neighbors are the degrees of freedom that belong to all
the element that share � . Here � describes the geometry of the mesh and takes into
account the time increment �t. On the set of all possible sets �, we also assume
there is a total order relation “<”.

By local maximum principle, we mean that there exists �0 such that for any �
and�� such that �� < �0, and for any n,

junC1
� j  max

� 02N�[f�g
jun
� 0 j:

In the following, the relation “<” will be made precise for the particular example
we are dealing with.

3.1 A Preliminary Remark

We start by a basic remark that goes at least back to A. Harten [15], and we rephrase
it in the Residual Distribution framework.

Lemma 2 Assume that the residuals (for element and edges) write, for any degree
of freedom,

˚K
� .uh/ D

X
� 03K

cK
�� 0.u� � u� 0/; (18)

then the iterative scheme

unC1
� D un

� � !�

�X
K3�

˚K
� C

X
e3�

˚ e
�

�

admits a local maximum principle if

• for any � , � 0, cK
�� 0 � 0,

• !�

� P
K3�

P
� 02K

cK
�� 0 C P

� 02K
c�� 0

�
 1

Here, N� is the set of degrees of freedom that belong to any element sharing � , and
�� D f!�g. We say that � D f!g < �0 D f!0g if !  !0.
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Proof It is clear that:

X
K3�

˚K
� C

X
e3�

˚ e
� D

�X
K3�

X
� 02K

cK
�� 0 C

X
� 02K

cK
�� 0

�
u�

�
X
� 0

� X
�;� 02K

cK
�� 0

�
u� 0

D d�u� �
X
� 02N�

d� 0u� 0

Here, in order to simplify the notations, we have set cK�;� 0 D 0 when � 62 K or
� 0 62 K .

The results holds true because cK�� 0 � 0, and

X
� 02N�

cK�� 0 � 0

d� 0 D
X
� 0

� X
�;� 02K

cK
�� 0

�
� 0

and

d� D 1 � !�
X
� 02N�

cK�� 0 � 0

if and only if the second condition of lemma 2 holds true.

The idea is to construct schemes that satisfy the requirement cK�;� 0 � 0. It is
known since Godunov that one cannot have a scheme that is simultaneously
monotonicity preserving, high order accurate and linear (for linear problems).
Hence some sort of non linearity must be introduced. Before showing how we
can meet the requirements, let us introduce our reference monotone scheme. It is
a multidimensional extension of the Rusanov scheme, namely, for any K and � ,

˚K
� D 1

nK
˚K C ˛k

�
u� � uK

�
; uK D 1

nK

X
�2K

u� (19)

In the case of continuous elements, this scheme has the form (18). It is monotone if
˛K � max

x2K jjruf.uh.x/jj. In the discontinuous case, a simple variant can be found,

see [2].
Other examples can be constructed, starting from any classical monotone finite

volume scheme. However, the interesting ones are the residuals for which the
condition ˚K .uh

ex/ D O.hkCD
K / holds true because of proposition 2.
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3.2 Explicit Construction

The construction is local to an element (or boundary edge) K , so we drop the
dependency with respect to the element. We start from a monotone first order
scheme, such as the Rusanov or the N scheme, denote the first order residuals in
the element as f˚M

� g�2K and the high order residuals (to be constructed) by f˚H
� g� .

We then make the following formal observation:

for all � 2 K ; ˚H
� D ˚H

�

˚M
�

˚M
� ;

so that if ˚M
� D P

� 02K
cM
�� 0.u� 0 � u� /, we have

�H
� D ˚H

�

˚M
�

� X
� 02K

cM
�� 0.u� 0 � u�/

�

D
X
� 02K

�
˚H
�

˚M
�

cM
� 0�

�
.u� 0 � u�/

�

D
X
� 02K

cH
� 0� .u� 0 � u� /

�

with cH
� 0� WD ˚H

�

˚M
�

cM
� 0� . Hence, to have cH

� 0� � 0, it is enough that

˚H
� ˚

M
� � 0

Introducing the parameters ˇM
� D ˚M

�

˚
and ˇH

� D ˚H
�

˚
where ˚ is the total residual

on the element K , we see that:

• ˚H
� ˚

M
� � 0 for any � 2 K is equivalent to ˇM

� ˇ
H
� � 0 for any � 2 K ,

• the conservation relations translates into:

X
�2K

ˇM
� D

X
�2K

ˇH
� D 1: (20)

• In order to guaranty the condition (17), a sufficient condition is that : for any C,
and uh such that jjuhjj1  C, there exists C0 such that jˇH

� j  C0.C/, uniformly
for all meshes Th.

These constraints can easily be interpreted geometrically. Consider an (abstract)
simplex S D .a1; : : : aNK / of dimension nK �1 points, i.e. a triangle when nK D
3, a tetrahedron for nK D 4 and so on. These points have nothing to do with the
mesh, they are only used to represent easily the constraint (20): it is well known that
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Fig. 1 Geometrical
representation of the
monotonicity conditions. The
invariant domain is
materialized by the domain
inside of C

a1

a2

a3
Yes

YesNo

No

Id

C

any point M of an affine space of dimension nK � 1 can be uniquely described in
term of its barycentric coordinates with respect to S :

M D
nK �1X

iD1

iai;

nK �1X
iD1


i D 1

so thus this suggests to interpret the parameters ˇM
� and ˇH

� as barycentric
coordinates with respect to the simplex S : we interpret a scheme as a point in
this abstract affine space, and finding the mapping .ˇM

� /�2K 7! .ˇH
� /�2K can be

interpreted to find a mapping from this affine space onto itself. Then, to make the
discussion more visual, we switch to nK D 3, see Fig. 1. The conditions ˇH

� ˇ
L
� � 0

are interpreted as saying that ˇH
i and ˇL

i must be on the same side of the line 
i D 0.
The condition jˇ� j  C is materialized, on Fig. 1, by the domain inside curve C .
Inside the invariant domain bounded by C , the mapping is the identity, outside of C
project the point L D P

� ˇ
L
�a� on C without crossing the lines 
�i D 0. Once the

ˇH
� are defined, we set simply ˚H

� D ˇH
� ˚ .

The simplest invariant domain is certainly the simplex .a1; : : : ; anK/ for which
0  
�  1. In that case, the most common formula is [6, 23]:

ˇH
� D max.ˇM

� ; 0/P
�2K

max.ˇM
� ; 0/

: (21)

Note that
P
�2K

max.ˇM
� ; 0/ � 1 because

1 D
X
�2K

ˇM
� D

X
�2K

max.ˇM
� ; 0/C

X
�2K

min.ˇM
� ; 0/ 

X
�2K

max.ˇM
� ; 0/:

When ˚ D 0, we simply set ˚H
� D 0
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3.3 Filtering

In practice, this method is excellent for computing discontinuous solutions. When
computing smoother solutions, we can see “wiggles” appearing, see Sect. 4. They
are not a manifestation of any instability since the scheme is perfectly L1 stable,
but it is too over compressive, i.e. not dissipative enough.

It is quite easy to understand what is going on. We first, let us consider the
problem on Œ0; 1�2:

@u

@x
D 0 (22)

with the boundary condition u D g on f0g � Œ0; 1�. The grid is made of quadrangles,
with vertices .xi; yj/, xi D i

N , yj D j
N , 0  i; j  N. The function g is piecewise

linear, and g.0; yj/ D .�1/j. The exact solution is independent of x.
The scheme is defined by

unC1
ij D un

ij � !ij

X
K3.xi;yj/

˚
H;K
i;j .un

h/

with u0ij given, and un
0j D g.0; yj/. There are many ways of initializing, we consider

two initializations:

• Initialization with the exact solution: u0ij D g.0; yj/ D .�1/j
• Check-board mode: u0ij D .�1/iCj

The solution at the n-th iteration is reconstructed with the Q1 interpolation. It is easy
to see that for both initialization, we have, for any K,

˚K D
Z
@K

uhnx D 0

so that in both cases, for any i; j; n, un
ij D u0ij ! The method as such is not well posed,

and there are spurious modes.
To remedy to this serious drawback, there are several possibilities. Here we

discuss a solution already described in see [1], and a new one that is inspired by
Burman’s variational formulation.

3.3.1 Streamline Filtering

The one discussed in [1] is inspired by the streamline diffusion method. Namely
starting from an unfiltered family of residuals f˚H;K

� g constructed as in Sect. 3.2,
we add a streamline diffusion term:

˚H;K;?
� D ˚H;K

� C �KhK

Z
K

�ruf.uh/ � r'�
�

N
�ruf.uh/ � ruh

�
(23)
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where N is defined by

N D
�X
�2K

max
�ruf; 0

�C "

��1

with the gradient ruf evaluated at the centroid and " is a small number to avoid
singularity. The choice of where is evaluated the average gradient does not seem to
be fundamental. The parameter should be �K 
 0 in discontinuities and �K 
 1

away from discontinuities. When we apply this correction (with � D 1) to (22)
this corrects the problem. By construction, we see that the accuracy requirement of
lemma 1 are met if they are met for the unfiltered scheme

To see what is the rational behind (23), let us first switch to the one dimensional
problem:

@f .u/

@x
D 0 x 2 Œ0; 1�

u.0/ D u0 (24)

u.1/ D u1:

The boundary conditions are imposed weakly, and to make things simple, assume
f 0.u0/ > 0 and f 0.u1/ < 0 so that the solution is u D u0. The interval Œ0; 1� is
discretized with the mesh which elements are Œxi; xiC1�, 0 D x0 < x1 < : : : <

xn�1 < xn D 1. Whatever the order, the total residual is for KiC1=2 D Œxi; xiC1�

˚KiC1=2 D f .uiC1/ � f .ui/

so that the high order residuals are simply, for any degree of freedom � 2 K,
˚K
� D ˇK

�

�
f .uiC1 � f .ui/

�
. In particular, the internal degrees of freedom play no

role. Assume now that k D 1, there is no internal degree of freedom, and let
us evaluate the entropy balance for the entropy U.u/ D 1

2
u2: using the notation

�
KiC1=2

j D ˇ
KiC1=2

j � 1
2
, we have

E D
N�1X
iD0

ui

�
ˇ

Ki�1=2

i

�
f .ui/ � f .ui�1/

�C ˇ
KiC1=2

i

�
f .uiC1/ � f .ui/

��

D
Z 1

0

uh @f

@x
.uh/C

N�1X
iD0

�
�

KiC1=2

i ui C �
KiC1=2

iC1 uiC1=2
��

f .uiC1/� f .ui/
�

D
Z 1

0

uh @f

@x
.uh/C

N�1X
iD0

�
KiC1=2

iC1 .f .uiC1/� f .ui//.uiC1 � ui/:
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with the convention u�1 D u0 and uNC1 D uN to take into account the boundary
conditions. For the scheme to be dissipative, a sufficient condition is that for all i,

�
KiC1=2

iC1 .f .uiC1/� f .ui//.uiC1 � ui/ � 0, i.e.

�
KiC1=2

iC1
f .uiC1/ � f .ui/

uiC1 � ui
� 0

with a strict inequality for at least one interval.

The evaluation of ˇ
KiC1=2
� is done with the only aim of having an L1 stable

scheme, so that this inequality might not be true.4 Adding the streamline term, i.e.
in this case,

�.uiC1 � ui/

Z xiC1

xi

N
� @f

@u

�2 @'�
@x

D .uiC1 � ui/
ˇ̌ @f

@u

ˇ̌�
'�.xiC1/ � '�.xi//

will modify the entropy balance into

E D
Z 1

0

uh @f

@x
.uh/C

N�1X
iD0

�
�

KiC1=2

iC1
f .uiC1/� f .ui/

uiC1 � ui
C �

ˇ̌ @f

@u

ˇ̌�
.uiC1 � ui/

2

and E  R 1
0

uh @f
@x .u

h/ provided that � � 1.

3.3.2 Jump Filtering

The idea is to add to the unfiltered residuals f˚H;K
� g constructed as in Sect. 3.2, we

add a jump term inspired by Burman’s construction, namely:

˚H;K;?
� D ˚H;K

� C
X

e2eh;e�K

�eh
2
e

Z
e
Œruh�Œr'� �: (25)

We first check that the conditions of lemma 1 are met if the unfiltered scheme
satisfies them too. For this, we only need to check that if the exact solution is
CrC1.˝/ and if we are using polynomials of degree at most r, then

X
e2eh;e�K

�eh2e

Z
e
Œruh�Œr'� � D O.hrCd/:

4However, in 1D it is very simple to show that the sign condition is true, let us ignore this fact
however.
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Since Œruex� D 0, we have

Z
e
Œruh�Œr'� � D

Z
e
Œr.uh � uex/�Œr'� � D O.hd�1/ � O.hr/ � O.h�1/ D O.hdCr�2/

and thus the conditions are met.
We notice that if for any internal face e,

R
eŒru�2 D 0, then u is globally a

polynomial of degree r. We first show if v is a polynomial of degree q on each
element K such that for any face e,

R
eŒv�

2 D 0 then v is a polynomial of degree q
defined on the whole domain˝ . The second step is to apply this to v D ru.

Let v 2 L
K2Th

Pq.K/, we define the operator � that maps v The operator � is

defined as follow: for any � ,

�.v/.�/ D 1

#fK; � 2 Kg
X

K;�2K

vjK.�/

and then

�.v/ D
X
�2˙h

�.v/.�/'� :

This definition assumes that the we are using Lagrange interpolation, we have done
this for simplicity but this is not essential.

Let us have a look at v � �.v/ on any K. Since v � �.v/ D P
�2K

.vjK.�/ �
�.v/.�//'� , we look at the difference vjK.�/ � �.v/.�/. We have

vjK.�/ � �.v/.�/ D 1

#fK0; � 2 K0g
X
�2K0

.vK.�/ � vK0.�//:

If � is internal to K, vjK.�/ � �.v/.�/ D 0, so the difference is possibly ¤ 0 only
for degrees of freedom on the edges. If the mesh is regular, we can easily see that

Z
K

�� X
�2K0

.vK.�/ � vK0.�//
�
'�

�2
 CjKj

X
�2@K

Œv.�/�2

 C0
X
e�@K

he

Z
e
Œv�2
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where C and C0 are constants that depends on the mesh regularity, so that

Z
˝

jv � �.v/j2 D
X

K

Z
K

jv � �.v/j2

D
X

K

Z
K

�
1

#fK0; � 2 K0g
X

�2K0\K

.vK.�/ � vK0.�//'�

�2

 C
X

e

he

Z
e
Œv�2

From this we see that if for any internal face e,
R

eŒv�
2 D 0, then v D �.v/. If

we apply this result to ru, we see that �.
@u

@xi
/ D @u

@xi
for any component, so by

integration, u is a global polynomial. This a very particular case of much general
results, see [13].

This remark explains the potential role of the jump term: if the solution is smooth,
the setting �e > 0 will constraint the continuity of the solution across faces, and
hopefully will bound jjrujj. If � D 0, this constraint is relaxed. So the idea is,
again, to take � > 0 where the solution is expected to be smooth, and � D 0 where
it is expected to be discontinuous. For now, the main justification of these choices is
purely heuristic and motivated by numerical experiments.

4 Numerical Examples

In this section, we illustrate the behavior of the method on two examples: a linear
transport problem and a non linear one. In ˝ D Œ0; 1�2, we consider

� D .y;�x/T and u.x; y/ D '0.x/ify D 0 (26)

with the boundary conditions

'0.x/ D



cos2.2�x/ if x 2 Œ 1
4
; 3
4
�

0 else

The isolines of the exact solution are circles of center .0; 0/. The form of the Burgers
equation is the following:

@u

@y
C 1

2

@u2

@x
D 0 if x 2 Œ0; 1�2

u.x; y/ D 1:5 � 2x on the inflow boundary:
(27a)
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Fig. 2 Mesh for the
numerical experiments
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The exact solution consists in a fan that merges into a shock which foot is located at
.x; y/ D .3=4; 1=2/. More precisely, the exact solution is

u.x; y/ D

8̂
ˆ̂<
ˆ̂̂:

if y � 0:5


 �0:5 if � 2.x � 3=4/C .y � 1=2/  0

1:5 else

else max

 
� 0:5;min

�
1:5;

x � 3=4

y � 1=2

�! (27b)

The mesh displayed on Fig. 2 is used to obtain the solutions shown on Figs. 3
and 4. All the meshes used in this paper have been generated by GMSH [14]. We
see, on Fig. 3a that without the streamline term in (23), the solution looks very
wiggly. Again, it is not an instability, only a manifestation of spurious modes that
are completely eliminated using (23) or (25). If one makes a convergence study
on this problem using P1, P2 and P3 elements, we recover the expected order of
convergence, see Table 1.

Figure 4 give the results for the problem (27). The solution is composed of
a compressive fan and a discontinuity. The exact solution is plotted as well as
what is obtained for the SUPG scheme (3b), the Galerkin scheme with jump
stabilisation (5), the original non linear RD scheme using (21) to evaluate ˇ� , and
the schemes when this RD scheme is combined with streamline (23) and jump
filtering (25). As expected the SUPG and Galerkin+jump methods are oscillatory
(and the latter one proves to be extremely oscillatory; we have chosen � D 0:1

here). The non linear methods behave very well. For the streamline filtering, we have
taken � D 1, and for the jump filtering � D 0:1 in the smooth part, 0 elsewhere.
We need to improve this, this work is in progress. The jump filtering seems to be
less dissipative than the stream line stabilisation. All these results use quadratic
reconstruction, the last two figures use linear reconstruction. The same conclusions
hold.
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Fig. 3 Solution of (26) with (21), (23) and (25), P2 elements. In each figure, 19 isolines form
0:05 to 0:95 are plotted. (a) exact; (b) Supg; (c) Galerkin+jump term; (d) without streamline term
in (23); (e) with the streamline term (23); (f) with the jump term (25)
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Fig. 4 Solution of (27). The solutions of (h) and (i) are obtained by P1 elements while the other
are obtained with P2 elements. The number of degrees of freedom is the same for each plot.
We use 20 isolines form �0:6 to 1:6 in all sub-figures. (a) Exact sln; (b) Supg: scheme (3b);
(c) Galerkin+Jump: scheme (5); (d) Psi without filtering (RDS using only: scheme (21)); (e)
Psi+stream: scheme (23); (f) Psi+Jump: scheme (25); (g) Psi+stream (P1); (h) Psi+Jump(P1)
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Table 1 Order of accuracy
on refined mesh constructed
from the mesh of Fig. 2, L2

norm. The slopes are obtained
by least square

h �L2 .P
1/ �L2 .P

2/ �L2 .P
3/

1/25 0.50493E-02 0.32612E-04 0.12071E-05

1/50 0.14684E-02 0.48741E-05 0.90642E-07

1/75 0.74684E-03 0.13334E-05 0.16245E-07

1/100 0.41019E-03 0.66019E-06 0.53860E-08

O ls
L2 D1.790 O ls

L2 D2.848 O ls
L2 D3.920

Strictly speaking, the streamline term in (23) or the jump term in (25) destroy the
maximum preserving nature of the scheme: the operators defined by (23) or (25) are
not, a priori, of the type (18) with positive coefficients. We have not been able, so far,
to analyze in full detail the schemes from this point of view, but all the numerical
experiments that we have done, including with system case (for (23), the second
solution has not yet been tested for systems), indicate that the streamline term (23)
or the jump term (25) act as a filter, and do not spoil the monotonicity preserving
properties that we are seeking for. Actually, this property is violated, but the over-
and undershoot are negligible, as what occurs for the ENO and WENO schemes.

5 Conclusions

We have shown a systematic way of constructing high order finite element like
methods for scalar hyperbolic problems that preserve, in practice, a local maximum
principle. The problems can be linear or not, and the solutions regular or not. We
have shown that the accuracy can actually be reached. This paper present two classes
of methods, one of them has already been extended to systems [5] and even to the
Navier Stokes equations [3, 4]; the second one has to be extended to systems, and
this should be straightforward.

Many things remain to be done. The methods are intended to be parameter free.
One part of the numerical operator is proved to be maximum principle preserving,
without any parameter to tune. Unfortunately, by using only this operator, we can
see that the solution may develop spurious modes (while keeping the maximum
principle), and we have shown how to cure this. Unfortunately, we had to introduce
one tunable parameter. When we filter out by using a streamline filter, we have
proposed solutions [5] to monitor the filter, but because of the very writing of the
scheme it is difficult to make decisions by looking at the local structure of the
solution without violating the structure of the numerical stencil. In the second case,
the stabilisation is done via an integral term involving the jump of the first derivative
of the solution. This opens new perspectives for a better design of the filtering
parameter. An extension to unsteady problems is also in progress. The extension
to 3D system is straightforward and has already be done with an extension of the
streamline filtering, see [18] for the Euler equations and [3, 4] for the Navier-Stokes
ones.
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Group-Theoretical Approaches

to Conservation Laws and Their
Applications



Generalization of Noether’s Theorem in Modern
Form to Non-variational Partial Differential
Equations

Stephen C. Anco

Abstract A general method using multipliers for finding the conserved integrals
admitted by any given partial differential equation (PDE) or system of partial
differential equations is reviewed and further developed in several ways. Multipliers
are expressions whose (summed) product with a PDE (system) yields a local
divergence identity which has the physical meaning of a continuity equation
involving a conserved density and a spatial flux for solutions of the PDE (system).
On spatial domains, the integral form of a continuity equation yields a conserved
integral. When a PDE (system) is variational, multipliers are known to correspond
to infinitesimal symmetries of the variational principle, and the local divergence
identity relating a multiplier to a conserved integral is the same as the variational
identity used in Noether’s theorem for connecting conserved integrals to invariance
of a variational principle. From this viewpoint, the general multiplier method is
shown to constitute a modern form of Noether’s theorem in which the variational
principle is not directly used. When a PDE (system) is non-variational, multipliers
are shown to be an adjoint counterpart to infinitesimal symmetries, and the local
divergence identity that relates a multiplier to a conserved integral is shown to be an
adjoint generalization of the variational identity that underlies Noether’s theorem.
Two main results are established for a general class of PDE systems having a
solved-form for leading derivatives, which encompasses all typical PDE systems
of physical interest. First, all non-trivial conserved integrals are shown to arise from
non-trivial multipliers in a one-to-one manner, taking into account certain equiva-
lence freedoms. Second, a simple scaling formula based on dimensional analysis
is derived to obtain the conserved density and the spatial flux in any conserved
integral, just using the corresponding multiplier and the given PDE (system). Also,
a general class of multipliers that captures physically important conserved integrals
such as mass, momentum, energy, angular momentum is identified. The derivations
use a few basic tools from variational calculus, for which a concrete self-contained
formulation is provided.
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1 Introduction and Overview

In the study of partial differential equations (PDEs), conserved integrals and local
continuity equations have many important uses. They yield fundamental conserved
quantities and constants of motion, which along with symmetries are an intrinsic
coordinate-free aspect of the structure of a PDE system. They also yield potentials
and nonlocally-related systems. They provide conserved norms and estimates,
which are central to the analysis of solutions. They detect if a PDE system admits
an invertible transformation into a target class of PDE systems (e.g., nonlinear to
linear, or linear variable coefficient to constant coefficient). They typically indicate
if a PDE system has integrability structure. They allow checking the accuracy
of numerical solution methods and also give rise to good discretizations (e.g.,
conserving energy or momentum).

For a dynamical PDE system in one spatial dimension, a local continuity equation
is a total divergence expression

DtT C DxX D 0 (1)

vanishing on the solution space of the system, where T is a conserved density and X
is a spatial flux. (Here Dt and Dx are total derivatives with respect to time and space
coordinates.) Every local continuity equation physically represents a conservation
law for the quantity T. The conservation law can be formulated by integrating the
local continuity equation over any spatial domain˝ � R, yielding

d

dt

Z
˝

Tdx D �X
ˇ̌̌
@˝
: (2)

This shows that the rate of change of the integral of the conserved density T on the
domain˝ is balanced by the net outward flux through the domain endpoints @˝ .

In two and three spatial dimensions, local continuity equations have the more
general total divergence form

DtT C Div X D 0: (3)

The corresponding physical conservation law is given by

d

dt

Z
˝

TdV D �
I
@˝

X � �dA (4)

where ˝ is a spatial domain and � is the outward unit normal of the domain
boundary. This conservation law shows that the net outward flux of X integrated
over @˝ balances the rate of change of the integral of the conserved density T on˝ .

Another type of conservation law in two and three spatial dimensions can be
formulated on the boundary of a spatial domain˝ ,
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d

dt

I
@˝

T � �dA D 0 (5)

holding on the solution space of a PDE system. This boundary conservation law
corresponds to a local continuity equation (3) in which the conserved density is a
total spatial divergence, T D Div T, and the flux is a total spatial curl, X D Div � ,
where � is an antisymmetric tensor. Its physical meaning is that the net flux of T
over @˝ is a constant of the motion for the PDE system.

When hydrodynamical PDE systems for fluid/gas flow are considered, a more
physically useful formulation of conservation laws is given by considering moving
spatial domains ˝.t/, or moving spatial boundaries @˝.t/, that are transported by
the flow of the fluid/gas.

For a moving domain, a physical conservation law has the form

d

dt

Z
˝.t/

TdV D �
I
@˝.t/

.X � Tu/ � �dA (6)

where u is the fluid/gas velocity, and X � Tu D X is the moving flux. The local
continuity equation (3) is then equivalent to a transport equation

.Dt C u � Dx/T D �.r � u/T � DivX (7)

for the conserved density T, with DtCu�Dx being the material (advective) derivative,
and r�u being the expansion or contraction factor of an infinitesimal moving volume
of the fluid/gas. If the net moving flux over the domain boundary @˝.t/ vanishes,
then the integral of the conserved density T on the moving domain˝.t/ is a constant
of motion.

For a moving boundary, the physical form of a conservation law is given by

d

dt

I
@˝.t/

T � �dA D 0 (8)

which shows the net flux of T integrated over @˝.t/ is a constant of motion. In
the corresponding transport equation (7), the conserved density is a total spatial
divergence, T D Div T, and the moving flux is a total spatial curl, X D Div � ,
where � is an antisymmetric tensor.

A related type of conservation law in two and three spatial dimensions arises
from the total spatial divergence of a flux vector that is not a total spatial curl,

Div X D 0; X ¤ Div � (9)

holding on the solution space of a PDE system. This yields a physical conservation
law on any spatial domain ˝ enclosed by an inner boundary @�˝ and an outer
boundary @C˝ . The conservation law shows that the net outward flux across each
boundary is the same,
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I
@�˝

X � ��dA D
I
@C˝

X � �CdA (10)

where �� is the outward unit normal of the respective boundaries.
The most well-known method [1–3] for finding conservation laws is Noether’s

theorem, which is applicable only to PDE systems that possess a variational princi-
ple. Noether’s theorem shows that the infinitesimal symmetries of the variational
principle yield conserved integrals (2), (4), (10) of the PDE system, including
conserved boundary integrals (5) when the PDE system satisfies a differential iden-
tity. In the case of PDE systems that possess a generalized Cauchy-Kovalevskaya
form [1, 4], all conserved integrals (2), (4), (10) arise from Noether’s theorem.
This direct connection between conserved integrals and symmetries is especially
useful because, typically, the symmetries of a given PDE system have a direct
physical meaning related to basic properties of the system, while, computationally,
all infinitesimal symmetries of a given PDE system can be found in a systematic
way by solving a linear system of determining equations.

Over the past few decades, a modern formulation of Noether’s theorem has been
developed in which the components of a variational symmetry are expressed as the
components of a multiplier whose summed product with a given variational PDE
system yields a total divergence that reduces on the space of solutions of the PDE
system to a local continuity equation. The main advantage of this reformulation is
that multipliers can be sought for any given PDE system, regardless of whether it
possesses a variational principle or not. In general, multipliers are simply the natural
PDE counterpart of integration factors for ordinary differential equations [2], and for
any given PDE system, a linear system of determining equations can be formulated
[1, 3] to yield all multipliers. As a consequence, local continuity equations can
be derived without any restriction required on the nature of the PDE system.
Moreover, for PDE systems that possess a generalized Cauchy-Kovalevskaya form,
all conserved integrals (2), (4), (10) arise from multipliers [1, 4]. A review of the
history of Noether’s theorem and of the multiplier method for finding conservation
laws can be found in Ref. [5].

In recent years, the multiplier method has been cast into the form of a generaliza-
tion of Noether’s theorem which is applicable to PDE systems without a variational
principle. The generalization [6–9] is based on the structure of the determining
system for multipliers, which turns out to be an augmented, adjoint version of
the determining equations for infinitesimal symmetries. In particular, multipliers
can be viewed as an adjoint generalization of variational symmetries, and most
significantly, the determining system for multipliers can be solved by the use of
the same standard procedure that is used for solving the determining equations
for symmetries [1–3]. Moreover, the physical conservation law determined by a
multiplier can be constructed directly from the multiplier and the given PDE system
by various integration methods [1, 3, 7–10].

In this modern generalization, the problem of finding all conservation laws for a
given PDE system thereby becomes a kind of adjoint of the problem of finding all
infinitesimal symmetries. As a consequence, for any PDE system, there is no need
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to use special methods or ansatzes (e.g., [11–15]) for determining its conservation
laws, just as there is no necessity to use special methods or ansatzes for finding its
symmetries.

The present work is intended to review and extend these recent developments,
with an emphasis on applications to PDE systems arising in physical models. The
most natural mathematical framework for understanding the methods and the results
is variational calculus in jet spaces [1]. This framework will be given a concrete
formulation, which is useful both for formulating general statements and for doing
calculations for specific PDE systems.

As a starting point, in Sect. 2, a wide range of examples of local conservation
laws and conserved integrals are presented, covering dynamical systems that model
convection, diffusion, wave propagation, fluid flow, gas dynamics and plasma
dynamics, as well as non-dynamical (static equilibrium) systems.

In Sect. 3, for general PDE systems, the standard formulations of local conserva-
tion laws, conserved integrals, and symmetries, as well as some other preliminaries,
are stated. Additionally, local versus global aspects of conservation laws are dis-
cussed and are related to the distinction between trivial and non-trivial conservation
laws and their physical meaning. This discussion clears up some confusion in the
existing literature.

In Sect. 4, some basic modern tools from variational calculus are reviewed using
a concrete self-contained approach. These tools are employed in Sect. 5 to derive
the determining equations for multipliers and symmetries, based on a characteristic
form for conservation laws and symmetry generators. An important technical step
in this derivation is the introduction of a coordinatization for the solution space
of PDE systems in jet space, which involves expressing a given PDE system in a
solved form for a set of leading derivatives after the system is closed by appending
all integrability conditions (if any). This coordinatization is applicable to all PDE
systems of physical interest, including systems that possess differential identities.
It is used to show that the characteristic form for trivial conservation laws is given
by trivial multipliers which vanish on the solution space of a PDE system when the
system has no differential identities. This directly leads to an explicit one-to-one
correspondence between non-trivial conservation laws and non-trivial multipliers,
taking into account the natural equivalence freedoms in conservation laws and
multipliers. An explicit generalization of this correspondence is established in the
case when a PDE system possesses a differential identity (or set of identities).
The generalization involves considering gauge multipliers [16] that arise from a
conservation law connected with the differential identity.

These new results significantly extend the explicit correspondence between non-
trivial conservation laws and non-trivial multipliers previously obtained [1, 4, 7, 8]
only by requiring PDE systems to have a generalized Cauchy-Kovalevskaya form
(which restricts a system from possessing any differential identities).

Furthermore, as another result, a large class of multipliers that captures phys-
ically important conserved integrals such as mass, momentum, energy, angular
momentum is identified for general PDE systems by examining the numerous
examples of conservation laws presented earlier.
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In Sect. 6, the variational calculus tools are used to state Noether’s theorem in a
modern form for variational PDE systems, along with the determining equations
for variational symmetries. The generalization of Noether’s theorem in modern
form to non-variational PDE systems is explained in Sect. 7. First, the determining
equations for multipliers are shown to be an augmented, adjoint counterpart of the
determining equations for symmetries. More precisely, the multiplier determining
system has a natural division into two subsystems [6–8]. One subsystem is the
adjoint of the symmetry determining system, whose solutions can be viewed
as adjoint-symmetries (also known as cosymmetries). The remaining subsystem
comprises equations that are necessary and sufficient for an adjoint-symmetry to be
a multiplier, analogously to the conditions required for an infinitesimal symmetry
to be a variational symmetry in the case of a variational PDE system. Next, the
role of a Lagrangian in constructing a conserved integral from a symmetry of a
variational principle is replaced for non-variational PDE systems by several different
constructions: an explicit integral formula, an explicit algebraic scaling formula,
and a system of determining equations, all of which use only a multiplier and
the PDE system itself. The scaling formula is based on dimensional analysis and
generalizes a formula previously derived only for PDE systems that admit a scaling
symmetry [9].

These main results cover both the case of PDE systems without differential
identities and the case of PDE systems with differential identities. It is emphasized
that this general method for explicitly deriving the conservation laws of PDE
systems reproduces the content of Noether’s theorem whenever a PDE system has
a variational principle. (For comparison, an abstract, cohomological approach to
determining conservation laws of PDE systems can be found in Ref. [17–19].)

Some concluding remarks, including discussion of the geometrical meaning of
adjoint-symmetries and multipliers, are provided in Sect. 8.

Several running examples will be used to illustrate the main ideas and the main
results in every section.

2 Examples

The following seven examples illustrate some basic conserved densities and fluxes
(2) arising in physical PDE systems in one spatial dimension.

Ex 1 transport equation

ut D .c.x; u/u/x (11)

T D u is mass density; X D �c.x; u/u is mass flux i:e:; momentum: (12)
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Ex 2 diffusion/heat conduction equation

ut D .k.x; u/ux/x (13)

T D u is heat density .temperature/; X D �k.x; u/ux is heat flux: (14)

Ex 3 telegraph equation

utt C a.t/ut � .c.x/2ux/x D 0 (15)

T D 1
2

exp.2
R

a.t/dt/.ut
2 C c.x/2ux

2/ is energy density;

X D �c.x/2 exp.2
R

a.t/dt/uxut is energy flux:
(16)

Ex 4 nonlinear dispersive wave equation

ut C f .u/ux C uxxx D 0; f .u/ ¤ const: (17)

T D u is mass density; X D R
f .u/du C uxx is mass flux i:e:; momentumI (18a)

T D u2 is elastic energy density;

X D 2
R

uf .u/du C 2uuxx � ux
2 is elastic energy fluxI

(18b)

T D R
g.u/du � 1

2
ux
2 is gradient energy density;

X D 1
2
.g.u/C uxx/

2 C uxut is gradient energy flux;

g.u/ D R
f .u/du:

(18c)

Ex 5 compressible viscous fluid equations

�t C .u�/x D 0

�.ut C uux/ D �px C �uxx

(19)

T D � is mass density; X D u� is mass fluxI (20a)

T D �u is momentum density; X D p � �ux C Tu is momentum fluxI (20b)

T D �.tu � x/ is Galilean momentum density;

X D t.p � �ux/C Tu is Galilean momentum flux:
(20c)

The next two examples are integrable PDE systems that possess an infinite
hierarchy of higher-order conservation laws.
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Ex 6 barotropic gas flow/compressible inviscid fluid equations

�t C .u�/x D 0

ut C uux D �px=�

p D p.�/ (barotropic equation of state)

e D R
p=�2d� (thermodynamic energy)

(21)

T D �. 1
2
u2 C e/ is energy density; X D .p C T/u is energy fluxI (22a)

T D �x=.u
2
x � p0�2x=�2/ is higher-derivative quantity;

X D �ux=.u
2
x � p0�2x=�2/ is higher-derivative flux:

(22b)

Ex 7 breaking wave (Camassa-Holm) equation

mt C 2uxm C umx D 0; m D u � uxx (23)

T D m is momentum density;

X D 1
2
.u2 � u2x/C um is momentum fluxI

(24a)

T D 1
2
.u2 C u2x/ is energy density; X D u.um � utx/ is energy fluxI (24b)

T D 1
2
u.u2 C u2x/; is energy-momentum density;

X D 1
2
.utx � u.um C 1

2
u/C 1

2
u2x/

2 � ut.uux C 1
2
ut/ is energy-momentum fluxI

(24c)

T D m1=2 is Hamiltonian Casimir; X D 2um1=2 is Casimir fluxI (24d)

T D m�5=2m2
x C 4m�1=2 is higher-derivative energy density;

X D �m�5=2.2mt C umx/mx � 4m�3=2uxmx � 4m�1=2u � 8m1=2

is higher-derivative flux:

(24e)

The following three examples illustrate some intrinsically multi-dimensional
conservation laws (4) that arise in physical PDE systems in two or more dimensions.

Ex 8 porous media equation

ut D r � .k.u/ru/ (25)

T D ˛.x/u is a general mass-density moment;

X D R
k.u/dur˛.x/� ˛.x/rR k.u/du is flux moment of mass-density;

�˛ D 0 .arbitrary solution of Laplace equation/:

(26)
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Ex 9 non-dispersive wave equation

utt � c2�u D f .u/ (27)

T D ut.a � x/ � ru is angular momentum density;

X D . 1
2
c2jruj2 � 1

2
u2t � R

f .u/du/.a � x/ � c2..a � x/ � ru/ru

is angular momentum flux;

a � x .arbitrary constant antisymmetric tensor a/:

(28a)

T D b � x. 1
2
u2t C 1

2
c2jruj2 � R

f .u/du/C c2tutb � ru is boost momentum density;

X D c2t. 1
2
c2jruj2 � 1

2
u2t � R

f .u/du/b � c2.b � xut C c2tb � ru/ru

is boost momentum flux;

.arbitrary constant antisymmetric vector b/:
(28b)

Ex 10 inviscid (compressible/incompressible) fluid equation

ut C u � ru D �.1=�/rp

e D R
p=�2d� .thermodynamic energy/

(29)

in three dimensions

(
T D u � .r � u/ is local helicity;

X D X � Tu D 1
2
.juj2 C .p=�/C e/ is moving helicity fluxI

(30a)

in two dimensions

8̂̂
<
ˆ̂:

T D �f ..curl u/=�/ is local enstrophy;

X D X � Tu D 0 is moving enstrophy flux;

.arbitrary function f /:

(30b)

The last four examples illustrate spatial boundary conservation laws (5) and
spatial flux conservation laws (10) for physical PDE systems in three dimensions.

Ex 11 electric (displacement) field equation inside matter

Dt D cr � H

r � D D 4��

J D 0 (no currents)

�t D 0 .static charges/

(31)
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T D D is flux density of electric field lines: (32)

Ex 12 magnetohydrodynamics (infinite conductivity) equations

ut C u � ru D .1=�/.J � B � rp/

Bt D r � .u � B/

r � B D 4�J

r � B D 0

(33)

T D X D B is flux density of magnetic field lines: (34)

Ex 13 fluid incompressibility equation

r � u D 0 (35)

X D u is flux density of streamlines: (36)

Ex 14 charge source equation (in empty space)

r � E D 0 (37)

X D E is flux density of electric field lines: (38)

3 Conserved Integrals, Conservation Laws, and Symmetries

Throughout, the following notation will be used. Let t, x D .x1; : : : ; xn/ be
independent variables, n � 1, and let u D .u1; : : : ; um/ be dependent variables,
m � 1. Partial derivatives of u with respect to t; x are denoted @u D .ut; ux1 ; : : : ; uxn/,
and kth-order partial derivatives are denoted @ku, k � 2. The coordinate space
J D .t; x; u; @u; @2u; : : :/ is called the jet space associated with the variables
t; x; u. Partial derivatives with respect to these variables are given by @=@t, @=@x D
.@=@x1; : : : ; @=@xn/t, @=@u D .@=@u1; : : : ; @=@um/t, with a superscript “t” denoting
the transpose, and similarly for partial derivatives with respect to the derivative
variables in J. Total derivatives with respect to t; x, acting by the chain rule, are
denoted D D .Dt;Dx1 ; : : : ;Dxn/. In particular, Du D @u, D@u D @2u, and so on. Dk

denotes all of the kth order total derivatives with respect to t; x. Spatial divergences
are denoted Div D Dx�, with a dot denoting the vector dot product.

Consider an Nth-order system of M � 1 PDEs

G D .G1.t; x; u; @u; : : : ; @Nu/; : : : ;GM.t; x; u; @u; : : : ; @Nu// D 0: (39)
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The space of all locally smooth solutions u.t; x/ of the system will be denoted E .
This space has an embedding as a subspace in J, since u.t; x/ 2 E determines
.t; x; u.t; x/; @u.t; x/; @2u.t; x/; : : :/ 2 J. (In the applied mathematics and physics
literature, E is commonly identified with the set of equations G D 0;DG D
0;D2G D 0; : : : in J, which assumes these equations are locally solvable [1].)

A local conservation law of a given PDE system (39) is a local continuity
equation

.DtT C Dx � X/jE D 0 (40)

which holds on the whole solution space E of the system, where T.t; x; u; @u;
: : : ; @ru/ is the conserved density and X D .X1.t; x; u; @u; : : : ; @ru/; : : : ;Xn.t; x; u;
@u; : : : ; @ru// is the spatial flux. The pair

.T;X/ D ˚ (41)

is called a conserved current.
Every conservation law (40) can be integrated over any given spatial domain

˝ � Rn to get

d

dt

Z
˝

TjE dV D �
I
@˝

XjE � �dA (42)

by the divergence theorem, where @˝ is the boundary of the domain and � denotes
the outward pointing unit normal vector. This shows that the rate of change of the
quantity

C Œu� D
Z
˝

TjE dV (43)

in the domain is balanced by the net flux escaping through the domain boundary.
The quantity (43) is called a conserved integral, and the relation (42) is called a
global conservation law or global balance equation.

Two conservation laws are locally equivalent if they give the same global balance
equation (42) up to boundary terms. This occurs iff their conserved densities differ
by a total spatial divergence Dx � � on the solution space E , and correspondingly,
their fluxes differ by a total time derivative �Dt� modulo a divergence-free vector.
A conservation law is thereby called locally trivial if

TtrivjE D Dx ��jE ; XtrivjE D �Dt�jE C Dx � � jE (44)

holds for some vector function �.t; x; u; @u; : : : ; @r�1u/ and some antisymmetric
tensor function � .t; x; u; @u; : : : ; @r�1u/. The differential order of a conservation
law is defined to be the smallest differential order among all locally equivalent
conserved currents. (It is common in the mathematics literature to define a local
conservation law itself as the equivalence class of locally equivalent conserved
currents.)
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The global form of a locally trivial conservation law is given by

d

dt

I
@˝

�jE � �dA D
I
@˝

Dt�jE � �dA (45)

since
H
@˝
.Dx � M/jE � �dA D 0 by Stokes’ theorem. This integral equation (45) is

just an identity, with no physical content, unless the spartial flux of Dt�jE vanishes.
From the divergence theorem, this integral will vanish for all domains ˝ iff Dx �
Dt�jE D 0 holds. In such cases, the boundary integral

Z
˝

TjE dV D
I
@˝

�jE � �dA (46)

will be a constant of motion for solutions of the given PDE system. This type of
boundary conservation law arises for PDE systems typically when the PDEs in the
system are related by obeying a differential identity, as will be discussed further in
Sect. 5. In all cases when both Dx ��jE and Dx � Dt�jE do not vanish identically, a
locally trivial conservation law has no physical content.

For a given PDE system (39), the set of all non-trivial conservation laws (up to
local equivalence) forms a vector space on which the symmetries of the system have
a natural action [1, 3].

An infinitesimal symmetry [1–3] of a given PDE system (39) is a generator

X D 	@=@t C @=@x C �@=@u (47)

whose prolongation leaves invariant the PDE system,

prX.G/jE D 0 (48)

which holds on the whole solution space E of the system. Here 	.t; x; u; @u; : : : ; @ru/,
 D .1.t; x; u; @u; : : : ; @ru/; : : : ; n.t; x; u; @u; : : : ; @ru//, and � D .�1.t; x; u; @u; : : : ;
@ru/; : : : ; �m.t; x; u; @u; : : : ; @ru// are called the characteristic functions in the
symmetry generator. When acting on the solution space E , an infinitesimal
symmetry generator can be formally exponentiated to produce a one-parameter
group of transformations exp.�prX/, with parameter �, where the infinitesimal
transformation is given by

u.t; x/ ! u.t; x/C���.t; x; u.t; x/; @u.t; x/; : : : ; @ru.t; x//

� ut.t; x/	.t; x; u.t; x/; @u.t; x/; : : : ; @ru.t; x//

� ux.t; x/ � .t; x; u.t; x/; @u.t; x/; : : : ; @ru.t; x//
�C O

�
�2
�

(49)

for all solutions u.t; x/ of the PDE system.
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Two infinitesimal symmetries are equivalent if they have the same action on
the solution space E of a given PDE system. An infinitesimal symmetry is
thereby called trivial if it leaves all solutions u.t; x/ unchanged. This occurs iff its
characteristic functions satisfy the relation

�jE D .ut	 C ux � /jE : (50)

The corresponding generator (47) of a trivial symmetry on the solution space E is
thus given by

Xtriv D 	@=@t C  � @=@x C .ut	 C ux � /@=@u (51)

which has the prolongation prXtriv D 	Dt C  � Dx. Conversely, any generator of this
form (51) represents a trivial symmetry. The differential order of an infinitesimal
symmetry is defined to be the smallest differential order among all equivalent
generators.

In jet space J, a group of transformations exp.�prX/ in general will not act
in a closed form on t; x; u, and derivatives @ku up to a finite order, except [1, 3]
for point transformations acting on .t; x; u/, and contact transformations acting on
.t; x; u; ut; ux/. Moreover, a contact transformation is a prolonged point transforma-
tion when the number of dependent variables is m D 1 [1, 3]. A point symmetry is
defined as a symmetry transformation group on .t; x; u/, whose generator is given
by characteristic functions of the form

X D 	.t; x; u/@=@t C .t; x; u/@=@x C �.t; x; u/@=@u (52)

corresponding to the infinitesimal point transformation

t ! t C �	.t; x; u/C O.�2/;

x ! x C �.t; x; u/C O.�2/;

u ! u C ��.t; x; u/C O.�2/:

(53)

Likewise, a contact symmetry is defined as a symmetry transformation group on
.t; x; u; ut; ux/ whose generator corresponds to an infinitesimal transformation that
preserves the contact relations ut D @tu, ux D @xu. The set of all admitted point
symmetries and contact symmetries for a given PDE system comprises its group of
Lie symmetries.

Common examples of point symmetries admitted by PDE systems arising in
physical applications are time translations, space translations, and scalings. Higher-
order symmetries are typically admitted only by integrable PDE systems. However,
it is worth emphasizing that any admitted symmetry can be used to obtain a mapping
of a given solution u D f .t; x/ of a PDE system into a one-parameter family of
solutions u D Qf .t; x; �/ D �

exp.�pr OX/u�juDf .t;x/ D �
uC� O�C 1

2
�2pr OX O�C� � � �juDf .t;x/,
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where OX D X � Xtriv D O�@=@u; and also to find symmetry-invariant solutions
u D f .t; x/ of a PDE system by considering the invariance condition . OXu/juDf .t;x/ D
O�juDf .t;x/ D 0. Thus, for these two main purposes, symmetries of any differential
order are equally useful.

Similar remarks can be made for conservation laws. In physical applications,
the most common examples of conserved densities admitted by PDE systems
are mass, momentum, and energy. These densities are always of low differential
order, whereas higher-order densities are typically admitted only by integrable PDE
systems. Nevertheless, for the many purposes outlined in Sect. 1, any admitted
conservation law of a given PDE system can be useful.

3.1 Regular PDE Systems and Computation of Symmetry
Generators, Conserved Densities and Fluxes

To determine if a current (41) is conserved for a given PDE system, and if a
generator (47) is an infinitesimal symmetry of a given PDE system, it is necessary
to coordinatize the solution space E of the system in jet space J. This can
be accomplished in a general way by the following steps. First, for any PDE
system (39), introduce an index notation for the components of x and u: xi, i D
1; : : : ; n; and u˛, ˛ D 1; : : : ;m. Next, suppose each PDE Ga D 0, a D 1; : : : ;M, in
the given system can be expressed in a solved form

Ga D @.`a/u
˛a � ga (54)

for some derivative of a single dependent variable u˛a , after a point transformation
(change of variables) if necessary, such that all other terms in the system contain
neither this derivative nor its differential consequences, namely

@.`a/u
˛a ¤ @k@.`b/u

˛b ; a; b D 1; : : : ;M; k � 1;

@ga

@.@k@.`b/u˛b/
D 0; a; b D 1; : : : ;M; k � 0: (55)

Such derivatives f@.`a/u
˛agaD1;:::;M are called a set of leading derivatives for the PDE

system. Last, suppose the given PDE system is closed in the sense that it has no
integrability conditions and all of its differential consequences produce PDEs that
have a solved form in terms of differential consequences of the leading derivatives.
Note that if a PDE system is not closed then it can always be enlarged to get a closed
system by appending any integrability conditions and differential consequences
that involve the introduction of more leading derivatives. Then, coordinates for the
solution space E of the closed PDE system in J are provided by the independent
variables t; xi, the dependent variables u˛, and all of the non-leading derivatives of
u˛. A closed PDE system (39) admitting such a solved form (54)–(55) will be called
regular.
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A more restrictive class of PDE systems is given by Cauchy-Kovalevskaya
systems and their generalizations. Recall, a PDE system (39) is of Cauchy-
Kovalevskaya form [1, 20] if the leading derivatives in the solved form of the system
consist of pure derivatives of u with respect to a single independent variable, namely
@.`a/u

˛a D @ka
z u˛a , a D 1; : : : ;M, z 2 ft; xig, and if their differential order ka is equal

to the differential order N of the system, namely ka D N, a D 1; : : : ;M. Cauchy-
Kovalevskaya systems, and their generalizations [4] in which ka differs from N,
have the feature that they do not possess any differential identities and that none of
their differential consequences possess differential identities. Such PDE systems
are usually called normal. Note that, in contrast to normal systems, the leading
derivatives in a regular PDE system can be, for instance, a mixed derivative of all the
dependent variables u˛ or a different derivative of each of the dependent variables
u˛.

Running Ex. (1) Generalized Korteweg-de Vries (gKdV) equation

ut C upux C uxxx D 0; p > 0: (56)

This is a regular PDE since it has the leading derivative ut D �upux � uxxx. It also
has a third-order leading derivative uxxx D �ut � upux. Both of these solved forms
are of generalized Cauchy-Kovalevskaya type.

Running Ex. (2) Breaking wave equation [21]

mt C buxm C umx D 0; m D u � uxx; b ¤ �1: (57)

This is a regular PDE system since it has the leading derivatives mt D �buxm�umx,
uxx D u � m. Equivalently, if m is eliminated through the second PDE, this yields a
scalar equation ut � utxx C .b C 1/uux D buxuxx C uuxxx which is a regular PDE with
respect to the leading derivative

utxx D ut C .b C 1/uux � buxuxx � uuxxx: (58)

Neither of these solved forms are of generalized Cauchy-Kovalevskaya type.
However, the alternative solved forms uxxx D ux C u�1.bux.u � uxx/ � ut C utxx/

and mx D �u�1.mt C buxm/, uxx D u � m are of generalized Cauchy-Kovalevskaya
type.

Running Ex. (3) Euler equations for constant density, inviscid fluids in two
dimensions

r � u D 0; � D const:;

ut C u � ru D �.1=�/rp;

�p D ��.ru/ � .ru/t: (59)
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In this system, the independent variables are t and .x; y/, and the dependent variables
consist of p and u D .u1; u2/, in Cartesian components. Leading derivatives are
given by writing the PDEs in the solved form

u1x D �u2y;

u1t D �.u1u1x C u2u1y C .1=�/px/
ˇ̌
u1xD�u2y

D �.u2u1y � u1u2y C C.1=�/px/;

u2t D �.u1u2x C u2u2y C .1=�/py/;

pxx D �pyy � �..u1x/
2 C .u2y/

2 C 2u1yu2x/
ˇ̌
u1xD�u2y

D �pyy � 2�..u2y/2 C u1yu2x/:

Thus, this system is a regular PDE system, but it does not have a generalized
Cauchy-Kovalevskaya form. A related feature is that the PDEs in the system obey a
differential identity

Div .ut Cu �ruC .1=�/rp/� .Dt Cu �r/.r �u/ D .1=�/�pC .ru/ � .ru/t: (60)

Note that the pressure equation is often not explicitly considered in writing down
the Euler equations. However, without including the pressure equation, the system
would not be closed, since the differential identity (60) shows that the pressure
equation arises as an integrability condition of the other equations. Correspondingly,
the pressure equation does not have a solved form in terms of the set of derivatives
fu1x; u

1
t ; u

2
t g.

Running Ex. (4) Magnetohydrodynamics equations for a compressible, infinite
conductivity plasma in three dimensions

p D P.�/; r � B D 4�J; r � B D 0;

�t C r � .�u/ D 0;

ut C u � ru D .1=�/.J � B � rp/;

Bt D r � .u � B/: (61)

The independent variables in this system are t and .x; y; z/, and the dependent
variables consist of �, u D .u1; u2; u3/ and B D .B1;B2;B3/, in Cartesian
components. This is a regular PDE system, where a set of leading derivatives is
given by writing the PDEs in the solved form

B1x D �B2y � B3z ;

�t D �.u1x C u2y C u3z /C �xu1 C �yu2 C �zu
3;

u1t D �.u1u1x C u2u1y C u3u1z C .1=�/.P0.�/�x C B2J3 � B3J2//;

u2t D �.u1u2x C u2u2y C u3u2z C .1=�/.P0.�/�y C B3J1 � B1J3//;

u3t D �.u1u3x C u2u3y C u3u3z C .1=�/.P0.�/�z C B1J2 � B2J1//;
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B1t D u1B2y � u2B1y C u1B3z � u3B1z C u1yB2 � u2yB1 C u1z B3 � u3z B1;

B2t D .u2B3z � u3B2z C u2B1x � u1B2x C u2z B3 � u3z xB2 C u2xB1 � u1xB2/
ˇ̌
B1xD�B2y�B3z

D �u2B2y � u3B2z � u1B2x C u2z B3 � u3z B2 C u2xB1 � u1xB2;

B3t D .u3B1x � u1B3x C u3B2y � u2B3y C u3xB1 � u1xB3 C u3yB2 � u2yB3/
ˇ̌
B1xD�B2y�B3z

D �u3B3z � u1B3x � u2B3y C u3xB1 � u1xB3 C u3yB2 � u2yB3;

with

4�J1 D B3y � B2z ; 4�J2 D B1z � B3x ; 4�J3 D B2x � B1y :

These PDEs lack a generalized Cauchy-Kovalevskaya form, which is related to the
feature that they obey a differential identity

Div .Bt � r � .u � B// D Dt.r � B/: (62)

As seen from the examples here and in Sect. 2, all typical PDE systems arising
in physical applications belong to the class of regular systems.

For any given regular PDE system, the standard approach [22–25] to look for
symmetries consists of solving the invariance condition prX.G/jE D 0 to find the
characteristic functions �, 	 ,  in the generator X. The computations in this approach
are reasonable for finding point symmetries, but become much more complicated for
finding contact symmetries and higher-order symmetries.

Running Ex. (1) Consider the gKdV equation (56). Since this is a scalar
PDE, its Lie symmetries are generated by point transformations and contact
transformations, with the general infinitesimal form

X D 	.t; x; u; ut; ux/@=@t C .t; x; u; ut; ux/@=@x C �.t; x; u; ut; ux/@=@u:

Substitution of this generator into the determining condition prX.ut C upux C
uxxx/jE D 0 requires prolonging X to first-order with respect to t and third-order
with respect to x:

prX D X C �.t/@=@ut C �.x/@=@ux C D2
x�
.xx/@=@uxx C D3

x�
.xxx/@=@uxxx

where

�.t/ D Dt� � utDt	 � uxDt;

�.x/ D Dx�� utDx	 � uxDx;

�.xx/ D Dx�
.x/ � utxDx	 � uxxDx;

�.xxx/ D Dx�
.xx/ � utxxDx	 � uxxxDx:
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This yields

�
ux�C Dt� � utDt	 � uxDt C uDx� � .uut C 3utxx/Dx	 � .uux C 3uxxx/Dx

� 3utxD2
x	 � 3uxxD

2
x C D3

x� � utD
3
x	 � uxD

3
x
�jE D 0:

There are two steps in solving this determining condition. First, since the condition
is formulated on the gKdV solution space E , a leading derivative of u (and all of
its differential consequences) needs to be eliminated. The most convenient choice
is uxxx D �ut � upux rather than ut D �upux � uxxx, since 	 , , � depend on ut.
Next, after the total derivatives of 	 , , � are expanded out, the resulting equation
needs to be split with respect to the jet variables utt; utx; uxx; utxx; uxxx; utxxx; uxxxx

which do not appear in 	 , , �. Finally, the split equations need to be simplified, as
some are differential consequences of others. After these lengthy computations and
simplifications, a linear system of 6 determining equations is obtained for 	 , , �:

2	ut C ut	utut C uxutut � �utut D 0;

2ux C ut	uxux C uxuxux � �uxux D 0;

	ux C ut C ut	utux C uxutux � �utux D 0;

3put�C 2u.ut	t C uxt � �t/C 3p
�
u2t .ut	ut C ux	ux/

C utux.utut C uxux/ � ut.ut�ut C ux�ux/
� D 0;

pux�C 2u.ut	x C uxx � �x/C p
�
utux.ut	ut C ux	ux/

C u2x.utut C uxux/ � ux.ut�ut C ux�ux/
� D 0;

�C u.ut	u C uxu � �u/C ut.ut	ut C ux	ux/

C ux.utut C uxux /� .ut�ut C ux�ux/ D 0:

This system can be solved, with p treated as an unknown, to get

	 D Q	.t; x; u; ut; ux/;  D Q.t; x; u; ut; ux/;

� D ut. Q	 � c1 � 3c3/C ux. Q � c2 � c3x � c4t/ � 2
p c3u C c4; c4 D 0 if p ¤ 1;

which is a linear combination of a time translation (c1), a space translation (c2),
a scaling (c3), and a Galilean boost (c4), plus a trivial symmetry involving two
arbitrary functions Q	.t; x; u; ut; ux/, Q.t; x; u; ut; ux/.

Clearly, for finding higher-order symmetries, or for dealing with PDE systems
that have a high differential order or that involve more spatial dimensions, the
previous standard approach becomes increasingly complicated, as the general
solution of the symmetry determining condition will always contain a trivial
symmetry involving arbitrary differential functions. In particular, the resulting linear
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system of determining equations for finding 	 , , � becomes less over-determined
and hence more computationally difficult to solve when going to higher orders.

The situation for finding conservation laws is quite similar. For any given regular
PDE system, it is possible to look for conservation laws by solving the local
continuity equation .DtT CDx �X/jE D 0 to find T and X. This approach is workable
when the conserved densities T and fluxes X being sought have a low differential
order and when the number of spatial dimensions is low.

Running Ex. (1) Consider again the gKdV equation (56). This is a time
evolution PDE of third order in spatial derivatives, while the conserved currents
in lowest order form for mass, energy, and L2 norm are of first order in derivatives
for the densities and of second order in derivatives for the fluxes. Substitution of
functions

T.t; x; u; ut; ux/; X.t; x; u; ut; ux; utt; utx; uxx/

into the determining condition .DtT C DxX/jE D 0 yields

�
Tt C utTu C utx.Tux C Xut /C uttTut C Xx C uxXu C uxxXux

C utxxXutx C uttxXutt C uxxxXuxx

�jE D 0:

The steps in solving this determining condition are similar to those used in solving
the symmetry determining equation. First, a leading derivative of u (and all of its
differential consequences) needs to be eliminated. The most convenient choice is
uxxx D �ut � upux rather than ut D �upux � uxxx, since T and X depend on ut. Next,
the resulting equation needs to be split with respect to the jet variables uttx; utxx,
which do not appear in T, X. This splitting immediately leads to a further splitting
with respect to utx; utt, giving a linear system of 5 PDEs for T, X:

Tut D 0; Xutt D 0; Xutx D 0; Tux C Xut D 0;

Tt C utTu C Xx C uxXu C uxxXux � .ut C upux/Xuxx D 0:

This system can be solved, treating p as an unknown, to obtain

T D c1u
2 C c2u C c3. 1

.pC1/.pC2/u
pC2 � 1

2
ux
2/C c4.xu � 1

2
tu2/

C c5.t.
1
2
u2 � 3ux

2/ � xu2/C Dx�.t; x; u/;

X D c1.
2

pC2upC2 C 2uuxx � ux
2/C c2.

1
pC1upC1 C uxx/

Cc3.
1
2
. 1

pC1upC1Cuxx/
2Cuxut/Cc4.x.

1
2
u2 C uxx/�t. 1

3
u3 C uuxx� 1

2
ux
2/� ux/

C c5.t.3.
1
3
u3 C uxx/

2 C 6utux/C x.ux
2 � 2uuxx � 1

2
u3/C 2uux/

� Dt�.t; x; u/;

c4 D 0 if p ¤ 1; c5 D 0 if p ¤ 2



138 S.C. Anco

which yields a linear combination of the densities and the fluxes representing
conserved currents for the L2-norm (c1), mass (c2), energy (c3), Galilean momentum
(c4), and Galilean energy (c5), plus a term involving an arbitrary function�.t; x; u/
which represents a locally trivial conserved current.

However, when going to higher orders or to higher spatial dimensions, it becomes
increasingly more difficult to solve the local continuity equation .DtT CDx �X/jE D
0, as the general solution will contain a trivial density term Dx �� in T and a trivial
flux term �Dt� C Dx � � in X involving a differential vector function � and a
differential antisymmetric tensor function � , which are arbitrary. In particular, the
resulting linear system of determining equations for finding T and X will be less
over-determined and hence more computationally difficult to solve, compared to
the low order case or the one dimensional case.

These difficulties motivate introducing a characteristic form (or canonical rep-
resentation) for conserved currents so that all locally equivalent conserved currents
have the same characteristic form, and likewise for symmetry generators. To derive
this formulation, some tools from variational calculus will be needed.

4 Tools in Variational Calculus

For working with symmetries and conservation laws of PDE systems, the natural
setting in which to apply variational calculus is the space of differential functions
defined by locally smooth functions of finitely many variables in jet space J D
.t; x; u; @u; @2u; : : :/.

As examples, in the nonlinear dispersive wave equation Ex. 4, if the constitutive
nonlinearity function f .u/ is smooth, then the conserved density and flux for mass
and energy are smooth functions of u; ux; uxx in J, but if f .u/ blows up when u D 0

then these functions are singular at points in J such that u D 0; in the barotropic gas
flow Ex. 6, the higher-derivative density and flux are singular functions of �; u; �x; ux

at points in J where u2x D p.�/0=�, but at all other points these functions are smooth.
The basic tools that will be needed from variational calculus are the

Fréchet derivative and adjoint derivative, the Euler operator, a homotopy
integral, a total null-divergence identity, and a scaling identity. Throughout,
f .t; x; u; @u; : : : ; @ku/ denotes a differential function of order k � 0, and
v D .v1.t; x; u; @u; @2u; : : :/; : : : ; vm.t; x; u; @u; @2u; : : ://, w.t; x; u; @u; @2u; : : :/
denote differential functions of arbitrary finite order.

The Fréchet derivative of a differential function is the linearization of the
function as defined by

ıvf D @

@�
f .t; x; u C �v; @.u C �v/; : : : ; @k.u C �v//

ˇ̌
�D0

D v
@f

@u
C Dv � @f

@.@u/
C � � � C Dkv � @f

@.@ku/

(63)
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which can be viewed as a local directional derivative in jet space, corresponding to
the action of a generator OX D v@u in characteristic form, OX.f / D ıvf . It is useful
also to view the Fréchet derivative as a linear differential operator acting on v. Then
the relation

wıvf � vı�wf D D � �.v;wI f / (64)

as obtained using integration by parts defines the Fréchet adjoint derivative

ı�wf D w
@f

@u
� D �

�
w

@f

@.@u/

�
C � � � C .�D/k �

�
w

@f

@.@ku/

�
(65)

which is a linear differential operator acting on w. The associated current
�.v;wI f / D .� t; � x/ is given by

�.v;wI f / D vw
@f

@.@u/
C .Dv/ �

�
w

@f

@.@2u/

�
� vD �

�
w

@f

@.@2u/

�
C � � �

C
kX

lD1
.Dk�lv/ �

�
.�D/l�1 �

�
w

@f

@.@ku/

��
:

(66)

An alternative notation for the Fréchet derivative and its adjoint is ıvf D f 0.v/ and
ı�wf D f 0�.w/, or sometimes ıvf D Dvf and ı�wf D D�wf .

The Fréchet derivative of a differential function f can be inverted to recover
f by using a line integral along any curve C in J, where the endpoints @C
are given by a general point .t; x; u; @u; : : : ; @ku/ 2 J and any chosen point
.t; x; u0; @u0; : : : ; @ku0/ 2 J at which f is non-singular. This yields

f
ˇ̌
@C

D
Z

C

@f

@ut
dut C @f

@.@ut/
� d@ut C � � � C @f

@.@kut/
� d@kut: (67)

If the curve C is chosen so that the contact relations hold, d@ujC D @dujC;

: : : ; d@kujC D @kdujC, then the line integral becomes a general homotopy integral

f D f
ˇ̌
uDu0

C
Z 1

0

.ıvf /
ˇ̌̌
vD@
u.
/;uDu.
/

d
; u.1/ D u; u.0/ D u0 (68)

where u.
/.t; x/ is a homotopy curve, given by a parametric family of functions. If f
is non-singular when u D 0, then the homotopy curve can be chosen simply to be a
homogeneous line, which yields a standard linear-homotopy integral [1]

f D f
ˇ̌
uD0 C

Z 1

0

.ıuf /
ˇ̌
uDu.
/

d




; u.
/ D 
u: (69)
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The Euler operator Eu is defined in terms of the Fréchet derivative through the
relation

ıvf D vEu.f /C D � $f .v/ (70)

obtained from integration by parts, which gives

Eu.f / D @f

@u
� D �

� @f

@.@u/

�
C � � � C .�D/k �

� @f

@.@ku/

�
(71)

where

$f .v/ D �.v; 1I f / D v
@f

@.@u/
C Dv � @f

@.@2u/
� vD � @f

@.@2u/
C � � �

C
kX

lD1
.Dk�lv/ �

�
.�D/l�1 � @f

@.@ku/

�
D

k�1X
lD0
.Dlv/ � E

@
lC1
u
.f /:

(72)

The Euler-Lagrange relation (70) can be combined with the general homotopy
integral (68) to obtain the following useful formula.

Lemma 4.1

f D
Z 1

0

@
u.
/Eu.f /
ˇ̌
uDu.
/

d
C D � F (73)

is an identity, where

F D
Z 1

0

$f .@
u.
//
ˇ̌
uDu.
/

d
C F0 (74)

with F0 D .Ft
0.t; x/;F

x
0.t; x// being any current such that D � F0 D f juDu0 .

A useful relation is

$f .v/ D vE.1/u .f /C D � .vE.2/u .f //C � � � C Dk�1 � .vE.k/u .f // (75)

which arises through repeated integration by parts on the expression (72), where

E.l/u .f / D @f

@.@lu/
�
 

l C 1

l

!
D �

� @f

@.@lC1u/

�
C � � �

C
 

k

l

!
.�D/k�l �

� @f

@.@ku/

�
; l D 1; : : : ; k (76)
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define the higher Euler operators. Equations (70) and (75) then provide an
alternative formula for the Fréchet derivative

ıvf D vEu.f /C D � .vE.1/u .f //C � � � C Dk � .vE.k/u .f // (77)

which leads to a similar formula for the Fréchet adjoint derivative

ı�wf D wEu.f / � .Dw/ � E.1/u .f /C � � � C .�D/kw � E.k/u .f / (78)

after integration by parts. Explicit coordinate formulas for all of the Euler operators
are stated in Ref.[1]; coordinate formulas for the Fréchet derivative and its adjoint,
as well as the associated divergence, are shown in Ref.[27].

The Euler operators (71) and (76) have the following important properties.

Lemma 4.2 (i) Eu.fg/ D ı�g f C ı�f g is a product rule. (ii) Eu.f / D 0 holds
identically iff f D D � F for some differential current function F D .Ft;Fx). (iii)
E.1/u .D � F/ D Eu.Ft;Fx/ D .Eu.Ft/;Eu.Fx// and E.lC1/u .D � F/ D .E.l/u ;E

.l/
u / ˇ

.Ft;Fx/; l � 1, are descent rules, where ˇ denotes the symmetric tensor product.

The proof of (i) is an immediate consequence of the ordinary product rule applied
to each partial derivative term in Eu.fg/. To prove the first part of (ii), if f D D � F
then ıvf D D � ıvF combined with the Euler-Lagrange relation (70) yields vEu.f / D
D �.ıvF �$f .v//. Since v is an arbitrary differential function, this implies Eu.f / D 0

(and $f .v/ D ıvF modulo a divergence-free term). Conversely, for the second part
of (ii), if Eu.f / D 0 then the general homotopy integral (73) shows f D D � F
holds, with F given by the formula (74). The proof of (iii) starts from the property
ıv.D �F/ D D �ıvF. Next, the Fréchet derivative relation (77) is applied separately to
f D D�F and f D F. This yields D�.vE.1/u .D�F// D D�.vEu.F//, D2 �.vE.2/u .D�F// D
D � .vD � E.1/u .F//, and so on. The expressions for E.1/u .D � F/, E.2/u .D � F/, and so on
are then obtained by recursively expanding out each Euler operator in components
E.1/u D E.t;x/u D .E.t/u ;E

.x/
u / and E.lC1/u D E.l;t;x/u D .E.l;t/;E.t;x/u /; l  1), followed by

symmetrizing over these components together with the components of F D .Ft;Fx/.
This completes the proof of Lemma 4.2. ut

A null-divergence is a total divergence D � ˚ D 0 vanishing identically in jet
space, where˚ D .˚ t; ˚ x/ is a differential current function. Similarly to Poincaré’s
lemma, which shows that ordinary divergence-free vectors in Rn can be expressed
as curls, null-divergences are total curls in jet space.

Lemma 4.3 If a differential current function ˚ D .˚ t.t; x; u; @u; : : : ; @ku/;
˚ x.t; x; u; @u; : : : ; @ku// has a null-divergence,

D � ˚ D Dt˚
t C Dx � ˚ x D 0 in J; (79)

then it is equal to a total curl

˚ D D � � D .Dx ��;�Dt� C Dx � � / in J (80)
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with

� D
�
0 �

�� �

�
(81)

holding for some differential vector function �.t; x; u; @u; : : : ; @k�1u/ and some
differential antisymmetric tensor function � .t; x; u; @u; : : : ; @k�1u/, both of which
can be expressed in terms of ˚ t; ˚ x.

The proof begins by taking the Fréchet derivative of the null-divergence to
get D � ıv˚ D 0. A descent argument will be used to solve this equation. Let
the terms in ıv˚ D .ıv˚

t; ıv˚
x/ containing highest derivatives @kv be denoted

.T.k/@kv;X.k/@kv/, where the coefficients T.k/ and X.k/ of each term are given by a
differential scalar function and a differential vector function in J. Then the highest
derivative terms @kC1v in the equation D �ıv˚ D 0 consist of T.k/@t@

kvCX.k/ �@x@
kv.

The coefficients of @kC1v in this expression must vanish, which can be shown to
give T.k/@kv D �.k�1/ � @x@

k�1v and X.k/@kv D ��.k�1/@t@
k�1v C �.k�1/ � @x@

k�1v,
where �.k�1/ is some differential vector function, and �.k�1/ is some differential
antisymmetric tensor function. Integration by parts on these expressions yields

T.k/@kv D Dx � .�.k�1/@k�1v/C lower order terms;

X.k/@kv D �Dt.�
.k�1/@k�1v/C Dx � .�.k�1/@k�1v/C lower order terms;

and hence

.T.k/@kv;X.k/@kv/ D D � �.k�1/.v/C lower order terms

where

�.k�1/.v/ D
�

0 �.k�1/.v/
��.k�1/.v/ � .k�1/.v/

�

with �.k�1/.v/ D �.k�1/@k�1v and � .k�1/.v/ D �.k�1/@k�1. This shows that the
highest derivative terms in ıv˚ have the form of a total curl, modulo lower order
terms. Subtraction of this curl D � �.k�1/.v/ from ıv˚ will now eliminate all terms
containing @kv, so that

ıv˚ � D � �.k/.v/ D .T.k�1/@k�1v;X.k/@k�1v/C lower order terms

where the coefficients T.k�1/ and X.k�1/ of the @k�1v terms are again a differential
scalar function and a differential vector function in J. Since total curls have a
vanishing total divergence, the highest derivative terms remaining in the null-
divergence equation 0 D D�ıv˚ are given by T.k�1/@t@

k�1vCX.k�1/ �@x@
k�1v, which

has the same form as the expression obtained at highest order. This completes the
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first step in the descent argument. Continuing to lower orders, the descent argument
will terminate at the equation T.0/@tv C X.0/ � @xv D 0, which yields T.0/ D 0 and
X.0/ D 0. As a result, the solution of the null-divergence equation D � ıv˚ D 0 is
given by ıv˚ D Pk

lD1 D � �.l�1/.v/.
The final step in the proof is simply to apply the general homotopy integral (68)

to the Fréchet derivative ıv˚ D Pk
lD1 D � �.l�1/.v/, which gives

˚ �˚ ˇ̌
uDu0

D
Z 1

0

� kX
lD1

D � �.l�1/.@
u.
//
�ˇ̌

uDu.
/
d
:

This shows ˚ D D � � is a total curl, where

� D �0 C
Z 1

0

� kX
lD1

� .l�1/.@
u.
//
�ˇ̌

uDu.
/
d


has the form (81), with D � �0 being an ordinary curl determined by Poincare’s
lemma applied to the vanishing divergence D � .˚ juDu0 / D 0. This completes the
proof of Lemma 4.3. ut

Scaling transformations are a one-parameter Lie group whose action is given by

t ! 
at; xi ! 
b.i/xi; u˛ ! 
c.˛/u˛; 
 ¤ 0 (82)

prolonged to jet space, where the constants a; b.i/; c.˛/ are the scaling weights of
t; xi; u˛. Note the generator of these transformations is Xscal D 	@t C @x C �@u

where

	 D at;  D .b.1/x
1; : : : ; b.n/x

n/; � D .c.1/u
1; : : : ; c.m/u

m/: (83)

In characteristic form, the scaling generator is OXscal D Pscal@u with Pscal D � �
ut	 � ux � . Now consider a differential function f that is homogeneous under the
action of the scaling transformation (82), such that f ! 
sf . Then the infinitesimal
action is given by OXscal.f / D ıPscal f D sf � 	Dtf �  � Dxf . A useful identity comes
from integrating this expression by parts and combining it with the Euler-Lagrange
relation (70), yielding

!f D PscalEu.f /C DtF
t C Dx � Fx; ! D s C Dt	 C Dx �  D s C a C

nX
iD1

b.i/ (84)

where

Ft D f 	 C $ t
f .Pscal/; Fx D f  C $ x

f .Pscal/ (85)
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with $f D .$ t
f ; $

x
f / given by expression (72). Note here ! is equal to the scaling

weight of the integral quantity
R t1

t0

R
˝

f dV dt, as defined on any given spatial domain
˝ � Rn and any time interval Œt0; t1� � R.

Finally, for subsequent developments, the following technical result (which is a
straightforward application of Hadamard’s lemma [28] to the setting of jet space)
will be useful.

Lemma 4.4 If a differential function f .t; x; u; @u; : : : ; @ku/ vanishes on the solution
space E of a given regular PDE system (39), then

f D Rf .G/ (86)

holds identically, where

Rf D R.0/f C R.1/f � D C � � � C R.k�N/
f � Dk�N (87)

is a linear differential operator, depending on f , with coefficients given by differ-
ential functions R.0/f , R.1/f , : : :, R.k�N/

f that are non-singular when evaluated on E .
The operator Rf jE is uniquely determined by the function f if the PDE system has no
differential identities. Otherwise, if the PDE system satisfies a differential identity

D.G/ D D1G
1 C � � � C DMGM D 0 (88)

with D1; : : : ;DM being linear differential operators whose coefficients are non-
singular differential functions when evaluated on E , then the operator Rf jE is
determined by the function f only modulo �D , where � is an arbitrary differential
function.

The proof relies heavily on the coordinatization property (54) that characterizes
a PDE system being regular. For a regular PDE system G D 0 of order N � 1,
consider its prolongation to order k � 1, prG D .G;DG; : : : ;DkG/ D 0, which has
differential order kCN. Let .�1�g1.Z/; �2�g2.Z/; : : :/ be the solved-form derivative
expressions for the PDEs in prG, where � D .�1; �2; : : :/ 2 J denotes the leading
derivatives with respect to u˛ chosen for the prolonged system, and Z D .Z1;Z2; : : :/
2 J denotes the coordinates for the prolonged solution space E � J of the system.
Note that prG D 0 represents E as a set of surfaces �1 D g1.Z/, �2 D g2.Z/ ,: : : in
J. Then we have f .�;Z/jE D f .g.Z/;Z/ D 0. We now use the standard line integral
identity

f .�;Z/ D
Z �

g.Z/
@yf .y;Z/ � dy D

Z 1

0

.� � g.Z// � @� f .s� C .1 � s/g.Z/;Z/ ds:

This shows that f .�;Z/ D F.�;Z/ � .� � g.Z//, with F.�;Z/ D R 1
0
@� f .s� C .1 �

s/g.Z/;Z/ ds being a vector function. Note F.�;Z/jE D F.g.Z/;Z/ D @� f .g.Z/;Z/
is non-singular since f is a differential function. Hence we obtain F.�;Z/ � .� �
g.Z// D Rf .G/where Rf is a linear differential operator whose coefficients F1.�;Z/,
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F2.�;Z/, : : : are non-singular when evaluated on E . Furthermore, the expression
for F.�;Z/ shows that it is canonically determined by f , unless the PDE system
satisfies a differential identity, whereby 0 D D.G/ D h.Z/ � .� � g.Z// holds
identically for some vector function h.Z/. In this case, Rf .G/ is well-defined only
modulo �D.G/ D 0, where � is any differential function. This completes the proof
of Lemma 4.4. ut

5 Characteristic Forms and Determining Equations
for Conservation Laws and Symmetries

Consider an infinitesimal symmetry (47) of a regular PDE system (39). When acting
on the solution space E of the PDE system in jet space J, the symmetry generator is
equivalent to a generator given by

OX D X � Xtriv D P@=@u; P D �� ut	 � ux �  (89)

under which u is infinitesimally transformed while t; x are invariant. This gen-
erator (89) defines the characteristic form (or canonical representation) for the
infinitesimal symmetry. The symmetry invariance (48) of the PDE system can then
be expressed by

pr OX.G/jE D 0 (90)

holding on the whole solution space E of the given system. Note that the action
of pr OX is the same as a Fréchet derivative (63), and hence an equivalent, modern
formulation [1, 3] of this invariance (90) is given by the symmetry determining
equation

.ıPG/jE D 0: (91)

This formulation of infinitesimal symmetries has several advantages compared
to the standard formulation shown in Sect. 3. Firstly, a symmetry is trivial iff its
characteristic function P vanishes on E . Also, the differential order of a symmetry
is simply given by the differential order of PjE . Secondly, the symmetry determining
equation (91) can be set up without doing any prolongations of the generator (89),
as only total differentiation is needed. Thirdly, when contact symmetries or higher-
order symmetries are sought, the generator can be formulated simply as

OX D P.t; x; u; @u; : : : ; @ru/@u (92)
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with the symmetry determining equation then being a linear PDE for the character-
istic function P. This formulation (92) eliminates arbitrary functions depending on
all of the variables t; x; u; @u; : : : ; @ru in the solution for P.

Now consider a conservation law (40) of a regular PDE system (39). The
starting point to obtain an equivalent characteristic form of the conservation law
is provided by equations (86) and (87) in Lemma 4.4. These equations show that the
conservation law can be expressed as a divergence identity

DtT C Dx � X D R˚.G/ D R.0/˚ Gt C R.1/˚ � DGt C � � � C R.rC1�N/
˚ � DrC1�NGt (93)

which is obtained by moving off solutions of the PDE system, where u.t; x/ is
an arbitrary (sufficiently smooth) function. Here r is the differential order of the
conserved current ˚ D .T;X/, and N is the differential order of the PDE system.
The next step is to integrate by parts on the righthand side in the divergence
identity (93), yielding

Dt QT C Dx � QX D GQ (94)

with

. QT; QX/ D .T;X/C R.1/˚ Gt C R.2/˚ � DGt � .D � R.2/˚ /G
t

C � � � C
r�NX
lD0

�
.�D/l � R.rC1�N/

˚

� � Dr�N�lGt
(95)

and

Qt D .Q1; : : : ;QM/ D R.0/˚ � D � R.1/˚ C � � � C .�D/rC1�N � R.rC1�N/
˚ : (96)

On the solution space E , note that . QT; QX/jE D .T;X/jE reduces to the conserved
density and the flux in the given conservation law .DtT C Dx � X/jE D 0, and hence

.Dt QT C Dx � QX/jE D 0 (97)

is a locally equivalent conservation law. The identity (94) is called the characteristic
equation for the conservation law, and the set of functions (96) is called the
multiplier. Explicit coordinate formulas for the density QT and the flux QX in terms
of T and X are shown in Ref.[27].

When a regular PDE system is expressed in a solved form (54)–(55) for a set
of leading derivatives, note that these leading derivatives (and their differential
consequences) can be eliminated from the expression for a conserved current
˚ D .T;X/ without loss of generality, since this only changes the conserved current
by the addition of a locally trivial current. Then it is straightforward to derive explicit
expressions for the coefficient functions in the operator R˚ by applying the chain
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rule to DtT and Dxi Xi with the use of subleading derivatives defined by the relations
@t@.`a=t/u˛a D @xi@.`a=xi/u

˛a D @.`a/u
˛a . This leads to an explicit Euler-Lagrange

expression

Qt D �
E@.`1=t/u˛1 .T/C

nX
iD1

E@.`1=xi/u
˛1 .Xi/; : : : ;E@.`M=t/u˛M .T/C

nX
iD1

E@.`M=xi/u
˛M .Xi/

�
(98)

for the components of the multiplier (96), where @.`a=t/u˛a and @.`a=xi/u
˛a denote the

subleading derivatives. As a result, the multiplier components (98) can contain lead-
ing derivatives @.`a/u

˛a (and their differential consequences) at most polynomially.
Also note that, as asserted by Lemma 4.4, if a regular PDE system has no

differential identities (88), then the operator R˚ jE will be canonically determined
by the expression for ˚ D .T;X/. This implies the relation

QtjE D .Q1; : : : ;QM/jE D EG.Dt QT C Dx � QX/jE
D .EG1 .DtT C Dx � X/; : : : ;EGM .DtT C Dx � X//jE

(99)

for the multiplier (96).
In general, for a given regular PDE system (39), a set of functions

Q D .Q1.t; x; u; @u; @2u; : : : @ru/; : : : ;QM.t; x; u; @u; @2u; : : : @ru//t (100)

will be a multiplier iff each function is non-singular on the PDE solution space E
and their summed product with the expressions G D .G1; : : : ;GM/ for the PDEs
has the form of a total space-time divergence.

The characteristic equation (94) establishes that, up to local equivalence, all
non-trivial conservation laws for any regular PDE system arise from multipliers.
A determining condition to find all multipliers comes from Lemma 4.2 applied to
the characteristic equation (94), yielding

0 D Eu.GQ/ D ı�QG C ı�GQ: (101)

This condition, which is required to hold identically in jet space, is necessary and
sufficient for Q to be a multiplier. For each solution Q, a corresponding conserved
current that satisfies the characteristic equation (94) can be obtained from the
expression f D GQ by using Lemma 4.1. This yields

Q̊ D
Z 1

0

$GQ.@
u.
//
ˇ̌
uDu.
/

d
 (102)

whose multiplier (96) is Q. An explicit formula for this conserved current is stated
next.
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Lemma 5.5 For a regular PDE system (39), each multiplier (100) yields a con-
served current (94) which is explicitly given by a homotopy integral

QT D
Z 1

0

� k�1X
lD0

@
@
lu.
/ �

�
E@l@tu

.GQ/
�ˇ̌̌

uDu.
/

�
d
C Dx ��; (103)

QX D
Z 1

0

� k�1X
lD0

@
@
lu.
/ � .E@l@xu .GQ//

ˇ̌
ˇ
uDu.
/

�
d
 � Dt �� C Dx � � (104)

along a homoptopy curve u.
/.t; x/, with u.1/ D u and u.0/ D u0 such that .GQ/juDu0
is non-singular. Here k D max.r;N/.

Note the conserved current formula (103)–(104) can be simplified by evaluating
it on the solution space E of the given regular PDE system. Modulo a locally trivial
current, this yields

Q̊ jE D
Z 1

0

kX
jD1

�
@
@

j�1u.
/
kX

lDj

.�D/l�j �
� @G

@.@lu/
Q
�ˇ̌ˇ

uDu.
/

�
d
 (105)

where the curve u.
/.t; x/ is now in the solution space E .

5.1 Correspondence Between Conservation Laws
and Multipliers

As shown by the following key result, multipliers provide a unique characteristic
form (or canonical representation) for locally equivalent conservation laws, in
analogy to the characteristic form (89) for symmetries, if a regular PDE system has
no differential identities. A generalization holding for regular PDE systems with
differential identities will be stated later.

Proposition 1 For any regular PDE system (39) that has no differential identities, a
conserved current is locally trivial (44) iff its corresponding multiplier (96) vanishes
when evaluated on the solution space of the system.

The proof has two parts. For the “only if part”, suppose a conserved current is
locally trivial (44). By Lemma 4.4, the conserved density and the flux will have the
respective forms T D Dx � � C OT.G/ and X D �Dt� C Dx � � C OX.G/ for some
linear differential operators OT and OX whose coefficients are differential functions
that are non-singular when evaluated on E . For this conserved current ˚ D .T;X/,
consider the divergence identity (93), where R˚.G/ D Dt OT.G/C Dx � OX.G/. As the
PDE system is assumed to have no differential identities, then the homotopy integral
formula for the operator R˚ from the proof of Lemma 4.4 shows that integration by
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parts applied to R˚.G/ yields QT D T � OT.G/, QX D X � OX.G/, in the characteristic
equation (94)–(95), and hence GQ D Dt QT C Dx � QX D 0.

It is now straightforward to determine Q from the equation GQ D 0. In the case
when G comprises a single PDE (i.e., M D 1), then Q D 0 is immediate. In the case
when G contains more than one PDE (i.e., M > 1), the equation GQ D 0 can be
solved by linear algebra as follows.

First express each PDE Ga D 0, a D 1; : : : ;M, in the solved form (54)–(55) in
terms of a leading derivative @.`a/u

˛a . Then take the Fréchet derivative of GQ D 0,
which yields

.ıvG/Q C G.ıvQ/ D 0:

To solve this Fréchet derivative equation, consider the terms involving @k@.`a/v
˛a and

let w D .@.`1/v
˛1 ; : : : ; @.`M/v

˛M / for ease of notation. It is easy to see the expression
ıvG contains only one term of this form, which is simply given by w itself, as a
consequence of the solved form of the PDEs G D .G1; : : : ;GM/. The expression
ıvQ contains a sum of terms involving derivatives of w, which will have the formPr

kD0 Q.k/@kwt, where r is the differential order of the highest derivatives of the
variables @.`a/u

˛a in Q, and where the coefficients Q.k/ are differential M �M matrix
functions in J. Hence, all of the terms involving @k@.`a/v

˛a in the Fréchet derivative
equation consist of wQ C Pr

kD0 GQ.k/@kwt D 0. Then the coefficients of each
jet variable @kw, k D 0; 1; : : : ; r, must vanish separately. This immediately yields
Q.k/ D 0 for k D 1; : : : ; r. The remaining terms are given by wQ C GQ.0/wt D 0.
This is a linear homogeneous equation in wt, after the transpose relation wQ D
.wQ/t D Qtwt is used, which gives .Qt C GQ.0//wt D 0. The vanishing of the
coefficient of wt yields Qt D �GQ.0/, and hence QjE D 0.

For the “if part”, suppose a multiplier satisfies QjE D 0. Then, Lemma 4.4 can
be applied to get Q D OQ.G/, where OQ is some linear differential operator whose
coefficients are differential functions that are non-singular when evaluated on E .
The characteristic equation (94) must now be solved to determine the corresponding
conserved density QT and flux QX. This will be done in two main steps.

For the first step, a descent argument will be given to solve the Fréchet derivative
equation

D � .ıv Q̊ / D .ıvG/Q C G.ıvQ/

for ıv Q̊ D .ıv QT; ıv QX/, similarly to the proof of Lemma 4.3. Let F.v/ D .ıvG/Q C
G.ıvQ/, with Q D OQ.G/. The terms in F.v/ containing highest derivatives of v
will be denoted F.k/@kv, where k is the larger of the differential orders of Q and G,
and where the coefficients F.k/ are differential functions in J such that F.k/jE D 0

since F.v/jE D ..@vG/ OQ.G//jE D .@vG/jE OQ.0/ D 0. Note the differential order of
ıv Q̊ then can be assumed to be k � 1. Next, let $ .v/ D .ıv QT; ıv QX/, and denote the
terms containing highest derivatives of v in $ .v/ as QT.k�1/@k�1v and QX.k�1/@k�1v,
respectively, where the coefficients QT.k�1/ and QX.k�1/ are given by a set of differential
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scalar functions and a set of differential vector functions in J. In this notation, the
Fréchet derivative equation becomes

D � $ .v/ D F.v/:

Now the highest derivative terms @kv in this equation are given by

QT.k�1/@t@
k�1v C QX.k�1/ � @x@

k�1v D F.k/@kv:

Expand out F.k/@kv D F.k�1;t/@t@
k�1v C F.k�1;x/ � @x@

k�1v, and collect the terms
@t@

k�1v and @x@
k�1v in the equation, giving

. QT.k�1/ � F.k�1;t//@t@
k�1v C . QX.k�1/ � F.k�1;x// � @x@

k�1v D 0:

The same analysis used in the proof of Lemma 4.3 then yields

. QT.k�1/@k�1v; QX.k�1/@k�1v/ D .F.k�1;t/@k�1v;F.k�1;x/@k�1v/

C D � �.k�2/.v/C lower order terms

where

�.k�2/.v/ D
�

0 �.k�2/.v/
��.k�2/.v/ � .k�2/.v/

�

with �.k�2/.v/ D �.k�2/@k�2v and � .k�2/.v/ D �.k�2/@k�2 being given by
some differential vector function �.k�2/ and some differential antisymmetric tensor
function �.k�2/. Hence the highest derivative terms in $ .v/ involving v have the
form

$ .v/ D .F.k�1;t/@k�1v;F.k�1;x/@k�1v/C D � �.k�2/.v/C Q$ .v/

where Q$ .v/ comprises all remaining terms, which contain derivatives of v up to
order @k�2v, and where D � �.k�2/.v/ is a total curl, which has a vanishing total
divergence. Substitution of this expression$ .v/ into the Fréchet derivative equation
gives

. QT.k�2/ C D � F.k�1;t//@t@
k�2v C . QX.k�2/ C D � F.k�1;x// � @x@

k�2v

D F.k�1/@k�1v C lower order terms

where QT.k�2/ and QX.k�2/ are a set of differential scalar functions and a set of
differential vector functions given by the coefficients of the terms @k�2v in Q$ .v/.
After F.k�1/@k�1v D F.k�2;t/@t@

k�2v C F.k�2;x/ � @x@
k�2v is expanded out, the terms

containing highest derivatives of v in this equation are given by
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. QT.k�2/ � F.k�2;t/ C D � F.k�1;t//@t@
k�2v

C . QX.k�2/ � F.k�2;x/ C D � F.k�1;x// � @x@
k�2v D 0

which has the same form as the equation solved previously. This completes the first
step in the descent argument.

Next, continuing to all lower orders, the descent argument yields

$ .v/ D
k�1X
lD1

D � �.l�1/.v/C
k�1X
lD0

k�1X
jDl

..�D/j�l � F.j;t/; .�D/j�l � F.j;x//@lv:

Note the terms in the first sum are a total curl, and the terms in the second sum
vanish on E since F.l/jE D 0.

The final step is to apply the general line integral (67) to the Fréchet derivative
ıv Q̊ D $ .v/ evaluated on E . Since $ .v/jE D Pk�1

lD1 D � �.l�1/.v/jE , this gives

Q̊ jE � Q̊ juD0 D
Z 1

0

k�1X
lD1

D � �.l�1/.v/
ˇ̌
ˇ
uDu.
/;vD@
u.
/

d


where u.
/.t; x/ is a homotopy curve in the solution space E of the regular PDE
system, with u.1/ D u.t; x/ being an arbitrary solution and u.0/ D u0.t; x/ being any
particular solution. Thus Q̊ jE � Q̊

0 D D � � is a total curl, where

� D
Z 1

0

k�1X
lD1

� .l�1/.v/
ˇ̌̌
uDu.
/;vD@
u.
/

d


has the form (81). Now, substitution of Q̊ jE D Q̊ juDu0 C D � � into D � Q̊ D GQ
yields 0 D .D � Q̊ � GQ/jE D D � . Q̊ juDu0 /. This immediately establishes that
Q̊ juDu0 D D � �0 is an ordinary curl, by Poincare’s lemma. Thus,

Q̊ jE D D � .� C �0/

is a locally trivial conserved current, which completes the proof of Proposition 1.
ut

The correspondence stated in Proposition 1 no longer holds when a PDE system
possesses a differential identity (88). In particular, for a given differential identity,
multiplication by an arbitrary differential function �, followed by integration by
parts, yields

0 D �D.G/ D GD�.�/C D � ˚.�;G/ (106)

where˚.�;G/ is a conserved current that vanishes on the solution space of the PDE
system,
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˚.�;G/jE D ˚.�; 0/ D 0: (107)

Hence

Q D D�.�/ (108)

is a multiplier which determines a locally trivial conserved current. This derivation
can be reversed, showing that the existence of a multiplier (108) is necessary and
sufficient for a PDE system to possess a differential identity (88).

Multipliers of the form (108), given by a linear differential operator acting
on an arbitrary differential function �, will be called gauge multipliers [16], in
analogy with gauge symmetries. Note that a gauge multiplier is non-vanishing on
the solution space E of the PDE system whenever the differential identity is non-
trivial, since D jE ¤ 0 implies QjE ¤ 0 for � ¤ 0. Two multipliers that differ by a
gauge multiplier will be called gauge equivalent.

Running Ex. (3) The Euler equations for constant density, inviscid fluids in two
dimensions comprise an evolution equation for u D .u1; u2/,

G D ut C u � ru C .1=�/rp D 0;

a spatial equation relating u to p,

Gp D .1=�/�p C .ru/ � .ru/t D 0;

and a spatial constraint equation on u,

Gdiv D r � u D 0:

This PDE system obeys a differential identity

Div G � DtG
div � Gp D 0

which has the form (88) where D D diag.Div ;�1;�Dt/ and G D .G;Gp;Gdiv/.
The corresponding gauge multiplier is given by

Q D .Q;Qp;Qdiv/t; Q D �Grad�; Qp D ��; Qdiv D Dt�

where � is an arbitrary differential scalar function. The characteristic equation yields

GQ D �.Grad�/ � G � �Gp C .Dt�/G
div D Dt.�Gdiv/C Dx � .��G/

which is a locally trivial conservation law, where T D �Gdiv is the conserved density
and X D ��G is the spatial flux. If � is chosen to be a constant, � D 1, then the
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conserved density becomes a total spatial divergence T D Dx � u which produces a
boundary conservation law

d

dt

Z
˝

TdVjE D d

dt

I
@˝

u � �dAjE D 0

on any closed spatial domain˝ 2 R2, since the flux vanishes on the solution space
of the system, XjE D 0. This boundary conservation law represents conservation of
streamlines in the fluid.

Running Ex. (4) The magnetohydrodynamics equations for a compressible,
infinite conductivity plasma in three dimensions comprise evolution equations for
�, u D .u1; u2; u3/ and B D .B1;B2;B3/,

G� D �t C r � .�u/ D 0;

Gu D ut C u � ru C .1=�/.P0.�/r� � J � B/ D 0; 4�J D r � B;

GB D Bt � r � .u � B/ D 0;

and a spatial constraint equation on B,

Gdiv D r � B D 0:

This PDE system obeys a differential identity

Div .GB/� DtG
div D 0

which has the form (88) where D D diag.0; 0;Div ;�Dt/ and G D .G�;Gu;

GB;Gdiv/. The corresponding gauge multiplier is given by

Q D .Q�;Qu;QB;Qdiv/t; Q� D 0; Qu D 0; QB D �Grad�; Qdiv D Dt�

where � is an arbitrary differential scalar function. The characteristic equation yields

GQ D �.Grad�/ � GB C .Dt�/G
div D Dt.�Gdiv/C Dx � .��GB/

which is a locally trivial conservation law, where T D �Gdiv is the conserved density
and X D ��GB is the spatial flux. If � is chosen to be a constant, � D 1, then the
conserved density becomes a total spatial divergence T D Dx � B which produces a
boundary conservation law

d

dt

Z
˝

TdVjE D d

dt

I
@˝

B � �dAjE D 0
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on any closed spatial domain˝ 2 R3, since the flux vanishes on the solution space
of the system, XjE D 0. This boundary conservation law represents conservation of
magnetic flux in the plasma.

The following natural generalization of Proposition 1 will now be established.

Proposition 2 For any regular PDE system (39) that possesses a differential
identity (88), a conserved current is locally trivial (44) iff its corresponding
multiplier (96) evaluated on the solution space of the system is equal to a gauge
multiplier (108) for some differential function �.

The same steps used in the proof for Proposition 1 go through with only two
changes. For the “if part”, suppose a multiplier satisfies QjE D D�.�/, which
implies Q D OQ.G/ C D�.�/ by Lemma 4.4, where OQ is some linear differential
operator whose coefficients are differential functions that are non-singular when
evaluated on E . Then the conservation law identity (106) combined with the
characteristic equation (94) yields

G OQ.G/ D G.Q � D�.�// D Dt. QT C ˚ t.�;G//C Dx � . QX C˚ x.�;G//:

This equation can be solved by the same steps used in proving the “if part” of
Proposition 1, thus showing that Q̊ C ˚.�;G/ is a locally trivial current. Since
˚.�;G/ itself is a locally trivial current, the conservation law given by Q̊ is therefore
locally trivial (44). For the “only if” part, suppose a conserved current is locally
trivial (44), so then, by Lemma 4.4, the conserved density and the spatial flux will
have the respective forms T D Dx � � C OT.G/ and X D �Dt� C Dx � � C OX.G/
for some linear differential operators OT and OX whose coefficients are differential
functions that are non-singular when evaluated on E . As the PDE system is assumed
to satisfy a differential identity (88), the divergence identity (93) will be unique only
up to the addition of a multiple of this differential identity, �D.G/ D 0. This implies
from the homotopy integral formula for the operator R˚ that the characteristic
equation (94)–(95) holds with QT D T � OT.G/�˚ t.�;G/, QX D X � OX.G/�˚ x.�;G/,
and GQ D GD�.�/. The equation G.Q � D�.�// D 0 can be solved by the
same steps used in proving the “only if part” of Proposition 1, thereby showing
.Q � D�.�//jE D 0, so QjE is equal to D�.�/jE . This completes the proof of
Proposition 2. ut

The characterization of locally trivial conservation laws in Proposition 1 and
Proposition 2 establishes an important general correspondence result which under-
lies the usefulness of multipliers.

For a given regular PDE system, the set of multipliers forms a vector space on
which the symmetries of the system have a natural action [27, 28]. A multiplier
is called trivial if yields a locally trivial conservation law, and two multipliers are
said to be equivalent if they differ by a trivial multiplier. When the PDE system
has no differential identities, then a multiplier Q is trivial iff it vanishes on the
solution space, QjE D 0, whereas when the PDE system possesses a differential
identity (88), a multiplier Q is trivial iff it equals a gauge multiplier (108) on the
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solution space, QjE D D�.�/. A set of multipliers is linearly independent if no
linear combination of the multipliers is trivial. Likewise, a set of conservation laws
is linearly independent if no linear combination of the conserved currents is locally
trivial.

Theorem 5.1 (i) For any regular PDE system (39), whether or not it possesses
a differential identity, there is a one-to-one correspondence between its admitted
equivalence classes of linearly-independent local conservation laws and its admit-
ted equivalence classes of linearly-independent multipliers. (ii) An explicit formula-
tion of this correspondence is given by the homotopy integral formula (103)—(104)
for conserved currents in terms of multipliers.

Infinitesimal symmetries have a well-known action on conserved currents [1, 3].
This action induces a corresponding action of infinitesimal symmetries on multi-
pliers [27, 28], and there are several equivalent formulas [6, 13, 14, 28–32] for
the conserved current obtained from the action of a given infinitesimal symmetry
applied to a given multiplier. It is worth noting that this action does not preserve
linear independence of equivalence classes. For example [28, 29], any non-trivial
conserved current that does not explicitly contain at least one of the independent
variables in a PDE system is mapped into a locally trivial current under any
translation symmetry.

5.2 Low-Order Conservation Laws

For any given regular PDE system, the correspondence between local conservation
laws and multipliers stated in Theorem 5.1 gives a straightforward way using
the following three steps to find all of the non-trivial local conservation laws
(up to equivalence) admitted by the PDE system. Step 1: solve the determining
condition (101) to obtain all multipliers. Step 2: find all linearly independent
equivalence classes of non-trivial multipliers. Step 3: apply the homotopy integral
formula (105) to a representative multiplier in each equivalence class to obtain a
corresponding conserved current.

In practice, for solving the determining condition (101), it is very useful to know
at which differential orders the non-trivial multipliers will be found. As seen in
the examples in Sect. 2, physically important conservation laws, such as energy
and momentum, always have a low differential order for the conserved density T
and the spatial flux X, whereas conservation laws having a high differential order
are typically connected with integrability. A general pattern emerges from these
conservation law examples when their multipliers are examined.

In Ex 1 and Ex 2, mass conservation for the transport equation (11) and net heat
conservation for the diffusion/heat conduction equation (13) both have Q D 1which
does not involve u or its derivatives.

In Ex 3, energy conservation for the telegraph equation (15) has Q D
exp.2

R
a.t/dt/ut, while the leading derivative in this equation is utt or uxx.
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In Ex 4, for the nonlinear dispersive wave equation (17), mass conservation, L2-
norm conservation, and energy conservation respectively have Q D 1, Q D 2u, and
Q D g.u/C uxx. The leading derivative in this equation is ut or uxxx.

In Ex 5, for the viscous fluid equations (19), mass conservation has Qt D .1; 0/,
momentum conservation has Qt D .u; 1/, and Galilean momentum conservation has
Qt D .tu; t/, while f�t; utg is a set of leading derivatives in this system.

In Ex 6, energy conservation for the barotropic gas flow/compressible inviscid
fluid equations (21), has Qt D . 1

2
u2; �u/, and again f�t; utg is a set of leading

derivatives in this system.
In Ex 7, momentum conservation, energy conservation, and energy-momentum

conservation for the breaking wave equation (23) respectively have Q D 1, Q D u,
Q D �.utx � u.um C 1

2
u/ C 1

2
u2x/, while the Hamiltonian Casimir has Q D 1

2
.u �

uxx/
1=2. The leading derivative in this equation is utxx or uxxx.

In Ex 8, mass conservation for the porous media equation (25) has Q D ˛.x/.
In Ex 9, angular momentum conservation and boost momentum conservation for

the non-dispersive wave equation (27) respectively have Q D .a � x/ � ru, Q D
b � xut C c2tb � ru, while the leading derivative in this equation is utt or �u.

In all of these examples, each variable @ku that appears in the conservation
law multiplier is related to some leading derivative of u in the PDE system by
differentiation of this variable @ku with respect to t; x.

In contrast, the conservation laws for the higher-derivative quantities (22b) in
Ex 6 and (24e) in Ex 7 have, respectively, Qt D ..2ux�x=u2x � p0�2x=.�2/2/ .u2x=.u2x �
p0�x2=�2/2/ C p0=�2.�2x=.u2x � p0�x2=�2/2/x/ and Q D 5

2
m�7=2m2

x � 2m�5=2mxx �
2m�3=2, which involve variables of higher differential order than the leading
derivatives.

An exceptional case is the conservation laws for local helicity and local enstrophy
in Ex 10. These conservation laws for the inviscid (compressible/incompressible)
fluid equation (29) have, respectively, Q D 2r � u which involves a variable with
the same differential order as the leading derivative ut, and Q D f 00..curl u/=�/r �
..r ^ u/=�/ which involves a higher-derivative variable. Note, however, if the fluid
equation is expressed as a system for the velocity u and the vorticity vector ! D
r �u in three dimensions or the vorticity scalar ! D curl u in two dimensions, then
the multipliers for helicity and enstrophy conservation are given by, respectively,
Qt D .!;u/ and Qt D .0; f 0.!=�// in which the variables are related to the leading
derivatives ut and !t by differentiation with respect to t.

This pattern motivates introducing the following general class of multipliers.
A multiplier Q for a regular PDE system (39) will be called low-order if each
jet variable @ku˛ that appears in QjE is related to some leading derivative of u˛

by differentiations with respect to t; xi. (Note that, therefore, the differential order
r of QjE must be strictly less than the differential order N of the PDE system.)
Correspondingly, a conservation law is said to be of low-order if its multiplier is
low-order when evaluated on the solution space of the PDE system.
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For a given regular PDE system, the explicit form for low-order conservation
laws can be determined from the form for low-order multipliers by inverting the
relation (96) which defines a multiplier in terms of a conserved current.

Running Ex. (1) The gKdV equation (56) is a time evolution PDE whose
leading derivative is ut or uxxx. Its low-order conservation laws .DtT C DxX/jE D 0

are given by multipliers that have the form

Q.t; x; u; ux; uxx/

since, in the jet space J D .t; x; u; ut; ux; utt; utx; uxx; : : :/, the only variables that can
be differentiated with respect to t or x to obtain a leading derivative are u; ux; uxx.
To derive the corresponding form for low-order conserved currents ˚ D .T;X/,
the first step is to expand out DtT and DxX starting from general expressions for T
and X in which a leading derivative ut or uxxx has been eliminated along with all of
its differential consequences. If ut is chosen, then the starting expressions will be
T.t; x; u; ux; uxx; : : :/ and X.t; x; u; ux; uxx; : : :/, which gives

DtT D Tt C utTu C utxTux C utxxTuxx C � � � ;
DxX D Xx C uxXu C uxxXux C uxxxXuxx C � � � :

The second step is to obtain the operator R˚ from the terms in the divergence
expression DtT C DxX containing ut (and its differential consequences). This yields

DtT CDxX D .Tu CTux Dx CTuxx D2
x C� � � /ut CTt CXx CuxXuCuxxXux CuxxxXuxx C� � �

and hence

R˚ D Tu C Tux Dx C Tuxx D2
x C � � �

since ut D G � upux � uxxx is the solved form for the PDE expression. Then the
main steps are, first, to equate Q with the expression EG.R˚.G// and, next, to use
the resulting equation together with the characteristic equation Dt QT C Dx QX D GQ
to determine the dependence of T and X on all jet variables that do not appear in Q.
This gives, first,

R˚.G/ D TuG C Tux DxG C Tuxx D2
xG C � � � D ıGT D GEu.T/C Dx$

x.G/

by using the Euler-Lagrange relation (70), which yields the equation

Q.t; x; u; ux; uxx/ D EG.R˚.G// D EG.ıGT/ D Eu.T/:

Comparison of the differential order of both sides of this equation directly deter-
mines
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T D QT.t; x; u; ux/C Dx�.t; x; u; ux; : : :/:

This implies $ x.G/ D QTux G. Next, the characteristic equation then yields

GQ D DtT C Dx.X � G QTux/ D Dt QT C Dx QX

which gives

Dx.X C Dt�/ D Dx. QX C G QTux/ D � QTt C .upux C uxxx/ QTu C .upux C uxxx/x QTux :

Comparison of both sides of this equation now determines

X D QX.t; x; u; ut; ux; uxx/� Dt�.t; x; u; ux; : : :/ � G QTux.t; x; u; ux/:

The same result can be shown to hold if uxxx is chosen as the leading derivative
instead of ut. Hence, all low-order conserved currents have the general form

˚ jE D . QT.t; x; u; ux/; QX.t; x; u; ut; ux; uxx//

modulo locally trivial conserved currents.

Running Ex. (2) The breaking wave equation (58) is a regular PDE whose
leading derivative is utxx or uxxx. All low-order conservation laws of this PDE are
given by multipliers that have the second-order form

Q.t; x; u; ut; ux; utx; uxx/ (109)

where utt is excluded because it cannot be differentiated to obtain a leading
derivative utxx or uxxx. The corresponding form for low-order conserved currents
˚ D .T;X/ is derived by starting from general expressions for T and X in which
a leading derivative utxx or uxxx has been eliminated along with all of its differential
consequences. It is simplest to use the pure derivative uxxx, which implies T and X
are functions only of t, x, u, ux, uxx, and their t-derivatives. Then the terms in the
divergence expression DtT C DxX containing the leading derivative uxxx (and its
differential consequences) are given by

DtT C DxX D .Xuxx C XutxxDt C XuttxxDt
2 C � � � /uxxx

C Tt C Xx C utTu C uxXu C uttTut C utx.Tux C Xut /C uxxXux

C utttTutt C uttx.Tutx C Xutt /C utxx.Tuxx C Xutx/C � � � :

This expression yields the operator

R˚ D .Xuxx C XutxxDt C XuttxxDt
2 C � � � /u�1
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since uxxx D �u�1.G C bux.uxx � u/� utxx C ut/C ux is the solved form for the PDE
expression. Now, the main steps consist of first, equating Q with the expression
EG.R˚.G// and, next, using the characteristic equation Dt QT C Dx QX D GQ to
determine the dependence of T and X on all jet variables that do not appear in Q.
The first step gives

R˚.G/ D .Xuxx CXutxx Dt CXuttxxDt
2C� � � /.�u�1G/ D �u�1GEuxx.X/�Dt$

t.u�1G/

after using the relation (70), which yields the equation

Q.t; x; u; ut; ux; utx; uxx/ D EG.R˚.G// D EG.�u�1GEuxx.X// D �u�1Euxx.X/:

Comparison of the differential order of both sides of this equation directly deter-
mines

X D QX.t; x; u; ut; ux; utx; uxx/� Dt�.t; x; u; ut; ux; utt; utx; uxx; : : :/

which implies $ t.u�1G/ D 0. Then, for the next step, the characteristic equation
yields

GQ D DtT C DxX D Dt QT C Dx QX

giving

Dt.T � Dx�/ D Dt QT D � QXx � ux QXu � utx QXut � uxx QXux � utxx QXutx :

Comparison of both sides of this equation now determines

T D QT.t; x; u; ux; uxx/C Dx�.t; x; u; ut; ux; utt; utx; uxx; : : :/:

Hence, all low-order conserved currents have the general form

˚ jE D . QT.t; x; u; ux; uxx/; QX.t; x; u; ut; ux; utx; uxx//

modulo locally trivial conserved currents.

6 Variational Symmetries and Noether’s Theorem
in Modern Form

A PDE system (39) is globally variational if it is given by the critical points of
a variational principle defined on some spatial domain ˝ � Rn and some time
interval Œt0; t1� � R. In typical applications, this will involve specifying a function
space for u.t; x/ with x 2 ˝ and also posing boundary conditions on u.t; x/ for
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x 2 @˝ . Noether’s theorem is usually formulated in this context, where it shows
that every transformation group leaving invariant the variational principle yields a
corresponding conserved integral (42) for solutions of the PDE system with u.t; x/
belonging to the specified function space.

However, for the purpose of obtaining local conservation laws (40), a global
variational principle is not necessary, and a PDE system instead needs to have just
a local variational principle.

A PDE system (39) is locally variational if it is given by the Euler-Lagrange
equations

0 D G D Eu.L/
t (110)

for some differential function L.t; x; u; @u; : : : ; @ku/, called a Lagrangian. Note that,
as shown by Lemma 4.2, a Lagrangian is unique up to addition of an arbitrary total
divergence. In particular, L and QL D L C Dt�

t C Dx � � x have the same Euler-
Lagrange equations, for any differential scalar function � t and differential vector
function � x.

There is a well-known condition for a given PDE system to be locally variational
[1, 3].

Lemma 6.6 G D Eu.L/t holds for some Lagrangian L.t; x; u; @u; : : : ; @ku/ iff

ıvG
t D ı�vGt (111)

holds for all differential functions v.t; x/.

The “only if” part of the proof has two steps. First, ıvEu.L/ D Eu.ıvL/ can be
directly verified to hold, due to v having no dependence on u and derivatives of u.
Next, the Euler-Lagrange relation (70) combined with Lemma 4.2 yields Eu.ıvL/ D
Eu.vEu.L// D ı�vEu.L/, after again using the fact that v has no dependence on u and
derivatives of u. Hence, ıvEu.L/ D ı�vEu.L/, which completes this part of the proof.

The “if” part of the proof proceeds by first inverting the relation Gt D Eu.L/
through applying Lemma 4.1 to f D L. This yields L D QL C D � F, with
QL D R 1

0
@
u.
/Gt

ˇ̌
uDu.
/

d
. Then the remaining steps consist of showing that

Eu.L/ D Eu. QL/ D Gt holds for this Lagrangian when ıvGt D ı�vGt. First, the
Fréchet derivative of QL gives ıv QL D R 1

0

�
@
v.
/Gt

ˇ̌
uDu.
/

C @
u.
/ıv.
/G
t
ˇ̌
uDu.
/

�
d


where v.
/ D ıvu.
/. Next, substitute ıv.
/G
t D ı�v.
/G

t and use the Fréchet derivative
relation (64), which yields

ıv QL D
Z 1

0

�
@
v.
/G

t
ˇ̌
uDu.
/

C v.
/@
Gt
ˇ̌
uDu.
/

� D � �.@
u.
/; v.
/I Gt/
ˇ̌
uDu.
/

�
d


D vGt � v0Gt
ˇ̌
uDu0

� D �
Z 1

0

�.@
u.
/; v.
/I Gt/
ˇ̌
uDu.
/

d
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where � is given by expression (66). Finally, apply Ev to ıv QL to get Ev.ıv QL/ D Gt,
and use the identity Ev.ıv QL/ D Ev.vEu. QL// D Eu. QL/ which follows from the Euler-
Lagrange relation (70). This yields Eu. QL/ D Gt, which completes the proof. ut

The condition (111) for a PDE system G D 0 to be locally variational states
that the linearization of Gt must be self-adjoint. From the relations (63) and (78), or
equivalently (65) and (77), this condition splits with respect to v; @v; : : : ; @kv into a
linear overdetermined system of equations on G:

@G

@.@ku/
D .�1/k�E.k/u .G/

�t
; k D 0; 1; : : : ;N (112)

where N is the differential order of the PDE system G D 0. These equations
are called the Helmholtz conditions. Note the appearance of the transpose implies
that the Helmholtz conditions cannot hold if u and G have a different number of
components. Also, the expression (76) for the higher Euler operators E.k/u shows
that the Helmholtz condition for k D N reduces to the equation

.1 � .�1/N/
� @G

@.@Nu/
C
� @G

@.@Nu/

�t� D 0 (113)

which cannot hold if N is odd. Consequently, a necessary condition for a PDE
system to be locally variational is that its differential order N must be even and
the number M of PDEs must be the same as the number m of dependent variables.

When a PDE system satisfies the Helmholtz conditions (112), a Lagrangian L for
the system can be recovered from the expressions G D .G1; : : : ;GM/ by the general
homotopy integral formula

L D
Z 1

0

@
u.
/G
t
ˇ̌
uDu.
/

d
 (114)

(as shown in the proof of Lemma 6.6). A total divergence can be added to
this Lagrangian to obtain an equivalent Lagrangian that has the lowest possible
differential order, which is N=2.

Running Ex. (1) The gKdV equation (56) is an odd-order PDE. Hence, it cannot
be locally variational as it stands. To verify there is no local variational principle,
note G D Gt D ut C upux C uxxx gives

ıvG
t D vt C upvx C pup�1uxv C vxxx; ı�vGt D �vt � upvx � vxxx

and hence ıvGt � ı�vGt D 2vt C 2upvx C pup�1uxv C 2vxxx ¤ 0 whereby Gt fails
to have a self-adjoint linearization. Equivalently, the Helmholtz conditions are not
satisfied:
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.k D 0/
@G

@u
D �up�1ux ¤ Eu.G/ D 0;

.k D 1/
@G

@ut
D 1 ¤ �E.t/u .G/ D �1; @G

@ux
D up ¤ �E.x/u .G/ D �up;

.k D 2/
@G

@uxx
D 0 D E.x;x/u .G/ D �Dx.1/;

.k D 3/
@G

@uxxx
D 1 ¤ �E.x;x;x/u .G/ D �1:

However, if a potential variable w is introduced by putting u D wx, then the PDE
becomes wtx C wp

xwxx C wxxxx D 0 which has even order. Repetition of the previous
steps, with G D Gt D wtx C wp

xwxx C wxxxx, now gives

ıvG
t D vtx C wp

xvxx C pwp�1
x wxxvx C vxxxx D ı�vGt

and

.k D 0/
@G

@w
D 0 D Ew.G/;

.k D 1/
@G

@wt
D 0 D �E.t/w .G/ D �Dx.1/;

@G

@wx
D pwp�1

x wxx D �E.x/w .G/

D �pwp�1
x wxx C 2Dx.w

p
x/C Dt.1/C D3

x.1/;

.k D 2/
@G

@wtx
D 1 D E.t;x/w .G/;

.k D 3/
@G

@wxxx
D 0 D �E.x;x;;x/w .G/ D Dx.1/;

.k D 4/
@G

@wxxxx
D 1 D E.x;x;x;x/w .G/:

Hence, the potential gKdV equation is locally variational. A Lagrangian is given by
the homotopy integral

L D
Z 1

0

w.
wtx C 
pC1wp
xwxx C 
wxxxx/ d
 D 1

2
wwtx C 1

pC2wwp
xwxx C 1

2
wwxxxx

using w.
/ D 
w. The addition of a total divergence Dt�
t C Dx�

x given by

� t D � 1
2
wwx; � x D � 1

2
.wwxxx � wxwxx/� 1

.pC1/.pC2/wwpC1
x
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yields an equivalent Lagrangian that has minimal differential order,

QL D � 1
2
wxwt � 1

.pC1/.pC2/w
pC2
x C 1

2
w2xx:

For a locally variational PDE system, a global variational principle on a spatial
domain˝ and a time interval Œt0; t1� can be defined in terms of a Lagrangian by

SŒu� D
Z t1

t0

Z
˝

.L.t; x; u; @u; : : : ; @ku/C Dx ��.t; x; u; @u; : : :// dV dt (115)

where the spatial divergence term is chosen to let spatial boundary conditions be
posed on u.t; x/ for x 2 @˝ . The critical points of the variational principle (115) are
given by the vanishing of the variational derivative of SŒu�,

0 D S0Œu� D @

@�
SŒu C �v�

ˇ̌
�D0

D
Z t1

t0

Z
˝

vEu.L/ dV dt C
Z t1

t0

I
@˝

.ıv� C $L.v// � � dA

(116)

where v.t; x/ is an arbitrary differential function that satisfies the same spatial
boundary conditions as u.t; x/. Here � denotes the outward unit normal vector on
@˝ , and $L is given by the Euler-Lagrange relation (70). Provided � is chosen
so that the boundary integral vanishes, then S0Œu� D 0 yields the PDE system
G D Eu.L/t D 0 on the spatial domain˝ .

6.1 Variational Symmetries

A variational symmetry [1, 2] of a given variational principle (115) is a gen-
erator (47) whose prolongation leaves invariant the variational principle. This
invariance condition has both a global aspect, which involves the spatial domain
and the spatial boundary conditions, and a local aspect, which involves only the
Lagrangian.

For a local variational principle (110), a variational (divergence) symmetry [1, 2]
is a generator (47) whose prolongation satisfies the invariance condition

prX.L/ D 	DtL C  � DxL C Dt�
t C Dx � � x (117)

for some for differential scalar function � t and differential vector function � x. This
condition can be expressed alternatively as

prX.L/ D Dt Q� t C Dx � Q� x � .Dt	 C Dx � /L (118)
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with Q� t D � t C L	 and Q� x D � x C L, where Dt	 C Dx �  represents the
infinitesimal conformal change in the space-time volume element dVdt under the
symmetry generator X.

A simpler formulation of a variational symmetry is given by using the character-
istic form (89) for the symmetry generator. Then an infinitesimal symmetry (89) is
a variational symmetry iff its prolongation leaves invariant the Lagrangian modulo
total a divergence,

pr OX.L/ D Dt�
t
P C Dx � � x

P (119)

for some for differential scalar function � t
P and differential vector function � x

P
depending on the characteristic function P of the symmetry. Note that, since any
total divergence is annihilated by the Euler operator Eu, a variational symmetry
preserves the critical points of the Lagrangian L. As a consequence, every variational
symmetry is an infinitesimal symmetry of the PDE system G D Eu.L/ D 0. The
converse is not true in general, since (for example) scaling symmetries of Euler-
Lagrange equations need not always preserve the Lagrangian.

There is an equivalent, modern formulation of the variational symmetry condi-
tion (119) which uses only the Euler-Lagrange equations and not the Lagrangian
itself.

Proposition 3 For any locally variational PDE system (110), an infinitesimal
symmetry in characteristic form OX D P.t; x; u; @u; : : : ; @ru/@u is a variational
symmetry iff

ıPGt D �ı�GPt (120)

holds identically.

To prove this result, first note that Eu.pr OX.L// vanishes identically iff pr OX.L/ is
a total divergence, by Lemma 4.2. Next, Eu.pr OX.L// D Eu.ıPL/ D Eu.PEu.L// D
ı�PGt C ı�Gt P directly follows from the Euler-Lagrange relation (70) combined with
the product rule shown in Lemma 4.2 for the Euler operator. Finally, ı�P Gt D ıPGt

holds by Lemma 6.6, and ı�Gt P D ı�GPt holds as an identity. Hence Eu.pr OX.L// D
ıPGt C ı�GPt is an identity. This completes the proof. ut

An importance consequence of equation (120) is that it provides a determining
condition to find all variational symmetries for a given locally variational PDE
system, without the explicit use of a Lagrangian. In particular, this formulation
avoids the need to consider the “gauge terms” Dt�

t C Dx � � x which arise in the
Lagrangian formulation (119).

Running Ex. (1) The Lie symmetries of the gKdV equation (56) consist of
a time translation OX D �ut@u, a space translation OX D �ux@u, a scaling OX D
�. 2p u C 3tut C xux/@u, and a Galilean boost OX D .1 � tux/@u if p ¤ 1. These
symmetries project to corresponding Lie symmetries of the potential gKdV equation
wtx C wp

xwxx C wxxxx D 0 through the relation u D wx. This yields the generator
OX D P@w with
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P D Pt D .1 � 2
p /c3w C c4 � .c1 C 3c3t/wt � .c2 C c3x C c4t/wx: (121)

The variational Lie symmetries can be easily found by checking the condition (120).
Using G D Gt D wtx C wp

xwxx C wxxxx, a simple computation yields

ıPGt D DtDxP C pwp�1
x wxxDxP C wp

xD2
xP C D4

xP

D �.c1 C 3c3t/DtG � .c2 C c3x C c4t/DxG � .3C 2
p /c3G (122)

and also

ı�GPt D G
@P

@w
� Dt

�
G
@P

@wt

�
� Dx

�
G
@P

@wx

�

D .5 � 2
p /c3G C .c1 C 3c3t/DtG C .c2 C c3x C c4t/DxG: (123)

Hence, 0 D ıPGt Cı�GPt D .2� 4
p /c3G determines .p�2/c3 D 0. This shows that all

of the Lie symmetries except the scaling symmetry are variational symmetries for
an arbitrary nonlinearity power p ¤ 0, and that the scaling symmetry is a variational
symmetry only for the special power p D 2.

6.2 Noether’s Theorem in Modern Form

Variational symmetries have a direct relationship to local conservation laws through
the variational identity

pr OX.L/ D Dt�
t
P C Dx � � x

P

D ıPL D PEu.L/C D � $L.P/ (124)

holding due to the Euler-Lagrange relation (70). The identity (124) yields

PEu.L/ D D � ˚; ˚ D .� t
P � $ t

L.P/; �
x
P � $ x

L .P// (125)

which is a conservation law in characteristic form for the PDE system given by
Eu.L/ D 0. When combined with the formula (105) for conserved currents, this
provides a modern, local form of Noether’s theorem, which does not explicitly use
the Lagrangian.

Theorem 6.2 For any locally variational PDE system G D Eu.L/t D 0, varia-
tional symmetries OX D P@u and local conservation laws in characteristic form
Dt QT C Dx � QX D GQ have a one-to-one correspondence given by the relation

P D Qt: (126)
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Equivalently, this correspondence is given by the homotopy integral

Q̊ D . QT; QX/ D
Z 1

0

kX
jD1

0
@@
@j�1u.
/

0
@ kX

lDj

.�D/l�j �
�
@.PGt/

@.@lu/

� ˇ̌̌
uDu.
/

1
A
1
A d


(127)
modulo a total curl, along a homotopy curve u.
/.t; x/, with u.1/ D u and u.0/ D u0
such that .GQ/juDu0 is non-singular. Here k D max.r;N/.

The Noether correspondence stated in Theorem 6.2 has a sharper formulation
using the additional correspondence between multipliers and local conservation
laws provided by Theorem 5.1. This formulation depends on whether a given
variational PDE system possesses differential identities or not.

In particular, when a PDE system satisfies a differential identity (88), there will
exist gauge symmetries

OX D .D�.�//t@u (128)

corresponding to gauge multipliers (108), where D is the linear differential operator
defining the given differential identity (88), and � is an arbitrary differential
function. Two symmetries that differ by a gauge symmetry will be called gauge
equivalent.

Recall, for any regular PDE system, a symmetry is trivial iff its characteristic
function vanishes on the solution space of the PDE system, and two symmetries are
equivalent iff they differ by a trivial symmetry.

Corollary 1 (i) If a locally variational, regular PDE system (110) has no differ-
ential identities, then there is a one-to-one correspondence between its admitted
equivalence classes of linearly-independent local conservation laws and its admit-
ted equivalence classes of linearly-independent variational symmetries. (ii) If a
locally variational, regular PDE system (110) satisfies a differential identity, then
its admitted equivalence classes of linearly-independent local conservation laws
are in one-to-one correspondence with its admitted equivalence classes of linearly-
independent variational symmetries modulo gauge symmetries.

6.3 Computation of Variational Symmetries and Noether
Conservation Laws

Whenever a locally variational PDE system (110) is regular, the determining
condition (120) for finding variational symmetries OX D P.t; x; u; @u; : : : ; @ru/@u

can be converted into a linear system of equations for P.t; x; u; @u; : : : ; @ru/ by the
following steps.
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On the solution space E of the PDE system, the Fréchet derivative adjoint
operator ı�GjE vanishes. Thus, the determining condition (120) implies .ıPGt/jE D 0

which coincides with the determining equation (91) for an infinitesimal symmetry of
the PDE system. This shows that P is the characteristic function of an infinitesimal
symmetry. From Lemma 4.4, it then follows that P satisfies the relation

ıPGt D RP.G
t/ (129)

for some linear differential operator

RP D R.0/P C R.1/P � D C R.2/P � D2 C � � � C R.r/P � Dr (130)

whose coefficients are non-singular on E , as the PDE system is assumed to be
regular, where r is the differential order of P. Note that if the PDE system satisfies
a differential identity (88) then RP is determined by P only up to �D t where � is
an arbitrary differential function and D is the linear differential operator defining
the identity. Substitution of the relation (129) into the determining condition (120)
yields

0 D RP.G
t/C ı�GPt: (131)

Note that ı�GPt can be expressed in an operator form

ı�GPt D Eu.P/G
t � E.1/u .P/ � .DGt/C � � � C E.r/u .P/ � .�D/rGt (132)

using the relation (78). Consequently, when the PDEs G D .G1; : : : ;GM/ are
expressed in a solved form (54)–(55) for a set of leading derivatives, equation (131)
can be split with respect to these leading derivatives and their differential conse-
quences. This yields a linear system of equations

0 D R.k/P C .�1/kE.k/u .P/; k D 0; 1; : : : ; r: (133)

Note that these equations are similar in structure to the Helmholtz conditions (112).

Hence, the following result has been established.

Theorem 6.3 The determining equation (120) for variational symmetries OX D
P.t; x; u; @u; : : : ; @ru/@u of any locally variational, regular PDE system (110) is
equivalent to a linear system of equations consisting of the determining condi-
tion (91) for OX to be an infinitesimal symmetry of the PDE system, and Helmholtz-
type conditions (133) for OX to leave any Lagrangian of the PDE system invariant
modulo a total divergence. This linear determining system (91), (133) is formulated
entirely in terms of the symmetry characteristic function P and the PDE expressions
G D .G1; : : : ;GM/, without explicit use of a Lagrangian.
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It is important to emphasize that the determining system (91), (133) can be solved
computationally by the same standard procedure [1–3] that is used to solve the
standard determining equation (90) for symmetries.

7 Main Results

For any regular PDE system (39), whether or not it has a variational principle, all
local conservation laws have a characteristic form given by multipliers, as shown
by the general correspondence stated in Theorem 5.1. In the case of regular PDE
systems that are locally variational, the modern form of Noether’s theorem given
by Theorem 6.2 shows that multipliers for local conservation laws are the same
as characteristic functions for variational symmetries. These symmetries satisfy a
determining equation (120) which can be split into an equivalent determining system
for the symmetry characteristic functions, without explicit use of a Lagrangian, as
shown in Theorem 6.3. A similar determining system can be derived for multipliers,
by splitting the multiplier determining equation (101) in the same way.

On the solution space E of a given regular PDE system (39), the Fréchet deriva-
tive adjoint operator ı�GjE vanishes. Thus, the multiplier determining equation (101)
implies

.ı�QG/jE D 0 (134)

which is the adjoint of the symmetry determining equation (91), and its solutions
Q.t; x; u; @u; : : : ; @ru/ are called adjoint-symmetries [6–8] (or sometimes cosymme-
tries). Then Q satisfies the identity

ı�QG D ı�Qt Gt D RQt.Gt/ (135)

from Lemma 4.4, where

RQt D R.0/Qt C R.1/Qt � D C R.2/Qt � D2 C � � � C R.r/Qt � Dr (136)

is some linear differential operator whose coefficients are non-singular on E , and
r is the differential order of Q. Note that if the PDE system satisfies a differential
identity (88) then RQt is determined by Q only up to �D t where � is an arbitrary
differential function and D is the linear differential operator defining the identity.
The determining equation (101) now becomes

0 D RQt.Gt/C ı�GQ: (137)

From the relation (78), note that ı�GQ can be expressed in an operator form
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ı�GQ D Eu.Q
t/Gt � E.1/u .Qt/ � .DGt/C � � � C E.r/u .Q

t/ � .�D/rGt: (138)

Consequently, when the PDEs G D .G1; : : : ;GM/ are expressed in a solved form
(54)–(55) in terms of a set of leading derivatives, equation (137) can be split with
respect to these leading derivatives and their differential consequences. This yields
a linear system of equations

0 D R.k/Qt C .�1/kE.k/u .Q
t/; k D 0; 1; : : : ; r (139)

which is similar in form to the Helmholtz conditions (112).
Thus, the following result has been established.

Theorem 7.4 The determining equation (101) for conservation law multipliers
of any regular PDE system (39) is equivalent to the linear system of equa-
tions (134), (139). In particular, multipliers are adjoint-symmetries (134) satis-
fying Helmholtz-type conditions (139), where these conditions are necessary and
sufficient for an adjoint-symmetry Q.t; x; u; @u; : : : ; @ru/ to have the variational
form (98) derived from a conserved current ˚ D .T;Xi/.

A comparison of the determining systems formulated in Theorem 7.4 and
Theorem 6.3 shows how the correspondence between the local conservation laws
and the multipliers for regular PDE systems is related to the Noether correspondence
between the local conservation laws and the variational symmetries for locally
variational, regular PDE systems.

Corollary 2 When a regular PDE system is locally variational (110), the adjoint-
symmetry determining equation (134) is the same as the symmetry determining
equation (91), and the Helmholtz-type conditions (139) under which an adjoint-
symmetry is a multiplier are equivalent to the variational conditions (133) under
which a symmetry is a variational symmetry.

Thus, Theorems 5.1 and 7.4 provide a direct generalization of the modern
form of Noether’s theorem given by Theorems 6.2 and 6.3, in which the role of
symmetries in the derivation of local conservation laws for variational PDE systems
is replaced by adjoint-symmetries in the derivation of local conservation laws for
non-variational PDE systems.

7.1 Computation of Multipliers and Conserved Currents

For any given regular PDE system, all of its non-trivial local conservation laws (up
to equivalence) can be obtained by the following three steps.

Step 1: Solve the determining system (134), (139) to obtain all multipliers.
Step 2: Find all linearly independent equivalence classes of non-trivial multipliers.
Step 3: Construct the conserved current determined by a representative multiplier

in each equivalence class.
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The multiplier determining system (134), (139) can be solved computationally
by the same standard procedure [1–3] that is used to solve the determining
equation (91) for symmetries. Moreover, for multipliers of a given differential
order r, the multiplier determining system is, in general, more overdetermined than
is the symmetry determining equation for infinitesimal symmetries of the same
differential order r. Consequently, the computation of multipliers is typically easier
than the computation of symmetries.

As an alternative to solving the whole multiplier determining system together,
only the adjoint-symmetry determining equation can be solved first, and the
Helmholtz-type conditions (139) then can be checked for each adjoint-symmetry
to obtain all multipliers.

In practice, it can be computationally hard to obtain the complete solution to
the multiplier determining system (or the adjoint-symmetry determining equation)
because this will involve going to an arbitrarily high differential order for the
dependence of the multiplier (or the adjoint-symmetry) on the derivatives of the
dependent variables in the PDE system. Moreover, for computations using computer
algebra, this differential order must be specified in advance. The same issue arises
when symmetries are being sought, but often these obstacles are set aside by looking
for just Lie symmetries, or higher symmetries of a special form.

A similar approach can be used for multipliers, by looking just for all low-order
conservation laws or by looking just for higher order conservation laws with a
special form or with a particular differential order. In physical applications, there
is often a specific class of conserved densities that is of interest. The form for
multipliers corresponding to a given class of conserved densities can be derived
directly by balancing derivatives on both sides of the characteristic equation, as
shown in the running examples in Sect. 5.2.

For each non-trivial multiplier, the construction of a corresponding non-trivial
conserved current can be carried out by several different methods.

First, the homotopy integral formula (103)–(104) can be applied. An advantage
of this formula compared to the standard linear-homotopy formula in the literature
[1, 7, 8] is that the homotopy curve can be adapted to the structure of the expressions
for the multiplier Q and the PDE system G, which allows avoiding integration
singularities.

Second, the characteristic equation (94) can be converted into a linear system of
determining equations for the conserved density QT and the flux QX. The determining
equations are derived in a straightforward way starting from the expression for the
multiplier Q, similarly to the derivation of the form for low-order conservation laws
explained in Sect. 5.2. This method is computationally advantageous as it can be
implemented in the same way as setting up and solving the determining system for
multipliers [3, 10].

Third, if a given PDE system possesses a scaling symmetry then an algebraic
formula that yields a scaling multiple of the conserved current˚ D Q̊ jE D . QT; QX/jE
is available [9], where the scaling multiple is simply the scaling weight of the
corresponding conserved integral. The formula can be derived by applying the
scaling relation (84)–(85) directly to the function f D GQ. This gives
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T D ! QTjE D
�

P
kX

lD1
.�D/l�1 �

� @G

@.@l�1@tu/
Q
�

C .DP/ �
� kX

lD2
.�D/l�2 �

� @G

@.@l�1@tu/
Q
��

C � � � C .Dk�1P/ �
� @G

@.@k�1@tu/
Q
��ˇ̌̌

E
; (140)

X D ! QXjE D
�

P
kX

lD1
.�D/l�1 �

� @G

@.@l�1@xu/
Q
�

C .DP/ �
� kX

lD2
.�D/l�2 �

� @G

@.@l�1@xu/
Q
��

C � � � C .Dk�1P/ �
� @G

@.@k�1@xu/
Q
��ˇ̌ˇ

E
; (141)

modulo a locally trivial current ˚triv D .Dx�;�Dt� C Dx ��/, where

P D ��ut	�ux �; 	 D at;  D .b.1/x
1; : : : ; b.n/x

n/; � D .c.1/u
1; : : : ; c.m/u

m/

(142)

are the characteristic functions in the generator of the scaling symmetry (82). Here

! D s C Dt	 C Dx �  D s C a C
nX

iD1
b.i/ (143)

is a scaling factor, with s being the scaling weight of the function GQ. Note, as
seen from the characteristic equation (94), ! is equal to the scaling weight of the
conserved integral

R
˝

QTjE dV , as defined on any given spatial domain˝ � Rn.
This algebraic formula (140)–(142) has the advantage that it does not require

any integrations. However, it assumes that the scaling multiple ! is non-zero,
which means that it can be used only for constructing conserved currents whose
corresponding conserved integral has a non-zero scaling weight, ! ¤ 0.

A more general algebraic construction formula can be derived by utilizing dimen-
sional analysis, which is applicable to PDE systems without a scaling symmetry.
Any given PDE system arising in physical applications will be scaling homogeneous
under dimensional scaling transformations that act by rescaling the fundamental
physical units of all variables and all parametric constants [1, 2] (whether or not the
PDE system admits a scaling symmetry). In particular, these dimensional scaling
transformations will comprise independent rescalings of length, time, mass, charge,
and so on. For each dimensional scaling transformation, a scaling formula will
arise for T and X, generalizing the algebraic formula (140)–(142) in a way that
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involves the dependence of Q and G on all of the dimensionful parametric constants
appearing in their expressions. If a conserved integral represents a dimensionful
physical quantity, then the scaling multiple in the resulting formula will be non-
zero.

A derivation of this general construction formula will be given elsewhere [33].
Here, it will be illustrated in a running example.

Running Ex. (1) All low-order conservation laws will now be derived for
the gKdV equation (56). As shown previously, low-order conserved currents
correspond to low-order multipliers, which have the general form Q.t; x; u; ux; uxx/.
Multipliers are adjoint-symmetries that satisfy Helmholtz-type conditions. To set up
the determining system for multipliers, first note ı�QG D �.DtQ C D3

xQ C upDxQ/,
where G D ut C upux C uxxx. Hence the adjoint-symmetry determining equation for
Q is given by

.DtQ C D3
xQ C upDxQ/jE D 0:

Next look at the terms that contain the leading derivative ut and its x-derivatives in
this equation. This yields

�DtQ C D3
xQ C upDxQ D �@Q

@u
� @Q

@ux
DxG � @Q

@uxx
D2

xG D RQ.G/

holding off of the gKdV solution space, where the components of the operator RQ

are given by

R.0/Q D �@Q

@u
; R.x/Q D � @Q

@ux
; R.x;x/Q D � @Q

@uxx
:

Then the Helmholtz-type equations on Q consist of

0 DR.0/Q C Eu.Q/ D �Dx
@Q

@ux
C D2

x

@Q

@uxx
;

0 DR.x/Q � E.x/u .Q/ D �2 @Q

@ux
C 2Dx

@Q

@uxx
;

0 DR.x;x/Q C E.x;x/u .Qt/ D 0;

which reduce to a single equation

Dx
@Q

@uxx
� @Q

@ux
D 0:

This Helmholtz-type equation and the adjoint-symmetry equation can be split with
respect to all derivatives of u which do not appear in Q, with ut eliminated through
the gKdV equation. This gives, after some simplifications, a linear overdetermined
system of 8 equations:
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@Q

@ux
D 0;

@2Q

@u2xx

D 0;
@2Q

@x@uxx
D 0;

@2Q

@u@uxx
D 0;

@3Q

@x@u2
D 0;

@3Q

@u3
� p.p � 1/up�2 @Q

@uxx
D 0;

@3Q

@x2@u
C uxx

@2Q

@u2
� pup�1uxx

@Q

@uxx
D 0;

@Q

@t
C up @Q

@x
C @3Q

@x3
C 3uxx

@2Q

@x@u
D 0:

These equations can be solved for Q, with p treated as an unknown, to get

Q D c1 C c2u C c3.uxx C 1
pC1upC1/C c4.x � tu/C c5.t.3uxx C u3/ � xu/

with c4 D 0 if p ¤ 1, and c5 D 0 if p ¤ 2. Hence, 5 low-order multipliers are
obtained,

Q1 D 1; Q2 D u; Q3 D uxx C 1
pC1upC1; p > 0;

Q4 D x � tu; p D 1;

Q5 D t.3uxx C u3/ � xu; p D 2:

The corresponding low-order conserved currents will now be derived using the
three different construction methods. First is the homotopy integral method. The
simplest choice for the homotopy is u.
/ D 
u since the gKdV equation is a
homogeneous PDE, GjuD0 D 0. Hence the homotopy integral is simply given by

QT D
Z 1

0

u
@.GQ/

@ut

ˇ̌
ˇ
uDu.
/

d


D
Z 1

0

u
�
c1 C c4x C .c2 � c4t � c5x/u
C .c3 C c53t/uxx


C c5tu
3
3 C c3

1
pC1upC1
pC1� d


D .c1 C c4x/u C 1
2
.c2 � c4t � c5x/u

2 C 1
2
.c3 C c53t/uuxx

C c5
1
4
tu4 C c3

1
.pC1/.pC2/u

pC2

and

QX D
Z 1

0

�
u
�@.GQ/

@ux

ˇ̌
ˇ
uDu.
/

� Dx
@.GQ/

@uxx

ˇ̌
ˇ
uDu.
/

C D2
x

@.GQ/

@uxxx

ˇ̌
ˇ
uDu.
/

�

C ux

�@.GQ/

@uxx

ˇ̌̌
uDu.
/

� Dx
@.GQ/

@uxxx

ˇ̌̌
uDu.
/

�
C uxx

@.GQ/

@uxxx

ˇ̌̌
uDu.
/

�
d
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D
Z 1

0

�
u
�
.c4xu � 2c5ux�.c3Cc5t/utx�.c4tCc5x � c2/uxx/
 � c4tu

2
2

C c5.3u2uxx � xu3/
3 C c5tu
5
5 C c1

C up
p � .c53ptup�1u2x C .c2u
pC1 C c3u

puxx/

pC1

C c3
1

pC1u2pC1
2pC1�C ux
� � c4 C .c5u C .c3 C c53t/ut

C .c4t C c5x � c2/ux/

�C uxx

�
c1 C c4x C .c2 � c4t � c5x/u

C .c3 C c53t/uxx/
C c5tu
3
3 C c3

1
pC1upC1
pC1��d


which is easiest to evaluate when separated into the non-overlapping cases p D 1

with c5 D c1 D c2 D c3 D 0, p D 2 with c4 D c1 D c2 D c3 D 0, and p > 0 with
c4 D c5 D 0. This yields the 5 low-order conserved currents

QT1 D u; QX1 D 1
pC1upC1 C uxx

QT2 D 1
2
u2; QX2 D 1

pC2upC2 C uuxx � 1
2
u2x

QT3 D 1
2
uuxx C 1

.pC1/.pC2/u
pC2; QX3 D 1

2.pC1/2 u2pC2 C 1
pC1upC1uxx

C 1
2
.u2xx C utux/ � uutx

QT4 D xu � 1
2
tu2; QX4 D t. 1

2
u2x � uuxx � 1

3
u3/C x.uxx C 1

2
u2/ � ux; p D 1

QT5 D 1
2
.3tuuxx � xu2/C 1

4
tu4; QX5 D t. 3

2
.u2xx C utux/C u3uxx � 3

2
uutx C 1

6
u6/

Cx. 1
2
u2x � uuxx � 1

4
u4/ � 1

2
uux; p D 2

whose respective multipliers are Q1; : : : ;Q5. Each of these conserved currents is in
characteristic form, namely Dt QTi C Dx QXi D QiG.

Second is the integration method using the characteristic equation Dt QT C Dx QX D
GQ, where

GQ D�c1 C c2u C c3.uxx C 1
pC1upC1/C c4.x � tu/

C c5.t.3uxx C u3/ � xu/
�
.ut C upux C uxxx/

with c4 D 0 if p ¤ 1, and c5 D 0 if p ¤ 2. There are three steps in this method. First,
as shown previously from balancing derivatives on both sides of the characteristic
equation, the general form for all low-order conserved currents Q̊ D . QT; QX/ is found
to be given by

Q̊ jE D . QT.t; x; u; ux/; QX.t; x; u; ut; ux; uxx//:
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Second, the characteristic equation can then be split with respect to utx and
uxxx, which yields (after simplifications) a linear overdetermined system of three
equations:

@ QT
@ux

C @ QX
@ut

D 0;

@ QX
@uxx

D c3
1

pC1
upC1 C c1 C c4x C .c2 � c4t � c5x/u C .c3 C c53t/uxx C c5tu

3;

@ QT
@t

C @ QX
@x

C ut
@ QT
du

C ux
@ QX
@u

C uxx
@ QX
@ux

D .ut Cu Pux/

.c3
1

pC1
upC1 C c1 C c4x C .c2 � c4t � c5x/u

C .c3 C c53t/uxx C c5tu
3/:

These equations can be integrated directly. It is simplest to consider separately the
non-overlapping cases p D 1 with c5 D c1 D c2 D c3 D 0, p D 2 with c4 D c1 D
c2 D c3 D 0, and p > 0 with c4 D c5 D 0. The first case is found to reproduce
QT4 and QX4; the second case yields QT5 � Dx Q�5 and QX5 C Dt Q�5 where Q�5 D 3

2
tuux.

Similarly, the third case with c3 D 0 is found to reproduce QT1, QT2, QX1, QX2, and with
c3 ¤ 0 it yields QT3 � Dx Q�3 and QX3 C Dt Q�3 where Q�3 D 1

2
uux. Thus, the resulting

conserved currents agree with those obtained from the homotopy integral, up to
locally trivial currents. In particular, path of these currents is in characteristic form.

Third is the scaling symmetry method. The gKdV equation possesses a scaling
symmetry

t ! 
3t; x ! 
x; u ! 
�2=pu; 
 ¤ 0

with the characteristic function P D �.2=p/u � 3tut � xux. Note the multipliers
Q1; : : : ;Q5 are each homogeneous under the scaling symmetry, with respective
scaling weights q1 D 0, q2 D �2=p, q3 D �2 � 2=p, q4 D 1, q5 D 0. Hence
the corresponding scaling factors (143) are given by !1 D 1 � 2=p, !2 D 1 � 4=p,
!3 D �1 � 4=p, !4 D 0, !5 D 0, where si D qi C c � a; a D 3; b D 1; c D �2=p.
Then the scaling symmetry formula is given by

Ti D !i QTijE D
�

P
@G

@ut
Qi

�ˇ̌̌
E
;

Xi D !i QXijE D
�

P
� @G

@ux
Qi � Dx

� @G

@uxx
Qi

�
C D2

x

� @G

@uxxx
Qi

��

C DxP
� @G

@uxx
Qi � Dx

� @G

@uxxx
Qi

��
C D2

xP
� @G

@uxxx
Qi

��ˇ̌̌
E
;

modulo a locally trivial current. For i D 1; 2; 3, this yields the conserved density
expressions
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T1 D �. 2p u C 3tut C xux/jE D .1 � 2=p/ QT1jE C Dx�1; �1 D 3t QX1 � x QT1;
T2 D �.. 2p u C 3tut C xux/u/jE D .1 � 4=p/T2jE C Dx�2; �2 D 3t QX2 � x QT2;

T3 D �. 2p u C 3tut C xux/.uxx C 1
pC1upC1/jE D .�1 � 4=p/T3jE C Dx�3;

�3 D 1
2
.1C 4=p/uux C 3t. QX3 C Dt Q�3/ � QX. QT3 � Dx Q�3/:

Note their scaling factors are non-zero when p ¤ 2, p ¤ 4, and p ¤ �4,
respectively. When p D 2, T1 reduces to a locally trivial conserved density Dx�1
and when p D 4, T2 reduces to a locally trivial conserved density Dx�2. Likewise,
when p D �4; T3 reduces to a locally trivial conserved density Dx�3.

The expressions given by the scaling symmetry formula for i D 4; 5 yield

T4 D �.2u C 3tut C xux/.x � tu/jE D Dx�4;

�4 D .x � tu/.t.3uxx C u2/� xu/C 3
2
.tux � 1/2

and

T5 D �.u C 3tut C xux/.3t.uxx C u3/ � xu/jE D Dx�5;

�5 D 1
2
.t.3uxx C 43/ � xu/2:

These cases for p > 0 in which the scaling symmetry formula yields locally trivial
currents are called the critical powers for the corresponding conserved currents. To
obtain the conserved currents for a critical power, it is necessary to use the more
general dimensional scaling formula.

Several steps are needed to set up the dimensional scaling formula.
The first step is to introduce dimensionful constants into the gKdV equation so

that it is homogeneous under separate dimensional scalings of t Œtime�, x Œlength�,
and u Œmass�. Thus, let

QG D ut C �upux C �uxxx; �; � D const:

where � has dimensions of Œtime��1Œlength�Œmass��p, and � has dimensions of
Œtime��1Œlength�3. Note QG D G will be the gKdV equation when these constants
have the numerical values � D 1 and � D 1.

The next step is to insert factors of � and � into the expressions for the low-order
multipliers so that Q1; : : : ;Q5 are each dimensionally homogeneous:

Q1 D 1; Q2 D u; Q3 D �uxx C 1
pC1�upC1; p > 0;

Q4 D x � �tu; p D 1;

Q5 D t.3�uxx C �u3/� xu; p D 2:
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The main step consists of generalizing the scaling relation (84)–(85) so that it
applies to dimensional scaling transformations. These transformations are given by

t ! 
t; � ! 
�1�; � ! 
�1�I
x ! 
x; � ! 
�; � ! 
3�I
u ! 
u; � ! 
�p�; � ! �I

as determined by the dimensions of � and �. Since the scaling relation (84)–(85)
only holds for variables in jet space, the constants � and � now must be treated as
variables by introducing the equations

QG.�/ D .�t; �x/ D 0; QG.�/ D .�t; �x/ D 0:

Then the augmented PDE system

QG D 0; QG.�/ D 0; QG.�/ D 0

will admit each of the three scaling transformations as symmetries formulated in
the augmented jet space QJ D .t; x; u; �; �; ut; ux; �t; �x; �t; �x; : : :/. Note that the
characteristic equation for conserved currents will have additional multiplier terms

Dt QT C Dx QX D QGQ C QG.�/ QQ.�/ C QG.�/ QQ.�/

for some expressions QQ.�/ D . QQt
.�/;

QQx
.�//

t and QQ.�/ D . QQt
.�/;

QQx
.�//

t, where Q is
unchanged. These expressions can be found in a straightforward way by setting up
and solving the multiplier determining system, with Q D Qi being the previously
derived low-order multipliers for the gKdV equation. Since � and � appear linearly
in each Qi as well as in the PDE expression QG, note QQ.�/ and QQ.�/ can have at most
linear dependence on these variables and cannot contain any derivatives of these
variables. Also, since Qi depends on u; ux; uxx; uxxx, and QG depends on u; ut; ux; uxxx,
note QQ.�/ and QQ.�/ can depend on only u; ut; ux; utx; uxx in addition to t; x and �; �:

QQ.�/.t; x; u; �; �; ut; ux; utx; uxx/; QQ.�/.t; x; u; �; �; ut; ux; utx; uxx/:

The multiplier determining system is then given by

Eu. QGQi C QG.�/ QQ.�/ C QG.�/ QQ.�// D 0;

E.�/. QGQi C QG.�/ QQ.�/ C QG.�/ QQ.�// D 0; E.�/. QGQi C QG.�/ QQ.�/ C QG.�/ QQ.�// D 0

for i D 1; : : : ; 5. This system splits with respect to all derivatives of u; �; � which
do not appear in QQ.�/ and QQ.�/. Integration of the resulting equations yields
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QQt
1.�/ D 0; QQx

1.�/ D 1
pC1upC1; QQt

1.�/ D 0; QQx
1.�/ D uxx;

QQt
2.�/ D 0; QQx

2.�/ D 1
pC2upC2; QQt

2.�/ D 0; QQx
2.�/ D uuxx � 1

2
u2x ;

QQt
3.�/ D 1

.pC1/.pC2/u
pC2; QQx

3.�/ D 1
pC1�upC1 C 1

.pC1/.pC2/�u2pC2;

QQt
3.�/ D � 1

2
u2x ; QQx

3.�/ D �u2xx C utux C �upC1uxx;

QQt
4.�/ D � 1

2
tu2; QQx

4.�/ D t�. 1
2
u2x � uuxx/C 1

2
xu2 � 2

3
�u3;

QQt
4.�/ D 0; QQx

4.�/ D t�.1
2
u2x � uuxx/C xuxx � ux;

QQt
5.�/ D 1

4
tu2; QQx

5.�/ D t.�u3uxx C 1
3
�u6/� 1

4
xu4;

QQt
5.�/ D � 3

2
tu2x ; QQx

5.�/ D t.�u3uxx C 3�u2xx C 3utux/C x. 1
2
u2x � uuxx/C uux:

The scaling relation (84)–(85) can now be applied to the function fi D QGQi

C QG.�/ QQi.�/ C QG.�/ QQi.�/ in the augmented jet space QJ D .t; x; u; �; �; ut; ux;

�t; �x; �t; �x; : : :/ by using an infinitesimal scaling symmetry given by one of the
scaling transformation generators

OXtime D �.�C t�t/@� � .� C t�t/@� � tut@u;

OXlength D .� � x�x/@� C .3� � x�x/@� � xux@u;

OXmass D �p�@� C u@u:

Let P, P.�/, P.�/ denote the characteristic functions in the selected scaling transfor-
mation generator OX. Then this yields the dimensional scaling formula

Ti D !i QTijE D
�

P
@ QG
@ut

Qi C P.�/ QQt
i.�/ C P.�/ QQt

i.�/

�
;

Xi D !i QXijE D
�

P
� @ QG
@ux

Qi � Dx

� @ QG
@uxx

Qi

�
C D2

x

� @ QG
@uxxx

Qi

��

C DxP
� @ QG
@uxx

Qi � Dx

� @ QG
@uxxx

Qi

��
C D2

xP
� @ QG
@uxxx

Qi

�

C P.�/ QQx
i.�/ C P.�/ QQx

i.�/

�
;

modulo a locally trivial current, where

!i D qi C s C Dt	 C Dx (144)

is a scaling factor defined in terms of the scaling weights qi; s of Qi; QG and
the divergence factor Dt	 C Dx arising from the selected dimensional scaling
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Table 1 Properties of dimensional scaling transformations for the gKdV equation and its
low-order multipliers

P P.�/ P.�/ Dt	 C Dx s q1 q2 q3 q4 q5
Time �tut �.�C t�t/ �.� C t�t/ 1 �1 0 0 �1 0 0

Length �xux �� x�x 3� � x�x 1 0 0 0 1 1 1

Mass u �p� 0 0 1 0 1 1 0 1

Table 2 Dimensional
scaling weights for low-order
conserved currents of the
gKdV equation

!1 !2 !3 !4 !5

Time 0 0 �1 0 0

Length 1 1 2 2 2

Mass 1 2 2 1 2

transformation. In particular, for each i D 1; : : : ; 5, there will be some (possibly
combined) transformation such that the scaling factor wi is non-zero, as seen from
Tables 1 and 2.

The dimensional scaling formula will now be used to obtain the conserved
currents ˚i D .Ti;Xi/jE that were missed previously by the scaling symmetry
formula. These cases are: i D 4; 5; and, i D 1; 2 when p is a critical power. From
the form of the dimensional scaling generators, the mass scaling transformation is
simplest choice to use. Then the formula becomes

Ti D !iTi D .uQi � p QQt
i.�//j�D�D1;

Xi D !iXi D .upC1Qi C uD2
xQi � uxDxQi C uxxQi � p QQx

i.�//j�D�D1;

modulo a locally trivial current. This mass scaling formula yields the conserved
density and flux expressions

T1 D QT1; X1 D QX1;
T2 D 2 QT2; X2 D QX2;

which hold for all powers p > 0 (including the critical powers p D 2 and p D 4,
respectively), and also

T4 D QT4 X4 D QX4;
�ux � Dt�4

T5 D 2 QT5; X5 D 2 QX5;
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8 Concluding Remarks

The main results presented in Sect. 7 provide a broad generalization of Noether’s
theorem in modern form using multipliers, yielding a general method which is
applicable to all typical PDE systems arising in physical applications. In this
generalization, the problem of finding all conservation laws for a given PDE system
becomes an adjoint version of the problem of finding all infinitesimal symmetries
of the PDE system.

For any given variational PDE system, conservation laws arise from variational
symmetries, which are infinitesimal symmetries that satisfy variational conditions
corresponding to invariance of any variational principle for the PDE system.
Noether’s theorem shows that the characteristic functions in a variational symmetry
are precisely the component functions in a multiplier. For any given non-variational
PDE system, the role of symmetries in the derivation of conservation laws is
replaced by adjoint-symmetries, and the variational conditions under which an
infinitesimal symmetry is a variational symmetry are replaced by Helmholtz-type
conditions under which an adjoint-symmetry is a multiplier. Also, the role of a
Lagrangian in constructing a conserved integral from a variational symmetry is
replaced by several different constructions: an explicit integral formula, an explicit
algebraic scaling formula, and a system of determining equations, all of which use
only a multiplier and the given PDE system itself.

Most importantly, the completeness of this general method in finding all con-
servation laws for a given PDE system is established by working with the system
expressed in a solved-form for a set of leading derivatives without restricting it to
have a generalized Cauchy-Kovalevskaya form. This means that the method applies
equally well to PDE systems that possess differential identities.

As a consequence, there is no need to use special methods or ansatzes for
determining the conservation laws of any given PDE system, just as there is no
necessity to use special methods or ansatzes for finding its symmetries.

The formulation of the general method as a generalization of Noether’s theorem
rests on the adjoint relationship between variational symmetries and multipliers,
which originates from the algebraic relationship between symmetries and adjoint-
symmetries. An interesting question is whether this algebraic relationship has a
geometrical interpretation.

As will be shown in more detail elsewhere [34], adjoint-symmetries indeed can
be given a simple geometrical meaning. In the case of PDE systems comprised
of dynamical evolution equations, G D @tu � g.t; x; u; @xu; @2xu; : : : ; @N

x u/ D 0,
an adjoint-symmetry defines a 1-form (or covector field) Qdu that is invariant
under the dynamical flow on u.t; x/, similarly to how a symmetry P@u defines an
invariant vector field. This geometrical statement essentially relies on the number
of dependent variables being the same as the number of equations in the PDE
system. For general PDE systems G D 0, it seems necessary to use the well-known
procedure [1] of embedding the PDE system into a larger, variational system defined
by a Lagrangian L D Gvt where v denotes additional dependent variables which are
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paired with the equations G D 0 in the given PDE system. In this setting, an adjoint-
symmetry defines a symmetry vector field Q@v of the enlarged system, G D 0 and
G0�.v/ D 0, where G0 is the Fréchet derivative of G, and G0� is its adjoint. Then, it
is straightforward to show that an adjoint-symmetry is a multiplier precisely when
Q@v is a variational symmetry.
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Adaptive Simulation Selection for the Discovery
of the Ground State Line of Binary Alloys
with a Limited Computational Budget

Jesper Kristensen, Ilias Bilionis, and Nicholas Zabaras

Abstract First principles calculations are computationally expensive. This infor-
mation acquisition cost, combined with an exponentially high number of possible
material configurations, constitutes an important roadblock towards the ultimate
goal of materials by design. To overcome this barrier, one must devise schemes for
the automatic and maximally informative selection of simulations. Such information
acquisition decisions are task-dependent, in the sense that an optimal information
acquisition policy for learning about a specific material property will not necessarily
be optimal for learning about another. In this work, we develop an information
acquisition policy for learning the ground state line (GSL) of binary alloys. Our
approach is based on a Bayesian interpretation of the cluster expanded energy. This
probabilistic surrogate of the energy enables us to quantify the epistemic uncertainty
induced by the limited number of simulations which, in turn, is the key to defining a
function of the configuration space that quantifies the expected improvement to the
GSL resulting from a hypothetical simulation. We show that optimal information
acquisition policies should balance the maximization of the expected improvement
of the GSL and the minimization of the size of the simulated structure. We validate
our approach by learning the GSLs of NiAl and TiAl binary alloys, where to
establish the ground truth GSL we use the embedded-atom method (EAM) for the
calculation of the energy of a given alloy configuration. Note that the proposed
policies are directly applicable to the discovery of generic phase diagrams, if one
can construct a probabilistic surrogate of the relevant thermodynamic potential.
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1 Introduction

Technological innovations require high-accuracy analysis of existing materials as
well as the discovery of novel ones with extreme/desired properties. Material
innovation, however, relies on expensive, time consuming, and risky experiments:
(1) There is a significant monetary cost associated with material experiments: hiring
and training staff, purchasing supplies, buying and maintaining the instruments,
implementing and enforcing safety conditions, etc.; (2) Experiments may take a
large amount of time which can be measured in days, weeks, or even months; (3)
The discovery process is, in general, intuition-driven and resembles a combinatorial
trial-and-error search with no guarantees of success. Note that the -necessarily- finite
budget allocated to experimentation amplifies the difficulty of both the analysis and
the discovery processes.

The cost associated with physical experiments led to the development of com-
puter codes that could presumably replace the physical experiments at significantly
reduced monetary and temporal costs [12]. The added benefits of computer codes
include parallelization, thereby accelerating the discovery process, and that they
can analyze arbitrary configurations including configurations which are, as of now,
impossible to construct experimentally. However, increasing the accuracy of a
computer code, e.g., by implementing more of the physics associated with any given
application, results in an increase in the computational cost associated with running
it. The cost of performing a single simulation may become so high that we are able
to afford only few. This is indeed the norm when the simulator is based on ab initio
calculations.

In binary alloys, the most accurate energy calculation is achieved via the ab initio
method of density functional theory (DFT) [26, 35] for which, e.g., the Vienna
ab initio simulation package (VASP) [36–39] is popular, and has been available
for many years. Other methods can be used as well, such as the embedded-atom
method (EAM) [14, 15], which approximates the DFT energy landscape. VASP

takes as input a binary alloy with atomic positions, and associated identities/atomic
types, defined via a unit cell and a set of basis atoms. It then relaxes the ionic and
electronic degrees of freedom (DOFs) and outputs the quantum mechanical energy
of the relaxed structure. Optimization and thermodynamic characterization of binary
alloys demand billions of VASP simulations to explore the configuration space near-
exhaustively. Since a single VASP simulation needs hours to run, even on a modern
supercomputer, directly using the full-fledged quantum mechanical model in such
calculations is a futile task.

To circumvent the high cost of the accurate simulator, the common approach
is to replace it with an inexpensive surrogate surface based on a finite number of
expensive simulations. For alloys on fixed lattices, a popular surrogate is the cluster
expansion [66, 67]. The cluster expansion expresses a configuration-dependent
property as a linear combination of so-called correlation functions that account
for interactions between clusters of atoms. The unknown coefficients of this basis
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expansion, the effective cluster interactions (ECI), are fitted to few expensive
observations of the property. The current standard in the field is to fit the ECI
using least squares [34, 76] (potentially coupled with genetic algorithms [72]). Other
techniques, include linear programming methods [23], compressive sensing [52]
and its Bayesian version [53], relative entropy [41], Bayesian linear regression with
Gaussian prior on the ECI [51], Bayesian linear regression with Laplace prior on
the ECI and Poisson prior on the number of clusters [40], and others [17, 18].

Compared to the many different techniques that have been proposed to fit the
ECI, little attention has been paid to the design of algorithms specifically for
the problem of selecting the design of the computational experiments, i.e., to the
data acquisition problem. This is, in the cluster expansion community, known
as the structure selection problem [76]. In the statistics literature [13, 64], the
same problem is known as design of (computer) experiments the machine learning
community calls it active learning [68], while in operations research the term
commonly used is optimal learning [58]. Intuitively, the data acquisition problem
attempts to answer the following question: How should we design our computational
experiments so that we get the maximum amount of information out of them
while staying within a finite computational budget? The answer to this question
depends strongly on what we want to learn, i.e., it is task-specific, as well as on
the type of budget constraints that are imposed on us. For example, we might
be interested in a design which improves the overall predictive capabilities of the
surrogate model/surface, study the sensitivity of the response surface with respect
to perturbations of the input, or locate extreme properties. All these objectives
should, in principle, be addressed with different data acquisition policies. Budget
constraints may restrict the total number of simulations that can be performed or the
total amount of computational time, which, in turn, may be spent sequentially or in
parallel, etc.

A data acquisition policy is a decision rule that helps us select the next
simulation(s) we should run given our design so far. Note that the stopping rule,
i.e., whether it is valuable to continue gathering data or not, is also part of a
data acquisition policy. The most popular data acquisition policy is the uncertainty
sampling policy. Uncertainty sampling simply selects the structure about which
the current surrogate is maximally uncertain, i.e., the simulation that exhibits the
largest predictive error bar. Intuitively, the objective met by this policy is the overall
improvement of the surrogate that represents the underlying response surface.
Indeed, it can be shown that, under special assumptions, this policy can be derived
from the maximization of the expected information gain about the parameters of the
model [45].

In binary alloys modeling, the Alloy Theoretic Automated Toolkit (ATAT) uses
a variation of uncertainty sampling that attempts to focus on the discovery of the
ground states at each concentration, i.e., it attempts to discover the ground state
line (GSL). Specifically, the ATAT policy starts from some initial design defined by
the user. At each step, the MAPS algorithm chooses the structure that maximizes a
combination of the least squares variance and the expected cost of a structure that
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the authors in Ref. [76] call the gain. There is an additional layer of complexity
which attempts to address the exploration/exploitation trade-off. At each step in
the algorithm, a set of structures are generated that are not part of the training
data for the CE. If a subset of these structures are predicted to lower the currently
known GSL (we also say that these structures breach the GSL), then the next
structure is chosen only among this set. Thus, the algorithm goes from a cost-
effective exploration to a cost-effective exploitation mode in the case that we have
breaching structures. While we would have preferred to compare our developments
with MAPS, the surrogate used in MAPS is not compatible with the Bayesian
arguments set forth in this paper. A fair comparison can only be accomplished
through extensive modifications to either MAPS or our approach, which would
simultaneously defeat the point of the comparison. That is not to say that ideas from
MAPS cannot benefit our approach or vice versa, but developing a way to compare
the two on equal footing is outside the scope of this work.

The balance between exploration and exploitation is a key concept in the
field of global optimization of expensive objective functions. In this field, the
Bayesian global optimization (BGO) approach has been successful in providing
a solution to the data acquisition problem [30, 44, 49, 50, 73]. In BGO, the
objective function is replaced by a surrogate based on Gaussian process regression
(GPR) [62]. One of the marking differences between GPR and classical regression
techniques is its Bayesian nature which allows the quantification of the predictive
uncertainty of the surrogate [4–6]. It is exactly this epistemic uncertainty that
can be exploited in various ways to propose adaptive data acquisition policies.
These policies are, typically, myopic, i.e., they make a decision by considering the
result of only one hypothetical future simulation (one-step-look-ahead strategies),
and they rely on the maximization of an acquisition function that depends on
the surrogate of the objective function. Some popular acquisition functions are
the expected improvement (EI) [31], the probability of improvement [43], and the
knowledge gradient [21]. From a mathematical perspective, it is straightforward to
extend these acquisition functions to construct non-myopic multi-step-look-ahead
strategies, albeit this approach requires the solution of a hard dynamic programming
problem [3].

In this work, we focus on data acquisition policies for materials discovery and
design. In particular, we develop an extension of the EI suitable for gathering
information about any quantity of interest (QoI) which is defined through the
minimization of a functional of the ab initio system’s thermodynamic potential
with respect to a set of parameters [42] specifying the state of the system such as
concentration, temperature, pressure, etc. That is, the core idea of our methodology
can be used to construct data acquisition policies suitable for the discovery of
phase diagrams. Despite the generality of our proposal, we focus on a simple
representative example: the discovery of the GSL of a binary alloy. Knowing the
GSL with high accuracy forms an essential starting point in constructing the entire
phase diagram, e.g., by using thermodynamic integration [22]. We purposefully
chose this application because it allows us to validate our results using a highly
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accurate ground truth, and to systematically compare to traditional, albeit ad hoc,
data acquisition policies. We demonstrate that the proposed policy can lead to
computational savings with simultaneously increased accuracy.

This chapter is organized as follows. We start by developing the theoretical
framework, presenting the energy computation scheme used in this work and intro-
ducing the surrogate modeling technique. Then, we present the theory underlying
our proposed method of selecting structures and summarize the structure acquisition
algorithm. The framework is then extended by considering the effect of alloy
structure costs. Other structure acquisition algorithms are also considered in order to
compare our proposed framework. We present next the results by first describing our
validation setup followed by a comparison of our framework with other acquisition
strategies. We finally provide some brief conclusions.

2 Methodology

We will study alloy compounds and consider data acquisition strategies which
maximize our knowledge about QoIs of such systems. Among possible QoIs are the
ground state line, phase diagrams, particular phase transition temperatures, largest-
band-gap structures, etc.

The binary NiAl and TiAl alloy compounds will be specifically considered.
NiAl was chosen because it plays a central technological role in, e.g., aircraft
and rocket engines, power generation turbines, nuclear-power generation, due to
its high-temperature strength, toughness, and degradation resistance in oxidizing
environments among other useful properties [57]. While other elements can be
added to NiAl such as Ti [60], Fe [61, 65], Cr [71], Ta, and Nb [19, 70] to engineer
specific properties, we restrict our attention to pure NiAl, since it forms one of the
most important binary bases for superalloys [27]. The elements Ni and Al crystallize
in fcc lattices. NiAl has been observed to form in both fcc and bcc lattices. Secondly,
TiAl was chosen because of its application in gas turbines due to its high strength-to-
weight ratio and excellent corrosion resistance. It is used in aerospace applications,
specifically in landing gear beams on the Boeing 747 and 757 replacing steel which
has too high a density [8]. We consider TiAl on an fcc lattice, but note that it can
crystallize in hcp and bcc lattices as well.

Let the atomic identities occupying the lattice of the AxB1�x alloy with Ns sites
be summarized in an Ns-length boolean vector called a configuration and denote
it by � . Accordingly, call the set of all possible configurations the configuration
space. Now denote a set of thermodynamic parameters which specify the state of a
system, e.g., temperature, pressure, concentration, etc., by !. We are interested in
the characterization of QoIs of the form:

� �.!/ D arg min
�

G.� ; !/; (1)
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where the minimization takes place over the � ’s that are compatible with !. The
function G.� ; !/ is just the natural thermodynamic potential of the system whose
minimization gives us the thermodynamically stable structure of the system at
! [42].

As two examples, consider first a system at zero temperature and with
the concentration as the only thermodynamic parameter, i.e., ! D fxg. For
a binary AxB1�x alloy with Ns lattice sites, we map A to �1 and B to C1.
Thus, 2x D 1 �PNs

nD1 �n=Ns, where �n is �1.C1/ if A(B) occupies site n. The
thermodynamic potential forming the energy-composition ground state line is
�Eform.� / � E.� / � .xEA C .1 � x/EB/, where EC is the internal energy of the
structure containing only C-atoms. In other words, G.� ; x/ D �Eform.� / (� implies
x but we leave the notation general) and Eq. (1) forms the binary alloy GSL. As
a second example, assume the thermodynamic parameters are the pressure P and
the temperature T, i.e., ! D fP;Tg. Then, the natural thermodynamic potential
G.� ;P;T/ is the Gibbs free energy of a closed system and Eq. (1) provides the
stable structures versus !, i.e., the temperature-pressure phase diagram. More
generally, Eq. (1) constructs all the possible phase diagrams from various subsets
of !.

In this work, we restrict the DOFs of the alloys by considering structures having
fixed lattices, but our methodology extends to multi-lattice settings. Furthermore,
only alloy DOFs which characterize the atomic type/identity on each lattice site are
considered. We will be interested in QoIs at zero temperature the implication being
that ! D fxg is the lone thermodynamic parameter.

2.1 Computing Alloy Energies with an EAM Relaxation
Scheme

In order to determine the energy landscape and the GSL of the system, we need
to calculate the energy of an arbitrary (Ni,Ti)Al configuration. There are various
ways of approximating this energy. Here, we choose not to use a high-accuracy
ab initio approach, since this would limit our ability to validate our predictions.
For example, establishing the ground truth GSL by evaluating the ground state
energy using density functional theory (DFT) would require tremendous compu-
tational resources. Therefore, we use the embedded atom method (EAM) which
provides an energy landscape approximating that of DFT, but which is navigable
with significantly reduced computational resources. We use the parameters found
in Ref. [59]. These parameters are highly transferable in the NiAl system and they
reproduce fairly well the GSL of the system as opposed to reproducing just single
isolated phases [48]. As an example of the increased computational benefits in using
EAM over, say, DFT, the temporal cost of a single high-accuracy structure with DFT
is approximately, on our machines, equivalent to computing 5; 000 structures with
EAM, even after accounting for the extra efforts from using the EAM relaxation
scheme to be discussed next.
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Each configuration was relaxed under the EAM potential using the following
iterative procedure [11]. The fcc unit cell size was initially guessed to have lattice
constant 4:01 Å for both NiAl and TiAl. Since the preferred size of the unit
cell and the interatomic distances vary depending on the atomic environment,
we implemented a 2-step loop to find the energetically most favorable atomic
arrangement. In step 1 (unit cell relaxation), the unit cell was isotropically scaled
until reaching equilibrium in the EAM energy landscape using a bounded (with
bounds 50% to 200% of the lattice constant) Brent–Dekker method [9, 16]. In step 2
(atomic positions relaxation), a Broyden–Fletcher–Goldfarb–Shanno quasi-Newton
algorithm [10, 20, 24, 69] relaxed the interatomic force vectors to zero. These two
steps were repeated until the energy and the magnitude of the largest force vector did
not change in two consecutive steps by more than 10�8. Less than eight iterations
of the loop were typically enough to converge. To verify the above implementation,
we applied it to fcc pure Al(Ni) and obtained �3:36 eV/atom(�4:45 eV/atom) with
relaxed-structure-lattice-constants of 4:0500Å(3:5199Å) all in excellent agreement
with Ref. [59]. This framework was readily implemented relying on the ASE [1]
PYTHON [47, 54] package developed at the Technical University of Denmark.

2.2 Cluster Expansion Surrogate Model

In this section, we briefly discuss the details of the cluster expansion (CE). We refer
to Refs. [63, 66], and [67] for an introduction to this topic. The CE expands the
configuration-dependent (Ni,Ti)Al energy E.�/ as:

E.� / 
 E.� I �/ D PM
iD1 �i�i.� /

D �T�.� /;
(2)

where � D f�ig are the unknown expansion coefficients called the effective cluster
interactions (ECI), �.� / D f�i.� /g, and the ith basis function is given by:

�i.� / D h�˛0.� /i˛0�˛i
; (3)

where ˛i is a vector, the ith subset among all subsets of lattice sites we have chosen
to consider in the sum (e.g., ˛2 could be the first two lattice sites; under some
arbitrary numbering of the sites), also called a cluster and h�iy�x is taken to mean an
average over all clusters y that are symmetrically equivalent to x under a space group
operation of the empty lattice (lattice points without atomic identities). Thus, the
sum in Eq. (2) is over all symmetrically inequivalent clusters. The �	.�/’s are known
as correlation functions. They are defined to be monomials of the spin variables

�˛.� / D
Y
i2˛

�i; (4)

where the product is over all sites in cluster ˛ and �i is the atomic identity on site i.
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Notationally, a single alloy configuration � is associated with a set of M basis
functions collected in the vector �.� /. When we consider, say, N configurations,
f� .j/gN

jD1, we collect the basis vectors associated with each configuration in an N�M

design matrix ˚ where the jth row is �.� .j//. The kth column in the jth row is
�k.�

.j// and given by Eq. (3).
If a cluster contains n sites it is called an n-point cluster. Our CE of fcc (Ni,Ti)Al

included M D 49 symmetrically inequivalent clusters with maximum spatial extents
of 10, 7, and 4 Å for the 2, 3, and 4-point clusters, respectively. Interestingly, if one
lets M ! 1 the CE becomes exact, however, a truncation of the clusters to sum
over is needed and carried out by fixing the maximum number of points present in
any cluster as well as its maximum spatial extent (measured, in this work, as the
largest distance between any two lattice sites in the cluster) [76].

At this point, note that G.� ; !/, Eq. (1) depends on the configurational energy
surface E.�I �/, and thus, as a consequence, on the ECI, � . That is, we can write the
following:

G.� ; !/ � G.� ; !;E.�I �// � G.� ; !;�/: (5)

Similarly, the stable structure of Eq. (1) depends on �: � �.!/ � � �.!;E.�I �// �
� �.!;�/ D argmin� G.� ; !;�/. If the thermodynamic potential G.� ; !/ is
expensive to evaluate, e.g., if it requires thermodynamic integration, a solution is
to cluster expand it but with !-dependent ECI as discussed in Ref. [75].

2.3 Learning the Effective Cluster Interactions Using Bayesian
Linear Regression

To learn the ECI in Eq. (2) and to enable a quantification of the uncertainty in
energies computed from these parameters, we adopt a Bayesian approach [29]. We
start with our prior belief about the ECI, represented here as a continuous probability
distribution [7]. We believe more in smaller valued ECI [52]. In other words, we
favor smoother energy surfaces, so the distribution should put more of its mass
closer to zero. A distribution satisfying this, and which simultaneously simplifies
the mathematics ahead, is a zero-mean isotropic Gaussian:

p.�j˛/ D N .�j0; ˛�11/
D �

˛
2�

�M=2
exp

��˛
2
�T�

�
;

(6)

where M is the total number of ECI, and ˛ is known as the precision hyper-
parameter. The precision hyper-parameter, is the inverse variance associated with
the prior probability we assign to the ECI. That is, the greater the precision hyper-
parameter, the more certain we are a priori that the ECI are closer to zero.

The next ingredient that we need to specify is the likelihood of the data. The
likelihood of a configuration-energy couple, denoted .� ;E/, is defined conditional
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on the ECI, � . In common data analysis, the likelihood models the measurement
process. Here, since our measurement process is essentially deterministic, it quanti-
fies the model discrepancy. That is, it quantifies the discrepancy between the cluster
expansion and the actual energy. In lack of a better alternative, we assume that this
discrepancy is distributed normally with a noise precision ˇ. Mathematically:

p.Ej� ;�; ˇ/ D N �
Ej�T�.� /; ˇ�1

�
:

Assuming independence of each observation, the likelihood of a set of N observed
configuration-energy couples,

DN D ˚�
� .i/;E.i/

��N

iD1 ; (7)

is given by

p.DN j�; ˇ/ D
NY

iD1
p
�
E.i/j� .i/;�; ˇ� : (8)

Combining our prior belief, Eq. (6), with our observations, Eq. (8), using Bayes’
rule [2] results in the posterior probability density:

p.�jDN ; ˛; ˇ/ / p.DN j�; ˇ/p.�j˛/; (9)

which corresponds to our updated beliefs about the ECI. For these specific prior and
likelihood choices, it can be shown that the posterior is Gaussian,

p.�jDN ; ˛; ˇ/ D N .�jmN ;SN/ ; (10)

where the mean vector and covariance matrix are given by

mN D ˇSN˚TE; (11)

and

SN D �
˛I C ˇ˚T˚

��1
; (12)

respectively [7], with I being the unit matrix, and E D �
E.1/; : : : ;E.N/

�
.

So far, we have tacitly assumed that the hyper-parameters ˛ and ˇ are given. In
general, however, they are unknown a priori, and we should have assigned a prior,
p.˛; ˇ/, to them. Having done that, we would have had to characterize the joint
posterior probability density:

p.˛; ˇ;�jDN/ / p.DN j�; ˇ/p.�j˛/p.˛; ˇ/;
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but unfortunately, the resulting posterior would not be analytically available. There-
fore, we resort to the evidence approximation [7]. To motivate this approximation,
notice that, by repeated applications of the Bayes’ rule, we may write:

p.˛; ˇ;�jDN/ D p.�jDN ; ˛; ˇ/p.˛; ˇjDN/; (13)

with

p.˛; ˇjDN/ / p.DN j˛; ˇ/p.˛; ˇ/: (14)

Here p.DN j˛; ˇ/ is known as the marginal likelihood and, using the sum rule of
probability,

p.DN j˛; ˇ/ D
Z

p.DN j�; ˇ/p.�j˛/d�: (15)

Intuitively, the evidence approximation assumes that the prior p.˛; ˇ/ is relatively
flat, and that the marginal likelihood p.DN j˛; ˇ/ has a well separated global
maximum. This justifies an approximation of p.˛; ˇjDN/ of the form

p.˛; ˇjDN/ 
 ı.˛ � Ǫ /ı.ˇ � Ǒ/; (16)

where ı.�/ is the Dirac ı-function, and the Ǫ and Ǒ are set by maximizing the
marginal likelihood:

. Ǫ ; Ǒ/ D arg max
.˛;ˇ/

p.DN j˛; ˇ/: (17)

See Ref. [7] for an expectation-maximization algorithm that converges to a local
maximum of the marginal likelihood. Repeated restarts of this algorithm, provide a
good approximation to the solution of Eq. (17).

Having characterized the posterior, Eq. (13), via the evidence approximation, we
can now make predictions about the energy, QE, we may observe at an arbitrary
configuration Q� . The predictive probability density is:

p. QEj Q� ;DN/

D R
p. QEj Q� ;� ; ˇ/p.˛; ˇ;�jDN/d˛dˇd�


 R
p. QEj Q� ;� ; Ǒ/p.�jDN ; Ǫ ; Ǒ/d�;

where to derive the last equation we used Eq. (13) and Eq. (16). Since the two
probability densities inside the last integral are Gaussian, see Eqs. (8) and (10), it
is possible to evaluate it analytically. The result is:

p. QEj Q� ;DN/ 
 N � QEj�E;N. Q� /; �2E;N. Q� /� ; (18)
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where the predictive mean is

�E;N. Q� / D mT
N�. Q�/; (19)

and the predictive variance is

�2E;N. Q� / D 1

Ǒ C �. Q� /TSN�. Q� /: (20)

The predictive mean can be thought of as a mean surrogate energy surface. The
predictive variance quantifies our uncertainty about the predictions of this surrogate
for any given alloy structure.

2.4 Optimal Selection of Input Structures

2.4.1 The Expected Improvement Policy

In this subsection, we develop an informed data acquisition policy that enables us
to select simulations that are maximally informative about the thermodynamically
stable structures versus !, specified in Eq. (1). We assume that we have made a total
of N observations, DN , as in Eq. (7), and that we have at hand a Gaussian approxi-
mation to the predictive distribution of the thermodynamic potential G.� ; !/:

p. QGj Q� ; Q!;DN/ 
 N � QGj�G;N. Q� ; Q!/; �2G;N. Q� ; Q!/� ; (21)

where�G;N. Q� ; Q!/ and �2G;N. Q� ; Q!/ are the predictive mean and variance, respectively.
What follows is independent of the way this predictive distribution was obtained.
Remember that for the GSL, ! D x and G.� ; x/ is just the formation energy.
Thus, in this case, Eq. (21) can be obtained trivially from Eq. (18). For a general
thermodynamic potential Eq. (21) has to be obtained by directly cluster expanding
G.� ; !/ with !-dependent ECI [75].

The current observed minimum thermodynamic potential at a given !, GN.!/, is

GN.!/ D min
1�n�N

G.� .n/; !/; (22)

where the minimum is taken only over !-compatible � .n/’s. An informative
simulation at ! would, ideally, yield a lower thermodynamic potential than the
currently observed minimum. To formalize this intuition, let us fix the thermody-
namic parameters to Q! and assume that we make a hypothetical simulation at an
Q!-compatible structure Q� . If this simulation resulted in a measured thermodynamic
potential equal to QG, then this would yield an improvement of I(�) equal to

I. Q� ; Q!; QG/ D max
˚
0;GN. Q!/� QG� : (23)
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Notice here, that we consider the new simulation an “improvement” only if it
reduces the currently observed thermodynamic potential GN. Q!/, that is, if it finds
structures that are thermodynamically more stable.

QG is a hypothetical measurement. Therefore, in order to eliminate the dependence
of the improvement on QG, we take its expectation over the predictive distribution of
QG conditional on Q� , p. QGj Q� ; Q!;DN/. In this way, we define the expected improvement
(EI):

EI. Q� ; Q!/ D E
�
I. Q� ; Q!; QG/j Q� ; Q!;DN

	
: (24)

The EI measures the expected change in the minimum observed thermodynamic
potential value at Q! after making an Q!-compatible simulation at Q� . Using Eq. (21),
we have:

EI. Q� ; Q!/ D E
�
I
� Q� ; Q!; QG� j Q� ; Q!;DN

	
D R

max
˚
0;GN. Q!/ � QG� p. QGj Q� ; Q!;DN/d QG


 R
max

˚
0;GN. Q!/ � QG� � N � QGj�G;N. Q� ; Q!/; �2G;N. Q� ; Q!/� d QG

D R GN . Q!/
�1

�
GN. Q!/� QG� � N � QGj�G;N. Q� ; Q!/; �2G;N. Q� ; Q!/� d QG:

Employing standard normal integral identities, we obtain the following

EI. Q� ; Q!/ D ŒGN. Q!/ � �G;N. Q� ; Q!/� �
�

GN . Q!/��G;N .Q� ; Q!/
�G;N .Q� ; Q!/

�
C�G;N. Q� ; Q!/ 

�
GN . Q!/��G;N .Q� ; Q!/

�G;N .Q� ; Q!/
�
;

(25)

and EI. Q� ; Q!/ D 0 if �G;N. Q� ; Q!/ D 0, where �.�/ and  .�/ are the cumulative
distribution function and the probability density function of a standard normal
random variable, respectively, and we note that the EI has the same units as the
thermodynamic potential.

The EI acquisition policy adds to a current data pool of N structures the
configuration that yields the maximum overall EI, i.e., the maximum EI over both
the input space and the thermodynamic variables:

�
� .NC1/; !.NC1/

� D argmax
Q� ; Q!

EI. Q� ; Q!/: (26)

Intuitively, this strategy chooses the simulation that yields the maximum change
in our state of knowledge about the thermodynamically stable structures across all
values of !.

Solving the global maximization problem of Eq. (26) exactly is not trivial. Since
we have an analytic approximation to the EI, Eq. (25), it is feasible to obtain
approximate solutions to Eq. (26) through a random sampling strategy. Specifically,
we consider a large pool of candidate simulations
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Algorithm 1: EI structure acquisition strategy for learning the thermodynamic
potential

Require: DN0 (an initial pool of N0 observed � -!-G triples), Nmax (maximum number of
observations that can be afforded), � (EI tolerance), SNpool (large pool of � -! pairs
to select simulations from).

1 N N0
2 DN  DN0
3 repeat
4 Find:

�
� .NC1/; !.NC1/

� D argmax
.Q� ; Q!/2SNpool

EI.Q� ; Q!/.
5 if EI

�
� .NC1/; !.NC1/

�
< � then

6 Break loop
7 end
8 G.NC1/  G

�
� .NC1/; !.NC1/

�
9 DNC1 DN [ ˚�� .NC1/; !.NC1/;G.NC1/

��
10 N N C 1
11 until N >D Nmax;

SNpool D
n�

Q� .n/; Q!.n/
�oNpool

nD1 ;

and approximate Eq. (26) by:

�
� .NC1/; !.NC1/

� D argmax
.Q� ; Q!/2SNpool

EI. Q� ; Q!/: (27)

Importantly, assume that the candidate pool is generally attainable with minimal
computational efforts, which is most typically the case.

Algorithm 1 outlines the EI sequential data acquisition policy for the thermody-
namic potential. The policy sequentially selects the simulations that maximize the
EI. The iterations stop when either the maximum EI falls below a specific threshold
� > 0 or the simulation budget has been exhausted. At any given iteration of the
algorithm, the best estimate of the thermodynamic potential, at some !, is given by
the current observed minimum-thermodynamic-potential structure at !. In step 8 of
Algorithm 1, the expensive computer code is run on the newly selected configuration
� .NC1/.

2.4.2 Dealing with Structures of Varying Cost

Let the cost of evaluating G. Q� ; Q!/ be C. Q� ; Q!/, here C. Q� ; !/ is the number of
atoms in the configurational unit cell cubed. Obviously, if we had to choose among
two structures with the same cost, we would pick the one with the maximum EI.
Similarly, if we had to choose among two structures with the same EI, we would
pick the one with the minimum cost. Therefore, the information acquisition problem
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must balance between the two, potentially, competing objectives of maximizing EI
and minimizing cost. This multi-objective decision problem induces a Pareto front
of optimal choices. An optimal information acquisition policy should only select
for simulation optimal structures. To this end, we introduce a modified EI policy,
selecting the structure that maximizes:

EI
. Q� ; !/ � 
EI. Q� ; Q!/ � .1 � 
/C. Q� ; Q!/; (28)

for some 
 2 Œ0; 1�. Let this strategy be denoted AEI
 . When 
 D 0 the cost
is minimized and we always choose among the least expensive structures. When

 D 1, we follow the EI acquisition strategy with no regards to the cost of the
structures. For other values of 
, we still attempt to choose structures with large
values of EI, but at the same time, we are trying to minimize the cost. Each value of

 corresponds to a Pareto-frontier point. As a side note, numerically, it is important
to compute Eq. (28) with scaled versions of the EI and the cost to make them
comparable in size.

In the numerical examples, we show how AEI
 and the Pareto frontier behave for
the various acquisition policies introduced in the following section.

2.5 Other Input Structure Acquisition Strategies

We compare AEI
 against three other methods to see how well it fares. We briefly
discuss these trivial policies here. First, consider the acquisition strategy that
randomly selects the next structure, denote this strategy Arnd. All structures in the
pool are picked with equal probability. Second, introduce a strategy which always
chooses the smallest structure next. We order structure sizes by the number of atoms
per unit cell first and then by the unit cell volume. If both these quantities tie, a
random choice is made. Denote this strategy Asml. Consider now a strategy which
selects the next structure that has the largest predictive variance Eq. (20). We refer
to this strategy as uncertainty sampling and denote it Aus.

In terms of the discussion in the previous subsection, these policies will not,
generally speaking, lie on the Pareto frontier. We show this next.

3 Results

We developed a software package for performing the ground state search of
binary alloys. The software is written in the PYTHON programming language
using an amalgamation of PYMATGEN [55], ATAT [77], ENUMLIB [25], ASE [1],
NUMPY [74], SCIPY [32], MATPLOTLIB [28], SCIKIT-LEARN [56], and PANDAS to
handle the data in a concise database format [46].
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3.1 Validation

To validate the proposed framework, a scenario is created in which ground
truth is known. This is done by first computing the EAM energies of the first
34; 368 (Ni,Ti)Al symmetrically inequivalent configurations from smaller to larger
multiples of the basic fcc unit cell, and then using them to approximate the GSL.
Since 34; 368 configurations is a lot more than the sizes typically considered for
such a task, we assume, for all intends and purposes, that G34368.x/ 
 G1.x/, and
to be concise we will be referring to it as the “true GSL” rather than as the “true GSL
of the first 34; 368 symmetrically inequivalent configurations”. Explicitly knowing
the true GSL allows us to quantify the error of any data acquisition policy and is thus
essential from a comparison perspective. Specifically, assume that we have made N
observations, DN . We define the relative GSL error (GSLE) between the true GSL,
G1.x/, and a GSL formed from DN , GN.x/, by:

GSLE.DN/ D jjG1 � GN jj2
jjG1jj2 ; (29)

where jjf jj2 is the L2 norm of the function f .x/, i.e.,

jjf jj2 D
sZ 1

xD0
f 2.x/dx:

Along with Eq. (29), as a performance metric, we also keep track of which true
ground states have been correctly predicted. Other performance metrics can be
considered as well, see, e.g., Ref. [33] and the references therein.

3.2 Learning the Ground State Line Using the Expected
Improvement Data Acquisition Policy

We now present the global EI acquisition process, Algorithm 1, when applied to the
task of learning the TiAl fcc GSL. Figure 1 shows the evolution of the TiAl GSL
(red dashed line) as observations are added. In the top right of each subplot a number
identifies the iteration in our global EI algorithm. “iteration 0” in the top left subplot
is the GSL of the initial data pool. In each subplot we find two plots, the top plot
shows the true GSL (blue full line) with associated true ground states (blue upside-
down triangles). The same plot, but for positive ordinate values, also shows as a
black dashed line quantifying the error between the GSL of the initial data pool and
the true GSL. This error is not Eq. (29), but simply the vertical distance between the
GSLs versus concentration. For convenience, the GSLE, Eq. (29), is reported under
the dashed line.
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Fig. 1 (Color) For TiAl. Six different stages, shown as six separate subplots arranged in two
columns and three rows, during the Bayesian global optimization algorithm for learning the true
ground state line (GSL) with an initial data pool of six structures. The iteration number of the
algorithm is shown in the top right of each subplot. E.g., the top left subplot shows the algorithm’s
behavior on the initial data set (“iteration 0”). Each subplot has two parts. The upper part shows,
via a shaded blue area (for positive ordinate values), the error measured as the vertical distance
between the GSL of the current seen structures (red dashed line at negative ordinate values) and
the true GSL (blue full line at negative ordinate values) versus Al concentration. The dashed black
line in all subplots is this error between the initial GSL (iteration 0) and the true GSL. The GSLE
(Eq. (29)) is given as the text under this line. The true ground states are shown as blue upside-down
triangles and the ground states which are correctly predicted by the global EI algorithm are shown
as red circles. The number of correctly predicted ground states (out of the total possible of 26)
is given in text under the true GSL. The lower plot in each subplot quantifies the EI versus Al
concentration as a dark green full line. It is the largest point of this line, marked with an upside
down red triangle, which is the global max EI, and hence where the next structure is selected for
addition to the design. Note that the lower part of each subplot in the right (left) column is measured
on the right (left) side of the figure. All ordinate values are in meV’s/atom
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The dashed line is present in all subsequent subplots for quick comparison of
the current error (blue shaded area) to the initial error at iteration 0. In the final
subplot (iteration 89), a “match” represents, instead of the GSLE, that all true
ground states have been successfully learned. The red circles in Fig. 1 on top of
the true GSL show ground states found by the thermodynamic EI algorithm which
are also true ground states. The number of ground states found by the EI out of
the total number of true ground states, the latter which in our experiment is 26,
out of the 34; 368, is reported under the true GSL in each subplot. Remarkably,
the thermodynamic EI finds all true ground states among the 34; 368 structures
with just 89 structures. In each subplot, the second, lower, plot shows the EI
versus Al concentration. A red upside-down triangle marks the global maximum
of the EI, and hence which concentration the chosen structure has. Notice how,
initially, the error is reduced for large Al concentrations. Once that part of the
GSL has been learned, the algorithm automatically shifts its attention to lower Al
concentrations and finally, the EI is comparable for all concentrations. Furthermore,
we see that the global EI decreases in magnitude versus iteration. This is expected
since we should expect a smaller and smaller difference to be made to the ground
state line as we get closer to ground truth. We would like to emphasize the
extremely small starting data pool of six structures using a simple Bayesian linear
regression to capture the relaxed EAM energies. Furthermore, we do not use any
basis-optimization, such as using cross-validation to select the best set of basis
functions to use. In fact, we are using a fixed set of 39 clusters (13 2-point,
23 3-point, and one 4-point including the empty-point and 1-point clusters). We
expect these results to be even better if coupling thermodynamic EI with a more
advanced surrogate model such as GPR. To quantify the observed decrease in EI,
we turn to Fig. 2 which shows the evolution of the thermodynamic EI, normalized
to its initial value, along with a hypothetical 1% threshold dashed line, which could
act as a stopping rule in some cases.

3.3 Comparing Data Acquisition Policies for Learning
the Ground State Line

The following results are all based on the Bayesian linear regression on the CE as
a surrogate and can change if using different surrogates. In Fig. 3 we compare the
GSLE in Eq. (29) of different structure acquisition strategies, including Eq. (28) for
various values of 
, with the objective of learning the fcc NiAl and TiAl GSLs
when starting from a (small) initial data pool of six structures spread across the
concentration range as evenly as possible.

To better represent the total temporal cost of the various methods we do not plot
against the total number of structures added to the design, but rather, we plot against
the total expected temporal cost, which, for DFT, is proportional to the number of
atoms in the configurational unit cell cubed. Although we are not using DFT, but
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Fig. 2 (Color) The expected
improvement (EI) in Eq. (26)
for (a) NiAl and (b) TiAl,
normalized to its value in the
first iteration when starting
from the initial data pool of
six structures, plotted on a log
scale. The abscissa shows the
total number of observations
in the design of the
experiment and the black
dashed line reports where the
thermodynamic EI has
dropped to 1 % of its initial
value
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rather an EAM relaxation scheme, we assume a DFT cost of the structures. So, e.g.,
if the first structure added has four atoms per configurational unit cell, the structure
adds 64 to the current position on the abscissa.

Analyzing the graphs, we first note that Arnd is not a good strategy. We can
understand this by consulting Fig. 4 where, in Fig. 4a, the logarithm of the total
number of symmetrically inequivalent structures are plotted against the configu-
rational unit cell size (measured as the number of atoms). In Fig. 4b we plot the
number of ground states versus the same unit cell sizes as in Fig. 4a; this plot is
highly dependent on what structure pool we have available. In our work, we have the
first 34; 368 structures, but plot Fig. 4b could change if changing this pool. Finally,
Fig. 4c shows the fraction in per cents of ground states at each configurational unit
cell volume. We can now understand why Arnd fares poorly. There is exponentially
more structures of larger unit cell sizes so the chances of choosing a large structure
is much larger compared to choosing a smaller one. At the same time, the fraction of
ground states decreases by orders of magnitude when going from smaller to larger
structures. Therefore, most of the time, we do not choose a ground state when we
pick a structure at random.
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Fig. 3 (Color) Comparison
of four different structure
acquisition strategies when
learning the true ground state
line (GSL) for both the (a)
NiAl and the (b) TiAl system.
The abscissa shows the total
number of observations in the
design of the computer
experiment and the ordinate
reports the normed difference
in percents between the GSL
constructed from the
observations on the abscissa
and the true GSL, called
GSLE (defined in Eq. (29)).
The “random” graph (blue
stars) has error bars from 10

different seeds of the random
number generator for picking
structures at random
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Based on these arguments we then expect Asml to perform relatively well since it
always chooses the smallest structures of which the ratio of ground states is higher.
In Fig. 3, we see that this is also largely the case. Notice also that, since it selects
the smallest structures first, it never makes it far on the abscissa because the cost
is kept at its lowest. The reason why a zero error is not achieved with this strategy
is because the GSL is not only made up of smaller structures as is evident from
Fig. 4b. Therefore,Asml would only find all the true ground state structures by going
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Fig. 4 (Color) (a) the
logarithm of the number of
symmetrically inequivalent
structures Nstr versus the
number of atoms in their
configurational unit cells Nat,
for the fcc binary alloy
lattices. (b) the number of
ground states Ngr versus Nat

for fcc TiAl. (c) the fraction
Ngr=Nstr, in per cents, of
ground state structures, out of
the total number of structures
in (a) plotted on a logarithmic
scale, versus Nat (black
dashed line is a guide to the
eye). All plots share the same
abscissa label
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through the entire pool of more than 34; 000 structures. Consider next Aus. This
method aims for global accuracy of the surrogate to fit the true EAM energy surface
which, in light of a data budget, can and often will be a different objective than
learning the ground state line. Achieving global accuracy means that we are also
demanding good emulating capabilities of large energy structures. However, in order
to determine the ground state line, we need not focus on high-accuracy predictions
of high-energy structures. We see that the method does eventually achieve a low
error.

Finally in this comparison, consider the thermodynamic EI cost-efficient method
AEI
 . Excitingly, this method achieves the lowest overall error of all methods
simultaneously at a relatively low temporal cost. Moreover, in the case of TiAl,
the thermodynamic EI learns the true ground state line for 
 D 1. The reason
is the mix between exploration (choosing large-predictive-variance structures) and
exploitation (choosing lowest-predictive-mean structures).

We now address the cost-accuracy trade-off by considering the performance of
the AEI
 strategy defined in Eq. (28) for various values of 
. First, consider 
 D 0

which should yield a result very similar to the Asml. We see that this is indeed the
case. Small discrepancies are due to the way ties of structure sizes are dealt with.
Next, interestingly, we find that by changing 
, the rates in error reductions change
dramatically. Between NiAl and TiAl, it is not the same value of 
 which achieves
the lowest overall error. Notice that, by mixing thermodynamic EI with the cost
perspective we obtain lower error than Asml. We find that, with our surrogate model,
structure pools, and alloy materials, a value of 
 somewhere around, or less than,
0.5 seems to globally balance well the cost-accuracy trade-off.
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3.3.1 Multi-Objective EI-Cost Trade-Off and the Associated Pareto Front

As has been previously mentioned, the structure acquisition strategy AEI
 , Eq. (28),
is a multi-objective optimization task with an associated Pareto frontier. Each point
on this frontier represents a distinct optimal structure selection strategy. Which point
to choose is subjective and depends, loosely speaking, on how much cost matters
compared to GSL accuracy. We now look further at this frontier and ask where
the various acquisition strategies discussed earlier are relative to the frontier. We
find the answers in Fig. 5 where the structures selected by the various acquisition
strategies are marked in an EI-cost plot showing all structures (more than 34; 000)
as gray crosses together with the Pareto frontier, shown as a black dashed line, all
for the zeroth iteration, i.e., the situation where the first structure is added to the
initial pool. The frontier is taking this shape because we wish to maximize the EI
while minimizing the structure cost. Different colored diamonds show the particular
structure chosen by each strategy. We expect to find AEI and Asml at the edge of the
Pareto frontier since these methods correspond to extreme values of 
. We see that
Arnd is far from Pareto optimal, but that Aus, at least in the first iteration, lies close
to somewhere in between the extreme 
 values. We note that Aus is not on the Pareto
frontier itself. At any given iteration, nothing prevents the random or the uncertainty
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Fig. 5 (Color) The EI (as given by Eq. (25))-cost pareto frontier, built from the surrogate model
fitted to the initial structure pool of six structures. Each gray cross is a structure from the
unobserved large pool of more than 34; 000 structures. The black dashed line connects structures
on the pareto frontier. Diamonds in various colors show where the ith structure acquisition strategy
Ai chooses the first structure to be added to the data pool. Two points are on the frontier itself: AEI

and Asml
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sampling strategy to be Pareto optimal, but it is unlikely that this will happen for all
iterations. By choosing a value for 
 in Eq. (28), we can ensure that Pareto optimal
structures are always selected.

3.4 Assessing the Effect of the Initial Data Pool DN0

At this point, we study the effect of the initial NiAl data pool DN0 on the learning
rate of the thermodynamic EI policy (all with 
 D 1). These results are shown in
Fig. 6. To make a relative comparison of how fast the lowest overall GSL error is
obtained, the abscissa shows the number of observations added to the initial data
pool, and thus not the total number of structures in the pool. We find that, for NiAl
shown in Fig. 6a, starting with six structures the true GSL is learned in 89 iterations.
Larger pools all achieve a similar error to each other but do not, in 100 iterations,
learn the true GSL. Thus, the rate of learning the true GSL is dependent on the
initial pool. This is expected because different initial pools will have different initial
surrogate fits which, in turn, will direct the search for new structures into different
regions of input space.

Considering then TiAl in Fig. 6b, all starting pools achieve similar error within
a couple of percentage points after adding 30 structures, but are differing a lot for
additions less than 30 structures. The explanation for this is similar to that given for
NiAl.

It interesting that a span of almost 30 observations in the initial pool does not
appreciably change the lowest overall GSL error achieved within the range of 100
added structures in the case of TiAl. This is promising because we hope the EI
method allows us to comfortably start with small datasets.

4 Conclusions

In this work, we introduced optimal information acquisition policies for the
discovery of phase diagrams of binary alloys. We proposed policies that balance
the maximization of the expected improvement in the thermodynamic potential
and the minimization of the cost of simulations. We validated our methodology
by learning the GSL of NiAl and TiAl binary alloys and comparing it to the ground
truth. We found that the suggested policies outperform naively selected policies in
every respect.

The strength of our approach lies on sound theoretical foundations and on its
generality. From an application perspective, we plan to use it to actively select
informative simulations for the discovery of phase diagrams, band gaps, and
transition temperatures in binary alloys and beyond. From a theoretical perspective,
we would like to (1) Diminish the reliance of the approach on a pool of structures
by directly computing the Pareto front, e.g., via genetic algorithms; (2) Extend the
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Fig. 6 (Color) The effect on
the learning rate of the
thermodynamic EI method
(with 
 D 1 in Eq. (28) when
changing the initial data pool
is investigated. The abscissa
is the number of structures
added. The boxes with red
text report the size of the
initial data pool for each
graph. The ordinate is the per
cent GSLE, defined in
Eq. (29). Consider the graphs
labeled “6” and “10”: at the
point “C40” on the abscissa,
these designs contain a total
of 46 and 50 structures,
respectively. Results are
shown for (a) NiAl and
(b) TiAl
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EI so that it can cope with noisy estimates of the thermodynamic potential, e.g., by
prematurely stopping the thermodynamic integration required for its evaluation; (3)
Allow for the ability to select between models of varying fidelity, e.g., select whether
to compute energies with empirical potential or with density functional theory; (4)
Design policies that are simultaneously optimal for learning different quantities; (5)
Parallelizing information acquisition policies; and many more.
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52. Nelson LJ, Hart GL, Zhou F, Ozoliņš V (2013) Compressive sensing as a paradigm for building
physics models. Physical Review B 87(3):035,125
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Recent Developments in Spectral Element
Simulations of Moving-Domain Problems

Paul Fischer, Martin Schmitt, and Ananias Tomboulides

Abstract Presented here are recent developments in spectral element methods for
simulations of incompressible and low-Mach-number flows in domains with moving
boundaries. Features include PDE-based mesh motion, implicit treatment of fluid–
structure interaction based on a Green’s function decomposition, and an arbitrary
Lagrangian-Eulerian formulation for low-Mach-number flows that includes an
evolution equation for the background thermodynamic pressure. Several examples
illustrate the basic principles introduced in the text.

1 Introduction

With advances in high-performance parallel computers, scalable iterative solvers,
and high-order discretizations, much progress has been made toward direct numeri-
cal simulation (DNS) and large eddy simulation (LES) of transitional and turbulent
flows in complex domains. Indeed, researchers now can consider spectral-element-
based DNS for flow past wing sections at chord-Reynolds number Rec D 400; 000

[1]. DNS of the flow in internal combustion (IC) engines is close at hand, with
significant advances recently presented in [2–4].

Since its introduction by Patera [5], several developments have made the spectral
element method (SEM) a powerful tool for simulation of turbulent flows in complex
geometries. Key advances include high-order operator splitting strategies that lead to
decoupled linear symmetric positive definite subproblems at each timestep [6–10];
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fast multilevel preconditioners [11–13] coupled with scalable parallel coarse grid
solvers [14–16]; stable formulations for the convective operator [17–19]; and high-
performance implementations [20]. Here, we present recent developments in the
SEM for simulations of incompressible and low-Mach number flows in domains
with moving boundaries. Our interests are in turbulent flows having prescribed
boundary motion, such as piston and valve motion in IC engines, and in fluid-
structure interactions where the motion of the domain boundary is part of the
solution that derives from dynamical constraints coupled with the Navier-Stokes
equations.

The standard approach to efficient simulation of turbulent flow is to treat the
nonlinear terms explicitly in time, which leaves a linear symmetric unsteady-
Stokes operator to be solved, implicitly, at every timestep. (As discussed below, the
Stokes problem is typically solved by using an additional time-splitting in order to
decouple the pressure and velocity solves.) The justification for this semi-implicit
approach to temporal discretization derives from the following. First, the viscous
and incompressibility constraints are associated with fast time scales (infinite, in
the case of incompressibility, as it derives from letting the speed of sound go
to infinity), which warrant implicit treatment. Second, these terms are linear and
symmetric, which make them amenable to robust iterative solution strategies such
as preconditioned conjugate gradients. Third, explicit treatment of the convection
operator avoids solution of a nonlinear nonsymmetric system and requires a mild
timestep restriction of �t D O.jUj�x/ to ensure stability, where U and �x
are respectively characteristic sizes of the velocity and grid-spacing. Moreover,
this timestep restriction is typically comparable to that required from an accuracy
standpoint because the principal dynamics of turbulent flow are governed by first-
order derivatives in space and time. The stability requirement �t D O.�x/ is thus
generally not overly constraining.

Moving domains introduce new sources of nonlinearity and stiffness. In closed
systems such as internal combustion engines, one must address the changes in
thermodynamic pressure and, in the presence of combustion, changes in geom-
etry on short timescales associated with the chemistry. Fluid-structure interac-
tion (FSI) problems, where the solid part of the domain constitutes an addi-
tional unknown, introduce additional sources of stiffness associated with disparate
timescales between the fluid and solid response. Here, we describe recent devel-
opments that address several of these moving-domain issues while retaining the
computational efficiency demanded for turbulent flow simulations. The work
describes novel developments in time-accurate low-Mach combustion for closed
domains and in stable decoupled FSI solution strategies that are particularly
appropriate for the response of rigid bodies subjected to forces generated by
incompressible flows.

The article is organized as follows. Section 2 provides a review of the arbitrary
Lagrangian-Eulerian (ALE) formulation based on the PN � PN�2 spectral element
method for the incompressible Navier-Stokes equations, as developed by Ho and
collaborators [21–23]. Section 3 describes an ALE formulation for low-Mach-
number flows that allow compression and expansion of the domain volume.
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Specifics of the SEM are provided in Sect. 4, and several schemes for efficient mesh-
velocity updates are described in Sect. 5. Section 6 presents a decoupled-implicit
formulation for fluid-structure systems with a few degrees of freedom. We give
examples in Sect. 7 and a short conclusion in Sect. 8.

2 PN � PN�2 Navier-Stokes Formulation

We consider unsteady incompressible flow in a given computational domain ˝.t/
governed by the Navier-Stokes equations,

@u
@t

D �rp C 1
Rer � .r C rT/u � u � ru; r � u D 0; (1)

subject to prescribed velocity conditions on the domain boundary, @˝.t/. Here,
u.x; t/ D .u1; u2 u3/ represents the fluid velocity components as a function of
space, x D .x1; x2; x3), and time, t; p is the pressure field; and Re D L0U0=�0
is the Reynolds number based on a characteristic length scale, L0, velocity scale,
U0, and kinematic viscosity of the fluid, �0. We are interested in moving-geometry
simulations where the motion of the domain boundary, @˝.t/, may be either
prescribed or unknown, as is the case for fluid–structure interaction problems.
Our moving-domain formulation is based on the ALE formulation for the spectral
element method developed by Ho and collaborators [21–23]. We review those
developments here to set the stage for subsequent sections.

To highlight the key aspects of the ALE formulation, we introduce the weighted
residual formulation of (1): Find .u; p/ 2 XN

b .˝.t// � YN.˝.t// such that

d

dt
.v;u/ D .r � v; p/� 1

Re
.rv; s/� .v;u � ru/C c.v;w;u/; .r � u; q/ D 0; (2)

for all test functions .v; q/ 2 XN
0 .˝.t// � YN.˝.t//. Here, we use the compatible

velocity-pressure spaces introduced by Maday and Patera [24]: XN.˝.t// �
H1.˝.t// is the set of continuous Nth-order spectral element (SE) basis functions
described in Sect. 4; XN

b is the subset of XN satisfying the Dirichlet conditions on
@˝.t/; XN

0 is the subset of XN satisfying homogeneous Dirichlet conditions on
@˝.t/; YN is the space of discontinuous SE basis functions of degree N-2; and H1

is the usual Sobolev space of functions that are square integrable on ˝.t/, whose
derivatives are also square integrable. Furthermore, in (2), we have introduced the
L 2 inner product, .f; g/ WD R

˝.t/ f � g dV and the stress tensor s having components

sij WD . @ui
@xj

C @uj

@xi
/. A new term in (2) is the trilinear form involving the mesh

velocity, w,
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c.v;w;u/ WD
Z
˝.t/

3X
iD1

3X
jD1

vi
@wjui

@xj
dV; (3)

which derives from the Reynolds transport theorem when the time derivative is
moved outside the bilinear form, .v;ut/.

The advantage of (2) is that it greatly simplifies time differencing and avoids grid-
to-grid interpolation as the domain evolves in time. With the time derivative outside
the integral, each bilinear or trilinear form involves functions at a specific time, tn�j,
integrated over ˝.tn�j/. Geometric deformation within elements is specified by a
mesh velocity, w WD xt, that is essentially arbitrary provided that w is smooth and
satisfies the kinematic condition

w � Onj@˝ D u � Onj@˝; (4)

where On is the unit normal at the domain surface, @˝.t/.
Our temporal discretization is based on a semi-implicit formulation in which the

time derivative at tn is approximated with a kth-order backward difference formula
(BDFk). Terms on the right-hand side of (2) are evaluated either implicitly at tn or
via kth-order extrapolation (EXTk). Specifically, we write

Pk
jD0

ˇj

�t .v
n�j;un�j/n�j D .r � vn; pn/n� 1

Re.rvn; sn/nCPk
jD1 ˛jeNn�j CO.�tk/ (5)

.qn;r � un/n D 0: (6)

The subscript on the inner products .:; :/n�j indicates integration over ˝.tn�j/. The
coefficients ˇj and ˛j are standard BDFk/EXTk coefficients (e.g., as in Table 1), and
the approximations are accurate to O.�tk/, which is the global truncation error for
this timestepping scheme. The termeNn�j accounts for all nonlinear contributions at
time level tn�j, including the mesh motion term (3). For any time level tm we define

eNm WD c.vm;wm;um/m � .vm;um � rum/m (7)

D
3X

iD1

3X
jD1

Z
˝.t/

vm
i

"
@wm

j um
i

@xm
j

� um
j

@um
i

@xm
j

#
dV:

Table 1 BDFk/EXTk
coefficients for uniform �t

k ˇ0 ˇ1 ˇ2 ˇ3 ˛1 ˛2 ˛3

1 1 �1 0 0 1 0 0

2 3
2
� 4
2

1
2

0 2 �1 0

3 11
6
� 18

6
9
6
� 2
6

3 �3 1
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Moving to the left all terms in (5)–(6) that involve unknowns at tn and neglecting
the O.�tk/ terms, we obtain the update step for (2): Find .un; pn/ 2 XN

0 .˝/�YN.˝/

such that, for all .vn; qn/ 2 XN
0 .˝

n/ � YN.˝n/,

ˇ0

�t
.vn;un/n C 1

Re
.rvn; sn/n � .r � vn; pn/n D rn; .qn;r � un/n D 0: (8)

Here, the right-hand side is

rn D
kX

jD1

�
˛jeNn�j � ˇj

�t
.vn�j;un�j/n�j


: (9)

We note that the test functions v and q are functions of time as a result of the
motion of ˝.t/. In practice, however, all integrals are evaluated in a fixed reference
frame and they are stationary basis functions in this frame, integrated against the
time-evolving functions with the appropriate Jacobian. Specifically, for the spectral
element method, ˝.t/ D S

e˝
e.t/, where each element is represented by a map

xe.r; t/, where r 2 Ő WD Œ�1; 1�d and d is the number of space dimensions.
Such a decomposition is illustrated in Fig. 1 for d D 2. The test functions and
the underlying bases for the unknowns are taken as tensor product Lagrange
interpolating polynomials in Ő . Thus, an inner product I WD .v; u/ D R

˝
v u dV

in the two-dimensional case takes the form

I D
Z
˝.t/

v u dV D
EX

eD1

Z
˝e.t/

v u dV

D
EX

eD1

Z 1

�1

Z 1

�1
ve.r; s/ ue.r; s; t/J e.r; s; t/ dr ds; (10)

where the Jacobian J e.r; s; t/ D
ˇ̌̌
@xe

i
@rj

ˇ̌̌
is the determinant of the d � d matrix of

the metric terms associated with the transformation xe.r; t/ that maps Ő to ˝e.t/.

x  =  (x,y)

r  =  (r,s)
=  (r1,r2)

=  (x1,y2)

y
x

ΩΩ1 Ω2

Ω3

ˇ

E=3, N=4

Xe(r,t)
s

r

Fig. 1 Two-dimensional illustration of a spectral element domain decomposition
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(Here, superscript e refers to element number and should not be confused with the
temporal index m or n in (5)–(9).) Because the test functions are stationary in Ő
their time derivative following the material points is zero,

dvi

dt
D @vi

@t
C w � rvi D 0; (11)

which is a critical component in the derivation of (2)–(3) because it allows one to
substitute �w � rvi for @vi

@t [21]. Spectral element bases are discussed further in
Sect. 4 and in [25].

The timestepping strategy (8) has the advantage that all terms associated with
the fast time scales (i.e., the pressure and second-order viscous diffusion terms)
are linear, which makes an implicit treatment straightforward. Explicit treatment
of the nonlinear terms results in a stability constraint on the step size that scales
as �t D O.�x=U/, corresponding to the standard Courant condition. (The stability
regions for BDFk/EXTk are shown in Fig. 2.) The ALE time advancement from step
tn�1 to tn is outlined in Algorithm 1.

In Step 4, one can solve the full Stokes problem using an Uzawa algorithm
(e.g, [24, 26]). For large timesteps and highly viscous flows, Uzawa iteration is
a reasonable choice. For high Reynolds-number flows, however, an approximate
solution strategy via high-order algebraic splitting of the Stokes operator is more
effective [7, 9–11, 27]. This splitting can be viewed as a single step in an iterative

Fig. 2 Stability regions for
BDFk/EXTk

−2 −1.5 −1 −0.5 0

−1

−0.5

0

0.5

1

Re( λΔt )

Im
(λ

Δt
 )

BDFk/EXTk Stability Regions

k=1
2

3

Algorithm 1

1. Compute contributions to the right-hand side of (8) from the geometry at tn�1, and combine
with values from preceding timesteps tn�j.

2. Update the mesh position xn 2 ˝.tn/ using BDFk/EXTk applied to xt D w.
3. Generate geometric terms (per Sect. 4) for ˝n required to evaluate the operators on the left of (8).
4. Solve the unsteady Stokes system (8) for .un; pn/.
5. Update interior values of wn from prescribed boundary values (4).



Recent Developments in Spectral Element Simulations of Moving-Domain Problems 219

process. With kth-order extrapolation of the pressure prior to splitting, however, one
can realize kth-order accuracy in time without the need for iteration. We refer to
[11] for further details and to Sect. 7.1 for temporal convergence results for both
stationary and moving domain examples.

Save for the inertial terms associated with advection, (8) implicitly captures all
the dynamics of the system including, most importantly, the unsteady components
of the fluid inertia. The key point is that (8) is linear and thus admits superposition
when satisfying dynamical constraints, such as addressed in Sect. 6, with no need
for nonlinear iteration.

3 PN � PN Low-Mach-Number Formulation

Many engineering systems feature flows where compressibility is not negligible.
In internal combustion engines, for example, thermal dilation and especially
compression from the piston motion result in significant density variations. In this
section we address recent developments extending the SE-based low-Mach-number
formulation of [28, 29] to support moving domains and in particular closed systems
of variable volume.

For the numerical simulation of low-speed compressible reacting flows, the
existence of acoustic pressure waves severely restricts explicit-integration timestep
sizes because of the large discrepancy between the flow velocity and the speed of
sound. When acoustic waves are not of interest, regular perturbation techniques can
be used to decouple the waves from the governing equations [30–32]. This analysis
leads to a decomposition of the pressure as

p.x; t/ D p0.t/C �p1.x; t/; (12)

where the hydrodynamic pressure (p1) is decoupled from the thermodynamic
pressure (p0), and � is defined as �Ma2, where � is the ratio of specific heat
capacities and Ma is the Mach number. The resulting low-Mach-number governing
equations for Ng-component reactive gaseous mixtures are the following.

Continuity

@�

@t
C r � .�u/ D 0 (13)

Momentum

�

�
@u
@t

C u � ru
�

D �rp1 C r � .�s/ (14)

s D ru C .ru/T � 2

3
.r � u/ I (15)
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Energy

�cp

�
@T

@t
C u � rT

�
D r � .
rT/ �

NgX
iD1

hi P!i C � � 1

�

dp0
dt

(16)

cp D
NgX

iD1
cp;iYi (17)

Species

�

�
@Yi

@t
C u � rYi

�
D �r � .�YiVi/C P!i i D 1; : : : ;Ng (18)

Ideal gas law

p0 D �T=W (19)

In (13)–(19), hi; P!i;Yi; and Vi;Wi; cp;i are the enthalpy, chemical production term,
mass fraction, diffusion velocity, molecular weight, and heat capacity of species i,
respectively;
 is the thermal conductivity; p1 and p0 are the so-called hydrodynamic

and thermodynamic pressures, respectively; W D
�PNg

iD1 Yi=Wi

��1
is the mean

molecular weight; cp is the mixture heat capacity; and I is the identity matrix. The
species diffusion velocities Vi are given by Fick’s law

Vi D � .Di=Xi/rXi; (20)

Di and Xi D YiWi=W being the ith species mixture-averaged diffusivity and mole
fraction, respectively. All quantities appearing in the equations above are already
nondimensionalized by using reference values for L0;U0; �0;W0; cp0 and T0; in
particular p1 is nondimensionalized by using �0U2

0 and p0 by using �0RT0=W0,
where R is the universal gas constant. The reaction rate constants for the calculation
of the chemical source terms P!i in Eqs. (16) and (18) are assumed to follow an
extended Arrhenius expression.

In the low-Mach-number formulation, Eq. (13) is replaced by Eq. (21), which is
obtained by combining the continuity (13), energy (16), species (18), and state (19)
equations. When the domain volume changes in time, the temporal variation
of the thermodynamic pressure, p0, is nonzero. The governing system for this
background pressure is derived below, starting with the low-Mach relationship for
the divergence,
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r � u D �1
�

D�

Dt
D 1

T

DT

Dt
C

NgX
iD1

W

Wi

DYi

Dt
� 1

p0

dp0
dt

D QT C
�

1

cpW

� � 1
�

� 1

�
1

p0

dp0
dt
: (21)

Here, QT is the thermal divergence, which couples the flow field with the tempera-
ture and species,

QT D 1

�

NgX
iD1

W

Wi
.�r � �YiVi C P!i/ C 1

�cpT

0
@r � .
rT/ �

NgX
iD1

hi P!i

1
A : (22)

In (21), density is determined only by the thermodynamic state T;Yi, and p0 and
not by the velocity, since acoustic waves are neglected. By contrast, incompressible
formulations do not consider the effect of density variations because r � u � 0.

The background thermodynamic pressure, p0, is obtained by integrating over the
domain as follows:

Z
˝

1

p0

dp0
dt

dv D
�
1 � 1

cpW

� � 1

�

��1 �Z
˝

QT dv �
Z
@˝

u � n ds

�
: (23)

Because p0 is a function of time only, the integral on the left corresponds to
multiplying the integrand by the domain volume.

Numerical Methodology Spatial discretization of (13)–(21) is based on the
weighted residual formulation of the preceding section, save that pressure in this
case is continuous and of the same order as the velocity. We consequently refer to
this scheme as the PN � PN method. The resultant system of ordinary differential
equations (ODEs) is integrated in time with a high-order splitting scheme for low-
Mach-number reactive flows [28]. The low-Mach-number formulation allows the
thermochemistry subsystem to be decoupled from the hydrodynamic subsystem,
which has the advantage that an appropriate stiff ODE solver can be used to integrate
the fully coupled discretized energy and species equations, thus avoiding additional
splitting errors.

For the thermochemistry subsystem, the spatially discretized energy, species,
and thermodynamic pressure equations, (16)–(18) and (23), are integrated in time
with a variable-step kth-order (k D 1, . . . , 5) integrator, CVODE [33]. The density
is removed from the equations by using the equation of state. The equations are
solved implicitly with the exception of the convecting velocity fields, which are
approximated by using high-order explicit extrapolation. The links between thermo-
and hydrodynamic subsystems are the density and the divergence constraint (21),
which account for the influence of density variations on the velocity field.



222 P. Fischer et al.

The solution of the hydrodynamic subsystem is based on a projection-type
velocity correction scheme introduced by Orszag et al. [34]. As a first step, the
velocities are updated with the nonlinear terms and a pressure Poisson equation is
solved by using boundary conditions based on a third-order extrapolation of viscous
contribution of the velocity. Once the hydrodynamic pressure, p1, is known, the
velocity is corrected in a second implicit viscous correction step based on standard
Helmholtz equations (36). The low-Mach-number formulation yields kth-order
accuracy in time (typ., k D 3) for all hydrodynamic variables in combination with
minimal splitting errors as shown in [29] and [34]. As is the case for the PN � PN�2
formulation (8), this projection scheme amounts to solving, approximately, a linear
Stokes problem at each timestep, with boundary conditions being applied at time tn.

Arbitrary Lagrangian-Eulerian Formulation Extension of the PN � PN for-
mulation to the ALE framework follows essentially the same steps as for the
incompressible PN � PN�2 method of Sect. 2. A detailed derivation of the ALE
equations can be found in [35]. Sections 7.2 and 7.3 discuss validation of the code
modifications for constant and variable thermodynamic pressures.

In addition to solving the ALE momentum equations (13)–(15) and the pressure
Poisson equation, the ALE/low-Mach formulation requires the energy and species
equations to be integrated together with the single ODE for the thermodynamic
pressure (23). Similar to the momentum equation, the ALE form of temperature
(energy) and species equations is derived by introducing the mesh velocity, w, in
the convective operator. The resulting weighted residual statement reads as follows:
Find T; Yi 2 XN

b such that

d

dt
. ;T/ � . ;r � .wT/� u � rT/ D

� .r ; 
rT/ �
0
@ ;

NgX
iD1

hi P!i

1
AC � � 1

�

�
 ;

dp0
dt

�
(24)

d

dt
. ;Yi/ � . ;r � .wYi/� u � rYi/ D

� .r ; �DirYi/C . ; P!i/ 8 2 XN
0 ; (25)

where the  s are interpreted to be a different set of test functions for each of the
thermal/species equations. Here, the surface integrals have been omitted under the
assumption that only homogeneous boundary conditions are considered.

In the absence of chemical reactions (i.e., of numerical stiffness) and when the
thermodynamic pressure is constant, the ALE energy and species equations are
integrated by using the same semi-implicit formulation as with the momentum. In
this case, the semi-discrete form of the equations becomes
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ˇ0

�t
. ;Tn/n C .r ; 
rTn/n D

�
kX

jD1

ˇj

�t

�
 ;Tn�j

�
n�j

C
kX

jD1
˛j QNn�j

T (26)

ˇ0

�t

�
 ;Yn

i

�
n

C �r ; �DirYn
i

�
n

D

�
kX

jD1

ˇj

�t

�
 ;Yn�j

i

�
n�j

C
kX

jD1
˛j QNn�j

Yi
; (27)

where

QNn�j
T D �

 ; Œr � wT � u � rT�n�j
�

n�j

and

QNn�j
Yi

D �
 ; Œr � wYi � u � rYi�

n�j
�

n�j
:

In the presence of chemical reactions and thermodynamic pressure variation, the
ALE energy and species equations are integrated implicitly by using CVODE as
follows.

�
 ;

dT

dt

�
n

D . ; Œ Qw � Qu� � rTn/n

� .r ; 
rTn; /n �
NgX

iD1

�
 ; hi P!n

i

�
n

C � � 1
�

�
 ;

dp0
dt

�
n

(28)

�
 ;

dYi

dt

�
n

D �
 ; Œ Qw � Qu� � rYn

i

�
n

� �r ; 
rYn
i

�
n

C �
 ; P!n

i

�
n

(29)

and

Qw � Qu D
kX

jD1
˛jwn�j �

kX
jD1

˛jun�j

The ALE formulation is thus implemented in the energy and species equations by
replacing the fluid velocity u in the convective term with .u � w/ and by updating
the geometry ˝.t/. We note that because CVODE uses adaptive timestepping, the
mass matrix must be updated and inverted at intermediate time points in the interval
Œtn�1; tn�. Fortunately, as shown in the next section, the high-order quadrature of
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Algorithm 2

1. Compute T, Yi, and p0 at tn from (28)–(29) and (23) using CVODE with explicit updates of
x 2 ˝.t/.

2. Calculate Qn
T from (22).

3. Update the mesh velocity and hydrodynamic subsystem (13)–(15) using Algorithm 1.

the spectral element method yields a diagonal mass matrix that allows this system
to be advanced at low cost. We summarize the low-Mach ALE formulation in
Algorithm 2.

4 Spectral Element Method

Here, we describe the spectral element bases, operator evaluation, and implementa-
tion of inhomogeneous boundary conditions that are central to our moving-domain
simulations. A critical aspect of the SEM is that neither the global nor the local
stiffness matrices are ever formed. Elliptic problems are solved iteratively and thus
require only the action of matrix-vector multiplication. Preconditioning is based on
either diagonal scaling or hybrid multigrid-Schwarz methods with local smoothing
effected through the use of separable operators [11–13, 36]. Exclusive reliance on
matrix-free forms is particularly attractive in an ALE context because the overhead
to update the operators as the mesh evolves is effectively nil.

We illustrate the basic components by considering the scalar elliptic problem,

� r � �ru C �u D f ; u D g on @˝D; ru � On D 0 on @˝n@˝D; (30)

with Dirichlet conditions imposed on @˝D and Neumann conditions on the remain-
der of the boundary, @˝n@˝D. The coefficients and data satisfy � > 0, � � 0,
f 2 L 2.˝/, and g 2 C0.@˝D/. This boundary value problem arises in many
contexts in our Navier-Stokes solution process. With � D ˇ0=�t and � a constant, it
is representative of the implicit subproblem for the velocity components in (5). With
� D 0 we have a variable-coefficient Poisson problem that arises in the pressure
substep for the low-Mach formulation and in the lifting operators for the mesh
velocity that will be introduced at the end of this section.

The discrete variational formulation of (30) is as follows: Find u.x/ in XN
b such

that

.rv; �ru/ C .v; �u/ D .v; f / 8 v 2 XN
0 ; (31)

where, as in the Navier-Stokes case, XN
b (XN

0 ) denotes the space of functions in XN

that satisfy u D g (u D 0) on @˝D. We symmetrize (31) by moving the boundary
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data to the right-hand side. If ub is any known function in XN
b , the reformulated

system is as follows: Find u0.x/ in XN
0 such that

.rv; �ru0/ C .v; �u0/ D .v; f / � .rv; �rub/ � .v; �ub/

8 v 2 XN
0 ; (32)

with u WD u0 C ub.
We formally introduce a global representation of u.x/, which is never used in

practice but which affords compact representation of the global system matrices.
Let any u 2 XN be represented in terms of a Lagrange (nodal) interpolating basis,

u.x/ D
NnX
O|D1

u O|� O| .x/; (33)

with basis functions � O| .x/ that are continuous on ˝ . The number of coefficients,
Nn, corresponds to all basis functions in XN . Ordering the coefficients with boundary
nodes numbered last yields n interior nodes such that XN

0 D spanf� O|gn
1. Let In be

the n � n identity matrix and R D ŒIn O� be an n � Nn restriction matrix whose last
.Nn � n/ columns are empty. For any function u.x/ 2 XN we will denote the set of Nn
basis coefficients by Nu and the set of n interior coefficients by u. Note that u D RNu
always holds, whereas Nu0 D RTu0 holds only for functions u0 2 XN

0 .
We define the stiffness NA and mass NB matrices having entries

NAij WD .r�i; �r�j/; NBij WD .�i; �j/; i; j 2 f1; : : : ; Nng2: (34)

The systems governing the interior coefficients of u0 are the n�n restricted stiffness
and mass matrices, A D R NART and B D R NBRT , respectively. A is invertible if n< Nn.
We refer to NA as the Neumann operator because it is the stiffness matrix that
would result if there were no Dirichlet boundary conditions. It has a null space
of dimension one, corresponding to the constant function.1

With the preceding definitions, the discrete equivalent of (32) is

vT A u0 C �vT B u0 D vTR
h NB Nf � NA Nub � � NB Nub

i
: (35)

Here, we have exploited the fact that u0 and v are in XN
0 , and for illustration we have

made the simplifying assumptions that � is constant and that f 2 XN . Neither of
these assumptions is binding. Full variability, including jumps in �, � , and f across
element boundaries, can be handled in the SEM.

1We remark that NA governs the pressure in certain Navier-Stokes formulations when the system is
closed. A pressure with zero mean is readily computed iteratively by projecting the constant mode
out of the right-hand side and out of the pressure with each iteration.
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Because (35) holds for all v 2 lRn, the linear system for the unknown interior
basis coefficients is

H u0 D R
h NB Nf � NH Nub

i
; (36)

with NH WD NA C � NB and H WD R NHRT . The full solution to (30) then is given by (33)
plus

Nu D RTu0 C Nub: (37)

For the case f D 0, we recognize in (36)–(37) the energy-minimizing projection,

Nu D Nub � RT
�
R NHRT

��1
R NH Nub; (38)

which extends the trace of ub into the interior of ˝ in a smooth way provided that
� is also smooth.

Spectral Element Bases In the SEM, the global bases �j are never formed. Rather,
all operations are evaluated locally within each of E nonoverlapping hexahedral
(curvilinear brick) elements whose union forms the domain ˝ D SE

eD1 ˝e.
Functions in XN are represented as tensor-product polynomials in the reference
element, Ő WD Œ�1; 1�d, whose image is mapped isoparametrically to each of the
elements, as illustrated for the case d D 2 in Fig. 1. As an example, a scalar field u.r/
on ˝e in three dimensions would be represented in terms of local basis coefficients
ue

ijk as

ue.r/ D
NX

kD0

NX
jD0

NX
iD0

hi.r/ hj.s/ hk.t/ ue
ijk: (39)

Here, r D Œr; s; t� D Œr1; r2; r3� 2 Ő are the computational coordinates,2 and hi./

are Nth-order Lagrange polynomials having nodes at the Gauss-Lobatto-Legendre
(GLL) quadrature points, j 2 Œ�1; 1�. This choice of nodes provides a stable
basis and allows the use of pointwise quadrature, resulting in significant savings in
operator evaluation. Typical discretizations involve E D 102–107 elements of order
N D 8 � 16 (corresponding to 512-4,096 points per element). Vectorization and
cache efficiency derive from the local lexicographical ordering within each element
and from the fact that the action of discrete operators, which nominally have O.EN6/

nonzeros, can be evaluated in only O.EN4/ work and O.EN3/ storage through the
use of tensor-product-sum factorization [25, 37].

2In this section, we occasionally use “t” to represent the third coordinate in the reference domain
Ő . It should not be confused with time because there is no temporal variation in the current context.
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The geometry, xe.r/, takes exactly the same form as (39), and derivatives are
evaluated by using the chain rule. For example, the pth component of the gradient
of u at the GLL node � ijk WD .i; j; k/ is computed as

@u

@xp

ˇ̌̌
ˇ
�ijk

D @r1
@xp

ˇ̌̌
ˇ
�ijk

NX
i0D0

ODii0 ui0jk C @r2
@xp

ˇ̌̌
ˇ
�ijk

NX
j0D0

ODjj0uij0k C @r3
@xp

ˇ̌̌
ˇ
�ijk

NX
k0D0

ODkk0uijk0;

where OD is the one-dimensional derivative matrix on Œ�1; 1�. ODij D dhj

dr

ˇ̌
ˇ
i

: We

note that if the metric terms @rq

@xp
are precomputed, then the work to evaluate all

components of the gradient, @u
@xp

, is .6N C15/EN3 
 .6N C15/Nn, and the number of

memory accesses is O.Nn/. The work to compute the metrics @rq

@xe
p

is similarly O.N Nn/.
Using OD, one evaluates the 3 � 3 matrix

@xe
q

@rp
, then inverts this matrix pointwise in

O.N3/ operations to obtain .Fe
pq/ijk WD @rq

@xe
p

ˇ̌̌
ijk

. If ue is the lexicographically ordered

set of basis coefficients on element˝e, its gradient can be compactly expressed as

we
p D

3X
qD1

Fe
pqDque; p D 1; 2; or 3; (40)

where D1 D I ˝ I ˝ OD, D2 D I ˝ OD ˝ I, D3 D OD ˝ I ˝ I, and, for each p, q and e,
Fe

pq is a diagonal matrix.
The high order of the SEM coupled with the use of GLL-based Lagrangian

interpolants allows the integrals in (34) to be accurately approximated by using
pointwise quadrature. In particular, the mass matrix becomes diagonal. For a single
element one has

Be
O{O{0 WD

Z
˝e
�O{ �O{0 dx D

Z 1

�1

Z 1

�1

Z 1

�1
�

hi.r/hj.s/hk.t/
	 �

hi0.r/hj0.s/hk0.t/
	
J e dr ds dt



X

i00 j00 k00

�i00�j00�k00

�
hi.i00/hj.j00/hk.k00/

	 �
hi0.i00/hj0.j00/hk0.k00/

	
J e

i00 j00 k00

D �i�j�kJ
e

ijk ıii0ıjj0ıkk0; (41)

where J e D
ˇ̌
ˇ @xe

p

@rq

ˇ̌
ˇ is the pointwise Jacobian associated with the mapping xe.r/,

�j is the quadrature weight corresponding to the GLL point j, and ıii0 is the
Kronecker delta. For compactness, we have also introduced the lexicographical
ordering O{ WD i C .N C 1/.j � 1/ C .N C 1/2.k � 1/. The same map takes the
trial function .i0; j0; k0/ to O{ 0. The tensor-product form of the local mass matrix is
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Be D Je. OB ˝ OB ˝ OB/, where OB Ddiag(�k) is the 1D mass matrix containing the GLL
quadrature weights and Je is the diagonal matrix of Jacobian values at the quadrature
points.

Combining the mass matrix with the gradient operator yields the local stiffness
matrix as typically applied in the SEM, namely,

Ae D
3X

pD1

3X
qD1

DT
p

�
�Ge

pq

�
Dq; Ge

pq WD Be
3X

q0D1
Fe

q0p Fe
q0q: (42)

We note that Ge
pq D Ge

qp is a symmetric tensor field that amounts to six diagonal
matrice of size .N C1/3 for each element˝e. Likewise, the variable diffusivity � is
understood to be a diagonal matrix evaluated at each gridpoint, e

ijk. We emphasize
that for the general curvilinear element case Ae is completely full, with .N C 1/6

nonzeros, which makes it prohibitive to form for N > 3. However, the factored
form (42) is sparse, with only 6.N C 1/3 nonzeros for all the geometric factors Ge

pq

plus O.N2/ for derivative matrices (and an additional .N C 1/3 if � is variable). The
total storage for the general factored stiffness matrix is � 7nl, where nl D E.N C
1/3 is the total number of gridpoints in the domain. Moreover, the total work per
matrix-vector product is only � 12Nnl, and this work is effectively cast as highly
vectorizable matrix-matrix products [20, 25, 38].

To complete the problem statement, we need to assemble the local stiffness and
mass matrices, Be and Ae, and apply the boundary conditions, both of which imply
restrictions on the nodal values ue

ijk and ve
ijk. For any u.x/ 2 XN we can associate

a single nodal value ug for each unique xg 2 ˝ . where g 2 f1; : : : ; Nng is a global
index. Let g D ge

ijk be an integer that maps any xe
ijk to xg; let l D iC .N C1/.j�1/C

.N C 1/2.k � 1/C .N C 1/3.e � 1/ represent a lexicographical ordering of the local
nodal values; and let m D E.N C 1/3 be the total number of local nodes. We define
QT as the Nn � m Boolean gather-scatter matrix whose lth column is Oeg.l/, where g.l/
is the local-to-global pointer and Oeg is the gth column of the Nn � Nn identity matrix.
For any u 2 XN we have the global-to-local map uL D Qu, where uL D fuegE

eD1 is
the collection of local basis coefficients. With these definitions, the discrete bilinear
form for the Laplacian becomes

.rv; �ru/ D
EX

eD1
.ve/TAeue D vT

LAL uL D .Qv/TAL Qu D vTQTAL Qu; D vT NAu:

Here AL D block-diagfAeg is termed the unassembled stiffness matrix, and NA D QT

ALQ is the assembled stiffness matrix. To obtain the mass matrix, we consider the
inner product,

.v; u/ D
EX

eD1
.ve/TBeue D vT

LBL uL D .Qv/TBL Qu D vTQTBL Qu; D vT NBu:
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Here, BL D block-diagfBeg and NB D QTBLQ are, respectively, the diagonal
unassembled and assembled mass matrices comprising local mass matrices, Be.

We close this section on basis functions by defining elements of the pressure
space. For the PN � PN (low-Mach) formulation described in Sect. 3, we take YN D
XN . That is, the pressure is continuous and represented by basis functions having the
form (39). For the PN � PN�2 formulation of Maday and Patera [24], the elements
of YN have the tensor-product form of (39) except that the index ranges from 0 to N-
2 and the nodal points are chosen to be the Gauss-Legendre quadrature points rather
than the GLL points. Furthermore, interelement continuity is not enforced on either
the pressure, p, or the corresponding test function, q. Element-to-element interaction
for the pressure derives from the fact that the velocity u and test functions v are in
XN � H1. We refer to [11, 24, 25] for additional detail concerning the SEM bases
and implementation of the PN � PN�2 formulation.

5 Mesh Motion

Mesh displacement is computed by integrating the ODE w D Px in time, where
the mesh velocity w is subject to the kinematic constraint (4). The main idea is to
smoothly blend the boundary data into the domain interior. The original SEM-ALE
formulation of Ho [21] used an elasticity solver in order to lift the mesh-velocity
boundary data to the domain interior. This approach has proven robust for many
complex motions, including free-surface applications. It is expensive, however, with
the mesh solve costing as much as or more than the velocity/pressure solve.

We have found in several instances that simpler strategies offer significant cost
savings and can generate adequate blending functions. For example, for a tensor-
product domain with a free surface located at height z D H.x; y/ and no motion on
the floor at z D 0, one can define the vertical mesh velocity satisfying (4),

wz.x; y; z/ D z

H.x; y/

u.x; y;H/ � On
Oz � On; (43)

where u is the fluid velocity, On is the unit normal at the surface, and z is the
unit vector in the z direction. This approach has been used in free-surface Orr-
Sommerfeld examples [39].

For more complex domains, we typically solve Laplace’s equation (i.e., (30) with
� D f D 0) in order to blend the surface velocities to the interior, relying on
the maximum principle to give a bounded interpolant. Fluid dynamics applications
often require high-resolution meshes near walls in order to resolve boundary-layer
turbulence. If unconstrained, mesh deformation can compromise the quality of these
critical boundary-layer elements. The deformation can be mitigated, however, by
increasing the diffusivity near the walls so that the mesh velocity tends to match
that of the nearby object. The bulk of the mesh deformation is effectively pushed
into the far field, where elements are larger and thus better able to absorb significant
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t=0.0 t=0.5 t=1.0

Fig. 3 Two-cylinder mesh deformation resulting from variable-diffusivity solver for mesh velocity

deformation. We usually set �.x/ D 1 C ˛e�ı2 with ˛ D 9 and ı WD d=� the
distance to the wall normalized by a chosen length scale, �. In the absence of any
other scale information, we set � equal to the average thickness of the first layer of
spectral elements in contact with the given object. To compute d, we use a Euclidian
graph-based approximation to the true distance function. A naïve computation of the
distance function begins by initializing d to a large number at each gridpoint, setting
d D 0 on boundary nodes, and then iterating, with each point i assigning di to be
min.di; dj C dij/ for all points j connected to i, where dij is the Euclidian distance
between i and j. The iteration proceeds until no distances are updated. The idea
of using variable diffusivity has been explored by other authors in finite-element
contexts where the coefficient is based on local element volumes (e.g., [40, 41]) and
can also be applied to the elasticity equations.

Figure 3 shows a close-up of an ALE spectral element mesh for a pair of unit-
diameter cylinders moving toward each other until the gap is .03. Here, � D 0:1;
and a new diffusivity function, �new, is computed every 100 timesteps based on
an updated distance function. In order to make the function smooth in time, the
diffusivity is blended with preceding values by using a weighted update, �n D
0:95�n�1 C :05�new. (With a more efficient distance function, one could simply
update the diffusivity at every step instead of using a weighted update.) Jacobi-
preconditioned conjugate gradient (CG) iteration is used to solve for the mesh
velocity. When coupled with projection in time [42], only a few iterations per step
are required in order to reduce the CG residual to 10�5. Figure 3 shows clearly
that this procedure preserves element shapes near the cylinders except in the gap
region where the near-wall elements must yield to the cylinder motion. By tuning
the parameters one can ensure that compression in the gap is evenly distributed so
that the centermost elements are not squeezed to zero thickness before the near-wall
elements yield. We note that because the diffusivity is based on the geometry, there
is little hysteresis in the mesh deformation, which is not necessarily true if the mesh
diffusivity is based on element sizes.

We remark that if the geometric motion is prescribed, one can solve for the mesh
position at a few time points, optimize the mesh at these points (while retaining the
base topology), and then use a spline to generate the mesh velocity at all instances
in time. Such a strategy would yield optimal meshes that vary smoothly in time
and that incur low overhead for mesh motion. The base solutions can be generated
in a separate off-line calculation, for example, with the PDE-based approach just
described.
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6 Fluid–Structure Interaction

Here, we consider systems in which the boundary motion is determined dynamically
through interactions with the external flow field, rather than prescribed. A critical
feature of these problems is that the resulting system can be extremely stiff. Indeed,
because of incompressibility, the pressure responds instantaneously to acceleration
of boundaries, with the net effect that the system has added apparent mass arising
from the Navier-Stokes equations.

The stiffness associated with fluid-structure interaction (FSI) problems is well
known and has been the topic of much recent activity. Several strategies have been
pursued to develop robust and fast methods. A particularly robust approach is to
use a monolithic scheme with nonlinear iteration to solve for all fluid and solid
variables at each step. A comprehensive overview of this strategy is provided by
Hron and Turek [43]. Another strategy is to couple independent fluid and structural
codes, which offers the potential for using the state of the art from each of the
disciplines (e.g., using a structural code with support for contact problems, nonlinear
material response, and anisotropic materials). Decoupled methods generally either
are explicit or rely on subiterations at each step to improve stability. Gerbeau
et al. [44] analyze the stability of several coupling strategies, including subiteration
approaches, and identify added mass as one of the principal sources of instability. In
a subsequent paper [45], Gerbeau and coworkers identify that the added-mass effect
constitutes a linear phenomenon and suggest a coupled, but linear, FSI solution
strategy to keep the work low while retaining good stability properties. Farhat
et al. [46] demonstrate that a fully explicit subiteration-free strategy using staggered
fluid/structure updates can be robust even in the presence of strong added-mass
effects for examples having catastrophic (i.e., rapid) structural response.

Recently, a set of schemes with implicit treatment of the added-mass effect
have been developed by Banks and coworkers that allow for a decoupled approach
without subiteration [47–49]. The authors consider incompressible flows interacting
with elastic solids [48] and structural shells [49], as well as FSI for light rigid
bodies in compressible flow [47]. The key idea of these papers is to identify the
added-mass tensor from a characteristic analysis of the fluid-structure interaction.
For the incompressible flow cases, they further introduce a new set of mixed (Robin)
boundary conditions for the velocity and pressure, as has been considered by other
authors (see, e.g., [50] for an extensive review).

We consider an extension of these ideas to the case of light rigid bodies for
incompressible flow. The scheme is fully implicit and exploits the linearity of the
unsteady Stokes problem (8). The approach of [47] for rigid-body responses is
based on a characteristics analysis associated with compressible flow. The authors
identify the interface stress with the difference in velocity between the fluid and
the structure. Consideration of such a difference is sensible in the compressible
case because it is a measure of the temporal response of the fluid to the motion
of the structure. In the case of a rigid solid and an incompressible fluid, however,
there is no compliance, and the response is instantaneous. Nonetheless, the added-
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mass effect is a linear phenomena associated with the acceleration of the object
that ultimately manifests as a linear function of the unknown velocity at time tn.
Here, we introduce a Green’s function approach to identifying the added mass in
the incompressible case and incorporating its effect into the implicit Stokes update
step (8) through superposition.3

We illustrate the procedure with the example of flow past a cylinder of mass m
that is allowed to oscillate in the y direction, subject to a restoring force F� D �� �,
where the positive spring coefficient � may be a function of the displacement �. In
addition to providing a relatively simple model, this problem is of interest in its own
right and continues to be a topic of analysis [51, 52]. From Newton’s third law, the
cylinder motion is governed by

m R� D Fnet D Ff C F�: (44)

The challenge of (44) is that the fluid forces Ff are strongly dependent on the
acceleration of the object, R�, particularly as the mass, m, tends toward zero. In this
limit we must have Ff � �F� or suffer unbounded acceleration. For this reason,
we seek an implicit coupling between (44) and the ALE formulation (8).

We begin with a BDFk/EXTk temporal discretization of (44),

m

�t

kX
jD0

ˇj P�n�j D Fn
f C QFn

�; (45)

where kth-order extrapolation is used to compute the restoring force,

QFn
� D

kX
jD1

˛jF
n�j
� D Fn

� C O.�tk/ (46)

Note that P�n Oy, the product of the unknown cylinder velocity at tn with the unit
normal in the y direction, corresponds to the boundary condition on the cylinder
surface for un in (8).

We next break Fn
f into two contributions: Fn

f D FsC˛Fg, where Fs is the standard
fluid lift force that would result from advancing (8) with a given cylinder velocity,
P�s, whose value is at our discretion and whose choice is discussed shortly. We denote
the solution of this system as .us; ps/.

The second part of the force, Fg, is the lift that results from the Green’s function
pair (ug; pg) satisfying the following: Find .ug; pg/ 2 XN

1 � YN such that

ˇ0

�t
.v;ug/n C 1

Re
.rv; sg/n � .r � v; pg/n D 0 .q;r � ug/n D 0 (47)

3We remark that Patera’s original SEM paper [5] used a similar Green’s function approach to
enforce the divergence-free constraint at domain boundaries.
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for all .v; q/ 2 XN
0 � YN , where XN

1 is the subset of XN that vanishes on @˝D

save for the cylinder surface, where ug D .0; 1; 0/. From the velocity pressure pair
(ug; pg) we compute the lift Fg. Note that we do not actually solve the unsteady
Stokes problem (47), but rather its time-split surrogate consistent with that used to
advance (8).

For either of the formulations described in the preceding sections the implicit
substep used to update .un; pn/ is linear, and superposition may be used to satisfy
any number of constraints. The key idea is thus to set

un D us C ˛ug; pn D ps C ˛pg; Fn D Fs C ˛Fg; P�n D P�s C ˛; (48)

where ˛ is chosen to satisfy (45) exactly. Because both sides of (45) are linear in ˛,
one has directly

˛ D
Fs C QFn

� � m
�t

�
ˇ0 P�s C Pn

jD1 ˇj P�n�j
�

m
�tˇ0 � Fg

: (49)

We make several remarks concerning this procedure. First, the case m D 0

presents no difficulty because Fg is never zero. In fact, Fg is negative (the restoring
force is opposite the applied velocity perturbation), so (49) can never suffer from
a vanishing denominator. Second, .us; ps;Fs/ results from the standard Navier-
Stokes update. Most of the expense is in iterative solution of the pressure, which
can be minimized if the apparent acceleration of the cylinder is zero, that is, if
P�s WD �.Pk

jD1 ˇj�
n�j/=ˇ0. The variation in P�n is made up by the contribution from

the Green’s function, whose cost is independent of ˛. For computation of both the
s and g variables, significant cost savings are realized by using initial guesses that
are projections onto the space of prior solutions [42]. We remark further that Fg

represents the influence of the added mass. From the denominator of (49) we see
that the effective added mass is

ma D ��tFg=ˇ0:

The only time dependence for .ug; pg/ arises from the fact that the domain is time
varying. Otherwise, one could compute .ug; pg/ once in a preprocessing step and
reuse it for all time provided that ˇ0 and �t are invariant. We use such an approach
for rotating cylinder cases where the geometry is indeed invariant.

We note that explicit computation of QFn
� , which readily admits incorporation

of fully nonlinear responses (e.g., [52]), is a potential source of instability. Under
standard conditions, however, the Courant restriction on the fluid velocity update
will suffice to ensure that explicit treatment of the mass-spring system will be stable.
Consider the case where the spring is sufficiently stiff such that stability is a concern.
The dominant eigenvalue in this case is 
� WD ˙i

p
�=mv, where mv D m C ma

is the nonzero virtual mass that includes the added mass. Figure 2 shows that the
BDFk/EXTk stability region for k D 3 includes a portion of the imaginary axis and
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that this system will be stable when j
��tj < 0:6. For the same timestepper, explicit
treatment of advection imposes a stability constraint of the form �t
CFL  0:6,
where, for the SEM,


CFL 
 1:5max
i

ˇ̌̌
ˇ ui

�xi

ˇ̌̌
ˇ ; (50)

with ui and �xi representing characteristic velocities and grid spacing at gridpoint
xi. (See Fig. 3.5.2 in [25].) If the cylinder is oscillating in the stiff-spring limit with
amplitude �0, then the velocity scale is juij 
 �0

p
�=mv, and we have

�t  0:6

max.1; 1:5 �0
�xi
/

r
mv

�
: (51)

The Courant condition will hold under the assumption that the displacement is larger
than the characteristic grid spacing (i.e., �0=�xi > 1). However, if the spring is so
stiff that translational motion is suppressed (�0 < �xi), then the Courant condition
due to spring motion will not come into play, and the stiffness associated with a
large spring constant could restrict �t.

Extension of the Green’s function approach to more structural degrees of freedom
is straightforward. For each DoF, one generates a solution pair .ug; pg/; g D 1; : : : ;

NDoF , each of which leads to a nontrivial force or torque on each and every object.
One obtains an NDoF � NDoF matrix corresponding to (49) whose solution results
in an implicit solution to all the dynamical constraints. For a few DoFs, solution
of this system is not a challenge. However, the cost of solving NDoF systems
for the independent Green’s functions can become prohibitive if NDoF becomes
too large. Another extension is to use the Green’s function approach to remove
the stiffest contributions to an otherwise explicitly coupled strategy. In particular,
for compressible solids the mean compression mode (i.e., the volumetric change)
induces long-range accelerations in the fluid. It is straightforward to compute the
associated added mass by solving for the Greens function associated with the mean
compression mode and to add a multiple of this solution to obtain the requisite
force balance, as done in (48)–(49). We are currently investigating this idea, to
be discussed in a future article, in the context of coupling Nek5000 with a large
nonlinear structures code.

7 Results

Here, we consider several examples that illustrate the techniques introduced in the
preceding sections. These methods have been implemented Nek5000, which is an
open source spectral element code for fluid, thermal, and combustion simulations
that scales to over a million processors [53].
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7.1 Temporal-Spatial Accuracy

We illustrate the spatial and temporal convergence of the baseline PN � PN and
PN � PN�2 discretizations using the BDFk/EXTk schemes outlined in the text.

We consider the family of exact eigenfunctions for the incompressible Stokes
and Navier-Stokes equations derived by Walsh [54], which are generalizations of
Taylor-Green vortices in the periodic domain ˝ D Œ0; 2��2. For all integer pairs
(m; n) satisfying 
 D �.m2 C n2/, families of eigenfunctions can be formed by
defining streamfunctions that are linear combinations of the functions

cos.mx/ cos.ny/; sin.mx/ cos.ny/; cos.mx/ sin.ny/; sin.mx/ sin.ny/:

With the eigenfunction u0 WD .� y;  x/ as an initial condition, a solution to the
Navier-Stokes equations is u D e�
tu0.x/. Figure 4 shows the vorticity for a case
proposed by Walsh, with D .1=4/ cos.3x/ sin.4y/�.1=5/ cos.5y/�.1=5/ sin.5x/:
The analytical solution is stable only for modest Reynolds numbers. Interesting
long-time solutions can be realized, however, by adding a relatively high-speed
mean flow Nu, in which case the exact solution is

Qu.x; t/ D Nu C e�
tu0Œx � Nut�; (52)

where the brackets imply that the argument is modulo 2� in x and y. By varying Nu,
one can advect the solution a significant number of characteristic lengths before the
eigensolution decays.

We typically run this case with periodic boundary conditions, but that is not
as strong of a test as having Dirichlet conditions, which are a well known source
of difficulty in time advancement of the incompressible Navier-Stokes equations
[27, 34]. In the present case, since we have an exact solution as a function of space
and time we can run the Dirichlet case with the solution prescribed on all four sides
of the domain. Starting with the initial condition of Fig. 4 (left), we take � D :01
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Fig. 4 Eddy solution results at Re D 100: (left) vorticity at t D 0 for the initial condition (52),
(center) maximum pointwise error at time t D 2� as a function �t for PN � PN with N D 6–10
and (right) for PN �PN�2 with N D 8–10. The dashed curve is 500�t3
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and Nu D .1; :3/ and evolve the solution to a final time T D 2� . In that time, the
peak amplitude of the perturbation velocity, u � Nu, decays from 2.0 to 0.46. The
mesh consists of a 16�16 array of square spectral elements.

The right two panels in Fig. 4 show the maximum pointwise error in the
x-component of the velocity for PN � PN (center) and PN � PN�2 (right) as
a function of �t for several values of N. The general trend is that the error
is dominated by spatial error for sufficiently small values of �t and becomes
dominated by temporal error as �t is increased until the CFL condition is violated,
at which point the solution is unstable. Both discretizations demonstrate O.�t3/
accuracy for the velocity and both show exponential convergence in space. For
small �t, increasing the polynomial order by just 1 yields more than an order-
of-magnitude reduction in error until the curve hits the temporal-error threshold.
Notice that the relatively poor performance of PN � PN�2 may be explained by
lack of resolution for the pressure. Based on this argument, one would expect the
N D 10 error for PN � PN�2 to be about the same as N D 8 for PN � PN . Indeed,
the N D 10 PN � PN�2 result is bracketed by N D 8 and 9 for PN � PN . We note
that for this case the resolution of the pressure is a gating issue because its maximum
wavenumber is essentially twice that of the velocity, as must be the case given that
the pressure is the only term that can cancel the quadratic product involving the
velocity eigenfunctions.

We next use the Walsh example to test our ALE formulations. Once again we
have inhomogeneous Dirichlet conditions on all of @˝ corresponding to Qu (52).
We prescribe the mesh velocity, and for these tests we also lift the kinematic
constraint (4) since there is no need for the boundary to be a material surface.
We take an initial configuration .x0; y0/ 2 ˝0 D Œ0; 7�2 and evolve this with the
prescribed mesh velocity

Px D ! cos.!t/ sin.�y0=7/; (53)

Py D ! cos.!t=2/ sin.�x0=7/.2y � 1/; (54)

with ! D 5. Configurations of the domain at two time points are shown in Fig. 5,
from which one can see that this is not a volume-preserving transformation. Of
course it does not need to be because the known boundary data corresponds to a
divergence-free field at each point in space and time. The rightmost panel in Fig. 5
shows that third-order accuracy is once again attained, albeit with a larger error than
for the nonmoving case of Fig. 4. Somewhat surprisingly, the mesh motion leads to
a greater increase in temporal error than the increase in spatial error that one might
expect from the deformation of the elements. This increased temporal error results
from the rapid mesh motion combined with the relatively high spatial wavenumber
of the solution, which gives rise to rapid fluctuations in ut.
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Fig. 6 Distribution of velocity magnitude for the PN �PN approach on a vertical slice at t = 50

7.2 Constant Pressure Example

The discretization of the convective term including the mesh velocity used in the
newly implemented ALE method in the PN � PN formulation is identical to the one
used in the PN � PN�2 approach by Ho and Patera, which was extensively validated
in [21] and [23]. The accuracy of this scheme was also assessed in [55] using an
analytic solution in an expanding mesh setup.

For the 3D case, verification of the PN � PN implementation begins with tube
setup of Fig. 6. The moving mesh in this case generates a peristaltic pumping that
strongly influences the temporal and spatial evolution of the velocity field. The pipe
has a base radius R D 1=2 and length L D 16. The prescribed mesh velocity is

wx D �W
x

R
cos.kz � !t/; wy D �W

y

R
cos.kz � !t/; wz D 0; (55)

where W WD A=! is the velocity amplitude and A WD 0:1 tanh.0:2z/ tanh.0:2t/ is
the amplitude of the displacement. The prescribed wavenumber is k D �=3, and the
frequency is ! D 1. The Reynolds-number is always below 200 so that the flow
remains laminar. At the inflow a steady parabolic velocity profile with a maximum
axial velocity uz D 1 at the cylinder center is imposed while at the outflow zero-
Neumann boundary conditions are used. At the pipe walls the velocity is set equal
to the mesh velocity in order to prevent a flow across the walls. The numerical setup
including the mesh is given in the example peris of the Nek5000 package.
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Fig. 7 Instantaneous and
averaged axial velocity for
PN �PN and PN �PN�2 at
t D 50
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Figure 6 shows the velocity magnitude juj distribution on an axial slice through
the pipe. The highest flow velocities can be observed in regions with larger pipe
diameters. The velocity magnitude of the PN � PN ALE formulation compared
with the PN � PN�2 results at t D 50 in Fig. 7. The dashed line and the circle
markers represent the averaged axial velocity magnitude versus the channel length,
while the solid line and the square markers indicate the velocity magnitude along
the centerline (marked by the dashed line in Fig. 6). The mean and the instantaneous
velocity magnitudes show excellent agreement between the two formulations.

The implementation of the ALE approach in the temperature equation is verified
by simulating in the same setup using non-isothermal conditions at the inflow. Initial
and boundary conditions for the velocity field and mesh movement are identical to
the preceding flow case. The temperature at the walls is fixed to T/Tref D1, where
Tref D 300 K. At the inflow a parabolic temperature profile is imposed with a
maximum temperature of T/Tref D 1.125 in the pipe center, while zero-Neumann
boundary conditions are used at the outflow boundary. A homogeneous N2=O2

mixture (YO2 D 0:21, YN2 D 0:79) flows into the channel at a constant pressure of 1
atm. The temperature difference between pipe wall and inflow is chosen low enough
to limit its influence on the flow field, because in the PN � PN�2 formulation the
incompressible Navier-Stokes equations are solved, whereas the PN � PN approach
is based on the low-Mach-number formulation.

The computed temperature fields are shown at t D 8 in Fig. 8 (left). The
decreasing temperatures in the flow direction are due to the cooler pipe walls. The
local temperature peaks in the thicker pipe segments are due to the larger distance
from the cylinder wall. The temperature distributions show excellent agreement
using the two formulations, as also seen in the instantaneous centerline profiles of
Fig. 8 (right).
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Fig. 8 Comparison of temperature for the PN �PN�2 and PN �PN ALE formulations at t D 8:
(left) centerplane distribution at t D 8 and (right) instantaneous centerline temperatures

7.3 Varying Pressure Examples

The implementation of the variable thermodynamic pressure is validated by compar-
ison with a zero-dimensional CHEMKIN [56] simulation of isentropic compression.
A two-dimensional setup with a constant width of 75 mm and an initial height of 90
mm is compressed until a height of 15 mm is reached, resulting in a compression
ratio of 6. The piston speed is 200 rpm. Homogeneous conditions for temperature
(T D 819.45 K), pressure (p D 1 atm), and composition (YN2 D 0.7288, YO2 D
0.1937 and YCH4 D 0.0775) are used at BDC. Zero-velocity boundary conditions
are employed at the liner and the cylinder head, and the piston velocity is imposed
at the piston. Zero-flux conditions are imposed for the temperature and species
boundaries at all walls. For the homogeneous adiabatic CHEMKIN calculation the
same geometry and initial conditions are considered. In both cases, the chemical
reactions are calculated based on a reduced mechanism for CH4 combustion with
21 species and 87 reactions.

In Fig. 9, the computed temperature and pressure time-histories are compared
with the 0-D CHEMKIN calculation. At time t D 0 the piston is at BDC and at
t D 4 at TDC. The continuously increasing temperature during compression results
in autoignition at a nondimensional time t D 3. At TDC the temperature and pressure
are 2731 K and 20 atm, respectively. The plots show nearly identical evolutions of
the temperature and pressure profiles. The minimal offset in the autoignition timing
lies within the uncertainty of numerical settings such as the chosen timesteps or
imposed tolerances.

We next consider an example of fully turbulent compression from the direct
numerical simulations (DNS) presented in [2, 4]. The initial condition at bottom
dead center (BDC) (180o CA) were derived by a precursor DNS of the intake
stroke simulating the mixing of a unburnt 
 D 2 H2/air mixture at 500 K in the
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Fig. 9 Comparison of the temperature (left) and pressure (right) evolution during compression
between CHEMKIN and Nek5000

Fig. 10 Centerplane temperature distributions during a compression stroke for an engine-like flow
configuration at 180o , 225o , and 270oCA

intake channel with a burnt 
 D 2 H2/air mixture at 900 K in the cylinder. During
compression the wall temperature is fixed to 500 K, and the Reynolds number based
on cylinder diameter and maximum piston velocity is Re D 2; 927.The temperature
rise resulting from compression is evident in Fig. 10, which shows the temperature
distributions at 180o, 225o, and 270oCA. The relatively cool region at the bottom
of the cylinder results from the piston scouring cold fluid from the walls and the
relatively hot regions in the upper part of the cylinder at 180oCA are related to
hot EGR gases entrained into the core of the ring vortex generated during the
intake stroke. As demonstrated in [2, 4], the final temperature distribution is not
strongly dependent on the initial thermal distribution; one obtains essentially the
same distribution at 270oCA even when the initial distribution at 180oCA is uniform.
A detailed analysis of the flow and temperature field evolutions during compression
can be found in [3].
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7.4 Dynamic Response

We illustrate the implicit fluid–structure interaction formulation by considering the
case of flow past a cylinder of radius R0 and mass m D �c�R20 that is allowed
to oscillate in the y-direction subject to a spring constant � D .2�fb/2. Here, the
density of the cylinder is �c; the characteristic length scale is the cylinder diameter
D0 D 2R0; and the time scale is the convective time, 	 WD D0=U0, where U0 is
the inflow velocity. We assume the fluid density � D 1 and define the Reynolds
number Re D U0D0=�0. We consider Re D 100, fb D 0:167, and �c D 0 and 10.
Several authors have studied the �c D 10 case under these conditions and found the
displacement amplitude to be �max in interval 0.49 to 0.503 [52, 57, 58].

The cylinder is centered at .x; y/ D .0; 0/, and the domain consists of 218 spectral
elements of order N D 14 with inflow conditions .u; v/ D .1; 0/ at x D �13:75,
homogeneous Neumann (outflow) conditions at x D 38:75, and periodic boundary
conditions at y D ˙25. The timestep is �t D :005. A close-up of the mesh and
the vorticity at the peak vertical displacement is shown in Fig. 11a. Time traces of
the displacement for �c D 0 and 10 are shown in Fig. 11b. These cases were started
with an initial condition corresponding to a fully developed von Karman street at
Re D 100. The asymptotic amplitude and frequencies were found by a nonlinear
least-squares fit (over a longer time than shown in the figure) to be A D :0242 and
! D 1:075 for �c D 0 and A D :505 and ! D 1:040 for �c D 10. For these cases,
the added mass from (50) is ma 
 1:234 times the displaced mass, which is slightly
greater than the unit value predicted by potential theory for flow past a cylinder.
This increase is explained by the fact that the unsteady Stokes subproblem, which
includes the �t time constant, entrains additional mass due to viscous effects. With
a reduction in �t and viscosity, (47) with (50) predicts the potential flow result to
within five significant digits.

Fig. 11 Sprung cylinder example: (a) vorticity and part of the domain showing the spectral
element boundaries at peak displacement; (b) amplitude and frequency as a function of cylinder
mass
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8 Conclusions

We have described recent advances in the SEM that target efficient simulation of
turbulent flows in moving domains. A new ALE-based low-Mach formulation has
been introduced that allows simulation of turbulence in closed domains such as
IC engine cylinders. Several examples attest to the fidelity of this approach when
compared with the baseline PN � PN�2 formulation [21, 23, 24], with analytical
solutions in two dimensions, and with the zero-dimensional results of CHEMKIN
[56]. Strategies for efficient mesh motion have been described, including the
use of variable-coefficient Laplace solvers with projection in time to yield low-
cost extension of boundary data into the domain interiors with controlled mesh
quality. A decoupled, iteration-free, implicit solution strategy for fluid–structure
systems with a few degrees of freedom has also been presented that exploits the
underlying linearity of the governing processes to allow superpositions of solutions.
These developments set the stage for several forthcoming turbulence simulations of
relevance to the transportation and energy sectors and for future FSI simulations in
which the structural code is essentially a black-box routine.
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Eight Great Reasons to Do Mathematics

Chris Budd

Abstract In 2012 the UK Government identified eight great technologies which
would act as a focus for future scientific research and funding. Other governments
have produced similar lists. These vary from Big Data, through Agri-Science to
Energy and its Storage. Mathematics lies at the heart of all of these technologies
and acts to unify them all. In this paper I will review all of these technologies and
look at the math behind each of them. In particular I will look in some detail at the
mathematical issues involved in Big Data and energy. Overall I will aim to show that
whilst it is very important that abstract mathematics is supported for its own right,
the eight great technologies really do offer excellent opportunities for exciting new
mathematical research and applications.

1 Introduction

Lets face it, at the moment we still do have a problem with the image of
mathematics, which is perceived, widely, to be useless and irrelevant to the modern
world. Of course this is very far from the truth, as every (applied) mathematician
knows. Indeed mathematics lies at the heart of nearly all of modern technology, as
well as much of art and popular culture.

There are spectacular examples of the role played by mathematics and by
mathematicians in the developments in technology over the last 150 years. Perhaps
the best of these is the discovery of electromagnetic waves by purely mathematical
reasoning by Maxwell. It is very hard to think of any modern technology, whether
it is a TV, a mobile phone, a SatNav device, a computer or a microwave cooker,
which doesn’t completely rely on Maxwells fundamental discoveries. There are
numerous other examples. Everyone now uses Google to search the Internet, and the
algorithm behind this, developed by Brin and Page, relies on finding eigenvectors of
(very large) matrices. The Internet itself only works because of a deep understanding
of the mathematical behavior of networks and the heavy use of probability theory
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in ensuring that information is transmitted reliably over it. Modern medicine has
been revolutionized by the use of medical imaging technology, which relies on the
mathematical theory of inverse problems, and also on the graphical presentation of
medical statistics (to policy makers), which was pioneered by Florence Nightingale.
Mathematics is hugely important in the computer graphics and games industry.
We all rely on mathematics to keep our financial (and other transactions) secure,
and our view of the change in the climate over the next 100 years is, of course, a
view informed by careful mathematical models.

So where are we heading next? Mathematics, by its very nature, is boundless
in its applications, and should, of course, be pursued as an abstract study for
its own sake, and in this way will drive future technology, rather than be driven
by it. (Maxwells work is a perfect example of this). However, in the UK, HM
Government has itself identified a list of Eight Great Technologies which it sees
as the future technologies in which the UK will be a world leader. These were
launched in 2012 (although some have been added since) in a speech by the former
minister for science The Rt. Hon David Willetts MP. This speech has led to an HM
Government Industrial Strategy report and a flurry of activity on many websites.
More information on the eight great technologies is given in the report [1]. See also
the government publication illustrated in Fig. 1.

Fig. 1 The original
government publication on
the Eight Great Technologies
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It was noticeable that in his speech, in the report, and in the activity it generated,
that the role of mathematics was only mentioned briefly, in the context of Big
Data, which we will look at presently. This is a symptom of the issues regarding
the perception of mathematics that I have highlight above. However, as I will
attempt to show in this article, mathematics lies at the heart off all of the eight
great technologies and links them all together. Indeed I would argue that they are
eight great mathematical technologies. Furthermore, I would expect that the process
of getting mathematicians engaged with them, and addressing the huge challenges
that they bring, will lead to many breakthroughs in pure mathematics. So, lets go
for it. They are truly eight great, but certainly not the only, reasons for doing maths.

2 The Eight Great Technologies

In the original speech in 2012 the Eight Great Technologies were identified as
being

1. Big Data
2. Satellites and space
3. Robotics and autonomous systems
4. Synthetic biology
5. Regenerative medicine
6. Agricultural science
7. Advanced materials
8. Energy and its storage.

More recently, quantum based technology has been added to this list, and it is
likely to grow further, but I will confine myself to the original list for the purposes
of this article. Indeed I cannot in this article do justice to all of these original
technologies, so my intention is to say a little about the mathematics in all of
them, a bit more about the mathematics associated with Agri-Science and Advanced
Materials and, to give some detail about the mathematics behind Big Data and
Energy.

The UK list was identified by the Policy Exchange Think Tank and the Technology
Strategy Board in collaboration with research scientists and members of the research
funding bodies. A technology made it on the list if:

• It represented an important area of scientific advance
• There was already some existing capacity for it in the UK
• It was likely that new commercial technologies would arise from it
• There was some popular support for it

In an era of austerity and cuts (or at least no increase) in science funding in the UK,
the technologies offered the promise of an immediate £600M and then up to £1.5
Bn of new capital investment. This is on top of £4.6 Bn baseline science research
funding. So it was a substantial commitment of funds.
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It is interesting that at about the same time that the eight great technologies
were launched in the UK a similar list of ten ‘National Science Challenges’ was
launched in May 2013 in New Zealand, with a similar promise of targeted funding.
The New Zealand list is interesting both for its similarities, and its differences from,
the UK list. For example it is much more health and environment focused. It is as
follows [2]

1. Ageing
2. Birth and childhood health
3. Diabetes and cancer
4. Nutrition
5. National Bio-diversity
6. Agriculture/land and water quality
7. Marine resource sustainability
8. Antarctica
9. New technologies

10. Natural disasters

Similar lists, which overlap considerably in content with those from the UK and
New Zealand have been compiled in other countries’ government publications as
well as in the popular media (such as the MIT Technology Review or the Scientific
American).

3 The First Great Technology: Big Data

One of the biggest challenges that we all face is the challenge of big data and we
will look at this first, and in some detail. This was rightly put at the top of HM
governments list (although it did not appear in the New Zealand list) and it is my
firm belief that Big Data impacts hugely on all of the eight great technologies. The
reason is simple. We live in the information age, and most of what we do is hugely
influenced by our access to massive amounts of data, whether this is through the
Internet, on our computers, or on our mobile phones. About 100 years ago when
we were transmitting information by Morse code, the transmission rate was 2 bytes
per second. This improved with the use of the teleprinter to 10 bytes per second,
and then with the modem to 1 kilobyte per second. In contrast, with modern data
we are looking at transmission rates of over 1 gigabyte per second. Similarly early
computers (such as the one I used to do my PhD!) had about 1 kilobyte of random
access memory (RAM) (with more data having to be stored, unreliably, on magnetic
or even paper tape). Whereas a modern lap top has several gigabytes of RAM and
up to 1 terabyte of memory. Access to such a large amount of data leads in turn to
large technological and ethical problems. Mathematics can help us with the former,
and we should all be aware of the latter. So, what does the ‘Challenge of Big Data’
mean? According to a recent UK report [1] it is:
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The collection, handling, assurance, curation, analysis and use of:

• Large amounts of existing data using existing methods and technology
• Existing data using new methods and technology
• New data using new methods and technology

The challenge of dealing with such data is always to derive value from large signals,
where the useful data may be buried in an avalanche of noise.

3.1 Where Does Big Data Come From?

Perhaps the leading source of current Big Data comes from the Internet. According
to a recent estimate, about 1021 bytes (a zettabyte) of information are added to the
Internet every year, much of which is graphical in content. The ‘internet penetration’
in both the UK and Canada (see Fig. 2) is over 80%, and in all but a few countries
is over 20 %. This wealth of data leads in turn to the huge mathematical problems
of how we identify, search and organize this information. A major source of this
data comes from the ever growing content on Social Media websites. For example,
Facebook was launched in 2004. It now has 2 Billion registered users (about 1/4 of
the world’s population!) of what 1.5 Billion are active. Around 2.5 Billion pieces
of content (around 500 terabytes of information) are added every day to Facebook
sites, with most of this data stored as pictures. The search engine Google is estimated
to somewhere around 1–15 exabytes (1015 bytes) of data (which it searches by
using an algorithm based on finding eigenvectors of very large matrices.) Another
source of Big Data comes from mobile and smart phones. There are now more
mobile phones than people in the world, with the potential for 2:5 � 1019 possible

Fig. 2 The huge penetration of the Internet
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simultaneous conversations. The forthcoming plans for a 5G network will operate
on millimetre wavelengths at frequencies as around 70GHz (and are already being
piloted in my home town of Bristol, UK). This will offer data rates at 1 gigabyte
per second offered simultaneously to tens of workers on the same office floor and
with several hundreds of thousands of simultaneous connections to be supported
for massive sensor deployments. Such sensors can provide constant monitoring of,
say, our state of health, with significant ethical implications. Indeed the future is
rapidly approaching (such as the Internet of things) in which our devices simply
communicate with each other (for example the cooker talks to the dishwasher and
also to the supermarket every time a meal is prepared) with little or no human
interference.

As well as the devices above, significant amounts of data, of significant interest to
the social sciences, comes from the way that we use them and the information that it
gives about our lifestyles. Again there are significant ethical issues here. Every time
that we make a purchase with Amazon, use our bank on-line, switch on an electrical
device, or simply use a mobile phone or write an email, we are creating data which
contains information which can in principle be analysed. For example our shopping
habits can be determined, or our location tracked and recorded. Mathematics can be
used at all stages of this, but we must never lose sight of the moral dimension in so
doing.

3.2 The Nature of Big Data

In one sense, Big Data has been the subject of mathematical investigation for at
least 100 years. Any mathematical model described by a partial differential equation
with an infinite number of degrees of freedom, naturally leads to a source of a
large amount of data. A classical example of this is meteorology, in which the
current meteorological models (typically based on extensions of the Navier-Stokes
equations) are solved on super computers with discretisations with 109 degrees of
freedom informed (in a typical 6 hour forecast window) by 106 observations of the
state of the atmosphere and oceans. Similar large data sets arise in climate models,
geophysics and astronomy. However, the data in these problems, whilst very large, is
also well structured and well understood (with known levels of uncertainty), as befits
its origins in the physical sciences for which we have good and well understood
mathematical models. The real challenges of understanding and dealing with Big
Data do not come from these data sets, however large they may be. In contrast
the real difficulties arise from data which has its origins (as described above), in
the biological sciences, the social sciences and in particular in people based activity.
Such data is Challenging in that it is: garbled, partial, unreliable, complex, soft, fast
arriving, and (of course) big. It is also Novel and very different from much of the
data arising from physical models in that it is: heterogeneous, qualitative, relational,
and partial.
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3.3 What Questions Do We Want to Ask of Big Data?

The novel aspects of Big Data lead in turn to challenges in how we deal with it,
indeed how we visualise it, make speculations from it, model it, understand it,
experiment on those systems which generate it, and ultimately how we might control
those systems. The mathematical and scientific challenges behind these questions
are as varied as they are important, and the very scale of big data makes automation
necessary and this, in turn, necessarily relies on mathematical algorithms.

As examples of such questions we can include the following:

• Ranking information from vast networks in web browsers such as Google
• Identifying consumer preferences, loyalty or even sentiment and making person-

alised recommendations
• Modelling uncertainties in health trends for individual patients
• Monitoring health in real time (especially in the environment that 5G will lead to)
• Using smart data gathered from energy usage to optimise the way that the energy

is then supplied to consumers.

3.4 The Mathematics of Big Data

It is fair, I think, to say, that many of the future advances in modern mathematics
(together with theoretical computer science) will either be stimulated by the
applications of Big Data or driven by the need to understand Big Data. Of
course many existing mathematical techniques (some of which until recently were
considered as ‘pure mathematics’) are now finding significant applications in our
understanding of Big Data. A key example of this is the mathematics of network
theory. This describes objects, described by nodes, and the connections between
them, described by edges. Network theory explains the connections between the
objects (often formulated through an adjacency matrix), allows us to search the
network for connections between the data (by finding structures in the adjacency
matrix), and can describe (via differential equations) the movement of information
around the network itself. As an example the nodes could be computers or website
on the computes, and the edges, connections between the computers or links
between the websites. The nodes can be people and the connections to their
friends on Facebook or Twitter, or they could be mobile hand sets and the link a
conversation or simply a close proximity which might lead to interference. This
issue is particularly important, as with 7 billion people in the world, there are a
potential of 2 � 1019 conversations over a mobile phone network, each of which
must not interfere with any other. Indeed, managing the mobile phone network
(which is of course also hugely used to download data) is a significant and growing
application of the theory of graph colouring which until recently was regarded



252 C. Budd

as firmly in the domain of pure mathematics. Other examples of networks which
lead to big data include: social networks: Friendship, sexual partners, Facebook
and other social media, organisational networks: Management, crime syndicates,
Eurovision, technological networks: World-wide-web, Internet, the power grid,
electronic circuits, information networks: DNA, Protein-Protein interactions, cita-
tions, word-of-mouth, myths and rumours, transport networks: Airlines, food
logistics, underground and overground rail systems, ecological networks: Food
chains, diseases and infection mechanisms. For many more examples see the review
article by Newman [3].

Network theory can be used to address more of the many questions related to Big
Data as described above. Specifically network theory based algorithms can be used
to segment data and find clusterings in data. Such information is vital in data mining
and pattern recognition, and is especially important to the retail industry, segmenting
graphs (which can include images) into meaningful communities, finding friendship
groupings, investigating the organisation of the brain, and even finding Eurovision
voting patterns. These voting patterns are illustrated in Fig. 3. A careful analysis of
the network illustrated by this figure shows that the rumours of voting blocks really
are true! [4]

Such analysis can also help with the very significant problem encountered in
many applications of linking databases with different levels of granularity in space
and time Equally important is the question of how connected the network is, and
what is the shortest length ` of a path through the network. This is essential for
efficient routing in the Internet, interpretation of logistic data, speed of word of
mouth communications and marketing. Network theory is also essential in searching
for influential nodes in huge networks (of huge importance to search engines),
and in finding the resilience of a network which can be used to break a terrorist
organisation, or to stop an epidemic.

Fig. 3 A network showing
who voted for who in the
Eurovision Song Contest.
Can you spot any patterns?
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Of course, network theory, whilst important, is just one of a variety of mathe-
matical techniques used to study Big Data. As much of Big Data takes the form
of images, mathematical algorithms which classify, interpret, analyse and compress
images are extremely important in all Big Data studies. Linear signal processing,
and related statistical methods have long been used to analyse and interpret images.
But there has recently been a significant growth in novel mathematical algorithms,
drawing on ideas in ‘pure mathematics’. Some of these algorithms, particularly
those for image segmentation or denoising, are based on the analysis of nonlinear
partial differential equations, leading to some powerful and unexpected applications
of such areas of analysis as the p-Laplacian [6]. Algebraic topology plays a very
useful role in classifying images, and in particular persistent homology [7] can be
used to find means of classifying objects in and image which do not depend upon
the orientation of the object and is a method for computing topological features
of an object at different spatial scales. Cohomology and tropical geometry, in
particular combinatorial skeleta allow for a different for of object classification.
Finally, techniques from category theory can be used to ‘parse’ an image to see how
the various components fit together, and also (in the context of machine learning)
to allow for machines to ‘perceive’ what the objects are in an image and to make
‘reasoned’ decisions about it.

A recent and exciting development in the mathematical analysis of Big Data,
due to Emmanuel Candès, Justin Romberg, Terence Tao and David Donoho [5]
is the area of compressed sensing. Traditional signal processing has used Fourier
or wavelet based methods to represent data, and compression is then achieved by
a suitable truncation of this representation. In contrast, compressed sensing aims
to exploit sparsity in the data and to achieve compression by direct sampling.
(One mechanism for doing this is to use more ‘blocky’ representations of figures
using piecewise constant representations, achievable through techniques using L1
or TVD optimisation of the figures.) Compressed sensing is finding very important
applications including in the representation of large data sets arising in medical
applications.

Big Data is of course also a significant driver for advances in computer science,
and the development of novel computing algorithms. These include encrypted
computation, (which relies heavily on results in number theory), quantum annealing
and quantum algorithmics. This is only a short list. Other areas of mathematics and
computer science which have found applications in the study of Big Data include:
segmentation clustering, optimal and dynamic sampling, uncertainty modelling and
generalised error bounds, trend tracking and novelty detection, context aware-
ness, integration of multi-scale models, real-time forecasting, data integrity and
provenance methods, visualization methods, data compression and visualisation,
dimension reduction, machine learning, logic and reasoning, and optimisation and
decision.

Essentially, watch this space! I am confident that we will see great advances in
pure, applied and computational maths arising from these challenges.
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3.5 The UK Response

The UK government has responded positively to the importance of funding mathe-
matically focused research into Big Data. To this end the Engineering and Physical
Sciences Research Council (EPSRC) (which is the rough equivalent of NSERC
or NSF) has committed around £40 Million to found the Alan Turing Institute
(ATI). This is a collaboration between the founding partner universities of Oxford,
Cambridge, Edinburgh, Warwick and University College London (UCL) together
with non-academic partners including GCHQ (the UK equivalent of the NSA) with
Andrew Blake from Microsoft Research as the first director. The site of the ATI will
be the British Library close to St. Pancras station in North London. See the website
https://turing.ac.uk/ for more details. According to this website

The work of the Alan Turing Institute will enable knowledge and predictions to be extracted
from large-scale and diverse digital data. It will bring together the best people, organisations
and technologies in data science for the development of foundational theory, methodologies
and algorithms. These will inform scientific and technological discoveries, create new
business opportunities, accelerate solutions to global challenges, inform policy-making, and
improve the environment, health and infrastructure of the world in an Age of Algorithms.

I expect to see similar developments in many other countries in the near future.

4 Satellites and Space, Robotics and Autonomous Systems,
Synthetic Biology, Regenerative Medicine

The methods for working with Big Data have natural applications in the second
great technology: satellite and space technology. In fact one of the big early success
stories in the data revolution was the use of error correcting codes in the 1970’s to
transmit the images from distant planets back to the Earth without error. Such codes
are usually based on finite function fields, again an area previously thought of as
pure mathematics. With satellites playing possibly the major role in transmitting
more and more information, the need for evermore sophisticated mathematical
algorithms to keep this information accurate and secure, will continue to drive
mathematical developments in algebra and discrete systems. The mathematical
theory of systems of symplectic Hamiltonian ordinary differential equation, posed
on Lie Groups, is also finding a major application in helping to understand and
control the dynamics of satellite systems. As such calculations have to be done
over long time periods, the numerical methods to approximate the solution of such
systems have to be very carefully designed. There is currently a great interest in
geometric integration methods which combine numerical analysis with differential
geometry to make such calculations accurate and reliable [8]. Similar numerical
methods are also used to simulate the movement and control of the robotic systems
which form the third of the great technologies. Other applications of mathematics
to robotics include Bayesian machine learning algorithms (which also can make use

https://turing.ac.uk/


Eight Great Reasons to Do Mathematics 255

of category theory), pattern recognition techniques (which link again to Big Data),
neural networks and computer vision. There is also a natural between Big Data and
the fourth great technology of genomics and synthetic biology. In particular, this
technology relies on understanding how genes and proteins interact and this can be
studied by using gene/protein networks, where the edges of the network describe
allele combinations that control specific phenotypes. The fifth great technology of
regenerative medicine involves those aspects of tissue engineering and molecular
biology which deals with the “process of replacing, engineering or regenerating
human cells, tissues or organs to restore or establish normal function” [10]. This
involves mathematical modelling, and especially the development of novel flexible
materials (see also the seventh great technology). Of course mathematics has many
other applications to medicine including medical statistics (with huge relevance to
Big Data), modelling, and curing, cancer and in the various inverse problems arising
in medical imaging.

5 The Sixth Great Technology: Agri-Science

Food and beverage processing is the world’s largest manufacturing industry and a
recent UN Forecast has stated that if the population continues to rise at its present
rate, then the world food output must increase by 70% by 2050. Achieving this
output is significant challenge to agriculture and to the science behind agriculture.
Mathematics plays an important part of this, with many existing, and potential,
applications in agri-science and food technology. The fundamental process of
growing (including irrigation), freezing, cold storing, cooking, making, eating and
even digesting food are all areas in which the application of areas of mathematics
such as thermodynamics, (non-Newtonian) fluid mechanics, and partial differential
equation theory, can make a very big difference to food safety and production. As
an example the partial differential equation

Ht D �r2T C �0Qe�x=d (1)

where H is the enthalphy of a food product, x the distance into the food, T its
temperature, Q the strength of a microwave field and �0 the dielectric permittivity
of the food, can be used to predict the temperature of a moist food stuff when
heated in a microwave oven. This in turn can be used to predict the safety of
the microwave cooking process. Mathematics can even be used to simulate the
production of such an iconic Canadian product as Maple Syrup, see [12], in which
partial differential equations are used to model the movement of sap in a Maple
Tree. Similarly, the logistics of feeding a growing world population, which requires
food to be packaged, transported and disposed of safely and efficiently, requires
the mathematics of optimization and operational research (and network theory and
indeed Big Data again). Another major challenge to agri-science is the future of the
bee population. This is in a state of significant decline, and if the bees were to vanish
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then much of modern agriculture would not be possible. Mathematics can help in the
challenge of saving the bees by providing a technology by which bee populations
in a hive can be monitored in a non invasive or harmful manner. This is achieved
by using tomographic X-Ray imaging, where the shadows cast by X-rays are used
to look inside the beehive. Diagnostic radioentomology is a technique, developed
primarily by Mark Greco, that takes entomological studies and combines them
with medical diagnostic methodologies [13]. This imaging technique is sufficiently
sensitive to resolve individual bees and to see how they are responding to changes
in their environment. This technology for resolving the bees is similar to that used
earlier in the CAT scanners used in medical imaging before MRI scanners replaced
them. However there are important differences. Most notably, the X-ray dosage for
bees has to be very low indeed to avoid injuring them, also bees have a splendid
habit of moving around whilst they are being scanned. This reduction in dosage, and
also an improvement in the image quality (at the expense of greater computational
complexity but with increased safety for the bees) can be achieved by using the
compressed sensing techniques described above. An image of the bees can be seen
in Fig. 4.

Fig. 4 An image taken from the gallery in [14], showing a tomographic reconstruction of a
beehive, in which the bees are seen as red dots and honey as yellow
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6 The Seventh Great Technology: Advanced Materials

We all rely on materials, some of which are natural like wood and stone, and
others are manufactured such as steel, glass and concrete. However, with modern
technology, we can now design and manufacture meta-materials with a wide variety
of prescribed mechanical, electrical, thermal and other properties. Such modern
advanced materials are often composites of different materials with very different
properties, which are combined in a complex manner. The resulting behavior of the
composite material often then emerges from the way that these different properties
interact, in a manner which is often very different from the sum of the different
parts. Some examples of such modern materials are the photonic crystals which
are used to transmit light with almost zero loss, the complex composites used in
aircraft wings, liquid crystals which are used in many displays, and perhaps most
intriguingly, the possibility of materials which, in a manner inspired by Harry
Potter, confer invisibility on the user [9]. The mathematics needed to design and
study such materials is particularly rich and challenging. At its heart is multi-scale
analysis and homogenization, although it also uses ideas from complexity theory,
advanced theory from the calculus of variations [11] and (again) network analysis.
This mathematics can be used to study materials as ancient as rock, or as modern as
carbon fibres. It is no coincidence that major growth in modern applied mathematics
is in exactly these areas, and I anticipate that we will see even more in the future
(Fig. 5).

Fig. 5 Modelling the
complex patterns in liquid
crystals requires advanced
mathematical methods from
the calculus of variations
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7 The Eighth Great Technology: Energy and Its Storage

One of the more interesting jobs I have had was as the CEGB research fellow,
which was a joint position between the University of Oxford and the (old) Central
Electricity Generating Board (now privatized and split up into many different
companies). This job gave me an a good appreciation of the issues faced by the
power generating industry and the importance of mathematics at many levels of this
industry. The job of the electricity supply industry is to supply electricity reliably to
us, regardless of the demand. Or more simply put, to keep the lights on. This is not
always easy, as too much demand and an insufficient supply could potentially result
in a power cut. As an example, in the World Cup on the 4th July 1990, England was
playing in the semi-final against West Germany. This was an exciting and emotional
match which England finally lost on penalties. At the end of the match the power
demand surged by 2.8 GW (about 1 million electric kettles), or 11 % of the total
network demand. Due to good planning by the UK National Grid operators, the
lights stayed on in this case. But it was a relatively close run thing. In contrast, in
2003, following an isolated failure, there was a cascade of control system failures
of the NE US power grid. In this cascade, when one line was shut down to deal with
the failure, this lead to an overload of other nearby lines, which then also shut down.
More and more lines then shut down, leading to a large system failure in which the
lights did go out. The resulting US NE Coast Blackout is estimated to have cost 5
Billion Dollars and can be seen in Fig. 6.

The annual consumption of electricity in the UK is 300 TWh, and this electrical
power is supplied over a complex network starting, usually, with power being
generated at a power station. This is then transmitted over a high voltage network,
before being reduced in voltage and distributed to commercial, industrial and
residential consumers. To ensure that the lights always stay on, the planners need
to solve a large number of nonlinear differential-algebraic equations, described
on (another!) complex network (with 30 million nodes representing different
households, industries and other users of electricity), to work out how much

Fig. 6 The day the lights did
go out in NE America in
2003. The circle shows the
blackout region. Image taken
from [17]
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electricity can be generated, distributed and stored. However this is not easy as
electricity must be consumed as soon as it is purchased, it cannot be stored in
large quantities and the user has a very low tolerance to interruptions in the supply.
These challenges are going to increase significantly in the future with a greater
emphasis on low Carbon generation, a much more distributed supply network (with
a significant increase in lower power generation from renewable sources such as
solar and wind often at a domestic level), the increase in the use of electric vehicles,
an increase in local electricity storage, and the advent of the SMART Grid in which
users both have much greater control over their energy demands and also supply
much more information to the Grid company [16] (another example of a Big Data
problem). These are all challenges which mathematicians are well placed to address.

As an example, in an AC supply network, the steady state form of the power
flow equations typically take the form of a large number of quadratic equations
with complex coefficients (yes quadratic equations really are useful!) derived from
Kirchoffs laws, defined over a network in which the nodes are the power stations and
the users (eg. households) and the links are the electricity cables and transformers
connecting them together. Typically in such a network the AC voltage at a node j
is represented by a (complex) voltage Vj with an associated phase ıj and current Ij.
The AC power at this node is then given by

Pj C iQj D VjI
�
j : (2)

Here Pj and Qj are respectively the real and the reactive power. Typically these are
known at each node and represent the local demand or supply of power at the node.
(Both of these aspects could involve issues associated with energy storage). The
nodes at j and k are typically connected by bus bars with complex admittance

Yjk D Gjk C iBjk: (3)

In a power cable, losses are very low and we expect Gjk to be close to zero. The
current flow Ijk through the bus is then given by Ohm’s law so that

Ijk D Yjk
�
Vj � Vk

�
: (4)

Over all of the nodes we must satisfy the power demand given above. If ıij is the
phase difference between the voltage at nodes j and k then we can apply Kirchoff’s
laws to give the following parametrised set of quadratic equations for the steady
state [15]

NX
kD1

jVjjjVkj
�
Gjk sin

�
ıjk
� � Bjk cos

�
ıjk/
�� D Qj: (5)
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jVjjjVkj
�
Gjk cos

�
ıjk
�C Bjk sin

�
ıjk/
�� D Pj: (6)

Here N is the number of nodes, which may be very large (of the order of many
millions). However, we expect to see a degree of sparsity in this system due to a limit
to the number of nodes connected to each other by bus conductors, which can help
with the analysis. Companies managing the grid have to solve such systems rapidly
to cope with changing patterns for supply and demand. As with all parametrised
quadratic equations we expect to see the number of solutions of the system changing
as the parameters vary. In particular, steady solutions can vanish at fold bifurcations
as the demanded load increase. An example of such a fold bifurcation, usually called
a nose curve, is given in Fig. 7. If a fold bifurcation happens in practice, and the
demand exceeds the maximum permitted value, then the voltage in the network
collapses to zero and we have a national power cut [15]. Power cuts due to a voltage
collapse have occurred in both Italy and Sweden. A lot of interesting mathematics
including advanced (hierarchical) linear algebra, nonlinear systems theory coupled
to networks, and algebraic geometry, needs to be developed in order to predict
these bifurcation points and to identify well in advance whether a power failure
is likely to occur and how this can be (efficiently) avoided by bringing more power
stations on-line. This is all made much more complicated by constraints arising from
different pricing policies for networks and the vagueries of demand due to individual
preferences [16].
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Equally important in the modern era of a rapidly evolving network, informed by
huge amounts of data, are problems associated with understanding the dynamics of
the grid. This is of special significance when considering the question of energy
storage, explicitly mentioned in the Eight Great Technologies. Electricity is often
stored in batteries and hence as DC. This needs to be converted to AC through an
inverter and then matched (in phase) to the overall network. Inverters have complex
dynamics (linked to a phase locked loop) and can introduce instabilities into the
overall grid, and hence the possibility of problems with the electricity supply. Other
dynamic terms need to be added to the network to account for the behaviour of the
turbines in power stations in response to load, the empirically observed behaviour
of electrical devices such as motors and cities, the rapidly changing output of
renewable energy generation, the smart grid and (in the near future) for large scale
electrical vehicle charging. Any dynamical system set up to model the system will
have to take into account for the many different time-scales that the grid operates
under, from the near instantaneous times of electricity transport, to the times needed
to operate switches, the daily cycle of human activity, through to seasonal trends
in electrical usage. To do such a study effectively will naturally lead to much
new mathematics including the analysis of (bifurcations in) multi-scale and/or non-
smooth stochastic dynamical systems on large networks, a subject close to my heart,
and currently in its infancy. See [18] for a review of the current state of the art in
this emerging area.

8 Conclusions

I hope that I have whetted your appetite. The eight great technologies certainly
present enormous opportunities for mathematicians in the next 50 years and beyond.
I encourage all mathematicians regardless of which country they live in, to rise to
the challenges presented by these eight great reasons to do mathematics.

But, the moral of this article, is that whilst lots of new mathematics is needed for
all the eight great technologies, to keep the lights on you must be especially good at
solving quadratic equations!
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Calculation of Exposure Profiles
and Sensitivities of Options under the Heston
and the Heston Hull-White Models

Q. Feng and C.W. Oosterlee

Abstract Credit Valuation Adjustment (CVA) has become an important field as
its calculation is required in Basel III, issued in 2010, in the wake of the credit
crisis. Exposure, which is defined as the potential future loss on a financial contract
due to a default event, is one of the key elements for calculating CVA. This
paper provides a backward dynamics framework for assessing exposure profiles of
European, Bermudan and barrier options under the Heston and Heston Hull-White
asset dynamics. We discuss the potential of the Stochastic Grid Bundling Method
(SGBM), which is based on the techniques of simulation, regression and bundling
(Jain and Oosterlee, Applied Mathematics and Computation, 269:412–431, 2015).
By SGBM we can relatively easily compute the Potential Future Exposure (PFE)
and sensitivities over the whole time horizon. Assuming independence between the
default event and exposure profiles, we give here examples of calculating exposure,
CVA and sensitivities for Bermudan and barrier options.

1 Introduction

In the wake of the credit crisis, regulators put more strict capital requirements to
cover losses caused by default events. A recent capital charge was introduced in
Basel III, i.e. the Credit Value Adjustment (CVA). CVA is the difference between
the risk-free contract value and the contract value that accounts the possibility of a
counterparty’s default [16]. It can be computed as the integral over the time horizon
as the expectation of the discounted losses on a default event, multiplied by the
probability of default at that moment and the percentage of loss given default [30].
The computational complexity of CVA arises from the uncertainties of the losses
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of a default event and the likelihood of the counterparty’s default in the future. An
unstable dependence structure between the counterparty’s default probability and
the corresponding losses in the future may exist, which makes the computation of
CVA complicated [5, 16].

Credit exposure is defined as potential future losses without any recovery.
Exposure evolves over time as the market moves with volatility, and typically cannot
be expressed in closed form. Before the appearance in Basel II [2], concepts as
expected exposure (EE) and potential future exposure (PFE) had emerged and were
commonly used as the representative metrics for credit exposure [16]. EE represents
the average expected loss in the future, while PFE can manifest the worst exposure
given a certain confidence level. These two quantities illustrate the loss from both
a pricing and risk management perspective [16], respectively. In order to get these
metrics of future losses, in practice, the exposure profile needs to be computed for a
large number of scenarios on a set of time steps. This is one of the involved parts in
computing CVA.

A general Monte Carlo (MC) framework is formulated by Pykhtin and Zhu
[30] for the computation of exposure profiles for over-the-counter (OTC) derivative
products. There are three basic components: (1) Monte Carlo path generation for a
series of simulation dates under some underlying dynamics; (2) valuation of mark-
to-market (MtM) values of the contract for each realization at each simulation date,
by some numerical method; (3) calculation of exposure for each simulation at each
simulation date.

Calculation of exposure profiles asks for efficient numerical methods, as the
computational demand grows rapidly w.r.t. the number of MC paths. Different
numerical methods have been combined with the MC forward paths to handle the
computational demand of exposure, such as the Finite Difference Monte Carlo
Method [12] or the Monte Carlo COS method1 [31]. Computational complexity
increases for CVA of a whole portfolio, as there are then multiple financial
derivatives in the exposed portfolio. Inclusion of various market factors in the asset
dynamics, such as stochastic asset volatility and stochastic interest rates, further
increases the computational effort.

We will use the Stochastic Grid Bundling Method (SGBM) for the efficient and
flexible computation of exposure. The SGBM technique was proposed for pric-
ing multiple-asset Bermudan derivative contracts under Black-Scholes dynamics
in [20]. In the present work we extend SGBM to computing exposure values of
options under a stochastic volatility asset equity model with stochastic interest rates.
We show the impact of adding stochastic volatility and stochastic interest rates
on the metrics of future losses (i.e. CVA, EE, PFE). A stochastic volatility may
explain the implied volatility surface observed in the derivatives market (such as
the volatility smile) [18], and uncertainty in the interest rate may give a significant
contribution to the price, especially of long-term financial derivatives [25]. The

1The COS method is an option pricing method for European/Bermudan options based on the
Fourier-cosine series developed first by F.Fang and C.W. Oosterlee.
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hybrid model chosen to model these stochastic quantities is the Heston Hull-White
model [17]. We will also study the impact of stochastic interest rate and stochastic
volatility, respectively, under the Black-Scholes Hull-White model and the Heston
model.

SGBM is based on simulation, regression, and bundling [20], and the method is
very suitable for the computation of exposure profiles. The idea of using simulation
and regression for pricing options with early exercise has been used by Carriere [9],
Tsitsiklis and Van Roy [33], and Longstaff and Schwartz [27]. There are several
recent modifications and comparisons of pricing techniques with regression, such as
the work by Broadie and Cao [7], by Broadie et al. [8] and by Stentoft [32]. SGBM
distinguishes itself from other regression-based simulation methods in the following
ways. First of all, a bundling technique is employed to ensure an accurate local
calculation of the exposures on each path. Secondly, the conditional expectations
of basis functions used for regression in SGBM are analytic expressions when the
underlying framework is affine or can be approximated by an affine model. They are
used for the calculation of the continuation values. Thirdly, compared to the popular
Longstaff-Schwartz (LS) method that uses the ‘in-the-money’ paths, SGBM uses the
information of all paths and assigns exposure values to each path at each monitoring
date. These features ensure the accuracy of computing exposure values on each path,
which is in particular important for PFE. Furthermore, sensitivities of the EE can be
calculated accurately with little extra effort.

The flexibility of SGBM is demonstrated by placing the computation of exposure
profiles, for different option types under different asset dynamics, in a general
unifying framework based on backward recursion. The options considered include
European, Bermudan and barrier options. The reminder of the paper is structured
as follows: Sect. 2 provides the mathematical framework for CVA and exposure,
discusses the affine diffusion models for the underlying, and the backward dynamics
for calculation of the exposure of options, and their exposure sensitivities. In Sect. 3,
we present the SGBM algorithm in detail. In Sect. 4 the choice of basis functions
and the derivation of the discounted moments is presented, as well as a simple
bundling technique that ensures the accuracy of the local, bundle-wise, regression.
In Sect. 5, numerical results are presented to show the convergence and efficiency
of the method, and the impact of the stochastic interest rate and stochastic volatility
on the exposure metrics is studied in Sect. 5.4.

2 CVA and Exposure

CVA is the price of counterparty-credit risk. It is based on an expected value
(the expected exposure) which is computed under the risk-neutral measure. There
has been debate on the computation of PFE regarding whether to compute it
under the real-world or the risk-neutral measure. It is argued that PFE should be
computed based on simulations under the real-world measure, reflecting the future
developments in the market realistically, from a risk management perspective [22].
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In this paper we will focus on the computation of CVA, and we will compute EE
and PFE under the risk-neutral measure as well. However, the numerical techniques
in this paper can be also be used for computing PFE under the real-world measure,
which is a next stage of our work.

The default probability will also be measured under the risk-neutral measure in
this paper. The implied default probability of the counterparty typically is retrieved
from market prices of CDS (credit default swap) or corporate bonds issued by
this counterparty. Notice that the implied default probability under the risk-neutral
measure in general is different from that inferred from historical data under the real-
world measure, and of the two the former is typically higher than the latter [5].

2.1 Mathematical Formulation

Assuming a market without friction. Let .˝;F ;P/ be a complete probability
space on a finite time horizon Œ0;T� including all required quantities, where ˝
is the sample space, F is the sigma algebra of events at time T, and P is the
probability measure. We assume the existence of a risk-neutral probability measure
Q, equivalent to P, under which the current value of a financial asset is equal to its
expected discounted payoff in the future. The uncertainty of the market includes
a set of influencing factors, such as the (log-)stock price and its volatility, and
the short rate. These quantities can all be expressed by an n-dimensional Markov
process .Yt/t2Œ0;T�, Yt D ŒY1t ;Y

2
t ; : : : ;Y

n
t � in some space U � Rn. The natural

filtration .Ft/t2Œ0;T� on the probability space is the sigma algebra associated to Yt,
and Ft includes all information about the market up to time t. We further suppose
the existence of a risk-free asset, B.t/ D exp

�R t
0 rudu

�
, where rt D r.Yt/ is the

short rate at time t. The associated stochastic discounting factor in the period Œt; s� is
defined as D.t; s/ WD exp

�� R s
t rudu

�
. The value of a default-free zero coupon bond

(ZCB) at time t with maturity T is given by p.t;T/ WD EQ
�
D.t;T/

ˇ̌
Ft
	
.

We will study the exposure for investors towards option writers. Particularly, we
will compute exposure profiles of OTC Bermudan, European and barrier options, for
which the contract values of the options at time t are only determined by the variable
Yt, i.e. the option values can be regarded as functions V.t;Yt/ W Œ0;T� � U ! R.
The exposure can also be measured in terms of the replacement costs for a derivative
contract, i.e. the amount to replace the contract at current market rates [16]. Without
transaction costs, the exposure of options in a default event is the loss defined by the
replacement costs without any recovery. We assume that the exposure to the writer
immediately becomes zero when the option is terminated, exercised or knocked out.
Hence, exposure can be expressed by:

E.t;Yt/ D
(
0; if the option is terminated; knocked out or exercised;

V.t;Yt/; if the option is alive:
(1)

In addition, the discounted exposure is defined by E�.t;Yt/ WD D.0; t/ � E.t;Yt/.
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The likelihood of default of the counterparty is another important quantity in the
calculation of the CVA. We will utilize the intensity (the so-called reduced form)
model, of which the construction has been widely studied. Some work on initial
intensity models was presented by Jarrow and Turnbull [21], Madan and Unal [28],
Duffie and Singleton [13]. Lando [23] presented the term structure of defaultable
bonds with the assumption of independence between the risk-free interest rate and
the default intensity. A detailed discussion of intensity modeling of default risk can
be found in the books by Bielecki and Rutkowski [3], Lando [23] and Brigo and
Mercurio [6].

We also discuss the intensity model briefly here. Let ht WD h.Yt/ be the
Ft-intensity of a jump process and 	d > 0 be the first jump time of this process.
We construct a right continuous process Ht D 1.	d  t/, where 1.�/ is the indicator
function. The natural filtration generated by Ht is given by Ht WD �.Hs/s2Œ0;t�. The
enlarged filtration Gt D Ht _Ft thus includes all information of default events and
market quantities up to time t. The survival probability under the risk-free measure
Q at time t can be expressed by an intensity function:

PS.t/ D Q

�
	d > t

ˇ̌
ˇ̌Gt

�
D EQ

�
1 .	d > t/

ˇ̌
ˇ̌Gt


D exp

�
�
Z t

0

hsds

�
; (2)

where intensity ht defines the default probability on a small interval dt when 	d > t.
By definition, CVA materializes the expected loss in the future, which can be

expressed by:

CVA WD EQ

�
LGD � E�.	d;Y	d /

ˇ̌
ˇ̌G0


D
Z T

0

EQ

�
LGD � E�.t;Yt/ � d .�PS.t//

ˇ̌
ˇ̌G0


D
Z T

0

E

�
LGD � E�.t;Yt/ � ht � exp

�
�
Z t

0

hsds

� ˇ̌ˇ̌F0


dt; (3)

where LGD is the loss given default (as a percentage), and the details of derivation
of the third equality can be found in [23, p.117].

There are three key elements in the calculation of CVA: the loss given default,
the discounted exposure and the survival/default probability of the counterparty. In
a real-life situation these three elements are typically not independent. Wrong-way
risk (WWR) incurs when the exposure is adversely correlated with the credit quality
of the counterparty, which may significantly increase CVA [16]. When assuming
independence, the calculation formula of CVA is given by:

CVA D LGD
Z T

0

EQ
�
E�.t;Yt/

ˇ̌
F0

	
d .�PS.t//; (4)

where LGD is assumed to be a fixed ratio based on market information, and
the marginal survival probability PS.t/ can be obtained via the implied survival
probability curve on the CDS market [6].
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The well-known quantities of the exposure distribution, EE and PFE, are
important for risk management [16]. The mathematical formulas for the EE and
PFE quantities are given by:

EE.t/ WD EQ
�
E.t;Yt/

ˇ̌
F0

	
; (5)

PFE˛.t/ WD inf
n
x
ˇ̌̌
Q
˚
E.t;Yt/ < x

ˇ̌
F0

�
> ˛

o
; (6)

where ˛ is the confidence level. For calculating PFE, the confidence level ˛ D
97:5% is commonly used to measure the ‘worst’ losses [16]. Both quantities are
deterministic functions in the period Œ0;T�.

2.2 Affine Diffusion Models

For the asset price processes under study here, we will benefit from the affine
diffusion (AD) class of Markov stochastic processes .Yt/t2Œ0;T�, which can be
expressed by the general form,

dYt D � .Yt/ dt C �.Yt/deWt; (7)

where eWt is an Ft-measurable column vector of independent Wiener processes
under measure Q in Rn, the drift term � .Yt/ W U ! Rn, and the volatility term
�.Yt/ W U ! Rn
n. In the AD class it is assumed that the drift term, the covariance�
�.Yt/�.Yt/

T
�

and the interest rate are of the affine form, i.e.

�.Yt/ D a0 C a1Yt; for any .a0; a1/ 2 Rn � Rn
n;�
�.Yt/�.Yt/

T
�

ij
D .c0/ij C .c1/

T
ij Yt; with .c0; c1/ 2 Rn
n � Rn
n
n; (8)

r.Yt/ D r0 C rT
1Yt; for .r0; r1/ 2 R � Rn:

With this type of model, it can be shown that the discounted characteristic function
(dChF) is of the following form:

˚.u;Yt; t;T/ D E

�
exp

�
�
Z T

t
rudu C iuTYT

� ˇ̌̌
ˇFt



D exp
�
A.u; 	/C BT.u; 	/Yt

�
; (9)

with time lag 	 D T � t. The coefficients satisfy the ODE system [13, 17]
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d

d	
A.u; 	/ D �r0 C BT .u; 	/a0 C 1

2
BT .u; 	/c0B.u; 	/; A.u; 0/ D 0;

d

d	
B.u; 	/ D �r1 C aT

1B.u; 	/C 1

2
BT .u; 	/c1B.u; 	/; B.u; 0/ D iu:

(10)

The dChF facilitates the calculation of the discounted moments in Sect. 4.1, which
is one of the key components within the SGBM algorithm.

Based on this general expression for affine models, we will discuss several hybrid
models.

2.2.1 Black-Scholes Hull-White Model and Heston Model

The famous Black-Scholes option pricing partial differential equation (PDE) [4] is
based on the assumptions that the asset price follows a geometric Brownian motion
with constant volatility and constant interest rate. We first relax the assumption of
constant interest rate by a stochastic instantaneous short-rate rt. In practice, interest
rates vary over time and by tenor T, as observed in the zero coupon bond curves
in the market [6]. The instantaneous forward rate at time t for a maturity T > t is
defined by:

f .t;T/ WD �@ log p.t;T/

@T
: (11)

The characterization of the term structure of interest rates is well-known from
Vasicek [34], Cox, Ingersoll, and Ross [11], and Hull and White [19]. In this paper,
we will also employ the Black-Scholes Hull-White hybrid (BSHW) model. Under
risk-neutral measure Q, the dynamics of the model Yt D Œxt; rt�

T are given by the
following SDEs [6]:

dxt D
�

r � 1

2
�2
�

dt C �dWx
t ;

drt D 
.�.t/ � rt/dt C �dWr
t ;

(12)

where xt D log.St/ represents the log-asset variable; the two correlated Wiener

processes .Wx
t ;W

r
t / are defined by Wx

t D eW.1/
t and Wr

t D �x;reW.1/
t C

q
1 � �2x;reW.2/

t ,

where eW.1/
t and eW.2/

t are two independent standard Wiener processes under measure
Q and j�x;rj < 1 is the instantaneous correlation parameter between the asset price
and the short rate process; positive parameters � and � denote the volatility of equity
and interest rate, respectively; the drift term �.t/ is a deterministic function chosen
to fit the term structure observed in the market, which must satisfy:

�.t/ D f .0; t/C 1




@

@t
f .0; t/C �2

2
2
.1 � exp.�2
t//: (13)
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Another way of extending the Black-Scholes model is to define the variance as a
diffusion process, like in the stochastic volatility model developed by Heston [18].
With state variable Yt D Œxt; vt�

T , the Heston model is given by:

dxt D
�

r � 1

2
vt

�
dt C p

vtdWx
t ;

dvt D �. Nv � vt/dt C �
p
vtdWv

t ;

(14)

where r is a constant interest rate; the two correlated Wiener processes .Wx
t ;W

v
t / are

defined by Wx
t D eW.1/

t and Wv
t D �x;veW.1/

t C
q
1 � �2x;veW.3/

t , where eW.1/
t and eW.3/

t

are two independent standard Wiener processes under measure Q and j�x;vj < 1

is the instantaneous correlation parameter between the asset price and the variance
process; the constant positive parameters �, Nv, � determine the reverting speed, the
reverting level and vol-of-vol parameters, respectively. The associated PDE can be
found in [18, p. 329].

2.2.2 Heston Hull-White Model and H1HW Model

Consider a state vector including all these stochastic quantities, i.e. Yt D Œxt; vt; rt�
T .

The corresponding model can be defined by adding a HW interest rate process to the
Heston stochastic volatility dynamics, as presented in [17]. The hybrid model of the
equity, stochastic Heston asset volatility and stochastic interest rate is represented
by the following SDEs:

dxt D
�

rt � 1

2
vt

�
dt C p

vtdWx
t ;

dvt D �. Nv � vt/dt C �
p
vtdWv

t ; (15)

drt D 
.�.t/ � rt/dt C �dWr
t ;

where the correlated Wiener processes .Wx
t ;W

v
t ;W

r
t / are defined by Wx

t D eW.1/
t ,

Wv
t D �x;veW.1/

t C
q
1 � �2x;v

eW.2/
t , Wr

t D �x;reW.1/
t � �x;v�x;rp

1��2x;v
eW.2/

t C
r

1��2x;v��2x;r
1��2x;v

eW.3/
t ,

in which eW.1/
t , eW.2/

t and eW.3/
t are three independent standard Wiener processes under

the risk-neutral measure Q, and �x;v and �x;r are correlation parameters that satisfy
�2x;v C�2x;r < 1; the parameters 
, �.t/, � are as in (12), and �, Nv and � are as in (14);
the initial values satisfy r0 > 0 and v0 > 0.

The Heston Hull-White (HHW) SDE system in (15) is not affine. Conditioned
on information at time t, the symmetric covariance matrix at time s > t is given by:
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� .Ys/ � .Ys/
T D

0
@vs �x;vvs

p
vs��x;r

� �2vs 0

� � �2

1
A : (16)

where the term
p
vs is not linear. Grzelak and Oosterlee in [17] approximated the

covariance matrix in (16) by

� .Ys/ � .Ys/
T 
 O� .Ys/ O� .Ys/

T D
0
@vs �x;vvs E

�p
vs

ˇ̌
vt
	
��x;r

� �2vs 0

� � �2

1
A ; (17)

where the term
p
vs is approximated by its conditional expectation E

�p
vs

ˇ̌
vt
	
, for

which an analytic formula is given by:

E
�p
vs

ˇ̌
vt
	 D

p
2c.	1/e

� N
.	1;vt /
2

1X
kD0

1

kŠ

 N
.	1; vt/

2

!k
�
�
1Cd
2

C k
�

�
�

d
2

C k
� ; (18)

with 	1 WD s � t, and

c.	1/ D 1

4�
�2.1 � e��	1 /; d D 4� Nv

�2
; N
.	1; vt/ D 4�vte��	1

�2.1 � e��	1/
: (19)

This affine approximation of the HHW model with covariance (17) is called the
H1HW model, and details can be found in [17]. In this paper, we further make an
approximation of the calculation in (18), as presented in Appendix 3.

2.3 Pricing European, Bermudan and Barrier Options

We will study the CVA, EE and PFE of several types of options to show the
flexibility of SGBM. We present the backward valuation dynamics framework
for European, Bermudan and barrier options in this section. Let the collection of
equally-spaced discrete monitoring dates be:

T D f0 D t0 < t1 < � � � < tM D T; �t D tmC1 � tmg:

The options will be valued at so-called monitoring dates to determine the exposure
profiles. The received payoff from immediate exercise of the option at time tm is
given by
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g.Sm/ WD max .!.Sm � K/; 0/ ; with

(
! D 1; for a callI
! D �1; for a put;

(20)

where K is the strike value and Sm is the underlying asset variable at time tm.
The continuation value of the option at time tm can be expressed by the

conditional expectation of the discounted option value at time tmC1. As we have
assumed the Markov property of the process Ym, we replace the filtration Fm in the
conditional expectation, i.e. the continuation values of the option will be written as
a function of the state variable Ym, i.e.

c.tm;Ym/ WD EQ

�
D .tm; tmC1/ � V.tmC1;YmC1/

ˇ̌̌
ˇYm


; (21)

where Ym is the state variable at time tm, and V.tmC1;YmC1/ is the option value at
time tmC1.

2.3.1 Bermudan Options

Bermudan options can be exercised at a series of time points before expiry date T.
Denote the set of early-exercise dates by TE. We will take a small step size�t when
simulating the market variables to enhance the accuracy of the CVA calculation, and
we assume that the Bermudan option can only be exercised at some of these dates,
i.e. TE � T .

We also assume that the option holder makes the exercise strategy aiming for
the ‘optimal’ profit, and the option holder is not influenced by the credit quality of
the option writer when making the decision. We further denote the optimal stopping
time by 	B, which is the optimal time to exercise the option under the assumptions.
It should maximize the expected payoff at time t D 0, i.e.

VBerm.t0;Y0/ D max
	B2TE

E
�
D.0; 	B/ � g.S	B/

ˇ̌
Y0

	
: (22)

The essential idea of pricing Bermudan options by simulation is to determine
the optimal exercise strategy for each path. At each exercise date, the option holder
compares the received payoff from immediate exercise with the expected payoff
from continuation of the option to determine the optimal exercise strategy. The
dynamics of pricing Bermudan options in backward induction derived by the Snell
envelope [14, 27] can be expressed by:

VBerm.tm;Ym/ D

8̂
<̂
ˆ̂:

g.SM/ for tM D T;

max fc.tm;Ym/; g.Sm/g ; for tm 2 TE;

c.tm;Ym/; for tm 2 T � TE:

(23)
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2.3.2 European Options

Similar to pricing Bermudan options, the exposure profile of a European option can
be determined based on simulation. The European option value at time T equals the
received payoff VEuro.tM;YM/ D g.SM/; at time points tm < T, the value of the
European option is equal to the discounted conditional expected payoff, i.e.,

VEuro.tm;Ym/ WD E
�
D.tm; tM/ � g.SM/

ˇ̌
Ym
	
; (24)

where g.SM/ is the received payoff at time tM D T. By the tower property of
expectations, it can be calculated in a backward iteration as:

VEuro.tm;Ym/ D E

�
D.tm; tmC1/ � E �D.tmC1; tM/ � g.SM/

ˇ̌
YmC1

	 ˇ̌̌ˇYm



D E

�
D.tm; tmC1/ � VEuro.tmC1;YmC1/

ˇ̌
ˇ̌Ym


D c.tm;Ym/: (25)

2.3.3 Barrier Options

Barrier options become active/knocked out when the underlying asset reaches a
predetermined level, i.e. the barrier level. There are four main types of barrier
options: up-and-out, down-and-out, up-and-in, down-and-in options. Here we focus
on the down-and-out barrier options. A down-and-out barrier option is active
initially and gets knocked out (looses its value except for some rebate value) when
the underlying hits the barrier; otherwise if the option is not knocked out during its
lifetime, the holder will receive the payoff value at the expiry date T. The backward
pricing dynamics of the down-and-out barrier options are thus given by [14],

Vbarr.tm;Ym/ D
(

g.Sm/ � 1fSm>Lg C rb � 1fSm�Lg; for tM D T;

c.tm;Ym/ � 1fSm>Lg C rb � 1fSm�Lg; for tm < T;
(26)

where 1 .�/ is the indicator function, L is the barrier level and rb is the rebate value.

3 The Stochastic Grid Bundling Method (SGBM)

Monte Carlo simulation plays a primary role in computing CVA, i.e. generating
N independent scenarios for each monitoring date T . We denote the realization
of the state vector Ym on the i-th path at time tm by Oym.i/, i D 1; : : : ;N. After
finishing the calculation of the exposure profile on the generated stochastic grid, the
CVA, assuming independence of exposures and defaults, can be computed by the
following discrete formula:
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CVA 
 LGD
M�1X
mD0

1

N

NX
iD1

 
exp

 
�

m�1X
kD0

r.Oyk.i//�t

!
� E.tm; Oym.i//

!

�
�

PS.tm/ � PS.tmC1/
�
: (27)

Similarly, the value at time tm of the EE and PFE functions can be approximated by:

EE.tm/ 
 1

N

NX
iD1

E.tm; Oym.i//; (28)

PFE.tm/ 
 quantile.E.tm; Oym.i//; 97:5%/; (29)

where the confidence level is set to ˛ D 97:5%.
At expiry date tM D T, the option values on each path can be computed

immediately by the received payoff values. The key problem is to calculate the
continuation values on each path in the backward algorithm at each monitoring time
tm < T, m D 0; 1; : : : ;M � 1. SGBM combines regression and bundling techniques
to compute these expected values.

3.1 Calculation of the Continuation Values

At time tm < T, the generated paths are clustered into some non-overlapping bundles
with as a criterion that the realizations Oym.i/ on paths within the same bundle should
share similar values. The indices of the paths in the j-th bundle are in a set Bj

m,
j D 1; 2; : : : ; J, where J is the number of bundles. The realizations Oym.i/ of the
state vector Ym within the j-th bundle form a bounded domain Ij

m � Rn, when
m D 1; 2; : : : ;M � 1, given by

Ij
m D

nY
lD1

"
max

i2Bj�1
m

�Oy.l/m .i/
�
;max

i2Bj
m

�Oy.l/m .i/
�#
; (30)

where Oy.l/m .i/ represents the l-th dimension of the realization Oy.i/, and j D 2; 3; : : : ; J.

When j D 1we define the realized domain I1m D
nQ

lD1

�
min
i2B1

m

�
Oy.l/m .i/

�
;max

i2B1
m

�
Oy.l/m .i/

�
.

These subdomains fIj
mgJ

jD1 are disjoint. At the same time, the corresponding
realizations OymC1.i/ of the state vector YmC1 within the j-th bundle also form a
bounded domain in Rn, i.e.

Uj
mC1 D

nQ
lD1

"
min
i2Bj

m

�
Oy.l/mC1.i/

�
;max

i2Bj
m

�
Oy.l/mC1.i/

�#
; (31)
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where Oy.l/mC1.i/ represents the l-th dimension of the realization OymC1.i/. These
domains typically overlap.

We assume that the option function V.tmC1; �/ is an element of the L2 space on
the finite domain Uj

mC1, i.e. it is square-integrable over Uj
mC1 with some measure.

Suppose that we have the values of this option function w.r.t. the realizations
OymC1.i/ on all paths, denoted by OvmC1.i/, i D 1; 2; : : : ;N. Given the set of points
f.OymC1.i/; OvmC1.i//gN

iD1, i 2 Bj
m, a commonly used approximation of the option

function is a constructed function that is the ‘best fit’ for the data set in least squares
sense. With a set of some basis functions f�kgH

kD1 in L2, the option function can be
approximated on Uj

mC1 by a linear combination of the basis functions:

V.tmC1;YmC1/ 
 Z1.tmC1;YmC1/ WD
HX

kD1
ˇj

m.k/�k.YmC1/; (32)

where H is the number of basis functions, and ˇj
m.k/ are the constant coefficients

at time tm of the k-th basis function �k within the j-th bundle Bj
m, determined by

regression:

arg min
ˇ

j
m.k/2R;kD1;:::;H

X
i2Bj

m

 
OvmC1.i/ �

HX
kD1

ˇj
m.k/�k.OymC1.i//

!2
; (33)

of which the solution is denoted by f Ǒ j
m.k/gH

kD1. Within the j-th bundle, the
approximation of the option function on Uj

mC1 is thus given by:

V.tmC1;YmC1/ 
 Z2.tmC1;YmC1/ WD
HX

kD1
Ǒj
m.k/�k.YmC1/: (34)

Hence the continuation function on the bounded domain Ij
m can be approximated

by a linear combination of the conditional expected discounted basis functions
defined by:

c2.tm;Ym/ WD EQ

�
D .tm; tmC1/ � Z2.tmC1;YmC1/

ˇ̌̌
ˇYm



D
HX

kD1
Ǒj
m.k/ k.Ym; �t/; (35)

where the conditional expectation of the k-th discounted basis function is given by

 k.Ym; �t/ WD EQ

�
D .tm; tmC1/ � �k.YmC1/

ˇ̌
ˇ̌Ym


: (36)
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We will approximate the ‘real’ continuation function c.tm; �/ given in equation (21)
by the function c2.tm; �/ defined in equation (35) on the bounded domain Ij

m.
When analytic formulas of the functions f kgH

kD1 defined in (36) are available, the
continuation value w.r.t. realization Oym.i/ on the i-th path within the j-th bundle can
be easily computed by:

c.tm; Oym.i// 
 c2.tm; Oym.i// D
HX

kD1
Ǒj
m.k/ k.Oym.i/;�t/: (37)

In addition, we will show that the error of approximation of the continuation
function at time tm is bounded by the error of approximation of the option function
at time tmC1 in Sect. 3.4.

3.2 Backward Algorithm

From Sect. 3.1, it is clear that the continuation values on each path at time tm can
be calculated in backward fashion as long as the option values at these paths at time
tmC1 are available. In this section, we will present the backward algorithm of the
SGBM for computing exposures of options, first for Bermudan options.

Initializing: At time tM D T, the option values f OvM.i/gN
iD1 on all paths can be

calculated from the received payoff.
Backward iteration: At time tm < T, m D M � 1;M � 2; : : : ; 1,

• Step I: apply a bundling technique to cluster all paths into non-overlapping
bundles, indexed by Bj

m, j D 1; 2; : : : ; J.
• Step II: within the j-th bundle, j D 1; 2; : : : ; J, utilize the regression technique to

calculate the continuation values at time tm by:

– Step (i): approximate coefficients f Ǒj
m.k/gH

kD1 within the j-th bundle by
formula (33);

– Step (ii): calculate continuation values on each path by formula (35) using the
approximated coefficients obtained in Step (i).

• Step III: determine option values f Ovm.i/gN
iD1 on all paths at time tm by for-

mula (23) using the approximated continuation values obtained in Step (ii).
• Step IV: determine exposure values at time tm by formula (1) on each path: if

the option at a path is exercised at time tm, then the corresponding exposure
values from time tm to time tM at this path are assigned value zero; otherwise the
exposure values are the computed continuation values on the path.

Finalizing: At time t0 D 0, approximate directly the coefficients f Ǒ
m.k/gH

kD1 and
calculate the continuation value at time t0, which is also the option value at time t0.
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The backward algorithm of calculating the exposure profile of a European option
or a barrier option is the same as the algorithm for a Bermudan option, except that
the pricing formula (23) in Step III needs to be replaced by formula (25) for pricing
European options or formula (26) for pricing barrier options, respectively.

3.3 Sensitivities of EE

The sensitivities Delta (�EE) and Gamma (�EE) of EE w.r.t. the change of the
underlying asset price S0 can be computed in the same backward algorithm for the
computation of the exposure profile. At time tM D T, we simply assign value zero
to these derivatives of the EE function. At time tm < T, the sensitivities can be
computed by:

�EE.tm/ WD @EE

@S0
.tm/ 
 1

N

NX
iD1

@E

@xm
.tm; Oym.i// � 1

S0
; (38)

�EE.tm/ WD @2EE

@S20
.tm/ 
 1

N

NX
iD1

�
@2E

@x2m
.tm; Oym.i// � @E

@xm
.tm; Oym.i//

�
� 1

S20
; (39)

where xm D log.Sm/ represents the log-asset value at time tm. The derivation of
formulas (38) and (39) is presented here. At time tm, the first derivative of the EE
function can be computed by

@EE

@S0
.tm/ 
 1

N

NX
iD1

@E

@S0
.tm; Oym.i//; (40)

by the chain rule,

@E

@S0
.tm; Oym.i// D @E

@xm
� @xm

@Sm
� @Sm

@S0
.tm; Oym.i//; (41)

where xm WD log Sm, and

@xm

@Sm
D 1

Sm
;

@Sm

@S0
D Sm

S0
: (42)

The second equation in (42) can be derived as follows. The asset value St follows a
Geometric Brownian motion process, i.e.

d log St D �tdt C �tdWt: (43)
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By integrating both sides, we obtain

St D S0 � exp

�Z t

0

.�sds C �sdWs/

�
; (44)

hence the derivative of St w.r.t. S0 can be expressed by

@St

@S0
D exp

�Z t

0

.�sds C �sdWs/

�
D St

S0
: (45)

So, the first derivative of the EE function can be expressed by

@EE

@S0
.tm/ 
 1

N

NX
iD1

@E

@xm
.tm; Oym.i// � 1

S0
: (46)

From (46), the second derivative can be derived by

@2EE

@S20
.tm/ D 1

N

NX
iD1

�
@E

@x2m
.tm; Oym.i// � xm

Sm
� Sm

S0
� 1

S0
C @E

@xm
.tm; Oym.i// �

�
� 1

S20

��

D 1

N

NX
iD1

�
@2E

@x2m
.tm; Oym.i//� @E

@xm
.tm; Oym.i//

�
� 1

S20
: (47)

For those paths on which the option is alive at time tm, the first and the second
derivatives of the exposure function are given by

@E

@xm
.tm;Ym/ WD @c

@xm
.tm;Ym/;

@2E

@x2m
.tm;Ym/ WD @2c

@x2m
.tm;Ym/;

(48)

where the derivatives of the continuation function w.r.t. xm within the j-th bundle are
approximated by

@c

@xm
.tm;Ym/ 


HX
kD1

Ǒj
m.k/

@ k

@xm
.Ym; �t/;

@2c

@x2m
.tm;Ym/ 


HX
kD1

Ǒj
m.k/

@2 k

@x2m
.Ym; �t/;

(49)

with the same coefficient set f Ǒj
m.k/gH

kD1 as in (35).
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For those paths on which the option has been exercised or knocked out at time
tm, the derivatives of EE are given value zero, as the exposure values on these paths
are zero.

3.4 Convergence Results

The so-called direct estimator is obtained in the backward algorithm by regression
[20]. With convexity of the ‘max’ function, it can be proven by induction that the
direct estimator is often higher than the true value with some bias, and that the direct
estimator converges to the option value as the number of paths and the number of
monomial basis functions goes to infinity. See Theorem 2 and Theorem 4 in [20].

In addition, an estimator can be made based on the average cash flow of a second
set of paths, referred to as the path estimator. Using the coefficients obtained by
regression based on one set of paths, an approximation of the optimal early exercise
strategy of another set of paths can be made by comparing values of continuation
and values of immediate exercise. The path estimator is often a lower bound of the
option value, converging a.s. as the number of paths goes to infinity [20], since the
option value computed by the optimal early exercise strategy is the supremum of
the option value at time t D 0 by definition. Details of the proof can be found in
[20, 27].

For European and barrier options, one can take the discounted average of the MC
paths as our reference. For Bermudan options, the direct and path estimators provide
a conservative confidence interval for the true option value [20]:

�
Vpath.0/� 1:96 Ospathp

Ns
;Vdirect.0/C 1:96

Osdirectp
Ns


; (50)

where Ospath and Osdirect are the sample standard deviations for the path and direct
estimator respectively, and Vpath.0/ and Vdirect.0/ are the sample means of the
path and direct estimators respectively; these sample means and sample standard
deviations are based on Ns independent trials.

The approximation of the option function converges as the number of paths, the
number of basis functions and the number of bundles go to infinity. Details of this
can be found in Appendix 4. From the discussion of convergence in Appendix 4, we
can also conclude that by using bundles, the option function can be approximated
well piece-wise functions, even with a low order p D 1. This advantage of
the SGBM approach will reduce the computational effort for increasing problem
dimensions. In addition, the error of approximation of the continuation function can
be uniformly bounded by the error in approximating the option function, as stated
in Proposition 1. It ensures the accuracy of the computed continuation values by
SGBM on each path, which is important for computing exposure profiles.
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Proposition 1 At time tm, the error of approximating the continuation function by
SGBM is uniformly bounded by the error of approximation of the option function
within each bundle, given by

ˇ̌
ˇ̌c.tm;Ym/ � c2.tm;Ym/

ˇ̌
ˇ̌  kV.tmC1; �/� Z2.tmC1; �/kL2

D
 Z

YmC12Rn
.V.tmC1;YmC1/� Z2.tmC1;YmC1//2 d�.YmC1jYm/

! 1
2

; (51)

where �.YmC1jYm/ is the probability measure conditioned on Ym 2 Ij
m under the

risk-neutral measure Q.

Proof By Jensen’s inequality it is proved in Appendix 5.

4 Choice of Basis Functions and Bundling

4.1 The Monomial Basis and the Discounted Moments

Essentially, the approximation of the option function expressed in (32) is its
projection onto a space consisting of basis functions on the bounded domain Uj

mC1.
For the polynomial space, it is natural to take monomials as the basis, as all
monomials with order lower or equal to any degree p 2 N can form a closure.
With a state vector Yt D ŒY1t ;Y

2
t ; : : : ;Y

l
t ; : : : ;Y

n
t � 2 Rn, a monomial basis of order

p > 0 can be expressed by
nQ

lD1
�
Yl

t

�ql , where

 
nX

lD1
ql

!
D p; with ql � 0 for any l.

The number of basis functions of a monomial basis of order less than or equal to p
is H D .nCp/Š

pŠnŠ . We denote the polynomial space of order p on the bounded domain

Uj
mC1 by:

P.Uj
mC1; p/ WD

(
f

ˇ̌̌
ˇf .y/ D

HX
kD1

ˇ.k/�k.y/; y 2 Uj
mC1; ˇ 2 RH:

)
; (52)

where ˇ WD Œˇ.1/; ˇ.2/; � � � ; ˇ.H/� 2 RH , and f�kgH
kD1 is the monomial basis.

Table 1 presents the monomial basis set for the hybrid models in this paper with
degree p D f1; 2; 3g.

The monomial basis grows rapidly with the dimension of the state variable n
and the polynomial order p. In the algorithm of SGBM, bundling will enhance the
accuracy and thus a lower degree p can be employed to achieve a certain accuracy
level, as we will see in the numerical Sect. 5.
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Table 1 The monomial basis for the hybrid models

order p Heston BSHW HHW!H1HW

1 f1; xt; vtg f1; xt; rtg f1; xt; vt; rtg
2 f1; xt; vt; x2t ; xtvt; v

2
t g f1; xt; rt; x2t ,xtrt; r2t g f1; xt; vt; rt; x2t ; xtvt;

v2t ; xtrt; r2t ; vtrtg
3 f1; xt; vt; x2t ; xtvt; v

2
t ;

x3t ; x
2
t vt; xtv

2
t ; v

3
t g

f1; xt; rt; x2t ; xtrt; r2t ;
x3t ; x

2
t rt; xtr2t ; r

3
t g

The expected value of a discounted monomial basis is the discounted moment,
for which an analytic formula, the  -function, is needed in the calculation of the
continuation function. Over a time period Œs; t�, the k-th discounted moment of an n-

dimensional vector Yt, corresponding to the monomial basis
nQ

lD1
�
Yl

t

�ql with degree

0 
 

nX
lD1

ql

!
 p, is defined by:

 k.Ys; t � s/ WD EQ

"
nY

lD1

�
Yl

t

�ql � D.s; t/

ˇ̌
ˇ̌Ys

#
; (53)

which can be derived by the associated dChF of the dynamics,

 k.Ys; t � s/ D 1

.i/p

nY
lD1

@ql˚

@uql
l

.uI Ys; t � s/

ˇ̌
ˇ̌
uD0

; (54)

where i represents the imaginary unit, vector u D Œu1; u2; : : : ; ul; : : : ; un� 2 Rn

and the function ˚.uI Ys; t � s/ is the dChF of the underlying dynamics given in
equation (9).

So, the discounted moments of AD processes of any order can be expressed in
closed form, i.e. we have all discounted moments corresponding to the monomial
basis presented in Table 1. For the HHW process, of course, we base them on the
H1HW approximate model.

4.2 A Bundling Method

We introduce a technique for making bundles in SGBM such that there is an
equal number of paths within each bundle. It is called the equal-number bundling
technique. The same technique of clustering paths is found in [10, 26]. The
advantages of this bundling technique are that the number of paths within each
bundle will grow in portion to the number of paths, and that there will be a sufficient
number of paths for regression when the total number of paths is large.
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Fig. 1 Equal-number bundling. Each colored block represents a disjoint subdomain Im;j. (a) First
iteration, J1. (b) Second iteration, J2

We use the Heston model to present the bundling technique, where the 2D state
vector is denoted by Yt D Œxt; vt�

T . First, all paths are sorted w.r.t. their log-asset
values, and clustered into J1 bundles with respect to their ranking, ensuring that
within each bundle, the number of paths is equal to N

J1
; subsequently, within each

bundle we perform a second sorting w.r.t. the variance values and cluster the paths
into J2 bundles. After these two iterations, the total number of bundles will be J D
J1 � J2.

The two steps are visualized in Fig. 1, where scatter plots demonstrate the 2D
domain for the Heston model, at some time instant tm. In plot (a), the paths are first
clustered into 8 bundles w.r.t. the values of the log-asset, while in plot (b), the paths
within each bundle are again clustered into 2 bundles w.r.t. the value of the variance.
The total number of bundles is thus 16.

In a similar way, paths simulated under the HHW model can be clustered by the
realized values of the log-asset (xt), variance (vt) and interest rate (rt) values, in this
order. We denote the number of bundles in these three dimension by J1, J2 and J3,
and the total number of bundles J D J1 � J2 � J3.

There are other bundling approaches such as the recursive-bifurcation-method
and the k-means clustering method, used in [20]. For our specific multi-dimensional
problems, however, using the recursive-bifurcation-method will give rise to too few
paths within some bundles when the correlation parameter � is close to 1 or �1, no
matter how large the total number of paths is. This problem will not occur if we use
the equal-number bundling technique. In addition, it is easy to implement and fast
for computation compared to the k-means clustering method.

5 Numerical Tests

In this section, we will analyze the convergence and accuracy of SGBM for the
Heston and the HHW models, respectively w.r.t. the following quantities:
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• the value of the option at time t D 0;
• the EE and PFE quantities over time Œ0;T�;
• the sensitivities w.r.t. S0 of the EE function over time Œ0;T�.

The convergence of SGBM for the computation of Bermudan options can be
checked by comparing the direct and path estimators. The reference values for
European and barrier options can be computed by averaging discounted cash flows
for a very large number of paths.

In addition, the COS method can be connected to the MC method [31] for
reference values. Under the Heston model, the COS method in [14] can be used
to calculate option values and corresponding Greeks at time t D 0 for Bermudan
and barrier options. By the MC COS method exposure profiles, quantities and
sensitivities of the EE function can be computed at monitoring date tm. We use
quantities computed by the COS method as the reference values for EE, PFE and
sensitivity functions under the Heston model.2

The Quadratic Exponential (QE) scheme is employed for accurate simulation
of the Heston volatility model [1]. CVA is computed here via formula (4) with
LGD D 1. The survival probability function defined in (2) is assumed to the
independent of exposure with a constant intensity ht D 0:03 in the period Œ0;T�.

5.1 The Heston Model

The parameters for the Heston model in (14) are chosen as
Test A: S0 D 100, r D 0:04, K D 100, T D 1; � D 1:15, � D 0:39, Nv D 0:0348,

v0 D 0:0348, �x;v D �0:64, where the Feller condition is not satisfied.
We choose a large number of MC paths, N D 2 � 106 and a relatively small time

step size �t D 0:05. The paths will be clustered into J1 D 2j; J2 D 2j, j D 1; 2; 3; 4

bundles. The monomial basis in SGBM is of order p D f1; 2; 3g. The number of
paths is chosen large as we wish to compare the convergence and accuracy using the
same set of simulated scenarios for different choices of the number of bundles J and
degree p. The number of paths can be greatly reduced in real-life CVA computations
because SGBM typically exhibits low variances compared to LSM.

We consider a Bermudan put option under the Heston model with parameter Test
A, with 10 equally-spaced exercise dates till T D 1.

Figure 2a shows that the direct and path estimators converge to the option value
when increasing the number of bundles (J) and the order of the monomial basis (p),
as expected. Monomial basis p D 3 enhances the convergence speed compared to

2In the MC COS method, we use 400 Fourier terms, and 400 grid points in volatility direction;
the COS parameter for the integration domain size is set to L D 12 for calculating the reference
values.
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Fig. 2 Convergence of the Bermudan option value and the EE w.r.t. J—the number of bundles and
p—the order of the basis functions, by comparing the direct and path estimators. Strike K D 100,
expiry date T D 1 and exercise times 10. The total number of paths N D 2 	 106. (a) Bermudan
option. (b) Error in EE

p D 2 or p D 1. Figure 2b confirms this by showing the difference in the computed
EE of the direct and path estimators, where the difference is measured in the relative
L2 norm.3

In Fig. 3, we present the accuracy of SGBM for the exposure quantities, EE, PFE
and sensitivities of EE, by comparing to reference values by the MC COS method
based on the same set of MC paths. Increasing the number of bundles J and/or the
order of the monomial basis p enhances the accuracy of the results, as expected.
In particular, a basis of order p D 2 achieves the same level of accuracy as order
p D 3 with twice more bundles. By increasing the number of bundles, we can thus
employ a monomial basis of lower order, which is an important insight.

Table 2 presents option values as well as CVA and sensitivities computed by
SGBM plus the corresponding reference values. We see that the direct estimators
have smaller variances compared to the path estimators.

In addition, Fig. 4 demonstrates the convergence of SGBM based on basis
functions of lower order, p D 1, where we increase the number of bundles to 46.
The conclusion in Appendix 4, i.e. when the size of a bundle approaches zero, the
bias caused by approximating a continuous function by a simple linear function goes
to zero, is confirmed. This is one advantage of SGBM compared to LSM. We need
fewer basis functions by using bundles.

3The relative L2 norm is defined by:

kEEdirect � EEpathk2
kEEdirectk2 D

qPM
mD0

�
EEdirect.tm/� EEpath.tm/

�2
qPM

mD0 .EEdirect.tm//
2

: (55)
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Fig. 3 Convergence of the EE, PFE and sensitivities, w.r.t. J—the number of bundles and p—the
order of basis functions for a Bermudan put option; the reference is generated by the MC COS
method. Strike K D 100, expiry date T D 1 and exercise times 10. The total number of paths
N D 2 	 106 . (a) Error in EE. (b) Error in PFE. (c) Error in�EE. (d) Error in �EE

Table 2 Results of a Bermudan put option under the Heston model. Strike
K D 100, expiry date T D 1 and exercise times 10. The total number of paths
N D 2 	 106, and the order p D 2 and the bundle number J D 28

Bermudan option under the Heston model

Quantities Direct estimator (std.) Path estimator (std.) COS

V.0/ 5:486.0:000/ 5.488 (0.005) 5.486

�EE.0/ �0:329.0:000/ � �0.328

�EE.0/ 0:022.0:000/ � 0.025

CVA 0:093.0:000/ 0.093 (0.000) 0.093 (0.000)

We also consider a put-down-out barrier option with strike K D 100. The option
is knocked out when the asset value reaches barrier level H D 0:9K before the
maturity T D 1. After being knocked out, an investor receives a rebate value, rb D
10; otherwise the investor receives the payoff at time T D 1. We present these
quantities computed by SGBM and the corresponding reference values in Table 3.
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Fig. 4 Convergence of the EE, PFE and sensitivity � w.r.t. J—the number of bundles for a
Bermudan put option when the number of paths within each bundle is 200, the order of the basis
functions p D 1, and the total number of paths is 200J; the reference is generated by the MC COS
method. (a) EE and PFE when p D 1. (b) Sensitivity � when p D 1

Table 3 Results of a down-and-out barrier put option under the Heston
model. Strike K D 100, expiry date T D 1, barrier level H D 0:9K,
rb D 10. The total number of paths N D 2 	 106, and the order p D 2

and the bundle number J D 28

Barrier option under the Heston model

Values t D 0 SGBM (std.) Monte Carlo (std.) COS

V.0/ 4.013 (0.000) 4.016 (0.003) 4.015

�EE.0/ �0.2631 (0.000) � �0.263

�EE.0/ 0.0232 (0.000) � 0.0224

CVA 0.0493 (0.000) 0.0493 (0.000) 0.0493 (0.000)

5.2 The HHW Model

SGBM for the Heston Hull-White model is based on forward simulation under
the true HHW dynamics while the backward computation employs the discounted
moments of the H1HW dynamics.There are basically two issues regarding the
SGBM computation of exposure under the HHW model. We will focus on the
impact of a long expiry date (say T D 10), and we will examine the accuracy of
the approximation of the HHW model by the affine H1HW model.

We use the following parameters for the HHW and H1HW models (14):
Test B: S0 D 100, v0 D 0:05, r0 D 0:02; � D 0:3, � D 0:6, Nv D 0:05, 
 D 0:01,

� D 0:01, � D 0:02, �x;v D �0:3 and �x;r D 0:6. T D 10.
Simulation is done with N D 106 MC paths and �t D 0:1. The details of the

SGBM algorithm are as follows: the number of bundles varies as J1 D 22Cj, J2 D 2j,
J3 D 2j, j D 1; 2; 3 and the orders of the monomial basis are p D f1; 2g.
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Table 4 Implied volatility
(%) obtained for a European
put option with expiry date
T D 10 under the HHW
model, based on 5
simulations

Implied volatility (%)

K=S0 SGBM (std.) Monte Carlo (std.) Abs. error (%)

40% 26.481 (0.003) 26.479 (0.03) 0:0014

80% 20.699 (0.003) 20.719 (0.02) 0:0202

100% 19.200 (0.003) 19.242 (0.01) 0:0413

120% 18.369 (0.003) 18.427 (0.01) 0:0585

180% 18.220 (0.003) 18.291 (0.02) 0:0706
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Fig. 5 Convergence w.r.t. J—the number of bundles and p—the order of the monomial basis by
comparing the path and the direct estimator under the HHW model. Strike K D 100, T D 10

and 50 exercise times. The total number of paths N D 106 . (a) Bermudan option values. (b) EE
difference

The accuracy of SGBM is first studied by computing a European put option
with T D 10. The implied volatility (in %) is used to demonstrate the accuracy
of the computed option values, as the implied volatility is typically sensitive to the
accuracy of option values [17]. The implied volatility is computed by means of the
BS formula for strike values K D f40; 80; 100; 120; 180g. The reference values are
computed by the average cash flows on the generated MC paths. The results are
presented in Table 4. The SGBM results have smaller variances compared to results
of a plain Monte Carlo simulation, and maintain a high accuracy when comparing
the absolute errors.

We then consider a Bermudan put option with 50 exercise dates equally
distributed in the period Œ0;T�. Figure 5 shows the SGBM convergence rate
by comparing the direct and path estimators. Results of this Bermudan put are
presented in Table 5. Table 6 presents results of SGBM for computing a down-and-
out barrier put option. It shows that SGBM works well also for a non-continuous
payoff function.
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Table 5 Results for a Bermudan put option under the HHW model. Strike
K D 100, T D 10 and 50 exercise times. The total number of paths is
N D 106, and the order p D 2 and bundle number J D 2048

Bermudan option under the HHW model

T D 10 Values t D 0 Direct estimator (std.) Path estimator (std.)

V.0/ 16:056.0:002/ 16.009 ( 0.018)

�EE.0/ �0:268.0:000/ �
�EE.0/ 0:815.0:001/ �
CVA 2:968.0:003/ �

Table 6 Results for a down-and-out barrier put option under
the HHW model. Strike K D 100, T D 10, barrier level H D
0:9K, rb D 0. The total number of paths is N D 106, and the
order p D 2 and J D 2048 bundles

Barrier option under the HHW model

Values t D 0 Direct estimator (std.) Monte Carlo (std.)

V.0/ 0:0478.0:000/ 0.0477 (0.001)

�EE.0/ 0:0017.0:000/ �
�EE.0/ �0:0001.0:000/ �
CVA 0:0123.0:000/ �

Table 7 Calculation time in seconds for computing exposure profiles of a
Bermudan option and for that of a whole portfolio with expiry date T D 10 under
the HHW model; SGBM with polynomial order p D 2, number of paths N D 106

and time step size �t D 0:1

Calculation time Direct estimator Path estimator for Bermudan

A single (Bermudan) option 151.5 (sec.) 130.2 (sec.)

Portfolio 306.3 (sec.) 131.5 (sec.)

5.3 Speed

One benefit of the SGBM algorithm is that one can calculate different financial
derivatives on the same underlying in one backward iteration using the same set
of simulated paths, as the monomial basis and the discounted moments are the
same. Table 7 compares the calculation time of a single Bermudan option and of
a portfolio, that consists of a Bermudan option, a European option and two barrier
options with the same underlying stock. The algorithm is implemented in MATLAB,
and runs on an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz.

By using parallelization of the SGBM algorithm, the speed can be further
enhanced drastically, see a study in [26].
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Table 8 CVA(%) of European options with T D 5 and strike values K D
f80; 100; 120g
European option, CVA (%)

K=S0 BS Heston BSHW HHW

T D 1 80% 2.951 (0.010) 2.959 (0.003) 2.953 (0.005) 2.949 (0.005)

100% 2.956 (0.011) 2.958 (0.003) 2.952 (0.002) 2.952 (0.002)

120% 2.955 (0.002) 2.959 (0.001) 2.953 (0.001) 2.952 (0.001)

T D 5 80% 13.925 (0.036) 13.941 (0.021) 13.882 (0.016) 13.929 (0.027)

100% 13.951 (0.039) 13.960 (0.010) 13.901 (0.003) 13.940 (0.018)

120% 13.919 (0.010) 13.953 (0.007) 13.901 (0.005) 13.936 (0.010)

5.4 Impact of Stochastic Volatility and Stochastic Interest Rates

We here check the impact of stochastic volatility and stochastic interest rates
on exposure profiles and CVA. Next to the already discussed Heston and HHW
models, we also consider the Black-Scholes (BS) and the Black-Scholes Hull-White
(BSHW) models in this section. The parameter set chosen is the same as in Test B.
For comparison, we use the parameters of the other models such that we can ensure
that the values of a European put option with a fixed expiry date T has the same
price under all models.4

We define a so-called CVA percentage as
�
100 � CVA

V.0/

�
%. Table 8 presents the

percentage CVA for European put options with two maturity times, T D f1; 5g, for
the strike values K D f80; 100; 120g. It can be seen that the CVA percentage does
not change with strike; furthermore, European options with maturity T D 5 exhibit
a higher CVA percentage than those with maturity T D 1. Based on the chosen
parameters, we see only a small impact of stochastic volatility and stochastic interest
rate on the CVA percentage.

Table 9 presents the percentage CVA for Bermudan put options with maturity
times T D f1; 5g for strike values K D f80; 100; 120g. We see that the ‘in-the-
money’ options have the smallest CVA percentage. This is understandable as the
optimal exercise strategy, in this paper, does not take into account the risk of a
counterparty default. A put option is likely to be exercised before maturity when the
strike value is higher than the current stock value, and thus one can expect relatively
little exposure.

Figure 6 presents the EE and PFE function values w.r.t. time for a Bermudan put
option which is at-the-money.

4For example, under the Black-Scholes model, we use the implied interest rate, i.e. rT D
� log.p.0;T//

T , and compute the implied volatility by the analytic BS formula. Under the Heston
model, the parameters of the Heston process are the same as those in Test B, and the corresponding
interest rate is computed by the bisection algorithm. Under the BSHW model, the parameters of the
Hull White process are the same as those in Test B, and the corresponding volatility is determined.
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Table 9 CVA(%) of Bermudan options with T D 5 and strike values K D
f80; 100; 120g
Bermudan option, CVA (%)

K=S0 BS Heston BSHW HHW

T D 1 80% 2.534 (0.007) 2.460 (0.002) 2.643 (0.003) 2.504 (0.003)

100% 2.005 (0.003) 1.939 (0.002) 2.165 (0.001) 2.016 (0.001)

120% 0.906 (0.002) 1.031 (0.001) 0.986 (0.001) 1.068 (0.001)

T D 5 80% 10.110 (0.032) 9.876 (0.030) 12.612 (0.014) 10.890 (0.029)

100% 7.784 (0.011) 8.120 (0.012) 10.965 (0.008) 9.649 (0.019)

120% 4.453 (0.008) 4.416 (0.020) 6.923 (0.005) 6.259 (0.013)
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Fig. 6 Impact of stochastic volatility and interest rate on EE and PFE with different tenors and
different asset dynamics, at the money K D 100. (a) T=1, EE. (b) T=1, PFE . (c) T=5, EE. (d)
T=5, PFE

• In Fig. 6b, it can be seen that the PFE values for the HHW model are relatively
close to those of the Heston model, and the PFE values for the BSHW model
are very similar to those of the BS model. With a short time to maturity (T D 1),
under our model assumptions and parameters, the stochastic volatility has a more
significant contribution to the PFE values compared to the stochastic interest rate.
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Compared to Fig. 6a, we can see that the EE values for the Heston and the BS
models are very close. Adding stochastic volatility has more impact on the right-
side tails of the exposure profiles than on the EE values.

• In Fig. 6d, in the period t D Œ0; 1�, we see similarities of PFE values between the
HHW and the Heston models, and between the BS and the BSHW models; in
the period t D Œ1; 5�, the PFE values for the BSHW model tend to be higher than
those of the BS model, and the PFE values for the HHW model are also higher
than those of the Heston model. Clearly, interest rates have more impact on the
exposure profiles in the longer term (say T D 5).

• Figures 6a and c show that the stochastic interest rate increases the future EE
values of Bermudan options, while the stochastic volatility has the opposite
effect.

• The PFE curve for the BSHW model in Fig. 6d looks differently from the other
curves because of the positive correlation parameter (�x;r D 0:6) and the long
expiry (T D 5). The PFE curve represents events with large option values and
for a put option, this means that the associated stock values are low. In the case of
a positive correlation parameter �x;r, the interest rate is low as well. The investor
likely holds on to the option. If we set the correlation value to zero in the BSHW
model and perform the same computation, the PFE curves under the BSHW
model becomes ‘spiky’ as well.

The stochastic interest rate plays a significant role in the case of a longer maturity
derivatives, and results in increasing PFE profiles; stochastic asset volatility appears
to have an effect on PFE values at the early stage of a contract. Under the parameters
chosen here, at an early stage of the contract (say t < 1), the PFE profiles under the
HHW model are very similar to those under the Heston model, but at later contract
times the PFE profiles under the HHW model increase. It seems that the stochastic
volatility has more effect on the right-side tail compared to the expectation of
the exposure profile, while adding the stochastic interest rate increases the whole
exposure profile, especially in the case of a longer maturity.

6 Conclusion

In this paper we generalize the Stochastic Grid Bundling Method (SGBM) towards
the computation of exposure profiles and sensitivities for asset dynamics with
stochastic asset volatility and stochastic interest rate for European, Bermudan as
well as barrier options. The algorithmic structure as well as the essential method
components are very similar for CVA as for the computation of early-exercise
options, which makes SGBM a flexible CVA valuation framework.

We presented arguments for the choice of the basis functions for the local
regression, presented a bundling technique, and showed SGBM convergence of
the direct and path estimators with respect to an increasing number of bundles.
Numerical experiments demonstrate SGBM’s convergence and accuracy.
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Using higher-order polynomials as the basis functions is especially important
when accurate sensitivities values are needed; otherwise, a polynomial order p D 1

is sufficient for option prices and exposure quantities with a sufficiently large
number of bundles and paths. The computational efficiency is connected to the
number of bundles used in SGBM. A parallel algorithm will be important for a
drastic reduction of the computation times, see the studies in [26].
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Appendix 1: The Joint Discounted ChF of the Heston Model

The discounted ChF of an affine model can be derived by Ricatti ODEs, as presented
by Duffie et al. [13]. The expression for the joint dChF of the Heston model is
given by:

˚Heston.u1; u2;TjYt/ D exp
� NAH.u1; u2; 	/C NBH.u1; 	/xt C NCH.u1; u2; 	/vt

�
; (56)

where the coefficients of the ChF are obtained via the following ODEs:

d NBH

d	
.u1; 	/ D 0; (57)

d NCH

d	
.u1; u2; 	/ D NBH.	/. NBH.	/� 1/=2 (58)

C �
��x;v NBH.	/��

� NCH.	/C�2 NC2
H.	/=2; (59)

d NAH

d	
.u1; u2; 	/ D � Nv NCH.	/C r. NBH.	/ � 1/; (60)

where 	 D T � t and initial condition NBH.u1; 	 D 0/ D iu1, NCH.u1; u2; 	 D 0/ D iu2
and NAH.u1; u2; 	 D 0/ D 0. The solution is given by:

NBH.u1; 	/ D iu1; (61)

NCH.u1; u2; 	/ D rC � 2D1

�2 .1 � ge�D1	 /
; (62)

NAH.u1; u2; 	/ D IH
1 C IH

2 ; (63)

with

g D iu2 � r�
iu2 � rC

;D1 D
q
.� � ��x;v iu1/

2 C �2u1.u1 C i/; (64)
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r˙ D 1

�2
.� � ��x;viu1 ˙ D1/ ; (65)

and

IH
1 D � Nv

�
r�	 � 2

�2
log

�
1 � ge�D1	

1 � g

��
; (66)

IH
2 D r.iu1 � 1/	: (67)

The form of the characteristic function in Heston’s original paper [18] is
problematic due to branch cuts. A more recent reference is [15]. We use the correct
form of the characteristic function in our numerical examples.

Appendix 2: The Joint Discounted ChF of the Black-Scholes
Hull-White Model

The expression for the joint dChF for the BSHW model is given by:

˚BSHW.u1; u3;TjYt/ D exp
� NAS.u1; u3; 	/C NBS.u1; 	/xt C NDS.u1; u3; 	/rt

�
; (68)

where the coefficients of the ChF are obtained via the following ODEs:

d NBS

d	
.u1; 	/ D 0; (69)

d NDS

d	
.u1; u3; 	/ D �1C NBS.u1; 	/ � 
 NDS.u1; u3; 	/; (70)

d NAS

d	
.u1; u3; 	/ D 1

�2
NBS.u1; 	/

� NBS.u1; 	/� 1
�C 
 � �.T � 	/ � NDS.u1; u3; 	/

C1

2
�2 NDS.u1; u3; 	/C�x;r�� NBS.u1; 	/ NDS.u1; u3; 	/; (71)

where 	 D T � t and initial condition NBS.u1; 	 D 0/ D iu1, NDS.u1; u3; 	 D 0/ D iu3,
and NAS.u1; u3; 	 D 0/ D 0. The solution is now given by:

NBS.u1; 	/ D iu1; (72)

NDS.u1; u3; 	/ D iu1 � 1




�
1 � e�
	

�C iu3e
�
	 ; (73)

NAS.u1; u3; 	/ D IS
1 C IS

2 C IS
3 C IS

4 ; (74)
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with

IS
1 D 1

2
�2iu1.iu1 � 1/	; (75)

IS
2 D

Z 	

0

�.T � s/ � NDS.u1; u3; s/ds (76)

IS
3 D �2

2
2

�
2



.u1 C i/.e�
	 � 1/.
u3 � u1 � i/C

1

2


�
e�2
	 � 1

�
.
u3 � u1 � i/2 � .u1 C i/2	

�
; (77)

IS
4 D ����x;r




�
� iu1 C u21



.
	 C e�
	 � 1/C u1u3.e

�
	 � 1/

�
: (78)

When �.t/ D � is a constant,

IS
2 D �

�
.iu1 � 1/	 C 1



.e�
	 � 1/.iu1 � 1/� iu3

�
e�
	 � 1

��
: (79)

Again the discounted moments are obtained by symbolic computations in
MATLAB.

Appendix 3: The Joint Discounted ChF of the H1HW Model

The expression for the joint dChF of the H1HW model is given by:

˚H1HW.u1; u2; u3;TjYt/ D exp
� NAW.u1; u2; u3; 	/C NBW.u1; 	/xt C NCW.u1; u2; 	/vt

C NDW.u1; u3; 	/rt
�
; (80)

where the coefficients of the ChF are here obtained via the following ODEs:

d NBW

d	
.u1; 	/ D 0; (81)

d NCW

d	
.u1; u2; 	/ D NBW.	/. NBW.	/ � 1/=2C �

��x;v NBW.	/ � �� NCW.	/

C�2 NC2
W.	/=2; (82)

d NDW

d	
.u1; u3; 	/ D �1C NBW.u1; 	/ � 
 NDW.u1; u3; 	/; (83)

d NAW

d	
.u1; u2; u3; 	/ D 
 � �.T � 	/ � NDW.u1; u3; 	/C � Nv NCW.u1; u2; 	/
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C1

2
�2 ND2

W.u1; u3/C��x;vE
�p
vT

ˇ̌
vt
	 NBW.u1; 	/ NDW

�.u1; u3; 	/; (84)

where 	 D T � t and initial condition NBW.u1; 	 D 0/D iu1, NCW .u1; u2; 	 D 0/D iu2,NDW.u1; u3; 	 D 0/D iu3 and NAW.u1; u2; u3; 	 D 0/D 0. The solution is given by:

NBW.u1; 	/ D iu1; (85)

NCW.u1; u2; 	/ D rC � 2D1

�2 .1 � ge�D1	 /
; (86)

NDW.u1; u3; 	/ D iu1 � 1




�
1 � e�
	

�C iu3e
�
	 ; (87)

NAW.u1; u2; u3; 	/ D IW
1 C IW

2 C IW
3 C IW

4 ; (88)

where expressions g, D1 and r˙ are the same as in (64), and

IW
1 D

Z 	

0

�.T � s/ � NDW.u1; u3; s/ds; (89)

IW
2 D � Nv

�
r�	 � 2

�2
log

�
1 � ge�D1	

1� g

��
; (90)

IW
3 D �2

2
2

�
2



.u1 C i/.e�
	 � 1/.
u3 � u1 � i/ (91)

C 1

2


�
e�2
	 � 1

�
.
u3 � u1 � i/2 � .u1 C i/2	

�
; (92)

IW
4 D ��x;r

�
� iu1 C u21



G1.	; vt/ � u1u3G2.	; vt/

�
; (93)

where

G1.	; vt/ W D
Z 	

0

E
�p
vT�x

ˇ̌
vt
	 �
1� e�
x

�
dx; (94)

G2.	; vt/ W D
Z 	

0

E
�p
vT�x

ˇ̌
vt
	

e�
xdx: (95)

When �.t/ D � is a constant, I1 can be integrated by

IW
1 D �

�
.iu1 � 1/	 C 1



.e�
	 � 1/.iu1 � 1/� iu3

�
e�
	 � 1�

�
: (96)
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It is computationally expensive to calculate the integral for G1 and G2 over
Œt; t C 	�. We use an approximation where, for a fixed vt, values of the conditional
expectation E

�p
vtC	

ˇ̌
vt
	

over a short time period can be approximated by a linear
function w.r.t. time.

We will use the approximation that

E
�p
vtC	

ˇ̌
vt
	 
 a.vt/C b.vt; �t/	; 	  �t; (97)

where a.vt/ D p
vt, b.vt; �t/ D v.tC�t/�vt

�t , �t D 0:05. Various experiments have
shown that this approximation is sufficiently accurate in the present context.

The integrals expressed in (94) and (95) can be approximated by an analytic
formula with the approximation in (97). To further enhance the of SGBM, we
compute the integrals on a volatility grid based on the minimum and maximum
values of the variance on the simulated paths. At each time step tm, the discounted
moments on all paths are computed with the help of the volatility grid plus a spline
interpolation technique.

Appendix 4: Errors of Approximation of the Option Function

There are two types of errors when approximating the option function on the
bounded domain Uj

mC1 at time tmC1. The first type of error �1 is the difference
between the real option function and its projection on the polynomial space
P.Uj

mC1; p/, and the second type of error �2 is the difference between the real
projection on the polynomial space and its statistical approximation given a data
set f OvmC1.i/; OymC1.i/g. Measured in L2 norm within the j-bundle, these two errors
can be expressed by

�1 D kV.tmC1; �/� Z1.tmC1; �/kL2 ; (98)

�2 D kZ1.tmC1; �/� Z2.tmC1; �/kL2 : (99)

where the L2 norm is defined by the conditional probability measure �.YmC1jYm/, i.e.
for any L2 measurable function f .YmC1/, its L2 norm is defined by [29]

kf kL2 D
 Z

YmC12Rn
jf .YmC1/j2d�.YmC1jYm/

! 1
2

: (100)

It is trivial to see that the total error of approximation of the option function is
bounded by the sum of these two types of error, i.e.

EQ

"�
V.tmC1;YmC1/� Z2.V.tmC1;YmC1/

�2ˇ̌ˇ̌Ym

#
 �1 C �2; (101)
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and we will discuss them respectively.

• For the first type of error �1: The well-known Weierstrass approximation theorem
states that any continuous function defined on a closed interval can be uniformly
approximated as closely as desired by a polynomial function [24]. It can ensure
that �1 will go to zero as the order of the monomial basis goes to infinity.
More specifically, the error �1 is involved with the property of the polynomial
space P.Uj

mC1; p/, i.e. the size of the domain Uj
mC1 and the order of the

monomial basis p. Theorems 1.2 in [24, p.12] and Theorem 3.2 in [24, p.59]
provides a priori error estimate in L2 norm when the function needs to be
approximated is twice differentiable.
To reduce error �1, we can either reduce the size of the domain Uj

mC1 or increase
the order of the basis functions. By using bundles we can achieve the former goal.

• For the second type of error �2: Assuming that the function Z2 is an unbiased
statistical estimator of Z1, i.e.

Z1.tmC1;YmC1/ D Z2.tmC1;YmC1/C ımC1; (102)

where the error term ımC1 � N .0; �2mC1/ i.i.d, where �2mC1 is the constant
variance. By central limit theorem the error satisfies with probability 1 that
�2 ! �mC1p

Nj
, as the number of paths Nj ! 1. It implies that the error �2

approaches zero as the number of paths goes to infinity with probability 1. Error
�2 can be reduced by increasing the number of paths Nj.

As a conclusion, the SGBM approach converges as the number of bundles, the
number of paths within each bundle and the polynomial order p of the basis
functions go to infinity.

Appendix 5: Proof of Proposition 1

Proof By Jensen’s inequality:

�
c.tm;Ym/ � c2.tm;Ym/

�2

D
�
EQ

�
D.tm; tmC1/V.tmC1;YmC1/

ˇ̌
Ym
	�EQ

�
D.tm; tmC1/Z2.tmC1;YmC1/

ˇ̌
Ym
	�2

 EQ

"�
D.tm; tmC1/.V.tmC1;YmC1/� Z2.tmC1;YmC1//

�2ˇ̌
Ym

#

 EQ

"�
V.tmC1;YmC1/� Z2.tmC1;YmC1/

�2ˇ̌ˇ̌Ym

#
: (103)
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A Note on Independence Copula for Conditional
Markov Chains

Tomasz R. Bielecki, Jacek Jakubowski, and Mariusz Niewęgłowski

Abstract Given a family .Yk; k D 1; 2; : : : ;N/ of conditional Markov chains,
we construct a conditional Markov chain X D .X1; : : : ;XN/ such that Xk, k D
1; 2; : : : ;N; are conditional Markov chains, which are conditionally independent
given the information contained in some filtration F, and such that for each k the
conditional law of Xk coincides with the conditional law of Yk. This is a new
result that can be used to model different phenomena such as the gating behavior
of multiple ion channels in a membrane patch, or credit ratings migrations.

1 Introduction

The main objective of this note is to construct the conditionally independent Markov
copula, which we also call the conditionally independent multivariate Markov
coupling, for a family Yk, k D 1; 2; : : : ;N; of conditional Markov chains (CMCs
for short). That is, to construct an N-variate conditional Markov chain X D
.X1; : : : ;XN/, so that each Xk, k D 1; 2; : : : ;N; is a conditional Markov chain, and
such that the conditional law of Xk coincides with the conditional law of Yk, and,
moreover, Xi and Xj for i ¤ j are conditionally independent given the information
contained in some filtration F.
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Thus, the paper provides a contribution to the theory of structured dependence
between conditional Markov chains. The conditioning is done with respect to
�-fields comprising the so called reference filtration, which is denoted by F:

Typically, inclusion of a reference filtration in a dynamical stochastic model is aimed
at accounting for random factors that are believed to affect evolution of the processes
of primary interest.

The conditionally independent copula models dependence between processes Xk,
k D 1; 2; : : : ;N; via their dependence on the common information, but, at the same
time, features conditional independence property between Xk, k D 1; 2; : : : ;N;
when conditioning is done with respect to this information. Often this information
is generated by stochastic processes.

In a very special case when the filtration F is trivial, the conditionally inde-
pendent copula X reduces to the family of independent Markov chains Xk, k D
1; 2; : : : ;N. Such families have been quite extensively studied and applied in
modeling of gating behavior of multiple ion channels in a membrane patch (see
Dabrowski and McDonald [7], Kijima and Kijima [11], Ball and Yeo [2]).

Using the theory of CMCs and the respective conditionally independent copula,
we can model conditional independence between multiple ion channels that are
otherwise linked via common stochastic factors, embedded in filtration F, which
models a random environment. Ball, Milne and Yao [1] considered a special case of
CMCs. They have assumed that single ion channels are independent, conditionally
on some environmental process, which is a Markov chain. Thus, this note provides
a theoretical foundation for generalization of the model studied in [1]. It is worth to
note that Biagini, Groll and Widenmann in a recent paper [3] considered an appli-
cation of CMCs for the evaluation of rational premia for unemployment insurance
products. They were assuming that the processes representing employment status
of individuals in a pool of employable individuals are conditionally independent
CMCs.

Consequently, this note does not only provide the theoretical contribution in the
area of structured dependence of conditional Markov chains, but also a potential
contribution to the area of modeling of gating behavior of multiple ion channels in
a membrane patch.

We close this brief introduction by noting that, in general, if the conditional
Markov chains Yk, k D 1; 2; : : : ;N; admit intensity processes, say � k; k D
1; 2; : : : ;N; then the structured dependence between Yk, k D 1; 2; : : : ;N; can
be modeled by appropriate perturbation of the conditionally independent Markov
copula. Specifically, structured (conditionally Markovian) dependence between
CMCs Yk, k D 1; 2; : : : ;N; can be modeled in terms of a matrix valued stochastic
intensity process, say �t; t � 0; which is represented as a sum

�t D
NM

kD1
� k

t

„ƒ‚…
conditionally independent Markov copula

C dependence terms;

where the formula for
LN

kD1 � k
t is given in (17). This is another good reason for the

importance of the contribution of this note.
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2 CMCs and Their Structured Dependence

Let us recall the basic set-up and the basic definitions from Bielecki, Jakubowski
and Niewęgłowski [5, 6].

Let T > 0 be a fixed finite time horizon. Let .˝;A ;P/ be the underlying
complete probability space, which is endowed with two filtrations, the reference
filtration F D .Ft/t2Œ0;T� and another filtration G D .Gt/t2Œ0;T� , that are assumed
to satisfy the usual conditions, i.e. they are right-continuous and complete. So,
processes considered in this paper are defined on .˝;A ;P/ with the time interval
Œ0;T�. Moreover, for any process U we denote by FU the completed right-continuous
filtration generated by this process.

In addition, we fix a finite set S, and we denote by d the cardinality of S. Without
loss of generality we take S D f1; 2; 3; : : : ; dg:
Definition 2.1 An S-valued, G-adapted càdlàg process X is called an .F;G/-
conditional Markov chain if for every x1; : : : ; xk 2 S and for every 0  t  t1
 : : :  tk  T it satisfies

P.Xtk D xk; : : : ;Xt1 D x1jFt _ Gt/ D P.Xtk D xk; : : : ;Xt1 D x1jFt _ �.Xt//: (1)

As in [5] we write .F;G/-CMC, for short, in place of .F;G/-conditional Markov
chain.

Given an .F;G/-CMC process X, we define its indicator process,

Hx
t WD 1fXtDxg; x 2 S; t 2 Œ0;T�: (2)

Accordingly, we define a column vector Ht D .Hx
t ; x 2 S/>, where > denotes

transposition. For x; y 2 S; x ¤ y; we define the process Hxy that counts the number
of transitions of X from x to y,

Hxy
t WD #fu  t W Xu� D x and Xu D yg D

Z
�0;t�

Hx
u�dHy

u; t 2 Œ0;T�: (3)

Definition 2.2 We say that an F-adapted matrix valued process �t D Œ

xy
t �x;y2S

satisfying



xy
t � 0; 8x; y 2 S; x ¤ y; and

X
y2S



xy
t D 0; 8x 2 S; (4)

is an F-intensity matrix process for X, if the process M D .Mx
t ; x 2 S/> defined as

Mt D Ht �
Z t

0

�>u Hudu; t 2 Œ0;T�; (5)

is an F _ G – local martingale with values in Rd.
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Now recall the concept of .F;G/-doubly stochastic Markov chain, .F;G/–DSMC
for short, that was introduced in Jakubowski and Niewęgłowski [9].

Definition 2.3 A G-adapted càdlàg process X D .Xt/t2Œ0;T� is called an .F;G/–
DSMC with state space S if for any 0  s  t  T and every y 2 S we have

P.Xt D y j FT _ Gs/ D P.Xt D y j Ft _ �.Xs//: (6)

Most of the analysis done in [5] regards .F;G/–CMCs that are also .F;G/ doubly
stochastic Markov chains. This is because doubly stochastic Markov chains enjoy
very useful analytical properties. We recall that with any X, which is an .F;G/-
DSMC, we associate a matrix valued random field P D .P.s; t/; 0  s  t  T/,
called the conditional transition probability matrix field (c–transition field), where
P.s; t/ D .pxy.s; t//x;y2S is defined by

px;y.s; t/ D P.Xt D y;Xs D x j Ft/

P.Xs D xjFt/
1fP.XsDxjFt/>0g C 1fxDyg1fP.XsDxjFt/D0g: (7)

By [5, Proposition 4.2] we know that for any 0  s  t  T and for every y 2 S we
have

P.Xt D y j FT _ Gs/ D
X
x2S

1fXsDxgpxy.s; t/: (8)

Moreover, the F–adapted matrix-valued process � D .�s/s�0 D .Œ� xy
s �x;y2S/s�0 is

the intensity of an .F;G/-DSMC X if:

1)

Z
�0;T�

X
x2S

��� xx
s

�� ds < 1: (9)

2)

� xy
s � 0 8x; y 2 S; x ¤ y; � xx

s D �
X

y2SWy¤x

� xy
s 8x 2 S: (10)

3) The Kolmogorov backward equation holds: for all v  t,

P.v; t/ � I D
Z t

v

�uP.u; t/du: (11)

4) The Kolmogorov forward equation holds: for all v  t,

P.v; t/ � I D
Z t

v

P.v; u/�udu: (12)
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We refer to [5] for discussion of the notion of intensity process of an .F;G/–
DSMC, as well as for a discussion of the relationship between the concept of the
.F;G/–CMC and the concept of .F;G/–DSMC. In particular, sufficient conditions
under which an .F;G/–DSMC is an .F;G/–CMC are given in [5]. Moreover, it
is shown in [5] that one can construct an .F;G/–CMC, which is also an .F;G/–
DSMC. It is done for � satisfying canonical conditions.

Condition 2.1 We say that a matrix valued process � D Œ
xy�x;y2S satisfies
canonical conditions relative to the pair .S;F/ if:

(C1) � is an F-progressively measurable and it satisfies (4).
(C2) The processes 
xy, x; y 2 S; x ¤ y; have countably many jumps P-a.s., and

their trajectories admit left limits.

Any F-adapted càdlàg process �t D Œ

xy
t �x;y2S, for which (4) holds, satisfies

canonical conditions.
In what follows, we will use the acronym .F;G/–CDMC for any process that is

both an .F;G/–CMC and an .F;G/–DSMC.
Let X be an .F;FX/–CDMC. Let us note that in view of [5, Theorem 4.15],

the intensity of X considered as an .F;FX/–DSMC coincides, in the sense of
[5, Definition 2.5], with the F-intensity � of X considered as an .F;FX/–CMC.
Consequently, we will say that X is an .F;FX/–CDMC with intensity �:

In this paper we consider processes X satisfying the following assumptions

Assumption 2.1 (i) X is an .F;FX/–CDMC admitting an intensity.
(ii) P.X0 D x0jFT/ D P.X0 D x0jF0/ for every x0 2 S.

2.1 Strong Markovian Consistency of Conditional Markov
Chains

We consider multivariate processes, so that the state space S WD XN
kD1 Sk, where

Sk is a finite set, k D 1; : : : ;N and X being a multivariate .F;FX/-CDMC can be
written as X D .X1; : : : ;XN/. Now we introduce the notion of strong Markovian
consistency.

Definition 2.4 Let us fix k 2 f1; : : : ;Ng. We say that process X satisfies the strong
Markovian consistency property with respect to .Xk;F/ if for every xk

1; : : : ; x
k
m 2 Sk

and for all 0  t  t1  : : :  tm  T; it holds that

P
�
Xk

tm D xk
m; : : : ;X

k
t1 D xk

1jFt _ F X
t

� D P
�
Xk

tm D xk
m; : : : ;X

k
t1 D xk

1jFt _ �.Xk
t /
�
;

(13)
or, equivalently, if Xk is an .F;FX/-CMC.1

1In more generality, one might define strong Markovian consistency with respect to a collection
XI WD fXk ; k 2 I � f1; 2; : : :gg of components of X. This will not be done in this paper though.
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The next definition extends the previous one by requiring that the laws of the
marginal processes Xk; k D 1; : : : ;N; are predetermined. This definition will be a
gateway to the concept of strong CMC copula that we introduce in Sect. 3.1.

Definition 2.5 Let Y D ˚
Y1; : : : ;YN

�
be a family of processes such that each Yk

is an .F;FYk
/-CMC with values in Sk.

(i) Let us fix k 2 f1; 2; : : : ;Ng and let process X satisfy the strong Markovian
consistency property with respect to .Xk;F/. If the conditional law of Xk given
FT coincides with the conditional law of Yk given FT , then we say that
process X satisfies the strong Markovian consistency property with respect to
.Xk;F;Yk/.

(ii) If X satisfies the strong Markovian consistency property with respect to
.Xk;F;Yk/ for every k 2 f1; 2; : : : ;Ng, then we say that X satisfies the strong
Markovian consistency property with respect to .F;Y /.

Now we provide sufficient and necessary conditions for strong Markovian consis-
tency property of X with respect to .F;Y /.

Theorem 2.1 ([6, Theorem 3.6]) Let Y D ˚
Y1; : : : ;YN

�
be a family of processes

such that each Yk is an .F;FYk
/-CDMC, with values in Sk, and with F-intensity

� k
t D Œ 

kIxkyk

t �xk ;yk2Sk
. Let process X satisfy Assumption (A). Then, X satisfies the

strong Markovian consistency property with respect to .F;Y / if and only if for all
k D 1; 2; : : : ;N, the following hold:

(i) For every xk; yk 2 Sk; xk ¤ yk

1fXk
tDxkg

X
yn2Sn;

nD1;2;:::;N;n¤k



.X1t ;:::;X

k�1
t ;xk;XkC1

t ;:::;XN
t /.y

1;:::;yk;:::;yN /
t

D 1fXk
tDxkg kIxkyk

; dt ˝ dP-a:e: (14)

(ii) The law of Xk
0 given FT coincides with the law of Yk

0 given FT .

The necessary and sufficient condition for strong Markov consistency of X with
respect to .F;Y / formulated in Theorem 2.1 may not be easily verified. Here, we
provide an algebraic sufficient condition for that, which typically is easily verified.
We illustrate this in Sect. 3.2, where Theorem 2.2 will play the key role.

Theorem 2.2 ([6, Proposition 3.9]) Let Y D ˚
Y1; : : : ;YN

�
be a family of

processes such that each Yk is an .F;FYk
/-CDMC with values in Sk, and with

F-intensity � k
t D Œ 

kIxkyk

t �xk ;yk2Sk
. Let process X satisfy Assumption (A). Assume

that
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(i) There exists a version of F–intensity� which satisfies the following condition:
for each k D 1; 2; : : : ;N, xk; yk 2 Sk; xk ¤ yk,

 
kIxkyk

t D
X

yn2Sn;
nD1;2;:::;N;n¤k



.x1;:::;xk;:::;xN /.y1;:::;yk;:::;yN /
t : (15)

(ii) The law of Xk
0 given FT coincides with the law of Yk

0 given FT for all
k D 1; 2; : : : ;N.

Then, X satisfies the strong Markovian consistency property with respect to .F;Y /.

In general, condition (15) is not necessary for the strong Markovian consistency
property. However, it needs to be stressed, that this condition is so powerful that it
implies strong Markovian consistency property regardless of the initial distribution
of process X. On the other hand, whether or not condition (14) holds depends also
on the initial distribution of X.

In the next section we will give a construction of a conditionally independent
strong CMC copula, which, as stated in the Introduction, finds applications in
physics and chemistry, as well as in other disciplines.

3 Conditionally Independent Strong CMC Copula

We first introduce the concept of strong CMC copula, and then we proceed with
construction of a conditionally independent strong CMC copula.

3.1 Strong CMC Copulae

We begin with

Definition 3.1 Let Y D ˚
Y1; : : : ;YN

�
be a family of processes, defined on some

underlying probability space .˝;A ;Q/, such that each Yk is an .F;FYk
/-CMC

with values in Sk. A strong CMC copula between processes Y1; : : : ;YN is any
multivariate process X D .X1; : : : ;XN/, given on .˝;A / endowed with some
probability measure P, such that X is an .F;FX/–CMC, and such that it satisfies
the strong Markovian consistency property with respect to .F;Y /.

The methodology developed in [5] allows us to construct strong CMC copulae
between processes Y1; : : : ;YN , that are defined on some underlying probability
space .˝;A ;Q/ endowed with a reference filtration F, and are such that each
Yk is .F;FYk

/-CDMC with F–intensity, say, � k D Œ kIxk yk
�xk ;yk2Sk

. The additional
feature of our construction is that, typically, the constructed CMC copulae X are
also .F;FX/-DSMC.
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According to [6] a natural starting point for constructing a strong copula between
Y1; : : : ;YN is to determine a system of stochastic processes Œ
xy�x;y2S and an
S-valued random variable  D .1; : : : ; N/ on .˝;A /, such that they satisfy the
following conditions:

(CMC-1)

 
kIxkyk

t D
X

yn2Sn;
nD1;2;:::;N;n¤k



.x1;:::;xk;:::;xN /.y1;:::;yk ;:::;yN /
t ;

xn 2 Sn; n D 1; : : : ;N;
yk 2 Sk; yk ¤ xk;

k D 1; : : : ;N; t 2 Œ0; T �:

(CMC-2) The matrix process �t D Œ

xy
t �x;y2S satisfies canonical conditions

relative to the pair .S;F/ (cf. Condition 2.1).
(CMC-3)

Q. D yjFT/ D Q. D yjF0/; 8y 2 S:

(CMC-4)

Q.k D ykjFT/ D Q.Yk
0 D ykjFT/; 8yk 2 Sk; k D 1; : : : ;N:

We will call any pair .�; / satisfying conditions (CMC-1)–(CMC-4) strong CMC
pre-copula between processes Y1; : : : ;YN . Given a strong CMC pre-copula between
processes Y1; : : : ;YN , we can construct on .˝;A / probability measure P and
process X, starting from measure Q as above, such that, in view of Theorem 2.2,
it satisfies the strong Markovian consistency property with respect to .F;Y /. Thus,
it is a strong CMC copula between processes Y1; : : : ;YN .

Moreover for P constructed in [5] we have

P. D yjFT/ D P. D yjF0/; 8y 2 S:

P.k D ykjFT/ D Q.Yk
0 D ykjFT /; 8yk 2 Sk; k D 1; : : : ;N:

Remark 3.1 (i) Note that in the definition of strong CMC copula it is required that
FT -conditional distribution of Xk

0 coincides with FT -conditional distribution
of Yk

0 , for k 2 1; : : : ;N, but, the FT -conditional distribution of the multivariate
random variable X0 D .X10 ; : : : ;X

N
0 / can be arbitrary. Thus, in principle, a

strong CMC copula X between processes Y1; : : : ;YN can be constructed with
help of a strong CMC pre-copula between processes Y1; : : : ;YN , as well as a
copula between the FT -conditional distributions of Xk

0s, for k 2 1; : : : ;N. The
constructed CMC copulae X are also .F;FX/-CDMC.

(ii) In general, there exist numerous systems of stochastic processes that satisfy
conditions (CMC-1) and (CMC-2), so that there exist numerous strong pre-
copulae between conditional Markov chains Y1, . . . , YN , and, consequently,
there exists numerous strong CMC copulae between conditional Markov chains
Y1, . . . , YN . This is an important feature in applications (see e.g. [4] and [6]).
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3.2 Construction of Conditionally Independent Strong
CMC Copula

Let Y1, . . . , YN be processes such that each Yk is an .F;FYk
/-CDMC with values in

Sk, and with F–intensity � k
t D Œ 

kIxkyk

t �xk ;yk2Sk . Assume that for each k the process
� k satisfies canonical conditions relative to the pair .Sk;F/. Additionally assume
that

Q.Yk
0 D xkjFT/ D Q.Yk

0 D xkjF0/; 8xk 2 Sk; k D 1; : : : ;N: (16)

Consider a matrix valued random process � given as the following Kronecker
sum

�t D
NM

kD1
� k

t WD
NX

kD1
I1 ˝ : : :˝Ik�1˝� k

t ˝IkC1˝ : : :˝IN ; t 2 Œ0;T�; (17)

where Ik denotes the identity matrix of dimensions jSkj�jSkj and ˝ is the Kronecker
product of two matrices.2 Moreover, let us take an S-valued random variable
 D .1; : : : ; N/, which has FT -conditionally independent coordinates, that is

Q.1 D x1; : : : ; N D xN jFT/ D
NY

iD1
Q. i D xijFT/; 8x D .x1; : : : ; xN/ 2 S:

(18)

Additionally assume that FT -conditional distributions of coordinates of  and Y0
coincide, meaning that

Q.k D xkjFT/ D Q.Yk
0 D xkjFT/; 8xk 2 Sk; k D 1; : : : ;N: (19)

Now our goal is to prove that

1. .�; / is a strong CMC pre-copula between CDMC Y1, . . . , YN .
2. The multivariate process X, that is a strong CMC copula constructed from .�; /

in a way described above, has components which are conditionally independent
given FT .

The process X in 2 above is called conditionally independent strong CMC copula
or independence strong copula for CMCs.

In what follows, we denote by I the identity matrix of dimension jSj.

2Let us recall that for two given matrices, say A D Œaxkxl �xk ;xl2E1 and B D Œbymyn �ym;yn2E2
indexed by elements of some finite sets E1,E2, its Kronecker product is the matrix A ˝ B D
Œ.a˝ b/.xk ;ym/.xl ;yn/2E1�E2 � with entries defined by .a˝ b/.xk ;ym/.xl ;yn/ D axk xl bymyn . See, e.g., Horn
and Johnson [8].
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Theorem 3.1 Suppose that we are given an N-tuple of process Y1, . . . , YN

such that each Yk is an .F;FYk
/-CDMC with values in Sk, and with F–intensity

� k
t D Œ 

kIxkyk

t �xk ;yk2Sk
which satisfy canonical conditions relative to the pair .Sk;F/.

Moreover, suppose that  satisfy (18) and (19) and let � be given by (17). Then
.�; / is a strong CMC pre-copula between Y1, . . . , YN.

Proof In what follows, we will use a convention that for A �eS; whereeS is a finite
set, the characteristic function

1A.j/ D
(
1 if j 2 A;

0 if j … A;

is interpreted as a vector in RjeSj, written as 1
eS
AI for simplicity, we will also denote

1eS D 1
eSeS: By 0Sp we denote zero vector indexed by elements of Sp.

First we prove that � satisfies (CMC-1). Let us fix k 2 f1; : : : ;Ng, xk; yk 2 Sk.
Fix Nx D .Nx1; : : : ; NxN/ 2 S such that Nxk D xk. Now we observe that

X
yn2Sn;

nD1;2;:::;N;n¤k



.Nx1;:::;Nxk;:::;NxN /.y1;:::;yk;:::;yN /
t D �

1S
fNxg
�>
�tvyk

;

where

vyk WD 1S1 ˝ : : :˝ 1Sk�1 ˝ 1
Sk

fykg ˝ : : :˝ 1SN : (20)

Next, we see that

�tvyk D
NX

mD1
˚m

t ;

where ˚m are defined by

˚m
t D �

.˝m�1
pD1 Ip/˝ �m

t ˝ .˝N
qDmC1In/

�
vyk
:

We have for m D k, by using (20) and the mixed-product rule (cf. [8,
Lemma 4.2.10]),

˚ k
t D �

.˝k�1
pD1Ip/˝ � k

t ˝ .˝N
qDkC1In/

� �
.˝k�1

pD11Sp/˝ 1
Sk

fykg ˝ .˝N
qDkC11Sq/

�

D
�
.˝k�1

pD1Ip1Sp/˝ � k
t 1

Sk

fykg ˝ .˝N
qDkC1Iq1Sq/

�

D
�
.˝k�1

pD11Sp/˝ � k
t 1

Sk

fykg ˝ .˝N
qDkC11Sq/

�
:
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Analogously, we have, for m > k,

˚m
t D �

.˝m�1
pD1 Ip/˝ �m

t ˝ .˝N
qDmC1In/

� �
.˝k�1

pD11Sp/˝ 1
Sk

fykg ˝ .˝N
qDkC11Sq/

�

D
�
.˝k�1

pD1Ip1Sp/˝ .Ip1
Sk

fykg/˝ .˝m�1
rDk Ip1Sp/˝ .�m

t 1Sm/˝ .˝N
qDmC1Iq1Sq/

�

D
�
.˝k�1

pD11Sp/˝ .1
Sk

fykg/˝ .˝m�1
rDk 1Sp/˝ .0Sm/˝ .˝N

qDmC11Sq/
�

D ˝N
pD10Sp D 0
N

pD1Sp

and, for m < k,

˚m
t D �

.˝m�1
pD1 Ip/˝ �m

t ˝ .˝N
qDmC1In/

� �
.˝k�1

pD11Sp/˝ 1
Sk

fykg ˝ .˝N
qDkC11Sq/

�

D
�
.˝m�1

pD1 Ip1Sp/˝ .�m
t 1Sm/˝ .˝k�1

rDmC1Ir1Sr/˝ .Ik1
Sk
fykg/.˝N

qDkC1Iq1Sq/
�

D
�
.˝m�1

pD11Sp/˝ .0Sm/˝ .˝k�1
rDmC11Sr/˝ .1

Sk

fykg/.˝N
qDkC11Sq/

�

D ˝N
pD10Sp D 0
N

pD1Sp
:

Consequently, for any Nx D .Nx1; : : : ; NxN/ 2 S such that Nxk D xk and yk 2 Sk, we have
that

�
1S
fNxg
�>
�tvyk D

NX
mD1

�
1S
fNxg
�>
˚m

t D �
1S
fNxg
�>
˚ k

t

D
� k�1Y

pD1
1Sp.Nxp/

�
� k

t 1
Sk

fykg.Nxk/
� NY

qDkC1
1Sq.Nxq/

�
D  

kIxkyk

t :

This finishes the prove that � satisfies (CMC-1).
The fact that � satisfies (CMC-2) follows from the assumption that � k

t D
Œ 

kIxy
t �x;y2S, satisfies canonical conditions relative to the pair .Sk;F/ for every

k D 1; : : : ;N, and from the following representation of the entries of �t:



.x1;:::;xN /.y1;:::;yN /
t D

NX
mD1

� NY
nD1
n¤m

1fynDxng
�
 

mIxmym

t :

It is clear from Assumption 2.1, that any  satisfying (18) and (19) satisfies (CMC-3)
and (CMC-4). Therefore .�; / is a pre-copula between processes Y1; : : : ;YN ut
Our next aim is to demonstrate that components of the process X constructed from
.�; / are conditionally independent given FT . We start with
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Lemma 3.1 Suppose that we are given an N-tuple of matrix valued processes� k
t D

Œ 
kIxy
t �x;y2Sk , k D 1; : : : ;N, which satisfy canonical conditions relative to the pair

.Sk;F/ and

X
xk2Sk

Z T

0

��� kIxk ;xk

s

��� ds < 1; 8k D 1; : : : ;N: (21)

Let us fix s 2 Œ0;T�, and let P.s; �/ be the solution of

dP.s; t/ D P.s; t/�tdt; P.s; s/ D I; t 2 Œs;T�; (22)

where � is defined by (17). Then,

P.s; t/ D
NO

kD1
Pk.s; t/; (23)

where

dPk.s; t/ D Pk.s; t/�
k
t dt; Pk.s; s/ D Ik; t 2 Œs;T�

for k D 1; : : : ;N.

Proof We will verify that P defined by (23) satisfies (22), which, by uniqueness of
solutions of (22), will imply the desired result. We will proceed by induction on N.
First, we take N D 2 and we prove that P.2/.s; �/ given as

P.2/.s; t/ WD P1.s; t/˝P2.s; t/;

satisfies (22), which takes the form

dP.2/.s; t/ D P.2/.s; t/.�1
t ˝ I2 C I1 ˝ �2

t /dt; P.2/.s; s/ D I: (24)

By the mixed-product rule (cf. [8, Lemma 4.2.10]) we can write P.2/.s; t/ as

P.2/.s; t/ D .P1.s; t/I1/˝ .I2P2.s; t// D Q1.s; t/Q2.s; t/; (25)

where

Q1.s; t/ D P1.s; t/˝ I2; Q2.s; t/ D I1 ˝ P2.s; t/:

Thus, to show (24) we need to prove that

d.Q1.s; t/Q2.s; t// D .Q1.s; t/Q2.s; t//.�
1
t ˝ I2 C I1 ˝ �2

t /dt:
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We have

dQ1.s; t/ D d.P1.s; t/˝ I2/ D .dP1.s; t//˝ I2 D .P1.s; t/�
1
t dt/˝ I2

D .P1.s; t/˝ I2/.�
1
t ˝ I2/dt D Q1.s; t/.�

1
t ˝ I2/dt;

and, similarly,

dQ2.s; t/ D Q2.s; t/.I1 ˝ �2
t /dt:

The matrices Q2.s; t/ and .�1
t ˝ I2/ commute, because definition of Q2 and the

mixed-product property imply

Q2.s; t/.�
1
t ˝I2/ D .I1˝P2.s; t//.�

1
t ˝I2/ D .I1�

1
t /˝.P2.s; t/I2/ D �1

t ˝P2.s; t/;

and analogously

.�1
t ˝I2/Q2.s; t/ D .�1

t ˝I2/.I1˝P2.s; t// D .�1
t I1/˝.I2P2.s; t// D �1

t ˝P2.s; t/:

Using the above results and integration by parts we get

d.Q1.s; t/Q2.s; t// D .dQ1.s; t//Q2.s; t/C Q1.s; t/dQ2.s; t/

D Q1.s; t/.�
1
t ˝ I2/Q2.s; t/dt C Q1.s; t/Q2.s; t/.I1 ˝ �2

t /dt

D Q1.s; t/Q2.s; t/.�
1
t ˝ I2/dt C Q1.s; t/Q2.s; t/.I1 ˝ �2

t /dt

D Q1.s; t/Q2.s; t/.�
1
t ˝ I2 C I1 ˝ �2

t /dt;

where the third equality follows since the matrices Q2.s; t/ and .�1
t ˝ I2/ commute.

This demonstrates that P.2/.s; �/ satisfies (24). Consequently, in view of the unique-
ness of the solution of (24), the result of the lemma is proved in case N D 2:

Now, let us assume that the assertion of the lemma holds for some N � 2. We
want to show that

P.NC1/.s; t/ WD
NC1O
kD1

Pk.s; t/

satisfies

dP.NC1/.s; t/ D P.NC1/.s; t/�.NC1/
t dt;

where

�
.NC1/
t WD

NC1X
kD1

I1 ˝ : : :˝Ik�1˝� k
t ˝IkC1˝ : : :˝INC1:
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Note that using

I.N/ WD
NO

kD1
Ik

we have

P.NC1/.s; t/ D P.N/.s; t/˝ PNC1.s; t/ D .P.N/.s; t/I.N//˝ .INC1PNC1.s; t//

D .P.N/.s; t/˝ INC1/.I.N/ ˝ PNC1.s; t//; (26)

where the third equality follows from the mixed product rule. Now, we will calculate
the differentials of components of (26). We have

d.P.N/.s; t/˝ INC1/ D .P.N/.s; t/˝ INC1/.�.N/
t ˝ INC1/dt;

P.N/.s; s/˝ INC1 D I.NC1/;

and

d.I.N/ ˝ PNC1.s; t// D .I.N/ ˝ PNC1.s; t//.I.N/ ˝ �NC1/dt;

I.N/ ˝ PNC1.s; s/ D I.NC1/:

In a similar way as before we prove that matrices .�.N/
t ˝ INC1/ and .I.N/ ˝

PNC1.s; t// commute. Integration by parts in (26) yields

dP.NC1/.s; t/ D P.NC1/.s; t/.�.N/
t ˝ INC1 C .I1˝ : : :˝IN/˝ �NC1

t /dt;

P.NC1/.s; s/ D I.NC1/:

Since we have

�
.NC1/
t D �

.N/
t ˝ INC1 C .I1˝ : : :˝IN/˝ �NC1

t ;

this completes the proof. ut
Theorem 3.2 Suppose that X D .X1; : : : ;XN/ is an S-valued .F;G/-DSMC with
c-transition field of the form

P.s; t/ D
NO

kD1
Pk.s; t/; (27)

where Pk D ŒpkIxy�x;y2Sk is a stochastic matrix valued random field, for k D 1; : : :N.
Moreover assume that for all x D .x1; : : : ; xN/ 2 S it holds
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P

 
N\

kD1

˚
Xk
0 D xk

�ˇ̌ˇFT

!
D

NY
mD1

P

�
Xk
0 D xk

ˇ̌
ˇFT

�
: (28)

Then, the components X1; : : : ;XN of X are conditionally independent given FT .

Proof It suffices to prove that for any t1; : : : ; tn 2 Œ0;T�, and for any sets Am
k � Sm,

m D 1; : : :N, k D 1; : : : ; n it holds

P

 
N\

mD1

n\
kD1

˚
Xm

tk 2 Am
k

�ˇ̌ˇFT

!
D

NY
mD1

P

 
n\

kD1

˚
Xm

tk 2 Am
k

�ˇ̌ˇFT

!
: (29)

For simplicity, we will give the proof of (29) for N D 2. The proof in the general
case proceeds along the same lines and will be omitted. We prove (29) in three steps.

Step 1: Let us first note that (27) and the definition of the Kronecker product
imply that for any .x1; x2/; .y1; y2/ 2 S1 � S2 we have

p.x1;x2/.y1;y2/.s; t/ D p1Ix1y1 .s; t/p2Ix2y2 .s; t/: (30)

In addition, as we will show now, if P1.s; t/ and P2.s; t/ satisfy FT -conditional
Chapmann-Kolmogorov equations (cf. [9, Theorem 3.6]), then .P.s; t//0�s�t�T

defined by (27) satisfies FT -conditional Chapmann-Kolmogorov equations as
well. Indeed, applying the mixed-product rule to the right hand side of (27) we
obtain

P.s; t/P.t; u/ D .P1.s; t/˝ P2.s; t//.P1.t; u/˝ P2.t; u//

D .P1.s; t/P1.t; u//˝ .P2.s; t/P2.t; u//

D P1.s; u/˝ P2.s; u/ D P.s; u/:

Step 2: We will show that X1 and X2 are .F;G/-DSMC with c-transition fields P1
and P2. We first observe that

P.X1t D y1jFT _ Gs/1fX1sDx1;X2sDx2g
D 1fX1sDx1;X2sDx2g

X
y22S2

P.X1t D y1;X2t D y2jFT _ Gs/

D 1fX1sDx1;X2sDx2g
X

y22S2

p1Ix1y1 .s; t/p2Ix2y2 .s; t/

D 1fX1sDx1;X2sDx2gp1Ix1y1 .s; t/

0
@X

y22S2

p2Ix2y2 .s; t/

1
A

D 1fX1sDx1;X2sDx2gp1Ix1y1 .s; t/;
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where the second equality follows from (30). Now, summing this equality over
x2 2 S2 yields

P.X1t D y1jFT _ Gs/1fX1sDx1g D 1fX1sDx1gp1Ix1y1 .s; t/;

which means that X1 is an .F;G/-DSMC with c-transition field P1. Analogously
we can prove that X2 is an .F;G/-DSMC with c-transition field P2.

Step 3: Now, we will prove that (29) holds.

Let us restate (29) in the following equivalent form: for every y11; : : : ; y
1
n 2 S1 and

y21; : : : ; y
2
n 2 S2 it holds

P

 
n\

kD1

˚
.X1tk ;X

2
tk/ D .y1k ; y

2
k/
�jFT

!

D P

 
n\

kD1

˚
X1tk D y1k

�jFT

!
P

 
n\

kD1

˚
X2tk D y2k

�jFT

!
: (31)

Next, using the tower property of conditional expectations, the definition of .F;G/-
DSMC, [5, Proposition 4.6], and (28) we can rewrite the left hand side of (31) as
follows

P
�
.X1t1 ;X

2
t1
/ D .y11; y

2
1/; : : : ; .X

1
tn
;X2tn/ D .y1n; y

2
n/jFT

�

D E

�
P

�
.X1t1 ;X

2
t1 / D .y11; y

2
1/; : : : .X

1
tn ;X

2
tn/ D .y1n; y

2
n/jFT _ G0

�
jFT

�

D E

� X
.y10;y

2
0/2S1
S2

1fX10Dy10;X
2
0Dy20g

nY
kD1

p.y1k�1;y
2
k�1/.y

1
k ;y

2
k /
.tk�1; tk/jFT

�

D
X

.y10;y
2
0/2S1
S2

P
�
X10 D y10;X

2
0 D y20jFT

� nY
kD1

p.y1k�1;y
2
k�1/.y

1
k ;y

2
k /
.tk�1; tk/:

Now, employing (28), (30) and some elementary manipulations we obtain

P

�
.X1t1 ;X

2
t1 / D .y11; y

2
1/; : : : ; .X

1
tn ;X

2
tn/ D .y1n; y

2
n/jFT

�

D
X

y102S1

X
y202S2

P
�
X10 D y10jFT

�
P
�
X20 D y20jFT

� nY
kD1

p1Iy1k�1y1k
.tk�1; tk/p2Iy2k�1;y

2
k
.tk�1; tk/

D
� X

y102S1

P
�
X10 D y10jFT

� nY
kD1

p1Iy1k�1y1k
.tk�1; tk/

�

� X
y202S2

P
�
X20 D y20jFT

� nY
kD1

p2Iy2k�1;y
2
k
.tk�1; tk/

�
:
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Summing the above equality over all y21 : : : ; y
2
n 2 S2 yields

P.X1t1 D y11; : : : ;X
1
tn D y1njFT/ D

X
y102S1

P
�
X10 D y10jFT

� nY
kD1

p1Iy1k�1y1k
.tk�1; tk/:

Applying analogous reasoning to X2 we obtain

P.X2t1 D y21; : : : ;X
2
tn

D y2njFT/ D
X

y202S2

P
�
X20 D y20jFT

� nY
kD1

p2Iy2k�1;y
2
k
.tk�1; tk/:

These facts conclude the proof of (31). ut
Finally, using the above facts, we derive the main theorem:

Theorem 3.3 Suppose that we are given processes Y1, . . . , YN such that each Yk

is an .F;FYk
/-CDMC with values in Sk, and with F–intensity � k

t D Œ 
kIxkyk

t �xk ;yk2Sk

which satisfy canonical conditions relative to the pair .Sk;F/. Let X D .X1; : : : ;XN/

be a CMC copula constructed from a strong CMC pre-copula .�; / between Y1,
. . . , YN, where  satisfy (18) and (19) and� is given by (17). Then the components
of X are .F;FX/-CMCs conditionally independent given FT .

Proof In view of our assumptions, using Theorem 3.1, we see that .�; / is
pre-copula. Therefore, X is a copula between Y1, . . . , YN by construction (see
Remark 3.1.(i)). Moreover, X is .F;FX/-CDMC. Thus, the conditional independence
of components of X follows from Lemma 3.1 and Theorem 3.2. �
Remark 3.2 Ball, Milne and Yao [1] considered a model that corresponds to a
special case of CMCs. They were assuming that single ion channels X1, . . . XN are
independent conditionally on an environmental factor process, say ZE; which is a
Markov chain. Their model corresponds to setting the FZE

intensity of Xk as

� k
t D �.ZE

t /

and the FZE
intensity of the joint process X as

�.ZE
t / D

NX
kD1

I1 ˝ : : :˝Ik�1˝�.ZE
t /˝IkC1˝ : : :˝IN ; t 2 Œ0;T�:

In our setting, of course, a random environmental factor process driving the
intensities of channels between open and closed states can be far more general.

Remark 3.3 Biagini, Groll and Widenmann [3] studied a model for the rational
evaluation of premia for unemployment insurance products. They were assuming
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that the employment status process Xk of a single individual in the pool of
employable individuals is a CMC process with state space Sk D f1; 2g; where 1
stands for employed and 2 for unemployed. The matrix intensity process of Xk is of
the form

� k
t WD

�� kI1;2.Zt/  kI1;2.Zt/

 kI2;1.Zt/ � kI2;1.Zt/

�
;

where Z is a multidimensional process of covariates influencing the modeled
evolution of the employment statuses. These covariates represent macro- and micro-
economic risk factors, as well as individual-related risk factors. Assuming the
conditional independence, and assuming that

 kIi;j.Zt/ D ˛i;j.t/e.ˇ
i;j;Zt/; i ¤ j;

the authors were able to estimate the stochastic intensities of individuals using Cox
proportional hazards model. In [6] we suggest a possible generalization, using CMC
copulae, of the model studied in [3]. This generalization, we believe, may provide a
more adequate way to deal with computation of the premia.

4 Conclusion

To a great extent, the progress in the emerging theory and practice of structured
dependence between stochastic processes will be measured by our ability to
construct all sorts of Markov copulae. The present note provides a considerable
contribution in this direction.

In particular, in this note we constructed the conditionally independent Markov
copula for a family of conditional Markov chains. As mentioned in the Introduction,
this is important since conditionally independent Markov copula serves as starting
point for modeling structured dependence between CMCs.

In addition, construction given here may be applied, for example, in modeling
of gating behavior of multiple ion channels in a membrane patch or in the problem
of evaluation of premia for unemployment insurance products. Also, calculation
of decision functions, discussed in Jakubowski and Pytel [10], may be undertaken
using conditionally independent Markov copula.

There is much more to be done, though. For example, the great challenge is
posed by effective construction of weak Markov copulae and weak CMC copulae,
that were studied in [4] and in [6], respectively. This will be objective of our future
work.
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The Construction and Properties of Assortative
Configuration Graphs

T.R. Hurd

Abstract In the new field of financial systemic risk, the network of interbank
counterparty relationships can be described as a directed random graph. In cas-
cade models of systemic risk, this skeleton acts as the medium through which
financial contagion is propagated. It has been observed in real networks that such
counterparty relationships exhibit negative assortativity, meaning that a bank’s
counterparties are more likely to have unlike characteristics. This paper introduces
and studies a general class of random graphs called the assortative configuration
model, parameterized by an arbitrary node-type distribution P and edge-type
distribution Q. The first main result is a law of large numbers that says the empirical
edge-type distributions converge in probability to Q as the number of nodes N goes
to infinity. The second main result is a formula for the large N asymptotic probability
distribution of general graphical objects called configurations. This formula exhibits
a key property called locally tree-like that in simpler models is known to imply
strong results of percolation theory on the size of large connected clusters. Thus
this paper provides the essential foundations needed to prove rigorous percolation
bounds and cascade mappings in assortative networks.

Keywords Skeleton • Systemic risk • Banking network • Configuration graph •
Assortativity • Random graph simulation • Large graph asymptotics • Laplace
method • Locally tree-like • Percolation theory

The skeleton of a financial network at a moment in time is the directed graph
whose directed edges indicate which pairs of banks are deemed to have a significant
counterparty relationship at this time. The arrow on each edge points from debtor
to creditor. It has been often observed in financial networks (and as it happens, also
the world wide web) that they are highly disassortative, or as we prefer to say,
negatively assortative (see for example [14] and [1]). This refers to the property
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that any bank’s counterparties (i.e. their graph neighbours) have a marked tendency
to be banks of an opposite character. For example, it is observed that small banks
tend to lend preferentially to large banks rather than other small banks. On the other
hand, social networks are commonly observed to have positive assortativity: the
friends of highly popular people are more likely to be highly popular. Structural
characteristics such as degree distribution and assortativity are felt by some (see
[10, 12] ) to be highly relevant to systemic risk, meaning the stability properties
of financial networks, notably their susceptibility to the propagation of contagion
effects, that are the subject of the book [9].

The present paper introduces and studies a general class of assortative directed
random graphs that is both rich enough to describe real financial, engineered
and social networks, and amenable to analytic treatment. In this class, one can
determine the relationships between local network topology and global connectivity
properties (a theory that is called percolation) and ultimately to understand what
essential graph characteristics control the stability of systems such as financial
networks that rest on such a skeleton. The main aim here is to put a firm theoretical
foundation under the class of configuration graphs on N nodes with arbitrary node
type distribution P and edge type distribution Q. The class of configuration graphs
with general Q has not been well studied previously, and we will generalize some
of the classic large N asymptotic results known to be true for the nonassortative
configuration graph construction introduced by [2] and others, and described in
Sect. 1.2. To this end, an analytical technique based on the Laplace asymptotic
method is developed. These techniques turn out to be powerful enough to prove
a property we call locally tree-like that is known to be key to understanding the
percolation properties of graph models similar to the ACG model. Finally, at the end
of the paper, an approximate Monte Carlo simulation algorithm for assortative
configuration graphs is proposed.

1 Definitions and Basic Results

This section provides some standard graph theoretic definitions and develops an
efficient notation for what will follow. Since this paper deals only with directed
graphs rather than undirected graphs, the term graph will have that meaning.
Undirected graphs fit in easily as a subcategory of the directed case.

Definition 1.1 1. For any N � 1, the collection of directed graphs on N nodes
is denoted G .N/. The set of nodes N is numbered by integers, i.e. N D
f1; : : : ;Ng WD ŒN�. Then g 2 G .N/, a graph on N nodes, is a pair .N ;E /
where the set of edges is a subset E � N � N and each element ` 2 E is an
ordered pair ` D .v;w/ called an edge or link. Links are labelled by integers
` 2 f1; : : : ;Eg WD ŒE� where E D jE j. Normally, self-edges with v D w are
excluded from E , that is, E � N � N n diag.
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2. A given graph g 2 G .N/ can be represented by its N � N adjacency matrix M.g/
with components

Mvw.g/ D


1 if .v;w/ 2 g
0 if .v;w/ 2 N � N n g

:

3. The in-degree deg�.v/ and out-degree degC.v/ of a node v are

deg�.v/ D
X

w

Mwv.g/; degC.v/ D
X

w

Mvw.g/:

4. A node v 2 N has node type .j; k/ if its in-degree is deg�.v/ D j and its out-
degree is degC.v/ D k. The node set N D [jkNjk partitions into sets Njk with
the given node type. One writes kv D k; jv D j for any v 2 Njk and allow degrees
to be any non-negative integer.

5. An edge ` D .v;w/ 2 E is said to have edge type .k; j/ with in-degree j and out-
degree k if it is an out-edge of a node v with out-degree kv D k and an in-edge of
a node w with in-degree jw D j. The edge set E D [kjEkj partitions into sets Ekj

with the given edge type. One writes degC.`/ D k` D k and deg�.`/ D j` D j
whenever ` 2 Ekj.

6. For completeness, an undirected graph can be defined as a directed graph g for
which M.g/ is symmetric.

The standard visualization of a graph g on N nodes is to plot nodes as dots with
labels v 2 N , and any edge .v;w/ as an arrow pointing “downstream” from node
v to node w. In the financial system application, such an arrow signifies that bank
v is a debtor of bank w and the in-degree deg�.w/ is the number of banks in debt
to w, in other words the existence of the edge .v;w/ means “v owes w”. Figure 1
illustrates the labelling of types of nodes and edges.

There are constraints on the collections of node type .jv; kv/v2N and edge type
.k`; j`/`2E if they derive from a graph. By computing the total number of edges
E D jE j, the number of edges with k` D k and the number of edges with j` D j, one
finds three conditions:

Fig. 1 A type .3; 2/ debtor
bank that owes to a type .3; 4/
creditor bank through a type
.2; 3/ link
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E WD jE j D
X
v

kv D
X
v

jv

eCk WD j [j Ekjj D
X
`

I.k` D k/ D
X
v

kI.kv D k/ (1)

e�j WD j [k Ekjj D
X
`

I.j` D j/ D
X
v

jI.jv D j/:

where I.�/ denotes the indicator function.
It is useful to define some further graph theoretic objects and notation in terms

of the adjacency matrix M.g/:

1. The in-neighbourhood of a node v is the set N �
v WD fw 2 N jMwv.g/ D 1g and

the out-neighbourhood of v is the set N C
v WD fw 2 N jMvw.g/ D 1g.

2. One writes ECv (or E �v ) for the set of out-edges (respectively, in-edges) of a given
node v and vC` (or v�̀) for the node for which ` is an out-edge (respectively,
in-edge).

3. Similarly, second-order neighbourhoods N ��
v ;N �C

v ;N C�
v ;N CC

v have the
obvious definitions. Second and higher order neighbours can be determined
directly from the powers of M and its transpose M>. For example, w 2 N �C

v

whenever .M>M/wv � 1.
4. One often writes j; j0; j00; j1, etc. to refer to in-degrees and k; k0; k00; k1, etc. refer to

out-degrees.

Financial network models typically have a sparse adjacency matrix M.g/when N
is large, meaning that the number of edges taken to be a small O.N/ fraction of the
N.N � 1/ potential edges. This reflects the fact that bank counterparty relationships
are expensive to build and maintain, and thus N C

v and N �
v typically contain

relatively few nodes even in a very large network.

1.1 Random Graphs

Random graphs are probability distributions on the sets G .N/:

Definition 1.2 1. A random graph of size N is a probability distribution P on the
finite set G .N/. When the size N is itself random, the probability distribution P

is on the countable infinite set G WD [NG .N/. Normally, it is assumed that P is
invariant under permutations of the N node labels.

2. Given P, the node-type distribution is defined to have probabilities Pjk WD PŒv 2
Njk� for a randomly drawn node v and the edge-type distribution is defined to
have probabilities Qkj WD PŒ` 2 Ekj� for a randomly drawn edge `.
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P and Q can be viewed as bivariate distributions on the natural numbers, with
marginals PCk WD P

j Pjk;P�j WD P
k Pjk and QCk WD P

j Qkj;Q�j WD P
k Qkj.

Edge and node type distributions cannot be chosen independently however, but must
be consistent with the fact that they derive from actual graphs which is true if one
imposes that equations (2) hold in expectation, that is, P and Q are consistent :

z WD
X

k

kPCk D
X

j

jP�j

QCk D kPCk =z; Q�j D jP�j =z 8k; j:

(2)

Thus z is both the mean in-degree and mean out-degree.
A number of random graph construction algorithms have been proposed in

the literature, motivated by the desire to create families of graphs that match the
types and measures of network topology that have been observed in nature and
society. The present paper focusses on so-called configuration graphs. The textbook
“Random Graphs and Complex Networks” by van der Hofstad [15] provides a
complete and up-to-date review of the entire subject.

In the analysis to follow, asymptotic results are expressed in terms of convergence
of random variables in probability, defined as:

Definition 1.3 A sequence fXngn�1 of random variables is said to converge in

probability to a random variable X, written limn!1 Xn
PD X or Xn

P�! X, if for
any � > 0

PŒjXn � Xj > �� ! 0:

Recall further standard notation for asymptotics of sequences of real numbers
fxngn�1; fyngn�1 and random variables fXngn�1:

1. Landau’s “little oh”: xn D o.1/means xn ! 0; xn D o.yn/ means xn=yn D o.1/;
2. Landau’s “big oh”: xn D O.yn/ means there is N > 0 such that xn=yn is bounded

for n � N;
3. xn � yn means xn=yn ! 1;

4. Xn
PD o.yn/ means Xn=yn

P�! 0.

1.2 Configuration Random Graphs

In their classic paper [7], Erdös and Renyi introduced the undirected model G.N;M/
that consists of N nodes and a random subset of exactly M edges chosen uniformly
from the collection of

�N
M

�
possible such edge subsets. This model can be regarded

as the Mth step of a random graph process that starts with N nodes and no edges,
and adds edges one at a time selected uniformly randomly from the set of available
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undirected edges. Gilbert’s random graph model G.N; p/, which takes N nodes and
selects each possible edge independently with probability p D z=.N � 1/, has
mean degree z and similar large N asymptotics provided M D zN=2. In fact, it
was proved by [3] and [13] that the undirected Erdös-Renyi graph G.N; zN=2/ and
G.N; pN/ with probability pN D z=.N � 1/ both converge in probability to the same
model as N ! 1 for all z 2 RC. Because of their popularity, the two models
G.N; p/ � G.N; zN=2/ have come to be known as “the” random graph. Since the
degree distribution of G.N; p/ is Bin.N � 1; p/ �N!1 Pois.z/, this is also called
the Poisson graph model. Both these constructions have obvious directed graph
analogues.

The well known directed configuration multigraph model introduced by Bollobás
[2] with general degree distribution P D fPjkgj;kD0;1;::: and size N is constructed by
the following random algorithm:

1. Draw a sequence of N node-type pairs .j1; k1/; : : : ; .jN ; kN/ independently from
P, and accept the draw if and only if it is feasible, i.e.

P
n2ŒN�.jn � kn/ D 0. Label

the nth node with kn out-stubs (a half-edge with an out-arrow) and jn in-stubs.
2. While there remain available unpaired stubs, select (according to any rule,

whether random or deterministic) any unpaired out-stub and pair it with an in-
stub selected uniformly amongst unpaired in-stubs. Each resulting pair of stubs
is a directed edge of the multigraph.

The algorithm leads to objects with self-loops and multiple edges, which are
usually called multigraphs rather than graphs. Only multigraphs that are free of self-
loops and multiple edges, a condition called simple , are considered to be graphs.
For the most part, one does not care over much about the distinction, because the
density of self-loops and multiple edges goes to zero as N ! 1. In fact, Janson
[11] has proved in the undirected case that the probability for a multigraph to be
simple is bounded away from zero for well-behaved sequences .gN/N>0 of size N
graphs with given P.

Exact simulation of the adjacency matrix in the configuration model with general
P is problematic because the feasibility condition met in the first step occurs only
with asymptotic frequency � �p

2�N
, which is vanishingly small for large graphs.

For this reason, practical Monte Carlo implementations use some kind of rewiring
or clipping to adjust each infeasible draw of node-type pairs.

Because of the uniformity of the matching in step 2 of the above construction,
the edge-type distribution of the resultant random graph is

Qkj D jkPCk P�j
z2

D QCk Q�j (3)

which is called the independent edge condition. For many reasons, financial and
otherwise, one is interested in the more general situation when assortativity, defined
to be the Pearson correlation of Q:



Assortative Configuration Graphs 329

�Q WD
P

kj kj.Qkj � QCk Q�j /p
VarCVar�

VarC WD
X

k

k2QCk � .
X

k

kQCk /
2; Var� WD

X
j

j2Q�j � .
X

j

jQj
j/
2

is not zero. We will now show how such an extended class of assortative con-
figuration graphs can be defined. The resultant class encompasses all reasonable
type distributions .P;Q/ and has special properties that make it suitable for exact
analytical results, including the possibility of a detailed percolation analysis.

2 The ACG Construction

The assortative configuration (multi-)graph (ACG) of size N parametrized by the
node-edge type distribution pair .P;Q/ that satisfy the consistency conditions (2) is
defined by the ACG algorithm:

1. Draw a sequence of N node-type pairs X D ..j1; k1/; : : : ; .jN ; kN// independently
from P, and accept the draw if and only if it is feasible, i.e.

P
n2ŒN� jn DP

n2ŒN� kn, and this defines the number of edges E that will result. Label the
nth node with kn out-stubs (picture each out-stub as a half-edge with an out-
arrow, labelled by its degree kn) and jn in-stubs, labelled by their degree jn.
Define the partial sums u�j WD P

n I.jn D j/; uCk WD P
n I.kn D k/; ujk WD P

n I

.jn D j; kn D k/, the number eCk WD kuCk of k-stubs (out-stubs of degree k) and
the number of j-stubs (in-stubs of degree j), e�j WD ju�j .

2. Conditioned on X from Step 1, Step 2 matches k-stubs to j-stubs to form edges
of type .k; j/, with matching probabilities determined by Q. Given an arbitrary
ordering `� and `C of the E in-stubs and E out-stubs, the matching sequence or
wiring W of edges is selected by choosing a pair of permutations �; Q� 2 S.E/
of the set ŒE�. This leads to the edge sequence ` D .`� D �.`/; `C D Q�.`//
labelled by ` 2 ŒE�, to which is assigned a probability weighting factor

Y
`2ŒE�

Qk�.`/jQ�.`/
: (4)

Given the wiring W determined in Step 2, the number of type .k; j/ edges is

ekj D ekj.W/ WD
X
`2ŒE�

I.kQ�.`/ D k; j�.`/ D j/: (5)

The collection e D .ekj/ of edge-type numbers are constrained by the eCk ; e�j that
are determined by Step 1:
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eCk D
X

j

ekj; e�j D
X

k

ekj; E D
X

kj

ekj: (6)

This construction serves to characterize the precise class of random graphs that
shall be called ACG. Its large group of permutation symmetries make it amenable
for proving the basic properties of the ACG class, as shall be done in this and the
following two sections. However, this defining algorithm is not intended to be an
efficient method for simulating random graphs. Efficient approximate simulation
methods will be discussed in detail later on in Sect. 5.

Intuitively, since Step 1 leads to a product probability measure subject to a single
linear constraint that is true in expectation, one expects that it will lead to the
independence of node degrees for large N, with the probability P. Similar logic
suggests that since the matching weights in Step 2 define a product probability
measure conditional on a set of linear constraints that are true in expectation,
it should lead to edge type independence in the large N limit, with the limiting
probabilities given by Q. However, the verification of these facts is not so easy,
and their justification is the main object of this paper. First, certain combinatorial
properties of the wiring algorithm of Step 2, conditioned on the node-type sequence
X resulting from Step 1 for a finite N will be derived. One result says that the
probability of any wiring sequence W D .` 2 ŒE�/ in step 2 depends only on the set
of quantities .ekj/ where for each k; j, ekj WD jf` 2 ŒE� j ` 2 Ekjgj. Another is that
the conditional expectation of ekj=E is the exact edge-type probability for all edges
in W.

Proposition 1 Consider Step 2 of the assortative configuration graph construction
for finite N with probabilities P;Q conditioned on the X D .ji; ki/; i 2 ŒN�.
1. The conditional probability of any wiring sequence W D .` 2 ŒE�/ is:

PŒW j X� D C�1
Y

kj

.Qkj/
ekj.W/; (7)

C D C.e�; eC/ D EŠ
X

e

Y
kj

.Qkj/
ekj

ekjŠ

Y
j

�
e�j Š
�Y

k

�
eCk Š

�
; (8)

where the sum in (8) is over collections e D .ekj/ satisfying the constraints (6).
2. The conditional probability p of any edge of the wiring sequence W D .` 2 ŒE�/

having type k; j is

p D EŒekj j X�=E: (9)

Proof of Proposition 1 The denominator of (7) is C D P
�;Q�2S.E/

Q
l2ŒE� Qk�.`/jQ�.`/

,
from which (8) can be verified by induction on E. Assuming (8) is true for E � 1,
one can verify the inductive step for E:
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C D
X
Qk;Qj

X
�;Q�2S.E/

I.k�.E/ D Qk; jQ�.E/ D Qj/
Y
l2ŒE�

Qk�.`/jQ�.`/

D
X
Qk;Qj

eCQk e�Qj QQkQj
X

� 0;Q� 02S.E�1/

Y
l2ŒE�1�

Qk�0.`/jQ�0.`/

D
X
Qk;Qj

eCQk e�Qj QQkQj .E � 1/Š
X

e0

Y
kj

.Qkj/
e0

kj

e0kjŠ

Y
j

�
e

0�
j Š
� Y

k

�
e

0C
k Š
�
:

Here, e0kj D ekj � I.k D Qk; j D Qj/; e
0�
j D e�j � I.j D Qj/; e

0C
k D eCk � I.k D Qk/. After

noting cancellations that occur in the last formula, and re-indexing the collection e0
one finds

C D
X
Qk;Qj

X
e0

eQkQj .E � 1/Š
Y

kj

.Qkj/
ekj

ekjŠ

Y
j

�
e�j Š
� Y

k

�
eCk Š

�

D
X

e

0
@X
Qk;Qj

eQkQj

1
A .E � 1/Š

Y
kj

.Qkj/
ekj

ekjŠ

Y
j

�
e�j Š
� Y

k

�
eCk Š

�

D EŠ
X

e

Y
kj

.Qkj/
ekj

ekjŠ

Y
j

�
e�j Š
� Y

k

�
eCk Š

�

which is the desired result.
Because of the edge-permutation symmetry, it is enough to prove (9) for the last

edge. For this, one can follow the same logic and steps as in Part 1 to find:

p D 1

C.e�; eC/
X

�;Q�2S.E/

I.k�.E/ D k; jQ�.E/ D j/
Y
l2ŒE�

Qk�.`/ jQ�.`/

D EŠ

C.e�; eC/
X

e

ekj

E

Y
k0j0

.Qk0j0/
ek0 j0

ek0j0 Š

Y
j0

�
e�j0 Š
� Y

k0

�
eCk0 Š

� D EŒekj j X�=E:

ut
An easy consequence of the above proof is that the number of wirings W

consistent with a collection e D .ekj/ is given by

jfW W e.W/ D egj D
EŠ
�Q

j e�j Š
� �Q

k eCk Š
�

Q
kj ekjŠ

: (10)

Because of the permutation symmetries of the construction, a host of more
complex combinatorial identities hold for this model. The most important is that
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Part 2 of the Proposition can be extended inductively to determine the joint edge
distribution for the first M edges conditioned on X. To see how this goes, define two
sequences e�j .m/; e

C
k .m/ for 0  m  M to be the number of available j-stubs and

k-stubs available after m wiring steps.

Proposition 2 Consider Step 2 of the assortative configuration graph construction
for finite N with probabilities P;Q conditioned on X from Step 1. The conditional
probability p of the first M edges of the wiring sequence W D .` 2 ŒE�/ having
types .ki; ji/i2ŒM� is

PŒ.ki; ji/i2ŒM� j X� D .E � M/Š

EŠ

Y
i2ŒM�

EŒekiji j e�.i � 1/; eC.i � 1/�: (11)

Proof of Proposition 2 Note that Part 2 of Proposition 1 gives the correct result
when M D 1. For any m, an extension of the argument that proves Part 2 of
Proposition 1 also shows that

PŒ.ki; ji/i2Œm� j X� (12)

D 1

C.e�.0/; eC.0//
X

�;Q�2S.E/

mY
`D1

I.k�.`/ D k`; jQ�.`/ D j`/
Y
l2ŒE�

Qk�.`/jQ�.`/

D 1

C.e�.0/; eC.0//

mY
`D1

�
e�j` .` � 1/eCk` .` � 1/ Qk`j`

	 X
� 0;Q� 02S.E�m/

EY
`DmC1

Qk�0.`/jQ�0.`/
:

Now assume inductively that the result (11) is true for M � 1 and compute (11) for
M:

PŒ.ki; ji/i2ŒM� j X� D
PŒ.ki; ji/i2ŒM� j X�

PŒ.ki; ji/i2ŒM�1� j X�
� .E � M C 1/Š

EŠ

Y
i2ŒM�1�

EŒekiji j e�.i � 1/; eC.i � 1/�:

The ratio in the first factor can be treated using (13), and the resulting cancellations
lead to the formula

PŒ.ki; ji/i2ŒM� j X� D .E � M C 1/Š

EŠ

Y
i2ŒM�1�

EŒekiji j e�.i � 1/; eC.i � 1/�

�
h
e�jM .M � 1/eCkM

.M � 1/ QkMjM

i P
� 0;Q� 02S.E�M/

QE
`DMC1 Qk�0.`/jQ�0.`/P

� 0;Q� 02S.E�MC1/
QE
`DM Qk�0.`/jQ�0.`/

:
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The desired result follows because Part 2 of Proposition 1 can be applied to show

h
e�jM .M � 1/eCkM

.M � 1/ QkMjM

i P
� 0;Q� 02S.E�M/

QE
`DMC1 Qk�0.`/jQ�0.`/P

� 0;Q� 02S.E�MC1/
QE
`DM Qk�0.`/jQ�0.`/

D 1

E � M C 1
EŒekM jM j e�.M � 1/; eC.M � 1/�:

ut

3 Asymptotic Analysis

It is quite easy to prove that the empirical node-type distributions .ujk; u�j ; u
C
k /

resulting from Step 1 of the ACG algorithm satisfy a law of large numbers:

N�1ujk
PD Pjk; N�1u�j

PD P�j ; N�1uCk
PD PCk ; (13)

as N ! 1. In this section, we focus on the new and more difficult problem to
determine the asymptotic law of the empirical edge-type distribution, conditioned
on the node-type sequence X. To keep the discussion as clear as possible, we confine
the analysis to the case the distributions P and Q have support on the finite set
.j; k/ 2 .f0g [ ŒK�/2 for a fixed K. This technical restriction should be removed in
future work, since it precludes graph models with fat-tailed degree distributions that
are of interest in network applications.

One can see from Proposition 2 that the probability distribution of the first M
edge types will be given asymptotically by

Q
i2ŒM� Qkiji provided our intuition is

correct that EŒE�1ekj�
PD Qkj.1 C o.1// asymptotically for large N. To validate

this intuition, it turns out one can apply the Laplace asymptotic method to the
joint cumulant generating function for the empirical edge-type random variables ekj,
conditioned on any feasible collection of .eCk ; e�j / with total number E D P

k eCk DP
j e�j :

F.wI e�; eC/ WD logEŒe
P

kj wkjekj j e�; eC�; 8 w D .wkj/j;k2ŒK� (14)

D log

P
e

Q
kj
.Qkje

wkj /ekj

ekjŠ

Q
j

�
e�j Š
�Q

k

�
eCk Š

�
P

e

Q
kj
.Qkj/

ekj

ekjŠ

Q
j

�
e�j Š
�Q

k

�
eCk Š

� ; (15)

The constraints on e D .ekj/ on the sums in both the numerator and denominator
of (15) can be introduced by auxiliary integrations over 2K new variables v�j ; v

C
k of

the form

I.
X

j

ekj D eCk / D 1

2�

Z 2�

0

dvCk eivC

k .
P

j ekj�eC

k /:
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This substitution leads to closed formulas for the sums over ekj and the expression:

eF.wI e/ D
R

I d2Kv expŒH.w;�ivI e/�R
I d2Kv expŒH.0;�ivI e/�

(16)

where

H.w; ˛I e/ D
X

kj

e.˛
�

j C˛C

k /ewkj Qkj�.
X

j

˛�j e�j C
X

k

˛Ck eCk / D
X

kj

e˛	djk ewkj Qkj�˛�e:
(17)

The integration in (16) is over the set I WD Œ0; 2��2K .
Here a “double vector” notation has been introduced for v D .v�I vC/;

e D .e�I eC/; ˛ D .˛�I˛C/ where v�; vC 2 CK etc. and where K is the number
of possible in and out degrees (which one may want to take to be infinite). Define
double vectors 1� D .1; 1; : : : 1I 0; : : : ; 0/; 1C D .0; : : : ; 0I 1; : : : ; 1/; 1 D 1� C
1C; Q1 D 1� � 1C. For any pair .j; k/ 2 ŒK�2, let d�j be the double vector with a 1 in

the jth place and zeros elsewhere, let dCk be the double vector with a 1 in the K Ckth
place and zeros elsewhere and djk D d�j C dCk . Using the natural inner product for

double vectors ˛ �e WD P
j ˛
�
j e�j CP

k ˛
C
k eCk , etc., the number of stubs is e �1 D 2E

and the feasibility condition on stubs can be written e � Q1 D 0.
The main aim of the paper is to prove a conditional law of large numbers for

E�1ejk as E ! 1, conditioned on e D .e�I eC/ satisfying e � Q1 D 0. By explicit
differentiation of the cumulant generating function, and some further manipulation,
one finds that

EŒekj j e� D @F

@wkj

ˇ̌
ˇ
wD0 D Qkj

R
I d2Kv expŒH.0;�ivI e � djk/�R

I d2Kv expŒH.0;�ivI e/�
(18)

VarŒekj j e� D @2F

@w2kj

ˇ̌̌
wD0 D Qkj

R
I d2Kv expŒH.0;�ivI e � djk/�R

I d2Kv expŒH.0;�ivI e/�
C (19)

�
Qkj
�2
2
4
R

I d2Kv expŒH.0;�ivI e � 2djk/�R
I d2Kv expŒH.0;�ivI e/�

�
 R

I d2Kv expŒH.0;�ivI e � djk/�R
I d2Kv expŒH.0;�ivI e/�

!23
5

Since our present aim is to understand (18) and (19), we henceforth set w D 0

in the H-function. The H function defined by (17) with w D 0 has special
combinatorial features:

Lemma 3.1 For all e 2 Z2KC satisfying e � Q1 D 0, the function H D H.˛I e/ satisfies
the following properties:

1. H is convex for ˛ 2 R2K and entire analytic for ˛ 2 C2K;
2. H is periodic: H.˛ C 2�i�I e/ D H.˛I e/ for all � 2 Z2K.
3. For any 
 2 C, H.˛ C 
Q1I e/ D H.˛I e/ ;
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4. For any 
 > 0, H.˛I
e/ D 
H.˛ � log

2

1I e/� 

2

log
1 � e.
5. The mth partial derivative of H with respect to ˛ is given by

rmH.˛I e/ D
( P

jk djke˛	djk Qkj � e; m D 1IP
jk.djk/

N
me˛	djk Qkj; m D 2; 3; : : :

(20)

Here .djk/
N

m denotes the mth tensor power of the double vector djk.

The Laplace asymptotic method (or saddlepoint method), reviewed for example
in [8], involves shifting the v integration into the complex by an imaginary vector.
The Cauchy Theorem, combined with the periodicity of the integrand in v, will
ensure the value of the integral is unchanged under the shift. The desired shift is
determined by the e-dependent critical points ˛� of H which by Part 5 of Lemma 3.1
are solutions of

X
jk

djke˛	djk Qkj D e: (21)

In view of Parts 1 and 2 of the Lemma, for each e 2 Z2K there is a unique critical
point ˛�.e/ such that Q1 � ˛�.e/ D 0. The imaginary shift of the v-integration is
implemented by writing v D i˛�.e/C � where now � is integrated over I.

To unravel the E dependence, one uses rescaled variables x D E�1e that lie
on the plane 1 � x D 2 and by Part 4 of the Lemma with 
 D E�1 one has that
˛�.e/ D ˛�.x/ C log E

2
1. Now one can use the third order Taylor expansion with

remainder to write

H.˛�.e/� i�I e/ D EH.˛�.x/� i�I x/� E

2
log E.1 � x/

D � E log E C E

�
H.˛�.x/I x/� 1

2
�
N
2 � r2H C i

1

6
�
N
3 � r3H


C EO.j�j4/

(22)

where r2H;r3H are evaluated at ˛�.x/ and the square-bracketed quantities are all
E independent. From (17) one can observe directly that jeHj has a unique maximum
on the domain of integration at � D 0:

max
�2I

jeH.˛�.e/�i�I e/j D eH.˛�.e/I e/: (23)

The uniqueness of the maximum is essential to validate the following Laplace
asymptotic analysis, and leads to the main result of the paper:

Theorem 3.1 For any double vector x� 2 .0; 1/2K \ Q1?, let e.E/ D Ex.E/ be a
sequence in Z2KC \ Q1? such that

lim
E!1 x.E/ D x�: (24)
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Then asymptotically as E ! 1,

I .E/ D
Z

I
d2Kv expŒH.�ivI e.E//� (25)

D .2�/KC1=2E1=2�Ke�E log ECEH.˛�.x�/Ix�/
�
det0r2H

	�1=2 �
1C O.E�1/

	
:

Here det0r2H represents the determinant of the matrix projection onto Q1?, the
subspace orthogonal to Q1, of r2H evaluated at the critical point ˛�.x�/.

When applied to (18) and (19) this Theorem is powerful enough to yield the
desired results on the edge-type distribution in the ACG model for fixed e D
.e�; eC/ D Ex for large E.

Corollary 1 Consider the ACG model with .P;Q/ supported on .f0g [ ŒK�/2.
1. Conditioned on X,

E�1ekj
PD ŒQkje

1�H.0;˛�.x/Ix/�˛�.x/	djk Œ1C O.E�1=2/�

where x D E�1e and e D .e�.X/; eC.X//.
2. Unconditionally,

E�1ekj
PD QkjŒ1C O.N�1=2/�:

Combining this Law of Large Numbers result with the easier result for the empir-
ical node-type distribution confirms that the large N asymptotics of the empirical
node- and edge-type distributions agree with the target .P;Q/ distributions.

Proof of Corollary 1 By applying Part 4 of Lemma 3.1 and the Theorem to (18) one
finds that

EŒekj j e� D Qkj

R
I d2Kv expŒH.�ivI e � djk/�R

I d2Kv expŒH.�ivI e/�

D Qkj expŒ�.E � 1/ log.E � 1/C E log E C .E � 1/H.˛�.x0/I x0/� EH.˛�.x/I x/�

�
"

det0r2H.˛�.x//
det0r2H.˛�.x0//

#1=2 h
1C O.E�1/

i

where x D E�1e and x0 D .E � 1/�1.e � djk/ are such that �x D x0 � x D O.E�1/.
Now, one can show that as long as x; x0 lie on the plane 1 � x D 2 as they do here,
and�x D x0 � x is O.E�1/ then

H.˛�.x0/I x0/� H.˛�.x/I x/ D ˛�.x/ ��x C O.j�xj2/: (26)
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It is also true that �˛� D ˛�.x0/� ˛�.x/ D O.j�xj/ and satisfies

�˛� � x D O.j�xj2/: (27)

Since det0r2H.˛/ is analytic in ˛ with O.1/ derivatives, and �˛� D O.j�xj/
�

det0r2H.˛�.x//
det0r2H.˛�.x0//

1=2
D �

1C O.E�1/
	
:

Also,

.E � 1/H.˛�.x0/I x0/� .E � 1/H.0; ˛�.x/I x/ D �˛�.x/ � djk C O.j�xj/

and E log E � .E � 1/ log.E � 1/ � log E C 1C O.E�1/, from which one concludes

EŒekj j e� D Qkj E expŒ1 � H.˛�.x/I x/� ˛�.x/ � djk�
�
1C O.E�1/

	
: (28)

The conclusion of the Part 1 of the Corollary now follows from the Chebyshev
inequality if one shows that (19) is O.E/. Since the first term of(19) equals EŒekj j e�,
which is O.E/, it is only necessary to show that the O.E2/ parts of the second term
cancel. Each ratio in the second term can be analyzed exactly as above, leading to

�
QkjE expŒ1 � H.˛�.x/I x/� ˛�.x/ � djk�

	2
� �

expŒH.˛�.x/I x/� H.˛�.x0/I x0/ ��˛�.x0/ � djk�
� �
1C O.E�1/

	
D �

QkjE expŒ1 � H.˛�.x/I x/� ˛�.x/ � djk�
	2

� �
expŒ�˛�.x/ ��x ��˛�.x0/ � djk� � 1

� �
1C O.E�1/

	 D O.E/

where one uses (26) again in the second last equality.
To prove Part 2, it is sufficient to note that E�1.e�.X/; eC.X// D .Q�;QC/Œ1C

O.N�1=2/� and that ˛�.Q�;QC/ D 0;H.˛�.Q�;QC/I Q�;QC/ D 1. ut
Proof of Theorem 3.1 For each E, since the integrand of I .E/ is entire analytic
and periodic, its integral is unchanged under a purely imaginary shift of the contour.
Also, since by Part 3 of Lemma 3.1 the integrand is constant in directions parallel
to Q1, the integrand can be reduced to the set I \ Q1?. Thus, using (22) for e D e.E/
and x D x.E/, I .E/ can be written

I .E/ D 2�

Z
I\Q1?

d2K�1� expŒH.˛�.e/ � i�I e/� D 2�

Z
I\Q1?

d2K�1�

� exp

�
� E log E C E

�
H.˛�.x/I x/� 1

2
�
N
2 � r2H C i

1

6
�
N
3 � r3H C O.j�j4/

�
:
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In rescaled variables Q� D E1=2� this becomes

I .E/ D 2�E1=2�K exp
�� E log E C EH.˛�.x/I x/

	 � QI .E/

where

QI .E/ WD
Z

E1=2I\Q1?

d2K�1 Q� expŒEH.˛�.x/� iE�1=2 Q�I x/� EH.˛�.x/I x/�

D
Z

E1=2I\Q1?

d2K�1 Q� expŒ�1
2

Q�
N
2 � r2H�

�
1C i

E�1=2

6
Q�
N
3 � r3H C O.E�1/

�
:

In this last integral the O.E�1=2/ term is odd in Q� and makes no contribution.
Now,

j expŒH.˛�.x/� iE�1=2 Q�I x/� H.˛�.x/I x/�j D

D exp

2
4X

kj

e˛
�.x/	djk .cos.E�1=2 Q� � djk/ � 1/ Qkj

3
5

clearly has a unique maximum at Q� D 0. Therefore, a standard version of the Laplace
method such as that found in [6] is sufficient to imply that as E ! 1,

QI .E/ D .2�/K�1=2
�
det0r2H

	�1=2 �
1C O.E�1/

	
(29)

where r2H is evaluated at ˛�.x�/. ut

4 Locally Tree-Like Property

To understand percolation theory on random graphs, or to derive a rigorous
treatment of cascade mappings on random financial networks, it turns out to be
important that the underlying random graph model have a property sometimes called
locally tree-like. In this section, the local tree-like property of the ACG model will
be characterized as a particular large N property of the probability distributions
associated with graphical objects we call configurations, that are roughly speaking
finite connected subgraphs g of the skeleton labelled by their degree types.

Before the definition of configuration is made clear in the next subsection, first
consider what it means in the .P;Q/ ACG model with size N to draw a random
configuration g consisting of a pair of vertices v1; v2 joined by a link, that is,
v2 2 N �

v1
. In view of the permutation symmetry of the ACG algorithm, the random

link can without loss of generality be taken to be the first link W.1/ of the wiring
sequence W. Following the ACG algorithm, Step 1 constructs a feasible node degree
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sequence X D .ji; ki/; i 2 ŒN� on nodes labelled by vi D i and conditioned on
X, Step 2 constructs a random Q-wiring sequence W D �

` D .vC` ; v�̀/
�
`2ŒE� with

E D P
i ki D P

i ji edges. By an abuse of notation, we label their edge types by
k` D k

v
C

`
; j` D jv�

`
for ` 2 ŒE�. The configuration event in question, namely that

the first link in the wiring sequence W attaches to nodes of the required degrees
.j1; k1/; .j2; k2/, has probability p D PŒvi 2 Nji;ki ; i D 1; 2 j v2 2 N �

v1
�. To compute

this, note that the fraction j1uj1k1=e�j1 of available j1-stubs come from a j1k1 node

and the fraction k2uj2k2=eCk2 available k2-stubs come from a j2k2 node. Combining
this fact with Part 2 of Proposition 1, Eq. (9) implies the configuration probability
conditioned on X is exactly

p D j1uj1k1k2uj2k2

EŒek2 j1 j e�; eC�
EeCk2e

�
j1

: (30)

By the Corollary:

p
PD j1k2Pj1k1Pj2k2Qk2j1

z2QCk2Q
�
j1

Œ1C O.N�1=2/�: (31)

This argument justifies the following informal computation of the correct
asymptotic expression for p by successive conditioning:

p D PŒvi 2 Njiki ; i D 1; 2 j v2 2 N �
v1
� (32)

D PŒv1 2 Nj1k1 j v2 2 N �
v1

\ Nj2k2 �PŒv2 2 Nj2k2 j v2 2 N �
v1
� (33)

D Pk1jj1Qj1jk2Pj2jk2Q
C
k2

D Pj1k1Pj2k2Qk2j1

PCk2P
�
j1

(34)

where we introduce conditional degree probabilities Pkjj D Pjk=P�j etc.
Occasionally in the above matching algorithm, the first edge forms a self-loop,

i.e. v1 D v2. The probability of this event, jointly with fixing the degree of v1, can
be computed exactly for finite N as follows:

Qp WD EŒv1 D v2; v1 2 Njk j v2 2 N �
v1

j X� D
 

jkujk

e�j eCk

!
EŒekj j X�

E
:

As N ! 1 this goes to zero, however N Qp approaches a finite value:

N Qp P�! jkPjkQkj

z2QCk Q�j
(35)
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which says that the relative fraction of edges being self loops is the asymptotically
small

P
jk

jkPjkQkj

Nz2QC

k Q�

j

. In fact, following results of [11] and others on the undirected

configuration model, one expects that the total number of self loops in the multi-
graph converges in probability to a Poisson random variable with finite parameter


 D
X

jk

jkPjkQkj

z2QCk Q�j
: (36)

4.1 General Configurations

A general configuration is a connected subgraph g of an ACG graph .N ;E / with
L ordered edges and with each node labelled by its degree type. It results from a
growth process that starts from a fixed node w0 called the root and at step `  L
adds one edge ` that connects a node w` to a specific existing node w0̀ . The following
is a precise definition:

Definition 4.4 A configuration rooted to a node w0 with degree .j; k/ WD .j0; k0/
is a connected subgraph g consisting of a sequence of L edges that connect nodes
.w`/`2ŒL� of types .j`; k`/, subject to the following condition: For each ` � 1, w` is
connected by the edge labelled with ` to a node w0̀ 2 fwjgj2f0g[Œ`�1� by either an
in-edge (that points into w0̀ ) .w`;w0̀ / or an out-edge (that points out of w0̀ ).

A random realization of the configuration results when the construction of the
size N ACG graph .N ;E / is conditioned on X arising from Step 1 and the first L
edges of the wiring sequence of Step 2. The problem is to compute the probability
of the node degree sequence .j`; k`/`2ŒL� conditioned on X, the graph g with its root
w0 WD v having degree .j; k/, that is

p D PŒw` 2 Nj`;k` ; ` 2 ŒL� j v 2 Njk; g;X�: (37)

Note that there is no condition that the node w` at step ` is distinct from the
earlier nodes w`0 ; `0 2 f0g [ Œ` � 1�. With high probability each w` will be new, and
the resultant subgraph g will be a tree with L distinct added nodes (not including the
root) and L edges. With small probability one or more of the w` will be preexisting,
i.e. equal to w`0 for some `0 2 f0g [ Œ` � 1�: in this case the subgraph g will have
M < L added nodes, will have cycles and not be a tree.

The following sequences of numbers are determined given X and g:

• ej;k.`/ is the number of available j-stubs connected to .j; k/ nodes after ` wiring
steps;

• ek;j.`/ is the number of available k-stubs connected to .j; k/ nodes after ` wiring
steps.
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• e�j .`/ WD P
k ej;k.`/ and eCk .`/ WD P

j ek;j.`/ are the number of available j-stubs
and k-stubs respectively after ` wiring steps.

Note that ej;k.0/ D jujk and ek;j.0/ D kujk, and both decrease by at most 1 at each
step.

The analysis of configuration probabilities that follows is inductive on the step `.

Theorem 4.2 Consider the ACG sequence with .P;Q/ supported on .f0g [ ŒK�/2.
Let g be any fixed finite configuration rooted to w0 2 Njk, with M added nodes and
L � M edges, labelled by the node-type sequence .jm; km/m2ŒM�. Then, as N ! 1,
the joint probability conditioned on X,

p D PŒwm 2 Njmkm ;m 2 ŒM� j v 2 Njk; g;X�;

is given by

Y
m2ŒM�;.m0 ;m/ out-edge

Pkmjjm Qjmjkm0

Y
m2ŒM�; in-edge

PjmjkmQkmjjm0

�
1C O.N�1=2/

	
(38)

if L D M and thus g is a tree. If L > M and so g has cycles then

p D O.NM�L/: (39)

The factors in (38) depend on whether the mth edge is an in- or out-edge and m0 2
f0g [ Œm � 1� numbers the node to which wm attaches.

Remarks 1 1. Formula (38) shows clearly what is meant by saying that configura-
tion graphs are locally tree-like as N ! 1. It means the number of occurrences
of any fixed finite size graph g with cycles embedded within a configuration
graph of size N remains bounded with high probability as N ! 1.

2. Even more interesting is that (38) shows that large configuration graphs exhibit
a strict type of conditional independence. Selection of any root node v of the
tree graph g splits it into two (possibly empty) trees g1; g2 with node-types
.jm; km/;m 2 ŒM1� and .jm; km/;m 2 ŒM1 C M2� n ŒM1� where M D M1 C M2.
When we condition on the node-type of v, (38) shows that the remaining node-
types form independent families:

PŒwm 2 Njmkm ;m 2 ŒM�; g j X; v 2 Njk� D PŒwm 2 Njmkm ;m 2 ŒM1�; g1 j X; v 2 Njk�

�PŒwm 2 Njmkm ;m 2 ŒM1 C M2� n ŒM1�; g2 j X; v 2 Njk�: (40)

We call this deep property of the general configuration graph the locally tree-like
independence property (LTI property). In [9], the LTI property provides the key
to unravelling cascade dynamics in large configuration graphs.
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Proof of Theorem 4.2 First, suppose Step 1 generates the node-type sequence X.
Conditioned on X, now suppose the first step generates an in-edge .w1; v/. Then, by
refining Part 2 of Proposition 1, the conditional probability that node w1 has degree
j1; k1 can be written

PŒw1 2 Nj1k1 ;w0 2 Njk j g;X�

PŒw0 2 Njk j g;X�

D C�1.e�.0/; eC.0//ek1;j1 .0/e
�
j;k.0/Qk1jC.e

�.1/; eC.1//
C�1.e�.0/; eC.0//

P
k0 eCk0 .0/e�j;k.0/Qk0jC.e�.1/; eC.1//

D
 

ek1;j1 .0/e
�
j;k.0/

eCk1 .0/e
�
j .0/

!�
EŒek1 j j e�.0/; eC.0/�

E

��
e�j;k.0/

E

��1

D
 

k1uk1;j1

k1v
C
k1

! 
EŒek1 j j e�.0/; eC.0/�

e�j .0/

!
:

Be aware that C.e�.1/; eC.1// in the denominator after the first equality depends
on k0 and hence does not cancel a factor in the numerator. Now, for N ! 1, Part
2 of the Corollary applies to the second factor, and (13) applies to the first factor,
and shows that for the case of an in-edge on the first step, with high probability, X
is such that:

PŒw1 2 Nj1k1 j v 2 Njk; g;X� D Pj1jk1 Qk1jj
�
1C O.N�1=2/

	
:

The case of an out-edge is similar.
Now we continue conditionally on X from Step 1 and assume inductively

that (38) is true for M � 1 and prove it for M. Suppose the final node wM is in-
connected to the node wM0 for some M0  M. The ratio PŒwm 2 Njmkm ;m 2 ŒM� j
v 2 Njk; g;X�=PŒwm 2 Njmkm ;m 2 ŒM � 1� j v 2 Njk; g;X� can be treated just as in
the previous step and shown to be

 
ekM ;jM .M � 1/
eCkM
.M � 1/

! 
EŒekMjM0

j e�.M � 1/; eC.M � 1/�

e�jM0
.M � 1/

!

which with high probability equals

PŒw1 2 Nj1k1 j v 2 Njk; g;X� D PjM jkM QkM jjM0

�
1C O.N�1=2/

	
:

The case wM is out-connected to the node wM0 is similar.
The first step m that a cycle is formed can be treated by imposing a condition

that wm D wm00 for some fixed m00 < m. One finds that the conditional probability
of this is
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PŒwm D wm00 ;w` 2 Nj`k` ; ` 2 Œm � 1� j v 2 Njk; g;X�

D km00

eCkm00
.m � 1/

� PŒw` 2 Nj`k` ; ` 2 Œm � 1� j v 2 Njk; g;X�:

The first factor is O.N�1/ as N ! 1, which proves the desired statement (39) for
cycles.

Finally, since (39) is true for cycles, with high probability all finite configurations
are trees. Therefore their asymptotic probability laws are given by (38), as required.

ut

5 Approximate ACG Simulation

It was observed in Sect. 1.2 that Step 1 of the configuration graph construction draws
a sequence .ji; ki/i2ŒN� of node types that is iid with the correct distribution P, but
is only feasible,

P
i.ki � ji/ D 0, with small probability. Step 2 of the exact ACG

algorithm in Sect. 2 is even less feasible in practice. Practical simulation algorithms
address the first problem by clipping the drawn node bidegree sequence when the
discrepancy D D DN WD P

i.ki � ji/ is not too large, meaning it is adjusted by
a small amount to make it feasible, without making a large change in the joint
distribution. Step 1 of the following simulation algorithm generalizes slightly the
method introduced by [4] who verify that the effect of clipping vanishes with
high probability as N ! 1. The difficulty with Step 2 of the ACG construction
is overcome in this section by an approximate sequential wiring algorithm that
we conjecture has the correct asymptotic properties. An alternative simulation
algorithm that also has the correct asymptotics of the ACG model has been studied
in [5].

The approximate assortative configuration graph (ACG) simulation algorithm
for multigraphs of size N, parametrized by the node-edge type distribution pair
.P;Q/ that have support on the finite set .j; k/ 2 f0; 1; : : : ;Kg2, involves choosing a
suitable threshold T D T.N/ and modifying the steps identified in Sect. 2:

1. Draw a sequence of N node-type pairs X D ..j1; k1/; : : : ; .jN ; kN// independently
from P, and accept the draw if and only if 0 < jDj  T.N/. When the sequence
.ji; ki/i2ŒN� is accepted, the sequence is adjusted by adding a few stubs, either in-
or out- as needed. First draw a random subset � � N of size jDj with uniform

probability
� N
jDj
��1

, and then define the feasible sequence QX D .Qji; Qki/i2ŒN� by
adjusting the degree types for i 2 � as follows:

Qji D ji C �i I �i D I.i 2 �;D > 0/ (41)

Qki D ki C Ci I Ci D I.i 2 �;D < 0/: (42)
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2. Conditioned on QX, the result of Step 1, randomly wire together available in
and out stubs sequentially, with suitable weights, to produce the sequence of
edges W. At each ` D 1; 2; : : : ;E, match from available in-stubs and out-stubs
weighted according to their degrees j; k by

C�1.`/
Qkj

QCk Q�j
: (43)

In terms of the bivariate random process .e�j .`/; e
C
k .`// with initial values

.e�j .1/; e
C
k .1// D .e�j ; e

C
k / that at each ` counts the number of available degree

j in-stubs and degree k out-stubs, the ` dependent normalization factor C.`/ is
given by:

C.`/ D
X

jk

e�j .`/eCk .`/
Qkj

QCk Q�j
: (44)

Remark 5.1 Chen and Olvera-Cravioto, [4], addresses the clipping in Step 1 and
shows that the discrepancy of the approximation is negligible as N ! 1:

Theorem 5.3 Fix ı 2 .0; 1=2/, and for each N let the threshold be T.N/ D N1=2Cı .
Then:

1. The acceptance probability PŒjDN j  T.N/� ! 1 as N ! 1;
2. For any fixed finite M, �, and bounded function f W .ZC � ZC/M ! Œ��;��

ˇ̌̌
EŒf

�
.Qji; Qki/i2ŒM�

�
� � EŒf

�
.Oji; Oki/i2ŒM�

�
�
ˇ̌̌

! 0 I (45)

where .Oji; Oki/i2ŒM� is an independent sequence of P distributed random variables.
3. The following limits in probability hold:

1

N
Qujk

P�! Pjk;
1

N
QvCk

P�! PCk ;
1

N
Qv�j

P�! P�j : (46)

Similarly it is intuitively clear that the discrepancy of the approximation in Step
2 is negligible as N ! 1. As long as e�j .`/; e

C
k .`/ are good approximations of

.E � `/Q�j ; .E � `/QCk , (43) shows that the probability that edge ` has type .k; j/
will be approximately Qkj. Since the detailed analysis of this problem is not yet
complete, we state the desired properties as a conjecture:

Conjecture 1 In the approximate assortative configuration graph construction with
probabilities P;Q, the following convergence properties hold as N ! 1.

1. The fraction of type .k; j/ edges in the matching sequence .k`; j`/`2ŒE� concen-
trates with high probability around the nominal edge distribution Qkj:

ekj

E
D Qkj C o.1/: (47)
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2. For any fixed finite number L, the first L edges ` 2 ŒL� have degree sequence
.k`; j`/`2ŒL� that converges in distribution to .Ok`; Oj`/`2ŒL�, an independent sequence
of identical Q distributed random variables.

Although this conjecture is not yet proven, extensive simulations have verified
the consistency of the approximate ACG algorithm with the theoretical large N
probabilities.

6 Conclusions

The ACG algorithm that is the main contribution of this paper, while unwieldy from
the point of view of simulation, has rich combinatorial properties that have made
it amenable to exact study via the Laplace asymptotic method. The consequences
of this approach have not yet been explored in depth. For example, it will be of
interest to get more accurate bounds on the large N asymptotics by using higher
order Laplace methods, allowing us to better understand for example, P and Q
distributions with fat-tails. Such bounds would also give a better understanding of
the locally-treelike property of the model.

Numerous possible methods for efficient simulation of ACG graphs, including
the method conjectured in Sect. 5 to be consistent, and the method studied in [5], can
be imagined. However, it will take some time to decide which simulation methods
are both consistent with the ACG model and computationally efficient.

Given the potential of the ACG model to describe a wide range of real world
networks for which the original configuration graph model is inadequate, including
the cascade models for systemic risk in financial networks that was its original
motivation, future investigations along these lines are likely to prove fruitful.
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Coexistence in the Face of Uncertainty

Sebastian J. Schreiber

Lest men believe your tale untrue, keep probability
in view.

—John Gay

Abstract Over the past century, nonlinear difference and differential equations
have been used to understand conditions for coexistence of interacting populations.
However, these models fail to account for random fluctuations due to demographic
and environmental stochasticity which are experienced by all populations. I review
some recent mathematical results about persistence and coexistence for models
accounting for each of these forms of stochasticity. Demographic stochasticity stems
from populations and communities consisting of a finite number of interacting
individuals, and often are represented by Markovian models with a countable
number of states. For closed populations in a bounded world, extinction occurs
in finite time but may be preceded by long-term transients. Quasi-stationary
distributions (QSDs) of these Markov models characterize this meta-stable behavior.
For sufficiently large “habitat sizes”, QSDs are shown to concentrate on the
positive attractors of deterministic models. Moreover, the probability extinction
decreases exponentially with habitat size. Alternatively, environmental stochasticity
stems from fluctuations in environmental conditions which influence survival,
growth, and reproduction. Stochastic difference equations can be used to model
the effects of environmental stochasticity on population and community dynamics.
For these models, stochastic persistence corresponds to empirical measures placing
arbitrarily little weight on arbitrarily low population densities. Sufficient and
necessary conditions for stochastic persistence are reviewed. These conditions
involve weighted combinations of Lyapunov exponents corresponding to “average”
per-capita growth rates of rare species. The results are illustrated with how climatic
variability influenced the dynamics of Bay checkerspot butterflies, the persistence
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of coupled sink populations, coexistence of competitors through the storage effect,
and stochastic rock-paper-scissor communities. Open problems and conjectures are
presented.

Keywords Random difference equations • Stochastic population dynamics •
Coexistence • Quasi-stationary distributions • Demographic noise • Environmen-
tal stochasticity • Markov chains

1 Introduction

A long standing, fundamental question in biology is “what are the minimal
conditions to ensure the long-term persistence of a population or the long-term
coexistence of interacting species?” The answers to this question are essential for
guiding conservation efforts for threatened and endangered species, and identifying
mechanisms that maintain biodiversity. Mathematical models have and continue to
play an important role in identifying these potential mechanisms and, when coupled
with empirical work, can test whether or not a given mechanism is operating in a
specific population or ecological community [1]. Since the pioneering work of [35]
and [56] on competitive and predator–prey interactions, [41, 54] on host–parasite
interactions, and [30] on disease outbreaks, nonlinear difference and differential
equations have been used to understand conditions for persistence of populations
or communities of interacting species. For these deterministic models, persistence
or species coexistence is often equated with an attractor bounded away from the
extinction states in which case persistence holds over an infinite time horizon [47].
However (with apologies to John Gay), lest biologists believe this theory untrue, the
models need to keep probability in view. That is, all natural populations exhibit
random fluctuations due to mixture of intrinsic and extrinsic factors known as
demographic and environmental stochasticity. The goal of this chapter is to present
models that account for these random fluctuations, review some mathematical
methods for analyzing these stochastic models, and illustrate how these random
fluctuations hamper or facilitate population persistence and species coexistence.

Demographic stochasticity corresponds to random fluctuations due to popu-
lations consisting of a finite number of individuals whose fates aren’t perfectly
correlated. That is, even if all individuals in a population appear to be identical,
some undetectable differences between individuals (e.g. in their physiology or
microenvironment) result in some individuals dying while others survive. To capture
these “unknowable” differences, models can assign the same probabilities of dying
to each individuals and treat survival amongst individuals as independent flips of
a coin—heads life, tails death. Similarly, surviving individuals may differ in the
number of offspring they produce despite appearing to be identical. To capture these
unknowable differences, the number of offspring produced by these individuals
are modeled as independent draws from the same probability distribution. The
resulting stochastic models accounting for these random fluctuations typically
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correspond to Markov chains on a finite or countable state space1 e.g. the numbers of
individuals, 0; 1; 2; 3; : : : , in a population. When these models represent populations
or communities whose numbers tend to stay bounded and have no immigration,
the populations in these models always go extinct in finite time [10]. Hence,
unlike deterministic models, the asymptotic behavior of these stochastic models
is trivial: eventually no one is left. This raises the following basic question about
the relationship between models accounting for demographic stochasticity and their
deterministic counterparts:

“Any population allowing individual variation in reproduction, ultimately dies out–unless
it grows beyond all limits, an impossibility in a bounded world. Deterministic population
mathematics on the contrary allows stable asymptotics. Are these artifacts or do they tell
us something interesting about quasi-stationary stages of real or stochastic populations?”—
Peter [29]

As it turns out, there is a strong correspondence between the quasi-stationary
behavior of the stochastic models and the attractors of an appropriately defined
mean-field model. Moreover, this correspondence highlights a universal scaling
relationship between extinction times and the size of the habitat where the species
live. These results and their applications are the focus of the first half of this review.

While demographic stochasticity affects individuals independently, environ-
mental stochasticity concerns correlated demographic responses (e.g. increased
survival, growth or reproduction) among individuals. These correlations often stem
from individuals experiencing similar fluctuations in environmental conditions
(e.g. temperature, precipitation, winds) which impact their survival, growth, or
reproduction. Models driven by randomly fluctuating parameters or Brownian
motions, such as random difference equations or stochastic differential equations,
can capture these sources of random fluctuations. Unlike models for demographic
stochasticity, these Markov chains always live on uncountable state spaces where
the non-negative reals represent densities of populations of sufficiently large size
that one can ignore the effects of being discrete and finite. Consequently, like their
deterministic counterparts, extinction in these random difference equations only
occurs asymptotically, and persistence is equated with tendency to stay away from
low densities [11]. Understanding what this exactly means, reviewing methods for
verifying this stochastic form of persistence, and applying these methods to gain
insights about population persistence and species coexistence are the focus of the
second half of this review.

Of course, all population systems experience a mixture of demographic and
environmental stochasticity. While the theoretical biology literature is replete with
models accounting for each of these forms of noise separately, I know of no studies
that rigorously blend the results presented in this review. Hence, I conclude by
discussing some open problems and future challenges at this mathematical interface.

1See, however, the discussion for biologically motivated uncountable state spaces.
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2 Demographic Stochasticity

To model finite populations and account for demographic stochasticity, we consider
Markov chains on a countable state space which usually is the non-negative cone of
the integer lattice. Many of these stochastic models have a deterministic counterpart,
sometimes called the “deterministic skeleton” or the “mean field model”. As I
discuss below, these deterministic models can provide some useful insights about the
transient behavior of the stochastic models and when coupled with large deviation
theory provide insights into the length of these transients.

To get a flavor of the types of models being considered, lets begin with a
stochastic counterpart to the discrete-time Lotka-Volterra equations. This example
motivates the main results and will illustrate their applicability.

Example 1 (Poisson Lotka-Volterra Processes) The continuous time Lotka-
Volterra equations form the bedrock for much of community ecology theory. While
there are various formulations of their discrete-time counterparts, a particularly
pleasing one that retains several key dynamical features of the continuous-
time models was studied by [26]. These models keep track of the densities
xt D .x1;t; : : : ; xk;t/ of k interacting species, where the subscripts denote the species
identity i and time t (e.g. year or day). As with the classical continuous time
equations, there is a matrix A D .aij/i;j where aij corresponds to the “per-capita”
effect of species j on species i and a vector r D .r1; : : : ; rk/ of the “intrinsic per-
capita growth rates” for all of the species. With this notation, the equations take on
the form:

xi;tC1 D xi;t exp

0
@ri C

X
j

aijxj;t

1
A DW Fi.xt/ with i D 1; 2; : : : ; k: (1)

The state space for these dynamics are given by the non-negative orthant

RkC D fx 2 Rk W xi � 0 for all ig

of the k-dimensional Euclidean space Rk.
To define the Poisson Lotka-Volterra process, let 1=" be the size of the habitat

in which the species live. Let N"
t D .N"

1;t; : : : ;N
"
k;t/ denote the vector of species

abundances which are integer-valued. Then the density of species i is X"i;t D "N"
i;t.

Over the next time step, each individual replaces itself with a Poisson number of
individuals with mean

exp

0
@ri C

X
j

aijX
"
j;t

1
A :
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If the individuals update independent of one another, then N"
i;tC1 is a sum of N"

i;t
independent Poisson random variables. Thus, N"

i;tC1 is also Poisson distributed with
mean

N"
i;t exp

0
@ri C

X
j

aijX
"
j;t

1
A D Fi.X

"
t /=":

Namely,

PŒX"i;tC1 D "jjX"t D x� D PŒN"
i;tC1 D jjX"t D x� D exp.�Fi.x/="/

.Fi.x/="/j

jŠ
: (2)

The state space for N"
t is the non-negative, k dimensional integer lattice

ZkC D f.z1; : : : ; zk/ W zi are non-negative integersg
while the state space for X"t is the non-negative, rescaled integer lattice

"ZkC D f."z1; : : : ; "zk/ W zi are non-negative integersg:

Now consider a solution to deterministic model xt and the stochastic process X"t
initiated at the same densities x0 D X"0 D x. To see how likely X"t deviates from
xt, we use Chebyshev’s inequality. As the mean and variance of a Poisson random
variable are equal, Chebyshev’s inequality implies

P

h
jX"i;1 � xi;1j � ı

ˇ̌̌
X"0 D x0 D x

i
 VarŒX"i;1�

ı2
D "2VarŒN"

i;1�

ı2
D "Fi.x/

ı2
(3)

where VarŒX� denotes the variance of a random variable X. In words, provided the
habitat size 1=" is sufficiently large, a substantial deviation between X"1 and x1 is
unlikely. In fact, one can show that over any finite time interval Œ1;T�, the stochastic
dynamics are likely to be close to the deterministic dynamics over the time interval
Œ1;T� provided the habitat size 1=" is sufficiently large:

lim
"!0P

�
max

1�i�k;1�t�T
jX"i;t � xi;tj � ı

ˇ̌̌
X"0 D x0 D x


D 0: (4)

Figure 1 illustrates this fact for a Poisson Lotka-Volterra process with two compet-
ing species. Equation (4) is the discrete-time analog of a result derived by [34] for
continuous-time Markov chains. [34] also provides “second-order” approximations
for finite time intervals using Gaussian processes and stochastic differential equa-
tions. While these approximations are also useful for discrete-time models, we do
not review them here.

Despite X"t stochastically tracking xt with high probability for long periods of
time, eventually their behavior diverges as Poisson Lotka-Volterra processes go
extinct in finite time or exhibit unbounded growth.
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Fig. 1 Realizations of a Poisson Lotka-Voltera process with two competing species (species 1
on the left, species 2 on the right). The deterministic dynamics are shown as a thick gray line.
Stochastic realizations are shown in red. Each row corresponds to a different habitat size 1=".
Parameter values: A is the matrix with rows .�0:2; 0:1/, .�0:15; 0:2/, and r D .3:25; 3:25/ for the
model described in Example 1

Proposition 1 Let X"t be a Poisson Lotka-Volterra process with " > 0. Then

P

"
fX"t D 0 for some tg [ f lim

t!1
X

i

X"i;t D 1g
#

D 1

Furthermore, if F is pre-compact i.e. F.RkC/ � Œ0;m�k for some m � 0, then

P
�fX"t D 0 for some tg	 D 1

The strategy used to prove the first statement of the proposition is applicable
to many models of closed populations. The key ingredients are that there is a
uniform lower bound to the probability of any individual dying, and individuals
die independently of one another [10]. Proving, however, that extinction always
occurs with probability one requires additional elements which aren’t meet by all
ecological models, but is meet for “realistic” models.

Proof For the first assertion, take any integer m > 0. Let

ˇ D min
x2Œ0;m�k

PŒX"1 D 0jX"0 D x� D min
x2Œ0;m�k

exp

 
�

kX
iD1

Fi.x/="

!
> 0:

Next we use the following standard result in Markov chain theory [17, Theorem 2.3
in Chapter 5].
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Proposition 2 Let X be a Markov chain and suppose that

P

"1[
sD1

fXtCs 2 Cg
ˇ̌̌
Xt

#
� ˇ > 0 on fXt 2 Bg:

Then

P ŒfXt enters B infinitely ofteng n fXt enters C infinitely ofteng� D 0:

Let Bm D fX"t enters Œ0;m�k infinitely ofteng and E D fX"t D 0 for some tg.
Proposition 2 with B D Œ0;m�k and C D f0g implies that

P ŒBm n E � D 0: (5)

The complement of the event [mBm equals the event A D flimt!1
P

i X"i;t D 1g.
As Bm is an increasing sequence of events,

1 D P ŒA [ f[mBmg�
D lim

m!1P ŒA [ Bm�

 lim
m!1P ŒA [ E �

where the final inequality follows from (5). This completes the proof of the first
assertion.

To prove the second assertion, assume that there exists m > 0 such that F.x/ 2
Œ0;m�k for all x 2 RkC i.e. F is pre-compact. Define

ˇ D inf
x2Rk

C

PŒX"tC1 D 0jXt D x�

D inf
x2Rk

C

exp

 
�
X

i

Fi.x/="

!

� exp.�k m="/

Applying Proposition 2 with B D RkC and C D f0g completes the proof of the
second assertion. ut

Equation (4) and Proposition 1 raise two fundamental questions about these
stochastic, finite population models: How long before extinction occurs? Prior
to extinction what can one say about the transient population dynamics? To get
some insights into both of these questions, we build on the work of [21] and
[31] on random perturbations of dynamical systems, and [3] on quasi-stationary
distributions.



356 S.J. Schreiber

2.1 Random Perturbations and Quasi-Stationary Distributions

The Poisson Lotka-Volterra process (Example 1) illustrates how Markovian models
can be viewed as random perturbations of a deterministic model. To generalize this
idea, consider a continuous, precompact2 map F W S ! S , where S is a closed
subset ofRk. F will be the deterministic skeleton of our stochastic models. A random
perturbation of F is a family of Markov chains fX"g">0 on S whose transition
kernels

p".x; � / D P
�
X"tC1 2 � j X"t D x

	
for all x 2 S and Borel sets � � S

enjoy the following hypothesis:

Hypothesis 2.1 For any ı > 0,

lim
"!0 sup

x2S
p"
�
x;S n Nı.F.x//

� D 0

where Nı.y/ WD fx 2 S W ky � xk < ıg denotes the ı-neighborhood of a point
y 2 S .

Hypothesis 2.1 implies that the Markov chains X" converge to the deterministic
limit as " # 0 i.e. the probability of X"1 being arbitrarily close to F.x/ given X"0 D x
is arbitrarily close to one for " sufficiently small. Hence, one can view F as the
“deterministic skeleton” which gets clothed by the stochastic dynamic X". The next
example illustrates how to verify the Poisson Lotka-Volterra process is a random
perturbation of the Lotka-Volterra difference equations.

Example 2 (The Poisson Lotka-Volterra Processes Revisited) Consider the Poisson
Lotka-Volterra processes from Example 1 where F.x/ D .F1.x/; : : : ;Fk.x// and
Fi.x/ D xi exp.ri CP

j aijxj/ and S D RkC. For many natural choices of ri and aij,
[26] have shown there exists C > 0 such that F.S / � Œ0;C�k i.e. F is pre-compact.
While the corresponding Lotka-Volterra process X" lives on "ZkC, the process can
be extended to all of S by allowing X"0 to be any point in S and update with the
transition probabilities of (2). With this extension, X"1 always lies in "ZkC and p" is
characterized by the following probabilities

p�.x; fyg/ D
kY

iD1
exp.�Fi.x/="/

.Fi.x/="/ji

jiŠ
for y D ".j1; : : : ; jk/ 2 "ZkC; x 2 S

and 0 otherwise. With this extension, Hypothesis 1 for the Lotka-Volterra process
follows from equation (3).

2Namely, there exists C > 0 such that F.S / lies in Œ0;C�k.
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As with the Poisson Lotka-Volterra process, stochastic models of interacting pop-
ulations without immigration always have absorbing states S0 � S corresponding
to the loss of one or more populations. Hence, we restrict our attention to models
which satisfy the following standing hypothesis:

Hypothesis 2.2 The state space S can be written S D S0 [ SC, where

• S0 is a closed subset of S ;
• S0 and SC are positively F-invariant, i.e F.S0/ � S0 and F.SC/ � SC;
• the set S0 is assumed to be absorbing for the random perturbations:

p".x;SC/ D 0; for all " > 0; x 2 S0: (6)

� absorption occurs in finite time with probability one:

P
�
X"t 2 S0 for some t � 1jX"0 D x

	 D 1

for all x 2 S and " > 0.

The final bullet point implies that extinction of one or more species is inevitable in
finite time. For example, Proposition 1 implies this hypothesis for Poisson Lotka-
Volterra processes whenever F is pre-compact.

Despite this eventual absorption, the process X" may spend exceptionally long
periods of time in the set SC of transient states provided that " > 0 is sufficiently
small. This “metastable” behavior may correspond to long-term persistence of an
endemic disease, long-term coexistence of interacting species as in the case of the
Poisson Lotka-Volterra process, or maintenance of a genetic polymorphism. One
approach to examining these metastable behaviors are quasi-stationary distributions
which are invariant distributions when the process is conditioned on non-absorption.

Definition 2.1 A probability measure �" on SC is a quasi-stationary distribution
(QSD) for p" provided there exists 
" 2 .0; 1/ such that

Z
SC

p".x; � /�".dx/ D 
"�".� / for all Borel sets � � SC:

Equivalently, dropping the " superscript and subscripts, a QSD � satisfies the
identity

�.� / D P� ŒXt 2 � j Xt 2 SC� for all t;

where P� denotes the law of the Markov chain fXtg1tD0, conditional to X0 being
distributed according to �.

In the case that the Markov chain has a finite number of states and P is the
transition matrix (i.e. Pij D p.i; fjg/), [15] showed that the QSD is given by
�.fig/ D �i where � is the normalized, dominant left eigenvector of the matrix
Q given by removing the rows and columns of P corresponding to extinction
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states in S0. In this case, 
 is the corresponding eigenvalue of this eigenvector.
For the Poisson Lotka-Volterra processes in which the unperturbed dynamic F is
pre-compact, Proposition 6.1 from [20] implies the existence of QSDs for these
processes. Examples of these QSDs for these processes are shown in Figs. 2, 3,
and 4. More generally, the existence of QSDs has been studied extensively by many
authors as reviewed by [39].

What do these QSD’s and 
 tell us about the behavior of the stochastic process?
From the perspective of metastability, QSDs often exhibit the following property:

�.� / D lim
t!C1P ŒXt 2 � j Xt 2 SC;X0 D x�

where the limit exists and is independent of the initial state x 2 SC. In words, the
QSD describes the probability distribution of Xt, conditioned on non-extinction, far
into the future. Hence, the QSD provides a statistical description of the meta-stable
behavior of the process. The eigenvalue, 
 provides information about the length of
the metastable behavior of Xt. Specifically, given that the process is following the
QSD (e.g. X0 is distributed like �), and 
 equals the probability of persisting in the
next time step. Thus, the mean time to extinction is 1

1�
 . [22] call 1
1�
 , the “intrinsic

mean time to extinction” and, convincingly, argue that it is a fundamental statistic
for comparing extinction risk across stochastic models.

2.2 Positive Attractors, Intrinsic Extinction Risk, and
Metastability

When the habitat size is sufficiently large i.e. " is small, there is a strong
relationship between the existence of attractors in SC (i.e. “positive” attractors)
for the unperturbed system F and the quasi-stationary distributions of X". This
relationship simultaneously provides information about the metastable behavior of
the stochastic model and intrinsic probability of extinction, 1 � 
". To make this
relationship mathematically rigorous, we need to strengthen Hypotheses 2.1 and 2.2.
[20] presents two ways to strengthen these hypothesis. We focus on their large
deviation approach as it is most easily verified. This approach requires identifying a
rate function � W S �S ! Œ0;1� that describes the probability of a large deviation
between F and X". That is, for a sufficiently small neighborhood U of a point y, the
rate function should have the property

PŒX"tC1 2 UjX"t D x� 
 exp.��.x; y/="/:

Hypothesis 2.3 provides the precise definition and desired properties of �.

Hypothesis 2.3 There exists a rate function � W S � S ! Œ0;C1� such that

(i) � is continuous on SC � S ,
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(ii) �.x; y/ D 0 if and only if y D F.x/,
(iii) for any ˇ > 0,

inf f�.x; y/ W x 2 S ; y 2 S ; kF.x/ � yk > ˇg > 0; (7)

(iv) for any open set U, there is the lower bound

lim inf
"!0 " log p".x;U/ � � inf

y2U
�.x; y/ (8)

that holds uniformly for x in compact subsets of SC whenever U is an open
ball in S . Additionally, for any closed set C, there is the uniform upper bound

lim sup
"!0

sup
x2S

" log p".x;C/  � inf
y2C

�.x; y/: (9)

Equations (7) and (9), in particular, imply that Hypothesis 2.1 holds. Furthermore,
as S0 is absorbing, equation (8) implies that �.x; y/ D C1 for all x 2 S0, y 2 SC.
Identifying the rate function � typically requires making use of the Gärtner-Ellis
theorem [16, Theorem 2.3.6] which provides large deviation estimates for sums of
independent random variables. Example 3 below describes how this theorem was
used for the Poisson Lotka-Volterra processes.

We strengthen Hypothesis 2.2 as follows:

Hypothesis 2.4 For any c > 0, there exists an open neighborhood V0 of S0 such
that

lim
"!0 inf

x2V0
" log p".x;S0/ � �c: (10)

Equation (10) implies that

PŒX"tC1 2 S0jXt 2 V0� � exp.�c="/

for " > 0 sufficiently small. Namely, the probability of absorption near the
boundary, at most, decays exponentially with habitat size. The following example
discusses why these stronger hypotheses hold for the Poisson Lotka-Volterra
process.

Example 3 (Return of the Poisson Lotka-Volterra Process) Using the Gärtner-Ellis
theorem [16, Theorem 2.3.6], Faure and Schreiber [20, Proposition 6.4] showed that
�.x; y/ D P

i yi log yi
Fi.x/

�yi is the rate function for any Poisson processes with mean

F W RkC ! RkC including the Poisson Lotka-Volterra Process of Example 1. To see
why Hypothesis 4 holds for the Poisson Lotka-Volterra process, assume x is such
that xi  ı for some ı > 0 and i. Then

" logPŒX"tC1 2 S0jXt D x� � " logPŒX"i;tC1 D 0jXt D x�

D " log exp.�Fi.x/="/ D �Fi.x/
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Hence, for any c > 0, choose ı > 0 sufficiently small to ensure that for all i,
Fi.x/  c whenever xi  ı. In which case, choosing V0 D fx 2 RkC W xi  ı for
some ig satisfies (10).

As many discrete distributions are used in models with demographic stochas-
ticity (e.g. negative binomial, mixtures of Bernoullis and negative binomials), an
important open problem is the following:

Problem 1 For which types of random perturbations of an ecological model F do
Hypotheses 3 and 4 hold?

To relate QSDs to the attractors of the deterministic dynamics, we recall the
definition of an attractor and weak* convergence of probability measures. A
compact set A � S is an attractor for F if there exists a neighborhood U of A
such that (i) \n�1Fn.U/ D A and (ii) for any open set V containing A, Fn.U/ � V
for some n � 1. A weak* limit point of a family of probability measures f�"g">0 on
S is a probability measure �0 such that there exists a sequence "n # 0 satisfying

lim
n!1

Z
h.x/�"n.dx/ D

Z
h.x/�0.dx/

for all continuous functions h W S ! R. Namely, the expectation of any continuous
function with respect to �"n converges to its expectation with respect to �0 as
n ! 1. The following theorem follows from [20, Lemma 3.9 and Theorem 3.12].

Theorem 2.5 Assume Hypotheses 2.3 and 2.4 hold. Assume for each " > 0, there
exists a QSD �" for X". If there exists a positive attractor A � SC, then

• there exists a neighborhood V0 of S0 such that all weak* limit points �0 of
f�"g">0 are F-invariant and �0.V0/ D 0, and

• there exists c > 0 such that


" � 1� e�c=" for all " > 0: (11)

Alternatively, assume that S0 is a global attractor for the dynamics of F. Then any
weak*-limit point of f�"g">0 is supported by S0.

Theorem 2.5 implies the existence of a positive attractor of the deterministic
dynamics ensures the stochastic process exhibits metastable behavior for large
habitat size, and the probability of extinction 1 � 
" decreases exponentially
with habitat size. Equivalently, the mean time to extinction 1=.1 � 
"/ increases
exponential with habitat size. These conclusions are illustrated in Fig. 2 with a one-
dimensional Poisson Lotka-Volterra process (the Poisson Ricker process described
below in Example 4).

Even if F has no positive attractors, S0 may not be a global attractor as there
might be an unstable invariant set in SC. For example, single species models with
positive feedbacks can have an uncountable number of unstable periodic orbits
despite almost every initial condition going to extinction [46]. Hence, the necessary
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Fig. 2 Extinction probabilities and QSDs for the Poisson Ricker process described in Example 4.
In the left panel, the “intrinsic” extinction probability 1� 
" plotted as function of the habitat size
1=" and for different r values. In the right panels, the QSDs plotted for a range of habitat sizes and
two r values

and sufficient conditions for metastability in Theorem 2.5 are not equivalent.
However, if F has no positive attractors, one can show that all points in SC can
with arbitrarily small perturbations be “forced” to S0 [47, 48]. Hence, this raises
the following open problem.

Problem 2 If F has no positive attractors, are all the weak*-limit points of the
QSDs supported by the extinction set S0?

While the methodology used to prove Theorem 2.5 provides an explicit expres-
sion for c > 0, this expression is fairly abstract and only provides a fairly
crude lower bound. This suggests the following questions which, if solved, may
provide insights into how extinction probabilities depend on the nature of the
nonlinear feedbacks within and between populations and the form of demographic
stochasticity.

Problem 3 If F has positive attractors, when does the limit

lim
"!0�1

"
log.1 � 
"/ DW c

exist? If the limit exists, under what circumstances can we derive explicit expres-
sions for c? or good explicit lower bounds for c?

Theorem 2.5 only ensures that the metastable dynamics concentrates on an
invariant set for the deterministic dynamics. However, it is natural to conjecture
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Fig. 3 QSDs for the stochastic Ricker model (see Example 4) for r values where F.x/ D
x exp.r.1� x// has a stable periodic orbit. Habitat size 1=" is 2; 500

that the QSDs �" should concentrate on the positive attractors of F. These positive
attractors, however, may coexist with complex unstable behavior. For example, the
Ricker equation F.x/ D x exp.r.1 � x// can have a stable periodic orbit coexisting
with an infinite number of unstable periodic orbits (e.g. the case of a stable period 3
orbit as illustrated in Fig. 3).

To identify when this intuition is correct, a few definitions from dynamical
systems are required. For x 2 S , let !.x/ D fy W there exists nk ! 1 such that
limk!1 Fnk.x/ D yg be the !-limit set for x and ˛.x/ D fy W there exist nk ! 1
and yk 2 S such that Fnk.yk/ D x and limk!1 yk D yg be the ˛-limit set for x. Our
assumption that F is precompact implies that there exists a global attractor given by
the compact, F-invariant set � D \n�0Fn.S /. For all x 2 �, !.x/ and ˛.x/ are
compact, non-empty, F-invariant sets. A Morse decomposition of the dynamics of
F is a collection of F-invariant, compact sets K1; : : : ;K` such that

• Ki is isolated i.e. there exists a neighborhood of Ki such that it is the maximal
F-invariant set in the neighborhood, and

• for every x 2 � n [`
iD1Ki, there exist j < i such that ˛.x/ � Kj and !.x/ � Ki.

Replacing the invariant sets Ki by points, one can think of F being gradient-like as
all orbits move from lower indexed invariant sets to higher indexed invariant sets.
Finally, recall that a compact invariant set K is transitive if there exists an x 2 K
such that fx;F.x/;F2.x/; : : : g is dense in K. Faure and Schreiber [20, Theorem 2.7,
Remark 2.8, and Proposition 5.1] proved the following result about QSDs not
concentrating on the non-attractors of F. The assumptions of this theorem can be
verified for many ecological models.
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Theorem 2.6 Assume Hypotheses 2.3 and 2.4 hold. Let K1; : : : ;K` be a Morse
decomposition for F such Kj; : : : ;K` are attractors. If

• Ki � SC or Ki � S0 for each i,
• Ki � SC for some i � j, and
• Ki with i  j � 1 is transitive whenever Ki � SC,

then any weak*-limit point of f�"g">0 is F-invariant and is supported by the union
of attractors in SC.

For random perturbations of deterministic models without absorbing states (e.g.
models accounting for immigration or mutations between genotypes), the work of
[31] and [21] can be used to show that the stationary distributions often concentrate
on a unique attractor. However, due to the singularity of the rate function � along
the extinction set S0, the approach used by these authors doesn’t readily extend to
the stochastic models considered here. This raises the following open problem:

Problem 4 If F has multiple, positive attractors, under what conditions do the
QSDs �" concentrate on a unique one of these positive attractors as " # 0?

Lets apply some of these results to the Poisson Lotka-Volterra processes from
Example 1.

Example 4 (The Ricker Model) The simplest of Poisson Lotka-Volterra processes
is the stochastic Ricker model for a single species where F.x/ D x exp.r.1 � x//
with r > 0. [33] proved that for an open and dense set of r > 0 values, the
Ricker map has a Morse decomposition consisting of a finite number of unstable,
intransitive sets (more specifically, hyperbolic sets) and a unique stable period orbit
fp;F.p/; : : : ;FT.p/g. As the stable periodic orbit is the only attractor, Theorem 2.6
implies the following result.

Corollary 1 Consider the Ricker process with r > 0 such that F.x/ D x exp
.r.1�x// has the aforementioned Morse decomposition. Then any weak*-limit point
of f�"g">0 is supported by the unique stable periodic orbit fp;F.p/; : : : ;FT.p/g.

Figure 3 illustrates this corollary: QSDs concentrating on the stable periodic orbit
of period 1 for r D 1:9, period 2 for r D 2:1, period 4 for r D 2:6, and period 3
for r D 3:15. Remarkably, in the case of the stable orbit of period 3, there exists an
infinite number of unstable periodic orbits which the QSDs do not concentrate on.
We note that [27, 32, 42] proved similar results to Corollary 1 using inherently one
dimensional methods.

Example 5 (Revenge of the Poisson Lotka-Volterra Processes) For higher dimen-
sional Lotka-Volterra processes, we can use properties of Lotka-Volterra difference
equations in conjunctions with Theorems 2.5 and 2.6 to derive two algebraically
verifiable results for the stochastic models. First, if the deterministic map F D
.F1; : : : ;Fk/ with Fi.x/ D xi exp.

P
j Aijxj C ri/ is pre-compact and there is no

internal fixed point (i.e. there is no strictly positive solution to Ax D �r), then
[26] proved that the boundary of the positive orthant is a global attractor. Hence,
Theorem 2.5 implies the following corollary.
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Corollary 2 Let X" be a Poisson Lotka-Volterra process such that F is pre-compact
and admits no positive fixed point. Then any weak*-limit point of f�"g">0 is
supported by S0, the boundary of the positive orthant of RkC.

On the other hand, [26] derived a simple algebraic condition which ensures that
the deterministic dynamics of F has a positive attractor. Namely, there exist pi > 0

such that

X
i

pi

0
@X

j

Aijx
�
j C ri

1
A > 0 (12)

for any fixed point x� on the boundary of the positive orthant. Hence, Theorem 2.5
implies the following corollary.

Corollary 3 Assume F D .F1; : : : ;Fk/ with Fi.x/ D xi exp.
P

j Aijxj C ri/ is pre-
compact and satisfies (12) for some choice of pi > 0. If X" is the corresponding
Poisson Lotka-Volterra process, then any weak*-limit point of f�"g">0 is supported
by A where A � SC is the global, positive attractor for F. Moreover, there exists
c > 0 such that 
" � 1 � exp.c="/ for all " > 0 sufficiently small.

Figure 4 illustrates the convergence of the QSDs to the attractor of F for a Lotka-
Volterra process of two competing species. Even for populations of only hundreds
of individuals (" D 0:01), this figure illustrates that species can coexist for tens of
thousands of generations despite oscillating between low and high densities, a key
signature of the underlying deterministic dynamics. However, only at much larger
habitat sizes (e.g. 1=" D 1; 000; 000) do the metastable behaviors clearly articulate
the underlying deterministic complexities.

3 Environmental Stochasticity

To understand how environmental fluctuations, in and of themselves, influence
population dynamics, we shift our attention to models for which the habitat size
is sufficiently large that one can approximate the population state by a continuous
variable. Specifically, let Xt 2 RkC denote the state of the population or community
at time t. The components of Xt D .X1;t;X2;t; : : : ;Xk;t/ corresponds to densities
or frequencies of subpopulations. To account for environmental fluctuations, let
E � Rm (for some m) be a compact set representing all possible environmental
states e.g. all possible precipitation and temperature values. I assume that EtC1 2 E
represents the environmental state of the system over the time interval .t; t C 1�

that determines how the community state changes over that time interval. If the
population or community state XtC1 depends continuously on EtC1 and Xt, then

XtC1 D F.Xt;EtC1/ (13)
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ε = 0.01 ε = 1e−04

ε = 1e−06 deterministic F

Fig. 4 Numerically estimated QSDs for a Poisson Lotka-Volterra process with two competing
species, and the global attractor of the deterministic map Fi.x/ D xi exp.

P
j Aijxjx C ri/. The

stochastic and deterministic processes were simulated for 50; 000 time steps and the last 17,500
time steps are plotted in the x1–x2 plane. Parameters: A is the matrix with rows .�0:2;�0:01/,
.�0:01;�0:2/ and r D .2:71; 2:71/

for a continuous map F W RkC�E ! RkC. If the Et are random variables, then (13) is
known as a continuous, random dynamical system. [2] provides a thorough overview
of the general theory of these random dynamical systems.

To state the main hypotheses about (13), recall that a sequence of random
variables, E1;E2; : : : ; is stationary if for every pair of non-negative integers t and s,
E1; : : : ;Et and E1Cs; : : : ;EtCs have the same distribution. The sequence is ergodic
if with probability one all realizations of the sequence have the same asymptotic
statistical properties e.g. time averages (see, e.g., [17] for a more precise definition).

Hypothesis 3.7 E1;E2; : : : are an ergodic and stationary sequence of random
variables taking value in E . Let � be the stationary distribution of this sequence
i.e. the probability measure � on E such that PŒEt 2 B� D �.B/ for all Borel
sets B � E .

This hypothesis is satisfied for a diversity of models of environmental dynamics.
For example, Et could be given by a finite state Markov chain on a finite number
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of environmental states, say e1; e2; : : : ; em 2 E (e.g. wet and cool, wet and hot,
dry and cool, dry and hot) with transition probabilities pij D PŒEtC1 D ejjEt D
ei�. If the transition matrix P D .pij/i;j is aperiodic and irreducible, then Et is
asymptotically ergodic and stationary. Alternatively, Et could be given by a sequence
of independent and identically distributed random variables or, more generally, an
autoregressive process.

Our second hypothesis simply assumes that population densities remain bounded
and allows for the possibility of extinction.

Hypothesis 3.8 There are compact sets S � RkC and S0 � fx 2 S W Qi xi D 0g
such that F W S � E ! S , F W S0 � E ! S0, and F W SC � E ! SC where
SC D S n S0.

For example, S may equal Œ0;M�k where M is the maximal density of a species
or S may be the probability simplex � D fx 2 RkC W Pi xi D 1g where x 2 S
corresponds to the vector of genotypic frequencies. As in the case of demographic
stochasticity, S0 corresponds to the set where one or more populations have gone
extinct. Invariance of S0 implies that once the population has gone extinct it
remains extinct i.e. the “no cats, no kittens” principle. Invariance of SC implies that
populations can not go extinct in one time step but only asymptotically. This latter
assumption is met by most (but not all) models in the population biology literature.

For these stochastic difference equations, there are several concepts of “per-
sistence” which are reviewed in [49]. Here, we focus on the “typical trajectory”
perspective. Namely, “how frequently does the typical population trajectory visit
a particular configuration of the population state space far into the future?” The
answer to this question is characterized by empirical measures for Xt:

˘ x
t .A/ D #f0  s  t W Xs 2 Ag

t C 1

where X0 D x and A is a Borel subset of S . ˘t.A/ equals the fraction of time that
Xs spends in the set A over the time interval Œ0; t�. Provided the limit exists, the long-
term frequency that Xt enters A is given by limt!1˘ x

t .A/. It is important to note
that these empirical measures are random measures as they depend on the particular
realization of the stochastic process. Figure 5 provides graphical illustrations of
empirical measures for a single species model (top row) and a two species model
(bottom row). For both models, the empirical measure at time t can be approximated
by a histogram describing the frequency Xt spends in different parts (e.g. intervals
or hexagons) of the population state space S .

Stochastic persistence corresponds to the typical trajectory spending arbitrarily
little time, arbitrarily near the extinction set S0. More precisely, for all " > 0 there
exists a ı > 0 such that

lim sup
t!1

˘ x
t .fx 2 S W dist.x;S0/  ıg/  " with probability one for all x 2 SC
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Fig. 5 Visualizing the empirical measures ˘ x
t for two models with environmental stochasticity.

In top row, the time series of a realization of a stochastic, single species model XtC1 D �tC1Xt

1C0:01Xt
where �t is a truncated log normal with log-mean log 2 and log-variance 0:01. Histogram to the
right of the time series corresponds to ˘ x

500.Œa; b�/ for intervals Œa; b� of width 10 from 0 to 140.
In the bottom row, the time series of a realization of a stochastic predator-prey model X1;tC1 D
X1;t exp.�tC1�0:001X1;t�0:001X2;t/, X2;tC1 D 0:5X1;t.1�exp.�0:001X2;t// here �t is a truncated
log normal with log-mean log 2 and log-variance 0:04. To the right of the time series, the time spent
in each colored hexagon in R2

C
is shown. ˘ x

500.H/ for one of the hexagons H � R2
C

equals the
count divided by 500. The truncated normals are used for these models to ensure that dynamics
remain in a compact set S

where dist.x; S0/ D miny2S0 kx � yk. In contrast to the deterministic notions of
uniform persistence or permanence, stochastic persistence allows for trajectories to
get arbitrarily close to extinction and only requires the frequency of these events
are very small. One could insist that the trajectories never get close to extinction.
However, such a definition is too strict for any model where there is a positive
probability of years where the population is tending to decline e.g. the models
discussed in Sect. 7. Regarding this point, [11] wrote

“This criterion. . . places restrictions on the expected frequency of fluctuations to low
population levels. Given that fluctuations in the environment will continually perturb
population densities, it is to be expected that any nominated population density, no matter
how small, will eventually be seen. Indeed this is the usual case in stochastic population
models and is not an unreasonable postulate about the real world. Thus a reasonable
persistence criterion cannot hope to do better than place restrictions on the frequencies
with which such events occur.”

Conditions for verifying stochastic persistence appear in papers by [5, 44, 49, 50].
As the results by [44] are the most general, we focus on them. We begin with single
species models and then expand to multi-species models.
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3.1 Single Species Models

Consider a single species for which an individual can be in one of k states.
For example, these states may correspond to age where k is the maximal age,
living in one of k spatial locations or “patches”, discrete behavioral states that
an individual can move between, different genotypes in an asexual population
coupled by mutation, or finite number of developmental stages or size classes. Xi;t

corresponds to population density of individuals in state i and Xt D .X1;t; : : : ;Xk;t/

is the population state. The population state is updated by multiplication by a k � k
matrix A.Xt;EtC1/ dependent on the population and environmental state:

XtC1 D A.Xt;EtC1/Xt DW F.Xt;EtC1/: (14)

Assume A.X;E/ satisfies the following hypothesis.

Hypothesis 3.9 A is a continuous mapping from S � E to non-negative k � k
matrices. Furthermore, there exists a non-negative, primitive matrix B such that
A.x;E/ has the same sign structure as B for all x;E i.e. the i–j-th entry of A.x;E/ is
positive if and only if the i–j-th entry of B is positive.

The primitivity assumption implies that there is a time, T, such that after T
time steps, individuals in every state contribute to individuals in all other states.
Specifically, A.XT�1;ET/A.XT�2;ET�1/ : : :A.X0;E1/ has only positive entries for
any X0; : : : ;XT�1 2 S and E1; : : : ;ET 2 E . This assumption is met for most
models.

To determine whether or not the population has a tendency to increase or decrease
when rare, we can approximate the dynamics of (14) when X0 
 0 by the linearized
system

ZtC1 D BtC1Zt where Z0 D X0 and BtC1 D A.0;EtC1/: (15)

Iterating this matrix equation gives

Zt D BtBt�1Bt�2 : : :B2B1Z0:

Proposition 3.2 from [45] and Birkhoff’s ergodic theorem implies there is a quantity
r, the dominant Lyapunov exponent, such that

lim
t!1

1

t
log kZtk D r with probability one

whenever Z0 2 RkC n f0g. Following [7–9], we call r the low-density per-capita
growth of the population. When r > 0, Zt with probability one grows exponentially
and we would expect the population state Xt to increase when rare. Conversely when
r < 0, Zt with probability one converges to 0. Consistent with these predictions
from the linear approximation, Roth and Schreiber [44, Theorems 3.1,5.1] proved
the following result.
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Theorem 3.10 Assume Hypotheses 3.7 through 3.9 hold with S0 D f0g. If r > 0,
then (14) is stochastically persistent. If r < 0 and A.0;E/ � A.X;E/ for all X;E,
then

lim
t!1Xt D 0 with probability one.

The assumption in the partial converse is a weak form of negative-density
dependence as it requires that the best conditions (in terms of magnitude of the
entries of A) occurs at low densities. There are cases where this might not be true e.g.
models accounting for positive density-dependence, size structured models where
growth to the next stage is maximal at low densities.

Example 6 (The Case of the Bay Checkerspot Butterflies) The simplest case for
which Theorem 3.10 applies are unstructured models where k D 1. In this case,
Bt D A.0;Et/ are scalars and

r D EŒlog Bt�:

The exponential er corresponds to the geometric mean of the Bt. By Jensen’s
inequality, the arithmetic mean EŒBt� is greater than or equal to this geometric mean
er, with equality only if Bt is constant with probability one. Hence, environmental
fluctuations in the low-density fitnesses Bt reduce r and have a detrimental effect on
population persistence.

To illustrate this fundamental demographic principle, we visit a study by [38]
on the dynamics of Bay checkerspot butterflies, a critically endangered species. In
the 1990s, two populations of this species went extinct in Northern California. The
population densities for one of these populations is shown in the left hand side of
Fig. 6. Both extinctions were observed to coincide with a change in precipitation
variability in the 1970s (right hand side of Fig. 6): the standard deviation in
precipitation is approximately 50% higher after 1971 than before 1971.
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Fig. 6 Checkerspot population dynamics (left) and precipitation (right) from Example 6. Model
fit for population dynamics as red diamonds
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Fig. 7 Simulated checkerspot population dynamics with pre-1971 precipitation data (left) and
post-1971 precipitation data (right) from Example 6

To evaluate whether this shift in precipitation variability may have caused the
extinction of the checkerspots, [38] developed a stochastic difference equation of
the following type

ntC1 D nt exp.a � bnt C cE�2tC1/

where Et is precipitation in year t. Using linear regression on a log-scale yields
a model whose fit for one-year predictions are shown as red diamonds in Fig. 6.
To compare the pre-1971 and post-1971 population dynamics of the populations,
[38] ran their stochastic difference equations with Et given by independent draws
from the corresponding years of precipitation data. The resulting models satisfy
all of the assumptions of Theorem 3.10. The model with random draws from the
pre-1971 precipitation data yields r D EŒa C cE�21 � D 0:04. Hence, Theorem 3.10
implies stochastic persistence with this form of climatic variability (left hand side of
Fig. 7). In contrast, the model with random draws from the post-1971 precipitation
data yields r D �0:049. Hence, Theorem 3.10 implies the population is extinction
bound with this form of climatic variability (right hand side of Fig. 7).

Example 7 (Spatially Structured Populations) To illustrate the application of The-
orem 3.10 to structured populations, consider a population in which individuals can
live in one of k patches (e.g. butterflies dispersing between heath meadows, pike
swimming between the northern and southern basin of a lake, acorn woodpeckers
flying between canyons). Xi;t is the population density in patch i. Let EtC1 D
.E1;tC1; : : : ;Ek;tC1/ be the environmental state over .t; t C 1� where Ei;t be the low-
density fitness of individuals in patch i. To account for within-patch competition, let
fi.Xi;Ei/ D Ei=.1CciXi/ be the fitness of an individual in patch i where ci measures
the strength of competition within patch i. This fitness function corresponds to the
Beverton-Holt model in population biology.

To couple the dynamics of the patches, let d be the fraction of dispersing
individuals that go with equal likelihood to any other patch. In the words of Ulysses
Everett McGill in O Brother, Where Art Thou?

“Well ain’t [these patches] a geographical oddity! Two weeks from everywhere!”
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Despite this odd geographic regularity, these all-to-all coupling models have proven
valuable to understanding spatial population dynamics. Under these assumptions,
we get a spatially structured model of the form

Xi;tC1 D .1 � d/fi.Xi;t;Ei;tC1/Xi;t C d

k � 1

X
j¤i

fj.Xj;t;Ej;tC1/Xj;t: (16)

For this model, A.X;E/ is the matrix whose i–j-th entry equals d
k�1 fj.Xj;t;Ej;tC1/ for

j ¤ i and .1 � d/fi.Xi;t;Ei;tC1/ for j D i.
The low density per-capita growth rate r is the dominant Lyapunov exponent of

the random product of the matrices Bt D A.0;Et/. Theorem 3.10 implies this model
exhibits stochastic persistence if r > 0 and asymptotic extinction with probability
one if r < 0. In fact, as this spatial model has some special properties (monotonicity
and sublinearity), work of Benaïm and Schreiber [5, Theorem 1] implies if r > 0,
then there is a probability measure m on SC such that

lim
T!1

1

T

TX
tD1

h.Xt/ D
Z

h.x/m.dx/ with probability one

for any x 2 SC and any continuous function h W S ! R. Namely, for all
positive initial conditions, the long-term behavior is statistically characterized by the
probability measure m that places no weight on the extinction set. When this occurs,
running the model once for sufficiently long describes the long-term statistical
behavior for all runs with probability one. The probability measure m corresponds
to the marginal of an invariant measure for the stochastic model.

But when is r > 0? Finding explicit, tractable formulas for r, in general, appears
impossible. However, for sedentary populations (d 
 0) and perfectly mixing
populations (d D 1� 1=k), one has explicit expressions for r. In the limit of d D 0,

r D max
i

EŒlog Ei;t�

as fi.0;Ei/ D Ei. As r varies continuously with d (cf. Benaïm and Schreiber
[5, Proposition 3]), it follows that persistence for small d (i.e. mostly sedentary
populations) only occurs if EŒlog Ei;t� > 0. Equivalently, the geometric mean
exp.EŒlog Ei;t�/ of the low-density fitnesses Ei;t is greater than one in at least one
patch.

When d D 1 � 1=k, the fraction of individuals going from any one patch to any
other patch is 1=k. In this case, the model reduces to a scalar model for which

r D E

"
log

 
1

k

kX
iD1

Ei;t

!#
:
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Namely, er is equal to the geometric mean of the spatial means [40]. Applying
Jensen’s inequality to the outer and inner expressions of r, one gets

log

 
1

k

kX
iD1

EŒEi;t�

!
> r >

1

k

kX
iD1

EŒlog Ei;t�:

Hence, persistence requires that the expected fitness in one patch is greater than
one (i.e. EŒEi;t� > 1 for some i in the left hand side), but can occur even if all the
patches are unable to sustain the population (i.e. EŒlog Ei;t� < 0 for all i on the
right hand side). Hence, local populations which are tending toward extinction (i.e.
EŒlog Ei;t� < 0 in all patches) can persist if they are coupled by dispersal. Even
more surprising, [51] shows that stochastic persistence is possible in temporally
autocorrelated environments even if EŒEi;t� < 1 for all patches.

To better understand how r depends on d, I make raise the following problem
which has been proven have an affirmative answer for two-patch stochastic differ-
ential equation models by [18].

Problem 5 If Ei;t are independent and identically distributed in time and space,
then is r an increasing function of d on the interval .0; 1 � 1=k/? In particular, if
EŒlog Ei;t� < 0 < EŒlog 1

k

P
i Ei;t�, then does there exists a d� 2 .0; 1�1=k/ such that

the population stochastically persists for d 2 .d�; 1 � 1=k� and goes asymptotically
extinct with probability one for d 2 .0; d�/?

3.2 Multi-Species Communities

No species is an island as species regularly interact with other species. To account
for these interactions, lets extend (14) to account for n species. Within species i,
there are ki states for individuals and Xi;t D .Xi1;t; : : : ;Xiki;t/ is the vector of the
densities of individuals in these different states. Then Xt D .X1;t; : : : ;Xn;t/ is the
densities of all species in all of their states and corresponds to the community state
at time t. Multiplication by a ki �ki matrix Ai.Xt;EtC1/ updates the state of species i:

Xi;tC1 D Ai.Xt;EtC1/Xi;t DW Fi.Xt;EtC1/ with i D 1; 2; : : : ; n: (17)

Assume that each of the Ai satisfy Hypothesis 3.9.
To determine whether each species can increase when rare, consider the scenario

where a subset of species are absent from the community (i.e. rare) and the
remaining species coexist at an ergodic, stationary distribution � for (17). Then,
as in the single species case, we ask: do the rare species have a tendency to increase
or decrease in this community context? Before pursuing this agenda, recall that
stationarity means that� is a probability measure onS �E such that (i) the marginal
of � on E is � i.e. �.B/ D �.S � B/ for all B � E and (ii) if X0;E0 are drawn
randomly from this distribution, then Et;Xt follows this distribution for all time i.e.
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PŒ.Xt;Et/ 2 B� D �.B/ for all t and Borel sets B � S �E . Furthermore, ergodicity
means that � is indecomposable i.e. it can not be written as a convex combination
of two other stationary distributions. Due to compactness of E � S , stationary
distributions always exist see, e.g., Arnold [2, Theorem 1.5.8].

By ergodicity, there exists a set of species I � f1; 2; : : : ; ng such that � is only
supported by these species i.e. �.fx 2 S W kxik > 0 if and only if i 2 Ig � E / D 1.
Suppose i … I is one of the species not supported by � and the sub-community
I follows the stationary dynamics i.e. X0;E0 is randomly chosen with respect to
�. To determine whether or not species i has a tendency to increase or decrease
when introduced at small densities xi D .xi1; : : : ; xiki/ 
 0, we can approximate the
dynamics of species i with the linearized system

ZtC1 D BtC1Zt where Z0 D xi and BtC1 D Ai.Xt;EtC1/ (18)

where Xt;Et is following the stationary distribution given by �. Iterating this matrix
equation gives

Zt D BtBt�1Bt�2 : : :B2B1Z0

As before, Proposition 3.2 from [45] and Birkhoff’s ergodic theorem implies there
is a quantity ri.�/ such that

lim
t!1

1

t
log kZtk D ri.�/ with probability one.

Lets call ri.�/ the per-capita growth rate of species i when the community is in the
stationary state given by �. For species i 2 I in the sub-community I,ri.�/ can be
defined in the same manner, but it will always equal zero [44, Proposition 8.19].
Intuitively for species not going extinct or growing without bound, the average per-
capita growth rate is zero. In the words of [24],

“a finite world can support only a finite population; therefore, population growth must
eventually equal zero.”

Using these per-capita growth rates, [44] proved the following theorem.

Theorem 3.11 Let S0 D fx 2 S W Q kxik D 0g. If there exist p1; : : : ; pn > 0 such
that

X
i

piri.�/ > 0 (19)

for all ergodic stationary distributions � supported by S0, then (17) is stochasti-
cally persistent.

The stochastic persistence condition is the stochastic analog of a condition
introduced by [25] for ordinary differential equation models. The sum in (19) is
effectively only over the missing species as ri.�/ D 0 for all the species supported
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by�. As the reverse of this condition implies that the extinction set S0 is an attractor
for deterministic models, it is natural to raise the following question:

Problem 6 Let S0 D fx 2 S W Q kxik D 0g. If there exist p1; : : : ; pn > 0 such
that X

i

piri.�/ < 0

for all ergodic stationary distributions � supported by S0, then does it follow that
for all " > 0 there exists ı > 0 such that

PŒ lim
t!1 dist.Xt;S0/ D 0jX0 D x� � 1 � "

whenever dist.x;S0/  ı?

For stochastic differential equations on the simplex, Benaïm et al. [6, Theorems
4.2,5.1] proved affirmative answers to this problem for systems with small or large
levels of noise. In their case, S0 was shown to be a global attractor with probability
one. This stronger conclusion will not hold in general.

We illustrate Theorem 3.11 with applications to competing species and stochastic
Lotka-Volterra differences equations. In both examples, the interacting species are
unstructured i.e. ki D 1.

Example 8 (Competing Species and the Storage Effect) One of the fundamental
principle in ecology is the competitive exclusion principle which asserts that two
species competing for a single limiting resource (e.g. space, nutrients) can not
coexist at equilibrium. However, many species which appear to be competing for a
single resource do coexist. One resolution to this paradox for competing planktonic
species was suggested by [28] who wrote

“The diversity of the plankton [is] explicable primarily by a permanent failure to achieve
equilibrium as the relevant external factors changes.”

Intuitively, if environmental conditions vary such that each species has a period
in which it does better than its competitors, then coexistence should be possible.
Understanding exactly when this occurs is the focus of a series of papers by Peter
Chesson and his collaborators [7, 11–14]. We illustrate one of the main conclusions
from this work using a model from [12].

Consider two competing species with densities Xt D .X1t ;X
2
t / in year t. Let Ei;t be

the low-density per-capita reproductive output of species i, si 2 .0; 1/ the probability
of adults surviving to the next year, and f W Œ0;1/ ! .0;1/ a continuously
differentiable, decreasing function accounting for negative effects of competition
on reproduction. If Ct D E1;tX1;t C E2;tX2;t represents the “intensity of competition
among the offspring”, then we have the following model of competitive interactions

Xi;tC1 D Xi;t .Ei;tC1f .Ct/C si/„ ƒ‚ …
Ai.Xt;EtC1/

where Ct D E1;tX1;t C E2;tX2;t: (20)
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To ensure that stochastic dynamics eventually enter a compact set S , assume that
limx!1 f .x/ D 0 and there exists M > 0 such that Ei;t 2 Œ0;M� for all i and t.
The first assumption is satisfied for many models in population biology e.g. f .x/ D
exp.�cx/ or 1

1Ccxb with c > 0; b > 0.
To apply Theorem 3.11, we need p1; p2 > 0 such that p1r1.�/C p1r2.�/ > 0 for

all ergodic stationary distributions � supported by S0 D fx 2 S W x1x2 D 0g. There
are three types of � to consider: � supports no species (i.e. I D ;), � only supports
species 1 (i.e. I D f1g), or � only supports species 2 (i.e. I D f2g). For � supported
on f.0; 0/g � E i.e. no species are supported, the persistence condition demands

X
i

piri.�/ D
X

i

piEŒlog.Ei;tf .0/C si/� > 0: (21)

For � supported by f.x1; 0/ W x1 > 0g � E , r1.�/ D 0 and the persistence criterion
requires

X
i

piri.�/ D p2r2.�/ D p2

Z
log.E2f .E1X1/C s2/�.dXdE/ > 0: (22)

As f is a decreasing function, this condition being satisfied implies

Z
log.E2f .0/C s2/�.dXdE/ D EŒlog.E2;tf .0/C s2/� > 0:

Similarly, for � supported by f.0; x2/ W x2 > 0g � E , we need

X
i

piri.�/ D p1r1.�/ D p1

Z
log.E1f .E2X2/C s1/�.dXdE/ > 0: (23)

which implies

Z
log.E1f .0/C s1/�.dXdE/ D EŒlog.E1;tf .0/C s1/� > 0:

As inequalities (22) and (23) imply inequality (21) for any p1; p2 > 0, inequali-
ties (22) and (23) imply stochastic persistence. These inequalities correspond to the
classical mutual invasibility criterion [55]: if each of the species can increase when
rare, the competing species coexist.

To verify whether or not these conditions are satisfied is, in general, a challenging
issue. However, [12] developed a formula for the ri.�/ when the competition is
symmetric. Namely, s1 D s2 DW s, Et are independent and identically distributed,
and E1;t;E2;t are exchangeable i.e. PŒ.E1;t;E2;t/ 2 B� D PŒ.E2;t;E1;t/ 2 B� for any
Borel B � E � E . Before describing Chesson’s formula, lets examine the dynamics
of the deterministic case. Exchangeability and determinism imply there exists a
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constant E > 0 such that E1;t D E2;t D E for all t. Hence, the deterministic model
is given by

xi;tC1 D xi;t .Ef .Ex1;t C Ex2;t/C s/ with i D 1; 2:

As x1;tC1=x2;tC1 D x1;t=x2;t for all t, all radial lines in the positive orthant are
invariant. Provided Ef .0/ C s > 1 (i.e. each species persists in the absence of
competition), there exists a line of equilibria connecting the two axes. Regarding
these neutral dynamics, [12] wrote

“Classically, when faced with a deterministic model of this sort ecologists have concluded
that only one species can persist when the likely effects a stochastic environment are
taken into account. The reason for this conclusion is the argument that environmental
perturbations will cause a random walk to take place in which eventually all but one species
becomes extinct.”

Dispelling this faulty expectation, [12] derived a formula for the ri.�/. To
describe this formula, assume inequality (21) holds and � is an ergodic, stationary
distribution supporting species 1. As the Et are independent in time,� can be written
as a product measure m � � on S � E where � is given by Hypothesis 3.7. Define

h.E1;E2/ D
Z

log .E2f .x1E1/C s/ m.dx/:

[12] showed that

r2.�/ D �1
2
E

"Z E2;t

E1;t

Z E2;t

E1;t

@2h

@E1@E2
.E1;E2/dE1dE2

#
:

As f is a decreasing function,

@2h

@E1@E2
.E1;E2/ D f 0.x1E1/x1s

.E2f .x1E1/C s/2
< 0

whenever s > 0. Hence, r2.�/ > 0 provided that PŒE1;t > E2;t� > 0 (i.e. there is
some variation) and s > 0. As this holds for any ergodic � supporting species 1
and a similar argument yields r1.�/ > 0 for any ergodic � supporting species 2, it
follows that this symmetric version of the model is stochastically persistent (Fig. 8).

The analysis of this model highlights three key ingredients required for environ-
mental fluctuations to mediate coexistence. First, there must periods of time such
that each species has a higher birth rate i.e. E1;t and E2;t vary and are not perfectly
correlated. Second, year to year survivorship needs to be sufficiently positive (i.e.
s > 0 in the model) to ensure species can “store” the gains from one favorable period
to the next favorable period. Finally, the increase in fitness due to good conditions
for one species is greater in years when those conditions are worse for its competitor
i.e. @2h

@E1@E2
.E1;E2/ < 0. These are the key ingredients of the “storage effect” as

introduced by [14].
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Fig. 8 Stochastic persistence of competing species from Example 8. Two simulations of
model (20) with f .x/ D exp.�0:001x/, Ei;t truncated log normals with log-mean 1 and log-
variance 0:25 (upper row) and 25 (lower row). Models were run for 1; 000; 000 time steps. Time
series on the left show the first 250 time steps. The two dimensional histograms on the right
correspond to the last 999; 000 time steps

Example 9 (Stochastic Lotka-Volterra Difference Equations) Previously, we stud-
ied the Poisson Lotka-Volterra processes which injected demographic stochasticity
into the discrete-time Lotka-Volterra equations (1). Now, we examine the effects
of injecting environmental stochasticity into these deterministic equations of n
interacting species:

Xi;tC1 D Xi;t exp

0
@ nX

jD1
AijXj;t C bi C Ei;t

1
A (24)

where the matrix A D .Aij/i;j describes pairwise interactions between species, b D
.b1; : : : ; bn/ describes the intrinsic rates of growth of each species in the absence of
environmental fluctuations, and Ei;t describes density-independent fluctuations. [55]
used two dimensional versions of (24) to examine niche overlap of competitors in
random environments.
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The following lemma shows that verifying persistence for these equations
reduces to a linear algebra problem. In particular, this lemma implies that the
permanence criteria developed by [26] extend to these stochastically perturbed
Lotka-Volterra systems.

Lemma 3.1 Let � be an ergodic stationary distribution for (24) and I � f1; : : : ; kg
be the species supported by � i.e. �.fx 2 S W xi > 0 iff i 2 Ig � E / D 1. Define
ˇi D bi C EŒEi;t�. If there exists a unique solution Ox to

X
j2I

Aij Oxj C ˇi D 0 for i 2 I and Oxi D 0 for i … I (25)

then

ri.�/ D
(

0 if i 2 IP
j2I Aij Oxj C ˇi otherwise.

The following proof of this lemma is nearly identical to the proof given by [50] for
the case Et are independent and identically distributed in time.

Proof Let � and I be as assumed in the statement of the lemma. We have

ri.�/ D
X
j2I

Aij

Z
xj �.dxdE/C ˇi

for all i. As ri.�/ D 0 for all i 2 I,

0 D
X
j2I

Aij

Z
xj �.dxdE/C ˇi

for all i 2 I. Since we have assumed there is a unique solution Ox to this system of
linear equations, it follows that

R
xi�.dxdE/ D Oxi for all i and the lemma follows.

ut
This lemma implies that verifying the stochastic persistence condition reduces to

finding p1; : : : ; pn > 0 such that

X
i…I

pi

X
j2I

Aij Oxj C ˇi > 0

for every I � f1; : : : ; ng and Ox 2 S0 satisfying equation (25). The next example
illustrates the utility of this criterion.

Example 10 (Rock-Paper-Scissor Dynamics) The Lotka-Volterra model of rock-
paper-scissor dynamics is a prototype for understanding intransitive ecological
outcomes [37, 52]. Here, a simple stochastic version of this dynamic is given
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by (24) with X1;X2;X3 corresponding to the densities of the rock, paper, and scissors
populations, and the matrixes A and b given by

A D �1C
0
@ 0 �`2 w3

w1 0 �`3
�`1 w2 0

1
A and b D

0
@11
1

1
A

with 1 > wi > 0 and `i > 0. The �`i correspond to a reduction in the per-capita
growth rate of the population losing against population i, and wi corresponds to the
increase in the per-capita growth rate of the population winning against population
i. Assume that the Ei;t in (24) are compactly supported random variables with zero
expectation. Under this assumption, ˇi as defined in Lemma 3.1 equal 1.

Our assumptions about A and b imply that in pairwise interactions population 1 is
excluded by population 2, population 2 is excluded by population 3, and population
3 is excluded by population 1. Hence, there are only four solutions of (25) that need
to be considered: Ox D .0; 0; 0/, Ox D .1; 0; 0/, Ox D .0; 1; 0/, and Ox D .0; 0; 1/. Hence,
verifying stochastic persistence reduces to determining whether there exist positive
reals p1; p2; p3 such that

p1 C p2 C p3 > 0

p1 � 0C p2w1 � p3`1 > 0

�p1`2 C p2 � 0C p3w2 > 0

p1w3 � p2`3 C p3 � 0 > 0

where these equation come from evaluating
P

i piri.�/ at ergodic measures corre-
sponding to .0; 0; 0/, .1; 0; 0/, .0; 1; 0/, and .0; 0; 1/. Solving these linear inequali-
ties implies that there is the desired choice of pi if and only if w1w2w3 > `1`2`3 i.e.
the geometric mean of the fitness payoffs to the winners exceeds the geometric mean
of the fitness losses of the losers. Figure 9 illustrates the dynamics of coexistence
when w1w2w3 > `1`2`3 and exclusion when w1w2w3 < `1`2`3.

4 Parting Thoughts and Future Challenges

The results reviewed here provide some ways to think about species coexistence
or population persistence in the face of uncertainty. In the face of demographic
uncertainty, species may coexist for exceptionally long periods of time prior to going
extinct. I discussed how this metastable behavior may be predicted by the existence
of positive attractors for the underlying deterministic dynamics, in which case the
times to extinction increase exponentially with habitat size. Alternatively, in the face
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Fig. 9 Stochastic rock-paper-scissor dynamics (Example 10) with stochastic persistence in the
left hand panel (wi D 0:3 > 0:2 D `i for all i) and stochastic exclusion in the right hand panel
(wi D 0:2 < 0:3 D `i for all i)

of environmental stochasticity, species may coexist in the sense of rarely visiting low
densities. I discussed how this form of stochastic persistence can be identified by
examining species’ per-capita growth rates ri.�/ when rare. Weighted combinations
of these per-capita growth rates can measure to what extent communities move away
extinction as one or more species become rare. Despite this progress, many exciting
challenges lie ahead.

Many demographic processes and environmental conditions vary continuously
in time and are better represented by continuous time models. For continuous-
time Markov chains accounting for demographic stochasticity, [36] proved results
similar to Theorems 2.5 and 2.6 discussed here. For stochastic differential equations
of interacting, unstructured populations in fluctuating environments, there exist
some results similar to Theorem 3.11 by [6, 50] and [19]. These stochastic
differential equations, however, fail to account for population structure or correlated
environmental fluctuations. One step toward temporally correlated environments
was recently taken by [4]. They characterized stochastic persistence for continuous-
time models of competing species experiencing a finite number of environmental
states driven by a continuous-time Markov chain. Generalizing these results to
higher dimensional communities and structured populations remains an impor-
tant challenge. Another exciting possibility is studying stochastic persistence for
continuous-time models with stochastic birth or mortality impulses, as often
observed in nature.

Biologists often measure continuous traits (e.g. body size or geographical loca-
tion of an individual) that have important demographic consequences (e.g. larger
individuals may produce more offspring and be more likely to survive). Unlike
models accounting for discrete traits as considered here, models with continuous
traits are infinite-dimensional and, consequently, even stochastic counterparts only
accounting for demographic stochasticity correspond to Markov chains on uncount-
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able state spaces (see, e.g., [53]). One form of these models, integral projection
models (IPMs), have become exceptionally popular in the ecological literature in
the past decade as they interface well with demographic data sets (see, e.g., [43]
for a recent discussion). Consequently, there is a need for the development of the
infinite-dimensional counterparts to the results presented here (see [23] for results
for structured populations facing uncorrelated, environmental stochasticity).

For both forms of stochasticity, there are few results for demonstrating that
populations are “extinction-prone” (e.g. limiting QSDs being supported by the
extinction set in Theorem 2.5 or Benaïm et al. [6, Theorems 4.2,5.1] for stochastic
differential equations). No study of persistence or coexistence is complete without
understanding this complementary outcome. Hopefully, answers to Problems 2
and 6 will narrow our gap in understanding these outcomes. Furthermore, even
when populations aren’t extinction prone in the aforementioned sense, extinction
is inevitable as all real population are finite. Answers to Problem 3 and their
applications to specific models could provide new insights about how feedbacks
between nonlinearities and noise determine the “intrinsic” extinction probabilities,
quantities of particular importance for conservation biology.

Finally, there is the elephant in the review: what can one say for models
accounting for both forms of stochasticity? At this point, all I have to offer is a
natural conjecture which combines the results presented here. Namely, let xtC1 D
F.xt;EtC1/ be a random difference equation and fX"t g">0 be a family of Markov
chains satisfying the environmental dependent versions of Hypotheses 2.3 and 2.4
e.g. the rate function � in Hypothesis 2.3 depends on E 2 E as well as x; y 2 S .
In light of the results presented here, these models lead to the following challenging
problem:

Problem 7 Is it true that stochastic persistence of xtC1 D F.xt;EtC1/ implies the
weak* limit points of the QSDS of fX"t g">0 are supported by SC and 
" � 1 �
exp.�c="/ for some c > 0?

I believe there should be an affirmative answer to this question. Namely, stochastic
persistence in the face of environmental fluctuations implies long-term, persistent,
metastable behavior for communities of interacting populations of finite size, and
the extinction probabilities decay exponentially with community “size.” Hopefully,
this review will inspire work to address this problem as well as for the other
challenges posed here.

Acknowledgements Many thanks to Swati Patel, William Cuello, and two anonymous reviews for
providing extensive comments on an earlier version of this manuscript. This work was supported
in part by US NSF Grant DMS-1313418 to the author.



382 S.J. Schreiber

References

1. P.B. Adler, S.P. Ellner, and J.M. Levine. Coexistence of perennial plants: an embarrassment of
niches. Ecology letters, 13:1019–1029, 2010.

2. L. Arnold. Random dynamical systems. Springer Monographs in Mathematics. Springer-
Verlag, Berlin, 1998. ISBN 3-540-63758-3.

3. A.D. Barbour. Quasi-Stationary Distributions in Markov Population Processes. Advances in
Applied Probability, 8:296–314, 1976.

4. M. Benaïm and C. Lobry. Lotka Volterra in fluctuating environment or “how good can be bad”.
arXiv preprint arXiv:1412.1107, 2014.

5. M. Benaïm and S.J. Schreiber. Persistence of structured populations in random environments.
Theoretical Population Biology, 76:19–34, 2009.

6. M. Benaïm, J. Hofbauer, and W. Sandholm. Robust permanence and impermanence for the
stochastic replicator dynamics. Journal of Biological Dynamics, 2:180–195, 2008.

7. P. Chesson. Multispecies competition in variable environments. Theoretical Population Biol-
ogy, 45(3):227–276, 1994.

8. P. Chesson. General theory of competitive coexistence in spatially-varying environments.
Theoretical Population Biology, 58:211–237, 2000.

9. P. Chesson. Mechanisms of maintenance of species diversity. Annual Review of Ecology and
Systematics, 31:343–366, 2000. ISSN 00664162.

10. P. L. Chesson. Predator-prey theory and variability. Annu. Rev. Ecol. Syst., 9:323–347, 1978.
11. P. L. Chesson. The stabilizing effect of a random environment. J. Math. Biol., 15(1):1–36,

1982.
12. P.L. Chesson. Interactions between environment and competition: how environmental fluc-

tuations mediate coexistence and competitive exclusion. Lecture Notes in Biomathematics,
77:51–71, 1988.

13. P.L. Chesson and S. Ellner. Invasibility and stochastic boundedness in monotonic competition
models. Journal of Mathematical Biology, 27:117–138, 1989.

14. P.L. Chesson and R.R. Warner. Environmental variability promotes coexistence in lottery
competitive systems. The American Naturalist, 117(6):923, 1981.

15. J.N. Darroch and E. Seneta. On quasi-stationary distributions in absorbing discrete-time finite
markov chains. Journal of Applied Probability, 2:88–100, 1965.

16. A. Dembo and O. Zeitouni. Large Deviation Techniques and Applications. Applications of
Mathematics: Stochastic Modelling and Applied Probability. Springer, 1993.

17. R. Durrett. Probability: Theory and examples. Duxbury Press, Belmont, CA, 1996.
18. S.N. Evans, P. Ralph, S.J. Schreiber, and A. Sen. Stochastic growth rates in spatio-temporal

heterogeneous environments. Journal of Mathematical Biology, 66:423–476, 2013.
19. S.N. Evans, A Hening, and S.J. Schreiber. Protected polymorphisms and evolutionary stability

of patch-selection strategies in stochastic environments. Journal of Mathematical Biology,
71:325–359, 2015.

20. M. Faure and S. J. Schreiber. Quasi-stationary distributions for randomly perturbed dynamical
systems. Annals of Applied Probability, 24:553–598, 2014.

21. M. I. Freidlin and A. D. Wentzell. Random perturbations of dynamical systems, volume 260 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, New York, second edition, 1998. ISBN 0-387-98362-7. Translated
from the 1979 Russian original by Joseph Szücs.

22. V. Grimm and C. Wissel. The intrinsic mean time to extinction: a unifying approach to
analysing persistence and viability of populations. Oikos, 105:501–511, 2004.
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Michael A. Bennett and Andrew Rechnitzer

Abstract We discuss a new algorithm for finding all elliptic curves over Q with a
given conductor. Though based on (very) classical ideas, this approach appears to be
computationally quite efficient. We provide details of the output from the algorithm
in case of conductor p or p2, for p prime, with comparisons to existing data.

Keywords Elliptic curves • Cubic forms • Invariant theory
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1 Introduction

Elliptic curves are ubiquitous objects in pure mathematics, particularly in Number
Theory and Algebraic Geometry. It is therefore of some interest to be able to
generate or tabulate elliptic curves with desired properties. In this paper, we will
describe an algorithm for computing models for all elliptic curves with integer
coefficients and given conductor. This last quantity is an invariant that provides
information about how a given elliptic curve behaves over finite fields Fp, as p ranges
over all primes. For the purposes of this paper, we will mostly restrict our attention
to the case of conductor p or p2, for prime p.

If K is a number field and S is a finite set of places of K, containing the infinite
places, then a theorem of Shafarevich [42] from 1963 ensures that there are at most
finitely many K-isomorphism classes of elliptic curves defined over K with good
reduction outside S. In the simplest case, where K D Q, an effective version of this
result was proved by Coates [12] in 1970, using bounds for linear forms in p-adic
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and complex logarithms. Early attempts to make such results explicit, for fixed sets
of “small” primes S, have much in common with the arguments of [12], in that they
(often) reduce the problem to one of solving a number of Thue-Mahler equations.
These are Diophantine equations of the form

F.x; y/ D u; (1)

where F is a binary form (of degree at least 3) and u is an S-unit, that is, an integer
whose prime factors all lie in S (strictly speaking, for K D Q, we are assuming
here that 2 2 S). In case the form F is reducible in ZŒx; y� (which turns out to
be the case when the elliptic curves we are considering have at least one rational
2-torsion point), equation (1) typically is somewhat less challenging to solve. The
earliest examples where a complete determination of all elliptic curves E=Q with
good reduction outside a given set S was made were for S D f2; 3g (by Coghlan
[13] and Stevens (see e.g. [7])), and for S D fpg for certain small primes p (by e.g.
Setzer [41] and Neumann [35]).

The first case where such a determination was made with corresponding forms
in equation (1) irreducible was for S D f11g, by Agrawal, Coates, Hunt and van der
Poorten [1]. The reduction to (1) in this situation is not especially problematical, but
subsequent computations (involving the arguments of [12] together with a variety of
techniques from computational Diophantine approximation) are quite involved. For
whatever reason, there are very few if any subsequent attempts in the literature to
find elliptic curves of given conductor via Thue-Mahler equations. Instead, one finds
a wealth of results on a completely different approach to the problem, using modular
forms. This method relies upon the Modularity theorem of Breuil, Conrad, Diamond
and Taylor [9], which was still a conjecture (under various guises) when these ideas
were first implemented. Much of the success of this approach can be attributed to
Cremona (see e.g. [14, 15]) and his collaborators, who have devoted decades of
work to it (and are responsible for the current state-of-the-art). To apply this method
to find all E=Q of conductor N, one computes the space of &0.N/ modular symbols
and the action of the Hecke algebra on it, and then searches for one-dimensional
rational eigenspaces. After calculating a large number of Hecke eigenvalues, one is
then able to extract corresponding elliptic curves. For a detailed description of how
this technique works, the reader is directed to [15]. Via this method (assuming the
results of [9]), all E=Q of conductor N  380000 been determined by Cremona, as
of April 2016.

In this paper, we will instead return to techniques based upon solving Thue-
Mahler equations. Our goal is to provide a treatment that makes the connection
between the conductors in question and the corresponding equations (1) straight-
forward, and the subsequent Diophantine approximation problem as painless as
possible. We will rely upon a number of results from classical invariant theory
and, for purposes of clarity and simplicity, focus our attention on curves with bad
reduction at a single prime (i.e. curves of conductor p or p2 for p prime). We will
unconditionally find all curves of prime conductor up to 2 � 109 (1010 in the case
of curves of positive discriminant) and conductor p2 for p  106. Conditionally,
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we extend these computations, in the case of prime conductor p, to p  1012. The
outline of our paper is as follows. In Sect. 2, we will outline some basic facts and
notation about elliptic curves. In Sect. 3, we will discuss the invariant theory of
cubic forms and state our main theorem which provides our algorithm. Section 4 is
devoted to the actual computation of the cubic forms we require. In Sect. 5, we
discuss the special cases where N D p or p2 for p prime while, in Sect. 6, we
provide a variety of computational details for these cases and an outline of a heuristic
approach to the problem. Finally, in Sect. 7, we give an overview of our output,
comparing it to previous results in the literature. In this paper, we concentrate on
results specialized to the cases of conductor p and p2, omitting both more general
considerations and any proofs. More general results are described in forthcoming
work of the authors [5]. Readers interested in the proofs of a number of results
stated here as well as more extensive data should consult that paper. We are in the
process of making our data more easily available through the LMFDB. Until this is
completed, anyone interested should feel free to contact the authors.

2 Elliptic Curves

Let S D fp1; p2; : : : ; pkg be a set of rational primes. Suppose that we wish to
find models for isomorphism classes of elliptic curve over Q with given conductor
N D p˛11 � � � p˛k

k , where the ˛i are positive integers. Such a curve has a minimal
model

E W y2 C a1xy C a3y D x3 C a2x
2 C a4x C a6

with the ai 2 Z and discriminant �E D .�1/ıpˇ11 � � � pˇk
k ; where the ˇi � ˛i are

again positive integers and ı 2 f0; 1g. Writing

b2 D a21 C 4a2; b4 D a1a3 C 2a4; b6 D a23 C 4a6;

c4 D b22 � 24b4 and c6 D �b32 C 36b2b4 � 216b6;

we find that

1728�E D c34 � c26

and

jE D c34=�E:

We therefore have

c26 D c34 C .�1/ıC1L; (2)
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where

L D 26 � 33 � pˇ11 � � � pˇk
k :

For each prime p, since our model is minimal, we may suppose (via Tate’s algorithm;
see e.g. Papadopolous [36]), defining �p.x/ to be the largest power of a prime p
dividing a nonzero integer x, that

minf3�p.c4/; 2�p.c6/g < 12C 12�p.2/C 6�p.3/: (3)

In fact, it is equation (2) that lies at the heart of our approach (see also Cremona
and Lingham [17] for an approach to the problem that takes as its starting point
equation (2), but then heads in a rather different direction).

3 Cubic Forms

Let us suppose that a; b; c and d are integers, and consider the binary cubic form

F.x; y/ D ax3 C bx2y C cxy2 C dy3; (4)

with discriminant

DF D �27a2d2 C b2c2 C 18abcd � 4ac3 � 4b3d:

To such a form we associate a pair of covariants, the Hessian H D HF.x; y/ given
by

H D HF.x; y/ D �1
4

 
@2F

@x2
@2F

@y2
�
�
@2F

@x@y

�2!

and the Jacobian determinant of F and H, a cubic form G D GF defined via

G D GF.x; y/ D @F

@x

@H

@y
� @F

@y

@H

@x
:

Note that, explicitly,

H D .b2 � 3ac/x2 C .bc � 9ad/xy C .c2 � 3bd/y2

and
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G D .�27a2d C 9abc � 2b3/x3 C .�3b2c � 27abd C 18ac2/x2y
C.3bc2 � 18b2d C 27acd/xy2 C .�9bcd C 2c3 C 27ad2/y3:

These covariants satisfy the syzygy

4H.x; y/3 D G.x; y/2 C 27DFF.x; y/2: (5)

We further have

Res.F;G/ D �8D3
F and Res.F;H/ D D2

F:

We can now state our main result, which leads to our algorithm.

Theorem 3.1 Let E=Q be an elliptic curve of conductor N D 2˛3ˇN0, where N0 is
coprime to 6. Then there exists an integral binary cubic form F of discriminant

DF D .j�Ej=�E/2
˛03ˇ0N1;

and relatively prime integers u and v with

F.u; v/ D !0u
3 C !1u

2v C !2uv
2 C !3v

3 D 2˛1 � 3ˇ1 �
Y
pjN0

p�p ; (6)

such that E is isomorphic over Q to ED where

D D
Y

pjgcd.c4.E/;c6.E//

pminfŒ�p.c4.E//=2�;Œ�p.c6.E//=3�g (7)

and

ED W 3Œˇ0=3�y2 D x3 � 27D2HF.u; v/x C 27D3GF.u; v/:

Here, N1 j N0,

.˛0; ˛1/ D

8̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
:

.2; 0/ or .2; 3/ if ˛ D 0;

.3;� 3/ or .2;� 4/ if ˛ D 1;

.2; 1/; .4; 0/ or .4; 1/ if ˛ D 2;

.2; 1/; .2; 2/; .3; 2/; .4; 0/ or .4; 1/ if ˛ D 3;

.2;� 0/; .3;� 2/; .4; 0/ or .4; 1/ if ˛ D 4;

.2; 0/ or .3; 1/ if ˛ D 5;

.2;� 0/; .3;� 1/; .4; 0/ or .4; 1/ if ˛ D 6;

.3; 0/ or .4; 0/ if ˛ D 7;

.3; 1/ if ˛ D 8;
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.ˇ0; ˇ1/ D

8̂
<̂
ˆ̂:

.0; 0/ if ˇ D 0;

.0;� 1/ or .1;� 0/ if ˇ D 1;

.3; 0/; .0;� 0/ or .1;� 0/ if ˇ D 2;

.ˇ; 0/ or .ˇ; 1/ if ˇ � 3;

and �p 2 Z with �p 2 f0; 1g if p2 j N1. If ˇ0 � 3, we further have that 3 j !1 and
3 j !2.

A few observations are worth making here. Firstly, there might actually exist
a cubic form for which the corresponding Thue-Mahler equation has a solution,
where the corresponding ED has conductor NED ¤ N (this can occur if certain
local conditions at 2 are not satisfied). These local conditions are easy to check
and are a minor issue computationally. In practice, for producing tables of elliptic
curves of bounded conductor, we will typically apply the above result to find all
curves with bad reduction outside a fixed set of primes, working with a number of
conductors simultaneously. For such a computation, every twist we encounter will
have conductor of interest to us. It is also the case, that the cubic forms arising need
not be either primitive (in the sense that gcd.!0; !1; !2; !3/ D 1) or irreducible. The
former situation (i.e. that of imprimitive forms) can occur if each of the coefficients
of F is divisible by 3. The latter occurs precisely when the curve E has at least one
rational 2-torsion point. We note that necessarily

D j 23 � 32 �
Y
pjN0

p; (8)

so that, given N, there are a finite set of ED to consider.
In the event that, for a given binary form F.x; y/ D ax3 C bx2y C cxy2 C dy3, we

have 3 j b and 3 j c, say b D 3b0 and c D 3c0, then we have that 27 j DF and can
write DF D 27eDF, where

eDF D �a2d2 C 6ab0c0d C 3b20c
2
0 � 4ac30 � 4b30d:

One may observe that the set of forms with both 3 j b and 3 j c is closed within the
larger set of all binary cubic forms in ZŒx; y�, under the action of both SL2.Z/ and
GL2.Z/. Note that, for such a form, we have

eHF.x; y/ D HF.x; y/

9
D .b20 � ac0/x

2 C .b0c0 � ad/xy C .c20 � b0d/y
2

and

eGF.x; y/ D GF.x;y/
27

D .�a2d C 3ab0c0 � 2b30/x
3 C 3.�b20c0 � ab0d C 2ac20/x

2y
C3.b0c20 � 2b20d C ac0d/xy2 C .�3b0c0d C 2c30 C ad2/y3;
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whereby our syzygy now becomes

4eHF.x; y/
3 D eGF.x; y/

2 CeDFF.x; y/2: (9)

Theorem 3.1 is based upon a generalization of a very classical result of Mordell
[32] (see also Theorem 3 of Chapter 24 of Mordell [33]), where the Diophantine
equation X2CkY2 D Z3 is treated through reduction to binary cubic forms and their
covariants, under the assumption that X and Z are coprime. That this last restriction
could be eliminated, with some care, was noted by Sprindzuk (see Chapter VI of
[44]).

Converting Theorem 3.1 into an algorithm for finding all E=Q of conductor N is
a straightforward exercise. We proceed as follows.

(1) Compute GL2.Z/-representatives for every binary form F with discriminant

�F D ˙2˛03ˇ0N1
for each divisor N1 of N0, and each possible pair .˛0; ˇ0/ given in the statement
of Theorem 3.1. The (very efficient) algorithm for carrying this out is described
in detail in Sect. 4.

(2) Solve the corresponding Thue-Mahler equations. This is a deterministic proce-
dure (see Tzanakis and de Weger [47, 48]) but not, in general, one that could
reasonably be described as routine.

(3) Check “local” conditions and output the elliptic curves that arise.

As we shall see, the first and third of these steps are straightforward (indeed,
the third is essentially trivial). All of the real work is concentrated in step (2). In
Sect. 5, we will focus our attention on carrying out this procedure in the special
case where N D p or N D p2 for p prime. For these conductors, we encounter the
happy circumstance that the Thue-Mahler equations (6) reduce to Thue equations
(i.e. where the exponents on the right hand side of (6) are all absolutely bounded).
In such a situation, there are easily implemented computational routines for solving
such equations, available in Pari/GP [37] or in Magma [8]. Further, it is possible
to apply a much more computationally efficient argument to find all such elliptic
curves heuristically (but not deterministically). We will describe such an approach
later in the paper, in Sect. 6.

4 Finding Representative Forms

As we have seen, in order to find elliptic curves over Q with good reduction outside
a given set of primes, it suffices to determine a set of representatives for GL2.Z/-
equivalence classes of binary cubic forms with certain discriminants, and then solve
a number of corresponding Thue-Mahler equations. In this section, we will describe
how to find distinguished reduced representatives for equivalence classes of cubic
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forms with a given discriminant. In each case, the notion of reduction is related to
associating to a given cubic form a particular definite quadratic form—in case of
positive discriminant, for example, the Hessian H defined earlier. In what follows,
we will state our definitions of reduction solely in terms of the coefficients of the
given cubic form, keeping the associated Hessian hidden.

4.1 Forms of Positive Discriminant

In the case of positive discriminant forms, we will appeal to a classical reduction
theory, dating back to work of Hermite [27, 28] and later used by Davenport (see
e.g. [18, 19] and [20]). This procedure allows us to determine a reduced element
within a given equivalence class of forms. We will assume the forms we are treating
are irreducible, (and treat the case of reducible forms somewhat differently). We
follow work of Belabas [2] (see also Belabas and Cohen [3] and Cremona [16]), a
modern treatment and refinement of Hermite’s method.

Definition 4.1 An irreducible binary integral cubic form

F.x; y/ D ax3 C bx2y C cxy2 C dy3

of positive discriminant is called reduced if we have

• jbc � 9adj  b2 � 3ac  c2 � 3bd,
• a > 0; b � 0, where d < 0 whenever b D 0,
• if bc D 9ad; d < 0,
• if b2 � 3ac D bc � 9ad, b < j3a � bj, and
• if b2 � 3ac D c2 � 3bd, a  jdj, and b < jcj whenever jdj D a.

The main value of this notion of reduction is in the following result (Corollary 3.3
of [2]).

Proposition 4.1 Any irreducible cubic form with positive discriminant is GL2.Z/-
equivalent to a unique reduced one.

To determine equivalence classes of reduced cubic forms with bounded discrimi-
nant, we will appeal to the following result (Lemma 3.5 of Belabas [2]).

Lemma 4.2 Let X be a positive real number and

F.x; y/ D ax3 C bx2y C cxy2 C dy3

be a reduced form whose discriminant lies in .0;X�. Then we have

1  a  2X1=4

3
p
3
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and

0  b  3a

2
C
�p

X � 27a2

4

�1=2
:

If we denote by P2 the unique positive real solution of the equation

�4P32 C .3a C 2b/2P22 C 27a2Z D 0;

then

b2 � P2
3a

 c  b � 3a:

4.2 Forms of Negative Discriminant

In case of negative discriminant, we require a different notion of reduction, as the
Hessian is no longer a definite form. We will instead, following Belabas [2], use an
idea of Berwick and Mathews [6]. We take as our definition of a reduced form an
alternative characterization due to Belabas (Lemma 4.2 of [2]).

Definition 4.2 An irreducible binary integral cubic form

F.x; y/ D ax3 C bx2y C cxy2 C dy3

of negative discriminant is called reduced if we have

• d2 � a2 > bd � ac,
• �.a � b/2 � ac < ad � bc < .a C b/2 C ac,
• a > 0; b � 0 and d > 0 whenever b D 0.

Analogous to Proposition 4.1, we have, as a consequence of Lemma 4.3 of [2] :

Proposition 4.3 Any irreducible cubic form with negative discriminant is GL2.Z/-
equivalent to a unique reduced one.

To count the number of reduced cubic forms in this case, we use Lemma 4.4 of
Belabas [2] :

Lemma 4.4 Let X be a positive real number and

F.x; y/ D ax3 C bx2y C cxy2 C dy3

be a reduced form whose discriminant lies in Œ�X; 0/. Then we have

1  a 
�
16X

27

�1=4
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0  b  3a

2
C
�p

X=3� 3a2

4

�1=2

1 � b  c 
�

X

4a

�1=3
C



b2=3a if a � 2b=3;
b � 3a=4 otherwise.

It is worth noting here that a different notion of reduction for cubic forms of
negative discriminant is described in Cremona [16], arising from classical work of
Julia [29]. This definition leads to shorter loops for the coefficient a and a slight
improvement in the expected complexity (though the number of .a; b; c; d/ one
treats still grows linearly in the variable X).

The techniques we have described here provide a computationally efficient way
to write down representatives for classes of irreducible cubic form with bounded
absolute discriminant. The problem of finding all such forms of a fixed discriminant
(without computing those of smaller discriminant) is a slightly different one. One
approach would be to loop over the first three coefficients a; b; c of the form as
previously, and then solve the corresponding quadratic equation for d. Even a
relatively simplistic approach like this makes it computationally feasible to find
forms of a desired, fixed discriminant exceeding 1015.

4.3 Reducible Forms

We can define somewhat similar notions of reduction for reducible forms (see e.g.
[4]). For our purposes, though, it is enough to recall that we may suppose that a
reduced form is equivalent to one of the shape

F.x; y/ D bx2y C cxy2 C dy3 with 0  d  c;

whereby we have

�F D b2.c2 � 4bd/:

To determine all elliptic curves with good reduction outside S D fp1; p2; : : : ; pkg,
corresponding to reducible cubics in Theorem 3.1 (i.e. those E with at least one
rational 2-torsion point), it suffices to find all such triples .b; c; d/ for which there
exists integers x and y with, writing S� D S [ f2g, both b2.c2 � 4bd/ and bx2y C
cxy2 C dy3 S�-units. For this to occur, it is clearly necessary that b; c2 � 4bd; y and
� D bx2 C cxy C dy2 are S�-units. Taking the discriminant of this last quadratic as
a function of x, we thus require that

.c2 � 4bd/y2 C 4b� D Z2; (10)
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for some integer Z. This is an equation of the shape

X C Y D Z2 (11)

in S�-units X and Y. There is an algorithm for solving such equations described
in detail in Chapter 7 of de Weger [49] (see also [50]), relying upon bounds for
linear forms in p-adic and complex logarithms and various reduction techniques.
As of now, we are unaware of any implementation of this algorithm in available
computational algebra packages. While a priori equation (10) arises as only a
necessary condition for the existence of an elliptic curve of the desired form, given
any solution to (10), the curve

E W y2 D x3 C Zx2 C b�x

has discriminant

�E D 16b2�2.Z2 � 4b�/ D 16b2�2.c2 � 4bd/y2;

and hence good reduction outside S�.

4.4 A Final Note

One last observation which is necessary here before we proceed is that while G2
F is

GL2.Z/-covariant, the same is not actually true for GF (it is, however, an SL2.Z/-
covariant). This may seem like a subtle point, but what it means for us in practice is
that, having found our GL2.Z/-representative forms F and corresponding curves of
the shape ED from Theorem 3.1, we need also check to see if

QED W 3Œˇ0=3�y2 D x3 � 27D2HF.u; v/x � 27D3GF.u; v/;

the quadratic twist of ED by �1, yields a curve of the desired conductor.

5 Conductors N D p and N D p2

In the case where we want to find elliptic curves E of conductor N D p prime,
as noted earlier, things are especially simple. Suppose that E is such curve with
invariants c4 and c6. From Papadopolous [36], we necessarily have

.�p.c4/; �p.c6// D .0; 0/ and �p.L/ � 1;

.�2.c4/; �2.c6// D .0; 0/ or .� 4; 3/; and �2.L/ D 6;

.�3.c4/; �3.c6// D .0; 0/ or .1;� 3/; and �3.L/ D 3;
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and hence D D 1 or 2. Theorem 3.1 thus implies that there is a cubic form of
discriminant ˙4 or ˙4p, and integers u; v, with

F.u; v/ D pn or 8pn; c4 D D2HF.u; v/ and c6 D �1
2
D3GF.u; v/; D 2 f1; 2g;

for some integer n. Similarly, if N D p2, we are interested in finding cubic forms of
discriminant ˙4 � p	 for 	 2 f0; 1; 2g, and solving F.x; y/ D 8 � pn, where n 2 f0; 1g
if 	 D 2. In this situation, we have that D j 2p.

If we first consider the case of a curve E of conductor p, appealing to Théorème 2
of Mestre and Oesterlé [30] (and using [9]), we either have�E D ˙p, or our prime
p 2 f11; 17; 19; 37g, or we have p D t2 C 64 for some integer t � 1 mod 4 and our
curve E is isomorphic to that given by

y2 C xy D x3 C t � 1

4
x2 C 4x C t:

In this case, we have a rational point of order 2 given by .x; y/ D .�t=4; t=8/ and
discriminant .t2C64/2. Excluding these latter cases, in the notation of the preceding
section, we thus have˛0 D 2, ˛1 2 f0; 3g,ˇ0 D ˇ1 D 0, �p D 0 and N1 2 f1; pg. We
are therefore interested in finding all binary cubic forms (reducible and irreducible)
F of discriminant ˙4 and ˙4p and subsequently solving

F.x; y/ 2 f1; 8g:

Next consider when E has conductor N D p2, so that p j c4 and p j c6. From (3),
we may suppose that .�p.c4/; �p.c6/; �p.�E// is one of

.� 1; 1; 2/; .1;� 2; 3/; .� 2; 2; 4/; .2; 3;� 7/; .� 3; 4; 8/; .3;� 5; 9/ or .� 4; 5; 10/;

or we have that .�p.c4/; �p.c6/; �p.�E// D .� 2;� 3; 6/. In this last case, the
quadratic twist of our curve E by .�1/.p�1/=2p has good reduction at p and hence
conductor 1, a contradiction. If we have .�p.c4/; �p.c6/; �p.�E// D .2; 3;� 7/, then
E necessarily arises as the .�1/.p�1/=2p-twist of a curve of conductor p, say E1, with
corresponding .�p.c4.E1//; �p.c6.E1//; �p.�E1 // D .0; 0; �p.�E/ � 6/. Similarly,
curves with .�p.c4/; �p.c6/; �p.�E// D .� 3; 4; 8/ arise as twists of those with
.�p.c4/; �p.c6/; �p.�E// D .� 1; 1; 2/, those with .�p.c4/; �p.c6/; �p.�E// D .3;�
5; 9/ come from ones with .�p.c4/; �p.c6/; �p.�E// D .1;� 2; 3/, and those with
.�p.c4/; �p.c6/; �p.�E// D .� 4; 5; 10/ from ones with .�p.c4/; �p.c6/; �p.�E// D
.� 2; 2; 4/.

Supposing we have already computed all curves of conductor p, it remains
therefore, up to twisting, to find E=Q with minimal discriminant

�E 2 f˙p2;˙p3;˙p4g
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(as noted by Edixhoven, de Groot and Top in Lemma 1 of [21]). In particular, from
Theorem 3.1, we are led to consider equations of the shape

F.x; y/ D 8 for F a form of discriminant ˙ 4p2; (12)

F.x; y/ D 8p for F a form of discriminant ˙ 4p (13)

and

F.x; y/ D 8p for F a form of discriminant ˙ 4p2; (14)

corresponding to �E D ˙p2, ˙p3 and ˙p4, respectively.

5.1 Reducible Forms

To find all elliptic curves E=Q with conductor p or p2 arising (in the notation of
Theorem 3.1) from reducible forms, we are led to solve the equation

F.x; y/ D 8 pn; n 2 Z; gcd.x; y/ j 2;

for reducible binary cubic forms of discriminant ˙4, ˙4p and ˙4p2. This is an
essentially elementary exercise (if somewhat painful). Alternatively, we may note
that the elliptic curves of conductor p or p2 arising from reducible cubic forms are
precisely those with at least one rational 2-torsion point and hence we can appeal
to Theorem I of Hadano [24] to the effect that the only such p are p D 7; 17 and
p D t2 C 64 for integer t.

In any case, after a little work, we can show that the elliptic curves of conductor
p or p2 corresponding to reducible forms, are precisely those given by

.c4; c6/ p �E NE

.273; 4455/ 17 172 17

.33; 12015/ 17 �174 17
.p � 256;�t.p C 512// t2 C 64 �p2 p

.105; 1323/ 7 �73 72

.1785; 75411/ 7 73 72

.33;�81/ 17 173 17

.4353; 287199/ 17 17 17

.p � 16;�t.p C 8// t2 C 64 p p

Here, for the sake of concision, we omit quadratic twists by ˙p of conductor p2.
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5.2 Irreducible Forms: Conductor p

It is straightforward to show that there are no irreducible cubic forms of discriminant
˙4. If we begin by searching for elliptic curves of conductor p coming from
irreducible cubics, we thus need to solve equations of the shape F.x; y/ D 8 for
all cubic forms of discriminant ˙4p.

5.3 Irreducible Forms: Conductor p2

As noted earlier, to find the elliptic curves of conductor p2 coming from irreducible
cubics, we need to find those of conductor p and those of conductor p2 with �F D
˙p2;˙p3 and ˙p4 (and subsequently twist them).

5.3.1 Elliptic Curves of Discriminant ˙p3

For these, we can use the cubic forms of discriminant �F D ˙4p we have already
found in the course of computing curves of conductor p, and then solve the Thue
equation F.x; y/ D 8p. We can either do this directly, or reduce this problem to
one of solving a pair of new Thue equations of the shape Gi.x; y/ D 8. To see
how this “reduction” proceeds, note, since we assume that p k�F, we have, for
F.x; y/ D ax3 C bx2y C cxy2 C dy3,

F.x; y/ � a.x � r0y/
2.x � r1y/ mod p;

where, since we may suppose that F is a reduced form (whereby 1  a < p), we
necessarily have that p � a. We thus obtain

2r0 C r1 � �b=a mod p;

r20 C 2r0r1 � c=a mod p

and

r20r1 � �d=a mod p:

From the first two of these, we have

3ar20 C 2br0 C c � 0 mod p

and so, assuming that t2 � b2 � 3ac mod p,

.r0; r1/ � .3a/�1 .�b ˙ t;�b � 2t/ mod p:
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Given these two pairs, we are left to check to see which one satisfies r20r1 � �d=a
mod p.

To list our pairs .r0; r1/, we need to find a square root of b2 � 3ac modulo p.
There are efficient ways to do this via the Tonelli-Shanks algorithm, for example
(and almost trivially if, say, p � 3 mod 4).

Given that we know r0 and r1, we thus have, if F.x; y/ D 8p, either x � r0y
mod p or x � r1y mod p. In either case, we write x D riy C pu so that, from
ax3 C bx2y C cxy2 C dy3 D 8p, we are led to solve the two equations Gi.u; y/ D 8,
where

Gi.u; y/ D ap2u3C.3apriCbp/u2yC.3ar2i C2briCc/uy2C 1

p
.ar3i Cbr2i Ccri Cd/y3:

We observe that �Gi D p2�F .
In practice, for our deterministic approach, we will actually solve the equation

F.x; y/ D 8p directly. For our heuristic approach (where a substantial increase in
the size of the form’s discriminant is not especially problematic), we will reduce to
consideration of the equations Gi.x; y/ D 8.

We note that there are (conjecturally infinite) families of primes for which we
can guarantee that the equation F.x; y/ D 8p has solutions. For example, if we write
pr;s D r4 C 9r2s2 C 27s4, then, if p D pr;s for some choice of integers r and s, we
have that the cubic form

F.x; y/ D sx3 C rx2y � 3sxy2 � ry3

has discriminant 4p. Further, we have a polynomial identity F.x; y/ D 8p for
x D 2r2=s C 6s and y D �2r, or if x D 6s and y D �18s2=r � 2r. In particular, this
provides four one-parameter families of primes for which there exists a cubic form
F of discriminant 4p and integers x and y such that F.x; y/ D 8p. Specifically, we
have, choosing s 2 f1; 2g, in the first case and r 2 f1; 2g in the second, i.e.

.p; x; y/ D .r4 C 9r2 C 27; 2r2 C 6;�2r/; .r4 C 36r2 C 432; r2 C 12;�2r/;
.27s4 C 9s2 C 1; 6s;�18s2 � 2/; .27s4 C 36s2 C 16; 6s;�9s2 � 4/:

Similar, if pr;s D r4 � 9r2s2 C 27s4, the form

F.x; y/ D sx3 C rx2y C 3sxy2 C ry3

has discriminant �4p. The equation F.x; y/ D 8p has solutions

.x; y/ D .�2r2=s C 6s; 2r/ and .6s;�18s2=r C 2r/

and hence we again find (one parameter) families of primes corresponding to either
r or s in f1; 2g :
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.p; x; y/ D .r4 � 9r2 C 27;�2r2 C 6; 2r/; .r4 � 36r2 C 432;�r2 C 12; 2r/;
.27s4 � 9s2 C 1; 6s;�18s2 C 2/; .27s4 � 36s2 C 16; 6s;�9s2 C 4/:

We expect that each of the quartic families described here attains infinitely many
prime values, but proving this is beyond current technology.

5.3.2 Elliptic Curves of Discriminant p2 and p4

Elliptic curves of discriminant p2 and p4 arise from solving the Thue equations
F.x; y/ D 8 and F.x; y/ D 8p, respectively, for cubic forms F of discriminant 4p2.
In order for there to exist a cubic form of discriminant 4p2, it is necessary and
sufficient that we are able to write p D r2 C 27s2 for positive integers r and s,
whereby F is equivalent to the form

Fr;s.x; y/ D sx3 C rx2y � 9sxy2 � ry3:

From this we are led to solve

Fr;s.x; y/ D 8 and Fr;s.x; y/ D 8p:

In the latter case, we may, if we choose, reduce the equation to a single Thue
equation of the form Gr;s.x; y/ D 8. To see this, note that we may suppose that p � y.
It follows that the congruence

su3 C ru2 � 9su � r � 0 mod p

has a single solution modulo p (since p2 j �F), given (as is readily checked) by
r0 � 9r�1s mod p. We thus have x � r0y mod p, so that, writing x D r0y C vp,
we have

Fr;s.r0y C vp; y/ D p.a0v
3 C b0v

2y C c0vy2 C d0y
3/

and hence, renaming v,

Gr;s.x; y/ D a0x
3 C b0x

2y C c0xy2 C d0y
3 D 8;

where

a0 D sp2; b0 D .3r0sCr/p; c0 D 3r20sC2rr0�9s and d0 D .r30sCrr20�9r0s�r/=p:

We observe that

�Gr;s D 4p4:
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Once again, for our deterministic approach, we solve the equation Fr;s.x; y/ D
8p directly, while, for our heuristic approach, we consider instead the equation
Gr;s.x; y/ D 8.

5.3.3 Elliptic Curves of Discriminant �p2 and �p4

Elliptic curves of discriminant �p2 and �p4 arise from again solving the Thue
equations F.x; y/ D 8 and F.x; y/ D 8p, respectively, this time for cubic forms
F of discriminant �4p2. For such form to exist, we require that p D jr2 � 27s2j for
integers r and s (so that these primes are precisely those of the form ˙1 mod 12)
and find that F is necessarily equivalent to

Fr;s.x; y/ D sx3 C rx2y C 9sxy2 C ry3:

If we wish to solve Fr;s.x; y/ D 8p, as previously, we may note that, if r0 � �9r�1s
mod p, then

sr30 C rr20 C 9sr0 C r � r�3.r2 � 27s2/.r2 C 27s2/ � 0 mod p:

Again write x D r0y C vp, so that, renaming v, we have

Gr;s.x; y/ D a0x
3 C b0x

2y C c0xy2 C d0y
3 D 8;

where now

a0 D sp2; b0 D .3r0sCr/p; c0 D 3r20sC2rr0C9s and d0 D .r30sCrr20C9r0sCr/=p:

While it is not immediately obvious that, given we know the existence of integers
r and s such that p D jr2 � 27s2j, we can actually find them, it is, in fact,
computationally straightforward to do so, via the following result, an almost direct
consequence Theorem 112 of Nagell [34] :

Proposition 5.1 If p � 1 mod 12 is prime, there exist positive integers r and s
such that

r2 � 27s2 D p

and

r <
3

2

p
6p; s <

5

18

p
6p:

If p � �1 mod 12 is prime, there exist positive integers r and s such that

r2 � 27s2 D �p
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and

r <
5

2

p
2p; s <

1

2

p
2p:

As a final comment, we note that if we have two solutions to the equation jr2 �
27s2j D p, say .r1; s1/ and .r2; s2/, then the corresponding forms

s1x
3 C r1x

2y C 9s1xy2 C r1y
3 and s2x

3 C r2x
2y C 9s2xy2 C r2y

3

are readily seen to be GL2.Z/-equivalent.

6 Computational Details

The computations required to generate curves of prime conductor p (and subse-
quently conductor p2) fall into a small number of distinct parts.

6.1 Generating the Required Forms

To find the irreducible forms potentially corresponding to elliptic curves of prime
conductor p  X for some fixed positive real X, arguing as in Sect. 4, we generated
all reduced forms F.x; y/ D ax3Cbx2y Ccxy2Cd with discriminants in .0; 4X� and
Œ�4X; 0/, separately, by looping over a finite set of a; b; c; d values as prescribed by
Lemmata 4.2 and 4.4, respectively. As each form was generated, we checked to see
if it actually satisfied the desired definition of reduction. Of course, this does not
only produce forms with discriminant ˙4p—as each form was produced, we kept
only those whose discriminant was in the appropriate range, and equal to ˙4p for
some prime p. Checking primality was done using the Miller-Rabin primality test
(see [31, 40]; to make this deterministic for the range we require, we appeal to [43]).
While it is straightforward to code the above in computer algebra packages such as
sage, maple or magma, we instead implemented it in c++ for speed. To avoid
possible numerical overflows, we used the CLN library [25] for c++.

Constructing all the required positive discriminant forms took approximately 40
days of CPU time on a modern server, and about 300 gigabytes of disc space.
Thankfully, the computation is easily parallelised and it only took about 1 day of
real time. We split the jobs by running a manager which distributed a-values to the
other cores. The output from each a-value was stored as a tab-delimited text file
with one tuple of p; a; b; c; d on each line.

Generating all forms of negative discriminant took about 3 times longer and
required about 900 gigabytes of disc space. The distribution of forms is heavily
weighted to small values of a. To allow us to spread the load across many CPUs
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we actually split the task into 2 parts. We first ran a � 3, with the master node
distributing a-values to the other cores. We then ran a D 1; 2 with the master node
distributing b-values to the other cores. The total CPU time was about 3 times longer
than for the positive case (there being essentially three times as many forms), but
more real-time was required due to these complications. Thus generating all forms
took less than 1 week of real time but required about 1.2 terabytes of disc space.

We then sorted the forms into discriminant order, while keeping positive and
negative discriminant separated. Sorting a terabyte of data is a non-trivial task, and
in practice we did this by first sorting1 the forms for each a-value and then splitting
them into files of discriminants in the ranges Œn�109; .nC1/�109/ for n 2 Œ0; 999�.
Finally, all the files of each discriminant range were sorted together. This process for
positive and negative forms took around 2 days of real time. We found 9247369050
forms of positive discriminant and 27938060315 of negative discriminant, with
absolute value bounded by 1012. Of these, 475831852 and 828238359, respectively
had F.x; y/ D 8 solvable, leading to 159552514 and 276341397 elliptic curves of
positive and negative discriminant, respectively, with prime conductor up to 1012.

6.2 Complete Solution of Thue Equations: Conductor p

For each form encountered, we needed to solve the Thue equation

ax3 C bx2y C cxy2 C dy3 D 8

We approached this in two distinct ways.
To solve the Thue equation rigorously, we appealed to by now well-known

arguments of Tzanakis and de Weger [46], based upon lower bounds for linear forms
in complex logarithms, together with lattice basis reduction; these are implemented
in several computer algebra packages, including magma [8] and Pari/GP [37]. The
main computational bottleneck in this approach is typically that of computing the
fundamental units in the corresponding cubic fields; for computations p of size up
to 109 or so, we encountered no difficulties with any of the Thue equations arising
(in particular, the fundamental units occurring can be certified without reliance upon
the Generalized Riemann Hypothesis).

We ran this computation in magma [8], using its built in Thue equation solver.
Due to memory consumption issues, we fed the forms into magma in small batches,
restarting magma after each set. We saved the output as a tuple

p; a; b; c; d; n; f.x1; y1/; : : : ; .xn; yn/g;

1Using the standard unix sort command and taking advantage of multiple cores.
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where p; a; b; c; d came from the form, n counts the number of solutions of the
Thue equation and .xi; yi/ the solutions. These solutions can then be converted
into corresponding elliptic curves in minimal form using Theorem 3.1 and standard
techniques.

For positive discriminant, this approach works without issue for p < 1010. For
negative discriminant, however, the fundamental units in the associated cubic field
can be extremely large (in the neighbourhood of e

p
p). For this reason, finding all

negative discriminant curves with prime conductor exceeding 2 � 109 or so proves to
be extremely slow. Consequently, for large p, we turned to a non-exhaustive method,
which, though it finds solutions to the Thue equation, is not actually guaranteed to
find them all.

6.3 Non-exhaustive, Heuristic Solution of Thue Equations

If we wish to find all “small” solutions to a Thue equation (which, subject to
various well-accepted conjectures, might actually prove to be all solutions), there
is an obvious and very quick computational approach we can take, based upon the
idea that, given any solution to the equation F.x; y/ D m for fixed integer m, we
necessarily either have that x and y are small, or that x=y is a convergent in the
infinite simple continued fraction expansion to a root of the equation F.x; 1/ D 0.

Such an approach was developed in detail by Attila Pethő [38, 39]; in particular,
he provides a precise and computationally efficient distinction between “large” and
“small” solutions. Following this, for each form F under consideration, we expanded
the roots of F.x; 1/ D 0 to high precision, again using the CLN library for c++. We
then computed the continued fraction expansion for each real root, along with its
associated convergents. Each convergent x=y was then substituted into F.x; y/ and
checked to see if F.x; y/ D ˙1;˙8. Replacing .x; y/ by one of .�x;�y/; .2x; 2y/
or .�2x;�2y/, if necessary, then provided the required solutions of F.x; y/ D 8.
The precision was chosen so that we could compute convergents x=y with jxj; jyj 
2128 
 3:4 � 1038. We then looked for solutions of small height using a brute force
search over a relatively small range of values.

To “solve” F.x; y/ D 8 by this method, for all forms with discriminant ˙4p with
p  1012, took about 1 week of real time using 80 cores. The resulting solutions files
(in which we stored also forms with no corresponding solutions) required about 1.5
terabytes of disc space. Again, the files were split into files of absolute discriminant
(or more precisely absolute discriminant divided by 4) in the ranges Œn � 109; .n C
1/ � 109/ for n 2 Œ0; 999�.
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6.4 Conversion to Curves

Once one has a tuple a; b; c; d; x; y, one then computes GF.x; y/ and HF.x; y/, appeals
to Theorem 3.1 and checks twists. This leaves us with a list of pairs .c4; c6/
corresponding to elliptic curves. It is now straightforward to derive a1; a2; a3; a4; a6
for a corresponding elliptic curve in minimal form (see e.g. Cremona [15]). For each
curve, we saved a tuple p; a1; a2; a3; a4; a6;˙1 with the last entry being the sign of
the discriminant of the form used to generate the curve (which coincides with the
sign of the discriminant of the curve). We then merged the curves with positive
and negative discriminants and added the curves with prime conductor arising from
reducible forms (i.e. of small conductor or for primes of the form t2 C 64). After
sorting by conductor, this formed a single file of about 17 gigabytes.

6.5 Conductor p2

The conductor p2 computation was quite similar, but was split into parts.

6.5.1 Twisting Conductor p

The vast majority of forms of conductor p2 are quadratic twists of curves of
conductor p. To compute these we took all curves with conductor p  1010 and
computed c4 and c6. The twisted curve then has corresponding c-invariants

c04 D p2c4 and c06 D .�1/.p�1/=2p3c6:

The minimal a-invariants were then computed as for curves of conductor p.
We wrote a simple c++ program to read curves of conductor p and then twist

them, recompute the a-invariants and output them as a tuple p2; a1; a2; a3; a4; a6;˙1.
The resulting code only took a few minutes to process the approximately 1:1 � 107
curves.

6.5.2 Solving F.x; y/ D 8p with F of Discriminant ˙4p

There was no need to find forms for this computation; we reused the positive
and negative forms of discriminant ˙4p with p  1010 from the conductor-
p computations. We subsequently rigorously solved the corresponding equations
F.x; y/ D 8p for p  108. To solve the Thue equation F.x; y/ D 8p for 108 < p 
1010, using the non-exhaustive, heuristic method, we first converted the equation to
a pair of new Thue equations of the form Gi.x; y/ D 8 as described in Sect. 5.3.1
and then applied Pethő’s solution search method.
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The solutions were then processed into curves as for the conductor p case above,
and the resulting curves were twisted by ˙p in order to search for more curves of
conductor p2.

6.5.3 Solving F.x; y/ 2 f8; 8pg with F of Discriminant ˙4p2

To find forms of discriminant 4p2 with p  1010 we need only check to see
which primes are of the form p D r2 C 27s2 in the desired range. To do so, we
simply looped over r and s values and then again checked primality using Miller-
Rabin. As each prime was found, the corresponding p; r; s tuple was converted to
a form as in Sect. 5.3.2, and the Thue equations F.x; y/ D 8 and F.x; y/ D 8p
were solved, using the rigorous approach for p < 106 and the non-exhaustive
method described previously for 106 < p  1010. Again, in the latter situation, the
equation F.x; y/ D 8p was converted to a new equation G.x; y/ D 8 as described in
Sect. 5.3.2. The process for forms of discriminant �4p2 was very similar, excepting
that more care is required with the range of r and s. The non-exhaustive method
solving both F.x; y/ D 8 and F.x; y/ D 8p for positive and negative forms took
a total of approximately 5 days of real time on a smaller server of 20 cores. The
rigorous approach, even restricted to prime p < 106 was much, much slower.

The solutions were then converted to curves as with the previous cases and each
resulting curve was twisted by ˙p to search for other curves of conductor p2.

7 Data

7.1 Previous Work

The principal prior work on computing table of elliptic curves of prime conductor
was carried out in two lengthy computations, by Brumer and McGuinness [10] in
the late 1980s and by Stein and Watkins [45] slightly more than ten years later.
For the first of these computations, the authors fixed the a1; a2 and a3 invariants
(12 possibilities) and looped over a4 and a6 chosen to make the corresponding
discriminant small. By this approach, they were able to find 311243 curves of prime
conductor p < 108 (representing approximately 99:6% of such curves). In the
latter case, the authors looped instead over c4 and c6, subject to (necessary) local
conditions. They obtained a large collection of elliptic curves of general conductor
to 108, and 11378912 of those with prime conductor to 1010 (which we estimate to
be slightly in excess of 99:8% of such curves).
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7.2 Counts: Conductor p

By way of comparison, we found the following numbers of isomorphism classes of
elliptic curves over Q with prime conductor p  X:

X �E > 0 �E < 0 Ratio2 Total Expected Total / Expected
103 33 51 2:3884 84 68 1:2353

104 129 228 3:1239 357 321 1:1122

105 624 1116 3:1986 1740 1669 1:0425

106 3388 5912 3:0450 9300 9223 1:0084

107 19605 34006 3:0087 53611 52916 1:0131

108 114452 198041 2:9941 312493 311587 1:0029

109 685278 1187686 3:0038 1872964 1869757 1:0017

1010 4171055 7226982 3:0021 11398037 11383665 1:0013

1011 25661634 44466339 3:0026 70127973 70107401 1:0003

1012 159552514 276341397 2:9997 435893911 435810488 1:0002

The data above the line is rigorous (in case of positive discriminant); for negative
discriminant, we have a rigorous result only up to 2 � 109. For the positive forms
this took about 1 week of real time using 80 cores. Unfortunately, the negative
discriminant forms took significantly longer, roughly 2 months of real times using
80 cores. Heuristics given by Brumer and McGuinness [10] suggest that the
number of elliptic curves of negative discriminant of absolute discriminant up to
X should be asymptotically

p
3 times as many as those of positive discriminant

in the same range—here we report the square of this ratio in the given ranges.
The aforementioned heuristic count of Brumer and McGuinness suggests that the
expected number of E with prime NE  X should be

p
3

12

�Z 1
1

1p
u3 � 1du C

Z 1
�1

1p
u3 C 1

du

�
Li.X5=6/;

which we list (after rounding) in the table above. It should not be surprising that this
“expected” number of curves appears to slightly undercount the actual number, since
it does not take into account the roughly

p
X= log X curves of conductor p D n2C64

and discriminant �p2 (counting only curves of discriminant ˙p).

7.3 Counts: Conductor p2

To compile the final list of curves of conductor p2, we combined the five lists of
curves: twists of curves of conductor p, curves from forms of discriminant C4p and
�4p, curves from discriminant C4p2 and �4p2. The list was then sorted and any
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duplicates removed. The resulting list is approximately 1 gigabyte. The counts of
curves are below.

X �E > 0 �E < 0 Total Ratio2

103 53 93 146 3.0790

104 191 322 513 2.8421

105 764 1304 2068 2.9132

106 3764 6356 10120 2.8515

107 20539 35096 55635 2.9198

108 116894 200799 317693 2.9508

109 691806 1195262 1887068 2.9851

1010 4189445 7247980 11437425 2.9931

Subsequently we decided that we should recompute the discriminants of these
curves as a sanity check, by reading the curves into sage and using its built-in
elliptic curve routines to compute and then factor the discriminant. This took about
1 day on a single core.

The only curves of real interest are those that do not arise from twisting, i.e. those
of discriminant ˙p2, ˙p3 and ˙p4. In the last of these categories, we found only 5
curves, of conductors 112, 432, 4312, 4332 and 330132. The first four of these were
found by Edixhoven, de Groot and Top [21] (and are of small enough conductor to
now appear in Cremona’s tables). The fifth, satisfying

.a1; a2; a3; a4; a6/ D .1;�1; 1;�1294206576; 17920963598714/;

has discriminant 330134. For discriminants ˙p2 and ˙p3, we found the following
numbers of curves, for conductors p  X:

X �E D �p2 �E D p2 �E D �p3 �E D p3

103 12 4 7 4

104 36 24 9 5

105 80 58 12 9

106 203 170 17 15

107 519 441 24 23

108 1345 1182 32 36

109 3738 3203 48 58

1010 10437 9106 60 86

It is perhaps worth observing that the majority of these curves arise from, in the
case of discriminant ˙p2, forms with, in the notation of Sects. 5.3.2 and 5.3.3, either
r or s in f1; 8g. Similarly, for �E D ˙p3, most of the curves we found come from
forms in the eight one-parameter families described in Sect. 5.3.1.
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7.4 Thue Equations

It is worth noting that all solutions we encountered to the Thue equations
F.x; y/ D 8 and F.x; y/ D 8p we treated were with jxj; jyj < 230. The “largest” such
solution corresponded to the equation

355x3 C 293x2y � 1310xy2 � 292y3 D 8;

with solution

.x; y/ D .188455233;�82526573/:

This leads to the elliptic curve of conductor 948762329069,

y2 C xy C y D x2 � 2x2 C a4x C a6;

with

a4 D �1197791024934480813341

and

a6 D 15955840837175565243579564368641:

In the following table, we collect data on the number of GL2.Z/-equivalence
classes of irreducible binary cubic forms of discriminant 4p or �4p for p in Œ0;X�,
denoted P3.0;X/ and P3.�X; 0/, respectively. We also provide counts for those
forms where the corresponding equation F.x; y/ D 8 has at least one integer
solution, denoted P�3 .0;X/ and P�3 .�X; 0/ for positive and negative discriminant
forms, respectively.

X P3.0;X/ P�3 .0;X/ P3.�X; 0/ P�3 .�X; 0/
103 23 22 78 61

104 204 163 740 453

105 1851 1159 6104 2641

106 16333 7668 53202 16079

107 147653 49866 466601 97074

108 1330934 314722 4126541 582792

109 12050910 1966105 36979557 3530820

1010 109730653 12229663 334260481 21576585

1011 1004607003 76122366 3045402451 133115651

1012 9247369050 475831852 27938060315 828238359
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Our expectation is that the number of forms for which the equation F.x; y/ D 8 has
solutions with absolute discriminant up to X is o.X/ (i.e. this occurs for essentially
zero percent of forms).

7.5 Elliptic Curves with the Same Prime Conductor

One might ask how many isomorphism classes of curves of a given prime conductor
can occur. If one believes new heuristics that predict that the Mordell-Weil rank of
E=Q is absolutely bounded, then this number should also be so bounded. As noted
by Brumer and Silverman [11], there are 13 curves of conductor 61263451. Up to
p < 1012, the largest number we encountered was for p D 530956036043, with 20
isogeny classes, corresponding to Œa1; a2; a3; a4; a6� as follows :

Œ0;�1; 1;�1003; 37465� ; Œ0;�1; 1;�1775; 45957� ;
Œ0;�1; 1;�38939; 2970729�; Œ0;�1; 1;�659;�35439� ;
Œ0;�1; 1; 2011; 4311� ; Œ0;�2; 1;�27597;�1746656�;
Œ0;�2; 1; 57; 35020� ; Œ1;�1; 0;�13337473; 18751485796�;
Œ0; 0; 1;�13921; 633170�; Œ0; 0; 1;�30292;�2029574�;
Œ0; 0; 1;�6721;�214958� ; Œ0; 0; 1;�845710;�299350726� ;
Œ0; 0; 1;�86411851; 309177638530�; Œ0; 0; 1;�10717; 428466�;
Œ1;�1; 0;�5632177; 5146137924�; Œ1;�1; 0; 878; 33379� ;
Œ1;�1; 1; 1080; 32014� ; Œ1;�2; 1;�8117;�278943� ;
Œ1;�3; 0;�2879; 71732� ; Œ1;�3; 0;�30415;�2014316� :

Of these 20 curves, 2 have rank 3, 3 have rank 2, 9 have rank 1 and 6 have rank 0. All
have discriminant �p. The class group of Q.

p
3 � 530956036043/ is isomorphic to

Z=3Z ˚ Z=3Z ˚ Z=3Z;

which, via a classical result of Hasse [26], explains the existence of a large
number of cubic forms of discriminant �4p. Elkies [22] found examples of rather
larger conductor with more curves, including 21 for p D 14425386253757 and
discriminant p, 24 for p D 998820191314747 and discriminant �p.

7.6 Rank and Discriminant Records

In the following table, we list the smallest prime conductor with a given Mordell-
Weil rank. These were computed by running through our data, using Rubinstein’s
upper bounds for analytic ranks (as implemented in Sage) to search for candidate
curves of “large” rank which were then checked using mwrank.
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N Œa1; a2; a3; a4; a6� sign.�E/ rk.E.Q/
37 Œ0; 0; 1;�1; 0� C 1

389 Œ0; 1; 1;�2; 0� C 2

5077 Œ0; 0; 1;�7; 6� C 3

501029 Œ0; 1; 1;�72; 210� C 4

19047851 Œ0; 0; 1;�79; 342� � 5

6756532597 Œ0; 0; 1;�547;�2934� C 6

It is perhaps noteworthy that the curve listed here of rank 6 has the smallest
known minimal discriminant for such a curve (see Table 4 of Elkies and Watkins
[23]).

If we are interested in similar records over all curves, including composite
conductors, we have

N Œa1; a2; a3; a4; a6� sign.�E/ rk.E.Q/
37 Œ0; 0; 1;�1; 0� C 1

389 Œ0; 1; 1;�2; 0� C 2

5077 Œ0; 0; 1;�7; 6� C 3

234446 Œ1;�1; 0;�79; 289� C 4

19047851 Œ0; 0; 1;�79; 342� � 5

5187563742 Œ1; 1; 0;�2582; 48720� C 6

382623908456 Œ0; 0; 0;�10012; 346900� C 7

Here, the curves listed above the line are proven to be those of smallest conductor
with the given rank. Those listed below the line have the smallest known conductor
for the corresponding rank.
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Part IX
Sustainability and Cooperation



Sustainability of Cooperation in Dynamic
Games Played over Event Trees

Georges Zaccour

Abstract In this tutorial, we recall the main ingredients of the theory of dynamic
games played over event trees and show step-by-step how to build a sustainable
cooperative solution.

Keywords Dynamic games • Cooperation • Sustainability

1 Introduction

Many problems in economics, engineering and management science have the
following three features in common: (a) They involve only a few agents (players),
which have interdependent payoffs, that is, the action of any player affects the
payoffs of all. (b) The agents cooperate or compete repeatedly over time, and
the problem involves an accumulation process, e.g., production capacity, pollution
stock. (c) Some of the parameter values are uncertain. A natural framework to
deal with such problems is the theory of dynamic games played over event trees
(DGPET). As an illustration of such a setting, consider a region served by a
few electricity producers (players) who compete in one or more market segments
(peak-load, local market, export market, etc.). At each period, the price in each
segment depends on the total available supply and on the realization of some
random events (e.g., weather conditions or the state of the economy). Further,
producers invest in different production capacities (nuclear, thermal, hydro, etc.)
over time. In the terminology of dynamic games, the quantities committed to each
market segment, which are constrained by available capacity, and the investments
in different production technologies are the player’s control variables and the
installed production capacities are the state variables. The players must account for
uncertainty in demand when they make their decisions.

Now, suppose that the players (firms, countries, individuals) involved in an
example of DGPET agree to cooperate, that is, to coordinate their strategies in order
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to maximize their joint payoff over a given time interval Œ0;T�. A legitimate question
is then how to ensure that each player will indeed fulfill her part of the agreement
over time? This is the question we deal with in this paper.

It is useful from the outset to make some clarifying observations regarding the
nature of the problem at hand. First, although it may be appealing to favor short-term
agreements to keep all options open, long-term commitments cannot be avoided
when the contracting cost is high. For instance, it is unthinkable that the government
and the civil service union meet every Monday to negotiate that week’s employment
conditions. Common sense clearly suggests that both parties should avoid costly and
time-consuming negotiations and agree on a collective labor agreement that will
remain in place for a number of years.

Second, it is an empirical fact that some long-term agreements are abandoned
before their maturity. A drastic illustration of this is the high level of divorce
observed around the globe. Haurie [19] cites two reasons why an agreement
(contract or cooperative solution), which suits everyone at an initial instant of time
may not reach its maturity date T: (i) If the players agree to renegotiate the original
agreement at time 	 2 .0;T�, it is not certain that they will all want to continue with
that agreement. In fact, they will not go on with the original agreement if it is not
a solution of the cooperative game that starts out at time 	 . (ii) If a player obtains
a higher payoff by leaving the agreement at time 	 2 .0;T� than by continuing to
implement her cooperative strategies, then she will indeed deviate from cooperation.
In the parlance of dynamic optimization and dynamic games, such a breakdown
means that the agreement is time inconsistent. It is important to mention here that
if the cooperative agreement is an equilibrium, then item (ii) above cannot occur
because no player would, by definition, find it optimal to deviate from the solution.
It is well-known that, except in games having very special structures (see, e.g.,
Chiarella et al. [6] and Martín-Herrán and Rincón-Zapatero [32]), a Pareto-optimal
(or cooperative) solution is not an equilibrium.

The rest of the paper is organized as follows: In Sect. 2, we give a brief account
of the literature dealing with the sustainability of cooperation in dynamic games. In
Sect. 3, we recall the main ingredients of dynamic games played over event trees.
We explain the approach to achieve a node-consistent outcome in DGPET in Sect. 4.
In Sect. 5, we briefly conclude.

2 Brief Literature Review

The literature in dynamic games has followed two streams in its quest of sustain
cooperation over time, namely, building cooperative equilibria or defining time-
consistent solutions.

Through the implementation of some (punishing) strategies, the first stream seeks
to make the cooperative solution an equilibrium of an associated noncooperative
game. If this is achieved, then the result will be at once collectively optimal and
stable, as no player will find it optimal to deviate unilaterally from the equilibrium.



Sustainability of Cooperation in Dynamic Games Played over Event Trees 421

To build a cooperative equilibrium, players can for instance implement trigger
strategies, which are strategies based on the history of the game. Loosely speaking,
such strategies are defined as follows: At any decision node, if the history of the
game has been till now cooperative, then each player will implement the cooperative
action; otherwise, which means that a player has cheated, then all the other players
implement their punishing strategies, which are set out in a pre-play arrangement.
Intuitively, for such punishing strategies to work, they must be: (i) effective, that is,
the deviator would lose from cheating on the agreement, and (ii) credible, that is, it
is in the best interest of the other players to implement their punishing strategies if
a deviation is observed, rather than sticking to cooperation.

Sustaining a Pareto outcome as an equilibrium has a long history in repeated
games, and a well-known result in this area is the so-called folk theorem, which
(informally) states that if the players are sufficiently patient, then any Pareto-optimal
outcome can be achieved as a Nash equilibrium; see, e.g., Osborne and Rubinstein
[37]. A similar theorem has been proved for stochastic games by Dutta [10]. Trigger
strategies have also been considered in multistage games and in differential games;
see the early contributions by Tolwinski et al. [54], Haurie and Pohjola [20] and
Haurie et al. [21]. The books by Dockner et al. [7] and Haurie et al. [22] provide a
comprehensive introduction to cooperative equilibria in differential games.

Having the same objective of embedding the cooperative solution with an
equilibrium property, Ehtamo and Hämäläinen [11–13] proposed the concept of
incentive strategies and a corresponding equilibrium in two-player differential
games. A player’s incentive strategy is a function of the other player’s action. In
an incentive equilibrium, each player implements her part of the agreement if the
other player also does. In terms of computation, the determination of an incentive
equilibrium requires solving a pair of optimal-control problems, which is in general
relatively easy to do. A main concern with incentive strategies is their credibility,
since it may happen that the best response to a deviation from cooperation is to
stick to cooperation rather than to also deviating. In such a situation, the threat
of punishment for a deviation is an empty one. In applications, one can derive
the conditions that the parameter values must satisfy to have credible incentive
strategies. For a discussion of the credibility of incentive strategies in differential
games with special structures, see Martín-Herrán and Zaccour [34, 35]. A further
drawback of incentive equilibrium is that the concept is defined for only two players.
Incentive strategies and equilibria have been applied in a number of areas, including
environmental economics (see, e.g., Breton et al. [3], de Frutos and Martín-Herrán
[8]), marketing (see, e.g., Martín-Herrán and Taboubi [33], Buratto and Zaccour [4])
and in closed-loop supply chains (De Giovanni et al. [9]).

In the second stream, to which this contribution belongs, the idea is to define a
time-consistent decomposition over time of the total cooperative payoff (allocation)
of player j; j 2 M; over the planning horizon Œ0;T�. An allocation is time consistent
if at any intermediate instant of time the cooperative payoff-to-go dominates (at least
weakly) the noncooperative payoff-to-go for all players. It is important to mention
that the inequality is verified along the cooperative state trajectory, which means
that cooperation has prevailed up to the time of comparison. A stronger condition is
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used in the concept of agreeability, where the above payoff dominance must hold
along any feasible state trajectory (see Kaitala and Pohjola [28, 29] and Jørgensen
et al. [25, 26]). The literature on time consistency in cooperative dynamic games has
essentially been in continuous time. The concept was initially proposed in Petrosjan
[40] and Petrosjan and Danilov [43–45]. In these publications in Russian, as well
as in subsequent books in English (Petrosjan [41], Petrosjan and Zenkevich [47]),
and in Petrosjan [40], time consistency was termed dynamic stability. In Yeung and
Petrosjan [57] a proportional time-consistent solution was investigated, whereas
Petrosjan and Zaccour [46] proposed a time-consistent Shapley value. Jørgensen
and Zaccour [27] and Yeung and Petrosjan [60] derived time-consistent solutions in
environmental and joint-venture games, respectively. Yeung and Petrosjan [58, 59]
and Yeung et al. [61] studied time consistency in stochastic differential games. For a
general discussion of time consistency in differential games, see the book by Yeung
and Petrosjan [59] and the survey by Zaccour [63].

Other papers discussed time-consistent solutions (or very close concepts) for
deterministic or stochastic discrete-dynamic games; see, e.g., Chandler and Tulkens
[5], Filar and Petrosjan [14], Germain et al. [17], Petrosjan et al. [42], Predtetchinski
[51], Lehrer and Scarsini [31] and Xu and Veinott [56]. Finally, Avrachenkov et al.
[2] established conditions for time consistency for cooperative Markov decision
processes.

3 Games Played over Event Trees

In this section, we recall the main elements of DGPET. This class of games was
introduced by Zaccour [62] and Haurie et al. [23], and further developed in Haurie
and Zaccour [24]. The initial motivation was an analysis of the European natural
gas market, and more specifically, the forecasting of long-term deliveries of gas
from four producers (Algeria, Netherlands, Norway and the former USSR) to
nine consuming European regions. The deliveries and investments are the control
variables, and production capacities and reserves of gas are the state variables.
Each consuming region is described by a time-varying demand function whose
parameter values are uncertain, with the stochasticity represented by an event tree.
This is a situation where the three features mentioned in the introduction, that is,
strategic interaction, dynamic, and uncertainty, are clearly present. More recently,
the class of DGPET has been applied to electricity markets in, e.g., Pineau and
Murto [48], Genc et al. [15], Genc and Sen [16] and Pineau et al. [50]. Here, the
main objective is to predict equilibrium investments in different generation tech-
nologies in deregulated electricity markets. Parilina and Zaccour [39] constructed an
"-cooperative equilibrium for this class of games and illustrated their results
using a linear-quadratic game in environmental economics. For a comprehensive
introduction to the class of DGPET, see Haurie et al. [22].

Let T D f0; 1; : : : ; Tg be the set periods, and denote by . .t/ W t 2 T / the
exogenous stochastic process represented by an event tree, with a root node n0 in
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period 0 and a set of nodes N t in period t D 0; 1; : : : ; T. Let a.nt/ 2 N t�1
be the unique predecessor of node nt 2 N t for t D 0; 1; : : : ; T, and denote by
S.nt/ 2 N tC1 the set of all possible direct successors of node nt 2 N t for t D
0; 1; : : : ; T � 1. We call scenario any path from node n0 to a terminal node nT .
Each scenario has a probability, and the probabilities of all scenarios sum up to 1.
We denote by �nt

the probability of passing through node nt, which corresponds
to the sum of the probabilities of all scenarios that contain this node. In particular,
�n0 D 1; and �nT

is equal to the probability of the single scenario that terminates in
(leaf) node nT 2 N T . Also,

P
nt2N t �nt D 1;8t.

Denote by M D f1; : : : ;mg the set of players. Denote by uj.nt
l/ 2 IRmj the

decision variables of player j at node nt
l, and let u.nt

l/ D �
u1.nt

l/; : : : ; um.nt
l/
�
. Let

X � IRp, with p a given positive integer, be a state set. For each node nt
l 2 N t,

t D 0; 1; : : : ;T; let U
nt

l
j � IR�

nt
l

j , with �
nt

l
j a given positive integer, be the control set

of player j. Denote by Unt
l D U

nt
l
1 � � � � � U

nt
l

j � � � � � U
nt

l
m the product control sets. A

transition function f nt
l .�; �/ W X � Unt

l 7! X is associated with each node nt
l. The state

equations are given as

x.nt
l/ D f a.nt

l/
�
x
�
a
�
nt

l

��
; u
�
a
�
nt

l

���
; (1)

u
�
a
�
nt

l

�� 2 Ua.nt
l/; nt

l 2 N t; t D 1; : : : ;T: (2)

At each node nt
l, t D 0; : : : ;T � 1, the reward to player j is a function of the state

and of the controls of all players, given by �
nt

l
j .x.n

t
l/; u.n

t
l//. At a terminal node nT

l ;

the reward to player j is given by the function ˚
nT

l
j .x.n

T
l //.

We assume that player j 2 M maximizes her expected stream of payoffs. The
state equations and the reward functions define the following multistage game,
where we let

Qx D fx.nt
l/ W nt

l 2 N t; t D 0; : : : ;Tg;
Qu D fu.nt

l/ W nt
l 2 N t; t D 0; : : : ;T � 1g;

and Jj.Qx; Qu/ be the payoff to player j, that is,

Jj.Qx; Qu/ D
T�1X
tD0

X
nt

l2N t

�.nt
l/�

nt
l

j .x.n
t
l/; u.n

t
l//

C
X

nt
l2NT

�.nT
l /˚

nT
l

j .x.n
T
l //; j 2 M; (3)

s:t:
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x.nt
l/ D f a.nt

l/.x.a.nt
l//; u.a.n

t
l///; (4)

u.a.nt
l// 2 Ua.nt

l/; nt
l 2 N t; t D 1; : : : ;T;

x.n0/ D x0given: (5)

Remark 3.1 As we are dealing with a finite horizon, we do not discount future
payoffs. Adding discounting would not cause any conceptual difficulty.

Remark 3.2 The DGPET framework can take into account more complicated
constraints on the control variables than the ones considered here, e.g., constraints
with lags and coupled constraints (see Kanani Kuchesfehani and Zaccour [30]).

As alluded to before, dealing with long-term cooperation involves at intermediate
instants of time, a comparison of noncooperative and cooperative payoffs-to-go.

3.1 Noncooperative and Cooperative Outcomes

In DGPET, the control and state variables are node dependent, and each node
nt 2 N t represents a possible sample value of the history ht of the  .:/ process up
to time t. Because of this, a strategy in DGPET is referred to as S-adapted strategy,
where the S stands for sample.

Definition 3.1 An admissible S-adapted strategy for player j is a vector Quj D
fuj.nt

l/ W nt
l 2 N t; t D 0; : : : ;T � 1g, that is, a plan of actions adapted to the

history of the random process represented by the event tree.

Denote by Qu D .Quj W j 2 M/ the S-adapted strategy vector of the m players. We
can thus define a game in normal form,1 with payoffs Wj.Qu; x0/ D Jj.Qx; Qu/, j 2 M,
where Qx is obtained from Qu as the unique solution of the state equations that emanate
from the initial state x0.

If the game is played noncooperatively, then the players will seek a Nash
equilibrium in S-adapted strategies defined as follows:

Definition 3.2 An S-adapted Nash equilibrium is an admissible S-adapted strategy
QuN such that for every player j the following holds:

Wj.QuN ; x0/ � Wj.ŒQuj; QuN�j�; x
0/;

where QuN�j is the Nash equilibrium policy vector of all players i ¤ j.

We make the following remarks.

1To define a game in normal form, we need three elements: (a) a finite set of players M D
f1; : : : ;mg, (b) a strategy set Si of player i 2 M, and (c) a payoff function �i W Q

i2M
Si! R.
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Remark 3.3 Although the S-adapted and open-loop equilibria look similar, they
differ in the definitions of the state equations and control variables. In an open-loop
information structure, the control variables and the state equations are defined over
time. Here, as mentioned above, they are defined (indexed) over the set of nodes of
the event tree.

Remark 3.4 As a DGPET has a normal-form representation, the conditions for
existence and uniqueness of a Nash equilibrium are the same as in classical games
with continuous payoffs with constraints as established in Rosen [53].2

If the players agree to cooperate, then they will optimize the sum of their payoffs
throughout the entire horizon,3 that is,

max
Quj;j2M

W D
X
j2M

Wj
�Qu; x0� :

Denote by Qu� �x0� the resulting vector of cooperative controls, i.e.,

Qu� �x0� D arg max
X
j2M

Wj
�Qu; x0� :

Remark 3.5 The vector Qu� �x0� corresponds to the agreement signed by all players
at initial date. This is the vector that we would like to see it implemented throughout
the duration of the game.

Denote by Qx� D ˚
x�.nt

l/ W nt
l 2 N t; t D 0; 1; : : : ;T

�
the cooperative state

trajectory generated by Qu� �x0�.

4 Node Consistency

Informally speaking, a cooperative solution in DGPET is node consistent, if the
cooperative payoff-to-go of player j; j 2 M, in the subgame starting at any node is at
least equal to the noncooperative payoff-to-go in this subgame. We reiterate that this
comparison takes place along the cooperative state trajectory, meaning that at node
of comparison nt

l;n
t
l 2 N t; t D 1; : : : ;T; the state value is Qx� �nt

l

�
. If all players

implement the prescribed actions by joint maximization, then they will collectively
obtain the following outcome:

2For a detailed treatment in the context of this class of games, see Haurie et al. [22].
3We can easily extend our framework to the case where the players maximize a weighted sum of
payoffs.
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W� D
X
j2M

Wj
�Qu� �x0�� :

Two questions remain unresolved:

1. How can W� be divided among the players? Note that Wj
�Qu� �x0�� is the before

side-payment payoff of player j and not what she will actually obtain after side
payments have been made.4

2. How do we design a node-consistent agreement? That is, how is it possible to
allocate each player’s after side-payment payoff over nodes such that all players
stick to the agreement as time goes by?

In order to address these issues, we need to implement the following steps:

1. Define a cooperative game and compute all characteristic function values.
2. Choose a solution concept. This amounts at selecting an imputation, that is, a

vector whose entries correspond to after-side-payment outcomes of the players.
3. Compute for each node of the event tree the cooperative and noncooperative

payoffs-to-go.
4. Define an imputation distribution procedure (IDP) that is node consistent.

4.1 Defining the Cooperative Game

A cooperative game is a triplet .M; v;Y/, where M is the set of players; v is the
characteristic function that assigns to each coalition G;G � M, a numerical value,

v .G/ W P.M/ ! R; v .∅/ D 0;

where P.M/ is the power set of M; and Y is the set of imputations, that is,

Y D
8<
:.y1; : : : ; ym/ such that yj � v .fjg/ and

X
j2M

yj D v .M/

9=
; :

The characteristic function measures the power or the strength of a coalition. Its
precise definition depends on the assumption made about what the left-out players—
that is, the complement subset of players MnG—will do (see, e.g., Ordeshook
[36] and Osborne and Rubinstein [37]). In their seminal book, von Neumann and
Morgenstern [55] interpreted v .G/ as the largest joint payoff that a coalition G can
guarantee its members. In the absence of externalities, i.e., if the payoffs to the
members of a coalition G is independent of the actions of the non-members (MnG),

4The implicit assumption here is that players’ utilities (gains) are comparable and transferable;
otherwise side payments do not make sense.
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then v .G/would be the result of an optimization problem. However, in the presence
of externalities, a prediction of the actions of the non-members of G plays a central
role in the computation of the worth of a coalition. This aspect has led to different
definitions of a characteristic function (see Aumann [1] and Chander and Tulkens
[5]). Note that the developments to come are valid for any choice of v .�/.

The definition of the set of imputations involves two conditions, namely,

individual rationality (yj � v .fjg/) and collective rationality
�P

j2M yj D v .M/
�

.

Individual rationality means that no player will accept an allocation or imputation
that gives her less than what she can secure by acting alone. Collective rationality
means that the total collective gain should be allocated, that is, no deficit or subsidies
are considered. To make the connection with what was said earlier, observe that
v .M/ D W� D P

j2M Wj
�Qu� �x0��, and that player j will get some yj, which is

still to be decided (in the next step) and which will not necessarily be equal to
Wj
�Qu� �x0��.

4.2 Selecting Imputations

Game theorists have proposed many solutions for sharing the total cooperative
gain among the players. These solutions are typically based on a series of axioms
or requirements that the allocation(s) must satisfy, e.g., fairness, stability. We
distinguish between solution concepts that select a unique imputation in Y, e.g.,
Shapley value and the nucleolus, and those that select a subset of imputations, e.g.,
the core and stable set. The two most used solution concepts in applications of
cooperative games are the Shapley value and the core. We will use them to illustrate
the process of building a node-consistent cooperative solution.

Definition 4.3 The Shapley value is an imputation � D .�1; : : : �m/ defined by

�j D
X
G�M
j2G

.m � g/Š.g � 1/Š

mŠ
Œv .G/ � v .Gnfjg/�: (6)

Being an imputation, the Shapley value satisfies individual rationality, i.e., �j �
v .fjg/ for all j 2 M. The term Œv .G/ � v .Gnfjg/� corresponds to the marginal
contribution of player j to coalition G. Thus, the Shapley value allocates to each
player the weighted sum of her marginal contributions to all coalitions that she may
join. The Shapley value is the unique imputation satisfying three axioms: fairness

(identical players are treated in the same way), efficiency

 P
j2M

�j D v .M/

!
and

linearity (if v and w are two characteristic functions defined for the same set of
players, then �j .v C w/ D �j .v/C �j .w/ for all j 2 M).
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To define the core, we need to introduce the concept of dominated imputations.
Let y D .y1; : : : ; yn/ and z D .z1; : : : ; zn/ be two imputations of the cooperative
game < M; v;Y > :

Definition 4.4 The imputation y D .y1; : : : ; ym/ dominates the imputation z D
.z1; : : :, zm/ through a coalition G if the following two conditions are satisfied:

feasibility condition W
X
j2G

yj  v.G/;

preferability condition W yj > zj; 8j 2 G:

Definition 4.5 The core is the set of all undominated imputations

The following theorem, due to Gillies [18], characterizes the set of imputations
belonging to the core of a cooperative game.

Theorem 4.1 An imputation y D .y1; : : : ; ym/ is in the core if

X
j2G

yj � v.G/;8G � M:

In other words, the above condition states that an imputation is in the core if it
allocates to each possible coalition an outcome that is at least equal to what this
coalition can secure by acting alone. Consequently, the core is defined by

C D
8<
:.y1; : : : ; ym/ ; such that

X
j2G

yj � v.G/;8G � M; and
X
j2M

yj D v .M/

9=
; :

Note that the core may be empty, may be a singleton or may contain many
imputations.5

5The following example illustrates this statement. Consider a three-player cooperative game with
characteristic function values given by

v.f1g/ D v.f2g/ D v.f3g/ D 0;

v.f1; 2g/ D v.f1; 3g/ D v.f2; 3g/ D a; v.f1; 2; 3g/ D 1

where 0 < a � 1: It is easy to verify that three cases can occur: (i) If 0 < a < 2=3, then the core
contains all imputations satisfying yj � 0;P

j2G
yj � a and

P
j2M

yj D 1: (ii) If a D 2=3, then the core

is a singleton, that is, the only imputation belonging to the core is .1=3; 1=3; 1=3/. (iii) If a > 2=3,
then the core is empty.
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4.3 Cooperative and Noncooperative Payoffs-to-Go

Introduce the following notation:

Quj
�
x�
�
nt

l

�� W An admissible strategy for player j in the subgame starting in
node nt

l, with initial state x�
�
nt

l

�
, nt

l 2 N t
; t D 1; : : : ;T, and Qu �x� �nt

l

�� D
.Quj
�
x�
�
nt

l

�� W j 2 M/:
QuN

j

�
x�
�
nt

l

�� W S-adapted equilibrium strategy for player j in the subgame starting

in node nt
l, with initial state x�

�
nt

l

�
, nt

l 2 N t
; t D 1; : : : ;T, and QuN

�
x�
�
nt

l

�� D
.QuN

j

�
x�
�
nt

l

�� W j 2 M/.
QuN

j

�
x�
�
nt

l

�
;
�
n	v; n

T
w

	� W The trajectory of QuN
j

�
x�
�
nt

l

��
on the path emanating from

node n	v; n
	
v 2 N 	 ; 	 > t, and terminating at node nT

w 2 N T .
Qu�j
�
x�
�
nt

l

�� W Cooperative strategy (control) for player j in the subgame starting
in node nt

l, with initial state x�
�
nt

l

�
, nt

l 2 N t
; t D 1; : : : ;T, and Qu� �x� �nt

l

�� D
.Qu�j

�
x�
�
nt

l

�� W j 2 M/:

Qu�j
�
x�
�
nt

l

�
;
�
n	v; n

T
w

	� W The trajectory of Qu�j
�
x�
�
nt

l

��
on the path emanating from

node n	v; n
	
v 2 N 	 ; 	 > t, and terminating at node nT

w 2 N T .
WN

j

�Qu �x� �nt
l

��� W S-adapted equilibrium payoff of player j in the subgame start-
ing in node nt

l, with initial state x�
�
nt

l

�
, nt

l 2 N t
; t D 1; : : : ;T.

W�j
�Qu �x� �nt

l

��� W Payoff of player j in the cooperative game starting in node nt
l,

with initial state x�
�
nt

l

�
, nt

l 2 N t
; t D 1; : : : ;T.

Remark 4.6 The trajectories QuN
j

�
x�
�
nt

l

�
;
�
n	v; n

T
w

	�
and QuN

j

�
x�
�
n	v
�
;
�
n	v; n

T
w

	�
do

not, in general, coincide. One reason is that the trajectory QuN
j

�
x�
�
nt

l

�
;
�
n	v; n

T
w

	�
has been computed assuming that the players have cooperated only during the time
interval Œ0; t�, whereas QuN

j

�
x�
�
n	v
�
,
�
n	v; n

T
w

	 �
is computed under the assumption of a

cooperative mode of play on Œ0; 	�, with 	 > t.

If the players adopt the Shapley value, then, in the whole game, player j gets the
following outcome:

�j
�
x0
�
n0
�� D

X
G�M
j2G

.m � g/Š.g � 1/Š

mŠ
Œv
�
GI x0

�
n0
�� � v

�
GnfjgI x0

�
n0
��
�; (7)

with

X
j2M

�j
�
x0
�
n0
�� D v

�
MI x0

�
n0
��
:

Similarly, the Shapley value in the subgame starting in node nt
l and in state Qx� �nt

l

�
is given by
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�j
�
x�
�
nt

l

�� D
X
G�M
j2G

.m � g/Š.g � 1/Š

mŠ

�
v
�
GI x�

�
nt

l

�� � v �GnfjgI x�
�
nt

l

��	
;

X
j2M

�j
�
x�
�
nt

l

�� D v
�
MI x�

�
nt

l

��
: (8)

Now, suppose that the players wish to implement an imputation in the core. The
set of imputations in the core of the whole game is given by

C
�
x0
�
n0
�� D

n �
y1
�
x0
�
n0
��
; : : : ; ym

�
x0
�
n0
��� j

X
j2G

yj
�
x0
�
n0
�� � v.GI x0/;

8G � M; and
X
j2M

yj
�
x0
�
n0
�� D v.MI x0/

o
; (9)

and in the subgame starting from node nt
l, with state value x�

�
nt

l

�
, given by

C.x�.nt
l// D

n �
y1
�
x�.nt

l/
�
; : : : ; ym

�
x�.nt

l/
�� j

X
j2G

yj � v.GI x�.nt
l//

8G � M; and
X
j2M

yj
�
x�.nt

l/
� D v.MI x�.nt

l//
o
: (10)

A main difficulty in defining a node-consistent core is that C.x0
�
n0
�
/ and C.x�.nt

l//

are not singletons. This implies that the players must agree, at each node, on the
imputation that they wish to implement in the subgame starting at that node. Further,
we assume that the core of any subgame is nonempty.

4.4 Defining a Node-Consistent Allocation

A cooperative solution in DGPET is node consistent at x0
�
n0
�
, if the cooperative

payoff-to-go of player j; j 2 M, in the subgame starting at node nt
l 2 N t

; t D
1; : : : ;T, is at least equal to the noncooperative payoff-to-go in this subgame. This
will be achieved by introducing an imputation distribution procedure (IDP), that is,
payment functions ˇj

�
x�
�
nt

l

��
; j 2 M; nt

l 2 N t
; t D 1; : : : ;T. The specific values

of an IDP will of course depend on the chosen imputation. The idea of IDP was
originally introduced in Petrosjan and Danilov [43].
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4.4.1 Node-Consistent Shapley Value

Let us suppose that the players choose the Shapley value as solution of the
cooperative game.

Definition 4.6 An imputation distribution procedure of the Shapley value at x0 .n0/
is given by

˚
ˇj
�
x�
�
nt

l

���
nt

l2N t
;tD1;:::;T ; j 2 M; satisfying

�j
�
x0
�
n0
�� D

t�1X
�D0

X
n�k2N �

�.n�k /ˇj.x
�.n�k //; for all j 2 M: (11)

Clearly, an IDP always exists as it simply requires the satisfaction of an
accounting condition stating that any stream of payments to a player is feasible as
long as its total expected value is equal to what that player is entitled to in the whole
game. Note that the payments ˇj.x�.n�k // are not (necessarily) equal to the realized

payoffs, that is, �
nt

l
j

�
x�.nt

l/; Qu�.nt
l/
�
. Now, we add the node-consistency condition.

Definition 4.7 The Shapley value �j
�
x0
�
n0
��

and the corresponding imputation
distribution procedure

˚
ˇj
�
x�
�
nt

l

���
nt

l2N t
;tD1;:::;T ; j 2 M; are node consistent at

x0 .n0/, if for any
�
x�
�
nt

l

��
, nt

l 2 N t
; t D 0; : : : ;T, it holds that

�j
�
x0
�
n0
�� D

t�1X
�D0

X
n�k2N �

�.n�k /ˇj.x
�.n�k //

C
X

n�k2N t

�.n�k /�j
�
x�.nt

l/
�
; 8 j 2 M: (12)

The definition states that what we allocate till any intermediate node using the
IDP, plus the Shapley value payments in the subgame starting in that node must be
equal to what player j is entitled to in the whole game, that is, her Shapley value
�j
�
x0
�
n0
��

. What remains to be done is to show that there exists an IDP satisfying
the above definition. The following theorem, due to Reddy et al. [52], gives the
result.

Theorem 4.2 The IDP
�
ˇ1
�
x�
�
nt

l

��
; : : : ; ˇm

�
x�
�
nt

l

���
defined by

ˇj
�
x�
�
nt

l

�� D �j
�
x�
�
nt

l

�� �
X

ntC1
k 2S .nt

l/

�.ntC1
k jnt

l/�j
�
x�
�
ntC1

k

��
; t D 0; : : : ;T � 1;

(13)

ˇj
�
x�
�
nT

l

�� D �j
�
x�
�
nT

l

��
; (14)

satisfies (12).
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Proof See Reddy et al. [52]. ut
The interpretation of this theorem is straightforward. At any terminal node nT

l ,
the IDP payment is exactly the Shapley value in the static game at that node. At all
other nodes, the IDP allocates to player j her Shapley value in the subgame starting
at that node, minus the expected Shapley value in the subgames that are reached in
the sequel. Note that ˇj

�
x�
�
nt

l

��
can assume any sign.

4.4.2 Node-Consistent Core

Defining a node-consistent core is more demanding than defining a node-consistent
Shapley value for two main reasons. First, the Shapley value in any subgame,
including the whole game, always exists and is unique. The core may be empty in
some of the subgames, if not in all of them. As we said before, we suppose here that
the cores in all subgames are nonempty; otherwise the construction to follow will
not be feasible. Second, at each intermediate node nt

l 2 N t
; t > 0; the players need

to agree on which imputation to select in C.x�.nt
l//, whereas there is no selection

process in the case of Shapley value because �j
�
x�.nt

l/
�

is uniquely defined. Note
that both these issues pertain to cooperative game theory in general and are not
specific to what is done here. Dealing with sets of imputations at each node that
are not singletons leads to the following definition of an IDP, which is clearly more
restrictive than the one stated above.

Definition 4.8 The node payments
˚
ˇj
�
x�
�
nt

l

���
nt

l2N t
;tD1;:::;T ; j 2 M; constitute an

IDP of y
�
x0 .n0/

� 2 C.x0
�
n0
�
/; if they satisfy the following conditions:

yj.x
0 .n0// D

TX
�D0

X
n�l 2N �

�.n�l /ˇj.x
�.n�l //; (15)

X
j2M

ˇj.x
�.nt

l// D
X
j2M

�
nt

l
j

�
x�.nt

l/; Qu�.nt
l/
�
; (16)

X
j2M

ˇj.x
�.nT

l // D
X
j2M

˚
nT

l
j .x

�.nT
l //; (17)

where the two last conditions are satisfied for any nt
l 2 N t, t D 0; : : : ;T�1 (for 16),

and any nT
l 2 N T .

The accounting condition (15) that must be satisfied for the whole game is the
same as (11). The next two conditions in the above definition state that the sum of
payments, at any node, must be equal to the sum of realized cooperative payoffs at
that node. In economic terms, banking payoffs for future use, or borrowing from
future periods are not allowed.
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Definition 4.9 The imputation y.x0/ 2 C.x0/ and corresponding imputation distri-
bution procedure

�˚
ˇj
�
x�
�
nt

l

���
nt

l2N t
;tD1;:::;T W j 2 M

�
;

are called node consistent in the whole game if for any state x�.nt
l/, nt

l 2 N t
; t D

0; : : : ;T, there exists y.x�.nt
l// D .y1.x�.nt

l//; : : : ; ym.x�.nt
l/// 2 C.x�.nt

l// satisfy-
ing the following condition:

yj.x
0 .n0// D

t�1X
�D0

X
n�k2N �

�.n�k /ˇj.x
�.n�k //C

X
nt

k2N t

�.n�k /yj
�
x�.nt

l/
�
: (18)

If the payoffs in the nodes are allocated according to the imputation distribution
procedure, then node-consistency of imputation y.x0/ from the core means that one
can define a feasible distribution procedure under which the continuation values at
every node are in the core of the continuation game.

Definition 4.10 The core C.x0/ in the whole game is a node-consistent allocation
mechanism if any imputation y from the core C.x0/ is node consistent.

Theorem 4.3 If the core C.x0/ of the whole game and the core C.x�.nt
l// of

the subgame starting from any node nt
l are nonempty, then the core C.x0/ is

node consistent when the corresponding imputation distribution procedure for each
imputation y.x0/ 2 C.x0/ satisfies the following conditions

for t D 0; : : : ;T � 1:

ˇj.x
�.nt

l// D yj.x
�.nt

l//�
X

ntC1
k 2S .nt

l/

�.ntC1
k jnt

l/yj.x
�.ntC1

k //; (19)

and for t D T:

ˇj.x
�.nT

l // D yj.x
�.nT

l //; (20)

where y.x�.nt
l// D .y1.x�.nt

l//; : : : ; ym.x�.nt
l/// 2 C.x�.nt

l// for any nt
l 2 N t, t D

0; : : : ;T and �.ntC1
k jnt

l/ is the conditional probability that node ntC1
k is reached if

node nt
l has already been reached.

Proof See Parilina and Zaccour [38]. ut
If the core C.x0/ of the whole game and the core C.x�.nt

l// of a subgame
starting from any node nt

l are nonempty, we can always find at least one impu-
tation y.x�.nt

l// 2 C.x�.nt
l// and, using the given imputations y.x�.nt

l// for all
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nodes nt
l 2 N t, t D 0; : : : ;T, construct the imputation distribution procedure�˚

ˇj.x�.nt
l//
�

nt
l2N t

;tD0;:::;T W j 2 M
�

, with formulas (19) and (20) for any imputation

from the core C.x0/.
The IDP and the realized outcomes at node nt

l 2 N t; t D 0; : : : ;T �1 are related
by the following side payments:

!j.n
t
l; x
�.nt

l// D ˇj.x
�.nt

l// � �nt
l

j .x
�.nt

l/; Qu�.nt
l//; (21)

and for 8nT
l 2 N T :

!j.n
T
l ; x
�.nT

l // D ˇj.x
�.nT

l //� ˚
nT

l
j .x

�.nT
l //; (22)

where !j.nt
l; x
�.nt

l// is the transfer payment that player j makes in node nt
l over the

cooperative trajectory x�.nt
l/, such that

X
j2M

!j.n
t
l; x
�.nt

l// D 0;

for any node nt
l over cooperative trajectory x�.nt

l/. Clearly, !j.nt
l; x
�.nt

l// can assume
any sign depending on the sign of the difference in the right-hand sides of (21)–(22).

ut

5 Concluding Remarks

We showed in this paper how to decompose over time the Shapley value and an
imputation in the core such that cooperation is sustained at any node of the event
tree. Many extensions to our framework can be envisioned. First, it should not
be complicated to define node consistency for other solution concepts, such as
proportional payments and a Nash bargaining procedure. Second, we assumed that
the core C.x�.nt

l// in any subgame is nonempty. An interesting open question is
whether cooperation can still be sustained if the cores in some of the subgames
(not the whole game) are empty. Finally, it would be interesting to consider node
consistency for DGPET when the end of the horizon is random.
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