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Introduction

This book is an invitation to the world of free probability theory.
Free probability is a quite young mathematical theory with many avatars. It owes

its existence to the visions of one man, Dan-Virgil Voiculescu, who created it out of
nothing at the beginning of the 1980s and pushed it forward ever since. The subject
had a relatively slow start in its first decade but took on a lot of momentum later on.

It started in the theory of operator algebras, showed its beautiful combinatorial
structure via non-crossing partitions, made contact with the world of random
matrices, and reached out to many other subjects like representation theory of large
groups, quantum groups, invariant subspace problem, large deviations, quantum
information theory, subfactors, or statistical inference. Even in physics and engi-
neering, many people have heard of it and find it useful and exciting.

One of us (RS) has already written, jointly with Alexandru Nica, a monograph
[137] on the combinatorial side of free probability theory. Whereas combinatorics
will also show up in the present book, our intention here is different: we want to
give a flavour of the breadth of the subject; hence this book will cover a variety of
different facets, occurrences, and applications of free probability; instead of going in
depth in one of them, our goal is to give the basic ideas and results in many different
directions and show how all this is related.

This means that we have to cover subjects as different as random matrices and
von Neumann algebras. This should, however, not to be considered a peril but as a
promise for the good things to come.

We have tried to make the book accessible to both random matrix and operator
algebra (and many more) communities without requiring too many prerequisites.
Whereas our presentation of random matrices should be mostly self-contained,
on the operator algebraic side, we try to avoid the technical parts of the theory
as much as possible. We hope that the main ideas about von Neumann algebras
are comprehensible even without knowing what a von Neumann algebra is. In
particular, in Chapters 1–5, no von Neumann algebras will make their appearance.

xi



xii Introduction

The book is a mixture between textbook and research monograph. We actually
cover many of the important developments of the subject in recent years, for which
no coherent introduction in monograph style has existed up to now.

Chapters 1, 2, 3, 4, and 6 describe in a self-contained way the by now well-
established basic body of the theory of free probability. Chapters 1 and 4 deal
with the relation of free probability with random matrices; Chapter 1 is more of
a motivating nature, whereas Chapter 4 provides the rigorous results. Chapter 6
provides the relation to operator algebras and the free group factor isomorphism
problem, which initiated the whole theory. Chapter 2 presents the combinatorial
side of the theory; as this is dealt with in much more detail in the monograph [137],
we sometimes refer to the latter for details. Chapter 3 gives a quite extensive and
self-contained account of the analytic theory of free convolution. We put there quite
some emphasis on the subordination formulation, which is the modern state of the
art for dealing with such questions and which cannot be found in this form anywhere
else.

The other chapters deal with parts of the theory where the final word is not yet
spoken, but where important progress has been achieved and which surely will
survive in one or the other form in future versions of free probability. In those
chapters, we often make references to the original literature for details of the proofs.
Nevertheless we try also there to provide intuition and motivation for what and why.
We hope that those chapters invite also some of the readers to do original work in
the subject.

Chapter 5 is on second order freeness; this theory intends to deal with fluctuations
of random matrices in the same way as freeness does this with the average. Whereas
the combinatorial aspect of this theory is far evolved, the analytic status awaits a
better understanding.

Free entropy has at the moment two incarnations with very different flavour.
The microstates approach is treated in Chapter 7, whereas the non-microstates
approach is in Chapter 8. Both approaches have many interesting and deep results
and applications—however, the final form of free entropy theory (hoping that there
is only one) still has to be found.

Operator-valued free probability has evolved in recent years into a very powerful
generalization of free probability theory; this is made clear by its applicability to
much bigger classes of random matrices and by its use for calculating the distribu-
tion of polynomials in free variables. The operator-valued theory is developed and
its use demonstrated in Chapters 9 and 10.

In Chapter 11, we present the Brown measure, a generalization of the spectral
distribution from the normal to the non-normal case. In particular, we show how
free probability (in its operator-valued version) allows one to calculate such Brown
measures. Again there is a relation with random matrices; the Brown measure is the
canonical candidate for the eigenvalue distribution of non-normal random matrix
models (where the eigenvalues are not real, but complex).

After having claimed to cover many of the important directions of free probabil-
ity, we have now to admit that there are at least as many which unfortunately did
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not make it into the book. One reason for this is that free probability is still very fast
evolving with new connections popping up quite unexpectedly.

So we are, for example, not addressing such exciting topics as free stochastic
and Malliavin calculus [39, 108, 114], or the rectangular version of free probability
[28], or the strong version of asymptotic freeness [48, 58, 88], or free monotone
transport [83], or the relation with representation theory [35, 72] or with quantum
groups [16, 17, 44, 73, 110, 118, 148], or the quite recent new developments around
bifreeness [52, 81, 100, 196], traffic freeness [50, 122], or connections to Ramanujan
graphs via finite free convolution [124]. Instead of trying to add more chapters to a
never-ending (and never-published) book, we prefer just to stop where we are and
leave the remaining parts for others.

We want to emphasize that some of the results in this book owe their existence to
the book writing itself and our endeavour to fill apparent gaps in the existing theory.
Examples of this are our proof of the asymptotic freeness of Wigner matrices from
deterministic matrices in Section 4.4 (for which there exists now also another proof
in the book [7]), the fact that finite free Fisher information implies the existence of
a density in Proposition 8.18, or the results about the absence of algebraic relations
and zero divisors in the case of finite free Fisher information in Theorems 8.13
and 8.32.

Our presentation benefited a lot from input by others. In particular, we like to
mention Serban Belinschi and Hari Bercovici for providing us with a proof of
Proposition 8.18 and Uffe Haagerup for allowing us to use his manuscript of his talk
at the Fields Institute as the basis for Chapter 11. With the exception of Sections 11.9
and 11.10, we are mainly following his notes in Chapter 11. Chapter 3 relied
substantially on input and feedback from the experts on the subject. Many of the
results and proofs around subordination were explained to us by Serban Belinschi,
and we also got a lot of feedback from JC Wang and John Williams. We are also
grateful to N. Raj Rao for help with his RMTool package which was used in our
numerical simulations.

The whole idea of writing this book started from a lectures series on free
probability and random matrices which we gave at the Fields Institute, Toronto,
in the fall of 2007 within the Thematic Program on Operator Algebras. Notes of our
lectures were taken by Emily Redelmeier and by Jonathan Novak, and the first draft
of the book was based on these notes.

We had the good fortune to have Uffe Haagerup around during this programme,
and he agreed to give one of the lectures, on his work on the Brown measure. As
mentioned above, the notes of his lecture became the basis of Chapter 11.

What are now Chapters 5, 8, 9, and 10 were not part of the lectures at the Fields
Institute, but were added later. Those additional chapters cover in big parts also
results which did not yet exist in 2007. So this gives us at least some kind of excuse
that the finishing of the book took so long.

Much of Chapter 8 is based on classes on “Random matrices and free entropy”
and “Non-commutative distributions” which one of us (RS) taught at Saarland
University during the winter terms 2013/2014 and 2014/2015, respectively. The final
outcome of this chapter owes a lot to the support of Tobias Mai for those classes.
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Chapter 9 is based on work of RS with Wlodek Bryc, Reza Rashidi Far, and
Tamer Oraby on block random matrices in a wireless communications (MIMO)
context and on various lectures of RS for engineering audiences, where he tried
to convince them of the relevance and usefulness of operator-valued methods in
wireless problems. Chapter 10 benefited a lot from the work of Carlos Vargas
on free deterministic equivalents in his PhD thesis and from the joint work of
RS with Serban Belinschi and Tobias Mai around linearization and the analytic
theory of operator-valued free probability. The algorithms, numerical simulations,
and histograms for eigenvalue distributions in Chapter 10 and Brown measures in
Chapter 11 are done with great expertise and dedication by Tobias Mai.

There are exercises scattered throughout the text. The intention is to give readers
an opportunity to test their understanding. In some cases, where the result is used in
a crucial way or where the calculation illustrates basic ideas, a solution is provided
at the end of the book.

In addition to the already mentioned individuals, we owe a lot of thanks to people
who read preliminary versions of the book and gave useful feedback, which helped
to improve the presentation and correct some mistakes. We want to mention in
particular Marwa Banna, Arup Bose, Mario Diaz, Yinzheng Gu, Todd Kemp, Felix
Leid, Josué Vázquez, Hao-Wei Wang, and Guangqu Zheng.

Further thanks are due to the Fields Institute for the great environment they
offered us during the already mentioned thematic programme on operator algebras
and for the opportunity to publish our work in their Monographs series. The writing
of this book, as well as many of the reported results, would not have been possible
without financial support from various sources; in particular, we want to mention a
Killam Fellowship for RS in 2007 and 2008, which allowed him to participate in the
thematic programme at the Fields Institute and thus get the whole project started,
and the ERC Advanced Grant “Non-commutative distributions in free probability”
of RS, which provided time and resources for the finishing of the project. Many of
the results we report here were supported by grants from the Canadian and German
Science Foundations NSERC and DFG, respectively, by Humboldt Fellowships for
Serban Belinschi and John Williams for stays at Saarland University, and by DAAD
German-French Procope exchange programmes between Saarland University and
the Universities of Besançon and of Toulouse.

As we are covering a wide range of topics, there might come a point where one
gets a bit exhausted from our book. There are, however, some alternatives, like the
standard references [97, 137, 197, 198] or survey articles [37, 84, 141, 142, 156, 162,
164, 165, 183, 191, 192] on (some aspects of) free probability. Our advice: take a
break, enjoy those, and then come back motivated to learn more from our book.



Chapter 1
Asymptotic Freeness of Gaussian Random Matrices

In this chapter we shall introduce a principal object of study: Gaussian random
matrices. This is one of the few ensembles of random matrices for which one can
do explicit calculations of the eigenvalue distribution. For this reason the Gaussian
ensemble is one of the best understood. Information about the distribution of the
eigenvalues is carried by it moments: fE.tr.Xk//gk where E is the expectation, tr
denotes the normalized trace (i.e. tr.IN / D 1), and X is an N �N random matrix.

One of the achievements of the free probability approach to random matrices is to
isolate the property called asymptotic freeness. If X and Y are asymptotically free,
then we can approximate the moments of X C Y and XY from the moments of X
and Y ; moreover this approximation becomes exact in the largeN limit. In its exact
form, this relation is called freeness, and we shall give its definition at the end of
this chapter, §1.12. In Chapter 2 we shall explore the basic properties of freeness and
relate these to some new objects called free cumulants. To motivate the definition of
freeness, we shall show in this chapter that independent Gaussian random matrices
are asymptotically free, thus showing that freeness arises naturally.

To begin this chapter, we shall review enough of the elementary properties of
Gaussian random variables to demonstrate asymptotic freeness.

We want to add right away the disclaimer that we do not attempt to give a com-
prehensive introduction into the vast subject of random matrices. We concentrate
on aspects which have some relevance for free probability theory; still this should
give the uninitiated reader a good idea what random matrices are and why they are
so fascinating and have become a centrepiece of modern mathematics. For more
on its diversity, beauty, and depth, one should have a look at [7, 69, 171] or on the
collection of survey articles on various aspects of random matrices in [2].

© Springer Science+Business Media LLC 2017
J.A. Mingo, R. Speicher, Free Probability and Random Matrices,
Fields Institute Monographs 35, DOI 10.1007/978-1-4939-6942-5_1
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2 1 Asymptotic Freeness of Gaussian Random Matrices

1.1 Moments and cumulants of random variables

Let � be a probability measure on R. If
R
R

jt jn d�.t/ < 1, we say that � has a
moment of order n, and the nth moment is denoted ˛n D R

R
tnd�.t/.

Exercise 1. If � has a moment of order n, then � has all moments of order m for
m < n.

The integral '.t/ D R
eist d�.s/ (with i D p�1) is always convergent and is

called the characteristic function of �. It is always uniformly continuous on R and
'.0/ D 1, so for jt j small enough '.t/ 62 .�1; 0� and we can define the continuous
function log.'.t//. If � has a moment of order n, then ' has a derivative of order
n, and conversely if ' has a derivative of order n, then � has a moment of order
n when n is even and a moment of order n � 1 when n is odd (see Lukacs [119,
Corollary 1 to Theorem 2.3.1]). Moreover ˛n D i�n'.n/.0/, so if ' has a power
series expansion, it has to be

'.t/ D
X

n�0
˛n
.it/n

nŠ
:

Thus if � has a moment of order mC 1, we can write

log.'.t// D
mX

nD1
kn
.it/n

nŠ
C o.tm/ with kn D i�n

dn

dtn
log.'.t//

ˇ
ˇ
ˇ
ˇ
tD0

:

The numbers fkngn are the cumulants of �. To distinguish them from the free
cumulants, which will be defined in the next chapter, we will call fkngn the classical
cumulants of �. The moments f˛ngn of � and the cumulants fkngn of � each
determine the other through the moment-cumulant formulas:

˛n D
X

1�r1C���Cn�rnDn
r1;:::;rn�0

nŠ

.1Š/r1 � � � .nŠ/rnr1Š � � � rnŠk
r1
1 � � � krnn (1.1)

kn D
X

1�r1C���Cn�rnDn
r1;:::;rn�0

.�1/r1C���Crn�1.r1 C � � � C rn � 1/Š nŠ
.1Š/r1 � � � .nŠ/rnr1Š � � � rnŠ ˛

r1
1 � � �˛rnn : (1.2)

Both sums are over all non-negative integers r1; : : : ; rn such that 1 �r1C� � �Cn �rn D
n. We shall see below in Exercises 4 and 12 how to use partitions to simplify these
formidable equations.

A very important random variable is the Gaussian or normal random variable. It
has the distribution

P.t1 � X � t2/ D 1p
2��2

Z t2

t1

e�.t�a/2=.2�2/ dt
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where a is the mean and �2 is the variance. The characteristic function of a Gaussian
random variable is

'.t/ D exp

�

iat � �2t2

2

�

; thus log'.t/ D a
.it/1

1Š
C �2

.i t/2

2Š
:

Hence for a Gaussian random variable, all cumulants beyond the second are 0.

Exercise 2. Suppose � has a fifth moment and we write

'.t/ D 1C ˛1
.i t/

1Š
C ˛2

.i t/2

2Š
C ˛3

.i t/3

3Š
C ˛4

.i t/4

4Š
C o.t4/

where ˛1, ˛2, ˛3, and ˛4 are the first four moments of �. Let

log.'.t// D k1
.i t/

1Š
C k2

.i t/2

2Š
C k3

.i t/3

3Š
C k4

.i t/4

4Š
C o.t4/:

Using the Taylor series for log.1C x/, find a formula for ˛1; ˛2; ˛3, and ˛4 in terms
of k1; k2; k3, and k4.

1.2 Moments of a Gaussian random variable

LetX be a Gaussian random variable with mean 0 and variance 1. Then by definition

P.t1 � X � t2/ D 1p
2�

Z t2

t1

e�t2=2dt:

Let us find the moments of X . Clearly, ˛0 D 1, ˛1 D 0, and by integration by parts

˛n D E.Xn/ D
Z

R

tne�t2=2 dtp
2�

D .n � 1/˛n�2 for n � 2:

Thus

˛2n D .2n � 1/.2n � 3/ � � � 5 � 3 � 1 DW .2n � 1/ŠŠ
and ˛2n�1 D 0 for all n.

Let us find a combinatorial interpretation of these numbers. For a positive integer
n, let Œn� D f1; 2; 3; : : : ; ng, and P.n/ denote all partitions of the set Œn�, i.e.
� D fV1; : : : ; Vkg 2 P.n/ means V1; : : : ; Vk � Œn�, Vi 6 D; for all i , V1 [ � � � [
VkDŒn�, Vi \ Vj D ; for i ¤ j ; V1; : : : ; Vk are called the blocks of � . We let
#.�/ denote the number of blocks of � and #.Vi / the number of elements in the
block Vi . A partition is a pairing if each block has size 2. The pairings of Œn� will be
denoted P2.n/.

Let us count jP2.2n/j, the number of pairings of Œ2n�. 1 must be paired with
something and there are 2n � 1 ways of choosing it. Thus

jP2.n/j D .2n � 1/jP2.n � 2/j D .2n � 1/ŠŠ:
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So E.X2n/ D jP2.2n/j. There is a deeper connection between moments and
partitions known as Wick’s formula (see Section 1.5).

Exercise 3. We say that a partition of Œn� has type .r1; : : : ; rn/ if it has ri blocks of
size i . Show that the number of partitions of Œn� of type .r1; r2; : : : ; rn/ is

nŠ

.1Š/r1.2Š/r2 � � � .nŠ/rnr1Šr2Š � � � rnŠ :

Using the type of a partition, there is a very simple expression for the moment-
cumulant relations above. Moreover this expression is quite amenable for calcula-
tion. If � is a partition of Œn� and fkigi is any sequence, let k� D k

r1
1 k

r2
2 � � � krnn

where ri is the number of blocks of � of size i . Using this notation the first of the
moment-cumulant relations can be written

˛n D
X

�2P.n/
k� : (1.3)

The second moment-cumulant relation can be written (see Exercise 13)

kn D
X

�2P.n/
.�1/#.�/�1 .#.�/ � 1/Š ˛� : (1.4)

The simplest way to do calculations with relations like those above is to use formal
power series (see Stanley [167, §1.1]).

Exercise 4. Let f˛ng and fkng be two sequences satisfying (1.3). In this exercise we
shall show that as formal power series

log
�
1C

1X

nD1
˛n

zn

nŠ

�
D

1X

nD1
kn

zn

nŠ
: (1.5)

(i) Show that by differentiating both sides of (1.5) it suffices to prove

1X

nD0
˛nC1

zn

nŠ
D
�
1C

1X

nD1
˛n

zn

nŠ

� 1X

nD0
knC1

zn

nŠ
: (1.6)

(ii) By grouping the terms in
P

� k� according to the size of the block containing
1, show that

˛n D
X

�2P.n/
k� D

n�1X

mD0

 
n � 1
m

!

kmC1˛n�m�1:

(iii) Use the result of (ii) to prove (1.6).
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1.3 Gaussian vectors

LetX W ˝ ! R
n,X D .X1; : : : ; Xn/ be a random vector. We say thatX is Gaussian

if there is a positive definite n � n real symmetric matrix B such that

E.Xi1 � � �Xik / D
Z

Rn

ti1 � � � tik
exp.�hBt; ti=2/d t
.2�/n=2 det.B/�1=2

where h�; �i denotes the standard inner product on R
n. Let C D .cij / be the

covariance matrix, that is, cij D E
�
ŒXi � E.Xi /� � ŒXj � E.Xj /�

�
.

In factC D B�1, and ifX1; : : : ; Xn are independent, thenB is a diagonal matrix;
see Exercise 5. If Y1; : : : ; Yn are independent Gaussian random variables, A is an
invertible real matrix, and X D AY , then X is a Gaussian random vector, and
every Gaussian random vector is obtained in this way. If X D .X1; : : : ; Xn/ is a
complex random vector, we say that X is a complex Gaussian random vector if
.Re.X1/; Im.X1/; : : : ;Re.Xn/; Im.Xn// is a real Gaussian random vector.

Exercise 5. Let X D .X1; : : : ; Xn/ be a Gaussian random vector with densityp
det.B/.2�/�n exp.�hBt; ti=2/: Let C D .cij / D B�1.

(i) Show that B is diagonal if and only if fX1; : : : ; Xng are independent.
(ii) By first diagonalizing B , show that cij D E

�
ŒXi � E.Xi /� � ŒXj � E.Xj /�

�
.

1.4 The moments of a standard complex Gaussian random variable

Suppose X and Y are independent real Gaussian random variables with mean 0 and
variance 1. Then Z D .X C iY /=

p
2 is a complex Gaussian random variable with

mean 0 and variance E.ZZ/ D 1
2
E.X2 C Y 2/ D 1. We call Z a standard complex

Gaussian random variable. Moreover, for such a complex Gaussian variable, we
have

E.ZmZ
n
/ D

(
0; m ¤ n

mŠ; m D n
:

Exercise 6. Let Z D .X C iY /=
p
2 be a standard complex Gaussian random

variable with mean 0 and variance 1.

(i) Show that

E.ZmZ
n
/ D 1

�

Z

R2

.t1 C i t2/
m.t1 � i t2/ne�.t21Ct22 /dt1dt2:
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By switching to polar coordinates, show that

E.ZmZ
n
/ D 1

�

Z 2�

0

Z 1

0

rmCnC1ei�.m�n/e�r2 drd�:

(ii) Show that E.ZmZ
n
/ D 0 for m ¤ n and that E.jZj2n/ D nŠ.

1.5 Wick’s formula

Let .X1; : : : Xn/ be a real Gaussian random vector and i1; : : : ; ik 2 Œn�. Wick’s
formula gives a simple expression for E.Xi1 � � �Xik /. If k is even and � 2 P2.k/,
let E�.X1; : : : ; Xk/ D Q

.r;s/2� E.XrXs/. For example, if � D f.1; 3/.2; 6/.4; 5/g,
then E�.X1;X2;X3;X4;X5;X6/ D E.X1X3/E.X2X6/E.X4X5/. E� is a k-linear
functional. The fact that only pairings arise in Wick’s formula is a consequence of
the observation on page 3 that for a Gaussian random variable, all cumulants above
the second vanish.

Theorem 1. Let .X1; : : : ; Xn/ be a real Gaussian random vector. Then

E.Xi1 � � �Xik / D
X

�2P2.k/
E�.Xi1 ; : : : ; Xik / for any i1; : : : ; ik 2 Œn�: (1.7)

Proof: Suppose that the covariance matrix C of .X1; : : : ; Xn/ is diagonal, i.e. the
Xi ’s are independent. Consider .i1; : : : ; ik/ as a function Œk� ! Œn�. Let fa1; : : : ; arg
be the range of i and Aj D i�1.aj /. Then fA1; : : : ; Arg is a partition of Œk� which
we denote ker.i/. Let jAt j be the number of elements in At . Then E.Xi1 � � �Xik / D
Qr
tD1 E.X jAt j

at /. Let us recall that if X is a real Gaussian random variable of mean 0
and variance c, then for k even E.Xk/ D ck=2�jP2.k/j D P

�2P2.k/ E�.X; : : : ; X/

and for k odd E.Xk/ D 0. Thus we can write the product
Q
t E.X jAt j

at / as a sumP
�2P2.k/ E�.Xi1 ; : : : ; Xik / where the sum runs over all �’s which only connect

elements in the same block of ker.i/. Since E.XirXis / D 0 for ir ¤ is , we can
relax the condition that � only connect elements in the same block of ker.i/. Hence
E.Xi1 � � �Xik / D P

�2P2.k/ E�.Xi1 ; : : : ; Xik /.
Finally let us suppose that C is arbitrary. Let the density of .X1; : : : ; Xn/ be

exp.�hBt; ti=2/Œ.2�/n=2 det.B/�1=2��1 and choose an orthogonal matrix O such
that D D O�1BO is diagonal. Let

2

6
4

Y1
:::

Yn

3

7
5 D O�1

2

6
4

X1
:::

Xn

3

7
5 :



1.6 Gaussian random matrices 7

Then .Y1; : : : ; Yn/ is a real Gaussian random vector with the diagonal covariance
matrix D�1. Then

E.Xi1 � � �Xik / D
nX

j1;:::;jkD1
oi1j1oi2j2 � � � oikjkE.Yj1Yj2 � � �Yjk /

D
nX

j1;:::;jkD1
oi1j1 � � � oikjk

X

�2P2.k/
E�.Yj1 ; : : : ; Yjk /

D
X

�2P2.k/
E�.Xi1 ; : : : ; Xik /:

ut

Since both sides of equation (1.7) are k-linear, we can extend by linearity to the
complex case.

Corollary 2. Suppose .X1; : : : ; Xn/ is a complex Gaussian random vector; then

E.X."1/
i1

� � �X."k/
ik
/ D

X

�2P2.k/
E�.X

."1/
i1
; : : : ; X

."k/
ik
/ (1.8)

for all i1; : : : ; ik 2 Œn� and all "1; : : : ; "k 2 f0; 1g, where we have used the notation
X
.0/
i WD Xi and X.1/

i WD Xi .

Formulas (1.7) and (1.8) are usually referred to as Wick’s formula after the
physicist Gian-Carlo Wick [200], who introduced them in 1950 as a fundamental
tool in quantum field theory; one should notice, though, that they had already
appeared much earlier, in 1918, in the work of the statistician Leon Isserlis [101].

Exercise 7. Let Z1; : : : ; Zs be independent standard complex Gaussian random
variables with mean 0 and E.jZi j2/ D 1. Show that

E.Zi1 � � �ZinZj1 � � �Zjn/ D jf� 2 Sn j i D j ı �gj:

Sn denotes the symmetric group on Œn�. Note that this is consistent with part (iii) of
Exercise 6.

1.6 Gaussian random matrices

Let X be an N � N matrix with entries fij where fij D xij C p�1 yij is
a complex Gaussian random variable normalized such that

p
Nfij is a standard

complex Gaussian random variable, i.e. E.fij / D 0, E.
ˇ
ˇfij

ˇ
ˇ2/ D 1=N and

(i) fij D fji ,
(ii) fxij gi�j [ fyij gi>j are independent.
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Then X is a self-adjoint Gaussian random matrix. Such a random matrix is often
called a GUE random matrix (GUE = Gaussian unitary ensemble).

Exercise 8. Let X be an N � N GUE random matrix, with entries fij D xij Cp�1 yij normalized so that E.jfij j2/ D 1=N .

(i) Consider the random N2-vector

.x11; : : : ; xNN ; x12; : : : ; x1N ; : : : ; xN�1;N ; y12; : : : ; yN�1;N /:

Show that the density of this vector is c e�NTr.X2/=2dX where c is a constant
and dX D QN

iD1 dxii
Q
i<j dxij dyij is Lebesgue measure on R

N2
.

(ii) Evaluate the constant c.

1.7 A genus expansion for the GUE

Let us calculate E.Tr.Y k//, for Y D .gij / a N � N GUE random matrix. We
first suppose for convenience that the entries of Y have been normalized so that
E.
ˇ
ˇgij

ˇ
ˇ2/ D 1. Now

E.Tr.Y k// D
NX

i1;:::;ikD1
E.gi1i2gi2i3 � � �giki1 /:

By Wick’s formula (1.8), E.gi1i2gi2i3 � � �giki1 / D 0whenever k is odd, and otherwise

E.gi1i2gi2i3 � � �gi2ki1 / D
X

�2P2.2k/
E�.gi1i2 ; gi2i3 ; : : : ; gi2k i1 /:

Now E.gir irC1
gis isC1

/ will be 0 unless ir D isC1 and is D irC1 (using the convention

that i2kC1 D i1). If ir D isC1 and is D irC1, then E.gir irC1
gis isC1

/ D E.
ˇ
ˇgir irC1

ˇ
ˇ2/ D

1. Thus given .i1; : : : ; i2k/, E.gi1i2gi2i3 � � �gi2ki1 / will be the number of pairings � of
Œ2k� such that for each pair .r; s/ of � , ir D isC1 and is D irC1.

In order to easily count these, we introduce the following notation. We regard
the 2k-tuple .i1; : : : ; i2k/ as a function i W Œ2k� ! ŒN �. A pairing � D
f.r1; s1/.r2; s2/; : : : ; .rk; sk/g of Œ2k�will be regarded as a permutation of Œ2k� by let-
ting .ri ; si / be the transposition that switches ri with si and � D .r1; s1/ � � � .rk; sk/
as the product of these transpositions. We also let �2k be the permutation of Œ2k�
which has the one cycle .1; 2; 3; : : : ; 2k/. With this notation our condition on the
pairings has a simple expression. Let � be a pairing of Œ2k� and .r; s/ be a pair of � .
The condition ir D isC1 can be written as i.r/ D i.�2k.�.r/// since �.r/ D s and
�2k.�.r// D s C 1. Thus E�.gi1i2 ; gi2i3 ; : : : ; gi2k i1 / will be 1 if i is constant on the
orbits of �2k� and 0 otherwise. For a permutation � , let #.�/ denote the number of
cycles of � . Thus
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E.Tr.Y 2k// D
NX

i1;:::;i2kD1

ˇ
ˇ
ˇ
n
� 2 P2.2k/

ˇ
ˇ
ˇ
i is constant on the
orbits of �2k�

oˇˇ
ˇ

D
X

�2P2.2k/

ˇ
ˇ
ˇ
n
i W Œ2k� ! ŒN �

ˇ
ˇ
ˇ
i is constant on the
orbits of �2k�

oˇˇ
ˇ

D
X

�2P2.2k/
N #.�2k�/:

We summarize this result in the statement of the following theorem.

Theorem 3. Let YN D .gij / be a N � N GUE random matrix with entries
normalized so that E.jgij j2/ D 1 for all i and j . Then

E.Tr.Y 2kN // D
X

�2P2.2k/
N #.�2k�/:

Moreover, for XN D N�1=2YN D .fij /, with the normalization E.jfij j2/ D 1=N ,
we have

E.tr.X2k
N // D

X

�2P2.2k/
N #.�2k�/�k�1:

Here, Tr denotes the usual, unnormalized trace, whereas tr D 1
N

Tr is the normalized
trace.

The expansion in this theorem is usually addressed as genus expansion. In the
next section, we will elaborate more on this.

In the mathematical literature, this genus expansion appeared for the first time
in the work of Harer and Zagier [91] in 1986 but was mostly overlooked for a
while, until random matrices became mainstream also in mathematics in the new
millennium; in physics, on the other side, such expansions were kind of folklore
and at the basis of Feynman diagram calculations in quantum field theory; see, for
example, [45, 172, 207].

1.8 Non-crossing partitions and permutations

In order to find the limit of E.tr.X2k
N //, we have to understand the sign of the

quantity #.�2k�/ � k � 1. We shall show that for all pairings #.�2k�/ � k � 1 � 0

and identify the pairings for which we have equality. As we shall see that the �’s
for which we have equality are the non-crossing pairings, let us begin by reviewing
some material on non-crossing partitions from [137, Lecture 9].
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Let � be a partition of Œn�. If we can find i < j < k < l such that i and k are in
one block V of � and j and l are in another block W of � , we say that V and W
cross. If no pair of blocks of � cross, then we say � is non-crossing. We denote the
set of non-crossing partitions of Œn� by NC.n/. The set of non-crossing pairings of
Œn� is denoted NC2.n/. We discuss this more fully in §2.2

Given a permutation � 2 Sn, we consider all possible factorizations into products
of transpositions. For example, we can write .1; 2; 3; 4/ D .1; 4/.1; 3/.1; 2/ D
.1; 2/.1; 4/.2; 3/.1; 4/.3; 4/. We let j�j be the least number of transpositions needed
to factor � . In the example above, j.1; 2; 3; 4/j D 3. From this definition we see that
j�� j � j�j C j� j, j��1j D j�j, and jej D 0, that is, j � j is a length function on Sn.

There is a very simple relation between j�j and #.�/, namely, for � 2 Sn we
have j�j C #.�/ D n. There is a simple observation that will be used to establish
this and many other useful inequalities. Let .i1; : : : ; ik/ be a cycle of a permutation
� and 1 � m < n � k. Then .i1; : : : ; ik/.im; in/ D .i1; : : : ; im; inC1; : : : ; ik/.imC1;
: : : ; in/. From this we immediately see that if � is a permutation and 	 D .r; s/ is
a transposition, then #.�	/ D #.�/ C 1 if r and s are in the same cycle of � and
#.�	/ D #.�/ � 1 if r and s are in different cycles of � . Thus we easily deduce
that for any transpositions 	1; : : : ; 	k in Sn we have #.	1 � � � 	k/ � n � k as, starting
with the identity permutation (with n cycles), each transposition 	i can reduce the
number of cycles by at most 1. This shows that #.�/ � n � j�j. On the other hand,
we have for any cycle .i1; : : : ; ik/ D .i1; ik/.i1; ik�1/ � � � .i1; i2/ is the product of
k � 1 transpositions. Thus j�j � n � #.�/. See [137, Lecture 23] for a further
discussion.

Let us return to our original problem and let � be a pairing of Œ2k�. We regard �
as a permutation in S2k as above. Then #.�/ D k, so j�j D k. Also j�2kj D 2k � 1.
The triangle inequality gives us j�2kj � j�jCj�2k�j (since � D ��1) or #.�2k�/ �
k C 1. This shows that #.�2k�/ � k � 1 � 0 for all pairings � . Next we have to
identify for which �’s we have equality. For this we use a theorem of Biane which
embeds NC.n/ into Sn.

We let �n D .1; 2; 3; : : : ; n/. Let � be a partition of Œn�. We can arrange the
elements of the blocks of � in increasing order and consider these blocks to be the
cycles of a permutation, also denoted � . When we regard � as a permutation, #.�/
also denotes the number of cycles of � . Biane’s result is that � is non-crossing, as
a partition, if and only if, the triangle inequality j�nj � j�j C j��1�nj becomes an
equality. In terms of cycles, this means #.�/C#.��1�n/ � nC1 with equality only
if � is non-crossing. This is a special case of a theorem which states that for � and
� , any two permutations of Œn� such that the subgroup generated by � and � acts
transitively on Œn�, there is an integer g � 0 such that #.�/ C #.��1�/ C #.�/ D
nC 2.1� g/, and g is the minimal genus of a surface upon which the “graph” of �
relative to � can be embedded. See [61, Propriété II.2] and Fig. 1.1. Thus we can say
that � is non-crossing with respect to � if j� j D j�j C j��1� j. We shall need this
relation in Chapter 5. An easy corollary of the equation #.�/C #.��1�/C #.�/ D
nC2.1�g/ is that if � is a pairing of Œ2k� and #.�2k�/ < kC1, then #.�2k�/ < k.
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Fig. 1.1 A surface of genus
1 with the pairing .1; 4/.2; 5/
.3; 6/ drawn on it

123
4 5 6

Example 4. � D .1; 2; 3; 4; 5; 6/, � D .1; 4/.2; 5/.3; 6/, #.�/ D 3, #.�6/ D 1,
#.��1�6/ D 2, #.�/C #.��1�6/C #.�6/ D 6; therefore g D 1.

If g D 0, the surface is a sphere and the graph is planar, and we say � is
planar relative to � . When � has one cycle, “planar relative to �” is what we
have been calling a non-crossing partition; for a proof of Biane’s theorem, see [137,
Proposition 23.22].

Proposition 5. Let � 2 Sn; then � 2 NC.n/ if and only if j�j C j��1�nj D j�nj.
Corollary 6. If � is a pairing of Œ2k� then #.�2k�/ � k�1 unless � is non-crossing
in which case #.�2k�/ D k C 1.

1.9 Wigner’s semi-circle law

Consider again our GUE matrices XN D .fij / with normalization E.
ˇ
ˇfij

ˇ
ˇ2/ D 1

N
.

Then, by Theorem 3, we have

E.tr.X2k
N // D N�.kC1/ X

�2P2.2k/
N #.�2k�/

D
X

�2P2.2k/
N�2g� ; (1.9)

because #.��1�/ D #.���1/ for any permutations � and � , and if � is a pairing,
then � D ��1. Thus Ck WD limN!1 E.tr.X2k

N // is the number of non-crossing
pairings of Œ2k�, i.e. the cardinality of NC2.2k/. It is well-known that this is the
k-th Catalan number 1

kC1
�
2k
k

�
(see [137, Lemma 8.9], or (2.5) in the next chapter).

Since the Catalan numbers are the moments of the semi-circle distribution, we
have arrived at Wigner’s famous semi-circle law [201], which says that the spectral
measures of fXN gN , relative to the state E.tr.�//, converge to .2�/�1

p
4 � t 2dt ,

i.e. the expected proportion of eigenvalues of X between a and b is asymptotically
.2�/�1

R b
a

p
4 � t 2dt . See Fig. 1.2.
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Fig. 1.2 The graph of

.2�/�1
p
4� t 2. The 2kth

moment of the semi-circle
law is the Catalan number
Ck D .2�/�1

R 2
�2 t

2k
p
4� t 2dt

- 2 - 1 0 1 2

0.1

0.2

0.3

Theorem 7. Let fXN gN be a sequence of GUE random matrices, normalized so
that E.jfij j2/ D 1=N for the entries of XN . Then

lim
N

E.tr.Xk
N // D 1

2�

Z 2

�2
tk

p
4 � t 2 dt:

If we arrange that all the XN ’s are defined on the same probability space XN W
˝ ! MN.C/, we can say something stronger: ftr.Xk

N /gN converges to the kth

moment .2�/�1
R 2

�2 t
k
p
4 � t 2 dt almost surely. We shall prove this in Chapters 4

and 5. See Theorem 4.4 and Remark 5.14.

1.10 Asymptotic freeness of independent GUE’s

Suppose that for each N , X1; : : : ; Xs are independent N �N GUE’s. For notational
simplicity we suppress the dependence on N . Suppose m1; : : : ; mr are positive
integers and i1; i2; : : : ; ir 2 Œs� such that i1 ¤ i2; i2 ¤ i3; : : : ; ir�1 ¤ ir . Consider
the random N � N matrix YN WD .X

m1
i1

� cm1I /.X
m2
i2

� cm2I / � � � .Xmr
ir

� cmr I /;

where cm is the asymptotic value of the m-th moment of Xi (note that this is the
same for all i ); i.e. cm is zero for m odd and the Catalan number Cm=2 for m even.

Each factor is centred asymptotically and adjacent factors have independent
entries. We shall show that E.tr.YN // ! 0 and we shall call this property asymptotic
freeness. This will then motivate Voiculescu’s definition of freeness.

First let us recall the principle of inclusion-exclusion (see Stanley [167, Vol. 1,
Chap. 2]). Let S be a set and E1; : : : ; Er � S . Then

jS n .E1 [ � � � [Er/j D jS j �
rX

iD1
jEi j C

X

i1¤i2
jEi1 \Ei2 j C � � �

C .�1/k
X

i1;:::;ik
distinct

jEi1 \ � � � \Eik j C � � � C .�1/r jE1 \ � � � \Er j I (1.10)

for example, jS n .E1 [E2/j D jS j � .jE1j C jE2j/C jE1 \E2j.
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We can rewrite the right-hand side of (1.10) as

jS n .E1 [ � � � [Er/j D
X

M�Œr�
MDfi1;:::;img

.�1/m jEi1 \ � � � \Eim j D
X

M�Œr�
.�1/jM j

ˇ
ˇ
ˇ
ˇ
ˇ

\

i2M
Ei

ˇ
ˇ
ˇ
ˇ
ˇ

provided we make the convention that
T
i2;Ei D S and .�1/j;j D 1.

Notation 8. Let i1; : : : ; im 2 Œs�. We regard these labels as the colours of the
matrices Xi1 ; Xi2 ; : : : ; Xim . Given a pairing � 2 P2.m/, we say that � respects
the colours i WD .i1; : : : ; im/, or to be brief, � respects i , if ir D ip whenever .r; p/
is a pair of � . Thus � respects i if and only if � only connects matrices of the same
colour.

Lemma 9. Suppose i1; : : : ; im 2 Œs� are positive integers. Then

E.tr.Xi1 � � �Xim// D jf� 2 NC2.m/ j � respects igj CO.N�2/:

Proof: The proof proceeds essentially in the same way as for the genus expansion
of moments of one GUE matrix.

E.tr.Xi1 � � �Xim// D
X

j1;:::;jm

E.f .i1/
j1j2

� � � f .im/
jm;j1

/

D
X

j1;:::;jm

X

�2P2.m/
E�.f

.i1/
j1;j2

; : : : ; f
.im/
jm;j1

/

D
X

�2P2.m/
� respects i

X

j1;:::;jm

E�.f
.i1/
j1;j2

; : : : ; f
.im/
jm;j1

/

by .1.9/D
X

�2P2.m/
� respects i

N�2g�

D jf� 2 NC2.m/ j � respects igj CO.N�2/:

The penultimate equality follows in the same way as in the calculations leading to
Theorem 3; for this note that we have for � which respects i that

E�.f
.i1/
j1;j2

; : : : ; f
.im/
jm;j1

/ D E�.f
.1/
j1;j2

; : : : ; f
.1/
jm;j1

/;

so for the contribution of such a � which respects i , it does not play a role any more
that we have several matrices instead of one. ut
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Theorem 10. If i1 ¤ i2; i2 ¤ i3; : : : ; ir�1 ¤ ir , then limN E.tr.YN // D 0.

Proof: Let I1 D f1; : : : ; m1g, I2 D fm1 C 1; : : : ; m1 C m2g, . . . , Ir D fm1 C � � �
Cmr�1 C 1; : : : ; m1 C � � � Cmrg and m D m1 C � � � Cmr . Then

E
�
tr..Xm1

i1
� cm1I / � � � .Xmr

ir
� cmr I //

�

D
X

M�Œr�
.�1/jM j

� Y

i2M
cmi

	

E
�

tr
� Y

j…M
X
mj
ij

��

D
X

M�Œr�
.�1/jM j

� Y

i2M
cmi

	

jf� 2 NC2.[j 62MIj / j � respects igj CO.N�2/:

Let S D f� 2 NC2.m/ j � respects ig and Ej D f� 2 S j elements of Ij are
only paired among themselves g. Then

ˇ
ˇ
\

j2M
Ej
ˇ
ˇ D

� Y

j2M
cmj

	ˇ
ˇf� 2 NC2.[j…MIj / j � respects igˇˇ:

Thus

E
�
tr..Xm1

i1
� cm1I / � � � .Xmr

ir
� cmr I //

� D
X

M�Œr�
.�1/jM jˇˇ

\

j2M
Ej
ˇ
ˇCO.N�2/:

So we must show that

X

M�Œr�
.�1/jM jˇˇ

\

j2M
Ej
ˇ
ˇ D 0:

However, by inclusion-exclusion, this sum equals jS n .E1 [ � � � [Er/j. Now S n
.E1 [ � � � [ Er/ is the set of pairings of Œm� respecting i such that at least one
element of each interval is connected to another interval. However this set is empty
because elements of S n .E1 [ � � � [ Er/ must connect each interval to at least one
other interval in a non-crossing way and thus form a non-crossing partition of the
intervals fI1; : : : ; Irg without singletons, in which no pair of adjacent intervals are
in the same block, and this is impossible. ut
1.11 Freeness and asymptotic freeness

Let XN;1; : : : ; XN;s be independent N � N GUE random matrices. For each N let
AN;i be the polynomials in XN;i with complex coefficients. Let AN be the algebra
generated by AN;1; : : : ;AN;s . For A 2 AN let 'N .A/ D E.tr.A//. Thus AN;1; : : : ;

AN;s are unital subalgebras of the unital algebra AN with state 'N .



1.12 Basic properties of freeness 15

We have just shown in Theorem 7 that given a polynomial p we have that
limN 'N .AN;i / exists where AN;i D p.XN;i /. Moreover we have from Theorem 10
that given polynomials p1; : : : ; pr and positive integers j1; : : : ; jr such that

ı limN 'N .AN;i / D 0 for i D 1; 2; : : : ; r

ı j1 6D j2, j2 6D j3, . . . , jr�1 6D jr

that limN 'N .AN;1AN;2 � � �AN;r / D 0, whereAN;i D pi .XN;ji /. We thus say that the
subalgebras AN;1; : : : ;AN;s are asymptotically free because, in the limit as N tends
to infinity, they satisfy the freeness property of Voiculescu. We state this below; in
the next chapter, we shall explore freeness in detail. Note that asymptotic freeness
implies that for any polynomials p1; : : : ; pr and i1; : : : ; ir 2 Œs� we have that
limN 'N .p1.XN;i1 / � � �pr.XN;ir // exists. So the random variables fXN;1; : : : ; XN;sg
have a joint limit distribution and it is the distribution of free random variables.

Definition 11. Let .A; '/ be a unital algebra with a unital linear functional.
Suppose A1; : : : ;As are unital subalgebras. We say that A1; : : : ;As are freely
independent (or just free) with respect to ' if whenever we have r � 2 and
a1; : : : ; ar 2 A such that

ı '.ai / D 0 for i D 1; : : : ; r

ı ai 2 Aji with 1 � ji � s for i D 1; : : : ; r

ı j1 ¤ j2; j2 ¤ j3; : : : ; jr�1 ¤ jr

we must have '.a1 � � � ar/ D 0. We can say this succinctly as the alternating product
of centred elements is centred.

1.12 Basic properties of freeness

We adopt the general philosophy of regarding freeness as a non-commutative
analogue of the classical notion of independence in probability theory. Thus we
refer to it often as free independence.

Definition 12. In general we refer to a pair .A; '/, consisting of a unital algebra
A and a unital linear functional ' W A ! C with '.1/ D 1, as a non-commutative
probability space. If A is a �-algebra and ' is a state, i.e. in addition to '.1/ D 1

also positive (which means '.a�a/ � 0 for all a 2 A), then we call .A; '/ a �-
probability space. If A is a C �-algebra and ' a state, .A; '/ is a C �-probability
space. Elements of A are called non-commutative random variables or just random
variables.

If .A; '/ is a �-probability space and '.x�x/ D 0 only when x D 0, we say that
' is faithful. If .A; '/ is a non-commutative probability space, we say that ' is non-
degenerate if we have '.yx/ D 0 for all y 2 A implies that x D 0 and '.xy/ D 0

for all y 2 A implies that x D 0. By the Cauchy-Schwarz inequality, for a state on
a �-probability space, “non-degenerate” and “faithful” are equivalent. If A is a von
Neumann algebra and ' is a faithful normal state, i.e. continuous with respect to the
weak-* topology, .A; '/ is called a W �-probability space. If ' is also a trace, i.e.
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'.ab/ D '.ba/ for all a; b 2 A, then it is a tracial W �-probability space. For a
tracial W �-probability space, we will usually write .M; 	/ instead of .A; '/.
Proposition 13. Let .B; '/ be a non-commutative probability space. Consider uni-
tal subalgebras A1; : : : ;As 	 B which are free. Let A be the algebra generated by
A1; : : : ;As : Then 'jA is determined by 'jA1 ; : : : ; 'jAs and the freeness condition.

Proof: Elements in the generated algebra A are linear combinations of words of
the form a1 � � � ak with aj 2 Aij for some ij 2 f1; : : : ; sg which meet the condition
that neighbouring elements come from different subalgebras. We need to calculate
'.a1 � � � ak/ for such words. Let us proceed in an inductive fashion.

We know how to calculate '.a/ for a 2 Ai for some i 2 f1; : : : ; sg:
Now suppose we have a word of the form a1a2 with a1 2 Ai1 and a2 2 Ai2 with

i1 ¤ i2. By the definition of freeness, this implies

'Œ.a1 � '.a1/1/.a2 � '.a2/1/� D 0:

But

.a1 � '.a1/1/.a2 � '.a2/1/ D a1a2 � '.a2/a1 � '.a1/a2 C '.a1/'.a2/1:

Hence we have

'.a1a2/ D '


'.a2/a1 C '.a1/a2 � '.a1/'.a2/1

� D '.a1/'.a2/:

Continuing in this fashion, we know that '. Va1 � � � Vak/ D 0 by the definition of
freeness, where Vai D ai � '.ai /1 is a centred random variable. But then

'. Va1 � � � Vak/ D '.a1 � � � ak/C lower order terms in ';

where the lower order terms are already dealt with by induction hypothesis. ut
Remark 14. Let .A; '/ be a non-commutative probability space. For any subalgebra
B 	 A, we let VB D B \ ker'. Let A1 and A2 be unital subalgebras of A; we let
A1 _ A2 be the subalgebra of A generated algebraically by A1 and A2. With this
notation we can restate Proposition 13 as follows. If A1 and A2 are free, then

ker'jA1_A2 D
X˚

n�1

X˚

˛1 6D���6D˛n
VA˛1

VA˛2 � � � VA˛n (1.11)

where ˛1; : : : ; ˛n 2 f1; 2g.
For subalgebras C 	 B 	 A, we shall let B 
 C D fb 2 B j '.cb/ D 0 for all

c 2 Cg. When 'jC is non-degenerate, we have C 
 C D f0g.
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Exercise 9. Let .A; '/ be a non-commutative probability space. Suppose A1;A2 	
A are unital subalgebras and are free with respect to '. If 'jA1 is non-degenerate,
then

.A1 _ A2/
 A1 D VA2 ˚
X˚

n�2

X˚

˛1 6D���6D˛n
VA˛1

VA˛2 � � � VA˛n : (1.12)

Definition 15. Let .A; '/ be a non-commutative probability space. Elements
a1; : : : ; as 2 A are said to be free or freely independent if the generated unital
subalgebras Ai D alg.1; ai / (i D 1; : : : ; s) are free in A with respect to '. If .A; '/
is a �-probability space, then we say that a1; : : : ; as 2 A are �-free if the generated
unital �-subalgebras Bi D alg.1; ai ; a�

i / (i D 1; : : : ; s) are free in A with respect to
'. In the same way, (�-)freeness between sets of variables is defined by the freeness
of the generated unital (�-)subalgebras.

In terms of random variables, Proposition 13 says that mixed moments of free
variables are calculated in a specific way out of the moments of the separate
variables. This is in clear analogy to the classical notion of independence.

Let us look at some examples for such calculations of mixed moments. For
example, if a; b are freely independent, then 'Œ.a � '.a/1/.b � '.b/1/� D 0,
implying '.ab/ D '.a/'.b/.

In a slightly more complicated example, let fa1; a2g be free from b: Then
applying the state to the corresponding centred word:

'Œ.a1 � '.a1/1/.b � '.b/1/.a2 � '.a2/1/� D 0;

hence the linearity of ' gives

'.a1ba2/ D '.a1a2/'.b/: (1.13)

A similar calculation shows that if fa1; a2g is free from fb1; b2g; then

'.a1b1a2b2/ D '.a1a2/'.b1/'.b2/

C '.a1/'.a2/'.b1b2/ � '.a1/'.a2/'.b1/'.b2/: (1.14)

It is important to note that while free independence is analogous to classical
independence, it is not a generalization of the classical case. Classical commuting
random variables a; b are free only in trivial cases, '.aabb/ D '.abab/; but
the left-hand side is '.aa/'.bb/, while the right-hand side is '.a2/'.b/2 C
'.a/2'.b2/ � '.a/2'.b/2; which implies 'Œ.a � '.a//2� � 'Œ.b � '.b//2� D 0. But
then (note that states in classical probability spaces are always positive and faithful)
one of the factors inside ' must be 0, so that one of a; b must be a scalar.
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Observe that while freeness gives a concrete rule for calculating mixed moments,
this rule is a priori quite complicated. We will come back to this question for a better
understanding of this rule in the next chapter. For the moment let us just note the
following.

Proposition 16. Let .A; '/ be a non-commutative probability space. The subalge-
bra of scalars C1 is free from any other unital subalgebra B 	 A.

Proof: Let a1 � � � ak be an alternating word in centred elements of C1;B. The case
k D 1 is trivial, otherwise we have at least one aj 2 C1. But then '.aj / D 0 implies
aj D 0; so a1 � � � ak D 0: Thus obviously '.a1 � � � ak/ D 0: ut
1.13 Classical moment-cumulant formulas

At the beginning of this chapter, we introduced the cumulants of a probability
measure � via the logarithm of its characteristic function: if f˛ngn are the moments
of � and

X

n�1
kn

zn

nŠ
D log

0

@1C
X

n�1
˛n

zn

nŠ

1

A (1.15)

is the logarithm of the moment-generating function, then fkngn are the cumulants of
�. We gave without proof two formulas (1.1) and (1.2) showing how to compute the
nth moment from the first n cumulants and conversely.

In the exercises below, we shall prove equations (1.1) and (1.2) as well as show
the very simple restatements in terms of set partitions

˛n D
X

�2P.n/
k� and kn D

X

�2P.n/
.�1/#.�/�1.#.�/ � 1/Š ˛� :

The simplicity of these formulas, in particular the first, makes them very useful
for computation. Moreover they naturally lead to the moment-cumulant formulas
for the free cumulants in which the set P.n/ of all partitions of Œn� is replaced by
NC.n/, the set of non-crossing partitions of Œn�. This will be taken up in Chapter 2.

It was shown in Exercise 4 that if we have two sequences f˛ngn and fkngn such
that ˛n D P

�2P.n/ k� , then we have (1.15) as relation between their exponential
power series. In Exercises 11 and 12, this is proved again starting from the formal
power series relation and ending with the first moment-cumulant relation. This can
be regarded as a warm-up for Exercises 13 and 14 when we prove the second half
of the moment-cumulant relation:

kn D
X

�2P.n/
.�1/#.�/�1.#.�/ � 1/Š˛� :
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This formula can also be proved by the general theory of Möbius inversion in P.n/
after identifying the Möbius function on P.n/ (see [137, Ex. 10.33]).

So far we have only considered cumulants of a single random variable; we need
an extension to several random variables so that kn becomes a n-linear functional.
We begin with mixed moments and extend the notation used in Section 1.5. Let
fXigi be a sequence of random variables and � 2 P.n/; we let

E�.X1; : : : ; Xn/ D
Y

V 2�
VD.i1;:::;il /

E.Xi1Xi2 � � �Xil /:

Then we set

kn.X1; : : : ; Xn/ D
X

�2P.n/
.�1/#.�/�1.#.�/ � 1/Š E�.X1; : : : ; Xn/:

We then define k� as above; namely, for � 2 P.n/, we set

k�.X1; : : : ; Xn/ D
Y

V 2�
VD.i1;:::;il /

kl .Xi1 ; : : : ; Xil /:

Our moment-cumulant formula can be recast as a multilinear moment-cumulant
formula

E.X1 � � �Xn/ D
X

�2P.n/
k�.X1; : : : ; Xn/:

Another formula we shall need is the product formula of Leonov and Shiryaev
for cumulants (see [137, Theorem 11.30]). Let n1; : : : ; nr be positive integers and
n D n1 C � � � C nr . Given random variables X1; : : : ; Xn, let Y1 D X1 � � �Xn1 , Y2 D
Xn1C1 � � �Xn1Cn2 , . . . , Yr D Xn1C���Cnr�1C1 � � �Xn1C���Cnr . Then

kr.Y1; : : : ; Yr / D
X

�2P.n/
�_	D1n

k�.X1; : : : ; Xn/ (1.16)

where the sum runs over all � 2 P.n/ such that � _ 	 D 1n and 	 2 P.n/ is the
partition with r blocks

f.1; : : : ; n1/; .n1 C 1; : : : ; n1 C n2/; � � � ; .n1 C � � � C nr�1 C 1; : : : ; n1 C � � � C nr/g
and 1n 2 P.n/ is the partition with one block. Here _ denotes the join in the lattice
of all partitions (see [137, Remark 9.19]).

In the next chapter, we will have in (2.19) an analogue of (1.16) for free
cumulants.
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1.14 Additional exercises

Exercise 10. (i) Let
P1

nD1 ˇnzn be a formal power series. Using the power series
expansion for ex , show that as a formal power series

exp
� 1X

nD1
ˇnzn

�
D 1C

1X

nD1

nX

mD1

X

l1;:::;lm�1
l1C���ClmDn

ˇl1 � � �ˇlm
mŠ

zn:

(ii) Show

exp
� 1X

nD1
ˇnzn

�
D 1C

1X

nD1

X

r1;:::;rn�0
1�r1C���Cn�rnDn

ˇ
r1
1 � � �ˇrnn

r1Šr2Š � � � rnŠ z
n:

Use this to prove equation (1.1).

Exercise 11. Let
P1

nD1
ˇn
nŠ

zn be a formal power series. For a partition � of type
.r1; r2; : : : ; rn/, let ˇ� D ˇ

r1
1 ˇ

r2
2 � � �ˇrnn . Show that

exp
� 1X

nD1

ˇn

nŠ
zn
�

D 1C
1X

nD1

� X

�2P.n/
ˇ�

� zn

nŠ
:

Exercise 12. Let
P1

nD1 ˇnzn be a formal power series. Using the power series
expansion for log.1C x/, show that

log
�
1C

1X

nD1
ˇnzn

�
D

1X

nD1

X

1�r1C���Cn�rnDn
.�1/r1C���Crn�1.r1C� � �Crn�1/Š ˇ

r1
1 � � �ˇrnn
r1 � � � rnŠ zn:

Use this to prove equation (1.2).

Exercise 13. (i) Let
P1

nD1 ˛n zn

nŠ
be a formal power series. Show that

log
�
1C

1X

nD1
˛n

zn

nŠ

�
D

1X

nD1

� X

�2P.n/
.�1/#.�/�1.#.�/ � 1/Š ˛�

� zn

nŠ
:

(ii) Let

kn D
X

�2P.n/
.�1/#.�/�1.#.�/ � 1/Š ˛� :
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Use the result of Exercise 11 to show that

˛n D
X

�2P.n/
k� :

Exercise 14. Suppose � is a probability measure with moments f˛ngn of all orders
and let fkngn be its sequence of cumulants. Show that

˛n D
X

�2P.n/
k� and kn D

X

�2P.n/
.�1/#.�/�1.#.�/ � 1/Š ˛� :



Chapter 2
The Free Central Limit Theorem and Free Cumulants

Recall from Chapter 1 that if .A; '/ is a non-commutative probability space and
A1; : : : ;As are subalgebras of A which are free with respect to '; then freeness
gives us in principle a rule by which we can evaluate '.a1a2 � � � ak/ for any
alternating word in random variables a1; a2; : : : ; ak: Thus we can in principle
calculate all mixed moments for a system of free random variables. However, we
do not yet have any concrete idea of the structure of this factorization rule. This
situation will be greatly clarified by the introduction of free cumulants. Classical
cumulants appeared in Chapter 1, where we saw that they are intimately connected
with the combinatorial notion of set partitions. Our free cumulants will be linked
in a similar way to the lattice of non-crossing set partitions; the latter were
introduced in combinatorics by Kreweras [113]. We will motivate the appearance
of free cumulants and non-crossing partition lattices in free probability theory by
examining in detail a proof of the central limit theorem by the method of moments.

The combinatorial approach to free probability was initiated by Speicher in [159,
161], in order to get alternative proofs for the free central limit theorem and the main
properties of the R-transform, which had been treated before by Voiculescu in [176,
177] by more analytic tools. Nica showed a bit later in [135] how this combinatorial
approach connects in general to Voiculescu’s operator-theoretic approach in terms
of creation and annihilation operators on the full Fock space. The combinatorial
path was pursued much further by Nica and Speicher; for more details on this, we
refer to the standard reference [137].

2.1 The classical and free central limit theorems

Our setting is that of a non-commutative probability space .A; '/ and a sequence
.ai /i2N 	 A of centred and identically distributed random variables. This means
that '.ai / D 0 for all i � 1 and that '.ani / D '.anj / for any i; j; n � 1:

We assume that our random variables ai ; i � 1 are either classically independent
or freely independent as defined in Chapter 1. Either form of independence gives us
a factorization rule for calculating mixed moments in the random variables.

© Springer Science+Business Media LLC 2017
J.A. Mingo, R. Speicher, Free Probability and Random Matrices,
Fields Institute Monographs 35, DOI 10.1007/978-1-4939-6942-5_2
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For k � 1; set

Sk WD 1p
k
.a1 C � � � C ak/: (2.1)

The Central Limit Theorem is a statement about the limit distribution of the
random variable Sk in the large k limit. Let us begin by reviewing the kind of
convergence we shall be considering.

Recall that given a real-valued random variable X on a probability space, we
have a probability measure 
X on R, called the distribution of X . The distribution
of X is defined by the equation

E.f .X// D
Z
f .t/ d
X.t/ for all f 2 Cb.R/ (2.2)

where Cb.R/ is the C �-algebra of all bounded continuous functions on R. We say
that a probability measure 
 on R is determined by it moments if 
 has moments
f˛kgk of all orders and 
 is the only probability measure on R with moments f˛kgk .
If the moment generating function of 
 has a positive radius of convergence, then 

is determined by its moments (see Billingsley [41, Theorem 30.1]).

Exercise 1. Show that a compactly supported measure is determined by its
moments.

A more general criterion is the Carleman condition (see Akhiezer [3, p. 85])
which says that a measure 
 is determined by its moments f˛kgk if we haveP

k�1.˛2k/�1=.2k/ D 1.

Exercise 2. Using the Carleman condition, show that the Gaussian measure is
determined by its moments.

A sequence of probability measures f
ngn on R is said to converge weakly to

 if fR f d
ngn converges to

R
f d
 for all f 2 Cb.R/. Given a sequence fXngn

of real-valued random variables, we say that fXngn converges in distribution (or
converges in law) if the probability measures f
Xngn converge weakly.

If we are working in a non-commutative probability space .A; '/, we call an
element a of A a non-commutative random variable. Given such an a, we may
define 
a by

R
p d
a D '.p.a// for all polynomials p 2 CŒx�. At this level of

generality, we may not be able to define
R
f d
a for all functions f 2 Cb.R/, so

we call the linear functional 
a W CŒx� ! C the algebraic distribution of a, even if
it is not a probability measure. However when it is clear from the context we shall
just call 
a the distribution of a. Note that if a is a self-adjoint element of a C �-
algebra and ' is positive and has norm 1, then 
a extends from CŒx� to Cb.R/ and
thus 
a becomes a probability measure on R.
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Definition 1. Let .Ak; 'k/, for k 2 N, and .A; '/ be non-commutative probability
spaces.

1) Let .bk/k2N be a sequence of non-commutative random variables with bk 2 Ak;

and let b 2 A: We say that bk converges in distribution to b, denoted by

bk
distr�! b, if

lim
k!1'k.b

n
k/ D '.bn/ (2.3)

for any fixed n 2 N:

2) More generally, let I be an index set. For each i 2 I , let b.i/k 2 Ak for k 2 N and

b.i/ 2 A. We say that .b.i/k /i2I converges in distribution to .b.i//i2I , denoted by

.b
.i/

k /i2I
distr�! .b.i//i2I , if

lim
k!1'k.b

.i1/

k � � � b.in/k / D '.b.i1/ � � � b.in// (2.4)

for all n 2 N and all i1; : : : ; in 2 I .

Note that this definition is neither weaker nor stronger than weak convergence of
the corresponding distributions. For real-valued random variables, the convergence
in (2.3) is sometimes called convergence in moments. However there is an important
case where the two conditions coincide. If we have a sequence of probability
measures f
kgk on R, each having moments of all orders and a probability measure

 determined by its moments, such that for every n we have

R
tn d
k.t/ ! R

tn d


as k ! 1, then f
kgk converges weakly to 
 (see Billingsley [41, Theorem 30.2]).
To see that weak convergence does not imply convergence in moments, consider
the sequence f
kgk where 
k D .1 � 1=k/ı0 C .1=k/ık and ık is the probability
measure with an atom at k of mass 1.

Exercise 3. Show that f
kgk converges weakly to ı0 but that we do not have
convergence in moments.

We want to make a statement about convergence in distribution of the random
variables .Sk/k2N from (2.1) (which all come from the same underlying non-
commutative probability space). Thus we need to do a moment calculation. Let
Œk� D f1; : : : ; kg and Œn� D f1; : : : ; ng. We have

'.Snk / D 1

kn=2

X

rWŒn�!Œk�

'.ar1 � � � arn/:

It turns out that the fact that the random variables a1; : : : ; ak are independent
and identically distributed makes the task of calculating this sum less complex
than it initially appears. The key observation is that because of (classical or free)
independence of the ai ’s and the fact that they are identically distributed, the value
of '.ar1 � � � arn/ depends not on all details of the multi-index r , but just on the
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aj1 aj2 aj3 aj4 aj5 aj6

Fig. 2.1 Suppose j1 D j3 D j4 and j2 D j5 but fj1; j2; j6g are distinct. Then ker.j / D
f.1; 3; 4/; .2; 5/; .6/g

information where the indices are the same and where they are different. Let us
recall some notation from the proof of Theorem 1.1.

Notation 2. Let i D .i1; : : : ; in/ be a multi-index. Then its kernel, denoted by ker i ,
is that partition in P.n/ whose blocks correspond exactly to the different values of
the indices (Fig. 2.1),

k and l are in the same block of ker i ” ik D il :

Lemma 3. With this notation we have that ker i D ker j implies '.ai1 � � � ain/ D
'.aj1 � � � ajn/.
Proof: To see this note first that ker i D ker j implies that the i -indices can
be obtained from the j -indices by the application of some permutation � , i.e.
.j1; : : : ; jn/ D .�.i1/; : : : ; �.in//. We know that the random variables a1; : : : ; ak
are (classically or freely) independent. This means that we have a factorization
rule for calculating mixed moments in a1; : : : ; ak in terms of the moments of
individual ai ’s. In particular this means that '.ai1 � � � ain/ can be written as some
expression in moments '.ari /, while '.aj1 � � � ajn/ can be written as that same
expression except with '.ari / replaced by '.ar�.i//: However, since our random
variables all have the same distribution, then '.ari / D '.ar�.i// for any i; j , and
thus '.ai1 � � � ain/ D '.aj1 � � � ajn/. ut

Let us denote the common value of '.ai1 � � � ain/ for all i with ker i D � , for
some � 2 P.n/, by '.�/. Consequently, we have

'.Snk / D 1

kn=2

X

�2P.n/
'.�/ � jfi W Œn� ! Œk� j ker i D �gj:

It is not difficult to see that

#fi W Œn� ! Œk� j ker i D �g D k.k � 1/ � � � .k � #.�/C 1/

because we have k choices for the first block of � , k � 1 choices for the second
block of � , and so on until the last block where we have k � #.�/C 1.
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Then what we have proved is that

'.Snk / D 1

kn=2

X

�2P.n/
'.�/ � k.k � 1/ � � � .k � #.�/C 1/:

The great advantage of this expression over what we started with is that the
number of terms does not depend on k: Thus we are in a position to take the limit
as k ! 1, provided we can effectively estimate each term of the sum.

Our first observation is the most obvious one, namely, we have

k.k � 1/ � � � .k � #.�/C 1/ � k#.�/ as k ! 1:

Next observe that if � has a block of size 1; then we will have '.�/ D 0: Indeed
suppose that � D fV1; : : : ; Vm; : : : ; Vsg 2 P.n/ with Vm D flg for some l 2 Œn�:

Then we will have

'.�/ D '.aj1 � � � ajl�1ajl ajlC1
� � � ajn/

where ker.j / D � and thus jl 62 fj1; : : : ; jl�1; jlC1; : : : ; jng: Hence we can write
'.�/ D '.bajl c/, where b D aj1 � � � ajl�1 and c D ajlC1

� � � ajn and thus

'.�/ D '.bajl c/ D '.ajl /'.bc/ D 0;

since ajl is (classically or freely) independent of fb; cg. (For the free case, this
factorization was considered in Equation (1.13) in the last chapter. In the classical
case, it is obvious, too.) Of course, for this part of the argument, it is crucial that we
assume our variables ai to be centred.

Thus the only partitions which contribute to the sum are those with blocks of size
at least 2: Note that such a partition can have at most n=2 blocks. Now,

lim
k!1

k#.�/

kn=2
D
(
1; if #.�/ D n=2

0; if #.�/ < n=2
:

Hence the only partitions which contribute to the sum in the k ! 1 limit are
those with exactly n=2 blocks, i.e. partitions each of whose blocks has size 2: Such
partitions are called pairings, and the set of pairings is denoted P2.n/:

Thus we have shown that

lim
k!1'.Snk / D

X

�2P2.n/
'.�/:

Note that in particular if n is odd, then P2.n/ D ;; so that the odd limiting moments
vanish. In order to determine the even limiting moments, we must distinguish
between the setting of classical independence and free independence.
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2.1.1 Classical central limit theorem

In the case of classical independence, our random variables commute and factorize
completely with respect to ': Thus if we denote by '.a2i / D �2 the common
variance of our random variables, then for any pairing � 2 P2.n/ we have
'.�/ D �n. Thus we have

lim
k!1'.Snk / D

X

�2P2.n/
�n D

(
�n.n � 1/.n � 3/ : : : 5 � 3 � 1; if n even

0; if n odd
:

From Section 1.1, we recognize these as exactly the moments of a Gaussian random
variable of mean 0 and variance �2: Since by Exercise 2 the normal distribution is
determined by its moments, and hence our convergence in moments is the same as
the classical convergence in distribution, we get the following form of the classical
central limit theorem: if .ai /i2N are classically independent random variables which
are identically distributed with '.ai / D 0 and '.a2i / D �2, and having all moments,
then Sk converges in distribution to a Gaussian random variable with mean 0 and
variance �2. Note that one can see the derivation above also as a proof of the Wick
formula for Gaussian random variables if one takes the central limit theorem for
granted.

2.1.2 Free central limit theorem

Now we want to deal with the case where the random variables are freely indepen-
dent. In this case, '.�/ will not be the same for all pair partitions � 2 P2.2n/ (we
focus on the even moments now because we already know that the odd ones are
zero). Let’s take a look at some examples:

'.f.1; 2/; .3; 4/g/ D '.a1a1a2a2/ D '.a21/'.a
2
2/ D �4

'.f.1; 4/; .2; 3/g/ D '.a1a2a2a1/ D '.a21/'.a
2
2/ D �4

'.f.1; 3/; .2; 4/g/ D '.a1a2a1a2/ D 0:

The last equality is just from the definition of freeness, because a1a2a1a2 is an
alternating product of centred free variables.

In general, we will get '.�/ D �2n if we can successively remove neighbouring
pairs of identical random variables in the word corresponding to � so that we end
with a single pair (see Fig. 2.2); if we cannot we will have '.�/ D 0 as in the
example '.a1a2a1a2/ D 0 above. Thus the only partitions that give a non-zero
contribution are the non-crossing ones (see [137, p. 122] for details). Non-crossing
pairings were encountered already in Chapter 1, where we denoted the set of non-
crossing pairings by NC2.2n/. Then we have as our free central limit theorem that
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3 4 5 61 2 1 4 5 6 5 6

Fig. 2.2 We start with the pairing f.1; 4/; .2; 3/; .5; 6/g and remove the pair .2; 3/ of adjacent
elements (middle figure). Next we remove the pair .1; 4/ of adjacent elements. We are then left
with a single pair; so the pairing must have been non-crossing to start with

1 2 2i − 1 2i 2i + 1 2n

Fig. 2.3 We have Ci�1 possible pairings on Œ2; 2i �1� and Cn�i possible pairings on Œ2i C1; 2n�

lim
k!1'.S2nk / D �2n � jNC2.2n/j:

In Chapter 1 we already mentioned that the cardinality Cn WD jNC2.2n/j is given
by the Catalan numbers. We want now to elaborate on the proof of this claim.

A very simple method is to show that the pairings are in a bijective correspon-
dence with the Dyck paths; by using André’s reflection principle, one finds that there
are

�
2n
n

� � �
2n
n�1
� D 1

nC1
�
2n
n

�
such paths (see [137, Prop. 2.11] for details).

Our second method for counting non-crossing pairings is to find a simple
recurrence which they satisfy. The idea is to look at the block of a pairing which
contains the number 1: In order for the pairing to be non-crossing, 1 must be paired
with some even number in the set Œ2n�; else we would necessarily have a crossing.
Thus 1 must be paired with 2i for some i 2 Œn�: Now let i run through all possible
values in Œn�; and count for each the number of non-crossing pairings that contain
this pair, as in the diagram (Fig. 2.3).

In this way we see that the cardinality Cn ofNC2.2n/must satisfy the recurrence
relation

Cn D
nX

iD1
Ci�1Cn�i ; (2.5)

with initial condition C0 D 1: One can then check using a generating function that
the Catalan numbers satisfy this recurrence; hence Cn D 1

nC1
�
2n
n

�
.

Exercise 4. Let f .z/ D P1
nD0 Cnzn be the generating function for fCngn, where

C0 D 1 and Cn satisfies the recursion (2.5).
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1 2 3 4 5 6 1 3 4

2 5 6

Fig. 2.4 In the bijection between NC2.6/ and 2 � 3 standard Young tableaux, the pairing
f.1; 2/; .3; 6/; .4; 5/g gets mapped to the tableaux on the right

(i) Show that 1C zf .z/2 D f .z/.

(ii) Show that f is also the power series for 1�p
1�4z
2z .

(iii) Show that Cn D 1
nC1

�
2n
n

�
.

We can also prove directly that Cn D 1
nC1

�
2n
n

�
by finding a bijection between

NC2.2n/ and some standard set of objects which we can see directly is enumerated
by the Catalan numbers. A reasonable choice for this “canonical” set is the
collection of 2 � n standard Young tableaux. A standard Young tableaux of shape
2 � n is a filling of the squares of a 2 � n grid with the numbers 1; : : : ; 2n
which is strictly increasing in each of the two rows and each of the n columns.
The number of these standard Young tableaux is very easy to calculate, using a
famous and fundamental result known as the hook-length formula [167, Vol. 2,
Corollary 7.21.6]. The hook-length formula tells us that the number of standard
Young tableaux on the 2 � n rectangle is

.2n/Š

.nC 1/ŠnŠ
D 1

nC 1

 
2n

n

!

: (2.6)

Thus we will have proved that jNC2.2n/j D 1
nC1

�
2n
n

�
if we can bijectively associate

to each pair partition � 2 NC2.2n/ a standard Young tableaux on the 2 � n

rectangular grid. This is very easy to do. Simply take the “left-halves” of each pair
in � and write them in increasing order in the cells of the first row. Then take the
“right-halves” of each pair of � and write them in increasing order in the cells of
the second row. Figure 2.4 shows the bijection betweenNC2.6/ and standard Young
tableaux on the 2 � 3 rectangle.

Definition 4. A self-adjoint random variable s with odd moments '.s2nC1/ D 0

and even moments '.s2n/ D �2nCn, where Cn is the n-th Catalan number and
� > 0 is a constant, is called a semi-circular element of variance �2. In the case
� D 1, we call it the standard semi-circular element.

The argument we have just provided gives us the free central limit theorem.

Theorem 5. If .ai /i2N are self-adjoint, freely independent, and identically dis-
tributed with '.ai / D 0 and '.a2i / D �2; then Sk converges in distribution to a
semi-circular element of variance �2 as k ! 1:



2.1 The classical and free central limit theorems 31

This free central limit theorem was proved as one of the first results in free
probability theory by Voiculescu already in [176]. His proof was much more
operator theoretic; the proof presented here is due to Speicher [159] and was the
first hint at a relation between free probability theory and the combinatorics of non-
crossing partitions. (An early concrete version of the free central limit theorem,
before the notion of freeness was isolated, appeared also in the work of Bożejko
[43] in the context of convolution operators on free groups.)

Recall that in Chapter 1 it was shown that for a random matrix XN chosen from
N �N GUE we have that

lim
N!1EŒtr.Xn

N /� D
(
0; if n odd

Cn=2; if n even
(2.7)

so that a GUE random matrix is a semi-circular element in the limit of large matrix

size, XN
distr�! s.

We can also define a family of semi-circular random variables.

Definition 6. Suppose .A; '/ is a �-probability space. A self-adjoint family
.si /i2I 	 A is called a semi-circular family of covariance C D .cij /i;j2I if
C � 0 and for any n � 1 and any n-tuple i1; : : : ; in 2 I we have

'.si1 � � � sin/ D
X

�2NC2.n/
'� Œsi1 ; : : : ; sin �;

where

'�Œsi1 ; : : : ; sin � D
Y

.p;q/2�
cipiq :

If C is diagonal, then .si /i2I is a free semi-circular family.

This is the free analogue of Wick’s formula. In fact, using this language and our
definition of convergence in distribution from Definition 1, it follows directly from
Lemma 1.9 that ifX1; : : : ; Xr are matrices chosen independently from GUE, then, in
the large N limit, they converge in distribution to a semi-circular family s1; : : : ; sr
of covariance cij D ıij :

Exercise 5. Show that if fx1; : : : ; xng is a semi-circular family and A D .aij / is an
invertible matrix with real entries, then fy1; : : : ; yng is a semi-circular family where
yi D P

j aij xj .

Exercise 6. Let fx1; : : : ; xng be a semi-circular family such that for all i and j we
have '.xixj / D '.xj xi /. Show that by diagonalizing the covariance matrix we can
find an orthogonal matrix O D .oij / such that fy1; : : : ; yng is a free semi-circular
family where yi D P

j oij xj .
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… … … …i j k l

Fig. 2.5 A crossing in a partition

Exercise 7. Formulate and prove a multidimensional version of the free central
limit theorem.

2.2 Non-crossing partitions and free cumulants

We begin by recalling some relevant definitions concerning non-crossing partitions
from Section 1.8.

Definition 7. A partition � 2 P.n/ is called non-crossing if there do not exist
numbers i; j; k; l 2 Œn� with i < j < k < l such that i and k are in the same block
of � and j and l are in the same block of �; but i and j are not in the same block
of � . The collection of all non-crossing partitions of Œn� was denoted NC.n/.

Figure 2.5 should make it clear what a crossing in a partition is; a non-crossing
partition is a partition with no crossings.

Note that P.n/ is partially ordered by

�1 � �2 ” each block of �1 is contained in a block of �2: (2.8)

We also say that �1 is a refinement of �2:NC.n/ is a subset of P.n/ and inherits this
partial order, so NC.n/ is an induced sub-poset of P.n/. In fact both are lattices;
they have well-defined join _ and meet ^ operations (though the join of two non-
crossing partitions inNC.n/ does not necessarily agree with their join when viewed
as elements of P.n/). Recall that the join �1 _ �2 in a lattice is the smallest � with
the property that � � �1 and � � �2 and that the meet �1 ^ �2 is the largest � with
the property that � � �1 and � � �2.

We now define the important free cumulants of a non-commutative probability
space .A; '/. They were introduced by Speicher in [161]. For other notions of
cumulants and the relation between them, see [11, 74, 117, 153].

Definition 8. Let .A; '/ be a non-commutative probability space. The correspond-
ing free cumulants �n W An ! C (n � 1) are defined inductively in terms of
moments by the moment-cumulant formula

'.a1 � � � an/ D
X

�2NC.n/
��.a1; : : : ; an/; (2.9)
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where, by definition, if � D fV1; : : : ; Vrg, then

��.a1; : : : ; an/ D
Y

V 2�
VD.i1;:::;il /

�l .ai1 ; : : : ; ail /: (2.10)

Remark 9. In Equation (2.10) and below, we always mean that the elements
i1; : : : ; il of V are in increasing order. Note that Equation (2.9) has a formulation
using Möbius inversion which we might call the cumulant-moment formula. To
present this we need the moment version of Equation (2.10). For a partition � 2
P.n/ with � D fV1; : : : ; Vrg, we set

'�.a1; : : : ; an/ D
Y

V 2�
VD.i1;:::;il /

'.ai1 � � � ail /: (2.11)

We also need the Möbius function 
 for NC.n/ (see [137, Lecture 10]). Then our
cumulant-moment relation can be written

�n.a1; : : : ; an/ D
X

�2NC.n/

.�; 1n/'�.a1; : : : ; an/: (2.12)

One could use Equation (2.12) as the definition of free cumulants; however for
practical calculations Equation (2.9) is usually easier to work with.

Example 10. (1) For n D 1; we have '.a1/ D �1.a1/, and thus

�1.a1/ D '.a1/: (2.13)

(2) For n D 2; we have

'.a1a2/ D �f.1;2/g.a1; a2/C �f.1/;.2/g.a1; a2/ D �2.a1; a2/C �1.a1/�1.a2/:

Since we know from the n D 1 calculation that �1.a1/ D '.a1/; this yields

�2.a1; a2/ D '.a1a2/ � '.a1/'.a2/: (2.14)

(3) For n D 3; we have

'.a1a2a3/ D �f.1;2;3/g.a1; a2; a3/C �f.1;2/;.3/g.a1; a2; a3/C �f.1/;.2;3/g.a1; a2; a3/

C �f.1;3/;.2/g.a1; a2; a3/C �f.1/;.2/;.3/g.a1; a2; a3/

D �3.a1; a2; a3/C �2.a1; a2/�1.a3/C �2.a2; a3/�1.a1/

C �2.a1; a3/�1.a2/C �1.a1/�1.a2/�1.a3/:
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Thus we find that

�3.a1; a2; a3/ D '.a1a2a3/ � '.a1/'.a2a3/
� '.a2/'.a1a3/ � '.a3/'.a1a2/C 2'.a1/'.a2/'.a3/: (2.15)

These three examples outline the general procedure of recursively defining �n in
terms of the mixed moments. It is easy to see that �n is an n-linear function.

Exercise 8. (i) Show the following: if ' is a trace, then the cumulant �n is, for each
n 2 N, invariant under cyclic permutations, i.e. for all a1; : : : ; an 2 A, we have

�n.a1; a2; : : : ; an/ D �n.a2; : : : ; an; a1/:

(ii) Let us assume that all moments with respect to ' are invariant under all
permutations of the entries, i.e. that we have for all n 2 N and all a1; : : : ; an 2 A
and all � 2 Sn that '.a�.1/ � � � a�.n// D '.a1 � � � an/. Is it then true that also the free
cumulants �n (n 2 N) are invariant under all permutations?

Let us also point out how the definition appears when a1 D � � � D an D a; i.e.
when all the random variables are the same. Then we have

'.an/ D
X

�2NC.n/
��.a; : : : ; a/:

Thus if we write ˛an WD '.an/ and �a� WD ��.a; : : : ; a/, this reads

˛an D
X

�2NC.n/
�a� : (2.16)

Note the similarity to Equation (1.3) for classical cumulants.
Since the Catalan number is the number of non-crossing pairings of Œ2n� as well

as the number of non-crossing partitions of Œn�, we can use Equation (2.16) to show
that the cumulants of the standard semi-circle law are all 0 except �2 D 1.

Exercise 9. Use Equation (2.16) to show that for the standard semi-circle law all
cumulants are 0, except �2 which equals 1.

As another demonstration of the simplifying power of the moment-cumulant
formula (2.16), let us use the formula to find a simple expression for the moments
and free cumulants of the Marchenko-Pastur law. This is a probability measure
on R

C [ f0g that is as fundamental as the semi-circle law (see Section 4.5). Let
0 < c < 1 be a positive real number. For each c we shall construct a probability
measure �c . Set a D .1 � p

c/2 and b D .1C p
c/2. For c � 1, �c has as support

the interval Œa; b� and the density
p
.b � x/.x � a/=.2�x/; that is

d�c.x/ D
p
.b � x/.x � a/

2�x
dx:
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For 0 < c < 1, �c has the same density on Œa; b� and in addition has an atom at 0 of
mass 1 � c; thus

d�c.x/ D .1 � c/ı0 C
p
.b � x/.x � a/

2�x
dx:

Note that when c D 1, a D 0 and the density has a “pole” of order 1/2 at 0 and thus
is still integrable.

Exercise 10. In this exercise we shall show that �c is a probability measure for all
c. Let R D �x2 C .aC b/x � ab, and then write

p
R

x
D R

x
p
R

D 1

2

�2x C .aC b/p
R

C 1

2

aC bp
R

� ab

x
p
R
:

(i) Show that the integral of the first term on Œa; b� is 0.
(ii) Using the substitution t D .x � .1C c//=

p
c, show that the integral of the

second term over Œa; b� is �.aC b/=2.
(iii) Let u D .b � a/=.2ab/, v D .b C a/=.2ab/ and t D u�1.v � x�1/. With this

substitution show that the integral of the third term over Œa; b� is ��p
ab.

(iv) Using the first three parts, show that �c is a probability measure.

Definition 11. The Marchenko-Pastur distribution is the law with distribution �c
with 0 < c < 1. We shall see in Exercise 11 that all free cumulants of �c are
equal to c. By analogy with the classical cumulants of the Poisson distribution, �c
is also called the free Poisson law (of rate c). We should also note that we have
chosen a different normalization than that used by other authors in order to make
the cumulants simple; see Remark 12 and Exercise 12 below.

Exercise 11. In this exercise we shall find the moments and free cumulants of the
Marchenko-Pastur law.

(i) Let ˛n be the nth moment. Use the substitution t D .x � .1C c//=
p
c to show

that

˛n D
Œ.n�1/=2�X

kD0

1

k C 1

 
n � 1
2k

! 
2k

k

!

.1C c/n�2k�1c1Ck:

(ii) Expand the expression .1C c/n�2k�1 to obtain that

˛n D
Œ.n�1/=2�X

kD0

n�k�1X

lDk

.n � 1/Š
kŠ .k C 1/Š .l � k/Š .n � k � l � 1/Šc

lC1:
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(iii) Interchange the order of summation and use Vandermonde convolution ([79,
(5.23)]) to show that

˛n D
nX

lD1

cl

n

 
n

l � 1

! 
n

l

!

:

(iv) Finally use the fact ([137, Cor. 9.13]) that 1
n

�
n
l�1
��
n
l

�
is the number of non-

crossing partitions of Œn� with l blocks to show that

˛n D
X

�2NC.n/
c#.�/:

Use this formula to show that �n D c for all n � 1.

Remark 12. Given y > 0, let a0 D .1 � p
y/2 and b0 D .1 C p

y/2. Let �y
be the probability measure on R given by

p
.b0 � t /.t � a0/=.2�yt/ dt on Œa0; b0�

when y � 1 and .1� y�1/ı0 Cp
.b0 � t /.t � a0/=.2�yt/ dt on f0g [ Œa0; b0� when

y > 1. As above ı0 is the Dirac mass at 0. This might be called the standard form
of the Marchenko-Pastur law. In the exercise below, we shall see that �y is related
to �c in a simple way and the cumulants of �y are not as simple as those of �c .

Exercise 12. Show that by setting c D 1=y and making the substitution t D x=c

we have
Z
xk d�c.x/ D ck

Z
t k d�y.t/:

Show that the free cumulants of �y are given by �n D c1�n.

There is a combinatorial formula by Krawczyk and Speicher [111] for expanding
cumulants whose arguments are products of random variables. For example,
consider the expansion of �2.a1a2; a3/: This can be written as

�2.a1a2; a3/ D �3.a1; a2; a3/C �1.a1/�2.a2; a3/C �2.a1; a3/�1.a2/: (2.17)

A more complicated example is given by:

�2.a1a2; a3a4/

D �4.a1; a2; a3; a4/C �1.a1/�3.a2; a3; a4/C �1.a2/�3.a1; a3; a4/

C �1.a3/�3.a1; a2; a4/C �1.a4/�3.a1; a2; a3/C �2.a1; a4/�2.a2; a3/

C �2.a1; a3/�1.a2/�1.a4/C �2.a1; a4/�1.a2/�1.a3/

C �1.a1/�2.a2; a3/�1.a4/C �1.a1/�2.a2; a4/�1.a3/: (2.18)
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In general, the evaluation of a free cumulant with products of entries involves
summing over all � which have the property that they connect all different product
strings. Here is the precise formulation, for the proof we refer to [137, Theorem
11.12]. Note that this is the free counter part of the formula (1.16) for classical
cumulants.

Theorem 13. Suppose n1; : : : ; nr are positive integers and n D n1 C � � � C nr .
Consider a non-commutative probability space .A; '/ and a1; a2; : : : ; an 2 A. Let

A1 D a1 � � � an1 ; A2 D an1C1 � � � an1Cn2 ; : : : ; Ar D an1C���Cnr�1C1 � � � an:

Then

�r.A1; : : : ; Ar/ D
X

�2NC.n/
�_	D1n

��.a1; : : : ; an/ (2.19)

where the summation is over those � 2 NC.n/ which connect the blocks
corresponding to A1; : : : ; Ar . More precisely, this means that � _ 	 D 1n where

	 D f.1; : : : ; n1/; .n1 C 1; : : : ; n1 C n2/; : : : ; .n1 C � � � C nr�1 C 1; : : : ; n/g

and 1n D f.1; 2; : : : ; n/g is the partition with only one block.

Exercise 13. (i) Let 	 D f.1; 2/; .3/g. List all � 2 NC.3/ such that � _ 	 D
13. Check that these are exactly the terms appearing on the right-hand side of
Equation (2.17).

(ii) Let 	 D f.1; 2/; .3; 4/g. List all � 2 NC.4/ such that � _ 	 D 14. Check that
these are exactly the terms on the right-hand side of Equation (2.18).

The most important property of free cumulants is that we may characterize
free independence by the vanishing of “mixed” cumulants. Let .A; '/ be a non-
commutative probability space and A1; : : : ;As 	 A unital subalgebras. A cumulant
�n.a1; a2; : : : ; an/ is mixed if each ai is in one of the subalgebras, but a1; a2; : : : ; an
do not all come from the same subalgebra.

Theorem 14. The subalgebras A1; : : : ;As are free if and only if all mixed cumu-
lants vanish.

The proof of this theorem relies on formula (2.19) and on the following
proposition which is a special case of Theorem 14. For the details of the proof of
Theorem 14, we refer again to [137, Theorem 11.15].

Proposition 15. Let .A; '/ be a non-commutative probability space and let �n,
n � 1 be the corresponding free cumulants. For n � 2, �n.a1; : : : ; an/ D 0 if
1 2 fa1; : : : ; ang:



38 2 The Free Central Limit Theorem and Free Cumulants

Proof: We consider the case where the last argument an is equal to 1 and proceed
by induction on n:

For n D 2;

�2.a; 1/ D '.a1/ � '.a/'.1/ D 0:

So the base step is done.
Now assume for the induction hypothesis that the result is true for all 1 � k < n:

We have that

'.a1 � � � an�11/ D
X

�2NC.n/
��.a1; : : : ; an�1; 1/

D �n.a1; : : : ; an�1; 1/C
X

�2NC.n/
�¤1n

��.a1; : : : ; an�1; 1/:

According to our induction hypothesis, a partition � ¤ 1n can have ��.a1;

: : : ; an�1; 1/ different from zero only if .n/ is a one-element block of �; i.e.
� D � [ f.n/g for some � 2 NC.n � 1/: For such a partition, we have

��.a1; : : : ; an�1; 1/ D ��.a1; : : : ; an�1/�1.1/ D ��.a1; : : : ; an�1/;

hence

'.a1 � � � an�11/ D �n.a1; : : : ; an�1; 1/C
X

�2NC.n�1/
�� .a1; : : : ; an�1/

D �n.a1; : : : ; an�1; 1/C '.a1 � � � an�1/:

Since '.a1 � � � an�11/ D '.a1 � � � an�1/; we have proved that �n.a1; : : : ; an�1; 1/
D 0: ut

Whereas Theorem 14 gives a useful characterization for the freeness of sub-
algebras, its direct application to the case of random variables would not yield
a satisfying characterization in terms of the vanishing of mixed cumulants in the
subalgebras generated by the variables. By invoking again the product formula for
free cumulants, Theorem 13, it is quite straightforward to get the following much
more useful characterization in terms of mixed cumulants of the variables.

Theorem 16. Let .A; '/ be a non-commutative probability space. The random
variables a1; : : : ; as 2 A are free if and only if all mixed cumulants of the
a1; : : : ; as vanish. That is, a1; : : : ; as are free if and only if whenever we choose
i1; : : : ; in 2 f1; : : : ; sg in such a way that ik ¤ il for some k; l 2 Œn�; then
�n.ai1 ; : : : ; ain/ D 0.
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2.3 Products of free random variables

We want to understand better the calculation rule for mixed moments of free
variables. Thus we will now derive the basic combinatorial description for such
mixed moments.

Let fa1; : : : ; arg and fb1; : : : ; brg be free random variables, and consider

'.a1b1a2b2 � � � arbr / D
X

�2NC.2r/
��.a1; b1; a2; b2; : : : ; ar ; br /:

Since the a’s are free from the b’s, we only need to sum over those partitions �
which do not connect the a’s with the b’s. Each such partition may be written as
� D �a [ �b; where �a denotes the blocks consisting of a’s and �b the blocks
consisting of b’s. Hence by the definition of free cumulants

'.a1b1a2b2 � � � arbr / D
X

�a[�b2NC.2r/
��a .a1; : : : ; ar / � ��b .b1; : : : ; br /

D
X

�a2NC.r/
��a .a1; : : : ; ar / �

 
X

�b2NC.r/
�a[�b2NC.2r/

��b .b1; : : : ; br /

!

:

It is now easy to see that, for a given �a 2 NC.r/, there exists a biggest � 2
NC.r/ with the property that �a [ � 2 NC.2r/. This � is called the Kreweras
complement of �a and is denoted by K.�a/; see [137, Def. 9.21]. This K.�a/ is
given by connecting as many b’s as possible in a non-crossing way without getting
crossings with the blocks of �a. The mapping K is an order-reversing bijection on
the lattice NC.r/.

But then the summation condition on the internal sum above is equivalent to the
condition �b � K.�a/. Summing �� over all � 2 NC.r/ gives the corresponding
r-th moment, which extends easily to

X

�2NC.r/
���

��.b1; : : : ; br / D '�.b1; : : : ; br /;

where '� denotes, in the same way as in �� , the product of moments along the
blocks of � ; see Equation (2.11).

Thus we get as the final conclusion of our calculations that

'.a1b1a2b2 � � � arbr / D
X

�2NC.r/
��.a1; : : : ; ar / � 'K.�/.b1; : : : ; br /: (2.20)
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Let us consider some simple examples for this formula. For r D 1, there is only
one � 2 NC.1/, which is its own complement, and we get

'.a1b1/ D �1.a1/'.b1/:

As �1 D ', this gives the usual factorization formula

'.a1b1/ D '.a1/'.b1/:

For r D 2, there are two elements in NC.2/, and , and we have

K. / D and K. / D

and the formula above gives

'.a1b1a2b2/ D �2.a1; a2/'.b1/'.b2/C �1.a1/�1.a2/'.b1b2/:

With �1.a/ D '.a/ and �2.a1; a2/ D '.a1a2/ � '.a1/'.a2/, this reproduces
formula (1.14).

The formula above is not symmetric between the a’s and the b’s (the former
appear with cumulants, the latter with moments). Of course, one can also exchange
the roles of a and b, in which case one ends up with

'.a1b1a2b2 � � � arbr / D
X

�2NC.r/
'K�1.�/.a1; : : : ; ar / � ��.b1; : : : ; br /: (2.21)

Note that K2 is not the identity, but a cyclic rotation of � .
Formulas (2.20) and (2.21) are particularly useful when one of the sets of

variables has simple cumulants, as is the case for semi-circular random variables
bi D s. Then only the second cumulants �2.s; s/ D 1 are non-vanishing, i.e. in
effect the sum is only over non-crossing pairings. Thus, if s is semi-circular and
free from fa1; : : : ; arg, then we have

'.a1sa2s � � � ars/ D
X

�2NC2.r/
'K�1.�/.a1; : : : ; ar /: (2.22)

Let us also note in passing that one can rewrite the Equations (2.20) and (2.21)
above in the symmetric form (see [137, (14.4)])

�r.a1b1; a2b2; : : : ; arbr / D
X

�2NC.r/
��.a1; : : : ; ar / � �K.�/.b1; : : : ; br /: (2.23)
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2.4 Functional relation between moment series and cumulant series

Notice how much more efficient the result on the description of freeness in terms of
cumulants is in checking freeness of random variables than the original definition of
free independence. In the cumulant framework, we can forget about centredness
and weaken “alternating” to “mixed”. Also, the problem of adding two freely
independent random variables becomes easy on the level of free cumulants. If
a; b 2 .A; '/ are free with respect to '; then

�aCb
n D �n.aC b; : : : ; aC b/

D �n.a; : : : ; a/C �n.b; : : : ; b/C .mixed cumulants in a; b/

D �an C �bn:

Thus the problem of calculating moments is shifted to the relation between
cumulants and moments. We already know that the moments are polynomials in
the cumulants, according to the moment-cumulant formula (2.16), but we want to
put this relationship into a framework more amenable to performing calculations.

For any a 2 A, let us consider formal power series in an indeterminate z
defined by

M.z/ D 1C
1X

nD1
˛anzn; moment series of a

C.z/ D 1C
1X

nD1
�anzn; cumulant series of a:

We want to translate the moment-cumulant formula (2.16) into a statement about
the relationship between the moment and cumulant series.

Proposition 17. The relation between the moment series M.z/ and the cumulant
series C.z/ of a random variable is given by

M.z/ D C.zM.z//: (2.24)

Proof: The idea is to sum first over the possibilities for the block of � containing
1; as in the derivation of the recurrence for Cn: Suppose that the first block of �
looks like V D f1; v2; : : : ; vsg, where 1 < v1 < � � � < vs � n: Then we build up
the rest of the partition � out of smaller “nested” non-crossing partitions �1; : : : ; �s
with �1 2 NC.f2; : : : ; v2 � 1g/, �2 2 NC.fv2 C 1; : : : ; v3 � 1g/; etc. Hence if we
denote i1 D jf2; : : : ; v2 � 1gj; i2 D jfv2 C 1; : : : ; v3 � 1gj; etc., then we have
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˛n D
nX

sD1

X

i1;:::;is�0
sCi1C���CisDn

X

�DV[�1[���[�s
�s��1 � � � ��s

D
nX

sD1

X

i1;:::;is�0
sCi1C���CisDn

�s

� X

�12NC.i1/
��1

�

� � �
� X

�s2NC.is/
��s

�

D
nX

sD1

X

i1;:::;is�0
sCi1C���CisDn

�s˛i1 � � �˛is :

Thus we have

1C
1X

nD1
˛nzn D 1C

1X

nD1

nX

sD1

X

i1;:::;is�0
sCi1C���CisDn

�sz
s˛i1z

i1 : : : ˛is z
is

D 1C
1X

sD1
�sz

s

� 1X

iD0
˛i z

i

�s
:

ut
Now consider the Cauchy transform of a:

G.z/ WD '
� 1

z � a
�

D
1X

nD0

'.an/

znC1 D 1

z
M.1=z/ (2.25)

and the R-transform of a defined by

R.z/ WD C.z/ � 1
z

D
1X

nD0
�anC1zn: (2.26)

Also put K.z/ D R.z/C 1
z D C.z/

z : Then we have the relations

K.G.z// D 1

G.z/
C.G.z// D 1

G.z/
C

�
1

z
M

�
1

z

��

D 1

G.z/
zG.z/ D z:

Note that M and C are in CŒŒz��, the ring of formal power series in z, G 2 CŒŒ 1z ��,
and K 2 C..z//, the ring of formal Laurent series in z, i.e. zK.z/ 2 CŒŒz��. Thus
K ıG 2 C.. 1z // and G ıK 2 CŒŒz��. We then also have G.K.z// D z.

Thus we recover the following theorem of Voiculescu, which is the main
result on the R-transform. Voiculescu’s original proof in [177] was much more
operator theoretic. One should also note that this computational machinery for
the R-transform was also found independently and about the same time by Woess
[204, 205], Cartwright and Soardi [49], and McLaughlin [125], in a more restricted
setting of random walks on free product of groups. Our presentation here is based
on the approach of Speicher in [161].
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Theorem 18. For a random variable a, let Ga.z/ be its Cauchy transform, and
define its R-transform Ra.z/ by

GaŒRa.z/C 1=z� D z: (2.27)

Then, for a and b freely independent, we have

RaCb.z/ D Ra.z/CRb.z/: (2.28)

Let us write, for a and b free, the above as:

z D GaCbŒRaCb.z/C 1=z� D GaCbŒRa.z/CRb.z/C 1=z�: (2.29)

If we now put w WD RaCb.z/C1=z, then we have z D GaCb.w/ and we can continue
Equation (2.29) as:

GaCb.w/ D z D GaŒRa.z/C 1=z� D GaŒw �Rb.z/� D Ga


w �RbŒGaCb.w/�

�
:

Thus we get the subordination functions !a and !b given by

!a.z/ D z �RbŒGaCb.z/� and !b.z/ D z �RaŒGaCb.z/�: (2.30)

We have !a; !b 2 C.. 1z //, so Ga ı !a 2 CŒŒ 1z ��. These satisfy the subordination
relations

GaCb.z/ D GaŒ!a.z/� D GbŒ!b.z/�: (2.31)

We say that GaCb is subordinate to both Ga and Gb . The name comes from the
theory of univalent functions; see [65, Ch. 6] for a general discussion.

Exercise 14. Show that !a.z/C !b.z/ � 1=Ga.!a.z// D z.

Exercise 15. Suppose we have formal Laurent series !a.z/ and !b.z/ in 1
z such that

Ga.!a.z// D Gb.!b.z// and !a.z/C !b.z/ � 1=Ga.!a.z// D z: (2.32)

Let G be the formal power series G.z/ D Ga.!a.z// and R.z/ D Gh�1i.z/ � z�1.
(Gh�1i denotes here the inverse under composition ofG.) By replacing z byGh�1i.z/
in the second equation of (2.32), show that R.z/ D Ra.z/CRb.z/. These equations
can thus be used to define the distribution of the sum of two free random variables.

At the moment these are identities on the level of formal power series. In the next
chapter, we will elaborate on their interpretation as identities of analytic functions;
see Theorem 3.43.
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2.5 Subordination and the non-commutative derivative

One might wonder about the relevance of the subordination formulation in (2.31).
Since it has become more and more evident that the subordination formulation of
free convolution is in many cases preferable to the (equivalent) description in terms
of the R-transform, we want to give here some idea why subordination is a very
natural concept in the context of free probability. When subordination appeared
in this context first in papers of Voiculescu [181] and Biane [34], it was more an
ad hoc construction – its real nature was only revealed later in the paper [190] of
Voiculescu, where he related it to the non-commutative version of the derivative
operation.

We will now introduce the basics of this non-commutative derivative; as before
in this chapter, we will ignore all analytic questions and just deal with formal power
series. In Chapter 8 we will have more to say about the analytic properties of the
non-commutative derivatives.

Let Chxi be the algebra of polynomials in the variable x. Then we define the
non-commutative derivative @x as a linear mapping @x W Chxi ! Chxi ˝ Chxi by
the requirements that it satisfies the Leibniz rule

@x.qp/ D @x.q/ � 1˝ p C q ˝ 1 � @x.p/

and by

@x1 D 0; @xx D 1˝ 1:

This means that it is given more explicitly as the linear extension of

@xx
n D

n�1X

kD0
xk ˝ xn�1�k: (2.33)

We can also (and will) extend this definition from polynomials to infinite formal
power series.

Exercise 16. (i) Let, for some z 2 C with z 6D 0, f be the formal power series

f .x/ D 1

z � x D
1X

nD0

xn

znC1 :

Show that we have then @xf D f ˝ f .
(ii) Let f be a formal power series in x with the property that @xf D f ˝ f .

Show that f must then be either zero or of the form f .x/ D 1=.z � x/ for some
z 2 C, with z 6D 0.

We will now consider polynomials and formal power series in two non-
commuting variables x and y. In this context, we still have the notion of @x
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(and also of @y), and now their character as “partial” derivatives becomes apparent.
Namely, we define @x W Chx; yi ! Chx; yi ˝ Chx; yi by the requirements that it
should be a derivation, i.e. satisfy the Leibniz rule, and by the prescriptions:

@xx D 1˝ 1; @xy D 0; @x1 D 0:

For a monomial xi1 � � � xin in x and y (where we put x1 WD x and x2 WD y), this
means explicitly

@xxi1 � � � xin D
nX

kD1
ı1ik xi1 � � � xik�1

˝ xikC1
� � � xin : (2.34)

Again it is clear that we can extend this definition also to formal power series in
non-commuting variables.

Let us note that we may define the derivation @xCy on Chx C yi exactly as we
did @x . Namely, @xCy.1/ D 0 and @xCy.x C y/ D 1 ˝ 1. Note that @xCy can be
extended to all of Chx; yi but not in a unique way unless we specify another basis
element. Since ChxCyi 	 Chx; yi, we may apply @x to ChxCyi and observe that
@x.x C y/ D 1˝ 1 D @xCy.x C y/. Thus

@x.x C y/n D
nX

kD1
.x C y/k�1 ˝ .x C y/n�k D @xCy.x C y/n:

Hence

@xjChxCyi D @xCy: (2.35)

If we are given a polynomial p.x; y/ 2 Chx; yi, then we will also consider
ExŒp.x; y/�, the conditional expectation of p.x; y/ onto a function of just the
variable x, which should be the best approximation to p among such functions.
There is no algebraic way of specifying what best approximation means; we need a
state ' on the �-algebra generated by self-adjoint elements x and y for this. Given
such a state, we will require that the difference between p.x; y/ and ExŒp.x; y/�
cannot be detected by functions of x alone; more precisely, we ask that

'
�
q.x/ � ExŒp.x; y/�

� D '
�
q.x/ � p.x; y/� (2.36)

for all q 2 Chxi. If we are going from the polynomials Chx; yi over to the
Hilbert space completion L2.x; y; '/ with respect to the inner product given by
hf; gi WD '.g�f /, then this amounts just to an orthogonal projection from the space
L2.x; y; '/ onto the subspace L2.x; '/ generated by polynomials in the variable x.
(Let us assume that ' is positive and faithful so that we get an inner product.) Thus,
on the Hilbert space level, the existence and uniqueness of ExŒp.x; y/� are clear. In
general, though, it might not be the case that the projection of a polynomial in x and
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y is a polynomial in x – it will just be an L2-function. If we assume, however, that x
and y are free, then we claim that this projection maps polynomials to polynomials.
In fact for this construction to work at the algebraic level we only need assume that
'jChxi is non-degenerate as this shows that Ex is well defined by (2.36). It is clear
from Equation (2.36) that '.Ex.a// D '.a/ for all a 2 Chx; yi.

Let us consider some examples. Assume that x and y are free. Then it is clear
that we have

ExŒx
nym� D xn'.ym/

and more generally

ExŒx
n1ymxn2 � D xn1Cn2'.ym/:

It is not so clear what ExŒyxyx� might be. Before giving the general rule, let us
make some simple observations.

Exercise 17. Let A1 D Chxi and A2 D Chyi with x and y free and 'jA1 non-
degenerate.

(i) Show that ExŒ VA2� D 0.
(ii) For ˛1; : : : ; ˛n 2 f1; 2g with ˛1 6D � � � 6D ˛n and n � 2, show that

ExŒ VA˛1 � � � VA˛n � D 0.

Exercise 18. Let A1 and A2 be as in Exercise 17. Since A1 and A2 are free, we can
use Equation (1.12) from Exercise 1.9 to write

A1 _ A2 D A1 ˚ VA2 ˚
X˚

n�2

X˚

˛1 6D���6D˛n
VA˛1

VA˛2 � � � VA˛n :

We have just shown that if Ex is a linear map satisfying Equation (2.36), then
Ex is the identity on the first summand and 0 on all remaining summands. Show
that by defining Ex this way we get the existence of a linear mapping from
A1 _ A2 to A1 satisfying Equation (2.36). An easy consequence of this is that for
q1.x/; q2.x/ 2 Chxi and p.x; y/ 2 Chx; yi we have ExŒq1.x/p.x; y/q2.x/� D
q1.x/ExŒp.x; y/�q2.x/.

Let a1 D yn1 ; a2 D yn2 and b D xm1 . To compute Ex.yn1xm1yn2/ we follow
the same centring procedure used to compute '.a1ba2/ in Section 1.12. From
Exercise 17 we see that

ExŒa1ba2� D ExŒ Va1ba2�C '.a1/b'.a2/

D ExŒ Va1 Vba2�C '. Va1a2/'.b/C '.a1/b'.a2/

D '. Va1a2/'.b/C '.a1/b'.a2/

D '.a1a2/'.b/ � '.a1/'.b/'.a2/C '.a1/b'.a2/:
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Thus

ExŒy
n1xm1yn2xm2� D '.yn1Cn2/'.xm1/xm2 C '.yn1/xm1'.yn2/xm2

� '.yn1/'.xm1/'.yn2/xm2 :
The following theorem (essentially in the work [34] of Biane) gives the general

recipe for calculating such expectations. As usual the formulas are simplified by
using cumulants. To give the rule, we need the following bit of notation. Given
� 2 P.n/ and a1; : : : ; an 2 A, we define Q'�.a1; : : : ; an/ in the same way as '� in
Equation (2.11) except we do not apply ' to the last block, i.e. the block containing
n. For example, if � D f.1; 3; 4/; .2; 6/; .5/g, then Q'�.a1; a2; a3; a4; a5; a6/ D
'.a1a3a4/'.a5/a2a6. More explicitly, for � D fV1; : : : ; Vsg 2 NC.r/ with r 2 Vs ,
we put

Q'�.a1; : : : ; ar / D '
�Y

i12V1
ai1
� � � �'�

Y

is�12Vs�1
ais�1

� �
Y

is2Vs
ais :

Theorem 19. Let x and y be free. Then for r � 1 and n1;m1; : : : ; nr ;mr � 0, we
have

ExŒy
n1xm1 � � � ynr xmr � D

X

�2NC.r/
��.y

n1 ; : : : ; ynr / � Q'K.�/.xm1; : : : ; xmr /:
(2.37)

Let us check that this agrees with our previous calculation of ExŒyn1xm1yn2xm2�.

ExŒy
n1xm1yn2xm2�

D �f.1;2/g.yn1 ; yn2/ � Q'f.1/;.2/g.xm1; xm2/C �f.1/;.2/g.yn1 ; yn2/ � Q'f.1;2/g.xm1; xm2/

D �2.y
n1 ; yn2/'.xm1/xm2 C �1.y

n1/�1.y
n2/xm1Cm2

D �
'.yn1Cn2/ � '.yn1/'.yn2/�'.xm1/ � xm2 C '.yn1/'.yn2/ � xm1Cm2:

The proof of the theorem is outlined in the exercise below.

Exercise 19. (i) Given � 2 NC.n/, let � 0 be the non-crossing partition of
Œn0� D f0; 1; 2; 3; : : : ; ng obtained by joining 0 to the block of � containing n. For
a0; a1; : : : ; an 2 A, show that '� 0.a0; a1; a2; : : : ; an/ D '.a0 Q'�.a1; : : : ; an//.

(ii) Suppose that A1;A2 	 A are unital subalgebras of A which are free with
respect to the state '. Let x0; x1; : : : ; xn 2 A1 and y1; y2; : : : ; yn 2 A2. Show that

'.x0y1x1y2x2 � � � ynxn/ D
X

�2NC.n/
��.y1; : : : ; yn/'K.�/0.x0; x1; : : : ; xn/:
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Prove Theorem 19 by showing that with the expression given in (2.37) one has
for all m � 0

'
�
xm � ExŒy

n1xm1 � � � ynr xmr �� D '
�
xm � yn1xm1 � � � ynr xmr �:

Exercise 20. Use the method of Exercise 19 to work out ExŒxm1yn1 � � � xmr ynr �.
By linear extension of Equation (2.37), one can thus get the projection onto one

variable x of any non-commutative polynomial or formal power series in two free
variables x and y. We now want to identify the projection of resolvents in x C y.
To achieve this we need a crucial intertwining relation between the partial derivative
and the conditional expectation.

Lemma 20. Suppose ' is a state on Chx; yi such that x and y are free and 'jChxi
is non-degenerate. Then

Ex ˝ Ex ı @xCy jChxCyi D @x ı ExjChxCyi: (2.38)

Proof: We let A1 D Chxi and A2 D Chyi. We use the decomposition from
Exercise 1.9

A1 _ A2 
 A1 D VA2 ˚
X˚

n�2

X˚

˛1 6D���6D˛n
VA˛1 � � � VA˛n

and examine the behaviour of Ex ˝ Ex ı @x on each summand. We know that @x is
0 on VA2 by definition. For n � 2

Ex ˝ Ex ı @x. VA˛1 � � � VA˛n/

�
nX

kD1
ı1;˛kEx. VA˛1 � � � VA˛k�1

.C1˚ VA˛k //˝ Ex..C1˚ VA˛k /
VA˛kC1

� � � VA˛n/:

By Exercise 17, in each term, one or both of the factors is 0. Thus Ex ˝ Ex ı
@xjA1_A2	A1 D 0. Hence

Ex ˝ Ex ı @xjA1_A2 D Ex ˝ Ex ı @x ı ExjA1_A2 D @x ı ExjA1_A2 ;

and then by Equation (2.35) we have

Ex ˝ Ex ı @xCy jChxCyi D Ex ˝ Ex ı @xjChxCyi D @x ı ExjChxCyi:

ut
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Theorem 21. Let x and y be free. For every z 2 C with z 6D 0, there exists a w 2 C

such that

Ex

�
1

z � .x C y/

	

D 1

w � x : (2.39)

In other words, the best approximation for a resolvent in xC y by a function of x is
again a resolvent.

By applying the state ' to both sides of (2.39), one obtains the subordination for
the Cauchy transforms, and thus it is clear that the w from above must agree with
the subordination function from (2.31), w D !.z/.

Proof: We put

f .x; y/ WD 1

z � .x C y/
:

By Exercise 16, part (i), we know that @xCyf D f ˝ f . By Lemma 20 we have
that for functions g of x C y

@xExŒg.x C y/� D Ex ˝ ExŒ@xCyg.x C y/�: (2.40)

By applying (2.40) to f , we obtain

@xExŒf � D Ex ˝ ExŒ@xCyf � D Ex ˝ ExŒf ˝ f � D ExŒf �˝ ExŒf �:

Thus, by the second part of Exercise 16, we know that ExŒf � is a resolvent in x and
we are done. ut



Chapter 3
Free Harmonic Analysis

In this chapter we shall present an approach to free probability based on analytic
functions. At the end of the previous chapter, we defined the Cauchy transform of
a random variable a in an algebra A with a state ' to be the formal power series
G.z/ D 1

zM.
1
z / where M.z/ D 1 C P

n�1 ˛nzn and ˛n D '.an/ are the moments
of a. Then R.z/, the R-transform of a, was defined to be the formal power series
R.z/ D P

n�1 �nzn�1 determined by the moment-cumulant relation which we have
shown to be equivalent to the equations

G
�
R.z/C 1=z

� D z D 1=G.z/CR.G.z//: (3.1)

If a is a self-adjoint element of a unital C �-algebra A with a state ', then there is
a spectral measure � on R such that the moments of a are the same as the moments
of the probability measure �. We can then define the analytic function

G.z/ D '..z � a/�1/ D
Z

R

.z � t /�1d�.t/

on the complex upper half plane, CC. One can then consider the relation between
the formal power series G obtained from the moment-generating function and the
analytic function G obtained from the spectral measure. It turns out that on the
exterior of a disc containing the support of �, the formal power series converges
to the analytic function, and the R-transform becomes an analytic function on an
open set containing 0 whose power series expansion is the formal power seriesP

n�1 �nzn�1 given in the previous chapter.
When � does not have all moments, there is no formal power series; this corre-

sponds to a being an unbounded self-adjoint operator affiliated with A. However, the
Cauchy transform is always defined. Moreover, one can construct the R-transform
of �, analytic on some open set, satisfying equation (3.1) – although there may not
be any free cumulants if � has no moments. However, if � does have moments, then
the R-transform has cumulants given by an asymptotic expansion at 0.
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If X and Y are classically independent random variables with distributions �X
and �Y , then the distribution ofXCY is the convolution, �X ��Y . We shall construct
the free analogue, �X � �Y , of the classical convolution. �X � �Y is called the free
additive convolution of �X and �Y ; it is the distribution of the sum X C Y when X
and Y are freely independent. Since X and Y do not commute, we cannot do this
with functions as in the classical case. We shall do this on the level of probability
measures.

We shall ultimately show that theR-transform exists for all probability measures.
However, we shall first do this for compactly supported probability measures, then
for probability measures with finite variance, and finally for arbitrary probability
measures. This follows more or less the historical development. The compactly
supported case was treated in [177] by Voiculescu. The case of finite variance
was then treated by Maassen in [120]; this was an important intermediate step,
as it promoted the use of the reciprocal Cauchy transform F D 1=G and of the
subordination function. The general case was then first treated by Bercovici and
Voiculescu in [30] by operator algebraic methods; however, more recent alternative
approaches, by Belinschi and Bercovici [18, 21] and by Chistyakov and Götze
[53, 54], rely on the subordination formulation. Since this subordination approach
seems to be analytically better controllable than the R-transform and also best
suited for generalizations to the operator-valued case (see Chapter 10, in particular
Section 10.4), we will concentrate in our presentation on this approach and try to
give a streamlined and self-contained presentation.

3.1 The Cauchy transform

Definition 1. Let CC D fz 2 C j Im.z/ > 0g denote the complex upper half-plane
and C

� D fz j Im.z/ < 0g denote the lower half-plane. Let � be a probability
measure on R and for z 62 R let

G.z/ D
Z

R

1

z � t d�.t/I

G is the Cauchy transform of the measure �.

Let us briefly check that the integral converges to an analytic function on C
C.

Lemma 2. G is an analytic function on C
C with range contained in C

�.

Proof: Since jz � t j�1� jIm.z/j�1 and � is a probability measure, the integral is
always convergent. If Im.w/ ¤ 0 and jz � wj < jIm.w/j=2, then for t 2 R, we have

ˇ
ˇ
ˇ
z � w

t � w

ˇ
ˇ
ˇ <

jIm.w/j
2

� 1

jIm.w/j D 1

2
;
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Fig. 3.1 We choose �1, the argument of z � 2, to be such that 0 � �1 < 2� . Similarly we choose
�2, the argument of z C 2, such that 0 � �2 < 2� . Thus �1 C �2 is continuous on C n Œ�2;1/.
However ei.�1C�2/=2 is continuous on C n Œ�2; 2� because ei.0C0/=2 D 1 D ei.2�C2�/=2, so there is
no jump as the half lines .�1;�2� and Œ2;1/ are crossed

so the series
P1

nD0..z � w/=.t � w//n converges uniformly to .t � w/=.t � z/ on
jz � wj < jIm.w/j=2. Thus .z � t /�1 D �P1

nD0.t � w/�.nC1/.z � w/n on jz � wj <
jIm.w/j=2. Hence

G.z/ D �
1X

nD0

�Z

R

.t � w/�.nC1/d�.t/
	

.z � w/n

is analytic on jz � wj < jIm.w/j=2.
Finally note that for Im.z/ > 0, we have for t 2 R, Im..z � t /�1/ < 0, and hence

Im.G.z// < 0. Thus G maps CC into C
�. ut

Exercise 1. (i) Let 
 be the atomic probability measure with atoms at the real
numbers fa1; : : : ; ang and let i D 
.faig/ be the mass of the atom at ai . Find the
Cauchy transform of 
.

(ii) Let � be the Cauchy distribution, i.e. d�.t/ D ��1.1C t 2/�1 dt . Show that
G.z/ D 1=.z C i/.

In the next two exercises, we need to choose a branch of
p

z2 � 4 for z in the
upper half-plane, CC. We write z2 � 4 D .z � 2/.z C 2/ and define each of

p
z � 2

and
p

z C 2 on C
C. For z 2 C

C, let �1 be the angle between the x-axis and the line
joining z to 2; and �2 the angle between the x-axis and the line joining z to �2. See
Fig. 3.1. Then z � 2 D jz � 2jei�1 and z C 2 D jz C 2jei�2 and so we define

p
z2 � 4

to be jz2 � 4j1=2ei.�1C�2/=2.
Exercise 2. For z D u C iv 2 C

C let
p

z D pjzjei�=2 where 0 < � < � is the
argument of z. Show that

Re.
p

z/ D
sp

u2 C v2 C u

2
and Im.

p
z/ D

sp
u2 C v2 � u

2
:
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Exercise 3. For z 2 C
C show that

jIm.z/j <
ˇ
ˇ
ˇIm

�p
z2 � 4

�ˇˇ
ˇ and jRe

�p
z2 � 4

�ˇˇ
ˇ � jRe.z/jI

with equality in the second relation only when Re.z/ D 0.

Exercise 4. In this exercise we shall compute the Cauchy transform of the arc-
sine law using contour integration. Recall that the density of the arc-sine law on the
interval Œ�2; 2� is given by d�.t/ D 1=.�

p
4 � t 2/. Let

G.z/ D 1

�

Z 2

�2
.z � t /�1p
4 � t 2 dt:

(i) Make the substitution t D 2 cos � for 0 � � � � . Show that

G.z/ D 1

2�

Z 2�

0

.z � 2 cos �/�1 d�:

(ii) Make the substitution w D ei� and show that we can write G as the contour
integral

G.z/ D 1

2�i

Z

�

1

zw � w2 � 1 dw

where � D fw 2 C j jwj D 1g.
(iii) Show that the roots of zw � w2 � 1 D 0 are w1 D .z � p

z2 � 4/=2 and
w2 D .z C p

z2 � 4/=2 and that w1 2 int.� / and that w2 62 int.� /, using the
branch defined above.

(iv) Using the residue calculus, show that G.z/ D 1=
p

z2 � 4.

Exercise 5. In this exercise we shall compute the Cauchy transform of the semi-
circle law using contour integration. Recall that the density of the semi-circle law
on the interval Œ�2; 2� is given by d�.t/ D .2�/�1

p
4 � t 2. Let

G.z/ D 1

2�

Z 2

�2

p
4 � t 2
z � t dt:

(i) Make the substitution t D 2 cos � for 0 � � � � . Show that

G.z/ D 1

4�

Z 2�

0

4 sin2 �

z � 2 cos �
d�:
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(ii) Make the substitution w D ei� and show that we can write G as the contour
integral

G.z/ D 1

4�i

Z

�

.w2 � 1/2
w2.w2 � zw C 1/

dw

where � D fw 2 C j jwj D 1g.
(iii) Using the results from Exercise 3 and the residue calculus, show that

G.z/ D z � p
z2 � 4
2

; (3.2)

using the branch defined above.

Exercise 6. In this exercise we shall compute the Cauchy transform of the Mar-
chenko-Pastur law with parameter c using contour integration. We shall start by
supposing that c > 1. Recall that the density of the Marchenko-Pastur law on the
interval Œa; b� is given by d�c.t/ D p

.b � t /.t � a/=.2�t/dt with a D .1 � p
c/2

and b D .1C p
c/2. Let

G.z/ D
Z b

a

p
.b � t /.t � a/
2�t.z � t / dt:

(i) Make the substitution t D 1C 2
p
c cos � C c for 0 � � � � . Show that

G.z/ D 1

4�

Z 2�

0

4c sin2 �

.1C 2
p
c cos � C c/.z � 1 � 2pc cos � � c/ d�:

(ii) Make the substitution w D ei� and show that we can write G as the contour
integral

G.z/ D 1

4�i

Z

�

.w2 � 1/2
w.w2 C f w C 1/.w2 � ew C 1/

dw

where � D fw 2 C j jwj D 1g, f D .1C c/=
p
c, and e D .z � .1C c//=

p
c.

(iii) Using the results from Exercise 3 and the residue calculus, show that

G.z/ D z C 1 � c �p
.z � a/.z � b/
2z

; (3.3)

using the branch defined in the same way as with
p

z2 � 4 above except a
replaces �2 and b replaces 2.
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Lemma 3. Let G be the Cauchy transform of a probability measure �. Then:

lim
y!1 iy G.iy/ D 1 and sup

y>0;x2R
y jG.x C iy/j D 1:

Proof: We have

y Im.G.iy//D
Z

R

y Im
� 1

iy � t
�
d�.t/ D

Z

R

�y2
y2 C t 2

d�.t/

D �
Z

R

1

1C .t=y/2
d�.t/ ! �

Z

R

d�.t/D�1

as y ! 1; since .1 C .t=y/2 /�1 � 1, we could apply Lebesgue’s dominated
convergence theorem.

We have

y Re.G.iy// D
Z

R

�yt
y2 C t 2

d�.t/:

But for all y > 0 and for all t
ˇ
ˇ
ˇ
ˇ

yt

y2 C t 2

ˇ
ˇ
ˇ
ˇ � 1

2
;

and jyt=.y2 C t 2/j converges to 0 as y ! 1. Therefore y Re.G.iy// ! 0 as
y ! 1, again by the dominated convergence theorem. This gives the first equation
of the lemma.

For y > 0 and z D x C iy,

y jG.z/j �
Z

R

y

jz � t j d�.t/ D
Z

R

y
p
.x � t /2 C y2

d�.t/ � 1:

Thus sup
y>0;x2R

y jG.x C iy/j � 1. By the first part, however, the supremum is 1. ut

Another frequently used notation is to let m.z/ D R
.t � z/�1 d�.t/. We have

m.z/ D �G.z/ and m is usually called the Stieltjes transform of �. It maps C
C

to C
C.

Notation 4. Let us recall the Poisson kernel from harmonic analysis. Let

P.t/ D 1

�

1

1C t 2
and P�.t/ D ��1P.t��1/ D 1

�

�

t2 C �2
for � > 0:

If �1 and �2 are two probability measures on R, recall that their convolution is
defined by �1 � �2.E/ D R1

�1 �1.E � t / d�2.t/ (see Rudin [151, Ex. 8.5]). If � is a
probability measure on R and f 2 L1.R; �/, we can define f � � by

f � �.t/ D
Z 1

�1
f .t � s/ d�.s/:
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SinceP is bounded, we can formP��� for any probability measure � and any � > 0.
Moreover P� is the density of a probability measure, namely a Cauchy distribution
with scale parameter �. We shall denote this distribution by ı�i� .

Remark 5. Note that ı�i� � � is a probability measure with density

P� � �.x/ D � 1
�

Im.G.x C i�//;

where G is the Cauchy transform of �. It is a standard fact that ı�i� � � converges
weakly to � as � ! 0C. (Weak convergence is defined in Remark 12). Thus we can
use the Cauchy transform to recover �. In the next theorem, we write this in terms of
the distribution functions of measures. In this form it is called the Stieltjes inversion
formula.

Theorem 6. Suppose � is a probability measure on R and G is its Cauchy
transform. For a < b we have

� lim
y!0C

1

�

Z b

a

Im.G.x C iy// dx D �..a; b//C 1

2
�.fa; bg/:

If �1 and �2 are probability measures with G�1 D G�2 , then �1 D �2.

Proof: We have

Im.G.x C iy// D
Z

R

Im
� 1

x � t C iy

�
d�.t/ D

Z

R

�y
.x � t /2 C y2

d�.t/:

Thus

Z b

a

Im.G.x C iy// dx D
Z

R

Z b

a

�y
.x � t /2 C y2

dx d�.t/

D �
Z

R

Z .b�t/=y

.a�t/=y
1

1C Qx2 d Qx d�.t/

D �
Z

R

�

tan�1 �b � t
y

�
� tan�1 �a � t

y

�	

d�.t/;

where we have let Qx D .x � t /=y.
So let f .y; t/ D tan�1..b � t /=y/ � tan�1..a � t /=y/ and

f .t/ D

8
ˆ̂
<

ˆ̂
:

0; t … Œa; b�
�=2; t 2 fa; bg
�; t 2 .a; b/

:
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Then limy!0C f .y; t/ D f .t/, and, for all y > 0 and for all t , we have jf .y; t/j �
� . So by Lebesgue’s dominated convergence theorem

lim
y!0C

Z b

a

Im.G.x C iy// dx D � lim
y!0C

Z

R

f .y; t/ d�.t/

D �
Z

R

f .t/ d�.t/

D ��
�
�..a; b//C 1

2
�.fa; bg/

�
:

This proves the first claim.
Now assume that G�1 D G�2 . This implies, by the formula just proved, that

�1..a; b// D �2..a; b// for all a and b which are atoms neither of �1 nor of �2.
Since there are only countably many atoms of �1 and �2, we can write any interval
.a; b/ in the form .a; b/ D [1

nD1.aC�n; b��n/ for a decreasing sequence � ! 0C,
such that all aC �n and all b � �n are atoms neither of �1 nor of �2. But then we get

�1..a; b// D lim
�n!0C

�1..aC �n; b� �n// D lim
�n!0C

�2..aC �n; b� �n// D �2..a; b//:

This shows that �1 and �2 agree on all open intervals and thus are equal. ut
Example 7 (The semi-circle distribution). As an example of Stieltjes inversion,
let us take a familiar example and calculate its Cauchy transform using a generating
function and then using only the Cauchy transform find the density by using Stieltjes
inversion. The density of the semi-circle law � WD 
s is given by

d�.t/ D
p
4 � t 2
2�

dt on Œ�2; 2�I

and the moments are given by

mn D
Z 2

�2
tnd�.t/ D

(
0; n odd

Cn=2; n even
;

where the Cn’s are the Catalan numbers:

Cn D 1

nC 1

 
2n

n

!

:

Now let M.z/ be the moment-generating function

M.z/ D 1C C1z
2 C C2z

4 C � � �
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then

M.z/2 D
X

m;n�0
CmCnz2.mCn/ D

X

k�0

 
X

mCnDk
CmCn

!

z2k:

Now we saw in equation (2.5) that
P

mCnDk CmCn D CkC1, so

M.z/2 D
X

k�0
CkC1z2k D 1

z2
X

k�0
CkC1z2.kC1/

and therefore

z2M.z/2 D M.z/ � 1 or M.z/ D 1C z2M.z/2:

By replacing M.z/ by z�1G.1=z/, we get that G satisfies the quadratic equation
zG.z/ D 1CG.z/2. Solving this we find that

G.z/ D z ˙ p
z2 � 4
2

:

We use the branch of
p

z2 � 4 defined before Exercise 2; however, we must choose
the sign in front of the square root. By Lemma 3, we require that limy!1 iyG.iy/ D
1. Note that for y > 0, we have that, using our definition,

p
.iy/2 � 4 D i

p
y2 C 4.

Thus

lim
y!1.iy/

iy �p
.iy/2 � 4
2

D 1

and

lim
y!1.iy/

iy Cp
.iy/2 � 4
2

D 1:

Hence

G.z/ D z � p
z2 � 4
2

:

Of course, this agrees with the result in Exercise 5.
Returning to the equation zG.z/ D 1C G.z/2, we see that z D G.z/C 1=G.z/,

so K.z/ D z C 1=z and thus R.z/ D z, i.e. all cumulants of the semi-circle law are
0 except �2, which equals 1, something we observed already in Exercise 2.9.
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Now let us apply Stieltjes inversion to G.z/. We have

Im
�p

.x C iy/2 � 4
�

D ˇ
ˇ.x C iy/2 � 4ˇˇ1=2 sin..�1 C �2/=2/

lim
y!0C

Im
�p

.x C iy/2 � 4
�

D
(

jx2 � 4j1=2 � 0 D 0; jxj > 2
jx2 � 4j1=2 � 1 D p

4 � x2; jxj � 2

and thus

lim
y!0C

Im.G.x C iy// D lim
y!0C

Im

 
x C iy �p

.x C iy/2 � 4
2

!

D
8
<

:

0; jxj > 2
�p

4 � x2
2

; jxj � 2
:

Therefore

� lim
y!0C

1

�
Im.G.x C iy// D

8
<

:

0; jxj > 2p
4 � x2
2�

; jxj � 2
:

Hence we recover our original density.

If G is the Cauchy transform of a probability measure, we cannot in general
expect G.z/ to converge as z converges to a 2 R. It might be that jG.z/j ! 1
as z ! a or that G behaves as if it has an essential singularity at a. However
.z � a/G.z/ always has a limit as z ! a if we take a non-tangential limit. Let us
recall the definition. Suppose f W CC ! C and a 2 R, we say lim�z!a f .z/ D b if
for every � > 0, limz!a f .z/ D b when we restrict z to be in the cone

fx C iy j y > 0 and jx � aj < �yg 	 C
C:

Proposition 8. Suppose � is a probability measure on R with Cauchy transformG.
For all a 2 R, we have lim

�z!a
.z � a/G.z/ D �.fag/.

Proof: Let � > 0 be given. If z D xC iy and jx�aj < �y, then for t 2 R, we have

ˇ
ˇ
ˇ
ˇ
z � a
z � t

ˇ
ˇ
ˇ
ˇ

2

D .x � a/2 C y2

.x � t /2 C y2
D
1C . x�a

y
/2

1C . x�t
y
/2

� 1C
�x � a

y

�2
< 1C �2:

Let m D �.fag/, ıa the Dirac mass at a, and � D � � mıa. Then � is a sub-
probability measure and so
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j.z � a/G.z/ �mj D
ˇ
ˇ
ˇ
ˇ

Z
z � a
z � t d�.t/

ˇ
ˇ
ˇ
ˇ �

Z ˇ
ˇ
ˇ
ˇ
z � a
z � t

ˇ
ˇ
ˇ
ˇ d�.t/:

We have j.z � a/=.z � t /j ! 0 as z ! a for all t 6D a. Since fag is a set of
� measure 0, we may apply the dominated convergence theorem to conclude that
indeed lim�z!a.z � a/G.z/ D m. ut

Let f .z/ D .z�a/G.z/. Suppose f has an analytic extension to a neighbourhood
of a then G has a meromorphic extension to a neighbourhood of a. If m D
lim�z!a f .z/ > 0, then G has a simple pole at a with residue m, and � has an atom
of massm at a. Ifm D 0, thenG has an analytic extension to a neighbourhood of a.

Let us illustrate this with the example of the Marchenko-Pastur distribution with
parameter c (see the discussion following Exercise 2.9). In that case we haveG.z/ D
.zC1�c�p.z � a/.z � b/=.2z/; recall that a D .1�p

c/2 and b D .1Cp
c/2. If

we write this as f .z/=z with f .z/ D .z C1� c�p.z � a/.z � b/ /=2, then we may
(using the convention of Exercise 6 (ii)) extend f to be analytic on fz j Re.z/ < ag
by choosing �=2 < �1; �2 < 3�=2. With this convention we have f .0/ D 1 � c

when c < 1 and f .0/ D 0 when c > 1. Note that this is exactly the weight of the
atom at 0.

For many probability measures arising in free probability, G has a meromorphic
extension to a neighbourhood of a given point a. This is due to two results. The
first is a theorem of Greenstein [80, Thm. 1.2] which states that G can be continued
analytically to an open set containing the interval .a; b/ if and only if the restriction
of � to .a; b/ is absolutely continuous with respect to Lebesgue measure and that the
density is real analytic. The second is a theorem of Belinschi [19, Thm. 4.1] which
states that the free additive convolution (see § 3.5) of two probability measures
(provided neither is a Dirac mass) has no continuous singular part and the density
is real analytic whenever positive and finite. This means that for such measures G
has a meromorphic extension to a neighbourhood of every point where the density
is positive on some open set containing the point.

Remark 9. The proof of the next theorem depends on a fundamental result of
R. Nevanlinna which provides an integral representation for an analytic function
from C

C to C
C. It is the upper half-plane version of a better known theorem about

the harmonic extension of a measure on the boundary of the open unit disc to its
interior. Suppose that ' W CC ! C

C is analytic, then the theorem of Nevanlinna
asserts that there is a unique finite positive Borel measure � on R and real numbers
˛ and ˇ, with ˇ � 0 such that for z 2 C

C

'.z/ D ˛ C ˇz C
Z

R

1C tz

t � z
d�.t/:

This integral representation is achieved by mapping the upper half-plane to the open
unit disc D, via � D .izC1/=.iz�1/, and then defining on D by .�/ D �i'.z/ D
�i'�i.1C �/=.1� �/� and obtaining an analytic function  mapping the open unit
disc, D, into the complex right half-plane. In the disc version of the problem, we
must find a real number ˇ0 and a positive measure � 0 on @D D Œ0; 2�� such that
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 .z/ D iˇ0 C
Z 2�

0

eit C z

eit � z
d� 0.t/:

The measure � 0 is then obtained as a limit using the Helly selection principle (see,
e.g. Lukacs [119, Thm. 3.5.1]). This representation is usually attributed to Herglotz.
The details can be found in Akhiezer and Glazman [4, Ch. VI, §59], Rudin [151,
Thm. 11.9], or Hoffman [99, p. 34].

The next theorem answers the question as to which analytic functions from C
C

to C
� are the Cauchy transform of a positive Borel measure.

Theorem 10. Suppose G W C
C ! C

� is analytic and lim supy!1 yjG.iy/j D
c < 1. Then there is a unique positive Borel measure � on R such that

G.z/ D
Z

R

1

z � t d�.t/ and �.R/ D c:

Proof: By the remark above, applied to �G, there is a unique finite positive measure
� on R such that G.z/ D ˛C ˇz C R

.1C tz/=.z � t / d�.t/ with ˛ 2 R and ˇ � 0.
Considering first the real part of iyG.iy/, we get that for all y > 0 large enough

2c � Re.iyG.iy// D y2
�

� ˇ C
Z

1C t 2

y2 C t 2
d�.t/

�
:

Since both �ˇ and
R
.1C t 2/=.y2 C t 2/ d�.t/ are non-negative, the right-hand term

can only stay bounded if ˇ D 0. Thus for all y > 0 sufficiently large

Z
1C t 2

1C .t=y/2
d�.t/ � 2c:

Thus by the monotone convergence theorem
R
.1C t 2/ d�.t/ � 2c and so � has a

second moment.
From the imaginary part of iyG.iy/, we get that for all y > 0 sufficiently large

y

ˇ
ˇ
ˇ
ˇ˛ C

Z

R

t .y2 � 1/
t2 C y2

d�.t/

ˇ
ˇ
ˇ
ˇ � 2c;

which implies that

˛ D � lim
y!1

Z

R

t .y2 � 1/
t2 C y2

d�.t/:

Since j.y2�1/=.t2Cy2/j � 1 for y � 1 and since � has a second (and hence also
a first) moment, we can apply the dominated convergence theorem and conclude that
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˛ D � lim
y!1

Z

R

t
1 � y�2

1C .t=y/2
d�.t/ D �

Z

R

td�.t/:

Hence

G.z/ D
Z

R

�

�t C 1C tz

z � t
�

d�.t/ D
Z

R

1

z � t .1C t 2/d�.t/ D
Z

R

1

z � t d�.t/;

where we have put �.E/ WD R
E
.1 C t 2/d�.t/. This � is a finite measure since �

has a second moment. So G is the Cauchy transform of the positive Borel measure
�. Since the imaginary part of iyG.iy/ tends to 0, by Lemma 3, and the real part is
positive, we have

c D lim sup
y!1

jiyG.iy/j D lim
y!1 Re.iyG.iy// D

Z
.1C t 2/ d�.t/ D �.R/:

ut
Remark 11. Recall that in Definition 2.11, we defined the Marchenko-Pastur law
via the density �c on R. We then showed in Exercise 2.11 the free cumulants of
�c are given by �n D c for all n � 1. We can also approach the Marchenko-
Pastur distribution from the other direction; namely, start with the free cumulants
and derive the density using Theorems 6 and 10.

If we assume that �n D c for all n � 1 and 0 < c < 1, then R.z/ D c=.1 � z/
and so by the reverse of equation (2.27)

1

G.z/
CR.G.z// D z (3.4)

we conclude that G satisfies the quadratic equation

1

G.z/
C c

1 �G.z/ D z:

So using our previous notation: a D .1 � p
c/2 and b D .1C p

c/2, we have

G.z/ D z C 1 � c ˙p
.z � a/.z � b/
2z

:

As in Exercise 6, we choose the branch of the square root defined byp
.z � a/.z � b/ D pj.z � a/.z � b/j ei.�1C�2/=2, where 0 < �1; �2 < � and �1

is the argument of z � b and �2 is the argument of z � a. This gives us an analytic
function on C

C. To choose the sign in front of
p
.z � a/.z � b/, we take our lead

from Theorem 6.

Exercise 7. Show the following.
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(i) When z D iy with y > 0 we have

lim
y!1 z � z C 1 � c �p

.z � a/.z � b/
2z

D 1I

(ii) and

lim
y!1 z � z C 1 � c Cp

.z � a/.z � b/
2z

D 1:

(iii) For z 2 C
C show that

z C 1 � c �p
.z � a/.z � b/
2z

62 R:

This forces the sign, so now we let

G.z/ D z C 1 � c �p
.z � a/.z � b/
2z

for z 2 C
C:

This is our candidate for the Cauchy transform of a probability measure. Since
G.CC/ is an open connected subset of C n R, we have that G.CC/ is contained in
either CC or C�. Part (i) of Exercise 7 shows thatG.CC/ 	 C

�. So by Theorem 10,
there is a probability measure on R for which G is the Cauchy transform.

Exercise 8. As was done in Example 7, show by Stieltjes inversion that the
probability measure of which G is the Cauchy transform is �c .

Exercise 9. Let a and b be real numbers with b � 0. Let G.z/ D .z � a � ib/�1.
Show that G is the Cauchy transform of a probability measure, ıaCib , which has a
density and find its density using Stieltjes inversion. Let � be a probability measure
on R with Cauchy transform G. Show that, eG, the Cauchy transform of ıaCib � � is
the function eG.z/ D G.z � .aC ib//. Here � denotes the classical convolution, c.f.
Notation 4.

Note that though G looks like the Cauchy transform of the complex constant
random variable aCib, it is shown here that it is actually the Cauchy transform of an
(unbounded) real random variable. To be clear, we have defined Cauchy transforms
only for real-valued random variables, i.e. probability measures on R.

Remark 12. If f�ngn is a sequence of finite Borel measures on R, we say that
f�ngn converges weakly to the measure � if for every f 2 Cb.R/ (the continuous
bounded functions on R) we have limn

R
f .t/ d�n.t/ D R

f .t/ d�.t/. We say that
f�ngn converges vaguely to � if for every f 2 C0.R/ (the continuous functions
on R vanishing at infinity) we have limn

R
f .t/ d�n.t/ D R

f .t/ d�.t/. Weak
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convergence implies vague convergence but not conversely. However, if all �n and �
are probability measures, then the vague convergence of f�ngn to � does imply that
f�ngn converges weakly to � [55, Thm. 4.4.2]. If f�ngn is a sequence of probability
measures converging weakly to �, then the corresponding sequence of Cauchy
transforms, fGngn, converges pointwise to the Cauchy transform of �, as for fixed
z 2 C

C, the function t 7! .z � t /�1 is a continuous function on R, bounded by
jz � t j�1 � .Im.z//�1. The following theorem gives the converse.

Theorem 13. Suppose that f�ngn is a sequence of probability measures on R with
Gn the Cauchy transform of �n. Suppose fGngn converges pointwise to G on C

C. If
limy!1 iy G.iy/ D 1, then there is a unique probability measure � on R such that
�n ! � weakly, and G.z/ D R

.z � t /�1d�.t/.
Proof: fGngn is uniformly bounded on compact subsets of CC (as we have jG.z/j
� jIm.z/j�1 for the Cauchy transform of any probability measure), so by Montel’s
theorem fGngn is relatively compact in the topology of uniform convergence
on compact subsets of C

C, thus, in particular, fGngn has a subsequence which
converges uniformly on compact subsets of CC to an analytic function, which must
be G. Thus G is analytic. Now for z 2 C

C, G.z/ 2 C�. Also for each n 2 N,
x 2 R and y > 0, y jGn.x C iy/j � 1. Thus 8x 2 R, 8y � 0, y jG.x C iy/j � 1.
So in particular, G is non-constant. If for some z 2 C

C, Im.G.z// D 0 then by the
minimum modulus principleG would be constant. ThusG maps CC into C

�. Hence
by Theorem 10 there is a unique finite measure � such thatG.z/ D R

R
.z� t /�1d�.t/

and �.R/ � 1. Since, by assumption, limy!1 iyG.iy/ D 1we have by Theorem 10
that �.R/ D 1 and thus � is a probability measure.

Now by the Helly selection theorem, there is a subsequence f�nk gk converging
vaguely to some measure Q�. For fixed z the function t 7! .z � t /�1 is in C0.R/.
Thus for Im.z/ > 0, Gnk .z/ D R

R
.z � t /�1d�nk .t/ ! R

R
.z � t /�1d Q�.t/. Therefore

G.z/ D R
.z � t /�1 d Q�.t/ i.e. � D Q�. Thus f�nk gk converges vaguely to �. Since � is

a probability measure, f�nk gk converges weakly to �. So all weak cluster points of
f�ngn are � and thus the whole sequence f�ngn converges weakly to �. ut

Note that we needed the assumption limy!1 yG.iy/ D �i in order to ensure
that the limit measure � is indeed a probability measure. In general, without this
assumption, one might lose mass in the limit, and one has only the following
statement.

Corollary 14. Suppose f�ngn is a sequence of probability measures on R with
Cauchy transforms fGngn. If fGngn converges pointwise on C

C, then there is a finite
positive Borel measure � with �.R/ � 1 such that f�ng converges vaguely to �.

Exercise 10. Identify �n and � for the sequence of Cauchy transforms which are
given by Gn.z/ D 1=.z � n/.
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Fig. 3.2 The Stolz angle
�˛;ˇ Γα,β

αy
=

|x|

y = β

3.2 Moments and asymptotic expansions

We saw in Lemma 3 that zG.z/ approaches 1 as z approaches 1 in C
C along the

imaginary axis. Thus zG.z/�1 approaches 0 as z 2 C
C tends to 1. Quantifying how

fast zG.z/ � 1 approaches 0 will be useful in showing that near 1, G is univalent
and thus has an inverse. If our measure has moments, then we get an asymptotic
expansion for the Cauchy transform.

Notation 15. Let ˛ > 0 and let �˛ D fx C iy j ˛y > jxjg and for ˇ > 0 let
�˛;ˇ D fz 2 �˛ j Im.z/ > ˇg. See Fig. 3.2. Note that for z 2 C

C, we have z 2 �˛ if
and only if

p
1C ˛2 Im.z/ > jzj.

Definition 16. If ˛ > 0 is given and f is a function on �˛ , we say
limz!1;z2�˛ f .z/ D c to mean that for every � > 0 there is ˇ > 0 so that
jf .z/ � cj < � for z 2 �˛;ˇ . If this holds for every ˛, we write lim�z!1 f .z/ D c.
When it is clear from the context, we shall abbreviate this to limz!1 f .z/ D c.
We call �˛ a Stolz angle and �˛;ˇ a truncated Stolz angle. To show convergence
in a Stolz angle, it is sufficient to show convergence along a sequence fzngn in �˛
tending to infinity. Hence the usual rules for sums and products of limits apply.

We extend this definition to the case c D 1 as follows. If for every ˛1 < ˛2 and
every ˇ2 > 0 there is ˇ1 such that f .�˛1;ˇ1/ 	 �˛2;ˇ2 , we say lim

�z!1f .z/ D 1.

Exercise 11. Show that if lim�z!1 f .z/=z D 1, then lim�z!1 f .z/ D 1.

In the following exercises, G will be the Cauchy transform of the probability
measure �.

Exercise 12. Let � be a probability measure on R and ˛ > 0. In this exercise we
will consider limits as z ! 1 with z 2 �˛ . Show that:

(i) for z 2 �˛ and t 2 R, jz � t j � jt j=p1C ˛2;
(ii) for z 2 �˛ and t 2 R, jz � t j � jzj=p1C ˛2;

(iii) limz!1
R
R
t=.z � t / d�.t/ D 0;

(iv) limz!1 zG.z/ D 1.
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Exercise 13. Let F W CC ! C
C be analytic and let

F.z/ D aC bz C
Z

R

1C tz

t � z
d�.t/

be its Nevanlinna representation with a real and b � 0. Then for all ˛ > 0, we have
limz!1 F.z/=z D b for z 2 �˛ .

Exercise 14. Let � be a probability measure on R. Suppose � has a moment
of order n, i.e.

R
R

jt jn d�.t/ < 1. Let ˛1; : : : ; ˛n be the first n moments of �.
Let ˛ > 0 be given. As in Exercise 12, all limits as z ! 1 will be assumed to be in
a Stolz angle as in Notation 15.

(i) Show that

lim
z!1

Z

R

ˇ
ˇ
ˇ
ˇ
tnC1

z � t
ˇ
ˇ
ˇ
ˇ d�.t/ D 0:

(ii) Show that

lim
z!1 znC1

�

G.z/ �
�
1

z
C ˛1

z2
C ˛2

z3
C � � � C ˛n

znC1

��

D 0:

Exercise 15. Suppose that ˛ > 0 and � is a probability measure on R and that for
some n > 0 there are real numbers ˛1; ˛2; : : : ; ˛2n such that as z ! 1 in �˛

lim
z!1 z2nC1

�

G.z/ �
�
1

z
C ˛1

z2
C � � � C ˛2n

z2nC1

��

D 0:

Show that � has a moment of order 2n, i.e.
R
R
t 2n d�.t/ < 1 and that

˛1; ˛2; : : : ; ˛2n are the first 2n moments of �.

3.3 Analyticity of the R-transform: compactly supported measures

We now turn to the problem of showing that the R-transform is always an analytic
function; recall that in Chapter 2 the R-transform was defined as a formal power
series, satisfying Equation (2.26). The more we assume about the probability
measure �, the better behaved is R.z/.

Indeed, if � is a compactly supported measure, supported in the interval Œ�r; r�,
then R.z/ is analytic on the disc with centre 0 and radius 1=.6r/. Moreover the
coefficients in the power series expansion R.z/ D �1 C �2z C �3z2 C � � � are exactly
the free cumulants introduced in Chapter 2.
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If � has variance �2, then R.z/ is analytic on a disc with centre �i=.4�/ and
radius 1=.4�/ (see Theorem 26). Note that 0 is on the boundary of this disc so �
may fail to have any free cumulants beyond the second. However if � has moments
of all orders, then R.z/ has an asymptotic expansion at 0, and the coefficients in this
expansion are the free cumulants of �.

The most general situation is when � is not assumed to have any moments. Then
R.z/ is analytic on a wedge �˛;ˇ D fz�1 j z 2 �˛;ˇg in the lower half-plane with 0
at its vertex (see Theorem 33).

Consider now first the case that � is a compactly supported probability measure
on R. Then � has moments of all orders. We will show that the Cauchy transform of
� is univalent on the exterior of a circle centred at the origin. We can then solve the
equationG.R.z/C1=z/ D z forR.z/ to obtain a functionR, analytic on the interior
of a disc centred at the origin and with power series given by the free cumulants of
�. The precise statements are given in the next theorem.

Theorem 17. Let � be a probability measure on R with support contained in the
interval Œ�r; r� and let G be its Cauchy transform. Then

(i) G is univalent on fz j jzj > 4rg;
(ii) fz j 0 < jzj < 1=.6r/g 	 fG.z/ j jzj > 4rg;

(iii) there is a functionR, analytic on fz j jzj < 1=.6r/g such thatG.R.z/C1=z/ D
z for 0 < jzj < 1=.6r/;

(iv) if f�ngn are the free cumulants of �, then, for jzj < 1=.6r/,
P

n�1 �nzn�1
converges to R.z/.

Proof: Let f˛ngn be the moments of � and let ˛0 D 1. Note that j˛nj �R jt jn d�.t/ � rn. Let

f .z/ D G
�
1=z

� D z
Z

1

1 � tz d�.t/:

For jzj < 1=r and t 2 supp.�/, jzt j < 1 and the series
P
.zt /n converges uniformly

on supp.�/ and thus
P

n�0 ˛nznC1 converges uniformly to f .z/ on compact subsets
of fz j jzj < 1=rg. Hence

P
n�0 ˛nz�.nC1/ converges uniformly to G.z/ on compact

subsets of fz j jzj > rg.
Suppose jz1j; jz2j < r�1. Then

ˇ
ˇ
ˇ
ˇ
f .z1/ � f .z2/

z1 � z2

ˇ
ˇ
ˇ
ˇ � Re

�
f .z1/ � f .z2/

z1 � z2

�

D Re
Z 1

0

d

dt

�
f .z1 C t .z2 � z1//

z2 � z1

	

dt

D
Z 1

0

Re
�
f 0.z1 C t .z2 � z1//

�
dt:
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And

Re.f 0.z// D Re.1C 2z˛1 C 3z2˛2 C � � � /
� 1 � 2 jzj r � 3 jzj2 r2 � � � �
D 2 � .1C 2.jzj r/C 3.jzj r/2 C � � � /

D 2 � 1

.1 � jzj r/2 :

For jzj < .4r/�1, we have

Re.f 0.z// � 2 � 1

.1 � 1=4/2 D 2

9
:

Hence for jz1j ; jz2j < .4r/�1, we have jf .z1/� f .z2/j � 2jz1 � z2j=9. In particular,
f is univalent on fz j jzj < .4r/�1g. Hence G is univalent on fz j jzj > 4rg. This
proves (i).

For any curve � in C and any w not on � let Ind� .w/ D R
�
.z � w/�1d z=.2�i/

be the index of w with respect to � (or the winding number of � around w). Now,
as f .0/ D 0, the only solution to f .z/ D 0 for jzj < .4r/�1 is z D 0. Let � be the
curve fz j jzj D .4r/�1g and f .� / D ff .z/ j z 2 � g be the image of � under f .
By the argument principle

Indf .� /.0/ D 1

2�i

Z

�

f 0.z/
f .z/

d z D 1:

Also for jzj < .4r/�1

jf .z/j D jzj j1C ˛1z C ˛2z
2 C � � � j

� jzj .2 � .1C r jzj C r2jzj2 C � � � //

D jzj
�

2 � 1

1 � r jzj
�

� jzj
�

2 � 1

1 � 1=4
�

D 2

3
jzj:

Thus for jzj D .4r/�1, we have jf .z/j � .6r/�1. Hence f .� / lies outside the circle
jzj D .6r/�1 and thus fz j jzj < .6r/�1g is contained in the connected component of
Cnf .� / containing 0. So for w 2 fz j jzj < .6r/�1g, Indf .� /.w/ D Indf .� /.0/ D 1,
as the index is constant on connected components of the complement of f .� /.
Hence

1 D Indf .� /.w/ D 1

2�i

Z

�

f 0.z/
f .z/ � w

d z;
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so again by the argument principle there is exactly one jzj with z < .4r/�1 such that
f .z/ D w. Hence

fz j jzj < .6r/�1g 	 ff .z/ j jzj < .4r/�1g
and thus

fz j 0 < jzj < .6r/�1g 	 fG.z/ j jzj > 4rg:
This proves (ii).

Let f h�1i be the inverse of f on fz j jzj < .6r/�1g. Then f h�1i.0/ D 0

and f h�1i0
.0/ D 1=f 0.0/ D 1, so f h�1i has a simple zero at 0. Let K be the

meromorphic function on fz j jzj < .6r/�1g given by K.z/ D 1=f h�1i.z/. Then K
has a simple pole at 0 with residue 1. Hence R.z/ D K.z/ � 1=z is holomorphic on
fz j jzj < .6r/�1g, and for 0 < jzj < .6r/�1

G.R.z/C 1=z/ D G.K.z// D f

�
1

K.z/

�

D f .f h�1i/.z/ D z:

This proves (iii).
Let C.z/ D 1C zR.z/ D zK.z/. Then C is analytic on fz j jzj < .6r/�1g and so

has a power series expansion
P

n�0 Q�nzn, with Q�0 D 1. We shall have proved (iv) if
we can show that for all n � 1, Q�n D �n where f�ngn are the free cumulants of �.

Recall that f .0/ D 0, so M.z/ WD f .z/=z D P
n�0 ˛nzn is analytic on the set

fz j jzj < r�1g. For z such that jzj < .4r/�1 and jf .z/j < .6r/�1 we have

C.f .z// D f .z/K.f .z// D f .z/

f h�1i.f .z//
D f .z/

z
D M.z/: (3.5)

Fix p � 1. Then we may write

M.z/ D 1C
pX

lD1
˛lz

l C o.zp/;

C.z/ D 1C
pX

lD1
Q�lzl C o.zp/;

and

.f .z//l D
� pX

mD1
˛m�1zm

�l C o.zp/:

Hence

C.f .z// D 1C
pX

lD1
Q�l
� pX

mD1
˛m�1zm

�l C o.zp/:
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Thus by equation (3.5)

1C
pX

lD1
˛lz

l D 1C
pX

lD1
Q�l
� pX

mD1
˛m�1zm

�l C o.zp/:

However this is exactly the relation between f˛ngn and f�ngn found at the end of
the proof of Proposition 2.17. Given f˛ngn there are unique �n’s that satisfy this
relation, so we must have Q�n D �n for all n. This proves (iv). ut
Remark 18. A converse to Theorem 17 was found by F. Benaych-Georges [27].
Namely, if a probability measure � has an R-transform which is analytic on an open
set containing 0 and for all k � 0, the kth derivative R.k/.0/ is a real number, then
� has compact support. Note that for the Cauchy distribution R.k/.0/ D 0 for k � 1

but R.0/ is not real.

3.4 Measures with finite variance

In the previous section, we showed that if � has compact support, then the R-
transform of � is analytic on an open disc containing 0. If we assume that � has
finite variance but make no assumption about the support, then we can still conclude
that the equation G.R.z/C 1=z/ D z has an analytic solution on an open disc in the
lower half-plane. The main problem is again demonstrating the univalence of G,
which is accomplished by a winding number argument.

We have already seen in Exercise 12 that zG.z/�1 ! 0 as z ! 1 in some Stolz
angle �˛ . Let G1.z/ D z � 1=G.z/. Then G1.z/=z ! 0, i.e. G1.z/ D o.z/. If � has a
first moment ˛1, then z2.G.z/ � .1=z C ˛1=z2// ! 0, and we may write

z2
�

G.z/ �
�1

z
C ˛1

z2

��

D zG.z/.G1.z/ � ˛1/C ˛1.zG.z/ � 1/:

Thus G1.z/ ! ˛1. Suppose � has a second moment ˛2 then

z3
�

G.z/ �
�1

z
C ˛1

z2
C ˛2

z3

��

! 0

or equivalently

G.z/ D 1

z
C ˛1

z2
C ˛2

z3
C o

� 1

z3

�

and thus

G1.z/ D z � 1
1
z C ˛1

z2
C ˛2

z3
C o. 1

z3
/

D ˛1 C ˛2 � ˛21
z

C o
�1

z

�
: (3.6)

The next lemma shows that G1 maps C
C to C

�. We shall work with the function
F D 1=G. It will be useful to establish some properties of F (Lemmas 19
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and 20) and then show that these properties characterize the reciprocals of Cauchy
transforms of measures of finite variance (Lemma 21).

Lemma 19. Let � be a probability measure on R and G its Cauchy transform. Let
F.z/ D 1=G.z/. Then F maps CC to C

C and Im.z/ � Im.F.z// for z 2 C
C, with

equality for some z only if � is a Dirac mass.

Proof: Im.G.z// D �Im.z/
R jz � t j�2 d�.t/, so

Im.F.z//

Im.z/
D �Im.G.z//

Im.z/

1

jG.z/j2 D
R jz � t j�2 d�.t/

jG.z/j2 :

So our claim reduces to showing that jG.z/j2 � R jz � t j�2 d�.t/. However, by the
Cauchy-Schwartz inequality

ˇ
ˇ
ˇ
ˇ

Z
1

z � t d�.t/
ˇ
ˇ
ˇ
ˇ

2

�
Z
12 d�.t/

Z ˇ
ˇ
ˇ
1

z � t
ˇ
ˇ
ˇ
2

d�.t/ D
Z ˇ
ˇ
ˇ
1

z � t
ˇ
ˇ
ˇ
2

d�.t/;

with equality only if t 7! .z � t /�1 is �-almost constant, i.e. � is a Dirac mass. This
completes the proof. ut
Lemma 20. Let � be a probability measure with finite variance �2 and letG1.z/ D
z � 1=G.z/, where G is the Cauchy transform of �. Then there is a probability
measure �1 such that

G1.z/ D ˛1 C �2
Z

1

z � t d�1.t/

where ˛1 is the mean of �.

Proof: If �2 D 0, then � is a Dirac mass, thus G1.z/ D ˛1 and the assertion is
trivially true. So let us assume that �2 6D 0. G1.z/ D z � 1=G.z/ is analytic on C

C
and by the previous lemma G1.CC/ 	 C

�. Let ˛1 and ˛2 be the first and second
moment of �, respectively. Clearly, we also have .G1 � ˛1/.C

C/ 	 C
� and, by

equation (3.6), limz!1 z.G1.z/ � ˛1/ D ˛2 � ˛21 D �2 > 0. Thus by Theorem 10
there is a probability measure �1 such that

G1.z/ � ˛1 D �2
Z

1

z � t d�1.t/:

ut
Lemma 21. Suppose that F W CC ! C

C is analytic and there is C > 0 such that
for z 2 C

C, jF.z/� zj � C=Im.z/. Then there is a probability measure � with mean
0 and variance �2 � C such that 1=F is the Cauchy transform of �. Moreover �2

is the smallest C such that jF.z/ � zj � C=Im.z/.

Proof: Let G.z/ D 1=F.z/. Then G W CC ! C
� is analytic and
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ˇ
ˇ
ˇ
ˇ1 � 1

zG.z/

ˇ
ˇ
ˇ
ˇ D jF.z/ � zj

jzj � C

jzjIm.z/ :

Hence limz!1 zG.z/ D 1 in any Stolz angle. Thus by Theorem 10 there is a
probability measure � such that G is the Cauchy transform of �. Now

Z
y2

y2 C t 2
t 2 d�.t/ D y2

�

�
Z

y2

y2 C t 2
d�.t/C 1

	

Dy Im


iy G.iy/ .F.iy/�iy/�:

Also, allowing that both sides might equal 1, we have by the monotone
convergence theorem that

Z
t 2 d�.t/ D lim

y!1

Z
y2

y2 C t 2
t 2 d�.t/:

However

jyIm


iyG.iy/ .F.iy/ � iy/�j � y jiy G.iy/jC

Im.iy/
D C jiy G.iy/j;

thus
R
t 2 d�.t/ � C , and so � has a second, and thus also a first, moment. Also

Z
y2

y2 C t 2
t d�.t/ D �y2Re.G.iy// D �Re



iyG.iy/.F.iy/ � iy/�:

Since iyG.iy/ ! 1 and jF.iy/ � iyj � C=y, we see that the first moment of � is
0, also by the monotone convergence theorem.

We now have that �2 � C . The inequality jz � F.z/j � C=Im.z/ precludes �
being a Dirac mass other than ı0. For � D ı0, we have F.z/ D z, and then the
minimal C is clearly 0 D �2. Hence we can restrict to � 6D ı0, hence to � not being
a Dirac mass. Thus by Lemma 19 we have for z 2 C

C that z � F.z/ 2 C
�. By

equation (3.6), limz!1 z.z � F.z// D �2 in any Stolz angle. Hence by Theorem 10
there is a probability measure Q� such that z � F.z/ D �2

R
.z � t /�1 d Q�.t/. Hence

jz � F.z/j � �2
Z

1

jz � t j d Q�.t/ � �2
Z

1

Im.z/
d Q�.t/ D �2

Im.z/
:

This proves the last claim. ut
Exercise 16. Suppose � has a fourth moment and we write

G.z/ D 1

z
C ˛1

z2
C ˛2

z3
C ˛3

z4
C ˛4

z5
C o

� 1

z5

�
:

Show that
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z � 1

G.z/
D ˛1 C ˇ0

z
C ˇ1

z2
C ˇ2

z3
C o

� 1

z3

�

where

ˇ0 D ˛2 � ˛21 ˇ1 D ˛3 � 2˛1˛2 C ˛31 ˇ2 D ˛4 � 2˛1˛3 � ˛22 C 3˛21˛2 � ˛41
and thus conclude that the probability measure �1 of Lemma 20 has the second
moment ˇ2=ˇ0.

Remark 22. We have seen that if � has a second moment, then we may write

G.z/ D 1

.z � ˛1/ � .˛2 � ˛21/
R

1
z�t d�1.t/

D 1

.z � a1/ � b1
R

1
z�t d�1.t/

where �1 is a probability measure on R, and a1 D ˛1, b1 D ˛2�˛21 . If � has a fourth
moment, then �1 will have a second moment, and we may repeat our construction
to write

Z
1

z � t d�1.t/ D 1

.z � a2/ � b2
R

1
z�t d�2.t/

for some probability measure �2, where a2 D .˛3 � 2˛1˛2 C ˛31/=.˛2 � ˛21/ and
b2 D .˛2˛4 C 2˛1˛2˛3 � ˛32 � ˛21˛4 � ˛23/=.˛2 � ˛21/2. Thus

G.z/ D 1

z � a1 � b1

z � a2 � b2
R

1
z�t d�2.t/

:

If � has moments of all orders f˛ngn, then the Cauchy transform of � has a
continued fraction expansion (often called a J -fraction because of the connection
with Jacobi matrices).

G.z/ D 1

z � a1 � b1

z � a2 � b2

z � a3 � � � �

:

The coefficients fangn and fbngn are obtained from the moments f˛ngn as
follows. Let An be the .nC 1/ � .nC 1/ Hankel matrix
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An D

2

6
6
6
4

1 ˛1 � � � ˛n
˛1 ˛2 � � � ˛nC1
:::

:::
:::

˛n ˛nC1 � � � ˛2n

3

7
7
7
5

and QAn�1 be the n� n matrix obtained from An by deleting the last row and second
last column and QA0 D .˛1/. Then let ��1 D 1, �n D det.An/, Q��1 D 0, and
Q�n D det. QAn/. By Hamburger’s theorem (see Shohat and Tamarkin [157, Thm.

1.2]), we have that for all n, �n � 0. Then b1b2 � � � bn D �n=�n�1 and

a1 C a2 C � � � C an D Q�n�1=�n�1;

or equivalently bn D �n�2�n=�
2
n�1 and

an D Q�n�1=�n�1 � Q�n�2=�n�2:

If for some n, �n D 0 then we only get a finite continued fraction.

Notation 23. For ˇ > 0 let CC
ˇ D fz j Im.z/ > ˇg.

Lemma 24. Suppose F W CC ! C
C is analytic and there is � > 0 such that for

z 2 C
C we have jz � F.z/j � �2=Im.z/. Then

(i) C
C
2� 	 F.CC

� /;
(ii) for each w 2 C

C
2� , there is a unique z 2 C

C
� such that F.z/ D w.

Hence there is an analytic function, F h�1i, defined on C
C
2� such that F.F h�1i.w// D

w. Moreover for w 2 C
C
2�

(iii) Im.F h�1i.w// � Im.w/ � 2 Im.F h�1i.w//, and
(iv) jF h�1i.w/ � wj � 2�2=Im.w/.

Proof: Suppose Im.w/ > 2� . If jz � wj D � then

Im.z/ � Im.w � i�/ D Im.w/ � � > 2� � � D �:

Let C be the circle with centre w and radius � . Then C 	 C
C
� . For z 2 C we have

j.F.z/ � w/ � .z � w/j D jF.z/ � zj � �2

Im.z/
< � D jz � wj:

Thus by Rouché’s theorem there is a unique z 2 int.C / with F.z/ D w. This
proves (i).

If z0 2 C
C
� and F.z0/ D w then

jw � z0j D jF.z0/ � z0j � �2

Im.z0/
< �;

so z0 2 int.C / and hence z D z0. This proves (ii). We define F h�1i.w/ D z.
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By Lemma 21, 1=F is the Cauchy transform of a probability measure with finite
variance. Thus by Lemma 19 we have that Im.F.z// � Im.z/ thus Im.F h�1i.w// �
Im.w/. On the other hand, by replacing � in (i) by ˇ > � , one has for w 2 C

C
2ˇ that

Im.F h�1i.w// > ˇ. By letting 2ˇ approach Im.w/, we get that Im.F h�1i.w// �
1
2

Im.w/. This proves (iii).
For w 2 C

C
2� let z D F h�1i.w/ 2 C

C
� , then by (iii)

jF h�1i.w/ � wj D jz � wj D jF.z/ � zj � �2

Im.z/
� 2�2

Im.w/
:

This proves (iv). ut
Theorem 25. Let � be a probability measure on R with first and second moments ˛1
and ˛2. LetG.z/ D R

.z�t /�1 d�.t/ be the Cauchy transform of � and �2 D ˛2�˛21
be the variance of �. Let F.z/ D 1=G.z/, then jF.z/C˛1�zj � �2=Im.z/. Moreover
there is an analytic function Gh�1i defined on fz j jz C i.4�/�1j < .4�/�1g such
that G.Gh�1i.z// D z.

Proof: Let eG.z/ D G.z C ˛1/. Then eG is the Cauchy transform of a centred
probability measure. Let eF .z/ D 1=eG then eF W CC ! C

C. By Lemma 20 there is
a probability measure Q� such that z � eF .z/ D �2

R
.z � t /�1 d Q�.t/. Thus

jz � eF .z/j �
Z

�2

jz � t j d Q�.t/ �
Z

�2

Im.z/
d Q�.t/ D �2

Im.z/
:

Then jF.z/C ˛1 � zj � �2=Im.z/.
If we apply Lemma 24, we get an inverse for eF on fz j Im.z/ > 2�g. Note that

jz C i.4�/�1j < .4�/�1 if and only if Im.1=z/ > 2� . Since G.z/ D 1= QF .z � ˛1/

we let Gh�1i.z/ D eF h�1i.1=z/C ˛1 for jz C i.4�/�1j < .4�/�1. Then

G
�
Gh�1i.z/

�
DG

�
eF h�1i.1=z/C ˛1

�
DeG

�
eF h�1i.1=z/

�
D 1

eF
�
eF h�1i.1=z/

� D z:

ut
In the next theorem, we show that with the assumption of finite variance �2, we

can find an analytic function R which solves the equation G.R.z/ C 1=z/ D z on
the open disc with centre �i.4�/�1 and radius .4�/�1. This is the R-transform of
the measure.

Theorem 26. Let � be a probability measure with variance �2. Then on the open
disc with centre �i.4�/�1 and radius .4�/�1 there is an analytic functionR.z/ such
that G.R.z/C 1=z/ D z for jz C i.4�/�1j < .4�/�1 where G the Cauchy transform
of �.

Proof: LetGh�1i be the inverse provided by Theorem 25 andR.z/ D Gh�1i.z/�1=z.
Then G.R.z/C 1=z/ D G.Gh�1i.z// D z. ut

One should note that the statements and proofs of Theorems 25 and 26,
interpreted in the right way, remain also valid for the degenerated case �2 D 0,
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Fig. 3.3 If a probability
measure � has finite variance
�2, then the R-transform of �
is analytic on a disc in the
lower half-plane with centre
�i.4�/�1 and passing
through 0

−i

4σ

where � is a Delta mass. Then Gh�1i and R are defined on the whole lower half-
plane C�; actually, for � D ı˛1 we have R.z/ D ˛1.

3.5 The free additive convolution of probability measures with finite
variance

One of the main ideas of free probability is that if we have two self-adjoint operators
a1 and a2 in a unital C �-algebra with state ' and if a1 and a2 are free with respect
to ', then we can find the moments of a1 C a2 from the moments of a1 and a2
according to a universal rule. Since a1, a2 and a1 C a2 are all bounded self-adjoint
operators there are probability measures �1, �2, and � such that for i D 1; 2

'.aki / D
Z
t k d�i .t/ and '..a1 C a2/

k/ D
Z
t k d�.t/:

We call � the free additive convolution of �1 and �2 and denote it �1 � �2. An
important observation is that because of the universal rule, �1 � �2 only depends
on �1 and �2 and not on the operators a1 and a2 used to construct it. For bounded
operators we also know that the free additive convolution can be described by the
additivity of their R-transforms. We shall show in this section how to construct
�1 � �2 without assuming that the measures have compact support and thus without
using Banach algebra techniques. As we have seen in the last section, we can still
define anR-transform by analytic means (at least for the case of finite variance); the
idea is then of course to define � D �1 � �2 by prescribing the R-transform of �
as the sum of the R-transforms of �1 and �2. However, it is then not at all obvious
that there actually exists a probability measure with this prescribed R-transform. In
order to see that this is indeed the case, we have to reformulate our description in
terms of the R-transform in a subordination form, as already alluded to in (2.31) at
the end of the last chapter.

Recall that the R-transform in the compactly supported case satisfied the
equation G.R.z/ C 1=z/ D z for jzj sufficiently small. So letting F.z/ D 1=G.z/,
this becomes F.R.z/ C 1=z/ D z�1. For jzj sufficiently small Gh�1i.z/ is defined,
and hence also F h�1i.z�1/; then for such z we have

R.z/ D F h�1i.z�1/ � z�1: (3.7)
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If �1 and �2 are compactly supported with Cauchy transforms G1 and G2 and
corresponding F1, F2,R1, andR2, then we have the equationR.z/ D R1.z/CR2.z/
for jzj small; this implies

F h�1i �z�1� � z�1 D F
h�1i
1

�
z�1� � z�1 C F

h�1i
2

�
z�1� � z�1:

If we let w1 D F
h�1i
1 .z�1/, w2 D F

h�1i
2 .z�1/, and w D F h�1i.z�1/, this equation

becomes

w � F.w/ D w1 � F1.w1/C w2 � F2.w2/:

Since z�1 D F.w/ D F1.w1/ D F2.w2/, we can write this as

F1.w1/ D F2.w2/ and w D w1 C w2 � F1.w1/: (3.8)

We shall now show, given two probability measures �1 and �2 with finite variance,
we can construct a probability measure � with finite variance such thatR D R1CR2,
the R-transforms of �, �1, and �2, respectively.

Given w 2 C
C, we shall show in Lemma 27 that there are w1 and w2 in C

C
such that (3.8) holds. Then we define F by F.w/ D F1.w1/ and show that 1=F is
the Cauchy transform of a probability measure of finite variance. This measure will
then be the free additive convolution of �1 and �2. Moreover the maps w 7! w1 and
w 7! w2 will be the subordination maps of equation (2.31).

We need the notion of the degree of an analytic function which we summarize in
the exercise below.

Exercise 17. Let X be a Riemann surface and f W X ! C an analytic map. Let
us recall the definition of the multiplicity of f at z0 in X (see, e.g. Miranda [133,
Ch. II, Def. 4.2]). There is m � 0 and a chart .U ; '/ of z0 such that '.z0/ D 0 and
f .'h�1i.z// D zm C f .z0/ for z in '.U/. We set mult.f; z0/ D m. For each z in C,
we define the degree of f at z, denoted degf .z/, by

degf .z/ D
X

w2f h�1i.z/

mult.f;w/:

It is a standard theorem that ifX is compact, then degf is constant (see, e.g. Miranda
[133, Ch. II, Prop. 4.8]).

(i) Adapt the proof in the compact case to show that if X is not necessarily
compact but f is proper, i.e. if the inverse image of a compact set is compact,
then degf is constant.

(ii) Suppose that F1; F2 W CC ! C
C are analytic and F 0

i .z/ 6D 0 for z 2 C
C and

i D 1; 2. Let X D f.z1; z2/ 2 C
C � C

C j F1.z1/ D F2.z2/g. Give X the
structure of a complex manifold so that .z1; z2/ 7! F1.z1/ is analytic.
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(iii) Suppose F1, F2, and X are as in (ii) and in addition there are �1 and �2 such
that for i D 1; 2 and z 2 C

C we have jz � Fi.z/j � �2i =Im.z/. Show that
� W X ! C given by �.z1; z2/ D z1 C z2 � F1.z1/ is a proper map.

Lemma 27. Suppose F1 and F2 are analytic maps from C
C to C

C and that there
is r > 0 such that for z 2 C

C and i D 1; 2, we have jFi.z/ � zj � r2=Im.z/. Then
for each z 2 C

C there is a unique pair .z1; z2/ 2 C
C � C

C such that

(i) F1.z1/ D F2.z2/, and
(ii) z1 C z2 � F1.z1/ D z.

Proof: Note that, by Lemma 21, our assumptions imply that, for i D 1; 2, 1=Fi is
the Cauchy transform of some probability measure and thus, by Lemma 19, we also
know that it satisfies Im.z/ � Im.Fi .z//.

We first assume that z 2 C
C
4r . If .z1; z2/ satisfies (i) and (ii),

Im.z1/ D Im.z/C Im.F2.z2/ � z2/ � Im.z/:

Likewise Im.z2/ � Im.z/. Hence, if we are to find a solution to (i) and (ii), we shall
find it in C

C
4r � C

C
4r . By Lemma 24, F1 and F2 are invertible on C

C
2r . Thus to find a

solution to (i) and (ii), it is sufficient to find u 2 C
C
2r such that

F
h�1i
1 .u/C F

h�1i
2 .u/ � u D z (3.9)

and then let z1 D F
h�1i
1 .u/ and z2 D F

h�1i
2 .u/. Thus we must show that for every

z 2 C
C
4r , there is a unique u 2 C

C
2r satisfying equation (3.9).

Let C be the circle with centre z and radius 2r . Then C 	 C
C
2r and for u 2 C we

have by Lemma 24

jF h�1i
1 .u/ � uj C jF h�1i

2 .u/ � uj � 4r2

Im.u/
<
4r2

2r
D 2r:

Hence

ˇ
ˇ
ˇ.z � u/ � 


z � u � .F h�1i
1 .u/ � u/ � .F h�1i

2 .u/ � u/
�ˇˇ
ˇ

�
ˇ
ˇ
ˇF h�1i
1 .u/ � u

ˇ
ˇ
ˇC

ˇ
ˇ
ˇF h�1i
2 .u/ � u

ˇ
ˇ
ˇ < 2r D jz � uj:

Thus by Rouché’s theorem, there is a unique u 2 int.C / such that

z � u D
�
F

h�1i
1 .u/ � u

�
C
�
F

h�1i
2 .u/ � u

�
:

If there is u0 2 C
C
2r with

z � u0 D
�
F

h�1i
1 .u0/ � u0�C

�
F

h�1i
2 .u0/ � u0� ;
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then, again by Lemma 24,

jz � u0j D
ˇ
ˇ
ˇ
�
F

h�1i
1 .u0/ � u0�C

�
F

h�1i
2 .u0/ � u0�

ˇ
ˇ
ˇ < 2r

and thus u0 2 int.C / and hence u0 D u. Thus there is a unique u 2 C
C
2r satisfying

equation (3.9).
Let X D f.z1; z2/ j F1.z1/ D F2.z2/g be the Riemann surface in Exercise 17 and

�.z1; z2/ D z1 C z2 �F1.z1/. We have just shown that for z 2 C
C
4r , deg� .z/ D 1. But

by Exercise 17, deg� is constant on C
C so there is a unique solution to (i) and (ii)

for all z 2 C
C. ut

Exercise 18. Let � be a probability measure with variance �2 and mean m. Let
Q�.E/ D �.E Cm/. Show that Q� is a probability measure with mean 0 and variance
�2. Let G and QG be the corresponding Cauchy transforms. Show that we have
QG.z/ D G.z C m/. Let R and QR be the corresponding R-transforms. Show that
R.z/ D QR.z/Cm for jz C i.4�/�1j < .4�/�1.

Theorem 28. Let �1 and �2 be two probability measures on R with finite variances
and R1 and R2 be the corresponding R-transforms. Then there is a unique
probability measure with finite variance, denoted �1��2, and called the free additive
convolution of �1 and �2, such that the R-transform of �1 � �2 is R1 CR2.

Moreover the first moment of �1 � �2 is the sum of the first moments of �1 and �2
and the variance of �1 � �2 is the sum of the variances of �1 and �2.

Proof: By Exercise 18 we only have to prove the theorem in the case �1 and �2 are
centred. Moreover there are probability measures �1 and �2 such that for z 2 C

C
and i D 1; 2 we have z � Fi.z/ D �2i

R
.z � t /�1 d�i .t/. By Lemma 27 for each

z in C
C there is a unique pair .z1; z2/ 2 C

C � C
C such that F1.z1/ D F2.z2/ and

z1 C z2 � F1.z1/ D z. Define F.z/ D F1.z1/. Let X D f.z1; z2/ j F1.z1/ D F2.z2/g
and � W X ! C

C be as in Exercise 17. In Lemma 27 we showed that � is an analytic
bijection, since deg.�/ D 1. Then F D F1 ı � ı ��1 where �.z1; z2/ D z1. Thus F
is analytic on C

C and we have

z � F.z/ D z1 � F1.z1/C z2 � F2.z2/: (3.10)

Since Im.F1.z// � Im.z/, we have Im.z/ D Im.z2/C Im.z1 � F1.z// � Im.z2/.
Likewise Im.z/ � Im.z1/. Thus

jz � F.z/j D jz1 � F1.z1/C z2 � F2.z2/j � �21
Im.z1/

C �2

Im.z2/
� �21 C �22

Im.z/
:



3.5 The free additive convolution of probability measures with finite variance 81

Therefore, by Lemma 21, 1=F is the Cauchy transform of a centred probability
measure with variance �2 � �21 C �22 . Thus there is, by Lemma 20, a probability
measure � such that

z � F.z/ D �2
Z

1

z � t d�.t/:

So by equation (3.10)

�2
Z

1

z � t d�.t/ D �21

Z
1

z1 � t d�1.t/C �22

Z
1

z2 � t d�2.t/

and hence

�2
Z

z

z � t d�.t/ D �21

Z
z

z1 � t d�1.t/C �22

Z
z

z2 � t d�2.t/: (3.11)

For z D iy, we have z=F.z/ ! 1 by Exercise 12 (ii). Also

ˇ
ˇ
ˇF h�1i
1 .F.z// � F.z/

ˇ
ˇ
ˇ � 2�2

Im.F.z//
� 2�2

Im.z/

by Lemma 24, parts (iii) and (iv). Thus

z1
z

D F
h�1i
1 .F.z// � F.z/

z
C F.z/

z
:

The first term goes to 0 and the second term goes to 1 as y ! 1, hence z1=z ! 1.
Likewise z2=z ! 1. Thus

lim
y!1

Z
iy

z1 � t d�1.t/ D 1 and likewise lim
y!1

Z
iy

z2 � t d�2.t/ D 1:

If we now take limits as y ! 1 in equation (3.11), we get �2 D �21 C �22 .
Let Dr D fz j jz C ir j < rg, then D1=.4�/ 	 D1=.4�1/ \ D1=.4�2/. Let z 2

D1=.4�/, then z�1 is in the domains of F h�1i, F h�1i
1 , and F h�1i

2 . Now by Lemma 27,
for F h�1i.z�1/ find z1 and z2 in C

C so that F1.z1/ D F2.z2/ and F h�1i.z�1/ D
z1 C z2 � F1.z1/. By the construction of F , we have z�1 D F.F h�1i.z�1// D
F1.z1/ D F2.z2/ and so z1 D F

h�1i
1 .z�1/ and z2 D F

h�1i
2 .z�1/. Thus the equation

F h�1i.z�1/ D z1 C z2 � F1.z1/ becomes

F h�1i �z�1� � z�1 D F
h�1i
1

�
z�1� � z�1 C F

h�1i
2

�
z�1� � z�1:

Now recall the construction of the R-transform given by Theorem 26, reformulated
as in (3.7) in terms of F : R.z/ D F h�1i.z�1/ � z�1. Hence R.z/ D R1.z/CR2.z/.

ut
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Δα1,β1

Δα2,β2

Fig. 3.4 Two wedges in C
�: �˛1;ˇ1 and �˛2;ˇ2 with ˛1 > ˛2 and ˇ1 > ˇ2. We have R.1/ on

�˛1;ˇ1 and R.2/ on �˛2;ˇ2 such that R.1/.z/ D R.2/.z/ for z 2 �˛1;ˇ1 \�˛2;ˇ2 . We shall denote the
germ by R

3.6 The R-transform and free additive convolution of arbitrary measures

In this section we consider probability measures on R that may not have any
moments. We first show that for all ˛ > 0, there is ˇ > 0 so that the R-transform
can be defined on the wedge �˛;ˇ in the lower half-plane:

�˛;ˇ D fz�1 j z 2 �˛;ˇg D
�

w 2 C
� j jRe.w/j < �˛ Im.w/ and jwC i

2ˇ
j < 1

2ˇ



:

This means that the R-transform is a germ of analytic functions in that for each
˛ > 0, there is ˇ > 0 and an analytic function R on�˛;ˇ such that whenever we are
given another ˛0 > 0 for which there exists a ˇ0 > 0 and a second analytic function
R0 on �˛0;ˇ0 , the two functions agree on �˛;ˇ \�˛0;ˇ0 . See Fig. 3.4.

Definition 29. Let � be a probability measure on R, and let G be the Cauchy
transform of �. We define the R-transform of � as the germ of analytic functions
on the domains �˛;ˇ satisfying equation (3.1). This means that for all ˛ > 0, there
is ˇ > 0 such that for all z 2 �˛;ˇ , we have G.R.z/C 1=z/ D z and for all z 2 �˛;ˇ ,
we have R.G.z//C 1=G.z/ D z.

Remark 30. When � is compactly supported, we can find a disc centred at 0 on
which there is an analytic function satisfying equation (3.1). This was shown in
Theorem 17. When � has finite variance, we showed that there is a disc in C

�
tangent to 0 and with centre on the imaginary axis (see Fig. 3.3) on which there is
an analytic function satisfying equation (3.1). This was shown in Theorem 26. In
the general case, we shall define R.z/ by the equation R.z/ D F h�1i.z�1/ � z�1.
The next two lemmas show that we can find a domain where this definition works.

Lemma 31. Let F be the reciprocal of the Cauchy transform of a probability
measure on R. Suppose 0 < ˛1 < ˛2. Then there is ˇ0 > 0 such that for all
ˇ2 � ˇ0 and ˇ1 � ˇ2.1C ˛2 � ˛1/,
(i) we have �˛1;ˇ1 � F.�˛2;ˇ2/

(ii) and F h�1i exists on �˛1;ˇ1 , i.e. for each w 2 �˛1;ˇ1 there is a unique z 2 �˛2;ˇ2
such that F.z/ D w.
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Proof: Let � D tan�1 �˛�1
1

� � tan�1 �˛�1
2

�
. Choose � > 0 so that

� < sin � D ˛2 � ˛1q
1C ˛21

q
1C ˛22

:

Choose ˇ0 > 0 such that jF.z/ � zj < �jzj for z 2 �˛2;ˇ0 (which is possible by
Exercise 12). Let ˇ2 � ˇ0 and ˇ1 � ˇ2.1C ˛2 � ˛1/.

Let us first show that for w 2 �˛1;ˇ1 and for z 2 @�˛2;ˇ2 , we have �jzj < jz � wj.
If z D ˛2y C iy 2 @�˛2 , then jz � wj=jzj � sin � > �. If z D x C iˇ2 2 @�˛2;ˇ2 ,

then

jz � wj > ˇ1 � ˇ2 � ˇ2.˛2 � ˛1/ > �ˇ2
q
1C ˛21

q
1C ˛22 � �jzj

q
1C ˛21 > �jzj:

Thus for w 2 �˛1;ˇ1 and z 2 @�˛2;ˇ2 , we have �jzj < jz � wj.
Now fix w 2 �˛1;ˇ1 and let r > jwj=.1 � �/. Thus for z 2 fQz j jQzj D rg \ �˛2;ˇ2

we have jz � wj � r � jwj > �r D �jzj. So let C be the curve

C WD �
@�˛2;ˇ2 \ fQzj j jQzj � rg� [ �fQz j jQzj D rg \ �˛2;ˇ2

�
:

For z 2 C , we have that �jzj < jz � wj. Thus for z 2 C we have

j.F.z/ � w/ � .z � w/j < �jzj < jz � wj:

So by Rouché’s theorem, there is exactly one z in the interior of C such that F.z/ D
w. Since we can make r as large as we want, there is a unique z 2 �˛2;ˇ2 such that
F.z/ D w. Hence F has an inverse on �˛1;ˇ1 . ut
Lemma 32. Let F be the reciprocal of the Cauchy transform of a probability
measure on R. Suppose 0 < ˛1 < ˛2. Then there is ˇ0 > 0 such that

F.�˛1;ˇ1/ � �˛2;ˇ1 for all ˇ1 � ˇ0:

Proof: Choose 1=2 > � > 0 so that

˛2 >
˛1 C �=

p
1 � �2

1 � ˛1�=
p
1 � �2 > ˛1:

Then choose ˇ0 > 0 such that jF.z/ � zj < �jzj for z 2 �˛1;ˇ0 .
Suppose ˇ1 � ˇ0 and let z 2 �˛1;ˇ1 with Re.z/ � 0, (the case Re.z/ < 0 is

similar). Write z D jzjei' . Then ' > tan�1.˛�1
1 /. Write F.z/ D jF.z/jei . We have

jz�1F.z/ � 1j < �. Thus j sin. � '/j < �, so

 > ' � sin�1.�/ > tan�1.˛�1
1 / � sin�1.�/:
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If  � �=2, then

tan. / > tan
�
tan�1.˛�1

1 / � sin�1.�/
� D ˛�1

1 � �=p1 � �2
1C ˛�1

1 �=
p
1 � �2 > ˛

�1
2 :

Thus F.z/ 2 �˛2 .
Suppose  � �=2. Then we must show that �� > tan�1.˛�1

2 / or equivalently
that tan.� �  / > ˛�1

2 . Since j � �j < sin�1.�/ and � � �=2 we must then have
� �  > �=2 � sin�1.�/. Thus

tan.� �  / > tan.�=2 � sin�1.�// D
p
1 � �2=�:

On the other hand,

˛2 > ˛1 C �=
p
1 � �2 > �=

p
1 � �2;

so tan.� �  / > ˛�1
2 as required. Thus in both cases F.z/ 2 �˛2 .

Since we also have Im.F.z// � Im.z/ > ˇ1, we obtain F.�˛1;ˇ1/ � �˛2;ˇ1 . ut
Theorem 33. Let � be a probability measure on R with Cauchy transform G and
set F D 1=G. For every ˛ > 0, there is ˇ > 0 so that R.z/ D F h�1i.z�1/ � z�1 is
defined for z 2 �˛;ˇ and such that we have:

(i) G.R.z/C 1=z/ D z for z 2 �˛;ˇ and
(ii) R.G.z//C 1=G.z/ D z for z 2 �˛;ˇ .

Proof: Let F.z/ D 1=G.z/. Let ˛ > 0 be given and by Lemma 31 choose ˇ0 > 0

so that F h�1i is defined on �2˛;ˇ0 . For z 2 �2˛;ˇ0 , R.z/ is thus defined and we have
G.R.z/C 1=z/ D G.F h�1i.z�1// D z.

Now by Lemma 32, we may choose ˇ > ˇ0 such that F.�˛;ˇ/ � �2˛;ˇ .
For z 2 �˛;ˇ , we have G.z/ D 1=F.z/ 2 � �1

2˛;ˇ D �2˛;ˇ � �2˛;ˇ0 and so

R.G.z//C 1=G.z/ D F h�1i.F.z// � F.z/C F.z/ D z:

Since �˛;ˇ 	 �2˛;ˇ0 , we also have G.R.z/C 1=z/ D z for z 2 �˛;ˇ . ut
Exercise 19. Let w 2 C be such that Im.w/ � 0. Then we saw in Exercise 9 that
G.z/ D .z�w/�1 is the Cauchy transform of a probability measure on R. Show that
the R-transform of this measure is R.z/ D w. In this case R is defined on all of C
even though the corresponding measure has no moments (when Im.w/ < 0).

Remark 34. We shall now show that given two probability measures �1 and �2 with
R-transforms R1 and R2, respectively, we can find a third probability measure �
with Cauchy transform G and R-transform R such that R D R1 C R2. This means
that for all ˛ > 0, there is ˇ > 0 such that all three of R, R1, and R2 are defined on
�˛;ˇ and for z 2 �˛;ˇ we have R.z/ D R1.z/CR2.z/. We shall denote � by �1� �2
and call it the free additive convolution of �1 and �2. Clearly, this extends then our
definition for probability measures with finite variance from the last section.
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When �1 is a Dirac mass at a 2 R, we can dispose of this case directly. An easy
calculation shows that R1.z/ D a, c.f. Exercise 1. So R.z/ D a C R2.z/ and thus
G.z/ D G2.z � a/. Thus �.E/ D �2.E � a/, c.f. Exercise 18. So for the rest of this
section, we shall assume that neither �1 nor �2 is a Dirac mass.

There is another case that we can easily deal with. Suppose Im.w/ < 0. Let
�1 D ıw be the probability measure with Cauchy transform G1.z/ D .z � w/�1.
This is the measure we discussed in Notation 4; see also Exercises 9 and 19. Then
R1.z/ D w. Let �2 be any probability measure on R. We let G2 be the Cauchy
transform of �2 and R2 be its R-transform. So if �1 � �2 exists, its R-transform
should beR.z/ D wCR2.z/. Let us now go back to the subordination formula (2.31)
in Chapter 2. It says that if �1 � �2 exists, its Cauchy transform, G, should satisfy
G.z/ D G2.!2.z// where !2.z/ D z �R1.G.z// D z � w. Now !2 maps CC to C

C
and letting G D G2 ı !2 we have

lim
y!1 iy G.iy/ D 1:

So by Theorem 10, there is a measure, which we shall denote �1 � �2, of which
G is the Cauchy transform, and thus the R-transform of this measure satisfies, by
construction, the equation R D R1 C R2. Note that in this special case, we have
ıw � �2 D ıw � �2 where � means the classical convolution, because they have
the same Cauchy transform G.z/ D G2.z � w/; see Notation 4, Theorem 6, and
Exercise 9. We can also solve for !1 to conclude that !1.z/ D F2.z � w/C w. For
later reference we shall summarize this calculation in the theorem below.

Theorem 35. Let w D a C ib 2 C� and ıw be the probability measure on R with
density

dıw.t/ D 1

�

�b
b2 C .t � a/2 dt

when b < 0 and the Dirac mass at a when b D 0. Then for any probability measure
�, we have ıw � � D ıw � �.

In the remainder of this chapter, we shall define �1��2 in full generality; for this
we will show that we can always find !1 and !2 satisfying (2.32).

Notation 36. Let �1; �2 be probability measures on R with Cauchy transforms G1
and G2, respectively. Let Fi.z/ D 1=Gi .z/ and Hi.z/ D Fi.z/ � z. The functions
F1; F2;H1, andH2 are analytic functions that map the upper half-plane CC to itself.

Corollary 37. Let F1 and F2 be as in Notation 36. Suppose 0 < ˛2 < ˛1. Then
there are ˇ2 � ˇ0 > 0 such that

(i) F h�1i
1 is defined on �˛1;ˇ1 for any ˇ1 � ˇ0 with F h�1i

1 .�˛1;ˇ1/ � �˛1C1;ˇ1=2;
(ii) F2.�˛2;ˇ2/ � �˛1;ˇ0 .
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Proof: Let ˛ D ˛1 C 1. By Lemma 31 there is ˇ0=2 > 0 such that for all ˇ � ˇ0=2

and ˇ1 D ˇ.1C ˛ � ˛1/ D 2ˇ � ˇ0, we have �˛1;ˇ1 � F1.�˛;ˇ/ and F h�1i
1 exists

on �˛1;ˇ1 ; thus F h�1i
1 .�˛1;ˇ1/ � �˛1C1;ˇ1=2. By Lemma 32 choose now ˇ2 > 0 (and

also ˇ2 � ˇ0) so that F2.�˛2;ˇ2/ � �˛1;ˇ2 � �˛1;ˇ0 . ut
Definition 38. For any z;w 2 C

C let g.z;w/ D z C H1.z C H2.w//. Then g W
C

C � C
C ! C

C is analytic. Let gz.w/ D g.z;w/.

Remark 39. Choose now some ˛1 > ˛2 > 0, and ˇ2 � ˇ0 � 0 according to
Corollary 37. In the following we will also need to control Im.F2.w/ � w/. Note
that, by the fact that F2.w/=w ! 1, for w ! 1 in �˛2;ˇ2 , we have, for any � < 1,
jF2.w/ � wj < �jwj for sufficiently large w 2 �˛2;ˇ2 . But then

0 � Im.F2.w/ � w/ � jF2.w/ � wj < "jwj < "
q
1C ˛22 � Im.w/I

the latter inequality is from Notation 15 for w 2 �˛2;ˇ2 . By choosing 1=" D
2

q
1C ˛22 , we find thus a ˇ > 0 (which we can take ˇ � ˇ2) such that we have

Im.F2.w/ � w/ <
1

2
Im.w/ for all w 2 �˛2;ˇ � �˛2;ˇ2 : (3.12)

Consider now for w 2 �˛2;ˇ the point z D w C F
h�1i
1 .F2.w// � F2.w/. Since

F2.w/ 2 �˛1;ˇ0 , this is well-defined. Furthermore, we have Im.F2.w// � Im.w/ >
ˇ � ˇ0, and thus actually F2.w/ 2 �˛1;Im.w/, which then yields

F
h�1i
1 .w/ 2 �˛1C1;Im.w/=2 i.e. Im.F h�1i

1 .w// >
Im.w/

2
:

This together with (3.12) shows that we have z 2 C
C, whenever we choose w 2

�˛2;ˇ .

Lemma 40. With ˛2 and ˇ as above, let w 2 �˛2;ˇ . Then

z D w C F
h�1i
1 .F2.w// � F2.w/ ” g.z;w/ D w:

Proof: Suppose z D w C F
h�1i
1 .F2.w// � F2.w/. By Remark 39 we have z 2 C

C.

g.z;w/ D z CH1.z CH2.w//

D z CH1.z C F2.w/ � w/

D z CH1.F
h�1i
1 .F2.w///

D z C F1.F
h�1i
1 .F2.w/// � F h�1i

1 .F2.w//

D z C F2.w/ � F h�1i
1 .F2.w//

D w:
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Suppose g.z;w/ D w. Then

w D g.z;w/ D w C F1.z C F2.w/ � w/ � F2.w/

so

F2.w/ D F1.z C F2.w/ � w/

thus

F
h�1i
1 .F2.w// D z C F2.w/ � w

as required. ut
Remark 41. By Lemma 40 the open set

˝ D
n
w C F

h�1i
1 .F2.w// � F2.w/ j w 2 �˛2;ˇ

o
� C

C

is such that for z 2 ˝, gz has a fixed point in C
C (even in �˛2;ˇ). Our goal is to

show that for every z 2 C
C, there is w such that gz.w/ D w and that w is an analytic

function of z.

Exercise 20. In the next proof, we will use the following simple part of the Denjoy-
Wolff Theorem. Suppose f W D ! D is a non-constant holomorphic function on
the unit disc D WD fz 2 C j jzj < 1g and it is not an automorphism of D (i.e. not of
the form .z � ˛/=.1 � N̨ z/ for some ˛ 2 D and  2 C with jj D 1). If there is
a z0 2 D with f .z0/ D z0, then for all z 2 D, f ın.z/ ! z0. In particular, the fixed
point is unique.

Prove this by an application of the Schwarz Lemma.

Lemma 42. Let g.z;w/ be as in Definition 38. Then there is a non-constant analytic
function f W CC ! C

C such that for all z 2 C
C, g.z; f .z// D f .z/. The analytic

function f is uniquely determined by the fixed point equation.

Proof: As before we set

˝ D
n
w C F

h�1i
1 .F2.w// � F2.w/ j w 2 �˛2;ˇ

o
� C

C

and let, for z 2 C
C, gz W CC ! C

C be gz.u/ D g.z; u/.
The idea of the proof is to define the fixed point of the function gz by iterations.

For z 2 ˝, we already know that we have a fixed point; hence, the version of
Denjoy-Wolff mentioned above gives the convergence of the iterates in this case.
The extension of the statement to all z 2 C

C is then provided by an application
of Vitali’s Theorem. A minor inconvenience comes from the fact that we have to
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transcribe our situation from the upper half-plane to the disc, in order to apply the
theorems mentioned above. This is achieved by composing our functions with

'.z/ D i
1C z

1 � z
and  .z/ D z � i

z C i
I

' maps D onto C
C and  maps CC onto D; they are inverses of each other.

Let us first consider z 2 ˝. Let Qgz W D ! D be given by Qgz D  ı gz ı '.
Since z 2 ˝ there exists an w 2 �˛2;ˇ with z D w C F

h�1i
1 .F2.w// � F2.w/. Let

Qw D  .w/. Then

Qgz. Qw/ D  .gz.'. Qw/// D  .gz.w// D  .w/ D Qw:

So the map Qgz has a fixed point in D. In order to apply the Denjoy-Wolff theorem,
we have to exclude that Qgz is an automorphism. But since we have for all w 2 C

C

Im.gz.w// D Im.z/C Im.H1.z CH2.w/// � Im.z/;

it is clear that gz cannot be an automorphism of the upper half-plane and hence Qgz

cannot be an automorphism of the disc. Hence, by Denjoy-Wolff, Qgın
z .Qu/ ! Qw for

all Qu 2 D. Converting back to C
C we see that gın

z .u/ ! w for all u 2 C
C.

Now we define our iterates on all of CC, where we choose for concreteness the
initial point as u0 D i . We define a sequence ffngn of analytic functions from C

C
to C

C by fn.z/ D gın
z .i/. We claim that for all z 2 C

C, limn fn.z/ exists. We

have shown that already for z 2 ˝. There z D w C F
h�1i
1 .F2.w// � F2.w/ with

w 2 �˛2;ˇ , and gın
z .i/ ! w. Thus for all z 2 ˝ the sequence ffn.z/gn converges to

the corresponding w. Now let Q̋ D  .˝/ and Qfn D  ı fn ı '. then Qfn W D ! D

and for Qz 2 Q̋ , limn
Qfn.Qz/ exists. Hence, by Vitali’s Theorem, limn

Qfn.Qz/ exists for
all Qz 2 D. Note that by the maximum modulus principle this limit cannot take on
values on the boundary of D unless it is constant. Since it is clearly not constant on
Q̋ , the limit takes on only values in D. Hence limn fn.z/ exists for all z 2 C

C as
an element in C

C. So we define f W CC ! C
C by f .z/ D limn fn.z/; by Vitali’s

Theorem the convergence is uniform on compact subsets of CC and f is analytic.
Recall that fn.z/ D gın

z .i/, so

gz.f .z// D lim
n
gz.fn.z// D lim

n
gı.nC1/

z .i/ D f .z/;

so we have g.z;f .z// D gz.f .z// D f .z/.
By Denjoy-Wolff, the function f is uniquely determined by the fixed point

equation on the open set ˝; by analytic continuation it is then unique everywhere.
ut
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Theorem 43. There are analytic functions !1; !2 W C
C ! C

C such that for all
z 2 C

C

(i) F1.!1.z// D F2.!2.z//, and
(ii) !1.z/C !2.z/ D z C F1.!1.z//.

The analytic functions !1 and !2 are uniquely determined by these two equations.

Proof: Let z 2 C
C and gz.w/ D g.z;w/. By Lemma 42, gz has a unique fixed point

f .z/. So define the function !2 by !2.z/ D f .z/ for z 2 C
C, and the function !1

by !1.z/ D z C F2.!2.z// � !2.z/. Then !1 and !2 are analytic on C
C and

!1.z/C !2.z/ D z C F2.!2.z//:

By Lemma 40, we have that for z 2 ˝, z D !2.z/C F
h�1i
1 .F2.!2.z///� F2.!2.z//

and by construction z D !2.z/ C !1.z/ � F2.!2.z//. Hence for z 2 ˝, !1.z/ D
F

h�1i
1 .F2.!2.z///. Thus for all z 2 ˝, and hence by analytic continuation for all

z 2 C
C, we have F1.!1.z// D F2.!2.z// as required.

For the uniqueness one has to observe that the equations .i/ and .ii/ yield

!1.z/ D z C F2.!2.z// � !2.z/ D z CH2.!2.z//

and

!2.z/ D z C F1.!1.z// � !1.z/ D z CH1.!1.z//;

and thus

!2.z/ D z CH1.z CH2.!2.z/// D g.z; !2.z//:

By Lemma 42, we know that an analytic solution of this fixed point equation is
unique. Exchanging H1 and H2 gives in the same way the uniqueness of !1. ut

To define the free additive convolution of �1 and �2, we shall let F.z/ D
F1.!1.z// D F2.!2.z// and then show that 1=F is the Cauchy transform of a
probability measure, which will be �1 � �2. The main difficulty is to show that
F.z/=z ! 1 as �z ! 1. For this we need the following lemma.

Lemma 44. lim
y!1

!1.iy/

iy
D lim

y!1
!2.iy/

iy
D 1.

Proof: Let us begin by showing that limy!1 !2.iy/ D 1 (in the sense of
Definition 16).

We must show that given ˛; ˇ > 0 there is y0 > 0 such that !2.iy/ � �˛;ˇ
whenever y > y0. Note that by the previous Theorem we have !2.z/ D z C
H1.!1.z// 2 z C C

C. So we have that Im.!2.z// > Im.z/. Since !2 maps C
C

to C
C we have by the Nevanlinna representation of !2 (see Exercise 13) that b2 D
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limy!1 !2.iy/=.iy/ � 0. This means that Im.!2.iy//=y ! b2 and our inequality
Im.!2.z// > Im.z/ implies that b2 � 1. We also have that Re.!2.iy//=y ! 0. So
there is y0 > 0 so that for y > y0 � ˇ we have

�
Re.!2.iy//

y

�2
C
�

Im.!2.iy//

y

�2
< .˛2 C 1/

�
Im.!2.iy//

y

�2
:

For such a y we have

j!2.iy/j2
y2

< .1C ˛2/

�
Im.!2.iy//

y

�2
:

Thus !2.iy/ 2 �˛ (see Notation 15). Since Im.!2.iy// > y > y0, we have that
!2.iy/ 2 �˛;ˇ . Thus limy!1 !2.iy/ D 1.

Recall that !1.z/ D z C H2.!2.z// 2 z C C
C, so by repeating our arguments

above, we have that b1 D limy!1 !1.iy/=.iy/ � 1 and limy!1 !1.iy/ D 1.

Since lim�z!1 F1.z/=z D 1 (see Exercise 12), we now have lim
y!1

F1.!1.iy//

!2.iy/
D

1. Moreover the equation !1.z/C !2.z/ D z C F1.!1.z// means that

b1 C b2 D lim
y!1

!1.iy/C !2.iy/

iy

D lim
y!1

iy C F1.!1.iy//

iy

D 1C lim
y!1

F1.!1.iy//

!1.iy/

!1.iy/

iy

D 1C b1:

Thus b2 D 1. By the same argument, we have b1 D 1. ut
Theorem 45. Let F D F2 ı !2. Then F is the reciprocal of the Cauchy transform
of a probability measure.

Proof: We have that F maps C
C to C

C so by Theorem 10 we must show that
limy!1 F.iy/=.iy/ D 1. By Lemma 44

lim
y!1

F.iy/

iy
D lim

y!1
F2.!2.iy//

iy
D lim

y!1
F2.!2.iy//

!2.iy/

!2.iy/

iy
D 1:

ut
Theorem 46. Let �1 and �2 be two probability measures on R then there is �, a
probability measure on R with R-transform R, such that R D R1 CR2.
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Proof: Let F D F2 ı !2 D F1 ı !1 be as in Theorem 45 and � its corresponding
probability measure. By Theorem 43 (ii) we have

!1.F
h�1i.z�1//C !2.F

h�1i.z�1// � F1.!1.F h�1i.z�1/// D F h�1i.z�1/:

Also !1.F h�1i.z�1// D F
h�1i
1 .z�1/ and !2.F h�1i.z�1// D F

h�1i
2 .z�1/ so our

equation becomes

F
h�1i
1 .z�1/C F

h�1i
2 .z�1/ � z�1 D F h�1i.z�1/:

Hence R.z/ D R1.z/CR2.z/. ut
Definition 47. Let �1 � �2 be the probability measure whose Cauchy transform is
the reciprocal of F , i.e. for which we have R D R1 C R2. We call �1 � �2 the free
additive convolution of �1 and �2.

Remark 48. In the case of bounded operators x and y which are free, we saw in
Section 3.5 that the distribution of their sum gives the free additive convolution
of their distributions. Later we shall see how using the theory of unbounded
operators affiliated with a von Neumann algebra we can have the same conclusion
for probability measures with non-compact support (see Remark 8.16).

Remark 49. 1) There is also a similar analytic theory of free multiplicative convo-
lution � for the product of free variables; see, for example, [21, 30, 54].

2) There exists a huge body of results around infinitely divisible and stable laws in
the free sense; see, for example, [8–10, 22, 29–32, 53, 70, 97, 199].



Chapter 4
Asymptotic Freeness for Gaussian, Wigner, and Unitary Random
Matrices

After having developed the basic theory of freeness, we are now ready to have
a more systematic look into the relation between freeness and random matrices.
In Chapter 1, we showed the asymptotic freeness between independent Gaussian
random matrices. This is only the tip of an iceberg. There are many more classes
of random matrices which show asymptotic freeness. In particular, we will present
such results for Wigner matrices, Haar unitary random matrices and treat also the
relation between such ensembles and deterministic matrices. Furthermore, we will
strengthen the considered form of freeness from the averaged version (which we
considered in Chapter 1) to an almost sure one.

We should point out that our presentation of the notion of freeness is quite
orthogonal to its historical development. Voiculescu introduced this concept in
an operator algebraic context (we will say more about this in Chapter 6); at the
beginning of free probability, when Voiculescu discovered the R-transform and
proved the free central limit theorem around 1983, there was no relation at all with
random matrices. This connection was only revealed later in 1991 by Voiculescu
[180]; he was motivated by the fact that the limit distribution which he found in the
free central limit theorem had appeared before in Wigner’s semi-circle law in the
random matrix context. The observation that operator algebras and random matrices
are deeply related had a tremendous impact and was the beginning of new era in the
subject of free probability.

4.1 Asymptotic freeness: averaged convergence versus almost sure
convergence

The most important random matrix is the GUE random matrix ensemble AN . Let
us recall what this means. Each entry of AN is a complex-valued random variable
aij , and aji D aij for i ¤ j , while aii D aii thus implying that aii is in fact a
real-valued random variable.AN is said to be GUE-distributed if each aij with i < j
is of the form

© Springer Science+Business Media LLC 2017
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aij D xij C p�1yij ; (4.1)

where xij ; yij ; 1 � i < j � N are independent real Gaussian random variables,
each with mean 0 and variance 1=.2N /: This also determines the entries below
the diagonal. Moreover, the GUE requirement means that the diagonal entries aii
are real-valued independent Gaussian random variables which are also independent
from the xij ’s and the yij ’s and have mean 0 and variance 1=N .

Let tr be the normalized trace on the full N � N matrix algebra over C: Then
tr.AN / is a random variable. In Chapter 1 we proved Wigner’s semi-circle law;
namely, that

lim
N!1EŒtr.AmN /� D

(
1

nC1
�
2n
n

�
; m D 2n

0; m odd
:

In the language we have developed in Chapter 2 (see Definition 2.1), this means that

AN
distr�! s, as N ! 1, where the convergence is in distribution with respect to

E ı tr and s is a semi-circular element in some non-commutative probability space.
We also saw Voiculescu’s remarkable generalization of Wigner’s semi-circle law:

if A.1/N ; : : : ; A
.p/
N are p independent N � N GUE random matrices (meaning that if

we collect the real and imaginary parts of the above diagonal entries together with
the diagonal entries, we get a family of independent real Gaussians with mean 0 and
variances as explained above), then

A
.1/
N ; : : : ; A

.p/
N

distr�! s1; : : : ; sp as N ! 1; (4.2)

where s1; : : : ; sp is a family of freely independent semi-circular elements. This
amounts to proving that for all m 2 N and all 1 � i1; : : : ; im � p, we have

lim
N!1EŒtr.A.i1/N � � �A.im/N � D '.si1 � � � sim/:

Recall that since s1; : : : ; sp are free, their mixed cumulants will vanish, and only
the second cumulants of the form �2.si ; si / will be non-zero. With the chosen
normalization of the variance for our random matrices, those second cumulants will
be 1. Thus,

'.si1 � � � sim/ D
X

�2NC2.m/
�� Œsi1 ; : : : ; sim �

is given by the number of non-crossing pairings of the si1 ; : : : ; sim which connect
only si ’s with the same index. Hence (4.2) follows from Lemma 1.9.

The statements above about the limit distribution of Gaussian random matrices
are in distribution with respect to the averaged trace EŒtr.�/�. However, they also
hold in the stronger sense of almost sure convergence. Before formalizing this,
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Fig. 4.1 Averaged
distribution for 10,000
realizations with N D 5. The
dashed line is the semi-circle
law, and the solid line is the
limit as the number of
realizations tends to infinity
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Fig. 4.2 Averaged
distribution for 10,000
realizations with N D 20.
The dashed line is the
semi-circle law
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let us first look at some numerical simulations in order to get an idea of the
difference between convergence of averaged eigenvalue distribution and almost sure
convergence of eigenvalue distribution.

Consider first our usual setting with respect to EŒtr.�/�. To simulate this, we have
to average for fixed N the eigenvalue distributions of the sampled N �N matrices.
For the Gaussian ensemble, there are infinitely many of those, so we approximate
this averaging by choosing a large number of realizations of our random matrices. In
the following pictures, we created 10,000N �N matrices (by generating the entries
independently and according to a normal distribution), calculated for each of those
10,000 matrices the N eigenvalues, and plotted the histogram for the 10;000�N
eigenvalues. We show those histograms for N D 5 (see Fig. 4.1) and N D 20 (see
Fig. 4.2). Wigner’s theorem in the averaged version tells us that as N ! 1 these
averaged histograms have to converge to the semi-circle. The numerical simulations
show this very clearly. Note that already for quite small N , for example, N D 20,
we have a very good agreement with the semi-circular distribution.

Let us now consider the stronger almost sure version of this. In that case,
we produce for each N only one N � N matrix (generated according to the
probability measure for our ensemble) and plot the corresponding histogram of the
N eigenvalues. The almost sure version of Wigner’s theorem says that generically,
i.e. for almost all choices of such sequences of N � N matrices, the corresponding
sequence of histograms converges to the semi-circle. This statement is supported by
the following pictures of four such samples, for N D 10, N D 100, N D 1000,
N D 4000 (see Figs. 4.3 and 4.4). Clearly, for small N , the histogram depends on
the specific realization of our random matrix, but the larger N gets, the smaller the
variations between different realizations get.

Also for the asymptotic freeness of independent Gaussian random matrices, we
have an almost sure version. Consider two independent Gaussian random matrices
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Fig. 4.3 One realization of a N D 10 and a N D 100 Gaussian random matrix
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Fig. 4.4 One realization of a N D 1000 and a N D 4000 Gaussian random matrix

AN and BN . We have seen that AN ;BN
distr�! s1; s2, where s1; s2 are free semi-

circular elements.
This means, for example, that

lim
N!1EŒtr.ANANBNBNANBNBNAN /� D '.s1s1s2s2s1s2s2s1/:

We have '.s1s1s2s2s1s2s2s1/ D 2, since there are two non-crossing pairings
which respect the indices:

The numerical simulation in the first part of the following figure shows the
averaged (over 1000 realizations) value of tr.ANANBNBNANBNBNAN /, plotted
against N , for N between 2 and 30. Again, one sees (Fig. 4.5 left) a very good
agreement with the asymptotic value of 2 for quite small N .

For the almost sure version of this, we realize for each N just one matrix
AN and (independently) one matrix BN and calculate for this pair the number
tr.ANANBNBNANBNBNAN /. We expect that generically, asN ! 1, this should
also converge to 2. The second part of the above figure shows a simulation for this
(Fig. 4.5 right).

Let us now formalize our two notions of asymptotic freeness. For notational
convenience, we restrict here to two sequences of matrices. The extension to more
random matrices or to sets of random matrices should be clear.
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Fig. 4.5 On the left, we have the averaged trace (averaged over 1000 realizations) of the
normalized trace of XN D ANANBNBNANBNBNAN for N from 1 to 30. On the right, the
normalized trace of XN for N from 1 to 200 (one realization for each N )

Definition 1. Consider two sequences .AN /N2N and .BN /N2N of random N � N
matrices such that for each N 2 N, AN and BN are defined on the same probability
space .˝N ; PN /. Denote by EN the expectation with respect to PN .

1) We say AN and BN are asymptotically free if AN ;BN 2 .AN ;EN Œtr.�/�/ (where
AN is the algebra generated by the random matrices AN and BN ) converge in
distribution to some elements a; b (living in some non-commutative probability
space .A; '/) such that a; b are free.

2) Consider now the product space ˝ D Q
N2N˝N and let P D Q

N2N PN be the
product measure of the PN on˝. Then we say thatAN andBN are almost surely
asymptotically free, if there exists a; b (in some non-commutative probability
space .A; '/) which are free and such that we have for almost all ! 2 ˝ that
AN .!/; BN .!/ 2 .MN .C/; tr.�// converge in distribution to a; b.

Remark 2. What does this mean concretely? Assume we are given our two
sequencesAN andBN and we want to investigate their convergence to some a and b,
where a and b are free. Then, for any choice of m 2 N and p1; q1; : : : ; pm; qm � 0,
we have to consider the trace of the corresponding monomial,

fN WD tr.Aq1N B
p1
N � � �AqmN Bpm

N /;

and show that this converges to the corresponding expression

˛ WD '.aq1bp1 � � � aqmbpm/:

For asymptotic freeness, we have to show the convergence of EN ŒfN � to ˛, whereas
in the almost sure case, we have to strengthen this to the almost sure convergence
of ffN gN . In order to do so, one usually shows that the variance of the random
variables fN goes to zero fast enough. Namely, assume that EN ŒfN � converges to
˛; then the fact that fN .!/ does not converge to ˛ is equivalent to the fact that the
difference between fN .!/ and ˛N WD EN ŒfN � does not converge to zero. But this
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is the same as the statement that for some " > 0 we have jfN .!/ � ˛N j � " for
infinitely many N . Thus, the almost sure convergence of ffN gN is equivalent to the
fact that for any " > 0

P.f! j jfN .!/ � ˛N j � " infinitely ofteng/ D 0:

As this is the probability of the lim sup of events, we can use the first Borel-Cantelli
lemma which guarantees that this probability is zero if we have

X

N2N
P.f! j jfN .!/ � ˛N j � "g/ < 1:

Note that, since the fN are independent with respect to P , this is by the second
Borel-Cantelli lemma actually equivalent to the almost sure convergence of fN . On
the other hand, Chebyshev’s inequality gives us the bound (since ˛N D EŒfN �)

PN .f! j jfN .!/ � ˛N j � "g/ � 1

"2
varŒfN �:

So if we can show that
P

N2N varŒfN � < 1, then we are done. Usually, one is
able to bound the order of these variances by a constant times 1=N 2, which is good
enough.

We will come back to the question of estimating the variances in Remark 5.14.
In Theorem 5.13, we will show the variances are of order 1=N 2, as claimed above.
(Actually we will do more there and provide a non-crossing interpretation of the
coefficient of this leading order term.) So in the following, we will usually only
address the asymptotic freeness of the random matrices under consideration in
the averaged sense and postpone questions about the almost sure convergence to
Chapter 5. However, in all cases considered, the averaged convergence can be
strengthened to almost sure convergence, and we will state our theorems directly
in this stronger form.

Remark 3. There is actually another notion of convergence which might be more
intuitive than almost sure convergence, namely, convergence in probability. Namely,
our random matrices AN and BN converge in probability to a and b (and hence, if
a and b are free, are asymptotically free in probability), if we have for each � > 0

that

lim
N!1PN .f! j jfN .!/ � ˛N j � "g/ D 0:

As before, we can use Chebyshev’s inequality to insure this convergence if we can
show that limN varŒfN � D 0.

It is clear that convergence in probability is weaker than almost sure convergence.
Since our variance estimates are usually strong enough to insure almost sure con-
vergence, we will usually state our theorems in terms of almost sure convergence.
Almost sure versions of the various theorems were also considered in [96, 160, 173].
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4.2 Asymptotic freeness of Gaussian random matrices and deterministic
matrices

Consider a sequence .AN /N2N of N �N GUE random matrices AN ; then we know

that AN
distr�! s. Consider now also a sequence .DN /N2N of deterministic (i.e. non-

random) matrices, DN 2 MN.C/. Assume that

lim
N!1 tr.Dm

N / (4.3)

exists for all m � 1: Then we have DN

distr�! d , as N ! 1, where d lives in some
non-commutative probability space and where the moments of d are given by the
limit moments (4.3) of the DN . We want to investigate the question whether there
is anything definite to say about the relation between s and d .

In order to answer this question, we need to find out whether the limiting mixed
moments

lim
N!1EŒtr.Dq.1/

N AND
q.2/
N � � �Dq.m/

N AN /�; (4.4)

for all m � 1 (where q.k/ can be 0 for some k) exist. In the calculation, let us
suppress the dependence on N to reduce the number of indices and write

D
q.k/
N D .d

.k/
ij /

N
i;jD1 and AN D .aij /

N
i;jD1: (4.5)

The Wick formula allows us to calculate mixed moments in the entries of A W
EŒai1j1ai2j2 � � � aimjm� D

X

�2P2.m/

Y

.r;s/2�
EŒair jr aisjs �; (4.6)

where

EŒaij akl � D ıil ıjk
1

N
: (4.7)

Thus, we have

EŒtr.Dq.1/
N AND

q.2/
N � � �Dq.m/

N AN /� D 1

N

X

i;j WŒm�!ŒN �

EŒd
.1/
j1i1
ai1j2d

.2/
j2i2
ai2j3 � � � d.m/jmim

aimj1 �

D 1

N

X

i;j WŒm�!ŒN �

EŒai1j2ai2j3 � � � aimj1 �d .1/j1i1
� � � d.m/jmim

D 1

N 1Cm=2
X

�2P2.m/

X

i;j WŒm�!ŒN �

mY

rD1
ıir j��.r/d

.1/
j1i1

� � � d.m/jmim

D 1

N 1Cm=2
X

�2P2.m/

X

j WŒm�!ŒN �

d
.1/
j1j��.1/

� � � d.m/jmj��.m/
:
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In the calculation above, we regard a pairing � 2 P2.m/ as a product of disjoint
transpositions in the permutation group Sm (i.e. an involution without fixed point).
Also � 2 Sm denotes the long cycle � D .1; 2; : : : ; m/, and #.�/ is the number of
cycles in the factorization of � 2 Sm as a product of disjoint cycles.

In order to get a simple formula for the expectation, we need a simple expression
for

X

j WŒm�!ŒN �

d
.1/
j1j��.1/

� � � d.m/jmj��.m/
:

As always, tr is the normalized trace, and we extend it multiplicatively as a
functional on permutations. For example, if � D .1; 6; 3/.4/.2; 5/ 2 S6, then

tr� ŒD1;D2;D3;D4;D5;D6� D tr.D1D6D3/tr.D4/tr.D2D5/:

In terms of matrix elements, we have the following which we leave as an easy
exercise.

Exercise 1. Let A1; : : : ; An be N � N matrices and let � 2 Sn be a permutation.
Let the entries of Ak be .a.k/ij /

N
i;jD1. Show that

tr� .A1; : : : ; An/ D N�#.�/
NX

i1;:::;inD1
a
.1/
i1i�.1/

a
.2/
i2i�.2/

� � � a.n/ini�.n/ :

Thus, we may write

EŒtr.Dq.1/
N AND

q.2/
N � � �Dq.m/

N AN /� D
X

�2P2.m/
N #.��/�1�m=2tr�� ŒDq.1/

N ; : : : ;D
q.m/
N �:

(4.8)

Now, as pointed out in Corollary 1.6, one has for � 2 P2.m/ that

lim
N!1N #.��/�1�m=2 D

(
1; if � 2 NC2.m/
0; otherwise

;

so that we finally get

lim
N!1EŒtr.Dq.1/

N AND
q.2/
N � � �Dq.m/

N AN /� D
X

�2NC2.m/
'�� Œd

q.1/; : : : ; d q.m/�:

(4.9)

We see that the mixed moments of Gaussian random matrices and deterministic
matrices have a definite limit. And moreover, we can recognize this limit as
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something familiar. Namely, compare (4.9) to the formula (2.22) for a corresponding
mixed moment in free variables d and s, in the case where s is semi-circular:

'Œdq.1/sdq.2/s � � � dq.m/s� D
X

�2NC2.m/
'K�1.�/Œd

q.1/; : : : ; d q.m/�: (4.10)

Both formulas, (4.9) and (4.10), are the same provided K�1.�/ D �� where K
is the Kreweras complement. But this is indeed true for all � 2 NC2.m/; see
[137, Ex. 18.25]. Consider, for example, � D f.1; 10/; .2; 3/; .4; 7/; .5; 6/; .8; 9/g 2
NC2.10/. Regard this as the involution � D .1; 10/.2; 3/.4; 7/.5; 6/.8; 9/ 2 S10.
Then we have �� D .1/.2; 4; 8; 10/.3/.5; 7/.6/.9/, which corresponds exactly to
K�1.�/.

Thus, we have proved that Gaussian random matrices and deterministic matrices
become asymptotically free with respect to the averaged trace. The calculations can
of course also be extended to the case of several GUE and deterministic matrices.
By estimating the covariance of the appropriate traces (see Remark 5.14), one
can strengthen this to almost sure asymptotic freeness. So we have the following
theorem of Voiculescu [180, 188].

Theorem 4. LetA.1/N ; : : : ; A
.p/
N be p independentN �N GUE random matrices and

let D.1/
N ; : : : ;D

.q/
N be q deterministic N �N matrices such that

D
.1/
N ; : : : ;D

.q/
N

distr�! d1; : : : ; dq as N ! 1:

Then

A
.1/
N ; : : : ; A

.p/
N ;D

.1/
N ; : : : ;D

.q/
N

distr�! s1; : : : ; sp; d1; : : : ; dq as N ! 1;

where each si is semi-circular and s1; : : : ; sp; fd1; : : : ; dqg are free. The convergence

above also holds almost surely, so in particular, we have that A.1/N ; : : : ; A
.p/
N ,

fD.1/
N ; : : : ;D

.q/
N g are almost surely asymptotically free.

The theorem above can be generalized to the situation where the DN ’s are also
random matrix ensembles. If we assume that the DN and the AN are independent
and that the DN have an almost sure limit distribution, then we get almost sure
asymptotic freeness by the deterministic version above just by conditioning onto
theDN ’s. Hence, we have the following random version for the almost sure setting.

Theorem 5. LetA.1/N ; : : : ; A
.p/
N be p independentN �N GUE random matrices and

let D.1/
N ; : : : ;D

.q/
N be q random N �N matrices such that almost surely

D
.1/
N .!/; : : : ;D

.q/
N .!/

distr�! d1; : : : ; dq as N ! 1:
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Furthermore, assume that A.1/N ; : : : ; A
.p/
N ; fD.1/

N ; : : : ;D
.q/
N g are independent. Then

we have almost surely as N ! 1
A
.1/
N .!/; : : : ; A

.p/
N .!/;D

.1/
N .!/; : : : ;D

.q/
N .!/

distr�! s1; : : : ; sp; d1; : : : ; dq

where each si is semi-circular and s1; : : : ; sp; fd1; : : : ; dqg are free. So in particular,

we have that A.1/N , : : : ; A.p/N , fD.1/
N ; : : : ;D

.q/
N g are almost surely asymptotically free.

For the averaged version, on the other hand, the assumption of an averaged limit
distribution for random DN is not enough to guarantee asymptotic freeness in the
averaged sense, as the following example shows.

Example 6. Consider a Gaussian random matrix AN , and let, for each N , DN

be a random matrix which is independent from AN and just takes on two values,
P.DN D IN / D 1=2 and P.DN D �IN / D 1=2, where IN is the identity matrix.
Then for each N ,DN has the averaged eigenvalue distribution 1

2
ı�1 C 1

2
ı1 and thus

the same distribution in the limit, butAN andDN are clearly not asymptotically free.
The problem here is that the fluctuations ofDN are too large; there is no almost sure
convergence in that case to 1

2
ı�1C 1

2
ı1. Of course, we have that IN is asymptotically

free from AN and that �IN is asymptotically free from AN , but this does not imply
the asymptotic freeness of DN from AN .

Let us also remark that in our algebraic framework, it is not obvious how to deal
directly with the assumption of almost sure convergence to the limit distribution. We
will actually replace this in the next chapter by the more accessible condition that
the variance of the normalized traces is of order 1=N 2. Note that this is a stronger
condition in general than almost sure convergence of the eigenvalue distribution, but
this stronger assumption in our theorems will be compensated by the fact that we
can then also show this stronger behaviour in the conclusion.

4.3 Asymptotic freeness of Haar distributed unitary random matrices and
deterministic matrices

Let U.N / denote the group of unitaryN �N matrices, i.e.N �N complex matrices
which satisfy U �U D UU � D IN : Since U.N / is a compact group, one can take
dU to be Haar measure on U.N / normalized so that

R
U.N / dU D 1; which gives

a probability measure on U.N /. A Haar distributed unitary random matrix is a
matrix UN chosen at random from U.N / with respect to Haar measure. There is
a useful theoretical and practical way to construct Haar unitaries: take an N � N

(non-self-adjoint!) random matrix whose entries are independent standard complex
Gaussians and apply the Gram-Schmidt orthogonalization procedure; the resulting
matrix is then a Haar unitary.
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Exercise 2. Let fZij gNi;jD1 be N2 independent standard complex Gaussian random

variables with mean 0 and complex variance 1, i.e. E.ZijZij / D 1. Show that if
U D .uij /ij is a unitary matrix and Yij D PN

kD1 uikZkj , then fYij gNi;jD1 are N2

independent standard complex Gaussian random variables with mean 0 and complex
variance 1.

Exercise 3. Let ˚ W GLN .C/ ! U.N / be the map which takes an invertible
complex matrix A and applies the Gram-Schmidt procedure to the columns of A to
obtain a unitary matrix. Show that for any U 2 U.N /, we have ˚.UA/ D U˚.A/.

Exercise 4. Let fZij gij be as in Exercise 2 and let Z be the N � N matrix with
entries Zij . Since Z 2 GLN .C/, almost surely, we may let U D ˚.Z/. Show that
U is Haar distributed.

What is the �-distribution of a Haar unitary random matrix with respect to the
state ' D E ı tr? Since U �

NUN D IN D UNU
�
N ; the �-distribution is determined

by the values '.Um
N / for m 2 Z: Note that for any complex number  2 C with

jj D 1, UN is again a Haar unitary random matrix. Thus, '.mUm
N / D '.Um

N /

for all m 2 Z: This implies that we must have '.Um
N / D 0 for m ¤ 0. For m D 0,

we have of course '.U 0
N / D '.IN / D 1.

Definition 7. Let .A; '/ be a �-probability space. An element u 2 A is called a
Haar unitary if:

ı u is unitary, i.e. u�u D 1A D uu�;
ı '.um/ D ı0;m for m 2 Z:

Thus, a Haar unitary random matrix UN 2 U.N / is a Haar unitary for each
N � 1 (with respect to ' D E ı tr).

We want to see that asymptotic freeness occurs between Haar unitary random
matrices and deterministic matrices, as was the case with GUE random matrices.
The crucial element in the Gaussian setting was the Wick formula, which of course
does not apply when dealing with Haar unitary random matrices, whose entries are
neither independent nor Gaussian. However, we do have a replacement for the Wick
formula in this context, which is known as the Weingarten convolution formula; see
[57, 59].

The Weingarten convolution formula asserts the existence of a sequence of
functions .WgN /

1
ND1 with each WgN a central function in the group algebra CŒSn�

of the symmetric group Sn, for eachN � n. The function WgN has the property that
for the entries uij of a Haar distributed unitary random matrix U D .uij / 2 U.N /
and all index tuples i; j; i 0; j 0 W Œn� ! ŒN �

EŒui1j1 � � � uinjnui 01j 0
1

� � � ui 0nj 0
n
� D

X

�;	2Sn

nY

rD1
ıir i 0�.r/ ıjr j

0
	.r/

WgN .	�
�1/: (4.11)



104 4 Asymptotic Freeness for Gaussian, Wigner, and Unitary Random Matrices

Exercise 5. Let us recall a special factorization of a permutation � 2 Sn into
a product of transpositions. Let �1 D � and let n1 � n be the largest integer
such that �1.n1/ 6D n1 and k1 D �1.n1/. Let �2 D .n1; k1/�1, the product of the
transposition .n1; k1/ and �1. Then �2.n1/ D n1. Let n2 be the largest integer such
that �2.n2/ 6D n2 and k2 D �2.n2/. In this way, we find n � n1 > n2 > � � � > nl and
k1; : : : ; kl such that ki < ni and such that .nl ; kl / � � � .n1; k1/� D e, the identity
of Sn. Then � D .n1; k1/ � � � .nl ; kl /, and this representation is unique, subject
to the conditions on ni and ki . Recall that #.�/ denotes the number of cycles in
the cycle decomposition of � and j� j is the minimal number of factors among all
factorizations into a product of transpositions of � .

Moreover l D j� j D n�#.�/ because j�i�1j D j�i j�1. Recall the Jucys-Murphy
elements in CŒSn�; let

J1 D 0; J2 D .1; 2/; : : : Jk D .1; k/C .2; k/C � � � C .k � 1; k/:
Show that Jk and Jl commute for all k and l .

Exercise 6. Let N be an integer. Using the factorization in Exercise 5, show that

.N C J1/ � � � .N C Jn/ D
X

�2Sn
N #.�/�:

Exercise 7. Let G 2 CŒSn� be the function G.�/ D N #.�/. Thus, as operators we
have G D .N C J1/ � � � .N C Jn/. Show that kJkk � k � 1 and for N � n, G is
invertible in CŒSn�. Let WgN be the inverse of G.
By writing

NnWgN D .1CN�1J1/�1 � � � .1CN�1Jn/�1

show that

NnWgN .�/ D O.N�j� j/:

Thus, one knows the asymptotic decay

WgN .�/ � 1

N 2n�#.�/
as N ! 1 (4.12)

for any � 2 Sn. The convolution formula and the asymptotic estimate allow us to
prove the following result of Voiculescu [180, 188].

Theorem 8. Let U .1/
N ; : : : ; U

.p/
N be p independent N � N Haar unitary random

matrices, and let D.1/
N ; : : : ;D

.q/
N be q deterministic N �N matrices such that

D
.1/
N ; : : : ;D

.q/
N

distr�! d1; : : : ; dq as N ! 1:
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Then, for N ! 1,

U
.1/
N ; U

.1/�
N ; : : : ; U

.p/
N ; U

.p/�
N ;D

.1/
N ; : : : ;D

.q/
N

distr�! u1; u
�
1 ; : : : ; up; u

�
p ; d1; : : : ; dq;

where each ui is a Haar unitary and fu1; u�
1 g; : : : ; fup; u�

p g; fd1; : : : ; dqg are free.

The above convergence holds also almost surely. In particular, fU .1/
N ; U

.1/�
N g, . . . ,

fU .p/
N ; U

.p/�
N g, fD.1/

N ; : : : ;D
.q/
N g are almost surely asymptotically free.

The proof proceeds in a fashion similar to the Gaussian setting and will not be
given here. We refer to [137, Lecture 23].

Note that in general if u is a Haar unitary such that fu; u�g is free from elements
fa; bg; then a and ubu� are free. In order to prove this, consider

'
�
p1.a/q1.ubu�/ � � �pr.a/qr .ubu�/

�

where pi ; qi are polynomials such that for all i D 1; : : : ; r

'.pi .a// D 0 D '.qi .ubu�//:

Note that by the unitary condition, we have qi .ubu�/ D uqi .b/u�: Thus, by the
freeness between fu; u�g and b,

0 D '.qi .ubu�// D '.uqi .b/u
�/ D '.uu�/'.qi .b// D '.qi .b//:

But then

'
�
p1.a/q1.ubu�/ � � �pr.a/qr .ubu�/

� D '
�
p1.a/uq1.b/u

�p2.a/ � � �pr.a/uqr.b/u��

is zero, since fu; u�g is free from fa; bg and ' vanishes on all the factors in the latter
product.

Thus, our Theorem 8 yields also the following as a corollary.

Theorem 9. LetAN andBN be two sequences of deterministicN�N matrices with

AN
distr�! a and BN

distr�! b: Let UN be a sequence of N � N Haar unitary random

matrices. Then AN ;UNBNU �
N

distr�! a; b, where a and b are free. This convergence
holds also almost surely. So in particular, we have that AN and UNBNU �

N are
almost surely asymptotically free.

The reader might notice that this theorem is, strictly speaking, not a consequence
of Theorem 8, because in order to use the latter we would need the assumption that
also mixed moments inAN andBN converge to some limit, which we do not assume
in Theorem 9. However, the proof of Theorem 8, for the special case where we only
need to consider moments in which UN and U �

N come alternatingly, reveals that we
never encounter a mixed moment in AN and BN . The structure of the Weingarten
formula ensures that they will never interact. A detailed proof of Theorem 9 can be
found in [137, Lecture 23].
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Conjugation by a Haar unitary random matrix corresponds to a random rotation.
Thus, the above theorem says that randomly rotated deterministic matrices become
asymptotically free in the limit of large matrix dimension. Another way of saying
this is that random matrix ensembles which are unitarily invariant (i.e. such that
the joint distribution of their entries is not changed by conjugation with any unitary
matrix) are asymptotically free from deterministic matrices.

Note that the eigenvalue distribution of BN is not changed if we consider
UNBNU

�
N instead. Only the relation between AN and BN is brought into a generic

form by applying a random rotation between the eigenspaces of AN and of BN .
Again one can generalize Theorems 8 and 9 by replacing the deterministic

matrices by random matrices, which are independent from the Haar unitary matrices
and which have an almost sure limit distribution. As outlined at the end of the last
section, we will replace in Chapter 5 the assumption of almost sure convergence by
the vanishing of fluctuations varŒtr.�/; tr.�/� like 1=N 2. See also our discussions in
Chapter 5 around Remark 5.26 and Theorem 5.29.

Note also that Gaussian random matrices are invariant under conjugation by
unitary matrices, i.e. if BN is GUE, then also UNBNU �

N is GUE. Furthermore, the
fluctuations of GUE random matrices vanish of the right order, and hence we have
almost sure convergence to the semi-circle distribution. Thus, Theorem 9 (in the
version where BN is allowed to be a random matrix ensemble with almost sure
limit distribution) contains the asymptotic freeness of Gaussian random matrices
and deterministic random matrices (Theorem 4) as a special case.

4.4 Asymptotic freeness between Wigner and deterministic random
matrices

Wigner matrices are generalizations of Gaussian random matrices: the entries are,
apart from symmetry conditions, independent and identically distributed, but with
arbitrary, not necessarily Gaussian, distribution. Whereas Gaussian random matrices
are unitarily invariant, this is not true any more for general Wigner matrices;
thus, we cannot use the results about Haar unitary random matrices to derive
asymptotic freeness results for Wigner matrices. Nevertheless, there are many
results in the literature which show that Wigner matrices behave with respect to
eigenvalue questions in the same way as Gaussian random matrices. For example,
their eigenvalue distribution converges always to a semi-circle. In order to provide a
common framework and possible extensions for such investigations, it is important
to settle the question of asymptotic freeness for Wigner matrices. We will show that
in this respect Wigner matrices also behave like Gaussian random matrices. It turns
out that the estimates for the subleading terms are, compared to the Gaussian case,
more involved. However, there is actually a nice combinatorial structure behind
these estimates, which depends on a general estimate for sums given in terms of
graphs. This quite combinatorial approach goes back to work of Yin and Krishnaiah
who considered the product of two random matrices, one of them being a covariance
matrix (i.e. a Wishart matrix; see Section 4.5). Their moment calculations are special
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cases of the general asymptotic freeness calculations which we have to address in
this section.

Another proof for the asymptotic freeness of Wigner matrices which does not
rely on the precise graph sum estimates for the subleading terms can be found in the
book of Anderson, Guionnet, Zeitouni [7]. The special case where the deterministic
matrices are of a block-diagonal form was already treated by Dykema in [66].

We will extend our calculations from Section 4.2 to Wigner matrices. So let
.AN /N�1 now be a sequence of Wigner matrices and .D

.i/
N /N�1 sequences of

deterministic matrices whose joint limit distribution exists. We have to look at
alternating moments in Wigner matrices and deterministic matrices. Again, we
consider just one Wigner matrix, but it is clear that the same arguments work also
for a family of independent Wigner matrices, by just decorating the AN with an
additional index. In order to simplify the notation, it is also advantageous to consider
the case where the entries of our Wigner matrices are real random variables. So now
let us first give a precise definition what we mean by a Wigner matrix.

Notation 10. Let 
 be a probability distribution on R. Let aij for i; j 2 N with
i � j be independent identically distributed real random variables with distribution

. We also put aij WD aji for i > j . Then the correspondingN �N Wigner random
matrix ensemble is given by the self-adjoint random matrix

AN D 1p
N

�
aij
�N
i;jD1 :

Let AN be now such a Wigner matrix; clearly, in our algebraic frame, we have to
assume that all moments of 
 exist; furthermore, we have to assume that the mean
of 
 is zero, and we normalize the variance of 
 to be 1.

Remark 11. We want to comment on our assumption that 
 has mean zero.
In analytic proofs involving Wigner matrices, one usually does not need this
assumption. For example, Wigner’s semi-circle law holds for Wigner matrices,
even if the entries have non-vanishing mean. The general case can, by using
properties of weak convergence, be reduced to the case of vanishing mean. However,
in our algebraic frame, we cannot achieve this reduction. The reason for this
discrepancy is that our notion of convergence in distribution is actually stronger than
weak convergence in situations where mass might escape to infinity. For example,
consider a deterministic diagonal matrix DN , with a11 D N , and all other entries
zero. Then 
DN D .1 � 1=N/ı0 C 1=NıN ; thus, 
DN converges weakly to ı0, for
N ! 1. However, the second and higher moments of DN with respect to tr do not
converge; thus, DN does not converge in distribution.

Another simplifying assumption we have made is that the distribution of the
diagonal entries is the same as that of the off-diagonal entries. With a little more
work, the method given here can be made to work without this assumption.
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We examine now an averaged alternating moment in our deterministic matrices
D
.k/
N D .d

.k/
ij / and the Wigner matrix AN D 1p

N
.aij /. We have

E
h
tr
�
D
.1/
N AN � � �D.m/

N AN
�i

D 1

Nm=2C1
NX

i1;:::;i2mD1
E
h
d
.1/
i1i2
ai2i3 � � � d.m/i2m�1i2m

ai2mi1

i

D 1

Nm=2C1
NX

i1;:::;i2mD1
E Œai2i3 � � � ai2mi1 � d .1/i1i2 � � � d.m/i2m�1i2m

D 1

Nm=2C1
NX

i1;:::;i2mD1

X

�2P.m/
k� .ai2i3 ; : : : ; ai2mi1 /d

.1/
i1i2

� � � d.m/i2m�1i2m
:

In the last step, we have replaced the Wick formula for Gaussian random
variables by the general expansion of moments in terms of classical cumulants. Now
we use the independence of the entries ofAN . A cumulant in the aij is only different
from zero if all its arguments are the same; of course, we have to remember that
aij D aji . (Not having to bother about the complex conjugate here is the advantage
of looking at real Wigner matrices.) Thus, in order that k� Œai2i3 ; : : : ; ai2mi1 � is
different from zero, we must have: if k and l are in the same block of � , then we must
have fi2k; i2kC1g D fi2l ; i2lC1g. Note that now we do not prescribe whether i2k has to
agree with i2l or with i2lC1. In order to deal with partitions of the indices i1; : : : ; i2m
instead of partitions of the pairs .i2; i3/; .i4; i5/ : : : ; .i2m; i1/, we say that a partition
� 2 P.2m/ is a lift of a partition � 2 P.m/ if we have for all k; l D 1; : : : ; m with
k 6D l that

k �� l ,
n
Œ2k �� 2l and 2kC1 �� 2lC1� or Œ2k �� 2lC1 and 2kC1 �� 2l�

o
:

Here we are using the notation k �� l to mean that k and l are in the same
block of � . Then the condition that k�.ai2i3 ; : : : ; ai2mi1 / is different from zero can
also be paraphrased as ker i � � , for some lift � of � . Note that the value
of k�.ai2i3 ; : : : ; ai2mi1 / depends only on ker.i/ because we have assumed that the
diagonal and off-diagonal elements have the same distribution. Let us denote this
common value by kker.i/. Thus, we can rewrite the equation above as

E
h
tr
�
D
.1/
N AN � � �D.m/

N AN
�i

D 1

Nm=2C1
X

�2P.m/

X

i WŒ2m�!ŒN �

ker i�� for some lift � of �

kker.i/ d
.1/
i1i2

� � � d.m/i2m�1i2m
: (4.13)



4.4 Asymptotic freeness between Wigner and deterministic random matrices 109

Note that in general, there is not a unique lift of a given � . For example, for the one
block partition � D f.1; 2; 3/g 2 P.3/, we have the following lifts in P.6/:

f.1; 3; 5/; .2; 4; 6/g; f.1; 3; 4/; .2; 5; 6/g; f.1; 2; 4/; .3; 5; 6/g;
f.1; 2; 5/; .3; 4; 6/g; f.1; 2; 3; 4; 5; 6/g:

If � consists of several blocks, then one can make the corresponding choice for
each block of � . If � is a pairing, there is a special lift � of � which we call the
standard lift of � ; if .r; s/ is a block of � , then � will have the blocks .2r C 1; 2s/

and .2r; 2s C 1/.
If we want to rewrite the sum over i in (4.13) in terms of sums of the form

X

i WŒ2m�!ŒN �

ker i��

d
.1/
i1i2

� � � d.m/i2m�1i2m
(4.14)

for fixed lifts � , then we have to notice that in general a multi-index i will show up
with different �’s; indeed, the lifts of a given � are partially ordered by inclusion
and form a poset; thus, we can rewrite the sum over i with ker i � � for some
lift � of � in terms of sums over fixed lifts, with some well-defined coefficients
(given by the Möbius function of this poset – see Exercise 8). However, the precise
form of these coefficients is not needed since we will show that at most one of
the corresponding sums has the right asymptotic order (namely, Nm=2C1), so all
the other terms will play no role asymptotically. So our main goal will now be to
examine the sum (4.14) and show that for all � 2 P.2m/ which are lifts of � , a
term of the form (4.14) grows in N with order at most m=2 C 1, and furthermore,
this maximal order is achieved only in the case in which � is a non-crossing pairing
and � is the standard lift of � . After identifying these terms, we must relate them to
Equation (4.9); this is achieved in Exercise 9.

Exercise 8. Let � be a partition of Œm� and M D f� 2 P.2m/ j � is a lift of �g.
For a subset L of M , let �L D sup�2L � ; here sup denotes the join in the lattice of
all partitions. Use the principle of inclusion-exclusion to show that

X

i WŒ2m�!ŒN �

ker i�� for some �2M

d
.1/
i1i2

� � � d.m/i2m�1i2m
D
X

L
M
.�1/jLj�1 X

i WŒ2m�!ŒN �

ker i��L

d
.1/
i1i2

� � � d.m/i2m�1i2m
:

Exercise 9. Let � be a pairing of Œm� and � be the standard lift of � . Then

X

ker.i/��
d
.1/
i1i2

� � � d.m/i2m�1i2m
D Tr�m� .D

.1/
N ; : : : ;D

.m/
N /:
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Fig. 4.6 On the left, we have
�6. We let � be the partition
of [6] with blocks f.1; 4; 6/;
.2/; .3/; .5/g. The graph on
the right is G� . We have
S�.N / D P

i;j;k;l d
.1/
ij

d
.2/

jk d
.3/

jl and r.G�/ D 3=2

1
2

3

4

5

6

D1

D2

D3

D1

D2

D3

(1, 4, 6)
(2)

(3)

(5)

D1

D2

D3

Let us first note that, because of our assumption that the entries of the Wigner
matrices have vanishing mean, first order cumulants are zero and thus only those �
which have no singletons will contribute to (4.13). This implies the same property
for the lifts, and in (4.14), we can restrict ourselves to considering � without
singletons.

It turns out that it is convenient to associate to � a graph G� . Let us start with
the directed graph �2m with 2m vertices labelled 1; 2; : : : ; 2m and directed edges
.1; 2/; .3; 4/; : : : ; .2m� 1; 2m/; .2i � 1; 2i/ starts at 2i and goes to 2i � 1. Given a
� 2 P.2m/, we obtain a directed graphG� by identifying the vertices which belong
to the same block of � . We will not identify the edges (actually, the direction of two
edges between identified vertices might even not be the same) so that G� will in
general have multiple edges, as well as loops. The sum (4.14) can then be rewritten
in terms of the graph G D G� as

SG.N / WD
X

i WV.G/!ŒN �

Y

e2E.G/
d
.e/
it.e/;is.e/

; (4.15)

where we sum over all functions i W V.G/ ! ŒN �, and for each such function we
take the product of d.e/it.e/;is.e/ as e runs over all the edges of the graph and s.e/ and t .e/
denote, respectively, the source and terminus of the edge e. Note that we keep all
edges under the identification according to � ; thus, the m matrices D.1/; : : : ;D.m/

in (4.14) show up in (4.15) as the various De for the m edges of G� . See Fig. 4.6.
What we have to understand about such graph sums is their asymptotic behaviour

as N ! 1. This problem has a nice answer for arbitrary graphs, namely, one can
estimate such graph sums (4.15) in terms of the norms of the matrices corresponding
to the edges and properties of the graph G. The relevant feature of the graph is the
structure of its two-edge connected components.

Definition 12. A cutting edge of a connected graph is an edge whose removal
would disconnect the graph. A connected graph is two-edge connected if it does not
contain a cutting edge, i.e. if it cannot be disconnected by the removal of an edge. A
two-edge connected component of a graph is a two-edge connected subgraph which
is not properly contained is a larger two-edge connected subgraph.

A forest is a graph without cycles. A tree is a connected component of a forest,
i.e. a connected graph without cycles. A tree is trivial if it consists of only one
vertex. A leaf of a non-trivial tree is a vertex which meets only one edge. The sole
vertex of a trivial tree will also be called a trivial leaf.



4.4 Asymptotic freeness between Wigner and deterministic random matrices 111

It is clear that if one shrinks each two-edge connected component of a graph to a
vertex and removes the loops, then one does not have any more cycles; thus, one is
left with a forest.

Notation 13. For a graph G, we denote by F.G/ its forest of two-edge connected
components; the vertices of F.G/ consist of the two-edge connected components of
G, and two distinct vertices of F.G/ are connected by an edge if there is a cutting
edge between vertices from the two corresponding two-edge connected components
in G.

We can now state the main theorem on estimates for graph sums. The special case
for two-edge connected graphs goes back to the work of Yin and Krishnaiah [206];
see also the book of Bai and Silverstein [15]. The general case, which is stronger
than the corresponding statement in [15, 206], is proved in [129].

Theorem 14. Let G be a directed graph, possibly with multiple edges and loops.
Let for each edge e of G be given an N � N matrix De D .d

.e/
ij /

N
i;jD1. Then the

associated graph sum (4.15) satisfies

jSG.N /j � N r.G/ �
Y

e2E.G/
kDek; (4.16)

where r.G/ is determined as follows from the structure of the graph G. Let F.G/ be
the forest of two-edge connected components of G. Then

r.G/ D
X

l leaf of F.G/

r.l/;

where

r.l/ WD
(
1; if l is a trivial leaf
1
2
; if l is a leaf of a non-trivial tree

:

Note that each tree of the forest F.G/ makes at least a contribution of 1 in r.G/,
because a non-trivial tree has at least two leaves. One can also make the description
above more uniform by having a factor 1=2 for each leaf, but then counting a trivial
leaf as two actual leaves. Note also that the direction of the edges plays no role for
the estimate above. The direction of an edge is only important in order to define the
contribution of an edge to the graph sum. One direction corresponds to the matrix
De , and the other direction corresponds to the transpose Dt

e . Since the norm of a
matrix is the same as the norm of its transpose, the estimate is the same for all graph
sums which correspond to the same undirected graph.

Let us now apply Theorem 14 toG� . We have to show that r.G�/ � m=2C1 for
our graphs G� , � 2 P.2m/. Of course, for general � 2 P.2m/, this does not need
to be true. For example, if � D f.1; 2/; .3; 4/; : : : ; .2m � 1; 2m/g, then G� consists
of m isolated points and thus r.G�/ D m. Clearly, we have to take into account that
we can restrict in (4.13) to lifts of a � without singletons.
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Definition 15. Let G D .V;E/ be a graph and w1;w2 2 V . Let us consider the
graph G0 obtained by merging the two vertices w1 and w2 into a single vertex w.
This means that the vertices V 0 of G0 are .V n fw1;w2g/[ fwg. Also each edge of G
becomes an edge of G0, except that if the edge started (or ended) at w1 or w2, then
the corresponding edge of G0 starts (or ends) at w.

Lemma 16. Suppose �1 and �2 are partitions of Œ2m� and �1 � �2. Then r.G�2/ �
r.G�1/.

Proof: We only have to consider the case where �2 is obtained from �1 by joining
two blocks w1 and w2 of �1 and then use induction.

We have to consider three cases. Let C1 and C2 be the two-edge connected
components of G�1 containing w1 and w2, respectively. Recall that r.G�1/ is
the sum of the contributions of each connected component and the contribution
of a connected component is either 1 or one half the number of leaves in the
corresponding tree of F.G�1/, whichever is larger.

Case 1. Suppose the connected component of G�1 containing w1 is two-edge
connected, i.e. C1 becomes the only leaf of a trivial tree in F.G�1/. Then the
contribution of this component to r.G�1/ is 1. If w2 is in C1, then merging w1 and
w2 has no effect on r.G�1/ and thus r.G�1/ D r.G�2/. If w2 is not in C1, then
C1 gets joined to some other connected component of G�1 , which will leave the
contribution of this other component unchanged. In this latter case, we shall have
r.G�2/ D r.G�1/ � 1.

For the rest of the proof, we shall assume that neither w1 nor w2 lies in a
connected component of G�1 which has only one two-edge connected component.

Case 2. Suppose w1 and w2 lie in different connected components of G�1 . When w1
and w2 are merged, the corresponding two-edge connected components are joined.
If either of these corresponded to a leaf in F.G�1/, then the number of leaves would
be reduced by 1 or 2 (depending on whether both two-edge components were leaves
in F.G�1/). Hence, r.G�2/ is either r.G�1/ � 1=2 or r.G�1/ � 1.

Case 3. Suppose that both w1 and w2 are in the same connected component of G�1 .
Then the two-edge connected components C1 and C2 become vertices of a tree T in
F.G�1/ (see Fig. 4.7). When we merge w1 and w2, we form a two-edge connected
component C of G�2 , which consists of all the two-edge connected components
corresponding to the vertices of T along the unique path from C1 to C2. On the
level of T , this corresponds to collapsing all the edges between C1 and C2 into a
single vertex. This may reduce the number of leaves by 0, 1, or 2. If there were only
two leaves, we might end up with a single vertex, but the contribution to r.G�1/
would still not increase. Thus, r.G�1/ can only decrease.

ut
Definition 17. Let G be a directed graph and let v be a vertex of G. Suppose that v
has one incoming edge e1 and one outgoing edge e2. Let G0 be the graph obtained
by removing e1, e2, and v and replacing these with an edge e from s.e1/ to t .e2/.
We say that G0 is the graph obtained from G by removing the vertex v. See Fig. 4.8.
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C

C

1

2

C

Fig. 4.7 Suppose w1 and w2 are in the same connected component of G�1 ; but in different, say
C1 and C2, two-edge connected components of G�1 , we collapse the edge (shown here shaded)
joining C1 to C2 in F.G�1 / (See Case 3 in the proof of Lemma 16)

vv

e

1

1 e

v

2

2 v1

e

v2

Fig. 4.8 If we remove the vertex v from a graph, we replace the edges e1 and e2 by the edge e
(See Definition 17)

We say that the degree of a vertex is the number of edges to which it is incident,
using the convention that a loop contributes 2. The total degree of a subgraph is the
sum of the degrees of all its vertices.

Using the usual order on partitions of Œ2m�, we say that a partition � is a minimal
lift of � if it is not larger than some other lift of � .

Lemma 18. Let � be a partition of Œm� without singletons and � 2 P.2m/ be a
minimal lift of � . Suppose that G� contains a two-edge connected component of
total degree strictly less than 3 and which becomes a leaf in F.G�/. Then

(i) .k � 1; k/ is a block of � ; and
(ii) .2k � 2; 2k C 1/ and .2k � 1; 2k/ are blocks of � .

Let � 0 be the partition obtained by deleting the block .k � 1; k/ from � and � 0 the
partition obtained by deleting .2k � 2; 2kC 1/ and .2k � 1; 2k/ from � . Then � 0 is
a minimal lift of � 0, and the graph G� 0 is obtained from G� by:

(a) deleting the connected component .2k � 1; 2k/ and;
(b) deleting the vertex obtained from .2k � 2; 2k C 1/;
(c) r.G�/ D r.G� 0/C 1.

Proof: Since � has no singletons, each block of � contains at least two elements,
and thus each block of the lift � contains at least two points. Thus, every vertex of
G� has degree at least 2. So a two-edge connected component with total degree less
than 3must consist of a single vertex. Moreover, if this vertex has distinct incoming
and outgoing edges, then this two-edge connected component cannot become a leaf
in F.G�/. Thus, G� has a two-edge connected component C which consists of a
vertex with a loop. Moreover, C will also be a connected component. Since an edge
always goes from 2k � 1 to 2k, � must have a block consisting of the two elements
2k � 1 and 2k. Since � is a lift of � , � must have the block .k � 1; k/. Since � is a
minimal lift of � , � has the two blocks .2k � 2; 2k C 1/; .2k � 1; 2k/. This proves
(i) and (ii).
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Now � 0 is a minimal lift of � 0 because � was minimal on all the other blocks of
� . Also the block .2k�2; 2kC1/ corresponds to a vertex ofG� with one incoming
edge and one outgoing edge. Thus, by removing this block from � , we remove a
vertex from G� , as described in Definition 17. Hence, G� 0 is obtained from G� by
removing the connected component C and the vertex .2k � 2; 2k C 1/.

Finally, the contribution of C to r.G�/ is 1. If the connected component, C 0, of
G� containing the vertex .2k � 2; 2k C 1/ has only one other vertex, which would
have to be .2k � 3; 2k C 2/, the contribution of this component to r.G�/ will be 1,
and G� 0 will have as a connected component this vertex .2k� 3; 2kC 2/ and a loop
whose contribution to r.G� 0/ will still be 1. On the other hand, if C 0 has more than
one other vertex, then the number of leaves will not be diminished when the vertex
.2k � 1; 2k C 1/ is removed, and thus also in this case, the contribution of C 0 to
r.G�/ is unchanged. Hence, in both cases r.G�/ D r.G� 0/C 1. ut
Lemma 19. Consider � 2 P.m/ without singletons and let � 2 P.2m/ be a lift of
� . Then we have for the corresponding graph G� that

r.G�/ � m

2
C 1; (4.17)

and we have equality if and only if � is a non-crossing pairing and � the
corresponding standard lift

k �� l , ˚
2k �� 2l C 1 and 2k C 1 �� 2l

�
:

Proof: By Lemma 16, we may suppose that � is a minimal lift of � . Let the
connected components of G� be C1; : : : ; Cp . Let the number of edges in Ci be
mi , and the number of leaves in the tree of F.G�/ corresponding to Ci be li . The
contribution of Ci to r.G�/ is ri D maxf1; li =2g.

Suppose � has no blocks of the form .k � 1; k/. Then by Lemma 18 each two-
edge connected component of G� which becomes a leaf in F.G�/ must have total
degree at least 3. Thus, mi � 2 for each i . Moreover, the contribution of each leaf
to the total degree must be at least 3. Thus, 3li � 2mi . If li � 2, then ri D li =2 �
mi=3. If li D 1, then, as mi � 2, we have ri D 1 � mi=2. So in either case,
ri � mi=2. Summing over all components, we have r.G�/ � m=2.

If � does contain a block of the form .k � 1; k/ and � blocks .2k � 2; 2k C 1/,
.2k � 1; 2k/, then we may repeatedly remove these blocks from � and � until we
reach � 0 and � 0 such that either (a) � 0 contains no blocks which are a pair of adjacent
elements or (b) � 0 D f.1; 2/g (after renumbering) and � 0 is a minimal lift of � 0. In
either case by Lemma 18, r.G�/ D r.G� 0/C q where q is the number of times we
have removed a pair of adjacent elements of � .

In case (a), we have by the earlier part of the proof that r.G� 0/ � m0=2. Thus,
r.G�/ D r.G� 0/C q � m0=2C q D m=2.

In case (b) we have that � 0 D f.1; 2/g and either � D f.1; 2/; .3; 4/g (� is
standard) or � D f.1; 3/; .2; 4/g (� is not standard). In the first case, see Fig. 4.9,
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D1 D2

(1, 2) (3, 4)

D1

D2

(1,3) (2,4)

Fig. 4.9 If � D f.1; 2/g there are two possible minimal lifts: �1 D f.1; 2/; .3; 4/g and
�2 D f.1; 3/; .2; 4/g. We show G�1 on the left and G�2 on the right. The graph sum for �1
is Tr.D1/Tr.D2/ and the graph sum for �2 is Tr.D1D

t
2/ (See the conclusion of the proof of

Lemma 19)

G� 0 has two vertices, each with a loop and so r.G� 0/ D 2 D m0=2C 1, and hence
r.G�/ D qCm0=2C 1 D m=2C 1. In the second case, G� 0 is two-edge connected
and so r.G� 0/ D 1 D m0=2, and hence r.G�/ D q Cm0=2 D m=2. So we can only
have r.G�/ D m=2 C 1 when � is a non-crossing pairing and � is standard; in all
other cases, we have r.G�/ � m=2. ut

Equipped with this lemma, the investigation of the asymptotic freeness of Wigner
matrices and deterministic matrices is now quite straightforward. Lemma 19 shows
that the sum (4.14) has at most the order Nm=2C1 and that the maximal order is
achieved exactly for � which are non-crossing pairings and for � which are the
corresponding standard lifts. But for those we get in (4.13) the same contribution as
for Gaussian random matrices. The other terms in (4.13) will vanish, as long as we
have uniform bounds on the norms of the deterministic matrices. Thus, the result
for Wigner matrices is the same as for Gaussian matrices, provided we assume a
uniform bound on the norm of the deterministic matrices.

Moreover, the forgoing arguments can be extended to several independent
Wigner matrices. Thus, we have proved the following theorem.

Theorem 20. Let 
1; : : : ; 
p be probability measures on R, for which all moments

exist and for which the means vanish. Let A.1/N ; : : : ; A
.p/
N be p independent N � N

Wigner random matrices with entry distributions 
1; : : : ; 
p , respectively, and let

D
.1/
N ; : : : ;D

.q/
N be q deterministic N �N matrices such that for N ! 1

D
.1/
N ; : : : ;D

.q/
N

distr�! d1; : : : ; dq

and such that

sup
N2N

rD1;:::;q
kD.r/

N k < 1:

Then, as N ! 1,

A
.1/
N ; : : : ; A

.p/
N ;D

.1/
N ; : : : ;D

.q/
N

distr�! s1; : : : ; sp; d1; : : : ; dq;
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where each si is semi-circular and s1; : : : ; sp; fd1; : : : ; dqg are free. In particular,

we have that A.1/N , : : : ; A.p/N , fD.1/
N ; : : : ;D

.q/
N g are asymptotically free.

By estimating the variance of the traces, one can show that one also has almost
sure convergence in the above theorem; also, one can extend those statements to
random matrices D.k/

N which are independent from the Wigner matrices, provided
one assumes the almost sure version of a limit distribution and of the norm
boundedness condition. We leave the details to the reader.

Exercise 10. Show that under the same assumptions as in Theorem 20, one can
bound the variance of the trace of a word in Wigner and deterministic matrices as

var
h
tr
�
D
.1/
N AN � � �D.m/

N AN
�i � C

N2
;

where C is a constant, depending on the word.
Show that this implies that Wigner matrices and deterministic matrices are almost

surely asymptotically free under the assumptions of Theorem 20.

Exercise 11. State (and possibly prove) the version of Theorem 20, where the
D
.1/
N ; : : : ;D

.q/
N are allowed to be random matrices.

4.5 Examples of random matrix calculations

In the following, we want to look at some examples which show how the machinery
of free probability can be used to calculate asymptotic eigenvalue distributions of
random matrices.

4.5.1 Wishart matrices and the Marchenko-Pastur distribution

Besides the Gaussian random matrices, the most important random matrix ensemble
are the Wishart random matrices [203]. They are of the form A D 1

N
XX�, where

X is an N � M random matrix with independent Gaussian entries. There are two
forms: a complex case when the entries xij are standard complex Gaussian random
variables with mean 0 and E.jxij j2/ D 1 and a real case where the entries are real-
valued Gaussian random variables with mean 0 and variance 1. Again, one has an
almost sure convergence to a limiting eigenvalue distribution (which is the same in
both cases), if one sends N and M to infinity in such a way that the ratio M=N is
kept fixed. Figure 4.10 below shows the eigenvalue histograms with M D 2N , for
N D 100 and N D 2000. For N D 100, we have averaged over 3000 realizations.
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Fig. 4.10 On the left, we have the eigenvalue distribution of a Wishart random matrix with N D
100 and M D 200 averaged over 3000 instances, and on the right we have one instance with
N D 2000 and M D 4000. The solid line is the graph of the density of the limiting distribution

By similar calculations as for the Gaussian random matrices, one can show that
in the limit N;M ! 1 such that the ratio M=N ! c, for some 0 < c < 1, the
asymptotic averaged eigenvalue distribution is given by

lim
N;M ! 1
M=N ! c

EŒtr.Ak/� D
X

�2NC.k/
c#.�/: (4.18)

Exercise 12. Show that for A D 1
N
XX�, a Wishart matrix as above, we have

E.Tr.Ak// D 1

Nk

NX

i1;:::;ikD1

MX

i�1;:::;i�kD1
E.xi1i�1xi2i�1 � � � xiki�k xi1i�k /:

Then use Exercise 1.7 to show that, in the case of standard complex Gaussian entries
for X , we have the “genus expansion”

E.tr.Ak// D
X

�2Sk
N #.�/C#.�k��1/�.kC1/�M

N

�#.�/
:

Then use Proposition 1.5 to prove (4.18).

This means that all free cumulants of the limiting distribution are equal to c.
This qualifies the limiting distribution to be called a free Poisson distribution of
rate c. Since this limiting distribution of Wishart matrices was first calculated by
Marchenko and Pastur [123], it is in the random matrix literature usually called
the Marchenko-Pastur distribution. See Definition 2.11, Exercises 2.10, 2.11, and
Remark 3.11 and the subsequent exercises.

Exercise 13. We have chosen the normalization for Wishart matrices that simplifies
the free cumulants. The standard normalization is 1

M
XX�. If we let A0 D 1

M
XX�,

then A D M
N
A0 so in the limit we have scaled the distribution by c. Using

Exercise 2.12, show that the limiting eigenvalue distribution of A0 is �y where
y D 1=c (using the notation of Remark 2.12).
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Fig. 4.11 The eigenvalue
distribution of ACUAU �. In
the left graph, we have 1000
realizations with N D 100,
and in the right, one
realization with N D 1000
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Fig. 4.12 On the left, we display the averaged eigenvalue distribution for 3000 realizations of the
sum of a GUE and a complex Wishart random matrix with M D 200 and N D 100. On the right,
we display the eigenvalue distribution of a single realization of the sum of a GUE and a complex
Wishart random matrix with M D 8000 and N D 4000

4.5.2 Sum of random matrices

Let us now consider the sum of random matrices. If the two matrices are asymp-
totically free, then we can apply the R-transform machinery for calculating the
asymptotic distribution of their sum. Namely, for each of the two matrices, we
calculate the Cauchy transform of their asymptotic eigenvalue distribution and from
this their R-transform. Then the sum of the R-transforms gives us the R-transform
of the sum of the matrices, and from there we can go back to the Cauchy transform
and, via Stieltjes inversion theorem, to the density of the sum.

Example 21. As an example, consider A C UAU �, where U is a Haar unitary
random matrix and A is a diagonal matrix with N=2 eigenvalues �1 and N=2
eigenvalues 1. (See Fig. 4.11.)

Thus, by Theorem 9, the asymptotic eigenvalue distribution of the sum is the
same as the distribution of the sum of two free Bernoulli distributions. The latter
can be easily calculated as the arc-sine distribution. See [137, Example 12.8].

Example 22. Consider now independent GUE and Wishart matrices. They are
asymptotically free; thus, the asymptotic eigenvalue distribution of their sum is
given by the free convolution of a semi-circle and a Marchenko-Pastur distribution.

Figure 4.12 shows the agreement (for c D 2) between numerical simulations and
the predicted distribution using the R-transform. The first is averaged over 3000
realizations with N D 100, and the second is one realization for N D 4000.
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4.5.3 Product of random matrices

One can also rewrite the combinatorial description (2.23) of the product of free
variables into an analytic form. The following theorem gives this version in terms
of Voiculescu’s S -transform [178]. For more details and a proof of that theorem, we
refer to [137, Lecture 18].

Theorem 23. Put Ma.z/ WD P1
mD0 '.am/zm and define the S -transform of a by

Sa.z/ WD 1C z

z
M h�1i
a .z/;

where M h�1i denotes the inverse under composition of M . Then if a and b are free,
we have Sab.z/ D Sa.z/ � Sb.z/.

Again, this allows one to do analytic calculations for the asymptotic eigenvalue
distribution of a product of asymptotically free random matrices. One should note
in this context that the product of two self-adjoint matrices is in general not self-
adjoint; thus, it is not clear why all its eigenvalues should be real. (If they are
not real, then the S -transform does not contain enough information to recover the
eigenvalues.) However, if one makes the restriction that at least one of the matrices
has positive spectrum, then, because the eigenvalues of AB are the same as those of
the self-adjoint matrix B1=2AB1=2, one can be sure that the eigenvalues of AB are
real as well, and one can use the S -transform to recover them. One should also note
that a priori the S -transform of a is only defined if '.a/ 6D 0. However, by allowing
formal power series in

p
z, one can also extend the definition of the S -transform

to the case where '.a/ D 0, '.a2/ > 0. For more on this, and the corresponding
version of Theorem 23 in that case, see [146].

Example 24. Consider two independent Wishart matrices. They are asymptotically
free; this follows either by the fact that a Wishart matrix is unitarily invariant
or, alternatively, by an easy generalization of the genus expansion from (4.18) to
the case of several independent Wishart matrices. So the asymptotic eigenvalue
distribution of their product is given by the distribution of the product of two free
Marchenko-Pastur distributions.

As an example consider two independent Wishart matrices for c D 5. Figure 4.13
compares simulations with the analytic formula derived from the S -transform. The
first is one realization for N D 100 and M D 500, the second is one realization for
N D 2000 and M D 10000.
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Fig. 4.13 The eigenvalue distribution of the product of two independent complex Wishart
matrices. On the left we have one realization with N D 100 and M D 500. On the right we
have one realization with N D 2000 and M D 10000. See Example 24



Chapter 5
Fluctuations and Second Order Freeness

Given an N � N random matrix ensemble, we often want to know, in addition
to its limiting eigenvalue distribution, how the eigenvalues fluctuate around the
limit. This is important in random matrix theory because in many ensembles, the
eigenvalues exhibit repulsion, and this feature is often important in applications (see,
e.g. [112]). If we take a diagonal random matrix ensemble with independent entries,
then the eigenvalues are just the diagonal entries of the matrix and by independence
do not exhibit any repulsion. If we take a self-adjoint ensemble with independent
entries, i.e. the Wigner ensemble, the eigenvalues are not independent and appear
to spread evenly, i.e. there are few bald spots and there is much less clumping;
see Fig. 5.1. For some simple ensembles, one can obtain exact formulas measuring
this repulsion, i.e. the two-point correlation functions; unfortunately these exact
expressions are usually rather complicated. However, just as in the case of the
eigenvalue distributions themselves, the large N limit of these distributions is much
simpler and can be analysed.

We saw earlier that freeness allows us to find the limiting distributions of
XN C YN or XNYN provided we know the limiting distributions of XN and YN
individually and XN and YN are asymptotically free. The theory of second order
freeness, which was developed in [60, 128, 131], provides an analogous machinery
for calculating the fluctuations of sums and products from those of the constituent
matrices, provided one has asymptotic second order freeness.

We want to emphasize that on the level of fluctuations, the theory is less robust
than on the level of expectations. In particular, whereas on the first order level it
does not make any difference for most results whether we consider real or complex
random matrices, this is not true any more for second order. What we are going to
present here is the theory of second order freeness for complex random matrices
(modelled according to the GUE). There exists also a real second order freeness
theory (modelled according to the GOE, i.e. Gaussian orthogonal ensemble); the
general structure of the real theory is the same as in the complex case, but details

© Springer Science+Business Media LLC 2017
J.A. Mingo, R. Speicher, Free Probability and Random Matrices,
Fields Institute Monographs 35, DOI 10.1007/978-1-4939-6942-5_5
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Fig. 5.1 On the left is a histogram of the eigenvalues of an instance of a 50 � 50 GUE

random matrix. The tick marks at the bottom show the actual eigenvalues. On the right we have
independently sampled a semi-circular distribution 50 times. We can see that the spacing is more
“uniform” in the eigenvalue plot (on the left). The fluctuation moments are a way of measuring this
quantitatively

are different. In particular, in the real case, there will be additional contributions in
the combinatorial formulas, which correspond to non-orientable surfaces. We will
not say more on the real case, but refer to [127, 149].

5.1 Fluctuations of GUE random matrices

To start let us return to our basic example, the GUE. Let XN be an N � N self-
adjoint Gaussian random matrix, that is, if we write XN D .fij /

N
i;jD1 with fij D

xij C p�1 yij , then fxij gi�j [ fyij gi<j is an independent set of Gaussian random
variables with

E.fij /D 0; E.x2i i /D 1=N; and E.x2ij /D E.y2ij /D 1=.2N / .for i ¤ j /:

The eigenvalue distribution of XN converges almost surely to Wigner’s semi-
circular law .2�/�1

p
4 � t 2 dt , and in particular if f is a polynomial and tr D

N�1Tr is the normalized trace, then ftr.f .XN //gN converges almost surely asN !
1 to .2�/�1

R 2
�2 f .t/

p
4 � t 2 dt . Thus, if f is a polynomial centred with respect

to the semi-circle law, i.e.

1

2�

Z 2

�2
f .t/

p
4 � t 2 dt D 0; (5.1)

then ftr.f .XN //gN converges almost surely to 0; however, if we rescale by
multiplying by N , fTr.f .XN //gN becomes a convergent sequence of random
variables, and the limiting covariances for various f ’s give the fluctuations of XN .
Assuming a growth condition on the first two derivatives of f , Johansson [104] was
able to show the result below for more general functions f , but we shall just state it
for polynomials.
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Theorem 1. Let f be a polynomial such that the centredness condition (5.1) is
satisfied and let fXN gN be the GUE. Then Tr.f .XN // converges to a Gaussian
random variable. Moreover, if fCngn are the Chebyshev polynomials of the first kind
.rescaled to Œ�2; 2�/; then fTr.Cn.XN //g1

nD1 converge to independent Gaussian
random variables with limN Tr.Cn.XN // having mean 0 and variance n.

The Chebyshev polynomials of the first kind are defined by the relation
Tn.cos �/ D cosn� . They are the orthogonal polynomials on Œ�1; 1� which
are orthogonal with respect to the arc-sine law ��1.1 � x2/�1=2. Rescaling to
the interval Œ�2; 2� means using the measure ��1.4 � x2/�1=2dx and setting
Cn.x/ D 2 Tn.x=2/. We thus have

C0.x/ D 2 C3.x/ D x3 � 3x
C1.x/ D x C4.x/ D x4 � 4x2 C 2

C2.x/ D x2 � 2 C5.x/ D x5 � 5x3 C 5x

and for n � 1; CnC1.x/ D xCn.x/ � Cn�1.x/:

The reader will be asked to prove some of the above-mentioned properties of Cn (as
well as corresponding properties of the second kind analogue Un) in Exercise 12.
We will provide a proof of Theorem 1 at the end of this chapter; see Section 5.6.1.

Recall that in the case of first order freeness, the moments of the GUE had a
combinatorial interpretation in terms of planar diagrams. These diagrams led to the
notion of free cumulants and the R-transform, which unlocked the whole theory.

For the GUE the moments f˛kgk of the limiting eigenvalue distribution are 0 for
k odd and the Catalan numbers for k even. For example, when k D 6, ˛6 D 5,
the third Catalan number, and the corresponding diagrams are the five non-crossing
pairings on [6].
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To understand the fluctuations, we shall introduce another type of planar diagram,
this time on an annulus. We shall confine our discussion to ensembles that have what
we shall call a second order limiting distribution.

Definition 2. Let fXN gN be a sequence of random matrices. We say that fXN gN
has a second order limiting distribution if there are sequences f˛kgk and f p̨;qgp;q
such that

ı for all k, ˛k D limN E.tr.Xk
N // and

ı for all p � 1 and q � 1,

p̨:q D lim
N

cov
�
Tr.Xp

N /;Tr.Xq
N /
�
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ı for all r > 2 and all integers p1; : : : ; pr � 1

lim
N
kr
�
Tr.Xp1

N /;Tr.Xp2
N /; : : : ;Tr.Xpr

N /
� D 0:

Here, kr are the classical cumulants; note that the ˛k are the limits of k1 (which
is the expectation) and p̨;q are the limits of k2 (which is the covariance).

Remark 3. Note that the first condition says that XN has a limiting eigenvalue
distribution in the averaged sense. By the second condition, the variances of
normalized traces go asymptotically like 1=N 2. Thus, by Remark 4.2, the existence
of a second order limiting distribution implies actually almost sure convergence to
the limit distribution.

We shall next show that the GUE has a second order limiting distribution. The
numbers f p̨;qgp;q that are obtained have an important combinatorial significance
as the number of non-crossing annular pairings. Informally, a pairing of the .p; q/-
annulus is non-crossing or planar if when we arrange the numbers 1, 2, 3, . . . ,
p in clockwise order on the outer circle and the numbers p C 1; : : : ; p C q in
counterclockwise order on the inner circle there is a way to draw the pairings so that
the lines do not cross and there is at least one string that connects the two circles.
For example, ˛4;2 D 8, and the eight drawings are shown below.
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In Definition 2.7, we defined a partition � of Œn� to be non-crossing if a certain
configuration, called a crossing, did not appear. A crossing was defined to be four
points a < b < c < d 2 Œn� such that a and c are in one block of � and b
and d are in another block of � . In [126] a permutation of Œp C q� was defined to
be a non-crossing annular permutation if no one of five proscribed configurations
appeared. It was then shown that under a connectedness condition, this definition
was equivalent to the algebraic condition #.�/ C #.��1�/ D p C q, where � D
.1; 2; 3; : : : ; p/.p C 1; : : : ; p C q/. In [128, §2.2] another definition was given.

Here we wish to present a natural topological definition (Definition 5) and show
that it is equivalent to the algebraic condition in [126]. The key idea is to relate a non-
crossing annular permutation to a non-crossing partition and then use an algebraic
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condition found by Biane [33]. To state the theorem of Biane (Theorem 4), it is
necessary to regard a partition as a permutation by putting the elements of its blocks
in increasing order. It is also convenient not to distinguish notationally between a
partition and the corresponding permutation.

As before, we denote by #.�/ the number of blocks or cycles of � . We let .i; j /
denote the transposition that switches i and j .

The following theorem tells us when a permutation came from a non-crossing
partition. See [137, Prop. 23.23] for a proof. The proof uses induction and two
simple facts about permutations.

ı If � 2 Sn and i; j 2 Œn�, then

#.� .i; j // D #.�/C 1 if i and j are in the same cycle of �

#.� .i; j // D #.�/ � 1if i and j are in different cycles of �:

ı If j�j is the minimum number of factors among all factorizations of � into a
product of transpositions, then

j�j C #.�/ D n: (5.2)

Theorem 4. Let �n denote the permutation in Sn which has the one cycle .1; 2; 3;
: : : ; n/. For all � 2 Sn, we have

#.�/C #.��1�n/ � nC 1I (5.3)

and � , considered as a partition, is non-crossing if and only if

#.�/C #.��1�n/ D nC 1: (5.4)

Definition 5. The .p; q/-annulus is the annulus with the integers 1 to p arranged
clockwise on the outside circle and pC1 to pCq arranged counterclockwise on the
inner circle. A permutation � in SpCq is a non-crossing permutation on the .p; q/-
annulus (or just a non-crossing annular permutation) if we can draw the cycles of
� between the circles of the annulus so that:

(i) the cycles do not cross,
(ii) each cycle encloses a region between the circles homeomorphic to the disc

with boundary oriented clockwise, and
(iii) at least one cycle connects the two circles.

We denote by SNC .p; q/ the set of non-crossing permutations on the .p; q/-annulus.
The subset consisting of non-crossing pairings on the .p; q/-annulus is denoted by
NC2.p; q/.
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Example 6. Let p D 5 and q D 3 and �1 D .1; 2; 8; 6; 5/.3; 4; 7/ and �2 D
.1; 2; 8; 6; 5/.3; 7; 4/. Then �1 is a non-crossing permutation of the .5; 3/-annulus;
we can find a drawing which satisfies (i) and (ii) of Definition 5:

1
2

34

5

6
7

8

But for �2 we can find a drawing satisfying one of (i) or (ii) but not both. Notice also
that if we try to draw �1 on a disc, we will have a crossing, so �1 is non-crossing on
the annulus but not on the disc. See also Fig. 5.2.

Notice that when we have a partition � of Œn� and we want to know if � is non-
crossing in the disc sense, property (ii) of Definition 5 is automatic because we
always put the elements of the blocks of � in increasing order.

Remark 7. Note that in general we have to distinguish between non-crossing
annular permutations and the corresponding partitions. On the disc, the non-crossing
condition ensures that for each � 2 NC.n/ there is exactly one corresponding non-
crossing permutation (by putting the elements in a block of � in increasing order
to read it as a cycle of a permutation). On the annulus, however, this one-to-one
correspondence breaks down. Namely, if � 2 SNC .p; q/ has only one through-
cycle (a through-cycle is a cycle which contains elements from both circles), then the
block structure of this cycle is not enough to recover its cycle structure. For example,
in SNC .2; 2/; we have the following four non-crossing annular permutations:

.1; 2; 3; 4/; .1; 2; 4; 3/; .1; 3; 4; 2/; .1; 4; 3; 2/:

As partitions all four are the same, having one block f1; 2; 3; 4g; but as permutations
they are all different. It is indeed the permutations, and not the partitions, which are
relevant for the description of the fluctuations. One should, however, also note that
this difference disappears if one has more than one through-cycle. Also for pairings
there is no difference between non-crossing annular permutations and partitions.
This justifies the notation NC2.p; q/ in this case.

Exercise 1. (i) Let �1 and �2 be two non-crossing annular permutations in
SNC .p; q/, which are the same as partitions. Show that if they have more than one
through-cycle, then �1 D �2.

(ii) Show that the number of non-crossing annular permutations which are the
same as partitions is, in the case of one through-cycle, given by mn, where m and
n are the number of elements of the through-cycle on the first and the second circle,
respectively.
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1

2

3

4

8

7

5

6

1

2

34

5
6

7 8

Fig. 5.2 Consider the permutation � D .1; 5/.2; 6/.3; 4; 7; 8/. As a disc permutation, it cannot be
drawn in a non-crossing way. However, on the .5; 3/-annulus, it has a non-crossing presentation.
Note that we have ��1�5;3 D .1; 6; 4/.2; 8/.3/.5/.7/. So #.�/C #.��1�5;3/ D 8

Theorem 8. Let � D .1; 2; 3; : : : ; p/.p C 1; : : : ; p C q/ and � 2 SpCq be a
permutation that has at least one cycle that connects the two cycles of � . Then � is
a non-crossing permutation of the .p; q/-annulus if and only if #.�/C #.��1�/ D
p C q.

Proof: We must show that the topological property of Definition 5 is equivalent to
the algebraic property #.�/C #.��1�/ D p C q. A similar equivalence was given
in Theorem 4; and we shall use this equivalence to prove Theorem 8.

To begin let us observe that if � is a non-crossing partition of Œp C q�, we can
deform the planar drawing for � on the disc into a drawing on the annulus satisfying
the two first conditions of Definition 5 as follows. We deform the disc so that it
appears as an annulus with a channel with one side between p and p C 1 and the
other between p C q and 1. We then close the channel and obtain a non-crossing
permutation of the .p; q/-annulus.
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We have thus shown that every non-crossing partition of Œp C q� that satisfies
the connectedness condition gives a non-crossing annular permutation of the .p; q/-
annulus. We now wish to reverse the procedure.

So let us start with � a non-crossing permutation of the .p; q/-annulus. We chose
i such that i and �.i/ are on different circles, in fact we can assume that 1 � i � p

and p C 1 � �.i/ � p C q. Such an i always exists because � always has at
least one cycle that connects the two circles. We then cut the annulus by making a
channel from i to ��1�.i/. In the illustration below, i D 4.
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Hence, our � is non-crossing in the disc; however, the order of the points on
the disc produced by cutting the annulus is not the standard order – it is the order
given by

Q� D � .i; ��1�.i//

D .1; : : : ; i; �.i/; �.�.i//; : : : ; p C q; p C 1; : : : ; ��1.�.i//; �.i/; : : : ; p/:

Thus, we must show that for i and �.i/ on different circles, the following are
equivalent:

(a) � is non-crossing in the disc with respect to Q� D � .i; ��1�.i//, and
(b) #.�/C #.��1�/ D p C q.

If i and �.i/ are in different cycles of � , then i and ��1�.i/ are in the same cycle
of ��1� . Hence, #.��1� .i; ��1�.i/// D #.��1�/ C 1. Thus, #.�/ C #.��1 Q�/
D #.�/C #.��1�/C 1. Since Q� has only one cycle, we know, by Theorem 4, that
� is non-crossing with respect to Q� if and only if #.�/ C #.��1 Q�/ D p C q C 1.
Thus, � is non-crossing with respect to Q� if and only if #.�/C #.��1�/ D p C q.
This shows the equivalence of (a) and (b). ut

This result is part of a more general theory of maps on surfaces found by Jacques
[102] and Cori [61]. Suppose we have two permutations � and � in Sn and that �
and � generate a subgroup of Sn that acts transitively on Œn�. Suppose also that � has
k cycles and we draw k discs on a surface of genus g and arrange the points in the
cycles of � around the circles so that when viewed from the outside, the numbers
appear in the same order as in the cycles of � . We then draw the cycles of � on the
surface such that:

ı the cycles do not cross, and
ı each cycle of � is the oriented boundary of a region on the sphere, oriented with

an outward pointing normal, homeomorphic to a disc.



5.1 Fluctuations of GUE random matrices 129

The genus of � relative to � is the smallest g such that the cycles of � can be drawn
on a surface of genus g. When g D 0, i.e. we can draw � on a sphere, we say that
� is � -planar.

In the example below, we let n D 3, � D .1; 2; 3/ and in the first example
�1 D .1; 2; 3/ and in the second �2 D .1; 3; 2/.

1
2

3 3 1
2

Since �1 and �2 have only one cycle, there is no problem with the blocks crossing;
it is only to get the correct orientation that we must add a handle for �2.

Theorem 9. Suppose �; � 2 Sn generate a subgroup which acts transitively on Œn�
and g is the genus of � relative to � . Then

#.�/C #.��1�/C #.�/ D nC 2.1 � g/: (5.5)

Sketch The idea of the proof is to use Euler’s formula for the surface of genus g
on which we have drawn the cycles of � , as in the definition. Each cycle of � is a disc
numbered according to � , and we shrink each of these to a point to make the vertices
of our simplex. Thus, V D #.�/. The resulting surface will have one face for each
cycle of � and one for each cycle of ��1� . Thus, F D #.�/C #.��1�/. Finally the
edges will be the boundaries between the cycles of � and the cycles of ��1� , and
there will be n of these. Thus, 2.1�g/ D F �ECV D #.�/C#.��1�/�nC#.�/.

ut
Remark 10. The requirement that the subgroup generated by � and � acts transi-
tively is needed to get a connected surface. In the disconnected case, we can replace
2.1 � g/ by the Euler characteristic of the union of the surfaces.

Now let us return to our discussion of the second order limiting distribution of
the GUE.

Theorem 11. Let fXN gN be the GUE. Then fXN gN has a second order limiting
distribution with fluctuation moments f p̨;qgp;q where p̨;q is the number of non-
crossing pairings on a .p; q/-annulus.

Proof: We have already seen in Theorem 1.7 that

˛k D lim
N

E.tr.Xk
N //
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exists for all k and is given by the number of non-crossing pairings of Œk�. Let us
next fix r � 2 and positive integers p1; p2; : : : ; pr , and we shall find a formula for
kr.Tr.Xp1

N /;Tr.Xp2
N /; : : : ;Tr.Xpr

N //.
We shall let p D p1 C p2 C � � � C pr and � be the permutation in Sp with the r

cycles

� D .1; 2; 3; : : : ; p1/.p1C1; : : : ; p1Cp2/ � � � .p1C� � �Cpr�1C1; : : : ; p1C� � �Cpr/:
Now, with XN D .fij /

N
i;jD1,

E.Tr.Xp1
N / � � � Tr.Xpr

N //D
X

E.fi1;i2fi2;i3 � � � fip1 ;i1 � fip1C1;ip1C2
� � � fip1Cp2

;ip1C1
� � � �

� � � �fip1C���Cpr�1C1;ip1C���Cpr�1C2
� � �fip1C���Cpr ;ip1C���Cpr�1C1

/

D
X

E.fi1;i�.1/ � � � fip;i�.p/ /
because the indices of the f ’s follow the cycles of � .

Recall that Wick’s formula (1.8) tells us how to calculate the expectation of a
product of Gaussian random variables. In particular, the expectation will be 0 unless
the number of factors is even. Thus, we must have p even and

E.fi1;i�.1/ � � � fip;i�.p/ / D
X

�2P2.p/
E�.fi1;i�.1/ ; : : : ; fip;i�.p/ /:

Given a pairing � and a pair .s; t/ of � , E.fis ;i�.s/fit ;i�.t/ / will be 0 unless is D
i�.t/ and it D i�.s/. Following our usual convention of regarding partitions as
permutations and a p-tuple .i1; : : : ; ip/ as a function i W Œp� ! ŒN �, this last
condition can be written as i.s/ D i.�.�.s/// and i.t/ D i.�.�.t///. Thus, for
E�.fi1;i�.1/ ; : : : ; fip;i�.p/ / to be non-zero, we require i D i ı � ı� or the function i to
be constant on the cycles of �� . When E�.fi1;i�.1/ ; : : : ; fip;i�.p/ / 6D 0, it equalsN�p=2
(by our normalization of the variance, E.jfij j2/ D 1=N ). An important quantity will
then be the number of functions i W Œp� ! ŒN � that are constant on the cycles of �� ;
since we can choose the value of the function arbitrarily on each cycle, this number
is N #.��/. Hence,

E.Tr.Xp1
N / � � � Tr.Xpr

N // D
NX

i1;:::;ipD1

X

�2P2.p/
E�.fi1;i�.1/ ; : : : ; fip;i�.p/ /

D
X

�2P2.p/

NX

i1;:::;ipD1
E�.fi1;i�.1/ ; : : : ; fip;i�.p/ /

D
X

�2P2.p/
N�p=2 � #

�fi W Œp� ! ŒN � j i D i ı � ı �g�

D
X

�2P2.p/
N #.��/�p=2:
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The next step is to find which pairings � contribute to the cumulant kr . Recall
that if Y1; : : : ; Yr are random variables, then

kr.Y1; : : : ; Yr / D
X

�2P.r/
E� .Y1; Y2; : : : ; Yr / 
.�; 1r /

where 
 is the Möbius function of the partially ordered set P.r/; see Exercise 1.14.
If � is a partition of Œr�, there is an associated partition Q� of Œp� where each block of
Q� is a union of cycles of � ; in fact if s and t are in the same block of � , then the rth

and sth cycles of �

.p1C� � �Cps�1C1; : : : ; p1C� � �Cps/ and .p1C� � �Cpt�1C1; : : : ; p1C� � �Cpt /

are in the same block of Q� . Using the same calculation as was used above, we have
for � 2 P.r/

E� .Tr.Xp1
N /; : : : ;Tr.Xpr

N // D
X

�2P2.p/
��Q�

N #.��/�p=2:

Now given � 2 P.p/, we let O� be the partition of Œr� such that s and t are in the
same block of O� if there is a block of � that contains both elements of sth and t th

cycles of � . Thus,

kr.Tr.Xp1
N /; : : : ;Tr.Xpr

N // D
X

�2P.r/

.�; 1r /

X

�2P2.p/
��Q�

N #.��/�p=2

D
X

�2P2.p/
N #.��/�p=2 X

�2P.r/
�� O�


.�; 1r /:

A fundamental fact of the Möbius function is that for an interval Œ�1; �2� in P.r/
we have

P
�1����2 
.�; �2/ D 0 unless �1 D �2 in which case the sum is 1. Thus,P

�� O� 
.�; 1r / D 0 unless O� D 1r in which case the sum is 1. Hence,

kr.Tr.Xp1
N /; : : : ;Tr.Xpr

N // D
X

�2P2.p/
O�D1r

N #.��/�p=2:

When O� D 1r , the subgroup generated by � and � acts transitively on Œp�, and
thus Euler’s formula (5.5) can be applied. Thus, for the � which appear in the sum,
we have
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#.��/ D #.��1�/

D p C 2.1 � g/ � #� � #�

D p C 2.1 � g/ � p=2 � r
D p=2C 2.1 � g/ � r;

and thus #.��/ � p=2 D 2 � r � 2g. So the leading order of kr , corresponding to
the � -planar � , is given by N2�r . Taking the limit N ! 1 gives the assertion. It
shows that kr goes to zero for r > 2, and for r D 2 the limit is given by the number
of � -planar � , i.e. by #.NC2.p; q//. ut
5.2 Fluctuations of several matrices

Up to now, we have looked on the limiting second order distribution of one GUE

random matrix. One can generalize those calculations quite easily to the case of
several independent GUE random matrices.

Exercise 2. Suppose X.N/
1 ; : : : ; X

.N/
s are s independent N � N GUE random

matrices. Then we have, for all p; q � 1 and for all 1 � r1; : : : ; rpCq � s that

lim
N
k2
�
Tr.X.N/

r1
� � �X.N/

rp
/;Tr.X.N/

rpC1
� � �X.N/

rpCq
/
� D #

�
NC

.r/
2 .p; q/

�
;

where NC.r/
2 .p; q/ denotes the non-crossing annular pairings which respect the

colour, i.e. those � 2 NC2.p; q/ such that .k; l/ 2 � only if rk D rl . Furthermore,
all higher order cumulants of unnormalized traces go to zero.

Maybe more interesting is the situation where we also include deterministic
matrices. Similarly to the first order case, we expect to see some second order
freeness structure appearing there. Of course, the calculation of the asymptotic
fluctuations of mixed moments in GUE and deterministic matrices will involve the
(first order) limiting distribution of the deterministic matrices. Let us first recall what
we mean by this.

Definition 12. Suppose that we have, for each N 2 N, deterministic N � N

matrices D.N/
1 ; : : : ;D

.N/
s 2 MN.C/ and a non-commutative probability space

.A; '/ with elements d1; : : : ; ds 2 A such that we have for each polynomial
p 2 Chx1; : : : ; xsi in s non-commuting variables

lim
N

tr
�
p.D

.N/
1 ; : : : ;D.N/

s /
� D '

�
p.d1; : : : ; ds/

�
:

Then we say that .D
.N/
1 ; : : : ;D

.N/
s /N has a limiting distribution given by

.d1; : : : ; ds/ 2 .A; '/.
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Theorem 13. Suppose X.N/
1 ; : : : ; X

.N/
s are s independent N � N GUE random

matrices. Fix p; q � 1 and let fD.N/
1 ; : : : ;D

.N/
pCqg � MN.C/ be deterministicN �N

matrices with limiting distribution given by d1; : : : ; dpCq 2 .A; '/. Then we have
for all 1 � r1; : : : ; rpCq � s that

lim
N
k2

�
Tr.D.N/

1 X.N/
r1

� � �D.N/
p X.N/

rp
/;Tr.D.N/

pC1X
.N/
rpC1

� � �D.N/
pCqX

.N/
rpCq

/
�

D
X

�2NC.r/2 .p;q/

'�p;q� .d1; : : : ; dpCq/;

where the sum runs over all � 2 NC2.p; q/ such that .k; l/ 2 � only if rk D rl and
where

�p;q D .1; : : : ; p/.p C 1; : : : ; p C q/ 2 SpCq: (5.6)

Proof: Let us first calculate the expectation of the product of the two traces. For
better legibility, we suppress in the following the upper index N . We write as usual
X
.N/
r D .f

.r/
ij / and D.N/

p D .d
.p/
ij /. We will denote by P .r/

2 .p C q/ the pairings

of Œp C q� which respect the colour r D .r1; : : : ; rpCq/ and by P .r/
2;c .p C q/ the

pairings in P .r/
2 .p C q/ where at least one pair connects a point in Œp� to a point in

Œp C 1; p C q� D fp C 1; p C 2; : : : ; p C qg.

E
�
Tr.D1Xr1 � � �DpXrp /Tr.DpC1XrpC1

� � �DpCqXrpCq
/
�

D
X

i1;:::;ipCq

j1;:::;jpCq

E
�
d
.1/
i1j1
f
.r1/
j1i2

d
.2/
i2j2

� � � d.p/ipjp
f
.rp/

jpi1
� d.pC1/

ipC1jpC1
� � � d.pCq/

ipCqjpCq
f
.rpCq/

jpCq ipC1

�

D
X

i1;:::;ipCq

j1;:::;jpCq

E
�
f
.r1/
j1i2

� � � f .rpCq/

jpCq ipC1

�
d
.1/
i1j1

� � � d.pCq/
ipCqjpCq

D
X

i1;:::;ipCq

j1;:::;jpCq

X

�2P.r/
2 .pCq/

N�.pCq/=2ıj;iı�p;qı� � d.1/i1j1 � � � d.pCq/
ipCqjpCq

D N�.pCq/=2 X

�2P.r/
2 .pCq/

X

i1;:::;ipCq

j1;:::;jpCq

jDiı�p;qı�

d
.1/
i1j1

� � � d.pCq/
ipCqjpCq

D N�.pCq/=2 X

�2P.r/
2 .pCq/

X

i1;:::;ipCq

d
.1/
i1;i�p;qı�.1/

� � � d.pCq/
ipCq ;i�p;qı�.pCq/

D N�.pCq/=2 X

�2P.r/
2 .pCq/

Tr�p;q� .D1; : : : ;DpCq/:
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Thus, by subtracting the disconnected pairings, we get for the covariance

k2.Tr.D1Xr1 � � �DpXrp /;Tr.DpC1XrpC1
� � �DpCqXrpCq

//

D
X

�2P.r/
2;c .pCq/

N�.pCq/=2Tr�p;q� .D1; : : : ;DpCq/

D
X

�2P.r/
2;c .pCq/

N #.�p;q�/�.pCq/=2tr�p;q� .D1; : : : ;DpCq/:

For � 2 P2;c.p C q/, we have #.�/C #.�p;q�/C #.�p;q/ D p C q C 2.1 � g/,
and hence #.�p;q�/ � pCq

2
D �2g. The genus g is always � 0 and equal to 0 only

when � is non-crossing. Thus,

k2.Tr.D1Xr1 � � �DpXrp /;Tr.DpC1XrpC1
� � �DpCqXrpCq

//

D
X

�2NC.r/2 .p;q/

tr�p;q� .D1; : : : ;DpCq/CO.N�1/;

and the assertion follows by taking the limit N ! 1. ut
Remark 14. Note that Theorem 13 shows that the variance of the corresponding
normalized traces is O.N�2/. Indeed the theorem shows that the variance of the
unnormalized traces converges, so by normalizing the trace, we get that the variance
of the normalized traces decreases like N�2. This proves then the almost sure
convergence claimed in Theorem 4.4.

We would like to replace the deterministic matrices D.N/
1 ; : : : ;D

.N/
pCq in Theo-

rem 13 by random matrices and see if we can still conclude that the variances of
the normalized mixed traces decrease like N�2. As was observed at the end of
Section 4.2, we have to assume more than just the existence of a limiting distribution
of the D.N/’s. In the following definition, we isolate this additional property.

Definition 15. We shall say the random matrix ensemble fD.N/
1 ; : : : ;D

.N/
p gN has

bounded higher cumulants if we have for all r � 2 and for any unnormalized traces
Y1; : : : ; Yr of monomials in D.N/

1 ; : : : ;D
.N/
p that

sup
N

jkr.Y1; : : : ; Yr /j < 1:

Note that this is a property of the algebra generated by the D’s. We won’t prove
it here, but for many examples, we have kr.Y1; : : : ; Yr / D O.N2�r / with the Yi ’s
as above. These examples include the GUE, Wishart, and Haar distributed unitary
random matrices.
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Theorem 16. Suppose X.N/
1 ; : : : ; X

.N/
s are s independent N � N GUE random

matrices. Fix p; q � 1 and let fD.N/
1 ; : : : ;D

.N/
pCqg � MN.C/ be random N � N

matrices with a limiting distribution and with bounded higher cumulants. Then we
have for all 1 � r1; : : : ; rpCq � s that

k2

�
tr.D.N/

1 X.N/
r1

� � �D.N/
p X.N/

rp
/; tr.D.N/

pC1X
.N/
rpC1

� � �D.N/
pCqX

.N/
rpCq

/
�

D O.N�2/:

Proof: We rewrite the proof of Theorem 13 with the change that the D’s are now
random to get

E
�
Tr.D1Xr1 � � �DpXrp /Tr.DpC1XrpC1

� � �DpCqXrpCq
/
�

D N�.pCq/=2 X

�2P.r/
2 .pCq/

E
�
Tr�p;q� .D1; : : : ;DpCq/

�
;

and

E
�
Tr.D1Xr1 � � �DpXrp /

� � E
�
Tr.DpC1XrpC1

� � �DpCqXrpCq
/
�

D N�.pCq/=2 X

�12P.r/
2 .p/

�22P.r/
2 .q/

E
�
Tr�p�1.D1; : : : ;Dp/

� � E
�
Tr�q�2.DpC1; : : : ;DpCq/

�
:

Here, �p denotes as usual the one cycle permutation �p D .1; 2; : : : ; p/ 2 Sp and

similar for �q . We let P .r/

2;d .pCq/ be the pairings in P .r/
2 .pCq/which do not connect

Œp� to ŒpC1; pCq�. Then we can write P .r/
2 .pCq/ D P .r/

2;c .pCq/[P .r/

2;d .pCq/,

as a disjoint union. Moreover, we can identify P .r/

2;d .p C q/ with P .r/
2 .p/� P .r/

2 .q/.
Thus, by subtracting the disconnected pairings, we get for the covariance

k2
�
Tr.D1Xr1 � � �DpXrp /;Tr.DpC1XrpC1

� � �DpCqXrpCq
/
�

D
X

�2P.r/
2;c .pCq/

N�.pCq/=2E
�
Tr�p;q� .D1; : : : ;DpCq/

�

C
X

�12P.r/
2 .p/

�22P.r/
2 .q/

N�.pCq/=2E
�
Tr�p;q�1�2.D1; : : : ;DpCq/

�

�
X

�12P.r/
2 .p/

�22P.r/
2 .q/

N�.pCq/=2E
�
Tr�p�1.D1; : : : ;Dp/

� � E
�
Tr�q�2.DpC1; : : : ;DpCq/

�
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D
X

�2P.r/
2;c .pCq/

N�.pCq/=2E
�
Tr�p;q� .D1; : : : ;DpCq/

�

C
X

�12P.r/
2 .p/

�22P.r/
2 .q/

N�.pCq/=2k2
�
Tr�p�1.D1; : : : ;Dp/;Tr�q�2.DpC1; : : : ;DpCq/

�
:

We shall show that both of these terms are O.1/, and thus after normalizing the
traces, k2 D O.N�2/. For the first term, this is the same argument as in the proof
of Theorem 5.13. So let �1 2 P .r/

2 .p/ and �2 2 P .r/
2 .q/. We let s D #.�p�1/

and t D #.�q�2/. Since �p�1 has s cycles, we may write Tr�p�1.D1; : : : ;Dp/ D
Y1 � � �Ys with each Yi of the form Tr.Dl1 � � �Dlk /. Likewise since �q�2 has t cycles,
we may write Tr�q�2.DpC1; : : : ;DpCq/ D YsC1 � � �YsCt with the Y ’s of the same
form as before. Now by our assumption on the D’s, we know that for u � 2 we
have ku.Yi1 ; : : : ; Yiu/ D O.1/. Using the product formula for classical cumulants,
see Equation (1.16), we have that

k2.Y1 � � �Ys; YsC1 � � �YsCt / D
X

	2P.sCt/
k	 .Y1; : : : ; YsCt /

where 	 must connect Œs� to Œs C 1; s C t �. Now k	 .Y1; : : : ; YsCt / D O.N c/ where
c is the number of singletons in 	 . Thus, the order of N�.pCq/=2k	 .Y1; : : : ; YsCt / is
Nc�.pCq/=2. So we are reduced to showing that c � .p C q/=2. Since 	 connects
Œs� to Œs C 1; s C t �, 	 must have a block with at least two elements. Thus, the
number of singletons is at most s C t � 2. But s D #.�p�1/ � p=2 C 1 and
t D #.�q�2/ � q=2C 1 by Corollary 1.6. Thus, c � .p C q/=2 as claimed. ut
5.3 Second order probability space and second order freeness

Recall that a non-commutative probability space .A; '/ consists of an algebra over
C and a linear functional ' W A ! C, with '.1/ D 1. Such a non-commutative
probability space is called tracial, if ' is also a trace, i.e. if '.ab/ D '.ba/ for all
a; b 2 A.

To provide the general framework for second order freeness, we introduce now
the idea of a second order probability space, .A; '; '2/.
Definition 17. Let .A; '/ be a tracial non-commutative probability space. Suppose
that we have in addition a bilinear functional '2 W A � A ! C such that:

ı '2 is symmetric in its two variables, i.e. we have '2.a; b/ D '2.b; a/ for all
a; b 2 A

ı '2 is tracial in each variable
ı '2.1; a/ D 0 D '2.a; 1/ for all a 2 A.

Then we say that .A; '; '2/ is a second order non-commutative probability space.
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Usually our second order limit elements will arise as limits of random matrices,
where ' encodes the asymptotic behaviour of the expectation of traces, whereas
'2 does the same for the covariances of traces. As we have seen before, in typical
examples (as the GUE), we should consider the expectation of the normalized trace
tr, but the covariances of the unnormalized traces Tr.

As we have seen in Theorem 16, one usually also needs some control over the
higher order cumulants; requiring bounded higher cumulants for the unnormalized
traces of the D’s was enough to control the variances of the mixed unnormalized
traces. However, as in the case of one matrix (see Definition 2), we will in the
following definition require instead of boundedness of the higher cumulants the
stronger condition that they converge to zero. This definition from [131] makes some
arguments easier and is usually satisfied in all relevant random matrix models. Let
us point out that, as remarked in [127], the whole theory could also be developed
with the boundedness condition instead.

Definition 18. Suppose we have a sequence of random matrices fA.N/1 ; : : : ; A
.N/
s gN

and random variables a1; : : : ; as in a second order non-commutative probability
space. We say that .A.N/1 ; : : : ; A

.N/
s /N has the second order limit .a1; : : : ; as/ if we

have:

ı for all p 2 Chx1; : : : ; xsi

lim
N

E
�

tr.p.A.N/1 ; : : : ; A.N/s //
�

D '
�
p.a1; : : : ; as/

�I

ı for all p1; p2 2 Chx1; : : : ; xsi

lim
N

cov
�

Tr.p1.A
.N/
1 ; : : : ; A.N/s //;Tr.p2.A

.N/
1 ; : : : ; A.N/s //

�
D

'2
�
p1.a1; : : : ; as/; p2.a1; : : : ; as/

�I

ı for all r � 3 and all p1; : : : ; pr 2 Chx1; : : : ; xsi

lim
N
kr

�
Tr.p1.A

.N/
1 ; : : : ; A.N/s //; : : : ;Tr.pr.A

.N/
1 ; : : : ; A.N/s //

�
D 0:

Remark 19. As in Remark 3, the second condition implies that we have almost
sure convergence of the (first order) distribution of the fA.N/1 ; : : : ; A

.N/
s gN . So in

particular, if the a1; : : : ; as are free, then the existence of a second order limit
includes also the fact that A.N/1 ; : : : ; A

.N/
s are almost surely asymptotically free.

Example 20. A trivial example of second order limit is given by deterministic
matrices. If fD.N/

1 ; : : : ;D
.N/
s g are deterministic N � N matrices with limiting

distribution, then kr.Y1; : : : ; Yr / D 0 for r > 1 and for any polynomials Yi in
the D’s. So .D.N/

1 ; : : : ;D
.N/
s /N has a second order limiting distribution; ' is given

by the limiting distribution and '2 is identically zero.
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Example 21. Define .A; '; '2/ by A D Chsi and

'.sk/ D #
�
NC2.k/

�
and '2.s

p; sq/ D #
�
NC2.p; q/

�
: (5.7)

Then .A; '; '2/ is a second order probability space and s is, by Theorem 11, the
second order limit of a GUE random matrix. In first order, s is, of course, just a
semi-circular element in .A; '/. We will address a distribution given by (5.7) as a
second order semi-circle distribution.

Exercise 3. Prove that the second order limit of a Wishart random matrix with rate
c (see Section 4.5.1) is given by .A; '; '2/ with A D Chxi and

'.xn/ D
X

�2NC.n/
c#.�/ and '2.x

m; xn/ D
X

�2SNC .m;n/
c#.�/: (5.8)

We will address a distribution given by (5.8) as a second order free Poisson
distribution (of rate c).

Example 22. Define .A; '; '2/ by A D Chu; u�1i and, for k; p; q 2 Z,

'.uk/ D
(
0; k ¤ 0

1; k D 0
and '2.u

p; uq/ D jpjıp;�q: (5.9)

Then .A; '; '2/ is a second order probability space, and u is the second order limit
of Haar distributed unitary random matrices. In first order u is of course just a Haar
unitary in .A; '/. We will address a distribution given by (5.9) as a second order
Haar unitary.

Exercise 4. Prove the statement from the previous example: Show that for Haar
distributed N �N unitary random matrices U we have

lim
N
k2 .Tr.U p/;Tr.U q// D

(
jpj; if p D �q
0; otherwise

and that the higher order cumulants of unnormalized traces of polynomials in U and
U � go to zero.

Example 23. Let us now consider the simplest case of several variables, namely,
the limit of s independent GUE. According to Exercise 2, their second order limit is
given by .A; '; '2/ where A D Chx1; : : : ; xsi and

'
�
xr.1/ � � � xr.k/

� D #
�
NC

.r/
2 .k/

�

and

'2
�
xr.1/ � � � xr.p/; xr.pC1/ � � � xr.pCq/

� D #
�
NC

.r/
2 .p; q/

�
:



5.3 Second order probability space and second order freeness 139

In the same way as we used in Chapter 1 the formula for ' as our guide to
the definition of the notion of freeness, we will now have a closer look on the
corresponding formula for '2 and try to extract from this a concept of second order
freeness.

As in the first order case, let us consider '2 applied to alternating products of
centred variables, i.e. we want to understand

'2
�
.x
m1
i1

� cm11/ � � � .xmpip � cmp1/; .xn1j1 � cn11/ � � � .xnqjq � cnq1/
�
;

where cm WD '.xmi / (which is independent of i ). The variables are here assumed to
be alternating in each argument, i.e. we have

i1 6D i2 6D � � � 6D ip�1 6D ip and j1 6D j2 6D � � � 6D jq�1 6D jq:

In addition, since the whole theory relies on '2 being tracial in each of its arguments
(as the limit of variances of traces), we will actually assume that it is alternating in
a cyclic way, i.e. that we also have ip 6D i1 and jq 6D j1.

Let us put m WD m1 C � � � C mp and n WD n1 C � � � C nq . Furthermore, we call
the consecutive numbers corresponding to the factors in our arguments “intervals”;
so the intervals on the first circle are

.1; : : : ; m1/; .m1 C 1; : : : ; m1 Cm2/; : : : ; .m1 C � � � Cmp�1 C 1; : : : ; m/;

and the intervals on the second circle are

.mC 1; : : : ; mC n1/; : : : ; .mC n1 C � � � C nq�1 C 1; : : : ; mC n/:

By the same arguing as in Chapter 1, one can convince oneself that the subtraction
of the means has the effect that instead of counting all � 2 NC2.m; n/, we count
now only those where each interval is connected to at least one other interval. In the
first order case, because of the non-crossing property, there were no such � , and the
corresponding expression was zero. Now, however, we can connect an interval from
one circle to an interval of the other circle, and there are possibilities to do this in
a non-crossing way. Renaming ak WD x

mk
ik

� cmk1 and bl WD x
nl
jl

� cnl 1 leads then
exactly to the formula which will be our defining property of second order freeness
in the next definition.

Definition 24. Let .A; '; '2/ be a second order non-commutative probability space
and .Ai /i2I a family of unital subalgebras of A. We say that .Ai /i2I are free
of second order if (i) the subalgebras .Ai /i2I are free of first order, i.e. in
the sense of §1.11, and (ii) the fluctuation moments of centred and cyclically
alternating elements can be computed from their ordinary moments in the following
way. Recall that a1; : : : ; an 2 [iAi are cyclically alternating if ai 2 Aji and
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Fig. 5.3 The spoke diagram
for � D .1; 8/.2; 7/.3; 12/

.4; 11/.5; 10/.6; 9/. For this
permutation, we have
'�.a1; : : : ; a12/ D
'.a1a8/'.a2a7/'.a3a12/

'.a4a11/'.a5a10/'.a6a9/

1

2

3

4

5

6

7
8

9

10

11

12

j1 6D j2 6D � � � jn 6D j1. The second condition (ii) is that given two tuples a1; : : : ; am
and b1; : : : ; bn which are centred and cyclically alternating, then for .m; n/ 6D .1; 1/

'2.a1 � � � am; b1 � � � bn/ D ımn

n�1X

kD0

nY

iD1
'.aibk�i /; (5.10)

where the indices of bi are interpreted modulo n; when m D n D 1, we have
'2.a1; b1/ D 0 if a1 and b1 come from different Ai ’s.

Second order freeness for random variables or for sets is, as usual, defined as
second order freeness for the unital subalgebras generated by the variables or the
sets, respectively.

Equation (5.10) has the following diagrammatic interpretation. A non-crossing
permutation of an .m; n/-annulus is called a spoke diagram if all cycles have just
two elements .i; j /, and the elements are on different circles, i.e. i 2 Œm� and j 2
ŒmC 1;mCn�; see Fig. 5.3. We can only have a spoke diagram ifm D n; the set of
spoke diagrams is denoted by Sp.n/. With this notation, Equation (5.10) can also
be written as

'2.a1 � � � am; b1 � � � bn/ D ımn
X

�2Sp.n/
'�.a1; : : : ; am; b1; : : : ; bn/: (5.11)

Exercise 5. Let A1;A2 	 A be free of second order in .A; '; '2/ and consider
a1; a2 2 A1 and b1; b2 2 A2. Show that the definition of second order freeness
implies the following formula for the first non-trivial mixed fluctuation moment:

'2.a1b1; a2b2/ D '.a1a2/'.b1b2/ � '.a1a2/'.b1/'.b2/
� '.a1/'.a2/'.b1b2/C '.a1/'.a2/'.b1/'.b2/

C '2.a1; a2/'.b1/'.b2/C '.a1/'.a2/'2.b1; b2/:

Let us define now the asymptotic version of second order freeness.
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Definition 25. We say fA.N/1 ; : : : ; A
.N/
s gN and fB.N/

1 ; : : : ; B
.N/
t gN are asymptoti-

cally free of second order if there is a second order non-commutative probability
space .A; '; '2/ and elements a1; : : : ; as; b1; : : : ; bt 2 A such that

ı .A
.N/
1 ; : : : ; A

.N/
s ; B

.N/
1 ; : : : ; B

.N/
t /N has a second order limit .a1; : : : ; as;

b1; : : : ; bt /

ı fa1; : : : ; asg and fb1; : : : ; btg are free of second order.

Remark 26. Note that asymptotic freeness of second order is much stronger than
having almost sure asymptotic freeness (of first order). According to Remark 19,
we can guarantee the latter by the existence of a second order limit plus freeness
of first order in the limit. Having also freeness of second order in the limit makes a
much more precise statement on the asymptotic structure of the covariances.

In Example 23, we showed that several independent GUE random matrices are
asymptotically free of second order. The same is also true if we include deterministic
matrices. This follows from the explicit description in Theorem 13 of the second
order limit in this case. We leave the proof of this as an exercise.

Theorem 27. Let fX.N/
1 ; : : : ; X

.N/
s gN be s independent GUEs, and, in addition,

let fD.N/
1 ; : : : ;D

.N/
t gN be t deterministic matrices with limiting distribution. Then

X
.N/
1 ; : : : ; X

.N/
s , fD.N/

1 ; : : : ;D
.N/
t g are asymptotically free of second order.

Exercise 6. Prove Theorem 27 by using the explicit formula for the second order
limit distribution given in Theorem 13.

Exercise 7. Show that Theorem 27 remains also true if the deterministic matrices
are replaced by random matrices which are independent from the GUE’s and which
have a second order limit distribution. For this, upgrade first Theorem 16 to a
situation where fD.N/

1 ; : : : ;D
.N/
pCqg have a second order limit distribution.

As in the first order case, one can also show that Haar unitary random matrices are
asymptotically free of second order from deterministic matrices and, more generally,
from random matrices which have a second order limit distribution and which are
independent from the Haar unitary random matrices; this can then be used to deduce
the asymptotic freeness of second order between unitarily invariant ensembles. The
calculations in the Haar case rely again on properties of the Weingarten functions
and get a bit technical. Here we only state the results; we refer to [131] for the details
of the proof.

Definition 28. Let B1; : : : ; Bt be t N �N random matrices with entries b.k/ij (k D
1; : : : ; t ; i; j D 1; : : : ; N ). Let U 2 UN be unitary and UBkU � D . Qb.k/ij /Ni;jD1. If the

joint distribution of all entries fb.k/ij j k D 1; : : : ; t I i; j D 1; : : : ; N g is, for each
U 2 UN , the same as the joint distribution of all entries in the conjugated matrices
f Qb.k/ij j k D 1; : : : ; t I i; j D 1; : : : ; N g, then we say that the joint distribution of the
entries of B1; : : : ; Bt is unitarily invariant.
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Theorem 29. Let fA.N/1 ; : : : ; A
.N/
s gN and fB.N/

1 ; : : : ; B
.N/
t gN be two ensembles of

random matrices such that:

ı for each N , all entries of A.N/1 ; : : : ; A
.N/
s are independent from all entries of

B
.N/
1 ; : : : ; B

.N/
t

ı for each N , the joint distribution of the entries of B.N/
1 ; : : : ; B

.N/
t is unitarily

invariant
ı each of .A.N/1 ; : : : ; A

.N/
s /N and .B.N/

1 ; : : : ; B
.N/
t /N has a second order limiting

distribution.

Then fA.N/1 ; : : : ; A
.N/
s gN and fB.N/

1 ; : : : ; B
.N/
t gN are asymptotically free of second

order.

5.4 Second order cumulants

In the context of usual (first order) freeness, it was advantageous to go over from
moments to cumulants – the latter were easier to use to detect freeness, by the
characterization of the vanishing of mixed cumulants. In the same spirit, we will
now try to express also the fluctuations '2 in terms of cumulants. The following
theory of second order cumulants was developed in [60]. Let us reconsider our
combinatorial description of '2 for two of our main examples. In the case of a
second order semi-circular element (i.e. for the limit of GUE random matrices, see
Example 21), we have

'2.s
m; sn/ D #

�
NC2.m; n/

� D
X

�2NC2.m;n/
1 D

X

�2SNC .m;n/
�� : (5.12)

The latter form comes from the fact that the free cumulants �n for semi-circulars
are 1 for n D 2 and zero otherwise, i.e. �� is 1 for a non-crossing pairing and zero
otherwise. For the second order free Poisson (i.e. for the limit of Wishart random
matrices, see Exercise 3), we have

'2.x
m; xn/ D

X

�2SNC .m;n/
c#.�/ D

X

�2SNC .m;n/
�� : (5.13)

The latter form comes here from the fact that the free cumulants for a free Poisson
are all equal to c. So in both cases, the value of '2 is expressed as a sum over
the annular versions of non-crossing partitions, and each such permutation � is
weighted by a factor �� , which is given by the product of first order cumulants,
one factor �r for each cycle of � of length r . This is essentially the same formula
as for ', the only difference is that we sum over annular permutations instead over
circle partitions. However, it turns out that in general the term

X

�2SNC .m;n/
��.a1; : : : ; am; amC1; : : : ; amCn/

is only one part of '2.a1 � � � am; amC1 � � � amCn/; there will also be another contribu-
tion which involves genuine “second order cumulants”.
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To see that we need in general such an additional contribution, let us rewrite the
expression from Exercise 5 for '2.a1b1; a2b2/, for fa1; a2g and fb1; b2g being free
of second order, in terms of first order cumulants.

'2.a1b1; a2b2/ D �2.a1; a2/�2.b1; b2/C �2.a1; a2/�1.b1/�1.b2/

C �1.a1/�1.a2/�2.b1; b2/C something else:

The three displayed terms are the three non-vanishing terms �� for � 2 SNC .2; 2/

(there are of course more such � , but they do not contribute because of the vanishing
of mixed cumulants in free variables). But we have some additional contributions
which we write in the form

something else D �1;1.a1; a2/�1.b1/�1.b2/C �1.a1/�1.a2/�1;1.b1; b2/

where we have set

�1;1.a1; a2/ WD '2.a1; a2/ � �2.a1; a2/:

The general structure of the additional terms is the following. We have second
order cumulants �m;n which have as arguments m elements from the first circle and
n elements from the second circle. As one already sees in the above simple example,
one only has summands which contain at most one such second order cumulant as
factor. All the other factors are first order cumulants. So these terms can also be
written as �� , but now � is of the form � D �1 � �2 2 NC.m/ � NC.n/ where
one block of �1 and one block of �2 is marked. The two marked blocks go together
as arguments into a second order cumulant; all the other blocks give just first order
cumulants. Let us make this more rigorous in the following definition.

Definition 30. The second order non-crossing annular partitions ŒNC.m/� NC.n/�
consist of elements � D .�1;W1/ � .�2;W2/, where �1 � �2 2 NC.m/ � NC.n/
and where W1 2 �1 and W2 2 �2. The blocks W1 and W2 are designated as marked
blocks of �1 and �2, respectively. In examples, we will often mark those blocks as
boldface (Fig. 5.4).

Definition 31. Let .A; '; '2/ be a second order probability space. The second order
cumulants

�m;n W Am � An ! C

are m C n-linear functionals on A, where we distinguish the group of the first m
arguments from the group of the last n arguments. Those second order cumulants
are implicitly defined by the following moment-cumulant formula.
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Fig. 5.4 The second order
non-crossing annular partition
� D f.1; 2; 3/; .4; 7/;
.5; 6/; .8/g � f.9; 12/;
.10; 11/g. Its contribution in
the moment-cumulant
formula is �� .a1; : : : ; a12/ D
�3;2.a1; a2; a3; a9; a12/�2.a4; a7/

�2.a5; a6/�1.a8/�2.a10; a11/

1
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5

7

2

46

8 9
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'2.a1 � � � am; amC1 � � � amCn/ D
X

�2SNC .m;n/
��.a1; : : : ; amCn/C

X

�2ŒNC.m/�NC.n/�
�� .a1; : : : ; amCn/: (5.14)

Here we have used the following notation. For a � D fV1; : : : ; Vrg 2 SNC .m; n/,
we put

��.a1; : : : ; amCn/ WD
rY

iD1
�#.Vi /

�
.ak/k2Vi

�
;

where the �n are the already defined first order cumulants in the probability
space .A; '/. For a � 2 ŒNC.m/ � NC.n/�, we define �� as follows. If � D
.�1;W1/ � .�2;W2/ is of the form �1 D fW1; V1; : : : ; Vrg 2 NC.m/ and �2 D
fW2; QV1; : : : ; QVsg 2 NC.n/, where W1 and W2 are the two marked blocks, then

��.a1; : : : ; amCn/ WD
rY

iD1
�#.Vi /

�
.ak/k2Vi

� �
sY

jD1
�#. QVj /

�
.al /l2 QVj

��

�#.W1/;#.W2/
�
.au/u2W1; .av/v2W2

�
:

The first sum only involves first order cumulants, and in the second sum, each
term is a product of one second order cumulant and some first order cumulants.
Thus, since we already know all first order cumulants, the first sum is totally
determined in terms of moments of '. The second sum, on the other side, contains
exactly the highest order term �m;n.a1; : : : ; amCn/ and some lower order cumulants.
Thus, by recursion, we can again solve the moment-cumulant formulas for the
determination of �m;n.a1; : : : ; amCn/.

Example 32. 1) For m D n D 1, we have one first order contribution

� D .1; 2/ 2 SNC .1; 1/
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and one second order contribution

� D f.1/g � f.2/g 2 ŒNC.1/ �NC.1/�;

and thus we get

'2.a1; a2/ D ��.a1; a2/C ��.a1; a2/ D �2.a1; a2/C �1;1.a1; a2/:

By invoking the definition of �2, �2.a1; a2/ D '.a1a2/ � '.a1/'.a2/, this can be
solved for �1;1 in terms of moments with respect to ' and '2:

�1;1.a1; a2/ D '2.a1; a2/ � '.a1a2/C '.a1/'.a2/: (5.15)

2) For m D 2 and n D 1, we have four first order contributions in SNC .2; 1/,

�1 D .1; 2; 3/; �2 D .2; 1; 3/; �3 D .1; 3/.2/; �4 D .1/.2; 3/

and three second order contributions in ŒNC.2/ �NC.1/�,

�1 D f.1; 2/g � f.3/g; �2 D f.1/; .2/g � f.3/g; �3 D f.1/; .2/g � f.3/g;

resulting in

'2.a1a2; a3/D �3.a1; a2; a3/C�3.a2; a1; a3/C�2.a1; a3/�1.a2/C�2.a2; a3/�1.a1/
C �2;1.a1; a2; a3/C �1;1.a1; a3/�1.a2/C �1;1.a2; a3/�1.a1/:

By using the known formulas for �1, �2, �3, and the formula for �1;1 from above,
this can be solved for �2;1:

�2;1.a1; a2; a3/ D '2.a1a2; a3/ � '.a1/'2.a2; a3/ � '.a2/'2.a1; a3/
� '.a1a2a3/ � '.a1a3a2/C 2'.a1/'.a2a3/

C 2'.a1a3/'.a2/C 2'.a1a2/'.a3/ � 4'.a1/'.a2/'.a3/:

Example 33. 1) Let s be a second order semi-circular element, i.e. the second
order limit of GUE random matrices, with second order distribution as described
in Example 21. Then the second order cumulants all vanish in this case, i.e. we
have for all m; n 2 N

�n.s; : : : ; s/ D ın2 and �m;n.s; : : : ; s/ D 0:

2) For the second order limit y of Wishart random matrices of parameter c (i.e.
for a second order free Poisson element), it follows from Exercise 3 that again



146 5 Fluctuations and Second Order Freeness

all second order cumulants vanish and the distribution of y can be described as
follows: for all m; n 2 N, we have

�n.y; : : : ; y/ D c; and �m;n.y; : : : ; y/ D 0:

3) For an example with non-vanishing second order cumulants, let us consider
the square a WD s2 of the variable s from above. Then, by Equation (5.15), we
have

�1;1.s
2; s2/ D �1;1.a; a/ D '2.a; a/ � '.aa/C '.a/'.a/

D '2.s
2; s2/ � '.s2s2/C '.s2/'.s2/ D 2 � 2C 1 D 1:

Exercise 8. Let XN D 1=
p
N
�
xij
�N
i;jD1 be a Wigner random matrix ensemble,

where xij D xji for all i; j ; all xij for i � j are independent; all diagonal entries xii
are identically distributed according to a distribution �; and all off-diagonal entries
xij , for i 6D j , are identically distributed according to a distribution 
. Show that
fXN gN has a second order limit x 2 .A; '; '2/which is in terms of cumulants given
by: all first order cumulants are zero but �x2 D k



2 ; all second order cumulants are

zero but �x2;2 D k


4 , where k
2 and k
4 are the second and fourth classical cumulant

of 
, respectively.

The usefulness of the notion of second order cumulants comes from the following
second order analogue of the characterization of freeness by the vanishing of mixed
cumulants.

Theorem 34. Let .A; '; '2/ be a second order probability space. Consider unital
subalgebras A1; : : : ;As 	 A. Then the following statements are equivalent:

(i) The algebras A1; : : : ;As are free of second order.
(ii) Mixed cumulants, both of first and second order, of the subalgebras vanish:

ı whenever we choose, for n 2 N, aj 2 Aij (j D 1; : : : ; n) in such a way that
ik 6D il for some k; l 2 Œn�, then the corresponding first order cumulants
vanish, �n.a1; : : : ; an/ D 0;

ı and whenever we choose, for m; n 2 N, aj 2 Aij (j D 1; : : : ; m C n) in
such a way that ik 6D il for some k; l 2 Œm C n�; then the corresponding
second order cumulants vanish, �m;n.a1; : : : ; amCn/ D 0.

Sketch Let us give a sketch of the proof. The statement about the first order
cumulants is just Theorem 2.14.

That the vanishing of mixed cumulants implies second order freeness follows
quite easily from the moment-cumulant formula. In the case of cyclically alter-
nating centred arguments, the only remaining contributions are given by spoke
diagrams, and then the moment-cumulant formula (5.14) reduces to the defining
formula (5.11) of second order freeness.
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For the other direction, note first that second order freeness implies the vanishing
of �m;n.a1; : : : ; amCn/ D 0 whenever all the ai are centred and both groups of
arguments are cyclically alternating, i.e. i1 6D i2 6D � � � 6D im 6D i1 and imC1 6D
imC2 6D � � � 6D imCn 6D imC1. Next, because centring does not change the value
of second order cumulants, we can drop the assumption of centredness. For also
getting rid of the assumption that neighbours must be from different algebras, one
has, as in the first order case (see Theorem 3.14), to invoke a formula for second
order cumulants which have products as arguments. ut

In the following theorem, we state the formula for the �m;n with products as
arguments. For the proof, we refer to [132].

Theorem 35. Suppose n1; : : : ; nr ; nrC1; : : : ; nrCs are positive integers,m WD n1C
� � � C nr , n D nrC1 C � � � C nrCs . Given a second order probability space .A; '; '2/
and a1; a2; : : : ; amCn 2 A, let

A1 D a1 � � � an1 ; A2 D an1C1 � � � an1Cn2 ; ; : : : ; ArCs D an1C���CnrCs�1C1 � � � amCn:

Then

�r;s.A1; : : : ; Ar ; ArC1; : : : ; ArCs/ D
X

�2SNC .m;n/ with . . .

��.a1; : : : ; amCn/

C
X

�2ŒNC.m/�NC.n/� with . . .

��.a1; : : : ; amCn/; (5.16)

where the summation is over

(i) those � D .�1;W1/ � .�2;W2/ 2 ŒNC.m/ � NC.n/� where �1 connects on
one circle the groups corresponding toA1; : : : ; Ar and �2 connects on the other
circle the groups corresponding toArC1; : : : ; ArCs , where “connecting” is here
used in the same sense as in the first order case (see Theorem 2.13). More
precisely, this means that

�1 _ f.1; : : : ; n1/; : : : ; .n1 C � � � C nr�1 C 1; : : : ; m/g D 1m

and that

�2_f.mC1; : : : ; mCnrC1/; : : : ; .mCnrC1C� � �CnrCs�1C1; : : : ; mCn/g D 1nI
note that the marked blocks do not play any role for this condition.

(ii) those � 2 SNC .m; n/ which connect the groups corresponding to all Ai on
both circles in the following annular way: for such a � , all the groups must be
connected, but it is not possible to cut the annulus open by cutting on each of
the two circles between two groups.

Example 36. 1) Let us reconsider the second order cumulant �1;1.A1; A2/ for
A1 D A2 D s2 from Example 33, by calculating it via the above theorem. Since
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all second order cumulants and all but the second first order cumulants of s are
zero, in the formula (5.16), there is no contributing � , and the only two possible
�’s are �1 D f.1; 3/; .2; 4/g and �2 D f.1; 4/; .2; 3/g: Both connect both groups
.a1; a2/ and .a3; a4/, but whereas �1 does this in an annular way, in the case of
�2, the annulus could be cut open outside these groups. So �1 contributes and �2
does not. Hence,

�1;1.s
2; s2/ D ��1.s; s; s; s/ D �2.s; s/�2.s; s/ D 1;

which agrees with the more direct calculation in Example 33.
2) Consider for general random variables a1; a2; a3 the cumulant

�1;1.a1a2; a3/. The only contributing annular permutation in Equation (5.16)
is � D .1; 3; 2/ (note that .1; 2; 3/ connects the two groups .a1; a2/ and a3,
but not in an annular way), whereas all second order annular partitions in
ŒNC.2/ �NC.1/�, namely,

�1 D f.1; 2/g � f.3/g; �2 D f.1/; .2/g � f.3/g; �3 D f.1/; .2/g � f.3/g;

are permitted and thus we get

�1;1.a1a2; a3/ D ��.a1; a2; a3/C
3X

iD1
��i .a1; a2; a3/

D �3.a1; a3; a2/C �2;1.a1; a2; a3/

C �1;1.a1; a3/�1.a2/C �1;1.a2; a3/�1.a1/:

As in the first order case, one can, with the help of this product formula, also get a
version of the characterization of freeness in terms of vanishing of mixed cumulants
for random variables instead of subalgebras.

Theorem 37. Let .A; '; '2/ be a second order probability space. Consider
a1; : : : ; as 2 A. Then the following statements are equivalent:

(i) The variables a1; : : : ; as are free of second order.
(ii) Mixed cumulants, both of first and second order, of the variables vanish, i.e.

�n.ai1 ; : : : ; ain/ D 0 and �m;n.ai1 ; : : : ; aimCn
/ D 0 for all m; n 2 N and all

1 � ik � s (for all relevant k) and such that among the variables there are at
least two different ones: there exist k; l such that ik 6D il .

Exercise 9. The main point in reducing this theorem to the version for subalgebras
consists in using the product formula to show that the vanishing of mixed cumulants
in the variables implies also the vanishing of mixed cumulants in elements in the
generated subalgebras. As an example of this, show that the vanishing of all mixed
first and second order cumulants in a1 and a2 implies also the vanishing of the mixed
cumulants �2;1.a31; a1; a

2
2/ and �1;2.a31; a1; a

2
2/.
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5.5 Functional relation between second order moment and cumulant
series

Let us now consider the situation where all our random variables are the same,
a1 D � � � D amCn D a. Then we write as before for the first order quantities
˛n WD '.an/ and �an WD �n.a; : : : ; a/ and on second order level ˛m;n WD '2.a

m; an/

and �am;n WD �m;n.a; : : : ; a/. The vanishing of mixed cumulants for free variables
gives then again that our cumulants linearize the addition of free variables.

Theorem 38. Let .A; '; '2/ be a second order probability space, and let a; b 2 A
be free of second order. Then we have for all m; n 2 N

�aCb
n D �an C �bn and �aCb

m;n D �am;n C �bm;n: (5.17)

As in the first order case, one can translate the combinatorial relation between
moments and cumulants into a functional relation between generating power series.
In the following theorem, we give this as a relation between the corresponding
Cauchy and R-transforms. Again, we refer to [60] for the proof and more details.

Theorem 39. The moment-cumulant relations

˛n D
X

�2NC.n/
�� and ˛m;n D

X

�2SNC .m;n/
�� C

X

�2ŒNC.m/�NC.n/�
��

are equivalent to the functional relations

1

G.z/
CR.G.z// D z (5.18)

and

G.z;w/ D G0.z/G0.w/R.G.z/; G.w//C @2

@z@w
log

�F.z/ � F.w/
z � w

�
(5.19)

between the following formal power series: the Cauchy transforms

G.z/ D 1

z

X

n�0
˛nz�n and G.z;w/ D 1

zw

X

m;n�1
˛m;nz�mw�n

and the R-transforms

R.z/ D 1

z

X

n�1
�nzn and R.z;w/ D 1

zw

X

m;n�1
�m;nzmwnI

and where F.z/ D 1=G.z/.
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Equation (5.19) can also be written in the form

G.z;w/ D G0.z/G0.w/
�

R.G.z/; G.w//C 1

.G.z/ �G.w//2


� 1

.z � w/2
:

(5.20)

Equation (5.18) is just the well-known functional relation (2.27) from Chap-
ter 2 between first order moments and cumulants. Equation (5.19) determines a
sequence of equations relating the first and second order moments with the second
order cumulants; if we also express the first order moments in terms of first
order cumulants, then this corresponds to the moment-cumulant relation ˛m;n DP

�2SNC .m;n/ �� CP
�2ŒNC.m/�NC.n/� �� .

Note that formally the second term on the right-hand side of (5.19) can also be
written as

@2

@z@w
log

�F.z/ � F.w/
z � w

�
D @2

@z@w
log

�G.w/ �G.z/
z � w

�
I (5.21)

but since .G.w/ � G.z//=.z � w/ has no constant term, the power series expansion
of logŒ.G.w/ �G.z//=.z � w/� is not well defined.

Below is a table, produced from (5.19), giving the first few equations:

˛1;1 D �1;1 C �2

˛1;2 D �1;2 C 2�1�1;1 C 2�3 C 2�1�2

˛2;2 D �2;2 C 4�1�1;2 C 4�21�1;1 C 4�4 C 8�1�3 C 2�22 C 4�21�2

˛1;3 D �1;3 C 3�1�1;2 C 3�2�1;1 C 3�21�1;1 C 3�4 C 6�1�3 C 3�22 C 3�21�2

˛2;3 D �2;3 C 2�1�1;3 C 3�1�2;2 C 3�2�1;2 C 9�21�1;2 C 6�1�2�1;1 C 6�31�1;1

C 6�5 C 18�1�4 C 12�2�3 C 18�21�3 C 12�1�
2
2 C 6�31�2

˛3;3 D �3;3 C 6�1�2;3 C 6�2�1;3 C 6�21�1;3 C 9�21�2;2 C 18�1�2�1;2 C 18�31�1;2

C 9�22�1;1 C 18�21�2�1;1 C 9�41�1;1 C 9�6 C 36�1�5 C 27�2�4 C 54�21�4

C 9�23 C 72�1�2�3 C 36�31�3 C 12�32 C 36�21�
2
2 C 9�41�2:

Remark 40. Note that the Cauchy transforms can also be written as

G.z/ D lim
N!1 E

�

tr.
1

z � AN /
�

D '

�
1

z � a
�

(5.22)

and

G.z;w/ D lim
N!1 cov

�

Tr.
1

z � AN /;Tr.
1

w � An /
�

D '2

�
1

z � a ;
1

w � a
�

;

(5.23)
if AN has a as second order limit distribution.



5.6 Diagonalization of fluctuations 151

In the case where all the second order cumulants are zero, i.e. R.z;w/ D 0,
Equation (5.19) expresses the second order Cauchy transform in terms of the first
order Cauchy transform:

'2

�
1

z � a ;
1

w � a
�

D G.z;w/ D @2

@z@w
log

�F.z/ � F.w/
z � w

�
: (5.24)

This applies then in particular to the GUE and Wishart random matrices; that in those
cases the second order cumulants vanish follows from equations (5.12) and (5.13);
see also Example 33. In the case of Wishart matrices equation (5.24) (in terms of
G.z/ instead of F.z/, via (5.21)) was derived by Bai and Silverstein [14, 15].

However, there are also many important situations where the second order
cumulants do not vanish, and we need the full version of (5.19) to understand the
fluctuations. The following exercise gives an example for this.

Exercise 10. A circular element in first order is of the form

c WD 1p
2
.s1 C is2/; (5.25)

where s1 and s2 are free standard semi-circular elements; see Section 6.8. There we
will also show that such a circular element is in �-distribution the limit of a complex
Gaussian random matrix. Since the same arguments apply also to second order, we
define a circular element of second order by the Equation (5.25), where now s1 and
s2 are two semi-circular elements of second order which are also free of second
order. This means in particular that all second order cumulants in c and c� are zero.

We will in the following compare such a second order circular element c with a
second order semi-circular element s as defined in Example 21:

(i) Show that the first order distribution of s2 and cc� is the same, namely, both
are free Poisson elements of rate 1.

(ii) Show that the second order cumulants of s2 do not vanish.
(iii) Show that the second order cumulants of cc� are all zero; hence, cc� is a

second order free Poisson element, of rate 1.

This shows that whereas s2 and cc� are the same in first order, their second order
distributions are different.

5.6 Diagonalization of fluctuations

Consider a sequence of random matrices .A.N/1 ; : : : ; A
.N/
s /N which has a second

order limit .a1; : : : ; as/. Then we have for any polynomial p 2 Chx1; : : : ; xsi that
the unnormalized trace of its centred version,

Tr
�
p.A

.N/
1 ; : : : ; A.N/s / � E.tr.p.A.N/1 ; : : : ; A.N/s /// 1N

�
;

converges to a Gaussian variable. Actually, all such traces of polynomials converge
jointly to a Gaussian family (this is just the fact that we require in our definition of
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a second order limit distribution that all third and higher classical cumulants go to
zero), and the limiting covariance between two such traces for p1 and p2 is given
by '2.p1.a1; : : : ; as/; p2.a1; : : : ; as//. Often, we have a kind of explicit formula
(of a combinatorial nature) for the covariance between monomials in our variables;
but only in very rare cases this covariance is diagonal in those monomials. (An
important instance where this actually happens is the case of Haar unitary random
matrices; see Example 22. Note that there we are dealing with the �-distribution
and we are getting complex Gaussian distributions.) For a better understanding of
the covariance, one usually wants to diagonalize it; this corresponds to going over
to Gaussian variables which are independent.

In the case of one GUE random matrix, this diagonalization is one of the main
statements in Theorem 1, which was the starting point of this chapter. In the
following, we want to see how our description of second order distributions and
freeness allows to understand this theorem and its multivariate generalizations.

5.6.1 Diagonalization in the one-matrix case

Let us first look on the one-variable situation. If all second order cumulants are
zero (as, e.g for GUE or Wishart random matrices), so that our second order Cauchy
transform is given by (5.24), then one can proceed as follows.

In order to extract from G.z;w/ some information about the covariance for
arbitrary polynomials p1 and p2, we use Cauchy’s integral formula to write

p1.a/ D 1

2�i

Z

C1

p1.z/

z � a d z; p2.a/ D 1

2�i

Z

C2

p2.w/

w � a dw;

where the contour integrals over C1 and C2 are in the complex plane around the
spectrum of a. We are assuming that a is a bounded self-adjoint operator; thus, we
have to integrate around sufficiently large portions of the real line. This gives then,
by using Equation (5.24) and integration by parts,

'2.p1.a/; p2.a// D � 1

4�2

Z

C1

Z

C2

p1.z/p2.w/'2

�
1

z � x ;
1

w � x
�

d zdw

D � 1

4�2

Z

C1

Z

C2

p1.z/p2.w/G.z;w/d zdw

D � 1

4�2

Z

C1

Z

C2

p1.z/p2.w/
@2

@z@w
log

�F.z/ � F.w/
z � w

�
d zdw

D � 1

4�2

Z

C1

Z

C2

p0
1.z/p

0
2.w/ log

�F.z/ � F.w/
z � w

�
d zdw:
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We choose now for C1 and C2 rectangles with height going to zero; hence, the
integration over each of these contours goes to integrals over the real axis, one
approaching the real line from above and the other approaching the real line from
below. We denote the corresponding limits of F.z/, when z is approaching x 2 R

from above or from below, by F.xC/ and F.x�/, respectively. Since p0
1 and p0

2 are
continuous at the real axis, we get

'2.p1.a/; p2.a// D � 1

4�2

Z

R

Z

R

p0
1.x/p

0
2.y/

�

log
�F.xC/ � F.yC/

xC � yC
�

� log
�F.xC/�F.y�/

xC �y�
�

� log
�F.x�/�F.yC/

x� �yC
�
C log

�F.x�/�F.y�/
x� �y�

��

dxdy:

Note that one has for the reciprocal Cauchy transform F.Nz/ D F.z/; hence,
F.x�/ D F.xC/. Since the contributions of the denominators cancel, we get in the
end

'2.p1.a/; p2.a// D � 1

4�2

Z

R

Z

R

p0
1.x/p

0
2.y/ log

ˇ
ˇ
ˇ
ˇ
F.x/ � F.y/
F.x/ � F.y/

ˇ
ˇ
ˇ
ˇ

2

dxdy;

(5.26)
where F.x/ denotes now the usual limit F.xC/ coming from the complex upper
half-plane.

The diagonalization of this bilinear form (5.26) depends on the actual form of

K.x; y/ D � 1

4�2
log

ˇ
ˇ
ˇ
ˇ
F.x/ � F.y/
F.x/ � F.y/

ˇ
ˇ
ˇ
ˇ

2

D � 1

4�2
log

ˇ
ˇ
ˇ
ˇ
G.x/ �G.y/
G.x/ �G.y/

ˇ
ˇ
ˇ
ˇ

2

: (5.27)

Example 41. Consider the GUE case. Then G is the Cauchy transform of the semi-
circle

G.z/ D z � p
z2 � 4
2

; thus G.x/ D x � ip4 � x2
2

:

Hence, we have

K.x; y/ D � 1

4�2
log

ˇ
ˇ
ˇ
x � y � i.p4 � x2 �p

4 � y2/
x � y � i.p4 � x2 Cp

4 � y2/
ˇ
ˇ
ˇ
2

D � 1

4�2
log

.x � y/2 C .
p
4 � x2 �p

4 � y2/2
.x � y/2 C .

p
4 � x2 Cp

4 � y2/2

D � 1

4�2
log

4 � xy �p
.4 � x2/.4 � y2/

4 � xy Cp
.4 � x2/.4 � y2/ :
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In order to relate this to Chebyshev polynomials, let us write x D 2 cos � and y D
2 cos . Then we have

K.x; y/ D � 1

4�2
log

4.1 � cos � cos � sin � sin /

4.1 � cos � cos C sin � sin /

D � 1

4�2
log

1 � cos.� �  /
1 � cos.� C  /

D � 1

4�2
log.1 � cos.� �  //C 1

4�2
log.1 � cos.� C  //

D 1

2�2

1X

nD1

1

n
.cos.n.� �  // � cos.n.� C  ///

D 1

�2

1X

nD1

1

n
sin.n�/ sin.n /:

In the penultimate step, we have used the expansion (5.31) for log.1 � cos �/ from
the next exercise.

Similarly as cos.n�/ is related to x D 2 cos � via the Chebyshev polynomials
Cn of the first kind, sin.n�/ can be expressed in terms of x via the Chebyshev
polynomials Un of the second kind. Those are defined via

Un.2 cos �/ D sin..nC 1/�/

sin �
: (5.28)

We will address some of its properties in Exercise 12.
We can then continue our calculation above as follows:

K.x; y/ D 1

�2

1X

nD1

1

n
Un�1.x/ sin � � Un�1.y/ sin 

D
1X

nD1

1

n
Un�1.x/

1

2�

p
4 � x2 � Un�1.y/

1

2�

p
4 � y2:

We will now use the following two facts about Chebyshev polynomials:

ı the Chebyshev polynomials of second kind are orthogonal polynomials with
respect to the semi-circular distribution, i.e. for all m; n � 0

Z C2

�2
Un.x/Um.x/

1

2�

p
4 � x2dx D ınmI (5.29)

ı the two kinds of Chebyshev polynomials are related by differentiation,

C 0
n D nUn�1 for n � 0: (5.30)
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Then we can recover Theorem 1 by checking that the covariance is diagonal for
the Chebyshev polynomials of first kind:

'2.Cn.a/; Cm.a// D
Z Z

C 0
n.x/C

0
m.y/K.x; y/dxdy

D
Z C2

�2

Z C2

�2
nUn�1.x/mUm�1.y/

1X

kD1

1

k
Uk�1.x/

1

2�

p
4 � x2

� Uk�1.y/
1

2�

p
4 � y2dxdy

D nm

1X

kD1

1

k

�Z C2

�2
Un�1.x/Uk�1.x/

1

2�

p
4 � x2dx

�

�
�Z C2

�2
Um�1.y/Uk�1.y/

1

2�

p
4 � y2dy

�

D nm

1X

kD1

1

k
ınkımk

D nınm:

Note that all our manipulations were formal and we did not address analytic issues,
like the justification of the calculations concerning contour integrals. For this and
also for extending the formula for the covariance beyond polynomial functions, one
should consult the original literature, in particular [15, 104].

Exercise 11. Show the following expansion:

� 1

2
log.1 � 1 cos �/ D

1X

nD1

1

n
cos.n�/C 1

2
log 2: (5.31)

Exercise 12. Let Cn and Un be the Chebyshev polynomials, rescaled to the interval
Œ�2;C2�, of the first and second kind, respectively (see also Notation 8.33 and
subsequent exercises).

(i) Show that the definition of the Chebyshev polynomials via recurrence rela-
tions, as given in Notation 8.33, is equivalent to the definition via trigonometric
functions, as given in the discussion following Theorem 1 and in Equa-
tion (5.28).

(ii) Show equations (5.29) and (5.30).
(iii) Show that the Chebyshev polynomials of first kind are orthogonal with respect

to the arc-sine distribution, i.e. for all n;m � 0 with .m; n/ 6D .0; 0/, we have

Z C2

�2
Cn.x/Cm.y/

dx

�
p
4 � x2 D ınm: (5.32)
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Fig. 5.5 The four non-crossing half-pairings on four points with two through strings are shown

Note that the definition for the case n D 0, C0 D 2, is made in order to have
it fit with the recurrence relations; to fit the orthonormality relations, C0 D 1

would be the natural choice.

Example 42. By similar calculations as for the GUE, one can show that in
the case of Wishart matrices, the diagonalization of the covariance (5.13) is
achieved by going over to shifted Chebyshev polynomials of the first kind,p
cnCn

�
.x � .1C c//=

p
c
�
. This result is due to Cabanal-Duvillard [47]; see

also [14, 115].

Remark 43. We want to address here a combinatorial interpretation of the fact that
the Chebyshev polynomialsCk diagonalize the covariance for a GUE random matrix.

Let s be our second order semi-circular element; hence, '2.sm; sn/ is given by the
number of annular non-crossing pairings on an .m; n/ annulus. This is, of course,
not diagonal in m and n because some points on each circle can be paired among
themselves, and this pairing on both sides has no correlation; so there is no constraint
that m has to be equal to n. However, a quantity which clearly must be the same for
both circles is the number of through-pairs, i.e. pairs which connect both circles.
Thus, in order to diagonalize the covariance, we should go over from the number
of points on a circle to the number of through-pairs leaving this circle. A nice way
to achieve this is to cut our diagrams in two parts – one part for each circle. These
diagrams will be called non-crossing annular half-pairings. See Figs. 5.5 and 5.7.
We will call what is left in a half-pairing of a through-pair after cutting an open
pair – as opposed to closed pairs which live totally on one circle and are thus not
affected by the cutting.

In this pictorial description, sm corresponds to the sum over non-crossing annular
half-pairings on one circle with m points, and sn corresponds to a sum over non-
crossing annular half-pairings on another circle with n points. Then '2.s

m; sn/

corresponds to pairing the non-crossing annular half-pairings for sm with the
non-crossing annular half-pairings for sn. A pairing of two non-crossing annular
half-pairings consists of glueing together their open pairs in all possible planar ways.
This clearly means that both non-crossing annular half-pairings must have the same
number of open pairs, and thus our covariance should become diagonal if we go over
from the number n of points on a circle to the number k of open pairs. Furthermore,
there are clearly k possibilities to pair two sets of k open pairs in a planar way.
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Fig. 5.6 As noted earlier, for the purpose of diagonalizing the fluctuations, the constant term of
the polynomials is not important. If we make the small adjustment that C0.x/ D 1 and all the
others are unchanged, then the recurrence relation becomes CnC1.x/ D xCn.x/ � 2Cn�1.x/ for
n � 2 and C2.x/ D xC1.x/� 2C0.x/. From this we obtain qnC1;k D qn;k�1 C qn;kC1 for k � 1

and qnC1;0 D 2qn;1. From these relations, we see that for k � 1 we have qn;k D �
n

.n�k/=2

�
when

n� k is even and 0 when n� k is odd. When k D 0, we have qn;0 D 2
�
n�1
n=2�1

�
when n is even and

qn;0 D 0 when n is odd
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Fig. 5.7 When n D 5 and k D 1, q5;1 D 10. The ten non-crossing half-pairings on five points
with one through string

From this point of view, the Chebyshev polynomials Ck should describe k open
pairs. If we write xn as a linear combination of the Ck , xn D Pn

kD0 qn;kCk.x/,
then the above correspondence suggests that for k > 0, the coefficients qn;k are the
number of non-crossing annular half-pairings of n points with k open pairs. See
Fig. 5.6 and Fig. 5.7.

That this is indeed the correct combinatorial interpretation of the result of
Johansson can be found in [115]. There the main emphasis is actually on the case
of Wishart matrices and the result of Cabanal-Duvillard from Example 42. The
Wishart case can be understood in a similar combinatorial way; instead of non-
crossing annular half-pairings and through-pairs, one has to consider non-crossing
annular half-permutations and through-blocks.
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5.6.2 Diagonalization in the multivariate case

Consider now the situation of several variables; then we have to diagonalize the
bilinear form .p1; p2/ 7! '2.p1.a1; : : : ; as/; p2.a1; : : : ; as//. For polynomials in
just one of the variables, this is the same problem as in the previous section. It
remains to understand the mixed fluctuations in more than one variable. If we
have that a1; : : : ; as are free of second order, then this is fairly easy. The following
theorem from [131] follows directly from Definition 24 of second order freeness.

Theorem 44. Assume a1; : : : ; as are free of second order in the second order
probability space .A; '; '2/. Let, for each i D 1; : : : ; s, Q.i/

k (k � 0) be the

orthogonal polynomials for the distribution of ai ; i.e.Q.i/

k is a polynomial of degree

k such that '.Q.i/

k .ai /Q
.i/

l .ai // D ıkl for all k; l � 0. Then the fluctuations
of mixed words in the ai ’s are diagonalized by cyclically alternating products
Q
.i1/

k1
.ai1/ � � �Q.im/

km
.aim/ (with all kr � 1 and i1 6D i2, i2 6D i3, . . . , im 6D i1),

and the covariances are given by the number of cyclic matchings of these products:

'2

�
Q
.i1/

k1
.ai1/ � � �Q.im/

km
.aim/;Q

.j1/

l1
.aj1/ � � �Q.jn/

ln
.ajn/

�

D ımn � #fr 2 f1; : : : ; ng j is D jsCr ; ks D lsCr 8s D 1; : : : ; ng; (5.33)

where we count s C r modulo n.

Remark 45. Note the different nature of the solution for the one-variate and the
multivariate case. For example, for independent GUE’s, we have that the covariance
is diagonalized by the following set of polynomials:

ı Chebyshev polynomials Ck of first kind in one of the variables
ı cyclically alternating products of Chebyshev polynomials Uk of second kind for

different variables.

Again there is a combinatorial way of understanding the appearance of the two
different kinds of Chebyshev polynomials. As we have outlined in Remark 43,
the Chebyshev polynomials Ck show up in the one-variate case, because this
corresponds to going over to non-crossing annular half-pairings with k through-
pairs. In the multivariate case, one has to realize that having several variables breaks
the circular symmetry of the circle and thus effectively replaces a circular problem
by a linear one. In this spirit, the expansion of xn in terms of Chebyshev polynomials
Uk of second kind counts the number of non-crossing linear half-pairings on n
points with k open pairs.

In the Wishart case, there is a similar description by replacing non-crossing
annular half-permutations by non-crossing linear half-permutations, resulting in an
analogue appearance of orthogonal polynomials of first and second kind for the
one-variate and multivariate situation, respectively.

More details and the proofs of the above statements can be found in [115].



Chapter 6
Free Group Factors and Freeness

The concept of freeness was actually introduced by Voiculescu in the context of
operator algebras, more precisely, during his quest to understand the structure of
special von Neumann algebras, related to free groups. We wish to recall here the
relevant context and show how freeness shows up there very naturally and how it
can provide some information about the structure of those von Neumann algebras.

Operator algebras are �- algebras of bounded operators on a Hilbert space which
are closed in some canonical topologies. (C �-algebras are closed in the operator
norm, and von Neumann algebras are closed in the weak operator topology; the
first topology is the operator version of uniform convergence, the latter of pointwise
convergence.) Since the group algebra of a group can be represented on itself by
bounded operators given by left multiplication (this is the regular representation of
a group), one can take the closure in the appropriate topology of the group algebra
and get thus C �-algebras and von Neumann algebras corresponding to the group.
The group von Neumann algebra arising from a group G in this way is usually
denoted by L.G/. This construction, which goes back to the foundational papers of
Murray and von Neumann in the 1930s, is, forG an infinite discrete group, a source
of important examples in von Neumann algebra theory, and much of the progress
in von Neumann algebra theory was driven by the desire to understand the relation
between groups and their von Neumann algebras better. The group algebra consists
of finite sums over group elements; going over to a closure means that we allow also
some infinite sums. One should note that the weak closure, in the case of infinite
groups, is usually much larger than the group algebra, and it is very hard to control
which infinite sums are added. Von Neumann algebras are quite large objects and
their classification is notoriously difficult.

© Springer Science+Business Media LLC 2017
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6.1 Group (von Neumann) algebras

Let G be a discrete group. We want to consider compactly supported continuous
functions a W G ! C, equipped with convolution .a; b/ 7! a � b. Note that
compactly supported means just finitely supported in the discrete case, and thus the
set of such functions can be identified with the group algebra CŒG� of formal finite
linear combinations of elements in G with complex coefficients, a D P

g2G a.g/g,
where only finitely many a.g/ 6D 0. Integration over such functions is with respect
to the counting measure; hence, the convolution is then written as

a�b D
X

g2G
.a�b/.g/g D

X

g2G

 
X

h2G
a.h/b.h�1g/

!

g D
X

h2G
a.h/h

X

k2G
b.k/k D ab;

and is hence nothing but the multiplication in CŒG�. Note that the function ıe D 1 �e
is the identity element in the group algebra CŒG�; where e is the identity element
in G:

Now define an inner product on CŒG� by setting

hg; hi D
(
1; if g D h

0; if g ¤ h
(6.1)

on G and extending sesquilinearly to CŒG�: From this inner product, we define the
2-norm on CŒG� by kak22 D ha; ai. In this way .CŒG�; k � k2/ is a normed vector
space. However, it is not complete in the case of infiniteG (for finiteG the following
is trivial). The completion of CŒG� with respect to k � k2 consists of all functions
a W G ! C satisfying

P
g2G ja.g/j2 < 1 and is denoted by `2.G/ and is a Hilbert

space.
Now consider the unitary group representation  W G ! U.`2.G// defined by

.g/ �
X

h2G
a.h/h WD

X

h2G
a.h/gh: (6.2)

This is the left regular representation of G on the Hilbert space `2.G/: It is obvious
from the definition that each .g/ is an isometry of `2.G/; but we want to check
that it is in fact a unitary operator on `2.G/: Since clearly hgh; ki D hh; g�1ki, the
adjoint of the operator .g/ is .g�1/: But then since  is a group homomorphism,
we have .g/.g/� D I D .g/�.g/; so that .g/ is indeed a unitary operator
on `2.G/:

Now extend the domain of  from G to CŒG� in the obvious way:

.a/ D 

0

@
X

g2G
a.g/g

1

A D
X

g2G
a.g/.g/:
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This makes  into an algebra homomorphism  W CŒG� ! B.`2.G//, i.e.  is a
representation of the group algebra on `2.G/: We define two new (closed) algebras
via this representation. The reduced group C �-algebra C �

red.G/ of G is the closure
of .CŒG�/ 	 B.`2.G// in the operator norm topology. The group von Neumann
algebra of G, denoted L.G/, is the closure of .CŒG�/ in the strong operator
topology on B.`2.G//.

One knows that for an infinite discrete groupG, L.G/ is a type II1 von Neumann
algebra, i.e. L.G/ is infinite dimensional, but yet there is a trace 	 on L.G/ defined
by 	.a/ WD hae; ei for a 2 L.G/; where e 2 G is the identity element. To see
the trace property of 	 , it suffices to check it for group elements; this extends then
to the general situation by linearity and normality. However, for g; h 2 G, the fact
that 	.gh/ D 	.hg/ is just the statement that gh D e is equivalent to hg D e;
this is clearly true in a group. The existence of a trace shows that L.G/ is a proper
subalgebra of B.`2.G//; this is the case because there does not exist a trace on all
bounded operators on an infinite dimensional Hilbert space. An easy fact is that if
G is an ICC group, meaning that the conjugacy class of each g 2 G with g 6D e has
infinite cardinality, then L.G/ is a factor, i.e. has trivial centre (see [106, Theorem
6.75]). Another fact is that if G is an amenable group (e.g. the infinite permutation
group S1 D [nSn), then L.G/ is the hyperfinite II1 factor R.

Exercise 1.

(i) Show that L.G/ is a factor if and only if G is an ICC group.
(ii) Show that the infinite permutation group S1 D [nSn is ICC. (Note that each

element from S1 moves only a finite number of elements.)

6.2 Free group factors

Now consider the case where G D Fn; the free group on n generators; n can here
be a natural number n � 1 or n D 1. Let us briefly recall the definition of Fn and
some of its properties. Consider the set of all words, of arbitrary length, over the
2nC1-letter alphabet fa1; a2; : : : ; an; a�1

1 ; a
�1
2 ; : : : ; a

�1
n g [feg; where the letters of

the alphabet satisfy no relations other than eai D aie D ai ; ea
�1
i D a�1

i e D a�1
i ;

a�1
i ai D aia

�1
i D e: We say that a word is reduced if its length cannot be reduced

by applying one of the above relations. Then the set of all reduced words in this
alphabet together with the binary operation of concatenating words and reducing
constitutes the free group Fn on n generators. Fn is the group generated by n
symbols satisfying no relations other than those required by the group axioms.
Clearly F1 is isomorphic to the abelian group Z; while Fn is non-abelian for n > 1

and in fact has trivial centre. The integer n is called the rank of the free group; it is
fairly easy, though not totally trivial, to see (e.g. by reducing it via abelianization to
a corresponding question about abelian free groups) that Fn and Fm are isomorphic
if and only if m D n.
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Exercise 2. Show that Fn is, for n � 2, an ICC group.

Since Fn has the infinite conjugacy class property, one knows that the group
von Neumann algebra L.Fn/ is a II1 factor, called a free group factor. Murray and
von Neumann showed that L.Fn/ is not isomorphic to the hyperfinite factor, but
otherwise nothing was known about the structure of these free group factors, when
free probability was invented by Voiculescu to understand them better.

While as pointed out above we have that Fn ' Fm if and only if m D n; the
corresponding problem for the free group factors is still unknown; see however some
results in this direction in section 6.12.

Free group factor isomorphism problem: Let m; n � 2 (possibly equal to 1),
n ¤ m: Are the von Neumann algebras L.Fn/ and L.Fm/ isomorphic?

The corresponding problem for the reduced group C �-algebras was solved by
Pimsner and Voiculescu [143] in 1982: they showed that C �

red.Fn/ 6' C �
red.Fm/ for

m ¤ n.

6.3 Free product of groups

There is the notion of free product of groups. If G;H are groups, then their free
product G �H is defined to be the group whose generating set is the disjoint union
of G and H and which has the property that the only relations in G �H are those
inherited from G and H and the identification of the neutral elements of G and H .
That is, there should be no non-trivial algebraic relations between elements of G
and elements of H in G � H . In a more abstract language, the free product is the
coproduct in the category of groups. For example, in the category of groups, the
n-fold direct product of n copies of Z is the lattice Z

nI the n-fold coproduct (free
product) of n copies of Z is the free group Fn on n generators.

In the category of groups, we can understand Fn via the decomposition
Fn D Z � Z � � � � � Z: Is there a similar free product of von Neumann algebras that
will help us to understand the structure of L.Fn/? The notion of freeness or free
independence makes this precise. In order to understand what it means for elements
in L.G/ to be free, we need to deal with infinite sums, so the algebraic notion of
freeness will not do: we need a state.

6.4 Moments and isomorphism of von Neumann algebras

We will try to understand a von Neumann algebra with respect to a state. Let M be
a von Neumann algebra and let ' W M ! C be a state defined on M; i.e. a positive
linear functional. Select finitely many elements a1; : : : ; ak 2 M . Let us first recall
the notion of (�-)moments and (�-)distribution in such a context.

Definition 1. 1) The collection of numbers gotten by applying the state to words in
the alphabet fa1; : : : ; akg is called the collection of joint moments of a1; : : : ; ak;
or the distribution of a1; : : : ; ak:
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2) The collection of numbers gotten by applying the state to words in the
alphabet fa1; : : : ; ak; a�

1 ; : : : ; a
�
k g is called the collection of joint �-moments of

a1; : : : ; ak; or the �-distribution of a1; : : : ; ak:

Theorem 2. Let M D vN.a1; : : : ; ak/ be generated as von Neumann algebra by
elements a1; : : : ; ak and let N D vN.b1; : : : ; bk/ be generated as von Neumann
algebra by elements b1; : : : ; bk . Let ' W M ! C and  W N ! C be faithful normal
states. If a1; : : : ; ak and b1; : : : ; bk have the same �-distributions with respect to '
and  , respectively, then the map ai 7! bi extends to a �-isomorphism ofM andN:

Exercise 3. Prove Theorem 2 by observing that the assumptions imply that the
GNS-constructions with respect to ' and  are isomorphic.

Though the theorem is not hard to prove, it conveys the important message that
all information about a von Neumann algebra is, in principle, contained in the �-
moments of a generating set with respect to a faithful normal state.

In the case of the group von Neumann algebras L.G/, the canonical state is the
trace 	 . This is defined as a vector state, so it is automatically normal. It is worth to
notice that it is also faithful (and hence .L.G/; 	/ is a tracialW �-probability space).

Proposition 3. The trace 	 on L.G/ is a faithful state.

Proof: Suppose that a 2 L.G/ satisfies 0 D 	.a�a/ D ha�ae; ei D hae; aei, thus
ae D 0. So we have to show that ae D 0 implies a D 0. To show that a D 0, it
suffices to show that ha�; �i D 0 for any �; � 2 `2.G/: It suffices to consider vectors
of the form � D g; � D h for g; h 2 G; since we can get the general case from this
by linearity and continuity. Now, by using the traciality of 	 , we have

hag; hi D hage; hei D hh�1age; ei D 	.h�1ag/ D 	.gh�1a/ D hgh�1ae; ei D 0;

since the first argument to the last inner product is 0: ut
6.5 Freeness in the free group factors

We now want to see that the algebraic notion of freeness of subgroups in a free
product of groups translates with respect to the canonical trace 	 to our notion of
free independence.

Let us say that a product in an algebra A is alternating with respect to subalgebras
A1; : : : ;As if adjacent factors come from different subalgebras. Recall that our
definition of free independence says: the subalgebras A1; : : : ;As are free if any
product in centred elements over these algebras which alternates is centred.

Proposition 4. Let G be a group containing subgroups G1; : : : ; Gs such that
G D G1 � � � � �Gs . Let 	 be the state 	.a/ D hae; ei on CŒG�: Then the subalgebras
CŒG1�; : : : ;CŒGs� 	 CŒG� are free with respect to 	:
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Proof: Let a1a2 � � � ak be an element in CŒG� which alternates with respect to the
subalgebras CŒG1�; : : : ;CŒGs�; and assume the factors of the product are centred
with respect to 	: Since 	 is the “coefficient of the identity” state, this means that if
aj 2 CŒGij �; then aj looks like aj D P

g2Gij aj .g/g and aj .e/ D 0. Thus we have

	.a1a2 � � � ak/ D
X

g12Gi1 ;:::;gk2Gik
a1.g1/a2.g2/ � � � ak.gk/	.g1g2 � � �gk/:

Now, 	.g1g2 � � �gk/ ¤ 0 only if g1g2 � � �gk D e. But g1g2 � � �gk is an alternating
product in G with respect to the subgroups G1;G2; : : : ; Gs , and since G D G1 �
G2 � � � � � Gs , this can happen only when at least one of the factors, let’s say gj , is
equal to e; but in this case aj .gj / D aj .e/ D 0: So each summand in the sum for
	.a1a2 � � � ak/ vanishes, and we have 	.a1a2 � � � ak/ D 0, as required. ut

Thus freeness of the subgroup algebras CŒG1�; : : : ;CŒGs� with respect to 	 is
just a simple reformulation of the fact that G1; : : : ; Gs are free subgroups of G:
However, a non-trivial fact is that this reformulation carries over to closures of the
subalgebras.

Proposition 5. (1) LetA be aC �-algebra, ' W A ! C a state. LetB1; : : : ; Bs 	 A

be unital �-subalgebras which are free with respect to ': Put Ai WD Bi
k�k

, the
norm closure of Bi . Then A1; : : : ; As are also free.

(2) Let M be a von Neumann algebra, ' W M ! C a normal state. Let B1; : : : ; Bs
be unital �-subalgebras which are free. Put Mi WD vN.Bi /: Then M1; : : : ;Ms

are also free.

Proof: (1) Consider a1; : : : ; ak with ai 2 Aji , '.ai / D 0, and ji 6D jiC1 for all i .
We have to show that '.a1 � � � ak/ D 0. SinceBi is dense inAi , we can, for each
i , approximate ai in operator norm by a sequence .b.n/i /n2N, with b.n/i 2 Bi , for

all n. Since we can replace b.n/i by b.n/i � '.b
.n/
i / (note that '.b.n/i / converges

to '.ai / D 0), we can assume, without restriction, that '.b.n/i / D 0. But then
we have

'.a1 � � � ak/ D lim
n!1'.b

.n/
1 � � � b.n/k / D 0;

since, by the freeness of B1; : : : ; Bs , we have '.b.n/1 � � � b.n/k / D 0 for each n.
(2) Consider a1; : : : ; ak with ai 2 Mji , '.ai / D 0, and ji 6D jiC1 for all i .

We have to show that '.a1 � � � ak/ D 0. We approximate essentially as in the
C �-algebra case; we only have to take care that the multiplication of our k
factors is still continuous in the appropriate topology. More precisely, we can
now approximate, for each i , the operator ai in the strong operator topology
by a sequence (or a net, if you must) b.n/i . By invoking Kaplansky’s density
theorem, we can choose those such that we keep everything bounded, namely,
kb.n/i k � kaik for all n. Again we can centre the sequence, so that we can
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assume that all '.b.n/i / D 0. Since the joint multiplication is on bounded sets
continuous in the strong operator topology, we have then still the convergence
of b.n/1 � � � b.n/k to a1 � � � ak and, thus, since ' is normal, also the convergence of

0 D '.b
.n/
1 � � � b.n/k / to '.a1 � � � ak/.

ut
6.6 The structure of free group factors

What does this tell us for the free group factors? It is clear that each generator of
the free group gives a Haar unitary element in .L.Fn/; 	/. By the discussion above,
those elements are �-free. Thus the free group factor L.Fn/ is generated by n �-free
Haar unitaries u1; : : : ; un. Note that, by Theorem 2, we will get the free group factor
L.Fn/ whenever we find somewhere n Haar unitaries which are �-free with respect
to a faithful normal state. Furthermore, since we are working inside von Neumann
algebras, we have at our disposal measurable functional calculus, which means that
we can also deform the Haar unitaries into other, possibly more suitable, generators.

Theorem 6. LetM be a von Neumann algebra and 	 a faithful normal state onM .
Assume that x1; : : : ; xn 2 M generate M , vN.x1; : : : ; xn/ D M and that

ı x1; : : : ; xn are �-free with respect to 	 ,
ı each xi is normal, and its spectral measure with respect to 	 is diffuse (i.e. has

no atoms).

Then M ' L.Fn/.
Proof: Let x be a normal element in M which is such that its spectral measure with
respect to 	 is diffuse. Let A D vN.x/ be the von Neumann algebra generated
by x. We want to show that there is a Haar unitary u 2 A that generates A
as a von Neumann algebra. A is a commutative von Neumann algebra and the
restriction of 	 to A is a faithful state. A cannot have any minimal projections as
that would mean that the spectral measure of x with respect to 	 was not diffuse.
Thus there is a normal �-isomorphism � W A ! L1Œ0; 1� where we put Lebesgue
measure on Œ0; 1�. This follows from the well-known fact that any commutative von
Neumann algebra is �-isomorphic toL1.
/ for some measure 
 and that all spaces
L1.
/ for 
 without atoms are �-isomorphic; see, for example, [170, Chapter III,
Theorem 1.22].

Under � the trace 	 becomes a normal state on L1Œ0; 1�. Thus there is a positive
function h 2 L1Œ0; 1� such that for all a 2 A, 	.a/ D R 1

0
�.a/.t/h.t/ dt . Since 	

is faithful, the set ft 2 Œ0; 1� j h.t/ D 0g has Lebesgue measure 0. Thus H.s/ DR s
0
h.t/ dt is a continuous positive strictly increasing function on Œ0; 1� with range

Œ0; 1�. So by the Stone-Weierstrass theorem, the C �-algebra generated by 1 and
H is all of C Œ0; 1�. Hence the von Neumann algebra generated by 1 and H is all
of L1Œ0; 1�. Let v.t/ D exp.2�iH.t//. Then H is in the von Neumann algebra
generated by v, so the von Neumann algebra generated by v is L1Œ0; 1�. Also,
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Z 1

0

v.t/nh.t/ dt D
Z 1

0

exp.2� inH.t//H 0.t/ dt D
Z 1

0

e2� ins ds D ı0;n:

Thus v is Haar unitary with respect to h. Finally let u 2 A be such that �.u/ D v.
Then the von Neumann algebra generated by u is A and u is a Haar unitary with
respect to the trace 	 .

This means that for each i we can find in vN.xi / a Haar unitary ui which
generates the same von Neumann algebra as xi . By Proposition 5, freeness of the
xi goes over to freeness of the ui . So we have found n Haar unitaries in M which
are �-free and which generate M . Thus M is isomorphic to the free group factor
L.Fn/. ut
Example 7. Instead of generating L.Fn/ by n �-free Haar unitaries, it is also very
common to use n free semi-circular elements. (Note that for self-adjoint elements �-
freeness is of course the same as freeness.) This is of course covered by the theorem
above. But let us be a bit more explicit on deforming a semi-circular element into a
Haar unitary. Let s 2 M be a semi-circular operator. The spectral measure of s isp
4 � t 2=.2�/ dt , i.e.

	.f .s// D 1

2�

Z 2

�2
f .t/

p
4 � t 2 dt:

If

H.t/ D t

4�

p
4 � t 2 C 1

�
sin�1.t=2/ then H 0.t/ D 1

2�

p
4 � t 2;

and u D exp.2�iH.s// is a Haar unitary, i.e.

	.uk/ D
Z 2

�2
e2�ikH.t/H 0.t/ dt D

Z 1=2

�1=2
e2�ikr dr D ı0;k;

which generates the same von Neumann subalgebra as s.

6.7 Compression of free group factors

Let M be any II1 factor with faithful normal trace 	 and e a projection in M . Let
eMe D fexe j x 2 M g; eMe is again a von Neumann algebra, actually a II1
factor, with e being its unit, and it is called the compression of M by e. It is an
elementary fact in von Neumann algebra theory that the isomorphism class of eMe
depends only on t D 	.e/, and we denote this isomorphism class by Mt . A deeper
fact of Murray and von Neumann is that .Ms/t D Mst . We can define Mt for all
t > 0 as follows. For a positive integer n, let Mn D M ˝Mn.C/, and for any t , let
Mt D eMne for any sufficiently large n and any projection e in Mn with trace
t , where here we use the non-normalized trace 	 ˝ Tr on Mn. Murray and von
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Neumann then defined the fundamental group of M , F.M/, to be ft 2 R
C j M '

Mtg and showed that it is a multiplicative subgroup of RC. (See [106, Ex. 13.4.5
and 13.4.6].) It is a theorem that when G is an amenable ICC group, we have that
L.G/ is the hyperfinite II1 factor and F.L.G// D R

C; see [170].
Rădulescu showed that F.L.F1// D R

C; see [144]. For finite n, F.L.Fn// is
unknown; but it is known to be either RC or f1g. In the rest of this chapter, we will
give the key ideas about those compression results for free group factors.

The first crucial step was taken by Voiculescu who showed in 1990 in [179] that
for integer m; n; k, we have L.Fn/1=k ' L.Fm/, where .m � 1/=.n � 1/ D k2, or
equivalently

L.Fn/ ' Mk.C/˝ L.Fm/; where
m � 1
n � 1 D k2: (6.3)

So if we embed L.Fm/ into Mk.C/ ˝ L.Fm/ ' L.Fn/ as x 7! 1 ˝ x, then
L.Fm/ is a subfactor of L.Fn/ of Jones index k2; see [105, Example 2.3.1]. Thus,
.m � 1/=.n � 1/ D ŒL.Fn/ W L.Fm/�. Notice the similarity to Schreier’s index
formula for free groups. Indeed, suppose G is a free group of rank n and H is a
subgroup of G of finite index. Then H is necessarily a free group, say of rank m,
and Schreier’s index formula says that .m � 1/=.n � 1/ D ŒG W H�.

Rather than proving Voiculescu’s theorem, Equation (6.3), in full generality, we
shall first prove a special case which illustrates the main ideas of the proof and then
sketch the general case.

Theorem 8. We have L.F3/1=2 ' L.F9/.
To prove this theorem, we must find in L.F3/1=2 nine free normal elements with

diffuse spectral measure which generate L.F3/1=2. In order to achieve this, we will
start with normal elements x1; x2; x3, together with a faithful normal state ', such
that

ı the spectral measure of each xi is diffuse (i.e. no atoms) and
ı x1; x2; x3 are �-free.

Let N be the von Neumann algebra generated by x1; x2, and x3. Then N ' L.F3/.
We will then show that there is a projection p in N such that

ı '.p/ D 1=2

ı there are 9 free and diffuse elements in pNp which generate pNp.

Thus L.F3/1=2 ' pNp ' L.F9/.
The crucial issue above is that we will be able to choose our elements x1; x2; x3

in such a form that we can easily recognize p and the generating elements of pNp.
(Just starting abstractly with three �-free normal diffuse elements will not be very
helpful, as we have then no idea how to get p and the required nine free elements.)
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Actually, since our claim is equivalent to L.F3/ ' M2.C/ ˝ L.F9/, it will surely
be a good idea to try to realize x1; x2; x3 as 2 � 2 matrices. This will be achieved in
the next section with the help of circular operators.

6.8 Circular operators and complex Gaussian random matrices

To construct the elements x1, x2, x3 as required above, we need to make a digression
into circular operators. Let X be an 2N � 2N GUE random matrix. Let

P D
�
In 0n
0n 0n

�

and G D p
2PX.1 � P /:

Then G is a N � N matrix with independent identically distributed entries which
are centred complex Gaussian random variables with complex variance 1=N ; such
a matrix we call a complex Gaussian random matrix. We can determine the limiting
�-moments of G as follows.

Write Y1 D .GCG�/=
p
2 and Y2 D �i.G�G�/=

p
2 thenG D .Y1C iY2/=

p
2

and Y1 and Y2 are independent N � N GUE random matrices. Therefore by the
asymptotic freeness of independent GUE (see section 1.11), Y1 and Y2 converge as
N ! 1 to free standard semi-circulars s1 and s2.

Definition 9. Let s1 and s2 be free and standard semi-circular. Then we call
c D .s1 C is2/=

p
2 a circular operator.

Since s1 and s2 are free, we can easily calculate the free cumulants of c.
If " D ˙1 let us adopt the following notation for x."/: x.�1/ D x� and x.1/ D x.
Recall that for a standard semi-circular operator s

�n.s; : : : ; s/ D
(
1; n D 2

0; n ¤ 2
:

Thus

�n.c
."1/; : : : ; c."n// D 2�n=2�n.s1 C "1is2; : : : ; s1 C i"ns2/

D 2�n=2��n.s1; : : : ; s1/C in"1 � � � "n�n.s2; : : : ; s2/
�

since all mixed cumulants in s1 and s2 are 0. Thus �n.c."1/; : : : ; c."n// D 0 for n ¤ 2,
and

�2.c
."1/; c."2// D 2�1��2.s1; s1/ � "1"2�2.s2; s2/

� D 1 � "1"2
2

D
(
1 "1 ¤ "2

0 "1 D "2
:
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Hence, �2.c; c�/ D �2.c
�; c/ D 1, �2.c; c/ D �2.c

�; c�/ D 0, and all other
�-cumulants are 0. Thus

	..c�c/n/ D
X

�2NC.2n/
��.c

�; c; c�; c; : : : ; c�; c/ D
X

�2NC2.2n/
��.c

�; c; c�; c; : : : ; c�; c/:

Now note that any � 2 NC2.2n/ connects, by parity reasons, automatically only c
with c�, hence ��.c�; c; c�; c; : : : ; c�; c/ D 1 for all � 2 NC2.2n/, and we have

	..c�c/n/ D jNC2.2n/j D 	.s2n/;

where s is a standard semi-circular element. Since t 7! p
t is a uniform limit of

polynomials in t , we have that the moments of jcj D p
c�c and jsj D p

s2 are the
same and jcj and jsj have the same distribution. The operator jcj D jsj is called a
quarter-circular operator and has moments

	.jcjk/ D 1

�

Z 2

0

tk
p
4 � t 2 dt:

An additional result which we will need is Voiculescu’s theorem on the polar
decomposition of a circular operator.

Theorem 10. Let .M; 	/ be a W �-probability space and c 2 M a circular
operator. If c D u jcj is its polar decomposition in M, then

(i) u and jcj are �-free,
(ii) u is a Haar unitary,

(iii) jcj is a quarter circular operator.

The proof of (i) and (ii) can either be done using random matrix methods (as
was done by Voiculescu [180]) or by showing that if u is a Haar unitary and q is
a quarter-circular operator such that u and q are �-free, then uq has the same �-
moments as a circular operator (this was done by Nica and Speicher [137]). The
latter can be achieved, for example, by using the formula for cumulants of products,
equation (2.23). For the details of this approach, see [137, Theorem 15.14].

Theorem 11. Let .A; '/ be a unital �-algebra with a state '. Suppose s1; s2; c 2 A
are �-free and s1 and s2 semi-circular and c circular. Then

x D 1p
2

�
s1 c

c� s2

�

2 .M2.A/; '2/

is semi-circular.

Here we have used the standard notationM2.A/ D M2.C/˝A for 2�2matrices
with entries from A and '2 D tr ˝ ' for the composition of the normalized trace
with '.
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Proof: Let Chx11; x12; x21; x22i be the polynomials in the non-commuting variables
x11; x12; x21; x22. Let

pk.x11; x12; x21; x22/ D 1

2
Tr

 �
x11 x12
x21 x22

�k!

:

Now let AN D MN.L
1�.˝// be the N � N matrices with entries in

L1�.˝/ WD T
p�1 Lp.˝/, for some classical probability space˝. On AN we have

the state 'N .X/ D E.N�1Tr.X//. Now suppose in AN we have S1, S2, and C , with
S1 and S2 GUE random matrices and C a complex Gaussian random matrix and with
the entries of S1, S2, C independent. Then we know that S1; S2; C converge in �-
distribution to s1; s2; c, i.e. for any polynomial p in four non-commuting variables,
we have 'N .p.S1; C; C �; S2// ! '.p.s1; c; c

�; s2//. Now let

X D 1p
2

�
S1 C

C � S2

�

:

Then X is in A2N , and

'2N .X
k/ D 'N

�
pk.S1; C; C

�; S2/
� ! '

�
pk.s1; c; c

�; s2/
� D '.

1

2
Tr.xk//

D tr ˝ '.xk/:

On the other hand, X is a 2N � 2N GUE random matrix; so '2N .Xk/ converges to
the kth moment of a semi-circular operator. Hence x in M2.A/ is semi-circular. ut
Exercise 4. Suppose s1, s2, c, and x are as in Theorem 11. Show that x is semi-
circular by computing '.tr.xn// directly using the methods of Lemma 1.9.

We can now present the realization of the three generators x1; x2; x3 of L.F3/
which we need for the proof of the compression result.

Lemma 12. Let A be a unital �-algebra and ' a state on A. Suppose s1, s2, s3, s4,
c1, c2, u in A are �-free, with s1, s2, s3, and s4 semi-circular, c1 and c2 circular, and
u a Haar unitary. Let

x1 D
�
s1 c1
c�
1 s2

�

; x2 D
�
s3 c2
c�
2 s4

�

; x3 D
�

u 0

0 2u

�

:

Then x1, x2, x3 are �-free in M2.A/ with respect to the state tr ˝ '; x1 and x2 are
semi-circular and x3 is normal and diffuse.

Proof: We model x1 by X1, x2 by X2, and x3 by X3 where

X1 D
�
S1 C1
C �
1 S2

�

; X2 D
�
S3 C2
C �
2 S3

�

; X3 D
�
U 0

0 2U

�
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and S1, S2, S3, S4 are N �N GUE random matrices, C1 and C2 are N �N complex
Gaussian random matrices, and U is a diagonal deterministic unitary matrix, chosen
so that the entries of X1 are independent from those of X2 and that the diagonal
entries of U converge in distribution to the uniform distribution on the unit circle.
Then X1, X2, X3 are asymptotically �-free by Theorem 4.4. Thus x1, x2, and x3
are �-free because they have the same distribution as the limiting distribution of X1,
X2, and X3. By the previous Theorem 11, x1 and x2 are semi-circular. x3 is clearly
normal, and its spectral distribution is given by the uniform distribution on the union
of the circle of radius 1 and the circle of radius 2. ut
6.9 Proof of L.F3/1=2 ' L.F9/

We will now present the proof of Theorem 8.

Proof: We have shown that if we take four semi-circular operators s1 s2, s3, s4, two
circular operators c1, c2, and a Haar unitary u in a von Neumann algebra M with
trace 	 such that s1, s2, s3, s4, c1, c2, u are �-free, then

ı the elements

x1 D
�
s1 c1
c�
1 s2

�

; x2 D
�
s3 c2
c�
2 s4

�

; x3 D
�

u 0

0 2u

�

are �-free in .M2.M/; tr ˝ 	/,
ı x1 and x2 are semi-circular, and x3 is normal and has diffuse spectral measure.

Let N D vN.x1; x2; x3/ � M2.M/. Then, by Theorem 6, N ' L.F3/. Since

�
1 0

0 4

�

D x�
3 x3 2 N; we also have the spectral projection p D

�
1 0

0 0

�

2 N;

and thus px1.1� p/ 2 N and px2.1� p/ 2 N . We have the polar decompositions

�
0 c1
0 0

�

D
�
0 v1
0 0

�

�
�
0 0

0 jc1j
�

and

�
0 c2
0 0

�

D
�
0 v2
0 0

�

�
�
0 0

0 jc2j
�

;

where c1 D v1jc1j and c2 D v2jc2j are the polar decompositions of c1 and c2,
respectively, in M .

Hence we see that N D vN.x1; x2; x3/ is generated by the ten elements

y1 D
�
s1 0

0 0

�

y2 D
�
0 0

0 s2

�

y3 D
�
0 v1
0 0

�

y4 D
�
0 0

0 jc1j
�

y5 D
�
s3 0

0 0

�

y6 D
�
0 0

0 s4

�

y7 D
�
0 v2
0 0

�

y8 D
�
0 0

0 jc2j
�

y9 D
�

u 0
0 0

�

y10 D
�
0 0

0 u

�

:
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Let us put

v WD
�
0 v1
0 0

�

I then v�v D
�
0 0

0 1

�

and vv� D
�
1 0

0 0

�

D p D p2:

Since we can write now any pyi1 � � � yinp in the form pyi11yi21 � � � 1yinp and
replace each 1 by p2 C v�v, it is clear that

S10
iD1fpyip; pyiv�; vyip; vyiv�g

generate pNp. This gives for pNp the generators

s1; v1s2v
�
1 ; v1v

�
1 ; v1 jc1j v�

1 ; s3; v1s4v
�
1 ; v2v

�
1 ; v1 jc2j v�

1 ; u; v1uv
�
1 :

Note that v1v�
1 D 1 can be removed from the set of generators. To check that the

remaining nine elements are �-free and diffuse, we recall a few elementary facts
about freeness.

Exercise 5. Show the following:

(i) if A1 and A2 are free subalgebras of A, if A11 and A12 are free subalgebras of
A1, and if A21 and A22 are free subalgebras of A2; then A11;A12;A21;A22 are
free;

(ii) if u is a Haar unitary �-free from A, then A is �-free from uAu�;
(iii) if u1 and u2 are Haar unitaries and u2 is �-free from fu1g [ A then u2u�

1 is a
Haar unitary and is �-free from u1Au�

1 .

By construction s1; s2; s3; s4; jc1j; jc2j; v1; v2; u are �-free. Thus, in particular,
s2; s4; jc1j; jc2j; v2; u are �-free. Hence, by (ii), v1s2v�

1 ; v1s4v
�
1 ; v1jc1jv�

1 ; v1jc2jv�
1 ;

v1uv�
1 are �-free and, in addition, �-free from u; s1; s3; v2. Thus

u; s1; s3; v1s2v
�
1 ; v1s4v

�
1 ; v1jc1jv�

1 ; v1jc2jv�
1 ; v1uv

�
1 ; v2

are �-free. Let A D alg.s2; s4; jc1j; jc2j; u/. We have that v2 is �-free from fv1g[A,
so by (iii), v2v�

1 is �-free from v1Av�
1 . Thus, v2v�

1 is �-free from

v1s2v
�
1 ; v1s4v

�
1 ; v1jc1jv�

1 ; v1jc2jv�
1 ; v1uv

�
1

and it was already �-free from s1; s3 and u. Thus by (i) our nine elements

s1; s3; v1s2v
�
1 ; v1s4v

�
1 ; v1jc1jv�

1 ; v1jc2jv�
1 ; u; v1uv

�
1 ; v2v

�
1

are �-free. Since they are either semi-circular, quarter-circular, or Haar elements,
they are all normal and diffuse; as they generate pNp, we have that pNp is
generated by nine �-free normal and diffuse elements and thus, by Theorem 6,
pNp ' L.F9/. Hence L.F3/1=2 ' L.F9/. ut
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6.10 The general case L.Fn/1=k ' L.F1C.n�1/k2/

Sketch We sketch now the proof for the general case of Equation (6.3). We write
L.Fn/ D vN.x1; : : : ; xn/where for 1 � i � n�1 each xi is a semi-circular element
of the form

xi D 1p
k

0

B
B
B
B
@

s
.i/
1 c

.i/
12 : : : c

.i/

1k

c
.i/
12

�
s
.i/
2 : : : c

.i/

2k
:::

: : :
:::

c
.i/

1k

� � � � � � � s.i/k

1

C
C
C
C
A

and where xn D

0

B
B
B
@

u 0 : : : 0

0 2u : : : 0
:::

: : :
:::

0 0 : : : ku

1

C
C
C
A
;

with all s.i/j (j D 1; : : : ; k; i D 1; : : : ; n�1) semi-circular, all c.i/pq (1 � p < q � k;
i D 1; : : : ; n � 1) circular, and u a Haar unitary, so that all elements are �-free.

So we have .n � 1/k semi-circular operators, .n � 1/
�
k
2

�
circular operators, and

one Haar unitary. Each circular operator produces two free elements, so we have in
total

.n � 1/k C 2.n � 1/
 
k

2

!

C 1 D .n � 1/k2 C 1

free and diffuse generators. Thus L.Fn/1=k ' L.F1C.n�1/k2/. ut
6.11 Interpolating free group factors

The formula L.Fn/1=k ' L.Fm/, which up to now makes sense only for integer
m, n, and k, suggests that one might try to define L.Fr / also for noninteger r by
compression. A crucial issue is that, by the above formula, different compressions
should give the same result. That this really works and is consistent was shown,
independently, by Dykema [67] and Rădulescu [145].

Theorem 13. Let R be the hyperfinite II1 factor and L.F1/ D vN.s1; s2; : : : / be
a free group factor generated by countably many free semi-circular elements si ,
such that R and L.F1/ are free in some W �-probability space .M; 	/. Consider
orthogonal projections p1; p2; � � � 2 R and put r WD 1CP

j 	.pj /
2 2 Œ1;1�. Then

the von Neumann algebra

L.Fr / WD vN.R; pj sj pj .j 2 N// (6.4)

is a factor and depends, up to isomorphism, only on r .

These L.Fr / for r 2 R, 1 � r � 1 are the interpolating free group factors.
Note that we do not claim to have noninteger free groups Fr . The notation L.Fr /
cannot be split into smaller components.

Dykema and Rădulescu showed the following results.
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Theorem 14. 1) For r 2 f2; 3; 4; : : : ;1g the interpolating free group factor
L.Fr / is the usual free group factor.

2) We have for all r; s � 1: L.Fr / ? L.Fs/ ' L.FrCs/.
3) We have for all r � 1 and all t 2 .0;1/ the same compression formula as in

the integer case:

�L.Fr /
�
t

' L.F1Ct�2.r�1//: (6.5)

The compression formula above is also valid in the case r D 1; since then
1 C t�2.r � 1/ D 1, it yields in this case that any compression of L.F1/ is
isomorphic to L.F1/; or in other words, we have that the fundamental group of
L.F1/ is equal to R

C.

6.12 The dichotomy for the free group factor isomorphism problem

Whereas for r D 1, the compression of L.Fr / gives the same free group factor (and
thus we know that the fundamental group is maximal in this case); for r < 1 we get
some other free group factors. Since we do not know whether these are isomorphic
to the original L.Fr /, we cannot decide upon the fundamental group in this case.
However, on the positive side, we can connect different free group factors by
compressions; this yields that some isomorphisms among the free group factors will
imply other isomorphisms. For example, if we would know that L.F2/ ' L.F3/,
then this would imply that also

L.F5/ ' �L.F2/
�
1=2

' �L.F3/
�
1=2

' L.F9/:

The possibility of using arbitrary t 2 .0;1/ in our compression formulas allows to
connect any two free group factors by compression, which gives then the following
dichotomy for the free group isomorphism problem. This is again due to Dykema
and Rădulescu.

Theorem 15. We have exactly one of the following two possibilities.

(i) All interpolating free group factors are isomorphic: L.Fr / ' L.Fs/ for all
1 < r; s � 1. In this case the fundamental group of each L.Fr / is equal to
R

C.
(ii) The interpolating free group factors are pairwise non-isomorphic: L.Fr / 6'

L.Fs/ for all 1 < r 6D s � 1. In this case the fundamental group of each
L.Fr /, for r 6D 1, is equal to f1g.



Chapter 7
Free Entropy �: The Microstates Approach via Large Deviations

An important concept in classical probability theory is Shannon’s notion of entropy.
Having developed the analogy between free and classical probability theory, one
hopes to find that a notion of free entropy exists in counterpart to the Shannon
entropy. In fact there is a useful notion of free entropy. However, the development
of this new concept is at present far from complete. The current state of affairs is
that there are two distinct approaches to free entropy. These should give isomorphic
theories, but at present we only know that they coincide in a limited number of
situations.

The first approach to a theory of free entropy is via microstates. This is rooted
in the concept of large deviations. The second approach is microstates free. This
draws its inspiration from the statistical approach to classical entropy via the notion
of Fisher information. The unification problem in free probability theory is to prove
that these two theories of free entropy are consistent. We will in this chapter only talk
about the first approach via microstates; the next chapter will address the microstates
free approach.

7.1 Motivation

Let us return to the connection between random matrix theory and free probability
theory which we have been developing. We know that a p-tuple .A.1/N ; : : : ; A

.p/
N / of

N � N matrices chosen independently at random with respect to the GUE density
(compare Exercise 1.8), PN .A/ D const � exp.�NTr.A2/=2/, on the space of
N � N Hermitian matrices converges almost surely (in moments with respect to
the normalized trace) to a freely independent family .s1; : : : ; sp/ of semi-circular
elements lying in a non-commutative probability space; see Theorem 4.4. The
von Neumann algebra generated by p freely independent semi-circulars is the von
Neumann algebra L.Fp/ of the free group on p generators.

© Springer Science+Business Media LLC 2017
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We ask now the following question: How likely is it to observe other distribu-
tions/operators for large N ?

Let us consider the case p D 1 more closely. For a random Hermitian matrix
A D A� (distribution as above) with real random eigenvalues 1 � � � � � N ,
denote by


A D 1

N
.ı1 C � � � C ıN / (7.1)

the eigenvalue distribution of A (also known as the empirical eigenvalue distribu-
tion), which is a random measure on R. Wigner’s semi-circle law states that as
N ! 1, PN .
A � 
W / ! 1, where 
W is the (non-random) semi-circular
distribution and 
A � 
W means that the measures are close in a sense that can be
made precise. We are now interested in the deviations from this. What is the rate of
decay of the probability PN .
A � �/, where � is some measure (not necessarily the
semi-circle)? We expect that

PN .
A � �/ � e�N2I.�/ (7.2)

for some rate function I vanishing at 
W : By analogy with the classical theory of
large deviations, I should correspond to a suitable notion of free entropy.

We used in the above the notion “�” for meaning “being close” and “�” for
“behaves asymptotically (in N ) like”; here they should just be taken on an intuitive
level, later, in the actual theorems they will be made more precise.

In the next two sections, we will recall some of the basic facts of the classical
theory of large deviations and, in particular, Sanov’s theorem; this standard material
can be found, for example, in the book [64]. In Section 7.4 we will come back to the
random matrix question.

7.2 Large deviation theory and Cramér’s theorem

Consider a real-valued random variable X with distribution 
. Let X1;X2; : : : be
a sequence of independent identically distributed random variables with the same
distribution as X , and put Sn D .X1 C � � � CXn/=n. Let m D EŒX� and �2 D
var.X/ D EŒX2� � m2. Then the law of large numbers asserts that Sn ! m, if
EŒjX j� < 1; while if EŒX2� < 1, the central limit theorem tells us that for large n

Sn � mC �p
n
N.0; 1/: (7.3)

For example, if 
 D N.0; 1/ is Gaussian, then m D 0 and Sn has the Gaussian
distribution N.0; 1=n/, and hence

P.Sn � x/ D P.Sn 2 Œx; x C dx�/ � e�nx2=2dx
p
np
2�

� e�nI.x/dx:
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Thus the probability that Sn is near the value x decays exponentially in n at a rate
determined by x; namely the rate function I.x/ D x2=2: Note that the convex
function I.x/ has a global minimum at x D 0; the minimum value there being 0;
which corresponds to the fact that Sn approaches the mean 0 in probability.

This behaviour is described in general by the following theorem of Cramér. Let
X , 
, fXigi , and Sn be as above. There exists a function I.x/; the rate function,
such that

P.Sn > x/ � e�nI.x/; x > m

P.Sn < x/ � e�nI.x/; x < m:

How does one calculate the rate function I for a given distribution 
? We shall
let X be a random variable with the same distribution as the Xi ’s. For arbitrary
x > m; one has for all  � 0

P.Sn > x/ D P.nSn > nx/

D P.e.nSn�nx/ � 1/

� EŒe.nSn�nx/� .by Markov’s inequality/

D e�nxEŒe.X1C���CXn/�

D .e�xEŒeX �/n:

Here we are allowing that EŒeX � D C1. Now put

�./ WD logEŒeX �; (7.4)

the cumulant generating series of 
; c.f. Section 1.1. We consider � to be an
extended real-valued function but here only consider 
 for which �./ is finite for
all real  in some open set containing 0; however, Cramér’s theorem (Theorem 1)
holds without this assumption. With this assumption� has a power series expansion
with radius of convergence 0 > 0, and in particular all moments exist.

Exercise 1. Suppose that X is a real random variable and there is 0 > 0 so that
for all jj � 0 we have E.eX/ < 1. Then X has moments of all orders, and the
function  7! E.eX/ has a power series expansion with a radius of convergence of
at least 0.

Then the inequality above reads

P.Sn > x/ � e�nxCn�./ D e�n.x��.//; (7.5)
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which is valid for all 0 � . By Jensen’s inequality we have, for all  2 R,

�./ D logEŒeX � � EŒlog eX � D m: (7.6)

This implies that for  < 0 and x > m we have �n.x � �.// � 0, and so
equation (7.5) is valid for all . Thus

P.Sn > x/ � inf

e�n.x��.// D exp

�

�n sup


.x ��.//
�

:

The function  7! �./ is convex, and the Legendre transform of � defined by

��.x/ WD sup


.x ��.// (7.7)

is also a convex function of x, as it is the supremum of a family of convex functions
of x.

Exercise 2. Show that .E.XeX//2 � E.eX/E.XeX/. Show that  7! �./ is
convex.

Note that �.0/ D log 1 D 0; thus, ��.x/ � .0x � �.0// D 0 is non-negative,
and hence equation (7.6) implies that ��.m/ D 0.

Thus, we have proved that, for x > m,

P.Sn > x/ � e�n��.x/; (7.8)

where �� is the Legendre transform of the cumulant generating function �:

In the same way, one proves the same estimate for P.Sn <x/ for x <m. This
gives �� as a candidate for the rate function. Moreover we have by Exercise 3 that
limn logŒP.Sn >x/�1=n exists and by Equation (7.8) this limit is less than
exp .���.x//. If we assume that neither P.X>x/ nor P.X<x/ is 0, exp .���.x//
will be the limit. In general we have

� inf
y>x

��.y/� lim inf
n

1

n
logP.Sn > x/� lim sup

n

1

n
logP.Sn � x/� � inf

y�x �
�.y/:

Exercise 3. Let an D logP.Sn > a/. Show that

(i) for all m; n: amCn � am C an;
(ii) for all m

lim inf
n!1

an

n
� am

m
I

(iii) lim
n!1 an=n exists.
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However, in preparation for the vector-valued version, we will show that
exp .�n��.x// is asymptotically a lower bound; more precisely, we need to verify
that

lim inf
n!1

1

n
logP.x � ı < Sn < x C ı/ � ���.x/

for all x and all ı > 0: By replacing Xi by Xi � x, we can reduce this to the case
x D 0, namely, showing that

���.0/ � lim inf
n!1

1

n
logP.�ı < Sn < ı/: (7.9)

Note that ���.0/ D inf �./: The idea of the proof of (7.9) is then to perturb
the distribution 
 to Q
 such that x D 0 is the mean of Q
: Let us only consider the
case where � has a global minimum at some point �. This will always be the case
if 
 has compact support and both P.X > 0/ and P.X < 0/ are not 0. The general
case can be reduced to this by a truncation argument. With this reduction �./ is
finite for all , and thus � has an infinite radius of convergence (c.f. Exercise 1),
and thus� is differentiable. So we have�0.�/ D 0. Now let Q
 be the measure on R

such that

d Q
.x/ D e�x��.�/d
.x/: (7.10)

Note that
Z

R

d Q
.x/ D e��.�/
Z

R

e�xd
.x/ D e��.�/EŒe�X � D e��.�/e�.�/ D 1;

which verifies that Q
 is a probability measure. Consider now i.i.d. random variables
f QXigi with distribution Q
; and put QSn D . QX1 C � � � C QXn/=n. Let QX have the
distribution Q
. We have

EŒ QX� D
Z

R

xd Q
.x/ D e��.�/
Z

R

xe�xd
.x/ D e��.�/ d
d

Z

R

exd
.x/
ˇ
ˇ
D�

D e��.�/ d
d
e�./

ˇ
ˇ
D� D e��.�/�0.�/e�.�/ D �0.�/ D 0:

Now, for all � > 0; we have exp .�
P
xi / � exp .n�j�j/ whenever jP xi j � n�

and so

P.�� < Sn < �/ D
Z

jPn
iD1 xi j<n�

d
.x1/ � � � d
.xn/

� e�n�j�j
Z

jPn
iD1 xi j<n�

e�
P
xi d
.x1/ � � � d
.xn/
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D e�n�j�jen�.�/
Z

jPn
iD1 xi j<n�

d Q
.x1/ � � � d Q
.xn/

D e�n�j�jen�.�/P.�� < QSn < �/:

By the weak law of large numbers, QSn ! EŒ QXi � D 0 in probability, i.e. we have
limn!1 P.�� < QSn < �/ D 1 for all � > 0: Thus for all 0 < � < ı

lim inf
n!1

1

n
logP.�ı < Sn < ı/ � lim inf

n!1
1

n
logP.�� < Sn < �/

� �.�/ � �j�j; for all � > 0

� �.�/

D inf�./

D ���.0/:

This sketches the proof of Cramér’s theorem for R. The higher-dimensional form
of Cramér’s theorem can be proved in a similar way.

Theorem 1 (Cramér’s Theorem for R
d ). Let X1;X2; : : : be a sequence of

i.i.d. random vectors, i.e. independent Rd -valued random variables with common
distribution 
 (a probability measure on R

d ). Put

�./ WD EŒeh;Xi i�;  2 R
d ; (7.11)

and

��.x/ WD sup
2Rd

fh; xi ��./g: (7.12)

Assume that �./ < 1 for all  2 R
d , and put Sn WD .X1 C � � � CXn/=n.

Then the distribution 
Sn of the random variable Sn satisfies a large deviation
principle with rate function ��, i.e.

ı x 7! ��.x/ is lower semicontinuous (actually convex)
ı �� is good, i.e. fx 2 R

d W ��.x/ � ˛g is compact for all ˛ 2 R

ı For any closed set F 	 R
d ,

lim sup
n!1

1

n
logP.Sn 2 F / � � inf

x2F �
�.x/ (7.13)

ı For any open set G 	 R
d ;

lim inf
n!1

1

n
logP.Sn 2 G/ � � inf

x2G �
�.x/: (7.14)



7.3 Sanov’s theorem and entropy 181

7.3 Sanov’s theorem and entropy

We have seen Cramér’s theorem for R
d ; in an informal way, it says P.Sn � x/

� exp .�n��.x//. Actually, we are interested not in Sn; but in the empirical
distribution .ıX1 C � � � C ıXn/=n:

Let us consider this in the special case of random variables Xi W ˝ ! A,
taking values in a finite alphabet A D fa1; : : : ; ad g, with pk WD P.Xi D ak/.
As n ! 1; the empirical distribution of the Xi ’s should converge to the “most
likely” probability measure .p1; : : : ; pd / on A:

Now define the vector of indicator functions Yi W ˝ ! R
d by

Yi WD .1fa1g.Xi /; : : : ; 1fad g.Xi //; (7.15)

so that in particular pk is equal to the probability that Yi will have a 1 in the
k-th spot and 0’s elsewhere. Then the averaged sum .Y1 C � � � C Yn/=n gives
the relative frequency of a1; : : : ; ad , i.e. it contains the same information as the
empirical distribution of .X1; : : : ; Xn/:

A probability measure on A is given by a d -tuple .q1; : : : ; qd / of positive real
numbers satisfying q1 C � � � C qd D 1: By Cramér’s theorem,

P

�
1

n
.ıX1 C � � � C ıXn/ � .q1; : : : ; qd /



D P

�
Y1 C � � � C Yn

n
� .q1; : : : ; qd /



� e�n��.q1;:::;qd /:

Here

�.1; : : : ; d / D logEŒeh;Yi i� D log.p1e
1 C � � � C pde

d /:

Thus the Legendre transform is given by

��.q1; : : : ; qd / D sup
.1;:::;d /

f1q1 C � � � C dqd ��.1; : : : ; d /g:

We compute the supremum over all tuples .1; : : : ; d / by finding the partial
derivative @=@i of 1q1 C � � � C dqd ��.1; : : : ; d / to be

qi � 1

p1e1 C � � � C pded
pie

i :

By concavity the maximum occurs when

i D log
qi

pi
C log.p1e

1 C � � � C pde
d / D log

qi

pi
C�.1; : : : ; d /;
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and we compute

��.q1; : : : ; qd /

D q1 log
q1

p1
C � � � C qd log

qd

pd
C .q1 C � � � C qd /�.1; : : : ; d / ��.1; : : : ; d /

D q1 log
q1

p1
C � � � C qd log

qd

pd
:

The latter quantity is Shannon’s relative entropy, H..q1; : : : ; qd /j.p1; : : : ; pd //, of
.q1; : : : ; qd /with respect to .p1; : : : ; pd /:Note thatH..q1; : : : ; qd /j.p1; : : : ; pd // �
0, with equality holding if and only if q1 D p1; : : : ; qd D pd :

Thus .p1; : : : ; pd / is the most likely realization, with other realizations expo-
nentially unlikely; their unlikelihood is measured by the rate function ��; and this
rate function is indeed Shannon’s relative entropy. This is the statement of Sanov’s
theorem. We have proved it here for a finite alphabet; it also holds for continuous
distributions.

Theorem 2 (Sanov’s Theorem). LetX1;X2; : : : be i.i.d. real-valued random vari-
ables with common distribution 
; and let

�n D 1

n
.ıX1 C � � � C ıXn/ (7.16)

be the empirical distribution of X1; : : : ; Xn; which is a random probability measure
on R: Then f�ngn satisfies a large deviation principle with rate function I.�/ D
S.�; 
/ (called the relative entropy) given by

I.�/ D
( R

p.t/ logp.t/d
.t/; if d� D p d


C1; otherwise:
(7.17)

Concretely, this means the following. Consider the set M of probability measures
on R with the weak topology (which is a metrizable topology, e.g. by the Lévy
metric). Then for closed F and open G in M, we have

lim sup
n!1

1

n
logP.�n 2 F / � � inf

�2F S.�; 
/ (7.18)

lim inf
n!1

1

n
logP.�n 2 G/ � � inf

�2G S.�; 
/: (7.19)

7.4 Back to random matrices and one-dimensional free entropy

Consider again the space HN of Hermitian matrices equipped with the probability
measure PN having density

dPN .A/ D const � e�N
2 Tr.A2/dA: (7.20)
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We let RN� D f.x1; : : : ; xN / 2 R
N j x1 � � � � � xN g. For a self-adjoint matrix

A, we write the eigenvalues of A as 1.A/ � � � � � N .A/. The joint eigenvalue
distribution QPN on R

N� is defined by

QPN .B/ WD PN fA 2 HN j .1.A/; : : : ; N .A// 2 Bg: (7.21)

The permutation group SN acts on R
N by permuting the coordinates, with R

N� as
a fundamental domain (ignoring sets of measure 0). So we can use this action to
transport QPN around R

N to get a probability measure on R
N .

One knows (e.g. see [7, Thm. 2.5.2]) that QPN is absolutely continuous with
respect to Lebesgue measure on R

N and has density

d QPN .1; : : : ; N / D CN � e�N
2

PN
iD1 

2
i

Y

i<j

.i � j /2
NY

iD1
di ; (7.22)

where

CN D NN2=2

.2�/N=2
QN
jD1 j Š

: (7.23)

We want to establish a large deviation principle for the empirical eigenvalue
distribution 
A D .ı1.A/ C � � � C ıN .A//=N of a random matrix in HN :

One can argue heuristically as follows for the expected form of the rate function.
We have

PN f
A � �g D QPN
�
1

N
.ı1 C � � � C ıN / � �



D CN �
Z

f 1
N .ı1C���CıN /��g

e�N
2

P
2i
Y

i<j

.i � j /2
NY

iD1
di :

Now for .ı1.A/ C � � � C ıN .A//=N � �,

�N
2

NX

iD1
2i D �N

2

2

1

N

NX

iD1
2i

is a Riemann sum for the integral
R
t 2d�.t/: Moreover

Y

i<j

.i � j /2 D exp

0

@
X

i<j

log ji � j j2
1

A D exp

0

@
X

i¤j
log ji � j j

1

A

is a Riemann sum for N2
R R

log js � t jd�.s/d�.t/:
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Hence, heuristically, we expect that PN .
A � �/ � exp .�N2I.�//, with

I.�/ D �
Z Z

log js�t jd�.s/d�.t/C 1

2

Z
t 2d�.t/� lim

N!1
1

N 2
logCN : (7.24)

The value of the limit can be explicitly computed as 3=4. Note that by writing

s2 C t 2 � 4 log js � t j D s2 C t 2 � 2 log.s2 C t 2/C 4 log

p
s2 C t 2

js � t j
and using the inequalities

t � 2 log t � 2 � 2 log 2 for t > 0 and 2.s2 C t 2/ � .s � t /2

we have for s 6D t that s2 C t 2 � 4 log js � t j � 2 � 4 log 2. This shows that if
� has a finite second moment, the integral

R R
.s2 C t 2 � 4 log js � t j/ d�.s/d�.t/

is always defined as an extended real number, possibly C1, in which case we set
I.�/ D C1, otherwise I.�/ is finite and is given by (7.24).

Voiculescu was thus motivated to use the integral
RR

log js � t j d
x.s/d
x.t/ to
define in [181] the free entropy �.x/ for one self-adjoint variable x with distribution

x ; see equation (7.30).

The large deviation argument was then made rigorous in the following theorem
of Ben Arous and Guionnet [26].

Theorem 3. Put

I.�/ D �
Z Z

log js � t jd�.s/d�.t/C 1

2

Z
t 2d�.t/ � 3

4
: (7.25)

Then,

(i) I W M ! Œ0;1� is a well-defined, convex, good function on the space, M, of
probability measures on R. It has unique minimum value of 0 which occurs at
the Wigner semi-circle distribution 
W with variance 1.

(ii) The empirical eigenvalue distribution satisfies a large deviation principle with
respect to QPN with rate function I : we have for any open set G in M

lim inf
N!1

1

N 2
log QPN .ı1 C � � � C ıN

N
2 G/ � � inf

�2G I.�/; (7.26)

and for any closed set F in M

lim sup
N!1

1

N 2
log QPN .ı1 C � � � C ıN

N
2 F / � � inf

�2F I.�/: (7.27)
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Exercise 4. The above theorem includes in particular the statement that for a
Wigner semi-circle distribution 
W with variance 1, we have

�
Z Z

log js � t j d
W .s/d
W .t/ D 1

4
: (7.28)

Prove this directly!

Exercise 5.

(i) Let 
 be a probability measure with support in Œ�2; 2�. Show that we have

Z

R

Z

R

log js � t jd
.s/d
.t/ D �
1X

nD1

1

2n

�Z

R

Cn.t/d
.t/

�2
;

where Cn are the Chebyshev polynomials of the first kind.
(ii) Use part (i) to give another derivation of (7.28).

7.5 Definition of multivariate free entropy

Let .M; 	/ be a tracialW �-probability space and x1; : : : ; xn self-adjoint elements in
M . Recall that by definition the joint distribution of the non-commutative random
variables x1; : : : ; xn is the collection of all mixed moments

distr.x1; : : : ; xn/ D f	.xi1xi2 � � � xik / j k 2 N; i1; : : : ; ik 2 f1; : : : ; ngg:

In this section we want to examine the probability that the distribution of
.x1; : : : ; xn/ occurs in Voiculescu’s multivariable generalization of Wigner’s semi-
circle law.

Let A1; : : : ; An be independent Gaussian random matrices: A1; : : : ; An are
chosen independently at random from the sample space MN.C/sa of N � N self-
adjoint matrices over C; equipped with Gaussian probability measure having density
proportional to exp.�Tr.A2/=2/ with respect to Lebesgue measure on MN.C/sa:

We know that as N ! 1 we have almost sure convergence .A1; : : : ; An/
distr�!

.s1; : : : ; sn/ with respect to the normalized trace, where .s1; : : : ; sn/ is a free semi-
circular family. Large deviations from this limit should be given by

PN f.A1; : : : ; An/ j distr.A1; : : : ; An/ � distr.x1; : : : ; xn/g � e�N2I.x1;:::;xn/;

where I.x1; : : : ; xn/ is the free entropy of x1; : : : ; xn: The problem is that this has
to be made more precise and that, in contrast to the one-dimensional case, there is
no analytical formula to calculate this quantity.
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We use the equation above as motivation to define free entropy as follows. This
is essentially the definition of Voiculescu from [182]; the only difference is that he
also included a cut-off parameter R and required in the definition of the “microstate
set” � that kAik � R for all i D 1; : : : ; n. Later it was shown by Belinschi and
Bercovici [20] that removing this cut-off condition gives the same quantity.

Definition 4. Given a tracial W �-probability space .M; 	/ and an n-tuple
.x1; : : : ; xn/ of self-adjoint elements in M , we define the (microstates) free entropy
�.x1; : : : ; xn/ of the variables x1; : : : ; xn as follows. First, we put

� .x1; : : : ; xnIN; r; �/
WD ˚

.A1; : : : ; An/ 2 MN.C/
n
sa j jtr.Ai1 � � �Aik / � 	.xi1 � � � xik /j � �

for all 1 � i1; : : : ; ik � n; 1 � k � r
�
:

In words, � .x1; : : : ; xnIN; r; �/, which we call the set of microstates, is the set of
all n-tuples of N �N self-adjoint matrices which approximate the mixed moments
of the self-adjoint elements x1; : : : ; xn of length at most r to within �:

Let � denote Lebesgue measure on MN.C/
n
sa ' R

nN2
. Then we define

�.x1; : : : ; xnI r; �/ WD lim sup
N!1

�
1

N 2
log

�
�.� .x1; : : : ; xnIN; r; �//

�C n

2
log.N /

�

;

and finally put

�.x1; : : : ; xn/ WD lim
r!1
�!0

�.x1; : : : ; xnI r; �/: (7.29)

It is an important open problem whether the lim sup in the definition above of
�.x1; : : : ; xnI r; �/ is actually a limit.

We want to elaborate on the meaning of�, the Lebesgue measure onMN.C/
n
sa '

R
nN2

, and the normalization constant n log.N /=2. Let us consider the case n D 1.
For a self-adjoint matrix A D .aij /

N
i;jD1 2 MN.C/sa, we identify the elements

on the diagonal (which are real) and the real and imaginary part of the elements
above the diagonal (which are the adjoints of the corresponding elements below the
diagonals) with an N C 2

N.N�1/
2

D N2 dimensional vector of real numbers. The
actual choice of this mapping is determined by the fact that we want the Euclidean
inner product in R

N2
to correspond on the side of the matrices to the form .A;B/ 7!

Tr.AB/. Note that

Tr.A2/ D
NX

i;jD1
aij aj i D

NX

iD1
.Reaii /

2 C 2
X

1�i<j�N

�
.Reaij /

2 C .Imaij /
2
�
:
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This means that there is a difference of a factor
p
2 between the diagonal and the off-

diagonal elements. (The same effect made its appearance in Chapter 1, Exercise 8,
when we defined the GUE by assigning different values for the covariances for
variables on and off the diagonal – in order to make this choice invariant under
conjugation by unitary matrices.) So our specific choice of a map between MN.C/

and R
N2

means that we map the set fA 2 MN.C/sa j Tr.A2/ � R2g to the ball
BN2.R/ of radius R in N2 real dimensions. The pull back under this map of the
Lebesgue measure on R

N2
is what we call �, the Lebesgue measure on MN.C/sa.

The situation for general n is given by taking products.
Note that a microstate .A1; : : : ; An/ 2 � .x1; : : : ; xnIN; r; �/ satisfies for r � 2

1

N
Tr.A21 C � � � C A2n/ � 	.x21 C � � � C x2n/C n� DW c2;

and thus the set of microstates � .x1; : : : ; xnIN; r; �/ is contained in the ball
BnN2.

p
Nc/. The fact that the latter grows logarithmically like

1

N 2
log�

�
BnN2.

p
Nc/

�
D 1

N 2
log

.
p
Nc

p
�/nN

2

� .1C nN2=2/
� �n

2
logN;

is the reason for adding the term n logN=2 in the definition of �.x1; : : : ; xnI r; �/.
7.6 Some important properties of �

The free entropy has the following properties:

(i) For n D 1, much more can be said than for general n. In particular, one can
show that the lim sup in the definition of � is indeed a limit and that we have
the explicit formula

�.x/ D
Z Z

log js � t jd
x.s/d
x.t/C 1

2
log.2�/C 3

4
: (7.30)

Thus the definition of � reduces in this case to the quantity from the previous
section. Our discussion before Theorem 3 shows then that �.x/ 2 Œ�1;1/.
For n � 2; no formula of this sort is known.

When x is a semi-circular operator with variance 1, we know the value of the
double integral by (7.28); hence, for a semi-circular operator s with variance
1, we have

�.s/ D 1

2
.1C log.2�//: (7.31)

(ii) � is subadditive:

�.x1; : : : ; xn/ � �.x1/C � � � C �.xn/: (7.32)
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This is an easy consequence of the fact that

� .x1; : : : ; xnIN; r; �/ 	
nY

iD1
� .xi IN; r; �/:

Thus, in particular, by using the corresponding property from (i), we always
have �.x1; : : : ; xn/ 2 Œ�1;1/:

(iii) � is upper semicontinuous: if .x.m/1 ; : : : ; x
.m/
n /

distr�! .x1; : : : ; xn/ for m ! 1,
then

�.x1; : : : ; xn/ � lim sup
m!1

�.x
.m/
1 ; : : : ; x.m/n /: (7.33)

This is because if, for arbitrary words of length k with 1 � k � r , we have

j	.x.m/i1
� � � x.m/ik

/ � 	.xi1 � � � xik /j <
�

2

for sufficiently large m; then

� .x
.m/
1 ; : : : ; x.m/n IN; r; �

2
/ 	 � .x1; : : : ; xnIN; r; �/:

(iv) If x1; : : : ; xn are free, then �.x1; : : : ; xn/ D �.x1/C � � � C �.xn/.
(v) �.x1; : : : ; xn/, under the constraint

P
	.x2i / D n, has a unique maximum

when x1; : : : ; xn is a free semi-circular family .s1; : : : ; sn/ with 	.s2i / D 1:

In this case

�.s1; : : : ; sn/ D n

2
.1C log.2�//: (7.34)

(vi) Consider yj D Fj .x1; : : : ; xn/, for some “convergent” non-commutative
power series Fj , such that the mapping .x1; : : : ; xn/ 7! .y1; : : : ; yn/ can be
inverted by some other power series. Then

�.y1; : : : ; yn/ D �.x1; : : : ; xn/C n log.j det jJ .x1; : : : ; xn//; (7.35)

where J is a non-commutative Jacobian and j det j is the Fuglede-Kadison
determinant. (We will provide more information on the Fuglede-Kadison
determinant in Chapter 11.)

With the exception of .ii/ and .iii/, the statements above are quite non-trivial; for
the proofs we refer to the original papers of Voiculescu [182, 186].

Exercise 6. (i) For an n-tuple .x1; : : : ; xn/ of self-adjoint elements in M and an
invertible real matrix T D .tij /

n
i;jD1 2 Mn.R/, we put yi WD Pn

jD1 tij xj 2 M
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(i D 1; : : : ; n). Part (vi) of the above says then (by taking into account the meaning
of the Fuglede-Kadison determinant for matrices, see (11.4)) that

�.y1; : : : ; yn/ D �.x1; : : : ; xn/C log j detT j: (7.36)

Prove this directly from the definitions.
(ii) Show that �.x1; : : : ; xn/ D �1 if x1; : : : ; xn are linearly dependent.

7.7 Applications of free entropy to operator algebras

One hopes that � can be used to construct invariants for von Neumann algebras. In
particular, we define the free entropy dimension of the n-tuple x1; : : : ; xn by

ı.x1; : : : ; xn/ D nC lim sup
�&0

�.x1 C �s1; : : : ; xn C �sn/

j log �j ; (7.37)

where s1; : : : ; sn is a free semi-circular family, free from fx1; : : : ; xng:
One of the main problems in this context is to establish the validity (or falsehood)

of the following implication (or some variant thereof): if vN.x1; : : : ; xn/ D
vN.y1; : : : ; yn/, does this imply that ı.x1; : : : ; xn/ D ı.y1; : : : ; yn/?

In recent years there have been a number of results which allow one to infer some
properties of a von Neumann algebra from knowledge of the free entropy dimension
for some generators of this algebra. Similar statements can be made on the level of
the free entropy. However, there the actual value of � is not important; the main
issue is to distinguish finite values of � from the situation � D �1.

Let us note that in the case of free group factors L.Fn/ D vN.s1; : : : ; sn/, we have
of course for the canonical generators �.s1; : : : ; sn/ > �1 and ı.s1; : : : ; sn/ D
n. (For the latter one should notice that the sum of two free semi-circulars is just
another semi-circular, where the variances add; hence the numerator in (7.37) stays
bounded for � ! 0 in this case.)

We want now to give the idea how to use free entropy to get statements about a
von Neumann algebra. For this, let P be some property that a von Neumann algebra
M may or may not have. Assume that we can verify that “M has P ” implies that
�.x1; : : : ; xn/ D �1 for any generating set vN.x1; : : : ; xn/ D M . Then a von
Neumann algebra for which we have at least one generating set with finite free
entropy cannot have this property P . In particular, L.Fn/ cannot have P .

Three such properties where this approach was successful are property � , the
existence of a Cartan subalgebra, and the property of being prime.

Let us first recall the definition of property � . We will use here the usual
non-commutative L2-norm, kxk2 WD p

	.x�x/, for elements x in our tracial W �-
probability space .M; 	/.

Definition 5. A bounded sequence .tk/k�0 in .M; 	/ is central if limk!1 kŒx; tk�k2 D
0 for all x 2 M , where Œ�; �� denotes the commutator of two elements, i.e.
Œx; tk� D xtk � tkx. If .tk/k is a central sequence and limk!1 ktk � 	.tk/1k2 D 0,
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then .tk/k is said to be a trivial central sequence. .M; 	/ has property � if there
exists a non-trivial central sequence in M .

Note that elements from the centre of an algebra always give central sequences;
hence if M does not have property � , then it is a factor.

Definition 6. 1) Given any von Neumann subalgebra N of a von Neumann algebra
M , we let the normalizer of N be the von Neumann subalgebra of M generated
by all the unitaries u 2 M which normalize N , i.e. uN u� D N . A von
Neumann subalgebra N of M is said to be maximal abelian if it is abelian and
is not properly contained in any other abelian subalgebra. A maximal abelian
subalgebra is a Cartan subalgebra of M if its normalizer generates M .

2) Finally we recall that a finite von Neumann algebra M is prime if it cannot be
decomposed as M D M1˝M2 for II1 factors M1 and M2. Here ˝ denotes the
von Neumann tensor product of M1 and M2; see [170, Ch. IV].

The above-mentioned strategy is the basis of the proof of the following theorem:

Theorem 7. Let M be a finite von Neumann algebra with trace 	 generated by
self-adjoint operators x1; : : : ; xn, where n � 2. Assume that �.x1; : : : ; xn/ > �1,
where the free entropy is calculated with respect to the trace 	 . Then

(i) M does not have property � . In particular, M is a factor.
(ii) M does not have a Cartan subalgebra.

(iii) M is prime.

Corollary 8. All this applies in the case of the free group factor L.Fn/ for 2 � n <

1; thus,

(i) L.Fn/ does not have property � .
(ii) L.Fn/ does not have a Cartan subalgebra.

(iii) L.Fn/ is prime.

Parts (i) and (ii) of the theorem above are due to Voiculescu [185]; part .iii/
was proved by Liming Ge [76]. In particular, the absence of Cartan subalgebras
for L.Fn/ was a spectacular result, as it falsified the conjecture, which had been
open for decades, that every II1 factor should possess a Cartan subalgebra. Such
a conjecture was suggested by the fact that von Neumann algebras obtained from
ergodic measurable relations always have Cartan subalgebras, and for a while there
was the hope that all von Neumann algebras might arise in this way.

In order to give a more concrete idea of this approach, we will present the
essential steps in the proof for part (i) (which is the simplest part of the theorem
above) and say a few words about the proof of part (iii). However, one should
note that the absence of property � for L.Fn/ is an old result of Murray and
von Neumann which can be proved more directly without using free entropy. The
following follows quite closely the exposition of Biane [36].
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7.7.1 The proof of Theorem 7, part (i)

We now give the main arguments and estimates for the proof of part (i) of
Theorem 7. So let M D vN.x1; : : : ; xn/ have property � I we must prove that this
implies �.x1; : : : ; xn/ D �1:

Let .tk/k be a non-trivial central sequence in M . Then its real and imaginary
parts are also central sequences (at least one of them non-trivial), and, by applying
functional calculus to this sequence, we may replace the tk’s with a non-trivial
central sequence of orthogonal projections .pk/k; and assume the existence of a
real number � in the open interval .0; 1=2/ such that � < 	.pk/ < 1 � � for all k
and limk!1 kŒx; pk�k2 D 0 for all x 2 M .

We then prove the following key lemma.

Lemma 9. Let .M; 	/ be a tracial W �-probability space generated by self-adjoint
elements x1; : : : ; xn satisfying 	.x2i / � 1: Let 0 < � < 1

2
be a constant and p 2 M

a projection such that � < 	.p/ < 1� � . If there is ! > 0 such that kŒp; xi �k2 < !
for 1 � i � n, then there exist positive constants C1; C2 depending only on n and �
such that �.x1; : : : ; xn/ � C1 C C2 log!.

Assuming this is proved, choose p D pk . We can take !k ! 0 as k ! 1. Thus
we get �.x1; : : : ; xn/ � C1CC2 log! for all! > 0, implying �.x1; : : : ; xn/ D �1.
(Note that we can achieve the assumption 	.x2i / � 1 by rescaling our generators.)
It remains to prove the lemma.

Proof: Take .A1; : : : ; An/ 2 � .x1; : : : ; xnIN; r; �/ for N; r sufficiently large and �
sufficiently small. As p can be approximated by polynomials in x1; : : : ; xn and by
an application of the functional calculus, we find a projection matrix Q 2 MN.C/

whose range is a subspace of dimension q D bN	.p/c and such that we have
(where the k � k2-norm is now with respect to tr in MN.C/) kŒAi ;Q�k2 < 2! for all
i D 1; : : : ; n. This Q is of the form

Q D U

�
Iq 0

0 0N�q

�

U �

for some U 2 U.N /=U.q/ � U.N � q/: Write

U �AiU D
�
Bi C

�
i

Ci Di

�

:

Then kŒAi ;Q�k2 � 2! implies the same for the conjugated matrices, i.e.
r
2

N
Tr.CiC �

i / D
�
�
�
�

�
0 �C �

i

Ci 0

���
�
�
2

D
�
�
�
�

��
Bi C

�
i

Ci Di

�

;

�
1 0

0 0

�	��
�
�
2

D kŒAi ;Q�k2 < 2!;
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and thus we have for all i D 1; : : : ; n

Tr.CiC
�
i / <

N

2
.2!/2 D 2N!2:

Furthermore, 	.x2i / � 1 implies that tr.A2i / � 1C� and hence Tr.A2i / � .1C�/N �
2N , since we can take � � 1: Thus, in particular, we also have Tr.B2

i / � 2N and
Tr.D2

i / � 2N .
Denote now by Bp.R/ the ball of radius R in R

p centred at the origin and
consider the map which sends our matrices Ai 2 MN.C/ to the Euclidean space
R
N2

. Then the latter conditions mean that each Bi is contained in a ball Bq2.
p
2N /

and that each Di is contained in a ball B.N�q/2 .
p
2N /. For the rectangular

q � .N � q/ matrix Ci 2 Mq;N�q.C/ ' R
2q.N�q/, the condition Tr.CC �/ �

2N!2 means that C is contained in a ball B2q.N�q/.
p
4N!/. (Here we get an extra

factor
p
2, because all elements from Ci correspond to upper triangular elements

from Ai .)
Thus, the estimates above show that we can cover � .x1; : : : ; xnIN; r; �/ by a

union of products of balls:

� .x1; : : : ; xnIN; r; �/ �
[

U2U.N /=U.q/�U.N�q/

h
U
�
Bq2.

p
2N / � B2q.N�q/.!

p
4N/ � B.N�q/2 .

p
2N/

�
U �in :

This does not give directly an estimate for the volume of our set � , as we have here
a covering by infinitely many sets. However, we can reduce this to a finite cover by
approximating the U ’s which appear by elements from a finite ı-net.

By a result of Szarek [169], for any ı > 0, there exists a ı-net .Us/s2S in the
Grassmannian U.N /=U.q/ � U.N � q/ with jS j � .Cı�1/N2�q2�.N�q/2 with C a
universal constant.

For .A1; : : : ; An/, Q, and U as above, we have that there exists s 2 S such that
kU �Usk � ı implies kŒU �

s AiUs; U
�QU�k2 � 2! C 8ı. Repeating the arguments

above for U �
s AiUs instead of U �AiU (where we have to replace 2! by 2! C 8ı),

we get

� .x1; : : : ; xnIN; r; �/
�
[

s2S

h
Us

�
Bq2.

p
2N / � B2q.N�q/

�
.! C 4ı/

p
4N

� � B.N�q/2 .
p
2N/

�
U �
s

in
;

(7.38)
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and hence

�.� .x1; : : : ; xnIN; r; �// � .Cı�1/N2�q2�.N�q/2

�
h
�
�
Bq2.

p
2N /

�
�
�
B2q.N�q/

�
.! C 4ı/

p
4N

��
�
�
B.N�q/2 .

p
2N /

�in
:

By using the explicit form of the Lebesgue measure of Bp.R/ as

�.Bp.R// D Rp�p=2

� .1C p

2
/
;

this simplifies to the bound

.Cı�1/2q.N�q/
"

.2N�/N
2=2Œ

p
2.! C 4ı/�2q.N�q/

� .1C q2=2/� .1C q.N � q//� .1C .N � q/2=2/

#n

:

Thus

1

N 2
log�.� .x1; : : : ; xnIN; r; �//Cn

2
logN � QC1C QC2

�
log ı�1Cn log.!C4ı/�;

for positive constants QC1; QC2 depending only on n and � . Taking now ı D ! gives
the claimed estimate with C1 WD QC1 C n log 5 and C2 WD .n � 1/ QC2. ut

One should note that our estimates work for all n. However, in order to have
C2 strictly positive, we need n > 1. For n D 1 we only get an estimate against
a constant C1, which is not very useful. This corresponds to the fact that for each
i the smallness of the off-diagonal block Ci of U �AiU in some basis U is not
very surprising; however, if we have the smallness of all such blocks C1; : : : ; Cn of
U �A1U; : : : ; U �AnU for a common U , then this is a much stronger constraint.

7.7.2 The proof of Theorem 7, part .iii/

The proof of part .iii/ proceeds in a similar, though technically more complicated,
fashion. Let us assume that our II1 factor M D vN.x1; : : : ; xn/ has a Cartan
subalgebra N . We have to show that this implies �.x1; : : : ; xn/ D �1.

First one has to rewrite the property of having a Cartan subalgebra in a more
algebraic way, encoding a kind of “smallness”. Voiculescu showed the following.
For each � > 0, there exist a finite-dimensional C �-subalgebra N0 of N ; k.j / 2 N

for all 1 � j � n; orthogonal projections p.i/j ; q
.i/
j 2 N0 and elements x.i/j 2 M for
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all j D 1; : : : ; n and 1 � i � k.j / such that the following holds: x.i/j D p
.i/
j x

.i/
j q

.i/
j

for all j D 1; : : : ; n and 1 � i � k.j /,

kxj �
X

1�i�k.j /
.x
.i/
j C x

.i/�
j /k2 < � for all j D 1; : : : ; n; (7.39)

and

X

1�j�n

X

1�i�k.j /
	.p

.i/
j /	.q

.i/
j / < �:

Consider now a microstate .A1; : : : ; An/ 2 � .x1; : : : ; xnIN; r; �/. Since polyno-
mials in the generators x1; : : : ; xn approximate the given projections p.i/j ; q

.i/
j 2

N0 	 M , the same polynomials in the matrices A1; : : : ; An will approximate
versions of these projections in finite matrices. Thus we find a unitary matrix
such that .UA1U �; : : : ; UAnU �/ is of a special form with respect to fixed matrix
versions of the projections. This gives some constraints on the volume of possible
microstates. Again, in order to get rid of the freedom of conjugating by an arbitrary
unitary matrix, one covers the unitary N � N matrices by a ı-net S and gets so in
the end a similar bound as in (7.38). Invoking from [169] the result that one can
choose a ı-net with jS j < .C=ı/N2

leads finally to an estimate for �.x1; : : : ; xn/ as
in Lemma 9. The bound in this estimate goes to �1 for � ! 0, which proves that
�.x1; : : : ; xn/ D �1. ut



Chapter 8
Free Entropy ��: The Non-microstates Approach via Free
Fisher Information

In classical probability theory, there exist two important concepts which measure the
amount of “information” of a given distribution. These are the Fisher information
and the entropy. There exist various relations between these quantities, and they
form a cornerstone of classical probability theory and statistics. Voiculescu intro-
duced free probability analogues of these quantities, called free Fisher information
and free entropy, denoted by ˚ and �, respectively. However, there remain some
gaps in our present understanding of these quantities. In particular, there exist
two different approaches, each of them yielding a notion of entropy and Fisher
information. One hopes that finally one will be able to prove that both approaches
give the same result, but at the moment this is not clear. Thus, for the time being,
we have to distinguish the entropy � and the free Fisher information ˚ coming
from the first approach (via microstates) and the free entropy �� and the free Fisher
information ˚� coming from the second non-microstates approach (via conjugate
variables).

Whereas we considered the microstates approach for � in the previous chapter,
we will in this chapter deal with the second approach, which fits quite nicely with
the combinatorial theory of freeness. In this approach, the Fisher information is the
basic quantity (in terms of which the free entropy �� is defined), so we will restrict
our attention mainly to ˚�.

The concepts of information and entropy are only useful when we consider
states (so that we can use the positivity of ' to get estimates for the information
or entropy). Thus, in this section, we will always work in the framework of a
W �-probability space. Furthermore, it is crucial that we work with a faithful normal
trace. The extension of the present theory to non-tracial situations is unclear.
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8.1 Non-commutative derivatives

In Chapter 2 we already encountered non-commutative derivatives, on an informal
level, in connection with the subordination property of free convolution. Here we
will introduce and investigate these non-commutative derivatives more thoroughly.

Definition 1. We denote by ChX1; : : : ; Xni the algebra of polynomials in n non-
commuting variables X1; : : : ; Xn. On this we define the partial non-commutative
derivatives @i (i D 1; : : : ; n) as linear mappings

@i W ChX1; : : : ; Xni ! ChX1; : : : ; Xni ˝ ChX1; : : : ; Xni

by

@i1 D 0; @iXj D ıij 1˝ 1 .j D 1; : : : ; n/;

and by the Leibniz rule

@i .P1P2/ D @i .P1/ � 1˝ P2 C P1 ˝ 1 � @i .P2/ .P1; P2 2 ChX1; : : : ; Xni/:

This means that @i is given on monomials by

@i .Xi.1/ � � �Xi.m// D
mX

kD1
ıi;i.k/Xi.1/ � � �Xi.k�1/ ˝Xi.kC1/ � � �Xi.m/: (8.1)

Example 2. Consider the monomial P.X1;X2;X3/ D X2X
3
1X3X1. Then, we have

@1P D X2 ˝X2
1X3X1 CX2X1 ˝X1X3X1 CX2X

2
1 ˝X3X1 CX2X

3
1X3 ˝ 1

@2P D 1˝X3
1X3X1

@3P D X2X
3
1 ˝X1:

Exercise 1.

(i) Prove, for i 2 f1; : : : ; ng, the co-associativity of @i

.id ˝ @i / ı @i D .@i ˝ id/ ı @i : (8.2)

(ii) If one mixes different partial derivatives, the situation becomes more com-
plicated. Show that .id ˝ @i / ı @j D .@j ˝ id/ ı @i ; but in general for
i 6D j .id ˝ @i / ı @j 6D .@i ˝ id/ ı @j :
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Proposition 3. In the case n D 1, we can identify ChXi ˝ ChXi with the
polynomials CŒX; Y � in two commuting variables X and Y , via X ODX ˝ 1 and
Y OD1˝X . With this identification, @ WD @1 is given by the free difference quotient

@P.X/ ODP.X/ � P.Y /
X � Y :

Proof: It suffices to consider P.X/ D Xm; then we have

@P.X/ D 1˝Xm�1 CX ˝Xm�2 CX2 ˝Xm�3 C � � � CXm�1 ˝ 1

and

Xm � Y m
X � Y D Xm�1 CXm�2Y CXm�3Y 2 C � � � C Y m�1:

ut

One should note that in the non-commutative world, there exists another canoni-
cal derivation into the tensor product, namely, the mapping P 7! P ˝ 1 � 1˝ P .
Actually, there is an important relation between this derivation and our partial
derivatives.

Lemma 4. For all P 2 ChX1; : : : ; Xni, we have

nX

jD1
@jP �Xj ˝ 1 � 1˝Xj � @jP D P ˝ 1 � 1˝ P: (8.3)

Exercise 2. Prove Lemma 4 by checking it for monomials P .

This allows an easy proof of the following free version of a Poincaré inequality.
This is an unpublished result of Voiculescu and can be found in [63].

In this inequality, we will apply our non-commutative polynomials to operators
x1; : : : ; xn 2 M . If P D P.X1; : : : ; Xn/ 2 ChX1; : : : ; Xni, then P.x1; : : : ; xn/ 2
M is obtained by replacing each of the variables Xi by the corresponding xi . Note
in particular that this applies also to the right-hand side of the inequality. There
@iP is an element in ChX1; : : : ; Xni˝2, and @iP.x1; : : : ; xn/ is to be understood as
.@iP /.x1; : : : ; xn/. As usual, kak2 WD p

	.a�a/ denotes the non-commutative L2-
norm given by 	 , and with L2.M/, we denote the completion of M with respect to
this norm. The L2-norm on the right-hand side of the inequality is of course with
respect to 	 ˝ 	 .

Theorem 5 (Free Poincaré Inequality). Let .M; 	/ be a tracial W �-probability
space. Consider self-adjoint x1; : : : ; xn 2 M . Then, we have for all P D P � 2
ChX1; : : : ; Xni the inequality
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kP.x1; : : : ; xn/ � 	.P.x1; : : : ; xn//k2 � C �
nX

iD1
k@iP.x1; : : : ; xn/k2; (8.4)

where C WD p
2maxjD1;:::;n kxj k.

Proof: Let us put p WD P.x1; : : : ; xn/ and qi WD .@iP /.x1; : : : ; xn/. It suffices to
consider P with 	.p/ D 0. Then, we get from Lemma 4

kp ˝ 1 � 1˝ pk2 D k
nX

iD1
qi � xi ˝ 1 � 1˝ xi � qik2

�
nX

iD1

� kqi � xi ˝ 1k2„ ƒ‚ …
�kqik2�kxi˝1k

Ck1˝ xi � qik2
�

� 2 max
jD1;:::;n kxj k

nX

iD1
kqj k2:

On the other hand, we have (recall that 	.p/ D 0)

kp ˝ 1 � 1˝ pk22 D 	 ˝ 	


.p ˝ 1 � 1˝ p/2

�

D 	 ˝ 	Œp2 ˝ 1C 1˝ p2 � 2p ˝ p�

D 2	.p2/

D 2kpk22:
ut

Corollary 6. Let .M; 	/ be a tracial W �-probability space and xi D x�
i 2 M for

iD1; : : : ; n. ConsiderPDP � 2 ChX1; : : : ; Xni. Assume that .@iP /.x1; : : : ; xn/D 0

for all i D 1; : : : ; n. Then, p WD P.x1; : : : ; xn/ is a constant, p D 	.p/ � 1.

8.2 @i as unbounded operator on Chx1; : : : ; xni
Let .M; 	/ be a tracial W �-probability space and consider xi D x�

i 2 M (i D
1; : : : ; n), and let Chx1; : : : ; xni be the �-subalgebra of M generated by x1: : : : ; xn.
We shall continue to denote by ChX1; : : : ; Xni the algebra generated by the non-
commuting variables X1; : : : ; Xn. We always have an evaluation map

eval W ChX1; : : : ; Xni ! Chx1; : : : ; xni

which sends Xi1 � � �Xik to xi1 � � � xik .
If the evaluation map extends to an algebra isomorphism (i.e. has a trivial kernel),

then we say that the operators x1; : : : ; xn are algebraically free.
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In the case that x1; : : : ; xn are algebraically free, the operators @i can also
be defined as derivatives on Chx1; : : : ; xni 	 M , according to the commutative
diagram

ChX1; : : : ; Xni @i�! ChX1; : : : ; Xni ˝ ChX1; : : : ; Xni
# #
eval eval

# #
Chx1; : : : ; xni �! Chx1; : : : ; xni ˝ Chx1; : : : ; xni

In that case, we can consider @i as unbounded operator on L2.

Notation 7. We denote by

Lp.x1; : : : ; xn/ WD Chx1; : : : ; xnik�kp 	 Lp.M/

the closure of Chx1; : : : ; xni 	 M with respect to the Lp norms (1 � p < 1)

kakpp WD 	 .jajp/ D 	
�
.a�a/p=2

�
:

Hence, in the case where x1; : : : ; xn are algebraically free, @i is then also an
unbounded operator on L2,

@i W L2.x1; : : : ; xn/  D.@i / ! L2.x1; : : : ; xn/˝ L2.x1; : : : ; xn/

with domainD.@i / D Chx1; : : : ; xni. In order that unbounded operators have a nice
analytic structure, they should be closable. In terms of the adjoint, this means that
the adjoint operator

@�
i W L2.x1; : : : ; xn/˝ L2.x1; : : : ; xn/  D.@�

i / ! L2.x1; : : : ; xn/

should be densely defined. One simple way to guarantee this is to have 1 ˝ 1 in
the domain D.@�

i /. The following theorem shows that this then implies that all of
Chx1; : : : ; xni ˝ Chx1; : : : ; xni (which is by definition dense in L2.x1; : : : ; xn/ ˝
L2.x1; : : : ; xn/) is in the domain of the adjoint. The proof of this is a direct
calculation, which we leave as an exercise.

Theorem 8. Assume 1˝ 1 2 D.@�
i /. Then @i is closable. We have

Chx1; : : : ; xni ˝ Chx1; : : : ; xni 	 D.@�
i / (8.5)

and for elementary tensors p ˝ q with p; q 2 Chx1; : : : ; xni, the action of @�
i is

given by

@�
i .p ˝ q/ D p � @�

i .1˝ 1/ � q � p � .	 ˝ id/.@iq/ � .id ˝ 	/.@ip/ � q: (8.6)
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In the following, we will use the notation �i WD @�
i .1˝ 1/ (i D 1; : : : ; n). In the

next section, we will see that the vectors �i actually play a quite prominent role in
the definition of the free Fisher information.

Exercise 3.

(i) On L2.x1; : : : ; xn/, we may extend the map x 7! x� to a bounded con-
jugate linear operator J , called the modular conjugation operator. For � 2
L2.x1; : : : ; xn/ and p 2 Chx1; : : : ; xni, we have hJ.�/; pi D h�; J.p/i D
h�; p�i. Show that we have h�i ; pi D h�i ; p�i for all p 2 Chx1; : : : ; xni, and
thus �i is self-adjoint, i.e. J.�i / D �i .

(ii) Show that we have for all p 2 Chx1; : : : ; xni the identity

.	 ˝ id/Œ.@ip
�/�� D .id ˝ 	/.@ip/:

(iii) Recall that the domain of @�
i is

D.@�
i /Df� 2 L2˝L2 j 9�0 2L2 such thath�0; riDh�; @i ri 8r 2Chx1; : : : ; xnig:

For such an �, we set @�
i .�/ D �0. Prove Theorem 8 by showing that for all

r 2 Chx1; : : : ; xni, we have h@�
i .p ˝ q/; ri D hp ˝ q; @i ri when we use the

right-hand side of (8.6) as the definition of @�
i .p ˝ q/.

(iv) Show that

h.id ˝ 	/.@ip/; .id ˝ 	/.@iq/i D h1˝ �i � �i ˝ 1; @ip
� � 1˝ qi:

for all p; q 2 Chx1; : : : ; xni.
(v) Show that also the unbounded operator .id ˝ 	/ ı @i , with domain

Chx1; : : : ; xni, is a closable operator on L2.x1; : : : ; xn/.

Although @i is an unbounded operator from L2 to L2, it turns out that this has
some surprising boundedness properties in an appropriate sense. This observation is
due to Dabrowski [63]. Our presentation follows essentially his arguments.

Proposition 9. Assume that 1 ˝ 1 2 D.@�
i /. Then we have for all p; q 2

Chx1; : : : ; xni the identity

h@�
i .p ˝ 1/; @�

i .q ˝ 1/i D h@�
i .1˝ 1/; @�

i .p
�q ˝ 1/i (8.7)

and thus

k.id ˝ 	/.@ip/ � p�ik22 D kp�ik22 � h�i ˝ 1; @i .p
�p/i: (8.8)

Proof: By Eq. (8.6), we have

@�
i .p ˝ 1/ D p�i � .id ˝ 	/.@ip/; @�

i .q ˝ 1/ D q�i � .id ˝ 	/.@iq/
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and

@�
i .p

�q ˝ 1/ D p�q�i � .id ˝ 	/Œ@i .p
�q/�

D p�q�i � .id ˝ 	/Œ@ip
� � 1˝ q� � p� � .id ˝ 	/Œ@iq�:

Hence, our assertion (8.7) is equivalent to

hp�i � .id ˝ 	/.@ip/; q�i � .id ˝ 	/.@iq/i
D h�i ; p�q�i � .id ˝ 	/Œ@ip

� � 1˝ q/� � p� � .id ˝ 	/Œ@iq�i:
There are two terms which show up obviously on both sides, and thus we are left
with showing

�h.id˝	/.@ip/; q�i iCh.id˝	/.@ip/; .id˝	/.@iq/i D �h�i ; .id˝	/Œ@ip� �1˝q�i:
If we interpret 	 as the operator from L2 to C given by 	.�/ D h�; 1i, then we have

.id ˝ 	/�.�/ D � ˝ 1:

Thus,

h�i ; .id ˝ 	/Œ@ip
� � 1˝ q�i D h�i ˝ 1; @ip

� � 1˝ qi
and

h.id ˝ 	/.@ip/; q�i i D h�iq�; ..id ˝ 	/Œ@ip�/
�i

D h�iq�; .	 ˝ id/Œ@ip
��i

D h�i ; .	 ˝ id/Œ@ip
�� � 1˝ qi;

then (8.7) follows from Exercise 3.
A similar calculation shows that for r 2 Chx1; : : : ; xni, we have

hp�i � .id ˝ 	/.@ip/; ri D h@�
i .p ˝ 1/; ri:

Thus, p�i � .id ˝ 	/.@ip/ D @�
i .p ˝ 1/. This then implies Eq. (8.8) as follows:

k.id ˝ 	/.@ip/ � p�ik22 D h@�
i .p ˝ 1/; @�

i .p ˝ 1/i
D h�i ; @�

i .p
�p ˝ 1/i

D h�i ; .p�p/�i � .id ˝ 	/Œ@i .p
�p/�i

D hp�i ; p�i i � h�i ; .id ˝ 	/Œ@i .p
�p/�i

D hp�i ; p�i i � h�i ˝ 1; @i .p
�p/i:

ut
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Theorem 10. Assume that 1˝ 1 2 D.@�
i /. Then we have for all p 2 Chx1; : : : ; xni

the inequality

k.id ˝ 	/.@ip/ � p�ik2 � k�ik2 � kpk: (8.9)

Hence, with M D vN.x1; : : : ; xn/, the mapping .id ˝ 	/ ı @i extends to a bounded
mapping M ! L2.M/, and we have

k.id ˝ 	/ ı @ikM!L2.M/ � 2k�ik2: (8.10)

Proof: Assume that inequality (8.9) has been proved. Then we have

k.id ˝ 	/@ipk2 � k�ik2 � kpk C kp�ik2 � 2k�ik2 � kpk

for all p 2 Chx1; : : : ; xni. This says that .id ˝ 	/ ı @i as a linear mapping from
Chx1; : : : ; xni 	 M to L2.M/ has norm less or equal to 2k�ik2. It is also easy
to check (see Exercise 3) that .id ˝ 	/ ı @i is closable as an unbounded operator
from L2 to L2, and, hence, by the following Proposition 11, it can be extended to a
bounded mapping on M , with the same bound: 2k�ik2.

So it remains to prove (8.9). By (8.8), we have

k.id ˝ 	/@ip � p�ik22 D h@�
i .p ˝ 1/; @�

i .p ˝ 1/i
D h�i ; .p�p/�i � .id ˝ 	/.@i .p

�p//i
� k�ik2 � k.id ˝ 	/.@i .p

�p// � .p�p/�ik2:

So, by iteration we get

k.id ˝ 	/.@ip/ � p�ik2 � k�ik1=22 � k.id ˝ 	/.@i .p
�p// � .p�p/�ik1=22

� k�ik1=22 � k�ik1=42 � k.id ˝ 	/.@i .p
�p/2/ � .p�p/2�ik1=42

� k�ik1=2C1=4C���C1=2n
2 � k.id ˝ 	/.@i .p

�p/2n�1

/ � .p�p/2n�1

�ik1=2
n

2 :

Now note that the first factor converges, for n ! 1, to k�ik2, whereas for the
second factor, we can bound as follows:

k.id ˝ 	/Œ@i ..p
�p/2n�1

/� � .p�p/2n�1

�ik1=2
n

2

�
�
k@i ..p�p/2n�1

/k2 C kp�pk2n�1 � k�ik2
�1=2n

� kpk �
�

2n�1 k@i .p�p/k2
kp�pk C k�ik2

�1=2n

;
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where we have used the inequality

k@i .p�p/2n�1k2 � 2n�1kp�pk2n�1�1k@i .p�p/k2:

Sending n ! 1 gives now the assertion. ut
Proposition 11. Let .M; 	/ be a tracial W �-probability space with separable
predual and � W L2.M; 	/  D.�/ ! L2.M; 	/ be a closable linear operator.
Assume that D.�/ 	 M is a �-algebra and that we have k�.x/k2 � ckxk for
all x 2 D.�/. Then � extends to a bounded mapping � W M ! L2.M; 	/ with
k�kM!L2.M/ � c.

Proof: Since the extension of � to the norm closure of D.�/ is trivial, we can
assume without restriction that D.�/ is a C �-algebra. Consider y 2 M . By
Kaplansky’s density theorem, there exists a sequence .xn/n2N with xn 2 D.�/,
kxnk � kyk for all n such that .xn/n converges to y in the strong operator topology.
By assumption we know that the sequence .�.xn//n is bounded by ckyk in the
L2-norm. By the Banach-Saks theorem, we have then a subsequence .�.xnk //k of
which the Cesàro means converge in the L2-norm, say to some z 2 L2.M/:

zm WD 1

m

mX

lD1
�.xnl / ! z 2 L2.M/:

Now put ym WD Pm
lD1 xnl =m. Then, we have a sequence .ym/m2N that converges to

y in the strong operator topology, hence also in theL2-norm, such that .�.ym//m D
.zm/m converges to some z 2 L2.M/. Since � is closable, this z is independent
of the chosen sequences, and putting �.y/ WD z gives the extension to M we
seek. Since we have k�.ym/k2 � ckyk for all m, this goes also over to the limit:
k�.y/k2 D kzk2 � ckyk. ut
8.3 Conjugate variables and free Fisher information ˚�

Before we give the definition of the free Fisher information, we want to motivate
the form of this by having a look at the classical Fisher information.

In classical probability theory, the Fisher information I.X/ of a random variable
X is the derivative of the entropy of a Brownian motion starting in X . Assume the
probability distribution 
X has a density p; then, the density pt at time t of such a
Brownian motion is given by the solution of the diffusion equation

@pt .u/

@t
D @2pt .u/

@u2

subject to the initial condition p0.u/ D p.u/. Let us calculate the derivative of the
classical entropy S.pt / at t D 0, where we use the explicit formula for classical
entropy
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S.pt / D �
Z
pt .u/ logpt .u/du:

We will in the following just do formal calculations, but all steps can be justified
rigorously. We will also use the notations

Pp WD @

@t
p; p0 WD @

@u
p;

where p.t; u/ D pt .u/. Then we have

dS.pt /

dt
D �

Z
@

@t
Œpt .u/ � logpt .u/� du D �

Z
Œ Ppt logpt C Ppt � du:

The second term vanishes,

Z
Ppt du D d

dt

Z
pt .u/ du D 0

(because pt is a probability density for all t ); by invoking the diffusion equation and
by integration by parts, the first term gives

�
Z

Ppt logpt du D �
Z
p00
t logpt du D

Z
p0
t .logpt /

0 du D
Z
.p0

t .u//
2

pt .u/
du:

Taking this at t D 0 gives the explicit formula

I.X/ D
Z
.p0.u//2

p.u/
du if d
X.u/ D p.u/ du

for the Fisher information of X .
To get a non-commutative version of this, one first needs a conceptual under-

standing of this formula. For this let us rewrite it in the form

I.X/ D
Z
.p0.u//2

p.u/
du D E

h�
� p0

p
.X/

�2i D E.�2/;

where the random variable � (usually called the score function) is defined by

� WD �p
0

p
.X/ (which is in L2.X/ if I.X/ < 1):

The advantage of this is that the score � has some conceptual meaning. Consider a
nice f .X/ 2 L2.X/, and calculate
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E.�f .X// D �E
hp0

p
.X/f .X/

i
D �

Z
p0.u/
p.u/

f .u/p.u/ du

D �
Z
p0.u/f .u/ du D

Z
p.u/f 0.u/ du D E.f 0.X//:

In terms of the derivative operator
d

du
and its adjoint, we can also write this inL2 as

h�; f .X/i D E.�f .X/ / D E. f 0.X/ / D h1; f 0.X/i D
D� d

du

��
1; f .X/

E
;

implying that

� D
� d

du

��
1:

The above formulas were for the case n D 1 of one variable, but doing the same
in the multivariate case is no problem in the classical case.

Exercise 4. Repeat this formal proof in the multivariate case to show that for a
random vector .X1; : : : ; Xn/ with density p on R

n and a function f W Rn ! R, we
have

E

��
@

@ui
f

�

.X1; : : : ; Xn/

�

D �E
�� @

@ui
p

p

�
.X1; : : : ; Xn/ � f .X1; : : : ; Xn/

�
:

This can now be made non-commutative by replacing the commutative derivative
@=@ui by the non-commutative derivative @i . The following definitions are due to
Voiculescu [187].

Definition 12. Let .M; 	/ be a tracial W �-probability space and xi D x�
i 2 M for

i D 1; : : : ; n.

1) We say �1; : : : ; �n 2 L2.M/ satisfy the conjugate relations for x1; : : : ; xn if we
have for all P 2 ChX1; : : : ; Xni

	.�iP.x1; : : : ; xn// D 	 ˝ 	
�
.@iP /.x1; : : : ; xn/

�
(8.11)

where for � 2 L2.M/ we set 	.�/ D h�; 1i or, more explicitly,

	.�ixi.1/ � � � xi.m// D
mX

kD1
ıi i.k/	.xi.1/ � � � xi.k�1//	.xi.kC1/ � � � xi.m// (8.12)

for all m � 0 and all 1 � i; i.1/; : : : ; i.m/ � n.
(m D 0 means here of course: 	.�i / D 0.)
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2) �1; : : : ; �n is a conjugate system for x1; : : : ; xn, if they satisfy the conjugate
relations (8.11) and if in addition �i 2 L2.x1; : : : ; xn/ for all i D 1; : : : ; n.

3) The free Fisher information of x1; : : : ; xn is defined by

˚�.x1; : : : ; xn/D
(Pn

iD1k�ik22; if �1; : : : ; �n is a conjugate system for x1; : : : ; xn

C1; if no conjugate system exists
:

(8.13)

Note the conjugate relations prescribe the inner products of the �i with a dense
subset in L2.x1; : : : ; xn/; thus, a conjugate system is unique if it exists.

If there exist �1; : : : ; �n 2 L2.M/which satisfy the conjugate relations, then there
exists a conjugate system; this is given by p�1; : : : ; p�n where p is the orthogonal
projection from L2.M/ onto L2.x1; : : : ; xn/. This holds because the left-hand side
of (8.11) is unchanged by replacing �i by p�i . Furthermore, we have in such a
situation

˚�.x1; : : : ; xn/ D
nX

iD1
kp�ik22 �

nX

iD1
k�ik22;

with equality if and only if �1; : : : ; �n is already a conjugate system.
If x and y are free and x has a conjugate variable � , then � satisfies the conjugate

relation (1) in Definition 12 for x C y. This means that

	.�.x C y/n/ D
nX

lD1
	..x C y/l�1/	..x C y/n�l /:

This can be verified from the definition, but there is an easier way to do this using
free cumulants. See Exercise 7 following Remark 21 below. By projecting � onto
L2.xCy/, we get � a conjugate vector whose length has not increased. Thus, when
x and y are free, we have ˚�.x C y/ � minf˚�.x/; ˚�.y/g. However, the free
Stam inequality (see Theorem 19) is sharper.

Formally, the definition of �i could also be written as �i D @�
i .1 ˝ 1/.

However, in order that this makes sense, we need @i as an unbounded operator on
L2.x1; : : : ; xn/, which is the case if and only if x1; : : : ; xn are algebraically free.
The next proposition by Mai, Speicher, and Weber [121] shows that the existence
of a conjugate system excludes algebraic relations between the xi , and hence the
conjugate variables are, if they exist, always of the form �i D @�

i .1 ˝ 1/. This
implies then also, by Theorem 8, that the @i are closable.

Theorem 13. Let .M; 	/ be a tracial W �-probability space and xi D x�
i 2 M for

i D 1; : : : ; n. Assume that a conjugate system �1; : : : ; �n for x1; : : : ; xn exists. Then
x1; : : : ; xn are algebraically free.
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Proof: Consider P 2 ChX1; : : : ; Xni with P.x1; : : : ; xn/ D 0. We claim that then
also qi WD .@iP /.x1; : : : ; xn/ D 0 for all i D 1; : : : ; n. In order to see this, let us
consider R1PR2 for R1;R2 2 ChX1; : : : ; Xni. We have .R1PR2/.x1; : : : ; xn/ D 0

and, because of

@i .R1PR2/ D @iR1 � 1˝ PR2 CR1 ˝ 1 � @iP � 1˝R2 CR1P ˝ 1 � @iR2;

we get, by putting r1 WD R1.x1; : : : ; xn/ and r2 WD R2.x1; : : : ; xn/,

�
@i .R1PR2/

�
.x1; : : : ; xn/ D r1 ˝ 1 � qi � 1˝ r2:

Thus, we have

0 D 	Œ�i � .R1PR2/.x1; : : : ; xn/� D 	 ˝ 	

�
@i .R1PR2/

�
.x1; : : : ; xn/

�

D 	 ˝ 	Œr1 ˝ 1 � qi � 1˝ r2� D 	 ˝ 	Œqi � r1 ˝ r2�:

Hence, 	 ˝ 	Œqi � r1 ˝ r2� D 0 for all r1; r2 2 Chx1; : : : ; xni, which implies that
qi D 0.

So we can get from a given relation new ones by formal differentiation. We
prefer to have relations in Chx1; : : : ; xni and not in the tensor product; this can
be achieved by applying id ˝ 	 to the qi . Thus, we have seen that a relation of the
form P.x1; : : : ; xn/ D 0 implies also the relation .@iP /.x1; : : : ; xn/ D 0 and in
particular id ˝ 	Œ.@iP /.x1; : : : ; xn/� D 0.

Assume now that we have an algebraic relation between the xi of the form
P.x1; : : : ; xn/ D 0 for P 2 Chx1; : : : ; xni. Let m be the degree of P . This means
that P has a highest order term of the form ˛ Xi.1/ � � �Xi.m/ (˛ 2 C); note that there
might be other terms of highest order. Denote by D the operator

D WD .id ˝ 	/ ı @i.1/ ı .id ˝ 	/ ı @i.2/ ı � � � ı .id ˝ 	/ ı @i.m/:

As an application of .id ˝ 	/ ı @i reduces the degree of a word Xj.1/ � � �Xj.k/ by
at least 1, and exactly 1 only when j.k/ D i , we have DXi.1/ � � �Xi.m/ D 1, and
the application of D on other monomials of length m, as well as on monomials of
smaller length, gives 0. This implies thatDP D ˛. On the other hand, we know that
DP.x1; : : : ; xn/ D 0. Hence, we get ˛ D 0. By dealing with all highest order terms
of P in this fashion, we get in the end that all highest order terms of P are equal
to zero; hence, P D 0. This means there are no non-trivial algebraic relations for
the xi . ut

Let us now look on the free Fisher information ˚�. As in the case of the free
entropy �, one has again quite explicit formulas in the one-dimensional case, but not
in higher dimensions. Before stating the theorem, let us review two basic properties
of the Hilbert transform H . Suppose 1 � p < 1 and f 2 Lp.R/, with respect to
Lebesgue measure. For each � > 0, let
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h�.s/ D 1

�

Z
f .t/

s � t
.s � t /2 C �2

dt:

Then h� 2 LP .R/, h� converges almost everywhere to a function h 2 Lp.R/, and
kh� � hkp ! 0 as � ! 0C. We call h the Hilbert transform of f and denote it
H.f /. We can also write H.f / as a Cauchy principal value integral

H.f /.s/ D 1

�

Z
f .t/

s � t dt D 1

2�

Z
f .s � t / � f .s C t /

t
dt:

When p D 2, H is an isometry, and for general p, there is a constant Cp such that
kH.f /kp � Cpkf kp . See Stein and Weiss [168, Ch. VI, §6, paragraph 6.13].

The Hilbert transform is also related to the Cauchy transform as follows. Recall
from Notation 3.4 that the Poisson kernel P and the conjugate Poisson kernelQ are
given by

Pt.s/ D 1

�

t

s2 C t 2
and Qt.s/ D 1

�

s

s2 C t 2
:

We have Pt.s/C iQt .s/ D i.�.s C i t//�1. Let G.z/ D R
f .t/.z � t /�1 dt , then

h�.s/D.Q� � f /.s/ D 1

�
Re.G.s C i�// and .P� � f /.s/ D �1

�
Im.G.s C i�//:

(8.14)

The first term converges to H.f / and the second to f as � ! 0C.
The following result is due to Voiculescu [187].

Theorem 14. Consider x D x� 2 M and assume that 
x has a density p which is
in L3.R/. Then a conjugate variable exists and is given by

� D 2�H.p/.x/; where H.p/.v/ D 1

�

Z
p.u/

v � u
du

is the Hilbert transform. The free Fisher information is then

˚�.x/ D 4

3
�2
Z
p.u/3 du: (8.15)

Proof: We just give a sketch by providing the formal calculations. If we put � D
2�H.p/.x/, then we have

	.�f .x// D 	.2�H.p/.x/f .x//

D 2�

Z
H.p/.v/f .v/ p.v/dv
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D 2

Z Z
f .v/

v � u
p.u/p.v/ dudv

D
Z Z

f .v/

v � u
p.u/p.v/ dudv C

Z Z
f .u/

u � vp.v/p.u/ dvdu

D
Z Z

f .u/ � f .v/
u � v p.u/p.v/ dudv

D 	 ˝ 	.@f .x//:

So we have

˚�.x/ D 	
�
.2�H.p/.x//2

� D 4�2
Z
.H.p/.u//2p.u/ du D 4

3
�2
Z
p.u/3 du:

The last equality is a general property of the Hilbert transform which follows from
Equation (8.14); see Exercise 5. ut
Exercise 5.

(i) By replacing H.p/ by h� , make the formal argument rigorous.
(ii) Show, by doing a contour integral, that with p 2 L3.R/, we have for the Cauchy

transform G.z/ D R
.z � t /�1p.t/ dt that

R
G.t C i�/3 dt D 0 for all � > 0.

Then use Equation (8.14) to prove the last step in the proof of Theorem 14.

After [187] it remained open for a while whether the condition on the density in
the last theorem is also necessary. That this is indeed the case is the content of the
next proposition, which is an unpublished result of Belinschi and Bercovici. Before
we get to this, we need to consider briefly freeness for unbounded operators.

The notion of freeness we have given so far assumes that our random variables
have moments of all orders. We now see that the use of conjugate variables requires
us to use unbounded operators and these might only have a first and second moment,
so our current definition of freeness cannot be applied. For classical independence,
there is no need for the random variables to have any moments; the usual definition
of independence relies on spectral projections. In the non-commutative picture, we
also use spectral projections, except now they may not commute. To describe this
we need to review the idea of an operator affiliated to a von Neumann algebra.

Let M be a von Neumann algebra acting on a Hilbert space H , and suppose that
t is a closed operator on H . Let t D ujt j be the polar decomposition of t ; see, for
example, Reed and Simon [150, Ch. VIII]. Now jt j is a closed self-adjoint operator
and thus has a spectral resolution Ejt j. This means that Ejt j is a projection-valued
measure on R, i.e. we require that for each Borel set B � R we have that Ejt j.B/
is a projection on H and for each pair �1; �2 2 H the measure 
�1;�2 , defined by

�1;�2.B/ D hEjt j.B/�1; �2i, is a complex measure on R. Returning to our t , if both
u and Ejt j.B/ belong toM for every Borel set B , we say that t is affiliated withM .

Suppose now that M has a faithful trace 	 and H D L2.M/. For t self-adjoint
and affiliated with M , we let 
t , the distribution of t , be given by 
t.B/ D
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	.Et .B//. If t � 0 and
R
d
t ./ < 1, we say that t is integrable. For a general

closed operator affiliated with M , we say that t is p-integrable if jt jp is integrable,
i.e.

R
p d
jt j./ < 1. In this picture, L2.M/ is the space of square integrable

operators affiliated with M .

Definition 15. Suppose M is a von Neumann algebra with a faithful trace 	 and
t1; : : : ; ts are closed operators affiliated with M . For each i , let Ai be the von
Neumann subalgebra of M generated by ui and the spectral projections Ejti j.B/
where B 	 R is a Borel set and ti D ui jti j is the polar decomposition of ti . If the
subalgebras A1; : : : ; As are free with respect to 	 , then we say that the operators
t1; : : : ; ts are free with respect to 	 .

Remark 16. In [134, Thm. XV] Murray and von Neumann showed that the
operators affiliated withM form a �-algebra. So if t1 and t2 are self-adjoint operators
affiliated withM , we can form the spectral measure 
t1Ct2 . When t1 and t2 are free,
this is the free additive convolution of 
t1 and 
t2 . Indeed this was the definition
of 
t1 � 
t2 given by Bercovici and Voiculescu [30]. This shows that by passing to
self-adjoint operators affiliated to a von Neumann algebra, one can obtain the free
additive convolution of two probability measures on R from the addition of two free
random variables; see Remark 3.48.

Remark 17. If x D x� 2 M and jzj > kxk, then both

X

n�0
z�.nC1/xn and

X

n�1
z�.nC1/

n�1X

kD0
xk ˝ xn�k�1

converge in norm to elements of M and M ˝M , respectively. If x has a conjugate
variable � , then we get by applying the conjugate relation termwise and then
summing the equation

	.�.z � x/�1/ D 	 ˝ 	..z � x/�1 ˝ .z � x/�1/: (8.16)

Conversely if � 2 L2.x/ satisfies this equation for jzj > kxk, then � is the conjugate
variable for x. If x is a self-adjoint random variable affiliated with M and z 2 C

C,
then .z � x/�1 2 M , and we can ask for a self-adjoint operator � 2 L2.x/ such that
Equation (8.16) holds. If such a � exists, we say that � is the conjugate variable for
x, thus extending the definition to the unbounded case.

The following proposition is an unpublished result by Belinschi and Bercovici.

Proposition 18. Consider x D x� 2 M and assume that ˚�.x/ < 1. Then the
distribution 
x is absolutely continuous with respect to Lebesgue measure, and the
density p is in L3.R/; moreover, we have

˚�.x/ D 4

3
�2
Z
p3.u/ du:
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Proof: Again, we will only provide formal arguments. The main deficiency of the
following is that we have to invoke unbounded operators, and the statements we
are going to use are only established for bounded operators in our presentation.
However, this can be made rigorous by working with operators affiliated with M
and by extending the previous theorem to the unbounded setting.

Let t be a Cauchy-distributed random variable which is free from x. (Note that t
is an unbounded operator!) Consider for " > 0 the random variable x" WD xC "t . It
can be shown that adding a free variable cannot increase the free Fisher information,
since one gets the conjugate variable of x" by conditioning the conjugate variable
of x onto the L2-space generated by x". See Exercise 7 below for the argument in
the bounded case. For this to make sense in the unbounded case, we use resolvents
as above (Remark 17) to say what a conjugate variable is. Hence, ˚�.x"/ � ˚�.x/
for all " > 0. But, for any " > 0, the distribution of x" is the free convolution of 
x
with a scaled Cauchy distribution. By Remark 3.34, we have Gx".z/ D Gx.z C i"/,
and, hence, by the Stieltjes inversion formula, the distribution of x" has a density p"
which is given by

p".u/ D � 1
�

ImGx.u C i"/ D 1

�

Z

R

"

.u � v/2 C "2
d
x.v/:

Since this density is always in L3.R/, we know by (the unbounded version of) the
previous theorem that

˚�.x"/ D
Z
p".u/

3 du:

So we get

sup
">0

1

�3

Z
jImGx.u C i"/j3 du D sup

">0

˚�.x"/ � ˚�.x/:

This implies (e.g. see [109]) that Gx belongs to the Hardy space H3.CC/, and thus

x is absolutely continuous and its density is in L3.R/. ut

Some important properties of the free Fisher information are collected in the
following theorem. For the proof, we refer to Voiculescu’s original paper [187].

Theorem 19. The free Fisher information ˚� has the following properties (where
all appearing variables are self-adjoint and live in a tracial W �-probability
space).

1) ˚� is superadditive:

˚�.x1; : : : ; xn; y1; : : : ; ym/ � ˚�.x1; : : : ; xn/C ˚�.y1; : : : ; ym/: (8.17)
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2) We have the free Cramér Rao inequality:

˚�.x1; : : : ; xn/ � n2

	.x21/C � � � C 	.x2n/
: (8.18)

3) We have the free Stam inequality. If fx1; : : : ; xng and fy1; : : : ; yng are free, then
we have

1

˚�.x1 C y1; : : : ; xn C yn/
� 1

˚�.x1; : : : ; xn/
C 1

˚�.y1; : : : ; yn/
: (8.19)

(This is true even if some of ˚� are C1.)
4) ˚� is lower semicontinuous. If, for each i D 1; : : : ; n, x.k/i converges to xi in

the weak operator topology as k ! 1, then we have

lim inf
k!1 ˚�.x.k/1 ; : : : ; x.k/n / � ˚�.x1; : : : ; xn/: (8.20)

Of course, we expect that additivity of the free Fisher information corresponds
to the freeness of the variables. We will investigate this more closely in the next
section.

8.4 Additivity of ˚� and freeness

Since cumulants are better suited than moments to deal with freeness, we will first
rewrite the conjugate relations into cumulant form.

Theorem 20. Let .M; 	/ be a tracial W �-probability space and xi D x�
i 2 M

for i D 1; : : : ; n. Consider �1; : : : ; �n 2 L2.M/. The following statements are
equivalent:

(i) �1; : : : ; �n satisfy the conjugate relations (8.12).
(ii) We have for all m � 1 and 1 � i; i.1/; : : : ; i.m/ � n that

�1.�i / D 0

�2.�i ; xi.1// D ıi i.1/

�mC1.�i ; xi.1/; : : : ; xi.m// D 0 .m � 2/:

Remark 21. Note that up to now we considered only cumulants where all arguments
are elements of the algebra M ; here, we have the situation where one argument
is from L2 and all the other arguments are from L1 D M . This is well defined
by approximation using the normality of the trace and poses no problems, since
multiplying an element from L2 with an operator from L1 gives again an element
from L2; or one can work directly with the inner product on L2. Cumulants with
more than two arguments from L2 would be problematic. Moreover, one can apply
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our result, Equation (2.19), when the entries of our cumulant are products, again
provided that there are at most two elements from L2.

Exercise 6. Prove Theorem 20.

Exercise 7. Prove the claim following Theorem 12 that if x1 and x2 are free and x1
has a conjugate variable � , then � satisfies the conjugate relations for x1 C x2.

We can now prove the easy direction of the relation between free Fisher
information and freeness. This result is due to Voiculescu [187]; our proof using
cumulants is from [139].

Theorem 22. Let .M; 	/ be a tracial W �-probability space, and consider xi D
x�
i 2 M (i D 1; : : : ; n) and yj D y�

j 2 M (j D 1; : : : ; m). If fx1; : : : ; xng and
fy1; : : : ; ymg are free, then we have

˚�.x1; : : : ; xn; y1; : : : ; ym/ D ˚�.x1; : : : ; xn/C ˚�.y1; : : : ; ym/:

(This is true even if some of ˚� are C1.)

Proof: If ˚�.x1; : : : ; xn/ D 1 or if ˚�.y1; : : : ; ym/ D 1, then the statement is
clear, by the superadditivity of ˚� from Theorem 19.

So assume ˚�.x1; : : : ; xn/ < 1 and ˚�.y1; : : : ; ym/ < 1. This means that
we have a conjugate system �1; : : : ; �n 2 L2.x1; : : : ; xn/ for x1; : : : ; xn and a
conjugate system �1; : : : ; �m 2 L2.y1; : : : ; ym/ for y1; : : : ; ym. We claim now that
�1; : : : ; �n; �1; : : : ; �m is a conjugate system for x1; : : : ; xn; y1; : : : ; ym. It is clear
that we have �1; : : : ; �n; �1; : : : ; �m 2 L2.x1; : : : ; xn; y1; : : : ; ym/; it only remains
to check the conjugate relations. We do this in terms of cumulants, verifying
the relations (ii) using Theorem 20. The relations involving only x’s and �’s or
only y’s and �’s are satisfied because of the conjugate relations for either x=� or
y=�. Because of �i 2 L2.x1; : : : ; xn/ and �j 2 L2.y1; : : : ; ym/ and the fact that
fx1; : : : ; xng and fy1; : : : ; ymg are free, we have furthermore the vanishing (see
Remark 21) of all cumulants with mixed arguments from fx1; : : : ; xn; �1; : : : ; �ng
and fy1; : : : ; ym; �1; : : : ; �mg. But this gives then all the conjugate relations. ut

The less straightforward implication, namely, that additivity of the free Fisher
information implies freeness, relies on the following relation for commutators
between variables and their conjugate variables. This, as well as the consequence
for free Fisher information, was proved by Voiculescu in [189], whereas our proofs
use again adaptations of ideas from [139].

Theorem 23. Let .M; 	/ be a tracial W *-probability space and xi D x�
i 2 M for

i D 1; : : : ; n: Let �1; : : : ; �n 2 L2.x1; : : : ; xn/ be a conjugate system for x1; : : : ; xn.
Then we have
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nX

iD1
Œxi ; �i � D 0

(where Œa; b� D ab � ba denotes the commutator of a and b).

Proof: Let us put

c WD
nX

iD1
Œxi ; �i � 2 L2.x1; : : : ; xn/:

Then it suffices to show

	.cxi.1/ � � � xi.m// D 0 for all m � 0 and all 1 � i.1/; : : : ; i.m/ � n:

In terms of cumulants, this is equivalent to

�mC1.c; xi.1/; : : : ; xi.m// D 0 for all m � 0 and all 1 � i.1/; : : : ; i.m/ � n:

By using the formula for cumulants with products as entries, Theorem 2.13, we get

�mC1.c; xi.1/; : : : ; xi.m//

D
mX

iD1

�
�mC1.xi �i ; xi.1/; : : : ; xi.m// � �mC1.�ixi ; xi.1/; : : : ; xi.m//

�

D
mX

iD1

�
�2.�i ; xi.1//�m.xi ; xi.2/; : : : ; xi.m// � �2.�i ; xi.m//�m.xi ; xi.1/; : : : ; xi.m�1//

�

D �m.xi.1/; xi.2/; : : : ; xi.m// � �m.xi.m/; xi.1/; : : : ; xi.m�1//

D 0;

because, in the case of the first sum, the only partition, � , that satisfies the two
conditions that �i is in a block of size two and �_f.1; 2/; .3/; � � � ; .mC2/g D 1mC2
is � D f.1; 4; 5; : : : ; m C 2/; .2; 3/g and, in the case of the second sum, the only
partition, � , that satisfies the two conditions that �i is in a block of size two and
� _ f.1; 2/; .3/; � � � ; .m C 2/g D 1mC2 is � D f.1;m C 2/; .2; 3; 4; : : : ; m C 1/g.
The last equality follows from the fact that 	 is a trace; see Exercise 2.8. ut
Theorem 24. Let .M; 	/ be a tracial W �-probability space and xi D x�

i 2 M for
i D 1; : : : ; n and yj D y�

j 2 M for j D 1; : : : ; m. Assume that

˚�.x1; : : : ; xn; y1; : : : ; ym/ D ˚�.x1; : : : ; xn/C ˚�.y1; : : : ; ym/ < 1:

Then, fx1; : : : ; xng and fy1; : : : ; ymg are free.
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Proof: Let �1; : : : ; �n; �1; : : : ; �m 2 L2.x1; : : : ; xn; y1; : : : ; ym/ be the conjugate
system for x1; : : : ; xn; y1; : : : ; ym. Since this means in particular that �1; : : : ; �n
satisfy the conjugate relations for x1; : : : ; xn, we know that P�1; : : : ; P �n is
the conjugate system for x1; : : : ; xn, where P is the orthogonal projection onto
L2.x1; : : : ; xn/. In the same way, Q�1; : : : ;Q�m is the conjugate system for
y1; : : : ; ym, where Q is the orthogonal projection onto L2.y1; : : : ; ym/. But then
we have

nX

iD1
k�ik22 C

mX

jD1
k�j k22 D ˚�.x1; : : : ; xn; y1; : : : ; ym/

D ˚�.x1; : : : ; xn/C ˚�.y1; : : : ; ym/

D
nX

iD1
kP�ik22 C

mX

jD1
kQ�j k22:

However, this means that the projection P has no effect on the �i and the projection
Q has no effect on �j ; hence, the additivity of the Fisher information is saying that
�1; : : : ; �n is already the conjugate system for x1; : : : ; xn and �1; : : : ; �m is already
the conjugate system for y1; : : : ; ym. By Theorem 23, this implies that

nX

iD1
Œxi ; �i � D 0 and

mX

jD1
Œyj ; �j � D 0:

In order to prove the asserted freeness, we have to check that all mixed cumulants in
fx1; : : : ; xng and fy1; : : : ; ymg vanish. In this situation, a mixed cumulant means
there is at least one xi and at least one yj . Moreover, because we are working
with a tracial state, it suffices to show �rC2.xi ; z1; : : : ; zr ; yj / D 0 for all r � 0;
i D 1; : : : ; n; j D 1; : : : ; m; and z1; : : : ; zr 2 fx1; : : : ; xn; y1; : : : ; ymg. Consider
such a situation. Then we have

0 D �rC3.
nX

kD1
Œxk; �k�; xi ; z1; : : : ; zr ; yj /

D
nX

kD1
�rC3.xk�k; xi ; z1; : : : ; zr ; yj /
„ ƒ‚ …

�2.�k ;xi /��rC2.xk ;z1;:::;zr ;yj /

�
nX

kD1
�rC3.�kxk; xi ; z1; : : : ; zr ; yj /
„ ƒ‚ …

�2.�k ;yj /��rC2.xk ;xi ;z1;:::;zr /

D �rC2.xi ; z1; : : : ; zr ; yj /;

because, by the conjugate relations, �2.�k; xi / D ıki and �2.�k; yj / D 0 for all
k D 1; : : : ; n and all j D 1; : : : ; m. ut
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8.5 The non-microstates free entropy ��

By analogy with the classical situation, we would expect that the free Fisher
information of x1; : : : ; xn is the derivative of the free entropy for a Brownian motion
starting in x1; : : : ; xn. Reversing this, the free entropy should be the integral over
free Fisher information along Brownian motions. Since we cannot prove this at the
moment for the microstates free entropy � (which we defined in the last chapter),
we use this idea to define another version of free entropy, which we denote by ��.
Of course, we hope that at some point in the not-too-distant future, we will be able
to show that � D ��.

Definition 25. Let .M; 	/ be a tracial W �-probability space. For random variables
xi D x�

i 2 M (i D 1; : : : ; n), the non-microstates free entropy is defined by

��.x1; : : : ; xn/WD1

2

Z 1

0

�
n

1C t
� ˚�.x1C

p
ts1; : : : ; xnC

p
tsn/

�

dtCn

2
log.2�e/;

(8.21)

where s1; : : : ; sn are free semi-circular random variables which are free from
fx1; : : : ; xng.

One can now rewrite the properties of ˚� into properties of ��. In the next
theorem, we collect the most important ones. The proofs are mostly straightforward
(given the properties of ˚�), and we refer again to Voiculescu’s original papers
[187, 189].

Theorem 26. The non-microstates free entropy has the following properties (where
all variables which appear are self-adjoint and are in a tracial W �-probability
space).

1) For n D 1, we have ��.x/ D �.x/.
2) We have the upper bound

��.x1; : : : ; xn/ � n

2
log.2�n�1C 2/; (8.22)

where C2 D 	.x21 C � � � C x2n/.
3) �� is subadditive:

��.x1; : : : ; xn; y1; : : : ; ym/ � ��.x1; : : : ; xn/C ��.y1; : : : ; ym/: (8.23)

4) If fx1; : : : ; xng and fy1; : : : ; ymg are free, then

��.x1; : : : ; xn; y1; : : : ; ym/ D ��.x1; : : : ; xn/C ��.y1; : : : ; ym/: (8.24)

5) On the other hand, if

��.x1; : : : ; xn; y1; : : : ; ym/ D ��.x1; : : : ; xn/C ��.y1; : : : ; ym/ > �1
then fx1; : : : ; xng and fy1; : : : ; ymg are free.



8.6 Operator algebraic applications of free Fisher information 217

6) �� is upper semicontinuous. If, for each i D 1; : : : ; n, x.k/i converges for k ! 1
in the weak operator topology to xi , then we have

lim sup
k!1

��.x.k/1 ; : : : ; x.k/n / � ��.x1; : : : ; xn/: (8.25)

7) We have the following log-Sobolev inequality. If ˚�.x1; : : : ; xn/ < 1, then

��.x1; : : : ; xn/ � n

2
log

�
2�ne

˚�.x1; : : : ; xn/

�

: (8.26)

In particular:

˚�.x1; : : : ; xn/ < 1 H) ��.x1; : : : ; xn/ > �1: (8.27)

Though we do not know at the moment whether � D �� in general, we have at
least one half of this by the following deep result of Biane, Capitaine, and Guionnet
[40].

Theorem 27. Let .M; 	/ be a tracial W �-probability space and xi D x�
i 2 M for

i D 1; : : : ; n. Then we have

�.x1; : : : ; xn/ � ��.x1; : : : ; xn/: (8.28)

8.6 Operator algebraic applications of free Fisher information

Assume that ˚�.x1; : : : ; xn/ < 1. Then, by (8.27), we have that ��.x1; : : : ; xn/ >
�1. If we believe that �� D �, then by our results from the last chapter, this
would imply certain properties of the von Neumann algebra generated by x1; : : : ; xn.
In particular, vN.x1; : : : ; xn/ would not have property � . (Note that the inequality
� � �� from Theorem 27 goes in the wrong direction to obtain this conclusion.)

We will now show directly the absence of property � from the assumption
˚�.x1; : : : ; xn/ < 1. This result is due to Dabrowski, and we will follow quite
closely his arguments from [63].

In the following, we will always work in a tracial W �-probability space .M; 	/
and consider xi D x�

i 2 M for i D 1; : : : ; n. We assume that ˚�.x1; : : : ; xn/ < 1
and denote by �1; : : : ; �n the conjugate system for x1; : : : ; xn. Recall also from
Theorem 13 that finite Fisher information excludes algebraic relations among
x1; : : : ; xn; hence, @i is defined as an unbounded operator on Chx1; : : : ; xni. In
particular, if P 2 ChX1; : : : ; Xni and p D P.x1; : : : ; xn/, then @ip is the same
as .@iP /.x1; : : : ; xn/.

The crucial technical calculations are contained in the following lemma.
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Lemma 28. Assume that ˚�.x1; : : : ; xn/ < 1. Then we have for all p 2
Chx1; : : : ; xni

.n � 1/kŒp; 1˝ 1�k22 D
nX

iD1
hŒp; xi �; Œp; �i �i C 2Re

� nX

iD1
h@ip; Œ1˝ 1; Œp; xi ��i

�

(8.29)
(note that Œp; 1˝ 1� should here be understood as module operations, i.e. we have
Œp; 1˝ 1� D p ˝ 1 � 1˝ p).

Proof: We write, for arbitrary j 2 f1; : : : ; ng,

kŒp; 1˝ 1�k22 D hŒp; 1˝ 1�; Œp; 1˝ 1�i
D h@j Œp; xj �; Œp; 1˝ 1�i � hŒ@j p; xj �; Œp; 1˝ 1�i:

We rewrite the first term, by using (8.6), as

h@j Œp; xj �; Œp; 1˝ 1�i D hŒp; xj �; @�
j Œp; 1˝ 1�i

D hŒp; xj �; @�
j .p ˝ 1 � 1˝ p/i

D hŒp; xj �; p�j � id ˝ 	.@j p/ � �j p C 	 ˝ id.@j p/i
D ˝
Œp; xj �; Œp; �j �

˛C ˝

1˝ 1; Œp; xj �

�
; @j p

˛
;

and the second term as

hŒ@j p; xj �; Œp; 1˝ 1�i D ˝
@jp;



p; Œ1˝ 1; xj �

�˛ � ˝
@jp;



1˝ 1; Œp; xj �

�˛
:

The first term of the latter is

˝
@jp;



p; Œ1˝ 1; xj �

�˛ D ˝
@jp; .1˝ xj /Œp; 1˝ 1� � Œp; 1˝ 1�.xj ˝ 1/

˛

D h1˝ xj � @jp � @jp � xj ˝ 1; Œp; 1˝ 1�i:

Note that summing the last expression over j yields, by Lemma 4,

nX

jD1
h1˝ xj � @jp � @jp � xj ˝ 1; Œp; 1˝ 1�i D h�.p ˝ 1 � 1˝ p/; Œp; 1˝ 1�i

D �hŒp; 1˝ 1�; Œp; 1˝ 1�i:

Summing all our equations over j gives Equation (8.29). ut
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Corollary 29. Assume that ˚�.x1; : : : ; xn/ < 1. Then we have for all t 2
vN.x1; : : : ; xn/

.n � 1/kt � 	.t/k22 � 1

2

nX

iD1

n
hŒt; xi �; Œt; �i �i C 4kŒt; xi �k2 � k�ik2 � ktk

o
:

Proof: It suffices to prove the statement for t D p 2 Chx1; : : : ; xni. First note that

kŒp; 1˝1�k22 D hp˝1�1˝p; p˝1�1˝pi D 2.	.p�p/�j	.p/j2/ D 2kp�	.p/k22:

Thus, (8.29) gives

.n � 1/kp � 	.p/k22 D 1

2

nX

iD1
hŒp; xi �; Œp; �i �i C Re

� nX

iD1
h@ip; Œ1˝ 1; Œp; xi ��i

�
:

We write the second summand as

h@ip; Œ1˝ 1; Œp; xi ��i D h@ip; Œp; xi �˝ 1 � 1˝ Œp; xi �i
D hid ˝ 	.@ip/; Œp; xi �i � h	 ˝ id.@ip/; Œp; xi �iI

hence, we can estimate its real part by

Reh@ip; Œ1˝1; Œp; xi ��i � 2k.id˝	/@ipk2 �kŒp; xi �k2C2k.	˝id/@ipk2 �kŒp; xi �k2
which, by Equation (8.10), gives the assertion. ut

Recall from Definition 7.5 that a von Neumann algebra has property � if it has
a non-trivial central sequence.

Theorem 30. Let n � 2 and ˚�.x1; : : : ; xn/ < 1. Then vN.x1; : : : ; xn/ does not
have property � (and hence is a factor).

Proof: Let .tk/k2N be a central sequence in vN.x1; : : : ; xn/. (Recall that central
sequences are, by definition, bounded in operator norm.) This means in particular
that Œtk; xi � converges, for k ! 1, in L2.M/ to 0, for all i D 1; : : : ; n. But then,
by Corollary 29, we also have ktk � 	.tk/k2 ! 0, which means that our central
sequence is trivial. Thus, there exists no non-trivial central sequence. ut
8.7 Absence of atoms for self-adjoint polynomials

In Theorem 13 we have seen that finite Fisher information (i.e. the existence of
a conjugate system) implies that the variables are algebraically free. This means
that for non-trivial P 2 ChX1; : : : ; Xni, the operator p WD P.x1; : : : ; xn/ cannot
be zero. The ideas from the proof of this statement can actually be refined in order to
prove a much deeper statement, namely, the absence of atoms for the distribution 
p
for any such self-adjoint polynomial. Note that atoms at position t in the distribution
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of 
p correspond to the existence of a non-trivial eigenspace of p for the eigenvalue
t . By replacing our polynomial by p � t1, we shift the atom to 0, and thus asking
the question whether non-trivial polynomials can have non-trivial kernels. This can
be rephrased in a more algebraic language in the form pw D 0 where w is the
orthogonal projection onto this kernel. Whereas p is a polynomial, the projection w
will in general just be an element in the von Neumann algebra. Hence, the question
of atoms is, at least for self-adjoint polynomials, the same as the question of zero
divisors in the following sense.

Definition 31. A zero divisor w for 0 6D p 2 Chx1; : : : ; xni is a non-trivial element
0 6D w 2 vN.x1; : : : ; xn/ such that pw D 0.

Theorem 32. Let .M; 	/ be a tracial W �-probability space and xi D x�
i 2 M

for i D 1; : : : ; n. Assume that ˚�.x1; : : : ; xn/ < 1. Then for any non-trivial
p 2 Chx1; : : : ; xni, there exists no zero divisor.

Proof: The rough idea of the proof follows the same line as the proof of Theorem 13;
namely, assume that we have a zero divisor for some polynomial, and then one
shows that by differentiating this statement, one also has a zero divisor for a
polynomial of lesser degree. Thus, one can reduce the general case to the (non-
trivial) degree 0 case, where obviously no zero divisors exist.

More precisely, assume that we have pw D 0 for non-trivial p 2 Chx1; : : : ; xni
and w 2 vN.x1; : : : ; xn/. Furthermore, we can assume that both p and w are self-
adjoint (otherwise, consider p�pww� D 0). Then pw D 0 implies also wp D 0.
We will now consider the equation wpw D 0 and take the derivative @i of this. Of
course, we have now the problem that w is not necessarily in the domain D.@i / of
our derivative. However, by approximating w by polynomials and controlling norms
via Dabrowski’s inequality from Theorem 10, one can show that the following
formal arguments can be justified rigorously.

From wpw D 0, we get

0 D @i .wpw/ D @iw � 1˝ pw C w ˝ 1 � @ip � 1˝ w C wp ˝ 1 � @iw:

Because of pw D 0 and wp D 0, the first and the third term vanish, and we are
left with w ˝ 1 � @ip � 1˝ w D 0. Again we apply 	 ˝ id to this, in order to get an
equation in the algebra instead of the tensor product; we get

Œ.	 ˝ id/.w ˝ 1 � @ip/�„ ƒ‚ …
DWq

w D 0:

Hence, we have qw D 0 and q is a polynomial of smaller degree. However, this
q is in general not self-adjoint, and thus the other equation wq D 0 is now not
a consequence. But since we are in a tracial setting, basic theory of equivalence
of projections for von Neumann algebras shows that we have a non-trivial v 2
vN.x1; : : : ; xn/ such that vq D 0. Indeed, the projections onto ker.q/ and ker.q�/
are equivalent. Since qw D 0, we have ker.q/ 6D f0g and thus ker.q�/ 6D f0g. This
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means that ran.q/ is not dense and hence there is v 6D 0 with vq D 0. Then we
can continue with vqw D 0 in the same way as above and get a further reduction of
our polynomial. Of course, we have to avoid that taking the derivative gives a trivial
polynomial, but since the above works for all @i with i D 1; : : : ; n, we have enough
flexibility to avoid this.

For the details of the proof, we refer to the original work [121]. ut
The condition ˚�.x1; : : : ; xn/ < 1 is not the weakest possible; in [51] it

was shown that the conclusion of Theorem 32 still holds under the assumption of
maximal free entropy dimension.

8.8 Additional exercises

Exercise 8.

(i) Let s1; : : : ; sn be n free semi-circular elements and @1; : : : ; @n the corresponding
non-commutative derivatives. Show that one has

@�
i .1˝ 1/ D si for all i D 1; : : : ; n:

(ii) Show that the conclusion from (i) actually characterizes a family of n free semi-
circulars. Equivalently, let �1; : : : ; �n be the conjugate system for self-adjoint
variables x1; : : : ; xn in some tracialW �-probability space. Assume that �i D xi
for all i D 1; : : : ; n. Show that x1; : : : ; xn are n free semi-circular variables.

Exercise 9. Let s1; : : : ; sn be n free semi-circular elements. Fix a natural number
m, and let f W f1; : : : ; ngm ! C be any function that “vanishes on the diagonals”,
i.e. f .i1; : : : ; im/ D 0 whenever there are k 6D l such that ik D il . Put

p WD
nX

i1;:::;imD1
f .i1; : : : ; im/si1 � � � sim 2 Chs1; : : : ; sni:

Calculate
Pn

iD1 @�
i @ip.

Notation 33. In the following .Cn/n2N0 and .Un/n2N0 will be the Chebyshev
polynomials of the first and second kind, respectively (rescaled to the interval
Œ�2; 2�), i.e. the sequence of polynomials Cn; Un 2 ChXi which are defined
recursively by

C0.X/ D 2; C1.X/ D X; CnC1.X/ D XCn.X/ � Cn�1.X/ .n � 1/

and

U0.X/ D 1; U1.X/ D X; UnC1.X/ D XUn.X/ � Un�1.X/ .n � 1/:

These polynomials already appeared in Chapter 5. See, in particular, Exercise 5.12.
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Exercise 10. Let @ W ChXi ! ChXi ˝ ChXi be the non-commutative derivative
with respect to X . Show that

@Un.X/ D
nX

kD1
Uk�1.X/˝ Un�k.X/ for all n 2 N:

Exercise 11. Let s be a semi-circular variable of variance 1. Let @ be the non-
commutative derivative with respect to s, considered as an unbounded operator
on L2.

(i) Show that the .Un/n2N0 are the orthogonal polynomials for the semi-circle
distribution, i.e. that

	.Um.s/Un.s// D ım;n:

(ii) Show that

@�.Un.s/˝ Um.s// D UnCmC1.s/:

(iii) Show that for any p 2 Chsi, we have

k@�.p ˝ 1/k2 D kpk2 and k.id ˝ 	/@pk2 � kpk2:

(Note that the latter is in this case a stronger version of Theorem 10.)
(iv) The statement in (iii) shows that .id ˝	/ı@ is a bounded operator with respect

to k � k2. Show that this is not true for @, by proving that kUn.s/k2 D 1 and
k@Un.s/k2 D p

n.

Exercise 12.

(i) Show that we have for all n;m � 0

CnUm D

8
ˆ̂
<

ˆ̂
:

UnCm C Um�n; n � m

UnCm; n D mC 1

UnCm � Un�m�2; n � mC 2

:

(ii) Let .M; 	/ be a tracial W �-probability space and x D x� 2 M . Put ˛n WD
	.Un�1.x//. Assume that

� WD
1X

nD1
˛nCn.x/ 2 L2.M; 	/:

Show that � is the conjugate variable for x.
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Exercise 13. For P D .P1; : : : ; Pn/ with P1; : : : ; Pn 2 ChX1; : : : ; Xni, we define
the non-commutative Jacobian

JP D .@jPi /
n
i;jD1 2 Mn.ChX1; : : : ; Xni˝2/:

If Q D .Q1; : : : ;Qn/ with Q1; : : : ;Qn 2 ChX1; : : : ; Xni, then we define

P ıQ D .P1 ıQ; : : : ; Pn ıQ/

and Pi ıQ 2 ChX1; : : : ; Xni by

Pi ıQ.X1; : : : ; Xn/ WD Pi.Q1.X1; : : : ; Xn/; : : : ;Qn.X1; : : : ; Xn//:

Express J .P ıQ/ in terms of JP and JQ.

Exercise 14. Let .M; 	/ be a tracial W �-probability space and xi D x�
i 2 M for

i D 1; : : : ; n. Assume ˚�.x1; : : : ; xn/ < 1.

(i) Show that we have for  > 0

˚�.x1; : : : ; xn/ D 1

2
˚�.x1; : : : ; xn/:

(ii) Let now A D .aij /
n
i;jD1 2 Mn.R/ be a real invertible n � n matrix, and put

yi WD
nX

jD1
aij xj :

Determine the relation between a conjugate system for x1; : : : ; xn and a
conjugate system for y1; : : : ; yn. Conclude from this the following.

ı If A is orthogonal, then we have

˚�.x1; : : : ; xn/ D ˚�.y1; : : : ; yn/:

ı For general A, we have

1

kAk2 ˚
�.y1; : : : ; yn/ � ˚�.x1; : : : ; xn/ � kAk2˚�.y1; : : : ; yn/:



Chapter 9
Operator-Valued Free Probability Theory and Block Random
Matrices

Gaussian random matrices fit quite well into the framework of free probability
theory, asymptotically they are semi-circular elements, and they have also nice free-
ness properties with other (e.g. non-random) matrices. Gaussian random matrices
are used as input in many basic models in many different mathematical, physical,
or engineering areas. Free probability theory provides then useful tools for the
calculation of the asymptotic eigenvalue distribution for such models. However,
in many situations, Gaussian random matrices are only the first approximation
to the considered phenomena, and one would also like to consider more general
kinds of such random matrices. Such generalizations often do not fit into the
framework of our usual free probability theory. However, there exists an extension,
operator-valued free probability theory, which still shares the basic properties of free
probability but is much more powerful because of its wider domain of applicability.
In this chapter, we will first motivate the operator-valued version of a semi-circular
element and then present the general operator-valued theory. Here we will mainly
work on a formal level; the analytic description of the theory, as well as its powerful
consequences, will be dealt with in the following chapter.

9.1 Gaussian block random matrices

ConsiderAN D .aij /
N
i;jD1. Our usual assumptions for a Gaussian random matrix are

that the entries aij are, apart from the symmetry condition aij D a�
j i , independent

and identically distributed with a centred normal distribution. There are many ways
to relax these conditions, for example, one might consider noncentred normal
distributions, relax the identical distribution by allowing a dependency of the
variance on the entry, or even give up the independence by allowing correlations
between the entries. One possibility for such correlations would be block matrices,
where our random matrix is build up as a d � d matrix out of blocks, where each
block is an ordinary Gaussian random matrix, but we allow that the blocks might
repeat. For example, for d D 3, we might consider a block matrix

© Springer Science+Business Media LLC 2017
J.A. Mingo, R. Speicher, Free Probability and Random Matrices,
Fields Institute Monographs 35, DOI 10.1007/978-1-4939-6942-5_9
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Fig. 9.1 Histogram of the dN eigenvalues of a random matrix XN , for N D 1000, for two
different realizations

XN D 1p
3

0

@
AN BN CN
BN AN BN
CN BN AN

1

A ; (9.1)

where AN ;BN ; CN are independent self-adjoint Gaussian N �N -random matrices.
As usual we are interested in the asymptotic eigenvalue distribution of XN as
N ! 1.

As in Chapter 5 we can look at numerical simulations for the eigenvalue
distribution of such matrices. In Fig. 9.1 there are two realizations of the random
matrix above for N D 1000. This suggests that again we have almost sure
convergence to a deterministic limit distribution. One sees, however, that this
limiting distribution is not a semi-circle.

In this example, we have of course the following description of the limiting
distribution. Because the joint distribution of fAN ;BN ; CN g converges to that of
fs1; s2; s3g, where fs1; s2; s3g are free standard semi-circular elements, the limit
eigenvalue distribution we seek is the same as the distribution 
X of

X D 1p
3

0

@
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s2 s1 s2
s3 s2 s1

1

A (9.2)

with respect to tr3˝' (where ' is the state acting on s1; s2; s3). Actually, because we
have the almost sure convergence of AN ;BN ; CN (with respect to trN ) to s1; s2; s3,
this implies that the empirical eigenvalue distribution ofXN converges almost surely
to 
X . Thus, free probability yields directly the almost sure existence of a limiting
eigenvalue distribution of XN . However, the main problem, namely, the concrete
determination of this limit 
X , cannot be achieved within usual free probability
theory. Matrices of semi-circular elements do in general not behave nicely with
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respect to trd ˝ '. However, there exists a generalization, operator-valued free
probability theory, which is tailor-made to deal with such matrices.

In order to see what goes wrong on the usual level and what can be saved on
an “operator-valued” level, we will now try to calculate the moments of X in our
usual combinatorial way. To construct our first example, we shall need the idea of a
circular family of operators, generalizing the idea of a semi-circular family given in
Definition 2.6

Definition 1. Let fc1; : : : ; cng be operators in .A; '/. If fRe.c1/; Im.c1/; : : : ;Re.cn/;
Im.cn/g is a semi-circular family, we say that fc1; : : : ; cng is a circular family. We
are allowing the possibility that some of Re.ci / or Im.ci / is 0. So a semi-circular
family is a circular family.

Exercise 1. Using the notation of Section 6.8, show that for fc1; : : : ; cng to be a
circular family, it is necessary and sufficient that for every i1; : : : ; im 2 Œn� and every
�1; : : : ; �m 2 f�1; 1g we have

'.c
.�1/
i1

� � � c.�m/im
/ D

X

�2NC2.m/
��.c

.�1/
i1
; : : : ; c

.�m/
im

/:

Let us consider the more general situation where X is a d � d matrix X D
.sij /

d
i;jD1, where fsij g is a circular family with a covariance function � , i.e.

'.sij skl / D �.i; j I k; l/: (9.3)

The covariance function � can here be prescribed quite arbitrarily, only subject to
some symmetry conditions in order to ensure that X is self-adjoint. Thus, we allow
arbitrary correlations between different entries, but also that the variance of the sij
depends on .i; j /. Note that we do not necessarily ask that all entries are semi-
circular. Off-diagonal elements can also be circular elements, as long as we have
s�
ij D sj i .

By Exercise 1, we have

trd ˝ '.Xm/ D 1

d

dX

i.1/;:::;i.m/D1
'


si1i2 � � � simi1

�

D 1

d

X

�2NC2.m/

dX

i.1/;:::;i.m/D1

Y

.p;q/2�
�
�
ip; ipC1I iq; iqC1

�
:

We can write this in the form

trd ˝ '.Xm/ D
X

�2NC2.m/
K� ;
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where

K� WD 1

d

dX

i1;:::;imD1

Y

.p;q/2�
�
�
ip; ipC1I iq; iqC1

�
:

So the result looks very similar to our usual description of semi-circular elements,
in terms of a sum over non-crossing pairings. However, the problem here is that the
K� are not multiplicative with respect to the block decomposition of � , and thus
they do not qualify to be considered as cumulants. Even worse, there does not exist
a straightforward recursive way of expressing K� in terms of “smaller” K� . Thus,
we are outside the realm of the usual recursive techniques of free probability theory.

However, one can save most of those techniques by going to an “operator-valued”
level. The main point of such an operator-valued approach is to write K� as the trace
of a d � d -matrix �� , and then realize that �� has the usual nice recursive structure.

Namely, let us define the matrix �� D .Œ�� �ij /
d
i;jD1 by

Œ�� �ij WD
dX

i1:::;im;imC1D1
ıi i1ıj imC1

Y

.p;q/2�
�
�
ip; ipC1I iq; iqC1

�
:

Then clearly we have K� D trd .��/. Furthermore, the value of �� can be determined
by an iterated application of the covariance mapping

� W Md.C/ ! Md.C/ given by �.B/ WD id ˝ 'ŒXBX�;

i.e. for B D .bij / 2 Md.C/, we have �.B/ D .Œ�.B/�ij / 2 Md.C/ with

Œ�.B/�ij D
dX

k;lD1
�.i; kI l; j /bkl :

The main observation is now that the value of �� is given by an iterated
application of this mapping � according to the nesting of the blocks of � . If one
identifies a non-crossing pairing with an arrangement of brackets, then the way that
� has to be iterated is quite obvious. Let us clarify these remarks with an example.

Consider the non-crossing pairing

p = {(1,4),(2,3),(5,6)} ∈ NC2(6).

The corresponding �� is given by

Œ�� �ij D
dX

i2;i3;i4;i5;i6D1
�.i; i2I i4; i5/ � �.i2; i3I i3; i4/ � �.i5; i6I i6; j /:
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We can then sum over the index i3 (corresponding to the block .2; 3/ of �) without
interfering with the other blocks, giving

Œ�� �ij D
dX

i2;i4;i5;i6D1
�.i; i2I i4; i5/ � �.i5; i6I i6; j / �

dX

i3D1
�.i2; i3I i3; i4/

D
dX

i2;i4;i5;i6D1
�.i; i2I i4; i5/ � �.i5; i6I i6; j / � Œ�.1/�i2i4 :

Effectively we have removed the block .2; 3/ of � and replaced it by the matrix �.1/.
Now we can do the summation over i.2/ and i.4/ without interfering with the

other blocks, thus yielding

Œ�� �ij D
dX

i5;i6D1
�.i5; i6I i6; j / �

dX

i2;i4D1
�.i; i2I i4; i5/ � Œ�.1/�i2i4

D
dX

i5;i6D1
�.i5; i6I i6; j / � 
���.1/��

i i5
:

We have now removed the block .1; 4/ of � , and the effect of this was that we had
to apply � to whatever was embraced by this block (in our case, �.1/).

Finally, we can do the summation over i5 and i6 corresponding to the last block
.5; 6/ of � ; this results in

Œ�� �i;j D
dX

i5D1



�
�
�.1/

��
i i5

�
dX

i6D1
�.i5; i6I i6; j /

D
dX

i5D1



�
�
�.1/

��
i i5

� Œ�.1/�i5j

D 

�
�
�.1/

� � �.1/�
ij
:

Thus, we finally have �� D �
�
�.1/

� � �.1/, which corresponds to the bracket
expression .X.XX/X/.XX/. In the same way, every non-crossing pairing results
in an iterated application of the mapping �. For the five non-crossing pairings of six
elements, one gets the following results:
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h(1) ·h(1) ·h(1)

3 41 2 5 6

h h h(1)h(1) ·h h(1)

3 41 2 5 6 3 41 2 5 6

3 41 2 5 6

h h(1) ·h(1)

1 2 3 4 5 6

h h(1) ·h(1)

Thus, for m D 6, we get for trd ˝ '.X6/ the expression

trd
n
�.1/ � �.1/ � �.1/C �.1/ � ���.1/�C

C �
�
�.1/

� � �.1/C �
�
�.1/ � �.1/�C �

�
�
�
�.1/

��o
:

Let us summarize our calculations for general moments. We have

trd ˝ '.Xm/ D trd
n X

�2NC2.m/
��

o
;

where each �� is a d � d matrix, determined in a recursive way as above, by an
iterated application of the mapping �. If we remove trd from this equation, then we
get formally the equation for a semi-circular distribution. Define

E WD id ˝ ' W Md.C/ ! Md.C/;

and then we have that the operator-valued moments of X satisfy

E.Xm/ D
X

�2NC2.m/
�� : (9.4)

An element X whose operator-valued moments E.Xm/ are calculated in such a
way is called an operator-valued semi-circular element (because only pairings are
needed).

One can now repeat essentially all combinatorial arguments from the scalar
situation in this case. One only has to take care that the nesting of the blocks of
� is respected. Let us try this for the reformulation of the relation (9.4) in terms
of formal power series. We are using the usual argument by doing the summation
over all � 2 NC2.m/ by collecting terms according to the block containing the first
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element 1. If � is a non-crossing pairing of m elements and .1; r/ is the block of
� containing 1, then the remaining blocks of � must fall into two classes, those
making up a non-crossing pairing of the numbers 2; 3; : : : ; r � 1 and those making
up a non-crossing pairing of the numbers rC1; rC2; : : : ; m. Let us call the former
pairing �1 and the latter �2, so that we can write � D .1; r/ [ �1 [ �2. Then the
description above of �� shows that �� D �.��1/ � ��2 . This results in the following
recurrence relation for the operator-valued moments:

EŒXm� D
m�2X

kD0
�
�
EŒXk�

� �EŒXm�k�2�:

If we go over to the corresponding generating power series,

M.z/D
1X

mD0
EŒXm�zm;

then this yields the relation M.z/ D 1C z2�
�
M.z/

� �M.z/.
Note that m.z/ WD trd .M.z// is the generating power series of the moments

trd ˝ '.Xm/, in which we are ultimately interested. Thus, it is preferable to go
over from M.z/ to the corresponding operator-valued Cauchy transform G.z/ WD
z�1M.1=z/. For this the equation above takes on the form

zG.z/ D 1C �.G.z// �G.z/: (9.5)

Furthermore, we have for the Cauchy transform g of the limiting eigenvalue
distribution 
X of our block matrices XN that

g.z/ D z�1m.1=z/ D trd
�
z�1M.1=z/

� D trd .G.z//:

Since the number of non-crossing pairings of 2k elements is given by the Catalan
number Ck , for which one has Ck � 4k , we can estimate the (operator) norm of the
matrix E.X2k/ by

kE.X2k/k � k�kk � #.NC2.2k// � k�kk � 22k:
Applying trd , this yields that the support of the limiting eigenvalue distribution of
XN is contained in the interval Œ�2k�k1=2;C2k�k1=2�. Since all odd moments are
zero, the measure is symmetric. Furthermore, the estimate above on the operator-
valued moments E.Xm/ shows that

G.z/ D
1X

kD0

E.X2k/

z2kC1

is a power series expansion in 1=z of G.z/, which converges in a neighbourhood
of 1. Since on bounded sets, fB 2 Md.C/ j kBk � Kg for some K > 0, the
mapping
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B 7! z�11C z�1�.B/ � B

is a contraction for jzj sufficiently large, G.z/ is, for large z, uniquely determined as
the solution of the equation (9.5).

If we write G as G.z/ D E
�
.z � X/�1

�
, then this shows that it is not only a

formal power series but actually an analytic (Md.C/-valued) function on the whole
upper complex half-plane. Analytic continuation shows then the validity of (9.5) for
all z in the upper half-plane.

Let us summarize our findings in the following theorem, which was proved
in [147].

Theorem 2. Fix d 2 N. Consider, for each N 2 N, block matrices

XN D

0

B
@

A.11/ : : : A.1d/

:::
: : :

:::

A.d1/ : : : A.dd/

1

C
A (9.6)

where, for each i; j D 1; : : : ; d , the blocksA.ij / D �
a
.ij /
rp

�N
r;pD1 are GaussianN �N

random matrices such that the collection of all entries

fa.ij /rp j i; j D 1; : : : ; d I r; p D 1; : : : ; N g

of the matrix XN forms a Gaussian family which is determined by

a.ij /rp D a
.j i/
pr for all i; j D 1; : : : ; d I r; p D 1; : : : ; N

and the prescription of mean zero and covariance

EŒa.ij /rp a
.kl/
qs � D 1

n
ırsıpq � �.i; j I k; l/; (9.7)

where n WD dN .
Then, for N ! 1, the n � n matrix XN has a limiting eigenvalue distribution

whose Cauchy transform g is determined by g.z/ D trd .G.z//, where G is an
Md.C/-valued analytic function on the upper complex half-plane, which is uniquely
determined by the requirement that for z 2 C

C

lim
jzj!1

zG.z/ D 1; (9.8)

(where 1 is the identity of Md.C/) and that for all z 2 C
C; G satisfies the matrix

equation (9.5).

Note also that in [94], it was shown that there exists exactly one solution of the
fixed point equation (9.5) with a certain positivity property.

There exists a vast literature on dealing with such or similar generalizations
of Gaussian random matrices. Most of them deal with the situation where the



9.1 Gaussian block random matrices 233

entries are still independent, but not identically distributed; usually, such matrices
are referred to as band matrices. The basic insight that such questions can be
treated within the framework of operator-valued free probability theory is due to
Shlyakhtenko [155]. A very extensive treatment of band matrices (not using the
language of free probability, but the quite related Wigner-type moment method)
was given by Anderson and Zeitouni [6].

Example 3. Let us now reconsider the limit (9.2) of our motivating band matrix (9.1).
Since there are some symmetries in the block pattern, the corresponding G will also
have some additional structure. To work this out, let us examine � more carefully.
If B 2 M3.C/, B D .bij /ij , then

�.B/ D 1

3

0

@
b11 C b22 C b33 b12 C b21 C b23 b13 C b31 C b22
b21 C b12 C b32 b11 C b22 C b33 C b13 C b31 b12 C b23 C b32
b13 C b31 C b22 b23 C b32 C b21 b11 C b22 C b33

1

A :

We shall see later on that it is important to find the smallest unital subalgebra C of
M3.C/ that is invariant under �. We have

�.1/ D
0

@
1 0 1

3

0 1 0
1
3
0 1

1

A D 1C 1

3
H; where H D

0

@
0 0 1

0 0 0

1 0 0

1

A ;

�.H/ D 1

3

0

@
0 0 2

0 2 0

2 0 0

1

A D 2

3
H C 2

3
E; where E D

0

@
0 0 0

0 1 0

0 0 0

1

A ;

and

�.E/ D 1

3

0

@
1 0 1

0 1 0

1 0 1

1

A D 1

3
1C 1

3
H:

Now HE D EH D 0 and H2 D 1 � E, so C, the span of f1;H;Eg, is a
three-dimensional commutative subalgebra invariant under �. Let us show that if
G satisfies zG.z/ D 1C �.G.z//G.z/ and is analytic, then G.z/ 2 C for all z 2 C

C.
Let ˚ W M3.C/ ! M3.C/ be given by ˚.B/ D z�1.1 C �.B/B/. One easily

checks that

k˚.B/k � jzj�1.1C k�kkBk2/

and

k˚.B1/ � ˚.B2/k � jzj�1k�k.kB1k C kB2k/kB1 � B2k:



234 9 Operator-Valued Free Probability Theory and Block Random Matrices

Here k�k is the norm of � as a map from M3.C/ to M3.C/. Since � is completely
positive, we have k�k D k�.1/k. In this particular example, k�k D 4=3.

Now let D� D fB 2 M3.C/ j kBk < �g. If the pair z 2 C
C and � > 0

simultaneously satisfies

1C k�k�2 < jzj� and 2�k�k < jzj;

then ˚.D�/ � D� and k˚.B1/ � ˚.B2/k � ckB1 � B2k for B1;B2 2 D� and
c D 2�jzj�1k�k < 1. So when jzj is sufficiently large, both conditions are satisfied
and ˚ has a unique fixed point in D� . If we choose B 2 D� \ C, then all iterates of
˚ applied to B will remain in C, and so the unique fixed point will be in D� \ C.

SinceM3.C/ is finite-dimensional, there are a finite number of linear functionals,
f'igi , on M3.C/ (6 in our particular example) such that C D \i ker.'i /. Also for
each i , 'i ı G is analytic so it is identically 0 on C

C if it vanishes on a non-empty
open subset of CC. We have seen above that G.z/ 2 C provided jzj is sufficiently
large; thus G.z/ 2 C for all z 2 C

C.
Hence, G and �.G/ must be of the form

G D
0

@
f 0 h

0 e 0

h 0 f

1

A ; �.G/ D 1

3

0

@
2 f C e 0 e C 2 h

0 2 f C e C 2 h 0

e C 2 h 0 2 f C e

1

A :

So Equation (9.5) gives the following system of equations:

zf D 1C e .f C h/C 2
�
f 2 C h2

�

3
;

ze D 1C e .e C 2 .f C h//

3
;

zh D 4 f hC e .f C h/

3
:

(9.9)

This system of equations can be solved numerically for z close to the real axis; then

g.z/ D tr3
�
G.z/

� D .2f .z/C e.z//=3;
d
.t/

dt
D � 1

�
lim
s!0

Img .t C is/ (9.10)

gives the sought eigenvalue distribution. In Fig. 9.2 we compare this numerical
solution (solid curve) with the histogram for the XN from Fig. 9.1, with blocks of
size 1000 � 1000.

9.2 General theory of operator-valued free probability

Not only semi-circular elements can be lifted to an operator-valued level, but such
a generalization exists for the whole theory. The foundation for this was laid by
Voiculescu in [184]; Speicher showed in [163] that the combinatorial description of
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Fig. 9.2 Comparison of the
histogram of eigenvalues of
XN , from Fig. 9.1, with the
numerical solution according
to (9.9) and (9.10)
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free probability resting on the notion of free cumulants extends also to the operator-
valued case. We want to give here a short survey of some definitions and results.

Definition 4. Let A be a unital algebra and consider a unital subalgebra B 	 A.
A linear map E W A ! B is a conditional expectation if

E.b/ D b 8b 2 B (9.11)

and

E.b1ab2/ D b1E.a/b2 8a 2 A; 8b1; b2 2 B: (9.12)

An operator-valued probability space .A; E;B/ consists of B 	 A and a
conditional expectation E W A ! B.

The operator-valued distribution of a random variable x 2 A is given by all
operator-valued moments E.xb1xb2 � � � bn�1x/ 2 B (n 2 N, b1; : : : ; bn�1 2 B).

Since, by the bimodule property (9.12),

E.b0xb1xb2 � � � bn�1xbn/ D b0 �E.xb1xb2 � � � bn�1x/ � bn;

there is no need to include b0 and bn in the operator-valued distribution of x.

Definition 5. Consider an operator-valued probability space .A; E;B/ and a family
.Ai /i2I of subalgebras with B 	 Ai for all i 2 I . The subalgebras .Ai /i2I are free
with respect to E or free with amalgamation over B if E.a1 � � � an/ D 0 whenever
ai 2 Aji , j1 6D j2 6D � � � 6D jn, and E.ai / D 0 for all i D 1; : : : ; n. Random
variables in A or subsets of A are free with amalgamation over B if the algebras
generated by B and the variables or the algebras generated by B and the subsets,
respectively, are so.
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Note that the subalgebra generated by B and some variable x is not just the linear
span of monomials of the form bxn, but, because elements from B and our variable
x do not commute in general, we must also consider general monomials of the form
b0xb1x � � � bnxbnC1.

If B D A, then any two subalgebras of A are free with amalgamation over B; so
the claim of freeness with amalgamation gets weaker as the subalgebra gets larger
until the subalgebra is the whole algebra at which point the claim is empty.

Operator-valued freeness works mostly like ordinary freeness, one only has to
take care of the order of the variables; in all expressions, they have to appear in their
original order!

Example 6. 1) If x and fy1; y2g are free, then one has as in the scalar case

E.y1xy2/ D E
�
y1E.x/y2

�I (9.13)

and more general, for b1; b2 2 B,

E.y1b1xb2y2/ D E
�
y1b1E.x/b2y2

�
: (9.14)

In the scalar case (where B would just be C and E D ' W A ! C a unital linear
functional), we write of course '

�
y1'.x/y2

�
in the factorized form '.y1y2/'.x/.

In the operator-valued case, this is not possible; we have to leave the E.x/ at its
position between y1 and y2.

2) If fx1; x2g and fy1; y2g are free over B, then one has the operator-valued version
of (1.14),

E.x1y1x2y2/ D E
�
x1E.y1/x2

� �E.y2/CE.x1/ �E�y1E.x2/y2
�

�E.x1/E.y1/E.x2/E.y2/: (9.15)

Definition 7. Consider an operator-valued probability space .A; E;B/. We define
the corresponding (operator-valued) free cumulants .�Bn /n2N, �Bn W An ! B, by the
moment-cumulant formula

E.a1 � � � an/ D
X

�2NC.n/
�B� .a1; : : : ; an/; (9.16)

where arguments of �B� are distributed according to the blocks of � , but the
cumulants are nested inside each other according to the nesting of the blocks of � .

Example 8. Consider the non-crossing partition
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The corresponding free cumulant �B� is given by

�B� .a1; : : : ; a10/ D �B2
�
a1 � �B3

�
a2 � �B2 .a3; a4/; a5 � �B1 .a6/ � �B2 .a7; a8/; a9

�
; a10

�
:

Remark 9. Let us give a more formal definition of the operator-valued free cumu-
lants in the following.

1) First note that the bimodule property (9.12) for E implies for �B the property

�Bn .b0a1; b1a2; : : : ; bnanbnC1/ D b0�
B
n .a1b1; a2b2; : : : ; an/bnC1

for all a1; : : :; an2A and b0; : : :; bnC12B. This can also stated by saying that �Bn
is actually a map on the B-module tensor product

A˝Bn D A˝BA˝B � � � ˝BA:

2) Let now any sequence fTngn of B-bimodule maps: Tn W A˝Bn ! B be given.
Instead of Tn.x1 ˝B � � � ˝B xn/, we shall write Tn.x1; : : : ; xn/. Then there exists
a unique extension of T , indexed by non-crossing partitions, so that for every
� 2 NC.n/, we have a map T� W A˝Bn ! B so that the following conditions
are satisfied:

(i) when � D 1n, we have T� D Tn;
(ii) whenever � 2 NC.n/ and V D fl C 1; : : : ; l C kg is an interval in � then

T�.x1; : : : ; xn/ D T� 0.x1; : : : ; xlTk.xlC1; : : : ; xlCk/; xlCkC1; : : : ; xn/

D T� 0.x1; : : : ; xl ; Tk.xlC1; : : : ; xlCk/xlCkC1; : : : ; xn/;

where � 0 2 NC.n � k/ is the partition obtained by deleting from � the
block V . When l D 0, we interpret this property to mean

T�.x1; : : : ; xn/ D T� 0.Tk.x1; : : : ; xk/xkC1; : : : ; xn/:

This second property is called the insertion property. One should notice
that every non-crossing partition can be reduced to a partition with a single
block by the process of interval stripping. For example, with the partition
� D f.1; 10/; .2; 5; 9/; .3; 4/; .6/; .7; 8/g from above, we strip the interval .3; 4/
to obtain f.1; 10/; .2; 5; 9/; .6/; .7; 8/g. We strip the interval .7; 8/ to obtain
f.1; 10/; .2; 5; 9/; .6/; g, then we strip the (one element) interval .6/ to obtain
f.1; 10/; .2; 5; 9/g, and finally we strip the interval .2; 5; 9/ to obtain the partition
with a single block f.1; 10/g.

1 2 3 4 5 6 7 8 9 10 1 2 5 6 7 8 9 10 1 2 5 6 9 10 1 2 5 9 10 1 10
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The insertion property requires that the family fT�g� be compatible with
interval stripping. Thus, if there is an extension satisfying (i) and (ii), it must be
unique. Moreover, we can compute T� by stripping intervals, and the outcome is
independent of the order in which we strip the intervals.

3) Let us call a family fT�g� determined as above multiplicative. Then it is quite
straightforward to check the following.

ı Let fT�g� be a multiplicative family of B-bimodule maps and define a new
family by

S� D
X

�2NC.n/
���

T� .� 2 NC.n//: (9.17)

Then the family fS�g� is also multiplicative.
ı The relation (9.17) between two multiplicative families is via Möbius inver-

sions also equivalent to

T� D
X

�2NC.n/
���


.�; �/S� .� 2 NC.n//; (9.18)

where 
 is the Möbius function on non-crossing partitions; see Remark 2.9.
Again, multiplicativity of fS�g� implies multiplicativity of fT�g� , if the latter
is defined in terms of the former via (9.18).

4) Now we can use the previous to define the free cumulants �Bn . As a starting point,
we use the multiplicative family fE�g� which is given by the “moment maps”

En W A˝Bn ! B; En.a1; a2; : : : ; an/ D E.a1a2 � � � an/:

For � D f.1; 10/; .2; 5; 9/; .3; 4/; .6/; .7; 8/g 2 NC.10/ from Example 8, the
E� is, for example, given by

E�.a1; : : : ; a10/ D E
�
a1 �E�a2 �E.a3a4/ � a5 �E.a6/ �E.a7a8/ � a9

� � a10
�
:

Then we define the multiplicative family f�B� g� by

�B� D
X

�2NC.n/
���


.�; �/E� .� 2 NC.n//;

which is equivalent to (9.16). In particular, this means that the �Bn are given by

�Bn .a1; : : : ; an/ D
X

�2NC.n/

.�; 1n/E�.a1; : : : ; an/: (9.19)
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Definition 10. 1) For a 2 A we define its (operator-valued) Cauchy transform
Ga W B ! B by

Ga.b/ WD EŒ.b � a/�1� D
X

n�0
EŒb�1.ab�1/n�;

and its (operator-valued) R-transform Ra W B ! B by

Ra.b/ W D
X

n�0
�BnC1.ab; ab; : : : ; ab; a/

D �B1 .a/C �B2 .ab; a/C �B3 .ab; ab; a/C � � � :

2) We say that s 2 A is B-valued semi-circular if �Bn .sb1; sb2; : : : ; sbn�1; s/ D 0

for all n 6D 2, and all b1; : : : ; bn�1 2 B.

If s 2 A is B-valued semi-circular, then by the moment-cumulant formula, we
have

E.sn/ D
X

�2NC2.n/
��.s; : : : ; s/:

This is consistent with (9.4) of our example A D Md.C/ and B D Md.C/, where
these �’s were defined by iterated applications of �.B/ D E.XBX/ D �B2 .XB;X/:

As in the scalar-valued case, one has the following properties; see [163, 184,
190].

Theorem 11. 1) The relation between the Cauchy and the R-transform is given by

bG.b/ D 1CR.G.b// �G.b/ or G.b/ D .b �R.G.b///�1: (9.20)

2) Freeness of x and y over B is equivalent to the vanishing of mixed B-valued
cumulants in x and y. This implies, in particular, the additivity of the R-
transform: RxCy.b/ D Rx.b/CRy.b/, if x and y are free over B.

3) If x and y are free over B, then we have the subordination property

GxCy.b/ D Gx


b �Ry

�
GxCy.b/

��
: (9.21)

4) If s is an operator-valued semi-circular element over B, then Rs.b/ D �.b/,
where � W B ! B is the linear map given by �.b/ D E.sbs/.

Remark 12. 1) As for the moments, one has to allow in the operator-valued
cumulants elements from B to spread everywhere between the arguments. So
with B-valued cumulants in random variables x1; : : : ; xr 2 A, we actually
mean all expressions of the form �Bn .xi1b1; xi2b2; : : : ; xin�1bn�1; xin/ (n 2 N,
1 � i.1/; : : : ; i.n/ � r , b1; : : : ; bn�1 2 B).
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2) One might wonder about the nature of the operator-valued Cauchy and R-
transforms. One way to interpret the definitions and the statements is as
convergent power series. For this one needs a Banach algebra setting, and then
everything can be justified as convergent power series for appropriate b, namely,
with kbk sufficiently small in the R-transform case and with b invertible and
kb�1k sufficiently small in the Cauchy transform case. In those domains, they
are B-valued analytic functions and such F have a series expansion of the form
(say F is analytic in a neighbourhood of 0 2 B)

F.b/ D F.0/C
1X

kD1
Fk.b; : : : ; b/; (9.22)

where Fk is a symmetric multilinear function from the k-fold product B �
� � � � B to B. In the same way as for usual formal power series, one can
consider (9.22) as a formal multilinear function series (given by the sequence
.Fk/k of the coefficients of F ), with the canonical definitions for sums, products,
and compositions of such series. One can then also read Definition 10 and
Theorem 11 as statements about such formal multilinear function series. For a
more thorough discussion of this point of view (and more results about operator-
valued free probability), one should consult the work of Dykema [68].

As illuminated in Section 9.1 for the case of an operator-valued semi-circle,
many statements from the scalar-valued version of free probability are still true
in the operator-valued case; actually, on a combinatorial (or formal multilinear
function series) level, the proofs are essentially the same as in the scalar-valued
case, and one only has to take care that one respects the nested structure of the
blocks of non-crossing partitions. One can also extend some of the theory to an
analytic level. In particular, the operator-valued Cauchy transform is an analytic
operator-valued function (in the sense of Fréchet-derivatives) on the operator upper
half-plane H

C.B/ WD fb 2 B j Im.b/ > 0 and invertibleg. In the next chapter,
we will have something more to say about this, when coming back to the analytic
theory of operator-valued convolution.

One should, however, note that the analytic theory of operator-valued free
convolution lacks at the moment some of the deeper statements of the scalar-
valued theory; developing a reasonable analogue of complex function theory on an
operator-valued level, addressed as free analysis, is an active area in free probability
(and also other areas) at the moment; see, for example, [107, 193–195, 202].

9.3 Relation between scalar-valued and matrix-valued cumulants

Let us now present a relation from [140] between matrix-valued and scalar-valued
cumulants, which shows that taking matrices of random variables goes nicely with
freeness, at least if we allow for the operator-valued version.
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Proposition 13. Let .C; '/ be a non-commutative probability space and fix d 2 N.
Then .A; E;B/, with

A WD Md.C/; B WD Md.C/ 	 Md.C/; E WD id ˝' W Md.C/ ! Md.C/;

is an operator-valued probability space. We denote the scalar cumulants with
respect to ' by � and the operator-valued cumulants with respect to E by �B.
Consider now akij 2 C (i; j D 1; : : : ; d ; k D 1; : : : ; n) and put, for each

k D 1; : : : ; n, Ak D .akij /
d
i;jD1 2 Md.C/. Then the operator-valued cumulants

of the Ak are given in terms of the cumulants of their entries as follows:

Œ�Bn .A1; A2; : : : ; An/�ij D
dX

i2;:::;inD1
�n
�
a1i i2 ; a

2
i2i3
; : : : ; aninj

�
: (9.23)

Proof: Let us begin by noting that

ŒE.A1A2 � � �An�ij D
dX

i2;:::;inD1
'
�
a1i i2a

2
i2i3

� � � aninj
�
:

Let � 2 NC.n/ be a non-crossing partition; we claim that

ŒE�.A1; A2; : : : ; An�ij D
dX

i2;:::;inD1
'�
�
a1i i2 ; a

2
i2i3
; : : : ; aninj

�
:

If � has two blocks: � D f.1; : : : ; k/; .k C 1; : : : ; n/g, then this is just matrix
multiplication. We then get the general case by using the insertion property and
induction. By Möbius inversion, we have

Œ�Bn .A1; A2; : : : ; An�ij D
X

�2NC.n/

.�; 1n/ŒE�.A1; A2; : : : ; An�ij :

D
dX

i2;:::;inD1

X

�2NC.n/

.�; 1n/'�

�
a1i i2 ; a

2
i2i3
; : : : ; aninj

�

D
dX

i2;:::;inD1
��
�
a1i i2 ; a

2
i2i3
; : : : ; aninj

�
:

ut
Corollary 14. If the entries of two matrices are free in .C; '/, then the two matrices
themselves are free with respect to E W Md.C/ ! Md.C/.
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Proof: Let A1 and A2 be the subalgebras of A which are generated by B and by
the respective matrix. Note that the entries of any matrix from A1 are free from the
entries of any matrix from A2. We have to show that mixed B-valued cumulants
in those two algebras vanish. So consider A1; : : : ; An with Ak 2 Ar.k/. We shall
show that for all n and all r.1/; : : : ; r.n/ 2 f1; 2g, we have �Bn .A1; : : : ; An/ D 0

whenever the r’s are not all equal. As before we write Ak D .akij /. By freeness
of the entries, we have �n.a1i i2 ; a

2
i2i3
; : : : ; aninj / D 0 whenever the r’s are not all

equal. Then by Theorem 13, the .i; j /-entry of �Bn .A1; : : : ; An/ equals 0 and thus
�Bn .A1; : : : ; An/ D 0 as claimed. ut
Example 15. If fa1; b1; c1; d1g and fa2; b2; c2; d2g are free in .C; '/, then the
proposition above says that

X1 D
�
a1 b1
c1 d1

�

and X2 D
�
a2 b2
c2 d2

�

are free with amalgamation overM2.C/ in .M2.C/; id˝'/. Note that in general they
are not free in the scalar-valued non-commutative probability space .M2.C/; tr˝'/.
Let us make this distinction clear by looking on a small moment. We have

X1X2 D
�
a1a2 C b1c2 a1b2 C b1d2
c1a2 C d1c2 c1b2 C d1d2

�

:

Applying the trace  WD tr ˝ ', we get in general

 .X1X2/ D �
'.a1/'.a2/C '.b1/'.c2/C '.c1/'.b2/C '.d1/'.d2/

�
=2

6D .'.a1/C '.d1// � .'.a2/C '.d2//=4

D  .X1/ �  .X2/

but under the conditional expectation E WD id ˝ ', we always have

E.X1X2/ D
�
'.a1/'.a2/C '.b1/'.c2/ '.a1/'.b2/C '.b1/'.d2/

'.c1/'.a2/C '.d1/'.c2/ '.c1/'.b2/C '.d1/'.d2/

�

D
�
'.a1/ '.b1/

'.c1/ '.d1/

��
'.a2/ '.b2/

'.c2/ '.d2/

�

D E.X1/ �E.X2/:

9.4 Moving between different levels

We have seen that in interesting problems, like random matrices with correlation
between the entries, the scalar-valued distribution usually has no nice structure.
However, often the distribution with respect to an intermediate algebra B has a nice
structure, and thus it makes sense to split the problem into two parts. First, consider
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the distribution with respect to the intermediate algebra B. Derive all (operator-
valued) formulas on this level. Then at the very end, go down to C. This last step
usually has to be done numerically. Since our relevant equations (like (9.5)) are
not linear, they are not preserved under the application of the mapping B ! C,
meaning that we do not find closed equations on the scalar-valued level. Thus,
the first step is nice and gives us some conceptual understanding of the problem,
whereas the second step does not give much theoretical insight, but is more of a
numerical nature. Clearly, the bigger the last step, i.e. the larger B, the less we win
with working on the B-level first. So it is interesting to understand how symmetries
of the problem allow us to restrict from B to some smaller subalgebra D 	 B. In
general, the behaviour of an element as a B-valued random variable might be very
different from its behaviour as a D-valued random variable. This is reflected in the
fact that in general the expression of the D-valued cumulants of a random variable
in terms of its B-valued cumulants is quite complicated. So we can only expect
that nice properties with respect to B pass over to D if the relation between the
corresponding cumulants is easy. The simplest such situation is where the D-valued
cumulants are the restriction of the B-valued cumulants. It turns out that it is actually
quite easy to decide whether this is the case.

Proposition 16. Consider unital algebras C 	 D 	 B 	 A and conditional
expectations EB W A ! B and ED W A ! D which are compatible in the sense
that ED ı EB D ED. Denote the free cumulants with respect to EB by �B and
the free cumulants with respect to ED by �D. Consider now x 2 A. Assume that
the B-valued cumulants of x satisfy

�Bn .xd1; xd2; : : : ; xdn�1; x/ 2 D 8n � 1; 8d1; : : : ; dn�1 2 D:

Then the D-valued cumulants of x are given by the restrictions of the B-valued
cumulants: for all n � 1 and all d1; : : : ; dn�1 2 D, we have

�Dn .xd1; xd2; : : : ; xdn�1; x/ D �Bn .xd1; xd2; : : : ; xdn�1; x/:

This statement is from [139]. Its proof is quite straightforward by comparing the
corresponding moment-cumulant formulas. We leave it to the reader.

Exercise 2. Prove Proposition 16.

Proposition 16 allows us in particular to check whether a B-valued semi-circular
element x is also semi-circular with respect to a smaller D 	 B. Namely, all B-
valued cumulants of x are given by nested iterations of the mapping �. Hence, if �
maps D to D, then this property extends to all B-valued cumulants of x restricted
to D.

Corollary 17. Let D 	 B 	 A be as above. Consider a B-valued semi-circular
element x. Let � W B ! B, �.b/ D EB.xbx/ be the corresponding covariance
mapping. If �.D/ 	 D, then x is also a D-valued semi-circular element, with
covariance mapping given by the restriction of � to D.
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Remark 18. 1) This corollary allows for an easy determination of the smallest
canonical subalgebra with respect to which x is still semi-circular. Namely, if
x is B-semi-circular with covariance mapping � W B ! B, we let D be the
smallest unital subalgebra of B which is mapped under � into itself. Note that
this D exists because the intersection of two subalgebras which are invariant
under � is again a subalgebra invariant under �. Then x is also semi-circular
with respect to this D. Note that the corollary above is not an equivalence, and
thus there might be smaller subalgebras than D with respect to which x is still
semi-circular; however, there is no systematic way to detect those.

2) Note also that with some added hypotheses, the above corollary might become an
equivalence; for example, in [139] it was shown: Let .A; E;B/ be an operator-
valued probability space, such that A and B are C �-algebras. Let F W B !
C DW D 	 B be a faithful state. Assume that 	 D F ıE is a faithful trace on A.
Let x be a B-valued semi-circular variable in A. Then the distribution of x with
respect to 	 is the semi-circle law if and only if E.x2/ 2 C.

Example 19. Let us see what the statements above tell us about our model case of
d �d self-adjoint matrices with semi-circular entries X D .sij /

d
i;jD1. In Section 9.1

we have seen that if we allow arbitrary correlations between the entries, then we
get a semi-circular distribution with respect to B D Md.C/. (We calculated this
explicitly, but one could also invoke Proposition 13 to get a direct proof of this.)
The mapping � W Md.C/ ! Md.C/ was given by

Œ�.B/�ij D
dX

k;lD1
�.i; kI l; j /bkl :

Let us first check in which situations we can expect a scalar-valued semi-circular
distribution. This is guaranteed, by the corollary above, if � maps C to itself, i.e. if
�.1/ is a multiple of the identity matrix. We have

Œ�.1/�ij D
dX

kD1
�.i; kI k; j /:

Thus, if
Pd

kD1 �.i; kI k; j / is zero for i 6D j and otherwise independent from i ,
then X is semi-circular. The simplest situation where this happens is if all sij , 1 �
i � j � d , are free and have the same variance.

Let us now consider the more special band matrix situation where sij , 1 � i �
j � d are free, but not necessarily of the same variance, i.e. we assume that for
i � j; k � l , we have

�.i; j I k; l/ D
(
�ij ; if i D k; j D l

0; otherwise
: (9.24)
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Note that this also means that �.i; kI k; i/ D �ik , because we have ski D sik . Then

Œ�.1/�ij D ıij

dX

kD1
�ik:

We see that in order to get a semi-circular distribution, we do not need the same
variance everywhere, but that it suffices to have the same sum over the variances in
each row of the matrix.

However, if this sum condition is not satisfied, then we do not have a semi-
circular distribution. Still, having all entries free gives more structure than just semi-
circularity with respect to Md.C/. Namely, we see that with the covariance (9.24),
our � maps diagonal matrices into diagonal matrices. Thus, we can pass from
Md.C/ over to the subalgebra D 	 Md.C/ of diagonal matrices and get that for
such situations X is D-semi-circular. The conditional expectation ED W A ! D in
this case is of course given by

0

B
@

a11 : : : a1d
:::
: : :

:::

ad1 : : : add

1

C
A 7!

0

B
@

'.a11/ : : : 0
:::

: : :
:::

0 : : : '.add /

1

C
A :

Even if we do not have free entries, we might still have some symmetries in the
correlations between the entries which let us pass to some subalgebra of Md.C/.
As pointed out in Remark 18, we should look for the smallest subalgebra which is
invariant under �. This was exactly what we did implicitly in our Example 3. There
we observed that � maps the subalgebra

C WD
8
<

:

0

@
f 0 h

0 e 0

h 0 f

1

A j e; f; h 2 C

9
=

;

into itself. (And we actually saw in Example 3 that C is the smallest such subalgebra,
because it is generated from the unit by iterated application of �.) Thus, the X
from this example, (9.2), is not only M3.C/-semi-circular but actually also C-semi-
circular. In our calculations in Example 3, this was implicitly taken into account,
because there we restricted our Cauchy transform G to values in C, i.e. effectively
we solved the equation (9.5) for an operator-valued semi-circular element not in
M3.C/, but in C.

9.5 A non-self-adjoint example

In order to treat a more complicated example, let us look at a non-self-adjoint
situation as it often shows up in applications (e.g. in wireless communication;
see [174]). Consider the d � d matrix H D B C C where B 2 Md.C/ is a
deterministic matrix and C D .cij /

d
i;jD1 has as entries �-free circular elements
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cij (i; j D 1; : : : ; d ), without any symmetry conditions, however with varying
variance, i.e. '.cij c�

ij / D �ij . What we want to calculate is the distribution ofHH�.
Such an H might arise as the limit of block matrices in Gaussian random

matrices, where we also allow a non-zero mean for the Gaussian entries. The means
are separated off in the matrix B . We refer to [174] for more information on the use
of such non-mean zero Gaussian random matrices (as Ricean model) and why one
is interested in the eigenvalue distribution of HH�.

One can reduce this to a problem involving self-adjoint matrices by observing
that HH� has the same distribution as the square of

T WD
�
0 H

H� 0

�

D
�
0 B

B� 0

�

C
�
0 C

C � 0

�

:

Let us use the notations

OB WD
�
0 B

B� 0

�

and OC WD
�
0 C

C � 0

�

:

The matrix OC is a 2d � 2d self-adjoint matrix with �-free circular entries, thus
of the type we considered in Section 9.1. Hence, by the remarks in Example 19,
we know that it is a D2d -valued semi-circular element, where D2d 	 M2d .C/ is
the subalgebra of diagonal matrices; one checks easily that the covariance function
� W D2d ! D2d is given by

�

�
D1 0

0 D2

�

D
�
�1.D2/ 0

0 �2.D1/

�

; (9.25)

where �1 W Dd ! Dd and �2 W Dd ! Dd are given by

�1.D2/ D id ˝ 'ŒCD2C
��

�2.D1/ D id ˝ 'ŒC �D1C �:

Furthermore, by using Propositions 13 and 16, one can easily see that OB and OC are
free over D2d .

Let GT and GT 2 be the D2d -valued Cauchy transform of T and T 2, respectively.
We write the latter as

GT 2.z/ D
�
G1.z/ 0

0 G2.z/

�

;

whereG1 andG2 are Dd -valued. Note that one also has the general relationGT .z/ D
zGT 2.z

2/.
By using the general subordination relation (9.21) and the fact that OC is semi-

circular with covariance map � given by (9.25), we can now derive the following
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equation for GT 2 :

zGT 2.z
2/ D GT .z/ D G OB



z �R OC .GT .z//

�

D ED2d

"�

z � z�

�
G1.z2/ 0

0 G2.z2/

�

�
�
0 B

B� 0

���1#

D ED2d

"�
z � z�1.G2.z2// �B

�B� z � z�2.G1.z2//

��1#
:

By using the well-known Schur complement formula for the inverse of 2 � 2 block
matrices (see also next chapter for more on this), this yields finally

zG1.z/ D EDd

"�

1 � �1.G2.z//C B
1

z � z�2.G1.z//
B�
��1#

and

zG2.z/ D EDd

"�

1 � �2.G1.z//C B� 1

z � z�1.G2.z//
B

��1#
:

These equations have actually been derived in [90] as the fixed point equations
for a so-called deterministic equivalent of the square of a random matrix with
noncentred, independent Gaussians with non-constant variance as entries. Thus,
our calculations show that going over to such a deterministic equivalent consists
in replacing the original random matrix by our matrix T . We will come back to this
notion of “deterministic equivalent” in the next chapter.



Chapter 10
Deterministic Equivalents, Polynomials in Free Variables,
and Analytic Theory of Operator-Valued Convolution

The notion of a “deterministic equivalent” for random matrices, which can be found
in the engineering literature, is a non-rigorous concept which amounts to replacing a
random matrix model of finite size (which is usually unsolvable) by another problem
which is solvable, in such a way that, for largeN , the distributions of both problems
are close to each other. Motivated by our example in the last chapter, we will in this
chapter propose a rigorous definition for this concept, which relies on asymptotic
freeness results. This “free deterministic equivalent” was introduced by Speicher
and Vargas in [166].

This will then lead directly to the problem of calculating the distribution of
self-adjoint polynomials in free variables. We will see that, in contrast to the
corresponding classical problem on the distribution of polynomials in independent
random variables, there exists a general algorithm to deal with such polynomials in
free variables. The main idea will be to relate such a polynomial with an operator-
valued linear polynomial and then use operator-valued convolution to deal with the
latter. The successful implementation of this program is due to Belinschi, Mai, and
Speicher [23]; see also [12].

10.1 The general concept of a free deterministic equivalent

Voiculescu’s asymptotic freeness results on random matrices state that if we
consider tuples of independent random matrix ensembles, such as Gaussian, Wigner,
or Haar unitaries, their collective behaviour in the large N limit is almost surely
that of a corresponding collection of free (semi-)circular and Haar unitary opera-
tors. Moreover, if we consider these random ensembles along with deterministic
ensembles, having a given asymptotic distribution (with respect to the normalized
trace), then, almost surely, the corresponding limiting operators also become free
from the random elements. This means of course that if we consider a function in
our matrices, then this will, for large N , be approximated by the same function in
our limiting operators. We will in the following only consider functions which are

© Springer Science+Business Media LLC 2017
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given by polynomials. Furthermore, all our polynomials should be self-adjoint (in
the sense that if we plug in self-adjoint matrices, we will get as output self-adjoint
matrices), so that the eigenvalue distribution of those polynomials can be recovered
by calculating traces of powers.

To be more specific, let us consider a collection of independent random and
deterministic N �N matrices:

XN D
n
X
.N/
1 ; : : : ; X

.N/
i1

o
W independent self-adjoint Gaussian matrices;

YN D
n
Y
.N/
1 ; : : : ; Y

.N/
i2

o
W independent non-self-adjoint Gaussian matrices;

UN D
n
U
.N/
1 ; : : : ; U

.N/
i3

o
W independent Haar distributed unitary matrices;

DN D
n
D
.N/
1 ; : : : ;D

.N/
i4

o
W deterministic matrices,

and a self-adjoint polynomial P in non-commuting variables (and their adjoints);
we evaluate this polynomial in our matrices

P
�
X
.N/
1 ; : : : ; X

.N/
i1
; Y

.N/
1 ; : : : ; Y

.N/
i2

; U
.N/
1 ; : : : ; U

.N/
i3
;D

.N/
1 ; : : : ;D

.N/
i4

� DW PN :

Relying on asymptotic freeness results, we can then compute the asymptotic
eigenvalue distribution of PN by going over the limit. We know that we can find
collections S;C;U;D of operators in a non-commutative probability space .A; '/,

S D fs1; : : : ; si1g W free semi-circular elements;

C D fc1; : : : ; ci2g W �-free circular elements;

U D fu1; : : : ; ui3g W �-free Haar unitaries;

D D fd1; : : : ; di4g W abstract elements,

such that S;C;U;D are �-free and the joint distribution of d1; : : : ; di4 is given by the
asymptotic joint distribution ofD.N/

1 ; : : : ;D
.N/
i4

. Then, almost surely, the asymptotic
distribution of PN is that of P .s1; : : : ; si1 ; c1; : : : ; ci2 ; u1; : : : ; ui3 ; d1; : : : ; di4/ DW
p1, in the sense that, for all k, we have almost surely

lim
N!1 tr.P k

N / D '.pk1/:

In this way, we can reduce the problem of the asymptotic distribution of PN to
the study of the distribution of p1.

A common obstacle of this procedure is that our deterministic matrices may not
have an asymptotic joint distribution. It is then natural to consider, for a fixedN , the
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corresponding “free model” P
�
s1; : : : ; si1 ; c1; : : : ; ci2 ; u1; : : : ; ui3 ; d

.N /
1 ; : : : ; d

.N /
i4

�

DW p�
N , where, just as before, the random matrices are replaced by the corre-

sponding free operators in some space .AN ; 'N /, but now we let the distribution
of d.N/1 ; : : : ; d

.N /
i4

be exactly the same as the one of D.N/
1 ; : : : ;D

.N/
i4

with respect to
tr. The free model p�

N will be called the free deterministic equivalent for PN . This
was introduced and investigated in [166, 175].

(In case one wonders about the notation, p�
N : the symbol � is according to

[30] the generic qualifier for denoting the free version of some classical object or
operation.)

The difference between the distribution of p�
N and the (almost sure or expected)

distribution of PN is given by the deviation from freeness of XN ;YN ;UN ;DN , the
deviation of XN ;YN from being free (semi)-circular systems, and the deviation of
UN from a free system of Haar unitaries. Of course, for large N these deviations
get smaller, and thus the distribution of p�

N becomes a better approximation for the
distribution of PN .

Let us denote by GN the Cauchy transform of PN and by G�
N the Cauchy

transform of the free deterministic equivalent p�
N . Then, the usual asymptotic

freeness estimates show that moments of PN are, for large N , with very high
probability close to corresponding moments of p�

N (where the estimates involve also
the operator norms of the deterministic matrices). This means that for N ! 1, the
difference between the Cauchy transforms GN and G�

N goes almost surely to zero,
even if there do not exist individual limits for both Cauchy transforms.

In the engineering literature, there exists also a version of the notion of a
deterministic equivalent (apparently going back to Girko [78], see also [90]).
This deterministic equivalent consists in replacing the Cauchy transform GN of
the considered random matrix model (for which no analytic solution exists) by a
function OGN which is defined as the solution of a specified system of equations.
The specific form of those equations is determined in an ad hoc way, depending
on the considered problem, by making approximations for the equations of GN ,
such that one gets a closed system of equations. In many examples of deterministic
equivalents (e.g. see [62, Chapter 6]), it turns out that actually the Cauchy transform
of our free deterministic equivalent is the solution to those modified equations, i.e.
that OGN D G�

N . We saw one concrete example of this in Section 9.5 of the last
chapter.

Our definition of a deterministic equivalent gives a more conceptual approach
and shows clearly how this notion relates with free probability theory. In some sense,
this indicates that the only meaningful way to get a closed system of equations when
dealing with random matrices is to replace the random matrices by free variables.

Deterministic equivalents are thus polynomials in free variables, and it remains
to develop tools to deal with such polynomials in an effective way. It turns out that
operator-valued free probability theory provides such tools. We will elaborate on
this in the remaining sections of this chapter.
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10.2 A motivating example: reduction to multiplicative convolution

In the following, we want to see how problems about polynomials in free variables
can be treated by means of operator-valued free probability. The main idea in this
context is that complicated polynomials can be transformed into simpler ones by
going to matrices (and thus go from scalar-valued to operator-valued free probabil-
ity). Since the only polynomials which we can effectively deal with are sums and
products (corresponding to additive and multiplicative convolution, respectively),
we should aim to transform general polynomials into sums or products.

In this section, we will treat one special example from [25] to get an idea how
this can be achieved. In this case, we will transform our problem into a product of
two free operator-valued matrices.

Let a1; a2; b1; b2 be self-adjoint random variables in a non-commutative prob-
ability space .C; '/, such that fa1; a2g and fb1; b2g are free and consider the
polynomial p D a1b1a1 C a2b2a2. This p is self-adjoint and its distribution, i.e.
the collection of its moments, is determined by the joint distribution of fa1; a2g,
the joint distribution of fb1; b2g, and the freeness between fa1; a2g and fb1; b2g.
However, there is no direct way of calculating this distribution.

We observe now that the distribution 
p of p is the same (modulo a Dirac mass
at zero) as the distribution of the element

�
a1b1a1 C a2b2a2 0

0 0

�

D
�
a1 a2
0 0

��
b1 0

0 b2

��
a1 0

a2 0

�

; (10.1)

in the non-commutative probability space .M2.C/; tr2˝'/. But this element has the
same moments as

�
a1 0

a2 0

��
a1 a2
0 0

��
b1 0

0 b2

�

D
�
a21 a1a2
a2a1 a22

��
b1 0

0 b2

�

DW AB: (10.2)

So, with 
AB denoting the distribution of AB with respect to tr2 ˝ ', we have


AB D 1

2

p C 1

2
ı0:

Since A and B are not free with respect to tr2 ˝ ', we cannot use scalar-valued
multiplicative free convolution to calculate the distribution of AB . However, with
E W M2.C/ ! M2.C/ denoting the conditional expectation onto deterministic 2� 2
matrices, we have that the scalar-valued distribution 
AB is given by taking the trace
tr2 of the operator-valued distribution ofAB with respect toE. But on this operator-
valued level, the matrices A and B are, by Corollary 9.14, free with amalgamation
over M2.C/. Furthermore, the M2.C/-valued distribution of A is determined by the
joint distribution of a1 and a2, and theM2.C/-valued distribution ofB is determined
by the joint distribution of b1 and b2. Hence, the scalar-valued distribution 
p will
be given by first calculating the M2.C/-valued free multiplicative convolution of A
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and B to obtain the M2.C/-valued distribution of AB and then getting from this
the (scalar-valued) distribution 
AB by taking the trace over M2.C/. Thus, we have
rewritten our original problem as a problem on the product of two free operator-
valued variables.

10.3 The general case: reduction to operator-valued additive convolution
via the linearization trick

Let us now be more ambitious and look at an arbitrary self-adjoint polynomial P 2
ChX1; : : : ; Xni, evaluated as p D P.x1; : : : ; xn/ 2 A in free variables x1; : : : ; xn 2
A. In the last section, we replaced our original variable by a matrix which has (up
to some atoms), with respect to tr ˝ ', the same distribution and which is actually
a product of matrices in the single operators. It is quite unlikely that we can do
the same in general. However, if we do not insist on using the trace as our state
on matrices but allow, for example, the evaluation at the .1; 1/ entry, then we gain
much flexibility and can indeed find an equivalent matrix which splits even into a
sum of matrices of the individual variables. What we essentially need for this is,
given the polynomial P , to construct in a systematic way a matrix, such that the
entries of this matrix are polynomials of degree 0 or 1 in our variables and such
that the inverse of this matrix has as .1; 1/ entry .z � P /�1. Let us ignore for the
moment the degree condition on the entries and just concentrate on the invertibility
questions. The relevant tool in this context is the following well-known result about
Schur complements.

Proposition 1. Let A be a complex and unital algebra and let elements a; b; c; d 2
A be given. We assume that d is invertible in A. Then the following statements are
equivalent:

(i) The matrix

�
a b

c d

�

is invertible in M2.C/˝ A.

(ii) The Schur complement a � bd�1c is invertible in A.

If the equivalent conditions (i) and (ii) are satisfied, we have the relation

�
a b

c d

��1
D
�

1 0

�d�1c 1

��
.a � bd�1c/�1 0

0 d�1
��

1 �bd�1
0 1

�

: (10.3)

In particular, the .1; 1/ entry of the inverse is given by .a � bd�1c/�1:

�
a b

c d

��1
D
�
.a � bd�1c/�1 �

� �
�

:

Proof: A direct calculation shows that

�
a b

c d

�

D
�
1 bd�1
0 1

��
a � bd�1c 0

0 d

��
1 0

d�1c 1

�

(10.4)
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holds. Since the first and third matrix are both invertible in M2.C/˝ A,

�
1 bd�1
0 1

��1
D
�
1 �bd�1
0 1

�

and

�
1 0

d�1c 1

��1
D
�

1 0

�d�1c 1

�

;

the stated equivalence of (i) and (ii), as well as formula (10.3), follows from (10.4).
ut

What we now need, given our operator p D P.x1; : : : ; xn/, is to find a block
matrix such that the .1; 1/ entry of the inverse of this block matrix corresponds to
the resolvent .z �p/�1 and that furthermore all the entries of this block matrix have
at most degree 1 in our variables. More precisely, we are looking for an operator

Op D b0 ˝ 1C b1 ˝ x1 C � � � C bn ˝ xn 2 MN.C/˝ A

for some matrices b0; : : : ; bn 2 MN.C/ of dimensionN , such that z�p is invertible
in A if and only if �.z/ � Op is invertible in MN.C/˝ A. Hereby, we put

�.z/ D

0

B
B
B
@

z 0 : : : 0
0 0 : : : 0
:::
:::
: : :

:::

0 0 : : : 0

1

C
C
C
A

for all z 2 C: (10.5)

As we will see in the following, the linearization in terms of the dimension N 2 N

and the matrices b0; : : : ; bn 2 MN.C/ usually depends only on the given polynomial
P 2 ChX1; : : : ; Xni and not on the special choice of elements x1; : : : ; xn 2 A.

The first famous linearization trick in the context of operator algebras and random
matrices goes back to Haagerup and Thorbjørnsen [88, 89] and turned out to be a
powerful tool in many different respects. However, there was the disadvantage that,
even if we start from a self-adjoint polynomialP , in general, we will not end up with
a linearization Op, which is self-adjoint as well. Then, in [5], Anderson presented a
new version of this linearization procedure, which preserved self-adjointness.

One should note, however, that the idea of linearizing polynomial (or actually
rational, see Section 10.6)) problems by going to matrices is actually much older
and is known under different names in different communities like “Higman’s
trick” [98] or “linearization by enlargement” in non-commutative ring theory [56],
“recognizable power series” in automata theory and formal languages [154], or
“descriptor realization” in control theory [93]. For a survey on linearization, non-
commutative system realization, and its use in free probability, see [95].

Here is now our precise definition of linearization.

Definition 2. Let P 2 ChX1; : : : ; Xni be given. A matrix

OP WD
�
0 U

V Q

�

2 MN.C/˝ ChX1; : : : ; Xni;
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where

ı N 2 N is an integer,
ı Q 2 MN�1.C/˝ ChX1; : : : ; Xni is invertible
ı and U is a row vector and V is a column vector, both of size N � 1 with entries

in ChX1; : : : ; Xni,
is called a linearization of P , if the following conditions are satisfied:

(i) There are matrices b0; : : : ; bn 2 MN.C/, such that

OP D b0 ˝ 1C b1 ˝X1 C � � � C bn ˝Xn;

i.e. the polynomial entries in Q, U , and V all have degree � 1.
(ii) It holds true that P D �UQ�1V .

Applying the Schur complement, Proposition 1, to this situation yields then the
following:

Corollary 3. Let A be a unital algebra and let elements x1; : : : ; xn 2 A be given.
Assume P 2 ChX1; : : : ; Xni has a linearization

OP D b0 ˝ 1C b1 ˝X1 C � � � C bn ˝Xn 2 MN.C/˝ ChX1; : : : ; Xni

with matrices b0; : : : ; bn 2 MN.C/. Then the following conditions are equivalent
for any complex number z 2 C:

(i) The operator z � p with p WD P.x1; : : : ; xn/ is invertible in A.
(ii) The operator �.z/ � Op with �.z/ defined as in (10.5) and

Op WD b0 ˝ 1C b1 ˝ x1 C � � � C bn ˝ xn 2 MN.C/˝ A

is invertible in MN.C/˝ A.

Moreover, if (i) and (ii) are fulfilled for some z 2 C, we have that



.�.z/ � Op/�1�

1;1
D .z � p/�1:

Proof: By the definition of a linearization, Definition 2, we have a block decompo-
sition of the form

Op WD
�
0 u
v q

�

2 MN.C/˝ A

where u D U.x1; : : : ; xn/, v D V.x1; : : : ; xn/ and q D Q.x1; : : : ; xn/. Further-
more, we know that q 2 MN�1.C/˝ A is invertible and p D �uq�1v holds. This
implies
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�.z/ � Op D
�

z �u
�v �q

�

;

and the statements follow from Proposition 1. ut
Now, it only remains to ensure the existence of linearizations of this kind.

Proposition 4. Any polynomial P 2 ChX1; : : : ; Xni admits a linearization OP in
the sense of Definition 2. If P is self-adjoint, then the linearization can be chosen to
be self-adjoint.

The proof follows by combining the following simple observations:

Exercise 1.

(i) Show that Xj 2 ChX1; : : : ; Xni has a linearization

OXj D
�
0 Xj
1 �1

�

2 M2.C/˝ ChX1; : : : ; Xni:

(This statement looks simplistic taken for itself, but it will be useful when
combined with the third part.)

(ii) A monomial of the form P WD Xi1Xi2 � � �Xik 2 ChX1; : : : ; Xni for k � 2,
i1; : : : ; ik 2 f1; : : : ; ng has a linearization

OP D

0

B
B
B
@

Xi1
Xi2 �1

: :
:
: :
:

Xik �1

1

C
C
C
A

2 Mk.C/˝ ChX1; : : : ; Xni:

(iii) If the polynomials P1; : : : ; Pk 2 ChX1; : : : ; Xni have linearizations

OPj D
�
0 Uj
Vj Qj

�

2 MNj .C/˝ ChX1; : : : ; Xni

for j D 1; : : : ; n, then their sum P WD P1 C � � � C Pk has the linearization

OP D

0

B
B
B
@

0 U1 : : : Uk
V1 Q1

:::
: : :

Vk Qk

1

C
C
C
A

2 MN.C/˝ ChX1; : : : ; Xni

with N WD .N1 C � � � CNk/ � k C 1:

(iv) If

�
0 U

V Q

�

2 MN.C/˝ ChX1; : : : ; Xni
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is a linearization of P , then

0

@
0 U V �
U � 0 Q�
V Q 0

1

A 2 M2N�1.C/˝ ChX1; : : : ; Xni

is a linearization of P C P �.

10.4 Analytic theory of operator-valued convolutions

In the last two sections, we indicated how problems in free variables can be
transformed into operator-valued simpler problems. In particular, the distribution
of a self-adjoint polynomial p D P.x1; : : : ; xn/ in free variables x1; : : : ; xn can be
deduced from the operator-valued distribution of a corresponding linearization

Op WD b0 ˝ 1C b1 ˝ x1 C � � � C bn ˝ xn 2 MN.C/˝ A:

Note that for this linearization, the freeness of the variables plays no role. Where
it becomes crucial is the observation that the freeness of x1; : : : ; xn implies, by
Corollary 9.14, the freeness over MN.C/ of b1 ˝ x1; : : : ; bn ˝ xn. (Note that there
is no classical counter part of this for the case of independent variables.) Hence,
the distribution of Op is given by the operator-valued free additive convolution of
the distributions of b1 ˝ x1; : : : ; bn ˝ xn. Furthermore, since the distribution of xi
determines also the MN.C/-valued distribution of bi ˝ xi , we have finally reduced
the determination of the distribution of P.x1; : : : ; xn/ to a problem involving
operator-valued additive free convolution. As pointed out in Section 9.2, we can
in principle deal with such a convolution.

However, in the last chapter we treated the relevant tools, in particular the
operator-valued R-transform, only as formal power series, and it is not clear how
one should be able to derive explicit solutions from such formal equations. But
worse, even if the operator-valued Cauchy and R-transforms are established as
analytic objects, it is not clear how to solve operator-valued equations like the
one in Theorem 9.11. There are rarely any non-trivial operator-valued examples
where an explicit solution can be written down; and also numerical methods for
such equations are problematic – a main obstacle being that those equations usually
have many solutions, and it is a priori not clear how to isolate the one with the right
positivity properties. As we have already noticed in the scalar-valued case, it is the
subordination formulation of those convolutions which comes to the rescue. From
an analytic and also a numerical point of view, the subordination function is a much
nicer object than the R-transform.

So, in order to make good use of our linearization algorithm, we need also a well-
developed subordination theory of operator-valued free convolution. Such a theory
exists and we will present in the following the relevant statements. For proofs and
more details, we refer to the original papers [23, 25].
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10.4.1 General notations

A C �-operator-valued probability space .M; E;B/ is an operator-valued proba-
bility space, where M is a C �-algebra, B is a C �-subalgebra of M, and E is
completely positive. In such a setting, we use for x 2 M the notation x > 0

for the situation where x � 0 and x is invertible; note that this is equivalent to
the fact that there exists a real " > 0 such that x � "1. Any element x 2 M
can be uniquely written as x D Re.x/ C i Im.x/, where Re.x/ D .x C x�/=2
and Im.x/ D .x � x�/=.2i/ are self-adjoint. We call Re.x/ and Im.x/ the real and
imaginary part of x.

The appropriate domain for the operator-valued Cauchy transform Gx for a self-
adjoint element xDx� is the operator upper half-plane

H
C.B/WDfb2BW Im.b/>0g:

Elements in this open set are all invertible, and H
C.B/ is invariant under conjugation

by invertible elements in B, i.e. if b 2 H
C.B/ and c 2 GL.B/ is invertible, then

cbc� 2 H
C.B/.

We shall use the following analytic mappings, all defined on H
C.B/; all

transforms have a natural Schwarz-type analytic extension to the lower half-plane
given by f .b�/ D f .b/�; in all formulas below, x D x� is fixed in M:

ı the moment generating function:

�x.b/ D E


.1 � bx/�1 � 1� D E



.b�1 � x/�1� b�1 � 1 D Gx.b

�1/b�1 � 1I
(10.6)

ı the reciprocal Cauchy transform:

Fx.b/ D E


.b � x/�1��1 D Gx.b/

�1I (10.7)

ı the eta transform:

�x.b/ D �x.b/.1C �x.b//
�1 D 1 � bFx.b�1/I (10.8)

ı the h transform:

hx.b/ D E


.b � x/�1��1 � b D Fx.b/ � b: (10.9)

10.4.2 Operator-valued additive convolution

Here is now the main theorem from [23] on operator-valued free additive convolu-
tion.

Theorem 5. Assume that .M; E;B/ is a C �-operator-valued probability space
and x; y 2 M are two self-adjoint operator-valued random variables which are
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free over B. Then there exists a unique pair of Fréchet (and thus also Gateaux)
analytic maps !1; !2WHC.B/ ! H

C.B/ so that

(i) Im.!j .b// � Im.b/ for all b 2 H
C.B/, j 2 f1; 2g;

(ii) Fx.!1.b//C b D Fy.!2.b//C b D !1.b/C !2.b/ for all b 2 H
C.B/I

(iii) Gx.!1.b// D Gy.!2.b// D GxCy.b/ for all b 2 H
C.B/:

Moreover, if b 2 H
C.B/, then !1.b/ is the unique fixed point of the map

fb WHC.B/ ! H
C.B/; fb.w/ D hy.hx.w/C b/C b;

and

!1.b/ D lim
n!1f ın

b .w/ for any w 2 H
C.B/;

where f ın
b denotes the n-fold composition of fb with itself. Similar statements hold

for !2, with fb replaced by w 7! hx.hy.w/C b/C b:

10.4.3 Operator-valued multiplicative convolution

There is also an analogous theorem for treating the operator-valued multiplicative
free convolution, see [25].

Theorem 6. Let .M; E;B/ be a W �-operator-valued probability space; i.e. M is
a von Neumann algebra and B a von Neumann subalgebra. Let x > 0, y D y� 2 M
be two random variables with invertible expectations, free over B. There exists a
Fréchet holomorphic map !2W fb 2 BW Im.bx/ > 0g ! H

C.B/; such that

(i) �y.!2.b// D �xy.b/, Im.bx/ > 0;
(ii) !2.b/ and b�1!2.b/ are analytic around zero;

(iii) for any b 2 B so that Im.bx/ > 0, the map gb WHC.B/ ! H
C.B/, gb.w/ D

bhx.hy.w/b/ is well defined and analytic, and for any fixed w 2 H
C.B/,

!2.b/ D lim
n!1gın

b .w/;

in the weak operator topology.

Moreover, if one defines !1.b/ WD hy.!2.b//b, then

�xy.b/ D !2.b/�x.!1.b//!2.b/
�1; Im.bx/ > 0:

10.5 Numerical example

Let us present a numerical example for the calculation of self-adjoint polynomials
in free variables. We consider the polynomial p D P.x; y/ D xy C yxC x2 in the
free variables x and y. This p has a linearization
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Op D
0

@
0 x y C x

2

x 0 �1
y C x

2
�1 0

1

A ;

which means that the Cauchy transform of p can be recovered from the operator-
valued Cauchy transform of Op, namely, we have

G Op.b/ D .id ˝ '/..b � Op/�1/ D
�
'..z � p/�1/ �

� �
�

for b D
 

z 0 0
0 0 0

0 0 0

!

:

But this Op can now be written as

Op D
0

@
0 x x

2

x 0 �1
x
2

�1 0

1

AC
0

@
0 0 y

0 0 0

y 0 0

1

A D QX C QY

and hence is the sum of two self-adjoint variables QX and QY , which are free over
M3.C/. So we can use the subordination result from Theorem 5 in order to calculate
the Cauchy transform Gp of p:

�
Gp.z/ �

� �
�

D G Op.b/ D G QXC QY .b/ D G QX.!1.b//;

where !1.b/ is determined by the fixed point equation from Theorem 5.
There are no explicit solutions of those fixed point equations in M3.C/, but a

numerical implementation relying on iterations is straightforward. One point to note
is that b as defined above is not in the open set HC.M3.C//, but lies on its boundary.
Thus, in order to be in the frame as needed in Theorem 5, one has to move inside
the upper half-plane, by replacing

b D
0

@
z 0 0

0 0 0

0 0 0

1

A by

0

@
z 0 0

0 i" 0

0 0 i"

1

A

and send " > 0 to zero at the end.
Figure 10.1 shows the agreement between the achieved theoretic result and the

histogram of the eigenvalues of a corresponding random matrix model.

10.6 The case of rational functions

As we mentioned before, the linearization procedure works as well in the case of
non-commutative rational functions. Here is an example of such a case.
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Fig. 10.1 Plots of the distribution of p.x; y/ D xy C yx C x2 (left) for free x; y, where x
is semi-circular and y Marchenko-Pastur, and of the rational function r.x1; x2/ (right) for free
semi-circular elements x1 and x2; in both cases the theoretical limit curve is compared with the
histogram of the eigenvalues of a corresponding random matrix model

Consider the following self-adjoint rational function

r.x1; x2/ D .4�x1/�1C.4�x1/�1x2
�
.4 � x1/ � x2.4 � x1/�1x2

��1
x2.4�x1/�1

in two free variables x1 and x2. The fact that we can write it as

r.x1; x2/ D �
1
2
0
�
�
1 � 1

4
x1 � 1

4
x2

� 1
4
x2 1 � 1

4
x1

��1 � 1
2

0

�

gives us immediately a self-adjoint linearization of the form

Or.x1; x2/ D
0

@
0 1

2
0

1
2

�1C 1
4
x1

1
4
x2

0 1
4
x2 �1C 1

4
x1

1

A

D
0

@
0 1

2
0

1
2

�1C 1
4
x1 0

0 0 �1C 1
4
x1

1

AC
0

@
0 0 0

0 0 1
4
x2

0 1
4
x2 0

1

A :

So again, we can write the linearization as the sum of two M3.C/-free variables,
and we can invoke Theorem 5 for the calculation of its operator-valued Cauchy
transform. In Fig. 10.1, we compare the histogram of eigenvalues of r.X1;X2/ for
one realization of independent Gaussian random matricesX1;X2 of size 1000�1000
with the distribution of r.x1; x2/ for free semi-circular elements x1; x2, calculated
according to this algorithm.
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Other examples for the use of operator-valued free probability methods can be
found in [12].

10.7 Additional exercise

Exercise 2. Consider the C �-algebra Mn.C/ of n � n matrices over C. By defini-
tion, we have

H
C.Mn.C// WD fB 2 Mn.C/ j 9" > 0 W Im.B/ � "1g;

where Im.B/ WD .B � B�/=.2i/.

(i) In the case n D 2, show that in fact

H
C.M2.C// WD

��
b11 b12
b21 b22

�ˇˇ
ˇ
ˇ Im.b11/ > 0; Im.b11/Im.b22/ >

1

4
jb12 � b21j2



:

(ii) For general n 2 N, prove: if a matrix B 2 Mn.C/ belongs to H
C.Mn.C//, then

all eigenvalues of B lie in the complex upper half-plane C
C. Is the converse

also true?



Chapter 11
Brown Measure

The Brown measure is a generalization of the eigenvalue distribution for a general
(not necessarily normal) operator in a finite von Neumann algebra (i.e. a von
Neumann algebra which possesses a trace). It was introduced by Larry Brown in
[46], but fell into obscurity soon after. It was revived by Haagerup and Larsen
[85] and played an important role in Haagerup’s investigations around the invariant
subspace problem [87]. By using a “hermitization” idea, one can actually calculate
the Brown measure by M2.C/-valued free probability tools. This leads to an
extension of the algorithm from the last chapter to the calculation of arbitrary
polynomials in free variables. For generic non-self-adjoint random matrix models,
their asymptotic complex eigenvalue distribution is expected to converge to the
Brown measure of the (�-distribution) limit operator. However, because the Brown
measure is not continuous with respect to convergence in �-moments, this is an open
problem in the general case.

11.1 Brown measure for normal operators

Let .M; 	/ be aW �-probability space and consider an operator a 2 M . The relevant
information about a is contained in its �-distribution which is by definition the
collection of all �-moments of a with respect to 	 . In the case of self-adjoint or
normal a, we can identify this distribution with an analytic object, a probability
measure 
a on the spectrum of a. Let us first recall these facts.

If a D a� is self-adjoint, there exists a uniquely determined probability measure

a on R such that for all n 2 N

	.an/ D
Z

R

tnd
a.t/

and the support of 
a is the spectrum of a; see also the discussion after equa-
tion (2.2) in Chapter 2.
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More general, if a 2 M is normal (i.e. aa� D a�a), then the spectral theorem
provides us with a projection-valued spectral measure Ea, and the Brown measure
is just the spectral measure 
a D 	 ı Ea. Note that in the normal case 
a may not
be determined by the moments of a. Indeed, if a D u is a Haar unitary, then the
moments of u are the same as the moments of the zero operator. Of course, their �-
moments are different. For a normal operator a, its spectral measure 
a is uniquely
determined by

	.ana�m/ D
Z

C

znNzmd
a.z/ (11.1)

for all m; n 2 N. The support of 
a is again the spectrum of a.
We will now try to assign to any operator a 2 M a probability measure 
a on its

spectrum, which contains relevant information about the �-distribution of a. This

a will be called the Brown measure of a. One should note that for non-normal
operators, there are many more �-moments of a than those appearing in (11.1).
There is no possibility to capture all the �-moments of a by the �-moments of
a probability measure. Hence, we will necessarily loose some information about
the �-distribution of a when we go over to the Brown measure of a. It will also
turn out that we need our state 	 to be a trace in order to define 
a. Hence, in
the following, we will only work in tracial W �-probability spaces .M; 	/. Recall
that this means that 	 is a faithful and normal trace. Von Neumann algebras which
admit such faithful and normal traces are usually addressed as finite von Neumann
algebras. If M is a finite factor, then a tracial state 	 W M ! C is unique on M and
is automatically normal and faithful.

11.2 Brown measure for matrices

In the finite-dimensional case M D Mn.C/, the Brown measure 
T for a normal
matrix T 2 Mn.C/, determined by (11.1), really is the eigenvalue distribution of
the matrix. It is clear that in the case of matrices, we can extend this definition to
the general, non-normal case. For a general matrix T 2 Mn.C/, the spectrum �.T /

is given by the roots of the characteristic polynomial

P./ D det.I � T / D . � 1/ � � � . � n/;

where 1; : : : ; n are the roots repeated according to algebraic multiplicity. In this
case, we have as eigenvalue distribution (and thus as Brown measure)


T D 1

n
.ı1 C � � � C ın/:

We want to extend this definition of
T to an infinite-dimensional situation. Since
the characteristic polynomial does not make sense in such a situation, we have to
find an analytic way of determining the roots of P./ which survives also in an
infinite-dimensional setting.
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Consider

log jP./j D log j det.I � T /j D
nX

iD1
log j � i j:

We claim that the function  7! log jj is harmonic in Cnf0g and that in general
it has Laplacian

r2 log jj D 2�ı0 (11.2)

in the distributional sense. Here, the Laplacian is given by

r2 D @2

@2r
C @2

@2i
;

where r and i are the real and imaginary part of  2 C. (Note that we use
the symbol r2 for the Laplacian, since we reserve the symbol � for the Fuglede-
Kadison determinant of the next section.)

Let us prove this claim on the behaviour of log jj. For  6D 0, we write r2 in
terms of polar coordinates

r2 D @2

@r2
C 1

r

@

@r
C 1

r2
@2

@�2

and have

r2 log jj D
�
@2

@r2
C 1

r

@

@r

�

log r D � 1

r2
C 1

r2
D 0:

Ignoring the singularity at 0, we can write formally
Z

B.0;r/

r2 log jjdrdi D
Z

B.0;r/

div.grad log jj/drdi

D
Z

@B.0;r/

grad log jj � ndA

D
Z

@B.0;r/

n
r

� ndA

D 1

r
� 2�r

D 2�:
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That is,
Z

B.0;r/

r2 log jjdrdi D 2�;

independent of r > 0. Hence, r2 log jj must be 2�ı0.

Exercise 1. By integrating against a test function show rigorously that r2 log jj D
2�ı0 as distributions.

Given the fact (11.2), we can now rewrite the eigenvalue distribution 
T in the
form


T D 1

n
.ı1 C � � � C ın/ D 1

2�n
r2

nX

iD1
log j � i j D 1

2�n
r2 log j det.T�I/j:

(11.3)

As there exists a version of the determinant in an infinite-dimensional setting, we
can use this formula to generalize the definition of 
T .

11.3 Fuglede-Kadison determinant in finite von Neumann algebras

In order to use (11.3) in infinite dimensions, we need a generalization of the
determinant. Such a generalization was provided by Fuglede and Kadison [75] in
1952 for operators in a finite factor M ; the case of a general finite von Neumann
algebra is an straightforward extension.

Definition 1. Let .M; 	/ be a tracial W �-probability space and consider a 2 M .
Its Fuglede-Kadison determinant �.a/ is defined as follows. If a is invertible, one
can put

�.a/ D expŒ	.log jaj/� 2 .0;1/;

where jaj D .a�a/1=2. More generally, we define

�.a/ D lim
"&0

exp


	
�

log.a�aC "/1=2
�� 2 Œ0;1/:

By functional calculus and the monotone convergence theorem, the limit always
exists.

This determinant � has the following properties:

ı �.ab/ D �.a/�.b/ for all a; b 2 M .
ı �.a/ D �.a�/ D �.jaj/ for all a 2 M .
ı �.u/ D 1 when u is unitary.
ı �.a/ D jj�.a/ for all  2 C and a 2 M .
ı a 7! �.a/ is upper semicontinuous in norm-topology and in k � kp-norm for all
p > 0.
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Let us check what this definition gives in the case of matrices, M D Mn.C/,
	 D tr. If T is invertible, then we can write

jT j D U

0

B
@

t1 : : : 0
:::
: : :

:::

0 : : : tn

1

C
AU �;

with ti > 0. Then we have

log jT j D U

0

B
@

log t1 : : : 0
:::

: : :
:::

0 : : : log tn

1

C
AU �

and

�.T / D exp

�
1

n
.log t1 C � � � C log tn/

�

D n
p
t1 � � � tn D n

p
det jT j D n

p
j detT j:

(11.4)

Note that det jT j D j detT j, because we have the polar decomposition T D V jT j,
where V is unitary and hence j detV j D 1.

Thus, we have in finite dimensions


T D 1

2�n
r2 log j det.T � I/j D 1

2�
r2.log�.T � I//:

So we are facing the question whether it is possible to make sense out of

1

2�
r2.log�.a � // (11.5)

for operators a in general finite von Neumann algebras, where � denotes the
Fuglede-Kadison determinant. (Here and in the following, we will write a �  for
a � 1.)

11.4 Subharmonic functions and their Riesz measures

Definition 2. A function f W R2 ! Œ�1;1/ is called subharmonic if

(i) f is upper semicontinuous, i.e.

f .z/ � lim sup
n!1

f .zn/; whenever zn ! zI

(ii) f satisfies the submean inequality: for every circle the value of f at the centre
is less or equal to the mean value of f over the circle, i.e.
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f .z/ � 1

2�

Z 2�

0

f .z C rei� /d� I

(iii) f is not constantly equal to �1.

If f is subharmonic then f is Borel measurable, f .z/ > �1 almost everywhere
with respect to Lebesgue measure and f 2 L1loc.R

2/. One has the following
classical theorem for subharmonic functions; e.g. see [13, 92].

Theorem 3. If f is subharmonic on R
2 � C, then r2f exists in the distributional

sense, and it is a positive Radon measure �f ; i.e. �f is uniquely determined by

1

2�

Z

R2

f ./ � r2'./drdi D
Z

C

'.z/d�f .z/ for all ' 2 C1
c .R

2/:

If �f has compact support, then

f ./ D 1

2�

Z

C

log j � zjd�f .z/C h./;

where h is a harmonic function on C.

Definition 4. The measure �f D r2f is called the Riesz measure of the subhar-
monic function f .

11.5 Definition of the Brown measure

If we apply this construction to our question about (11.5), we get the construction of
the Brown measure as follows. This was defined by L. Brown in [46] (for the case
of factors); for more information, see also [85].

Theorem 5. Let .M; 	/ be a tracial W �-probability space. Then we have:

(i) The function  7! log�.a � / is subharmonic.
(ii) The corresponding Riesz measure


a WD 1

2�
r2 log�.a � / (11.6)

is a probability measure on C with support contained in the spectrum of a.
(iii) Moreover, one has for all  2 C

Z

C

log j � zjd
a.z/ D log�.a � / (11.7)

and this characterizes 
a among all probability measures on C.

Definition 6. The measure 
a from Theorem 5 is called the Brown measure of a.
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Proof [Sketch of Proof of Theorem 5(i)]: Suppose a 2 M . We want to show that
f ./ WD log�.a � / is subharmonic. We have

�.a/ D lim
"&0

exp


	
�

log.a�aC "/1=2
��
:

Thus

log�.a/ D 1

2
lim
"&0

	.log.a�aC "//;

as a decreasing limit as " & 0. So, with the notations

a WD a � ; f"./ WD 1

2
	.log.a�

a C "//;

we have

f ./ D lim
"&0

f"./:

For " > 0, the function f" is a C2-function, and therefore f" being subharmonic is
equivalent to r2f" � 0 as a function. But r2f" can be computed explicitly:

r2f"./ D 2"	
�
.aa

�
 C "/�1.a�

a C "/�1
�
: (11.8)

Since we have for general positive operators x and y that 	.xy/ D 	.x1=2yx1=2/

� 0, we see that r2f"./ � 0 for all  2 C and thus f" is subharmonic.
The fact that f" & f implies then that f is upper semicontinuous and satisfies

the submean inequality. Furthermore, if  62 �.a/, then a �  is invertible; hence,
�.a � / > 0, and thus f ./ 6D �1. Hence, f is subharmonic. ut
Exercise 2. We want to prove here (11.8). We consider f"./ as a function in  and
N; hence, the Laplacian is given by (where as usual  D r C ii)

r2 D @2

@2r
C @2

@2i
D 4

@2

@ N@
where

@

@
D 1

2

�
@

@r
� i @

@i

�

;
@

@ N D 1

2

�
@

@r
C i

@

@i

�

:
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(i) Show that we have for each n 2 N (by relying heavily on the fact that 	 is a
trace)

@

@
	Œ.a�

a/
n� D �n	Œ.a�

a/
n�1a�

 �

and

@

@ N	Œ.a
�
a/

na�
� D �

nX

jD0
	Œ.aa

�
/
j .a�

a/
n�j �:

(ii) Prove (11.8) by using the power series expansion of

log.a�
a C "/ D log "C log

�

1C a�
a

"

�

:

In the case of a normal operator, the Brown measure is just the spectral measure
	 ıEa, where Ea is the projection-valued spectral measure according to the spectral
theorem. In that case, 
a is determined by the equality of the �-moments of 
a and
of a, i.e. by

Z

C

znNzmd
a.z/ D 	.ana�m/ if a is normal

for all m; n 2 N. If a is not normal, then this equality does not hold anymore. Only
the equality of the moments is always true, i.e. for all n 2 N

Z

C

znd
a.z/ D 	.an/ and
Z

C

Nznd
a.z/ D 	.a�n/:

One should note, however, that the Brown measure of a is in general actually
determined by the �-moments of a. This is the case, since 	 is faithful and the
Brown measure depends only on 	 restricted to the von Neumann algebra generated
by a; the latter is uniquely determined by the �-moments of a; see also Chapter 6,
Theorem 6.2.

What one can say in general about the relation between the �-moments of 
a and
of a is the following generalized Weyl Inequality of Brown [46]. For any a 2 M

and 0 < p < 1, we have

Z

C

jzjpd
a.z/ � kakpp D 	.jajp/:

This was strengthened by Haagerup and Schultz [87] in the following way: If Minv

denotes the invertible elements inM , then we actually have for all a 2 M and every
p > 0 that
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Z

C

jzjpd
a.z/ D inf
b2Minv

kbab�1kpp :

Note here that because of �.bab�1/ D �.a/, we have 
bab�1 D 
a for b 2 Minv .

Exercise 3. Let .M; 	/ be a tracial W �-probability space and a 2 M . Let p.z/ be
a polynomial in the variable z (not involving Nz), hence p.a/ 2 M . Show that the
Brown measure of p.a/ is the push-forward of the Brown measure of a, i.e. 
p.a/ D
p�.
a/, where the push-forward p�.�/ of a measure � is defined by p�.�/.E/ D
�.p�1.E// for any measurable set E.

The calculation of the Brown measure of concrete non-normal operators is
usually quite hard, and there are not too many situations where one has explicit
solutions. We will in the following present some of the main concrete results.

11.6 Brown measure of R-diagonal operators

R-diagonal operators were introduced by Nica and Speicher [136]. They provide a
class of, in general non-normal, operators which are usually accessible to concrete
calculations. In particular, one is able to determine their Brown measure quite
explicitly.
R-diagonal operators can be considered in general �-probability spaces, but we

will restrict here to the tracial W �-probability space situation; only there the notion
of Brown measure makes sense.

Definition 7. An operator a in a tracial W �-probability space .M; 	/ is called R-
diagonal if its only non-vanishing �-cumulants (i.e. cumulants where each argument
is either a or a�) are alternating, i.e. of the form �2n.a; a

�; a; a�; : : : ; a; a�/ D
�2n.a

�; a; a�; a : : : ; a�; a/ for some n 2 N.

Main examples for R-diagonal operators are Haar unitaries and Voiculescu’s
circular operator. With the exception of multiples of Haar unitaries, R-diagonal
operators are not normal. One main characterization [136] of R-diagonal operators
is the following: a is R-diagonal if and only if a has the same �-distribution as up
where u is a Haar unitary, p � 0, and u and p are �-free. If ker.a/ D f0g, then
this can be refined to the characterization that R-diagonal operators have a polar
decomposition of the form a D ujaj, where u is Haar unitary and jaj is �-free
from u.

The Brown measure of R-diagonal operators was calculated by Haagerup and
Larsen [85]. The following theorem contains their main statements on this.

Theorem 8. Let .M; 	/ be a tracial W �-probability space and a 2 M be R-
diagonal. Assume that ker.a/ D f0g and that a�a is not a constant operator. Then
we have the following:

(i) The support of the Brown measure 
a is given by

supp.
a/ D fz 2 C j ka�1k�1
2 � jzj � kak2g; (11.9)

where we put ka�1k�1
2 D 0 if a�1 62 L2.M; 	/.
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(ii) 
a is invariant under rotations about 0 2 C.
(iii) For 0 < t < 1, we have


a.B.0; r// D t for r D 1
p
Sa�a.t � 1/ ; (11.10)

where Sa�a is the S -transform of the operator a�a and B.0; r/ is the open disk
with radius r .

(iv) The conditions (i), (ii), and (iii) determine 
a uniquely.
(v) The spectrum of an R-diagonal operator a coincides with supp.
a/ unless

a�1 2 L2.M; 	/nM in which case supp.
a/ is the annulus (11.9), while the
spectrum of a is the full closed disk with radius kak2.

For the third part, one has to note that

t 7! 1
p
Sa�a.t � 1/

maps .0; 1/ onto .ka�1k�1
2 ; kak2/.

11.6.1 A little about the proof

We give some key ideas of the proof from [85]; for another proof, see [158].
Consider  2 C and put ˛ WD jj. A key point is to find a relation between 
jaj

and 
ja�j. For a probability measure � , we denote its symmetrized version by Q� ,
i.e. for any measurable set E, we have Q�.E/ D .�.E/C �.�E//=2. Then one has
the relation

Q
ja�j D Q
jaj �
1

2
.ı˛ C ı�˛/; (11.11)

or in terms of the R-transforms:

R Q
ja�j
.z/ D R Q
jaj

.z/C
p
1C 4˛2z2 � 1

2z
:

Hence, 
jaj determines 
ja�j, which determines

Z

C

log j � zjd
a.z/ D log�.a � / D log�.ja � j/ D
Z 1

0

log.t/d
ja�j.t/:
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Exercise 4. Prove (11.11) by showing that if a is R-diagonal then the matrices

�
0 a

a� 0

�

and

�
0 
N 0
�

are free in the .M2.C/˝M; tr ˝ 	/.

11.6.2 Example: circular operator

Let us consider, as a concrete example, the circular operator c D .s1 C is2/=
p
2,

where s1 and s2 are free standard semi-circular elements.
The distribution of c�c is free Poisson with rate 1, given by the densityp
4 � t=2�t on Œ0; 4�, and thus the distribution 
jcj of the absolute value jcj is the

quarter-circular distribution with density
p
4 � t 2=� on Œ0; 2�. We have kck2 D 1

and kc�1k2 D 1, and hence the support of the Brown measure of c is the closed
unit disk, supp.
c/ D B.0; 1/. This coincides with the spectrum of c.

In order to apply Theorem 8, we need to calculate the S -transform of c�c. We
have Rc�c.z/ D 1=.1 � z/, and thus Sc�c.z/ D 1=.1 C z/ (because z 7! zR.z/
and w 7! wS.w/ are inverses of each other; see [137, Remark 16.18] and also the
discussion around [137, Eq. (16.8)]). So, for 0 < t < 1, we have Sc�c.t � 1/ D 1=t .
Thus, 
c.B.0;

p
t // D t , or, for 0 < r < 1, 
c.B.0; r// D r2. Together with

the rotation invariance, this shows that 
c is the uniform measure on the unit disk
B.0; 1/.

11.6.3 The circular law

The circular law is the non-self-adjoint version of Wigner’s semi-circle law.
Consider an N � N matrix where all entries are independent and identically
distributed. If the distribution of the entries is Gaussian, then this ensemble is
also called Ginibre ensemble. It is very easy to check that the �-moments of the
Ginibre random matrices converge to the corresponding �-moments of the circular
operator. So it is quite plausible to expect that the Brown measure (i.e. the eigenvalue
distribution) of the Ginibre random matrices converges to the Brown measure of
the circular operator, i.e. to the uniform distribution on the disk. This statement is
known as the circular law. However, one has to note that the above is not a proof for
the circular law, because the Brown measure is not continuous with respect to our
notion of convergence in �-distribution. One can construct easily examples where
this fails.
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Exercise 5. Consider the sequence .TN /N�2 of nilpotent N �N matrices

T2 D
�
0 1

0 0

�

; T3 D
0

@
0 1 0

0 0 1

0 0 0

1

A ; T4 D

0

B
B
@

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

1

C
C
A ; T5 D

0

B
B
B
B
B
@

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

1

C
C
C
C
C
A
; � � �

Show that,

ı with respect to tr, TN converges in �-moments to a Haar unitary element,
ı the Brown measure of a Haar unitary element is the uniform distribution on the

circle of radius 1,
ı but the asymptotic eigenvalue distribution of TN is given by ı0.

However, for nice random matrix ensembles, the philosophy of convergence
of the eigenvalue distribution to the Brown measure of the limit operator seems
to be correct. For the Ginibre ensemble, one can write down quite explicitly its
eigenvalue distribution, and then it is easy to check the convergence to the circular
law. If the distribution of the entries is not Gaussian, then one still has convergence
to the circular law under very general assumptions (only second moment of the
distribution has to exist), but proving this in full generality has only been achieved
recently. For a survey on this, see [42, 171].

11.6.4 The single ring theorem

There are also canonical random matrix models for R-diagonal operators. If one
considers on (non-self-adjoint) N �N matrices a density of the form

PN .A/ D const � e�N
2 Tr.f .A�A//;

then one can check, under suitable assumptions on the function f , that the
�-distribution of the corresponding random matrix A converges to an R-diagonal
operator (whose concrete form is of course determined in terms of f ). So again one
expects that the eigenvalue distribution of those random matrices converges to the
Brown measure of the limitR-diagonal operator, whose form is given in Theorem 8.
(In particular, this limiting eigenvalue distribution lives on an, possibly degenerate,
annulus, i.e. a single ring, even if f has several minima.) This has been proved
recently by Guionnet, Krishnapur, and Zeitouni [82].
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11.7 Brown measure of elliptic operators

An elliptic operator is of the form a D ˛s1C iˇs2, where ˛; ˇ > 0 and s1 and s2 are
free standard semi-circular operators. An elliptic operator is not R-diagonal, unless
˛ D ˇ (in which case it is a circular operator). The following theorem was proved
by Larsen [116] and by Biane and Lehner [38].

Theorem 9. Consider the elliptic operator

a D .cos �/s1 C i.sin �/s2; 0 < � <
�

2
:

Put � WD cos.2�/ and  D r C ii: Then the spectrum of a is the ellipse

�.a/ D
�

 2 C j 2r
.1C �/2

C 2i
.1 � �/2 � 1



;

and the Brown measure 
a is the measure with constant density on �.a/:

d
a./ D 1

�.1 � �2/1�.a/./drdi:

11.8 Brown measure for unbounded operators

The Brown measure can also be extended to unbounded operators which are
affiliated to a tracial W �-probability space; for the notion of “affiliated operators”,
see our discussion before Definition 8.15 in Chapter 8. This extension of the Brown
measure was done by Haagerup and Schultz in [86].
� and 
a can be defined for unbounded a provided

R1
1

log.t/d
jaj.t/ < 1, in
which case

�.a/ D exp

�Z 1

0

log.t/d
jaj.t/
�

2 Œ0;1/;

and the Brown measure 
a is still determined by (11.7).

Example 10. Let c1 and c2 be two �-free circular elements and consider a WD c1c
�1
2 .

If c1; c2 live in the tracial W �-probability space .M; 	/, then a 2 Lp.M; 	/ for
0 < p < 1. In this case, �.a � / and 
a are well defined. In order to calculate

a, one has to extend the class of R-diagonal operators and the formulas for their
Brown measure to unbounded operators. This was done in [86]. Since the product
of anR-diagonal element with a � free element isR-diagonal, too, we have that a is
R-diagonal. So to use (the unbounded version of) Theorem 8, we need to calculate
the S -transform of a�a. Since with c2, also its inverse c�1

2 is R-diagonal, we have
Sjaj2 D Sjc1j2Sjc�1

2 j2 . The S -transform of the first factor is Sjc1j2 .z/ D 1=.1 C z/;

compare Section 11.6.2. Furthermore, the S -transforms of x and x�1 are, for
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positive x, in general related by Sx.z/ D 1=Sx�1 .�1 � z/. Since jc�1
2 j2 D jc�

2 j�2
and since c�

2 has the same distribution as c2, we have that Sjc�1
2 j2 D Sjc2j�2 and thus

Sjc�1
2 j2 .z/ D Sjc2j�2 D 1

Sjc2j2 .�1 � z/
D 1

1
1�1�z

D �z:

This gives then Sjaj2 .z/ D �z=.1 C z/, for �1 < z < 0, or Sjaj2 .t � 1/ D
.1 � t /=t for 0 < t < 1. So our main formula (11.10) from Theorem 8 gives

a.B.0;

p
t=.1 � t /// D t or 
a.B.0; r// D r2=.1C r2/. We have kak2 D 1 D

ka�1k2, and thus supp.
a/ D C. The above formula for the measure of balls gives
then the density

d
a./ D 1

�

1

.1C jj2/2 drdi: (11.12)

For more details and, in particular, proofs of the above used facts about R-diagonal
elements and the relation between Sx and Sx�1 , one should see the original paper of
Haagerup and Schultz [86].

11.9 Hermitization method: using operator-valued free probability for
calculating the Brown measure

Note that formula (11.7) for determining the Brown measure can also be written as

Z

C

log j � zjd
a.z/ D log�.a � / D log�.ja � j/ D
Z 1

0

log.t/d
ja�j.t/:

(11.13)

This tells us that we can understand the Brown measure of a non-normal operator a
if we understand the distributions of all Hermitian operators ja � j for all  2 C

sufficiently well. In the random matrix literature, this idea goes back at least to
Girko [77] and is usually addressed as hermitization method. A contact of this idea
with the world of free probability was made on a formal level in the works of Janik,
Nowak, Papp, and Zahed [103] and of Feinberg and Zee [71]. In [24], it was shown
that operator-valued free probability is the right frame to deal with this rigorously.
(Examples for explicit operator-valued calculations were also done before in [1].)
Combining this hermitization idea with the subordination formulation of operator-
valued free convolution allows then to calculate the Brown measure of any (not just
self-adjoint) polynomial in free variables.

In order to make this connection between Brown measure and operator-valued
quantities more precise, we first have to rewrite our description of the Brown
measure. In Section 11.5, we have seen that we get the Brown measure of a as
the limit for " ! 0 of

r2f"./ D 2"	
�
.aa

�
 C "/�1.a�

a C "/�1
�
; where a WD a � :
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This can also be reformulated in the following form (compare [116], or Lemma 4.2
in [1]: Let us define

G";a./ WD 	
�
. � a/��. � a/. � a/� C "2

��1�
: (11.14)

Then


";a D 1

�

@

@ NG";a./ (11.15)

is a probability measure on the complex plane (whose density is given by r2f"),
which converges weakly for " ! 0 to the Brown measure of a.

In order to calculate the Brown measure, we need G";a./ as defined in (11.14).
Let now

A D
�
0 a

a� 0

�

2 M2.M/:

Note that A is self-adjoint. Consider A in the M2.C/-valued probability space with
respect to E D id ˝ 	 W M2.M/ ! M2.C/ given by

E

��
a11 a12
a21 a22

�	

D
�
	.a11/ 	.a12/

	.a21/ 	.a22/

�

:

For the argument

�" D
�
i" 
N i"

�

2 M2.C/

consider now the M2.C/-valued Cauchy transform of A

GA.�"/ D E


.�" � A/�1� DW

�
g11."; / g12."; /

g21."; / g22."; /

�

:

One can easily check that .�" � A/�1 is actually given by
� �i".. � a/. � a/� C "2/�1 . � a/.. � a/�. � a/C "2/�1
. � a/�.. � a/. � a/� C "2/�1 �i".. � a/�. � a/C "2/�1

�

;

and thus we are again in the situation that our quantity of interest is actually one
entry of an operator-valued Cauchy transform: G";a./ D g21."; / D ŒGA.�"/�21.

11.10 Brown measure of arbitrary polynomials in free variables

So in order to calculate the Brown measure of some polynomial p in self-adjoint
free variables, we should first hermitize the problem by going over to self-adjoint
2 � 2 matrices over our underlying space, and then we should linearize the
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problem on this level and use finally our subordination description of operator-
valued free convolution to deal with this linear problem. It might be not so clear
whether hermitization and linearization go together well, but this is indeed the
case. Essentially we do here a linearization of an operator-valued model instead
of a scalar-valued one: we have to linearize a polynomial in matrices. But the
linearization algorithm works in this case as well. As the end is near, let us illustrate
this just with an example. For more details, see [95].

Example 11. Consider the polynomial a D xy in the free self-adjoint variables
x D x� and y D y�. For the Brown measure of this a, we have to calculate the
operator-valued Cauchy transform of

A D
�
0 a

a� 0

�

D
�
0 xy

yx 0

�

:

In order to linearize this, we should first write it as a polynomial in matrices of x
and matrices of y. This can be achieved as follows:

�
0 xy

yx 0

�

D
�
x 0

0 1

��
0 y

y 0

��
x 0

0 1

�

D XYX;

which is a self-adjoint polynomial in the self-adjoint variables

X D
�
x 0

0 1

�

and Y D
�
0 y

y 0

�

:

This self-adjoint polynomial XYX has a self-adjoint linearization

0

@
0 0 X

0 Y �1
X �1 0

1

A :

Plugging in back the 2 � 2 matrices for X and Y , we get finally the self-adjoint
linearization of A as

0

B
B
B
B
B
B
B
@

0 0 0 0 x 0

0 0 0 0 0 1

0 0 0 y �1 0

0 0 y 0 0 �1
x 0 �1 0 0 0

0 1 0 �1 0 0

1

C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
@

0 0 0 0 x 0

0 0 0 0 0 1

0 0 0 0 �1 0

0 0 0 0 0 �1
x 0 �1 0 0 0

0 1 0 �1 0 0

1

C
C
C
C
C
C
C
A

C

0

B
B
B
B
B
B
B
@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 y 0 0

0 0 y 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1

C
C
C
C
C
C
C
A

:

We have written this as the sum of two M6.C/-free matrices, both of them being
self-adjoint. For calculating the Cauchy transform of this sum, we can then use
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matrices with N D 5000
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Fig. 11.2 Brown measure (left) of p.x; y/ D x C iy with x; y free Poissons of rate 1, compared
to histogram (right) of the complex eigenvalues of p.X; Y / for independent Wishart matrices X
and Y with N D 5000

again the subordination algorithm for the operator-valued free convolution from
Theorem 10.5. Putting all the steps together gives an algorithm for calculating the
Brown measure of a D xy. One might note that in the case where both x and y
are even elements (i.e. all odd moments vanish), the product is actually R-diagonal;
see [137, Theorem 15.17]. Hence, in this case, we even have an explicit formula
for the Brown measure of xy, given by Theorem 8 and the fact that we can calculate
the S -transform of a�a in terms of the S -transforms of x and of y.

Of course, we expect that the eigenvalue distribution of our polynomial evaluated
in asymptotically free matrices (like independent Wigner or Wishart matrices)
should converge to the Brown measure of the polynomial in the corresponding
free variables. However, as was already pointed out before (see the discussion
around Exercise 5), this is not automatic from the convergence of all �-moments,
and one actually has to control probabilities of small eigenvalues during all of
the calculations. Such controls have been achieved in the special cases of the
circular law or the single ring theorem. However, for an arbitrary polynomial in
asymptotically free matrices, this is an open problem at the moment.
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In Figs. 11.1, 11.2 and 11.3, we give for some polynomials the Brown measure
calculated according to the algorithm outlined above, and we also compare this
with histograms of the complex eigenvalues of the corresponding polynomials in
independent random matrices.



Chapter 12
Solutions to Exercises

12.1 Solutions to exercises in Chapter 1

1. Let � be a probability measure on R such that
R
R

jt jn d�.t/ < 1. For m � n,

Z

R

jt jm d�.t/ D
Z

jt j�1
jt jm d�.t/C

Z

jt j>1
jt jm d�.t/

�
Z

jt j�1
1 d�.t/C

Z

jt j>1
jt jn d�.t/

� �.R/C
Z

R

jt jn d�.t/
< 1:

2. Since � has a fifth moment, we can write

'.t/ D 1C ˛1
.i t/

1Š
C ˛2

.i t/2

2Š
C ˛3

.i t/3

3Š
C ˛4

.i t/4

4Š
C o.t4/

and

log.'.t// D k1
.i t/

1Š
C k2

.i t/2

2Š
C k3

.i t/3

3Š
C k4

.i t/4

4Š
C o.t4/:

The expansion for log.1Cx/ is x�x2=2Cx3=3�x4=4C o.x4/. Let s D i t . Thus

log.'.t// D
n
˛1
s

1Š
C ˛2

s2

2Š
C ˛3

s3

3Š
C ˛4

s4

4Š

o
� 1

2

n
˛1
s

1Š
C ˛2

s2

2Š
C ˛3

s3

3Š

o2

C 1

3

n
˛1
s

1Š
C ˛2

s2

2Š

o3 � 1

4

n
˛1
s

1Š

o4 C o.s4/:
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The only term of degree 1 is ˛1 so k1 D ˛1. The terms of degree 2 are

˛2

2Š
� 1

2
˛21 D 1

2Š
.˛2 � ˛21/; so k2 D ˛2 � ˛21:

The terms of degree 3 are

˛3

3Š
� 1

2

�
2˛1

˛2

2Š

�
C ˛31

3
D 1

3Š
.˛3 � 3˛1˛2 C 2˛31/; so k3 D ˛3 � 3˛1˛2 C 2˛31:

The terms of degree 4 are

˛4

4Š
� 1

2

� ˛22
.2Š/2

C 2˛1
˛3

3Š

�
C 1

3

�
3˛21

˛2

2Š

�
� 1

4
˛41

D 1

4Š

�
˛4 � 4˛1˛3 � 3˛22 C 12˛21˛2 � 6˛41

�
:

Summarizing, let us put this in a table.

k1 D ˛1

k2 D ˛2 � ˛21
k3 D ˛3 � 3˛2˛1 C 2˛31

k4 D ˛4 � 4˛3˛1 � 3˛32 C 12˛2˛
2
1 � 6˛41 I

˛1 D k1

˛2 D k2 C k21

˛3 D k3 C 3k2k1 C k31

˛4 D k4 C 4k3k1 C 3k22 C 6k2k
2
1 C k41:

3. Suppose .r1; : : : ; rn/ is a type, i.e. r1; : : : ; rn � 0 and 1 � r1 C � � � Cn � rn D n. Let
us count the number of partitions of Œn� with type .r1; : : : ; rn/. Letm D r1C� � �Crn
be the number of blocks and l1; : : : ; lm the size of the blocks. Then .l1; : : : ; lm/ is a
composition of the integer n with type .r1; : : : ; rn/. There are

�
n
l1

�
ways of choosing

the elements of the first block,
�
n�l1
l2

�
ways of choosing the elements of the second

block and finally
�
n�l1�l2�����lm�1

lm

�
ways of choosing the elements of the last block.

Multiplying these out we get

 
n

l1

! 
n � l1
l2

!

� � � � �
 
n � l1 � � � � � lm�1

lm

!

D nŠ

l1Šl2Š � � � lmŠ :
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However, this overcounts because we don’t distinguish between permutations of the
r1 blocks of size 1, the r2 blocks of size 2, etc. Thus we must divide by r1Š � � � rnŠ.
Also we may write l1Š � � � lmŠ as .1Š/r1 � � � .nŠ/rn . Hence the number of partitions of
Œn� of type .r1; : : : ; rn/ is

nŠ

.1Š/r1.2Š/r2 � � � .nŠ/rnr1Š � � � rnŠ :

4. (i) Write

log
�
1C

X

n�1
˛n

zn

nŠ

�
D
X

m�1
ˇm

zm

mŠ
: (12.1)

Then by differentiating both sides and multiplying by 1CPn�1 ˛n zn

nŠ
we have

X

n�1
˛n

zn�1

.n � 1/Š D
X

m�1
ˇm

zm�1

.m � 1/Š
�
1C

X

n�1
˛n

zn

nŠ

�

and by reindexing

X

n�0
˛nC1

zn

nŠ
D
X

m�0
ˇmC1

zm

mŠ

�
1C

X

n�1
˛n

zn

nŠ

�
:

Next let us expand the right-hand side. For convenience of notation we let
˛0 D 1.

X

m�0
ˇmC1

zm

mŠ

�
1C

X

n�1
˛n

zn

nŠ

�
D
X

m�0
ˇmC1

zm

mŠ
C
X

m�0

X

n�1
ˇmC1˛n

zmCn

mŠnŠ

D
X

m�0
ˇmC1

zm

mŠ
C
X

N�1

� X

m�0;n�1
mCnDN

 
N

m

!

ˇmC1˛n
	

zN

N Š

D
X

N�0
ˇNC1

zN

N Š
C
X

N�1

� N�1X

mD0

 
N

m

!

ˇmC1˛N�m
	

zN

N Š

D
X

N�0

� NX

mD0

 
N

m

!

ˇmC1˛N�m
	

zN

N Š
:

Thus (12.1) is equivalent to

˛n D
n�1X

mD0

 
n � 1
m

!

ˇmC1˛n�m�1: (12.2)
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(ii) Now let us start with the equation ˛n D P
�2P.n/ k� . We shall show that this

implies that

˛n D
n�1X

mD0

 
n � 1
m

!

kmC1˛n�m�1: (12.3)

We shall adopt the following notation; given � 2 P.n/ we let V1 denote the
block of � containing 1.

X

�2P.n/
k� D

n�1X

mD0

X

�2P.n/
jV1jDmC1

k�

D
n�1X

mD0
kmC1

 
n � 1
m

!
X

�2P.n�m�1/
k�

D
n�1X

mD0

 
n � 1
m

!

kmC1˛n�m�1:

Where the second inequality follows because there are
�
n�1
m

�
ways to choose the

m elements of f2; 3; 4; : : : ; ng needed to make a block of sizemC1 containing
1, and then � , what remains of � after V1 is removed, is a partition of the
remaining n �m � 1 elements.

(iii) Since k1 D ˛1 D ˇ1 we can use equations (12.2) and (12.3) and induction to
conclude that ˇn D kn for all n.

5. (i) First note that for a Gaussian random vector, as we have defined it, the entries
are centred, i.e.

E.Xi / D
Z

Rn

ti
exp.�hBt; ti=2/
.2�/n=2 det.B/�1=2

d t D 0

as the integrand is odd. Let �2i D E.X2
i / be the variance of Xi .

If fX1; : : : ; Xng are independent, then the joint distribution of
fX1; : : : ; Xng is

e�t21 =.2�21 /
q
2��21

� � � e
�t2n=.2�2n /
q
2��2n

� dt1 � � � dtn D exp.�hBt; ti=2/
.2�/n=2

q
�21 � � � �2n

d t

where B is the diagonal matrix with diagonal entries ��2
1 ; : : : ; ��2

n .
Conversely suppose that B is diagonal with diagonal entries ��2

1 ; : : : ; ��2
n .

Then the density is the product:

e�t21 =.2�21 /
q
2��21

� � � e
�t2n=.2�2n /
q
2��2n

� dt1 � � � dtn

and so fX1; : : : ; Xng are independent.
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(ii) Let C D B�1. As noted above, when fX1; : : : ; Xng are independent Bij D
ıij �

�2
i D .C�1/ij . So the result holds for independent Xi ’s.
B is a positive definite real symmetric matrix, so there is an orthogonal

matrix O such that D D O�1BO is diagonal. Let Y D O�1X . Write
O�1 D .pij / and s D O�1t or t D Os . Then dt D ds by the orthogonality
of O .

E.Yi1 � � �Yik / D
nX

j1;:::;jkD1
pi1j1 � � �pikjkE.Xj1 � � �Xjk /

D
nX

j1;:::;jkD1
pi1j1 � � �pikjk

Z

Rn

tj1 � � � tjk
exp.�hBt; ti=2/
.2�/n=2 det.B/�1=2

d t

D
Z

Rn

si1 � � � sik
exp.�hBOs;Osi=2/
.2�/n=2 det.B/�1=2

ds

D
Z

Rn

si1 � � � sik
exp.�hDs; si=2/
.2�/n=2 det.D/�1=2

ds:

Thus fY1; : : : ; Yng are independent and Gaussian. Hence E.YiYj / D .D�1/ij .
Thus

cij D E.XiXj / D
nX

k;lD1
oikojlE.YkYl / D

nX

k;lD1
oikojl .D

�1/kl

D
nX

k;lD1
oik.D

�1/klolj D .OD�1O�1/ij D .B�1/ij :

6. (i) We have

C D
�
1
2
0

0 1
2

	

; so B D
�
2 0

0 2

	

:

So the first claim follows from the formula for the density, and the second from the
usual conversion to polar coordinates.

(ii) Note that the integral in polar coordinates factors as an integral over � and
one over r . Thus for any �

Z

R2

.t1 C i t2/
m.t1 � i t2/ne�.t21Ct22 / dt1dt2

D ei�.m�n/
Z

R2

.t1 C i t2/
m.t1 � i t2/ne�.t21Ct22 / dt1dt2:

Hence

E.ZmZ
n
/ D

Z

R2

.t1 C i t2/
m.t1 � i t2/ne�.t21Ct22 / dt1dt2 D 0 for m 6D n:
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Furthermore, we have

E.jZj2n/ D 1

�

Z

R2

.t 21 C t 22 /
ne�.t21Ct22 / dt1dt2 D 1

�

Z 2�

0

Z 1

0

r2ne�r2 r dr d�

D
Z 1

0

r2n d.�e�r2 / D n

Z 1

0

r2.n�1/ d.�e�r2 / D � � � D nŠ:

7. We have seen that E.Zi1 � � �ZinZj1 � � �Zjn/ is the number of pairings � of Œ2n�
such that for each pair .r; s/ of � (with r < s) we have that r � n and nC 1 � s �
2n and ir D js�n. For such a � let � be the permutation with �.r/ D s�n; we then
have i D j ı � . Conversely let � be a permutation of Œn� with i D j ı � . Let � be
the pairing with pairs .r; nC �.r//; then ir D js�n for s D nC �.r/.

8. E.jfij j2/ D 1=N , so E.x2i i / D 1=N and for i 6D j , E.x2ij / D E.y2ij / D
1=.2N /. Thus the covariance matrix C is the N2 � N2 diagonal matrix with
diagonal entries .1=N; : : : ; 1=N; 1=.2N /; : : : ; 1=.2N // (here the entry 1=N appears
N times). Thus the density matrix B is the diagonal matrix with diagonal entries
.N; : : : ; N; 2N; : : : ; 2N /. Hence

hBX;Xi D N
� NX

iD1
x2i i C 2

� X

1�i<j�N
.x2ij C y2ij /

��

D N
� NX

iD1
x2i i C

X

1�i;j�N
i 6Dj

.x2ij C y2ij /
�

D N
� NX

iD1
x2i i C

X

1�i;j�N
i 6Dj

.xij C p�1yij /.xij � p�1yij /
�

D N Tr.X2/:

Thus exp.�hBX;Xi=2/ D exp.�NTr.X2/=2/. Next det.B/ D NN2
2N

2�N . Thus

c D
�N

�

�N2=2�1

2

�N=2
:

9. Note that .A1 _ A2/
 A1 	 ker' because A1 is unital. By the non-degeneracy

of ', VA1 \ ..A1 _ A2/ 
 A1/ D f0g. So by equation (1.11), the left-hand side
of (1.12) is contained in the right-hand side. To prove the reverse containment, let

a1 � � � an 2 VA˛1 � � � VA˛n for some ˛1 6D � � � 6D ˛n. Let a 2 A1; for ˛n 6D 1; we have
'.a1 � � � ana/ D '.a1 � � � an Va/ C '.a1 � � � an/'.a/ D 0 by freeness, and if ˛n D 1

we have '.a1 � � � ana/ D '.a1 � � � an�1.ana/ı/ C '.a1 � � � an�1/'.ana/ D 0, again
by freeness. Thus a1 � � � an 2 .A1 _ A2/
 A1.
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10. (i) Let
P1

nD1 ˇnzn be a formal power series. Using the series for exp, we have

exp
� 1X

nD1
ˇnzn

�
D

1X

nD0

1

nŠ

� 1X

lD1
ˇlz

l
�n

D 1C
1X

nD1

1

nŠ

1X

l1D1
� � �

1X

lnD1
ˇl1 � � �ˇlnzl1C���Cln

D 1C
1X

nD1

� nX

mD1

X

l1;:::;lm�1
l1C���ClmDn

ˇl1 � � �ˇlm
mŠ

�
zn:

(ii) We continue from the solution to (i). First we shall work with the sum

S D
nX

mD1

X

l1;:::;lm�1
l1C���ClmDn

ˇl1 � � �ˇlm
mŠ

:

We are summing over all tuples l D .l1; : : : ; lm/ of positive integers such that
l1 C � � � C lm D n, i.e. over all compositions of the integer n. By the type of
the composition l D .l1; : : : ; ln/, we mean the n-tuple r D .r1; : : : ; rn/ where
the ri ’s are integers, ri � 0, and ri is the number of lj ’s that equal i . We must
have 1 � r1 C 2 � r2 C � � � C n � rn D n, and m D r1 C � � � C rn is the number of parts
of l D .l1; : : : ; lm/. Note that ˇl1 � � �ˇlm D ˇ

r1
1 � � �ˇrnn depends only on the type of

l D .l1; : : : ; lm/. Hence we can group the compositions by their type and thus S
becomes

S D
X

1r1C���CnrnDn

ˇ
r1
1 � � �ˇrnn

.r1 C � � � C rn/Š
� no. compositions of n of type .r1; : : : ; rn/:

Given a type r D .r1; : : : ; rn/, there are r1 C � � � C rn parts which can be permuted
in .r1 C � � � C rn/Š ways; however, we don’t distinguish between permutations that
change li ’s which are equal; thus, we must divide by r1Šr2Š � � � rnŠ. Hence the number
of compositions of the integer n of type .r1; : : : ; rn/ is

.r1 C � � � C rn/Š

r1Šr2Š � � � rnŠ
thus

S D
X

1r1C���CnrnDn

ˇ
r1
1 � � �ˇrnn

r1Šr2Š � � � rnŠ :
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Hence

exp
� 1X

nD1
ˇnzn

�
D 1C

1X

nD1

X

r1;:::;rn�0
1r1C���CnrnDn

ˇ
r1
1 � � �ˇrnn

r1Šr2Š � � � rnŠ z
n:

By replacing ˇn by kn
nŠ

we obtain the equation

1X

nD0

X

r1;:::;rn�0
1�r1C���Cn�rnDn

nŠ

.1Š/r1 � � � .nŠ/rnr1Šr2Š � � � rnŠk
r1
1 � � � krnn

zn

nŠ
D exp

� 1X

nD1
kn

zn

nŠ

�
:

Then we compare this with the defining equation

log
�
1C

X

n�1
˛n

zn

nŠ

�
D
X

n�1
kn

zn

nŠ

to conclude that equation (1.1) holds.

11. If we replace the ordinary generating function
P

n�1 ˇnzn by the exponential
generating function

P
n�1 ˇnzn=.nŠ/, we get from Exercise 10 (ii)

exp
� 1X

nD1

ˇn

nŠ
zn
�

D 1C
1X

nD1

X

r1;:::;rn�0
1r1C���CnrnDn

ˇ
r1
1 � � �ˇrnn

.1Š/r1 � � � .nŠ/rnr1Šr2Š � � � rnŠ z
n

D 1C
1X

nD1

X

r1;:::;rn�0
1r1C���CnrnDn

nŠ

.1Š/r1 � � � .nŠ/rnr1Šr2Š � � � rnŠˇ
r1
1 � � �ˇrnn

zn

nŠ
:

From Exercise 3 we know

nŠ

.1Š/r1 � � � .nŠ/rnr1Šr2Š � � � rnŠ
counts the number of partitions of the set Œn� of type .r1; : : : ; rn/. If � D
fV1; : : : ; Vmg is a partition of Œn�, we let ˇ� D ˇjV1jˇjV2j � � �ˇjVmj where jVi j is the
number of elements in the block Vi . If the type of the partition � is .r1; : : : ; rn/, then
ˇ
r1
1 ˇ

r2
2 � � �ˇrnn D ˇ� . Thus we can write

exp
� 1X

nD1

ˇn

nŠ
zn
�

D 1C
1X

nD1

� X

�2P.n/
ˇ�

� zn

nŠ
:
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12. Using log.1 � x/ D �Pn�1 xn=n we have

� log.1 �
1X

nD1
ˇnzn/ D

1X

nD1

1

n

� 1X

lD1
ˇlz

l
�n

D
1X

nD1

1

n

1X

l1D1
� � �

1X

lnD1
ˇl1 � � �ˇlnzl1C���Cln

D
1X

mD1

mX

nD1

1

n

X

l1;:::;ln�1
l1C���ClnDm

ˇl1 � � �ˇlnzm

D
1X

nD1

nX

mD1

1

m

X

l1;:::;lm�1
l1C���ClmDn

ˇl1 � � �ˇlmzn:

Now let S be the sum

S D
nX

mD1

1

m

X

l1;:::;lm�1
l1C���ClmDn

ˇl1 � � �ˇlm:

As with the exponential, this is a sum over all compositions of the integer n, so we
group the terms according to their type, as was done in the solution to Exercise 10.

S D
X

1r1C���CnrnDn

ˇ
r1
1 � � �ˇrnn

r1 C � � � C rn
� no. compositions of n of type .r1; : : : ; rn/

D
X

1r1C���CnrnDn
ˇ
r1
1 � � �ˇrnn

.r1 C � � � C rn � 1/Š
r1Š � � � rnŠ :

Putting this in the equation for � log.1 �P
n�1 ˇnzn/, we get

� log.1 �
X

n�1
ˇnzn/ D

1X

nD1

X

1r1C���CnrnDn
.r1 C � � � C rn � 1/Šˇ

r1
1 � � �ˇrnn
r1Š � � � rnŠ zn:

Replacing ˇn by �ˇn we obtain

log.1C
X

n�1
ˇnzn/ D

1X

nD1

X

1r1C���CnrnDn
.�1/r1C���Crn�1.r1 C � � � C rn � 1/Šˇ

r1
1 � � �ˇrnn
r1Š � � � rnŠ zn:
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13. (i) We replace ˇn with ˛n=.nŠ/ in Exercise 12 to obtain

log.1C
X

n�1

˛n

nŠ
zn/

D
1X

nD1

X

1r1C���CnrnDn
.�1/r1C���Crn�1.r1 C � � � C rn � 1/Š ˛

r1
1 � � �˛rnn nŠ

.1Š/r1 � � � .nŠ/rn r1Š � � � rnŠ
zn

nŠ
:

We then turn this into a sum over partitions recalling that

nŠ

.1Š/r1 � � � .nŠ/rn r1Š � � � rnŠ
is the number of partitions of Œn� of type .r1; : : : ; rn/, and if � is a partition of Œn�,
we denote by #.�/ the number of blocks of � . Then as

.�1/r1C���Crn�1.r1 C � � � C rn � 1/Š˛r11 � � �˛rnn D .�1/#.�/�1.#.�/ � 1/Š ˛�
only depends on the type of � , we have

log.1C
1X

nD1

˛n

nŠ
zn/ D

1X

nD1

X

�2P.n/
.�1/#.�/�1.#.�/ � 1/Š ˛� zn

nŠ
: (12.4)

(ii) Note that ˛n only appears once in

kn D
X

�2P.n/
.�1/#.�/�1.#.�/ � 1/Š ˛�

so each of the sequences f˛ngn and fkngn determines the other. Thus we may write
the result of (i) as

1X

nD1
kn

zn

nŠ
D log

�
1C

1X

nD1
˛n

zn

nŠ

�
:

On the other hand, replacing the sequence fˇngn by fkngn in Exercise 11, we have

1C
1X

nD1
˛n

zn

nŠ
D exp

� 1X

nD1
kn

zn

nŠ

�
D 1C

1X

nD1

� X

�2P.n/
k�

� zn

nŠ
;

and so we get the other half of the moment-cumulant relation

˛n D
X

�2P.n/
k� :
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14. Since � has moments of all orders, ', the characteristic function of �, has
derivatives of all orders. Fix n > 0. We may write

'.t/ D 1C
nX

rD1
˛r
sr

rŠ
C o.sn/

where s D i t and ˛r is the rth moment of �. We can also write

log.1C z/ D
nX

rD1
.�1/rC1 zr

r
C o.zn/:

Now for l � 1

� nX

rD1
˛r
sr

rŠ
C o.sn/

�l D
� nX

rD1
˛r
sr

rŠ

�l C o.sn/:

Thus

log.'.t// D
nX

lD1

.�1/lC1
l

� nX

rD1
˛r
sr

rŠ

�l C o.sn/

and hence

nX

lD1
kl
sl

l Š
C o.sn/ D

nX

lD1

.�1/lC1
l

� nX

rD1
˛r
sr

rŠ

�l C o.sn/:

By Exercise 12 we have

kn D
X

�2P.n/
.�1/#.�/�1.#.�/ � 1/Š ˛�

and

˛n D
X

�2P.n/
k� :

12.2 Solutions to exercises in Chapter 2

8. (i) This follows from applying a cyclic rotation to the moment-cumulant formula
and observing that non-crossing partitions are mapped to non-crossing partitions
under rotations.
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(ii) This is not true, since the property non-crossing is not preserved under arbi-
trary permutations. For example, in the calculation of �4.a1; a2; a3; a4/, the crossing
term '.a1a3/'.a2a4/ does not show up. However, in �4.a1; a3; a2; a4/ this term
becomes non-crossing and will make a contribution. Hence �4.a1; a2; a3; a4/ 6D
�4.a1; a3; a2; a4/ in general, even if all ai commute.

9. For the semi-circle law we have that all odd moments are 0 and the 2kth moment
is the kth Catalan number 1

kC1
�
2k
k

�
which is also the cardinality of NC2.2k/, the

non-crossing pairings of Œ2k�. Since ˛1 D 0we have �1 D 0; and since ˛2 D �21C�2
we have �2 D ˛2 D 1. Now let NC �.n/ be the set of non-crossing permutations
which are not pairings. For n D 2k we have

˛n D
X

�2NC.n/
�� D

X

�2NC2.n/
�� C

X

�2NC�.n/

�� D ˛n C
X

�2NC�.n/

�� :

Thus, for n even
P

�2NC�.n/ �� D 0 and also for n odd because there are no pairings
of Œn�. When n D 3, this forces �3 D 0. Then for general n we write

0 D
X

�2NC�.n/

�� D �n C
X

�2NC��.n/

�� ;

where NC ��.n/ is all the partitions in NC �.n/ with more than one block. By
induction

P
�2NC��.n/ �� D 0; so �n D 0 for n � 3.

11. (iv) We have

X

�2NC.n/
c#.�/ D ˛n D

X

�2NC.n/
�� : (12.5)

When n D 1, this gives �1 D c. If we have shown that �1 D � � � D �n�1 D c, then

X

�2NC��.n/

�� D
X

�2NC��.n/

c#.�/

where NC ��.n/ is all non-crossing partitions of Œn� with more than one block.
Thus (12.5) shows that �n D c.

14. We have

!a.z/C !b.z/ D 2z � �
Ra.GaCb.z//CRb.GaCb.z//

�

D 2z �RaCb.GaCb.z//

D 2z � .z � 1=GaCb.z//

D z C 1=GaCb.z/

D z C 1=Ga.!a.z//:
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15. By inverting the first equation in (2.32), we have !a.Gh�1i.z// D G
h�1i
a .z/ and

!b.G
h�1i.z// D G

h�1i
b .z/. By the second equation in (2.32), we have

R.z/C 1=z D Gh�1i.z/

D !a.G
h�1i.z//C !b.G

h�1i.z// � 1=Ga.!a.Gh�1i.z///

D Gh�1i
a .z/CG

h�1i
b .z/ � 1=Ga.Gh�1i

a .z//

D Ra.z/C 1=z CRb.z/C 1=z � 1=z:

Hence R.z/ D Ra.z/CRb.z/.

17. (i) Let a2 2 VA2 and a1 2 A1. Then '.a1ExŒa2�/ D '.a1a2/ D '.a1/'.a2/ D 0,
by freeness. Thus ExŒa2� D 0.

(ii) Let a1 � � � an 2 VA˛1 � � � VA˛n and a 2 A1. First suppose ˛1 6D 1. Then

'.aExŒa1 � � � an�/ D '.aa1 � � � an/ D '. Vaa1 � � � an/C '.a/'.a1 � � � an/ D 0

by freeness; thus, ExŒa1 � � � an� D 0. If ˛1 D 1; then we write

'.aExŒa1 � � � an�/ D '..aa1/a2 � � � an/ D '. V.aa1/a2 � � � an/C'.aa1/'.a2 � � � an/ D 0

by freeness, and hence again ExŒa1 � � � an� D 0.

18. Let p.x; y/ 2 Chx; yi be given; we must show that using the definition of
Ex given in the exercise, we have that Equation (2.36) holds for all q.x/ 2 Chxi,
i.e. '.q.x/p.x; y// D '.q.x/ExŒp.x; y/�/. This equation is linear in p so we only
need to check it for p in each of the summands of the decomposition of A1 _
A2. It is immediate for p 2 A1. It is then an easy consequence of freeness that
'.q.x/p.x; y// D 0 for p in any other of the summands.

19. (i) Recall the definition of Q'� . We have for � D fV1; : : : ; Vsg with n 2 Vs ,

Q'�.a1; a2; : : : ; an/ D '
� Y

i12V1
ai1

�
� � �'

� Y

is�12Vs�1
ais�1

� Y

is2Vs
ais

so

'.a0 Q'�.a1; a2; : : : ; an// D '
� Y

i12V1
ai1

�
� � �'

� Y

is�12Vs�1
ais�1

�
'
�
a0
Y

is2Vs
ais

�
:

Now the right-hand side is exactly '� 0.a0; a1; a2; : : : ; an/ where � 0 is the non-
crossing partition obtained by adding 0 to the block Vs of � containing n.

(ii) For the purposes of this solution, we shall introduce the following notation.
Let Œ Nn� D fN1; N2; : : : ; Nng. Let Œ Nn0� D fN0; N1; N2; : : : ; Nng and Œ2n� D f1; N1; 2; N2; : : : ; n; Nng
and Œ2n0� D fN0; 1; N1; : : : ; n; Nng. Let � 2 NC.2n0/; since x0; x1; : : : ; xn are free
from y1; : : : ; yn, we have that ��.x0; y1; x1; : : : ; yn; xn/ D 0 unless we can write
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� D � [ 	 with � 2 NC.n/ and 	 2 NC. Nn0/. Let us recall the definition of
the Kreweras complement from section 2.3. For � a non-crossing partition of Œn�,
K.�/ is the largest non-crossing partition of Œ Nn� so that � [K.�/ is a non-crossing
partition of Œ2n�. Thus K.�/0 is the largest non-crossing partition of Œ Nn0� such that
�[K.�/0 is a non-crossing partition of Œ2n0�. Thus for � 2 NC.n/ and 	 2 NC. Nn0/
we have that � [ 	 is a non-crossing partition of Œ2n0� if and only if 	 � K.�/0.
Thus

'.x0y1x1 � � � ynxn/ D
X

�2NC.2n0/

�� .x0; y1; x1; : : : ; yn; xn/

D
X

�2NC.n/
��.y1; : : : ; yn/

X

	2NC. Nn0/

�[	2NC.2n0/

�	 .x0; x1; : : : ; xn/

D
X

�2NC.n/
��.y1; : : : ; yn/

X

	2NC. Nn0/

	�K.�/0

�	 .x0; x1; : : : ; xn/

D
X

�2NC.n/
��.y1; : : : ; yn/'K.�/0.x0; x1; : : : ; xn/

D
X

�2NC.n/
��.y1; : : : ; yn/'.x0 Q'K.�/.x1; : : : ; xn//

D '

0

@x0
X

�2NC.n/
��.y1; : : : ; yn/ Q'K.�/.x1; : : : ; xn/

1

A :

Hence by the non-degeneracy of ', we have
X

�2NC.n/
��.y1; : : : ; yn/ Q'K.�/.x1; : : : ; xn/ D Ex.y1x1 � � �ynxn/:

12.3 Solutions to exercises in Chapter 3

1. (i) Let ıa be the probability measure with an atom of mass 1 at a. ThenR
1=.z � t / dıa.t/ D 1=.z � a/. We have


 D
nX

iD1
i ıai ; thus G.z/ D

nX

iD1

i

z � ai :

(ii) Fix z 2 C
C. Let

f .w/ D 1

�.z � w/.w � i/.w C i/
; then G.z/ D

Z 1

�1
f .t/ dt:
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Since f is a rational function such that limw!1 wf .w/ D 0 and by the residue
theorem we have

G.z/ D
Z 1

�1
f .t/ dt D lim

R!1

Z

CR

f .w/ dw D 2�i.Res.f; z/C Res.f; i//;

where CR is the closed curve formed by joining part of the circle jwj D R in C
C to

the interval Œ�R;R�.

Res.f; z/ D �1
�.z � i/.z C i/

and Res.f; i/ D 1

2�i.z � i/ :

Thus G.z/ D 1=.z C i/.

4. (iii) We know that w1w2 D 1, so one of fw1;w2g is inside � , and the other
is outside � . Let us show that jw1j < jw2j by showing that jRe.w1/j � jRe.w2/j
and jIm.w1/j < jIm.w2/j. Suppose Re.z/ > 0, the case Re.z/ � 0 can be handled
similarly. Then Re.

p
z2 � 4/ > 0. By Exercise 3 we have

0 � 2Re.w1/ D Re.z/ � Re.
p

z2 � 4/ < Re.z/C Re.
p

z2 � 4/ D 2Re.w2/:

By Exercise 3 we have Im.w1/; Im.w2/ < 0; so we must show that 0 > �Im.w1/ >
�Im.w2/. Now

�2Im.w1/ D �Im.z/C Im.
p

z2 � 4/ > �Im.z/ � Im.
p

z2 � 4/ D �Im.w2/:

5. (iii) Use the same idea as in Exercise 3.4 (iii) to identify the roots inside � .

9. The density is given by

d�.t/ D 1

�

�b
b2 C .t � a/2 dt:

11. Let 0 < ˛1 < ˛2 and ˇ2 > 0 be given; we must find ˇ1 > 0 so that f .�˛1;ˇ1/ 	
�˛2;ˇ2 . Choose � > 0 so that

q
1C ˛22

q
1C ˛21

>
1C �

1 � �
q
1C ˛21

:

Choose ˇ1 > 0 so that for z 2 �˛1;ˇ1 we have jf .z/ � zj < �jzj. Then

Im.f .z// D Im.z/C Im.f .z/ � z/

> Im.z/ � jf .z/ � zj
> Im.z/ � �jzj
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> ..1C ˛1/
�1=2 � �/jzj

D ..1C ˛1/
�1=2 � �/ jzj C �jzj

1C �

> ..1C ˛1/
�1=2 � �/ jzj C jf .z/ � zj

1C �

� ..1C ˛1/
�1=2 � �/

1C �
jf .z/j:

Thus
q
1C ˛22 Im.f .z// > jf .z/j, so f .z/ 2 �˛2 . We now have

Im.f .z// > Im.z/ � �jzj >
�
1 � �

q
1C ˛21

�
Im.z/ >

�
1 � �

q
1C ˛21

�
ˇ1:

So by choosing ˇ1 still larger, we may have
�
1� �

q
1C ˛21

�
ˇ1 > ˇ2. Thus f .z/ 2

�˛2;ˇ2 .

12. (i) The result is trivial when t D 0. By symmetry we only need to consider the
case t > 0. Since �˛ is convex, the minimum of jz � t j occurs when z is in @�˛ . The
distance from t to the line x�˛y D 0 is t=

p
1C ˛2. Hence jz � t j � jt j=p1C ˛2.

(ii) Write z D jzjei� with tan�1.˛�1/ < � < � � tan�1.˛�1/. If t D 0, the
inequality is trivially true. Suppose t > 0; then

jz � t j D jz � t j D jjzj � tei� j � jzj=
p
1C ˛2

by (i) since tei� 2 �˛ . If t < 0, then

jz � t j D jjzj � te�i� j � jzj=
p
1C ˛2

by (i) since te�i� 2 �˛ .
(iii) By (i), jt=.z � t /j � p

1C ˛2 for z 2 �˛ . Since � is a finite measure, we
may apply the dominated convergence theorem.

(iv) Now

zG.z/ D
Z

R

z

z � t d�.t/ so zG.z/ � 1 D
Z

R

t

z � t d�.t/:

Thus we can apply the result from (iii).

13. By Exercise 12 we have, for Im.z/ � 1,

ˇ
ˇ
ˇ
1C tz

z.t � z/

ˇ
ˇ
ˇ � 1

jt � zj C jt j
jt � zj � 2

p
1C ˛2:

Write

F.z/

z
D a

z
C b C

Z
1C tz

z.t � z/
d�.t/:
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For a fixed t we have

1C tz

z.t � z/
D t C z�1

t � z
�! 0

as z ! 1. Since j.1C tz/=.z.t � z//j is bounded independently of t and z, then
we can apply the dominated convergence theorem to conclude that F.z/=z ! b as
z ! 1 in �˛ .

14. (i) By assumption the function t 7! jt jn is integrable with respect to �. By
Exercise 12 we have for z 2 �˛

jt jnC1

jz � t j � jt jn
p
1C ˛2:

Thus, by the dominated convergence theorem,

lim
z!1

Z
tnC1

z � t d�.t/ D 0:

(ii) We have

G.z/ �
�1

z
C ˛1

z2
C � � � C ˛n

znC1
�

D
Z

R

1

z � t �
�1

z
C t

z2
C � � � C tn

znC1
�
d�.t/

D 1

znC1

Z

R

tnC1

z � t d�.t/:

Thus

znC1�G.z/ �
�1

z
C ˛1

z2
C � � � C ˛n

znC1
��

D
Z

R

tnC1

z � t d�.t/

and this integral converges to 0 as z ! 1 in �˛ by (i).

15. We shall proceed by induction on n. To begin the induction process, let us show
that ˛1 and ˛2 are, respectively, the first and second moments of �. Note that for any
1 � k � 2n we have that as z ! 1 in �˛

lim
z!1 zkC1�G.z/ �

�1

z
C ˛1

z2
C � � � C ˛k

zkC1
��

D 0:

Also by Exercise 12,
R
R

jt=.z � t /j d�.t/ < 1, so we may let

G1.z/ D z
�
G.z/ � 1

z

�
D
Z

R

t

z � t d�.t/:
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Then since n is a least 1, we have

lim
z!1 z

�
zG1.z/ � ˛1 � ˛2

z

�
D lim

z!1 z3
�
G.z/ �

�1

z
C ˛1

z2
C ˛2

z3

��
D 0:

Hence

lim
z!1 z

�
zG1.z/ � ˛1

�
D ˛2:

Since ˛1 and ˛2 are real,

lim
z!1 Re

�
z
�

zG1.z/ � ˛1
��

D ˛2:

Now let z D iy with y > 0; then

Re
�

z
�

zG1.z/ � ˛1
��

D Re
�

� y2G1.iy/ � i˛1y
�

D �y2Re.G1.iy//

D �y2
Z

R

Re
� t

iy � t
�
d�.t/ D �y2

Z

R

�t 2
y2 C t 2

d�.t/

D
Z

R

t 2

1C .t=y/2
d�.t/:

Thus,

lim
y!1

Z

R

t 2

1C .t=y/2
d�.t/ D ˛2;

so by the monotone convergence theorem,
R
R
t 2 d�.t/ D ˛2. Hence, � has a first

and second moment, and the second moment is ˛2.
Since limz!1 z.zG1.z/� ˛1/ D ˛2, we must have limz!1 zG1.z/ D ˛1. Letting

z D iy with y > 0, we have ˛1 D limy!1 iyG1.iy/ and thus

˛1 D lim
y!1 Re.iyG1.iy// D lim

y!1

Z

R

Re
� iyt

iy � t
�
d�.t/

D lim
y!1

Z

R

y2t

y2 C t 2
d�.t/ D lim

y!1

Z

R

t

1C .t=y/2
d�.t/:

Now jt=.1C .t=y/2/j � jt j and
R
R

jt j d�.t/ < 1, so by the dominated conver-
gence theorem, ˛1 D R

R
t d�.t/.

Suppose that we have shown that � has moments up to order 2n � 2 and ˛k ,
for 1 � k � 2n � 2, is the kth moment. Thus

R
R

jt 2n�1=.z � t /j d�.t/ < 1 by
Exercise 12 (i). Let us write
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G2n�1.z/ D z2n�1�G.z/ �
�1

z
C ˛1

z2
C � � � C ˛2n�2

z2n�1
��

D z2n�1
Z

R

1

z � t �
�1

z
C t

z2
C � � � C t 2n�2

z2n�1
�
d�.t/

D
Z

R

t 2n�1

z � t d�.t/:

By our hypothesis limz!1 z2.G2n�1.z/ � . ˛2n�1

z C ˛2n
z2
// D 0 or equivalently

lim
z!1 z.zG2n�1.z/ � ˛2n�1/ D ˛2n: (12.6)

Let z D iy with y > 0. Since ˛2n�1 and ˛2n are real,

˛2n D lim
y!1 Re

�
iy.iyG2n�1.iy/ � ˛2n�1/

�
D lim

y!1 �y2Re.G2n�1.iy//

D lim
y!1 �y2

Z

R

Re
� t 2n�1

iy � t
�
d�.t/ D lim

y!1

Z

R

y2t2n

y2 C t 2
d�.t/

D lim
y!1

Z

R

t 2n

1C .t=y/2
d�.t/:

So again by the monotone convergence theorem, we have
R
R
t 2n d�.t/ D ˛2n, and

thus � has a moment of order 2n, and this moment is ˛2n. Thus, � has a moment of
order 2n� 1, and from Equation (12.6), we have limz!1 zG2n�1.z/ D ˛2n�1. Then
by letting z D iy and taking real parts, we obtain that

˛2n�1 D lim
y!1 Re

�
iyG2n�1.iy/

�
D lim

y!1

Z

R

Re
� iyt2n�1

iy � t
�
d�.t/

D lim
y!1

Z

R

t 2n�1

1C .t=y/2
d�.t/:

Thus, by the dominated convergence theorem, ˛2n�1 D R
R
t 2n�1 d�.t/. This

completes the induction step.

16. Let us write

G.z/ D 1

z
C ˛1

z2
C ˛2

z3
C ˛3

z4
C ˛4

z5
C r.z/

where r.z/ D o. 1
z5
/. Then

z � 1

G.z/
D

˛1
z C ˛2

z2
C ˛3

z3
C ˛4

z4
C zr.z/

1
z C ˛1

z2
C ˛2

z3
C ˛3

z4
C ˛4

z5
C r.z/

:
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Let us equate this with

˛1 C ˇ0

z
C ˇ1

z2
C ˇ2

z3
C q.z/

and solve for ˇ0, ˇ1, ˇ2, and q.z/. After cross multiplication we find that

˛2 D ˛21 C ˇ0 ˛3 D ˛1˛2 C ˇ0˛1 C ˇ1 ˛4 D ˛1˛3 C ˛2ˇ0 C ˛1ˇ1 C ˇ2:

Thus,

ˇ0 D ˛2 � ˛21 ˇ1 D ˛3 � 2˛1˛2 C ˛31 ˇ2 D ˛4 � 2˛1˛3 � ˛22 C 3˛21˛2 � ˛41
and q.z/ D o.z�3/.
17. (i) Note that since f is proper, each point has only a finite number of preimages.
So let w0 2 C and let z1; : : : ; zr be the preimages of w0. We shall treat the case
when w0 has no preimages separately. For each i choose a chart .Ui ; 'i / of zi and
an integer mi so that f .'h�1i.z// D zmi . By shrinking the Ui , if necessary, we
may assume that they are disjoint. If we can show that there is a neighbourhood
V of w0 such that all preimages of points in V are in the union U1 [ � � � [ Ur , then
degf .w/ D m1C� � �Cmr for w 2 V . This will show that the integer-valued function
degf is locally constant, and by the connectedness of C, we shall have that degf is
constant.

So let us suppose that no such V exists and reach a contradiction. If no such
V exists, then there is a sequence fwngn converging to w0 such that each wn has a
preimage zn not in U1 [ � � � [ Ur . By shrinking V if necessary, we may suppose
that V is compact. By the properness of f , we must have a subsequence fznk gk of
fzngn which has a limit z, say. Then f .z/ D limk f .znk / D limk wnk D w0. So
z D zi for some i , and thus the subsequence fznk gk must penetrate the open set Ui
contradicting our assumption.

If w0 has no preimages, then we must show that there is a neighbourhood of w0
with no preimages. If not, then there is a sequence fwngn converging to w0 such
that each wn has a preimage. But fw0g [ fwngn is a compact set so we can extract
from these preimages a convergent sequence of preimages whose limit can only be
a preimage of w0, contradicting our assumption. This proves (i).

(ii) First let us note that since F 0
i .z/ 6D 0 for i D 1; 2 and z 2 C

C for each
z 2 C

C, there is neighbourhood of z on which both F1 and F2 are one to one. So for
.z1; z2/ 2 X let w D F1.z1/. Then there is U , a neighbourhood of w, and two analytic
maps f1 and f2 defined on U such that for u 2 U we have Fi ı fi D id. We then let
V D f.f1.u/; f2.u// j u 2 Ug and define ' W V ! U by '.w1;w2/ D F1.w1/.

To show these charts define a complex structure on X , we must show that given
two charts .V; '/ and .V 0; '0/, we have that '0 ı'h�1i is analytic on '.V\V 0/. So by
construction we have two points .z1; z2/ and .z0

1; z
0
2/ in X and two neighbourhoods

U and U 0 of F1.z1/ and F1.z0
1/, respectively, and on these neighbourhoods we have

analytic maps f1; f2 W U ! C and f 0
1 ; f

0
2 W U 0 ! C such that Fi ı fi D id and

Fi ı f 0
i D id. Then on '.V \ V 0/, we have that '0 ı 'h�1i.u/ D '.f 0

1 .u/; f
0
2 .u// D

F1.f
0
1 .u// D u. So '0 ı 'h�1i D id is analytic.
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(iii) To show that � is proper, we must show that the inverse image of a compact
subset of C is compact. So let K D B.z; r/ be given. We must show that � h�1i.K/
is compact. Since � is continuous we have that � h�1i.K/ is closed. So we only have
to show that every sequence in � h�1i.K/ contains a convergent subsequence. Let
f.z1;n; z2;n/gn be a sequence in � h�1i.K/. Then

jz1;nj � j�.z1;n; z2n/j C jz2;n � F2.z2;n/j � jzj C r C �22 =r:

Likewise jz2;nj � jzj C r C �21 =r . By Lemma 19,

Im.z1;n/; Im.z2;n/ � Im.�.z1;n; z2;n// � Im.z/ � r:

So there is a subsequence f.z1;nk ; z2;nk /gk such that both fz1;nk gk converges to z1, say
and fz2;nk gk converges to z2, say. Then

F1.z1/ D lim
k
F1.z1;nk / D lim

k
F2.z2;nk / D F2.z2/

so .z1; z2/ 2 X . Also �.z1; z2/ D limk �.z1;nk ; z2;nk / 2 K. Hence .z1; z2/ 2 � h�1i.K/
as required.

12.4 Solutions to exercises in Chapter 4

5. The commutativity of Jk and Jl is a special case of the fact that Jl commutes
with CŒSl�1�. For the latter note that for k < l and � 2 Sl�1

� � .k; l/ � ��1 D .�.k/; l/:

Thus we have

�Jl�
�1 D �..1; l/C � � � C .l � 1; l//��1 D .�.1/; l/C � � � C .�.l � 1/; l/ D Jl :

7. Hint: Using the convention that J 01 D 1, write

.1CN�1J1/�1.1CN�1J2/�1 � � � .1CN�1Jn/�1

as
X

l�0
.�N/�l

X

k1;:::;kn�0
k1C���CknDl

J
k1
1 J

k2
2 � � � J knn

and observe that J k11 � � � J knn is a linear combination of permutations of length at
most k1 C � � � C kn.

9. Recall that � D �m. Given i W Œ2m� ! Œn� such that ker.i/ � � , let j W Œm� ! Œn�

be defined by j.��1.k// D i.2k � 1/ and j.�.k// D i.2k/. To show that such a j
is well defined, we must show that when �.k/ D ��1.l/ we have i.2k/ D i.2l�1/.
If �.k/ D ��1.l/, we have that .k; ��1.l// is a pair of � , and thus .2l � 1; 2k/ is
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a pair of � . Since we have assumed that ker.i/ � � , we have i.2l � 1/ D i.2k/

as required. Conversely if we have j W Œm� ! Œn�, let i.2k � 1/ D j.��1.k// and
i.2k/ D j.�.k//. Then ker i � � . This gives us a bijection of indices so

nX

i1;:::;i2mD1
ker.i/��

d
.1/
i1i2

� � � d.m/i2m�1i2m
D

nX

j1;:::;jmD1
d
.1/
j��1.1/j�.1/

� � � d.m/j��1.m/j�.m/
:

By a change of variables, we have

nX

j1;:::;jmD1
d
.1/
j��1.1/j�.1/

� � � d.m/j��1.m/j�.m/
D

nX

j1;:::;jmD1
d
.1/
j1j��.1/

� � � d.m/jmj��.m/
:

12. The first part is just the expansion of the product of matrices. Now let us write
x˛.l/ D xil i�l and xˇ.l/ D xi�.l/;i�l , where � is the permutation with one cycle
.1; 2; 3; : : : ; k/. With this notation we have by Exercise 1.7

E.xi1i�1xi2i�1 � � � xiki�k xi1i�k / D E.x˛.1/ � � � x˛.k/xˇ.1/ � � � xˇ.k//
D jf� 2 Sk j ˛ D ˇ ı �gj:

If ˛ D ˇ ı � , then il D i�.�.l// and i�l D i��.l/ for 1 � l � k. Thus, for a fixed
� , there are N #.��/ ways to choose the k-tuple .i1; : : : ; ik/ so that il D i�.�.l// and
M #.�/ ways of choosing the k-tuple .i�1; : : : ; i�k/ so that i�l D i��.l/. Hence

E.Tr.Ak// D
X

�2Sk
N #.��/�kM #.�/ D

X

�2Sk
N #.�/C#.��1�/�k�M

N

�#.�/
:

Thus

E.tr.Ak// D
X

�2Sk
N #.�/C#.��1�/�.kC1/ �M

N

�#.�/

and by Proposition 1.5 the only � ’s for which the exponent of N is not negative are
those � ’s which are non-crossing partitions. Thus lim E.tr.Ak// D P

�2NC.k/ c#.�/.

12.5 Solutions to exercises in Chapter 5

1. One has to realize that the order on a through-cycle of a non-crossing annular
permutation has to be of the following form: one moves at one point p from the first
circle to the second circle, moves then on the second circle in cyclically increasing
order, moves then back to the first circle, and moves then on the first circle in
cyclically increasing order, until we are back to the first point p.

(i) If one has at least two through-cycles, then the positions where one has to
move to the other circle, as well as the order on the cycles lying on just one circle,
are uniquely determined by the annular non-crossing condition.
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(ii) In the case of just one through-cycle, the order on this is not uniquely
determined, but depends on the choice of a point p on the first circle and a point
q on the second circle of this through-cycle. We can then fix the order by sending p
to q, and the order on this through block as well as the order on all other blocks is
then determined. So we have mn choices, each giving a different permutation.

10. (i) Calculate the free cumulants with the help of the product formula (2.19),
and observe that, in both cases, there is for each n exactly one contributing pairing
in (2.19); thus �n.s2; : : : ; s2/ D 1 D �n.cc

�; : : : ; cc�/.
(ii) In Example 5.33 (and in Example 5.36), it was shown that �1;1.s2; s2/ D 1.
(iii) Use the second order version (5.16) of the product formula to see that all

second order moments of cc� are zero. It is instructive to do this for the case
�1;1.cc

�; cc�/ D 0 and compare this with the calculation of �1;1.s2; s2/ D 1 in
Example 5.36. In both cases we have the term corresponding to �1; whereas it
makes the contribution �2.s; s/�2.s; s/ D 1 in the first case, in the second case
its contribution is �2.c; c/�2.c�; c�/ D 0.

12.6 Solutions to exercises in Chapter 6

1. (i) Begin by recalling that every element x 2 L.G/ defines a function on G as
follows: .x/ıe 2 `2.G/ and for convenience we call this square summable function
x. If x is in the centre of L.G/, then x must be constant on all conjugacy classes;
so if G has the ICC property, then every x in the centre of L.G/ vanishes on all
conjugacy classes, except possibly the one containing e. Such an x must then be a
scalar multiple of the identity. This shows that ifG has the ICC property, then L.G/
is a factor. If G does not have the ICC property and X 	 G is a finite conjugacy
class not containing e, then the indicator function of X is in the centre of L.G/ and
is not a scalar multiple of the identity, and thus L.G/ is not a factor.

(ii) Suppose we are given � 2 Sn with � 6D e. Then there is k � n such that
�.k/ 6D k. Let 	m D .k;m/ for m > n. Note that 	m�	�1

m moves m but fixes all
l > m. Thus f	m�	�1

m gm is infinite.

2. It suffices to consider the case F2. A reduced word in F2 can be written as g D
a
�1
i1

� � � a�nin where whenever ir D irC1 for 1 � r < n we must have �r D �rC1.
Let us show that the conjugacy class of g is infinite. If g is a power of a1, then
am2 ga

�m
2 are all distinct for m D 1; 2; 3; : : : , and hence g has an infinite conjugacy

class, likewise if g is a power of a2. So now we can suppose that there is k such
that i1 D � � � D ik 6D ikC1. Let hm D a

m�1
i1

. We claim that all hmgh�1
m (m � 1) are

distinct. If we could find r < s with hrgh�1
r D hsgh

�1
s , then g D hpgh

�1
p with

p D s�r . Let us consider the reduced form of hpgh�1
p . The p copies of a��1

i1
on the

right of hpgh�1
p cannot cancel off a

�kC1

ikC1
because i1 D ik 6D ikC1. Thus in reduced

form hpgh
�1
p starts with the letter a�1i1 repeated p C k times. However in reduced

form g starts with the letter ai1 repeated k times. Hence, in reduced form, the words
in fhmgh�1

m gm are distinct, and thus the conjugacy class of g is infinite.

4. We shall just compute tr ˝ '.xn/ directly using the moment-cumulant formula.
For this calculation we will need to rewrite
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x D 1p
2

�
s1 c

c� s2

�

as
1p
2

�
a11 a12
a21 a22

�

:

Then

tr ˝ '.xn/ D 1

2
'.Tr.xn// D 2�.1Cn=2/

2X

i1;:::;inD1
'.ai1i2 � � � aini1 /:

Now given i1; : : : ; in

'.ai1i2 � � � aini1 / D
X

�2NC.n/
��.ai1i2 ; : : : ; aini1 / D

X

�2NC2.n/
��.ai1i2 ; : : : ; aini1 /

because (i) all mixed cumulants vanish so each block of � must consist either of all
a11’s or all a22’s or a mixture of a21 and a12, and (ii) the only non-zero cumulant
of aii is �2 so any blocks that contain aii must be �2 and (iii) the only non-zero
�-cumulants of aij (for i 6D j ) are �2.aij ; a�

ij / and �2.a�
ij ; aij /. Thus we have a

sum over pairings. Moreover, if � 2 NC2.n/ is a pairing and if .r; s/ is a pair of
� , then ��.ai1i2 ; : : : ; aini1 / will be 0 unless air irC1

D .ais isC1
/�, i.e. ir D isC1 and

is D irC1. For such a � the contribution is 1 since s1, s2 and c all have variance
1. Hence, letting � D .1; 2; 3; : : : ; n/ as in Chapter 1, we have '.ai1i2 � � � aini1 / D
jf� 2 NC2.n/ j i D i ı � ı �gj. Thus

tr ˝ '.xn/ D 2�.1Cn=2/ X

�2NC2.n/
jfi W Œn� ! Œ2� j i D i ı � ı �gj

D 2�.1Cn=2/ X

�2NC2.n/
2#.��/:

Now recall from Chapter 1 that for any pairing (interpreted as a permutation
in Sn)

#.�/C #.��/C #.�/ D nC 2.1 � g/

and � 2 NC2.n/ if and only if g D 0. Thus for any � 2 NC2.n/

#.��/ D nC 2 � #.�/ � #.�/ D 1C n=2:

Hence tr ˝ '.xn/ D jNC2.n/j is the nth moment of a semi-circular operator.

5. (i) A product of alternating centred elements from A11;A12;A21;A22 can, by
multiplying neighbours from A1 and from A2, be read as a product of alternating
elements from A1 and A2; that those elements are also centred follows from the
freeness of A11 and A12 in A1 and the freeness of A21 and A22 in A2.
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(ii) Compare the remarks after Theorem 4.8
(iii). It is clear that u2u�

1 is a unitary and, by �-freeness of u1 and u2 and the
centredness of u1 and u2, that '..u2u�

1 /
p/ D ı0p for any p 2 Z. For the �-freeness

between u2u�
1 and u1Au�

1 , it suffices to show that alternating products in elements of
the form .u2u�

1 /
p (p 2 Znf0g) and centred elements from u1Au�

1 are also centred.
But this is clear, since '.u1au�

1 / D '.a/'.u1u�
1 / D '.a/ and thus centred elements

from u1Au�
1 are of the form u1au�

1 with centred a.

12.7 Solutions to exercises in Chapter 7

1. Let 
 be the distribution of X , then E.eX/ D R
ex d
.x/. We notice that

for  > 0 we have
R 0

�1 ex d
.x/ < 1 because the integrand is bounded by 1
and 
 is a probability measure. If E.eX/ < 1 for some  > 0, we must haveR1
0
ex d
.x/ < 1. Now expand ex into a power series; for  � 0 all the terms

are positive. Hence
R1
0
xn d
.x/ < 1 for all n. Likewise if for some  < 0 we

have E.eX/ < 1, then for all n,
R 0

�1 xn d
.x/ < 1. Hence, if E.eX/ < 1
for all jj � 0, then X has moments of all orders and E.e0jX j/ < 1. Thus, by
the dominated convergence theorem,  7! E.eX/ has a convergent power series
expansion in  with a radius of convergence of at least 0. In fact the proof shows
that if there are 1 < 0 and 2 > 0 with E.e1X/ < 1 and E.e2X/ < 1, then for
all 1 �  � 2, we have E.eX/ < 1, and we may choose 0 D minf�1; 2g.

3. (i) We have

amCn D logŒP.X1 C � � � CXmCn > .mC n/a/�

� logŒP.X1 C � � � CXm > ma and XmC1 C � � � CXmCn > na/�

D logŒP.X1 C � � � CXm > ma/ � P.XmC1 C � � � CXmCn > na/�

D am C an:

(ii) Fix m; for n � m write n D rmC s with 0 � s < m, then

an

n
� ram C as

n
D rm

n

am

m
C as

n
! am

m
:

(iii) We have

lim sup
n

an

n
� sup

m

am

m
� lim inf

n

an

n
:

5. We have learned this statement and its proof from an unpublished manuscript of
Uffe Haagerup.

(i) By using the Taylor series expansion

log.1 � z/ D �
1X

nD1

zn

n
;
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which converges for every complex number z 6D 1 with jzj � 1, we derive an
expansion for log js � t j, by substituting s D 2 cos u and t D 2 cos v:

log js � t j D log jeiu C e�iu � eiv � e�ivj
D log je�iu.1 � ei.uCv//.1 � ei.u�v//j
D log j1 � ei.uCv/j C log j1 � ei.u�v/j
D Re.log.1 � ei.uCv//C log.1 � ei.u�v///

D �Re
1X

nD1

1

n
.ein.uCv/ C ein.u�v//

D �Re
1X

nD1

2

n
einu cos nv

D �
1X

nD1

2

n
cosnu cos nv

D �
1X

nD1

1

2n
Cn.s/Cn.t/:

Then one has to show (which is not trivial) that the convergence is strong enough
to allow term-by-term integration.

(ii) For this one has to show that

Z C2

�2
Cn.t/d
W .t/ D

8
ˆ̂
<

ˆ̂
:

2; n D 0

�1; n D 2

0; otherwise

:

6. (i) Let us first see that the mapping T ˝ IN W .Msa
N /

n ! .Msa
N /

n transports
microstates for .x1; : : : ; xn/ into microstates for .y1; : : : ; yn/. Namely, let A D
.A1; : : : ; An/ 2 � .x1; : : : ; xnIN; r; �/ be a microstate for .x1; : : : ; xn/, and consider
B D .B1; : : : ; Bn/ WD .T ˝ IN /A, i.e., Bi D Pn

jD1 tij Aj . Then we have for each
k � r :

j	.yi1 � � � yik / � tr.Bi1 � � �Bik /j

D j	.
nX

j1D1
ti1j1xj1 � � �

nX

jkD1
tikjk xjk / � tr.

nX

j1D1
ti1j1Aj1 � � �

nX

jkD1
tikjkAjk /j

�
nX

j1;:::;jkD1
jti1j1 � � � tikjk j � j	.xj1 � � � xjk / � tr.Aj1 � � �Ajk /j

� .cn/r�;
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where c WD maxi;j fjtij jg. Thus we have shown

.T ˝ IN /.� .x1; : : : ; xnIN; r; �// � � .y1; : : : ; ynIN; r; .cn/r�/:

The Lebesgue measure � on MN.C/
n
sa ' R

nN2
scales under the linear mapping

T˝IN as

�Œ.T ˝ IN /.� .x1; : : : ; xnIN; r; �//� D �Œ� .x1; : : : ; xnIN; r; �/� � j det.T ˝ IN /j
D �Œ� .x1; : : : ; xnIN; r; �/� � j detT jN2

:

This yields then for the free entropies the estimate

�.y1; : : : ; yn/ � �.x1; : : : ; xn/C log j detT j:

In order to get the reverse inequality, we do the same argument for the inverse
map, .x1; : : : ; xn/ D T �1.y1; : : : ; yn/, which gives

�.x1; : : : ; xn/ � �.y1; : : : ; yn/C log j detT �1j D �.y1; : : : ; yn/ � log j detT j:

(ii) If .x1; : : : ; xn/ are linear dependent, there are .˛1; : : : ; ˛n/ 2 C
n n f0g such

that 0 D ˛1x1 C � � � C ˛nxn. Since the xi are self-adjoint, the ˛i can be chosen real.
Without restriction, we can assume that ˛1 6D 0.

Now consider T D In C ˇT 0, where T 0 D .tij /
n
i;jD1 with tij D ı1i j̨ . Then T is

invertible for any ˇ ¤ �˛�1
1 and detT D 1C ˛1ˇ.

On the other hand, we also have T .x1; : : : ; xn/ D .x1; : : : ; xn/. Hence, by (i),

�.x1; : : : ; xn/ D �.x1; : : : ; xn/C log j detT j D �.x1; : : : ; xn/C log j1C ˛1ˇj:

Since ˇ is arbitrary and � 2 Œ�1;C1/, we must have �.x1; : : : ; xn/ D �1.

12.8 Solutions to exercises in Chapter 8

2. We have

@j .Xi1 � � �Xik /.Xj ˝ 1/ D
kX

lD1
ıj;il Xi1 � � �Xil ˝XilC1

� � �Xik

where we have adopted the convention that we have Xi1 � � �Xil ˝ XilC1
� � �Xik D

Xi1 � � �Xik ˝ 1 when l D k. Similarly

.1˝Xj /@j .Xi1 � � �Xik / D
kX

lD1
ıj;il Xi1 � � �Xil�1 ˝Xil � � �Xik ;
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and we have adopted the convention thatXi1 � � �Xil�1 ˝Xil � � �Xik D 1˝Xi1 � � �Xik
when l D 1. Thus

X

j

@j .Xi1 � � �Xik /.Xj ˝ 1/ � .1˝Xj /@j .Xi1 � � �Xik /

D
X

j

kX

lD1
ıj;il Xi1 � � �Xil ˝XilC1

� � �Xik � ıj;il Xi1 � � �Xil�1 ˝Xil � � �Xik

D
kX

lD1
Xi1 � � �Xil ˝XilC1

� � �Xik �Xi1 � � �Xil�1 ˝Xil � � �Xik

D Xi1 � � �Xik ˝ 1 � 1˝Xi1 � � �Xik
because

P
j ıj;il D 1 for all l .

3. (i) By linearity we are reduced to checking identities on monomials. So consider
p D xi1 � � � xik ; hence, p� D xik � � � xi1 . Then

@ip D
kX

lD1
ıi;il xi1 � � � xil�1˝xilC1

� � � xik ; @ip
� D

kX

lD1
ıi;il xik � � � xilC1

˝xil�1 � � � xi1 :

Thus

h�i ; pi D h@�
i .1˝ 1/; pi D h1˝ 1; @ipi D

kX

lD1
ıi;il 	.xi1 � � � xil�1 /	.xilC1

� � � xik /

and

h�i ; p�i D h@�
i .1˝ 1/; p�i D h1˝ 1; @ip

�i
kX

lD1
ıi;il 	.xik � � � xilC1

/	.xil�1 � � � xi1/:

(ii) Consider again a monomial p D xi1 � � � xik as above. Then

.@ip
�/� D

kX

lD1
ıi;il xilC1

� � � xik ˝ xi1 � � � xil�1 :

(iii) First we note that for r 2 Chx1; : : : ; xni, we have by the Leibniz rule

hp � @�
i .1˝ 1/ � q; ri D h@�

i .1˝ 1/; p�rq�i D h1˝ 1; @i .p
�rq�/i

D h1˝ 1; @i .p
�/ � 1˝ rq�i C h1˝ 1; p� ˝ 1 � @i r � 1˝ q�i

Ch1˝ 1; p�r ˝ 1 � @i .q�/i:
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The first term becomes h.id ˝ 	/.@ip/ � q; ri, the middle term becomes
h@�
i .p ˝ q/; ri, and the last term becomes hp � .	 ˝ id/.@iq/; ri.
(iv) We write p D xi1 � � � xik and q D xj1 � � � xjn . Then using the expansion in (i),

we have

hid ˝ 	.@ip/; id ˝ 	.@iq/i

D
kX

lD1

nX

mD1
ıi;il ıi;jm	Œ	.xjn � � � xjmC1

/xjm�1 � � � xj1xi1 � � � xil�1	.xilC1
� � � xik /�:

Next

h1˝ �i ; @i .p
�/ � 1˝ qi

D
kX

lD1

nX

mD1
ıi;il ıi;jm	Œ	.xjn � � � xjmC1

/xjm�1 � � � xj1xi1 � � � xil�1	.xilC1
� � � xik /�

C
kX

lD1

l�1X

rD1
ıi;il ıi;ir 	 Œxjn � � � xj1xi1 � � � xir�1	.xirC1

� � � xil�1 /	.xilC1
� � � xik /�

and

h�i ˝ 1; @i .p
�/ � 1˝ qi

D
kX

lD1

kX

rDlC1
ıi;il ıi;ir 	 Œxjn � � � xj1xi1 � � � xil�1	.xilC1

� � � xir�1 /	.xirC1
� � � xik /�:

(v) Check that for p; r2Chx1; : : : ; xni, we have

h.id ˝ 	/.@i r/; piDhr; @�
i .p˝1/i:

This shows that Chx1; : : : ; xni is in the domain of the adjoint of .id˝	/ı@i ; hence,
this adjoint has a dense domain, and thus .id ˝ 	/ ı @i is itself closable.

5. (i) Since we assumed that we have p 2 L3.R/, we have that h� and H.p/ are in
L3.R/ and kh� �H.p/k3 ! 0. Thus by Hölder’s inequality

Z
jh�.s/ �H.p/.s/j2p.s/ ds � kh� �H.p/k23 kpk3:

If f is a polynomial, it is bounded on the support of p which is contained in
Œ�kxk; kxk�. Thus

Z
jf .s/j2jh�.s/ �H.p/.s/j2p.s/ ds ! 0



310 12 Solutions to Exercises

as � ! 0C. Thus

2�

Z
f .s/h�.s/p.s/ ds ! 2�

Z
f .s/H.p/.s/p.s/ ds D 2� 	.f .x/H.p/.x//

D 	.f .x/�/:

For s and t real and f a polynomial, we have for � > 0

ˇ
ˇ
ˇ
ˇ
.s � t /.f .s/ � f .t//

.s � t /2 C �2

ˇ
ˇ
ˇ
ˇ �

ˇ
ˇ
ˇ
ˇ
f .s/ � f .t/

s � t
ˇ
ˇ
ˇ
ˇ

and the right-hand side is bounded on compact subsets of R2. Thus

lim
�!0C

Z Z
.s � t /.f .s/ � f .t//

.s � t /2 C �2
p.s/p.t/ ds dt

D
Z Z

f .s/ � f .t/
s � t p.s/p.t/ ds dt D 	 ˝ 	.@f .x//:

On the other hand,

Z Z
.s � t /.f .s/ � f .t//

.s � t /2 C �2
p.s/p.t/ ds dt

D
Z Z

.s � t /f .s/
.s � t /2 C �2

p.s/p.t/ ds dt �
Z Z

.s � t /f .t/
.s � t /2 C �2

p.s/p.t/ ds dt

D
Z Z

.s � t /f .s/
.s � t /2 C �2

p.s/p.t/ ds dt �
Z Z

.t � s/f .s/
.s � t /2 C �2

p.s/p.t/ ds dt

D 2

Z Z
.s � t /f .s/
.s � t /2 C �2

p.s/p.t/ ds dt

D 2

Z
f .s/p.s/

�Z
p.t/

s � t
.s � t /2 C �2

dt

	

ds

D 2�

Z
f .s/p.s/h�.s/ ds

! 	.f .x/�/ for � ! 0:

Thus 	.f .x/�/ D 	 ˝ 	.@f .x// so � satisfies the conjugate relation. Since � is a
function of x, � is the conjugate variable for x.

(ii) Let � be the curve fi�CRei� j 0 � � � �g[fxCi� j �R � x � Rg 	 C
C.

As G is analytic on C
C, we have that the integral

R
�
G.z/3 d z D 0. Thus

Z
R

�R

G.x C i�/3 dx D �i
Z �

0

G.i� CRei� /3 Rei�d�:
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Now for c D kxk and for R > c, we have

jG.i� CRei� /j �
Z c

�c
p.t/

ji� CRei� � t j dt � 1

R � c
Z c

�c
p.t/ dt D 1

R � c :

Hence

ˇ
ˇ
ˇ

Z
R

�R

G.xCi�/3 dx
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ

Z �

0

G.i�CRei� /3 Rei� d�
ˇ
ˇ
ˇ � R�

.R � c/3 ! 0 as R!1:

Thus
R
G.x C i�/3 dx D 0. By taking the imaginary part of this equality, we get

that
Z
h�.s/

2p.s/ ds D 3

Z
p.s/3 ds:

6. We begin by extending 	 to vectors in L2 by setting 	.�/ D h�; 1i. If � 2 M ,
then h�; 1i D 	.1��/, so the two ways of computing 	.�/ agree. If � is any partition,
we define 	�.�; a2; : : : ; an/ to be the product, along the blocks of � , of 	 applied to
the product of elements of each block. One block will contain �, but � is the only
argument that is unbounded, and it is in L2, so all factors are defined and finite. We
can also use the cumulant-moment formula

�n.�; a2; : : : ; an/ D
X

�2NC.n/

.�; 1n/	�.�; a2; : : : ; an/

to extend the definition of �n.�; a2; : : : ; an/; ��.�; a2; : : : ; an/ is then defined as the
product of cumulants along the blocks of � .

Let us first show that (ii) implies (i). If we have (ii), then ��.�i ; xi.1/; : : : ; xi.m//
is only different from 0 if 1 belongs to a block of size 2. This means that the only
contributing partitions in the moment-cumulant formula for 	.�ixi.1/ � � � xi.m// are
of the form � D f.1; k/g [�1[�2, where �1 is a non-crossing partition of Œ1; k�1�
and �2 is a non-crossing partition of Œk C 1;m�. Then we have

	.�ixi.1/ � � � xi.m// D
X

.1;k/[�1[�2
�2.�i ; xi.k//��1.xi.1/; : : : ; xi.k�1//��2.xi.kC1/; : : : ; xi.m//

D
X

k

�2.�i ; xi.k//

 
X

�1

��1.xi.1/; : : : ; xi.k�1//
! 

X

�2

��2.xi.kC1/; : : : ; xi.m//
!

D
X

k

ıi i.k/	.xi.1/ � � � xi.k�1//	.xi.kC1/ � � � xi.m//:

Let us now show that (i) implies (ii). We do this by induction onm. It is clear that
the conjugate relations (8.12) for m D 0 and m D 1 are equivalent to the cumulant
relations form D 0 andm D 1 from (ii). So it remains to consider the casesm � 3.
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Assume (i) and that we have already shown the conditions (ii) up tom� 1. We have
to show it for m. By our induction hypothesis we know that in

	.�ixi.1/ � � � xi.m// D
X

�2NC.mC1/
��.�i ; xi.1/; : : : ; xi.m//

the cumulants involving �i are either of length 2 or they are the maximal one,
�mC1.�i ; xi.1/; : : : ; xi.m//; hence

	.�ixi.1/ � � � xi.m// D
X

�D.1;k/[�1[�2
��.�i ; xi.1/; : : : ; xi.m//C �mC1.�i ; xi.1/; : : : ; xi.m//

D
X

k

ıi i.k/	.xi.1/ � � � xi.k�1//	.xi.kC1/ � � � xi.m//C �mC1.�i ; xi.1/; : : : ; xi.m//:

Since the first sum gives by our assumption (i) the value 	.�ixi.1/ � � � xi.m//, it follows
that �mC1.�i ; xi.1/; : : : ; xi.m// D 0.

7. By Theorem 8.20 we have to show that �1.�/ D 0; �2.�; x1 C x2/ D 1 and
�mC1.�; x1Cx2; : : : ; x1Cx2/ D 0 for allm � 2. However, this follows directly from
the facts that � is conjugate variable for x1 (hence we have �1.�/ D 0; �2.�; x1/ D 1

and �mC1.�; x1; : : : ; x1/ D 0 for allm � 2) and that mixed cumulants in fx1; �g and
x2 vanish; for this note that � as a conjugate variable is in L2.x1/ and the vanishing
of mixed cumulants in free variables goes also over to a situation, where one of the
variables is in L2.

8. By Theorem 8.20, the condition that for a conjugate system we have �i D xi
is equivalent to the cumulant conditions: �1.xi / D 0, �2.xi ; xi.1// D ıi i.1/ and
�mC1.xi ; xi.1/; : : : ; xi.m// D 0 for m � 2 and all 1 � i; i.1/; : : : ; i.m/ � n. But
these are just the cumulants of a free semi-circular family.

9. Note that in the special case where i 62 fi.1/; : : : ; i.k � 1/; i.k C 1/; : : : ; i.m/g,
we have

@�
i si.1/ � � � si.k�1/ ˝ si.kC1/ � � � si.m/ D si.1/ � � � si.k�1/si si.kC1/ � � � si.m/:

This follows by noticing that in this case in the formula (8.6) for the action of @�
i ,

only the first term is different from zero and gives, by also using @�
i .1 ˝ 1/ D si ,

exactly the above result.
Thus, we get in the case where all i.1/; : : : ; i.m/ are different:

nX

iD1
@�
i @i si.1/ � � � si.m/ D

nX

iD1

mX

kD1
ıi i.k/@

�
i si.1/ � � � si.k�1/ ˝ si.kC1/ � � � si.m/

D
mX

kD1
@�
i.k/si.1/ � � � si.k�1/ ˝ si.kC1/ � � � si.m/
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D
mX

kD1
si.1/ � � � si.k�1/si.k/si.kC1/ � � � si.m/

D msi.1/ � � � si.k�1/si.k/si.kC1/ � � � si.m/:

Thus we have
Pn

iD1 @�
i @ip D mp.

12. (ii) We have to show that 	.�p.x// D 	 ˝ 	.@p.x// for all p.x/ 2 Chxi. By
linearity, it suffices to treat the cases p.x/ D Um.x/ for allm � 0. So fix such anm.
Thus we have to show

X

n�1
˛n	.Cn.x/Um.x// D 	 ˝ 	.@Um.x//:

For the left-hand side, we have

X

n

˛n	.CnUm/ D
X

n�m
˛n
�
	.UnCm/C 	.Um�n/

�C ˛mC1	.U2mC1/

C
X

n�mC2
˛n
�
	.UnCm/ � 	.Un�m�2/

�

D
X

n�m
˛n
�
˛nCmC1 C ˛m�nC1

�C ˛mC1˛2mC2

C
X

n�mC2
˛n
�
˛nCmC1 � ˛n�m�1

�

D
X

n

˛n˛nCmC1 �
X

n�mC2
˛n˛n�m�1 C

X

n�m
˛n˛m�nC1:

But the first two sums cancel, and thus we remain with exactly the same as in

	 ˝ 	.@Um.x// D
m�1X

kD0
	.Uk/	.Um�k�1/ D

m�1X

kD0
˛kC1˛m�k:

For the relevance of this in the context of Schwinger-Dyson equations, see [130].

12.9 Solutions to exercises in Chapter 9

2. We have

EB.xd1 � � � xdn�1x/ D
X

�2NC.n/
�B� .xd1; : : : ; xdn�1; x/:
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Note that the assumption implies that also all �B� .xd1; : : : ; xdn�1; x/ for � 2
NC.n/ are in D. Applying ED to the equation above gives thus

ED.xd1 � � � xdn�1x/ D
X

�2NC.n/
�B� .xd1; : : : ; xdn�1; x/:

If we compare this with the moment-cumulant formula on the D-level,

ED.xd1 � � � xdn�1x/ D
X

�2NC.n/
�D� .xd1; : : : ; xdn�1; x/;

then we get the equality of the B-valued and the D-valued cumulants by induction.

12.10 Solutions to exercises in Chapter 10

2. Note that in general

H
C.Mn.C// D ˚

B 2 Mn.C/ j 9� > 0 W Im.B/ � �1
�

D ˚
B 2 Mn.C/ j Im.B/ is positive definite

�
:

(i) Recall that any self-adjoint matrix

�
˛ ˇ

ˇ �

�

2 M2.C/

is positive definite if and only if ˛ > 0 and ˛� � jˇj2 > 0.
Now, for

B D
�
b11 b12
b21 b22

�

2 M2.C/ we have Im.B/D
�

Im.b11/ 1
2i
.b12 � b21/

1
2i
.b21 � b12/ Im.b22/

�

:

Hence Im.B/ is positive definite, if and only if

Im.b11/ > 0 and Im.b11/Im.b22/ � 1

4
jb12 � b21j2 > 0:

(ii) Assume that  2 C is an eigenvalue of B 2 H
C.Mn.C//. We want to show

that Im./ > 0. Let � 2 C
n with k�k D 1 be a corresponding eigenvector of B , i.e.

B� D �. Since Im.B/ is positive definite, it follows

0 < hIm.B/�; �i D 1

2i

�hB�; �i � hB��; �i� D 1

2i

�hB�; �i � h�;B�i� D Im./;

as desired.
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The converse is not true as shown by the following counterexample for n D 2.
Take a matrix of the form

B D
�
1 �

0 2

�

with Im.1/ > 0, Im.2/ > 0 and some � 2 C. B satisfies the condition that
all its eigenvalues belong to the upper half-plane C

C. However, if in addition
j�j � 2

p
Im.1/Im.2/ holds, it cannot belong to H

C.M2.C//, since the second
characterizing condition of H

C.M2.C//, Im.b11/Im.b22/ > jb12 � b21j2=4, is
violated.

12.11 Solutions to exercises in Chapter 11

1. We shall show that while r2 log jzj D 0 as a function, r2 log jzj D 2�ı0 as a
distribution, where ı0 is the distribution which evaluates a test function at .0; 0/. In
other words, G.z;w/ D 1

2�
log jz � wj is the Green function of the the Laplacian on

R
2. To see what this means, first note that by writing log jzj dxdy D r log r drd� ,

where .r; �/ are polar coordinates, we see that log jzj is a locally integrable function
on R

2. Thus it determines (see Rudin [152, Ch. 6]) a distribution

f 7!
Z Z

R2

f .x; y/ log
p
x2 C y2 dxdy

where f is a test function, i.e. a C1-function with compact support. By definition,
the Laplacian of this distribution, r2 log jzj, is the distribution

f 7!
Z Z

R2

r2f .x; y/ log
p
x2 C y2 dxdy:

Hence our claim is that for a test function f

Z Z

R2

r2f .x; y/ log
p
x2 C y2 dxdy D 2�f .0; 0/:

We denote the gradient of f by rfD. @f
@x
;
@f

@y
/ and the divergence of a vector field

F by r�F . Let DrDf.x; y/jpx2 C y2<rg, and

Dr;RDf.x; y/jr<
p
x2 C y2<Rg:

We proceed in three steps.
(i) Let f; g be C2-functions on R

2; then

r � f rg D @f

@x

@g

@x
C f

@2g

@x2
C @f

@y

@g

@y
C f

@2g

@y2
D f r2g C rf � rg
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so that

f r2g � gr2f D r � .f rg � grf /:

(ii) Let g.x; y/ D log
p
x2 C y2 and f be a test function. Choose R large

enough so that supp.f / 	 DR. We show that for all 0 < r < R
ZZ

Dr;R

r2f .x; y/ log
p
x2 C y2 dxdy D

Z

@Dr

�1

r
f � log r

@f

@r

�
ds:

Let D be an open connected region in R
2 and @D its boundary. Suppose that @D

is the union of a finite number of Jordan curves which do not intersect each other.
Green’s theorem asserts that for a vector field F

ZZ

D

r � F.x; y/ dxdy D
Z

@D

F � n ds

where n is the outward pointing unit normal of @D. So in particular, if we let F D
rf , we have

ZZ

D

r2f .x; y/ dxdy D
Z

@D

rf � n ds:

By assumption both f and rf vanish on @DR, and by our earlier observation
that log jzj is harmonic, r2g D 0 on Dr;R. Hence

ZZ

Dr;R

r2f .x; y/ log
p
x2 C y2dxdy D �

ZZ

Dr;R

.f r2g � gr2f / dxdy

D �
ZZ

Dr;R

r � .f rg � grf / dxdy

D
Z

@Dr

.f rg � grf / � n ds

�
Z

@DR

.f rg � grf / � n ds

D
Z

@Dr

.f rg � grf / � n ds:

Now rg D .x; y/=.x2 C y2/ and on @Dr we have n D .x; y/=
p
x2 C y2, so

rg � n D 1=r . Also g D log r on @Dr , and on Dr , rf � n D @f

@r
, by the chain rule.

Thus
ZZ

Dr;R

r2f .x; y/ log
p
x2 C y2dxdy D 1

r

Z

@Dr

f ds � log r
Z

@Dr

@f

@r
ds:
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(iii) Finally we show that for a test function f
Z Z

R2

r2f .x; y/ log
p
x2 C y2 dxdy D 2�f .0; 0/:

To calculate the integrals above, let us parameterize @Dr with x.�/ D r cos � and
y.�/ D r sin � . Then ds D p

x0.�/2 C y0.�/2 d� D r d� . So

1

r

Z

@Dr

f ds D
Z 2�

0

f .r cos �; r sin �/ d�

which converges to 2�f .0; 0/ as r ! 0. Also

log r
Z

@Dr

@f

@r
ds D r log r

Z 2�

0

@f

@r
.r cos �; r sin �/ d�:

Now as r ! 0,
R 2�
0

@f

@r
.r cos �; r sin �/ d� converges to 2� @f

@r
.0; 0/ and r log r

converges to 0. Thus

ZZ

R2

r2f .x; y/ log
p
x2 C y2dxdy D

ZZ

DR

r2f .x; y/ log
p
x2 C y2dxdy

D lim
r!0

ZZ

Dr;R

r2f .x; y/ log
p
x2 C y2dxdy

D 2�f .0; 0/

as claimed.

4. Let us put

A WD
�
0 a

a� 0

�

; � WD
�
0 
N 0
�

:

Note that both A and � are self-adjoint and have with respect to tr ˝ 	 the
distributions Q
jaj and .ı˛ C ı�˛/=2, respectively, and that A�� has the distribution
Q
ja�j. (It is of course important that we are in a tracial setting, so that aa� and a�a
have the same distribution.)

It remains to show that A and � are free with respect to tr ˝ 	 . For this note that
the kernel of tr ˝ 	 on the unital algebra generated by A is spanned by matrices of
the form

�
0 .aa�/k�1a

.a�a/k�1a� 0

�

or

�
.aa�/k � 	..aa�/k/ 0

0 .a�a/k � 	..a�a/k/

�

(12.7)
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for some k � 1, whereas the kernel of tr ˝ 	 on the algebra generated by � is just
spanned by the off-diagonal matrices of the form

�
0 jjk

jjk N 0

�

D jjk�

for some k � 1. Hence we have to check that we have

tr ˝ 	ŒA1�A2� � � �An�� D 0 and tr ˝ 	ŒA1�A2� � � �An� D 0;

for all n and all choices of A1; : : : ; An from the collection (12.7). Multiplication
with � has on the Ai the effect that we get matrices from the collection

�
.aa�/k�1a 0

0 .a�a/k�1a�
�

or

�
0 .aa�/k � 	..aa�/k/

.a�a/k � 	..a�a/k/ 0

�

:

(12.8)

Hence, we have to see that whenever we multiply matrices from the collection (12.8)
in any order, we get only matrices where all entries vanish under the application of
	 . Let us denote the non-trivial entries in the matrices from (12.8) as follows:

pk11 WD .aa�/k�1a; pk12 WD .aa�/k � 	..aa�/k/;

pk21 WD .a�a/k � 	..a�a/k/; pk22 WD .a�a/k�1a�:

With this notation we have to show that 	.pk1i1i2p
k2
i2i3

� � �pkn�1

in�1in
p
kn
ininC1

/ D 0 for all
n; k � 1 and all i1; : : : ; inC1 2 f1; 2g. Now we use the fact that an R-diagonal
element a has the property that its �-distribution is invariant under the multiplication
with a free Haar unitary; this means we can replace a by au, where u is a Haar
unitary which is �-free from a. But then our operators pkij go over to pk11u, pk12,

u�pk21u and u�pk22. If we multiply those elements as required, then we always get
words which are alternating in factors from the pkij and fu; u�g; all those factors are
centred; hence, by the �-freeness between a and u, the whole product is centred.

For more details, see also [138].
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of unitarily invariant matrices, 106
of Wigner matrices, 115

asymptotically free, 15, 97
almost surely, 97
in probability, 98
of second order, 141

B
band matrix, 233
block matrix, 225
bounded higher cumulants, 134
Brown measure, 268

calculation
for R-diagonal operator, 271
for circular operator, 273
for elliptic operator, 275

for unbounded operators, 275
motivation, 264

C
Carleman condition, 24
Cartan subalgebra, 190
Catalan number

as moment of semi-circle, 12
explicit formula, 29
generating function, 29
recursion, 29

Cauchy distribution, 57
Cauchy transform of, 53

Cauchy transform
as analytic function, 52
as formal power series, 42
operator-valued, 239

Cauchy transform of
arc-sine, 54
atomic measure, 53
Cauchy distribution, 53
Marchenko-Pastur, 55
semi-circle, 59

central limit theorem
classical, 28
free, 30

central sequence, 189
characteristic function, 2
Chebyshev polynomials

of first kind, 123
as orthogonal polynomials, 156
combinatorial interpretation, 157
recursion, 221

of second kind, 154
as orthogonal polynomials, 154
combinatorial interpretation, 158
recursion, 221

circular element, 168
free cumulants of, 169
of second order, 151

circular family, 227
free cumulants of, 227

circular law, 273
closed pair, 156
complex Gaussian random matrix, 168
complex Gaussian random variable, 5
compression of von Neumann algebra, 166
conditional expectation, 235
conjugate Poisson kernel, 208
conjugate relations, 205
conjugate system, 206
convergence

almost sure for random matrices, 95
in distribution, 25
in moments, 25
in probability, 98
of averaged eigenvalue distribution, 95
of real valued random variables

in distribution, 24
in law, 24

vague, 64
weak, 64

of probability measures, 24
covariance of operator-valued semicircular

element, 228
Cramér’s theorem, 180
C�-operator-valued probability space, 258
C�-probability space, 15
cumulant

classical, 2
free, 32
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mixed, 37
second order, 143

cumulant generating series, 177
cumulant series, 41
cutting edge of graph, 110
cyclically alternating, 139

D
Denjoy-Wolff theorem, 87
deterministic equivalent, 247, 251

free, 251
distribution, 162

algebraic, 24
arc-sine, 54
Cauchy, 57
determined by moments, 24

Carleman condition, 24
elliptic, 275
free Poisson, 35, 117
Haar unitary, 103
Marchenko-Pastur, 35
of random variable, 24
quarter-circular, 169
R-diagonal, 271
second order limiting, 123
semi-circle, 11

E
eigenvalue distribution

joint, 183
empirical, 176

elliptic operator, 275
empirical eigenvalue distribution, 176
eta transform, 258

F
factor, 161

free group, 162
hyperfinite, 161

faithful state, 15
finite von Neumann algebra, 264
Fisher information

free, 206
classical, 204

fluctuations, 122
forest of two-edge connected components, 111
free

with amalgamation, 235
asymptotically, 97

almost surely, 97
for elements, 17
for subalgebras, 15

for unbounded operators, 210
of second order, 139

asymptotically, 141
free additive convolution, 52

for finite variance, 77, 80
for general measures, 84, 91

free analysis, 240
free convolution, see free additive convolution
free Cramér Rao inequality, 212
free cumulant, 32

operator-valued, 236
free cumulants of

circular element, 169
circular family, 227
free Poisson, 35
limit of Wigner matrices, 146
Marchenko-Pastur, 35
semi-circle, 34

free deterministic equivalent, 251
free difference quotient, 197
free entropy

general, 175
unification problem, 195

free entropy �, 186
additivity, 188
one-dimensional case, 187
subadditivity, 187

free entropy ��, 216
additivity, 216
one-dimensional case, 216
subadditivity, 216
log-Sobolev inequality, 217

free entropy dimension ı, 189
free Fisher information ˚�, 206

additivity, 213, 214
Cramér Rao inequality, 212
one-dimensional case, 208
Stam inequality, 212
superadditivity, 211

free group, 161
rank, 161

free group factor, 162
interpolating, 173
isomorphism problem, 162

free independence, 15
free multiplicative convolution, 91
free Poincare inequality, 197
free Poisson distribution, 35, 117

free cumulants of, 35
of second order, 138

free Stam inequality, 212
freely independent, 15
freeness, 15

operator-valued, 235
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Fuglede-Kadison determinant, 266
fundamental group of von Neumann algebra,

167

G
Gaussian

random matrix, 7
complex, 168

random variable, 2
complex, 5

random vector, 5
generalized Weyl inequality, 270
genus expansion, 9

for Wishart matrices, 117
genus of permutation, 129
Ginibre ensemble, 273
good rate function, 180
group C�-algebra

reduced, 161
group algebra, 160
group von Neumann algebra, 159,

161
GUE, see Gaussian random matrix

H
Haar unitary, 103

second order, 138
Haar unitary random matrix, 102
half-pairing

non-crossing annular, 156
non-crossing linear, 158

half-permutation
non-crossing annular, 157
non-crossing linear, 158

Herglotz representation, 62
hermitization method, 276
Hilbert transform, 208
h transform, 258
hyperfinite II1 factor, 161

I
ICC group, 161
inclusion-exclusion, 12
insertion property, 237
integrable operator, 210
interpolating free group factor, 173
interval stripping, 237
inversion formula

Stieltjes, 57
isomorphism problem for free group factors,

162

J
join, 32
joint eigenvalue distribution, 183
Jucys-Murphy element, 104

K
kernel of a multi-index, 26
Kreweras complement, 39

L
large deviation principle, 180
large deviations, 176
leaf, 110
left regular representation, 160
Legendre transform, 178
length function on Sn, 10
lift of partition, 108
limiting distribution, 132
linearization, 255
log-Sobolev inequality, 217

M
Marchenko-Pastur distribution, 35

by Stieltjes inversion, 63
Cauchy transform of, 55
Cauchy-transform of, 55
for random matrices, 117
free cumulants of, 35

marked block, 143
meet, 32
merging of vertices, 112
microstates, 186
microstates free entropy, see free entropy �
Möbius inversion

in NC.n/, 33
in P.n/, 19

modular conjugation operator, 200
moment (joint), 162
moment series, 41

operator-valued, 258
moment-cumulant formula

operator-valued, 236
classical, 2, 18
cumulant-moment, 33
free, 32
second order, 143

multiplicative family, 238

N
Nevanlinna representation, 61
non-commutative derivative, 44, 196
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non-commutative probability space, 15
second order, 136
tracial, 136

non-commutative random variable, 15
non-crossing

annular half-pairing, 156
annular half-permutation, 157
annular pairing, 124
annular permutation, 125
linear half-pairing, 158
linear half-permutation, 158
pairing, 10
partition, 32

non-degenerate state, 15
non-microstates free entropy, see free

entropy ��

non-tangential limit, 60
normal operator, 264
normal random variable, 2

O
open pair, 156
operator

affiliated with an algebra, 209
integrable, 210

operator upper half-plane, 258
operator-valued

R-transform, 239
moment-cumulant formula, 236
Cauchy transform, 239
distribution, 235
free cumulant, 236
freeness, 235
moment, 235
probability space, 235

C�-, 258
semi-circular element, 239

P
pairing, 3, 27

non-crossing, 10
non-crossing annular, 124

partial non-commutative derivative, see
non-commutative derivative

partial order
on all partitions, 32
on non-crossing partitions, 32

partition, 3
non-crossing, 10, 32
second order non-crossing annular, 143
type of, 4

permutation
�-planar, 129

non-crossing annular, 125
planar, 11

planar
�-, 129
annular pairing, 124
permutation, 11

Poisson kernel, 56, 208
conjugate, 208

prime von Neumann algebra, 190
probability space

�-, 15
C�-, 15
W �-, 15

tracial, 16
non-commutative, 15

property � , 190

Q
quarter-circular element, 169

R
R-transform

as formal power series, 42
for arbitrary measures, 82
for compactly supported measures, 68
for finite variance, 76
operator-valued, 239

random matrix
deterministic, 99
Gaussian, 7
Ginibre, 273
Haar unitary, 102
unitarily invariant, 106, 141
Wigner, 107
Wishart, 116

random rotation, 106
random variable

Gaussian, 2
complex, 5

non-commutative, 15
rank of free group, 161
rate function, 176, 177, 180

good, 180
R-diagonal operator, 271

random matrix model, 274
single ring theorem, 274

reciprocal Cauchy transform, 71, 82
operator-valued, 258

reduced group C�-algebra, 161
reduced word, 161
refinement of partition, 32
relative entropy, 182
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removing a vertex, 112
Riesz measure, 268

S
S -transform, 119
Sanov’s theorem, 182
Schreier’s index formula, 167
Schur complement, 253
score function, 204
second order

cumulants, 143
limit, 137
limiting distribution, 123
non-commutative probability space, 136
non-crossing annular partitions, 143
circular element, 151
free Poisson, 138
Haar unitary, 138
semi-circle, 138

second order cumulants of
free Poisson, 146
limit of Wigner matrices, 146
semi-circle, 145

semi-circle distribution, 11
Cauchy transform of, 55, 59
by Stieltjes inversion, 58
free cumulants of, 34
of second order, 138

semi-circle law, 11
semi-circular element, 30

operator-valued, 239
covariance, 228

standard, 30
semi-circular family, 31
spoke diagram, 140
standard

complex Gaussian random variable, 5
lift of partition, 109
semi-circular element, 30

�-probability space, 15
�-distribution, 163
�-free, 17
�-moment (joint), 163
state, 15

faithful, 15
non-degenerate, 15
tracial, 16

Stieltjes inversion formula, 57
Stieltjes transform, 56
Stolz angle, 66

truncated, 66
subharmonic function, 267
submean inequality, 267
subordination function

as analytic function, 89

as formal power series, 43
operator-valued

as analytic function, 259
as formal power series, 239
multiplicative version, 259

T
through-block, 157
through-cycle, 126
through-pair, 156
trace, 136
tracial W �-probability space, 16
tree, 110
trivial

leaf, 110
tree, 110

truncated Stolz angle, 66
two-edge connected graph, 110
type of partition, 4

U
unitarily invariant, 106, 141
upper semicontinuous, 267

V
vague convergence, 64
von Neumann algebra

compression, 166
factor, 161
finite, 264
fundamental group, 167
generated by, 163
group vN algebra, 161
prime, 190
type II1, 161

W
weak convergence, 64
Weingarten convolution formula, 103
Weyl inequality

generalized, 270
Wick’s formula, 7
Wigner random matrix, 107
Wigner’s semi-circle law, see semi-circle law
Wishart random matrix, 116

genus expansion, 117
W �-probability space, 15

Z
zero divisor, 220
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