
Chapter 9
Operator-Valued Free Probability Theory and Block Random
Matrices

Gaussian random matrices fit quite well into the framework of free probability
theory, asymptotically they are semi-circular elements, and they have also nice free-
ness properties with other (e.g. non-random) matrices. Gaussian random matrices
are used as input in many basic models in many different mathematical, physical,
or engineering areas. Free probability theory provides then useful tools for the
calculation of the asymptotic eigenvalue distribution for such models. However,
in many situations, Gaussian random matrices are only the first approximation
to the considered phenomena, and one would also like to consider more general
kinds of such random matrices. Such generalizations often do not fit into the
framework of our usual free probability theory. However, there exists an extension,
operator-valued free probability theory, which still shares the basic properties of free
probability but is much more powerful because of its wider domain of applicability.
In this chapter, we will first motivate the operator-valued version of a semi-circular
element and then present the general operator-valued theory. Here we will mainly
work on a formal level; the analytic description of the theory, as well as its powerful
consequences, will be dealt with in the following chapter.

9.1 Gaussian block random matrices

ConsiderAN D .aij /
N
i;jD1. Our usual assumptions for a Gaussian random matrix are

that the entries aij are, apart from the symmetry condition aij D a�
j i , independent

and identically distributed with a centred normal distribution. There are many ways
to relax these conditions, for example, one might consider noncentred normal
distributions, relax the identical distribution by allowing a dependency of the
variance on the entry, or even give up the independence by allowing correlations
between the entries. One possibility for such correlations would be block matrices,
where our random matrix is build up as a d � d matrix out of blocks, where each
block is an ordinary Gaussian random matrix, but we allow that the blocks might
repeat. For example, for d D 3, we might consider a block matrix
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Fig. 9.1 Histogram of the dN eigenvalues of a random matrix XN , for N D 1000, for two
different realizations

XN D 1p
3

0
@
AN BN CN
BN AN BN
CN BN AN

1
A ; (9.1)

where AN ;BN ; CN are independent self-adjoint Gaussian N �N -random matrices.
As usual we are interested in the asymptotic eigenvalue distribution of XN as
N ! 1.

As in Chapter 5 we can look at numerical simulations for the eigenvalue
distribution of such matrices. In Fig. 9.1 there are two realizations of the random
matrix above for N D 1000. This suggests that again we have almost sure
convergence to a deterministic limit distribution. One sees, however, that this
limiting distribution is not a semi-circle.

In this example, we have of course the following description of the limiting
distribution. Because the joint distribution of fAN ;BN ; CN g converges to that of
fs1; s2; s3g, where fs1; s2; s3g are free standard semi-circular elements, the limit
eigenvalue distribution we seek is the same as the distribution �X of

X D 1p
3

0
@
s1 s2 s3
s2 s1 s2
s3 s2 s1

1
A (9.2)

with respect to tr3˝' (where ' is the state acting on s1; s2; s3). Actually, because we
have the almost sure convergence of AN ;BN ; CN (with respect to trN ) to s1; s2; s3,
this implies that the empirical eigenvalue distribution ofXN converges almost surely
to �X . Thus, free probability yields directly the almost sure existence of a limiting
eigenvalue distribution of XN . However, the main problem, namely, the concrete
determination of this limit �X , cannot be achieved within usual free probability
theory. Matrices of semi-circular elements do in general not behave nicely with
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respect to trd ˝ '. However, there exists a generalization, operator-valued free
probability theory, which is tailor-made to deal with such matrices.

In order to see what goes wrong on the usual level and what can be saved on
an “operator-valued” level, we will now try to calculate the moments of X in our
usual combinatorial way. To construct our first example, we shall need the idea of a
circular family of operators, generalizing the idea of a semi-circular family given in
Definition 2.6

Definition 1. Let fc1; : : : ; cng be operators in .A; '/. If fRe.c1/; Im.c1/; : : : ;Re.cn/;
Im.cn/g is a semi-circular family, we say that fc1; : : : ; cng is a circular family. We
are allowing the possibility that some of Re.ci / or Im.ci / is 0. So a semi-circular
family is a circular family.

Exercise 1. Using the notation of Section 6.8, show that for fc1; : : : ; cng to be a
circular family, it is necessary and sufficient that for every i1; : : : ; im 2 Œn� and every
�1; : : : ; �m 2 f�1; 1g we have

'.c
.�1/
i1

� � � c.�m/im
/ D

X
�2NC2.m/

��.c
.�1/
i1
; : : : ; c

.�m/
im

/:

Let us consider the more general situation where X is a d � d matrix X D
.sij /

d
i;jD1, where fsij g is a circular family with a covariance function � , i.e.

'.sij skl / D �.i; j I k; l/: (9.3)

The covariance function � can here be prescribed quite arbitrarily, only subject to
some symmetry conditions in order to ensure that X is self-adjoint. Thus, we allow
arbitrary correlations between different entries, but also that the variance of the sij
depends on .i; j /. Note that we do not necessarily ask that all entries are semi-
circular. Off-diagonal elements can also be circular elements, as long as we have
s�
ij D sj i .

By Exercise 1, we have

trd ˝ '.Xm/ D 1

d

dX
i.1/;:::;i.m/D1

'
�
si1i2 � � � simi1

�

D 1

d

X
�2NC2.m/

dX
i.1/;:::;i.m/D1

Y
.p;q/2�

�
�
ip; ipC1I iq; iqC1

�
:

We can write this in the form

trd ˝ '.Xm/ D
X

�2NC2.m/
K� ;
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where

K� WD 1

d

dX
i1;:::;imD1

Y
.p;q/2�

�
�
ip; ipC1I iq; iqC1

�
:

So the result looks very similar to our usual description of semi-circular elements,
in terms of a sum over non-crossing pairings. However, the problem here is that the
K� are not multiplicative with respect to the block decomposition of � , and thus
they do not qualify to be considered as cumulants. Even worse, there does not exist
a straightforward recursive way of expressing K� in terms of “smaller” K� . Thus,
we are outside the realm of the usual recursive techniques of free probability theory.

However, one can save most of those techniques by going to an “operator-valued”
level. The main point of such an operator-valued approach is to write K� as the trace
of a d � d -matrix �� , and then realize that �� has the usual nice recursive structure.

Namely, let us define the matrix �� D .Œ�� �ij /
d
i;jD1 by

Œ�� �ij WD
dX

i1:::;im;imC1D1
ıi i1ıj imC1

Y
.p;q/2�

�
�
ip; ipC1I iq; iqC1

�
:

Then clearly we have K� D trd .��/. Furthermore, the value of �� can be determined
by an iterated application of the covariance mapping

� W Md.C/ ! Md.C/ given by �.B/ WD id ˝ 'ŒXBX�;

i.e. for B D .bij / 2 Md.C/, we have �.B/ D .Œ�.B/�ij / 2 Md.C/ with

Œ�.B/�ij D
dX

k;lD1
�.i; kI l; j /bkl :

The main observation is now that the value of �� is given by an iterated
application of this mapping � according to the nesting of the blocks of � . If one
identifies a non-crossing pairing with an arrangement of brackets, then the way that
� has to be iterated is quite obvious. Let us clarify these remarks with an example.

Consider the non-crossing pairing

p = {(1,4),(2,3),(5,6)} ∈ NC2(6).

The corresponding �� is given by

Œ�� �ij D
dX

i2;i3;i4;i5;i6D1
�.i; i2I i4; i5/ � �.i2; i3I i3; i4/ � �.i5; i6I i6; j /:
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We can then sum over the index i3 (corresponding to the block .2; 3/ of �) without
interfering with the other blocks, giving

Œ�� �ij D
dX

i2;i4;i5;i6D1
�.i; i2I i4; i5/ � �.i5; i6I i6; j / �

dX
i3D1

�.i2; i3I i3; i4/

D
dX

i2;i4;i5;i6D1
�.i; i2I i4; i5/ � �.i5; i6I i6; j / � Œ�.1/�i2i4 :

Effectively we have removed the block .2; 3/ of � and replaced it by the matrix �.1/.
Now we can do the summation over i.2/ and i.4/ without interfering with the

other blocks, thus yielding

Œ�� �ij D
dX

i5;i6D1
�.i5; i6I i6; j / �

dX
i2;i4D1

�.i; i2I i4; i5/ � Œ�.1/�i2i4

D
dX

i5;i6D1
�.i5; i6I i6; j / � �

�
�
�.1/

��
i i5
:

We have now removed the block .1; 4/ of � , and the effect of this was that we had
to apply � to whatever was embraced by this block (in our case, �.1/).

Finally, we can do the summation over i5 and i6 corresponding to the last block
.5; 6/ of � ; this results in

Œ�� �i;j D
dX

i5D1

�
�
�
�.1/

��
i i5

�
dX

i6D1
�.i5; i6I i6; j /

D
dX

i5D1

�
�
�
�.1/

��
i i5

� Œ�.1/�i5j

D �
�
�
�.1/

� � �.1/�
ij
:

Thus, we finally have �� D �
�
�.1/

� � �.1/, which corresponds to the bracket
expression .X.XX/X/.XX/. In the same way, every non-crossing pairing results
in an iterated application of the mapping �. For the five non-crossing pairings of six
elements, one gets the following results:
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h(1) ·h(1) ·h(1)

3 41 2 5 6

h h h(1)h(1) ·h h(1)

3 41 2 5 6 3 41 2 5 6

3 41 2 5 6

h h(1) ·h(1)

1 2 3 4 5 6

h h(1) ·h(1)

Thus, for m D 6, we get for trd ˝ '.X6/ the expression

trd
n
�.1/ � �.1/ � �.1/C �.1/ � ���.1/�C

C �
�
�.1/

� � �.1/C �
�
�.1/ � �.1/� C �

�
�
�
�.1/

��o
:

Let us summarize our calculations for general moments. We have

trd ˝ '.Xm/ D trd
n X
�2NC2.m/

��

o
;

where each �� is a d � d matrix, determined in a recursive way as above, by an
iterated application of the mapping �. If we remove trd from this equation, then we
get formally the equation for a semi-circular distribution. Define

E WD id ˝ ' W Md.C/ ! Md.C/;

and then we have that the operator-valued moments of X satisfy

E.Xm/ D
X

�2NC2.m/
�� : (9.4)

An element X whose operator-valued moments E.Xm/ are calculated in such a
way is called an operator-valued semi-circular element (because only pairings are
needed).

One can now repeat essentially all combinatorial arguments from the scalar
situation in this case. One only has to take care that the nesting of the blocks of
� is respected. Let us try this for the reformulation of the relation (9.4) in terms
of formal power series. We are using the usual argument by doing the summation
over all � 2 NC2.m/ by collecting terms according to the block containing the first
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element 1. If � is a non-crossing pairing of m elements and .1; r/ is the block of
� containing 1, then the remaining blocks of � must fall into two classes, those
making up a non-crossing pairing of the numbers 2; 3; : : : ; r � 1 and those making
up a non-crossing pairing of the numbers rC1; rC2; : : : ; m. Let us call the former
pairing �1 and the latter �2, so that we can write � D .1; r/ [ �1 [ �2. Then the
description above of �� shows that �� D �.��1/ � ��2 . This results in the following
recurrence relation for the operator-valued moments:

EŒXm� D
m�2X
kD0

�
�
EŒXk�

� �EŒXm�k�2�:

If we go over to the corresponding generating power series,

M.z/D
1X
mD0

EŒXm�zm;

then this yields the relation M.z/ D 1C z2�
�
M.z/

� �M.z/.
Note that m.z/ WD trd .M.z// is the generating power series of the moments

trd ˝ '.Xm/, in which we are ultimately interested. Thus, it is preferable to go
over from M.z/ to the corresponding operator-valued Cauchy transform G.z/ WD
z�1M.1=z/. For this the equation above takes on the form

zG.z/ D 1C �.G.z// �G.z/: (9.5)

Furthermore, we have for the Cauchy transform g of the limiting eigenvalue
distribution �X of our block matrices XN that

g.z/ D z�1m.1=z/ D trd
�
z�1M.1=z/

� D trd .G.z//:

Since the number of non-crossing pairings of 2k elements is given by the Catalan
number Ck , for which one has Ck � 4k , we can estimate the (operator) norm of the
matrix E.X2k/ by

kE.X2k/k � k�kk � #.NC2.2k// � k�kk � 22k:
Applying trd , this yields that the support of the limiting eigenvalue distribution of
XN is contained in the interval Œ�2k�k1=2;C2k�k1=2�. Since all odd moments are
zero, the measure is symmetric. Furthermore, the estimate above on the operator-
valued moments E.Xm/ shows that

G.z/ D
1X
kD0

E.X2k/

z2kC1

is a power series expansion in 1=z of G.z/, which converges in a neighbourhood
of 1. Since on bounded sets, fB 2 Md.C/ j kBk � Kg for some K > 0, the
mapping
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B 7! z�11C z�1�.B/ � B

is a contraction for jzj sufficiently large, G.z/ is, for large z, uniquely determined as
the solution of the equation (9.5).

If we write G as G.z/ D E
�
.z � X/�1

�
, then this shows that it is not only a

formal power series but actually an analytic (Md.C/-valued) function on the whole
upper complex half-plane. Analytic continuation shows then the validity of (9.5) for
all z in the upper half-plane.

Let us summarize our findings in the following theorem, which was proved
in [147].

Theorem 2. Fix d 2 N. Consider, for each N 2 N, block matrices

XN D

0
B@
A.11/ : : : A.1d/

:::
: : :

:::

A.d1/ : : : A.dd/

1
CA (9.6)

where, for each i; j D 1; : : : ; d , the blocksA.ij / D �
a
.ij /
rp

�N
r;pD1 are GaussianN �N

random matrices such that the collection of all entries

fa.ij /rp j i; j D 1; : : : ; d I r; p D 1; : : : ; N g

of the matrix XN forms a Gaussian family which is determined by

a.ij /rp D a
.j i/
pr for all i; j D 1; : : : ; d I r; p D 1; : : : ; N

and the prescription of mean zero and covariance

EŒa.ij /rp a
.kl/
qs � D 1

n
ırsıpq � �.i; j I k; l/; (9.7)

where n WD dN .
Then, for N ! 1, the n � n matrix XN has a limiting eigenvalue distribution

whose Cauchy transform g is determined by g.z/ D trd .G.z//, where G is an
Md.C/-valued analytic function on the upper complex half-plane, which is uniquely
determined by the requirement that for z 2 C

C

lim
jzj!1

zG.z/ D 1; (9.8)

(where 1 is the identity of Md.C/) and that for all z 2 C
C; G satisfies the matrix

equation (9.5).

Note also that in [94], it was shown that there exists exactly one solution of the
fixed point equation (9.5) with a certain positivity property.

There exists a vast literature on dealing with such or similar generalizations
of Gaussian random matrices. Most of them deal with the situation where the
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entries are still independent, but not identically distributed; usually, such matrices
are referred to as band matrices. The basic insight that such questions can be
treated within the framework of operator-valued free probability theory is due to
Shlyakhtenko [155]. A very extensive treatment of band matrices (not using the
language of free probability, but the quite related Wigner-type moment method)
was given by Anderson and Zeitouni [6].

Example 3. Let us now reconsider the limit (9.2) of our motivating band matrix (9.1).
Since there are some symmetries in the block pattern, the corresponding G will also
have some additional structure. To work this out, let us examine � more carefully.
If B 2 M3.C/, B D .bij /ij , then

�.B/ D 1

3

0
@
b11 C b22 C b33 b12 C b21 C b23 b13 C b31 C b22
b21 C b12 C b32 b11 C b22 C b33 C b13 C b31 b12 C b23 C b32
b13 C b31 C b22 b23 C b32 C b21 b11 C b22 C b33

1
A :

We shall see later on that it is important to find the smallest unital subalgebra C of
M3.C/ that is invariant under �. We have

�.1/ D
0
@
1 0 1

3

0 1 0
1
3
0 1

1
A D 1C 1

3
H; where H D

0
@
0 0 1

0 0 0

1 0 0

1
A ;

�.H/ D 1

3

0
@
0 0 2

0 2 0

2 0 0

1
A D 2

3
H C 2

3
E; where E D

0
@
0 0 0

0 1 0

0 0 0

1
A ;

and

�.E/ D 1

3

0
@
1 0 1

0 1 0

1 0 1

1
A D 1

3
1C 1

3
H:

Now HE D EH D 0 and H2 D 1 � E, so C, the span of f1;H;Eg, is a
three-dimensional commutative subalgebra invariant under �. Let us show that if
G satisfies zG.z/ D 1C �.G.z//G.z/ and is analytic, then G.z/ 2 C for all z 2 C

C.
Let ˚ W M3.C/ ! M3.C/ be given by ˚.B/ D z�1.1 C �.B/B/. One easily

checks that

k˚.B/k � jzj�1.1C k�kkBk2/

and

k˚.B1/ � ˚.B2/k � jzj�1k�k.kB1k C kB2k/kB1 � B2k:
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Here k�k is the norm of � as a map from M3.C/ to M3.C/. Since � is completely
positive, we have k�k D k�.1/k. In this particular example, k�k D 4=3.

Now let D� D fB 2 M3.C/ j kBk < �g. If the pair z 2 C
C and � > 0

simultaneously satisfies

1C k�k�2 < jzj� and 2�k�k < jzj;

then ˚.D�/ � D� and k˚.B1/ � ˚.B2/k � ckB1 � B2k for B1;B2 2 D� and
c D 2�jzj�1k�k < 1. So when jzj is sufficiently large, both conditions are satisfied
and ˚ has a unique fixed point in D� . If we choose B 2 D� \ C, then all iterates of
˚ applied to B will remain in C, and so the unique fixed point will be in D� \ C.

SinceM3.C/ is finite-dimensional, there are a finite number of linear functionals,
f'igi , on M3.C/ (6 in our particular example) such that C D \i ker.'i /. Also for
each i , 'i ı G is analytic so it is identically 0 on C

C if it vanishes on a non-empty
open subset of CC. We have seen above that G.z/ 2 C provided jzj is sufficiently
large; thus G.z/ 2 C for all z 2 C

C.
Hence, G and �.G/ must be of the form

G D
0
@
f 0 h

0 e 0

h 0 f

1
A ; �.G/ D 1

3

0
@
2 f C e 0 e C 2 h

0 2 f C e C 2 h 0

e C 2 h 0 2 f C e

1
A :

So Equation (9.5) gives the following system of equations:

zf D 1C e .f C h/C 2
�
f 2 C h2

�

3
;

ze D 1C e .e C 2 .f C h//

3
;

zh D 4 f hC e .f C h/

3
:

(9.9)

This system of equations can be solved numerically for z close to the real axis; then

g.z/ D tr3
�
G.z/

� D .2f .z/C e.z//=3;
d�.t/

dt
D � 1

�
lim
s!0

Img .t C is/ (9.10)

gives the sought eigenvalue distribution. In Fig. 9.2 we compare this numerical
solution (solid curve) with the histogram for the XN from Fig. 9.1, with blocks of
size 1000 � 1000.

9.2 General theory of operator-valued free probability

Not only semi-circular elements can be lifted to an operator-valued level, but such
a generalization exists for the whole theory. The foundation for this was laid by
Voiculescu in [184]; Speicher showed in [163] that the combinatorial description of
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Fig. 9.2 Comparison of the
histogram of eigenvalues of
XN , from Fig. 9.1, with the
numerical solution according
to (9.9) and (9.10)
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free probability resting on the notion of free cumulants extends also to the operator-
valued case. We want to give here a short survey of some definitions and results.

Definition 4. Let A be a unital algebra and consider a unital subalgebra B � A.
A linear map E W A ! B is a conditional expectation if

E.b/ D b 8b 2 B (9.11)

and

E.b1ab2/ D b1E.a/b2 8a 2 A; 8b1; b2 2 B: (9.12)

An operator-valued probability space .A; E;B/ consists of B � A and a
conditional expectation E W A ! B.

The operator-valued distribution of a random variable x 2 A is given by all
operator-valued moments E.xb1xb2 � � � bn�1x/ 2 B (n 2 N, b1; : : : ; bn�1 2 B).

Since, by the bimodule property (9.12),

E.b0xb1xb2 � � � bn�1xbn/ D b0 �E.xb1xb2 � � � bn�1x/ � bn;

there is no need to include b0 and bn in the operator-valued distribution of x.

Definition 5. Consider an operator-valued probability space .A; E;B/ and a family
.Ai /i2I of subalgebras with B � Ai for all i 2 I . The subalgebras .Ai /i2I are free
with respect to E or free with amalgamation over B if E.a1 � � � an/ D 0 whenever
ai 2 Aji , j1 6D j2 6D � � � 6D jn, and E.ai / D 0 for all i D 1; : : : ; n. Random
variables in A or subsets of A are free with amalgamation over B if the algebras
generated by B and the variables or the algebras generated by B and the subsets,
respectively, are so.
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Note that the subalgebra generated by B and some variable x is not just the linear
span of monomials of the form bxn, but, because elements from B and our variable
x do not commute in general, we must also consider general monomials of the form
b0xb1x � � � bnxbnC1.

If B D A, then any two subalgebras of A are free with amalgamation over B; so
the claim of freeness with amalgamation gets weaker as the subalgebra gets larger
until the subalgebra is the whole algebra at which point the claim is empty.

Operator-valued freeness works mostly like ordinary freeness, one only has to
take care of the order of the variables; in all expressions, they have to appear in their
original order!

Example 6. 1) If x and fy1; y2g are free, then one has as in the scalar case

E.y1xy2/ D E
�
y1E.x/y2

�I (9.13)

and more general, for b1; b2 2 B,

E.y1b1xb2y2/ D E
�
y1b1E.x/b2y2

�
: (9.14)

In the scalar case (where B would just be C and E D ' W A ! C a unital linear
functional), we write of course '

�
y1'.x/y2

�
in the factorized form '.y1y2/'.x/.

In the operator-valued case, this is not possible; we have to leave the E.x/ at its
position between y1 and y2.

2) If fx1; x2g and fy1; y2g are free over B, then one has the operator-valued version
of (1.14),

E.x1y1x2y2/ D E
�
x1E.y1/x2

� �E.y2/CE.x1/ �E�
y1E.x2/y2

�

�E.x1/E.y1/E.x2/E.y2/: (9.15)

Definition 7. Consider an operator-valued probability space .A; E;B/. We define
the corresponding (operator-valued) free cumulants .�Bn /n2N, �Bn W An ! B, by the
moment-cumulant formula

E.a1 � � � an/ D
X

�2NC.n/
�B� .a1; : : : ; an/; (9.16)

where arguments of �B� are distributed according to the blocks of � , but the
cumulants are nested inside each other according to the nesting of the blocks of � .

Example 8. Consider the non-crossing partition
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The corresponding free cumulant �B� is given by

�B� .a1; : : : ; a10/ D �B2
�
a1 � �B3

�
a2 � �B2 .a3; a4/; a5 � �B1 .a6/ � �B2 .a7; a8/; a9

�
; a10

�
:

Remark 9. Let us give a more formal definition of the operator-valued free cumu-
lants in the following.

1) First note that the bimodule property (9.12) for E implies for �B the property

�Bn .b0a1; b1a2; : : : ; bnanbnC1/ D b0�
B
n .a1b1; a2b2; : : : ; an/bnC1

for all a1; : : :; an2A and b0; : : :; bnC12B. This can also stated by saying that �Bn
is actually a map on the B-module tensor product

A˝Bn D A˝BA˝B � � � ˝BA:

2) Let now any sequence fTngn of B-bimodule maps: Tn W A˝Bn ! B be given.
Instead of Tn.x1 ˝B � � � ˝B xn/, we shall write Tn.x1; : : : ; xn/. Then there exists
a unique extension of T , indexed by non-crossing partitions, so that for every
� 2 NC.n/, we have a map T� W A˝Bn ! B so that the following conditions
are satisfied:

(i) when � D 1n, we have T� D Tn;
(ii) whenever � 2 NC.n/ and V D fl C 1; : : : ; l C kg is an interval in � then

T�.x1; : : : ; xn/ D T� 0.x1; : : : ; xlTk.xlC1; : : : ; xlCk/; xlCkC1; : : : ; xn/

D T� 0.x1; : : : ; xl ; Tk.xlC1; : : : ; xlCk/xlCkC1; : : : ; xn/;

where � 0 2 NC.n � k/ is the partition obtained by deleting from � the
block V . When l D 0, we interpret this property to mean

T�.x1; : : : ; xn/ D T� 0.Tk.x1; : : : ; xk/xkC1; : : : ; xn/:

This second property is called the insertion property. One should notice
that every non-crossing partition can be reduced to a partition with a single
block by the process of interval stripping. For example, with the partition
� D f.1; 10/; .2; 5; 9/; .3; 4/; .6/; .7; 8/g from above, we strip the interval .3; 4/
to obtain f.1; 10/; .2; 5; 9/; .6/; .7; 8/g. We strip the interval .7; 8/ to obtain
f.1; 10/; .2; 5; 9/; .6/; g, then we strip the (one element) interval .6/ to obtain
f.1; 10/; .2; 5; 9/g, and finally we strip the interval .2; 5; 9/ to obtain the partition
with a single block f.1; 10/g.

1 2 3 4 5 6 7 8 9 10 1 2 5 6 7 8 9 10 1 2 5 6 9 10 1 2 5 9 10 1 10
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The insertion property requires that the family fT�g� be compatible with
interval stripping. Thus, if there is an extension satisfying (i) and (ii), it must be
unique. Moreover, we can compute T� by stripping intervals, and the outcome is
independent of the order in which we strip the intervals.

3) Let us call a family fT�g� determined as above multiplicative. Then it is quite
straightforward to check the following.

ı Let fT�g� be a multiplicative family of B-bimodule maps and define a new
family by

S� D
X

�2NC.n/
���

T� .� 2 NC.n//: (9.17)

Then the family fS�g� is also multiplicative.
ı The relation (9.17) between two multiplicative families is via Möbius inver-

sions also equivalent to

T� D
X

�2NC.n/
���

�.�; �/S� .� 2 NC.n//; (9.18)

where � is the Möbius function on non-crossing partitions; see Remark 2.9.
Again, multiplicativity of fS�g� implies multiplicativity of fT�g� , if the latter
is defined in terms of the former via (9.18).

4) Now we can use the previous to define the free cumulants �Bn . As a starting point,
we use the multiplicative family fE�g� which is given by the “moment maps”

En W A˝Bn ! B; En.a1; a2; : : : ; an/ D E.a1a2 � � � an/:

For � D f.1; 10/; .2; 5; 9/; .3; 4/; .6/; .7; 8/g 2 NC.10/ from Example 8, the
E� is, for example, given by

E�.a1; : : : ; a10/ D E
�
a1 �E�

a2 �E.a3a4/ � a5 �E.a6/ �E.a7a8/ � a9
� � a10

�
:

Then we define the multiplicative family f�B� g� by

�B� D
X

�2NC.n/
���

�.�; �/E� .� 2 NC.n//;

which is equivalent to (9.16). In particular, this means that the �Bn are given by

�Bn .a1; : : : ; an/ D
X

�2NC.n/
�.�; 1n/E�.a1; : : : ; an/: (9.19)
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Definition 10. 1) For a 2 A we define its (operator-valued) Cauchy transform
Ga W B ! B by

Ga.b/ WD EŒ.b � a/�1� D
X
n�0

EŒb�1.ab�1/n�;

and its (operator-valued) R-transform Ra W B ! B by

Ra.b/ W D
X
n�0

�BnC1.ab; ab; : : : ; ab; a/

D �B1 .a/C �B2 .ab; a/C �B3 .ab; ab; a/C � � � :

2) We say that s 2 A is B-valued semi-circular if �Bn .sb1; sb2; : : : ; sbn�1; s/ D 0

for all n 6D 2, and all b1; : : : ; bn�1 2 B.

If s 2 A is B-valued semi-circular, then by the moment-cumulant formula, we
have

E.sn/ D
X

�2NC2.n/
��.s; : : : ; s/:

This is consistent with (9.4) of our example A D Md.C/ and B D Md.C/, where
these �’s were defined by iterated applications of �.B/ D E.XBX/ D �B2 .XB;X/:

As in the scalar-valued case, one has the following properties; see [163, 184,
190].

Theorem 11. 1) The relation between the Cauchy and the R-transform is given by

bG.b/ D 1CR.G.b// �G.b/ or G.b/ D .b �R.G.b///�1: (9.20)

2) Freeness of x and y over B is equivalent to the vanishing of mixed B-valued
cumulants in x and y. This implies, in particular, the additivity of the R-
transform: RxCy.b/ D Rx.b/CRy.b/, if x and y are free over B.

3) If x and y are free over B, then we have the subordination property

GxCy.b/ D Gx
�
b �Ry

�
GxCy.b/

��
: (9.21)

4) If s is an operator-valued semi-circular element over B, then Rs.b/ D �.b/,
where � W B ! B is the linear map given by �.b/ D E.sbs/.

Remark 12. 1) As for the moments, one has to allow in the operator-valued
cumulants elements from B to spread everywhere between the arguments. So
with B-valued cumulants in random variables x1; : : : ; xr 2 A, we actually
mean all expressions of the form �Bn .xi1b1; xi2b2; : : : ; xin�1bn�1; xin/ (n 2 N,
1 � i.1/; : : : ; i.n/ � r , b1; : : : ; bn�1 2 B).
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2) One might wonder about the nature of the operator-valued Cauchy and R-
transforms. One way to interpret the definitions and the statements is as
convergent power series. For this one needs a Banach algebra setting, and then
everything can be justified as convergent power series for appropriate b, namely,
with kbk sufficiently small in the R-transform case and with b invertible and
kb�1k sufficiently small in the Cauchy transform case. In those domains, they
are B-valued analytic functions and such F have a series expansion of the form
(say F is analytic in a neighbourhood of 0 2 B)

F.b/ D F.0/C
1X
kD1

Fk.b; : : : ; b/; (9.22)

where Fk is a symmetric multilinear function from the k-fold product B �
� � � � B to B. In the same way as for usual formal power series, one can
consider (9.22) as a formal multilinear function series (given by the sequence
.Fk/k of the coefficients of F ), with the canonical definitions for sums, products,
and compositions of such series. One can then also read Definition 10 and
Theorem 11 as statements about such formal multilinear function series. For a
more thorough discussion of this point of view (and more results about operator-
valued free probability), one should consult the work of Dykema [68].

As illuminated in Section 9.1 for the case of an operator-valued semi-circle,
many statements from the scalar-valued version of free probability are still true
in the operator-valued case; actually, on a combinatorial (or formal multilinear
function series) level, the proofs are essentially the same as in the scalar-valued
case, and one only has to take care that one respects the nested structure of the
blocks of non-crossing partitions. One can also extend some of the theory to an
analytic level. In particular, the operator-valued Cauchy transform is an analytic
operator-valued function (in the sense of Fréchet-derivatives) on the operator upper
half-plane H

C.B/ WD fb 2 B j Im.b/ > 0 and invertibleg. In the next chapter,
we will have something more to say about this, when coming back to the analytic
theory of operator-valued convolution.

One should, however, note that the analytic theory of operator-valued free
convolution lacks at the moment some of the deeper statements of the scalar-
valued theory; developing a reasonable analogue of complex function theory on an
operator-valued level, addressed as free analysis, is an active area in free probability
(and also other areas) at the moment; see, for example, [107, 193–195, 202].

9.3 Relation between scalar-valued and matrix-valued cumulants

Let us now present a relation from [140] between matrix-valued and scalar-valued
cumulants, which shows that taking matrices of random variables goes nicely with
freeness, at least if we allow for the operator-valued version.
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Proposition 13. Let .C; '/ be a non-commutative probability space and fix d 2 N.
Then .A; E;B/, with

A WD Md.C/; B WD Md.C/ � Md.C/; E WD id ˝' W Md.C/ ! Md.C/;

is an operator-valued probability space. We denote the scalar cumulants with
respect to ' by � and the operator-valued cumulants with respect to E by �B.
Consider now akij 2 C (i; j D 1; : : : ; d ; k D 1; : : : ; n) and put, for each

k D 1; : : : ; n, Ak D .akij /
d
i;jD1 2 Md.C/. Then the operator-valued cumulants

of the Ak are given in terms of the cumulants of their entries as follows:

Œ�Bn .A1; A2; : : : ; An/�ij D
dX

i2;:::;inD1
�n

�
a1i i2 ; a

2
i2i3
; : : : ; aninj

�
: (9.23)

Proof: Let us begin by noting that

ŒE.A1A2 � � �An�ij D
dX

i2;:::;inD1
'

�
a1i i2a

2
i2i3

� � � aninj
�
:

Let � 2 NC.n/ be a non-crossing partition; we claim that

ŒE�.A1; A2; : : : ; An�ij D
dX

i2;:::;inD1
'�

�
a1i i2 ; a

2
i2i3
; : : : ; aninj

�
:

If � has two blocks: � D f.1; : : : ; k/; .k C 1; : : : ; n/g, then this is just matrix
multiplication. We then get the general case by using the insertion property and
induction. By Möbius inversion, we have

Œ�Bn .A1; A2; : : : ; An�ij D
X

�2NC.n/
�.�; 1n/ŒE�.A1; A2; : : : ; An�ij :

D
dX

i2;:::;inD1

X
�2NC.n/

�.�; 1n/'�
�
a1i i2 ; a

2
i2i3
; : : : ; aninj

�

D
dX

i2;:::;inD1
��

�
a1i i2 ; a

2
i2i3
; : : : ; aninj

�
:

ut
Corollary 14. If the entries of two matrices are free in .C; '/, then the two matrices
themselves are free with respect to E W Md.C/ ! Md.C/.
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Proof: Let A1 and A2 be the subalgebras of A which are generated by B and by
the respective matrix. Note that the entries of any matrix from A1 are free from the
entries of any matrix from A2. We have to show that mixed B-valued cumulants
in those two algebras vanish. So consider A1; : : : ; An with Ak 2 Ar.k/. We shall
show that for all n and all r.1/; : : : ; r.n/ 2 f1; 2g, we have �Bn .A1; : : : ; An/ D 0

whenever the r’s are not all equal. As before we write Ak D .akij /. By freeness
of the entries, we have �n.a1i i2 ; a

2
i2i3
; : : : ; aninj / D 0 whenever the r’s are not all

equal. Then by Theorem 13, the .i; j /-entry of �Bn .A1; : : : ; An/ equals 0 and thus
�Bn .A1; : : : ; An/ D 0 as claimed. ut
Example 15. If fa1; b1; c1; d1g and fa2; b2; c2; d2g are free in .C; '/, then the
proposition above says that

X1 D
�
a1 b1
c1 d1

	
and X2 D

�
a2 b2
c2 d2

	

are free with amalgamation overM2.C/ in .M2.C/; id˝'/. Note that in general they
are not free in the scalar-valued non-commutative probability space .M2.C/; tr˝'/.
Let us make this distinction clear by looking on a small moment. We have

X1X2 D
�
a1a2 C b1c2 a1b2 C b1d2
c1a2 C d1c2 c1b2 C d1d2

	
:

Applying the trace  WD tr ˝ ', we get in general

 .X1X2/ D �
'.a1/'.a2/C '.b1/'.c2/C '.c1/'.b2/C '.d1/'.d2/

�
=2

6D .'.a1/C '.d1// � .'.a2/C '.d2//=4

D  .X1/ �  .X2/

but under the conditional expectation E WD id ˝ ', we always have

E.X1X2/ D
�
'.a1/'.a2/C '.b1/'.c2/ '.a1/'.b2/C '.b1/'.d2/

'.c1/'.a2/C '.d1/'.c2/ '.c1/'.b2/C '.d1/'.d2/

	

D
�
'.a1/ '.b1/

'.c1/ '.d1/

	 �
'.a2/ '.b2/

'.c2/ '.d2/

	

D E.X1/ �E.X2/:

9.4 Moving between different levels

We have seen that in interesting problems, like random matrices with correlation
between the entries, the scalar-valued distribution usually has no nice structure.
However, often the distribution with respect to an intermediate algebra B has a nice
structure, and thus it makes sense to split the problem into two parts. First, consider
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the distribution with respect to the intermediate algebra B. Derive all (operator-
valued) formulas on this level. Then at the very end, go down to C. This last step
usually has to be done numerically. Since our relevant equations (like (9.5)) are
not linear, they are not preserved under the application of the mapping B ! C,
meaning that we do not find closed equations on the scalar-valued level. Thus,
the first step is nice and gives us some conceptual understanding of the problem,
whereas the second step does not give much theoretical insight, but is more of a
numerical nature. Clearly, the bigger the last step, i.e. the larger B, the less we win
with working on the B-level first. So it is interesting to understand how symmetries
of the problem allow us to restrict from B to some smaller subalgebra D � B. In
general, the behaviour of an element as a B-valued random variable might be very
different from its behaviour as a D-valued random variable. This is reflected in the
fact that in general the expression of the D-valued cumulants of a random variable
in terms of its B-valued cumulants is quite complicated. So we can only expect
that nice properties with respect to B pass over to D if the relation between the
corresponding cumulants is easy. The simplest such situation is where the D-valued
cumulants are the restriction of the B-valued cumulants. It turns out that it is actually
quite easy to decide whether this is the case.

Proposition 16. Consider unital algebras C � D � B � A and conditional
expectations EB W A ! B and ED W A ! D which are compatible in the sense
that ED ı EB D ED. Denote the free cumulants with respect to EB by �B and
the free cumulants with respect to ED by �D. Consider now x 2 A. Assume that
the B-valued cumulants of x satisfy

�Bn .xd1; xd2; : : : ; xdn�1; x/ 2 D 8n � 1; 8d1; : : : ; dn�1 2 D:

Then the D-valued cumulants of x are given by the restrictions of the B-valued
cumulants: for all n � 1 and all d1; : : : ; dn�1 2 D, we have

�Dn .xd1; xd2; : : : ; xdn�1; x/ D �Bn .xd1; xd2; : : : ; xdn�1; x/:

This statement is from [139]. Its proof is quite straightforward by comparing the
corresponding moment-cumulant formulas. We leave it to the reader.

Exercise 2. Prove Proposition 16.

Proposition 16 allows us in particular to check whether a B-valued semi-circular
element x is also semi-circular with respect to a smaller D � B. Namely, all B-
valued cumulants of x are given by nested iterations of the mapping �. Hence, if �
maps D to D, then this property extends to all B-valued cumulants of x restricted
to D.

Corollary 17. Let D � B � A be as above. Consider a B-valued semi-circular
element x. Let � W B ! B, �.b/ D EB.xbx/ be the corresponding covariance
mapping. If �.D/ � D, then x is also a D-valued semi-circular element, with
covariance mapping given by the restriction of � to D.
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Remark 18. 1) This corollary allows for an easy determination of the smallest
canonical subalgebra with respect to which x is still semi-circular. Namely, if
x is B-semi-circular with covariance mapping � W B ! B, we let D be the
smallest unital subalgebra of B which is mapped under � into itself. Note that
this D exists because the intersection of two subalgebras which are invariant
under � is again a subalgebra invariant under �. Then x is also semi-circular
with respect to this D. Note that the corollary above is not an equivalence, and
thus there might be smaller subalgebras than D with respect to which x is still
semi-circular; however, there is no systematic way to detect those.

2) Note also that with some added hypotheses, the above corollary might become an
equivalence; for example, in [139] it was shown: Let .A; E;B/ be an operator-
valued probability space, such that A and B are C �-algebras. Let F W B !
C DW D � B be a faithful state. Assume that 	 D F ıE is a faithful trace on A.
Let x be a B-valued semi-circular variable in A. Then the distribution of x with
respect to 	 is the semi-circle law if and only if E.x2/ 2 C.

Example 19. Let us see what the statements above tell us about our model case of
d �d self-adjoint matrices with semi-circular entries X D .sij /

d
i;jD1. In Section 9.1

we have seen that if we allow arbitrary correlations between the entries, then we
get a semi-circular distribution with respect to B D Md.C/. (We calculated this
explicitly, but one could also invoke Proposition 13 to get a direct proof of this.)
The mapping � W Md.C/ ! Md.C/ was given by

Œ�.B/�ij D
dX

k;lD1
�.i; kI l; j /bkl :

Let us first check in which situations we can expect a scalar-valued semi-circular
distribution. This is guaranteed, by the corollary above, if � maps C to itself, i.e. if
�.1/ is a multiple of the identity matrix. We have

Œ�.1/�ij D
dX
kD1

�.i; kI k; j /:

Thus, if
Pd

kD1 �.i; kI k; j / is zero for i 6D j and otherwise independent from i ,
then X is semi-circular. The simplest situation where this happens is if all sij , 1 �
i � j � d , are free and have the same variance.

Let us now consider the more special band matrix situation where sij , 1 � i �
j � d are free, but not necessarily of the same variance, i.e. we assume that for
i � j; k � l , we have

�.i; j I k; l/ D
(
�ij ; if i D k; j D l

0; otherwise
: (9.24)
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Note that this also means that �.i; kI k; i/ D �ik , because we have ski D sik . Then

Œ�.1/�ij D ıij

dX
kD1

�ik:

We see that in order to get a semi-circular distribution, we do not need the same
variance everywhere, but that it suffices to have the same sum over the variances in
each row of the matrix.

However, if this sum condition is not satisfied, then we do not have a semi-
circular distribution. Still, having all entries free gives more structure than just semi-
circularity with respect to Md.C/. Namely, we see that with the covariance (9.24),
our � maps diagonal matrices into diagonal matrices. Thus, we can pass from
Md.C/ over to the subalgebra D � Md.C/ of diagonal matrices and get that for
such situations X is D-semi-circular. The conditional expectation ED W A ! D in
this case is of course given by

0
B@
a11 : : : a1d
:::
: : :

:::

ad1 : : : add

1
CA 7!

0
B@
'.a11/ : : : 0
:::

: : :
:::

0 : : : '.add /

1
CA :

Even if we do not have free entries, we might still have some symmetries in the
correlations between the entries which let us pass to some subalgebra of Md.C/.
As pointed out in Remark 18, we should look for the smallest subalgebra which is
invariant under �. This was exactly what we did implicitly in our Example 3. There
we observed that � maps the subalgebra

C WD
8<
:

0
@
f 0 h

0 e 0

h 0 f

1
A j e; f; h 2 C

9=
;

into itself. (And we actually saw in Example 3 that C is the smallest such subalgebra,
because it is generated from the unit by iterated application of �.) Thus, the X
from this example, (9.2), is not only M3.C/-semi-circular but actually also C-semi-
circular. In our calculations in Example 3, this was implicitly taken into account,
because there we restricted our Cauchy transform G to values in C, i.e. effectively
we solved the equation (9.5) for an operator-valued semi-circular element not in
M3.C/, but in C.

9.5 A non-self-adjoint example

In order to treat a more complicated example, let us look at a non-self-adjoint
situation as it often shows up in applications (e.g. in wireless communication;
see [174]). Consider the d � d matrix H D B C C where B 2 Md.C/ is a
deterministic matrix and C D .cij /

d
i;jD1 has as entries 	-free circular elements
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cij (i; j D 1; : : : ; d ), without any symmetry conditions, however with varying
variance, i.e. '.cij c�

ij / D �ij . What we want to calculate is the distribution ofHH�.
Such an H might arise as the limit of block matrices in Gaussian random

matrices, where we also allow a non-zero mean for the Gaussian entries. The means
are separated off in the matrix B . We refer to [174] for more information on the use
of such non-mean zero Gaussian random matrices (as Ricean model) and why one
is interested in the eigenvalue distribution of HH�.

One can reduce this to a problem involving self-adjoint matrices by observing
that HH� has the same distribution as the square of

T WD
�
0 H

H� 0

	
D

�
0 B

B� 0

	
C

�
0 C

C � 0

	
:

Let us use the notations

OB WD
�
0 B

B� 0

	
and OC WD

�
0 C

C � 0

	
:

The matrix OC is a 2d � 2d self-adjoint matrix with �-free circular entries, thus
of the type we considered in Section 9.1. Hence, by the remarks in Example 19,
we know that it is a D2d -valued semi-circular element, where D2d � M2d .C/ is
the subalgebra of diagonal matrices; one checks easily that the covariance function
� W D2d ! D2d is given by

�

�
D1 0

0 D2

	
D

�
�1.D2/ 0

0 �2.D1/

	
; (9.25)

where �1 W Dd ! Dd and �2 W Dd ! Dd are given by

�1.D2/ D id ˝ 'ŒCD2C
��

�2.D1/ D id ˝ 'ŒC �D1C �:

Furthermore, by using Propositions 13 and 16, one can easily see that OB and OC are
free over D2d .

Let GT and GT 2 be the D2d -valued Cauchy transform of T and T 2, respectively.
We write the latter as

GT 2.z/ D
�
G1.z/ 0

0 G2.z/

	
;

whereG1 andG2 are Dd -valued. Note that one also has the general relationGT .z/ D
zGT 2.z

2/.
By using the general subordination relation (9.21) and the fact that OC is semi-

circular with covariance map � given by (9.25), we can now derive the following
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equation for GT 2 :

zGT 2.z
2/ D GT .z/ D G OB

�
z �R OC .GT .z//

�

D ED2d

"�
z � z�

�
G1.z2/ 0

0 G2.z2/

	
�

�
0 B

B� 0

		�1#

D ED2d

"�
z � z�1.G2.z2// �B

�B� z � z�2.G1.z2//

	�1#
:

By using the well-known Schur complement formula for the inverse of 2 � 2 block
matrices (see also next chapter for more on this), this yields finally

zG1.z/ D EDd

"�
1 � �1.G2.z//C B

1

z � z�2.G1.z//
B�

	�1#

and

zG2.z/ D EDd

"�
1 � �2.G1.z//C B� 1

z � z�1.G2.z//
B

	�1#
:

These equations have actually been derived in [90] as the fixed point equations
for a so-called deterministic equivalent of the square of a random matrix with
noncentred, independent Gaussians with non-constant variance as entries. Thus,
our calculations show that going over to such a deterministic equivalent consists
in replacing the original random matrix by our matrix T . We will come back to this
notion of “deterministic equivalent” in the next chapter.
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