
Chapter 11
Frictionless Contact Problems

Now we shall extend the results introduced in the previous chapter to the solution
of multibody contact problems of elasticity without friction. We shall restrict our
attention to the problems of linear elasticity, i.e., we shall assume small deforma-
tions and linear stress-strain relations. Moreover, we shall be interested mainly in
computationally challenging 3D problems.

The presentation of TFETI for the solution of frictionless contact problems is very
similar to the presentation of TFETI for the solution of scalar variational inequalities
in the previous chapter. The main difference, apart from more complicated formulae
and kernel spaces, is in the discretization of linearized non-penetration conditions.
Here we shall restrict our attention to the most simple node-to-node non-penetration
conditions, leaving the discussion of more sophisticated biorthogonal mortars to
Chap.15.

The FETI-type domain decomposition methods comply well with the structure
of contact problems, the description of which enhances the decomposition into the
subdomains defined by the bodies involved in the problem. Notice that if we decom-
pose the bodies into subdomains, we can view the result as a newmultibody problem
to find the equilibrium of a system of bodies that are possibly glued and do not
penetrate each other. The FETI methods treat each domain separately, which can
be effectively exploited in a parallel implementation. Moreover, the algorithm treats
very efficiently the “floating” bodies, the Dirichlet boundary conditions of which
admit a rigid body motion. A unique feature of FETI is the existence of a projector to
the coarse space the complement of which contains the solution. Thus even though
the presented methods were developed primarily for the parallel implementation,
they are also effective in a sequential implementation.

The basic TFETI-based algorithms presented here can use effectively tens of thou-
sands of cores to solve both coercive and semicoercive contact problems decomposed
into tens of thousands of subdomains and discretized by billions of nodal variables.
For larger problems, the initialization of the iterative solving procedure, in particular
the projectors, starts to dominate the costs. Somemodification for emerging exascale
technologies are described in Chap.19.
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184 11 Frictionless Contact Problems

11.1 Linearized Non-penetration Conditions

Let a system of bodies in a reference configuration occupy open bounded domains
Ω1, . . . ,Ωs ⊂ R

3 with the Lipchitz boundaries Γ 1, . . . , Γ s . Suppose that some Γ p

comprises a part Γ
pq

C ⊆ Γ p that can get into contact with Ω
q
as in Fig. 11.1. We

assume thatΓ p
C is sufficiently smooth, so that there is awell-defined outer unit normal

np(x) at almost each point x ∈ Γ
p

C .
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Fig. 11.1 Two-body contact problem

After the deformation, each point x ∈ Ω p ∪ Γ p is transformed into

yp(x) = xp + up(x),

where up = up(xp) is the displacement vector which defines the deformation ofΩ p.
The mapping yp : Ω

p → R
3 is injective and continuous. The non-penetration con-

dition requires

xp ∈ Γ
p

C ⇒ xp + up(xp) /∈ Ωq , q ∈ {1, . . . , s}, p �= q, .

It is difficult to enhance the latter condition into an effective computational
scheme, so we shall replace it by linearized relations. From each couple {p, q}
which identify Γ

pq
C �= ∅, we choose one index to identify the slave side of a possible

contact interface. This choice defines the contact coupling set S of all ordered cou-
ples of indices the first component of which refers to the nonempty slave side of the
corresponding contact interface. For each (p, q) ∈ S , we then define a one-to-one
continuous mapping

χ pq : Γ
pq

C → Γ
qp

C
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which assigns to each x ∈ Γ
pq

C a point of the master side Γ
qp

C ⊆ Γ
q

C that is assumed
to be after the deformation near to x, as in Fig. 11.2. The (strong) linearized non-
penetration condition then reads

(
up(x) − uq ◦ χ pq(x)

) · np(x) ≤ (
χ pq(x) − x

) · np(x), x ∈ Γ
pq

C , (p, q) ∈ S ,

(11.1)
where np is an approximation of the outer unit normal to Γ p after the deformation.
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Fig. 11.2 Linearized non-penetration

The linearized condition is exact if np = np(x) is orthogonal to Γ
pq

C in the
deformed state and the vector χ pq(x) − x moves into the position which is par-
allel with np. This observation can be used to develop an iterative improvement for
enforcing the non-penetration condition. See also the discussions in the books by
Kikuchi and Oden [1], Laursen [2], or Wriggers [3].

11.2 Equilibrium of a System of Elastic Bodies in Contact

Having described the non-penetration condition, let us switch to the conditions of
equilibrium of a system of bodies Ω1, . . . ,Ωs . Let each Γ p, p = 1, . . . , s, consists
of three disjoint parts Γ

p
U , Γ p

F , and Γ
p

C , Γ p = Γ
p
U ∪ Γ

p
F ∪ Γ

p
C , and let the volume

forces f p : Ω p → R
3, zero boundary displacements up

Γ : Γ
p

U → {o}, and the bound-
ary traction f p

Γ : Γ
p

F → R
3 be given. We admit Γ p

U = ∅, but in this case we assume
some additional restrictions to guarantee that a solution exists. To enhance the contact
with a rigid obstacle, we admit the bodies with a priori defined zero displacements. In
this case, only the contact boundary of such bodies is relevant in our considerations.

Let us choose a contact coupling setS , so that for each (p, q) ∈ S , Γ pq
C denotes

the part of Γ
p

C which can get into contact with Γ q , and let us define a one-to-one
continuous mapping χ pq : Γ

pq
C → Γ

qp
C onto the part Γ qp of Γ q which can come

into contact with Γ p. Thus

Γ
p
C = ∪(p,r)∈S Γ

pr
C and Γ

q
C = ∪(r,q)∈S Γ

rq
C .
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Let vp : Ω p ∪ Γ p → R
3, p = 1, . . . , s, denote a sufficiently smooth mapping,

so that the related concepts are well defined, and denote

v = (v1, . . . , vs), Ω = Ω1 ∪ . . . Ωs .

Notice that if x ∈ Ω , then there is a unique p = p(x) such that x ∈ Ω p, so we can
define

v(x) = vp(x)(x) for x ∈ Ω.

We assume that the small strain assumption is satisfied, so that the strain–
displacement relations are defined for any x ∈ Ω by Cauchy’s small strain tensor

ε(v)(x) = ε(v) = 1/2
(∇v + (∇v)T

)

with the components

ei j (v) = 1

2

(
∂v j

∂xi
+ ∂vi

∂x j

)
, i, j = 1, 2, 3. (11.2)

For simplicity, we assume that the bodies are made of an isotropic linear elastic
material so that the constitutive equation for the Cauchy stress tensor σ is given in
terms of the fourth-order Hooke elasticity tensor C by

σ(v) = Cε(v) = λtr(ε(v))Id + 2με(v), (11.3)

where λ > 0 and μ > 0 are the Lamé parameters which are assumed to be constant
in each subdomainΩ p, p = 1, . . . , s. The Lamé coefficients can be easily calculated
by means of the Poisson ratio ν and Young’s modulus E using

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
,

so the components of the elasticity tensor are given by

Ci jk
 = E

1 + ν

(
ν

1 − 2ν
δi jδk
 + δikδ j


)
, i, j, k, 
 = 1, 2, 3. (11.4)

The components of the stress tensor are given by

σi j (v) =
3∑

k,
=1

Ci jk
 ek
(v), i, j = 1, 2, 3.



11.2 Equilibrium of a System of Elastic Bodies in Contact 187

Using the above notations, the linearized elastic equilibrium condition and the
Dirichlet and Neumann boundary conditions for the displacement u = (u1, . . . ,us)

can be written as
−div σ(u) = f in Ω,

up = o on Γ
p

U ,

σ (up)np = f p
Γ on Γ

p
F ,

(11.5)

where np denotes the outer unit normal to Γ p which is defined almost everywhere.
Here we assume that all objects are sufficiently smooth so that the equations can be
satisfied point-wise, postponing more realistic assumptions to the next section. The
equations can be written componentwise, e.g., the first equation of (11.5) reads

−
3∑

j=1

∂

∂x j
σi j (u) + fi = 0 in Ω, i = 1, 2, 3.

To complete the classical formulation of frictionless contact problems, we have to
specify the boundary conditions onΓC . Assuming that (p, q) ∈ S , we can use (11.1)
and (11.7) to get the non-penetration condition

(u − u ◦ χ) · n ≤ g, x ∈ Γ
p

C , (p, q) ∈ S , (11.6)

where we use the notation
(
u − u ◦ χ

) · n = (
up(x) − uq ◦ χ pq(x)

) · np(x), x ∈ Γ
pq

C ,

g = (
χ pq(x) − x

) · np(x), x ∈ Γ
pq

C .
(11.7)

The surface traction λ on the slave side of the active contact interface Γ
pq

C and on
the rest of Γ

pq
C is given by

λ = λN = −σ(up)np and λ = o,

respectively. Since we assume that the contact is frictionless, the tangential compo-
nent of λ is zero, i.e.,

λ = (λ · np)np,

and the linearized conditions of equilibrium read

λ · np ≥ 0 and (λ · np)
((
up − uq ◦ χ

)
np − g

) = 0, x ∈ Γ
pq

C , (p, q) ∈ S .

(11.8)
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The last condition in (11.8) is called the complementarity condition. Newton’s
law requires that the normal traction acting on the contacting surfaces is equal and
opposite, so that

− σ(uq ◦ χ)np = −λ, x ∈ Γ
pq

C , (p, q) ∈ S . (11.9)

The system of equations and inequalities (11.5)–(11.9) with the assumption that
the tangential component of λ is zero represents the classical formulation of multi-
body frictionless contact problems. Denoting by λn and [un] the contact stress and
the jump of the boundary displacements, respectively, i.e.,

λn = λ · np, [un] = (
up − uq ◦ χ

) · np, x ∈ Γ
pq

C ,

we can write the contact conditions briefly as

[un] ≤ g, λn ≥ 0, λn([un] − g) = 0, λ = λnnp, x ∈ Γ
pq

C , (p, q) ∈ S .

(11.10)

11.3 Variational Formulation

The classical formulation of contact problem (11.5) and (11.10) makes sense only
when the solution complieswith strong regularity assumptionswhich are not satisfied
by the solution of realistic problems. For example, if a body is not homogeneous,
the equilibrium on the material interface requires additional equations.

The basic idea is to require that the equilibrium conditions are satisfied in some
average. To formulate it more clearly, let us define the spaces

V p =
{
v ∈ (

H 1(Ω p)
)3 : v = o on Γ

p
U

}
, p = 1, . . . , s, V = V 1 × · · · × V s,

and the convex set

K = {
v ∈ V : [vn] ≤ g on Γ

pq
C , (p, q) ∈ S

}
.

Let us first assume that up, vp ∈ V p are sufficiently smooth, so that we can define

σ(up) : ε
(
vp

) =
3∑

i, j=1

σi j (up)εi j
(
vp

)
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and the bilinear form

a p(up, vp) =
∫

Ω p

σ
(
vp

) : ε
(
up

)
dΩ.

Using the symmetry of σ , we can get an alternative expression for a p by means of

σ
(
up

) : ε
(
vp

) = 1

2

3∑

i, j=1

σi j (up)

(
∂vp

i

∂x j
+ ∂vp

j

∂xi

)

= 1

2

3∑

i, j=1

(

σi j (up)
∂vp

i

∂x j
+ σ j i (vp)

∂vp
j

∂xi

)

(11.11)

=
3∑

i, j=1

σi j (up)
∂vp

i

∂x j
= σ(up) : ∇vp.

Let us assume that u ∈ K is a sufficiently smooth solution of (11.5) and (11.10),
and let v ∈ V be sufficiently smooth, so that the Green formula is valid, i.e.,

∫

Ω p

σ(up) : ∇(vp − up) dΩ = −
∫

Ω p

div σ(up) · (vp − up) dΩ (11.12)

+
∫

Γ p

σ(up)np · (vp − up) dΓ.

After multiplying the first equation of (11.5) by vp − up and integrating the result
over Ω p, we get

−
∫

Ω p

div σ(up) · (vp − up) dΩ =
∫

Ω p

f p · (vp − up) dΩ.

We can also use (11.11) and (11.12) to get

a p(up, vp − up) = −
∫

Ω p
div σ(up) · (vp − up) dΩ +

∫

Γ p
σ(up)np · (vp − up) dΓ.

After comparing the latter two equations and summing up, we get

s∑

p=1

a p(up, vp − up) =
s∑

p=1

∫

Ω p
f p · (vp − up) dΩ +

s∑

p=1

∫

Γ p
σ(up)np · (vp − up) dΓ.

Using the boundary conditions, the boundary integrals can be modified to
∫

Γ p
σ(up)np · (vp − up) dΓ =

∫

Γ
p

F

f p
Γ · (vp − up) dΓ +

∫

Γ
p

C

σ(up)np · (vp − up) dΓ.
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Denoting

a(u, v) =
s∑

p=1

a p(u, v), 
(v) =
s∑

p=1

∫

Γ
p

F

f p
Γ · (vp − up) dΓ +

s∑

p=1

∫

Ω p
f p · (vp − up) dΩ,

we can rewrite the above relations as

a(u, v − u) = 
(v − u) +
s∑

p=1

∫

Γ
p

C

σ(up)np. (vp − up) dΓ. (11.13)

Moreover, assuming that (p, q) ∈ S , np = −nq ◦ χ , and v ∈ K , we get

∫

Γ
pq

C

σ(up)np · (vp − up) dΓ +
∫

Γ
qp

C

σ(uq)nq · (vq − uq) dΓ

=
∫

Γ
p

C

λ · (
up − vp + (

vq − uq) ◦ χ pq
)
dΓ

=
∫

Γ
p

C

λn([un] − [vn]) dΓ

=
∫

Γ
p

C

λn([un] − g + g − [vn]) dΓ

=
∫

Γ
p

C

λn(g − [vn]) dΓ ≥ 0,

so any solution u of the frictionless problem (11.5) and (11.10) satisfies the
variational inequality

a(u, v − u) ≥ 
(v − u), v ∈ K . (11.14)

Inequality (11.14) characterizes a minimizer of the quadratic function

q(v) = 1

2
a(v, v) − 
(v)

defined on V (Theorem 4.5). Denoting v = u + d, we can rewrite (11.14) as

a(u,d) − 
(d) ≥ 0, u + d ∈ K ,

so

q(u + d) − q(u) = a(u,d) − 
(d) + 1

2
a(d,d) ≥ 0,

i.e.,
u = arg min

v∈K
q(v). (11.15)

http://dx.doi.org/10.1007/978-1-4939-6834-3_4
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The inequality (11.14) and problem (11.15) are well defined for more general
functions than the piece-wise continuously differentiable functions assumed in (11.5)
and (11.10). Indeed, if f p ∈ L2(Ω p) and f p

Γ ∈ L2(Γ
p

F ), then a and 
 can be evaluated
with v ∈ V provided the boundary relations concerning vp are interpreted in the
sense of traces. Moreover, it can be proved that if u is a solution of such generalized
problem, then it has a natural mechanical interpretation.

It is well known that a minimizer of q onK exists when q is coercive onK , i.e.,

v ∈ K , ‖v‖ → ∞ ⇒ q(v) → ∞,

with the norm induced by the broken scalar product

(u, v) =
s∑

p=1

∫

Ω p

uv dΩ.

If Γ
p

U = ∅ for some p ∈ {1, . . . , s}, then the coercivity condition is satisfied if

a(v, v) = 0 ⇒ 
(v) < 0, v ∈ K . (11.16)

In this case a solution exists, but it need not be unique.

11.4 Tearing and Interconnecting

Our next step is to reduce the contact problem into a number of “small” problems
at the cost of introducing additional constraints. To this end, let us decompose each
Ω p into subdomains with sufficiently smooth boundaries as in Fig. 11.3, assign each
subdomain a unique number, and introduce new “gluing” conditions on the artificial
inter-subdomain boundaries. In the early papers, the subdomains were required to be
quasi-regular and have similar shape and size. The latter conditions indeed affect the
performance of the algorithms, but they are not necessary for the optimality theory.

We decompose appropriately also the parts of the boundaries Γ
p

U , Γ
p

F , and Γ
p

C ,
p = 1, . . . s, and introduce their numbering to comply with the decomposition of the
subdomains. For the artificial inter-subdomain boundaries, we introduce a notation
in analogy to that concerning the contact boundary, i.e., Γ pq

G denotes the part of Γ p

which is “glued” to Γ
qp

G . Obviously Γ
pq

G = Γ
qp

G and it is possible that Γ pq = ∅. We
shall also tear the boundary subdomains from the boundary and enforce the Dirichlet
boundary conditions by the equality constraints. An auxiliary decomposition of the
problem of Fig. 11.1 with renumbered subdomains is in Fig. 11.3.
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Fig. 11.3 TFETI domain decomposition with subdomain renumbering

To enhance the gluing conditions

up = uq , x ∈ Γ
pq

G , (11.17)

σ(up)np = −σ(uq)nq , (11.18)

into the variational formulation, we shall choose the contact coupling setS and the
test spaces

V p
DD =

{
v ∈

(
H1(Ω p)

)3 : vp = o on Γ
p

U

}
, p = 1, . . . s,

VDD = V 1 × · · · × V s ,

KDD = {
v ∈ VDD : [vn] ≤ g on Γ

pq
C , (p, q) ∈ S ; vp = vq on Γ

pq
G , p, q = 1, . . . , s.

}
,

where the relations should be interpreted in the sense of traces. Recall that for
x ∈ Γ

pq
C , (p, q) ∈ S , and v ∈ KDD ,

[vn] = (vp − vq ◦ χ pq) · np, g = (χ pq(x) − x) · np.

If u is a classical solution of the decomposed problem which satisfies the gluing
conditions (11.17) and (11.18), then for any v ∈ KDD and p, q = 1, . . . s,

∫

Γ
pq

G

σ(up)np · (vp − up) dΓ +
∫

Γ
qp

G

σ(uq)nq · (vq − uq) dΓ = 0.
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It follows that the inequality (11.14) holds also for the forms defined for the decom-
posed problems. Denoting

a(u, v) =
s∑

p=1

a p(up, vp),


(v) =
s∑

p=1

∫

Γ
p

F

f p
Γ · (vp − up) dΓ +

s∑

p=1

∫

Ω p

f p · (vp − up) dΩ,

we conclude that any classical solution u of the frictionless decomposed problem
(11.5), (11.10), (11.17), and (11.18) satisfies the variational inequality

a(u, v − u) ≥ 
(v − u), v ∈ KDD, (11.19)

and by Theorem 4.5

q(u) ≤ q(v), v ∈ KDD, q(v) = 1

2
a(v, v) − 
(v). (11.20)

It can be proved that any sufficiently sooth solution of (11.19) or (11.20) is a classical
solution of the frictionless contact problem.

11.5 Discretization

Let us now decompose each subdomain into elements, e.g., tetrahedra, the shape of
which is determined by the position of selected nodes (vertices), and let h denote
the maximum of the diameters of the elements. We consider such decomposition
as a member of the family of elements Th . We assume that the elements are shape
regular, i.e., there is a constant cs > 0 independent of h such that the diameter h(τ )

of each element τ ∈ T h and the radius ρ(τ) of the largest ball inscribed into τ satisfy

ρ(τ) ≥ csh(τ ),

and that the discretization is quasi-uniform, i.e., there is a constant cd > 0 indepen-
dent of h such that for any element τ ∈ T h(Ω)

h(τ ) ≥ cd h.

We also assume that the subdomains consist of the unions of elements, i.e., the
subdomain boundaries do not cut through any element and the grids are matching
on the “gluing” interface of the subdomains. Here we also assume that the grids are
matching on the contact interface, i.e., the set of nodes on each slave part Γ

pq
C of a

http://dx.doi.org/10.1007/978-1-4939-6834-3_4
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contact interface is mapped by a bijection χ pq onto the set of nodes on themaster part
Γ

qp
C of the contact interface, postponing the generalization to Chap.15. The finite

element approximation of (11.20) gives rise to the QP problem

min
1

2
uT Ku − fTu subject to BIu ≤ cI and BEu = cE , (11.21)

where
K = diag(K1, . . . , Ks)

denotes an SPS block-diagonal matrix of order n, BI denotes an m I × n full rank
matrix, BE denotes an m E × n full rank matrix, f ∈ R

n , cI ∈ R
m I , and cE ∈ R

m E .
We use the same notation for nodal displacements as we used for continuous dis-
placements. We shall sometimes denote the nodal displacements by uh , indicating
that it was obtained by the discretization with the finite elements with the diameter
less or equal to h.

The blocks Kp, which correspond to Ω p, are SPS sparse matrices with known
kernels, the rigid body modes. Since we consider 3D problems, the dimensions of
the kernels of Kp and K are six and 6s, respectively. The vector f describes the nodal
forces arising from the volume forces and/or some other imposed traction.

The matrix BI ∈ R
m I ×n and the vector cI describe the linearized non-penetration

conditions. The rows bk ofBI are formed by zeros and appropriately placedmultiples
of coordinates of an approximate outer unit normal on the slave side. If np is an
approximate outer normal vector at xp ∈ Γ

p
C on the slave side and xq = χ(xp) is the

corresponding node on the master side, then there is a row bk∗ of BI such that

bkuh = (
up

h − uq
h

)T
np,

where up
h and uq

h denote the discretized displacements at xp and xq , respectively. The
entry ck of cI describes the normal gap between some xp and xq , i.e.,

ck = (xp − xq)Tnp.

ThematrixBE ∈ R
m E ×n enforces the prescribed zero displacements on the part of

the boundary with imposed Dirichlet’s condition and the continuity of the displace-
ments across the auxiliary interfaces. The continuity requires that biuh = ci = 0,
where bi are the rows of BE with zero entries except 1 and −1 at appropriate posi-
tions. Typically m = m I + m E is much smaller than n. If k subdomains have a joint

node x, i.e., x ∈ Ω
i1 ∩ · · · ∩ Ω

ik , then the gluing of the subdomains at x for 3D prob-
lems requires 3(k − 1) rows of BE . Notice that the rows of BE that are associated
with different nodes are orthogonal, so that we can use effectively the Gram–Schmidt
orthonormalization procedure to get BE with orthonormal rows.

Remark 11.1 We can achieve that the rows of B = [BT
E , BT

I ]T are orthonormal pro-
vided each node is involved in at most one inequality. This is always possible for two

http://dx.doi.org/10.1007/978-1-4939-6834-3_15
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bodies or any number of smooth bodies. To simplify the formulation of optimality
results, we shall assume in what follows (except Chap.15) that

BBT = I. (11.22)

11.6 Dual Formulation

Even though (11.21) is a standard convex QP problem, its formulation is not suitable
for numerical solution. The reasons are that K is typically ill-conditioned, singular,
and the feasible set is in general so complex that projections onto it can hardly be
effectively computed.Under these circumstances, it would be very difficult to achieve
fast identification of the solution active set and to find a fast algorithm for the solution
of auxiliary linear problems.

The complications mentioned above can be essentially reduced by applying the
duality theory of convex programming (see Sect. 3.7). The Lagrangian associated
with problem (11.21) reads

L(u,λI ,λE ) = 1

2
uT Ku − fTu + λT

I (BIu − cI ) + λT
E (BEu − cE ), (11.23)

where λI and λE are the Lagrange multipliers associated with the inequalities and
equalities, respectively. Introducing the notation

λ =
[

λI

λE

]
, B =

[
BI

BE

]
, and c =

[
cI

cE

]
,

we can write the Lagrangian briefly as

L(u,λ) = 1

2
uT Ku − fTu + λT (Bu − c).

Using Proposition 3.13, we get that (11.21) is equivalent to the saddle point problem

L (̂u, λ̂) = sup
λI ≥o

inf
u

L(u,λ). (11.24)

For a fixed λ, the Lagrange function L(·,λ) is convex in the first variable and the
minimizer u of L(·,λ) satisfies

Ku − f + BT λ = o. (11.25)

Equation (11.25) has a solution if and only if

f − BT λ ∈ ImK, (11.26)

http://dx.doi.org/10.1007/978-1-4939-6834-3_15
http://dx.doi.org/10.1007/978-1-4939-6834-3_3
http://dx.doi.org/10.1007/978-1-4939-6834-3_3
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which can be expressed more conveniently by means of a matrix R the columns of
which span the null space of K as

RT (f − BT λ) = o. (11.27)

The matrix R may be formed directly, block by block, using any basis of the rigid
body modes of the subdomains. In our case, each Ω p is assigned six columns with
the blocks ⎡

⎣
0 −zi yi 1 0 0
zi 0 −xi 0 1 0

−yi xi 0 0 0 1

⎤

⎦

and O ∈ R
3×6 associated with each node Vi ∈ Ω

p
and Vj /∈Ω

p
, respectively. Using

the Gramm–Schmidt procedure, we can find Ri such that

ImRi = Ker Ki , R = diag(R1, . . . , Rs), RT R = I.

Now assume that λ satisfies (11.26), so that we can evaluate λ from (11.25) by
means of any (left) generalized matrix K+ which satisfies

KK+K = K. (11.28)

It may be verified directly that if u solves (11.25), then there is a vector α such that

u = K+(f − BT λ) + Rα. (11.29)

The evaluation of the action of a generalized inverse which satisfies (11.28) is
simplified by the block structure of K. Using Lemma 2.1, the kernel of each stiffness
matrix Ki can be used to identify a nonsingular submatrix KII of the same rank
as Ki . The action of the left generalized inverse K#

i (2.6) can be implemented by
Cholesky’s decomposition. Observe that

K# = diag(K#
1, . . . , K#

s ).

Alternatively, it is possible to use the fixing points strategy of Sect. 11.7.
After substituting expression (11.29) into problem (11.24), changing the signs,

and omitting the constant term, we get that λ solves the minimization problem

min �(λ) s.t. λI ≥ o and RT (f − BT λ) = o, (11.30)

where

�(λ) = 1

2
λT BK+BT λ − λT (BK+f − c). (11.31)

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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Once the solution λ̂ of (11.30) is known, the solution û of (11.21)may be evaluated
by (11.29) with

α = (RT B̃T B̃R)−1RT B̃T (c̃ − B̃K+(f − BT λ̂)),

where B̃ = [
B̃T

I , BT
E

]T
and B̃I and c̃I are formed by the rows of BI and the compo-

nents of cI that correspond to the positive entries of λI .

11.7 Stable Evaluation of K+x by Using Fixing Nodes

In Sect. 2.4, we described an effective method that can be used for the identification
of a nonsingular submatrixKRR of the local stiffnessmatrixKi that has its dimension
equal to the rank of Ki and used it to the effective evaluation of the action of K+.
Here we shall describe an alternative procedure that can be applied when KRR is
ill-conditioned.

To simplify the notation, let us assume thatK = Ki ∈ R
n×n . If we choose M nodes

that are neither near each other nor placed near any line, M ≥ 3, then the submatrix
KRR of K defined by the set R of remaining indices is “reasonably” nonsingular.
This is not surprising, since KRR is the stiffness matrix of the body that is fixed at
the chosen nodes. Using the arguments of mechanics, we deduce that fixing of the
chosen nodes makes the body stiff. We call the M chosen nodes the fixing nodes and
denote byF the set of indices of the fixed displacements.

We start with the reordering of K to get

K̃ = PKPT =
[

KRR KRF

KFR KFF

]

=
[

LRR O

LFR I

] [
LT
RR LT

FR

O S

]

, (11.32)

where LRR ∈ R
r×r is a lower factor of the Cholesky decomposition of KRR,

LFR ∈ R
s×r , s = 3M , LFR = KFRL−T

RR,P is a permutation matrix, andS ∈ R
s×s

is the Schur complement matrix of K̃ with respect to KRR defined by

S = KFF − KFRK−1
RRKRF .

To find P, we proceed in two steps. First we form a permutation matrix P1 to
decompose K into blocks

P1KPT
1 =

[
KRR KRF

KFR KFF

]

, (11.33)

where KRR is nonsingular and KFF corresponds to the degrees of freedom of
the M fixing nodes. Then we apply a suitable reordering algorithm on P1KPT

1 to get
a permutation matrix P2 which leaves the block KFF without changes and enables
the sparse Cholesky decomposition ofKRR. Further, we decomposePKPT as shown

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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in (11.32) withP = P2P1. To preserve the sparsity, we can use any sparse reordering
algorithm. The choice depends on the way in which the sparse matrix is stored and
on the problem geometry. Using Lemma 2.2, we get

K+ = PT

[
L−T
RR −L−T

RRLT
FRS+

O S+

] [
L−1
RR O

−LFRL−1
RR I

]

P, (11.34)

where S+ ∈ R
s×s denotes a left generalized inverse of S.

Since s is small, we can substitute for S+ the Moore–Penrose generalized inverse
S† ∈ R

s×s computed by SVD. Alternatively, we can use a sparse nonsingular gen-
eralized inverse. First observe that the eigenvectors of S that correspond to zero are
the traces of vectors from KerK on the fixing nodes. Indeed, if K̃e = o, then

KRReR + KRF eF = o, KFReR + KFF eF = o,

and
SeF = (K̃FF − K̃FRK̃−1

RRK̃RF )eF = o. (11.35)

Having the basis of the kernel od S, we can define the orthogonal projector

Q = RF∗
(
RT

F∗RF∗
)−1

RT
F∗

onto the kernel of S and specify S+ in (11.34) by

S+ = (S + ρQ)
−1 = S† + ρ−1Q, ρ > 0.

We use ρ ≈ ‖K‖. To see that S+ is a left generalized inverse, notice that

SS+S = S (S + ρQ)
−1 S = S

(
S† + ρ−1Q

)
S = SS†S + ρ−1SQS = S.

Such approach can be considered as a variant of regularization [4].
To implement the above-mentioned observations, it is necessary to have an effec-

tive procedure for choosing uniformly distributed fixing nodes. Here we describe
a simple but effective method that combines a mesh partitioning algorithm with a
method for finding a mesh center. The algorithm reads as follows.

Algorithm 11.1 Algorithm for finding M uniformly distributed fixing nodes in the graph of
the discretization.

Given a mesh and M > 0.
Step 1. Split the mesh into M submeshes using the mesh partitioning algorithm.
Step 2. Verify whether the resulting submeshes are connected. If not, use a graph

postprocessing to get connected submeshes.
Step 3. In each submesh, choose a node which is near its center.

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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Step 1 can be carried out by any code for graph decompositions such as METIS [5].
The implementation of Step 3 can be based on Corollary 2.1. If the mesh is approx-
imately regular, we can expect that more walks of length k originate from the nodes
that are near a center of the mesh. It simply follows that the node with the index i
which satisfies

w(i, k) ≥ w( j, k), j = 1, 2, . . . , n,

for sufficiently large k is in a sense near to the center of the mesh and can be used to
implement Step 3 of Algorithm 11.1.

Recall that the vector
p = lim

k→∞ ‖Dke‖−1Dke

is a unique nonnegative eigenvector which corresponds to the largest eigenvalue of
the mesh adjacency matrix D. It is also known as the Perron vector of D [6]. It can
be approximated by a few steps of the Lanczos method [7]. Thus the index of an
approximation of the component of the Perron vector of D is a good approximation
of the center of the graph of triangulation. See Brzobohatý et al. [8] for more details
and illustrations of the effect of the choice of fixing nodes on the conditioning of the
generalized inverses.

11.8 Preconditioning by Projectors to Rigid Body Modes

As in Chap.10, further improvement can be achieved by adapting some simple obser-
vations originating in Farhat,Mandel, andRoux [9]. Let us first simplify the notations
by denoting

F̃ = BK
+

BT , F = ‖F̃‖
F = F−1F̃, d̃ = F−1(BK+f − c),
G̃ = RT BT , ẽ = RT f,

and let T denote a regular matrix which defines the orthonormalization of the rows
of G̃ so that the matrix

G = TG̃

has orthonormal rows. After denoting

e = T̃e,

problem (11.30) reads

min
1

2
λT Fλ − λT d̃ s.t. λI ≥ o and Gλ = e. (11.36)

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
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For practical computation, we can use an approximate value of the norm

F ≈ ‖F̃‖.

Notice that a good approximation of ‖F̃‖ can be obtained by substituting the estimates
of ‖S−1

i ‖ into (10.27). The scaling of F was not necessary in Sect. 10.6.
As in Chap.10, we shall transform the problem of minimization on the subset of

an affine space to that on the subset of a vector space by means of arbitrary λ̃ which
satisfies

Gλ̃ = e. (11.37)

Having λ̃, we can look for the solution of (11.36) in the form λ = μ + λ̃. Though a
natural choice for λ̃ is the least squares solution

λ̃ = GT (GGT
)−1e,

the following lemma shows that if we solve a coercive problem (11.20), then we can
even find λ̃ such that λ̃I = o.

Lemma 11.1 Let the problem (11.21) be obtained by the discretization of a coercive
problem, i.e., let the prescribed displacements of each body Ω p be sufficient to prevent
its rigid body motion and let G = [GI , GE ]. Then GE is a full rank matrix and

λ̃ =
[

oI

GT
E (GE GT

E )−1e

]
(11.38)

satisfies λ̃I = oI and Gλ̃ = e.

Proof First observe that
G = [TG̃I , TG̃E ],

so it is enough to prove that G̃T
Eξ = BE Rξ = o implies ξ = o. Since the entries

of BE Rξ denote the jumps of Rξ across the auxiliary interfaces or the violation
of prescribed Dirichlet boundary conditions, it follows that BE Rξ = o implies that
u = Rξ satisfies both the discretized Dirichlet conditions and the “gluing” condi-
tions, but belongs to the kernel of K. Thus ξ �= o contradicts our assumption that the
problem (11.21) was obtained by a correct discretization of (11.20). �

Let us point out that the choice of λ̃ based on Lemma 11.1 guarantees o to be a
feasible vector of the homogenized problem. If the problem (11.20) is semicoercive,
we can achieve the same effect with λ̃ which solves

min
1

2
‖λ‖2 subject to Gλ = e and λ ≥ o.

http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
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To carry out the transformation, denote λ = μ + λ̃, so that

1

2
λT Fλ − λT d̃ = 1

2
μT Fμ − μT (̃d − Fλ̃) + 1

2
λ̃

T
Fλ̃ − λ̃

T
d̃

and problem (11.36) has, after returning to the old notation, the same solution as

min θ(λ) s.t. Gλ = o and λI ≥ �I = −λ̃I (11.39)

with

θ(λ) = 1

2
λT Fλ − λTd, d = d̃ − Fλ̃.

Let us point out that the proof of Lemma 11.1 is the only place where we need the
assumption that our problem (11.21) is coercive.

Our final step is based on the observation that problem (11.39) is equivalent to

min θρ(λ) s.t. Gλ = o and λI ≥ �I , (11.40)

where ρ is an arbitrary positive constant,

θρ(λ) = 1

2
λT (PFP + ρQ)λ − λT Pd, Q = GT G, and P = I − Q.

Recall that P and Q denote the orthogonal projectors on the image space of GT and
on the kernel of G, respectively. The regularization term is introduced in order to
simplify the reference to the results of QP that assume the nonsingular Hessian of f .

11.9 Bounds on the Spectrum

Problem (11.40) turns out to be a suitable starting point for the development of an
efficient algorithm for variational inequalities due to the favorable distribution of
the spectrum of the Hessian H = PFP + ρQ of the cost function θ . The following
lemma, the variant of Lemma 10.3 for linear elasticity, is important for the analysis
of optimality of the presented algorithms.

Lemma 11.2 Let H denote the diameter of a homogeneous body which occupies a
domain Ω ⊂ R

3, let KH,h denote its stiffness matrix obtained by the quasi-uniform
discretization with shape regular elements of the diameter less or equal to h, and let
SH,h denote the Schur complement of KH,h with respect to the interior nodes. Let the
constraint matrix B satisfy (11.22).

Then there are constants c and C independent of h and H such that

c
h2

H
‖λ‖2 ≤ λT SH,hλ ≤ Ch‖λ‖2, λ ∈ ImS. (11.41)

http://dx.doi.org/10.1007/978-1-4939-6834-3_10
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Proof The proof of Lemma 11.2 is similar to the proof of Lemma 10.3. The proof
of the upper bound follows from Lemma 13.1 and the obvious inequality

‖SH,h‖ ≤ ‖KH,h‖. �

The following theorem is now an easy corollary of Lemmas 10.2 and 11.2.

Theorem 11.1 Let ρ > 0 and let Hρ,H,h denote the Hessian of θρ resulting from the
decomposition and quasi-uniform finite element discretization of problem (11.20)
with shape regular elements using the decomposition and discretization parameters
H and h, respectively. Let (11.22) be true.

Then there are constants c and C independent of h and H such that

c‖λ‖2 ≤ λT Hρ,H,hλ ≤ C
H

h
‖λ‖2, λ ∈ R

m . (11.42)

Proof Substitute (11.41) into Lemma 10.2 and take into account the regularization
term ρQ with fixed ρ and the scaling of F.

Remark 11.2 A variant of the theorem was a key ingredient of the first optimality
analysis of FETI for linear problems by Farhat, Mandel, and Roux [9].

11.10 Optimality

To show that Algorithm 9.2 (SMALBE-M) with the inner loop implemented by
Algorithm 8.2 (MPRGP) is optimal for the solution of a class of problems arising
from varying discretizations of a given frictionless contact problem, let us introduce
a new notation that complies with that used in the analysis of the algorithms in Part II.

Let ρ > 0 and C ≥ 2 denote given constants and let

TC = {(H, h) ∈ R
2 : H/h ≤ C}

denote the set of indices. For any t ∈ TC , let us define

At = PFP + ρQ, bt = Pd,

Bt = G, � t
I = −λ̃I ,

where the vectors and matrices are those arising from the discretization of (11.20)
with t = (H, h). We assume that the discretization satisfies the assumptions of
Theorem 11.1 and �t

I ≤ o. We get a class of problems

min ft (λ) subject to Btλ = o and λI ≥ 
 t
I (11.43)

http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_13
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
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with

ft (λ) = 1

2
λT Atλ − bT

t λ.

Using these definitions and GGT = I, we obtain

‖Bt‖ ≤ 1. (11.44)

It follows by Theorem 11.1 that for any C ≥ 2 there are constants

aC
max > aC

min > 0

such that
aC
min ≤ αmin(At ) ≤ αmax(At ) ≤ aC

max (11.45)

for any t ∈ TC . In particular, it follows that the assumptions of Theorem 9.4 are
satisfied for any set of indices TC , C ≥ 2, and we can formulate the main result of
this chapter.

Theorem 11.2 Let C ≥ 2, ρ > 0, and ε > 0 denote given constants and let
{λk

t }, {μk
t }, and {Mt,k} be generated by Algorithm 9.2 (SMALBE-M) for (11.43) with

‖bt‖ ≥ ηt > 0, 1 > β > 0, Mt,0 = M0 > 0, ρ > 0, μ0
t = o.

Let Step 1 of Algorithm 9.2 be implemented by means of Algorithm 8.2 (MPRGP)
with parameters

Γ > 0 and α ∈ (0, 2/aC
max),

so that it generates the iterates

λk,0
t ,λk,1

t , . . . ,λk,l
t = λk

t

for the solution of (11.43) starting from λ
k,0
t = λk−1

t with λ−1
t = o, where l = lt,k is

the first index satisfying

‖gP(λk,l
t ,μk

t , ρ)‖ ≤ Mt,k‖Btλ
k,l
t ‖ (11.46)

or
‖gP(λk,l

t ,μk
t , ρ)‖ ≤ ε‖bt‖ and ‖Btλ

k,l
t ‖ ≤ ε‖bt‖. (11.47)

Then for any t ∈ TC and problem (11.43), Algorithm 9.2 generates an approxi-
mate solution λ

kt
t which satisfies (11.47) at O(1) matrix–vector multiplications by

the Hessian At of ft .

http://dx.doi.org/10.1007/978-1-4939-6834-3_9
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11.11 Numerical Experiments

The algorithms presented here were implemented in several software packages (see
Sect. 19.5) and tested on a number of academic benchmarks and real-world problems.
Here we give some results that illustrate their numerical scalability and effectiveness
usingMatSol (seeSect. 19.5.1 orKozubek et al. [10]), postponing the demonstration
of parallel scalability to Chap.19. All the computations were carried out with the
parameters recommended in the description of the algorithms in Chaps. 7–9. The
relative precision of the computations was ε = 10−4 (see (9.40)).

11.11.1 Academic Benchmark

Let us consider a 3D semicoercive contact problem of two cantilever beams of sizes
2 × 1 × 1 [m] inmutual contact without friction. The beams are depicted in Fig. 11.4.
Zero horizontal displacements were prescribed on right face of the upper beam. The
lower beam (shifted by 1 [m]) was fixed on its left face. The vertical traction f = 20
[MPa] was prescribed on the upper and left faces of the upper beam.

f

f
r

Fig. 11.4 Two beams benchmark and its decomposition

The problemwas discretized with varying discretization and decomposition para-
meters h and H , respectively. For each h and H , the bodies were decomposed
into 2/H × 1/H × 1/H subdomains discretized by hexahedral elements. We kept
H/h = 8, so that the assumptions of Theorem 11.2 were satisfied.

The performance of the algorithms is documented in the following graphs. The
numbers nout of the outer iterations of SMALBE and nHes of the multiplication by
the Hessian F of the dual function depending on the primal dimension n is depicted
in Fig. 11.5. We can see stable numbers of both inner and outer iterations for n
ranging from 431,244 to 11,643,588. The dual dimension of the problems ranged
from 88,601 to 2,728,955. We conclude that the performance of the algorithm is in
agreement with the theory.

http://dx.doi.org/10.1007/978-1-4939-6834-3_19
http://dx.doi.org/10.1007/978-1-4939-6834-3_19
http://dx.doi.org/10.1007/978-1-4939-6834-3_7
http://dx.doi.org/10.1007/978-1-4939-6834-3_9
http://dx.doi.org/10.1007/978-1-4939-6834-3_9
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Fig. 11.5 Cantilever beams—numbers of matrix—vector multiplications by F (left) and outer
iterations (right)

The normal traction along the axis of the contact interface is in Fig. 11.6.
Figure11.6 shows that in the solution of the largest problem, most of 11,550 lin-
ear inequality constraints were active.

0 200 400 600 800
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r

σn

Fig. 11.6 Normal contact pressures along the line r

11.11.2 Roller Bearings of Wind Generator

We have also tested our algorithms on real-world problems, including the stress
analysis in the roller bearings of a wind generator that is depicted in Fig. 11.7. The
problem is difficult because it comprises 73 bodies in mutual contact and only one
is fixed in space.
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Fig. 11.7 Frictionless roller bearing of wind generator

The solution of the problem discretized by 2,730,000/459,800 primal/dual vari-
ables and decomposed into 700 subdomains required 4270 matrix–vector multipli-
cations, including outer iterations for exact non-penetration. The von Mises stress
distribution is in Fig. 11.7 (right). Though the number of iterations is not small, the
parallel scalability of the algorithm enables to obtain the solution in a reasonable
time.

11.12 Comments and References

A convenient presentation of the variational formulation, including the dual formu-
lation, the results concerning the existence and uniqueness of a solution, the finite
element approximation of the solution, and standard iterativemethods for the solution
can be found in the book by Kikuchi and Oden [1]. For the variational formulation
and analysis, see also Hlaváček et al. [11]. The up-to-date engineering approach to
the solution of contact problems can be found in Laursen [2] or Wriggers [3]. See
Chap.15 for the discussion of combination of TFETI and mortar approximation of
contact conditions.

Probably the first theoretical results concerning the development of scalable algo-
rithms for coercive contact problems were proved by Schöberl [12, 13]. A numerical
evidence of scalability of a different approach combining FETI–DP with a Newton-
type algorithm and preconditioning in face by standard FETI preconditioners for 3D
contact problems was given in Duresseix and Farhat [14] and Avery et al. [15]. See
also Dostál et al. [16]. Impressive applications of the above approach can be found
in [17].

A stable implementation of TFETI requires reliable evaluation of the action of
a generalized inverse of the SPS stiffness matrix. The presentation in Sect. 11.6
combines the earlier observations by Savenkov, Andrä, and Iliev [4] and Felippa and
Park [18] on the regularization and Farhat and Géradin [19] on the application of
the LU and SVD decompositions. Our exposition uses the fixing nodes presented in
Brzobohatý et al. [8].

http://dx.doi.org/10.1007/978-1-4939-6834-3_15
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It should be noted that the effort to develop scalable solvers for coercive varia-
tional inequalities was not restricted to FETI. Optimal properties of multigrid meth-
ods for linear problems were exploited, e.g., by Kornhuber and Krause [20] and
Kornhuber et al. [21], to give an experimental evidence of the numerical scalability
of an algorithm based on monotonic multigrid. However, as pointed out by Iontcheva
and Vassilevski [22], the coarse grid used in the multigrid should avoid the con-
strained variables, so that its approximation properties are limited and not sufficient
to support the proof of optimality of the nonlinear algorithm.Multigrid has been used
also in the framework of the nonsmooth Newton methods, which turned out to be
an especially effective tool for the solution of problems with complex nonlinearities
(see Sect. 12.10).

The augmented Lagrangians were often used in engineering algorithms to imple-
ment equality constraints as in Simo and Laursen [23] or Glowinski and
Le Tallec [24]. It seems that the first application of the LANCELOT style [25]
augmented Lagrangians (proposed for bound and general equality constrains) with
adaptive precision control in combination with FETI to the solution of contact prob-
lems is in Dostál, Friedlander, and Santos [26] and Dostál, Gomes, and Santos [27,
28]. The experimental evidence of numerical scalability was presented in Dostál et
al. [29]. The optimality was proved in [30]—the proof exploits the optimal proper-
ties of MPRGP [31] (see also Sect. 9.10), SMALBE-M (see [32, 33], or Sect. 8), and
TFETI (see [34]). Here we partly follow [30].

The linear steps of MPRGP can be preconditioned by the standard FETI precon-
ditioners, i.e., the lumped preconditioner or Dirichlet’s preconditioner [35]. The pre-
conditioning by the conjugate projector for the FETI–DP solution of contact problem
was presented by Jarošová, Klawonn, and Rheinbach [36]. However, our experience
does not indicate high efficiency of the modified algorithms for contact problems.
The negative effect of jumping coefficients can be reduced by the reorthogonalization
based preconditioning or renormalization based scaling presented in Chap. 16.

There is an interesting corollary of our theory. If we are given a class of contact
problems which involves the bodies that are discretized by quasi-uniform grids using
shape regular elements, so that the regular part of their spectrum is contained in a
given positive interval, then Theorem 11.2 implies that in spite of nonlinearity, there
is a bound, independent of a number of the bodies, on the number of iterations that
are necessary to approximate the solution to a given precision.
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