
Chapter 10
Deterministic Equivalents, Polynomials in Free Variables,
and Analytic Theory of Operator-Valued Convolution

The notion of a “deterministic equivalent” for random matrices, which can be found
in the engineering literature, is a non-rigorous concept which amounts to replacing a
random matrix model of finite size (which is usually unsolvable) by another problem
which is solvable, in such a way that, for large N , the distributions of both problems
are close to each other. Motivated by our example in the last chapter, we will in this
chapter propose a rigorous definition for this concept, which relies on asymptotic
freeness results. This “free deterministic equivalent” was introduced by Speicher
and Vargas in [166].

This will then lead directly to the problem of calculating the distribution of
self-adjoint polynomials in free variables. We will see that, in contrast to the
corresponding classical problem on the distribution of polynomials in independent
random variables, there exists a general algorithm to deal with such polynomials in
free variables. The main idea will be to relate such a polynomial with an operator-
valued linear polynomial and then use operator-valued convolution to deal with the
latter. The successful implementation of this program is due to Belinschi, Mai, and
Speicher [23]; see also [12].

10.1 The general concept of a free deterministic equivalent

Voiculescu’s asymptotic freeness results on random matrices state that if we
consider tuples of independent random matrix ensembles, such as Gaussian, Wigner,
or Haar unitaries, their collective behaviour in the large N limit is almost surely
that of a corresponding collection of free (semi-)circular and Haar unitary opera-
tors. Moreover, if we consider these random ensembles along with deterministic
ensembles, having a given asymptotic distribution (with respect to the normalized
trace), then, almost surely, the corresponding limiting operators also become free
from the random elements. This means of course that if we consider a function in
our matrices, then this will, for large N , be approximated by the same function in
our limiting operators. We will in the following only consider functions which are
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given by polynomials. Furthermore, all our polynomials should be self-adjoint (in
the sense that if we plug in self-adjoint matrices, we will get as output self-adjoint
matrices), so that the eigenvalue distribution of those polynomials can be recovered
by calculating traces of powers.

To be more specific, let us consider a collection of independent random and
deterministic N � N matrices:

XN D
n
X

.N /
1 ; : : : ; X

.N /
i1

o
W independent self-adjoint Gaussian matrices;

YN D
n
Y

.N /
1 ; : : : ; Y

.N /
i2

o
W independent non-self-adjoint Gaussian matrices;

UN D
n
U

.N /
1 ; : : : ; U

.N /
i3

o
W independent Haar distributed unitary matrices;

DN D
n
D

.N /
1 ; : : : ; D

.N /
i4

o
W deterministic matrices,

and a self-adjoint polynomial P in non-commuting variables (and their adjoints);
we evaluate this polynomial in our matrices

P
�
X

.N /
1 ; : : : ; X

.N /
i1

; Y
.N /

1 ; : : : ; Y
.N /

i2
; U

.N /
1 ; : : : ; U

.N /
i3

; D
.N /
1 ; : : : ; D

.N /
i4

� DW PN :

Relying on asymptotic freeness results, we can then compute the asymptotic
eigenvalue distribution of PN by going over the limit. We know that we can find
collections S; C; U; D of operators in a non-commutative probability space .A; '/,

S D fs1; : : : ; si1g W free semi-circular elements;

C D fc1; : : : ; ci2g W �-free circular elements;

U D fu1; : : : ; ui3g W �-free Haar unitaries;

D D fd1; : : : ; di4g W abstract elements,

such that S; C; U; D are �-free and the joint distribution of d1; : : : ; di4 is given by the
asymptotic joint distribution of D

.N /
1 ; : : : ; D

.N /
i4

. Then, almost surely, the asymptotic
distribution of PN is that of P .s1; : : : ; si1 ; c1; : : : ; ci2 ; u1; : : : ; ui3 ; d1; : : : ; di4/ DW
p1, in the sense that, for all k, we have almost surely

lim
N !1 tr.P k

N / D '.pk1/:

In this way, we can reduce the problem of the asymptotic distribution of PN to
the study of the distribution of p1.

A common obstacle of this procedure is that our deterministic matrices may not
have an asymptotic joint distribution. It is then natural to consider, for a fixed N , the
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corresponding “free model” P
�
s1; : : : ; si1 ; c1; : : : ; ci2 ; u1; : : : ; ui3 ; d

.N /
1 ; : : : ; d

.N /
i4

�
DW p�

N , where, just as before, the random matrices are replaced by the corre-
sponding free operators in some space .AN ; 'N /, but now we let the distribution
of d

.N /
1 ; : : : ; d

.N /
i4

be exactly the same as the one of D
.N /
1 ; : : : ; D

.N /
i4

with respect to
tr. The free model p�

N will be called the free deterministic equivalent for PN . This
was introduced and investigated in [166, 175].

(In case one wonders about the notation, p�
N : the symbol � is according to

[30] the generic qualifier for denoting the free version of some classical object or
operation.)

The difference between the distribution of p�
N and the (almost sure or expected)

distribution of PN is given by the deviation from freeness of XN ; YN ; UN ; DN , the
deviation of XN ; YN from being free (semi)-circular systems, and the deviation of
UN from a free system of Haar unitaries. Of course, for large N these deviations
get smaller, and thus the distribution of p�

N becomes a better approximation for the
distribution of PN .

Let us denote by GN the Cauchy transform of PN and by G�
N the Cauchy

transform of the free deterministic equivalent p�
N . Then, the usual asymptotic

freeness estimates show that moments of PN are, for large N , with very high
probability close to corresponding moments of p�

N (where the estimates involve also
the operator norms of the deterministic matrices). This means that for N ! 1, the
difference between the Cauchy transforms GN and G�

N goes almost surely to zero,
even if there do not exist individual limits for both Cauchy transforms.

In the engineering literature, there exists also a version of the notion of a
deterministic equivalent (apparently going back to Girko [78], see also [90]).
This deterministic equivalent consists in replacing the Cauchy transform GN of
the considered random matrix model (for which no analytic solution exists) by a
function OGN which is defined as the solution of a specified system of equations.
The specific form of those equations is determined in an ad hoc way, depending
on the considered problem, by making approximations for the equations of GN ,
such that one gets a closed system of equations. In many examples of deterministic
equivalents (e.g. see [62, Chapter 6]), it turns out that actually the Cauchy transform
of our free deterministic equivalent is the solution to those modified equations, i.e.
that OGN D G�

N . We saw one concrete example of this in Section 9.5 of the last
chapter.

Our definition of a deterministic equivalent gives a more conceptual approach
and shows clearly how this notion relates with free probability theory. In some sense,
this indicates that the only meaningful way to get a closed system of equations when
dealing with random matrices is to replace the random matrices by free variables.

Deterministic equivalents are thus polynomials in free variables, and it remains
to develop tools to deal with such polynomials in an effective way. It turns out that
operator-valued free probability theory provides such tools. We will elaborate on
this in the remaining sections of this chapter.
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10.2 A motivating example: reduction to multiplicative convolution

In the following, we want to see how problems about polynomials in free variables
can be treated by means of operator-valued free probability. The main idea in this
context is that complicated polynomials can be transformed into simpler ones by
going to matrices (and thus go from scalar-valued to operator-valued free probabil-
ity). Since the only polynomials which we can effectively deal with are sums and
products (corresponding to additive and multiplicative convolution, respectively),
we should aim to transform general polynomials into sums or products.

In this section, we will treat one special example from [25] to get an idea how
this can be achieved. In this case, we will transform our problem into a product of
two free operator-valued matrices.

Let a1; a2; b1; b2 be self-adjoint random variables in a non-commutative prob-
ability space .C; '/, such that fa1; a2g and fb1; b2g are free and consider the
polynomial p D a1b1a1 C a2b2a2. This p is self-adjoint and its distribution, i.e.
the collection of its moments, is determined by the joint distribution of fa1; a2g,
the joint distribution of fb1; b2g, and the freeness between fa1; a2g and fb1; b2g.
However, there is no direct way of calculating this distribution.

We observe now that the distribution �p of p is the same (modulo a Dirac mass
at zero) as the distribution of the element

�
a1b1a1 C a2b2a2 0

0 0

�
D
�

a1 a2

0 0

��
b1 0

0 b2

��
a1 0

a2 0

�
; (10.1)

in the non-commutative probability space .M2.C/; tr2 ˝'/. But this element has the
same moments as

�
a1 0

a2 0

��
a1 a2

0 0

��
b1 0

0 b2

�
D
�

a2
1 a1a2

a2a1 a2
2

��
b1 0

0 b2

�
DW AB: (10.2)

So, with �AB denoting the distribution of AB with respect to tr2 ˝ ', we have

�AB D 1

2
�p C 1

2
ı0:

Since A and B are not free with respect to tr2 ˝ ', we cannot use scalar-valued
multiplicative free convolution to calculate the distribution of AB . However, with
E W M2.C/ ! M2.C/ denoting the conditional expectation onto deterministic 2 � 2

matrices, we have that the scalar-valued distribution �AB is given by taking the trace
tr2 of the operator-valued distribution of AB with respect to E. But on this operator-
valued level, the matrices A and B are, by Corollary 9.14, free with amalgamation
over M2.C/. Furthermore, the M2.C/-valued distribution of A is determined by the
joint distribution of a1 and a2, and the M2.C/-valued distribution of B is determined
by the joint distribution of b1 and b2. Hence, the scalar-valued distribution �p will
be given by first calculating the M2.C/-valued free multiplicative convolution of A
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and B to obtain the M2.C/-valued distribution of AB and then getting from this
the (scalar-valued) distribution �AB by taking the trace over M2.C/. Thus, we have
rewritten our original problem as a problem on the product of two free operator-
valued variables.

10.3 The general case: reduction to operator-valued additive convolution
via the linearization trick

Let us now be more ambitious and look at an arbitrary self-adjoint polynomial P 2
ChX1; : : : ; Xni, evaluated as p D P.x1; : : : ; xn/ 2 A in free variables x1; : : : ; xn 2
A. In the last section, we replaced our original variable by a matrix which has (up
to some atoms), with respect to tr ˝ ', the same distribution and which is actually
a product of matrices in the single operators. It is quite unlikely that we can do
the same in general. However, if we do not insist on using the trace as our state
on matrices but allow, for example, the evaluation at the .1; 1/ entry, then we gain
much flexibility and can indeed find an equivalent matrix which splits even into a
sum of matrices of the individual variables. What we essentially need for this is,
given the polynomial P , to construct in a systematic way a matrix, such that the
entries of this matrix are polynomials of degree 0 or 1 in our variables and such
that the inverse of this matrix has as .1; 1/ entry .z � P /�1. Let us ignore for the
moment the degree condition on the entries and just concentrate on the invertibility
questions. The relevant tool in this context is the following well-known result about
Schur complements.

Proposition 1. Let A be a complex and unital algebra and let elements a; b; c; d 2
A be given. We assume that d is invertible in A. Then the following statements are
equivalent:

(i) The matrix

�
a b

c d

�
is invertible in M2.C/ ˝ A.

(ii) The Schur complement a � bd �1c is invertible in A.

If the equivalent conditions (i) and (ii) are satisfied, we have the relation

�
a b

c d

��1

D
�

1 0

�d �1c 1

��
.a � bd �1c/�1 0

0 d �1

��
1 �bd �1

0 1

�
: (10.3)

In particular, the .1; 1/ entry of the inverse is given by .a � bd �1c/�1:

�
a b

c d

��1

D
�

.a � bd �1c/�1 �
� �

�
:

Proof: A direct calculation shows that

�
a b

c d

�
D
�

1 bd �1

0 1

��
a � bd �1c 0

0 d

��
1 0

d �1c 1

�
(10.4)
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holds. Since the first and third matrix are both invertible in M2.C/ ˝ A,

�
1 bd �1

0 1

��1

D
�

1 �bd �1

0 1

�
and

�
1 0

d �1c 1

��1

D
�

1 0

�d �1c 1

�
;

the stated equivalence of (i) and (ii), as well as formula (10.3), follows from (10.4).
ut

What we now need, given our operator p D P.x1; : : : ; xn/, is to find a block
matrix such that the .1; 1/ entry of the inverse of this block matrix corresponds to
the resolvent .z � p/�1 and that furthermore all the entries of this block matrix have
at most degree 1 in our variables. More precisely, we are looking for an operator

Op D b0 ˝ 1 C b1 ˝ x1 C � � � C bn ˝ xn 2 MN .C/ ˝ A

for some matrices b0; : : : ; bn 2 MN .C/ of dimension N , such that z�p is invertible
in A if and only if �.z/ � Op is invertible in MN .C/ ˝ A. Hereby, we put

�.z/ D

0
BBB@

z 0 : : : 0

0 0 : : : 0
:::

:::
: : :

:::

0 0 : : : 0

1
CCCA for all z 2 C: (10.5)

As we will see in the following, the linearization in terms of the dimension N 2 N

and the matrices b0; : : : ; bn 2 MN .C/ usually depends only on the given polynomial
P 2 ChX1; : : : ; Xni and not on the special choice of elements x1; : : : ; xn 2 A.

The first famous linearization trick in the context of operator algebras and random
matrices goes back to Haagerup and Thorbjørnsen [88, 89] and turned out to be a
powerful tool in many different respects. However, there was the disadvantage that,
even if we start from a self-adjoint polynomial P , in general, we will not end up with
a linearization Op, which is self-adjoint as well. Then, in [5], Anderson presented a
new version of this linearization procedure, which preserved self-adjointness.

One should note, however, that the idea of linearizing polynomial (or actually
rational, see Section 10.6)) problems by going to matrices is actually much older
and is known under different names in different communities like “Higman’s
trick” [98] or “linearization by enlargement” in non-commutative ring theory [56],
“recognizable power series” in automata theory and formal languages [154], or
“descriptor realization” in control theory [93]. For a survey on linearization, non-
commutative system realization, and its use in free probability, see [95].

Here is now our precise definition of linearization.

Definition 2. Let P 2 ChX1; : : : ; Xni be given. A matrix

OP WD
�

0 U

V Q

�
2 MN .C/ ˝ ChX1; : : : ; Xni;
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where

ı N 2 N is an integer,
ı Q 2 MN �1.C/ ˝ ChX1; : : : ; Xni is invertible
ı and U is a row vector and V is a column vector, both of size N � 1 with entries

in ChX1; : : : ; Xni,
is called a linearization of P , if the following conditions are satisfied:

(i) There are matrices b0; : : : ; bn 2 MN .C/, such that

OP D b0 ˝ 1 C b1 ˝ X1 C � � � C bn ˝ Xn;

i.e. the polynomial entries in Q, U , and V all have degree � 1.
(ii) It holds true that P D �UQ�1V .

Applying the Schur complement, Proposition 1, to this situation yields then the
following:

Corollary 3. Let A be a unital algebra and let elements x1; : : : ; xn 2 A be given.
Assume P 2 ChX1; : : : ; Xni has a linearization

OP D b0 ˝ 1 C b1 ˝ X1 C � � � C bn ˝ Xn 2 MN .C/ ˝ ChX1; : : : ; Xni

with matrices b0; : : : ; bn 2 MN .C/. Then the following conditions are equivalent
for any complex number z 2 C:

(i) The operator z � p with p WD P.x1; : : : ; xn/ is invertible in A.
(ii) The operator �.z/ � Op with �.z/ defined as in (10.5) and

Op WD b0 ˝ 1 C b1 ˝ x1 C � � � C bn ˝ xn 2 MN .C/ ˝ A

is invertible in MN .C/ ˝ A.

Moreover, if (i) and (ii) are fulfilled for some z 2 C, we have that

�
.�.z/ � Op/�1

�
1;1

D .z � p/�1:

Proof: By the definition of a linearization, Definition 2, we have a block decompo-
sition of the form

Op WD
�

0 u
v q

�
2 MN .C/ ˝ A

where u D U.x1; : : : ; xn/, v D V.x1; : : : ; xn/ and q D Q.x1; : : : ; xn/. Further-
more, we know that q 2 MN �1.C/ ˝ A is invertible and p D �uq�1v holds. This
implies
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�.z/ � Op D
�

z �u
�v �q

�
;

and the statements follow from Proposition 1. ut
Now, it only remains to ensure the existence of linearizations of this kind.

Proposition 4. Any polynomial P 2 ChX1; : : : ; Xni admits a linearization OP in
the sense of Definition 2. If P is self-adjoint, then the linearization can be chosen to
be self-adjoint.

The proof follows by combining the following simple observations:

Exercise 1.

(i) Show that Xj 2 ChX1; : : : ; Xni has a linearization

OXj D
�

0 Xj

1 �1

�
2 M2.C/ ˝ ChX1; : : : ; Xni:

(This statement looks simplistic taken for itself, but it will be useful when
combined with the third part.)

(ii) A monomial of the form P WD Xi1Xi2 � � � Xik 2 ChX1; : : : ; Xni for k � 2,
i1; : : : ; ik 2 f1; : : : ; ng has a linearization

OP D

0
BBB@

Xi1

Xi2 �1

: :
:

: :
:

Xik �1

1
CCCA 2 Mk.C/ ˝ ChX1; : : : ; Xni:

(iii) If the polynomials P1; : : : ; Pk 2 ChX1; : : : ; Xni have linearizations

OPj D
�

0 Uj

Vj Qj

�
2 MNj .C/ ˝ ChX1; : : : ; Xni

for j D 1; : : : ; n, then their sum P WD P1 C � � � C Pk has the linearization

OP D

0
BBB@

0 U1 : : : Uk

V1 Q1

:::
: : :

Vk Qk

1
CCCA 2 MN .C/ ˝ ChX1; : : : ; Xni

with N WD .N1 C � � � C Nk/ � k C 1:

(iv) If

�
0 U

V Q

�
2 MN .C/ ˝ ChX1; : : : ; Xni
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is a linearization of P , then

0
@

0 U V �
U � 0 Q�
V Q 0

1
A 2 M2N �1.C/ ˝ ChX1; : : : ; Xni

is a linearization of P C P �.

10.4 Analytic theory of operator-valued convolutions

In the last two sections, we indicated how problems in free variables can be
transformed into operator-valued simpler problems. In particular, the distribution
of a self-adjoint polynomial p D P.x1; : : : ; xn/ in free variables x1; : : : ; xn can be
deduced from the operator-valued distribution of a corresponding linearization

Op WD b0 ˝ 1 C b1 ˝ x1 C � � � C bn ˝ xn 2 MN .C/ ˝ A:

Note that for this linearization, the freeness of the variables plays no role. Where
it becomes crucial is the observation that the freeness of x1; : : : ; xn implies, by
Corollary 9.14, the freeness over MN .C/ of b1 ˝ x1; : : : ; bn ˝ xn. (Note that there
is no classical counter part of this for the case of independent variables.) Hence,
the distribution of Op is given by the operator-valued free additive convolution of
the distributions of b1 ˝ x1; : : : ; bn ˝ xn. Furthermore, since the distribution of xi

determines also the MN .C/-valued distribution of bi ˝ xi , we have finally reduced
the determination of the distribution of P.x1; : : : ; xn/ to a problem involving
operator-valued additive free convolution. As pointed out in Section 9.2, we can
in principle deal with such a convolution.

However, in the last chapter we treated the relevant tools, in particular the
operator-valued R-transform, only as formal power series, and it is not clear how
one should be able to derive explicit solutions from such formal equations. But
worse, even if the operator-valued Cauchy and R-transforms are established as
analytic objects, it is not clear how to solve operator-valued equations like the
one in Theorem 9.11. There are rarely any non-trivial operator-valued examples
where an explicit solution can be written down; and also numerical methods for
such equations are problematic – a main obstacle being that those equations usually
have many solutions, and it is a priori not clear how to isolate the one with the right
positivity properties. As we have already noticed in the scalar-valued case, it is the
subordination formulation of those convolutions which comes to the rescue. From
an analytic and also a numerical point of view, the subordination function is a much
nicer object than the R-transform.

So, in order to make good use of our linearization algorithm, we need also a well-
developed subordination theory of operator-valued free convolution. Such a theory
exists and we will present in the following the relevant statements. For proofs and
more details, we refer to the original papers [23, 25].



258 10 Deterministic Equivalents, Polynomials in Free Variables, and Analytic Theory. . .

10.4.1 General notations

A C �-operator-valued probability space .M; E;B/ is an operator-valued proba-
bility space, where M is a C �-algebra, B is a C �-subalgebra of M, and E is
completely positive. In such a setting, we use for x 2 M the notation x > 0

for the situation where x � 0 and x is invertible; note that this is equivalent to
the fact that there exists a real " > 0 such that x � "1. Any element x 2 M
can be uniquely written as x D Re.x/ C i Im.x/, where Re.x/ D .x C x�/=2

and Im.x/ D .x � x�/=.2i/ are self-adjoint. We call Re.x/ and Im.x/ the real and
imaginary part of x.

The appropriate domain for the operator-valued Cauchy transform Gx for a self-
adjoint element xDx� is the operator upper half-plane

H
C.B/WDfb2BW Im.b/>0g:

Elements in this open set are all invertible, and H
C.B/ is invariant under conjugation

by invertible elements in B, i.e. if b 2 H
C.B/ and c 2 GL.B/ is invertible, then

cbc� 2 H
C.B/.

We shall use the following analytic mappings, all defined on H
C.B/; all

transforms have a natural Schwarz-type analytic extension to the lower half-plane
given by f .b�/ D f .b/�; in all formulas below, x D x� is fixed in M:

ı the moment generating function:

�x.b/ D E
�
.1 � bx/�1 � 1

� D E
�
.b�1 � x/�1

�
b�1 � 1 D Gx.b�1/b�1 � 1I

(10.6)
ı the reciprocal Cauchy transform:

Fx.b/ D E
�
.b � x/�1

��1 D Gx.b/�1I (10.7)

ı the eta transform:

�x.b/ D �x.b/.1 C �x.b//�1 D 1 � bFx.b�1/I (10.8)

ı the h transform:

hx.b/ D E
�
.b � x/�1

��1 � b D Fx.b/ � b: (10.9)

10.4.2 Operator-valued additive convolution

Here is now the main theorem from [23] on operator-valued free additive convolu-
tion.

Theorem 5. Assume that .M; E;B/ is a C �-operator-valued probability space
and x; y 2 M are two self-adjoint operator-valued random variables which are
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free over B. Then there exists a unique pair of Fréchet (and thus also Gateaux)
analytic maps !1; !2WHC.B/ ! H

C.B/ so that

(i) Im.!j .b// � Im.b/ for all b 2 H
C.B/, j 2 f1; 2g;

(ii) Fx.!1.b// C b D Fy.!2.b// C b D !1.b/ C !2.b/ for all b 2 H
C.B/I

(iii) Gx.!1.b// D Gy.!2.b// D GxCy.b/ for all b 2 H
C.B/:

Moreover, if b 2 H
C.B/, then !1.b/ is the unique fixed point of the map

fb WHC.B/ ! H
C.B/; fb.w/ D hy.hx.w/ C b/ C b;

and

!1.b/ D lim
n!1 f ın

b .w/ for any w 2 H
C.B/;

where f ın
b denotes the n-fold composition of fb with itself. Similar statements hold

for !2, with fb replaced by w 7! hx.hy.w/ C b/ C b:

10.4.3 Operator-valued multiplicative convolution

There is also an analogous theorem for treating the operator-valued multiplicative
free convolution, see [25].

Theorem 6. Let .M; E;B/ be a W �-operator-valued probability space; i.e. M is
a von Neumann algebra and B a von Neumann subalgebra. Let x > 0, y D y� 2 M
be two random variables with invertible expectations, free over B. There exists a
Fréchet holomorphic map !2W fb 2 BW Im.bx/ > 0g ! H

C.B/; such that

(i) �y.!2.b// D �xy.b/, Im.bx/ > 0;
(ii) !2.b/ and b�1!2.b/ are analytic around zero;

(iii) for any b 2 B so that Im.bx/ > 0, the map gb WHC.B/ ! H
C.B/, gb.w/ D

bhx.hy.w/b/ is well defined and analytic, and for any fixed w 2 H
C.B/,

!2.b/ D lim
n!1 gın

b .w/;

in the weak operator topology.

Moreover, if one defines !1.b/ WD hy.!2.b//b, then

�xy.b/ D !2.b/�x.!1.b//!2.b/�1; Im.bx/ > 0:

10.5 Numerical example

Let us present a numerical example for the calculation of self-adjoint polynomials
in free variables. We consider the polynomial p D P.x; y/ D xy C yx C x2 in the
free variables x and y. This p has a linearization
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Op D
0
@

0 x y C x
2

x 0 �1

y C x
2

�1 0

1
A ;

which means that the Cauchy transform of p can be recovered from the operator-
valued Cauchy transform of Op, namely, we have

G Op.b/ D .id ˝ '/..b � Op/�1/ D
�

'..z � p/�1/ �
� �

�
for b D

 
z 0 0

0 0 0

0 0 0

!
:

But this Op can now be written as

Op D
0
@

0 x x
2

x 0 �1
x
2

�1 0

1
AC

0
@

0 0 y

0 0 0

y 0 0

1
A D QX C QY

and hence is the sum of two self-adjoint variables QX and QY , which are free over
M3.C/. So we can use the subordination result from Theorem 5 in order to calculate
the Cauchy transform Gp of p:

�
Gp.z/ �

� �
�

D G Op.b/ D G QXC QY .b/ D G QX .!1.b//;

where !1.b/ is determined by the fixed point equation from Theorem 5.
There are no explicit solutions of those fixed point equations in M3.C/, but a

numerical implementation relying on iterations is straightforward. One point to note
is that b as defined above is not in the open set HC.M3.C//, but lies on its boundary.
Thus, in order to be in the frame as needed in Theorem 5, one has to move inside
the upper half-plane, by replacing

b D
0
@

z 0 0

0 0 0

0 0 0

1
A by

0
@

z 0 0

0 i" 0

0 0 i"

1
A

and send " > 0 to zero at the end.
Figure 10.1 shows the agreement between the achieved theoretic result and the

histogram of the eigenvalues of a corresponding random matrix model.

10.6 The case of rational functions

As we mentioned before, the linearization procedure works as well in the case of
non-commutative rational functions. Here is an example of such a case.
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Fig. 10.1 Plots of the distribution of p.x; y/ D xy C yx C x2 (left) for free x; y, where x

is semi-circular and y Marchenko-Pastur, and of the rational function r.x1; x2/ (right) for free
semi-circular elements x1 and x2; in both cases the theoretical limit curve is compared with the
histogram of the eigenvalues of a corresponding random matrix model

Consider the following self-adjoint rational function

r.x1; x2/ D .4�x1/�1C.4�x1/�1x2

�
.4 � x1/ � x2.4 � x1/�1x2

��1
x2.4�x1/�1

in two free variables x1 and x2. The fact that we can write it as

r.x1; x2/ D �
1
2

0
� �1 � 1

4
x1 � 1

4
x2

� 1
4
x2 1 � 1

4
x1

��1 � 1
2

0

�

gives us immediately a self-adjoint linearization of the form

Or.x1; x2/ D
0
@

0 1
2

0
1
2

�1 C 1
4
x1

1
4
x2

0 1
4
x2 �1 C 1

4
x1

1
A

D
0
@

0 1
2

0
1
2

�1 C 1
4
x1 0

0 0 �1 C 1
4
x1

1
AC

0
@

0 0 0

0 0 1
4
x2

0 1
4
x2 0

1
A :

So again, we can write the linearization as the sum of two M3.C/-free variables,
and we can invoke Theorem 5 for the calculation of its operator-valued Cauchy
transform. In Fig. 10.1, we compare the histogram of eigenvalues of r.X1; X2/ for
one realization of independent Gaussian random matrices X1; X2 of size 1000�1000

with the distribution of r.x1; x2/ for free semi-circular elements x1; x2, calculated
according to this algorithm.
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Other examples for the use of operator-valued free probability methods can be
found in [12].

10.7 Additional exercise

Exercise 2. Consider the C �-algebra Mn.C/ of n � n matrices over C. By defini-
tion, we have

H
C.Mn.C// WD fB 2 Mn.C/ j 9" > 0 W Im.B/ � "1g;

where Im.B/ WD .B � B�/=.2i/.

(i) In the case n D 2, show that in fact

H
C.M2.C// WD

��
b11 b12

b21 b22

�ˇ̌
ˇ̌ Im.b11/ > 0; Im.b11/Im.b22/ >

1

4
jb12 � b21j2

	
:

(ii) For general n 2 N, prove: if a matrix B 2 Mn.C/ belongs to H
C.Mn.C//, then

all eigenvalues of B lie in the complex upper half-plane C
C. Is the converse

also true?
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