
Chapter 3
Optimization

In this chapter, we briefly review the results concerning theminimization of quadratic
functions to the extent which is sufficient for understanding the algorithms described
in Part II. The results are presented with specialized arguments, typically algebraic,
that exploit the specific structure of these problems. Systematic exposition of opti-
mization theory in the framework of nonlinear optimization can be found in the books
byBertsekas [1], Nocedal andWright [2], Conn, Gould, and Toint [3], Bazaraa, Sher-
ali, and Shetty [4], or Griva, Nash, and Sofer [5].

3.1 Optimization Problems and Solutions

Optimization problems considered in this book are described by a cost (objective,
target) function f defined on a subsetD ⊆ R

n and by a constraint set Ω ⊆ D . The
elements of Ω are called feasible vectors. Important ingredients of scalable algo-
rithms for the frictionless contact problems are efficient algorithms for the solution
of quadratic programming (QP) problems with a quadratic cost function f and a
constraint set Ω ⊆ R

n described by linear equalities and inequalities. The solution
of problems with friction requires effective algorithms for special quadratically con-
strained quadratic programmes (QCQP) with the constraints described by linear
equalities and separable quadratic inequalities.

We look either for a solution x ∈ R
n of the unconstrained minimization problem

which satisfies
f (x) ≤ f (x), x ∈ R

n, (3.1)

or for a solution x ∈ Ω of the constrained minimization problem

f (x) ≤ f (x), x ∈ Ω, Ω ⊂ R
n. (3.2)

A solution of the minimization problem is called its minimizer or global minimizer.
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30 3 Optimization

A nonzero vector d ∈ R
n is a feasible direction of Ω at a feasible point x if

x + εd ∈ Ω for all sufficiently small ε > 0. A nonzero vector d ∈ R
n is a recession

direction, or simply a direction, of Ω if for each x ∈ Ω, x + αd ∈ Ω for all α > 0.

3.2 Unconstrained Quadratic Programming

Let us first recall some simple results which concern unconstrained quadratic pro-
gramming.

3.2.1 Quadratic Cost Functions

We consider the cost functions in the form

f (x) = 1

2
xTAx − bT x, (3.3)

where A ∈ R
n×n denotes a given SPS or SPD matrix of order n and b ∈ R

n .
If x,d ∈ R

n , then using elementary computations and A = AT , we get

f (x + d) = f (x) + (Ax − b)Td + 1

2
dTAd. (3.4)

The formula (3.4) is Taylor’s expansion of f at x, so that the gradient of f at x is
given by

∇ f (x) = Ax − b, (3.5)

and the Hessian of f at x is given by

∇2 f (x) = A.

Taylor’s expansion will be our simple but powerful tool in what follows.
A vector d is a decrease direction of f at x if

f (x + εd) < f (x)

for all sufficiently small values of ε > 0. Using Taylor’s expansion (3.4) in the form

f (x + εd) = f (x) + ε(Ax − b)Td + ε2

2
dTAd,

we get that d is a decrease direction if and only if

(Ax − b)Td < 0.
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3.2.2 Unconstrained Minimization of Quadratic Functions

The followingproposition gives algebraic conditions that are satisfiedby the solutions
of the unconstrained QP problem to find

min
x∈Rn

f (x), (3.6)

where f is a quadratic function defined by (3.3).

Proposition 3.1 Let the quadratic function f be defined by an SPS or SPD matrix
A ∈ R

n×n and b ∈ R
n. Then the following statements hold:

(i) A vector x is a solution of the unconstrained minimization problem (3.6) if and
only if

∇ f (x) = Ax − b = o. (3.7)

(ii) The minimization problem (3.6) has a unique solution if and only if A is SPD.

Proof The proof is a simple corollary of Taylor’s expansion formula (3.4). �

Remark 3.1 Condition (3.7) can be written as a variational equality

(Ax)T (x − x) = bT (x − x), x ∈ R
n.

Examining the gradient condition (3.7), we get that problem (3.6) has a solution if
and only if A is SPS and

b ∈ ImA. (3.8)

Denoting by R a matrix the columns of which span KerA, we can rewrite (3.8) as
RTb = o. This condition has a simple mechanical interpretation: if a mechanical
system is in equilibrium, the external forces must be orthogonal to the rigid body
motions.

If b ∈ ImA, a solution of (3.6) is given by

x = A+b,

where A+ is a left generalized inverse introduced in Sect. 2.3. After substituting into
f and simple manipulations, we get

min
x∈Rn

f (x) = −1

2
bTA+b. (3.9)

In particular, if A is positive definite, then

min
x∈Rn

f (x) = −1

2
bTA−1b. (3.10)

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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The above formulae can be used to develop useful estimates. Indeed, if (3.8)
holds and x ∈ R

n , we get

f (x) ≥ −1

2
bTA+b = −1

2
bTA†b ≥ −1

2
‖A†‖‖b‖2 = − ‖b‖2

2λmin
,

where A† denotes the Moore–Penrose generalized inverse and λmin denotes the least
nonzero eigenvalue of A. In particular, it follows that if A is positive definite and
λmin denotes the least eigenvalue of A, then for any x ∈ R

n

f (x) ≥ −1

2
bTA−1b ≥ −1

2
‖A−1‖‖b‖2 = − ‖b‖2

2λmin
. (3.11)

If the dimension n of the unconstrainedminimization problem (3.6) is large, then it
can be too ambitious to look for a solution which satisfies the gradient condition (3.7)
exactly. A natural idea is to consider the weaker condition

‖∇ f (x)‖ ≤ ε (3.12)

with a small epsilon. If x satisfies the latter condition with ε sufficiently small and
A nonsingular, then x is near the unique solution x̂ as

‖x − x̂‖ = ‖A−1A
(
x − x̂

) ‖ = ‖A−1(Ax − b)‖ ≤ ‖A−1‖‖∇ f (x)‖. (3.13)

The typical “solution” returned by an iterative solver is just x that satisfies (3.12).

3.3 Convexity

Intuitively, convexity is a property of the sets that contain the joining segment with
any two points. More formally, a subset Ω of Rn is convex if for any x and y in Ω

and α ∈ (0, 1), the vector s = αx + (1 − α)y is also in Ω .
Let x1, . . . , xk be vectors of Rn . If α1, . . . , αk are scalars such that

αi ≥ 0, i = 1, . . . , k,

k∑

i=1

αi = 1,

then the vector v = ∑k
i=1 αixi is said to be a convex combination of vectors

x1, . . . , xk . The convex hull of x1, . . . , xk , denoted Conv{x1, . . . , xk}, is the set of all
convex combinations of x1, . . . , xk .
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3.3.1 Convex Quadratic Functions

Given a convex set Ω ∈ R
n , a mapping h : Ω → R is said to be a convex function

if its epigraph is convex, that is, if

h (αx + (1 − α)y) ≤ αh(x) + (1 − α)h(y)

for all x, y ∈ Ω and α ∈ (0, 1), and it is strictly convex if

h
(
αx + (1 − α)y

)
< αh(x) + (1 − α)h(y)

for all x, y ∈ Ω, x 
= y, and α ∈ (0, 1).
The following proposition gives a characterization of convex functions.

Proposition 3.2 Let V be a subspace of Rn. The restriction f |V of a quadratic
function f with the Hessian matrix A to V is convex if and only if A|V is positive
semidefinite, and f |V is strictly convex if and only if A|V is positive definite.

Proof Let V be a subspace, let x, y ∈ V , α ∈ (0, 1), and s = αx + (1 − α)y. Then
by Taylor’s expansion (3.4) of f at s

f (s) + ∇ f (s)T (x − s) + 1

2
(x − s)TA(x − s) = f (x),

f (s) + ∇ f (s)T (y − s) + 1

2
(y − s)TA(y − s) = f (y).

Multiplying the first equation by α, the second equation by 1 − α, and summing up,
we get

f (s) + α

2
(x − s)TA(x − s) + 1 − α

2
(y − s)TA(y − s)

= α f (x) + (1 − α) f (y).
(3.14)

It follows that if A|V is positive semidefinite, then f |V is convex. Moreover, since
x = y is equivalent to x = s and y = s, it follows that if A|V is positive definite, then
f |V is strictly convex.
Let us now assume that f |V is convex, let z ∈ V , α = 1

2 , and denote x = 2z,
y = o. Then s = z, x − s = z, y− s = −z, and substituting into (3.14) results in

f (s) + 1

2
zTAz = α f (x) + (1 − α) f (y).

Since z ∈ V is arbitrary and f |V is assumed to be convex, it follows that

1

2
zTAz = α f (x) + (1 − α) f (y) − f (αx + (1 − α)y) ≥ 0.
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Thus A|V is positive semidefinite. Moreover, if f |V is strictly convex, then A|V is
positive definite. �

The strictly convex quadratic functions have a nice property that f (x) → ∞
when ‖x‖ → ∞. The functions with this property are called coercive functions.
More generally, a function f : Rn → R is said to be coercive on Ω ⊆ R

n if

f (x) → ∞ for ‖x‖ → ∞, x ∈ Ω.

3.3.2 Minimizers of Convex Function

Under the convexity assumptions, each local minimizer is a global minimizer. We
shall formulate this result together with some observations concerning the set of
solutions.

Proposition 3.3 Let f and Ω ⊆ R
n be a convex quadratic function defined by (3.3)

and a closed convex set, respectively. Then the following statements hold:
(i) Each local minimizer of f subject to x ∈ Ω is a global minimizer of f subject to
x ∈ Ω .
(ii) If x, y are two minimizers of f subject to x ∈ Ω , then

x − y ∈ KerA ∩ Span{b}⊥.

(iii) If f is strictly convex on Ω and x, y are two minimizers of f subject to x ∈ Ω ,
then x = y.

Proof (i) Let x ∈ Ω and y ∈ Ω be local minimizers of f subject to x ∈ Ω ,
f (x) < f (y). Denoting yα = αx + (1 − α)y and using that f is convex, we get

f (yα) = f (αx + (1 − α)y) ≤ α f (x) + (1 − α) f (y) < f (y)

for every α ∈ (0, 1). Since

‖y − yα‖ = α‖y − x‖,

the inequality contradicts the assumption that y is a local minimizer.
(ii) Let x and y be global minimizers of f on Ω . Then for any α ∈ [0, 1]

x + α(y − x) = (1 − α)x + αy ∈ Ω, y + α(x − y) = (1 − α)y + αx ∈ Ω.
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Moreover, using Taylor’s formula, we get

0 ≤ f
(
x + α(y − x)

) − f (x) = α(Ax − b)T (y − x) + α2

2
(y − x)TA(y − x),

0 ≤ f
(
y + α(x − y)

) − f (y) = α(Ay − b)T (x − y) + α2

2
(x − y)TA(x − y).

Since the latter inequalities hold for arbitrarily small α, it follows that

(Ax − b)T (y − x) ≥ 0 and (Ay − b)T (x − y) ≥ 0.

After summing up the latter inequalities and simple manipulations, we have

−(x − y)TA(x − y) ≥ 0.

Since the convexity of f implies by Proposition 3.2 that A is positive semidefinite,
it follows that x − y ∈ KerA.

If f (x) = f (y) and x, y ∈ KerA, then

bT (x − y) = f (x) − f (y) = 0,

i.e., x − y ∈ Span{b}⊥.
(iii) Let f be strictly convex and let x, y ∈ Ω be different global minimizers of f
on Ω , so that f (x) = f (y). Then KerA = {o} and by (ii) x − y = o. �

3.3.3 Existence of Minimizers

Since quadratic functions are continuous, existence of at least one minimizer is
guaranteed by the Weierstrass theorem provided Ω is compact, that is, closed and
bounded. The following standard results do not assume that Ω is bounded.

Proposition 3.4 Let f be a convex quadratic function and let Ω denote a closed
convex set. Then the following statements hold:
(i) If f is strictly convex, then there is a unique minimizer of f subject to x ∈ Ω .
(ii) If f is coercive on Ω , then a global minimizer of f subject to x ∈ Ω exists.
(iii) If f is bounded from below on Ω , then there is a global minimizer of f subject
to x ∈ Ω .

Proof (i) If f is strictly convex, it follows by Proposition 3.2 that A is SPD and
z = A−1b is by Proposition 3.1 the unique minimizer of f on R

n . Thus for any
x ∈ R

n

f (x) ≥ f (z).
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It follows that the infimum of f (x) subject to x ∈ Ω exists, and there is a sequence
of vectors xk ∈ Ω such that

lim
k→∞ f (xk) = inf

x∈Ω
f (x).

The sequence {xk} is bounded as

f (xk) − f (z) = 1

2
(xk − z)TA(xk − z) ≥ λmin

2
‖xk − z‖2,

where λmin denotes the least eigenvalue of A. It follows that {xk} has at least one
cluster point x ∈ Ω . Since f is continuous, we get

f (x) = inf
x∈Ω

f (x).

The uniqueness follows by Proposition 3.3.
(ii) The proof is similar to that of (i). See, e.g., Bertsekas [1, Proposition A.8].
(iii) The statement is the well-known Frank–Wolfe theorem [6]. �

3.3.4 Projections to Convex Sets

Let us define the projection PΩ to the (closed) convex set Ω ⊂ R
n as a mapping

which assigns to each x ∈ R
n its nearest vector x̂ ∈ Ω as in Fig. 3.1. The following

proposition concerns the projection induced by the Euclidean scalar product.

Fig. 3.1 Projection to the convex set

Proposition 3.5 Let Ω ⊆ R
n be a nonempty closed convex set and x ∈ R

n. Then
there is a unique point x̂ ∈ Ω with the minimum Euclidean distance from x, and for
any y ∈ Ω

(x − x̂)T (y − x̂) ≤ 0. (3.15)
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Proof Since the proof is trivial for x ∈ Ω , let us assume that x /∈ Ω is arbitrary but
fixed and observe that the function f defined on Rn by

f (y) = ‖x − y‖2 = yT y − 2yT x + ‖x‖2

has the Hessian
∇2 f (y) = 2I.

The identity matrix being positive definite, it follows by Proposition 3.2 that f is
strictly convex, so that the unique minimizer x̂ ∈ Ω of f (y) subject to y ∈ Ω exists
by Proposition 3.4(i).

If y ∈ Ω and α ∈ (0, 1), then by convexity of Ω

(1 − α)̂x + αy = x̂ + α(y − x̂) ∈ Ω,

so that for any x ∈ R
n

‖x − x̂‖2 ≤ ‖x − x̂ − α(y − x̂)‖2.

Using simple manipulations and the latter inequality, we get

‖x − x̂ − α(y − x̂)‖2 = ‖̂x − x‖2 + α2‖y − x̂‖2 − 2α(x − x̂)T (y − x̂)

≤ ‖x − x̂ − α(y − x̂)‖2
+α2‖y − x̂‖2 − 2α(x − x̂)T (y − x̂).

Thus
2α(x − x̂)T (y − x̂) ≤ α2‖y − x̂‖2

for any α ∈ (0, 1). To obtain (3.15), just divide the last inequality by α and observe
that α may be arbitrarily small. �

Using Proposition 3.5, it is not difficult to show that themapping PΩ which assigns
to each x ∈ R

n its projection to Ω is nonexpansive as in Fig. 3.2.

Fig. 3.2 Projection PΩ is nonexpansive
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Corollary 3.1 Let Ω ⊆ R
n be a nonempty closed convex set, and for any x ∈ R

n,
let x̂ ∈ Ω denote the projection of x to Ω . Then for any x, y ∈ Ω

‖̂x − ŷ‖ ≤ ‖x − y‖. (3.16)

Proof If x, y ∈ R, then by Proposition 3.5 their projections x̂, ŷ to Ω satisfy

(x − x̂)T (z − x̂) ≤ 0 and (y − ŷ)T (z − ŷ) ≤ 0

for any z ∈ Ω . Substituting z = ŷ into the first inequality, z = x̂ into the second
inequality, and summing up, we get

(x − x̂ − y + ŷ)T (̂y − x̂) ≤ 0.

After rearranging the entries and using the Schwarz inequality, we get

‖̂x − ŷ‖2 ≤ (x − y)T (̂x − ŷ) ≤ ‖x − y‖‖̂x − ŷ‖,

which proves (3.16). �

3.4 Equality Constrained Problems

We shall now consider the problems with the constraint set described by a set of
linear equations. More formally, we shall look for

min
x∈ΩE

f (x), (3.17)

where f is a convex quadratic function defined by (3.3), ΩE = {x ∈ R
n : Bx = c},

B ∈ R
m×n , and c ∈ ImB. We assume that B 
= O is not a full column rank matrix,

so that KerB 
= {o}, but we admit dependent rows of B. It is easy to check that ΩE

is a nonempty closed convex set.
A feasible set ΩE is a linear manifold of the form

ΩE = x + KerB,

where x is any vector which satisfies

Bx = c.

Thus, a nonzero vector d ∈ R
n is a feasible direction of ΩE at any x ∈ ΩE if and

only if d ∈ KerB, and d is a recession direction of ΩE if and only if d ∈ KerB.
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Substituting x = x + z, z ∈ KerB, we can reduce (3.17) to the minimization of

fx (z) = 1

2
zTAz − (b − Ax)T z (3.18)

over the subspace KerB. Thus we can assume, without loss of generality, that c = o
in the definition of ΩE . We shall occasionally use this assumption to simplify our
exposition.

A useful tool for the analysis of equality constrained problems is the Lagrangian
function L0 : Rn+m → R defined by

L0(x,λ) = f (x) + λT (Bx − c) = 1

2
xTAx − bT x + (Bx − c)T λ. (3.19)

Obviously

∇2
xxL0(x,λ) = ∇2 f (x) = A, (3.20)

∇xL0(x,λ) = ∇ f (x) + BT λ = Ax − b + BT λ, (3.21)

L0(x + d,λ) = L0(x,λ) + (Ax − b + BT λ)Td + 1

2
dTAd. (3.22)

The Lagrangian function is defined in such a way that if considered as a function
of x, then its Hessian and its restriction to ΩE are exactly those of f , but its gradient
∇xL0(x,λ) varies depending on the choice of λ. It simply follows that if f is convex,
then L0 is convex for any fixed λ, and the global minimizer of L0 with respect to x
also varies with λ. We shall see that it is possible to give conditions on A, B, and b
such that with a suitable choice λ = λ̂, the solution of the constrained minimization
problem (3.17) reduces to the unconstrained minimization of L0 as in Fig. 3.3.

Fig. 3.3 Geometric illustration of the Lagrangian function
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3.4.1 Optimality Conditions

The main questions concerning the optimality and solvability conditions of (3.17)
are answered by the next proposition.

Proposition 3.6 Let the equality constrained problem (3.17) be defined by an SPS
or SPD matrix A ∈ R

n×n, a constraint matrix B ∈ R
m×n the column rank of which

is less than n, and vectors b ∈ R
n, c ∈ ImB. Then the following statements hold:

(i) A vector x ∈ ΩE is a solution of (3.17) if and only if

(Ax − b)Td = 0 (3.23)

for any d ∈ KerB.
(ii) A vector x ∈ ΩE is a solution of (3.17) if and only if there is a vector λ ∈ R

m

such that
Ax − b + BT λ = o. (3.24)

Proof (i) Let x be a solution of the equality constrainedminimization problem (3.17),
so that for any d ∈ KerB and α ∈ R

0 ≤ f (x + αd) − f (x) = α(Ax − b)Td + α2

2
dTAd. (3.25)

For sufficiently small values of α and (Ax − b)Td 
= 0, the sign of the right-hand
side of (3.25) is determined by the sign of α(Ax − b)Td. Since we can choose the
sign of α arbitrarily and the right-hand side of (3.25) is nonnegative, we conclude
that (3.23) holds for any d ∈ KerB.

Let us now assume that (3.23) holds for a vector x ∈ ΩE . Then

f (x + d) − f (x) = 1

2
dTAd ≥ 0

for any d ∈ KerB, so that x is a solution of (3.17).
(ii) Let x be a solution of (3.17), so that by (i) x satisfies (3.23) for any d ∈ KerB. The
latter condition is by (2.30) equivalent to Ax − b ∈ ImBT, so that there is λ ∈ R

m

such that (3.24) holds.
If there are λ and x ∈ ΩE such that (3.24) holds, then by Taylor’s expansion (3.22)

f (x + d) − f (x) = L0(x + d,λ) − L0(x,λ) = 1

2
dTAd ≥ 0

for any d ∈ KerB, so x is a solution of the equality constrained problem (3.17). �

The conditions (ii) of Proposition 3.6 are known as the Karush–Kuhn–Tucker
(KKT) conditions for the solution of the equality constrained problem (3.17). If
x ∈ ΩE and λ ∈ R

m satisfy (3.24), then (x,λ) is called aKKT pair of problem (3.17).

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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Its second component λ is called the vector of Lagrange multipliers or simply the
multiplier. We shall often use the notation x̂ or λ̂ to denote the components of a KKT
pair that are uniquely determined.

Proposition 3.6 has a simple geometrical interpretation. The condition (3.23)
requires that the gradient of f at a solution x is orthogonal to KerB, the set of
feasible directions of ΩE , so that there is no feasible decrease direction as illustrated
in Fig. 3.4. Since d is by (2.30) orthogonal to KerB if and only if d ∈ ImBT , it follows
that (3.23) is equivalent to the possibility to choose λ so that ∇xL0(x,λ) = o. If f is
convex, then the latter condition is equivalent to the condition for the unconstrained
minimizer of L0 with respect to x as illustrated in Fig. 3.5.

Fig. 3.4 Solvability condition (i) Fig. 3.5 Solvability condition (ii)

Notice that if f is convex, then the vector of Lagrange multipliers which is the
component of a KKT pair modifies the linear term of the original problem in such
a way that the solution of the unconstrained modified problem is exactly the same
as the solution of the original constrained problem. In terms of mechanics, if the
original problem describes the equilibrium of a constrained elastic body subject to
traction, then the modified problem is unconstrained with the constraints replaced
by the reaction forces.

3.4.2 Existence and Uniqueness

Using the optimality conditions of Sect. 3.4.1, we can formulate the conditions that
guarantee the existence or uniqueness of a solution of (3.17).

Proposition 3.7 Let the equality constrained problem (3.17) be defined by an SPS
or SPD matrix A ∈ R

n×n, a constraint matrix B ∈ R
m×n the column rank of which

is less than n, and vectors b ∈ R
n, c ∈ ImB. Let R denote a matrix the columns of

which span KerA. Then the following statements hold:

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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(i) If A is an SPS matrix, then problem (3.17) has a solution if and only if

RTb ∈ Im(RTBT ). (3.26)

(ii) If A|KerB is positive definite, then problem (3.17) has a unique solution.
(iii) If (x,λ) and (y,μ) are KKT couples for problem (3.17), then

x − y ∈ KerA ∩ Span{b}⊥ and λ − μ ∈ KerBT .

In particular, if problem (3.17) has a solution and

KerBT = {o},

then there is a unique Lagrange multiplier λ̂.

Proof (i) Using Proposition 3.6(ii), we have that problem (3.17) has a solution if
and only if there is λ such that b − BT λ ∈ ImA, or, equivalently, that b − BT λ

is orthogonal to KerA. The latter condition reads RTb − RTBT λ = o and can be
rewritten as (3.26).
(ii) First observe that if A|KerB is positive definite, then f |KerB is strictly convex
by Proposition 3.2 and it is easy to check that f |ΩE is strictly convex. Since ΩE

is closed, convex, and nonempty, it follows by Proposition 3.4(i) that the equality
constrained problem (3.17) has a unique solution.
(iii) First observe that KerB = {x − y : x, y ∈ ΩE } and that f is convex on KerB by
the assumption and Proposition 3.2. Thus if x and y are any solutions of (3.17), then
the left relation follows by Proposition 3.3(ii). The rest follows by a simple analysis
of the KKT conditions (3.24). �

If B is not a full row rank matrix and λ is a Lagrange multiplier for (3.17), then
by Proposition 3.7(iii) any Lagrange multiplier λ can be expressed in the form

λ = λ + d, d ∈ KerBT . (3.27)

The Lagrange multiplier λLS which minimizes the Euclidean norm is called the least
square Lagrange multiplier; it is a unique multiplier which belongs to ImB. If λ is
a vector of Lagrange multipliers, then λLS can be evaluated by

λLS = (
B†

)T
BT λ (3.28)

and
λ = λLS + d, d ∈ KerBT .
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If A is positive definite, then the unique solution x̂ of (3.17) is by Proposition 3.6
fully determined by the matrix equation

[
A BT

B O

] [
x
λ

]
=

[
b
c

]
, (3.29)

which is known as the Karush–Kuhn–Tucker system, briefly KKT system or KKT
conditions for the equality constrained problem (3.17). Proposition 3.6 does not
require that the relatedKKTsystem is nonsingular, in agreementwith observation that
the solution of the equality constrained problem should not depend on the description
of ΩE .

3.4.3 Sensitivity

The Lagrange multipliers emerged in Proposition 3.6 as auxiliary variables which
nobody had asked for, but which turned out to be useful in alternative formulations
of the optimality conditions. However, it turns out that the Lagrange multipliers fre-
quently have an interesting interpretation in specific practical contexts, as we have
mentioned at the end of Sect. 3.4.1, where we briefly described their mechanical
interpretation. Here we show that if they are uniquely determined by the KKT con-
ditions (3.29), then they are related to the rates of change of the optimal cost due to
the violation of constraints.

Fig. 3.6 Minimization with perturbed constraints

Let us assume thatA andB are positive definite and full rankmatrices, respectively,
so that there is a uniqueKKTcouple (̂x, λ̂) of the equality constrained problem (3.17).
For u ∈ R

m , let us consider also the perturbed problem

min
Bx=c+u

f (x)

as in Fig. 3.6. Its solution x(u) and the corresponding vector of Lagrange multipliers
λ(u) are fully determined by the KKT conditions
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[
A BT

B O

] [
x(u)

λ(u)

]
=

[
b

c + u

]
,

so that

[
x(u)

λ(u)

]
=

[
A BT

B O

]−1 [
b

c + u

]
=

[
A BT

B O

]−1 [
b
c

]
+

[
A BT

B O

]−1 [
o
u

]
.

First observe that d(u) = x(u) − x̂ satisfies

Bd(u) = Bx(u) − Bx̂ = u,

so that we can use ∇ f (̂x) = −BT λ̂ to approximate the change of optimal cost by

∇ f (̂x)Td(u) = −(BT λ̂)Td(u) = −λ̂
T
Bd(u) = −λ̂

T
u.

It follows that −[̂λ]i can be used to approximate the change of the optimal cost due
to the violation of the i th constraint by [u]i .

To give a more detailed analysis of the sensitivity of the optimal cost with respect
to the violation of constraints, let us define for each u ∈ R

m the primal function

p(u) = f (x(u)) .

Observing that x̂ = x(o) and using the explicit formula (2.4) to evaluate the inverse
of the KKT system, we get

x(u) = x̂ + A−1BTS−1u,

where S = BA−1BT denotes the Schur complement matrix. Thus

x(u) − x̂ = A−1BTS−1u,

so that

p(u) − p(o) = f (x(u)) − f (̂x)

= ∇ f (̂x)T
(
x(u) − x̂

) + 1

2

(
x(u) − x̂

)T
A

(
x(u) − x̂

)

= ∇ f (̂x)TA−1BTS−1u + 1

2
uTS−1BA−1BTS−1u.

It follows that the gradient of the primal function p at o is given by

∇ p(o) = (∇ f (̂x)TA−1BTS−1
)T = S−1BA−1∇ f (̂x).

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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Recalling that ∇ f (̂x) = −BT λ̂, we get

∇ p(o) = −S−1BA−1BT λ̂ = −λ̂. (3.30)

The analysis shows that the decrease of the total differential of f outsideΩE near
x̂ is compensated by the increase of λ̂

T
(Bx − c). See also Fig. 3.3. The components

of λ̂ are also called shadow prices after their interpretation in economy.

3.5 Inequality Constrained Problems

Let us now consider the problems

min
x∈ΩI

f (x), ΩI = {x ∈ R
n : h(x) ≤ o}, (3.31)

where f is a quadratic function defined by (3.3) and the constraints are defined
by continuously differentiable convex functions hi (x) = [h(x)]i , i = 1, . . . , s, that
satisfy ∇hi (x) 
= o when hi (x) = 0. In our applications, hi are either linear forms

hi (x) = bT
i x − ci , ci ∈ R,

or strictly convex separable quadratic functions, i.e.,

hi (x) = (xi − yi )
THi (xi − yi ) − ci , xi , yi ∈ R

2, Hi SPD, ci > 0.

We assume thatΩI is nonempty. If the definition ofΩI includes a quadratic inequal-
ity, we call (3.31) the QCQP (Quadratic Constraints Quadratic Cost) problem.

At any feasible point x, we define the active set

A (x) = {i ∈ {1, . . . , s} : hi (x) = 0}.

In particular, if x is a solution of (3.31) with h(x) = Bx − c, B ∈ R
s×n , then each

feasible direction of Ω E = {x ∈ R
n : [Bx]A (x) = cA (x)} at x is a feasible direction

of ΩI at x. Using the arguments of Sect. 3.4.1, we get that x is also a solution of the
equality constrained problem

min
x∈Ω E

f (x), Ω E = {x ∈ R
n : [Bx]A (x) = cA (x)}. (3.32)

Thus (3.31) is a more difficult problem than the equality constrained problem (3.17)
as its solution necessarily enhances the identification of A (x).
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3.5.1 Optimality Conditions for Linear Constraints

We shall start our exposition with the following optimality conditions.

Proposition 3.8 Let the inequality constrained problem (3.31) be defined by an SPS
or SPD symmetric matrixA ∈ R

n×n, the constraint matrixB ∈ R
m×n, and the vectors

b, c ∈ R
n. Let ΩI 
= ∅. Then the following statements hold:

(i) x ∈ ΩI is a solution of (3.31) if and only if

(Ax − b)Td ≥ 0 (3.33)

for any feasible direction d of ΩI at x.
(ii) x ∈ ΩI is a solution of (3.31) with linear inequality constraints if and only if
there is λ ∈ R

m such that

λ ≥ o, Ax − b + BT λ = o, and λ
T
(Bx − c) = 0. (3.34)

Proof (i) Let x be a solution of the inequality constrained problem (3.31) and let d
denote a feasible direction of ΩI at x, so that the right-hand side of

f (x + αd) − f (x) = α(Ax − b)Td + α2

2
dTAd (3.35)

is nonnegative for all sufficiently small α > 0. To prove (3.33), it is enough to take
α > 0 so small that the nonnegativity of the right-hand side of (3.35) implies that

α(Ax − b)Td ≥ 0.

Let us assume that x ∈ ΩI satisfies (3.33) and x ∈ ΩI . Since ΩI is convex, it
follows that d = x − x is a feasible direction of ΩI at x, so that, using Taylor’s
expansion and the assumptions, we have

f (x) − f (x) = (Ax − b)Td + 1

2
dTAd ≥ 0.

(ii) Notice any solution x of (3.31) solves (3.32), so that by Proposition 3.6(ii) there
is y such that

Ax − b + BT
A (x)y = cA (x),

and y ≥ o by the arguments based on the sensitivity of the minimum in Sect. 3.4.3.
To finish the proof, it is enough to define λ as y padded with zeros.

If (3.34) holds and x + d ∈ ΩI , then Ax − b = −BT λ and

f (x + d) − f (x) = (Ax − b)T d + 1

2
dT Ad ≥ −λT Bd = −λT (B(x + d) − c) ≥ o. �
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Remark 3.2 Condition (3.33) can be written as a variational inequality

(Ax)T (x − x) ≥ bT (x − x), x ∈ ΩI .

The conditions (3.34) are called the KKT conditions for inequality constraints.
The last of these conditions is called the condition of complementarity.

3.5.2 Optimality Conditions for Bound Constrained Problems

A special case of problem (3.31) is the bound constrained problem

min
x∈ΩB

f (x), ΩB = {x ∈ R
n : x ≥ �}, (3.36)

where f is a quadratic function defined by (3.3) and � ∈ R
n . The optimality condi-

tions for convex bound constrained problems can be written in a more convenient
form.

Proposition 3.9 Let f be a convex quadratic function defined by (3.3) with a positive
semidefinite Hessian A. Then x ∈ ΩB solves (3.36) if and only if

Ax − b ≥ o and (Ax − b)T (x − �) = 0. (3.37)

Proof First observe that denoting B = −In, c = −�, and

ΩI = {x ∈ R
n : Bx ≤ c},

the bound constrained problem (3.36) becomes the standard inequality constrained
problem (3.31) with ΩI = ΩB . Using Proposition 3.11, it follows that x ∈ ΩB is the
solution of (3.36) if and only if there is λ ∈ R

n such that

λ ≥ o, Ax − b − Iλ = o, and λT (x − �) = 0. (3.38)

We complete the proof by observing that (3.37) can be obtained from (3.38) and vice
versa by substituting λ = Ax − b. �

In the proof, we have shown that λ = ∇ f (x) is a vector of Lagrange multipliers
for the constraints −x ≤ −�, or, equivalently, for x ≥ �. Notice that the conditions
(3.37) require that none of the vectors si is a feasible decrease direction of ΩB at
x, where si denotes a vector of the standard basis of Rn formed by the columns of
In , i ∈ A (x).
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3.5.3 Optimality Conditions for More General Constraints

If the constraints hi that define (3.31) are nonlinear, it can happen that their first-
order representation by means of the gradients ∇hi is not adequate. The reason is
illustrated in Fig. 3.7, where the linear cone LΩI (x) of ΩI at x on the boundary of
ΩI defined by

LΩI (x) = {d ∈ R
n : dT ∇hi (x) ≤ 0, i ∈ A (x)}

comprises the whole line, while the tangent cone TΩI (x) of ΩI at x on the boundary
of ΩI defined by

TΩI (x) = {d ∈ R
n : d = lim

i→∞di , x + αidi ∈ ΩI , lim
i→∞ αi = 0, αi > 0}

comprises only one point. To avoid such pathological situations, we shall assume that
LΩI (x) = TΩI (x). This is also called the Abadie constraint qualification (ACQ) [5].
Notice that linear constraints satisfy ACQ. TheACQ assumption reduces the analysis
of the conditions of minima to the linear case, so that we can formulate the following
proposition.

Fig. 3.7 Example of ΩI = {x}, LΩI (x) 
= TΩI (x)

Proposition 3.10 Let the inequality constrained problem (3.31) be defined by an
SPS or SPD matrix A ∈ R

n×n and convex differentiable functions hi and let ΩI

satisfies ACQ. Then x ∈ ΩI is a solution of (3.31) if and only if there is λ ∈ R
m such

that
λ ≥ o, Ax − b + ∇h(x)λ = o, and λ

T
h(x) = 0. (3.39)
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Proof First notice that due to the definition of tangential cone, x solves (3.31) if and
only if

f (x) = min
x+TΩI (x)

f (x).

Since we assume TΩI (x) = LΩI (x), the letter problem has the same solution as

min
x+LΩI (x)

f (x).

Using Proposition 3.8, we get that x ∈ ΩI solves (3.31) if and only if x satisfies
(3.39). �

3.5.4 Existence and Uniqueness

In our discussionof the existence anduniqueness results for the inequality constrained
QP problem (3.31), we restrict our attention to the following results that are useful
in our applications.

Proposition 3.11 Let the inequality constrained problem (3.31) be defined by convex
functions hi and f . Let C denote the cone of recession directions of the nonempty
feasible set ΩI . Then the following statements hold:
(i) If problem (3.31) has a solution, then

dTb ≤ 0 f or d ∈ C ∩ KerA. (3.40)

(ii) If the constraints are linear, then (3.40) is sufficient for the existence of minima.
(iii) If the constraints are linear and (x,λ) and (y,μ) are KKT couples for (3.31),
then

x − y ∈ KerA ∩ Span{b}⊥ and λ − μ ∈ KerBT . (3.41)

(iv) If A is positive definite, then the inequality constrained minimization problem
(3.31) has a unique solution.

Proof (i) Let x be a global solution of the inequality constrained minimization prob-
lem (3.31), and recall that

f (x + αd) − f (x) = α(Ax − b)Td + α2

2
dTAd (3.42)

for any d ∈ R
n and α ∈ R. Taking d ∈ C ∩ KerA, (3.42) reduces to

f (x + αd) − f (x) = −αbTd,

which is nonnegative for any α ≥ 0 if and only if bTd ≤ 0.
(ii) See Dostál [7].
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(iii) The first inclusion of (3.41) holds by Proposition 3.3(ii) for the solutions of any
convex problem. The inclusion for multipliers follows by the KKT condition (3.34).
(iv) If A is SPD, then f is strictly convex by Proposition 3.2, so by Proposition3.4
there is a unique minimizer of f subject to x ∈ ΩI . �

3.6 Equality and Inequality Constrained Problems

In the previous sections, we have obtained the results concerning optimization prob-
lemswith either equality or inequality constraints. Here we extend these results to the
optimization problems with both equality and inequality constraints. More formally,
we look for

min
x∈ΩI E

f (x), ΩI E = {x ∈ R
n : [h(x)]I ≤ oI , [h(x)]E = oE }, (3.43)

where f is a quadratic function with the SPS Hessian A ∈ R
n×n and the linear

term defined by b ∈ R
n , I , E are the disjunct sets of indices which decompose

{1, . . . , m}, and the equality and inequality constraints are defined respectively by lin-
ear and continuously differentiable convex functions [h(x)]i = hi (x), i = 1, . . . , m.
We assume that ∇hi (x) 
= o when hi (x) = 0 and that Ωi 
= ∅. We are especially
interested in linear equality constraints and the inequality constraints defined either
by linear forms or by strictly convex separable quadratic functions.

If we describe the conditions that define ΩI E in components, we get

ΩI E = {x ∈ R
n : hi (x) ≤ 0, i ∈ I , bT

i x = ci , i ∈ E },

which makes sense even for I = ∅ or E = ∅; we consider the conditions which
concern the empty set as always satisfied. For example, E = ∅ gives

ΩI E = {x ∈ R
n : hi (x) ≤ 0, i ∈ I },

and the kernel of an “empty” matrix is defined by

KerBE ∗ = {x ∈ R
n : bT

i x = 0, i ∈ E } = R
n.

If all constraints are linear, then ΩI is defined by B ∈ R
m×n and c ∈ R

m ,

B =
⎡

⎣
bT
1

. . .

bT
m

⎤

⎦ =
[
BI

BE

]
, c =

[
cI

cE

]
,

and we get a QP variant of (3.43)

min
x∈ΩI E

f (x), ΩI E = {x ∈ R
n : BIx ≤ cI , BEx = cE }. (3.44)
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3.6.1 Optimality Conditions

First observe that any equality constraintbT
i x = ci , i ∈ E can be replaced by the cou-

ple of inequalities bT
i x ≤ ci and −bT

i x ≤ −ci . We can thus use our results obtained
by the analysis of the inequality constrained problems in Sect. 3.5 to get similar
results for general bound and equality constrained QP problem (3.43).

Proposition 3.12 Let the quadratic function f be defined by the SPS matrix A and
b ∈ R

n. Let ΩI E 
= ∅ be defined by

hE (x) = BEx − cE

and convex differential functions hi , i ∈ I . Then the following statements hold:
(i) x ∈ ΩI E is a solution of (3.43) if and only if

∇ f (x) = (Ax − b)Td ≥ 0 (3.45)

for any feasible direction d of ΩI E at x.
(ii) If ΩI E is defined by linear constraints (3.44), then x ∈ ΩI E is a solution of (3.43)
if and only if there is a vector λ ∈ R

m such that

λI ≥ o, Ax − b + BT λ = o, and λ
T
I [Bx − c]I = 0. (3.46)

(iii) If ΩI E is a feasible set for the problem (3.43) and the constraints satisfy ACQ,
then x ∈ ΩI E is a solution of (3.43) if and only if there is a vector λ ∈ R

m such that

λI ≥ o, Ax − b + ∇h(x)λ = o, and λ
T
I hI (x) = 0. (3.47)

Proof First observe that ifE = ∅, then the statements of the above proposition reduce
to Propositions 3.8 and 3.10, and ifI = ∅, then they reduce to Proposition 3.6. Thus
we can assume in the rest of the proof that I 
= ∅ and E 
= ∅.

As mentioned above, (3.43) may be rewritten also as

min
x∈ΩI

f (x), ΩI = {x ∈ R
n : [Bx]I ≤ cI , [Bx]E ≤ cE ,−[Bx]E ≤ −cE },

(3.48)

whereΩI = ΩI E . Thus the statement (i) is a special case of Proposition 3.8. Observ-
ing that we can always ignore one of the inequality constraints related tho the
same equality constraint, we get easily (ii) and (iii) from Propositions 3.8 and 3.10,
respectively. �

Remark 3.3 Condition (3.45) can be written as a variational inequality

(Ax)T (x − x) ≥ bT (x − x), x ∈ ΩI E .
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3.7 Duality for Quadratic Programming Problems

The duality associates each problem (3.43), which we shall also call primal problem,
with a maximization problem in Lagrange multipliers that we shall call the dual
problem. The solution of the dual problem is a Lagrange multiplier of the solution of
the primal problem, so that having the solution of the dual problem, we can get the
solution of the primal problem by solving an unconstrained problem. Here we limit
our attention to the QP problems (3.44), postponing the discussion of more general
cases to specific applications.

The cost function of the dual problem is the dual function

Θ(λ) = inf
x∈Rn

L0(x,λ). (3.49)

If A is SPD, then L0 is a quadratic function with the SPD Hessian and Θ is a
quadratic function in λwhich can be defined by an explicit formula. However, in our
applications, it often happens that A is only SPS, so the cost function f need not be
bounded from below and−∞ can be in the range of the dual functionΘ . We resolve
this problem by keeping Θ quadratic at the cost of introducing equality constraints.

Proposition 3.13 Let matricesA,B, vectorsb, c, and index setsI ,E be those of the
definition of problem (3.44) withA positive semidefinite and ΩI E 
= ∅. LetR ∈ R

n×d

be a full rank matrix such that
ImR = KerA,

let A+ denote an SPS generalized inverse of A, and let

Θ(λ) = −1

2
λTBA+BT λ + λT (BA+b − c) − 1

2
bTA+b. (3.50)

Then the following statements hold:
(i) If (x,λ) is a KKT pair for (3.44), then λ is a solution of

max
λ∈ΩB E

Θ(λ), ΩB E = {λ ∈ R
m : λI ≥ o, RTBT λ = RTb}. (3.51)

Moreover, there is α ∈ R
d such that (λ,α) is a KKT pair for problem (3.51) and

x = A+(b − BT λ) + Rα. (3.52)

(ii) If (λ,α) is a KKT pair for problem (3.51), then x defined by (3.52) is a solution
of the equality and inequality constrained problem (3.44).
(iii) If (x,λ) is a KKT pair for problem (3.44), then

f (x) = Θ(λ). (3.53)
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Proof (i) Assume that (x,λ) is a KKT pair for (3.44), so that (x,λ) is by Proposition
3.12 a solution of

λI ≥ o, (3.54)

∇xL0(x,λ) = Ax − b + BT λ = o, (3.55)

[∇λL0(x,λ)]I = [
Bx − c

]
I

≤ o, (3.56)

[∇λL0(x,λ)]E = [
Bx − c

]
E

= o, (3.57)

λT
I [Bx − c]I = 0. (3.58)

Notice that given a vector λ ∈ R
m , we can express the condition

b − BT λ ∈ ImA,

which guarantees solvability of (3.55) with respect to x, conveniently as

RT (BT λ − b) = o. (3.59)

If the latter condition is satisfied, then we can use any symmetric left generalized
inverse A+ to find all solutions of (3.55) with respect to x in the form

x(λ,α) = A+(b − BT λ) + Rα, α ∈ R
d ,

where d is the dimension of KerA. After substituting for x into (3.56)–(3.58), we get

[ −BA+BT λ + (BA+b − c) + BRα]I ≤ o, (3.60)

[ −BA+BT λ + (BA+b − c) + BRα]E = o, (3.61)

λT
I [ −BA+BT λ + (BA+b − c) + BRα]I = 0. (3.62)

The formulae in (3.60)–(3.62) look like something that we have already seen.
Indeed, introducing the vector of Lagrange multipliers α for (3.59) and denoting

Λ(λ,α) = Θ(λ) + αT (RTBT λ − RTb)

= −1

2
λTBA+BT λ + λT (BA+b − c) − 1

2
bTA+b

+αT (RTBT λ − RTb),

g = ∇λΛ(λ,α) = −BA+BT λ + (BA+b − c) + BRα,

we can rewrite the relations (3.60)–(3.62) as

gI ≤ o, gE = o, and λT
I gI = 0. (3.63)
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Comparing (3.63) with the KKT conditions for the bound and equality constrained
problem, we conclude that (3.63) are the KKT conditions for

maxΘ(λ) subject to RTBT λ − RTb = o and λI ≥ o. (3.64)

We have thus proved that if (x,λ) solves (3.54)–(3.58), then λ is a feasible vector
for problem (3.64) which satisfies the related KKT conditions. Recalling that A+ is
by the assumption symmetric positive semidefinite, so that BA+BT is also positive
semidefinite, we conclude that λ solves (3.51). Moreover, we have shown that any
solution x can be obtained in the form (3.52) with a KKT pair (λ,α), where α is a
vector of the Lagrange multipliers for the equality constraints in (3.51).
(ii) Let (λ,α) be a KKT pair for problem (3.51), so that (λ,α) satisfies (3.59)–(3.62)
and λI ≥ o. If we denote

x = A+(b − BT λ) + Rα,

we can use (3.60)–(3.62) to verify directly that x is feasible and (x,λ) satisfies the
complementarity conditions, respectively. Finally, using (3.59), we get that there is
y ∈ R

n such that
b − BT λ = Ay.

Thus

Ax − b + BT λ = A
(
A+(b − BT λ) + Rα

) − b + BT λ

= AA+Ay − b + BT λ = b − BT λ − b + BT λ = o,

which proves that (x,λ) is a KKT pair for (3.44).
(iii) Let (x,λ) be a KKT pair for (3.44). Using the feasibility condition (3.57) and
the complementarity condition (3.58), we get

λ
T
(Bx − c) = λ

T
E [Bx − c]E + λ

T
I [Bx − c]I = 0.

Hence
f (x) = f (x) + λ

T
(Bx − c) = L0(x,λ).

Next recall that if (x,λ) is a KKT pair, then

∇xL0(x,λ) = o.

Since L0 is convex, the latter is the gradient condition for the unconstrainedminimizer
of L0 with respect to x; therefore

L0(x,λ) = min
x∈Rn

L0(x,λ) = Θ(λ).
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Thus
f (x) = L0(x,λ) = Θ(λ).

�

Since the constant term is not essential in our applications and we formulate our
algorithms for minimization problems, we shall consider the function

θ(λ) = −Θ(λ) − 1

2
bTA+b = 1

2
λTBA+BT λ − λT (BA+b − c), (3.65)

so that
arg min

λ∈ΩB E

θ(λ) = arg max
λ∈ΩB E

Θ(λ).

3.7.1 Uniqueness of a KKT Pair

We shall complete our exposition of duality by formulating the results concerning
the uniqueness of the solution for the constrained dual problem

min
λ∈ΩB E

θ(λ), ΩB E = {λ ∈ R
m : λI ≥ o, RTBT λ = RTb}, (3.66)

where θ is defined by (3.65).

Proposition 3.14 Let the matrices A, B, the vectors b, c, and the index sets I , E
be those from the definition of problem (3.44) with A positive semidefinite, ΩI E 
= ∅,
and ΩB E 
= ∅. Let R ∈ R

n×d be a full rank matrix such that

ImR = KerA.

Then the following statements hold:
(i) If BT and BR are full column rank matrices, then there is a unique solution λ̂ of
problem (3.66).
(ii) If λ̂ is a unique solution of the constrained dual problem (3.66),

A = {i : [λ]i > 0} ∪ E ,

and BA ∗R is a full column rank matrix, then there is a unique triple (̂x, λ̂, α̂) such
that (̂x, λ̂) solves the primal problem (3.44) and (̂λ, α̂) solves the constrained dual
problem (3.66). If λ̂ is known, then

α̂ = (RTBT
A ∗BA ∗R)−1RTBT

A ∗
(
BA ∗A+BT λ̂ − (BA ∗A+b − cA )

)
(3.67)

and
x̂ = A+(b − BT λ̂) + Rα̂. (3.68)
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(iii) If BT and BE ∗R are full column rank matrices, then there is a unique triple
(̂x, λ̂, α̂) such that (̂x, λ̂) solves the primal problem (3.44) and (̂λ, α̂) solves the
constrained dual problem (3.66).

Proof (i) Let BT and BR be full column rank matrices. To show that there is a
unique solution of (3.66), we examine the Hessian BA+BT of θ . Let RTBT λ = o
andBA+BT λ = o. Using the definition ofR, it follows thatBT λ ∈ ImA. Hence there
is μ ∈ R

n such that
BT λ = Aμ

and
μTAμ = μTAA+Aμ = λTBA+BT λ = 0.

Thus μ ∈ KerA and
BT λ = Aμ = o.

Since we assume that BT has independent columns, we conclude that λ = o. We
have thus proved that the restriction of BA+BT to Ker(RTBT ) is positive definite, so
that θ |KerRTBT is by Proposition 3.4 strictly convex, and it is easy to check that it
is strictly convex on

U = {λ ∈ R
m : RTBT λ = RTb}.

Since ΩB E 
= ∅ and ΩB E ⊆ U , we have that θ is strictly convex on ΩB E , and it
follows by Proposition 3.3 that there is a unique solution λ̂ of (3.66).
(ii) Let λ̂ be a unique solution of problem (3.66). Since the solution satisfies the
related KKT conditions, it follows that there is α̂ such that

BA ∗A+BT λ̂ − (BA ∗A+b − cA ) − BA ∗Rα̂ = o.

After multiplying on the left by RTBT
A ∗ and simple manipulations, we get (3.67).

The inverse exists and the solution α̂ is unique due to the uniqueness of λ̂ and the
assumption on the full column rank of BA ∗R.
(iii) IfBT andBE ∗R are full column rankmatrices, thenBR is also a full column rank
matrix. Hence, there is a unique solution λ̂ of problem (3.66) by (i). Since E ⊆ A
and BE ∗R has independent columns, it follows that BA ∗R has also independent
columns. Thus we can use (ii) to finish the proof. �

The reconstruction formula (3.67) can be modified in order to work whenever the
dual problem has a solution λ. The resulting formula obtained by the analysis of the
related KKT conditions then reads

α = (RTBT
A ∗BA ∗R)+RTBT

A ∗
(
BA ∗A+BT λ − (BA ∗A+b − cA )

)
. (3.69)
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The duality theory can be illustrated on a problem to find the displacement x of
an elastic body under traction b. After the finite element discretization, we get a
convex QP problem. We assume that the body is fixed on a part of the boundary in
normal direction, so that the vector of nodal displacements satisfies BE ∗x = cE as
in Fig. 3.9. Moreover, the body may not be allowed to penetrate an obstacle, so that
BI ∗x ≤ cI as in Fig. 3.8.

Fig. 3.8 Unique displacement Fig. 3.9 Nonunique displacement

The displacement x of the body in equilibrium is aminimizer of the convex energy
function f . The Hessian A of f is positive semidefinite if the constraints admit
rigid body motions. The Lagrange multipliers solve the dual problem. The condition
RTb = RTBT λ̂ requires that the resulting forces are balanced in the directions of
the rigid body motions and λ̂I ≥ o guarantees that the body is not glued to the
obstacle. If the reaction forcesBT λ̂ determine the components of λ̂, then λ̂ is uniquely
determined by the conditions of equilibrium. Notice that BT λ̂ is always uniquely
determined by the conditions of equilibrium. If no rigid body motion is possible
due to the active constraints BA ∗x = cA as in Fig. 3.8, then the displacement x is
uniquely determined. If this is not the case, then the displacement is determined up to
some rigid body motion as in Fig. 3.9.
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