
Chapter 7
Free Entropy �: The Microstates Approach via Large Deviations

An important concept in classical probability theory is Shannon’s notion of entropy.
Having developed the analogy between free and classical probability theory, one
hopes to find that a notion of free entropy exists in counterpart to the Shannon
entropy. In fact there is a useful notion of free entropy. However, the development
of this new concept is at present far from complete. The current state of affairs is
that there are two distinct approaches to free entropy. These should give isomorphic
theories, but at present we only know that they coincide in a limited number of
situations.

The first approach to a theory of free entropy is via microstates. This is rooted
in the concept of large deviations. The second approach is microstates free. This
draws its inspiration from the statistical approach to classical entropy via the notion
of Fisher information. The unification problem in free probability theory is to prove
that these two theories of free entropy are consistent. We will in this chapter only talk
about the first approach via microstates; the next chapter will address the microstates
free approach.

7.1 Motivation

Let us return to the connection between random matrix theory and free probability
theory which we have been developing. We know that a p-tuple .A

.1/
N ; : : : ; A

.p/
N / of

N � N matrices chosen independently at random with respect to the GUE density
(compare Exercise 1.8), PN .A/ D const � exp.�N Tr.A2/=2/, on the space of
N � N Hermitian matrices converges almost surely (in moments with respect to
the normalized trace) to a freely independent family .s1; : : : ; sp/ of semi-circular
elements lying in a non-commutative probability space; see Theorem 4.4. The
von Neumann algebra generated by p freely independent semi-circulars is the von
Neumann algebra L.Fp/ of the free group on p generators.
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176 7 Free Entropy �: The Microstates Approach via Large Deviations

We ask now the following question: How likely is it to observe other distribu-
tions/operators for large N ?

Let us consider the case p D 1 more closely. For a random Hermitian matrix
A D A� (distribution as above) with real random eigenvalues �1 � � � � � �N ,
denote by

�A D 1

N
.ı�1 C � � � C ı�N / (7.1)

the eigenvalue distribution of A (also known as the empirical eigenvalue distribu-
tion), which is a random measure on R. Wigner’s semi-circle law states that as
N ! 1, PN .�A � �W / ! 1, where �W is the (non-random) semi-circular
distribution and �A � �W means that the measures are close in a sense that can be
made precise. We are now interested in the deviations from this. What is the rate of
decay of the probability PN .�A � �/, where � is some measure (not necessarily the
semi-circle)? We expect that

PN .�A � �/ � e�N 2I.�/ (7.2)

for some rate function I vanishing at �W : By analogy with the classical theory of
large deviations, I should correspond to a suitable notion of free entropy.

We used in the above the notion “�” for meaning “being close” and “�” for
“behaves asymptotically (in N ) like”; here they should just be taken on an intuitive
level, later, in the actual theorems they will be made more precise.

In the next two sections, we will recall some of the basic facts of the classical
theory of large deviations and, in particular, Sanov’s theorem; this standard material
can be found, for example, in the book [64]. In Section 7.4 we will come back to the
random matrix question.

7.2 Large deviation theory and Cramér’s theorem

Consider a real-valued random variable X with distribution �. Let X1; X2; : : : be
a sequence of independent identically distributed random variables with the same
distribution as X , and put Sn D .X1 C � � � C Xn/=n. Let m D EŒX� and �2 D
var.X/ D EŒX2� � m2. Then the law of large numbers asserts that Sn ! m, if
EŒjX j� < 1; while if EŒX2� < 1, the central limit theorem tells us that for large n

Sn � m C �p
n

N.0; 1/: (7.3)

For example, if � D N.0; 1/ is Gaussian, then m D 0 and Sn has the Gaussian
distribution N.0; 1=n/, and hence

P.Sn � x/ D P.Sn 2 Œx; x C dx�/ � e�nx2=2dx

p
np

2�
� e�nI.x/dx:
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Thus the probability that Sn is near the value x decays exponentially in n at a rate
determined by x; namely the rate function I.x/ D x2=2: Note that the convex
function I.x/ has a global minimum at x D 0; the minimum value there being 0;

which corresponds to the fact that Sn approaches the mean 0 in probability.
This behaviour is described in general by the following theorem of Cramér. Let

X , �, fXi gi , and Sn be as above. There exists a function I.x/; the rate function,
such that

P.Sn > x/ � e�nI.x/; x > m

P.Sn < x/ � e�nI.x/; x < m:

How does one calculate the rate function I for a given distribution �? We shall
let X be a random variable with the same distribution as the Xi ’s. For arbitrary
x > m; one has for all � � 0

P.Sn > x/ D P.nSn > nx/

D P.e�.nSn�nx/ � 1/

� EŒe�.nSn�nx/� .by Markov’s inequality/

D e��nxEŒe�.X1C���CXn/�

D .e��xEŒe�X �/n:

Here we are allowing that EŒe�X � D C1. Now put

	.�/ WD log EŒe�X �; (7.4)

the cumulant generating series of �; c.f. Section 1.1. We consider 	 to be an
extended real-valued function but here only consider � for which 	.�/ is finite for
all real � in some open set containing 0; however, Cramér’s theorem (Theorem 1)
holds without this assumption. With this assumption 	 has a power series expansion
with radius of convergence �0 > 0, and in particular all moments exist.

Exercise 1. Suppose that X is a real random variable and there is �0 > 0 so that
for all j�j � �0 we have E.e�X / < 1. Then X has moments of all orders, and the
function � 7! E.e�X / has a power series expansion with a radius of convergence of
at least �0.

Then the inequality above reads

P.Sn > x/ � e��nxCn	.�/ D e�n.�x�	.�//; (7.5)
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which is valid for all 0 � �. By Jensen’s inequality we have, for all � 2 R,

	.�/ D log EŒe�X � � EŒlog e�X � D �m: (7.6)

This implies that for � < 0 and x > m we have �n.�x � 	.�// � 0, and so
equation (7.5) is valid for all �. Thus

P.Sn > x/ � inf
�

e�n.�x�	.�// D exp

�
�n sup

�

.�x � 	.�//

�
:

The function � 7! 	.�/ is convex, and the Legendre transform of 	 defined by

	�.x/ WD sup
�

.�x � 	.�// (7.7)

is also a convex function of x, as it is the supremum of a family of convex functions
of x.

Exercise 2. Show that .E.Xe�X //2 � E.e�X /E.Xe�X /. Show that � 7! 	.�/ is
convex.

Note that 	.0/ D log 1 D 0; thus, 	�.x/ � .0x � 	.0// D 0 is non-negative,
and hence equation (7.6) implies that 	�.m/ D 0.

Thus, we have proved that, for x > m,

P.Sn > x/ � e�n	�.x/; (7.8)

where 	� is the Legendre transform of the cumulant generating function 	:

In the same way, one proves the same estimate for P.Sn < x/ for x < m. This
gives 	� as a candidate for the rate function. Moreover we have by Exercise 3 that
limn logŒP.Sn > x/�1=n exists and by Equation (7.8) this limit is less than
exp .�	�.x//. If we assume that neither P.X>x/ nor P.X<x/ is 0, exp .�	�.x//

will be the limit. In general we have

� inf
y>x

	�.y/ � lim inf
n

1

n
log P.Sn > x/ � lim sup

n

1

n
log P.Sn � x/ � � inf

y�x
	�.y/:

Exercise 3. Let an D log P.Sn > a/. Show that

(i) for all m; n: amCn � am C an;
(ii) for all m

lim inf
n!1

an

n
� am

m
I

(iii) lim
n!1 an=n exists.
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However, in preparation for the vector-valued version, we will show that
exp .�n	�.x// is asymptotically a lower bound; more precisely, we need to verify
that

lim inf
n!1

1

n
log P.x � ı < Sn < x C ı/ � �	�.x/

for all x and all ı > 0: By replacing Xi by Xi � x, we can reduce this to the case
x D 0, namely, showing that

� 	�.0/ � lim inf
n!1

1

n
log P.�ı < Sn < ı/: (7.9)

Note that �	�.0/ D inf� 	.�/: The idea of the proof of (7.9) is then to perturb
the distribution � to Q� such that x D 0 is the mean of Q�: Let us only consider the
case where 	 has a global minimum at some point 
. This will always be the case
if � has compact support and both P.X > 0/ and P.X < 0/ are not 0. The general
case can be reduced to this by a truncation argument. With this reduction 	.�/ is
finite for all �, and thus 	 has an infinite radius of convergence (c.f. Exercise 1),
and thus 	 is differentiable. So we have 	0.
/ D 0. Now let Q� be the measure on R

such that

d Q�.x/ D e
x�	.
/d�.x/: (7.10)

Note that
Z
R

d Q�.x/ D e�	.
/

Z
R

e
xd�.x/ D e�	.
/EŒe
X � D e�	.
/e	.
/ D 1;

which verifies that Q� is a probability measure. Consider now i.i.d. random variables
f QXi gi with distribution Q�; and put QSn D . QX1 C � � � C QXn/=n. Let QX have the
distribution Q�. We have

EŒ QX� D
Z
R

xd Q�.x/ D e�	.
/

Z
R

xe
xd�.x/ D e�	.
/ d

d�

Z
R

e�xd�.x/
ˇ̌
�D


D e�	.
/ d

d�
e	.�/

ˇ̌
�D


D e�	.
/	0.
/e	.
/ D 	0.
/ D 0:

Now, for all � > 0; we have exp .

P

xi / � exp .n�j
j/ whenever j P
xi j � n�

and so

P.�� < Sn < �/ D
Z

j Pn
iD1 xi j<n�

d�.x1/ � � � d�.xn/

� e�n�j
j
Z

j Pn
iD1 xi j<n�

e

P

xi d�.x1/ � � � d�.xn/
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D e�n�j
jen	.
/

Z
j Pn

iD1 xi j<n�

d Q�.x1/ � � � d Q�.xn/

D e�n�j
jen	.
/P.�� < QSn < �/:

By the weak law of large numbers, QSn ! EŒ QXi � D 0 in probability, i.e. we have
limn!1 P.�� < QSn < �/ D 1 for all � > 0: Thus for all 0 < � < ı

lim inf
n!1

1

n
log P.�ı < Sn < ı/ � lim inf

n!1
1

n
log P.�� < Sn < �/

� 	.
/ � �j
j; for all � > 0

� 	.
/

D inf 	.�/

D �	�.0/:

This sketches the proof of Cramér’s theorem for R. The higher-dimensional form
of Cramér’s theorem can be proved in a similar way.

Theorem 1 (Cramér’s Theorem for R
d ). Let X1; X2; : : : be a sequence of

i.i.d. random vectors, i.e. independent Rd -valued random variables with common
distribution � (a probability measure on R

d ). Put

	.�/ WD EŒeh�;Xi i�; � 2 R
d ; (7.11)

and

	�.x/ WD sup
�2Rd

fh�; xi � 	.�/g: (7.12)

Assume that 	.�/ < 1 for all � 2 R
d , and put Sn WD .X1 C � � � C Xn/=n.

Then the distribution �Sn of the random variable Sn satisfies a large deviation
principle with rate function 	�, i.e.

ı x 7! 	�.x/ is lower semicontinuous (actually convex)
ı 	� is good, i.e. fx 2 R

d W 	�.x/ � ˛g is compact for all ˛ 2 R

ı For any closed set F 	 R
d ,

lim sup
n!1

1

n
log P.Sn 2 F / � � inf

x2F
	�.x/ (7.13)

ı For any open set G 	 R
d ;

lim inf
n!1

1

n
log P.Sn 2 G/ � � inf

x2G
	�.x/: (7.14)
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7.3 Sanov’s theorem and entropy

We have seen Cramér’s theorem for R
d ; in an informal way, it says P.Sn � x/

� exp .�n	�.x//. Actually, we are interested not in Sn; but in the empirical
distribution .ıX1 C � � � C ıXn/=n:

Let us consider this in the special case of random variables Xi W ˝ ! A,
taking values in a finite alphabet A D fa1; : : : ; ad g, with pk WD P.Xi D ak/.
As n ! 1; the empirical distribution of the Xi ’s should converge to the “most
likely” probability measure .p1; : : : ; pd / on A:

Now define the vector of indicator functions Yi W ˝ ! R
d by

Yi WD .1fa1g.Xi /; : : : ; 1fad g.Xi //; (7.15)

so that in particular pk is equal to the probability that Yi will have a 1 in the
k-th spot and 0’s elsewhere. Then the averaged sum .Y1 C � � � C Yn/=n gives
the relative frequency of a1; : : : ; ad , i.e. it contains the same information as the
empirical distribution of .X1; : : : ; Xn/:

A probability measure on A is given by a d -tuple .q1; : : : ; qd / of positive real
numbers satisfying q1 C � � � C qd D 1: By Cramér’s theorem,

P

�
1

n
.ıX1 C � � � C ıXn/ � .q1; : : : ; qd /

�
D P

�
Y1 C � � � C Yn

n
� .q1; : : : ; qd /

�

� e�n	�.q1;:::;qd /:

Here

	.�1; : : : ; �d / D log EŒeh�;Yi i� D log.p1e�1 C � � � C pd e�d /:

Thus the Legendre transform is given by

	�.q1; : : : ; qd / D sup
.�1;:::;�d /

f�1q1 C � � � C �d qd � 	.�1; : : : ; �d /g:

We compute the supremum over all tuples .�1; : : : ; �d / by finding the partial
derivative @=@�i of �1q1 C � � � C �d qd � 	.�1; : : : ; �d / to be

qi � 1

p1e�1 C � � � C pd e�d
pi e

�i :

By concavity the maximum occurs when

�i D log
qi

pi

C log.p1e�1 C � � � C pd e�d / D log
qi

pi

C 	.�1; : : : ; �d /;
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and we compute

	�.q1; : : : ; qd /

D q1 log
q1

p1

C � � � C qd log
qd

pd

C .q1 C � � � C qd /	.�1; : : : ; �d / � 	.�1; : : : ; �d /

D q1 log
q1

p1

C � � � C qd log
qd

pd

:

The latter quantity is Shannon’s relative entropy, H..q1; : : : ; qd /j.p1; : : : ; pd //, of
.q1; : : : ; qd / with respect to .p1; : : : ; pd /: Note that H..q1; : : : ; qd /j.p1; : : : ; pd // �
0, with equality holding if and only if q1 D p1; : : : ; qd D pd :

Thus .p1; : : : ; pd / is the most likely realization, with other realizations expo-
nentially unlikely; their unlikelihood is measured by the rate function 	�; and this
rate function is indeed Shannon’s relative entropy. This is the statement of Sanov’s
theorem. We have proved it here for a finite alphabet; it also holds for continuous
distributions.

Theorem 2 (Sanov’s Theorem). Let X1; X2; : : : be i.i.d. real-valued random vari-
ables with common distribution �; and let

�n D 1

n
.ıX1 C � � � C ıXn/ (7.16)

be the empirical distribution of X1; : : : ; Xn; which is a random probability measure
on R: Then f�ngn satisfies a large deviation principle with rate function I.�/ D
S.�; �/ (called the relative entropy) given by

I.�/ D
( R

p.t/ log p.t/d�.t/; if d� D p d�

C1; otherwise:
(7.17)

Concretely, this means the following. Consider the set M of probability measures
on R with the weak topology (which is a metrizable topology, e.g. by the Lévy
metric). Then for closed F and open G in M, we have

lim sup
n!1

1

n
log P.�n 2 F / � � inf

�2F
S.�; �/ (7.18)

lim inf
n!1

1

n
log P.�n 2 G/ � � inf

�2G
S.�; �/: (7.19)

7.4 Back to random matrices and one-dimensional free entropy

Consider again the space HN of Hermitian matrices equipped with the probability
measure PN having density

dPN .A/ D const � e� N
2 Tr.A2/dA: (7.20)
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We let RN� D f.x1; : : : ; xN / 2 R
N j x1 � � � � � xN g. For a self-adjoint matrix

A, we write the eigenvalues of A as �1.A/ � � � � � �N .A/. The joint eigenvalue
distribution QPN on R

N� is defined by

QPN .B/ WD PN fA 2 HN j .�1.A/; : : : ; �N .A// 2 Bg: (7.21)

The permutation group SN acts on R
N by permuting the coordinates, with R

N� as
a fundamental domain (ignoring sets of measure 0). So we can use this action to
transport QPN around R

N to get a probability measure on R
N .

One knows (e.g. see [7, Thm. 2.5.2]) that QPN is absolutely continuous with
respect to Lebesgue measure on R

N and has density

d QPN .�1; : : : ; �N / D CN � e� N
2

PN
iD1 �2

i

Y
i<j

.�i � �j /2

NY
iD1

d�i ; (7.22)

where

CN D N N 2=2

.2�/N=2
QN

j D1 j Š
: (7.23)

We want to establish a large deviation principle for the empirical eigenvalue
distribution �A D .ı�1.A/ C � � � C ı�N .A//=N of a random matrix in HN :

One can argue heuristically as follows for the expected form of the rate function.
We have

PN f�A � �g D QPN

�
1

N
.ı�1 C � � � C ı�N / � �

�

D CN �
Z

f 1
N .ı�1

C���Cı�N
/��g

e� N
2

P
�2

i

Y
i<j

.�i � �j /2

NY
iD1

d�i :

Now for .ı�1.A/ C � � � C ı�N .A//=N � �,

�N

2

NX
iD1

�2
i D �N 2

2

1

N

NX
iD1

�2
i

is a Riemann sum for the integral
R

t 2d�.t/: Moreover

Y
i<j

.�i � �j /2 D exp

0
@X

i<j

log j�i � �j j2
1
A D exp

0
@X

i¤j

log j�i � �j j
1
A

is a Riemann sum for N 2
R R

log js � t jd�.s/d�.t/:
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Hence, heuristically, we expect that PN .�A � �/ � exp .�N 2I.�//, with

I.�/ D �
Z Z

log js�t jd�.s/d�.t/C 1

2

Z
t 2d�.t/� lim

N !1
1

N 2
log CN : (7.24)

The value of the limit can be explicitly computed as 3=4. Note that by writing

s2 C t 2 � 4 log js � t j D s2 C t 2 � 2 log.s2 C t 2/ C 4 log

p
s2 C t 2

js � t j
and using the inequalities

t � 2 log t � 2 � 2 log 2 for t > 0 and 2.s2 C t 2/ � .s � t /2

we have for s 6D t that s2 C t 2 � 4 log js � t j � 2 � 4 log 2. This shows that if
� has a finite second moment, the integral

R R
.s2 C t 2 � 4 log js � t j/ d�.s/d�.t/

is always defined as an extended real number, possibly C1, in which case we set
I.�/ D C1, otherwise I.�/ is finite and is given by (7.24).

Voiculescu was thus motivated to use the integral
RR

log js � t j d�x.s/d�x.t/ to
define in [181] the free entropy �.x/ for one self-adjoint variable x with distribution
�x ; see equation (7.30).

The large deviation argument was then made rigorous in the following theorem
of Ben Arous and Guionnet [26].

Theorem 3. Put

I.�/ D �
Z Z

log js � t jd�.s/d�.t/ C 1

2

Z
t 2d�.t/ � 3

4
: (7.25)

Then,

(i) I W M ! Œ0; 1� is a well-defined, convex, good function on the space, M, of
probability measures on R. It has unique minimum value of 0 which occurs at
the Wigner semi-circle distribution �W with variance 1.

(ii) The empirical eigenvalue distribution satisfies a large deviation principle with
respect to QPN with rate function I : we have for any open set G in M

lim inf
N !1

1

N 2
log QPN .

ı�1 C � � � C ı�N

N
2 G/ � � inf

�2G
I.�/; (7.26)

and for any closed set F in M

lim sup
N !1

1

N 2
log QPN .

ı�1 C � � � C ı�N

N
2 F / � � inf

�2F
I.�/: (7.27)
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Exercise 4. The above theorem includes in particular the statement that for a
Wigner semi-circle distribution �W with variance 1, we have

�
Z Z

log js � t j d�W .s/d�W .t/ D 1

4
: (7.28)

Prove this directly!

Exercise 5.

(i) Let � be a probability measure with support in Œ�2; 2�. Show that we have

Z
R

Z
R

log js � t jd�.s/d�.t/ D �
1X

nD1

1

2n

�Z
R

Cn.t/d�.t/

�2

;

where Cn are the Chebyshev polynomials of the first kind.
(ii) Use part (i) to give another derivation of (7.28).

7.5 Definition of multivariate free entropy

Let .M; �/ be a tracial W �-probability space and x1; : : : ; xn self-adjoint elements in
M . Recall that by definition the joint distribution of the non-commutative random
variables x1; : : : ; xn is the collection of all mixed moments

distr.x1; : : : ; xn/ D f�.xi1xi2 � � � xik / j k 2 N; i1; : : : ; ik 2 f1; : : : ; ngg:

In this section we want to examine the probability that the distribution of
.x1; : : : ; xn/ occurs in Voiculescu’s multivariable generalization of Wigner’s semi-
circle law.

Let A1; : : : ; An be independent Gaussian random matrices: A1; : : : ; An are
chosen independently at random from the sample space MN .C/sa of N � N self-
adjoint matrices over C; equipped with Gaussian probability measure having density
proportional to exp.�Tr.A2/=2/ with respect to Lebesgue measure on MN .C/sa:

We know that as N ! 1 we have almost sure convergence .A1; : : : ; An/
distr�!

.s1; : : : ; sn/ with respect to the normalized trace, where .s1; : : : ; sn/ is a free semi-
circular family. Large deviations from this limit should be given by

PN f.A1; : : : ; An/ j distr.A1; : : : ; An/ � distr.x1; : : : ; xn/g � e�N 2I.x1;:::;xn/;

where I.x1; : : : ; xn/ is the free entropy of x1; : : : ; xn: The problem is that this has
to be made more precise and that, in contrast to the one-dimensional case, there is
no analytical formula to calculate this quantity.
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We use the equation above as motivation to define free entropy as follows. This
is essentially the definition of Voiculescu from [182]; the only difference is that he
also included a cut-off parameter R and required in the definition of the “microstate
set” 
 that kAi k � R for all i D 1; : : : ; n. Later it was shown by Belinschi and
Bercovici [20] that removing this cut-off condition gives the same quantity.

Definition 4. Given a tracial W �-probability space .M; �/ and an n-tuple
.x1; : : : ; xn/ of self-adjoint elements in M , we define the (microstates) free entropy
�.x1; : : : ; xn/ of the variables x1; : : : ; xn as follows. First, we put


 .x1; : : : ; xnI N; r; �/

WD ˚
.A1; : : : ; An/ 2 MN .C/n

sa j jtr.Ai1 � � � Aik / � �.xi1 � � � xik /j � �

for all 1 � i1; : : : ; ik � n; 1 � k � r
�
:

In words, 
 .x1; : : : ; xnI N; r; �/, which we call the set of microstates, is the set of
all n-tuples of N � N self-adjoint matrices which approximate the mixed moments
of the self-adjoint elements x1; : : : ; xn of length at most r to within �:

Let 	 denote Lebesgue measure on MN .C/n
sa ' R

nN 2
. Then we define

�.x1; : : : ; xnI r; �/ WD lim sup
N !1

�
1

N 2
log

�
	.
 .x1; : : : ; xnI N; r; �//

� C n

2
log.N /

�
;

and finally put

�.x1; : : : ; xn/ WD lim
r!1
�!0

�.x1; : : : ; xnI r; �/: (7.29)

It is an important open problem whether the lim sup in the definition above of
�.x1; : : : ; xnI r; �/ is actually a limit.

We want to elaborate on the meaning of 	, the Lebesgue measure on MN .C/n
sa '

R
nN 2

, and the normalization constant n log.N /=2. Let us consider the case n D 1.
For a self-adjoint matrix A D .aij /N

i;j D1 2 MN .C/sa, we identify the elements
on the diagonal (which are real) and the real and imaginary part of the elements
above the diagonal (which are the adjoints of the corresponding elements below the
diagonals) with an N C 2

N.N �1/

2
D N 2 dimensional vector of real numbers. The

actual choice of this mapping is determined by the fact that we want the Euclidean
inner product in R

N 2
to correspond on the side of the matrices to the form .A; B/ 7!

Tr.AB/. Note that

Tr.A2/ D
NX

i;j D1

aij aj i D
NX

iD1

.Reaii /
2 C 2

X
1�i<j �N

�
.Reaij /2 C .Imaij /2

�
:
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This means that there is a difference of a factor
p

2 between the diagonal and the off-
diagonal elements. (The same effect made its appearance in Chapter 1, Exercise 8,
when we defined the GUE by assigning different values for the covariances for
variables on and off the diagonal – in order to make this choice invariant under
conjugation by unitary matrices.) So our specific choice of a map between MN .C/

and R
N 2

means that we map the set fA 2 MN .C/sa j Tr.A2/ � R2g to the ball
BN 2.R/ of radius R in N 2 real dimensions. The pull back under this map of the
Lebesgue measure on R

N 2
is what we call 	, the Lebesgue measure on MN .C/sa.

The situation for general n is given by taking products.
Note that a microstate .A1; : : : ; An/ 2 
 .x1; : : : ; xnI N; r; �/ satisfies for r � 2

1

N
Tr.A2

1 C � � � C A2
n/ � �.x2

1 C � � � C x2
n/ C n� DW c2;

and thus the set of microstates 
 .x1; : : : ; xnI N; r; �/ is contained in the ball
BnN 2.

p
N c/. The fact that the latter grows logarithmically like

1

N 2
log 	

	
BnN 2.

p
N c/



D 1

N 2
log

.
p

N c
p

�/nN 2


 .1 C nN 2=2/
� �n

2
log N;

is the reason for adding the term n log N=2 in the definition of �.x1; : : : ; xnI r; �/.

7.6 Some important properties of �

The free entropy has the following properties:

(i) For n D 1, much more can be said than for general n. In particular, one can
show that the lim sup in the definition of � is indeed a limit and that we have
the explicit formula

�.x/ D
Z Z

log js � t jd�x.s/d�x.t/ C 1

2
log.2�/ C 3

4
: (7.30)

Thus the definition of � reduces in this case to the quantity from the previous
section. Our discussion before Theorem 3 shows then that �.x/ 2 Œ�1; 1/.
For n � 2; no formula of this sort is known.

When x is a semi-circular operator with variance 1, we know the value of the
double integral by (7.28); hence, for a semi-circular operator s with variance
1, we have

�.s/ D 1

2
.1 C log.2�//: (7.31)

(ii) � is subadditive:

�.x1; : : : ; xn/ � �.x1/ C � � � C �.xn/: (7.32)
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This is an easy consequence of the fact that


 .x1; : : : ; xnI N; r; �/ 	
nY

iD1


 .xi I N; r; �/:

Thus, in particular, by using the corresponding property from (i), we always
have �.x1; : : : ; xn/ 2 Œ�1; 1/:

(iii) � is upper semicontinuous: if .x
.m/
1 ; : : : ; x

.m/
n /

distr�! .x1; : : : ; xn/ for m ! 1,
then

�.x1; : : : ; xn/ � lim sup
m!1

�.x
.m/
1 ; : : : ; x.m/

n /: (7.33)

This is because if, for arbitrary words of length k with 1 � k � r , we have

j�.x
.m/
i1

� � � x.m/
ik

/ � �.xi1 � � � xik /j <
�

2

for sufficiently large m; then


 .x
.m/
1 ; : : : ; x.m/

n I N; r;
�

2
/ 	 
 .x1; : : : ; xnI N; r; �/:

(iv) If x1; : : : ; xn are free, then �.x1; : : : ; xn/ D �.x1/ C � � � C �.xn/.
(v) �.x1; : : : ; xn/, under the constraint

P
�.x2

i / D n, has a unique maximum
when x1; : : : ; xn is a free semi-circular family .s1; : : : ; sn/ with �.s2

i / D 1:

In this case

�.s1; : : : ; sn/ D n

2
.1 C log.2�//: (7.34)

(vi) Consider yj D Fj .x1; : : : ; xn/, for some “convergent” non-commutative
power series Fj , such that the mapping .x1; : : : ; xn/ 7! .y1; : : : ; yn/ can be
inverted by some other power series. Then

�.y1; : : : ; yn/ D �.x1; : : : ; xn/ C n log.j det jJ .x1; : : : ; xn//; (7.35)

where J is a non-commutative Jacobian and j det j is the Fuglede-Kadison
determinant. (We will provide more information on the Fuglede-Kadison
determinant in Chapter 11.)

With the exception of .ii/ and .iii/, the statements above are quite non-trivial; for
the proofs we refer to the original papers of Voiculescu [182, 186].

Exercise 6. (i) For an n-tuple .x1; : : : ; xn/ of self-adjoint elements in M and an
invertible real matrix T D .tij /n

i;j D1 2 Mn.R/, we put yi WD Pn
j D1 tij xj 2 M
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(i D 1; : : : ; n). Part (vi) of the above says then (by taking into account the meaning
of the Fuglede-Kadison determinant for matrices, see (11.4)) that

�.y1; : : : ; yn/ D �.x1; : : : ; xn/ C log j det T j: (7.36)

Prove this directly from the definitions.
(ii) Show that �.x1; : : : ; xn/ D �1 if x1; : : : ; xn are linearly dependent.

7.7 Applications of free entropy to operator algebras

One hopes that � can be used to construct invariants for von Neumann algebras. In
particular, we define the free entropy dimension of the n-tuple x1; : : : ; xn by

ı.x1; : : : ; xn/ D n C lim sup
�&0

�.x1 C �s1; : : : ; xn C �sn/

j log �j ; (7.37)

where s1; : : : ; sn is a free semi-circular family, free from fx1; : : : ; xng:
One of the main problems in this context is to establish the validity (or falsehood)

of the following implication (or some variant thereof): if vN.x1; : : : ; xn/ D
vN.y1; : : : ; yn/, does this imply that ı.x1; : : : ; xn/ D ı.y1; : : : ; yn/?

In recent years there have been a number of results which allow one to infer some
properties of a von Neumann algebra from knowledge of the free entropy dimension
for some generators of this algebra. Similar statements can be made on the level of
the free entropy. However, there the actual value of � is not important; the main
issue is to distinguish finite values of � from the situation � D �1.

Let us note that in the case of free group factors L.Fn/ D vN.s1; : : : ; sn/, we have
of course for the canonical generators �.s1; : : : ; sn/ > �1 and ı.s1; : : : ; sn/ D
n. (For the latter one should notice that the sum of two free semi-circulars is just
another semi-circular, where the variances add; hence the numerator in (7.37) stays
bounded for � ! 0 in this case.)

We want now to give the idea how to use free entropy to get statements about a
von Neumann algebra. For this, let P be some property that a von Neumann algebra
M may or may not have. Assume that we can verify that “M has P ” implies that
�.x1; : : : ; xn/ D �1 for any generating set vN.x1; : : : ; xn/ D M . Then a von
Neumann algebra for which we have at least one generating set with finite free
entropy cannot have this property P . In particular, L.Fn/ cannot have P .

Three such properties where this approach was successful are property 
 , the
existence of a Cartan subalgebra, and the property of being prime.

Let us first recall the definition of property 
 . We will use here the usual
non-commutative L2-norm, kxk2 WD p

�.x�x/, for elements x in our tracial W �-
probability space .M; �/.

Definition 5. A bounded sequence .tk/k�0 in .M; �/ is central if limk!1 kŒx; tk�k2 D
0 for all x 2 M , where Œ�; �� denotes the commutator of two elements, i.e.
Œx; tk� D xtk � tkx. If .tk/k is a central sequence and limk!1 ktk � �.tk/1k2 D 0,
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then .tk/k is said to be a trivial central sequence. .M; �/ has property 
 if there
exists a non-trivial central sequence in M .

Note that elements from the centre of an algebra always give central sequences;
hence if M does not have property 
 , then it is a factor.

Definition 6. 1) Given any von Neumann subalgebra N of a von Neumann algebra
M , we let the normalizer of N be the von Neumann subalgebra of M generated
by all the unitaries u 2 M which normalize N , i.e. uN u� D N . A von
Neumann subalgebra N of M is said to be maximal abelian if it is abelian and
is not properly contained in any other abelian subalgebra. A maximal abelian
subalgebra is a Cartan subalgebra of M if its normalizer generates M .

2) Finally we recall that a finite von Neumann algebra M is prime if it cannot be
decomposed as M D M1˝M2 for II1 factors M1 and M2. Here ˝ denotes the
von Neumann tensor product of M1 and M2; see [170, Ch. IV].

The above-mentioned strategy is the basis of the proof of the following theorem:

Theorem 7. Let M be a finite von Neumann algebra with trace � generated by
self-adjoint operators x1; : : : ; xn, where n � 2. Assume that �.x1; : : : ; xn/ > �1,
where the free entropy is calculated with respect to the trace � . Then

(i) M does not have property 
 . In particular, M is a factor.
(ii) M does not have a Cartan subalgebra.

(iii) M is prime.

Corollary 8. All this applies in the case of the free group factor L.Fn/ for 2 � n <

1; thus,

(i) L.Fn/ does not have property 
 .
(ii) L.Fn/ does not have a Cartan subalgebra.

(iii) L.Fn/ is prime.

Parts (i) and (ii) of the theorem above are due to Voiculescu [185]; part .iii/
was proved by Liming Ge [76]. In particular, the absence of Cartan subalgebras
for L.Fn/ was a spectacular result, as it falsified the conjecture, which had been
open for decades, that every II1 factor should possess a Cartan subalgebra. Such
a conjecture was suggested by the fact that von Neumann algebras obtained from
ergodic measurable relations always have Cartan subalgebras, and for a while there
was the hope that all von Neumann algebras might arise in this way.

In order to give a more concrete idea of this approach, we will present the
essential steps in the proof for part (i) (which is the simplest part of the theorem
above) and say a few words about the proof of part (iii). However, one should
note that the absence of property 
 for L.Fn/ is an old result of Murray and
von Neumann which can be proved more directly without using free entropy. The
following follows quite closely the exposition of Biane [36].
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7.7.1 The proof of Theorem 7, part (i)

We now give the main arguments and estimates for the proof of part (i) of
Theorem 7. So let M D vN.x1; : : : ; xn/ have property 
 I we must prove that this
implies �.x1; : : : ; xn/ D �1:

Let .tk/k be a non-trivial central sequence in M . Then its real and imaginary
parts are also central sequences (at least one of them non-trivial), and, by applying
functional calculus to this sequence, we may replace the tk’s with a non-trivial
central sequence of orthogonal projections .pk/k; and assume the existence of a
real number � in the open interval .0; 1=2/ such that � < �.pk/ < 1 � � for all k

and limk!1 kŒx; pk�k2 D 0 for all x 2 M .
We then prove the following key lemma.

Lemma 9. Let .M; �/ be a tracial W �-probability space generated by self-adjoint
elements x1; : : : ; xn satisfying �.x2

i / � 1: Let 0 < � < 1
2

be a constant and p 2 M

a projection such that � < �.p/ < 1 � � . If there is ! > 0 such that kŒp; xi �k2 < !

for 1 � i � n, then there exist positive constants C1; C2 depending only on n and �

such that �.x1; : : : ; xn/ � C1 C C2 log !.

Assuming this is proved, choose p D pk . We can take !k ! 0 as k ! 1. Thus
we get �.x1; : : : ; xn/ � C1CC2 log ! for all ! > 0, implying �.x1; : : : ; xn/ D �1.
(Note that we can achieve the assumption �.x2

i / � 1 by rescaling our generators.)
It remains to prove the lemma.

Proof: Take .A1; : : : ; An/ 2 
 .x1; : : : ; xnI N; r; �/ for N; r sufficiently large and �

sufficiently small. As p can be approximated by polynomials in x1; : : : ; xn and by
an application of the functional calculus, we find a projection matrix Q 2 MN .C/

whose range is a subspace of dimension q D bN�.p/c and such that we have
(where the k � k2-norm is now with respect to tr in MN .C/) kŒAi ; Q�k2 < 2! for all
i D 1; : : : ; n. This Q is of the form

Q D U

�
Iq 0

0 0N �q

�
U �

for some U 2 U.N /=U.q/ � U.N � q/: Write

U �Ai U D
�

Bi C �
i

Ci Di

�
:

Then kŒAi ; Q�k2 � 2! implies the same for the conjugated matrices, i.e.
r

2

N
Tr.Ci C

�
i / D

����
�

0 �C �
i

Ci 0

�����
2

D
����
��

Bi C �
i

Ci Di

�
;

�
1 0

0 0

�
����
2

D kŒAi ; Q�k2 < 2!;
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and thus we have for all i D 1; : : : ; n

Tr.Ci C
�
i / <

N

2
.2!/2 D 2N!2:

Furthermore, �.x2
i / � 1 implies that tr.A2

i / � 1C� and hence Tr.A2
i / � .1C�/N �

2N , since we can take � � 1: Thus, in particular, we also have Tr.B2
i / � 2N and

Tr.D2
i / � 2N .

Denote now by Bp.R/ the ball of radius R in R
p centred at the origin and

consider the map which sends our matrices Ai 2 MN .C/ to the Euclidean space
R

N 2
. Then the latter conditions mean that each Bi is contained in a ball Bq2.

p
2N /

and that each Di is contained in a ball B.N �q/2 .
p

2N /. For the rectangular
q � .N � q/ matrix Ci 2 Mq;N �q.C/ ' R

2q.N �q/, the condition Tr.CC �/ �
2N!2 means that C is contained in a ball B2q.N �q/.

p
4N !/. (Here we get an extra

factor
p

2, because all elements from Ci correspond to upper triangular elements
from Ai .)

Thus, the estimates above show that we can cover 
 .x1; : : : ; xnI N; r; �/ by a
union of products of balls:


 .x1; : : : ; xnI N; r; �/ 

[
U 2U.N /=U.q/�U.N �q/

h
U

	
Bq2.

p
2N / � B2q.N �q/.!

p
4N / � B.N �q/2 .

p
2N /



U �in

:

This does not give directly an estimate for the volume of our set 
 , as we have here
a covering by infinitely many sets. However, we can reduce this to a finite cover by
approximating the U ’s which appear by elements from a finite ı-net.

By a result of Szarek [169], for any ı > 0, there exists a ı-net .Us/s2S in the
Grassmannian U.N /=U.q/ � U.N � q/ with jS j � .Cı�1/N 2�q2�.N �q/2

with C a
universal constant.

For .A1; : : : ; An/, Q, and U as above, we have that there exists s 2 S such that
kU � Usk � ı implies kŒU �

s Ai Us; U �QU �k2 � 2! C 8ı. Repeating the arguments
above for U �

s Ai Us instead of U �Ai U (where we have to replace 2! by 2! C 8ı),
we get


 .x1; : : : ; xnI N; r; �/



[
s2S

h
Us

	
Bq2.

p
2N / � B2q.N �q/

�
.! C 4ı/

p
4N

� � B.N �q/2 .
p

2N /



U �
s

in

;

(7.38)
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and hence

	.
 .x1; : : : ; xnI N; r; �// � .Cı�1/N 2�q2�.N �q/2

�
h
	

	
Bq2.

p
2N /



	

	
B2q.N �q/

�
.! C 4ı/

p
4N

�

	

	
B.N �q/2 .

p
2N /


in

:

By using the explicit form of the Lebesgue measure of Bp.R/ as

	.Bp.R// D Rp�p=2


 .1 C p

2
/
;

this simplifies to the bound

.Cı�1/2q.N �q/

"
.2N�/N 2=2Œ

p
2.! C 4ı/�2q.N �q/


 .1 C q2=2/
 .1 C q.N � q//
 .1 C .N � q/2=2/

#n

:

Thus

1

N 2
log 	.
 .x1; : : : ; xnI N; r; �//Cn

2
log N � QC1C QC2

�
log ı�1Cn log.!C4ı/

�
;

for positive constants QC1; QC2 depending only on n and � . Taking now ı D ! gives
the claimed estimate with C1 WD QC1 C n log 5 and C2 WD .n � 1/ QC2. ut

One should note that our estimates work for all n. However, in order to have
C2 strictly positive, we need n > 1. For n D 1 we only get an estimate against
a constant C1, which is not very useful. This corresponds to the fact that for each
i the smallness of the off-diagonal block Ci of U �Ai U in some basis U is not
very surprising; however, if we have the smallness of all such blocks C1; : : : ; Cn of
U �A1U; : : : ; U �AnU for a common U , then this is a much stronger constraint.

7.7.2 The proof of Theorem 7, part .iii/

The proof of part .iii/ proceeds in a similar, though technically more complicated,
fashion. Let us assume that our II1 factor M D vN.x1; : : : ; xn/ has a Cartan
subalgebra N . We have to show that this implies �.x1; : : : ; xn/ D �1.

First one has to rewrite the property of having a Cartan subalgebra in a more
algebraic way, encoding a kind of “smallness”. Voiculescu showed the following.
For each � > 0, there exist a finite-dimensional C �-subalgebra N0 of N ; k.j / 2 N

for all 1 � j � n; orthogonal projections p
.i/
j ; q

.i/
j 2 N0 and elements x

.i/
j 2 M for
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all j D 1; : : : ; n and 1 � i � k.j / such that the following holds: x
.i/
j D p

.i/
j x

.i/
j q

.i/
j

for all j D 1; : : : ; n and 1 � i � k.j /,

kxj �
X

1�i�k.j /

.x
.i/
j C x

.i/�
j /k2 < � for all j D 1; : : : ; n; (7.39)

and

X
1�j �n

X
1�i�k.j /

�.p
.i/
j /�.q

.i/
j / < �:

Consider now a microstate .A1; : : : ; An/ 2 
 .x1; : : : ; xnI N; r; �/. Since polyno-
mials in the generators x1; : : : ; xn approximate the given projections p

.i/
j ; q

.i/
j 2

N0 	 M , the same polynomials in the matrices A1; : : : ; An will approximate
versions of these projections in finite matrices. Thus we find a unitary matrix
such that .UA1U �; : : : ; UAnU �/ is of a special form with respect to fixed matrix
versions of the projections. This gives some constraints on the volume of possible
microstates. Again, in order to get rid of the freedom of conjugating by an arbitrary
unitary matrix, one covers the unitary N � N matrices by a ı-net S and gets so in
the end a similar bound as in (7.38). Invoking from [169] the result that one can
choose a ı-net with jS j < .C=ı/N 2

leads finally to an estimate for �.x1; : : : ; xn/ as
in Lemma 9. The bound in this estimate goes to �1 for � ! 0, which proves that
�.x1; : : : ; xn/ D �1. ut
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