
Chapter 6
Free Group Factors and Freeness

The concept of freeness was actually introduced by Voiculescu in the context of
operator algebras, more precisely, during his quest to understand the structure of
special von Neumann algebras, related to free groups. We wish to recall here the
relevant context and show how freeness shows up there very naturally and how it
can provide some information about the structure of those von Neumann algebras.

Operator algebras are �- algebras of bounded operators on a Hilbert space which
are closed in some canonical topologies. (C �-algebras are closed in the operator
norm, and von Neumann algebras are closed in the weak operator topology; the
first topology is the operator version of uniform convergence, the latter of pointwise
convergence.) Since the group algebra of a group can be represented on itself by
bounded operators given by left multiplication (this is the regular representation of
a group), one can take the closure in the appropriate topology of the group algebra
and get thus C �-algebras and von Neumann algebras corresponding to the group.
The group von Neumann algebra arising from a group G in this way is usually
denoted by L.G/. This construction, which goes back to the foundational papers of
Murray and von Neumann in the 1930s, is, forG an infinite discrete group, a source
of important examples in von Neumann algebra theory, and much of the progress
in von Neumann algebra theory was driven by the desire to understand the relation
between groups and their von Neumann algebras better. The group algebra consists
of finite sums over group elements; going over to a closure means that we allow also
some infinite sums. One should note that the weak closure, in the case of infinite
groups, is usually much larger than the group algebra, and it is very hard to control
which infinite sums are added. Von Neumann algebras are quite large objects and
their classification is notoriously difficult.
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160 6 Free Group Factors and Freeness

6.1 Group (von Neumann) algebras

Let G be a discrete group. We want to consider compactly supported continuous
functions a W G ! C, equipped with convolution .a; b/ 7! a � b. Note that
compactly supported means just finitely supported in the discrete case, and thus the
set of such functions can be identified with the group algebra CŒG� of formal finite
linear combinations of elements in G with complex coefficients, a D P

g2G a.g/g,
where only finitely many a.g/ 6D 0. Integration over such functions is with respect
to the counting measure; hence, the convolution is then written as

a�b D
X

g2G
.a�b/.g/g D

X

g2G

 
X

h2G
a.h/b.h�1g/

!

g D
X

h2G
a.h/h

X

k2G
b.k/k D ab;

and is hence nothing but the multiplication in CŒG�. Note that the function ıe D 1 �e
is the identity element in the group algebra CŒG�; where e is the identity element
in G:

Now define an inner product on CŒG� by setting

hg; hi D
(
1; if g D h

0; if g ¤ h
(6.1)

on G and extending sesquilinearly to CŒG�: From this inner product, we define the
2-norm on CŒG� by kak22 D ha; ai. In this way .CŒG�; k � k2/ is a normed vector
space. However, it is not complete in the case of infiniteG (for finiteG the following
is trivial). The completion of CŒG� with respect to k � k2 consists of all functions
a W G ! C satisfying

P
g2G ja.g/j2 < 1 and is denoted by `2.G/ and is a Hilbert

space.
Now consider the unitary group representation � W G ! U.`2.G// defined by

�.g/ �
X

h2G
a.h/h WD

X

h2G
a.h/gh: (6.2)

This is the left regular representation of G on the Hilbert space `2.G/: It is obvious
from the definition that each �.g/ is an isometry of `2.G/; but we want to check
that it is in fact a unitary operator on `2.G/: Since clearly hgh; ki D hh; g�1ki, the
adjoint of the operator �.g/ is �.g�1/: But then since � is a group homomorphism,
we have �.g/�.g/� D I D �.g/��.g/; so that �.g/ is indeed a unitary operator
on `2.G/:

Now extend the domain of � from G to CŒG� in the obvious way:

�.a/ D �

0

@
X

g2G
a.g/g

1

A D
X

g2G
a.g/�.g/:



6.2 Free group factors 161

This makes � into an algebra homomorphism � W CŒG� ! B.`2.G//, i.e. � is a
representation of the group algebra on `2.G/: We define two new (closed) algebras
via this representation. The reduced group C �-algebra C �

red.G/ of G is the closure
of �.CŒG�/ � B.`2.G// in the operator norm topology. The group von Neumann
algebra of G, denoted L.G/, is the closure of �.CŒG�/ in the strong operator
topology on B.`2.G//.

One knows that for an infinite discrete groupG, L.G/ is a type II1 von Neumann
algebra, i.e. L.G/ is infinite dimensional, but yet there is a trace � on L.G/ defined
by �.a/ WD hae; ei for a 2 L.G/; where e 2 G is the identity element. To see
the trace property of � , it suffices to check it for group elements; this extends then
to the general situation by linearity and normality. However, for g; h 2 G, the fact
that �.gh/ D �.hg/ is just the statement that gh D e is equivalent to hg D e;
this is clearly true in a group. The existence of a trace shows that L.G/ is a proper
subalgebra of B.`2.G//; this is the case because there does not exist a trace on all
bounded operators on an infinite dimensional Hilbert space. An easy fact is that if
G is an ICC group, meaning that the conjugacy class of each g 2 G with g 6D e has
infinite cardinality, then L.G/ is a factor, i.e. has trivial centre (see [106, Theorem
6.75]). Another fact is that if G is an amenable group (e.g. the infinite permutation
group S1 D [nSn), then L.G/ is the hyperfinite II1 factor R.

Exercise 1.

(i) Show that L.G/ is a factor if and only if G is an ICC group.
(ii) Show that the infinite permutation group S1 D [nSn is ICC. (Note that each

element from S1 moves only a finite number of elements.)

6.2 Free group factors

Now consider the case where G D Fn; the free group on n generators; n can here
be a natural number n � 1 or n D 1. Let us briefly recall the definition of Fn and
some of its properties. Consider the set of all words, of arbitrary length, over the
2nC1-letter alphabet fa1; a2; : : : ; an; a�1

1 ; a
�1
2 ; : : : ; a

�1
n g [feg; where the letters of

the alphabet satisfy no relations other than eai D aie D ai ; ea
�1
i D a�1

i e D a�1
i ;

a�1
i ai D aia

�1
i D e: We say that a word is reduced if its length cannot be reduced

by applying one of the above relations. Then the set of all reduced words in this
alphabet together with the binary operation of concatenating words and reducing
constitutes the free group Fn on n generators. Fn is the group generated by n
symbols satisfying no relations other than those required by the group axioms.
Clearly F1 is isomorphic to the abelian group Z; while Fn is non-abelian for n > 1

and in fact has trivial centre. The integer n is called the rank of the free group; it is
fairly easy, though not totally trivial, to see (e.g. by reducing it via abelianization to
a corresponding question about abelian free groups) that Fn and Fm are isomorphic
if and only if m D n.
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Exercise 2. Show that Fn is, for n � 2, an ICC group.

Since Fn has the infinite conjugacy class property, one knows that the group
von Neumann algebra L.Fn/ is a II1 factor, called a free group factor. Murray and
von Neumann showed that L.Fn/ is not isomorphic to the hyperfinite factor, but
otherwise nothing was known about the structure of these free group factors, when
free probability was invented by Voiculescu to understand them better.

While as pointed out above we have that Fn ' Fm if and only if m D n; the
corresponding problem for the free group factors is still unknown; see however some
results in this direction in section 6.12.

Free group factor isomorphism problem: Let m; n � 2 (possibly equal to 1),
n ¤ m: Are the von Neumann algebras L.Fn/ and L.Fm/ isomorphic?

The corresponding problem for the reduced group C �-algebras was solved by
Pimsner and Voiculescu [143] in 1982: they showed that C �

red.Fn/ 6' C �
red.Fm/ for

m ¤ n.

6.3 Free product of groups

There is the notion of free product of groups. If G;H are groups, then their free
product G �H is defined to be the group whose generating set is the disjoint union
of G and H and which has the property that the only relations in G �H are those
inherited from G and H and the identification of the neutral elements of G and H .
That is, there should be no non-trivial algebraic relations between elements of G
and elements of H in G � H . In a more abstract language, the free product is the
coproduct in the category of groups. For example, in the category of groups, the
n-fold direct product of n copies of Z is the lattice Z

nI the n-fold coproduct (free
product) of n copies of Z is the free group Fn on n generators.

In the category of groups, we can understand Fn via the decomposition
Fn D Z � Z � � � � � Z: Is there a similar free product of von Neumann algebras that
will help us to understand the structure of L.Fn/? The notion of freeness or free
independence makes this precise. In order to understand what it means for elements
in L.G/ to be free, we need to deal with infinite sums, so the algebraic notion of
freeness will not do: we need a state.

6.4 Moments and isomorphism of von Neumann algebras

We will try to understand a von Neumann algebra with respect to a state. Let M be
a von Neumann algebra and let ' W M ! C be a state defined on M; i.e. a positive
linear functional. Select finitely many elements a1; : : : ; ak 2 M . Let us first recall
the notion of (�-)moments and (�-)distribution in such a context.

Definition 1. 1) The collection of numbers gotten by applying the state to words in
the alphabet fa1; : : : ; akg is called the collection of joint moments of a1; : : : ; ak;
or the distribution of a1; : : : ; ak:
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2) The collection of numbers gotten by applying the state to words in the
alphabet fa1; : : : ; ak; a�

1 ; : : : ; a
�
k g is called the collection of joint �-moments of

a1; : : : ; ak; or the �-distribution of a1; : : : ; ak:

Theorem 2. Let M D vN.a1; : : : ; ak/ be generated as von Neumann algebra by
elements a1; : : : ; ak and let N D vN.b1; : : : ; bk/ be generated as von Neumann
algebra by elements b1; : : : ; bk . Let ' W M ! C and  W N ! C be faithful normal
states. If a1; : : : ; ak and b1; : : : ; bk have the same �-distributions with respect to '
and  , respectively, then the map ai 7! bi extends to a �-isomorphism ofM andN:

Exercise 3. Prove Theorem 2 by observing that the assumptions imply that the
GNS-constructions with respect to ' and  are isomorphic.

Though the theorem is not hard to prove, it conveys the important message that
all information about a von Neumann algebra is, in principle, contained in the �-
moments of a generating set with respect to a faithful normal state.

In the case of the group von Neumann algebras L.G/, the canonical state is the
trace � . This is defined as a vector state, so it is automatically normal. It is worth to
notice that it is also faithful (and hence .L.G/; �/ is a tracialW �-probability space).

Proposition 3. The trace � on L.G/ is a faithful state.

Proof: Suppose that a 2 L.G/ satisfies 0 D �.a�a/ D ha�ae; ei D hae; aei, thus
ae D 0. So we have to show that ae D 0 implies a D 0. To show that a D 0, it
suffices to show that ha�; �i D 0 for any �; � 2 `2.G/: It suffices to consider vectors
of the form � D g; � D h for g; h 2 G; since we can get the general case from this
by linearity and continuity. Now, by using the traciality of � , we have

hag; hi D hage; hei D hh�1age; ei D �.h�1ag/ D �.gh�1a/ D hgh�1ae; ei D 0;

since the first argument to the last inner product is 0: ut
6.5 Freeness in the free group factors

We now want to see that the algebraic notion of freeness of subgroups in a free
product of groups translates with respect to the canonical trace � to our notion of
free independence.

Let us say that a product in an algebra A is alternating with respect to subalgebras
A1; : : : ;As if adjacent factors come from different subalgebras. Recall that our
definition of free independence says: the subalgebras A1; : : : ;As are free if any
product in centred elements over these algebras which alternates is centred.

Proposition 4. Let G be a group containing subgroups G1; : : : ; Gs such that
G D G1 � � � � �Gs . Let � be the state �.a/ D hae; ei on CŒG�: Then the subalgebras
CŒG1�; : : : ;CŒGs� � CŒG� are free with respect to �:
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Proof: Let a1a2 � � � ak be an element in CŒG� which alternates with respect to the
subalgebras CŒG1�; : : : ;CŒGs�; and assume the factors of the product are centred
with respect to �: Since � is the “coefficient of the identity” state, this means that if
aj 2 CŒGij �; then aj looks like aj D P

g2Gij aj .g/g and aj .e/ D 0. Thus we have

�.a1a2 � � � ak/ D
X

g12Gi1 ;:::;gk2Gik
a1.g1/a2.g2/ � � � ak.gk/�.g1g2 � � �gk/:

Now, �.g1g2 � � �gk/ ¤ 0 only if g1g2 � � �gk D e. But g1g2 � � �gk is an alternating
product in G with respect to the subgroups G1;G2; : : : ; Gs , and since G D G1 �
G2 � � � � � Gs , this can happen only when at least one of the factors, let’s say gj , is
equal to e; but in this case aj .gj / D aj .e/ D 0: So each summand in the sum for
�.a1a2 � � � ak/ vanishes, and we have �.a1a2 � � � ak/ D 0, as required. ut

Thus freeness of the subgroup algebras CŒG1�; : : : ;CŒGs� with respect to � is
just a simple reformulation of the fact that G1; : : : ; Gs are free subgroups of G:
However, a non-trivial fact is that this reformulation carries over to closures of the
subalgebras.

Proposition 5. (1) LetA be aC �-algebra, ' W A ! C a state. LetB1; : : : ; Bs � A

be unital �-subalgebras which are free with respect to ': Put Ai WD Bi
k�k

, the
norm closure of Bi . Then A1; : : : ; As are also free.

(2) Let M be a von Neumann algebra, ' W M ! C a normal state. Let B1; : : : ; Bs
be unital �-subalgebras which are free. Put Mi WD vN.Bi /: Then M1; : : : ;Ms

are also free.

Proof: (1) Consider a1; : : : ; ak with ai 2 Aji , '.ai / D 0, and ji 6D jiC1 for all i .
We have to show that '.a1 � � � ak/ D 0. SinceBi is dense inAi , we can, for each
i , approximate ai in operator norm by a sequence .b.n/i /n2N, with b.n/i 2 Bi , for

all n. Since we can replace b.n/i by b.n/i � '.b
.n/
i / (note that '.b.n/i / converges

to '.ai / D 0), we can assume, without restriction, that '.b.n/i / D 0. But then
we have

'.a1 � � � ak/ D lim
n!1'.b

.n/
1 � � � b.n/k / D 0;

since, by the freeness of B1; : : : ; Bs , we have '.b.n/1 � � � b.n/k / D 0 for each n.
(2) Consider a1; : : : ; ak with ai 2 Mji , '.ai / D 0, and ji 6D jiC1 for all i .

We have to show that '.a1 � � � ak/ D 0. We approximate essentially as in the
C �-algebra case; we only have to take care that the multiplication of our k
factors is still continuous in the appropriate topology. More precisely, we can
now approximate, for each i , the operator ai in the strong operator topology
by a sequence (or a net, if you must) b.n/i . By invoking Kaplansky’s density
theorem, we can choose those such that we keep everything bounded, namely,
kb.n/i k � kaik for all n. Again we can centre the sequence, so that we can
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assume that all '.b.n/i / D 0. Since the joint multiplication is on bounded sets
continuous in the strong operator topology, we have then still the convergence
of b.n/1 � � � b.n/k to a1 � � � ak and, thus, since ' is normal, also the convergence of

0 D '.b
.n/
1 � � � b.n/k / to '.a1 � � � ak/.

ut
6.6 The structure of free group factors

What does this tell us for the free group factors? It is clear that each generator of
the free group gives a Haar unitary element in .L.Fn/; �/. By the discussion above,
those elements are �-free. Thus the free group factor L.Fn/ is generated by n �-free
Haar unitaries u1; : : : ; un. Note that, by Theorem 2, we will get the free group factor
L.Fn/ whenever we find somewhere n Haar unitaries which are �-free with respect
to a faithful normal state. Furthermore, since we are working inside von Neumann
algebras, we have at our disposal measurable functional calculus, which means that
we can also deform the Haar unitaries into other, possibly more suitable, generators.

Theorem 6. LetM be a von Neumann algebra and � a faithful normal state onM .
Assume that x1; : : : ; xn 2 M generate M , vN.x1; : : : ; xn/ D M and that

ı x1; : : : ; xn are �-free with respect to � ,
ı each xi is normal, and its spectral measure with respect to � is diffuse (i.e. has

no atoms).

Then M ' L.Fn/.
Proof: Let x be a normal element in M which is such that its spectral measure with
respect to � is diffuse. Let A D vN.x/ be the von Neumann algebra generated
by x. We want to show that there is a Haar unitary u 2 A that generates A
as a von Neumann algebra. A is a commutative von Neumann algebra and the
restriction of � to A is a faithful state. A cannot have any minimal projections as
that would mean that the spectral measure of x with respect to � was not diffuse.
Thus there is a normal �-isomorphism � W A ! L1Œ0; 1� where we put Lebesgue
measure on Œ0; 1�. This follows from the well-known fact that any commutative von
Neumann algebra is �-isomorphic toL1.�/ for some measure � and that all spaces
L1.�/ for � without atoms are �-isomorphic; see, for example, [170, Chapter III,
Theorem 1.22].

Under � the trace � becomes a normal state on L1Œ0; 1�. Thus there is a positive
function h 2 L1Œ0; 1� such that for all a 2 A, �.a/ D R 1

0
�.a/.t/h.t/ dt . Since �

is faithful, the set ft 2 Œ0; 1� j h.t/ D 0g has Lebesgue measure 0. Thus H.s/ DR s
0
h.t/ dt is a continuous positive strictly increasing function on Œ0; 1� with range

Œ0; 1�. So by the Stone-Weierstrass theorem, the C �-algebra generated by 1 and
H is all of C Œ0; 1�. Hence the von Neumann algebra generated by 1 and H is all
of L1Œ0; 1�. Let v.t/ D exp.2�iH.t//. Then H is in the von Neumann algebra
generated by v, so the von Neumann algebra generated by v is L1Œ0; 1�. Also,
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Z 1

0

v.t/nh.t/ dt D
Z 1

0

exp.2� inH.t//H 0.t/ dt D
Z 1

0

e2� ins ds D ı0;n:

Thus v is Haar unitary with respect to h. Finally let u 2 A be such that �.u/ D v.
Then the von Neumann algebra generated by u is A and u is a Haar unitary with
respect to the trace � .

This means that for each i we can find in vN.xi / a Haar unitary ui which
generates the same von Neumann algebra as xi . By Proposition 5, freeness of the
xi goes over to freeness of the ui . So we have found n Haar unitaries in M which
are �-free and which generate M . Thus M is isomorphic to the free group factor
L.Fn/. ut
Example 7. Instead of generating L.Fn/ by n �-free Haar unitaries, it is also very
common to use n free semi-circular elements. (Note that for self-adjoint elements �-
freeness is of course the same as freeness.) This is of course covered by the theorem
above. But let us be a bit more explicit on deforming a semi-circular element into a
Haar unitary. Let s 2 M be a semi-circular operator. The spectral measure of s isp
4 � t 2=.2�/ dt , i.e.

�.f .s// D 1

2�

Z 2

�2
f .t/

p
4 � t 2 dt:

If

H.t/ D t

4�

p
4 � t 2 C 1

�
sin�1.t=2/ then H 0.t/ D 1

2�

p
4 � t 2;

and u D exp.2�iH.s// is a Haar unitary, i.e.

�.uk/ D
Z 2

�2
e2�ikH.t/H 0.t/ dt D

Z 1=2

�1=2
e2�ikr dr D ı0;k;

which generates the same von Neumann subalgebra as s.

6.7 Compression of free group factors

Let M be any II1 factor with faithful normal trace � and e a projection in M . Let
eMe D fexe j x 2 M g; eMe is again a von Neumann algebra, actually a II1
factor, with e being its unit, and it is called the compression of M by e. It is an
elementary fact in von Neumann algebra theory that the isomorphism class of eMe
depends only on t D �.e/, and we denote this isomorphism class by Mt . A deeper
fact of Murray and von Neumann is that .Ms/t D Mst . We can define Mt for all
t > 0 as follows. For a positive integer n, let Mn D M ˝Mn.C/, and for any t , let
Mt D eMne for any sufficiently large n and any projection e in Mn with trace
t , where here we use the non-normalized trace � ˝ Tr on Mn. Murray and von
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Neumann then defined the fundamental group of M , F.M/, to be ft 2 R
C j M '

Mtg and showed that it is a multiplicative subgroup of RC. (See [106, Ex. 13.4.5
and 13.4.6].) It is a theorem that when G is an amenable ICC group, we have that
L.G/ is the hyperfinite II1 factor and F.L.G// D R

C; see [170].
Rădulescu showed that F.L.F1// D R

C; see [144]. For finite n, F.L.Fn// is
unknown; but it is known to be either RC or f1g. In the rest of this chapter, we will
give the key ideas about those compression results for free group factors.

The first crucial step was taken by Voiculescu who showed in 1990 in [179] that
for integer m; n; k, we have L.Fn/1=k ' L.Fm/, where .m � 1/=.n � 1/ D k2, or
equivalently

L.Fn/ ' Mk.C/˝ L.Fm/; where
m � 1
n � 1 D k2: (6.3)

So if we embed L.Fm/ into Mk.C/ ˝ L.Fm/ ' L.Fn/ as x 7! 1 ˝ x, then
L.Fm/ is a subfactor of L.Fn/ of Jones index k2; see [105, Example 2.3.1]. Thus,
.m � 1/=.n � 1/ D ŒL.Fn/ W L.Fm/�. Notice the similarity to Schreier’s index
formula for free groups. Indeed, suppose G is a free group of rank n and H is a
subgroup of G of finite index. Then H is necessarily a free group, say of rank m,
and Schreier’s index formula says that .m � 1/=.n � 1/ D ŒG W H�.

Rather than proving Voiculescu’s theorem, Equation (6.3), in full generality, we
shall first prove a special case which illustrates the main ideas of the proof and then
sketch the general case.

Theorem 8. We have L.F3/1=2 ' L.F9/.
To prove this theorem, we must find in L.F3/1=2 nine free normal elements with

diffuse spectral measure which generate L.F3/1=2. In order to achieve this, we will
start with normal elements x1; x2; x3, together with a faithful normal state ', such
that

ı the spectral measure of each xi is diffuse (i.e. no atoms) and
ı x1; x2; x3 are �-free.

Let N be the von Neumann algebra generated by x1; x2, and x3. Then N ' L.F3/.
We will then show that there is a projection p in N such that

ı '.p/ D 1=2

ı there are 9 free and diffuse elements in pNp which generate pNp.

Thus L.F3/1=2 ' pNp ' L.F9/.
The crucial issue above is that we will be able to choose our elements x1; x2; x3

in such a form that we can easily recognize p and the generating elements of pNp.
(Just starting abstractly with three �-free normal diffuse elements will not be very
helpful, as we have then no idea how to get p and the required nine free elements.)
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Actually, since our claim is equivalent to L.F3/ ' M2.C/ ˝ L.F9/, it will surely
be a good idea to try to realize x1; x2; x3 as 2 � 2 matrices. This will be achieved in
the next section with the help of circular operators.

6.8 Circular operators and complex Gaussian random matrices

To construct the elements x1, x2, x3 as required above, we need to make a digression
into circular operators. Let X be an 2N � 2N GUE random matrix. Let

P D
�
In 0n
0n 0n

�

and G D p
2PX.1 � P /:

Then G is a N � N matrix with independent identically distributed entries which
are centred complex Gaussian random variables with complex variance 1=N ; such
a matrix we call a complex Gaussian random matrix. We can determine the limiting
�-moments of G as follows.

Write Y1 D .GCG�/=
p
2 and Y2 D �i.G�G�/=

p
2 thenG D .Y1C iY2/=

p
2

and Y1 and Y2 are independent N � N GUE random matrices. Therefore by the
asymptotic freeness of independent GUE (see section 1.11), Y1 and Y2 converge as
N ! 1 to free standard semi-circulars s1 and s2.

Definition 9. Let s1 and s2 be free and standard semi-circular. Then we call
c D .s1 C is2/=

p
2 a circular operator.

Since s1 and s2 are free, we can easily calculate the free cumulants of c.
If " D ˙1 let us adopt the following notation for x."/: x.�1/ D x� and x.1/ D x.
Recall that for a standard semi-circular operator s

	n.s; : : : ; s/ D
(
1; n D 2

0; n ¤ 2
:

Thus

	n.c
."1/; : : : ; c."n// D 2�n=2	n.s1 C "1is2; : : : ; s1 C i"ns2/

D 2�n=2�	n.s1; : : : ; s1/C in"1 � � � "n	n.s2; : : : ; s2/
�

since all mixed cumulants in s1 and s2 are 0. Thus 	n.c."1/; : : : ; c."n// D 0 for n ¤ 2,
and

	2.c
."1/; c."2// D 2�1�	2.s1; s1/ � "1"2	2.s2; s2/

� D 1 � "1"2
2

D
(
1 "1 ¤ "2

0 "1 D "2
:
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Hence, 	2.c; c�/ D 	2.c
�; c/ D 1, 	2.c; c/ D 	2.c

�; c�/ D 0, and all other
�-cumulants are 0. Thus

�..c�c/n/ D
X

�2NC.2n/
	�.c

�; c; c�; c; : : : ; c�; c/ D
X

�2NC2.2n/
	�.c

�; c; c�; c; : : : ; c�; c/:

Now note that any � 2 NC2.2n/ connects, by parity reasons, automatically only c
with c�, hence 	�.c�; c; c�; c; : : : ; c�; c/ D 1 for all � 2 NC2.2n/, and we have

�..c�c/n/ D jNC2.2n/j D �.s2n/;

where s is a standard semi-circular element. Since t 7! p
t is a uniform limit of

polynomials in t , we have that the moments of jcj D p
c�c and jsj D p

s2 are the
same and jcj and jsj have the same distribution. The operator jcj D jsj is called a
quarter-circular operator and has moments

�.jcjk/ D 1

�

Z 2

0

tk
p
4 � t 2 dt:

An additional result which we will need is Voiculescu’s theorem on the polar
decomposition of a circular operator.

Theorem 10. Let .M; �/ be a W �-probability space and c 2 M a circular
operator. If c D u jcj is its polar decomposition in M, then

(i) u and jcj are �-free,
(ii) u is a Haar unitary,

(iii) jcj is a quarter circular operator.

The proof of (i) and (ii) can either be done using random matrix methods (as
was done by Voiculescu [180]) or by showing that if u is a Haar unitary and q is
a quarter-circular operator such that u and q are �-free, then uq has the same �-
moments as a circular operator (this was done by Nica and Speicher [137]). The
latter can be achieved, for example, by using the formula for cumulants of products,
equation (2.23). For the details of this approach, see [137, Theorem 15.14].

Theorem 11. Let .A; '/ be a unital �-algebra with a state '. Suppose s1; s2; c 2 A
are �-free and s1 and s2 semi-circular and c circular. Then

x D 1p
2

�
s1 c

c� s2

�

2 .M2.A/; '2/

is semi-circular.

Here we have used the standard notationM2.A/ D M2.C/˝A for 2�2matrices
with entries from A and '2 D tr ˝ ' for the composition of the normalized trace
with '.
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Proof: Let Chx11; x12; x21; x22i be the polynomials in the non-commuting variables
x11; x12; x21; x22. Let

pk.x11; x12; x21; x22/ D 1

2
Tr

 �
x11 x12
x21 x22

�k!

:

Now let AN D MN.L
1�.˝// be the N � N matrices with entries in

L1�.˝/ WD T
p�1 Lp.˝/, for some classical probability space˝. On AN we have

the state 'N .X/ D E.N�1Tr.X//. Now suppose in AN we have S1, S2, and C , with
S1 and S2 GUE random matrices and C a complex Gaussian random matrix and with
the entries of S1, S2, C independent. Then we know that S1; S2; C converge in �-
distribution to s1; s2; c, i.e. for any polynomial p in four non-commuting variables,
we have 'N .p.S1; C; C �; S2// ! '.p.s1; c; c

�; s2//. Now let

X D 1p
2

�
S1 C

C � S2

�

:

Then X is in A2N , and

'2N .X
k/ D 'N

�
pk.S1; C; C

�; S2/
� ! '

�
pk.s1; c; c

�; s2/
� D '.

1

2
Tr.xk//

D tr ˝ '.xk/:

On the other hand, X is a 2N � 2N GUE random matrix; so '2N .Xk/ converges to
the kth moment of a semi-circular operator. Hence x in M2.A/ is semi-circular. ut
Exercise 4. Suppose s1, s2, c, and x are as in Theorem 11. Show that x is semi-
circular by computing '.tr.xn// directly using the methods of Lemma 1.9.

We can now present the realization of the three generators x1; x2; x3 of L.F3/
which we need for the proof of the compression result.

Lemma 12. Let A be a unital �-algebra and ' a state on A. Suppose s1, s2, s3, s4,
c1, c2, u in A are �-free, with s1, s2, s3, and s4 semi-circular, c1 and c2 circular, and
u a Haar unitary. Let

x1 D
�
s1 c1
c�
1 s2

�

; x2 D
�
s3 c2
c�
2 s4

�

; x3 D
�

u 0

0 2u

�

:

Then x1, x2, x3 are �-free in M2.A/ with respect to the state tr ˝ '; x1 and x2 are
semi-circular and x3 is normal and diffuse.

Proof: We model x1 by X1, x2 by X2, and x3 by X3 where

X1 D
�
S1 C1
C �
1 S2

�

; X2 D
�
S3 C2
C �
2 S3

�

; X3 D
�
U 0

0 2U

�
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and S1, S2, S3, S4 are N �N GUE random matrices, C1 and C2 are N �N complex
Gaussian random matrices, and U is a diagonal deterministic unitary matrix, chosen
so that the entries of X1 are independent from those of X2 and that the diagonal
entries of U converge in distribution to the uniform distribution on the unit circle.
Then X1, X2, X3 are asymptotically �-free by Theorem 4.4. Thus x1, x2, and x3
are �-free because they have the same distribution as the limiting distribution of X1,
X2, and X3. By the previous Theorem 11, x1 and x2 are semi-circular. x3 is clearly
normal, and its spectral distribution is given by the uniform distribution on the union
of the circle of radius 1 and the circle of radius 2. ut
6.9 Proof of L.F3/1=2 ' L.F9/

We will now present the proof of Theorem 8.

Proof: We have shown that if we take four semi-circular operators s1 s2, s3, s4, two
circular operators c1, c2, and a Haar unitary u in a von Neumann algebra M with
trace � such that s1, s2, s3, s4, c1, c2, u are �-free, then

ı the elements

x1 D
�
s1 c1
c�
1 s2

�

; x2 D
�
s3 c2
c�
2 s4

�

; x3 D
�

u 0

0 2u

�

are �-free in .M2.M/; tr ˝ �/,
ı x1 and x2 are semi-circular, and x3 is normal and has diffuse spectral measure.

Let N D vN.x1; x2; x3/ 	 M2.M/. Then, by Theorem 6, N ' L.F3/. Since

�
1 0

0 4

�

D x�
3 x3 2 N; we also have the spectral projection p D

�
1 0

0 0

�

2 N;

and thus px1.1� p/ 2 N and px2.1� p/ 2 N . We have the polar decompositions

�
0 c1
0 0

�

D
�
0 v1
0 0

�

�
�
0 0

0 jc1j
�

and

�
0 c2
0 0

�

D
�
0 v2
0 0

�

�
�
0 0

0 jc2j
�

;

where c1 D v1jc1j and c2 D v2jc2j are the polar decompositions of c1 and c2,
respectively, in M .

Hence we see that N D vN.x1; x2; x3/ is generated by the ten elements

y1 D
�
s1 0

0 0

�

y2 D
�
0 0

0 s2

�

y3 D
�
0 v1
0 0

�

y4 D
�
0 0

0 jc1j
�

y5 D
�
s3 0

0 0

�

y6 D
�
0 0

0 s4

�

y7 D
�
0 v2
0 0

�

y8 D
�
0 0

0 jc2j
�

y9 D
�

u 0
0 0

�

y10 D
�
0 0

0 u

�

:
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Let us put

v WD
�
0 v1
0 0

�

I then v�v D
�
0 0

0 1

�

and vv� D
�
1 0

0 0

�

D p D p2:

Since we can write now any pyi1 � � � yinp in the form pyi11yi21 � � � 1yinp and
replace each 1 by p2 C v�v, it is clear that

S10
iD1fpyip; pyiv�; vyip; vyiv�g

generate pNp. This gives for pNp the generators

s1; v1s2v
�
1 ; v1v

�
1 ; v1 jc1j v�

1 ; s3; v1s4v
�
1 ; v2v

�
1 ; v1 jc2j v�

1 ; u; v1uv
�
1 :

Note that v1v�
1 D 1 can be removed from the set of generators. To check that the

remaining nine elements are �-free and diffuse, we recall a few elementary facts
about freeness.

Exercise 5. Show the following:

(i) if A1 and A2 are free subalgebras of A, if A11 and A12 are free subalgebras of
A1, and if A21 and A22 are free subalgebras of A2; then A11;A12;A21;A22 are
free;

(ii) if u is a Haar unitary �-free from A, then A is �-free from uAu�;
(iii) if u1 and u2 are Haar unitaries and u2 is �-free from fu1g [ A then u2u�

1 is a
Haar unitary and is �-free from u1Au�

1 .

By construction s1; s2; s3; s4; jc1j; jc2j; v1; v2; u are �-free. Thus, in particular,
s2; s4; jc1j; jc2j; v2; u are �-free. Hence, by (ii), v1s2v�

1 ; v1s4v
�
1 ; v1jc1jv�

1 ; v1jc2jv�
1 ;

v1uv�
1 are �-free and, in addition, �-free from u; s1; s3; v2. Thus

u; s1; s3; v1s2v
�
1 ; v1s4v

�
1 ; v1jc1jv�

1 ; v1jc2jv�
1 ; v1uv

�
1 ; v2

are �-free. Let A D alg.s2; s4; jc1j; jc2j; u/. We have that v2 is �-free from fv1g[A,
so by (iii), v2v�

1 is �-free from v1Av�
1 . Thus, v2v�

1 is �-free from

v1s2v
�
1 ; v1s4v

�
1 ; v1jc1jv�

1 ; v1jc2jv�
1 ; v1uv

�
1

and it was already �-free from s1; s3 and u. Thus by (i) our nine elements

s1; s3; v1s2v
�
1 ; v1s4v

�
1 ; v1jc1jv�

1 ; v1jc2jv�
1 ; u; v1uv

�
1 ; v2v

�
1

are �-free. Since they are either semi-circular, quarter-circular, or Haar elements,
they are all normal and diffuse; as they generate pNp, we have that pNp is
generated by nine �-free normal and diffuse elements and thus, by Theorem 6,
pNp ' L.F9/. Hence L.F3/1=2 ' L.F9/. ut
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6.10 The general case L.Fn/1=k ' L.F1C.n�1/k2/

Sketch We sketch now the proof for the general case of Equation (6.3). We write
L.Fn/ D vN.x1; : : : ; xn/where for 1 � i � n�1 each xi is a semi-circular element
of the form

xi D 1p
k

0

B
B
B
B
@

s
.i/
1 c

.i/
12 : : : c

.i/

1k

c
.i/
12

�
s
.i/
2 : : : c

.i/

2k
:::

: : :
:::

c
.i/

1k

� � � � � � � s.i/k

1

C
C
C
C
A

and where xn D

0

B
B
B
@

u 0 : : : 0

0 2u : : : 0
:::

: : :
:::

0 0 : : : ku

1

C
C
C
A
;

with all s.i/j (j D 1; : : : ; k; i D 1; : : : ; n�1) semi-circular, all c.i/pq (1 � p < q � k;
i D 1; : : : ; n � 1) circular, and u a Haar unitary, so that all elements are �-free.

So we have .n � 1/k semi-circular operators, .n � 1/
�
k
2

�
circular operators, and

one Haar unitary. Each circular operator produces two free elements, so we have in
total

.n � 1/k C 2.n � 1/
 
k

2

!

C 1 D .n � 1/k2 C 1

free and diffuse generators. Thus L.Fn/1=k ' L.F1C.n�1/k2/. ut
6.11 Interpolating free group factors

The formula L.Fn/1=k ' L.Fm/, which up to now makes sense only for integer
m, n, and k, suggests that one might try to define L.Fr / also for noninteger r by
compression. A crucial issue is that, by the above formula, different compressions
should give the same result. That this really works and is consistent was shown,
independently, by Dykema [67] and Rădulescu [145].

Theorem 13. Let R be the hyperfinite II1 factor and L.F1/ D vN.s1; s2; : : : / be
a free group factor generated by countably many free semi-circular elements si ,
such that R and L.F1/ are free in some W �-probability space .M; �/. Consider
orthogonal projections p1; p2; � � � 2 R and put r WD 1CP

j �.pj /
2 2 Œ1;1�. Then

the von Neumann algebra

L.Fr / WD vN.R; pj sj pj .j 2 N// (6.4)

is a factor and depends, up to isomorphism, only on r .

These L.Fr / for r 2 R, 1 � r � 1 are the interpolating free group factors.
Note that we do not claim to have noninteger free groups Fr . The notation L.Fr /
cannot be split into smaller components.

Dykema and Rădulescu showed the following results.
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Theorem 14. 1) For r 2 f2; 3; 4; : : : ;1g the interpolating free group factor
L.Fr / is the usual free group factor.

2) We have for all r; s � 1: L.Fr / ? L.Fs/ ' L.FrCs/.
3) We have for all r � 1 and all t 2 .0;1/ the same compression formula as in

the integer case:

�L.Fr /
�
t

' L.F1Ct�2.r�1//: (6.5)

The compression formula above is also valid in the case r D 1; since then
1 C t�2.r � 1/ D 1, it yields in this case that any compression of L.F1/ is
isomorphic to L.F1/; or in other words, we have that the fundamental group of
L.F1/ is equal to R

C.

6.12 The dichotomy for the free group factor isomorphism problem

Whereas for r D 1, the compression of L.Fr / gives the same free group factor (and
thus we know that the fundamental group is maximal in this case); for r < 1 we get
some other free group factors. Since we do not know whether these are isomorphic
to the original L.Fr /, we cannot decide upon the fundamental group in this case.
However, on the positive side, we can connect different free group factors by
compressions; this yields that some isomorphisms among the free group factors will
imply other isomorphisms. For example, if we would know that L.F2/ ' L.F3/,
then this would imply that also

L.F5/ ' �L.F2/
�
1=2

' �L.F3/
�
1=2

' L.F9/:

The possibility of using arbitrary t 2 .0;1/ in our compression formulas allows to
connect any two free group factors by compression, which gives then the following
dichotomy for the free group isomorphism problem. This is again due to Dykema
and Rădulescu.

Theorem 15. We have exactly one of the following two possibilities.

(i) All interpolating free group factors are isomorphic: L.Fr / ' L.Fs/ for all
1 < r; s � 1. In this case the fundamental group of each L.Fr / is equal to
R

C.
(ii) The interpolating free group factors are pairwise non-isomorphic: L.Fr / 6'

L.Fs/ for all 1 < r 6D s � 1. In this case the fundamental group of each
L.Fr /, for r 6D 1, is equal to f1g.
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