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Preface

The practical interest in contact problems stems from the fundamental role of
contact in mechanics of solids and structures. Indeed, the contact of one body with
another is a typical way how loads are delivered to a structure and the typical
mechanism which supports structures to sustain the loads. Thus we do not exag-
gerate much if we say that the contact problems are in the heart of mechanical
engineering.

The contact problems are also interesting from the computational point of view.
The conditions of equilibrium of a system of bodies in mutual contact enhance a
priori unknown boundary conditions, which make the contact problems strongly
nonlinear, and when some of the bodies are “floating,” then the boundary condi-
tions admit rigid body motions and a solution need not be unique. After the dis-
cretization, the contact problem can be reduced to a finite dimensional problem,
such as the minimization of a possibly non-differentiable convex function in many
variables (currently from tens of thousands to billions) subject to linear or nonlinear
inequality constraints for surface variables, with a specific sparse structure. Due to
the floating bodies, the cost function can have a positive semidefinite quadratic
part. Thus the solution of large discretized multibody contact problems still remains
a challenging task, which can hardly be solved by general algorithms.

The main purpose of this book is to present scalable algorithms for the solution
of multibody contact problems of linear elasticity, including the problems with
friction and dynamic contact problems. Most of these results were obtained during
the last twenty years. Let us recall that an algorithm is said to be numerically
scalable if the cost of the solution increases nearly proportionally to the number of
unknown variables, and it enjoys parallel scalability if the computational time can
be reduced nearly proportionally to the number of processors. The algorithms
which enjoy numerical scalability are in a sense optimal as the cost of the solution
by such algorithms increases as the cost of duplicating the solution. Taking into
account the above characterization of contact problems, it is rather surprising that
such algorithms exist.
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Our development of scalable algorithms for contact problems is based on the
following observations:

• There are algorithms which can solve relevant quadratic programming and
QCQP problems with asymptotically linear complexity.

• Duality based methods like FETI let us define a sufficiently small linear sub-
space with the solution.

• The projector to the space of rigid body motions can be used to precondition
both the linear and nonlinear steps of solution algorithms.

• The space decomposition used by the variants of FETI is an effective tool for
solving multibody contact problems and opens a way to the massively parallel
implementation of the algorithms.

The development of scalable algorithms represents a challenging task even when
we consider much simpler linear problems. For example, the computational cost of
solving a system of linear equations arising from the discretization of the conditions
of equilibrium of an elastic body with prescribed displacements or traction on the
boundary by direct sparse solvers increases typically with the square of the number
of unknown nodal displacements. The first numerically scalable algorithms for
linear problems of computational mechanics based on the concept of multigrid
came in use only in the last quarter of the last century and fully scalable algorithms
based on the FETI (Finite Element Tearing and Interconnecting) methods were
introduced by Farhat and Roux by the end of the twentieth century.

The presentation of the algorithms in the book is complete in the sense that it
starts from the formulation of contact problems, briefly describes their discretization
and the properties of the discretized problems, provides the flowcharts of solution
algorithms, and concludes with the analysis, numerical experiments, and imple-
mentation details. The book can thus serve as an introductory text for anybody
interested in contact problems.

Synopsis of the book:

The book starts with a general introduction to contact problems of elasticity with
the account of the main challenges posed by their numerical solution. The rest
of the book is arranged into four parts, the first of which reviews some well-known
facts on linear algebra, optimization, and analysis in the form that is useful in the
following text.

The second part is concerned with the algorithms for minimizing a quadratic
function subject to linear equality constraints and/or convex separable constraints.
A unique feature of these algorithms is their rate of convergence and the error
bounds in terms of bounds on the spectrum of the Hessian of the cost function. The
description of the algorithms is organized in five chapters starting with a separate
overview of two main ingredients, the conjugate gradient (CG) method (Chap. 5)
for unconstrained optimization and the results on gradient projection (Chap. 6), in
particular on the decrease of the cost function along the projected-gradient path.
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Chapters 7 and 8 describe the MPGP (Modified Proportioning with Gradient
Projections) algorithm for minimizing strictly convex quadratic functions subject to
separable constraints and its adaptation MPRGP (Modified Proportioning with
Reduced Gradient Projections) for bound constrained problems. The result on the
rate of convergence in terms of bounds on the spectrum of the Hessian matrix is
given that guarantees a kind of optimality of the algorithms—it implies that the
number of iterates that are necessary to get an approximate solution of any instance
of the class of problems with the spectrum of the Hessian contained in a given
positive interval is uniformly bounded regardless the dimension of the problem.
A special attention is paid to solving the problems with elliptic constraints and
coping with their potentially strong curvature, which can occur in the solution of
contact problems with orthotropic friction.

Chapter 9 combines the algorithms for solving problems with separable con-
straints and a variant of the augmented Lagrangian method in order to minimize a
convex quadratic function subject to separable and equality constraints. The
effective precision control of the solution of separable problems in the inner loop
opened the way to the extension of the optimality results to the problems with
separable and linear equality constraints that arise in the dual formulation of the
conditions of equilibrium. Apart from the basic SMALSE (Semi-Monotonic
Algorithm for Separable and Equality constraints) algorithm, the specialized vari-
ants for solving bound and equality constrained quadratic programming problems
(SMALBE) and QCQP problems including elliptic constraints with strong curva-
ture (SMALSE-Mw) are considered.

The most important results of the book are presented in the third part, including
the scalable algorithms for solving multibody frictionless contact problems, contact
problems with Tresca’s friction, and transient contact problems.

Chapter 10 presents the basic ideas of the scalable algorithms in a simplified
setting of multidomain scalar variational inequalities.

Chapters 11–13 develop the ideas presented in Chap. 10 to the solution of
multibody frictionless contact problems, contact problems with friction, and tran-
sient contact problems. For simplicity, the presentation is based on the
node-to-node discretization of contact conditions. The presentation includes the
variational formulation of the conditions of equilibrium, the finite element dis-
cretization, some implementation details, the dual formulation, the TFETI (Total
finite Element Tearing and Interconnecting) domain decomposition method, the
proof of asymptotically linear complexity of the algorithms (numerical scalability),
and numerical experiments.

Chapter 14 extends the results of Chaps. 10 and 11 to solving the problems
discretized by the boundary element methods in the framework of the TBETI (Total
Boundary Element Tearing and Interconnecting) method. The main new features
include the reduction of the conditions of equilibrium to the boundary and the
boundary variational formulation of the conditions of equilibrium.

Chapters 15 and 16 extend the results of Chaps. 10–14 to solving the problems
with varying coefficients and/or with the non-penetration conditions implemented
by mortars. It is shown that the reorthogonalization-based preconditioning or the
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renormalization-based scaling can relieve the ill-conditioning of the stiffness
matrices and that the application of the mortars need not spoil the scalability of the
algorithms.

The last part begins with two chapters dealing with the extension of the
optimality results to some applications, in particular to contact shape optimization
and contact problems with plasticity. The book is completed by a chapter on
massively parallel implementation and parallel scalability. The (weak) parallel
scalability is demonstrated by solving an academic benchmark discretized by bil-
lions of nodal variables. However, the methods presented in the book can be used
for solving much larger problems, as demonstrated by the results for a linear
benchmark discretized by tens of billions of nodal variables.

Ostrava Zdeněk Dostál
January 2016 Tomáš Kozubek

Marie Sadowská
Vít Vondrák
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Chapter 1
Contact Problems and Their Solution

We start our exposition by an informal presentation of contact problems, including
those that motivated our research, with a brief discussion of the challenges arising in
their numerical solution. Frictionless problems, problems with friction, and dynamic
contact problems are considered. We discuss their specific features, especially those
that complicate their solution or those that can be used to simplify the solution,
recall some theoretical results concerning the existence and uniqueness of a solution,
present basic ideas related to the development of scalable algorithms for the numerical
solution of contact problems, and mention some historical results. In this chapter,
we assume that the strains and displacements are small and within the elastic limit,
at least in one time step in the case of transient problems, so that linear elasticity can
be used to the formulation of the conditions of equilibrium.

1.1 Frictionless Contact Problems

We speak about frictionless contact problems whenever we can obtain an acceptable
solution under the assumption that the tangential forces on the contact interface can
be neglected.Many such problems arise inmechanical engineering whenever there is
need to predict the stress or deformation of the moving parts of machines or vehicles.

The frictionless contact problems are the most simple ones, so it is not surpris-
ing that the first numerical results were obtained just for them. The first publication
dates back to 1881 when Heinrich Hertz published his paper “On the contact of elas-
tic solids” [1]. Hertz observed that when two smooth bodies come into contact so
that the contact area is much smaller than the characteristic radius of each body, then
the nonlinear non-penetration boundary conditions are confined to a small region of
predictable shape and it is possible to simplify the conditions of equilibrium near the
contact so that they can be solved analytically.Avariant of such problem is depicted in
Fig. 1.1.

© Springer Science+Business Media LLC 2016
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2 1 Contact Problems and Their Solution

Hertz’s results are still relevant for the design of bearings, gears, and other bodies
when two smooth andnonconforming surfaces come into contact, the strains are small
and within the elastic limit, the area of contact is much smaller than the characteristic
radius of the bodies, and the friction can be neglected. We use them to verify the
results of our benchmarks.

g

g

Fig. 1.1 Stacked lenses pressed together

As an example of the frictionless contact problem with a small contact inter-
face that can not be solved analytically, let us consider the problem to describe the
deformation and contact pressure in the ball bearings depicted in Fig. 1.2. A new fea-
ture of this problem is the complicated interaction of several bodies, some of them
without prescribed displacements, through the nonlinear non-penetration conditions.
The bodies are of different shapes – we can easily recognize balls, rings, and cages
(see Fig. 1.3). The balls are not fixed in their cages, so their stiffness matrices are
necessarily singular and the prescribed forces can not be arbitrary as the balls can
be in equilibrium only if the moment of the external forces on the balls is equal to
zero as in our case. Though the displacements and forces are typically given on the
parts of the surfaces of some bodies, the exact places where the deformed balls come
into contact with the cages or the rings are known only after the problem is solved.
Moreover, the displacements of the balls would not be uniquely determined even if
we replaced all the inequality constraints that describe the non-penetration by the
corresponding equalities describing the related bilateral constraints.

Fig. 1.2 Ball bearings Fig. 1.3 Ball bearings decomposition
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A solution of the ball bearing and other frictionless contact problems with “float-
ing” bodies exists provided the external forces acting on each such body are balanced
(including the reaction forces). If the prescribed displacements of each body prevents
its rigid body motion, then the solution exists and is necessary unique.

The first results concerning the existence and uniqueness of a solution to the
contact problem date back to Gaetano Fichera, who published the paper “On the
elastostatic problem of Signorini with ambiguous boundary conditions” [2] in 1964.
Fichera coined the problem as Signorini’s problem to honor his teacher, who draw his
attention to it. Later presentation of the existence results based on coercivity of the
energy function can be found, e.g., in Hlaváček, Haslinger, Nečas, and Lovíšek [3]
or Kikuchi and Oden [4]. Let us point out that the most popular sufficient condition
for the existence of a solution, the coercivity of the energy functional, does not hold
for the bearing problems.

1.2 Contact Problems with Friction

The contact problems with friction arise whenever we have to take into account the
tangential forces on contact interface. They are important in many areas of engineer-
ing including locomotive wheel–rail or tire–road contact, braking systems, yielding
clamp connections, etc.

F

Fig. 1.4 Leonardo da Vinci experiment with friction

The effort to describe phenomenologically the friction forces dates back to
Leonardo da Vinci. Carrying out the experiments like those depicted in Fig. 1.4,
Leonardo observed that the area of contact interface has no effect on the friction and
if the load on the object is doubled, the friction is also doubled. This is a special
version of the most popular friction law used in many applications that is named
after Charles-Augustin Coulomb. This law was formulated for quasistatic contact by
Amontonos in 1691 and extended to dynamic situations by Coulomb in 1781 [5].
The Coulomb (also Amontonos–Coulomb) friction law claims that “strength due to
friction is proportional to the compressive force.” The Coulomb friction law agrees
in many cases with the observation, but Coulomb himself observed that “for large
bodies friction does not follow exactly this law.”
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R1

R2

d

Fig. 1.5 Yielding support

Plane of symetry

Fig. 1.6 Yielding clamp connection

A realistic example of a contact problem with friction is the analysis of the yield
clamped connection of the mine support depicted in Figs. 1.5 and 1.6. The support
comprises several parts that are deformed by applied forces, so it is not possible to
assume that the bodies are rigid. As in the ball bearing example, some parts are also
without prescribed displacements, so that the numerical algorithms for the solution
must be prepared to deal with singular stiffness matrices of the discretized problem.
A brand new difficulty is the necessity to balance the contact forces not only in
the normal direction but also in the tangential direction. To solve the problem with
friction, we have to identify the unknown slip–stick interface. The difficulties arise
also in its variational formulation due to the non-differentiable dissipative term in the
energy function and, in the case of Coulomb’s friction, due to the lack of convexity.

Unlike the frictionless case, the existence theory for the quasistatic contact prob-
lems with Coulomb’s friction is much weaker and does not guarantee that a solution
exists for realistic problems. Moreover, a solution is known to be unique only in
very exceptional cases. A recent overview of the results concerning the existence
and uniqueness of a solution of contact problems with friction can be found in Eck,
Jarůšek, and Krbec [6].

The most complete theory has been developed for the Tresca (given) friction,
which assumes that the normal contact area and the pressure force, which defines
the slip–stick bound, are known a priori. Though this assumption is not realistic, it
is useful as the well-understood approximation of the Coulomb friction with strong
theoretical results on the existence and uniqueness of a solution. In our book, we
use the Tresca friction as an auxiliary problem in the fixed point algorithms for the
Coulomb friction.
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1.3 Transient Contact Problems

The transient contact problems arisewheneverwe have to take into account the inertia
forces. It follows that it is physically more realistic to consider dynamic models
than the static models considered above. Many such problems arise in mechanical
engineering, geophysics, or biomechanics when the bodies in contact are moving
fast, as in car engines.

However, to provide a useful solution to realistic problems requires not only to
overcome the difficulties specified above for the static problems, but also to resolve
the problems arising from the lack of smoothness of time derivatives, which puts high
demand on the construction of effective time discretization schemes.Moreover, since
the solution of transient problems is typically reduced to a sequence of related static
problems, it is natural to assume that their solution is much more time consuming
than the solution of related static problems.

Fig. 1.7 Crash test

An example of a realistic transient contact problem is the analysis of a crash test
depicted in Fig. 1.7. A sophisticated time discretization is necessary to preserve the
energy. A reasonable time discretization requires the solutions of 103–105 auxiliary
static problems per second, so that an efficient solver of the static problems is nec-
essary. Moreover, in each time step, it is necessary to identify a possible contact
interface. The only simplification, as compared with the static problems, concerns
the stiffness matrices of the “floating” bodies as they are regularized by the mass
matrix.

In spite of a lot of research, a little is known about the solvability of the above
problem, so a numerical solution is typically obtained under the assumption that it
exists. Moreover, it is assumed that the solution is sufficiently smooth so that its
second derivatives exist in some reasonable sense and can be approximated by finite
differences. The complications arise from the hyperbolic character of the equations
of motion.
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1.4 Numerical Solution of Contact Problems

Given a system of elastic bodies in a reference configuration, traction, and boundary
conditions, including contact conditions on a potential contact interface, the complete
solution of the associated contact problem comprises the resulting displacements
of the bodies and the reaction forces on the contact interface, from which we can
evaluate the stress and strain fields in the bodies. To describe briefly how to resolve
the challenges posed by the numerical solution of contact problems, we split the
solution procedure into three stages:

• a continuous formulation of the conditions of equilibrium and the boundary
conditions,

• the discretization,
• the solution of the discretized problem.

The choice of a continuous formulation is essential for the success of the next
steps. Many effective solution methods are based on a variational formulation of
the conditions of equilibrium, in particular on the observation that the equilibrium
minimizes the energy function (considered as a function of the displacements) sub-
ject to the constraints specified by the boundary conditions. The energy function
introduces a structure that can be exploited by the solution algorithms and simplifies
the treatment of discontinuous coefficients and traction. The energy formulation in
a suitable function space is also mathematically sound in the sense that it enables to
obtain results on the existence and uniqueness of a solution. More general variational
formulation of the equilibrium conditions is useful for the problems with additional
nonlinearities, such as large deformations or plasticity.

If some additional assumptions are satisfied, it is possible to express the displace-
ments in the interior of the bodies in terms of the displacements and their derivatives
on the boundary. In this case, the energy function can be reduced to the boundary
of the bodies so that it depends only on the displacements near the boundary, which
reduces the dimension of the problem by one. Though the reduced variational for-
mulation is not as general as the full one, there are problems which can be solved
more efficiently in the boundary formulation, including the exterior problems, the
problems with cracks, or the contact shape optimization problems. Moreover, the
surface discretization is much simpler than the volume discretization.

The discretization of contact problems is partly the same as that of the linear
problems of elasticity— the finite element method (FEM) and the boundary element
method (BEM) are widely used for the discretization of the full and reduced energy
functions, respectively. The discretization of contact conditions is more tricky. A
straightforward linearization of the non-penetration conditions is possible and works
for some simple problems, especially when a matching discretization is used. How-
ever, the matching discretization is hardly possible, e.g., for the transient contact
problems or for the contact shape optimization problems as it would require remesh-
ing which could affect related cost functions.
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More sophisticated discretization is important also when the contact interface is
large and curved as that of the hip joint substitute depicted in Fig. 1.8. The remedy
consists in imposing the contact conditions by local averages. Strong approxima-
tion properties of the variationally consistent mortar discretization introduced by
Wohlmuth can be found in [7].

Fig. 1.8 Hip joint substitute (left) and its model decomposed into subdomains (right)

Efficient algorithms for the solution of contact problems typically combine a
fast solver of auxiliary linear problems with a strategy for effective identification of
the constraints that are active in the solution. Recent development of direct sparse
linear solvers extended their applicability to larger problems, currently millions of
unknowns, but for the solution of still larger problems, it is necessary to use a suitable
scalable solver that can currently find an approximate solution of the systems with
billions of unknowns and exploit effectively some tens of thousands of processors.

The scalable solvers of linear equations are typically based on multigrid or
domain decompositionmethods. Both methods use coarse spaces to generate related
well-conditioned systems, which can be solved efficiently by standard iterative
solvers with the rate of convergence in terms of the condition number. The methods
differ in the way the coarse grids are generated. The auxiliary coarse discretizations
used by the multigrid are typically generated by the hierarchy of coarse discretisa-
tions of displacements, while those used by the domain decomposition are generated
by the decomposition of the domain as in Fig. 1.3.

Here, we present theoretically supported scalable algorithms for contact problems
that are based on variants of the FETI domain decompositionmethod. The scalability
of the algorithms presented in this book is demonstrated by the solution of contact
problems with billions of nodal variables. In the last chapter, it is indicated how
the algorithms should be modified to be able to solve effectively contact problems
discretized by hundreds of billions of nodal variables.
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3. Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of Variational Inequalities inMechan-
ics. Springer, Berlin (1988)

4. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity. SIAM, Philadelphia (1988)
5. Coulomb, C.A.: Théorie des machines simples, en ayant égard au frottement de leurs parties et

la raideur des cordages. Mémoirs Savants Étrangers X, 163–332 (1785)
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Chapter 2
Linear Algebra

The purpose of this chapter is to briefly review the notations, definitions, and results of
linear algebra that are used in the rest of the book. There is no claim of completeness
as the reader is assumed to be familiar with the basic concepts of college linear
algebra such as vector spaces, linear mappings, matrix decompositions, etc. More
systematic exposition and additional material can be found in the books by Demmel
[1], Laub [2], or Golub and Van Loan [3].

2.1 Vectors and Matrices

In this book,weworkwithn-dimensional arithmetic vectors v ∈ R
n ,whereRdenotes

the set of real numbers. The only exception is Sect. 2.7, where vectors with complex
entries are considered. We denote the i th component of an arithmetic vector v ∈ R

n

by [v]i . Thus [v]i = vi if v = [vi ] is defined by its components vi . All the arithmetic
vectors are considered by default to be column vectors. The relations between vec-
tors u, v ∈ R

n are defined componentwise. Thus u ≤ v is equivalent to [u]i ≤ [v]i ,
i = 1, . . . , n. We sometimes call the elements of R

n points to indicate that the
concepts of length and direction are not important.

The vector analog of 0 ∈ R is the zero vector on ∈ R
n with all the entries equal

to zero. When the dimension can be deduced from the context, possibly using the
assumption that all the expressions in our book are well defined, we often drop the
subscript and write simply o.

Given vectors v1, . . . , vk ∈ R
n , the set

Span{v1, . . . , vk} = {v ∈ R
n : v = α1v1 + · · · + αkvk, αi ∈ R}

is a vector space called the linear span of v1, . . . , vk . For example

Span{s1, . . . , sn} = R
n, [si ] j = δi j , i, j = 1, . . . , n,

© Springer Science+Business Media LLC 2016
Z. Dostál et al., Scalable Algorithms for Contact Problems, Advances
in Mechanics and Mathematics 36, DOI 10.1007/978-1-4939-6834-3_2

11



12 2 Linear Algebra

where δi j denotes the Kronecker symbol defined by δi j = 1 for i = j and δi j = 0 for
i �= j , is the standard basis of Rn .

We sometimes use the componentwise extensions of scalar functions to vectors.
Thus, if v ∈ R

n , then v+ and v− are the vectors the i th components of which are
max{[v]i , 0} and min{[v]i , 0}, respectively.

If I is a nonempty subset of {1, . . . , n} and v ∈ R
n , then we denote by [v]I

or simply vI the subvector of v with components [v]i , i ∈ I . Thus if I has m
elements, then vI ∈ R

m , so we can refer to the components of vI either by the
global indices i ∈ I or by the local indices j ∈ {1, . . . ,m}. We usually rely on the
reader’s judgment to recognize the appropriate type of indexing.

Similarly to the related convention for vectors, the (i, j)th component of a matrix
A ∈ R

m×n is denoted by [A]i j , so that [A]i j = ai j for A = [ai j ] which is defined by
its entries ai j . A matrix A ∈ R

m×n is called an (m, n)-matrix.
The matrix analog of 0 is the zero matrix Omn ∈ R

m×n with all the entries equal
to zero. When the dimension is clear from the context, we often drop the subscripts
and write simply O.

The matrix counterpart of 1 ∈ R in R
n×n is the identity matrix In = [δi j ] of the

order n. When the dimension may be deduced from the context, we often drop the
subscripts and write simply I. Thus, we can write

A = IA = AI

for any matrix A, having in mind that the order of I on the left may be different from
that on the right.

A matrix A is positive definite if xTAx > 0 for any x �= o, positive semidefinite
if xTAx ≥ 0 for any x, and indefinite if neither A nor −A is positive definite or
semidefinite. We are especially interested in symmetric positive definite (SPD) or
symmetric positive semidefinite (SPS) matrices.

If A ∈ R
m×n , I ⊆ {1, . . . ,m}, and J ⊆ {1, . . . , n}, I and J nonempty, we

denote byAIJ the submatrix ofAwith the components [A]i j , i ∈ I , j ∈ J . The
local indexing of the entries of AIJ is used whenever it is convenient in a similar
way as the local indexing of subvectors which was introduced in Sect. 2.1. The full
set of indices may be replaced by * so that A = A∗∗ and AI ∗ denotes the submatrix
of A with the row indices belonging to I . Occasionally we simplify AI = AI ∗.

Sometimes it is useful to rearrange the matrix operations into manipulations with
submatrices of given matrices called blocks. A block matrix A ∈ R

m×n is defined
by its blocks Ai j = AIiJ j , where Ii and J j denote nonempty contiguous sets
of indices decomposing {1, . . . ,m} and {1, . . . , n}, respectively. We can use the
block structure to implement matrix operations only when the block structure of the
involved matrices matches.

The matrices in our applications are often sparse in the sense that they have a
small number of nonzero entries distributed in a pattern which can be exploited
to the efficient implementation of matrix operations or to the reduction of storage
requirements.
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2.2 Matrices and Mappings

Each matrix A ∈ R
m×n defines the mapping which assigns to each x ∈ R

n the vector
Ax ∈ R

m . Two important subspaces associated with this mapping are its range or
image space ImA and its kernel or null space KerA; they are defined by

ImA = {Ax : x ∈ R
n} and KerA = {x ∈ R

n : Ax = o}.

The range of A is the span of its columns. The rank and the defect of a matrix are
defined as the dimension of its image and kernel, respectively.

If f is amappingdefinedonD ⊆ R
n andΩ ⊆ D , then f |Ω denotes the restriction

of f to Ω , that is, the mapping defined on Ω which assigns to each x ∈ Ω the value
f (x). If A ∈ R

m×n and V is a subspace of Rn , we define A|V as a restriction of the
mapping associated with A to V . The restriction A|V is said to be positive definite
if xTAx > 0 for x ∈ V, x �= o, and positive semidefinite if xTAx ≥ 0 for x ∈ V .

The mapping associated with A is injective if Ax = Ay implies x = y. It is easy
to check that the mapping associated with A is injective if and only if KerA = {o}.
If m = n, then A is injective if and only if ImA = R

n .
A subspace V ⊆ R

n which satisfies

AV = {Ax : x ∈ V } ⊆ V

is an invariant subspace of A. Obviously

A(ImA) ⊆ ImA,

so that ImA is an invariant subspace of A.
A projector is a square matrix P that satisfies

P2 = P.

A vector x ∈ ImP if and only if there is y ∈ R
n such that x = Py, so that

Px = P(Py) = Py = x.

If P is a projector, then also Q = I − P and PT are projectors as

(I − P)2 = I − 2P + P2 = I − P and
(
PT

)2 = (
P2)T = PT .

Since for any x ∈ R
n

x = Px + (I − P)x,

it simply follows that ImQ = KerP,

R
n = ImP + KerP, and KerP ∩ ImP = {o}.
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We say that P is a projector ontoU = ImP along V = KerP andQ is a complemen-
tary projector onto V along U . The above relations may be rewritten as

ImP ⊕ KerP = R
n. (2.1)

Let (π(1), . . . , π(n)) be a permutation of numbers 1, . . . , n. Then, the mapping
which assigns to each v = [vi ] ∈ R

n a vector [vπ(1), . . . , vπ(n)]T is associated with
the permutation matrix

P = [sπ(1), . . . , sπ(n)],

where si denotes the i th column of the identity matrix In . IfP is a permutationmatrix,
then

PPT = PTP = I.

Notice that if B is a matrix obtained from a matrix A by reordering of the rows of
A, then there is a permutation matrix P such that B = PA. Similarly, if B is a matrix
obtained fromA by reordering of the columns ofA, then there is a permutationmatrix
P such that B = AP.

2.3 Inverse and Generalized Inverse

If A is a square full rank matrix, then there is the unique inverse matrix A−1 such
that

AA−1 = A−1A = I. (2.2)

The mapping associated with A−1 is inverse to that associated with A.
If A−1 exists, we say that A is nonsingular. A square matrix is singular if its

inverse matrix does not exist. If P is a permutation matrix, then P is nonsingular and

P−1 = PT .

If A is a nonsingular matrix, then A−1b is the unique solution of Ax = b.
If A is nonsingular, then we can transpose (2.2) to get

(A−1)TAT = AT (A−1)T = I,

so that
(AT )−1 = (A−1)T . (2.3)

It follows that if A is symmetric, then A−1 is symmetric.
If A ∈ R

n×n is positive definite, then also A−1 is positive definite, as any vector
x �= o can be expressed as x = Ay, y �= o, and

xTA−1x = (Ay)TA−1Ay = yTAT y = yTAy > 0.
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If A and B are nonsingular matrices, then it is easy to check that also AB is
nonsingular and

(AB)−1 = B−1A−1.

If

H =
[
HII HIJ

HJI HJJ

]
=

[
A BT

B C

]

is an SPD block matrix, then we can directly evaluate

H−1 =
[
A BT

B C

]−1

=
[
A−1 − A−1BTS−1BA−1, −A−1BTS−1

−S−1BA−1, S−1

]
, (2.4)

where S = C − BA−1BT denotes the Schur complement of H with respect to A.
Thus [

A−1
]
JJ

= S−1. (2.5)

If A ∈ R
m×n and b ∈ ImA, then we can express a solution of the system of lin-

ear equations Ax = b by means of a left generalized inverse matrix A+ ∈ R
n×m

which satisfies AA+A = A. Indeed, if b ∈ ImA, then there is y such that
b = Ay and x = A+b satisfies

Ax = AA+b = AA+Ay = Ay = b.

Thus A+ acts on the range of A like the inverse matrix. If A is a nonsingular square
matrix, then obviously

A+ = A−1.

Moreover, if A ∈ R
n×n and S ∈ R

n×p are such that AS = O, then (A+) + SST is
also a left generalized inverse as

A
(
A+ + SST

)
A = AA+A + ASSTA = A.

If A is a symmetric singular matrix, then there is a permutation matrix P such that

A = PT

[
B CT

C CB−1CT

]
P,

where B is a nonsingular matrix the dimension of which is equal to the rank of A. It
may be verified directly that the matrix

A# = PT

[
B−1 OT

O O

]
P (2.6)

is a left generalized inverse of A. If A is SPS, then A# is also SPS. Notice that if
AS = O, then A+ = A# + SST is also an SPS generalized inverse.
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2.4 Direct Methods for Solving Linear Equations

The inverse matrix is a useful tool for theoretical developments, but not for compu-
tations. It is often much more efficient to implement the multiplication of a vector
by the inverse matrix by solving the related system of linear equations. We recall
here briefly the direct methods, which reduce solving of the original system of linear
equations to solving of a system or systems of equations with triangular matrices.

A matrix L = [li j ] is lower triangular if li j = 0 for i < j . It is easy to solve
a system Lx = b with the nonsingular lower triangular matrix L ∈ R

n . As there is
only one unknown in the first equation, we can find it and then substitute it into the
remaining equations to obtain a system with the same structure, but with only n − 1
remaining unknowns. Repeating the procedure, we can find all the components of x.

A similar procedure, but starting from the last equation, can be applied to a system
with the nonsingular upper triangular matrix U = [ui j ] with ui j = 0 for i > j .

The solution costs of a system with triangular matrices is proportional to the
number of its nonzero entries. In particular, the solutionof a systemof linear equations
with a diagonal matrix D = [di j ], di j = 0 for i �= j , reduces to the solution of a
sequence of linear equations with one unknown.

If we are to solve the system of linear equations with a nonsingular matrix, we
can use systematically equivalent transformations that do not change the solution in
order to modify the original system to that with an upper triangular matrix. It is well
known that the solutions of a system of linear equations are the same as the solutions
of a system of linear equations obtained from the original system by interchanging
two equations, replacing an equation by its nonzero multiple, or adding a multiple of
one equation to another equation. TheGauss elimination for the solution of a system
of linear equations with a nonsingular matrix thus consists of two steps: the forward
reduction, which exploits equivalent transformations to reduce the original system
to the system with an upper triangular matrix, and the backward substitution, which
solves the resulting system with the upper triangular matrix.

Alternatively, we can use suitable matrix factorizations. For example, it is well
known that any SPD matrix A can be decomposed into the product

A = LLT , (2.7)

where L is a nonsingular lower triangular matrix with positive diagonal entries.
Having the decomposition, we can evaluate z = A−1x by solving the systems

Ly = x and LT z = y.

The factorization-based solversmay be especially usefulwhenwe are to solve several
systems of equations with the same coefficients but different right-hand sides.

The method of evaluation of the factor L is known as the Cholesky factorization.
The Cholesky factor L can be computed column by column. Suppose that
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A =
[
a11 aT1
a1 A22

]
and L =

[
l11 o
l1 L22

]
.

Substituting for A and L into (2.7) and comparing the corresponding terms immedi-
ately reveals that

l11 = √
a11, l1 = l−1

11 a1, L22LT
22 = A22 − l1lT1 . (2.8)

This gives us the first columnofL, and the remaining factorL22 is simply theCholesky
factor of the Schur complement A22 − l1lT1 which is known to be positive definite,
so we can find its first column by the above procedure. The algorithm can be im-
plemented to exploit a sparsity pattern of A, e.g., when A = [ai j ] ∈ R

n×n is a band
matrix with ai j = 0 for |i − j | > b, b � n.

If A ∈ R
n×n is only positive semidefinite, it can happen that a11 = 0. Then

0 ≤ xTAx = yTA22y + 2x1aT1 y

for any vector x = [
x1, yT

]T
. The inequality implies that a1 = o, as otherwise we

could take y = −a1 and large x1 to get

yTA22y + 2x1aT1 y = aT1 A22a1 − 2x1‖a1‖2 < 0.

Thus for A symmetric positive semidefinite and a11 = 0, (2.8) reduces to

l11 = 0, l1 = o, L22LT
22 = A22. (2.9)

This simple modification assumes exact arithmetics. In the computer arithmetics,
the decision whether a11 is to be treated as zero depends on some small ε > 0.
Alternatively, it is possible to exploit some additional information. For example, any
orthonormal basis of the kernel of a matrix can be used to identify the zero rows (and
columns) of a Cholesky factor by means of the following lemma.

Lemma 2.1 Let A ∈ R
n×n denote an SPS matrix the kernel of which is spanned by

the full column rank matrix R ∈ R
n×d with orthonormal columns. Let

I = {i1, . . . , id}, 1 ≤ i1 < i2 < · · · < id ≤ n,

denote a set of indices, and let J = N − I , N = {1, 2, . . . , n}.
Then

λmin(AJJ ) ≥ λmin(A) σ 4
min(RI ∗), (2.10)

where λmin(A) and σmin(RJ ∗) denote the least nonzero eigenvalue ofA and the least
singular value of RJ ∗, respectively.

Proof See Dostál et al. [4]. �
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Ifwe can identify a nonsingular blockAJJ ofA, thenwecan reduce the problems
related to themanipulationwith singularmatrices to thosewith smallermatrices using
the decomposition

A =
[
AJJ AJI

AIJ AII

]
=

[
LJJ O
LIJ I

] [
LT
JJ LT

IJ

O S

]
, (2.11)

where LJJ ∈ R
r×r is a lower factor of the Cholesky decomposition of AJJ ,

LIJ ∈ R
s×r , r = n − s, LIJ = AIJ L−T

JJ , and S ∈ R
s×s is the

Schur complement matrix of the block AII defined by

S = AJJ − AJIA−1
IIAIJ .

The decomposition (2.11) is a useful tool for the effective construction of a gen-
eralized inverse or for the effective evaluation of the multiplication of a vector by a
generalized inverse.

Lemma 2.2 Let A denote an SPS block matrix as in (2.11), let e ∈ KerA, and let S
denote the Schur complement matrix of the block AII . Then eJ ∈ KerS and if S+
denote any generalized inverse of S, then the matrix A+ defined by

A+ =
[
L−T
JJ −L−T

JJ LT
IJS+

O S+

][
L−1
JJ O

−LIJ L−1
JJ I

]

(2.12)

is a generalized inverse of A which satisfies

[A+]JJ = S+. (2.13)

Proof If Ae = o, then

AJJ eJ + AJI eI = o, AIJ eJ + AII eI = o,

and

SeI = (AII − AIJA−1
JJAJI )eI

= AII eI − AIJA−1
JJ (−AJJ eJ ) = o,

i.e., eJ ∈ KerS. The rest can be verified directly. �
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Notice that
S+ = [

A+]
JJ

. (2.14)

If A is a full rank matrix, then we get

S−1 = [
A−1

]
JJ

, (2.15)

which agrees with (2.5).

2.5 Norms

General concepts of size and distance in a vector space are expressed by norms.
A norm on R

n is a function which assigns to each x ∈ R
n a number IxI ∈ R in

such a way that for any vectors x, y ∈ R
n and any scalar α ∈ R, the following three

conditions are satisfied:

(i) IxI ≥ 0, and IxI = 0 if and only if x = o.
(ii) Ix + yI ≤ IxI + IyI.
(iii) IαxI = |α| IxI.

It is easy to check that the functions

‖x‖2 =
√
x21 + · · · + x2n and ‖x‖∞ = max{|x1|, . . . , |xn|}

are norms. They are called 	2 (Euclidean) and 	∞ norms, respectively.
Given a norm defined on the domain and the range of a matrix A, we can define

the induced norm IAI of A by

IAI = sup
IxI=1

IAxI = sup
x �=o

IAxI
IxI

.

If B �= O, then

IABI = sup
x �=o

IABxI
IxI

= sup
Bx �=o

IABxI
IBxI

IBxI
IxI

≤ sup
y∈ImB,
y �=o

IAyI
IyI

sup
x �=o

IBxI
IxI

.

It follows easily that the induced norm is submultiplicative, i.e.,

IABI ≤ IA|ImBI IBI ≤ IAI IBI. (2.16)
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If A = [ai j ] ∈ R
m×n and x = [xi ] ∈ R

n , then

‖Ax‖∞ = max
i=1,...,m

|
n∑

j=1

ai j x j | ≤ max
i=1,...,m

n∑

j=1

|ai j ||x j | ≤ ‖x‖∞ max
i=1,...,m

n∑

j=1

|ai j |,

that is, ‖A‖∞ ≤ maxi=1,...,m
∑n

j=1 |ai j |. Since the last inequality turns into the equal-
ity for a vector x with suitably chosen entries xi ∈ {1,−1}, we have

‖A‖∞ = max
i=1,...,m

n∑

j=1

|ai j |. (2.17)

2.6 Scalar Products

General concepts of length and angle in a vector space are introduced by means of a
scalar product; it is the mapping which assigns to each couple x, y ∈ R

n a number
(x, y) ∈ R in such a way that for any vectors x, y, z ∈ R

n and any scalar α ∈ R, the
following four conditions are satisfied:

(i) (x, y + z) = (x, y) + (x, z).
(ii) (αx, y) = α(x, y).
(iii) (x, y) = (y, x).
(iv) (x, x) > 0 for x �= o.

The scalar product is an SPD form, see also Chap.4.
We often use the Euclidean scalar product or the Euclidean inner product which

assigns to each couple of vectors x, y ∈ R
n a number defined by

(x, y) = xT y.

In more complicated expressions, we often denote the Euclidean scalar product inR3

by dot, so that
x · y = xT y.

If A is an SPD matrix, then we can define the more general A-scalar product on Rn

by
(x, y)A = xTAy.

We denote for any x ∈ R
n its Euclidean norm and A-norm by

‖x‖ = (x, x)1/2, ‖x‖A = (x, x)1/2A .

It is easy to see that any norm induced by a scalar product satisfies the properties (i)
and (iii) of the norm. The property (ii) follows from the Cauchy–Schwarz inequality

http://dx.doi.org/10.1007/978-1-4939-6834-3_4
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(x, y)2 ≤ ‖x‖2 ‖y‖2, (2.18)

which is valid for any x, y ∈ R
n and any scalar product. The bound is tight in the

sense that the inequality becomes the equality when x, y are dependent.
A pair of vectors x and y is orthogonal (with respect to a given scalar product) if

(x, y) = 0.

The vectors x and y that are orthogonal in A-scalar product are called A-conjugate
or briefly conjugate.

Two sets of vectors E and F are orthogonal (also stated “E orthogonal to F ”)
if any x ∈ E is orthogonal to any y ∈ F . The set E ⊥ of all the vectors of Rn that
are orthogonal to E ⊆ R

n is a vector space called an orthogonal complement of E .
If E ⊆ R

n , then
R

n = Span E ⊕ E ⊥.

A set of vectors E is orthogonal if its elements are pairwise orthogonal, i.e., any
x ∈ E is orthogonal to any y ∈ E , y �= x. A set of vectors E is orthonormal if it is
orthogonal and (x, x) = 1 for any x ∈ E .

A square matrix U is orthogonal if UTU = I, that is, U−1 = UT . Multiplication
by an orthogonal matrix U preserves both the angles between any two vectors and
the Euclidean norm of any vector as

(Ux)TUy = xTUTUy = xT y.

A matrix P ∈ R
n×n is an orthogonal projector if P is a projector, i.e., P2 = P,

and ImP is orthogonal to KerP. The latter condition can be rewritten equivalently as

PT (I − P) = O.

It simply follows that
PT = PTP = P,

so that orthogonal projectors are symmetric matrices and symmetric projectors are
orthogonal projectors. IfP is an orthogonal projector, then I − P is also an orthogonal
projector as

(I − P)2 = I − 2P + P2 = I − P and (I − P)TP = (I − P)P = O.

If U ⊆ R
n is the subspace spanned by the columns of a full column rank

matrix U ∈ R
m×n , then

P = U(UTU)−1UT

is an orthogonal projector as
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P2 = U(UTU)−1UTU(UTU)−1UT = P and PT = P.

Since any vector x ∈ U may be written in the form x = Uy and

Px = U(UTU)−1UTUy = Uy = x,

it follows that
U = ImP.

Observe that UTU is nonsingular; since UTUx = o implies

‖Ux‖2 = xT (UTUx) = 0,

it follows that x = o by the assumption on the full column rank of U.

2.7 Eigenvalues and Eigenvectors

Let A ∈ C
n×n denote a square matrix with complex entries. If a vector e ∈ C

n and a
scalar λ ∈ C satisfy

Ae = λe, (2.19)

then e is said to be an eigenvector of A associated with an eigenvalue λ. A vector
e is an eigenvector of A if and only if Span{e} is an invariant subspace of A; the
restriction A|Span{e} reduces to the multiplication by λ. If {e1, . . . , ek} are eigen-
vectors of a symmetric matrix A, then it is easy to check that Span{e1, . . . , ek} and
Span{e1, . . . , ek}⊥ are invariant subspaces.

The set of all eigenvalues of A is called the spectrum of A; we denote it by σ(A).
Obviously, λ ∈ σ(A) if and only if A − λI is singular, and 0 ∈ σ(A) if and only if
A is singular. If λ �= 0, λ ∈ σ(A), then we can multiply (2.19) by λ−1A−1 to get
A−1e = λ−1e, so we can write

σ(A−1) = σ−1(A).

If U ⊆ C
n is an invariant subspace of A ∈ C

n×n , then we denote by σ(A|U ) the
eigenvalues of A that correspond to the eigenvectors belonging to U .

Since it is well known that a matrix is singular if and only if its determinant is
equal to zero, it follows that the eigenvalues of A are the roots of the characteristic
equation

det(A − λI) = 0. (2.20)

The characteristic polynomial pA(λ) = det(A − λI) is of the degree n. Thus there
are at most n distinct eigenvalues and σ(A) is not the empty set.
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Even though it is in general difficult to evaluate the eigenvalues of a given matrix
A, it is still possible to get nontrivial information about σ(A) without heavy com-
putations. Useful information about the location of eigenvalues can be obtained by
Gershgorin’s theorem, which guarantees that every eigenvalue of A = [ai j ] ∈ C

n×n

is located in at least one of the n circular disks in the complex plane with the centers
aii and radii ri = ∑

j �=i |ai j |.
The eigenvalues of a real symmetric matrix are real. Since it is easy to check

whether a matrix is symmetric, this gives us useful information about the location of
eigenvalues.

Let A ∈ R
n×n denote a real symmetric matrix, let I = {1, . . . , n − 1}, and let

A1 = AII . Let λ1 ≥ · · · ≥ λn and λ1
1 ≥ · · · ≥ λ1

n−1 denote the eigenvalues ofA and
A1, respectively. Then by the Cauchy interlacing theorem

λ1 ≥ λ1
1 ≥ λ2 ≥ λ1

2 ≥ · · · ≥ λ1
n−1 ≥ λn. (2.21)

2.8 Matrix Decompositions

IfA ∈ R
n×n is a symmetric matrix, then it is possible to find n orthonormal eigenvec-

tors e1, . . . , en that form the basis of Rn . Moreover, the corresponding eigenvalues
are real. Denoting by U = [e1, . . . , en] ∈ R

n×n an orthogonal matrix the columns of
which are the eigenvectors, we may write the spectral decomposition of A as

A = UDUT , (2.22)

where D = diag(λ1, . . . , λn) ∈ R
n×n is the diagonal matrix the diagonal entries of

which are the eigenvalues corresponding to the eigenvectors e1, . . . , en . Reordering
the columns of U, we can achieve that λ1 ≥ · · · ≥ λn .

The spectral decomposition reveals close relations between the properties of a
symmetric matrix and its eigenvalues. Thus, a symmetric matrix is SPD if and only
if all its eigenvalues are positive, and it is SPS if and only if they are nonnegative.
The rank of a symmetric matrix is equal to the number of nonzero entries of D.

If A is symmetric, then we can use the spectral decomposition (2.22) to check
that for any nonzero x

λ1 = λmax ≥ ‖x‖−2xTAx ≥ λmin = λn. (2.23)

Thus for any symmetric positive definite matrix A

‖A‖ = λmax, ‖A−1‖ = λ−1
min, ‖x‖A ≤ λmax‖x‖, ‖x‖A−1 ≤ λ−1

min‖x‖. (2.24)

The spectral condition number κ(A) = ‖A‖‖A−1‖, which is a measure of depar-
ture from the identity, can be expressed for real symmetric matrix by
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κ(A) = λmax/λmin.

If A is a real symmetric matrix and f is a real function defined on σ(A), we can
use the spectral decomposition to define the scalar function by

f (A) = U f (D)UT ,

where f (D) = diag ( f (λ1), . . . , f (λn)). It is easy to check that if a is the identity
function on R defined by a(x) = x , then

a(A) = A,

and if f and g are real functions defined on σ(A), then

( f + g)(A) = f (A) + g(A) and ( f · g)(A) = f (A)g(A).

Moreover, if f (x) ≥ 0 for x ∈ σ(A), then f (A) is SPS, and if f (x) > 0 for x ∈ σ(A),
then f (A) is SPD. For example, if A is SPD, then

A = A1/2A1/2.

Obviously
σ( f (A)) = f (σ (A)), (2.25)

and if ei is an eigenvector corresponding to λi ∈ σ(A), then it is also an eigenvector
of f (A) corresponding to f (λi ). It follows easily that for any SPS matrix

ImA = ImA1/2 and KerA = KerA1/2. (2.26)

A key to understanding nonsymmetric matrices is the singular value decomposi-
tion (SVD). If B ∈ R

m×n , then SVD of B is given by

B = USVT , (2.27)

where U ∈ R
m×m and V ∈ R

n×n are orthogonal, and S ∈ R
m×n is a diagonal matrix

with nonnegative diagonal entries σ1 ≥ · · · ≥ σmin{m,n} = σmin called singular values
of B. If A is not a full rank matrix, then it is often more convenient to use the reduced
singular value decomposition (RSVD)

B = ÛŜV̂T , (2.28)

where Û ∈ R
m×r and V̂ ∈ R

n×r are matrices with orthonormal columns, Ŝ ∈ R
r×r is

a nonsingular diagonal matrix with positive diagonal entries σ1 ≥ · · · ≥ σr = σmin,
and r ≤ min{m, n} is the rank of B. The matrices Û and V̂ are formed by the first r
columns of U and V. If x ∈ R

m , then
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Bx = ÛŜV̂
T
x = (ÛŜV̂

T
)(V̂ŜÛ

T
)(ÛŜ

−1
VT x) = BBT y,

so that
ImB = ImBBT

. (2.29)

If B = ÛŜV̂
T
is RSVD, then

ImB = Im Û, KerB = (
Im V̂

)⊥
.

It follows that
ImBT = (KerB)

⊥
. (2.30)

The SVD reveals close relations between the properties of amatrix and its singular
values. Thus, the rank of B ∈ R

m×n is equal to the number of its nonzero singular
values,

‖B‖ = ‖BT ‖ = σ1, (2.31)

and for any vector x ∈ R
n

σmin‖x‖ ≤ ‖Bx‖ ≤ ‖B‖‖x‖. (2.32)

Let σmin denote the least nonzero singular value of B ∈ R
m×n , let x ∈ ImBT , and

consider the RSVD B = ÛŜV̂T with Û ∈ R
m×r , V̂ ∈ R

n×r , and Ŝ ∈ R
r×r . Then

there is y ∈ R
r such that x = V̂y and

‖Bx‖ = ‖ÛŜV̂T V̂y‖ = ‖ÛŜy‖ = ‖Ŝy‖ ≥ σmin‖y‖.

Since
‖x‖ = ‖V̂y‖ = ‖y‖,

we conclude that
σmin‖x‖ ≤ ‖Bx‖ for any x ∈ ImBT , (2.33)

or, equivalently,
σmin‖x‖ ≤ ‖BT x‖ for any x ∈ ImB. (2.34)

The SVD (2.27) can be used to introduce theMoore–Penrose generalized inverse
of an m × n matrix B by

B† = VS†UT ,

whereS† is the diagonalmatrixwith the entries [S†]i i = 0 ifσi = 0 and [S†]i i = σ−1
i

otherwise. It is easy to check that

BB†B = USVTVS†UTUSVT = USVT = B, (2.35)
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so that the Moore–Penrose generalized inverse is a generalized inverse. If B is a full
row rank matrix, then it may be checked directly that

B† = BT (BBT )−1.

If B is a singular matrix and c ∈ ImB, then xLS = B†c is a solution of the system
of linear equations Bx = c, i.e.,

BxLS = c.

Notice that xLS ∈ ImBT , so that if x is any other solution, then x = xLS + d, where
d ∈ KerB, xTLSd = 0, and

‖xLS‖2 ≤ ‖xLS‖2 + ‖d‖2 = ‖x‖2. (2.36)

The vector xLS is called the least square solution of Bx = c.
Obviously

‖B†‖ = σ −1
min , (2.37)

where σmin denotes the least nonzero singular value of B, so that

‖xLS‖ = ‖B†c‖ ≤ σ −1
min‖c‖. (2.38)

It can be verified directly that

(
B†

)T = (
BT

)†
.

2.9 Graphs, Walks, and Adjacency Matrices

We shall need some simple results of graph theory and linear algebra. Let us recall
that the vertices Vi and the edges of the graph of the mesh of the triangulation
T = {τi } of a polyhedral domain Ω are the nodes of the mesh and their adjacent
couples ViVj , respectively. Recall that the edges Vi and Vj are adjacent if there is
an element τk ∈ T such that ViVj is the edge of τk . The graph is fully described by
the adjacency matrix D with the nonzero entries di j equal to one if the nodes Vi and
Vj are adjacent. Since the graph of the mesh is not oriented and does not contain
loops, the adjacency matrix is symmetric and its diagonal entries dii are equal to
zero. Let us also recall that the walk of length k in the mesh ofT is a sequence of the
distinct nodes Vi1 , . . . , Vik such that the edges Vi j Vi j+1 , j = 1, 2, . . . , k − 1 belong
to the graph of the mesh. Thus

di j i j+1 = 1, j = 1, . . . , k − 1.
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Thewalk (Vi1 , . . . , Vik ) starts at Vi1 and ends at Vik . Moreover, we call awalk between
nodes Vi and Vk an (i, k)-walk. We use the following well-known observation [5].

Lemma 2.3 Let D be the adjacency matrix of the mesh of T and B = Dk . Then
each entry bi j of B gives the number of distinct (i, j)-walks of length k.

Proof To see why our lemma holds, we use induction on k. For k = 1 the claim
follows immediately from the definition ofD. Suppose that for some k ≥ 1 the entry
bi j in B = Dk gives the number of distinct (i, j)-walks of length k. For convenience
we denote C = Dk+1, so that C = BD. The entries of C are given by

ci j =
n∑

	=1

bi	d	j ,

where the number bi	 gives the number of distinct (i, 	)-walks of length k and d	j = 0
or d	j = 1. If a particular edge V	Vj is not in the mesh (graph) then d	j = 0 and
bi	d	j = 0. Thus, there is no (i, j)-walk of length k + 1 with the last-but-one node 	.
On the other hand, if d	, j = 1 then we can prolong each (i, 	)-walk to an (i, j)-walk.
Thus ci j gives the number of all distinct (i, j)-walks of length k + 1. �

The following corollary follows easily from Lemma 2.3.

Corollary 2.1 Let D denote the adjacency matrix of a given mesh and e = [ei ],
ei = 1, i = 1, 2, . . . , n. Then the numberw(i, k) of distinct walks of length k starting
at node i is given by

w(i, k) = [Dke]i .

If the mesh is approximately regular, we expect that more walks of length k
originate from the nodes that are near a center of the mesh than from the vertices
that are far from it. It simply follows that the node with the index i which satisfies
w(i, k) ≥ w( j, k), j = 1, 2, . . . , n, for sufficiently large k is in a sense near to the
center of the mesh.

References

1. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)
2. Laub, A.J.: Matrix Analysis for Scientists and Engineers. SIAM, Philadelphia (2005)
3. Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn. Johns Hopkins University Press,

Baltimore (1989)
4. Dostál, Z., Kozubek, T., Markopoulos, A., Menšík, M.: Cholesky factorization of a positive

semidefinite matrix with known kernel. Appl. Math. Comput. 217, 6067–6077 (2011)
5. Diestel, R.: Graph Theory. Springer, Heidelberg (2005)



Chapter 3
Optimization

In this chapter, we briefly review the results concerning theminimization of quadratic
functions to the extent which is sufficient for understanding the algorithms described
in Part II. The results are presented with specialized arguments, typically algebraic,
that exploit the specific structure of these problems. Systematic exposition of opti-
mization theory in the framework of nonlinear optimization can be found in the books
byBertsekas [1], Nocedal andWright [2], Conn, Gould, and Toint [3], Bazaraa, Sher-
ali, and Shetty [4], or Griva, Nash, and Sofer [5].

3.1 Optimization Problems and Solutions

Optimization problems considered in this book are described by a cost (objective,
target) function f defined on a subsetD ⊆ R

n and by a constraint set Ω ⊆ D . The
elements of Ω are called feasible vectors. Important ingredients of scalable algo-
rithms for the frictionless contact problems are efficient algorithms for the solution
of quadratic programming (QP) problems with a quadratic cost function f and a
constraint set Ω ⊆ R

n described by linear equalities and inequalities. The solution
of problems with friction requires effective algorithms for special quadratically con-
strained quadratic programmes (QCQP) with the constraints described by linear
equalities and separable quadratic inequalities.

We look either for a solution x ∈ R
n of the unconstrained minimization problem

which satisfies
f (x) ≤ f (x), x ∈ R

n, (3.1)

or for a solution x ∈ Ω of the constrained minimization problem

f (x) ≤ f (x), x ∈ Ω, Ω ⊂ R
n. (3.2)

A solution of the minimization problem is called its minimizer or global minimizer.

© Springer Science+Business Media LLC 2016
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A nonzero vector d ∈ R
n is a feasible direction of Ω at a feasible point x if

x + εd ∈ Ω for all sufficiently small ε > 0. A nonzero vector d ∈ R
n is a recession

direction, or simply a direction, of Ω if for each x ∈ Ω, x + αd ∈ Ω for all α > 0.

3.2 Unconstrained Quadratic Programming

Let us first recall some simple results which concern unconstrained quadratic pro-
gramming.

3.2.1 Quadratic Cost Functions

We consider the cost functions in the form

f (x) = 1

2
xTAx − bT x, (3.3)

where A ∈ R
n×n denotes a given SPS or SPD matrix of order n and b ∈ R

n .
If x,d ∈ R

n , then using elementary computations and A = AT , we get

f (x + d) = f (x) + (Ax − b)Td + 1

2
dTAd. (3.4)

The formula (3.4) is Taylor’s expansion of f at x, so that the gradient of f at x is
given by

∇ f (x) = Ax − b, (3.5)

and the Hessian of f at x is given by

∇2 f (x) = A.

Taylor’s expansion will be our simple but powerful tool in what follows.
A vector d is a decrease direction of f at x if

f (x + εd) < f (x)

for all sufficiently small values of ε > 0. Using Taylor’s expansion (3.4) in the form

f (x + εd) = f (x) + ε(Ax − b)Td + ε2

2
dTAd,

we get that d is a decrease direction if and only if

(Ax − b)Td < 0.
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3.2.2 Unconstrained Minimization of Quadratic Functions

The followingproposition gives algebraic conditions that are satisfiedby the solutions
of the unconstrained QP problem to find

min
x∈Rn

f (x), (3.6)

where f is a quadratic function defined by (3.3).

Proposition 3.1 Let the quadratic function f be defined by an SPS or SPD matrix
A ∈ R

n×n and b ∈ R
n. Then the following statements hold:

(i) A vector x is a solution of the unconstrained minimization problem (3.6) if and
only if

∇ f (x) = Ax − b = o. (3.7)

(ii) The minimization problem (3.6) has a unique solution if and only if A is SPD.

Proof The proof is a simple corollary of Taylor’s expansion formula (3.4). �

Remark 3.1 Condition (3.7) can be written as a variational equality

(Ax)T (x − x) = bT (x − x), x ∈ R
n.

Examining the gradient condition (3.7), we get that problem (3.6) has a solution if
and only if A is SPS and

b ∈ ImA. (3.8)

Denoting by R a matrix the columns of which span KerA, we can rewrite (3.8) as
RTb = o. This condition has a simple mechanical interpretation: if a mechanical
system is in equilibrium, the external forces must be orthogonal to the rigid body
motions.

If b ∈ ImA, a solution of (3.6) is given by

x = A+b,

where A+ is a left generalized inverse introduced in Sect. 2.3. After substituting into
f and simple manipulations, we get

min
x∈Rn

f (x) = −1

2
bTA+b. (3.9)

In particular, if A is positive definite, then

min
x∈Rn

f (x) = −1

2
bTA−1b. (3.10)

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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The above formulae can be used to develop useful estimates. Indeed, if (3.8)
holds and x ∈ R

n , we get

f (x) ≥ −1

2
bTA+b = −1

2
bTA†b ≥ −1

2
‖A†‖‖b‖2 = − ‖b‖2

2λmin
,

where A† denotes the Moore–Penrose generalized inverse and λmin denotes the least
nonzero eigenvalue of A. In particular, it follows that if A is positive definite and
λmin denotes the least eigenvalue of A, then for any x ∈ R

n

f (x) ≥ −1

2
bTA−1b ≥ −1

2
‖A−1‖‖b‖2 = − ‖b‖2

2λmin
. (3.11)

If the dimension n of the unconstrainedminimization problem (3.6) is large, then it
can be too ambitious to look for a solution which satisfies the gradient condition (3.7)
exactly. A natural idea is to consider the weaker condition

‖∇ f (x)‖ ≤ ε (3.12)

with a small epsilon. If x satisfies the latter condition with ε sufficiently small and
A nonsingular, then x is near the unique solution x̂ as

‖x − x̂‖ = ‖A−1A
(
x − x̂

) ‖ = ‖A−1(Ax − b)‖ ≤ ‖A−1‖‖∇ f (x)‖. (3.13)

The typical “solution” returned by an iterative solver is just x that satisfies (3.12).

3.3 Convexity

Intuitively, convexity is a property of the sets that contain the joining segment with
any two points. More formally, a subset Ω of Rn is convex if for any x and y in Ω

and α ∈ (0, 1), the vector s = αx + (1 − α)y is also in Ω .
Let x1, . . . , xk be vectors of Rn . If α1, . . . , αk are scalars such that

αi ≥ 0, i = 1, . . . , k,

k∑

i=1

αi = 1,

then the vector v = ∑k
i=1 αixi is said to be a convex combination of vectors

x1, . . . , xk . The convex hull of x1, . . . , xk , denoted Conv{x1, . . . , xk}, is the set of all
convex combinations of x1, . . . , xk .
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3.3.1 Convex Quadratic Functions

Given a convex set Ω ∈ R
n , a mapping h : Ω → R is said to be a convex function

if its epigraph is convex, that is, if

h (αx + (1 − α)y) ≤ αh(x) + (1 − α)h(y)

for all x, y ∈ Ω and α ∈ (0, 1), and it is strictly convex if

h
(
αx + (1 − α)y

)
< αh(x) + (1 − α)h(y)

for all x, y ∈ Ω, x 
= y, and α ∈ (0, 1).
The following proposition gives a characterization of convex functions.

Proposition 3.2 Let V be a subspace of Rn. The restriction f |V of a quadratic
function f with the Hessian matrix A to V is convex if and only if A|V is positive
semidefinite, and f |V is strictly convex if and only if A|V is positive definite.

Proof Let V be a subspace, let x, y ∈ V , α ∈ (0, 1), and s = αx + (1 − α)y. Then
by Taylor’s expansion (3.4) of f at s

f (s) + ∇ f (s)T (x − s) + 1

2
(x − s)TA(x − s) = f (x),

f (s) + ∇ f (s)T (y − s) + 1

2
(y − s)TA(y − s) = f (y).

Multiplying the first equation by α, the second equation by 1 − α, and summing up,
we get

f (s) + α

2
(x − s)TA(x − s) + 1 − α

2
(y − s)TA(y − s)

= α f (x) + (1 − α) f (y).
(3.14)

It follows that if A|V is positive semidefinite, then f |V is convex. Moreover, since
x = y is equivalent to x = s and y = s, it follows that if A|V is positive definite, then
f |V is strictly convex.
Let us now assume that f |V is convex, let z ∈ V , α = 1

2 , and denote x = 2z,
y = o. Then s = z, x − s = z, y− s = −z, and substituting into (3.14) results in

f (s) + 1

2
zTAz = α f (x) + (1 − α) f (y).

Since z ∈ V is arbitrary and f |V is assumed to be convex, it follows that

1

2
zTAz = α f (x) + (1 − α) f (y) − f (αx + (1 − α)y) ≥ 0.
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Thus A|V is positive semidefinite. Moreover, if f |V is strictly convex, then A|V is
positive definite. �

The strictly convex quadratic functions have a nice property that f (x) → ∞
when ‖x‖ → ∞. The functions with this property are called coercive functions.
More generally, a function f : Rn → R is said to be coercive on Ω ⊆ R

n if

f (x) → ∞ for ‖x‖ → ∞, x ∈ Ω.

3.3.2 Minimizers of Convex Function

Under the convexity assumptions, each local minimizer is a global minimizer. We
shall formulate this result together with some observations concerning the set of
solutions.

Proposition 3.3 Let f and Ω ⊆ R
n be a convex quadratic function defined by (3.3)

and a closed convex set, respectively. Then the following statements hold:
(i) Each local minimizer of f subject to x ∈ Ω is a global minimizer of f subject to
x ∈ Ω .
(ii) If x, y are two minimizers of f subject to x ∈ Ω , then

x − y ∈ KerA ∩ Span{b}⊥.

(iii) If f is strictly convex on Ω and x, y are two minimizers of f subject to x ∈ Ω ,
then x = y.

Proof (i) Let x ∈ Ω and y ∈ Ω be local minimizers of f subject to x ∈ Ω ,
f (x) < f (y). Denoting yα = αx + (1 − α)y and using that f is convex, we get

f (yα) = f (αx + (1 − α)y) ≤ α f (x) + (1 − α) f (y) < f (y)

for every α ∈ (0, 1). Since

‖y − yα‖ = α‖y − x‖,

the inequality contradicts the assumption that y is a local minimizer.
(ii) Let x and y be global minimizers of f on Ω . Then for any α ∈ [0, 1]

x + α(y − x) = (1 − α)x + αy ∈ Ω, y + α(x − y) = (1 − α)y + αx ∈ Ω.
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Moreover, using Taylor’s formula, we get

0 ≤ f
(
x + α(y − x)

) − f (x) = α(Ax − b)T (y − x) + α2

2
(y − x)TA(y − x),

0 ≤ f
(
y + α(x − y)

) − f (y) = α(Ay − b)T (x − y) + α2

2
(x − y)TA(x − y).

Since the latter inequalities hold for arbitrarily small α, it follows that

(Ax − b)T (y − x) ≥ 0 and (Ay − b)T (x − y) ≥ 0.

After summing up the latter inequalities and simple manipulations, we have

−(x − y)TA(x − y) ≥ 0.

Since the convexity of f implies by Proposition 3.2 that A is positive semidefinite,
it follows that x − y ∈ KerA.

If f (x) = f (y) and x, y ∈ KerA, then

bT (x − y) = f (x) − f (y) = 0,

i.e., x − y ∈ Span{b}⊥.
(iii) Let f be strictly convex and let x, y ∈ Ω be different global minimizers of f
on Ω , so that f (x) = f (y). Then KerA = {o} and by (ii) x − y = o. �

3.3.3 Existence of Minimizers

Since quadratic functions are continuous, existence of at least one minimizer is
guaranteed by the Weierstrass theorem provided Ω is compact, that is, closed and
bounded. The following standard results do not assume that Ω is bounded.

Proposition 3.4 Let f be a convex quadratic function and let Ω denote a closed
convex set. Then the following statements hold:
(i) If f is strictly convex, then there is a unique minimizer of f subject to x ∈ Ω .
(ii) If f is coercive on Ω , then a global minimizer of f subject to x ∈ Ω exists.
(iii) If f is bounded from below on Ω , then there is a global minimizer of f subject
to x ∈ Ω .

Proof (i) If f is strictly convex, it follows by Proposition 3.2 that A is SPD and
z = A−1b is by Proposition 3.1 the unique minimizer of f on R

n . Thus for any
x ∈ R

n

f (x) ≥ f (z).
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It follows that the infimum of f (x) subject to x ∈ Ω exists, and there is a sequence
of vectors xk ∈ Ω such that

lim
k→∞ f (xk) = inf

x∈Ω
f (x).

The sequence {xk} is bounded as

f (xk) − f (z) = 1

2
(xk − z)TA(xk − z) ≥ λmin

2
‖xk − z‖2,

where λmin denotes the least eigenvalue of A. It follows that {xk} has at least one
cluster point x ∈ Ω . Since f is continuous, we get

f (x) = inf
x∈Ω

f (x).

The uniqueness follows by Proposition 3.3.
(ii) The proof is similar to that of (i). See, e.g., Bertsekas [1, Proposition A.8].
(iii) The statement is the well-known Frank–Wolfe theorem [6]. �

3.3.4 Projections to Convex Sets

Let us define the projection PΩ to the (closed) convex set Ω ⊂ R
n as a mapping

which assigns to each x ∈ R
n its nearest vector x̂ ∈ Ω as in Fig. 3.1. The following

proposition concerns the projection induced by the Euclidean scalar product.

Fig. 3.1 Projection to the convex set

Proposition 3.5 Let Ω ⊆ R
n be a nonempty closed convex set and x ∈ R

n. Then
there is a unique point x̂ ∈ Ω with the minimum Euclidean distance from x, and for
any y ∈ Ω

(x − x̂)T (y − x̂) ≤ 0. (3.15)
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Proof Since the proof is trivial for x ∈ Ω , let us assume that x /∈ Ω is arbitrary but
fixed and observe that the function f defined on Rn by

f (y) = ‖x − y‖2 = yT y − 2yT x + ‖x‖2

has the Hessian
∇2 f (y) = 2I.

The identity matrix being positive definite, it follows by Proposition 3.2 that f is
strictly convex, so that the unique minimizer x̂ ∈ Ω of f (y) subject to y ∈ Ω exists
by Proposition 3.4(i).

If y ∈ Ω and α ∈ (0, 1), then by convexity of Ω

(1 − α)̂x + αy = x̂ + α(y − x̂) ∈ Ω,

so that for any x ∈ R
n

‖x − x̂‖2 ≤ ‖x − x̂ − α(y − x̂)‖2.

Using simple manipulations and the latter inequality, we get

‖x − x̂ − α(y − x̂)‖2 = ‖̂x − x‖2 + α2‖y − x̂‖2 − 2α(x − x̂)T (y − x̂)

≤ ‖x − x̂ − α(y − x̂)‖2
+α2‖y − x̂‖2 − 2α(x − x̂)T (y − x̂).

Thus
2α(x − x̂)T (y − x̂) ≤ α2‖y − x̂‖2

for any α ∈ (0, 1). To obtain (3.15), just divide the last inequality by α and observe
that α may be arbitrarily small. �

Using Proposition 3.5, it is not difficult to show that themapping PΩ which assigns
to each x ∈ R

n its projection to Ω is nonexpansive as in Fig. 3.2.

Fig. 3.2 Projection PΩ is nonexpansive
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Corollary 3.1 Let Ω ⊆ R
n be a nonempty closed convex set, and for any x ∈ R

n,
let x̂ ∈ Ω denote the projection of x to Ω . Then for any x, y ∈ Ω

‖̂x − ŷ‖ ≤ ‖x − y‖. (3.16)

Proof If x, y ∈ R, then by Proposition 3.5 their projections x̂, ŷ to Ω satisfy

(x − x̂)T (z − x̂) ≤ 0 and (y − ŷ)T (z − ŷ) ≤ 0

for any z ∈ Ω . Substituting z = ŷ into the first inequality, z = x̂ into the second
inequality, and summing up, we get

(x − x̂ − y + ŷ)T (̂y − x̂) ≤ 0.

After rearranging the entries and using the Schwarz inequality, we get

‖̂x − ŷ‖2 ≤ (x − y)T (̂x − ŷ) ≤ ‖x − y‖‖̂x − ŷ‖,

which proves (3.16). �

3.4 Equality Constrained Problems

We shall now consider the problems with the constraint set described by a set of
linear equations. More formally, we shall look for

min
x∈ΩE

f (x), (3.17)

where f is a convex quadratic function defined by (3.3), ΩE = {x ∈ R
n : Bx = c},

B ∈ R
m×n , and c ∈ ImB. We assume that B 
= O is not a full column rank matrix,

so that KerB 
= {o}, but we admit dependent rows of B. It is easy to check that ΩE

is a nonempty closed convex set.
A feasible set ΩE is a linear manifold of the form

ΩE = x + KerB,

where x is any vector which satisfies

Bx = c.

Thus, a nonzero vector d ∈ R
n is a feasible direction of ΩE at any x ∈ ΩE if and

only if d ∈ KerB, and d is a recession direction of ΩE if and only if d ∈ KerB.
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Substituting x = x + z, z ∈ KerB, we can reduce (3.17) to the minimization of

fx (z) = 1

2
zTAz − (b − Ax)T z (3.18)

over the subspace KerB. Thus we can assume, without loss of generality, that c = o
in the definition of ΩE . We shall occasionally use this assumption to simplify our
exposition.

A useful tool for the analysis of equality constrained problems is the Lagrangian
function L0 : Rn+m → R defined by

L0(x,λ) = f (x) + λT (Bx − c) = 1

2
xTAx − bT x + (Bx − c)T λ. (3.19)

Obviously

∇2
xxL0(x,λ) = ∇2 f (x) = A, (3.20)

∇xL0(x,λ) = ∇ f (x) + BT λ = Ax − b + BT λ, (3.21)

L0(x + d,λ) = L0(x,λ) + (Ax − b + BT λ)Td + 1

2
dTAd. (3.22)

The Lagrangian function is defined in such a way that if considered as a function
of x, then its Hessian and its restriction to ΩE are exactly those of f , but its gradient
∇xL0(x,λ) varies depending on the choice of λ. It simply follows that if f is convex,
then L0 is convex for any fixed λ, and the global minimizer of L0 with respect to x
also varies with λ. We shall see that it is possible to give conditions on A, B, and b
such that with a suitable choice λ = λ̂, the solution of the constrained minimization
problem (3.17) reduces to the unconstrained minimization of L0 as in Fig. 3.3.

Fig. 3.3 Geometric illustration of the Lagrangian function
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3.4.1 Optimality Conditions

The main questions concerning the optimality and solvability conditions of (3.17)
are answered by the next proposition.

Proposition 3.6 Let the equality constrained problem (3.17) be defined by an SPS
or SPD matrix A ∈ R

n×n, a constraint matrix B ∈ R
m×n the column rank of which

is less than n, and vectors b ∈ R
n, c ∈ ImB. Then the following statements hold:

(i) A vector x ∈ ΩE is a solution of (3.17) if and only if

(Ax − b)Td = 0 (3.23)

for any d ∈ KerB.
(ii) A vector x ∈ ΩE is a solution of (3.17) if and only if there is a vector λ ∈ R

m

such that
Ax − b + BT λ = o. (3.24)

Proof (i) Let x be a solution of the equality constrainedminimization problem (3.17),
so that for any d ∈ KerB and α ∈ R

0 ≤ f (x + αd) − f (x) = α(Ax − b)Td + α2

2
dTAd. (3.25)

For sufficiently small values of α and (Ax − b)Td 
= 0, the sign of the right-hand
side of (3.25) is determined by the sign of α(Ax − b)Td. Since we can choose the
sign of α arbitrarily and the right-hand side of (3.25) is nonnegative, we conclude
that (3.23) holds for any d ∈ KerB.

Let us now assume that (3.23) holds for a vector x ∈ ΩE . Then

f (x + d) − f (x) = 1

2
dTAd ≥ 0

for any d ∈ KerB, so that x is a solution of (3.17).
(ii) Let x be a solution of (3.17), so that by (i) x satisfies (3.23) for any d ∈ KerB. The
latter condition is by (2.30) equivalent to Ax − b ∈ ImBT, so that there is λ ∈ R

m

such that (3.24) holds.
If there are λ and x ∈ ΩE such that (3.24) holds, then by Taylor’s expansion (3.22)

f (x + d) − f (x) = L0(x + d,λ) − L0(x,λ) = 1

2
dTAd ≥ 0

for any d ∈ KerB, so x is a solution of the equality constrained problem (3.17). �

The conditions (ii) of Proposition 3.6 are known as the Karush–Kuhn–Tucker
(KKT) conditions for the solution of the equality constrained problem (3.17). If
x ∈ ΩE and λ ∈ R

m satisfy (3.24), then (x,λ) is called aKKT pair of problem (3.17).

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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Its second component λ is called the vector of Lagrange multipliers or simply the
multiplier. We shall often use the notation x̂ or λ̂ to denote the components of a KKT
pair that are uniquely determined.

Proposition 3.6 has a simple geometrical interpretation. The condition (3.23)
requires that the gradient of f at a solution x is orthogonal to KerB, the set of
feasible directions of ΩE , so that there is no feasible decrease direction as illustrated
in Fig. 3.4. Since d is by (2.30) orthogonal to KerB if and only if d ∈ ImBT , it follows
that (3.23) is equivalent to the possibility to choose λ so that ∇xL0(x,λ) = o. If f is
convex, then the latter condition is equivalent to the condition for the unconstrained
minimizer of L0 with respect to x as illustrated in Fig. 3.5.

Fig. 3.4 Solvability condition (i) Fig. 3.5 Solvability condition (ii)

Notice that if f is convex, then the vector of Lagrange multipliers which is the
component of a KKT pair modifies the linear term of the original problem in such
a way that the solution of the unconstrained modified problem is exactly the same
as the solution of the original constrained problem. In terms of mechanics, if the
original problem describes the equilibrium of a constrained elastic body subject to
traction, then the modified problem is unconstrained with the constraints replaced
by the reaction forces.

3.4.2 Existence and Uniqueness

Using the optimality conditions of Sect. 3.4.1, we can formulate the conditions that
guarantee the existence or uniqueness of a solution of (3.17).

Proposition 3.7 Let the equality constrained problem (3.17) be defined by an SPS
or SPD matrix A ∈ R

n×n, a constraint matrix B ∈ R
m×n the column rank of which

is less than n, and vectors b ∈ R
n, c ∈ ImB. Let R denote a matrix the columns of

which span KerA. Then the following statements hold:

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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(i) If A is an SPS matrix, then problem (3.17) has a solution if and only if

RTb ∈ Im(RTBT ). (3.26)

(ii) If A|KerB is positive definite, then problem (3.17) has a unique solution.
(iii) If (x,λ) and (y,μ) are KKT couples for problem (3.17), then

x − y ∈ KerA ∩ Span{b}⊥ and λ − μ ∈ KerBT .

In particular, if problem (3.17) has a solution and

KerBT = {o},

then there is a unique Lagrange multiplier λ̂.

Proof (i) Using Proposition 3.6(ii), we have that problem (3.17) has a solution if
and only if there is λ such that b − BT λ ∈ ImA, or, equivalently, that b − BT λ

is orthogonal to KerA. The latter condition reads RTb − RTBT λ = o and can be
rewritten as (3.26).
(ii) First observe that if A|KerB is positive definite, then f |KerB is strictly convex
by Proposition 3.2 and it is easy to check that f |ΩE is strictly convex. Since ΩE

is closed, convex, and nonempty, it follows by Proposition 3.4(i) that the equality
constrained problem (3.17) has a unique solution.
(iii) First observe that KerB = {x − y : x, y ∈ ΩE } and that f is convex on KerB by
the assumption and Proposition 3.2. Thus if x and y are any solutions of (3.17), then
the left relation follows by Proposition 3.3(ii). The rest follows by a simple analysis
of the KKT conditions (3.24). �

If B is not a full row rank matrix and λ is a Lagrange multiplier for (3.17), then
by Proposition 3.7(iii) any Lagrange multiplier λ can be expressed in the form

λ = λ + d, d ∈ KerBT . (3.27)

The Lagrange multiplier λLS which minimizes the Euclidean norm is called the least
square Lagrange multiplier; it is a unique multiplier which belongs to ImB. If λ is
a vector of Lagrange multipliers, then λLS can be evaluated by

λLS = (
B†

)T
BT λ (3.28)

and
λ = λLS + d, d ∈ KerBT .
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If A is positive definite, then the unique solution x̂ of (3.17) is by Proposition 3.6
fully determined by the matrix equation

[
A BT

B O

] [
x
λ

]
=

[
b
c

]
, (3.29)

which is known as the Karush–Kuhn–Tucker system, briefly KKT system or KKT
conditions for the equality constrained problem (3.17). Proposition 3.6 does not
require that the relatedKKTsystem is nonsingular, in agreementwith observation that
the solution of the equality constrained problem should not depend on the description
of ΩE .

3.4.3 Sensitivity

The Lagrange multipliers emerged in Proposition 3.6 as auxiliary variables which
nobody had asked for, but which turned out to be useful in alternative formulations
of the optimality conditions. However, it turns out that the Lagrange multipliers fre-
quently have an interesting interpretation in specific practical contexts, as we have
mentioned at the end of Sect. 3.4.1, where we briefly described their mechanical
interpretation. Here we show that if they are uniquely determined by the KKT con-
ditions (3.29), then they are related to the rates of change of the optimal cost due to
the violation of constraints.

Fig. 3.6 Minimization with perturbed constraints

Let us assume thatA andB are positive definite and full rankmatrices, respectively,
so that there is a uniqueKKTcouple (̂x, λ̂) of the equality constrained problem (3.17).
For u ∈ R

m , let us consider also the perturbed problem

min
Bx=c+u

f (x)

as in Fig. 3.6. Its solution x(u) and the corresponding vector of Lagrange multipliers
λ(u) are fully determined by the KKT conditions
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[
A BT

B O

] [
x(u)

λ(u)

]
=

[
b

c + u

]
,

so that

[
x(u)

λ(u)

]
=

[
A BT

B O

]−1 [
b

c + u

]
=

[
A BT

B O

]−1 [
b
c

]
+

[
A BT

B O

]−1 [
o
u

]
.

First observe that d(u) = x(u) − x̂ satisfies

Bd(u) = Bx(u) − Bx̂ = u,

so that we can use ∇ f (̂x) = −BT λ̂ to approximate the change of optimal cost by

∇ f (̂x)Td(u) = −(BT λ̂)Td(u) = −λ̂
T
Bd(u) = −λ̂

T
u.

It follows that −[̂λ]i can be used to approximate the change of the optimal cost due
to the violation of the i th constraint by [u]i .

To give a more detailed analysis of the sensitivity of the optimal cost with respect
to the violation of constraints, let us define for each u ∈ R

m the primal function

p(u) = f (x(u)) .

Observing that x̂ = x(o) and using the explicit formula (2.4) to evaluate the inverse
of the KKT system, we get

x(u) = x̂ + A−1BTS−1u,

where S = BA−1BT denotes the Schur complement matrix. Thus

x(u) − x̂ = A−1BTS−1u,

so that

p(u) − p(o) = f (x(u)) − f (̂x)

= ∇ f (̂x)T
(
x(u) − x̂

) + 1

2

(
x(u) − x̂

)T
A

(
x(u) − x̂

)

= ∇ f (̂x)TA−1BTS−1u + 1

2
uTS−1BA−1BTS−1u.

It follows that the gradient of the primal function p at o is given by

∇ p(o) = (∇ f (̂x)TA−1BTS−1
)T = S−1BA−1∇ f (̂x).

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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Recalling that ∇ f (̂x) = −BT λ̂, we get

∇ p(o) = −S−1BA−1BT λ̂ = −λ̂. (3.30)

The analysis shows that the decrease of the total differential of f outsideΩE near
x̂ is compensated by the increase of λ̂

T
(Bx − c). See also Fig. 3.3. The components

of λ̂ are also called shadow prices after their interpretation in economy.

3.5 Inequality Constrained Problems

Let us now consider the problems

min
x∈ΩI

f (x), ΩI = {x ∈ R
n : h(x) ≤ o}, (3.31)

where f is a quadratic function defined by (3.3) and the constraints are defined
by continuously differentiable convex functions hi (x) = [h(x)]i , i = 1, . . . , s, that
satisfy ∇hi (x) 
= o when hi (x) = 0. In our applications, hi are either linear forms

hi (x) = bT
i x − ci , ci ∈ R,

or strictly convex separable quadratic functions, i.e.,

hi (x) = (xi − yi )
THi (xi − yi ) − ci , xi , yi ∈ R

2, Hi SPD, ci > 0.

We assume thatΩI is nonempty. If the definition ofΩI includes a quadratic inequal-
ity, we call (3.31) the QCQP (Quadratic Constraints Quadratic Cost) problem.

At any feasible point x, we define the active set

A (x) = {i ∈ {1, . . . , s} : hi (x) = 0}.

In particular, if x is a solution of (3.31) with h(x) = Bx − c, B ∈ R
s×n , then each

feasible direction of Ω E = {x ∈ R
n : [Bx]A (x) = cA (x)} at x is a feasible direction

of ΩI at x. Using the arguments of Sect. 3.4.1, we get that x is also a solution of the
equality constrained problem

min
x∈Ω E

f (x), Ω E = {x ∈ R
n : [Bx]A (x) = cA (x)}. (3.32)

Thus (3.31) is a more difficult problem than the equality constrained problem (3.17)
as its solution necessarily enhances the identification of A (x).
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3.5.1 Optimality Conditions for Linear Constraints

We shall start our exposition with the following optimality conditions.

Proposition 3.8 Let the inequality constrained problem (3.31) be defined by an SPS
or SPD symmetric matrixA ∈ R

n×n, the constraint matrixB ∈ R
m×n, and the vectors

b, c ∈ R
n. Let ΩI 
= ∅. Then the following statements hold:

(i) x ∈ ΩI is a solution of (3.31) if and only if

(Ax − b)Td ≥ 0 (3.33)

for any feasible direction d of ΩI at x.
(ii) x ∈ ΩI is a solution of (3.31) with linear inequality constraints if and only if
there is λ ∈ R

m such that

λ ≥ o, Ax − b + BT λ = o, and λ
T
(Bx − c) = 0. (3.34)

Proof (i) Let x be a solution of the inequality constrained problem (3.31) and let d
denote a feasible direction of ΩI at x, so that the right-hand side of

f (x + αd) − f (x) = α(Ax − b)Td + α2

2
dTAd (3.35)

is nonnegative for all sufficiently small α > 0. To prove (3.33), it is enough to take
α > 0 so small that the nonnegativity of the right-hand side of (3.35) implies that

α(Ax − b)Td ≥ 0.

Let us assume that x ∈ ΩI satisfies (3.33) and x ∈ ΩI . Since ΩI is convex, it
follows that d = x − x is a feasible direction of ΩI at x, so that, using Taylor’s
expansion and the assumptions, we have

f (x) − f (x) = (Ax − b)Td + 1

2
dTAd ≥ 0.

(ii) Notice any solution x of (3.31) solves (3.32), so that by Proposition 3.6(ii) there
is y such that

Ax − b + BT
A (x)y = cA (x),

and y ≥ o by the arguments based on the sensitivity of the minimum in Sect. 3.4.3.
To finish the proof, it is enough to define λ as y padded with zeros.

If (3.34) holds and x + d ∈ ΩI , then Ax − b = −BT λ and

f (x + d) − f (x) = (Ax − b)T d + 1

2
dT Ad ≥ −λT Bd = −λT (B(x + d) − c) ≥ o. �
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Remark 3.2 Condition (3.33) can be written as a variational inequality

(Ax)T (x − x) ≥ bT (x − x), x ∈ ΩI .

The conditions (3.34) are called the KKT conditions for inequality constraints.
The last of these conditions is called the condition of complementarity.

3.5.2 Optimality Conditions for Bound Constrained Problems

A special case of problem (3.31) is the bound constrained problem

min
x∈ΩB

f (x), ΩB = {x ∈ R
n : x ≥ �}, (3.36)

where f is a quadratic function defined by (3.3) and � ∈ R
n . The optimality condi-

tions for convex bound constrained problems can be written in a more convenient
form.

Proposition 3.9 Let f be a convex quadratic function defined by (3.3) with a positive
semidefinite Hessian A. Then x ∈ ΩB solves (3.36) if and only if

Ax − b ≥ o and (Ax − b)T (x − �) = 0. (3.37)

Proof First observe that denoting B = −In, c = −�, and

ΩI = {x ∈ R
n : Bx ≤ c},

the bound constrained problem (3.36) becomes the standard inequality constrained
problem (3.31) with ΩI = ΩB . Using Proposition 3.11, it follows that x ∈ ΩB is the
solution of (3.36) if and only if there is λ ∈ R

n such that

λ ≥ o, Ax − b − Iλ = o, and λT (x − �) = 0. (3.38)

We complete the proof by observing that (3.37) can be obtained from (3.38) and vice
versa by substituting λ = Ax − b. �

In the proof, we have shown that λ = ∇ f (x) is a vector of Lagrange multipliers
for the constraints −x ≤ −�, or, equivalently, for x ≥ �. Notice that the conditions
(3.37) require that none of the vectors si is a feasible decrease direction of ΩB at
x, where si denotes a vector of the standard basis of Rn formed by the columns of
In , i ∈ A (x).
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3.5.3 Optimality Conditions for More General Constraints

If the constraints hi that define (3.31) are nonlinear, it can happen that their first-
order representation by means of the gradients ∇hi is not adequate. The reason is
illustrated in Fig. 3.7, where the linear cone LΩI (x) of ΩI at x on the boundary of
ΩI defined by

LΩI (x) = {d ∈ R
n : dT ∇hi (x) ≤ 0, i ∈ A (x)}

comprises the whole line, while the tangent cone TΩI (x) of ΩI at x on the boundary
of ΩI defined by

TΩI (x) = {d ∈ R
n : d = lim

i→∞di , x + αidi ∈ ΩI , lim
i→∞ αi = 0, αi > 0}

comprises only one point. To avoid such pathological situations, we shall assume that
LΩI (x) = TΩI (x). This is also called the Abadie constraint qualification (ACQ) [5].
Notice that linear constraints satisfy ACQ. TheACQ assumption reduces the analysis
of the conditions of minima to the linear case, so that we can formulate the following
proposition.

Fig. 3.7 Example of ΩI = {x}, LΩI (x) 
= TΩI (x)

Proposition 3.10 Let the inequality constrained problem (3.31) be defined by an
SPS or SPD matrix A ∈ R

n×n and convex differentiable functions hi and let ΩI

satisfies ACQ. Then x ∈ ΩI is a solution of (3.31) if and only if there is λ ∈ R
m such

that
λ ≥ o, Ax − b + ∇h(x)λ = o, and λ

T
h(x) = 0. (3.39)
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Proof First notice that due to the definition of tangential cone, x solves (3.31) if and
only if

f (x) = min
x+TΩI (x)

f (x).

Since we assume TΩI (x) = LΩI (x), the letter problem has the same solution as

min
x+LΩI (x)

f (x).

Using Proposition 3.8, we get that x ∈ ΩI solves (3.31) if and only if x satisfies
(3.39). �

3.5.4 Existence and Uniqueness

In our discussionof the existence anduniqueness results for the inequality constrained
QP problem (3.31), we restrict our attention to the following results that are useful
in our applications.

Proposition 3.11 Let the inequality constrained problem (3.31) be defined by convex
functions hi and f . Let C denote the cone of recession directions of the nonempty
feasible set ΩI . Then the following statements hold:
(i) If problem (3.31) has a solution, then

dTb ≤ 0 f or d ∈ C ∩ KerA. (3.40)

(ii) If the constraints are linear, then (3.40) is sufficient for the existence of minima.
(iii) If the constraints are linear and (x,λ) and (y,μ) are KKT couples for (3.31),
then

x − y ∈ KerA ∩ Span{b}⊥ and λ − μ ∈ KerBT . (3.41)

(iv) If A is positive definite, then the inequality constrained minimization problem
(3.31) has a unique solution.

Proof (i) Let x be a global solution of the inequality constrained minimization prob-
lem (3.31), and recall that

f (x + αd) − f (x) = α(Ax − b)Td + α2

2
dTAd (3.42)

for any d ∈ R
n and α ∈ R. Taking d ∈ C ∩ KerA, (3.42) reduces to

f (x + αd) − f (x) = −αbTd,

which is nonnegative for any α ≥ 0 if and only if bTd ≤ 0.
(ii) See Dostál [7].
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(iii) The first inclusion of (3.41) holds by Proposition 3.3(ii) for the solutions of any
convex problem. The inclusion for multipliers follows by the KKT condition (3.34).
(iv) If A is SPD, then f is strictly convex by Proposition 3.2, so by Proposition3.4
there is a unique minimizer of f subject to x ∈ ΩI . �

3.6 Equality and Inequality Constrained Problems

In the previous sections, we have obtained the results concerning optimization prob-
lemswith either equality or inequality constraints. Here we extend these results to the
optimization problems with both equality and inequality constraints. More formally,
we look for

min
x∈ΩI E

f (x), ΩI E = {x ∈ R
n : [h(x)]I ≤ oI , [h(x)]E = oE }, (3.43)

where f is a quadratic function with the SPS Hessian A ∈ R
n×n and the linear

term defined by b ∈ R
n , I , E are the disjunct sets of indices which decompose

{1, . . . , m}, and the equality and inequality constraints are defined respectively by lin-
ear and continuously differentiable convex functions [h(x)]i = hi (x), i = 1, . . . , m.
We assume that ∇hi (x) 
= o when hi (x) = 0 and that Ωi 
= ∅. We are especially
interested in linear equality constraints and the inequality constraints defined either
by linear forms or by strictly convex separable quadratic functions.

If we describe the conditions that define ΩI E in components, we get

ΩI E = {x ∈ R
n : hi (x) ≤ 0, i ∈ I , bT

i x = ci , i ∈ E },

which makes sense even for I = ∅ or E = ∅; we consider the conditions which
concern the empty set as always satisfied. For example, E = ∅ gives

ΩI E = {x ∈ R
n : hi (x) ≤ 0, i ∈ I },

and the kernel of an “empty” matrix is defined by

KerBE ∗ = {x ∈ R
n : bT

i x = 0, i ∈ E } = R
n.

If all constraints are linear, then ΩI is defined by B ∈ R
m×n and c ∈ R

m ,

B =
⎡

⎣
bT
1

. . .

bT
m

⎤

⎦ =
[
BI

BE

]
, c =

[
cI

cE

]
,

and we get a QP variant of (3.43)

min
x∈ΩI E

f (x), ΩI E = {x ∈ R
n : BIx ≤ cI , BEx = cE }. (3.44)
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3.6.1 Optimality Conditions

First observe that any equality constraintbT
i x = ci , i ∈ E can be replaced by the cou-

ple of inequalities bT
i x ≤ ci and −bT

i x ≤ −ci . We can thus use our results obtained
by the analysis of the inequality constrained problems in Sect. 3.5 to get similar
results for general bound and equality constrained QP problem (3.43).

Proposition 3.12 Let the quadratic function f be defined by the SPS matrix A and
b ∈ R

n. Let ΩI E 
= ∅ be defined by

hE (x) = BEx − cE

and convex differential functions hi , i ∈ I . Then the following statements hold:
(i) x ∈ ΩI E is a solution of (3.43) if and only if

∇ f (x) = (Ax − b)Td ≥ 0 (3.45)

for any feasible direction d of ΩI E at x.
(ii) If ΩI E is defined by linear constraints (3.44), then x ∈ ΩI E is a solution of (3.43)
if and only if there is a vector λ ∈ R

m such that

λI ≥ o, Ax − b + BT λ = o, and λ
T
I [Bx − c]I = 0. (3.46)

(iii) If ΩI E is a feasible set for the problem (3.43) and the constraints satisfy ACQ,
then x ∈ ΩI E is a solution of (3.43) if and only if there is a vector λ ∈ R

m such that

λI ≥ o, Ax − b + ∇h(x)λ = o, and λ
T
I hI (x) = 0. (3.47)

Proof First observe that ifE = ∅, then the statements of the above proposition reduce
to Propositions 3.8 and 3.10, and ifI = ∅, then they reduce to Proposition 3.6. Thus
we can assume in the rest of the proof that I 
= ∅ and E 
= ∅.

As mentioned above, (3.43) may be rewritten also as

min
x∈ΩI

f (x), ΩI = {x ∈ R
n : [Bx]I ≤ cI , [Bx]E ≤ cE ,−[Bx]E ≤ −cE },

(3.48)

whereΩI = ΩI E . Thus the statement (i) is a special case of Proposition 3.8. Observ-
ing that we can always ignore one of the inequality constraints related tho the
same equality constraint, we get easily (ii) and (iii) from Propositions 3.8 and 3.10,
respectively. �

Remark 3.3 Condition (3.45) can be written as a variational inequality

(Ax)T (x − x) ≥ bT (x − x), x ∈ ΩI E .
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3.7 Duality for Quadratic Programming Problems

The duality associates each problem (3.43), which we shall also call primal problem,
with a maximization problem in Lagrange multipliers that we shall call the dual
problem. The solution of the dual problem is a Lagrange multiplier of the solution of
the primal problem, so that having the solution of the dual problem, we can get the
solution of the primal problem by solving an unconstrained problem. Here we limit
our attention to the QP problems (3.44), postponing the discussion of more general
cases to specific applications.

The cost function of the dual problem is the dual function

Θ(λ) = inf
x∈Rn

L0(x,λ). (3.49)

If A is SPD, then L0 is a quadratic function with the SPD Hessian and Θ is a
quadratic function in λwhich can be defined by an explicit formula. However, in our
applications, it often happens that A is only SPS, so the cost function f need not be
bounded from below and−∞ can be in the range of the dual functionΘ . We resolve
this problem by keeping Θ quadratic at the cost of introducing equality constraints.

Proposition 3.13 Let matricesA,B, vectorsb, c, and index setsI ,E be those of the
definition of problem (3.44) withA positive semidefinite and ΩI E 
= ∅. LetR ∈ R

n×d

be a full rank matrix such that
ImR = KerA,

let A+ denote an SPS generalized inverse of A, and let

Θ(λ) = −1

2
λTBA+BT λ + λT (BA+b − c) − 1

2
bTA+b. (3.50)

Then the following statements hold:
(i) If (x,λ) is a KKT pair for (3.44), then λ is a solution of

max
λ∈ΩB E

Θ(λ), ΩB E = {λ ∈ R
m : λI ≥ o, RTBT λ = RTb}. (3.51)

Moreover, there is α ∈ R
d such that (λ,α) is a KKT pair for problem (3.51) and

x = A+(b − BT λ) + Rα. (3.52)

(ii) If (λ,α) is a KKT pair for problem (3.51), then x defined by (3.52) is a solution
of the equality and inequality constrained problem (3.44).
(iii) If (x,λ) is a KKT pair for problem (3.44), then

f (x) = Θ(λ). (3.53)
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Proof (i) Assume that (x,λ) is a KKT pair for (3.44), so that (x,λ) is by Proposition
3.12 a solution of

λI ≥ o, (3.54)

∇xL0(x,λ) = Ax − b + BT λ = o, (3.55)

[∇λL0(x,λ)]I = [
Bx − c

]
I

≤ o, (3.56)

[∇λL0(x,λ)]E = [
Bx − c

]
E

= o, (3.57)

λT
I [Bx − c]I = 0. (3.58)

Notice that given a vector λ ∈ R
m , we can express the condition

b − BT λ ∈ ImA,

which guarantees solvability of (3.55) with respect to x, conveniently as

RT (BT λ − b) = o. (3.59)

If the latter condition is satisfied, then we can use any symmetric left generalized
inverse A+ to find all solutions of (3.55) with respect to x in the form

x(λ,α) = A+(b − BT λ) + Rα, α ∈ R
d ,

where d is the dimension of KerA. After substituting for x into (3.56)–(3.58), we get

[ −BA+BT λ + (BA+b − c) + BRα]I ≤ o, (3.60)

[ −BA+BT λ + (BA+b − c) + BRα]E = o, (3.61)

λT
I [ −BA+BT λ + (BA+b − c) + BRα]I = 0. (3.62)

The formulae in (3.60)–(3.62) look like something that we have already seen.
Indeed, introducing the vector of Lagrange multipliers α for (3.59) and denoting

Λ(λ,α) = Θ(λ) + αT (RTBT λ − RTb)

= −1

2
λTBA+BT λ + λT (BA+b − c) − 1

2
bTA+b

+αT (RTBT λ − RTb),

g = ∇λΛ(λ,α) = −BA+BT λ + (BA+b − c) + BRα,

we can rewrite the relations (3.60)–(3.62) as

gI ≤ o, gE = o, and λT
I gI = 0. (3.63)
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Comparing (3.63) with the KKT conditions for the bound and equality constrained
problem, we conclude that (3.63) are the KKT conditions for

maxΘ(λ) subject to RTBT λ − RTb = o and λI ≥ o. (3.64)

We have thus proved that if (x,λ) solves (3.54)–(3.58), then λ is a feasible vector
for problem (3.64) which satisfies the related KKT conditions. Recalling that A+ is
by the assumption symmetric positive semidefinite, so that BA+BT is also positive
semidefinite, we conclude that λ solves (3.51). Moreover, we have shown that any
solution x can be obtained in the form (3.52) with a KKT pair (λ,α), where α is a
vector of the Lagrange multipliers for the equality constraints in (3.51).
(ii) Let (λ,α) be a KKT pair for problem (3.51), so that (λ,α) satisfies (3.59)–(3.62)
and λI ≥ o. If we denote

x = A+(b − BT λ) + Rα,

we can use (3.60)–(3.62) to verify directly that x is feasible and (x,λ) satisfies the
complementarity conditions, respectively. Finally, using (3.59), we get that there is
y ∈ R

n such that
b − BT λ = Ay.

Thus

Ax − b + BT λ = A
(
A+(b − BT λ) + Rα

) − b + BT λ

= AA+Ay − b + BT λ = b − BT λ − b + BT λ = o,

which proves that (x,λ) is a KKT pair for (3.44).
(iii) Let (x,λ) be a KKT pair for (3.44). Using the feasibility condition (3.57) and
the complementarity condition (3.58), we get

λ
T
(Bx − c) = λ

T
E [Bx − c]E + λ

T
I [Bx − c]I = 0.

Hence
f (x) = f (x) + λ

T
(Bx − c) = L0(x,λ).

Next recall that if (x,λ) is a KKT pair, then

∇xL0(x,λ) = o.

Since L0 is convex, the latter is the gradient condition for the unconstrainedminimizer
of L0 with respect to x; therefore

L0(x,λ) = min
x∈Rn

L0(x,λ) = Θ(λ).
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Thus
f (x) = L0(x,λ) = Θ(λ).

�

Since the constant term is not essential in our applications and we formulate our
algorithms for minimization problems, we shall consider the function

θ(λ) = −Θ(λ) − 1

2
bTA+b = 1

2
λTBA+BT λ − λT (BA+b − c), (3.65)

so that
arg min

λ∈ΩB E

θ(λ) = arg max
λ∈ΩB E

Θ(λ).

3.7.1 Uniqueness of a KKT Pair

We shall complete our exposition of duality by formulating the results concerning
the uniqueness of the solution for the constrained dual problem

min
λ∈ΩB E

θ(λ), ΩB E = {λ ∈ R
m : λI ≥ o, RTBT λ = RTb}, (3.66)

where θ is defined by (3.65).

Proposition 3.14 Let the matrices A, B, the vectors b, c, and the index sets I , E
be those from the definition of problem (3.44) with A positive semidefinite, ΩI E 
= ∅,
and ΩB E 
= ∅. Let R ∈ R

n×d be a full rank matrix such that

ImR = KerA.

Then the following statements hold:
(i) If BT and BR are full column rank matrices, then there is a unique solution λ̂ of
problem (3.66).
(ii) If λ̂ is a unique solution of the constrained dual problem (3.66),

A = {i : [λ]i > 0} ∪ E ,

and BA ∗R is a full column rank matrix, then there is a unique triple (̂x, λ̂, α̂) such
that (̂x, λ̂) solves the primal problem (3.44) and (̂λ, α̂) solves the constrained dual
problem (3.66). If λ̂ is known, then

α̂ = (RTBT
A ∗BA ∗R)−1RTBT

A ∗
(
BA ∗A+BT λ̂ − (BA ∗A+b − cA )

)
(3.67)

and
x̂ = A+(b − BT λ̂) + Rα̂. (3.68)



56 3 Optimization

(iii) If BT and BE ∗R are full column rank matrices, then there is a unique triple
(̂x, λ̂, α̂) such that (̂x, λ̂) solves the primal problem (3.44) and (̂λ, α̂) solves the
constrained dual problem (3.66).

Proof (i) Let BT and BR be full column rank matrices. To show that there is a
unique solution of (3.66), we examine the Hessian BA+BT of θ . Let RTBT λ = o
andBA+BT λ = o. Using the definition ofR, it follows thatBT λ ∈ ImA. Hence there
is μ ∈ R

n such that
BT λ = Aμ

and
μTAμ = μTAA+Aμ = λTBA+BT λ = 0.

Thus μ ∈ KerA and
BT λ = Aμ = o.

Since we assume that BT has independent columns, we conclude that λ = o. We
have thus proved that the restriction of BA+BT to Ker(RTBT ) is positive definite, so
that θ |KerRTBT is by Proposition 3.4 strictly convex, and it is easy to check that it
is strictly convex on

U = {λ ∈ R
m : RTBT λ = RTb}.

Since ΩB E 
= ∅ and ΩB E ⊆ U , we have that θ is strictly convex on ΩB E , and it
follows by Proposition 3.3 that there is a unique solution λ̂ of (3.66).
(ii) Let λ̂ be a unique solution of problem (3.66). Since the solution satisfies the
related KKT conditions, it follows that there is α̂ such that

BA ∗A+BT λ̂ − (BA ∗A+b − cA ) − BA ∗Rα̂ = o.

After multiplying on the left by RTBT
A ∗ and simple manipulations, we get (3.67).

The inverse exists and the solution α̂ is unique due to the uniqueness of λ̂ and the
assumption on the full column rank of BA ∗R.
(iii) IfBT andBE ∗R are full column rankmatrices, thenBR is also a full column rank
matrix. Hence, there is a unique solution λ̂ of problem (3.66) by (i). Since E ⊆ A
and BE ∗R has independent columns, it follows that BA ∗R has also independent
columns. Thus we can use (ii) to finish the proof. �

The reconstruction formula (3.67) can be modified in order to work whenever the
dual problem has a solution λ. The resulting formula obtained by the analysis of the
related KKT conditions then reads

α = (RTBT
A ∗BA ∗R)+RTBT

A ∗
(
BA ∗A+BT λ − (BA ∗A+b − cA )

)
. (3.69)
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The duality theory can be illustrated on a problem to find the displacement x of
an elastic body under traction b. After the finite element discretization, we get a
convex QP problem. We assume that the body is fixed on a part of the boundary in
normal direction, so that the vector of nodal displacements satisfies BE ∗x = cE as
in Fig. 3.9. Moreover, the body may not be allowed to penetrate an obstacle, so that
BI ∗x ≤ cI as in Fig. 3.8.

Fig. 3.8 Unique displacement Fig. 3.9 Nonunique displacement

The displacement x of the body in equilibrium is aminimizer of the convex energy
function f . The Hessian A of f is positive semidefinite if the constraints admit
rigid body motions. The Lagrange multipliers solve the dual problem. The condition
RTb = RTBT λ̂ requires that the resulting forces are balanced in the directions of
the rigid body motions and λ̂I ≥ o guarantees that the body is not glued to the
obstacle. If the reaction forcesBT λ̂ determine the components of λ̂, then λ̂ is uniquely
determined by the conditions of equilibrium. Notice that BT λ̂ is always uniquely
determined by the conditions of equilibrium. If no rigid body motion is possible
due to the active constraints BA ∗x = cA as in Fig. 3.8, then the displacement x is
uniquely determined. If this is not the case, then the displacement is determined up to
some rigid body motion as in Fig. 3.9.
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Chapter 4
Analysis

In this chapter, we first give a brief presentation of basic Sobolev spaces on Lipschitz
domains and their boundaries; for more general results we refer to the books by
Adams and Fournier [1], or McLean [2]. Then we review some ideas concerning
semi-elliptic variational inequalities that provide an abstract framework for the for-
mulation of contact problems. More information on variational inequalities can be
found, e.g., in Lions and Stampacchia [3], Glowinski [4], and Glowinski, Lions, and
Trémolier [5].

4.1 Sobolev Spaces

Let Ω ⊂ R
d , d = 2, 3, denote a nonempty bounded Lipschitz domain with a bound-

aryΓ . The space of all real functions that are Lebesguemeasurable and quadratically
integrable in Ω is denoted as L2(Ω). We do not distinguish functions which differ
on a set of zero measure. In L2(Ω) we define the scalar product

(u, v) = (u, v)L2(Ω) =
∫

Ω

u v dΩ (4.1)

and the norm
‖u‖ = ‖u‖L2(Ω) = (u, u)1/2.

The space L2(Ω) with scalar product (4.1) is a Hilbert space. Note that there holds
Hölder’s inequality

∫

Ω

|u v| dΩ ≤ ‖u‖‖v‖ for all u, v ∈ L2(Ω).

By C∞(Ω) we denote the space of all real functions with continuous derivatives
of all orders with respect to all variables in Ω that are continuously extendable to its
closure Ω .
© Springer Science+Business Media LLC 2016
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in Mechanics and Mathematics 36, DOI 10.1007/978-1-4939-6834-3_4
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Let us define the Sobolev space

H 1(Ω) =
{

u ∈ L2(Ω) : ∂u

∂xi
∈ L2(Ω) for i = 1, . . . , d

}
,

where the derivatives are considered in the weak sense. Note that H 1(Ω) can be
equivalently defined as the completion of

(
C∞(Ω), ‖ · ‖H 1(Ω)

)
,

where

‖u‖H 1(Ω) =
(
‖u‖2L2(Ω) + |u|2H 1(Ω)

)1/2

with
|u|2H 1(Ω) = ‖∇u‖2.

It holds that H 1(Ω) is a Hilbert space with respect to the scalar product

(u, v)H 1(Ω) = (u, v)L2(Ω) + (∇u,∇v)L2(Ω). (4.2)

For a subset ΓU of Γ with measΓU > 0, we define the Sobolev space H 1
0 (Ω, ΓU )

as the completion of (
C∞
0 (Ω, ΓU ), ‖ · ‖H 1(Ω)

)
,

where C∞
0 (Ω, ΓU ) contains all functions from C∞(Ω) vanishing on ΓU . Note that

H 1
0 (Ω, ΓU ) is a Hilbert space with respect to the scalar product (4.2). In addition,

due to the Friedrichs theorem, the functional | · |H 1(Ω) represents on H 1
0 (Ω, ΓU ) an

equivalent norm to ‖ · ‖H 1(Ω). The following theorem defines the trace operator.

Theorem 4.1 (Trace Theorem) There is a unique linear continuous mapping

γ0 : H 1(Ω) �→ L2(Γ ) (4.3)

satisfying
γ0u = u| Γ for all u ∈ C∞(Ω).

The function γ0u ∈ L2(Γ ) is called the trace of u ∈ H 1(Ω).

Proof See, e.g., McLean [2]. �
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Note that it can be shown that

H 1
0 (Ω, ΓU ) = {u ∈ H 1(Ω) : γ0u = 0 on ΓU }.

4.2 Trace Spaces

Let us denote the trace space of H 1(Ω) by H 1/2(Γ ), i.e.,

H 1/2(Γ ) = γ0(H 1(Ω)).

In H 1/2(Γ ) we introduce the Sobolev–Slobodeckij scalar product

(u, v)H 1/2(Γ ) = (u, v)L2(Γ ) +
∫

Γ

∫

Γ

(u(x) − u(y))(v(x) − v(y))

‖x − y‖d dΓx dΓy (4.4)

and the corresponding norm

‖v‖H 1/2(Γ ) =
(
‖v‖2L2(Γ ) + |v|2H 1/2(Γ )

)1/2
,

where

|v|2H 1/2(Γ ) =
∫

Γ

∫

Γ

(v(x) − v(y))2

‖x − y‖d dΓx dΓy .

Recall that H 1/2(Γ ) is a Hilbert space with respect to the scalar product (4.4), that
there is c1 > 0 such that

‖γ0u‖H 1/2(Γ ) ≤ c1‖u‖H 1(Ω) for all u ∈ H 1(Ω),

and that there exists c2 > 0 and an extension operator ε : H 1/2(Γ ) → H 1(Ω) such
that γ0εu = u and

‖εu‖H 1(Ω) ≤ c2‖u‖H 1/2(Γ ) for all u ∈ H 1/2(Γ ).

The dual space to H 1/2(Γ ) with respect to the L2(Γ ) scalar product is denoted
by H−1/2(Γ ) and the norm in H−1/2(Γ ) is given by

‖w‖H−1/2(Γ ) = sup
0 
=v∈H 1/2(Γ )

| 〈w, v〉 |
‖v‖H 1/2(Γ )

,

where 〈w, v〉 = w(v) denotes the duality pairing. Notice that w is a bounded func-
tional on L2

Γ , so that by the Riesz theorem there is w ∈ L2(Γ ) such that

w(u) = (w, u)L2(Γ ).
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A key tool in the development of the boundary element method is the following
Green formula. We shall formulate it for the functions from the space

H 1
�(Ω) = {v ∈ H 1(Ω) : �v ∈ L2(Ω)}.

Theorem 4.2 (Green’s Theorem) Let u ∈ H 1
�(Ω) and v ∈ H 1(Ω).

Then
(∇u,∇v)L2(Ω) + (�u, v)L2(Ω) = 〈γ1u, γ0v〉 , (4.5)

where γ1 : H 1
�(Ω) → H−1/2(Γ ) is the interior conormal derivative defined by

γ1u(x) = lim
Ωy→x

∂

∂nx
u(y), x ∈ Γ. (4.6)

Proof See, e.g., McLean [2]. �

4.3 Variational Inequalities

Let us review some basic ideas concerning semi-elliptic variational inequalities. Let
V denote a real Hilbert space with a scalar product (·, ·)V and the induced norm ‖·‖V ,
let | · |V be a seminorm on V , letK ⊂ V be a closed, convex, and nonempty set, let
f be a bounded linear functional on V , i.e., f ∈ V ′, and let a be a bilinear form on
V .

Definition 4.1 A bilinear form a : V × V → R is said to be

• bounded onK if there is an M > 0 such that

|a(u, v)| ≤ M ‖u‖V ‖v‖V for all u, v ∈ K ,

• symmetric on K if

a(u, v) = a(v, u) for all u, v ∈ K ,

• elliptic on K if there is an α > 0 such that

a(u, u) ≥ α‖u‖2V for all u ∈ K ,

• semi-elliptic on K if there is an α > 0 such that

a(u, u) ≥ α|u|2V for all u ∈ K .
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Definition 4.2 A functional f : V → R is said to be

• coercive on K if
v ∈ K

‖v‖V → ∞
}

⇒ f (v) → ∞,

• convex on K if for all u, v ∈ K and all t ∈ (0, 1)

f (tu + (1 − t)v) ≤ t f (u) + (1 − t) f (v).

Theorem 4.3 If a functional f : V → R is continuous, coercive, and convex on
K , then there exists a solution of the minimization problem to find u ∈ K such that

f (u) = min { f (v) : v ∈ K } .

Proof Let BR be a closed, origin-centered ball of radius R > 0, i.e.,

BR = {v ∈ V : ‖v‖V ≤ R}.

Then the coercivity of f on K yields the existence of a large enough R > 0 such
that

q = inf { f (v) : v ∈ K } = inf { f (v) : v ∈ K ∩ BR}.

Let us consider a sequence {un} ⊂ K ∩ BR such that

f (un) → q.

Since {un} is bounded, there is a subsequence {unk } of {un} and u ∈ V satisfying

unk ⇀ u.

Let us recall that every closed convex set is weakly closed, i.e., u ∈ K , and since
every continuous convex functional is weakly lower semi-continuous on a closed
convex set, we get

f (u) ≤ lim inf f (unk ) = lim f (unk ) = q ≤ f (u).

�

We are concerned with the following variational inequality: find u ∈ K such that

a(u, v − u) ≥ f (v − u) for all v ∈ K . (4.7)
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Note that if K is a subspace of V , then (4.7) is equivalent to the variational
equation to find u ∈ K such that

a(u, v) = f (v) for all v ∈ K .

Theorem 4.4 (Generalization of the Lax–Milgram Theorem) If a is bounded and
elliptic on V , then there exists a unique solution u ∈ K of problem (4.7).

Proof The proof can be found, e.g., in Glowinski [4], Stampacchia [6], and Glowin-
ski, Lions, and Tremoliere [5]. Let us prove the uniqueness of the solution. Assume
that both u1 and u2 solve the variational inequality (4.7), so that for all v ∈ K we
have

a(u1, v − u1) ≥ f (v − u1) and a(u2, v − u2) ≥ f (v − u2).

Substituting u2 and u1 for v in the first and second inequality, respectively, and
summing up the inequalities, we get

a(u1 − u2, u1 − u2) ≤ 0.

Since a is elliptic on V , there is an α > 0 such that

a(u1 − u2, u1 − u2) ≥ α‖u1 − u2‖2V .

Thus we get u1 = u2. �

Let us define the energy functional q : V → R by

q(v) = 1

2
a(v, v) − f (v). (4.8)

Proposition 4.1 If a is symmetric and semi-elliptic on V , then the energy functional
q defined by (4.8) is convex on V .

Proof Let us show that for all u, v ∈ V and all t ∈ (0, 1)

q(tu + (1 − t)v) ≤ t q(u) + (1 − t)q(v).

Since f is linear on V , it is enough to prove that v �→ a(v, v) is convex on V . Let
u, v ∈ V and t ∈ (0, 1) be arbitrary. From the semi-ellipticity and symmetry of a
on V we obtain

0 ≤ a(u − v, u − v) = a(u, u) − 2 a(u, v) + a(v, v). (4.9)
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Then, by (4.9), we get

a(tu + (1 − t)v, tu + (1 − t)v) =
= t2a(u, u) + 2 t (1 − t) a(u, v) + (1 − t)2a(v, v)

≤ t2a(u, u) + t (1 − t) [a(u, u) + a(v, v)] + (1 − t)2a(v, v)

= t a(u, u) + (1 − t) a(v, v),

which completes the proof. �

Theorem 4.5 If a is bounded, symmetric, and semi-elliptic on V , then problem (4.7)
is equivalent to the minimization problem to find u ∈ K such that

q(u) = min {q(v) : v ∈ K } . (4.10)

Proof Suppose u ∈ K is a solution of (4.7). Let us pick any v ∈ K and put
z = v − u ∈ V . Then

a(u, z) ≥ f (z)

and due to the symmetry and semi-ellipticity of a on V

q(v) = q(z + u) = 1

2
a(z + u, z + u) − f (z + u)

= 1

2
a(z, z) + a(u, z) + 1

2
a(u, u) − f (z) − f (u)

= q(u) + 1

2
a(z, z) + (a(u, z) − f (z))

≥ q(u).

Conversely, assume that u ∈ K minimizes the energy functional q onK . If we
pick an arbitrary v ∈ K , then

φ(t) = q((1 − t)u + tv) ≥ q(u) = φ(0) for all t ∈ [0, 1].

Now let us take a closer look at the function φ. The symmetry of a on V yields

φ(t) = 1

2
(1 − t)2a(u, u) + (1 − t) ta(u, v) + 1

2
t2a(v, v) − (1 − t) f (u) − t f (v)

for all t ∈ [0, 1], and therefore

φ′
+(0) = −a(u, u) + a(u, v) + f (u) − f (v) = a(u, v − u) − f (v − u).

Since φ′+(0) ≥ 0, the proof is finished. �
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Remark 4.1 Let us sketch the proof of Theorem4.4 using an additional assumption
of the symmetry of a on V . Due to Theorem4.5, to prove the solvability, it is enough
to show that the energy functional q defined by (4.8) gets its minimum on K .
By Proposition4.1 we know that q is convex on V . Continuity of both a and f on V
implies continuity of q on V and, moreover, it can be easily shown that particularly
due to elipticity of a on V the energy functional q is coercive on V . Thus, by
Theorem4.3, we get that problem (4.10) is solvable.

Remark 4.2 If the assumptions of Proposition4.1 are satisfied, q is convex on V .
If, moreover, a is continuous on V , so is q. Thus if we want to use Theorem4.3 in
order to obtain the solvability of minimization problem (4.10) (and the solvability
of variational inequality (4.7)), it is enough to prove coercivity of q onK .
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Part II
Optimal QP and QCQP Algorithms



Chapter 5
Conjugate Gradients

We begin our development of scalable algorithms for contact problems by the
description of the conjugate gradient method for solving

min
x∈Rn

f (x), (5.1)

where f (x) = 1
2x

TAx − xTb, b is a given column n-vector, and A is an n × n SPD
matrix. We are interested especially in the problems with n large and A sparse and
reasonably conditioned.

As we have already seen in Sect. 3.2.2, problem (5.1) is equivalent to the solu-
tion of a system of linear equations Ax = b, but our main goal here is the solution
of auxiliary minimization problems generated by the algorithms for solving con-
strained QP problems arising from the discretization of contact problems. Here, we
view the conjugate gradient (CG) method as an iterative method, which generates
improving approximations to the solution of (5.1) at each step. The cost of one step
of the CG method is dominated by the cost of the multiplication of a vector by the
matrix A, which is proportional to the number of nonzero entries of A or its sparse
representation. The memory requirements are typically dominated by the cost of the
storage ofA. In our applications, the matrices come in the form of a product of sparse
matrices so that the cost of matrix–vector multiplications and storage requirements
increases proportionally to the number of unknown variables.

The rate of convergence of the CG method depends on the distribution of the
spectrum of A and can be improved by a problem- dependent preconditioning. For
the development of scalable algorithms for contact problems, it is important that
there are well-established standard preconditioners for the solution of the problems
arising from the application of domain decomposition methods to the problems of
elasticity that can reduce the conditioning of the Hessian matrix of the discretized
elastic energy function.

© Springer Science+Business Media LLC 2016
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5.1 First Observations

The conjugate gradient method is based on simple observations. Let us start with
examining the first one, namely, that it is possible to reduce the solution of (5.1) to
the solution of a sequence of one-dimensional problems.

LetA ∈ R
n×n be an SPDmatrix and let us assume that there are nonzero n-vectors

p1, . . . ,pn such that

(pi ,p j )A = (pi )TAp j = 0 for i �= j.

We call such vectors A-conjugate or briefly conjugate. Specializing the arguments
of Sect. 2.6, we get that p1, . . . ,pn are independent. Thus p1, . . . ,pn form the basis
of Rn and any x ∈ R

n can be written in the form

x = ξ1p1 + · · · + ξnpn.

Substituting into f and using the conjugacy results in

f (x) =
(
1

2
ξ 2
1 (p1)TAp1 − ξ1bTp1

)
+ · · · +

(
1

2
ξ 2

n (pn)TApn − ξnbTpn

)

= f (ξ1p1) + · · · + f (ξnpn).

Thus
f (̂x) = min

x∈Rn
f (x) = min

ξ1∈R
f (ξ1p1) + · · · + min

ξn∈R
f (ξnpn).

We have thus managed to decompose the original problem (5.1) into n one-
dimensional problems. Since

d f
(
ξpi

)

dξ

∣
∣∣∣
ξi

= ξi (pi )TApi − bTpi = 0,

the solution x̂ of (5.1) is given by

x̂ = ξ1p1 + · · · + ξnpn, ξi = bTpi/(pi )TApi , i = 1, . . . , n. (5.2)

The second observation concerns effective generation of a conjugate basis. Let
us recall how to generate conjugate directions with the Gram–Schmidt procedure.
Assuming that p1, . . . ,pk are nonzero conjugate directions, 1 ≤ k < n, let us
examine how to use hk /∈ Span{p1, . . . ,pk} to generate a new member pk+1 in the
form

pk+1 = hk + βk1p1 + · · · + βkkpk . (5.3)

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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Since pk+1 should be conjugate to p1, . . . ,pk , we get

0 = (pi )TApk+1 = (pi )TAhk + βk1(pi )TAp1 + · · · + βkk(pi )TApk

= (pi )TAhk + βki (pi )TApi , i = 1, . . . , k.

Thus

βki = − (pi )TAhk

(pi )TApi
, i = 1, . . . , k. (5.4)

Obviously
Span{p1, . . . ,pk+1} = Span{p1, . . . ,pk,hk}.

Therefore, given any independent vectors h0, . . . ,hk−1, we can start from
p1 = h0 and use (5.3) and (5.4) to construct a set of mutually A-conjugate directions
p1, . . . ,pk such that

Span{h0, . . . ,hi−1} = Span{p1, . . . ,pi }, i = 1, . . . , k.

For h0, . . . ,hk−1 arbitrary, the construction is increasingly expensive as it
requires both the storage for the vectors p1, . . . ,pk and heavy calculations including
evaluation of k(k + 1)/2 scalar products. However, it turns out that we can adapt
the procedure so that it generates very efficiently the conjugate basis of the Krylov
spaces

K k = K k(A, g0) = Span{g0,Ag0, . . . ,Ak−1g0}, k = 1, . . . , n,

with g0 = Ax0 − b defined by a suitable initial vector x0 and K 0 = {o}. The
powerful method is again based on a few simple observations.

First assume that p1, . . . ,pi form a conjugate basis of K i , i = 1, . . . , k, and
observe that if xk denotes the minimizer of f on x0 +K k , then by Proposition 3.6(i)
the gradient gk = ∇ f (xk) is orthogonal to the Krylov space K k , that is,

(gk)T x = 0 for any x ∈ K k .

In particular, if gk �= o, then
gk /∈ K k .

Since gk ∈ K k+1, we can use (5.3) with hk = gk to expand any conjugate basis of
K k to the conjugate basis ofK k+1. Obviously

K k(A, g0) = Span{g0, . . . , gk−1}.

http://dx.doi.org/10.1007/978-1-4939-6834-3_3
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Next observe that for any x ∈ K k−1 and k ≥ 1

Ax ∈ K k,

or briefly AK k−1 ⊆ K k . Since pi ∈ K i ⊆ K k−1, i = 1, . . . , k − 1, we have

(Api )T gk = (pi )TAgk = 0, i = 1, . . . , k − 1.

It follows that

βki = − (pi )TAgk

(pi )TApi
= 0, i = 1, . . . , k − 1.

Summing up, if we have a set of such conjugate vectors p1, . . . ,pk that

Span{p1, . . . ,pi } = K i , i = 1, . . . k,

then the formula (5.3) applied to p1, . . . ,pk and hk = gk simplifies to

pk+1 = gk + βkpk (5.5)

with

βk = βkk = − (pk)TAgk

(pk)TApk
. (5.6)

Finally, observe that the orthogonality of gk to Span{p1, . . . ,pk} and (5.5) imply
that

‖pk+1‖ ≥ ‖gk‖. (5.7)

In particular, if gk−1 �= o, then pk �= o, so the formula (5.6) is well defined provided
gk−1 �= o.

5.2 Conjugate Gradient Method

In the previous two sections, we have found that the conjugate directions can be
used to reduce the minimization of any convex quadratic function to the solution
of a sequence of one-dimensional problems, and that the conjugate directions can
be generated very efficiently. The famous conjugate gradient (CG) method just puts
these two observations together.
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The algorithm starts from an initial guess x0, g0 = Ax0 − b, and p1 = g0. If
xk−1 and gk−1 are given, k ≥ 1, it first checks if xk−1 is the solution. If not, then the
algorithm generates

xk = xk−1 − αkpk with αk = (gk−1)Tpk/(pk)TApk (5.8)

and

gk = Axk − b = A
(
xk−1 − αkpk

) − b = (
Axk−1 − b

) − αkApk

= gk−1 − αkApk .
(5.9)

Finally the new conjugate direction pk+1 is generated by (5.5) and (5.6).
The decision if xk−1 is an acceptable solution is typically based on the value of

‖gk−1‖, so the norm of the gradient must be evaluated at each step. It turns out that
the norm can also be used to replace the scalar products involving the gradient in the
definition of αk and βk . To find the formulae, let us replace k in (5.5) by k − 1 and
multiply the resulting identity by (gk−1)T . Using the orthogonality, we get

(gk−1)Tpk = ‖gk−1‖2 + βk−1(gk−1)Tpk−1 = ‖gk−1‖2, (5.10)

so by (5.8)

αk = ‖gk−1‖2
(pk)TApk

. (5.11)

To find an alternative formula for βk , notice that αk > 0 for gk−1 �= o and that
by (5.9)

Apk = 1

αk
(gk−1 − gk),

so that
αk(gk)TApk = (gk)T (gk−1 − gk) = −‖gk‖2

and

βk = − (pk)TAgk

(pk)TApk
= ‖gk‖2

αk(pk)TApk
= ‖gk‖2

‖gk−1‖2 . (5.12)

The complete CG method is presented as Algorithm 5.1.
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Algorithm 5.1 Conjugate gradient method (CG).

Given a symmetric positive definite matrix A ∈ R
n×n and b ∈ R

n.

Step 0. {Initialization.}
Choose x0 ∈ R

n, set g0 = Ax0 − b, p1 = g0, k = 1

Step 1. {Conjugate gradient loop. }
while ‖gk−1‖ > 0

αk = ‖gk−1‖2/(pk)T Apk

xk = xk−1 − αkpk

gk = gk−1 − αkApk

βk = ‖gk‖2/‖gk−1‖2 = −(Apk)T gk/
(
(pk)T Apk

)

pk+1 = gk + βkpk

k = k + 1
end while

Step 2. {Return the solution.}
x̂ = xk

Each step of the CG method can be implemented with just one matrix–vector
multiplication. This multiplication by the Hessian matrix A typically dominates the
cost of the step. Only one generation of vectors xk,pk , and gk is typically stored, so
the memory requirements are modest.

Let us recall that the algorithm finds at each step the minimizer xk of f on
x0 + K k = x0 + K k(A, g0) and expands the conjugate basis of K k to that of
K k+1 provided gk �= o. Since the dimension of K k is less than or equal to k, it
follows that for some k ≤ n

K k = K k+1.

Since gk ∈ K k+1 and gk is orthogonal to K k , Algorithm 5.1 implemented in the
exact arithmetics finds the solution x̂ of (5.1) in at most n steps. We can sum up the
most important properties of Algorithm 5.1 into the following theorem.

Theorem 5.1 Let {xk} be generated by Algorithm 5.1 to find the solution x̂ of (5.1)
starting from x0 ∈ R

n. Then the algorithm is well defined and there is k ≤ n such
that xk = x̂. Moreover, the following statements hold for i = 1, . . . , k:

(i) f (xi ) = min{ f (x) : x ∈ x0 + K i (A, g0)}.
(ii) ‖pi+1‖ ≥ ‖gi‖.
(iii) (gi )T g j = 0 for i �= j .
(iv) (pi )TAp j = 0 for i �= j .
(v) K i (A, g0) = Span{g0, . . . , gi−1} = Span{p1, . . . ,pi }.

It is usually sufficient to find xk such that ‖gk‖ is small. For example, given a
small ε > 0, we can consider gk small if

‖gk‖ ≤ ε‖b‖.
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Then x̃ = xk is an approximate solution which satisfies

‖A(x̃ − x̂)‖ ≤ ε‖b‖, ‖x̃ − x̂‖ ≤ ελmin(A)−1,

where λmin(A) denotes the least eigenvalue of A. It is easy to check that the approx-
imate solution x̃ solves the perturbed problem

min
x∈Rn

f̃ (x), f̃ (x) = 1

2
xTAx − ˜bT x, ˜b = b + gk .

What is “small” depends on the problem solved. To keep our exposition general, we
shall often not specify the test in what follows. Of course gk = o is always considered
small.

5.3 Rate of Convergence

Although theCGmethod finds the exact solution x̂ of (5.1) in a number of stepswhich
does not exceed the dimension of the problem by Theorem 5.1, it turns out that it can
often produce a sufficiently accurate approximation x̃ of x̂ in a much smaller number
of steps than required for exact termination. This observation suggests that the CG
method may also be considered as an iterative method. In this section we present the
results which substantiate this claim and help us to identify the favorable cases.

Let us denote the solution error as

e = e(x) = x − x̂

and observe that
g(̂x) = Ax̂ − b = o.

It follows that

gk = Axk − b = Axk − Ax̂ = A(xk − x̂) = Aek,

so in particular

K k(A, g0) = Span{g0,Ag0, . . . ,Ak−1g0} = Span{Ae0, . . . ,Ake0}.

We start our analysis of the solution error by using the Taylor expansion (3.4) to
obtain the identity

http://dx.doi.org/10.1007/978-1-4939-6834-3_3


76 5 Conjugate Gradients

f (x) − f (̂x) = f (̂x + (x − x̂)) − f (̂x)

= f (̂x) + g(̂x)T (x − x̂) + 1

2
‖x − x̂‖2A − f (̂x)

= 1

2
‖x − x̂‖2A = 1

2
‖e‖2A.

Combining the latter identity with Theorem 5.1, we get

‖ek‖2A = 2
(

f (xk) − f (̂x)
) = min

x∈x0+K k (A,g0)
2 ( f (x) − f (̂x))

= min
x∈x0+K k (A,g0)

‖x − x̂‖2A = min
x∈x0+K k (A,g0)

‖e(x)‖2A.

Since any x ∈ x0 + K k(A, g0) may be written in the form

x = x0 + ξ1g0 + ξ2Ag0 + · · · + ξkAk−1g0 = x0 + ξ1Ae0 + · · · + ξkAke0,

it follows that
x − x̂ = e0 + ξ1Ae0 + · · · + ξkAke0 = p(A)e0,

where p denotes the polynomial defined for any x ∈ R by

p(x) = 1 + ξ1x + ξ2x2 + · · · + ξk xk .

Thus denoting byPk the set of all kth degree polynomials p which satisfy p(0) = 1,
we have

‖ek‖2A = min
x∈x0+K k (A,g0)

‖e(x)‖2A = min
p∈Pk

‖p(A)e0‖2A. (5.13)

We shall now derive a bound on the expression on the right-hand side of (5.13)
that depends on the spectrum of A but is independent of the initial error e0. Let a
spectral decomposition of A be written as A = UDUT , where U is an orthogonal
matrix and D = diag(λ1, . . . , λn) is a diagonal matrix defined by the eigenvalues of
A. Since A is assumed to be positive definite, the square root of A is well defined by

A
1
2 = UD

1
2UT .

Using p(A) = Up(D)UT , it is also easy to check that

A
1
2 p(A) = p(A)A

1
2 .

Moreover, for any vector v ∈ R
n

‖v‖2A = vTAv = vTA
1
2A

1
2 v = (A

1
2 v)TA

1
2 v = ‖A 1

2 v‖2.
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Using the latter identities (5.13), and the properties of norms, we get

‖ek‖2A = min
p∈Pk

‖p(A)e0‖2A = min
p∈Pk

‖A 1
2 p(A)e0‖2 = min

p∈Pk
‖p(A)A

1
2 e0‖2

≤ min
p∈Pk

‖p(A)‖2‖A 1
2 e0‖2 = min

p∈Pk
‖p(D)‖2‖e0‖2A.

Since
‖p(D)‖ = max

i∈{1,...,n} |p(λi )|,

we can write
‖ek‖A ≤ min

p∈Pk
max

i∈{1,...,n} |p(λi )| ‖e0‖A. (5.14)

The estimate (5.14) reduces the analysis of convergence of the CG method to the
analysis of approximation of zero function on σ(A) of A by a kth degree polynomial
with the value one at origin. For example, if σ(A) is clustered around a single point ξ ,
then the minimization by the CG should be very effective because |(1 − x/ξ)k | is
small near ξ . We shall use (5.14) to get a “global” estimate of the rate of convergence
of the CG method in terms of the condition number of A.

Theorem 5.2 Let {xk} be generated by Algorithm 5.1 to find the solution x̂ of (5.1)
starting from x0 ∈ R

n. Then the error

ek = xk − x̂

satisfies

‖ek‖A ≤ 2

(√
κ(A) − 1√
κ(A) + 1

)k

‖e0‖A, (5.15)

where κ(A) denotes the spectral condition number of A.

Proof See, e.g., Axelsson [1] or Dostál [2]. �

The estimate (5.15) can be improved for some special distributions of the eigen-
values. For example, if σ(A) is in a positive interval [amin, amax] except form isolated
eigenvalues λ1, . . . , λm , then we can use special polynomials p ∈ Pk+m of the form

p(λ) =
(
1 − λ

λ1

)
. . .

(
1 − λ

λm

)
q(λ), q ∈ Pk

to get the estimate

‖ek+m‖A ≤ 2

(√
κ̃ − 1√
κ̃ + 1

)k

‖e0‖A, (5.16)

where κ̃ = amax/amin.
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If the spectrum of A satisfies σ(A) ⊆ [amin, amax] ∪ [amin + d, amax + d], d > 0,
then

‖ek‖A ≤ 2

(√
κ − 1√
κ + 1

)k

‖e0‖A, (5.17)

where κ = 4amax/amin approximates the effective condition number ofA. The proofs
of the above bounds can be found in Axelsson [3] and Axelsson and Lindskøg [4].

5.4 Preconditioned Conjugate Gradients

The analysis of the previous section shows that the rate of convergence of the CG
algorithm depends on the distribution of the eigenvalues of the Hessian A of f . In
particular, we argued that CG converges very rapidly if the eigenvalues of A are
clustered around one point, i.e., if the condition number κ(A) is close to one. We
shall now show that we can reduce our minimization problem to this favorable case
if we have a symmetric positive definite matrix M such that M−1x can be easily
evaluated for any x and M approximates A in the sense that M−1A is close to the
identity.

First assume that M is available in the form

M = L̃L̃T ,

so that M−1A is similar to L̃−1AL̃−T and the latter matrix is close to the identity.
Then

f (x) = 1

2
(̃LT x)T (̃L−1AL̃−T )(̃LT x) − (̃L−1b)T (̃LT x)

and we can replace our original problem (5.1) by the preconditioned problem to find

min
y∈Rn

f̄ (y), (5.18)

where we substituted y = L̃T x and set

f̄ (y) = 1

2
yT (̃L−1AL̃−T )y − (̃L−1b)T y.

The solution ŷ of the preconditioned problem (5.18) is related to the solution x̂ of
the original problem by

x̂ = L̃−T ŷ.
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If the CG algorithm is applied directly to the preconditioned problem (5.18) with
a given y0, then the algorithm is initialized by

y0 = L̃T x0, ḡ0 = L̃−1AL̃−T y0 − L̃−1b = L̃−1g0, and p̄1 = ḡ0;

the iterates are defined by

ᾱk = ‖ḡk−1‖2/(p̄k)T L̃−1AL̃−T p̄k,

yk = yk−1 − ᾱk p̄k,

ḡk = ḡk−1 − ᾱk L̃−1AL̃−T p̄k,

β̄k = ‖ḡk‖2/‖ḡk−1‖2,
p̄k+1 = ḡk + β̄k p̄k .

Substituting

yk = L̃T xk, ḡk = L̃−1gk, and p̄k = L̃Tpk,

and denoting
zk = L̃−T L̃−1gk = M−1gk,

we obtain the preconditioned conjugate gradient algorithm (PCG) in the original
variables.

Algorithm 5.2 Preconditioned conjugate gradient method (PCG).

Given an SPD matrix A ∈ R
n×n, its SPD approximation M ∈ R

n×n, and b ∈ R
n.

Step 0. {Initialization.}
Choose x0 ∈ R

n, set g0 = Ax0 − b, z0 = M−1g0, p1 = z0, k = 1

Step 1. {Conjugate gradient loop.}
while ‖gk−1‖ is not small

αk = (zk−1)T gk−1/(pk)T Apk

xk = xk−1 − αkpk

gk = gk−1 − αkApk

zk = M−1gk

βk = (zk)T gk/(zk−1)T gk−1

pk+1 = zk + βkpk

k = k + 1
end while

Step 2. {Return a (possibly approximate) solution.}
x̃ = xk
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Notice that the PCG algorithm does not explicitly exploit the Cholesky factoriza-
tion of the preconditionerM. Thepseudoresiduals zk are typically obtained by solving
Mzk = gk . IfM is a good approximation of A, then zk is close to the error vector ek .
The rate of convergence of the PCG algorithm depends on the condition number of
the Hessian of the transformed function f̄ , i.e., on κ(M−1A) = κ(̃L−1AL̃−T ). Thus
the efficiency of the preconditioned CG method depends critically on the choice of
a preconditioner, which should balance the cost of its application with the precon-
ditioning effect. We refer interested readers to specialized books like Axelsson [1]
or Saad [5] for more information. In our applications, we use the standard FETI
preconditioners introduced by Fahat, Mandel, and Roux [6].

5.5 Convergence in Presence of Rounding Errors

The elegant mathematical theory presented above assumes implementation of the
CG algorithm in exact arithmetic and captures well the performance of only a lim-
ited number of CG iterations in computer arithmetics. Since we use the CG method
mainly for a low-precision approximation of well-conditioned auxiliary problems,
we shall base our exposition on this theory in what follows. However, it is still useful
to be aware of possible effects of rounding errors that accompany any computer
implementation of the CG algorithm, especially for the solution of very large
problems.

It has been known since the introduction of theCGmethod that, when used in finite
precision arithmetic, the vectors generated by these algorithms can seriously violate
their theoretical properties. In particular, it has been observed that the evaluated
gradients can lose their orthogonality after as small a number of iterations as twenty,
and that nearly dependent conjugate directions can be generated. In spite of these
effects, it has been observed that the CG method still converges in finite precision
arithmetic, but that the convergence is delayed [7, 8].

Undesirable effects of the rounding errors can be reduced by reorthogonalization.
A simple analysis reveals that the full reorthogonalization of the gradients is costly
and requires large memory. A key to an efficient implementation of the reorthogonal-
ization is based on observation that accumulation of the rounding errors has a regular
pattern, namely, that large perturbations of the generated vectors belong to the space
generated by the eigenvectors of A which can be approximated well by the vectors
from the current Krylov space. This has led to the efficient implementation of the CG
method based on the selective orthogonalization proposed by Parlett and Scott [9].
More details and information about the effects of rounding errors and implementa-
tion of the CG method in finite arithmetic can be found in the comprehensive review
paper by Meurant and Strakoš [10].
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5.6 Comments and Conclusions

Since its introduction in the early 1950s byHestenes and Stiefel [11], a lot of research
related to the development of the CG method has been carried out, so that there are
many references concerning this subject. We refer an interested reader to the text-
books and researchmonographs by Saad [5], van derVorst [12], Greenbaum [13], and
Axelsson [1] for more information. A comprehensive account of development of the
CG method up to 1989 may be found in the paper by Golub and O’Leary [14]. Most
of the research is concentrated on the development and analysis of preconditioners.

Finding at each step the minimum over the subspace generated by all the previous
search directions, the CG method exploits all information gathered during the pre-
vious iterations. To use this feature in the algorithms for the solution of constrained
problems, it is important to generate long uninterrupted sequences of the CG iter-
ations. This strategy also supports exploitation of yet another unique feature of the
CG method, namely, its self-preconditioning capabilities that were described by van
der Sluis and van der Vorst [15]. The latter property can also be described in terms of
the preconditioning by the conjugate projector. Indeed, if Qk denotes the conjugate
projector onto the conjugate complement V of U = Span{p1, . . . ,pk}, then it is
possible to give the bound on the rate of convergence of the CG method starting
from xk+1 in terms of the spectral regular condition number κk = κ(QT

k AQk |V )

of QT
k AQk |V and observe that κk decreases with the increasing k. Recall that the

spectral regular condition number κ(A) of an SPS matrix A is defined by

κ(A) = ‖A‖
λmin(A)

,

where λmin(A) denotes the least nonzero eigenvalue of A.
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Chapter 6
Gradient Projection for Separable
Convex Sets

An important ingredient of our algorithms for solving QP and QCQP problems is
the Euclidean projection on the convex set defined by separable convex constraints.
To combine the gradient projection with the CG method effectively, it is necessary
to have nontrivial bounds on the decrease of f along the projected-gradient path
in terms of bounds on the spectrum of its Hessian matrix A. While such results
are standard for the solution of unconstrained quadratic programming problems
[1, 2], it seems that until recently there were no such results for inequality con-
strained problems. The standard results either provide the bounds on the contraction
of the gradient projection [3] in the Euclidean norm or guarantee only some quali-
tative properties of convergence (see, e.g., Luo and Tseng [4]). Here we present the
results concerning the decrease of f along the projected-gradient path in the extent
that is necessary for the development of scalable algorithms for contact problems.

6.1 Separable Convex Constraints and Projections

Our goal is to get insight into the effect of the projected-gradient step for the problem
to find

min
x∈Ω

f (x), (6.1)

where f = 1
2x

TAx − xTb, A ∈ R
n×n denotes an SPS matrix, b, x ∈ R

n ,

x = [xT1 , . . . , xTs ]T , xi = [xi1, . . . , xi�i ], �1 + · · · + �s = n,

and
Ω = Ω1 × · · · × Ωs

denotes a closed convex set defined by separable constraints hi : R
�i → R,

i = 1, . . . , s, i.e.,

Ωi = {xi ∈ R
�i : hi (xi ) ≤ 0}, i = 1, . . . , s.

© Springer Science+Business Media LLC 2016
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We assume that b has the same block structure as x, i.e.,

b = [bT
1 , . . . ,bT

s ]T , bi ∈ R
�i .

We are especially interested in the problems defined by the separable elliptic
constraints

hi (xi ) = (xi − yi )THi (xi − yi ) − di , xi , yi ∈ R
2, di > 0, Hi SPD, (6.2)

that appear in the dual formulation of contact problems with Tresca friction, or the
bound constraints

hi (xi ) = �i − xi , �i , xi ∈ R,

arising in the dual formulation of non-penetration conditions. In what follows, we
denote by PΩ the Euclidean projection to Ω , so that

PΩ(x) = argmin
y∈Ω

‖x − y‖.

Since the constraints that define Ω are separable, we can define PΩ block-wise by

PΩi (xi ) = arg min
y∈Ωi

‖xi − y‖, PΩ(x) = [
PΩ1(x1)

T , . . . , PΩs (xs)
T
]T

. (6.3)

The action of PΩ is especially easy to calculate for the spherical or bound con-
straints. As illustrated by Fig. 6.1, the components of the projection PΩB (x) of x
onto

ΩB = {x ∈ R
n : xi ≥ �i , i = 1, . . . , n}

are given by
[PΩB (x)]i = max{�i , xi }, i = 1, . . . , n.

Fig. 6.1 Euclidean projections onto convex sets

The gradient projection is an important ingredient of theminimization algorithms.
A typical step of the gradient projection method is in Fig. 6.2.
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Fig. 6.2 Gradient projection step

6.2 Conjugate Gradient Step Versus Gradient Projections

Since the conjugate gradient is the best decrease direction which can be used to find
the minimizer in a current Krylov space by Theorem 5.1, probably the first idea how
to plug the projection into CG-based algorithms for (6.1) is to replace the conjugate
gradient step by the projected conjugate gradient step

xk+1 = PΩ(xk − αcgpk).

Fig. 6.3 Poor performance of the projected conjugate gradient step

However, if we examine Fig. 6.3, which depicts the 2D situation after the first
conjugate gradient step for a bound constrained problem, we can see that though the
second conjugate gradient step finds the unconstrained minimizer xk − αcgpk , it can
easily happen that

f (xk) < f (PΩ(xk − αcgpk)).

Figure6.3 even suggests that it is possible that for any α > α f

f (PΩ(xk − αpk)) > f
(
PΩ(xk − α f pk)

)
.

http://dx.doi.org/10.1007/978-1-4939-6834-3_5
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Though Fig. 6.3 need not capture the typical situation when a small number of com-
ponents of xk − α f pk is affected by PΩ , we conclude that the nice properties of
conjugate directions are guaranteed only in the feasible region. These observations
comply with our discussion at the end of Sect. 5.3.

On the other hand, since the gradient defines the direction of the steepest descent,
it is natural to assume that for a small step length the gradient perturbed by the
projection PΩ defines a decrease direction as in Fig. 6.4.We shall prove a quantitative
refinement of this conjecture. In what follows, we restrict our attention to the analysis
of the fixed steplength gradient iteration

xk+1 = PΩ(xk − αgk), (6.4)

where gk = ∇ f (xk).

Fig. 6.4 Fixed steplength gradient step

Which values of α guarantee that the iterates defined by the fixed gradient
projection step (6.4) approach the solution x̂ in the Euclidean norm?

Proposition 6.1 Let Ω denote a closed convex set, x ∈ Ω , and g = ∇ f (x). Then
for any α > 0

‖PΩ(x − αg) − x̂‖ ≤ ηE‖x − x̂‖, (6.5)

where λmin, λmax are the extreme eigenvalues of A and

ηE = max{|1 − αλmin|, |1 − αλmax|}. (6.6)

Proof Since x̂ ∈ Ω and the projected-gradient at the solution satisfies ĝP = o, it
follows that

PΩ(̂x − αĝ) = x̂.

Using that the projection PΩ is nonexpansive by Corollary 3.1, the definition of
gradient, the relations between the norm of a symmetric matrix and its spectrum
(2.23), and the observation that if λi are the eigenvalues of A, then 1 − αλi are the
eigenvalues of I − αA (see also (2.25)), and we get

http://dx.doi.org/10.1007/978-1-4939-6834-3_5
http://dx.doi.org/10.1007/978-1-4939-6834-3_3
http://dx.doi.org/10.1007/978-1-4939-6834-3_2
http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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‖PΩ(x − αg) − x̂‖ = ‖PΩ(x − αg) − PΩ(̂x − αĝ)‖
≤ ‖(x − αg) − (̂x − αĝ)‖
= ‖ (x − x̂) − α(g − ĝ)‖ = ‖ (x − x̂) − αA(x − x̂)‖
= ‖(I − αA)(x − x̂)‖
≤ max{|1 − αλmin|, |1 − αλmax|}‖x − x̂‖. �

We call ηE the coefficient of Euclidean contraction. If α ∈ (0, 2‖A‖−1), then
ηE < 1. Using some elementary arguments, we get that ηE is minimized by

α
opt
E = 2

λmin + λmax
(6.7)

and

η
opt
E = λmax − λmin

λmax + λmin
= κ − 1

κ + 1
, κ = λmax

λmin
. (6.8)

Notice that the estimate (6.5) does not guarantee any bound on the decrease of
the cost function. We study this topic in Sect. 6.5.

6.3 Quadratic Functions with Identity Hessian

Which values of α guarantee that the cost function f decreases in each iterate defined
by the fixed gradient projection step (6.4)? How much does f decrease when the
answer is positive? To answer these questions, it is useful to carry out some analysis
for a special quadratic function

F(x) = 1

2
xT x − cT x, x ∈ R

n, (6.9)

which is defined by a fixed c ∈ R
n, c = [ci ]. We shall also use

F(x) =
n∑

i=1

Fi (xi ), Fi (xi ) = 1

2
x2i − ci xi , x = [xi ]. (6.10)

The Hessian and the gradient of F are expressed by

∇2F(x) = I and g = ∇F(x) = x − c, g = [gi ], (6.11)

respectively. Thus c = x − g and for any z ∈ R
n

‖z − c‖2 = ‖z‖2 − 2cT z + ‖c‖2 = 2F(z) + ‖c‖2.

Since by Proposition 3.5 for any z ∈ Ω

http://dx.doi.org/10.1007/978-1-4939-6834-3_3
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‖z − c‖ ≥ ‖PΩ(c) − c‖,

we get that for any z ∈ Ω

2F(z) = ‖z − c‖2 − ‖c‖2 ≥ ‖PΩ(c) − c‖2 − ‖c‖2
= 2F (PΩ(c)) = 2F (PΩ(x − g)) .

(6.12)

We have thus proved that if y ∈ Ω , then, as illustrated in Fig. 6.5,

F
(
PΩ(x − g)

) ≤ F(y). (6.13)

Fig. 6.5 Minimizer of F in Ω

We are especially interested in the analysis of F along the projected-gradient path

p(x, α) = PΩ

(
x − α∇F(x)

)
,

where α ≥ 0 and x ∈ Ω is fixed. A geometric illustration of the projected-gradient
path for the feasible set of a bound constrained problem is in Fig. 6.6.

Fig. 6.6 Projected-gradient path
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6.4 Subsymmetric Sets

In the analysis of the rate of convergence in Chaps. 7 and 8, we shall use the following
generalization of a property of the half-interval (see Dostál [5]).

Definition 6.1 A closed convex set Ω ⊆ R
n is subsymmetric if for any x ∈ Ω ,

δ ∈ [0, 1], c ∈ R
n , and g = x − c

F
(
PΩ(x − (2 − δ)g)

) ≤ F
(
PΩ(x − δg)

)
, (6.14)

where F is defined by (6.9).

The condition which defines the subsymmetric set is illustrated in Fig. 6.7.

Fig. 6.7 The condition which defines a subsymmetric set

Let us show that the half-interval is subsymmetric.

Lemma 6.1 Let � ∈ R and ΩB = [�,∞). Let F and g be defined by

F(x) = 1

2
x2 − cx and g = x − c.

Then for any δ ∈ [0, 1]

F
(
PΩB (x − (2 − δ)g)

) ≤ F
(
PΩB (x − δg)

)
. (6.15)

Proof First assume that x ≥ l is fixed and denote

g = F ′(x) = x − c, g̃(0) = 0, g̃(α) = min{(x − �)/α, g}, α �= 0.

For convenience, let us define

F
(
PΩB (x − αg)

) = F(x) + Φ(α), Φ(α) = −αg̃(α)g + α2

2
(g̃(α))2 , α ≥ 0.

Moreover, using these definitions, it can be checked directly that Φ is defined by

http://dx.doi.org/10.1007/978-1-4939-6834-3_7
http://dx.doi.org/10.1007/978-1-4939-6834-3_8
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Φ(α) =
{

ΦF (α) for α ∈ (−∞, ξ ] ∩ [0,∞) or g ≤ 0,
ΦA(α) for α ∈ [ ξ ,∞) ∩ [0,∞) and g > 0,

where ξ = ∞ if g = 0 and ξ = (x − �)/g if g �= 0,

ΦF (α) =
(

−α + α2

2

)
g2, and ΦA(α) = −g(x − �) + 1

2
(x − �)2.

See also Fig. 6.8.

Fig. 6.8 Graphs of Φ for ξ < 1 (left) and ξ > 1 (right) when g > 0

It follows that for any α

ΦF (2 − α) =
(

−(2 − α) + (2 − α)2

2

)
g2 = ΦF (α), (6.16)

and if g ≤ 0, then

Φ(α) = ΦF (α) = ΦF (2 − α) = Φ(2 − α).

Let us now assume that g > 0 and denote ξ = (x − �)/g. Simple analysis
shows that if ξ ∈ [0, 1], then Φ is nonincreasing on [0, 2] and (6.15) is satisfied for
α ∈ [0, 1]. To finish the proof of (6.15), notice that if 1 < ξ , then

Φ(α) = ΦF (α), α ∈ [0, 1], Φ(α) ≤ ΦF (α), α ∈ [1, 2],

so that we can use (6.16) to get that for α ∈ [0, 1]

Φ(2 − α) ≤ ΦF (2 − α) = ΦF (α) = Φ(α).

�
Bouchala and Vodstrčil managed to prove that also the ellipse is a subsymmetric

set [6].
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Lemma 6.2 Let Ω ⊂ R
2 be defined by an elliptic constraint

Ω = {x ∈ R
2 : h(x) ≤ 0}, h(x) = (x − y)TH(x − y) − d, y ∈ R

2, d > 0,

where H is SPD. Then Ω is subsymmetric.

Proof Clearly, we can assume that the ellipse Ω is centered at the origin, i.e.,

Ω =
{
x =

[
x1
x2

]
∈ R

2 : x
2
1

a2
+ x22

b2
≤ 1

}
,

where a, b ∈ R and a, b > 0. We prove the following three cases:

1. x + αg ∈ Ω, x − αg ∈ Ω ,
2. x + αg ∈ Ω, x − αg /∈ Ω ,
3. x + αg /∈ Ω, x − αg /∈ Ω .

Ad 1. In this case,

‖PΩ(x + αg) − x‖ = ‖αg‖ = ‖PΩ(x − αg) − x‖.

Ad 2. Since [b cos t, a sin t] is the outer normal vector of the ellipse

∂Ω = {[a cos t, b sin t] ∈ R
2 : t ∈ R}

at [a cos t, b sin t], we can write x + αg and x − αg in the form

x + αg = s[a cos t1, b sin t1]T , (6.17)

x − αg = [a cos t2, b sin t2]T + k[b cos t2, a sin t2]T ,

where 0 ≤ s ≤ 1, k > 0, t1, t2 ∈ R. It can be verified directly that

‖PΩ(x + αg) − x‖2 − ‖PΩ(x − αg) − x‖2 = abk
(
1 − s cos(t2 − t1)

) ≥ 0.

Ad 3. Now we can write

x + αg = [a cos t1, b sin t1]T + s[b cos t1, a sin t1]T , (6.18)

x − αg = [a cos t2, b sin t2]T + k[b cos t2, a sin t2]T ,

where s, k > 0, and we can check that

‖PΩ(x + αg) − x‖2 − ‖PΩ(x − αg) − x‖2 = ab(k − s)
(
1 − cos(t1 − t2)

)
.

It remains to prove that k ≥ s. Due to the symmetry of the ellipse, we can assume
0 < t2 ≤ t1 < π . Now we consider such t0 ∈ (t1, π ] that the line given by two points

x + αg = [a cos t1, b sin t1]T + s[b cos t1, a sin t1]T and [a cos t0, b sin t0]T

is a tangent to the ellipse. It is easy to calculate that



92 6 Gradient Projection for Separable Convex Sets

s = ab
(
1 − cos(t0 − t1)

)

b2 cos t0 cos t1 + a2 sin t0 sin t1
, k ≥ ab

(
1 − cos(t0 − t2)

)

b2 cos t0 cos t2 + a2 sin t0 sin t2
,

and that the function

f (t) := ab
(
1 − cos(t0 − t)

)

b2 cos t0 cos t + a2 sin t0 sin t

has a nonpositive derivative (and therefore f is nonincreasing) on the interval [t2, t1].
This implies k ≥ s. �

Now we are ready to prove the main result of this section.

Proposition 6.2 Let Ω ⊂ R
n be defined as a direct product of ellipses and/or

halfspaces. Then Ω is subsymmetric, i.e.,

F
(
PΩ(x − (2 − δ)g)

) ≤ F
(
PΩ(x − δg)

)
. (6.19)

Proof Let Ω = Ω1 × · · · × Ωs, (6.20)

where Ωi is either a half-interval or an ellipse. If s = 1, then the statement reduces
to Lemma 6.1 or Lemma 6.2.

To prove the statement for s > 1, first observe that for any y ∈ R

[PΩ(y)]i = PΩi (yi ), i = 1, . . . , s.

It follows that PΩ is separable and canbedefined componentwise by the real functions

Pi (y) = max{y, �i }, i = 1, . . . , n.

Using the separable representation of F given by (6.10), we can define a separable
representation of F in the form

F(x) =
s∑

i=1

Fi (xi ), i = 1, . . . , s,

which complies with (6.20). To complete the proof, it is enough to use this represen-
tation, Lemma 6.1, and Lemma 6.2 to get

F
(
PΩ(x − (2 − δ)g)

) =
s∑

i=1

Fi
([PΩ(x − (2 − δ)g)]i

)

=
n∑

i=1

Fi
(
PΩi (xi − (2 − δ)gi )

)

≤
n∑

i=1

Fi
(
PΩi (xi − δgi )

)

= F
(
PΩ(x − δg)

)
.

�
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6.5 Dominating Function and Decrease of the Cost
Function

Now we are ready to give an estimate of the decrease of the cost function

f (x) = 1

2
xTAx − bT x

along the projected-gradient path. The idea of the proof is to replace f by a suitable
quadratic function F which dominates f and has the Hessian equal to the identity
matrix.

Let us assume that Ω is convex, 0 < δ‖A‖ ≤ 1, and let x ∈ Ω be arbitrary but
fixed, so that we can define a quadratic function

Fδ(y) = δ f (y) + 1

2
(y − x)T (I − δA)(y − x), y ∈ R

n . (6.21)

It is defined so that

Fδ(x) = δ f (x), ∇Fδ(x) = δ∇ f (x) = δg, and ∇2Fδ(y) = I. (6.22)

Moreover, for any y ∈ R
n

δ f (y) ≤ Fδ(y). (6.23)

It follows that

δ f (PΩ(x − δg)) − δ f (̂x) ≤ Fδ (PΩ(x − δg)) − δ f (̂x) (6.24)

and
∇Fδ(y) = δ∇ f (y) + (I − δA)(y − x) = y − (x − δg). (6.25)

Using (6.13) and (6.22), we get that for any z ∈ Ω

Fδ (PΩ(x − δg)) ≤ Fδ(z). (6.26)

The following lemma is due to Schöberl [7, 8].

Lemma 6.3 Let Ω be a closed convex set, let λmin denote the smallest eigenvalue
of A, g = ∇ f (x), x ∈ Ω , δ ∈ (0, ‖A‖−1], and let

x̂ = argmin
x∈Ω

f (x)

denote a unique solution of (8.1). Then

Fδ (PΩ(x − δg)) − δ f (̂x) ≤ δ(1 − δλmin) ( f (x) − f (̂x)) . (6.27)

http://dx.doi.org/10.1007/978-1-4939-6834-3_8


94 6 Gradient Projection for Separable Convex Sets

Proof Let us denote

[̂x, x] = Conv{̂x, x} and d = x̂ − x.

Using (6.26),
[̂x, x] = {x + td : t ∈ [0, 1]} ⊆ Ω,

0 < λminδ ≤ ‖A‖δ ≤ 1, and λmin‖d‖2 ≤ dTAd, we get

Fδ (PΩ(x − δg)) − δ f (̂x) = min{Fδ(y) − δ f (̂x) : y ∈ Ω}
≤ min{Fδ(y) − δ f (̂x) : y ∈ [̂x, x]}
= min{Fδ(x + td) − δ f (x + d) : t ∈ [0, 1]}

= min{δtdT g + t2

2
‖d‖2 − δdT g − δ

2
dTAd : t ∈ [0, 1]}

≤ δ2λmindT g + 1

2
δ2λ2

min‖d‖2 − δdT g − δ

2
dTAd

≤ δ2λmindT g + 1

2
δ2λmindTAd − δdT g − δ

2
dTAd

= δ(δλmin − 1)(dT g + 1

2
dTAd)

= δ(δλmin − 1) ( f (x + d) − f (x))

= δ(1 − δλmin) ( f (x) − f (̂x)) .

�
Now we are ready to formulate and prove the main result of this section.

Proposition 6.3 Let Ω be a product of ellipses and/or half-spaces, let x̂ denote
the unique solution of (6.1), g = ∇ f (x), x ∈ Ω , and let λmin denote the smallest
eigenvalue of A.

If α ∈ (0, 2‖A‖−1], then

f (PΩ(x − αg)) − f (̂x) ≤ η ( f (x) − f (̂x)) , (6.28)

where
η = η(α) = 1 − α̂λmin (6.29)

is the cost function reduction coefficient and α̂ = min{α, 2‖A‖−1 − α}.
Proof Let us first assume that 0 < α‖A‖ ≤ 1 and let x ∈ Ω be arbitrary but fixed,
so that we can use Lemma 6.3 with δ = α to get

Fα (PΩ(x − αg)) − α f (̂x) ≤ α(1 − αλmin) ( f (x) − f (̂x)) . (6.30)
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In combination with (6.24), this proves (6.28) for 0 < α ≤ ‖A‖−1.
To prove the statement for α ∈ (‖A‖−1, 2‖A‖−1], let us first assume that ‖A‖ = 1

and let α = 2 − δ, δ ∈ (0, 1). Then F1 dominates f and

δF1(y) ≤ δF1(y) + 1 − δ

2
‖y − x‖2 = Fδ(y). (6.31)

Thus, we can apply (6.23), Proposition 6.2, and the latter inequality to get

δ f
(
PΩ (x − αg)

) ≤ δF1
(
PΩ (x − αg)

) ≤ δF1
(
PΩ (x − δg)

)

≤ Fδ

(
PΩ (x − δg)

)
.

Combining the latter inequalities with (6.30) for α = δ, we get

δ f
(
PΩ (x − αg)

) − δ f (̂x) ≤ δ(1 − δλmin)
(
( f (x) − f (̂x)

)
.

This proves the statement for α ∈ (‖A‖−1, 2‖A‖−1) and ‖A‖ = 1. To finish the
proof, apply the last inequality divided by δ to the function ‖A‖−1 f and recall that
f and PΩ are continuous. �

The estimate (6.28) gives the best value

ηopt = 1 − κ(A)−1

for α = ‖A‖−1 with κ(A) = ‖A‖‖A−1‖.

6.6 Comments and References

While the contraction properties of the Euclidean projection have been known for
a long time (see, e.g., Bertsekas [3]), it seems that the first results concerning the
decrease of the cost function along the projected-gradient path are due to Schöberl
[7–9], who found the bound on the rate of convergence of the cost function in
the energy norm for the gradient projection method with the fixed steplength
α ∈ (0, ‖A‖−1] in terms of bounds on the spectrum of the Hessian matrix A. Later
Kučera [10] observed that the arguments provided by Schoberl are valid for any
convex set.

A successful application of the projections in the energy norm with a longer
steplength to the solution of contact problems by Farhat and Lesoinne in their
FETI–DP code motivated the extension of the estimate for the bound constraints
to α ∈ [0, 2‖A‖−1] by Dostál [5]. The latter proof used a simple property of inter-
val that was generalized to the concept of subsymmetric set. Bouchala and Vodstrčil
in [6] and [11] extended the estimates to the spheres and ellipses by proving that they
are subsymmetric. Let us mention that it is known that there are convex sets that are
not subsymmetric [11], but no example of a convex set for which the estimates do
not hold is known.
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The estimates of the decrease of quadratic cost function along the projected-
gradient path are important for the development of effective monotonic algorithms
that combine Euclidean projections and conjugate gradients – see Chaps. 7 and 8.
Let us recall that the linear rate of convergence of the cost function for the gradient
projection method was proved earlier even for more general problems by Luo and
Tseng [4], but they did not make any attempt to specify the constants.

Very good experimental results were obtained by the so-called fast gradient meth-
ods that use a longer steplengthα(xk) ∈ (λ−1

max, λ
−1
min)definedbyvarious rules. Though

these methods can guarantee neither the decrease of the cost function nor a faster
rate of convergence, their potential should not be overlooked. The idea of the fast
gradient algorithms originates in the pioneering paper by Barzilai and Borwein [12].
For the algorithms and convergence results concerning bound constrained problems,
see, e.g., Birgin, Martínez, and Raydan [13, 14], Dai and Fletcher [15], and Grippo,
Lampariello, and Lucidi [16]. For the experimental results obtained by the spectral
gradient method with a fall-back, see Pospíšil and Dostál [17].
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Chapter 7
MPGP for Separable QCQP

We are concerned with the special QCQP problems to find

min
x∈ΩS

f (x), (7.1)

where f (x) = 1
2x

TAx − xTb, b ∈ R
n , A ∈ R

n×n is SPD,

ΩS = Ω1 ×· · ·×Ωs, Ωi = {xi ∈ R
mi : hi (xi ) ≤ 0}, i ∈ S , S = {1, 2, . . . , s},

(7.2)
and hi are convex functions. We are especially interested in the problems where Ωi

denotes a half-interval, i.e.,

mi = 1 and hi (xi ) = �i − xi , xi , �i ∈ R,

or an ellipse, i.e.,

mi = 2, hi (xi ) = (xi − yi )THi (xi − yi ) − ci , xi , yi ∈ R
2, ci > 0, Hi SPD.

To include the possibility that not all components of x are constrained, we admit
hi (xi ) = −1. Problem (7.1) arises in the solution of transient contact problems or in
the inner loop of TFETI-based algorithms for the solution of contact problems with
possibly orthotropic friction.

Here we are interested in efficient algorithms for solving problems with large n
and sparse and well-conditioned A. Such algorithms should be able to return an
approximate solution at the cost proportional to the dimension n and to recognize an
acceptable solution when it is found, as our goal here is also to solve the auxiliary
problems generated by the algorithms for solving more general QCQP problems.
Our choice is a variant of the active set strategy that we coined MPGP (Modified
Proportioning with Gradient Projections). The algorithm uses conjugate gradients to
solve auxiliary unconstrained problems with the precision controlled by the norm
of violation of the Karush–Kuhn–Tucker conditions. The fixed step length gradient
projections are used to change the active set.

© Springer Science+Business Media LLC 2016
Z. Dostál et al., Scalable Algorithms for Contact Problems, Advances
in Mechanics and Mathematics 36, DOI 10.1007/978-1-4939-6834-3_7
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7.1 Projected Gradient, Reduced Gradient,
and KKT Conditions

By Proposition3.11, the solution to problem (7.1) always exists and is necessarily
unique. As ΩS satisfies ACQ, the unique solution x̂ of (7.1) is fully determined by
the KKT conditions (3.39), so that there is λ ∈ R

s such that

ĝi + ∇hi (̂xi )λi = o, hi (̂xi )λi = 0, λi ≥ 0, hi (̂xi ) ≤ 0, i = 1, . . . , s, (7.3)

where we use the notation ĝ = g(̂x).
To link the violation of the KKT conditions (7.3) to the solution error, we begin

with some notations. Let S denote the set of all indices of the constraints so that

S = {1, 2, . . . , s}.

For any x ∈ R
n , we define the active set of x by

A (x) = {i ∈ S : hi (xi ) = 0}.

Its complement
F (x) = {i ∈ S : hi (xi ) �= 0}

is called a free set.
For x ∈ ΩS , we define the outer unit normal n by

ni = ni (x) =
{ ‖∇hi (xi )‖−1∇hi (xi ) for i ∈ A (x),

o for i ∈ F (x).

The components of the gradient that violate theKKTconditions (7.3) in the free set
and the active set are called a free gradient ϕ and a chopped gradient β, respectively.
They are defined by

ϕi (x) = gi (x) for i ∈ F (x), ϕi (x) = o for i ∈ A (x) (7.4)

β i (x) = o for i ∈ F (x), β i (x) = gi (x) − (nT
i gi )

−ni for i ∈ A (x), (7.5)

where we use the notation gi = gi (x) and

(nT
i gi )

− = min{nT
i gi , 0}.

http://dx.doi.org/10.1007/978-1-4939-6834-3_3
http://dx.doi.org/10.1007/978-1-4939-6834-3_3
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Thus the KKT conditions (7.3) are satisfied if and only if the projected gradient

gP(x) = ϕ(x) + β(x)

is equal to zero. Notice that gP is not a continuous function of x in ΩS . If hi (xi )
defines the bound constraint xi ≥ �i , then ni = −1 and the projected gradient is
defined by

gP
i = g−

i for i ∈ A (x), gP
i = gi for i ∈ F (x). (7.6)

Since
gP
i (x) = gi (x), i ∈ F (x),

and for any i ∈ A (x)

‖gP
i ‖2 = ‖β i‖2 = (gi − {nT

i gi }−ni )T (gi − {nT
i gi }−ni )

= ‖gi‖2 − ({nT
i gi }−

)2 = gTi g
P
i ,

we have

‖gP‖2 = gT gP ≤ ‖g‖ ‖gP‖ (7.7)

and
‖gP‖ ≤ ‖g‖. (7.8)

We need yet another simple property of the projected gradient.

Lemma 7.1 Let x, y ∈ ΩS and g = ∇ f (x). Then

gT (y − x) ≥ (gP)T (y − x). (7.9)

Proof First observe that

gT (y − x) = (g − gP)T (y − x) + (gP)T (y − x).

Using the definition of projected gradient, we get

(g − gP)T (y − x) =
∑

i∈S
(gi − gP

i )T (yi − xi ) =
∑

i∈A (x)

(nT
i gi )

−nT
i (yi − xi ).

To finish the proof, it is enough to observe that for i ∈ A (x)

nT
i (yi − xi ) ≤ 0

due to the convexity of Ωi . �
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The following lemma can be considered as a quantitative refinement of the KKT
conditions.

Lemma 7.2 Let x̂ be the solution of (7.1) and let gP(x) denote the projected gradient
at x ∈ ΩS. Then

‖x − x̂‖2A ≤ 2
(
f (x) − f (̂x)

) ≤ ‖gP(x)‖2A−1 ≤ λmin(A)−1‖gP(x)‖2. (7.10)

Proof Let Â , F̂ , and ĝ denote the active set, free set, and the gradient at the solution,
respectively. Observe that if i ∈ Â and xi ∈ Ωi , then, using the convexity of hi ,

(∇hi (̂xi )
)T

(xi − x̂i ) ≤ hi (xi ) − hi (̂xi ) = hi (xi ) ≤ 0.

It follows by the KKT conditions (7.3) and ĝF̂ = oF̂ that

ĝT (x − x̂) =
∑

i∈Â
ĝTi (xi − x̂i ) =

∑

i∈Â
−λi

(∇hi (̂xi )
)T

(xi − x̂i ) ≥ 0. (7.11)

Thus, for any x ∈ ΩS ,

f (x) − f (̂x) = ĝT (x − x̂) + 1

2
(x − x̂)TA(x − x̂) ≥ 1

2
‖x − x̂‖2A.

This proves the left inequality of (7.10).

To prove the right inequality, we can use Lemma7.1 and simple manipulations to
get for any x ∈ ΩS

0 ≥ 2
(
f (̂x) − f (x)

) = ‖̂x − x‖2A + 2gT (̂x − x)

≥ ‖̂x − x‖2A + 2
(
gP

)T
(̂x − x)

≥ 2 min
y∈Rn

(
1

2
yTAy + (

gP
)T

y
)

= −(gP)TA−1gP .

The right inequality of (7.10) now follows easily. �

The projected gradient gP is a natural error measure in the energy norm, but it

can be very sensitive to the curvature of the boundary, as illustrated in Fig. 7.1.
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Ωg

gP
−gP

n

x x

Fig. 7.1 Large projected gradient near the solution

If the curvature of the active constraints near the solution is strong as compared
with the norm of the gradient, which is typical for the elliptic constraints near a vertex
or for the spherical constraints with a small radius, then it is necessary to use more
robust error measures, such as the reduced gradient g̃α = g̃α(x), which is defined
for any x ∈ ΩS and α > 0 by

g̃α = 1

α

(
x − PΩS (x − αg)

)
. (7.12)

It is easy to check that the reduced gradient g̃α is a continuous function of x and α.
The following lemma is an alternative to Lemma7.2.

Lemma 7.3 Let x̂ be the solution of (7.1) and let g̃α = g̃α(x) denote the reduced
gradient at x ∈ ΩS.

Then
‖x − x̂‖ ≤ ν(α)‖̃gα‖, (7.13)

where

ν(α) =
{

(λmin(A))
−1 for 0 < α ≤ 2(λmin(A) + ‖A‖)−1,

α (2 − α‖A‖)−1 for 2(λmin(A) + ‖A‖)−1 ≤ α < 2‖A‖−1.
(7.14)

Proof Using the properties of norm and Corollary3.1, we get that for any α > 0

‖x − x̂‖ ≤ ‖PΩS (x − αg) − x‖ + ‖PΩS (x − αg) − x̂‖
≤ α‖̃gα‖ + ‖PΩS (x − αg) − PΩS (̂x − αg(̂x)) ‖
≤ α‖̃gα‖ + max{|1 − αλmin(A)|, |1 − αλmax(A)|}‖x − x̂‖.

After simple manipulations, we get (7.13). �

http://dx.doi.org/10.1007/978-1-4939-6834-3_3
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We shall also need the inequalities formulated in the following lemma.

Lemma 7.4 Let x ∈ ΩS, α > 0, and let us denote g = g(x) = Ax − b, g̃α = g̃α(x),
and gP = gP(x). Then

‖̃gα‖2 ≤ gT g̃α ≤ gT gP = ‖gP‖2 ≤ ‖g‖2. (7.15)

Proof Using that for all x ∈ ΩS and y ∈ R
n

(
x − PΩS (y)

)T (
y − PΩS (y)

) ≤ 0

by Proposition3.5, we get for any α > 0 and y = x − αg

αg̃Tα (−αg + αg̃α) = (
x − (x − αg̃α)

)T (
x − αg − (x − αg̃α)

) ≤ 0.

After simple manipulations, we get the left inequality of (7.15).
To prove the rest, notice that x − gP is the projection of x − g to the set

Ω̂(x) = Ω̂ = Ω̂1 × · · · × Ω̂s,

where
Ω̂i = {yi ∈ R

�i : ĥi (yi ) ≤ 0},
ĥi (yi ) = (yi − xi )T∇hi (xi ) for i ∈ A (x),
ĥi (yi ) = −1 for i ∈ F (x).

Since x−αg̃α is the projection of x − αg to ΩS , x−αgP is the projection of x − αg
to Ω̂S , and ΩS ⊆ Ω̂ , we have x − αg̃α ∈ ΩS and

α2‖g − gP‖2 = ‖(x−αg)−(x−αgP)‖2 ≤ ‖(x−αg)−(x−αg̃α)‖2 = α2‖g− g̃‖2.

It follows that

−gT gP = −2gT gP + ‖gP‖2 ≤ −2gT g̃ + ‖̃g‖2 ≤ −gT g̃.

The rest follows by (7.7) and (7.8). �

7.2 Reduced Projected Gradient

Though the reduced gradient provides a nice and robust estimate of the solution error,
closer analysis reveals that it provides a little information about the local behavior
of f in ΩS . For example, the inequality

gT (y − x) ≥ (gP)T (y − x),

http://dx.doi.org/10.1007/978-1-4939-6834-3_3
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which is essential in the development of algorithms in Sect. 9.10, does not hold when
we replace the projected gradient gP by the reduced gradient g̃α . Moreover, there is
no constant C such that C‖gP(x)‖ ≤ ‖̃gα(x)‖ for x ∈ ΩS . The reason is that the
free components of g̃α(x) are different from the corresponding components of g(x),
which defines the best linear approximation of the change of f (x) near x in terms of
the variation of free variables.

The remedy is the reduced projected gradient

g̃P
α (x) = ϕ(x) + β̃

α
(x),

which is defined for each x ∈ Ω by the free gradient ϕ(x) and the reduced chopped
gradient β̃

α
(x) with the components

ϕi (x) = gi (x) for i ∈ F (x), ϕi (x) = o for i ∈ A (x), (7.16)

β̃
α

i (x) =
⎧
⎨

⎩

o for i ∈ F (x),
gi (x) for i ∈ A (x) and nT

i gi > 0,
1
α

(
xi − PΩi (xi − αgi )

)
for i ∈ A (x) and nT

i gi ≤ 0.
(7.17)

Observe that g̃P
α is not a continuous function of x and the KKT conditions (7.3) are

satisfied if and only if the reduced projected gradient is equal to zero.
Comparing the definitions of g̃α and g̃P

α and using (7.15), we get

‖̃gα‖ ≤ ‖̃gP
α ‖ ≤ ‖gP‖. (7.18)

We can also formulate the following lemma.

Lemma 7.5 Let x̂ be the solution of (7.1) and let g̃P
α = g̃P

α (x) denote the reduced
projected gradient at x ∈ ΩS. Then

‖x − x̂‖ ≤ ν(α)‖̃gP
α ‖ ≤ ν(α)‖gP‖, (7.19)

where ν(α) is defined in Lemma7.3.

Proof The inequalities are easy corollaries of Lemma7.3 and (7.18).

Lemma 7.6 Let the set ΩS of problem (7.1) be defined by the convex functions hi
with continuous second derivatives and let x̂ denote the solution of (7.1). Then there
are constants ε > 0 and C > 0 such that if x ∈ Ω , ‖x − x̂‖ ≤ ε, and i ∈ S , then

‖gP
i (x)‖ ≤ C‖x − x̂‖. (7.20)

Proof It is enough to prove (7.20) for C dependent on i . Let us first consider the
components associated with the free or weakly binding set of the solution

Z = {i ∈ S : gi (̂x) = o}.

http://dx.doi.org/10.1007/978-1-4939-6834-3_9
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Then
‖gi (x)‖ = ‖gi (x) − gi (̂x)‖ = ‖Ai∗(x − x̂)‖ ≤ ‖A‖‖x − x̂‖,

where Ai∗ denotes the block row of A which corresponds to gi , i ∈ Z . Observing
that ‖gP

i (x)‖ ≤ ‖gi (x)‖ by (7.7), we get

‖gP
i (x)‖ ≤ Ci‖x − x̂‖

with C = ‖A‖ and ε = ∞.
Let us now consider the components of g(x) with indices in

B = {i ∈ A (x) : gTi (̂x)ni (̂x) < 0},

so there is ε0 > 0 such that gi (x) �= o for ‖x − x̂‖ ≤ ε0, and notice that

gTi (̂x)∇hi (̂xi ) = −‖gTi (̂x)‖‖∇hi (̂xi )‖ < 0.

It follows that there is ε ∈ (0, ε0) such that if x ∈ R
n satisfies ‖x − x̂‖ ≤ ε, then

gTi (x)∇hi (xi ) < 0, i ∈ B.

Moreover, the mapping ψi : Rn → R
�i defined for ‖x − x̂‖ ≤ ε by

ψi (x) = gi (x) − gTi (x)∇hi (xi )
‖∇hi (xi )‖2 ∇hi (xi )

is differentiable at x and for i ∈ B

ψi (x) = gi (x) − (gTi (x)∇hi (xi ))−

‖∇hi (xi )‖2 ∇hi (xi ) = gP
i (x).

It follows that we can use the classical results of calculus to get that for each com-
ponent i ∈ B, there is C > 0 such ‖x − x̂‖ ≤ ε implies

‖ψi (x) − ψi (̂x)‖ ≤ C‖x − x̂‖.

To finish the proof, recall that ψ(̂x) = o and that for i ∈ B and ‖x − x̂‖ ≤ ε

gP
i (x) = ψi (x). �

Now we are ready to prove the main result of this section.
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Theorem 7.1 Let the feasible set ΩS = Ω1 × · · · × Ωs of (7.1) be defined by the
convex functions hi : R

�i → R, each with a continuous second derivative. Then
there is C > 0 and ε > 0 such that for each x ∈ ΩS and α ∈ (0, 2‖A‖−1)

‖̃gP
α (x)‖ ≤ ‖gP(x)‖ ≤ C ‖̃gP

α (x)‖. (7.21)

Proof Let α ∈ (0, 2‖A‖−1) and x ∈ ΩS be fixed, so that we can simplify the notation
by

g = g(x), g̃P = g̃P
α (x), and gP = gP(x).

The left inequality of (7.21) has already been established—see (7.18).We shall prove
the right inequality of (7.21) componentwise, observing that by the definitions

‖gP
i ‖ = ‖̃gP

i ‖ for i ∈ F (x).

If i ∈ A (x) and ε > 0, C > 0 are those of Lemma7.6, then ‖x − x̂‖ ≤ ε and by
Lemmas7.5 and 7.6

‖gP
i ‖ ≤ C‖x − x̂‖ ≤ ν(α)C ‖̃gP‖, (7.22)

where ν(α) is defined in Lemma7.3. This proves the right inequality of (7.21) for x
near the solution.

To prove (7.21) for i ∈ A (x) and ‖x − x̂‖ ≥ ε, observe that

‖gP
i ‖ ≤ ‖gi‖ = ‖ (gi − gi (̂x)) + gi (̂x)‖ ≤ ‖A‖‖x − x̂‖ + C1. (7.23)

Moreover, by Lemma7.5
‖x − x̂‖ ≤ ν(α)‖̃gP‖. (7.24)

Thus for ‖x − x̂‖ ≥ ε

‖gP
i ‖ ≤ ‖A‖‖x − x̂‖ + (C1/ε)ε ≤ (‖A‖ + (C1/ε)) ‖x − x̂‖

≤ (‖A‖ + (C1/ε)) ν(α)‖̃gP‖. (7.25)

The rest follows by the finite dimension argument. �

7.3 MPGP Scheme

The algorithm that we propose here exploits a user-defined constant Γ > 0, a test
which is used to decide when to change the face, and two types of steps.

The conjugate gradient step is defined by

xk+1 = xk − αcgpk+1, αcg = bTpk+1/
(
pk+1

)T
Apk+1, (7.26)
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where pk+1 is the conjugate gradient direction (see Sect. 5.2) constructed recurrently.
The recurrence starts (or restarts) with pk+1 = ϕ(xk) whenever xk is generated by
the gradient projection step. If xk is generated by the conjugate gradient step, then
pk+1 is given by

pk+1 = ϕ(xk) − γpk, γ = ϕ(xk)TApk

(pk)TApk
. (7.27)

The coefficient αcg is chosen so that

f (xk+1) = min{ f (xk − αpk+1
) : α ∈ R}

= min{ f (x) : x ∈ xr + Span
{
pr+1, . . . ,pk+1

}
.

It can be checked directly that

f (xk+1) ≤ f
(
xk − αcgϕ(xk)

) = f (xk) − 1

2

‖ϕ(xk)‖4
ϕ(xk)TAϕ(xk)

. (7.28)

The conjugate gradient steps are used to speed up the minimization in the face

WJ = {x : hi (xi ) = 0, i ∈ J }, J = A (xk).

The gradient projection step is defined by the gradient projection

xk+1 = PΩS

(
xk − αg(xk)

) = xk − αg̃α (7.29)

with a fixed step length α > 0. This step can both add and remove the indices from
the current working set.

If for a given Γ > 0 the inequality

‖β(xk)‖ ≤ Γ ‖ϕ(xk)‖ (7.30)

holds, then we call the iterate xk proportional. Test (7.30) is used to decide if the
algorithm should continue exploration of the current working set by the conjugate
gradients or change the working set by the gradient projection step. If Γ = 1, then
the iterate is proportional if the free gradient dominates the violation of the KKT
conditions.

Alternatively, test (7.30) can be written in the form

2δ‖gP(x)‖2 ≤ ‖ϕ(xk)‖2 (7.31)

with

δ = 1

2Γ 2 + 2
, δ ∈ (0, 1/2),

http://dx.doi.org/10.1007/978-1-4939-6834-3_5
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which is more convenient for the analysis of algorithms. It is easy to check that the
tests (7.30) and (7.31) are equivalent.

Now we are ready to describe the basic algorithm in the form which is convenient
for the analysis. More details about the implementation and the choice of parameters
can be found in Sect. 7.6.2.

Algorithm 7.1 Modified proportioning with gradient projections (MPGP schema).

Given an SPD matrix A ∈ R
n×n, b ∈ R

n, Γ > 0.
Choose x0 ∈ ΩS and α ∈ (0, 2‖A‖−1).
For k = 0, 1, . . . , choose xk+1 by the following rules:

(i) If gP (xk) = o, set xk+1 = xk .

(ii) If xk is proportional and gP (xk) �= o, try to generate xk+1 by the conjugate gradient step.
If xk+1 ∈ Ω , then accept it, else generate xk+1 by the gradient projection step.

(iii) If xk is not proportional, define xk+1 by the gradient projection step.

Remark 7.1 The gradient projection step in (ii) can be replaced by the expansion
step

xk+1 = PΩ

(
xk − αϕ(xk)

)
.

7.4 Rate of Convergence

In this section, we give the bounds on the difference between the value of the cost
function at the solution and the current iterate. Let us first examine the effect of the
CG step.

Lemma 7.7 LetΩS denote a closed convex set, let x̂ denote aunique solutionof (7.1),
let λmin denote the smallest eigenvalue of A, let {xk} denote the iterates generated
by Algorithm 7.1 with δ ∈ (0, 1/2), and let xk+1 be generated by the CG step. Then

f
(
xk+1

) − f (̂x) ≤ η
(
δ‖A‖−1

) (
f (xk) − f (̂x)

)
, (7.32)

where
η(ξ) = 1 − ξλmin.

Proof Let xk+1 be generated by the CG step, so that xk is proportional (7.31), and
denote α = δ‖A‖−1. Using (7.28), (7.31), (7.15), and simple manipulations, we get
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f (xk+1) = f
(
xk − αcgϕ(xk)

) = f (xk) − 1

2

‖ϕ(xk)‖4
ϕ(xk)TAϕ(xk)

≤ f (xk) − 1

2
‖A‖−1‖ϕ(xk)‖2 ≤ f (xk) − αgT (xk)gP(xk)

≤ f (xk) − αg̃Tα (xk)g(xk)

≤ f (xk) − αg̃Tα (xk)g(xk) + α2

2
g̃Tα (xk)Ag̃α(xk)

= f
(
PΩ

(
xk − αg(xk)

))
.

After subtracting f (̂x) from the first and the last expression, we get

f (xk+1) − f (̂x) ≤ f
(
PΩ

(
xk − δ‖A‖−1g(xk)

)) − f (̂x). (7.33)

The rest follows by (6.28). �

The main result reads as follows.

Theorem 7.2 Let ΩS be a closed convex set, let x̂ denote a unique solution of (7.1),
letλmin denote the smallest eigenvalueofA, and let {xk}begeneratedbyAlgorithm7.1
with x0 ∈ Ω , α ∈ (0, 2‖A‖−1), and δ ∈ (0, 1/2).

Then for any k ≥ 0

f
(
xk+1

) − f (̂x) ≤ η
(
f (xk) − f (̂x)

)
, (7.34)

where

η = η(δ, α) = 1 − δα̂λmin ≤ 1 − δκ(A)−1, α̂ = min{α, 2‖A‖−1 − α}. (7.35)

Proof If xk+1 is generated by the gradient projection step, then the (7.34) is satisfied
by Proposition6.3. If xk+1 is generated by the CG step, then (7.34) is satisfied by
Lemma7.7. �

7.5 Bound on Norm of Projected Gradient

To use the MPGP algorithm in the inner loops of other algorithms, we must be able
to recognize when we are near the solution. However, there is a catch—though the
latter can be tested by a norm of the projected gradient by Lemma7.2, Theorem7.2
does not guarantee that such test is positive near the solution. The projected gradient
is not continuous and can be large near the solution as shown in Fig. 7.2.

http://dx.doi.org/10.1007/978-1-4939-6834-3_6
http://dx.doi.org/10.1007/978-1-4939-6834-3_6
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x

g(x)

gP(x) = o xk

gP(xk)

ΩB

Fig. 7.2 Large projected gradient near the solution

Here we show that the situation is different for the subsequent iterates of MPGP.
To see why, let us assume that {xk} is generated by MPGP for the solution of (7.1)
and let k ≥ 1 be arbitrary but fixed. The main tool in our analysis is the linearized
problem associated with xk that reads

min f (x) subject to x ∈ Ω̂k, Ω̂k = Ω̂k
1 × · · · × Ω̂k

s , (7.36)

where
Ω̂k

i = {xi ∈ R
�i : ĥi (xi ) ≤ 0} for i ∈ S ,

ĥi (xi ) = (xi − xki )
T∇hi (xki ) for i ∈ A (xk),

ĥi (xi ) = −1 for i ∈ F (xk).

Comparing (7.36) with our original problem (7.1), we can see that the original con-
straints on xi are omitted in (7.36) for i ∈ F (xk) and replaced by their linearized
versions for i ∈ A (xk). Since hi are convex by the assumptions, we get easily

ΩS ⊆ Ω̂ and ni = n̂i , i ∈ A (xk). (7.37)

Problem (7.36) is defined so that the iterate xk , obtained from xk−1 by MPGP for
the solution of problem (7.1), can also be considered as an iterate for the solution
of (7.36). We use the hat to distinguish the concepts related to problem (7.36) from
those related to the original problem (7.1). For example, ˆA k(x) denotes the active
set of x ∈ R

n with respect to Ω̂k . For typographical reasons, we denote the reduced
gradient for (7.36) by ĝα . The following relations are important in what follows.

Lemma 7.8 Let xk denote an iterate generated by the MPGP algorithm under the
assumptions of Theorem7.2, let problem (7.36) be associated with xk , and let ĝP(xk)
and ĝα(xk) denote the projected gradient and the reduced gradient associated with
problem (7.36), respectively. Then

gP(xk) = ĝP(xk) = ĝα(xk). (7.38)
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Proof Let i ∈ A (xk), n = n(xk), g = g(xk), α > 0, ĝ = ĝα(xk), and nT
i gi < 0.

Using standard linear algebra and (7.37), we get

xki − PΩ̂i
(xki − αgi ) = αĝi = αgi − α(nT

i gi )
−ni = αgi − α(n̂T

i gi )
−n̂i .

Thus
αĝi = αgP

i = αĝP
i .

If i ∈ F (xk) or nT
i gi ≥ 0, then obviously

gP
i = ĝP

i = ĝi = gi . �
We shall also use the following lemma on the three subsequent iterations that is

due to Kučera [1].

Lemma 7.9 Let ξ 0, ξ 1, and ξ 2 belong to Ω̂ and satisfy

f
(
ξ 2) − f (̂ξ) ≤ η

(
f (ξ 1) − f (̂ξ)

) ≤ η2
(
f (ξ 0) − f (̂ξ)

)
, (7.39)

where ξ̂ denotes the solution of (7.36) and η ∈ (0, 1).
Then

f (ξ 1) − f (ξ 2) ≤ 1 + η

1 − η
η

(
f (ξ 0) − f (ξ 1)

)
.

Proof We shall repeatedly apply (7.39). As

f (ξ 0) − f (ξ 1) = (
f (ξ 0) − f (̂ξ)

) − (
f (ξ 1) − f (̂ξ)

)

≥ (1 − η)
(
f (ξ 0) − f (̂ξ)

)

≥ 1 − η

η

(
f (ξ 1) − f (̂ξ)

)

and

f (ξ 1) − f (ξ 2) = 2

(
q(xk) + f (ξ 0)

2
− f (ξ 2)

)

≤ 2

(
f (ξ 1) + f (ξ 2)

2
− f (̂ξ)

)

≤ (1 + η)
(
f (ξ 1) − f (̂ξ)

)
,

we get

1

1 + η

(
f (ξ 1) − q(xk+1)

) ≤ f (ξ 1) − f (̂ξ) ≤ η

1 − η

(
f (ξ 0) − q(xk)

)
.

This completes the proof. �
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Now we are ready to prove the main result of this section.

Theorem 7.3 Let {xk} denote the iterates generated by the MPGP algorithm under
the assumptions of Theorem7.2 with

α ∈ (0, 2‖A‖−1) and δ ∈ (0, 1/2).

Then for any k ≥ 1

‖gP(xk)‖2 ≤ a1η
k
(
f (x0) − f (̂x)

)
, a1 = 2

(
1 + η

)

α̂
(
1 − η

) , (7.40)

where α̂ and η = η(δ, α) are defined in Theorem7.2.

Proof Aswehavementioned above, ourmain tool is the observation that given k ≥ 1,
we can consider the iterates xk−1 and xk as initial iterates for auxiliary problem (7.36).

Let us first show that

f (xk) − f (̂ξ) ≤ η
(
f (xk−1) − f (̂ξ)

)
, (7.41)

where ξ̂ denotes a unique solution of (7.36). We shall consider separately two steps
that can generate xk .

If xk is generated by the conjugate gradient step for problem (7.1), then

xki = xk−1
i for i ∈ A (xk−1).

Noticing that
ˆA k(x) ⊆ A (x)

for any x ∈ ΩS , we get

‖β̂(xk−1)‖ ≤ ‖β(xk−1)‖ and ‖ϕ̂(xk−1)‖ ≥ ‖ϕ(xk−1)‖.

It follows that xk−1 is proportional also as an iterate for the solution of problem (7.36)
and (7.41) holds true by Theorem7.2.

To prove (7.41) for xk generated by the gradient projection step, notice that Ω̂k

is defined in such a way that

xk = PΩS

(
xk−1 − αg(xk−1)

) = PΩ̂k

(
xk−1 − αg(xk−1)

)
.

We conclude that (7.41) holds true.
Let us define

ξ 0 = xk−1, ξ 1 = xk, and ξ 2 = PΩ̂k

(
ξ 1 − αg(ξ 1)

)
.
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Using Theorem7.2 and (7.41), we get

(
f (ξ 2) − f (̂ξ)

) ≤ η(δ, α)
(
f (ξ 1) − f (̂ξ)

) ≤ η(δ, α)2
(
f (ξ 0) − f (̂ξ)

)
. (7.42)

It follows that the assumptions of Lemma7.9 are satisfied with η = η(δ, α) and

f (ξ 1) − f (ξ 2) ≤ 1 + η

1 − η
η

(
f (ξ 0) − f (ξ 1)

)

= 1 + η

1 − η
η

(
f (xk−1) − f (xk)

)

≤ 1 + η

1 − η
η

(
f (xk−1) − f (̂x)

)

≤ 1 + η

1 − η
ηk

(
f (x0) − f (̂x)

)
.

Finally, using Lemma7.8, relations (7.7), and simple manipulations, we get

f
(
ξ 1) − f

(
ξ 2) = f

(
ξ 1) − f

(
PΩ̂

(
ξ 1 − αg(ξ 1)

))

= αĝTα (ξ 1)g(ξ 1) − α2

2
ĝTα (ξ 1)Aĝα(ξ 1)

≥ αĝTα (ξ 1)g(ξ 1) − α2

2
‖A‖‖ĝα(ξ 1)‖2

= (α − α2

2
‖A‖) ĝTα (ξ 1)g(ξ 1)

= 1

2
‖A‖α(2‖A‖−1 − α) ĝTα (ξ 1)g(ξ 1)

≥ α̂

2
ĝTα (ξ 1)g(ξ 1) = α̂

2

(
ĝP(ξ 1)

)T
g(ξ 1)

= α̂

2
‖ĝP(ξ 1)‖2 = α̂

2
‖gP(ξ 1)‖2 = α̂

2
‖gP(xk)‖2.

To verify the last inequality, consider α ∈ (0, ‖A‖−1] and α ∈ (‖A‖−1, 2‖A‖−1)

separately. Putting the last terms of the above chains of relations together, we
get (7.40). �

7.6 Implementation

In this section, we describe Algorithm 7.1 in the form that is convenient for imple-
mentation. We include also some modifications that may be used to improve its
performance.
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7.6.1 Projection Step with Feasible Half-Step

To improve the efficiency of the projection step, we can use the trial conjugate
gradient direction pk which is generated before the projection step is invoked. We
propose to generate first

xk+
1
2 = xk − α f pk and gk+

1
2 = gk − α fApk,

where the feasible step length α f for pk is defined by

α f = max{α : xk − αpk ∈ ΩS}, (7.43)

and then define
xk+1 = PΩS

(
xk+

1
2 − αg(xk+

1
2 )

)
.

The half-step is illustrated in Fig. 7.3. Such modification does not require any addi-
tional matrix–vector multiplication and estimate (7.32) remains valid as

f (xk+
1
2 ) − f (xk) ≤ 0

and

f (xk+1) − f (̂x) ≤ ηΓ

(
( f (xk+

1
2 ) − f (xk)) + f (xk) − f (̂x)

)

≤ ηΓ

(
f (xk) − f (̂x)

)
.

ΩS xk

xk+1/2

xk+1 x

pk

−α (xk+1/2)

Fig. 7.3 Feasible half-step

Since our analysis is based on the worst-case analysis, the implementation of the
feasible half-step does not result in improving the error bounds.
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7.6.2 MPGP Algorithm in More Detail

Now we are ready to give the details of implementation of the MPGP algorithm
which was briefly described in a form suitable for analysis as Algorithm 7.1. To
preserve readability, we do not distinguish the generations of variables by indices
unless it is convenient for further reference.

Algorithm 7.2 MPGP with a feasible half-step.

Given a symmetric positive definite matrix A ∈ R
n×n, b ∈ R

n, and ΩS.

Step 0. { Initialization of parameters.}
Choose x0 ∈ ΩS, α ∈ (0, 2‖A‖−1), Γ > 0, and the relative
stopping tolerance ε > 0. Set k = 0, g = Ax0 − b, p = ϕ(x0).

while
∥
∥̃gPα

(
xk

)∥∥ is not small

if ‖β(xk)‖ ≤ Γ ‖ϕ(xk)‖
Step 1. {Proportional xk . Trial conjugate gradient step.}

αcg = gT p/pTAp
α f = max

{
α : xk − αp ∈ ΩS

}

if αcg ≤ α f
Step 2. { Conjugate gradient step.}

xk+1 = xk − αcgp, g = g − αcgAp
γ = ϕ

(
xk+1

)T
Ap/pTAp, p = ϕ

(
xk+1

) − γp
else

Step 3. {Gradient projection step with halfstep.}

xk+ 1
2 = xk − α f p, g = g − α f Ap

xk+1 = PΩS

(
xk+ 1

2 − αg
)

g = Axk+1 − b, p = ϕ
(
xk+1

)

end if
else

Step 4. {Gradient projection step.}
xk+1 = PΩS

(
xk − αg

)

g = Axk+1 − b, p = ϕ
(
xk+1

)

end if
k = k + 1

end while
Step 5. {Return (possibly inexact) solution.}

x̃ = xk

Our experience indicates that the performance of MPGP is not sensitive to Γ as
long as Γ ≈ 1. Since Γ = 1 minimizes the upper bound on the rate of convergence
and guarantees that the CG steps reduce directly the larger of the two components
of the projected gradient, we can expect good efficiency with this value. Recall that
Γ = 1 corresponds to δ = 1/4.
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The choice of α requires an estimate of ‖A‖. If we cannot exploit a specific
structure of A, then we can carry out a few, e.g., five, iterations of the following
power method.

Algorithm 7.3 Power method for the estimate of ‖A‖.
Given a symmetric positive definite matrix A ∈ R

n×n, returns A ≈ ‖A‖. Choose x ∈ R
n such

that x �= o, nit ≥ 1
for i = 1, 2, . . . , nit

y = Ax, x = ‖y‖−1y
end for
A = ‖Ax‖

Alternatively, we can use the Lanczos method (see, e.g., Golub and van Loan [2]).
We can conveniently enhance the Lanczos method into the first conjugate gradient
loop of the MPRGP algorithm by defining

qi = ‖ϕ(xs+i )‖−1ϕ(xs+i ), i = 0, . . . , p,

where ϕ(xs) and ϕ(xs+i ) are free gradients at the initial and the i th iterate in one
CG loop, respectively. Then we can estimate ‖A‖ by applying a suitable method for
evaluation of the norm of the tridiagonal matrix [2]

T = QTAQ, Q = [q0, . . . ,qp].

Though these methods typically give only a lower bound A on the norm of ‖A‖,
the choice like α = 1.8A−1 is often sufficient in practice. The decrease of f can
be achieved more reliably by initializing α ≥ 2(bTAb)−1‖b‖2 and by inserting the
following piece of code into the expansion step:

Algorithm 7.4 Modification of the steplength of the expansion step.

A piece of code to be inserted at the end of the expansion step of Algorithm 8.2.
if f

(
PΩB (xk+1)

)
> f (xk)

α = α/2 and repeat the expansion step
end if

The modified algorithm can outperform that with α = ‖A‖−1 as longer steps
in the early stage of computations can be effective for fast identification of the
active set of the solution. We observed a good performance with α close to, but not
greater than 2‖A‖−1, near α

opt
E which minimizes the coefficient ηE of the Euclidean

contraction (6.8).

http://dx.doi.org/10.1007/978-1-4939-6834-3_6
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7.7 Comments and References

The MPGP algorithm presented in this section is a variant of the algorithms which
combine conjugate gradients with Euclidean projections. Such algorithms were
developed first for solving the bound constrained QP problems. See Sect. 8.7 for
more information.

It seems that the first algorithm of this type for separable QCQP problems was
presented byKučera [3], who found theway how to adapt theMPRGP algorithm ([4],
see the next chapter), originally proposed for the solution of bound constrained QP
problems, for solving more general problems. He proved the R-linear convergence
of his KPRGP algorithm for the step length α ∈ (0, ‖A‖−1]. Later he also proved the
R-linear convergence of projected gradients for the step length α ∈ (0, ‖A‖−1] [1].

The MPGP algorithm presented here appeared in Dostál and Kozubek [5]. The
estimate of the rate of convergence presented in Theorem7.2 is slightly better than
that in [1] and guarantees the R-linear convergence of the projected gradient for
α ∈ (0, 2‖A‖−1]. The proof uses the estimates due to Bouchala, Dostál, and
Vodstrčil [6, 7].

Here we provided the analysis of a monotonically decreasing algorithm with the
rate of convergence in bounds on the spectrum of A. However, we observed that
its performance can be sometime improved using some heuristic modifications, in
particular those using longer step length or unfeasible steps, such as the conjugate
gradient or Barzialai–Borwein step length for the solution of a related minimization
problem in free variables or the heuristics proposed in [8]. See also Sect. 6.6.

The performance of MPGP can also be improved by preconditioning. We
have postponed the description of preconditioning to Sect. 8.6 in order to exploit
the simplified setting of the bound constrained QP problem. The preconditioning
in face improves the solution of auxiliary unconstrained problems, while the pre-
conditioning by a conjugate projector improves the efficiency of all steps, including
the nonlinear ones. The effective preconditioners are problem dependent. The pre-
conditioners suitable for the solution of contact problems which comply with the
FETI methodology are in Chap.16. The preconditioning by the conjugate projector
(deflation) is described in Sect. 13.6 in the context of transient contact problems.
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Chapter 8
MPRGP for Bound-Constrained QP

We shall now be concernedwith a special case of separable problem (7.1), the bound-
constrained problem to find

min
x∈ΩB

f (x) (8.1)

with

ΩB = {x ∈ R
n : x ≥ �}, f (x) = 1

2
xTAx − xTb,

� and b given column n-vectors, andA an n×n SPDmatrix. To include the possibility
that not all components of x are constrained, we admit �i = −∞. The problem (8.1)
appears in the dual formulation of both static and dynamic contact problems without
friction.

There are two specific features of (8.1) that are not explicitly exploited by the
MPGP algorithm of Chap.7, namely the possibility to move arbitrarily in the direc-
tion opposite to the chopped gradient and a simple observation that knowing the
active constraints of the solution amounts to knowing the corresponding compo-
nents of the solution. Here, we present a modification of MPGP that is able to exploit
these features. The modified algorithm is a variant of the active set strategy that we
coined MPRGP (Modified Proportioning with Reduced Gradient Projections). The
algorithm uses the conjugate gradients to solve the auxiliary unconstrained prob-
lems with the precision controlled by the norm of the dominating component of the
projected gradient. The fixed steplength reduced gradient projections and the opti-
mal steplength chopped gradient steps are used to expand and reduce the active set,
respectively.

It turns out that MPRGP has not only the R-linear rate of convergence in terms
of the extreme eigenvalues of the Hessian matrix as MPGP of the previous chapter
but also the finite termination property, even in the case that the solution is dual
degenerate. We consider the finite termination property important, as it indicates
that the algorithm does not suffer from undesirable oscillations often attributed to
the active set-based algorithms and thus can better exploit the superconvergence
properties of the conjugate gradient method for linear problems.
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8.1 Specific Form of KKT Conditions

Let us introduce special notations that enable us to simplify the form of the projected
gradient (7.6) and of the KKT conditions which read

gP(x) = o. (8.2)

TheKKTconditions at x ∈ ΩB determine three subsets of the setN = {1, . . . , n}
of all indices. The set of all indices for which xi = �i is called an active set of x. We
denote it by A (x), so

A (x) = {i ∈ N : xi = �i }.

Its complement
F (x) = {i ∈ N : xi �= �i }

and subsets

B(x) = {i ∈ N : xi = �i and gi > 0}, B0(x) = {i ∈ N : xi = �i and gi ≥ 0}

are called a free set, a binding set, and a weakly binding set, respectively.
Using the subsets of N , we can decompose gP(x) into the free gradient ϕ and

the chopped gradient (Fig. 8.1) β that are defined by

ϕi (x) = gi (x) for i ∈ F (x), ϕi (x) = 0 for i ∈ A (x),
βi (x) = 0 for i ∈ F (x), βi (x) = g−

i (x) for i ∈ A (x),

where we have used the notation g−
i = min{gi , 0}. Thus

gP(x) = ϕ(x) + β(x).

ΩB

g

gP = −gP

g= gP =

−gP

g= gP
βββ

−gP
g

gP = o

Fig. 8.1 Gradient splitting

http://dx.doi.org/10.1007/978-1-4939-6834-3_7


8.2 MPRGP Algorithm 123

8.2 MPRGP Algorithm

Let us first recall that if the indices of the active constraints of the solution are known,
then the corresponding components are known. There is a simple result which shows
that if the norm of the chopped gradient is sufficiently larger than the norm of the free
gradient, then it is possible to recognize some indices of active constraints that do
not belong to the solution active set and use the components of the chopped gradient
to reduce the active set [1, Lemma 5.4]. Notice that the latter can be done much more
efficiently with bound constraints then with more general constraints, as any step in
the direction opposite to the chopped gradient is feasible.

MPRGP enhances these observations by replacing the gradient projection step
of MPGP which changes the active set by the free gradient projection with a fixed
steplength which expands the active set. The modified algorithm has been proved to
preserve the R-linear rate of convergence of the cost function and to enjoy the finite
termination property even for QP problems with dual degenerate solution.

The MPRGP algorithm exploits a user-defined constant Γ > 0, a test which is
used to decide when to leave the face, and three types of steps.

The conjugate gradient step, defined by

xk+1 = xk − αcgpk+1, (8.3)

is used in the same way as in the MPGP algorithm introduced in Sect. 7.3.
The active set is expanded by the expansion step defined by the free gradient

projection
xk+1 = PΩB

(
xk − αϕ(xk)

) = max{�, xk − αϕ(xk)} (8.4)

with a fixed steplength α. To describe it in the form suitable for analysis, let us recall
that, for any x ∈ ΩB and α > 0, the reduced free gradient ϕ̃α(x) is defined by the
entries

ϕ̃i = ϕ̃i (x, α) = min{(xi − �i )/α, ϕi }, i ∈ N = {1, . . . , n}, (8.5)

so that
PΩB

(
x − αϕ(x)

) = x − αϕ̃α(x). (8.6)

Using this notation, we can write also

PΩB

(
x − αg(x)

) = x − α
(
ϕ̃α(x) + β(x)

)
. (8.7)

If the steplength is equal to α and the inequality

||β(xk)||2 ≤ Γ 2ϕ̃α(xk)Tϕ(xk) (8.8)

holds, then we call the iterate xk strictly proportional. Test (8.8) is used to decide
which components of the projected gradient gP(xk) should be reduced in the next

http://dx.doi.org/10.1007/978-1-4939-6834-3_7
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step. Notice that the right-hand side of (8.8) blends the information about the free
gradient and its part that can be used in the gradient projection step.

It is possible to replace the free gradient by some other direction, e.g., g−. We
have made some experiments, but have not found much difference.

The proportioning step is defined by

xk+1 = xk − αcgβ(xk) (8.9)

with the steplength
αcg = arg min

α>0
f
(
xk − αβ(xk)

)
.

It has been shown in Sect. 5.1 that the CG steplength αcg that minimizes f (x−αd)

for a given d and x can be evaluated using the gradient g = g(x) = ∇ f (x) at x by

αcg = αcg(d) = dT g/dTAd. (8.10)

The purpose of the proportioning step is to remove the indices of the components of
the gradient g that violate the KKT conditions from the working set and to move far
from the bounds. Note that if xk ∈ ΩB , then

xk+1 = xk − αcgβ(xk) ∈ ΩB .

Now we are ready to define the algorithm in the form that is convenient for
analysis, postponing the discussion about implementation to the next section.

Algorithm8.1 Modified proportioningwith reduced gradient projections (MPRGP schema).

Given an SPD matrix A ∈ R
n×n and n-vectors b, �.

Choose x0 ∈ ΩB , α ∈ (
0, 2‖A‖−1

)
, and Γ > 0. Set k = 0.

For k ≥ 0 and xk known, choose xk+1 by the following rules:

(i) If gP (xk) = o, set xk+1 = xk .

(ii) If xk is strictly proportional and gP (xk) �= o, try to generate xk+1 by the conjugate gradient
step. If xk+1 ∈ ΩB , then accept it, else generate xk+1 by the expansion step.

(iii) If xk is not strictly proportional, define xk+1 by proportioning.

We call our algorithm modified proportioning to distinguish it from earlier algo-
rithms introduced independently byFriedlander andMartínezwith their collaborators
[2] and Dostál [3].

http://dx.doi.org/10.1007/978-1-4939-6834-3_5
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8.3 Rate of Convergence

The result on the rate of convergence of both the iterates generated by MPRGP and
the projected gradient reads as follows.

Theorem 8.1 Let {xk} be generated by Algorithm 8.1 with x0 ∈ ΩB, Γ > 0, and
α ∈ (0, 2‖A‖−1). Let x̂ and λmin denote a unique solution of (8.1) and the smallest
eigenvalue of A, respectively.

Then for any k ≥ 1

f (xk+1) − f (̂x) ≤ ηΓ

(
f (xk) − f (̂x)

)
, (8.11)

‖gP(xk+1)‖2 ≤ a1η
k
Γ

(
f (x0) − f (̂x)

)
, (8.12)

‖xk − x̂‖2A ≤ 2ηk
Γ

(
f (x0) − f (̂x)

)
, (8.13)

where

ηΓ = 1 − α̂λmin

ϑ + ϑΓ̂ 2
, Γ̂ = max{Γ, Γ −1}, (8.14)

ϑ = 2max{α‖A‖, 1} ≤ 4, α̂ = min{α, 2‖A‖−1 − α}, (8.15)

and

a1 = 1 + ηΓ

2α̂(1 − ηΓ )
. (8.16)

Proof The proof of (8.11) is technical andmay be found in Domorádová, Dostál, and
Sadowská [4] or Dostál [1]. The proof of (8.12) is a simplified version of the proof
of Theorem 7.3 based on estimate (8.11). Notice that Lemma 7.9 on three iterates
can be applied directly to xk−1, xk , and xk+1. �

Theorem 8.1 gives the best bound on the rate of convergence for Γ = Γ̂ = 1 in
agreementwith the heuristics thatwe should leave the facewhen the chopped gradient
dominates the violation of the Karush–Kuhn–Tucker conditions. The formula for the
best bound η

opt
Γ which corresponds to Γ = 1 and α = ‖A‖−1 reads

η
opt
Γ = 1 − κ(A)−1/4, (8.17)

where κ(A) denotes the spectral condition number of A.
The bound on the rate of convergence of the projected gradient given by (8.12)

is rather poor. The reason is that it has been obtained by the worst case analysis
of a general couple of consecutive iterations and does not reflect the structure of a
longer chain of the same type of iterations. Recall that Fig. 7.2 shows that no bound
on gP(xk) can be obtained by the analysis of a single iteration!

http://dx.doi.org/10.1007/978-1-4939-6834-3_7
http://dx.doi.org/10.1007/978-1-4939-6834-3_7
http://dx.doi.org/10.1007/978-1-4939-6834-3_7
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8.4 Identification Lemma and Finite Termination

Let us consider the conditions which guarantee that the MPRGP algorithm finds the
solution x̂ of (8.1) in a finite number of steps. Recall that such algorithm is more
likely to generate longer sequences of the conjugate gradient iterations. In this case
the reduction of the cost function values is bounded by the “global” estimate (5.15),
and finally switches to the conjugate gradient method, so that it can exploit its nice
self-acceleration property [5]. It is difficult to enhance these characteristics of the
algorithm into the rate of convergence as they cannot be obtained by the analysis of
just one step of the method.

We first examine the finite termination of Algorithm 8.1 in a simpler case when
the solution x̂ of (8.1) is not dual degenerate, i.e., the vector of Lagrange multipliers
λ̂ of the solution satisfies the strict complementarity condition λ̂i > 0 for i ∈ A (̂x).
The proof is based on simple geometrical observations and the arguments proposed
by Moré and Toraldo [6]. For example, it is easy to see that the free sets of the
iterates xk soon contain the free set of the solution x̂. The formal analysis of such
observations is a subject of the following identification lemma.

Lemma 8.1 Let {xk} be generated by Algorithm 8.1 with x0 ∈ ΩB, Γ > 0, and
α ∈ (0, 2‖A‖−1]. Then there is k0 such that for k ≥ k0

F (̂x) ⊆ F (xk), F (̂x) ⊆ F (xk − αϕ̃(xk)), and B(̂x) ⊆ B(xk), (8.18)

where ϕ̃(xk) = ϕ̃α(xk) is defined by (8.5).

Proof Since (8.18) is trivially satisfied when there is k = k0 such that xk = x̂, we
shall assume in what follows that xk �= x̂ for any k ≥ 0. Let us denote xki = [xk]i
and x̂i = [̂xk]i , i = 1, . . . , n.

Let us first assume that F (̂x) �= ∅ and B(̂x) �= ∅, so that we can define

ε = min{̂xi − �i : i ∈ F (̂x)} > 0 and δ = min{gi (̂x) : i ∈ B(̂x)} > 0.

Since {xk} converges to x̂ by Theorem 8.1, there is k0 such that for any k ≥ k0

gi (xk) ≤ ε

4α
for i ∈ F (̂x), (8.19)

xki ≥ �i + ε

2
for i ∈ F (̂x), (8.20)

xki ≤ �i + αδ

8
for i ∈ B(̂x), (8.21)

gi (xk) ≥ δ

2
for i ∈ B(̂x). (8.22)

In particular, for k ≥ k0, the first inclusion of (8.18) follows from (8.20), while the
second inclusion follows from (8.19) and (8.20), as for i ∈ F (̂x)

http://dx.doi.org/10.1007/978-1-4939-6834-3_5
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xki − αϕi (xk) = xki − αgi (xk) ≥ �i + ε

2
− αε

4α
> �i .

Let k ≥ k0 and observe that, by (8.21) and (8.22), for any i ∈ B(̂x)

xki − αgi (xk) ≤ �i + αδ

8
− αδ

2
< �i ,

so that if some xk+1 is generated by the expansion step (8.4), k ≥ k0, and i ∈ B(̂x),
then

xk+1
i = max{�i , xki − αgi (xk)} = �i .

It follows that if k ≥ k0 and xk+1 is generated by the expansion step, then
B(xk+1) ⊇ B(̂x). Moreover, using (8.22) and the definition of Algorithm 8.1, we
can directly verify that if B(xk) ⊇ B(̂x) and k ≥ k0, then also B(xk+1) ⊇ B(̂x).
Thus it remains to prove that there is s ≥ k0 such that xs is generated by the expansion
step.

Let us examine what can happen for k ≥ k0. First observe that we can never take
the full CG step in the direction pk = ϕ(xk). The reason is that

αcg(pk) = ϕ(xk)T g(xk)
ϕ(xk)TAϕ(xk)

= ‖ϕ(xk)‖2
ϕ(xk)TAϕ(xk)

≥ ‖A‖−1 ≥ α

2
,

so that for i ∈ F (xk) ∩ B(̂x), by (8.21) and (8.22),

xki − αcg p
k
i = xki − αcggi (xk) ≤ xki − α

2
gi (xk) ≤ �i + αδ

8
− αδ

4
< �i . (8.23)

It follows by the definition of Algorithm 8.1 that if xk, k ≥ k0, is generated by the
proportioning step, then the following trial conjugate gradient step is not feasible,
and xk+1 is necessarily generated by the expansion step.

To complete the proof, observe that Algorithm 8.1 can generate only a finite
sequence of consecutive conjugate gradient iterates. Indeed, if there is neither pro-
portioning step nor the expansion step for k ≥ k0, then it follows by the finite
termination property of the conjugate gradient method that there is l ≤ n such that
ϕ(xk0+l) = o. Thus either xk0+l = x̂ andB(xk) = B(̂x) for k ≥ k0 + l by rule (i), or
xk0+l is not strictly proportional, xk0+l+1 is generated by the proportioning step, and
xk0+l+2 is generated by the expansion step. This completes the proof, as the cases
F (̂x) = ∅ and B(̂x) = ∅ can be proved by the analysis of the above arguments. �
Proposition 8.1 Let {xk} be generated by Algorithm 8.1 with x0 ∈ ΩB, Γ > 0, and
α ∈ (

0, 2‖A‖−1
)
. Let the solution x̂ satisfy the condition of strict complementarity,

i.e., x̂i = �i implies gi (̂x) > 0. Then there is k ≥ 0 such that xk = x̂.

Proof If x̂ satisfies the condition of strict complementarity, then A (̂x) = B(̂x),
and, by Lemma 8.1, there is k0 ≥ 0 such that for k ≥ k0 we have F (xk) = F (̂x)
and B(xk) = B(̂x). Thus, for k ≥ k0, all xk that satisfy x̂ �= xk−1 are generated by
the conjugate gradient steps and, by the finite termination property of CG, there is
k ≤ k0 + n such that xk = x̂. �
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Unfortunately, the discretization of contact problems with a smooth contact inter-
face typically results in the QP problems with a dual degenerate or nearly dual
degenerate solution. The reason is that there can be the couples of points on the
boundary of contact interface that are in contact but do not press each other. The
solution of (8.1) which does not satisfy the strict complementarity condition is in
Fig. 8.2.

ΩB

x1
gP1

x2

gP2

x3
gP3 = o

x4

gP4

Fig. 8.2 Projected gradients near dual degenerate solution

A unique feature of MPRGP is that it preserves the finite termination property
even in this case provided the balancing parameter Γ is sufficiently large. The result
is a subject of the following theorem (see [1, Theorem 5.21]).

Theorem 8.2 Let {xk} denote the sequence generated by Algorithm 8.1 with

x0 ∈ ΩB, Γ ≥ 3
(√

κ(A) + 4
)

, and α ∈ (0, 2‖A‖−1]. (8.24)

Then there is k ≥ 0 such that xk = x̂.

Let us recall that the finite termination property of the MPRGP algorithm with a
dual degenerate solution and

α ∈ (0, ‖A‖−1]

has been proved for

Γ ≥ 2
(√

κ(A) + 1
)

.

For the details see Dostál and Schöberl [7].

8.5 Implementation of MPRGP

In this section, we describe Algorithm 8.1 in the form which is convenient for imple-
mentation. To improve the efficiency of expansion steps, we include the feasible
half-step introduced in Sect. 7.6.1, which is now associated with the expansion step.

http://dx.doi.org/10.1007/978-1-4939-6834-3_7
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Recall that it uses the trial conjugate gradient direction pk which is generated before
the expansion step is invoked. We propose to generate first

xk+
1
2 = xk − α f pk and gk+

1
2 = gk − α fApk,

where α f denotes the feasible steplength for pk defined by

α f = min
i=1,...,n

{(xki − �i )/p
k
i , pki > 0},

and then define
xk+1 = PΩS

(
xk+

1
2 − αϕ(xk+

1
2 )

)
.

To preserve readability, we do not distinguish the generations of auxiliary vectors.
The MPRGP algorithm with the feasible step reads as follows.

Algorithm 8.2 Modified proportioning with reduced gradient projections (MPRGP).

Given a symmetric positive definite matrix A of the order n, n-vectors b, �,
ΩB = {x : x ≥ �}, x0 ∈ ΩB .
Step 0. {Initialization.}

Choose Γ > 0, α ∈ (
0, 2‖A‖−1

)
, set k = 0, g = Ax0 − b, p = ϕ(x0)

while ‖gP (xk)‖ is not small
if ‖β(xk)‖2 ≤ Γ 2ϕ̃(xk)Tϕ(xk)

Step 1. {Proportional xk . Trial conjugate gradient step.}
αcg = gT p/pTAp, y = xk − αcgp
α f = max{α : xk − αp ∈ ΩB} = min{(xki − �i )/pi : pi > 0}
if αcg ≤ α f

Step 2. {Conjugate gradient step.}
xk+1 = y, g = g − αcgAp,

β = ϕ(y)TAp/pTAp, p = ϕ(y) − βp
else

Step 3. {Expansion step.}

xk+ 1
2 = xk − α f p, g = g − α f Ap

xk+1 = PΩB (xk+ 1
2 − αϕ(xk+ 1

2 ))

g = Axk+1 − b, p = ϕ(xk+1)

end if
else

Step 4. {Proportioning step.}
d = β(xk), αcg = gT d/dTAd
xk+1 = xk − αcgd, g = g − αcgAd, p = ϕ(xk+1)

end if
k = k + 1

end while
Step 5. {Return (possibly inexact) solution.}

x̃ = xk

For the choice of parameters, see Sect. 7.6.2.

http://dx.doi.org/10.1007/978-1-4939-6834-3_7
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8.6 Preconditioning

The performance of the CG-based methods can be improved by preconditioning
described in Sect. 5.4. However, the application of preconditioning requires some
care, as the preconditioning transforms variables, turning the bound constraints into
more general inequality constraints. In this section, we present a basic strategy for
the preconditioning of auxiliary linear problems.

Probably, the most straightforward preconditioning strategy which preserves the
bound constraints is the preconditioning applied to the diagonal block AFF of the
Hessian matrix A in the conjugate gradient loop which minimizes the cost function
f in the face defined by a free setF . Such preconditioning requires that we are able
to define for each diagonal block AFF a regular matrix M(F ) which satisfies the
following two conditions. First, we require that M(F ) approximates AFF so that
the convergence of the conjugate gradients method is significantly accelerated. The
second condition requires that the solution of the system

M(F )x = y

can be obtained easily. The preconditionersM(F ) can be generated, e.g., by any of
the methods described in Sect. 5.4.

Though the performance of the algorithm can be considerably improved by the
preconditioning, the preconditioning in face does not result in the improved bound
on the rate of convergence. The reason is that such preconditioning affects only
the feasible conjugate gradient steps, leaving the expansion and proportioning steps
without any preconditioning.

In probably the first application of preconditioning to the solution of bound-
constrained problems [8],O’Leary considered two simplemethodswhich can be used
to obtain the preconditioner forAFF from the preconditionerMwhich approximates
A, namely,

M(F ) = MFF and M(F ) = LFFLT
FF ,

where L denotes the factor of the Cholesky factorizationM = LLT . It can be proved
that whichever method of the preconditioning is used, the convergence bound for the
conjugate gradient algorithm applied to the subproblems is at least as good as that
of the conjugate gradient method applied to the original matrix [8].

To describe theMPRGP algorithm with the preconditioning in face, let us assume
that we are given the preconditioner M(F ) for each set of indices F , and let us
denote Fk = F (xk) and Ak = A (xk) for each vector xk ∈ ΩB . To simplify the
description of the algorithm, let Mk denote the preconditioner corresponding to the
face defined by Fk padded with zeros so that

[
Mk

]
FF

= M(Fk),
[
Mk

]
AA

= O,
[
Mk

]
AF

= [
Mk

]T
FA

= O,

http://dx.doi.org/10.1007/978-1-4939-6834-3_5
http://dx.doi.org/10.1007/978-1-4939-6834-3_5
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and recall that M†
k denotes the Moore–Penrose inverse of Mk defined by

[M†
k]FF = M(Fk)

−1, [M†
k]AA = O, [M†

k]AF = [M†
k]TFA = O.

In particular, it follows that

M†
kg(x

k) = M†
kϕ(xk).

The MPRGP algorithm with preconditioning in face reads as follows.

Algorithm 8.3 MPRGP with preconditioning in face.

Given a symmetric positive definite matrix A of the order n, n-vectors b, �,
ΩB = {x ∈ R

n : x ≥ �}; choose x0 ∈ ΩB , Γ > 0, α ∈ (0, 2‖A‖−1], and the rule which
assigns to each xk ∈ ΩB the preconditioner Mk which is SPD in the face defined by F (xk).
Step 0. {Initialization.}

Set k = 0, g = Ax0 − b, z = M†
0 g, p = z

while ‖gP (xk)‖ is not small
if ‖β(xk)‖2 ≤ Γ 2ϕ̃(xk)Tϕ(xk)

Step 1. {Proportional xk . Trial conjugate gradient step.}
αcg = zT g/pTAp, y = xk − αcgp
α f = max{α : xk − αp ∈ ΩB} = min{(xki − �i )/pi : pi > 0}
if αcg ≤ α f

Step 2. {Conjugate gradient step.}
xk+1 = y, g = g − αcgAp, z = M†

k g
β = zTAp/pTAp, p = z − βp

else
Step 3. {Expansion step.}

xk+ 1
2 = xk − α f p, g = g − α f Ap

xk+1 = PΩB

(
xk+ 1

2 − αϕ(xk+ 1
2 )

)

g = Axk+1 − b, z = M†
k+1 g, p = z

end if
else

Step 4. {Proportioning step.}
d = β(xk), αcg = gT d/dTAd
xk+1 = xk − αcgd, g = g − αcgAd, z = M†

k+1g, p = z
end if
k = k + 1

end while
Step 5. {Return (possibly inexact) solution.}

x̃ = xk



132 8 MPRGP for Bound-Constrained QP

8.7 Comments and References

Since the conjugate gradient method was introduced in the celebrated paper by
Hestenes and Stiefel [9] as a method for the solution of systems of linear equa-
tions, it seems that Polyak [10] was the first researcher who proposed to use the
conjugate gradient method to minimize a quadratic cost function subject to bound
constraints. Though Polyak assumed the auxiliary problems to be solved exactly,
O’Leary [8] observed that this assumption can be replaced by refining the accuracy
in the process of solution. In this way, she managed to reduce the number of iter-
ations to about a half as compared with the algorithm using the exact solution. In
spite of this, the convergence of these algorithms was supported by the arguments
which gave only exponential bound on the number of matrix–vector multiplications
that are necessary to reach the solution.

An important step forward was the development of algorithms with a rigorous
convergence theory. On the basis of the results of Calamai and Moré [11], Moré and
Toraldo [6] proposed an algorithm that also exploits the conjugate gradients and pro-
jections, but its convergence is driven by the gradient projections with the steplength
satisfying the sufficient decrease condition (see, e.g., Nocedal andWright [12]). The
steplength is found, as in earlier algorithms, by possibly expensive backtracking.
In spite of the iterative basis of their algorithm, the authors proved that their algo-
rithm preserves the finite termination property of the original algorithm provided the
solution satisfies the strict complementarity condition.

Friedlander, Martínez, Dostál, and their collaborators combined this result with
an inexact solution of auxiliary problems [2, 3, 13, 14]. The concept of proportioning
algorithm as presented here was introduced by Dostál in [3]. The convergence of the
proportioning algorithmwas driven by the proportioning step, leavingmore room for
the heuristic implementation of projections as compared with Moré and Toraldo [6].
The heuristics for implementation of the proportioning algorithm of Dostál [3] can
be applied also to the MPRGP algorithm of Sect. 8.2. Comprehensive experiments
and tests of heuristics can be found in Diniz-Ehrhardt, Gomes-Ruggiero, and Santos
[15].

A common drawback of all above-mentioned strategies is possible backtracking
in search of the gradient projection steplength and the lack of results on the rate of
convergence. A key to further progress were the results by Schöberl [16, 17] and
Dostál [18] on the decrease of the cost function along the projected-gradient path.
(see also Sect. 6.6). It was observed by Dostál [19] that these results can be plugged
into the proportioning algorithm in a way which preserves the rate of convergence.
In our exposition of the MPRGP algorithm, we follow Dostál and Schöberl [7] and
Dostál, Domorádová, and Sadowská [4]. See also the book [1].

The preconditioning in face was probably first considered by O’Leary [8]. The
MPRGPwith projector preconditioning is a key ingredient of the scalable algorithms
for transient contact problems [20]. See also Chap.13.

http://dx.doi.org/10.1007/978-1-4939-6834-3_6
http://dx.doi.org/10.1007/978-1-4939-6834-3_13
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Chapter 9
Solvers for Separable and Equality
QP/QCQP Problems

We shall now use the results of our previous investigations to develop efficient
algorithms for the minimization of strictly convex quadratic functions subject to
possibly nonlinear convex separable inequality constraints and linear equality con-
straints

min
x∈ΩSE

f (x), f (x) = 1

2
xTAx − xTb, (9.1)

where

ΩSE = {x ∈ R
n : Bx = o and x ∈ ΩS}, ΩS = {x ∈ R

n : hi (xi ) ≤ 0, i = 1, . . . , s},

b ∈ R
n , hi are convex functions, A is an n × n SPD matrix, and B ∈ R

m×n . We
are especially interested in the problems with bound and/or spherical and/or elliptic
inequality constraints. We consider similar assumptions as in previous chapters.
In particular, we assume ΩSE �= ∅ and admit dependent rows of B. We assume
that B �= O is not a full column rank matrix, so that KerB �= {o}. Moreover, we
assume that the constraints satisfy the Abadie constraint qualification introduced in
Sect. 3.5.3, so that the solution can be characterized by the tangent cone, though
we shall give some convergence results without this assumption. Observe that more
general QP or QCQP programming problems can be reduced to (9.1) by duality,
a suitable shift of variables, or by a modification of f .

The main idea of the algorithms that we develop here is to treat both of the sets of
constraints separately. This approach enables us to use the ingredients of the algo-
rithms developed in the previous chapters, such as the precision control of auxiliary
problems. We restrict our attention to the SMALSE-M algorithm (Semi-Monotonic
Augmented Lagrangian Algorithm for Separable and Equality constraints), which
will be proved to have important optimality properties. We shall discuss separately
the variant of SMALSE-M called SMALBE-M for the solution of QP problems with
bound and equality constraints. The SMALSE-M and SMALBE-M algorithms are
the key tools for the solution of contact problems with and without friction.

© Springer Science+Business Media LLC 2016
Z. Dostál et al., Scalable Algorithms for Contact Problems, Advances
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9.1 KKT Conditions

SinceΩSE is closed and convex and f is assumed to be strictly convex, the solution of
problem (9.1) exists and is necessarily unique by Proposition3.4. The conditions that
are satisfied by the solution of (9.1) can be formulated by means of the augmented
Lagrangian

L(x,λE ,μ, ρ) = 1

2
xTAx − xTb + xTBTλE + ρ

2
‖Bx‖2 +

s∑

i=1

μi hi (xi ),

the gradient of which reads

∇xL(x,λE ,μ, ρ) = (A + ρBTB)x − b + BTλE +
s∑

i=1

μi∇hi (xi ).

Using (3.47) and the Abadie constraint qualification, we get that a feasible vector
x ∈ ΩSE is a solution of (9.1) if and only if there are λE ∈ R

m and μ1, . . . , μs such
that

∇xL(x,λE ,μ, ρ) = o, μi ≥ 0, and μi hi (xi ) = 0, i = 1, . . . , s. (9.2)

Having effective algorithms for the solution of QCQP problems with separable
constraints, it is convenient to use explicitly the Lagrange multipliers only for the
equality constraints, i.e., to use

L(x,λE , ρ) = 1

2
xTAx − xTb + xTBTλE + ρ

2
‖Bx‖2.

Denoting by g = g(x,λE , ρ) the gradient of the reduced augmented Lagrangian, so
that

g = g(x,λE , ρ) = (A + ρBTB)x − b + BTλE ,

we get that x ∈ ΩSE is a solution of (9.1) if and only if there is λE ∈ R
m such that

gP(x,λE , ρ) = o, (9.3)

where gP is the projected gradient defined in Sect. 7.1 for the auxiliary problem

min
x∈ΩS

L(x,λE , ρ), ΩS = {x ∈ R
n : h(x) ≤ o}. (9.4)

However, condition (9.3) is sensitive to the curvature of the boundary, so we shall
consider also an alternative condition (see Theorem7.3)

http://dx.doi.org/10.1007/978-1-4939-6834-3_3
http://dx.doi.org/10.1007/978-1-4939-6834-3_3
http://dx.doi.org/10.1007/978-1-4939-6834-3_7
http://dx.doi.org/10.1007/978-1-4939-6834-3_7
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g̃P
α (x,λE , ρ) = o (9.5)

with the reduced projected gradient g̃P
α (x,λE , ρ) of Sect. 7.2 and α ∈ (0, 2‖A‖−1).

9.2 Penalty and Method of Multipliers

Probably the most simple way how to exploit the algorithms of the previous chapters
to the solution of (9.1) is to enhance the equality constraints into the objective function
f by adding a suitable termwhich penalizes their violation. Thus the solution of (9.1)
can be approximated by the solution of

min
x∈ΩS

fρ(x), fρ(x) = f (x) + ρ

2
‖Bx‖2. (9.6)

Intuitively, if the penalty parameter ρ is large, then the solution x̂ρ of (9.6) can
hardly be far from the solution of (9.1). Indeed, if ρ were infinite, then the minimizer
of fρ would solve (9.1). Thus it is natural to expect that if ρ is sufficiently large,
then the penalty approximation x̂ρ is a suitable approximation to the solution x̂ of
(9.1). The effect of the penalty term is illustrated in Fig. 9.1. Notice that the penalty
approximation is typically near the feasible set, but does not belong to it. That is why
the penalty method is also called the exterior penalty method.

xρ

x

f (x) = c

fρ(x) = c

ΩE

ΩS

Fig. 9.1 The effect of the quadratic penalty

Because of its simplicity and intuitive appeal, the penalty method is often used
in computations. However, a good approximation of the solution may require a very
large penalty parameter, which can complicate computer implementation.

The remedy can be based on the observation that the solution x̂ to (9.1) solves
also

min
x∈ΩS

L(x,λE , ρ) (9.7)

with a suitable λE ∈ R
m . The point is that having a solution xρ of the penalized

problem (9.7) with ρ and λE ∈ R
m , we can modify the linear term of L in such a

http://dx.doi.org/10.1007/978-1-4939-6834-3_7
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way that the minimum of the modified cost function without the penalization term
with respect to x ∈ ΩS is achieved again at xρ . The formula follows from

min
x∈ΩS

L(x,λE , ρ) = min
x∈ΩS

L(x,λE + ρBxρ, 0).

Then we can find a better approximation by adding the penalization term to the
modified cost function, and look for the minimizer of L(x,λ + ρBxρ, ρ). The result
is the well-known classical augmented Lagrangian algorithm, also called themethod
of multipliers, which was proposed for general equality constraints by Hestenes [1]
and Powell [2]. See also Bertsekas [3] or Glowinski and Le Tallec [4].

9.3 SMALSE-M

The following algorithm is amodification of the algorithm proposed byConn, Gould,
and Toint [5] for the minimization of more general cost functions subject to bound
and equality constraints in their LANCELOT package. The SMALSE-M algorithm
presented here differs from that used inLANCELOTby the adaptive precision control
introduced by Hager [6] and Dostál, Friedlander, and Santos [7], by using a fixed
regularization parameter, and by the control of the parameter Mk . Since we use only
the multipliers for the equality constraints, we denote them by λ, i.e., λ = λE . The
complete SMALSE-M algorithm reads as follows.

Algorithm 9.1 Semimonotonic augmented Lagrangians for separable and equality con-
strained QCQP problems (SMALSE-M).

Given an SPD matrix A ∈ R
n×n, B ∈ R

m×n, n-vector b, constraints h.
Step 0. {Initialization.}

Choose η > 0, 0 < β < 1, M−1 = 0, M0 > 0, ρ > 0, λ0 ∈ R
m

for k = 0, 1, 2, . . .
Step 1. {Inner iteration with adaptive precision control.}

Find xk ∈ ΩS such that

‖gP (xk ,λk , ρ)‖ ≤ min{Mk‖Bxk‖, η} (9.8)

Step 2. {Updating the Lagrange multipliers.}

λk+1 = λk + ρBxk (9.9)

Step 3. {Update M provided the increase of the Lagrangian is not sufficient.}
if Mk = Mk−1 and

L(xk ,λk , ρ) < L(xk−1,λk−1, ρ) + ρ

2
‖Bxk‖2 (9.10)

Mk+1 = βMk
else

Mk+1 = Mk
end else if

end for
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In Step 1 we can use any algorithm for minimizing strictly convex quadratic
functions subject to separable constraints provided it guarantees the convergence of
projected gradients to zero. Our optimality theory requires that the algorithm in the
inner loop has the rate of convergence in terms of bounds on the spectrum of A,
such as the MPGP Algorithm7.2 or MPRGP Algorithm8.2. A stopping criterion
should either follow Step 1 or be enhanced in Step 1. A natural choice is the relative
precision

‖gP‖ ≤ εg‖b‖ and εe‖b‖ (9.11)

prescribed by small parameters εg > 0 and εe > 0.
The SMALSE algorithm requires four parameters M0, β, η, ρ. The algorithm

is not very sensitive to the choice of β and η and adjusts properly the balancing
parameter M . A larger value of ρ increases the rate of convergence of SMALSE at
the cost of slowing down the rate of convergence of the algorithm in the inner loop.
Some hints concerning the initialization of the parameters and the implementation
of SMALSE-M can be found in Sect. 9.14.

The next lemma shows that Algorithm9.1 is well defined, i.e., any algorithm
for the solution of auxiliary problems in Step 1 that guarantees the convergence of
projected gradients to zero generates either xk which satisfies (9.5) in a finite number
of steps or the iterates which converge to the solution of (9.1).

Lemma 9.1 Let M > 0, λ ∈ R
m, η > 0, and ρ ≥ 0 be given. Let {yk} ∈ ΩS denote

any sequence such that

ŷ = lim
k→∞ yk = arg min

y∈ΩS

L(y,λ, ρ)

and let gP(yk,λ, ρ) converges to zero vector. Then {yk} either converges to the
unique solution x̂ of problem (9.1), or there is an index k such that

‖gP(yk,λ, ρ)‖ ≤ min{M‖Byk‖, η}. (9.12)

Proof If (9.12) does not hold for any k, then

‖gP(yk,λ, ρ)‖ > M‖Byk‖

for any k. Since gP(yk,λ, ρ) converges to zero vector by the assumption, it follows
that ‖Byk‖ converges to zero. Thus B̂y = o and

gP (̂y,λ, ρ) = o.

It follows that ŷ satisfies the KKT conditions (9.2) and ŷ = x̂. �
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Remark 9.1 In Step 3, we can replace the update rule to

Mk+1 = βMk or ρ = ρ/β.

We do not elaborate this option here.

9.4 Inequalities Involving the Augmented Lagrangian

In this section we establish basic inequalities which relate the bound on the norm of
the projected gradient gP of the augmented Lagrangian L to the values of L . These
inequalities will be the key ingredients in the proof of convergence and other analysis
concerning Algorithm9.1.

Lemma 9.2 Let x, y ∈ ΩS, λ ∈ R
m, ρ > 0, η > 0, and M > 0. Let λmin denote

the least eigenvalue of A and λ̃ = λ + ρBx.
(i) If

‖gP(x,λ, ρ)‖ ≤ M‖Bx‖, (9.13)

then

L(y, λ̃, ρ) ≥ L(x,λ, ρ) + 1

2

(
ρ − M2

λmin

)
‖Bx‖2 + ρ

2
‖By‖2. (9.14)

(ii) If
‖gP(x,λ, ρ)‖ ≤ η, (9.15)

then

L(y, λ̃, ρ) ≥ L(x,λ, ρ) + ρ

2
‖Bx‖2 + ρ

2
‖By‖2 − η2

2λmin
. (9.16)

(iii) If z0 ∈ ΩSE and (9.15), then

L(x,λ, ρ) ≤ f (z0) + η2

2λmin
. (9.17)

Proof Let us denote δ = y − x and Aρ = A + ρBTB and recall that by the assump-
tions and Lemma7.1

gT (y − x) ≥ (gP)T (y − x).

Using

L(x, λ̃, ρ) = L(x,λ, ρ) + ρ‖Bx‖2 and g(x, λ̃, ρ) = g(x,λ, ρ) + ρBTBx,

http://dx.doi.org/10.1007/978-1-4939-6834-3_7
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we get

L(y, λ̃, ρ) = L(x, λ̃, ρ) + δT g(x, λ̃, ρ) + 1

2
δTAρδ

= L(x,λ, ρ) + δT g(x,λ, ρ) + 1

2
δTAρδ + ρδTBTBx + ρ‖Bx‖2

≥ L(x,λ, ρ) + δT gP(x,λ, ρ) + 1

2
δTAρδ + ρδTBTBx + ρ‖Bx‖2

≥ L(x,λ, ρ) + δT gP(x,λ, ρ) + λmin

2
‖δ‖2 + ρ

2
‖Bδ‖2 + ρδTBTBx

+ ρ‖Bx‖2.

Noticing that

ρ

2
‖By‖2 = ρ

2
‖B(δ + x)‖2 = ρδTBTBx + ρ

2
‖Bδ‖2 + ρ

2
‖Bx‖2,

we get
L(y, λ̃, ρ) ≥L(x,λ, ρ) + δT gP(x,λ, ρ)

+ λmin

2
‖δ‖2 + ρ

2
‖Bx‖2 + ρ

2
‖By‖2. (9.18)

Using (9.13) and simple manipulations then yields

L(y, λ̃, ρ) ≥ L(x,λ, ρ) − M‖δ‖‖Bx‖ + λmin

2
‖δ‖2 + ρ

2
‖Bx‖2 + ρ

2
‖By‖2

= L(x,λ, ρ) +
(

λmin

2
‖δ‖2 − M‖δ‖‖Bx‖ + M2‖Bx‖2

2λmin

)

−M2‖Bx‖2
2λmin

+ ρ

2
‖Bx‖2 + ρ

2
‖By‖2

≥ L(x,λ, ρ) + 1

2

(
ρ − M2

λmin

)
‖Bx‖2 + ρ

2
‖By‖2.

This proves (i).
(ii) If we assume that (9.15) holds, then by (9.18)

L(y, λ̃, ρ) ≥ L(x,λ, ρ) − ‖δ‖η + λmin

2
‖δ‖2 + ρ

2
‖Bx‖2 + ρ

2
‖By‖2

≥ L(x,λ, ρ) + ρ

2
‖Bx‖2 + ρ

2
‖By‖2 − η2

2λmin
.

This proves (ii).
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(iii) Let ẑ denote the solution of the auxiliary problem

minimize L(z,λ, ρ) s.t. z ≥ 	, (9.19)

let z0 ∈ ΩSE so that Bz0 = o, and let δ̂ = ẑ − x. If (9.15) holds, then

0 ≥ L (̂z,λ, ρ) − L(x,λ, ρ) = δ̂
T
g(x,λ, ρ) + 1

2
δ̂
T
Aρ δ̂

≥ δ̂
T
gP(x,λ, ρ) + 1

2
δ̂
T
Aρ δ̂ ≥ −‖̂δ‖η + 1

2
λmin‖̂δ‖2 ≥ − η2

2λmin
.

Since L( ẑ,λ, ρ) ≤ L(z0,λ, ρ) = f (z0), we conclude that

L(x,λ, ρ) ≤ L(x,λ, ρ) − L (̂z,λ, ρ) + f (z0) ≤ f (z0) + η2

2λmin
. �

9.5 Monotonicity and Feasibility

Nowwe shall translate the results on the relations that are satisfied by the augmented
Lagrangian into the relations concerning the iterates generated by SMALSE-M.

Lemma 9.3 Let {xk}, {λk}, and Mk be generated by Algorithm9.1 for solving (9.1)
with η > 0, 0 < β < 1, M0 > 0, ρ, and λ0 ∈ R

m. Let λmin denote the least eigen-
value of the Hessian A of the quadratic function f .

(i) If k > 0, Mk = Mk+1, and
Mk ≤ √

λminρ, (9.20)

then
L(xk+1,λk+1, ρ) ≥ L(xk,λk, ρ) + ρ

2
‖Bxk+1‖2. (9.21)

(ii) For any k ≥ 0

L(xk+1,λk+1, ρ) ≥ L(xk,λk, ρ) + ρ

2
‖Bxk‖2

+ ρ

2
‖Bxk+1‖2 − η2

2λmin
.

(9.22)

(iii) For any k ≥ 0 and z0 ∈ ΩSE

L(xk,λk, ρ) ≤ f (z0) + η2

2λmin
. (9.23)
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Proof In Lemma 9.2, let us substitute x = xk , λ = λk , M = Mk , and y = xk+1,
so that inequalities (9.13) and (9.15) hold by (9.8) and λ̃ = λk+1. Thus we get
Lemma 9.3 from Lemma 9.2.

If (9.20) holds, we can use (9.14) to get (9.21). Similarly, inequalities (9.22)
and (9.23) can be obtained by the substitution into Lemma 9.2 (ii) and (iii), respec-
tively. �
Theorem 9.1 Let {xk}, {λk}, and {Mk} be generated by Algorithm9.1 for the solu-
tion of (9.1) with η > 0, 0 < β < 1, M0 > 0, ρ > 0, and λ0 ∈ R

m. Let λmin denote
the least eigenvalue of the Hessian A of the cost function f , and let p ≥ 0 denote
the smallest integer such thatρ ≥ (β pM0)

2/λmin. Then the following statements hold.

(i) There is k0 such that

min{M0, β
√

ρλmin} ≤ Mk0 = Mk0+1 = Mk0+2 = · · · (9.24)

(ii) If z0 ∈ ΩSE , then

ρ

2

∞∑

k=1

‖Bxk‖2 ≤ f (z0) − L(x0,λ0, ρ) + (1 + p)
η2

2λmin
. (9.25)

(iii)
lim
k→0

gP(xk,λk, ρ) = o and lim
k→0

Bxk = o. (9.26)

Proof Let p ≥ 0 denote the smallest integer such that ρ ≥ (β pM0)
2/λmin and let

I ⊆ {1, 2, . . . } denote a possibly empty set of the indices ki such that Mki < Mki−1.
Using Lemma9.3(i), Mki = βMki−1 = β i M0 for ki ∈ I , and ρ ≥ (β pM0)

2/λmin,
we conclude that there is no k such that Mk < β pM0. ThusI has at most p elements
and (9.24) holds. By the definition of Step 3, if k > 0, then either k /∈ I and

ρ

2
‖Bxk‖2 ≤ L(xk,λk, ρ) − L(xk−1,λk−1, ρ),

or k ∈ I and by (9.22)

ρ

2
‖Bxk‖2 ≤ ρ

2
‖Bxk−1‖2 + ρ

2
‖Bxk‖2

≤ L(xk,λk, ρ) − L(xk−1,λk−1, ρ) + η2

2λmin
.

Summing up the appropriate cases of the last two inequalities for k = 1, . . . , j and
taking into account that I has at most p elements, we get

j∑

k=1

ρ

2
‖Bxk‖2 ≤ L(x j ,λ j , ρ) − L(x0,λ0, ρ) + p

η2

2λmin
. (9.27)
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To get (9.25), it is enough to replace L(x j ,λ j , ρ) by the upper bound (9.23). The
relations (9.26) are easy corollaries of (9.25) and the definition of Step 1. �

9.6 Boundedness

The first step toward the proof of convergence of SMALSE-M is to show that xk are
bounded.

Proposition 9.1 Let {xk} and {λk} be generated by Algorithm9.1 for the solu-
tion of (9.1) with η > 0, 0 < β < 1, M0 > 0, ρ > 0, and λ0 ∈ R

m. For each
i ∈ {1, . . . , s}, let Ii denote the indices of the components of x associated with
the argument of the constraint function hi , so that xi = [x]Ji , and let us define

Ã (x) = ∪i∈A (x)Ii , F̃ (x) = N \ Ã (x), xF = xF̃ (x), xA = xÃ (x).

Let the boundary of ΩS is bounded, i.e., there is C > 0 such that for any x ∈ ΩS

‖xA (x)‖2 ≤ C.

Then {xk} is bounded.
Proof Since there is only a finite number of different subsets F of the set of all
indicesN = {1, . . . , n} and {xk} is bounded if and only if {xkF } is bounded for any
F ⊆ N , we can restrict our attention to the analysis of the infinite subsequences
{xkF : F̃ (xk) = F } that are defined by the nonempty subsets F ofN .

Let F ⊆ N , F �= ∅, let K = {k : F̃ (xk) = F } be infinite, and denote

A = N \ F , H = A + ρkBTB.

We get
gk = g(xk,λk, ρ) = Hxk + BTλk − b

and [
HFF BT

∗F
B∗F O

] [
xkF
λk

]
=

[
gkF + bF − HF AxkA

B∗FxkF

]
. (9.28)

Since for k ∈ K

B∗FxkF = Bxk − B∗A xA , ‖gkF‖ = ‖gF (xk,λk, ρk)‖ ≤ ‖gP(xkλk, ρk)‖,

and both ‖gP(xk,λk, ρ)‖ and ‖Bxk‖ converge to zero by the definition of xk in Step 1
of Algorithm9.1 and (9.25), the right-hand side of (9.28) is bounded. Since HF F is
nonsingular, it is easy to check that the matrix of the system (9.28) is nonsingular
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when B∗F is a full row rank matrix. It simply follows that both {xk} and {λk} are
bounded provided the matrix of (9.28) is nonsingular.

If B∗F is not a full row rank matrix, then its rank r satisfies r < m, and by the
RSVD formula (2.28) there are matrices

U ∈ R
m×r , V ∈ R

n×r , Σ = diag(σ1, . . . , σr ), σi > 0, UTU = I, VTV = I,

such that B∗F = UΣVT . Thus we can define the full row rank matrix B̂∗F = ΣVT

that satisfies

‖B̂∗FxF‖ = ‖ΣVT xF‖ = ‖UΣVT xF‖ = ‖B∗FxF‖

for any vector x. Let us assign to any λ ∈ R
m the vector λ̂ = UTλ, so that

B̂T
∗F λ̂ = VΣUTλ = BT

∗Fλ.

Using the latter identity and (9.28), we get the system

[
HF F B̂T

∗F
B̂∗F O

] [
xkF
λ̂
k

]

=
[
gkF + bF − HF AxA

B̂∗FxkF

]
(9.29)

with a nonsingular matrix. The right-hand side of (9.29) being bounded due to
‖B̂∗FxkF‖ = ‖B∗FxkF‖, we conclude that the set {xkF : F (xk) = F } is bounded.
See also Dostál and Kučera [8] or Dostál and Kozubek [9]. �

9.7 Convergence

Now we are ready to prove the main convergence results of this chapter. To describe
them effectively, let F = F̃ (̂x) denote the set of indices of the variables that are
involved in the free set of a unique solution x̂ (see Proposition9.1 for formal definition
of F̃ (̂x)), and let us call the solution x̂ regular if B∗F is a full row rank matrix, and
range regular if ImB = ImB∗F . It is easy to check that the regular or range regular
solution of (9.1) satisfies the Abadie constraint qualification.

Theorem 9.2 Let {xk}, {λk} be generated by Algorithm9.1 for the solution of (9.1)
with η > 0, β > 1, M > 0, ρ > 0, and λ0 ∈ R

m. Then the following statements hold.
(i) The sequence {xk} converges to the solution x̂ of (9.1).
(ii) If the solution x̂ of (9.1) is regular, then {λk} converges to a uniquely determined
vector λ̂E of Lagrange multipliers for the equality constraints of (9.1).
(iii) If the solution x̂ of (9.1) is range regular, then {λk} converges to

λ = λLS + (I − P)λ0,

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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whereP is the orthogonal projector onto ImB = ImB∗F and λLS is the least square
Lagrange multiplier for the equality constraints of the solution of (9.1).

Proof (i) Since the iterates xk are bounded due to Lemma 9.1, it follows that there
is a cluster point x of {xk} and K ⊆ N such that

lim
k→∞ {xk}k∈K = x.

Moreover, since xk ∈ ΩS and by (9.26)

lim
k→∞ ‖Bxk‖ = 0,

it follows that Bx = o, x ∈ ΩSE , and f (x) ≥ f (̂x).
To show that x solves (9.1), let us denote

d = x̂ − x, αk = max{α ∈ [0, 1] : xk + αd ∈ ΩS}, dk = αkd,

so that
Bd = Bdk = o, lim

k→∞dk = d, lim
k→∞ xk + dk = x̂,

and
L(xk + d,λk, ρ) − L(xk,λk, ρ) = f (xk + d) − f (xk).

Moreover, if we denote
x̂k = arg min

x∈ΩS

L(x,λk, ρ),

then by Lemma7.2 and the definition of xk in Step 1 of SMALSE-M

0 ≤ L(xk,λk, ρ) − L(x̂k,λk, ρ) ≤ 1

2λmin
‖gP(xk,λk, ρ)‖2 ≤ M2

0

2λmin
‖Bxk‖2.

Using the above relations, we get

0 ≤ L(xk + dk,λk, ρ) − L(x̂k,λk, ρ)

= L(xk + dk,λk, ρ) − L(xk,λk, ρ) + L(xk,λk, ρ) − L(x̂k,λk, ρ)

≤ f (xk + dk) − f (xk) + M2
0

2λmin
‖Bxk‖2.

The continuity of f implies

0 ≤ lim
k→∞

(
f (xk + dk) − f (xk) + M2

0

2λmin
‖Bxk‖2

)
= f (̂x) − f (x).

http://dx.doi.org/10.1007/978-1-4939-6834-3_7
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It follows that x solves (9.1). The solution x̂ of (9.1) being unique, it follows that xk

converges to x = x̂.
(ii) Let us denoteF = F̃ (̂x) and H = A + ρBTB, so by the assumptions there is a
unique Lagrange multiplier λ̂ such that

[H x̂ − b + BT λ̂]F = o. (9.30)

Since we have just proved that {xk} converges to x̂, there is k1 such thatF ⊆ F {xk}
for k ≥ k1 and

gF (xk,λk, ρ) = HF∗xk − bF + BT
∗Fλk

converges to zero. It follows that the sequence

BT
∗Fλk = bF − HF∗xk + gF (xk,λk, ρ)

is bounded. Since the largest nonzero singular value σmin of B∗F satisfies

σmin‖λk‖ ≤ ‖BT
∗Fλk‖,

it follows that there is a cluster point λ of λk . Moreover, λ satisfies

[Ĥx − b + BTλ]F = o.

After comparing the last relation with (9.30) and using the assumptions, we conclude
that λ = λ̂ and λk converges to λ̂.
(iii) Let us assume that the solution x̂ of (9.1) is only range regular, let λ denote any
vector of Lagrange multipliers for (9.1), and let Q = I − P denote the orthogonal
projector onto KerBT = KerBT

∗F . Using P + Q = I, BTQ = O, and (2.34), we get

‖BT
∗F (λk − λ)‖ = ‖BT

∗F (P + Q)(λk − λ)‖ = ‖BT
∗F (Pλk − Pλ)‖

≥ σmin‖Pλk − Pλ‖.

Using the arguments from the proof of (ii), we get that the left hand side of the above
relation converges to zero, so Pλk converges to Pλ. Since

λk = λ0 + ρBx0 + · · · + ρkBxk

with Bxk ∈ ImB, we get

λk = (P + Q)λk = Qλ0 + Pλk .

Observing that λ = λLS + Qλ0 is a Lagrange multiplier for (9.1) and Pλ = λLS,
we get

‖λk − λ‖ = ‖Qλ0 + Pλk − (
λLS + Qλ0

) ‖ = ‖Pλk − Pλ‖.

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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Since the right-hand side converges to zero, we conclude that λk converges to λ,
which completes the proof of (iii). �

9.8 Optimality of the Outer Loop

Theorem 9.1 suggests that it is possible to give an independent of B upper bound on
the number of outer iterations of Algorithm9.1 (SMALSE-M) that are necessary to
achieve a prescribed feasibility error for a class of problems like (9.1). To present
explicitly this new feature of SMALSE-M, at least as compared to the related algo-
rithms [7], let T denote any set of indices and let for any t ∈ T be defined the
problem

minimize ft (x) s.t. x ∈ Ω t
SE , ft (x) = 1

2
xTAtx − bT

t x, (9.31)

where

Ω t
SE = {x ∈ R

nt : Btx = o and x ∈ Ω t
S}, Ω t

S = {hti (xi ) ≤ 0, i ∈ I t },

hti defines the bound, spherical, or elliptic constraints, At ∈ R
nt×nt denotes an SPD

matrix, Bt ∈ R
mt×nt , and bt ∈ R

nt . Our optimality result reads as follows.

Theorem 9.3 Let {xkt }, {λk
t }, and {Mt,k} be generated by Algorithm9.1 for (9.31)

with

0 < ηt ≤ ‖bt‖, 0 < β < 1, Mt,0 = M0 > 0, ρ > 0, and λ0
t = o.

Let o ∈ Ω t
SE and let there be an amin > 0 such that the least eigenvalue λmin(At ) of

the Hessian At of the quadratic function ft satisfies

λmin(At ) ≥ amin, t ∈ T .

Then for each ε > 0 there are indices kt , t ∈ T , such that

kt ≤ a/ε2 + 1 (9.32)

and xktt is an approximate solution of (9.31) satisfying

‖Btx
kt
t ‖ ≤ ε‖bt‖. (9.33)

Proof First notice that for any index j

ρ j

2
min{‖Btxit‖2 : i = 1, . . . , j} ≤

j∑

i=1

ρ

2
‖Btxit‖2 ≤

∞∑

i=1

ρ

2
‖Btxit‖2. (9.34)
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Denoting by Lt (x,λ, ρ) the augmented Lagrangian for problem (9.31), we get for
any x ∈ R

nt and ρ ≥ 0

Lt (x, o, ρ) = 1

2
xT (At + ρBT

t Bt )x − bT
t x ≥ 1

2
amin‖x‖2 − ‖bt‖‖x‖ ≥ −‖bt‖2

2amin
.

If we substitute this inequality and z0 = o into (9.25) and use the assumption
‖bt‖ ≥ ηt , we get

∞∑

i=1

ρ

2
‖Btxit‖2 ≤ ‖bt‖2

2amin
+ (1 + p)

η2

2amin
≤ (2 + p)‖bt‖2

2amin
, (9.35)

where p ≥ 0 denotes the smallest integer such that ρ ≥ β2pM2
0/amin. Using (9.34)

and (9.35), we get

ρ j

2
min{‖Btxit‖2 : i = 1, . . . , j} ≤ (2 + p)

2aminε2
ε2‖bt‖2.

Let us now denote
a = (2 + p)/(aminρ)

and take for j the least integer which satisfies a/j ≤ ε2, so that

a/ε2 ≤ j ≤ a/ε2 + 1. (9.36)

Denoting for any t ∈ T

kt = arg min{‖Btxit‖ : i = 1, . . . , j},

we can use (9.36) with simple manipulations to obtain

‖Btx
kt
t ‖2 = min{‖Btxit‖2 : i = 1, . . . , j} ≤ a

jε2
ε2‖bt‖2 ≤ ε2‖bt‖2. �

9.9 Optimality of the Inner Loop

Weneed the following simple lemma to prove the optimality of the inner loop (Step 1)
implemented by the MPGP algorithm.

Lemma 9.4 Let {xk} and {λk} be generated by Algorithm9.1 for the solution of
(9.1) with η > 0, 0 < β < 1, M > 0, ρ > 0, and λ0 ∈ R

m. Let 0 < amin ≤ λmin(A),
where λmin(A) denotes the least eigenvalue of A.
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Then for any k ≥ 0

L(xk, λk+1, ρ) − L(xk+1,λk+1, ρ) ≤ η2

2amin
. (9.37)

Proof Let us denote
x̂k+1 = arg min

x∈ΩS

L(x,λk+1, ρ).

Using Lemma7.2 and the definition of Step 1 of SMALSE-M, we get

L(xk,λk+1, ρ) − L(xk+1,λk+1, ρ) ≤ L(xk,λk+1, ρ) − L (̂xk+1,λk+1, ρ)

≤ 1

2amin
‖gP‖2 ≤ η2

2amin
. �

Now we are ready to prove the main result of this chapter, the optimality of Algo-
rithm9.1 (SMALSE-M) in terms of matrix–vector multiplications, provided Step 1
is implemented by Algorithm7.2 (MPGP) or any other, possibly more specialized
algorithm for the solution of separable constraints with R-linear rate of convergence
of the norm of the projected gradient, such as MPRGP described in Chap.8.

Theorem 9.4 Let

0 < amin < amax, 0 < cmax, and ε > 0

be given constants and let the class of problems (9.31) satisfy

amin ≤ λmin(At ) ≤ λmax(At ) ≤ amax and ‖Bt‖ ≤ cmax. (9.38)

Let {xkt }, {λk
t }, and {Mt,k} be generated by Algorithm9.1 (SMALSE-M) for (9.31)

with

‖bt‖ ≥ ηt > 0, 0 < β < 1, Mt,0 = M0 > 0, ρ > 0, and λ0
t = o.

Let Step 1 of Algorithm9.1 be implemented by Algorithm7.2 (MPGP) with the
parameters Γ > 0 and α ∈ (0, 2(amax + ρc2max)

−1] to generate the iterates
xk,0t , xk,1t , . . . , xk,lt = xkt for the solution of (9.31) starting from xk,0t = xk−1

t with
x−1
t = o, where l = lt,k is the first index satisfying

‖gP(xk,lt ,λk
t , ρ)‖ ≤ Mt,	‖Btxk,	t ‖. (9.39)

Then Algorithm9.1 generates an approximate solution xktt of any problem (9.31)
which satisfies

‖gP(xktt ,λ
kt
t , ρ)‖ ≤ ε‖bt‖ and ‖Btx

kt
t ‖ ≤ ε‖bt‖ (9.40)

http://dx.doi.org/10.1007/978-1-4939-6834-3_7
http://dx.doi.org/10.1007/978-1-4939-6834-3_8
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at O(1) matrix–vector multiplications by the Hessian of the augmented Lagrangian
for (9.31).

Proof Let t ∈ T be fixed and let us denote by Lt (x,λ, ρ) the augmented Lagrangian
for problem (9.31). Then by (9.37) and the assumption ηt ≤ ‖bt‖

Lt (xk−1
t ,λk

t , ρ) − Lt (xkt ,λ
k
t , ρ) ≤ η2

t

2amin
≤ ‖bt‖2

2amin
.

Since the minimizer xkt of Lt (x,λk
t , ρ) subject to x ∈ Ω t

S satisfies (9.8) and is a
possible choice for xkt , it follows that

Lt (xk−1
t ,λk

t , ρ) − Lt (xkt ,λ
k
t , ρ) ≤ ‖bt‖2

2amin
. (9.41)

Using Theorem7.3, we get that Algorithm7.2 (MPGP) used to implement Step 1 of
Algorithm9.1 (SMALSE-M) starting from xk,0t = xk−1

t generates xk,lt satisfying

‖gP
t (xk,lt ,λk

t , ρ)‖2 ≤ a1η
l
Γ

(
Lt (xk−1

t ,λk
t , ρ) − Lt (xkt ,λ

k
t , ρ)

) ≤ a1
‖bt‖2
2amin

ηl
Γ ,

where a1 and η = η(δ, α) < 1 are the constants specified for the class of prob-
lems (9.31) in Theorem7.3. It simply follows by the inner stop rule (9.39) that the
number l of the inner iterations in Step 1 is uniformly bounded by an index lmax

which satisfies

a1
‖bt‖2
2amin

η
lmax
Γ ≤ M2

t,	max
ε2‖bt‖2.

Thus we have proved that Step 1 implemented byMPGP is completed in a uniformly
bounded number of iterations of MPGP. Since each iteration of MPRGP requires
at most two matrix–vector multiplications, it follows that Step 1 can be carried out
for any instance of the class of problems (9.1) in a uniformly bounded number of
matrix–vector multiplications.

To finish the proof, it is enough to combine this result with Theorem9.3, in par-
ticular to carry out the outer iterations until

Mt,kt‖Bxkt ‖ ≤ ε‖b‖ and ‖Bxkt ‖ ≤ ε‖b‖.

�

http://dx.doi.org/10.1007/978-1-4939-6834-3_7
http://dx.doi.org/10.1007/978-1-4939-6834-3_7
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9.10 SMALBE for Bound and Equality Constrained
QP Problems

We shall now consider a special case of problem (9.1), the minimization of a strictly
convex quadratic function on a feasible set defined by the bound and linear equality
constraints

min
x∈ΩBE

f (x), ΩBE = {x ∈ R
n : Bx = o and x ≥ 	}, (9.42)

where f (x) = 1
2x

TAx − xTb, b ∈ R
n , A is an n × n SPD matrix, and B ∈ R

m×n .
We consider the same assumptions as above, in particular, ΩBE �= ∅, B �= O, and
KerB �= {o}. We admit dependent rows of B and 	i = −∞.

The complete algorithm that we call SMALBE-M (Semi-Monotonic Augmented
Lagrangians for Bound and Equality constraints) reads as follows.

Algorithm 9.2 Semi-monotonic augmented Lagrangians for bound and equality constrained
QP problems (SMALBE-M).

Given an SPD matrix A ∈ R
n×n, B ∈ R

m×n, n-vectors b, 	.
Step 0. {Initialization.}

Choose η > 0, 0 < β < 1, M−1 = 0, M0 > 0, ρ > 0, λ0 ∈ R
m

for k = 0, 1, 2, . . .
Step 1. {Inner iteration with adaptive precision control.}

Find xk ≥ 	 such that

‖gP (xk ,λk , ρ)‖ ≤ min{Mk‖Bxk‖, η} (9.43)

Step 2. {Updating the Lagrange multipliers.}

λk+1 = λk + ρBxk (9.44)

Step 3. {Update M provided the increase of the Lagrangian is not sufficient.}
if Mk = Mk−1 and

L(xk ,λk , ρ) < L(xk−1,λk−1, ρ) + ρ

2
‖Bxk‖2 (9.45)

Mk+1 = βMk
else

Mk+1 = Mk
end else if

end for

In Step 1 we can use any algorithm for minimizing strictly convex quadratic
functions subject to bound constraints as long as it guarantees the convergence of
projected gradient to zero, such as the MPRGP algorithm of Chap.8.

http://dx.doi.org/10.1007/978-1-4939-6834-3_8
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9.11 R-Linear Convergence of SMALBE-M

Our main optimality result, Theorem 9.4, guarantees that the number of iterations
kt (ε) that are necessary to get an approximate solution of any problem from the class
of problems (9.31) to the prescribed relative precision ε is uniformly bounded by

k(ε) = max{kt (ε) : t ∈ T }.

Notice that k(ε) does not depend on the matrices Bt which appear in the description
of the feasible sets Ωt . . . a feature which is not obvious from the standard analysis
of the Uzawa type methods even for linear problems. However, Theorem 9.3 yields
only

k(ε) � ε−2,

i.e., we proved that there is C > 0 independent of Bt such that for any ε > 0

k(ε) ≤ Cε−2,

which is very pessimistic and has never been observed in practice.
Herewe report a stronger result concerning the convergence of a particular class of

problem (9.42) defined by the bound and equality constraints, namely that SMALBE-
M enjoys the R-linear convergence of feasibility errors in a later stage of computa-
tions, when the indices of the free and strongly active variables of the solution are
identified, and show that there are kt (ε) and kt such that for sufficiently small ε

kt (ε) − kt � | log(ε)|.

Notice that the iterates can remain nonlinear in any stage of the solution procedure,
so the convergence analysis cannot be reduced to that for the equality constraints.
The result does not assume independent equality constraints and remains valid even
when there are some zero multipliers for active bound constraints.

We shall start with the following lemma which shows that the binding set
B̂ = B(̂x) and the free set F̂ = F (̂x) are identified in a finite number of steps.

Lemma 9.5 Let the matrices A,B and the vectors b, 	 be those from the definition
of problem (9.42). Let xk and λk be generated by the SMALBE-M algorithm for the
solution of (9.42) with the regularization parameter ρ > 0. Then there is k1 such that
for k ≥ k1

F̂ = F (̂x) ⊆ F (xk) and B̂ = B(̂x) ⊆ B(xk). (9.46)

Proof First observe that gP(xk,λk, ρ) converges to zero by Theorem9.3. If B̂ = ∅
or F̂ = ∅, then the statements of our lemma concerning these sets are valid trivially.
Hence we assume that they are both nonempty and denote

δF̂ = min{̂xi − 	i : i ∈ F̂ }, δB̂ = min{ĝi : i ∈ B̂}.
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Since xk converges to x̂, there is k ′ such that for k ≥ k ′ and i ∈ F̂

	i < x̂i − 1

2
δF̂ ≤ xki ,

i.e., i ∈ F (xk).
To prove the second relation of (9.46), observe that g is a continuous function, so

gk = g(xk,λk, ρ) converges to ĝ = g(̂x,λ, ρ). It follows that if i ∈ B̂, then there is
k ′′ such that for k ≥ k ′′

gi (xk,λk, ρ) = gki ≥ 1

2
δK̂ .

Moreover, since gP(xk,λk, ρ) converges to zero by the assumption, it follows that
there is k ′′′ ≥ k ′′ such that for k ≥ k ′′′ holds xki = 	i , i.e., i ∈ B(xk). We have thus
proved the second relation of (9.46) with k1 = max{k ′, k ′′′}. �

Nowwe are ready to formulate the results showing that the convergence is R-linear
after the free and strong active constraints of the solution are identified.

Theorem 9.5 Let {xk}, {λk}, and {Mk} be generated by SMALBE-M for the solution
to (9.42) with η > 0, 0 < β < 1, M0 > 0, ρ > 0, and λ0 ∈ R

m. Let the solution x̂
of (9.42) be range regular and let k0 and k1 be those of Theorem9.1 and Lemma9.5,
so that for k = max{k0, k1}

Mk = Mk+1 = Mk+2 = · · · and F (̂x) = F (xk) = F (xk+1) = F (xk+2) = · · · .

Let σ̂min denote the smallest nonzero singular value ofB∗F̂ , letH = A + ρBTB, and
denote

C1 = Mk0
κ(H) + 1

λmin(H)
+ κ(Aρ)

σ̂min
, C2 = Mk0κ(Aρ) + σ̂−1

min‖H‖
σ̂min

C = 2C2

ρ
.

Then the following relations hold:
(i) For any k ≥ k

‖Bxk‖2 ≤ (C + 1)

(
C

C + 1

)k−k

‖Bxk‖2. (9.47)

(ii) For any k ≥ k

‖xk − x̂‖2 ≤ C1(C + 1)

(
C

C + 1

)k−k

‖Bxk‖2. (9.48)
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(iii) If λ0 ∈ ImB, then for any k ≥ k

‖λk − λLS‖2 ≤ C2(C + 1)

(
C

C + 1

)k−k

‖Bxk‖2. (9.49)

Proof See [10, Theorem4.4].

9.12 SMALSE-Mw

The algorithm SMALSE-Mw that we develop here is a modification of SMALSE-M
which can cope with a high sensitivity of the projected gradient when the curvature
of the boundary of a feasible set is strong, as typically happens when the inequality
constraints are elliptic as in the algorithms for contact problemswith orthotropic fric-
tion. The difficulties with the curvature are resolved by using the reduced projected
gradient g̃P

α (see Sect. 7.2). The SMALSE-Mw algorithm reads as follows.

Algorithm 9.3 Semimonotonic augmented Lagrangians for separable and equality con-
strained QCQP problems (SMALSE-Mw).

Given an SPD matrix A ∈ R
n×n, b ∈ R

n, B ∈ R
m×n, constraints h.

Step 0. {Initialization.}
Choose η > 0, 0 < β < 1, M−1 = 0, M0 > 0, ρ > 0, λ0 ∈ R

m

for k = 0, 1, 2, . . .
Step 1. {Inner iteration with adaptive precision control.}

Find xk ∈ ΩS such that

‖̃gP (xk ,λk , ρ)‖ ≤ min{Mk‖Bxk‖, η} (9.50)

Step 2. {Updating the Lagrange multipliers.}

λk+1 = λk + ρBxk (9.51)

Step 3. {Update M provided the increase of the Lagrangian is not sufficient.}
if Mk = Mk−1 and

L(xk ,λk , ρ) < L(xk−1,λk−1, ρ) + ρ

2
‖Bxk‖2 (9.52)

Mk+1 = βMk
else

Mk+1 = Mk
end else if

end for

http://dx.doi.org/10.1007/978-1-4939-6834-3_7
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In Step 1 we can use any algorithm for minimizing the strictly convex quadratic
function subject to separable constraints as long as it guarantees the convergence
of reduced projected gradients to zero. Since Theorem7.1 guarantees that for any
λk ∈ R

m and ρ ≥ 0, there is a constant C > 0 such that for any x ∈ ΩS

‖g̃P
α (x,λk, ρ)‖ ≤ ‖gP(x,λk, ρ)‖ ≤ C‖g̃P

α (x,λk, ρ)‖, (9.53)

it follows that we can use the MPGP algorithm of Sect. 7.3.
The next lemma shows thatAlgorithm9.3 iswell defined, that is, any algorithm for

the solution of auxiliary problems required in Step 1 that guarantees the convergence
of the reduced projected gradient to zero generates either a feasible xk which satisfies
(9.50) in a finite number of steps or approximations which converge to the solution
of (9.1).

Lemma 9.6 Let M > 0, λ ∈ R
m, α ∈ (0, 2(‖A‖ + ρ‖B‖2)−1‖), η > 0, and ρ ≥ 0

be given. Let {yk} ∈ ΩS denote any sequence such that

x̂ = lim
k→∞ yk = arg min

y∈ΩS

L(y,λ, ρ)

and g̃P
α (yk,λ, ρ) converges to the zero vector. Then {yk} either converges to the

unique solution x̂ of problem (9.1), or there is an index k such that

‖̃gP
α (yk,λ, ρ)‖ ≤ min{M‖Byk‖, η}. (9.54)

Proof If (9.54) does not hold for any k, then ‖̃gP
α (yk,λ, ρ)‖ > M‖Byk‖ for any k.

Since g̃P(ykα,λ, ρ) converges to the zero vector by the assumption, it follows that
‖Byk‖ converges to zero. Thus B̂y = o and using the assumptions and (9.5), we get

g̃P
α (̂y) = gP (̂y,λ, ρ) = o.

It follows that ŷ satisfies the KKT conditions (9.5) and ŷ = x̂. �

Inequality (9.53) guarantees that xk satisfies

‖gP(xk,λk, ρ)‖ ≤ min{CMk‖Bxk‖, η}, (9.55)

so xk can be considered as an iterate of SMALSE-M for problem (9.1). This is
sufficient to guarantee the convergence of SMALSE-Mw. However, C in (9.55)
depends on λk , so the analysis used above is not sufficient to obtain optimality results
for SMALSE-Mw. In spite of this, it turns out that SMALSE-Mw is an effective
algorithms for the solution of problems with linear equality and separable inequality
constrains with strong curvature, such as those arising in the solution of contact
problems with orthotropic friction. Since λk changes slowly, it is not surprising that
we observe in our experiments a kind of optimal performance.

http://dx.doi.org/10.1007/978-1-4939-6834-3_7
http://dx.doi.org/10.1007/978-1-4939-6834-3_7
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9.13 Solution of More General Problems

IfA is positive definite only on the kernel ofB, thenwe can use a suitable penalization
to reduce such problem to the strictly convex one. Using Lemma [11, Lemma1.3],
it is easy to see that there is ρ > 0 such that A + ρBTB is positive definite, so that
we can apply our SMALBE-M algorithm to the equivalent penalized problem

min
x∈ΩBE

fρ(x), (9.56)

where

fρ(x) = 1

2
xT (A + ρBTB)x − bT x.

If A is an SPS matrix which is positive definite on the kernel of B, which is typical
for the dual formulation of the problems arising from the discretization of contact
problems, then we can use any ρ > 0, typically ρ = ‖A‖.

9.14 Implementation

Let us give here a few hints that can be helpful for an effective implementation of
SMALSE-M (SMALBE-M) and SMALSE-Mwwith the inner loop implemented by
MPGP (MPRGP).

Before applying the algorithms presented to the problems with a well-conditioned
Hessian A, we strongly recommend to rescale the equality constraints so that
‖A‖ ≈ ‖B‖. Taking into account the estimate of the rate of convergence in The-
orem9.5, it is also useful to orthonormalize or at least normalize the constraints.

A stopping criterion should be added not only after Step 1 but also into the
procedure which generates xk in Step 1. In our experiments, we use

‖∇L(xk,λk, ρ)‖ ≤ εg‖b‖ and ‖Bxk − c‖ ≤ ε f ‖b‖. (9.57)

The relative precisions ε f and εg should be judiciously determined. We often use
ε = εg = ε f . Our stopping criterion in the inner loop reads

‖gP(yi ,λk, ρ)‖ ≤ min{Mk‖Byi − c‖, η} or (9.57),

so that the inner loop is interrupted when either the solution or a new iterate xk = yi

is found.
The parameter η is used to define the initial bound on the feasibility error which

is used to control the update of M . The algorithm does not seem to be sensitive with
respect to η; we use η = 0.1‖b‖.
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The parameterβ is used to increase the precision control. Our experience indicates
that β = 0.2 is a reasonable choice.

The regularization parameter ρ should compromise the fast speed of the outer
loop with large ρ and a slow convergence of the algorithm in the inner loop. For the
problems arising from the dual formulation of the conditions of equilibriumof contact
problems, the choice ρ ≈ ‖A‖ does not increase the upper bound on the spectrum
of the Hessian of the augmented Lagrangian and seems to balance reasonably the
speed of the inner and outer iterations.

The basic strategy for initialization of M0 is based on the relation

M2
k < ρλmin(A),

which guarantees sufficient increase of the augmented Lagrangian. We use

M2
0 ≈ 100ρλmin(A),

which allows fast early updates of theLagrangemultipliers.Notice thatMk is adjusted
automatically, so the performance of the algorithm is not sensitive to M0.

If the Hessian H = A + ρBBT of L is ill-conditioned and there is an approxima-
tionM of H that can be used as preconditioner, then we can use the preconditioning
strategies introduced in Sect. 8.6. We report effective problem dependent precondi-
tioners for contact problems in Chap.16.

9.15 Comments and References

This chapter is based on the research the starting point of which was the algorithm
introduced by Conn, Gould, and Toint [12]; they adapted the augmented Lagrangian
method of Powell [2] and Hestenes [1] to the solution of problems with a nonlinear
cost function subject to nonlinear equality constraints and bound constraints. Conn,
Gould, and Toint worked with the increasing penalty parameter. They also proved
that the potentially troublesome penalty parameter ρk is bounded and the algorithm
converges to a solution alsowith asymptotically exact solutions of auxiliary problems
[12]. Moreover, they used their algorithm to develop the LANCELOT [5] package
for the solution of more general nonlinear optimization problems. More references
can be found in their comprehensive book on trust region methods [13]. An excellent
reference for the application of augmented Lagrangian for more general problems
can be found in Birgin and Martínez [14]. For the augmented Lagrangian method
with filter, see Friedlander and Leyfer [15].

The SMALSE and SMALBE algorithms differ from the original algorithm in
two points. The first one is the adaptive precision control introduced for bound and
equality constrained problems by Dostál, Friedlander, and Santos [7]. These authors
also proved the basic convergence results for the problems with a regular solution,
including the linear convergence of both the Lagrange multipliers and the feasibility

http://dx.doi.org/10.1007/978-1-4939-6834-3_8
http://dx.doi.org/10.1007/978-1-4939-6834-3_16
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error for a large initial penalty parameter ρ0. The algorithm presented in [7] generated
a forcing sequence for the increase of penalty parameter which was sufficient to get
the convergence results.

The next modification, the update rule for the parameter ρk of the original
SMALBE which enforced a sufficient monotonic increase of L(xk, μk, ρk), was
first published by Dostál [16]. The convergence analysis included the optimality of
the outer loop and the bound on the penalty parameter.

The possibility to keep the regularization parameter fixed was first mentioned in
the book [11]. The algorithm for the bound and equality constraints which keeps
the regularization fixed was coined SMALBE-M. This innovation was important for
experimental demonstration of numerical scalability of the algorithms for multibody
contact problems. The convergence analysis shows that it is possible to combine both
strategies.

The first optimality results for the bound and equality constrained problems were
proved by Dostál and Horák for the penalty method [17, 18]. The optimality of
SMALBEwith the auxiliary problems solved byMPRGPwas proved in Dostál [19];
the generalization of the results achieved earlier for the penalty method was based
on a well-known observation that the basic augmented Lagrangian algorithm can be
considered as a variant of the penalty method (see, e.g., Bertsekas [20, Sect. 4.4]).
The generalization to the solution of problems with more general separable con-
straints was easy after the development of the algorithms discussed in Chap.7. The
presentation of SMALSE-M given here is based on our earlier work, Dostál and
Kučera [8], and Dostál and Kozubek [9]. The SMALSE-Mw algorithm adapted for
the elliptic constraints with strong excentricity appeared in Bouchala et al. [21]. Lin-
ear convergence for SMALBE-M has been proved in Dostál et al. [10]. If applied
to the bound and equality constrained problem (9.42), all these algorithms generate
identical iterates. Effective heuristic modifications can be found in Hapla [22].
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Chapter 10
TFETI for Scalar Problems

We shall first illustrate the ideas of scalable domain decomposition algorithms for
contact problems by describing the solution of two scalar problems governed by
elliptic boundary variational inequalities. The problems proposed by Ivan Hlaváček
deal with the equilibrium of two membranes with prescribed unilateral conditions
on the parts of their boundaries and have a structure similar to multibody contact
problems of elasticity. The scalar variational inequalities are of independent interest
as they describe the steady state solutions of problems arising in various fields of
mathematical physics (see, e.g., Duvaut and Lions [1]).

Our presentation is based on the FETI (Finite Element Tearing and Interconnect-
ing) method, which was proposed as a parallel solver for linear problems arising
from the discretization of elliptic partial differential equations. The basic idea is to
decompose the domain into nonoverlapping subdomains that are “glued” by equality
constraints. Using the duality, the original problem is reduced to a small, relatively
well-conditioned QP problem in Lagrange multipliers.

Here we introduce a variant of the FETI method called Total FETI (TFETI),
which differs from original FETI in a way which is used to implement Dirichlet
boundary conditions. While FETI assumes that the subdomains inherit their Dirichlet
boundary conditions from the original problem, TFETI enforces them by Lagrange
multipliers. Such approach simplifies the implementation as the stiffness matrices of
“floating” subdomains have a priori known kernels that define the coarse problem
which does not depend on prescribed displacements. If the procedure is combined
with the preconditioning by the “natural coarse grid” of rigid body motions, the
regular condition number of the Hessian matrix of the dual energy function becomes
uniformly bounded.

Though the FETI methods are well established as efficient tools for the parallel
solution of linear problems, they are even more efficient for the solution of bound-
ary variational inequalities. The reasons are that the duality reduces the inequality
constraints to bound constraints and the “natural coarse grid” defines a sufficiently
small subspace with a solution. As a result, we get a small convex QP problem with
bound and equality constraints and a well-conditioned Hessian that can be solved by
the SMALBE-M and MPRGP algorithms with asymptotically linear complexity.

© Springer Science+Business Media LLC 2016
Z. Dostál et al., Scalable Algorithms for Contact Problems, Advances
in Mechanics and Mathematics 36, DOI 10.1007/978-1-4939-6834-3_10
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10.1 Two Membranes in Unilateral Contact

We shall reduce our analysis to two scalar model problems. Let Ω = Ω1 ∪ Ω2,
Ω1 = (0, 1) × (0, 1), andΩ2 = (1, 2) × (0, 1)denote open domains with the bound-
aries Γ 1, Γ 2. Let the parts Γ i

U , Γ i
F , and

Γ i
C = ΓC = {(1, y) ∈ R

2 : y ∈ (0, 1)}

of Γ i be formed by the sides of Ω i , i = 1, 2. Let f : Ω → R denote a given con-
tinuous function. Our goal is to find a sufficiently smooth (u1, u2) satisfying

− Δui = f in Ω i , ui = 0 on Γ i
U ,

∂ui

∂ni
= 0 on Γ i

F , i = 1, 2, (10.1)

where ni denotes the outer unit normal, together with the conditions given on
ΓC = Γ 1

C = Γ 2
C

u2 − u1 ≥ 0,
∂u2

∂n2
≥ 0,

∂u2

∂n2
(u2 − u1) = 0,

∂u1

∂n1
+ ∂u2

∂n2
= 0. (10.2)

The solution u can be interpreted as the displacement of two membranes that are
fixed on ΓU , pressed vertically by the traction of the density f , and pulled horizontally
by the unit density traction along ΓF and the part of ΓC where u1 < u2. Moreover,
the left edge of the right membrane is not allowed to penetrate below the right edge
of the left membrane and the latter can only be pressed down.

f

Γ 2
FΓ 1

U
Γ 2
U Γ 1

UΩ 1
f Ω 2

f

Ω 1
f Ω 2

Fig. 10.1 Coercive (left) and semicoercive (right) model problems

We shall distinguish two cases. In the first case, both membranes are fixed on the
outer edges as in Fig. 10.1 left, so that

Γ 1
U = {(0, y) ∈ R

2 : y ∈ [0, 1]}, Γ 2
U = {(2, y) ∈ R

2 : y ∈ [0, 1]}.
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Since the Dirichlet conditions are prescribed on the parts Γ i
U , i = 1, 2, of the bound-

aries with a positive measure, it follows that a solution exists and is necessarily
unique [2, 3]. In the second case, only the left membrane is fixed on the outer edge
and the right membrane has no prescribed vertical displacement as in Fig. 10.1 right,
so that

Γ 1
U = {(0, y) ∈ R

2 : y ∈ [0, 1]}, Γ 2
U = ∅.

To guarantee the solvability and uniqueness, we shall assume

∫

Ω2
f dΩ < 0.

More details about this model problem may be found, e.g., in [4].

10.2 Variational Formulation

To reduce the requirements on the smoothness of data and a solution u = (u1, u2) of
(10.1) and (10.2), let us reformulate the problem in a variational form, which requires
that the relations are satisfied rather in average than point-wise. This approach opens
a convenient way to the formulation of the results concerning the existence and
uniqueness of a solution and to the application of efficient QP solvers to the solution
of discretized problems. The variational form of (10.1) and (10.2) uses the forms
defined on suitable Sobolev spaces.

Let H 1(Ω i ), i = 1, 2, denote the Sobolev spaces of the first order in the space
L2(Ω i ) of the functions defined on Ω i the squares of which are integrable in the
sense of Lebesgue. Let

V i = {
vi ∈ H 1(Ω i ) : vi = 0 on Γ i

U

}

denote the closed subspaces of H 1(Ω i ), i = 1, 2, and let

V = V 1 × V 2 and K = {
(v1, v2) ∈ V : v2 − v1 ≥ 0 on ΓC

}

denote the closed subspace and the closed convex subset of

H = H 1(Ω1) × H 1(Ω2),

respectively. The relations on the boundaries are in terms of traces. On H we shall
consider the L2(Ω) scalar product

(u, v) =
2∑

i=1

∫

Ω i

ui vi dΩ,
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the symmetric bilinear form

a(u, v) =
2∑

i=1

∫

Ω i

(
∂ui

∂x1

∂vi

∂x1
+ ∂ui

∂x2

∂vi

∂x2

)
dΩ,

and the linear form

�(v) = ( f, v) =
2∑

i=1

∫

Ω i

f i vi dΩ, f i = f |Ω i .

To get variational conditions that are satisfied by each sufficiently smooth solution
u = (u1, u2) of (10.1) and (10.2), let v = (v1, v2) ∈ C1(Ω1) × C1(Ω2) ∩ K . Using
the Green Theorem 4.2, the definition of K , and (10.1) and (10.2), we get

− (Δu, v) = (∇u,∇v) −
∫

ΓC

∂u1

∂n1
v1 dΓ −

∫

ΓC

∂u2

∂n2
v2 dΓ (10.3)

= a(u, v) +
∫

ΓC

∂u2

∂n2
(v1 − v2) dΓ ≤ a(u, v). (10.4)

For x ∈ Ω i , we define u(x) = ui (x). Since for any v ∈ C1(Ω1) × C1(Ω2)

−(Δu, v) = ( f, v)

and a solution u satisfies

∫

ΓC

∂u2

∂n2
(u1 − u2) dΓ = 0,

we can use the assumption v − u ∈ C1(Ω1) × C1(Ω2) to get

a(u, v − u) − �(v − u) = −(Δu, v − u) +
∫

ΓC

∂u2

∂n2
(v2 − v1) dΓ − ( f, v − u)

=
∫

ΓC

∂u2

∂n2
(v2 − v1) dΓ ≥ 0. (10.5)

The latter condition, i.e.,

a(u, v − u) ≥ �(v − u), v ∈ K ∩ C1(Ω1) × C1(Ω2),

is by Theorem 4.5 just the condition which satisfies the minimizer of

q(v) = 1

2
a(v, v) − �(v) subject to v ∈ K ∩ C1(Ω1) × C1(Ω2). (10.6)

http://dx.doi.org/10.1007/978-1-4939-6834-3_4
http://dx.doi.org/10.1007/978-1-4939-6834-3_4
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The classical formulation of the conditions of equilibrium does not describe real-
istic situations, e.g., if f is discontinuous, then the description of equilibrium by
(10.1) and (10.2) is not complete, but the problem to find u ∈ K such that

q(u) ≤ q(v), v ∈ K , (10.7)

is defined for any f ∈ L2(Ω1) × L2(Ω2). Using the arguments based on the coerciv-
ity of q, it is possible to prove that (10.7) has a solution [2] and that any sufficiently
smooth solution of (10.7) solves (10.1) and (10.2). Moreover, if f is piece-wise
discontinuous, then it can be shown that the solution of variational problem (10.7)
satisfies additional conditions of equilibrium [2].

10.3 Tearing and Interconnecting

So far, we have used only the natural decomposition of the spatial domain Ω into Ω1

and Ω2. However, to enable efficient application of domain decomposition methods,
we can optionally decompose each Ω i into p = 1/H × 1/H square subdomains
Ω i1, . . . ,Ω i p as in Fig. 10.2. We shall call H a decomposition parameter.

λλλ

λλλ

λλλ

H

h

Ω11 Ω12

Ω13 Ω14

Ω21 Ω22

Ω23 Ω24

Fig. 10.2 Domain decomposition and discretization

The continuity of a global solution in Ω1 and Ω2 can be enforced by the “gluing”
conditions

ui j (x) = uik(x), (10.8)

∇ui j · ni j = −∇uik · nik, (10.9)

which should be satisfied by the traces of ui j and uik on Γ i j,ik = Γ i j ∩ Γ ik .
To get a variational formulation of the decomposed problem, let

V i j = {
vi j ∈ H 1(Ω i j ) : vi j = 0 on ΓU ∩ Γ i j

}
, i = 1, 2, j = 1, . . . p,
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denote the closed subspaces of H 1(Ω i j ) and let

VDD = (V 11 × · · · × V 1p) × (V 21 × · · · × V 2p),

KDD =
{
v ∈ VDD : v2 j − v1i ≥ 0 on Γ 1i

C ∩ Γ
2 j
C and vi j = vik on Γ i j,ik

}
.

The relations on the boundaries are again in terms of traces. On VDD , we shall define
the scalar product

(u, v) =
2∑

i=1

p∑

j=1

∫

Ω i j

ui j vi j dΩ,

the symmetric bilinear form

a(u, v) =
2∑

i=1

p∑

j=1

∫

Ω i j

(
∂ui j

∂x1

∂vi j

∂x1
+ ∂ui j

∂x2

∂vi j

∂x2

)
dΩ,

and the linear form

�(v) = ( f, v) =
2∑

i=1

p∑

j=1

∫

Ω i j

f i j vi j dΩ,

where f i j ∈ L2(Ω i j ) denotes the restriction of f to Ω i j .
Observing that for any v ∈ KDD

∫

Γ
i j,ik
G

∂ui j

∂ni j
vi j dΓ +

∫

Γ
i j,ik
G

∂uik

∂nik
vik dΓ =

∫

Γ
i j,ik
G

(
∂ui j

∂ni j
+ ∂uik

∂nik

)
vi j dΓ = 0,

we get that relations (10.3)–(10.5) remain valid also for the decomposed problem
and u ∈ KDD solves

a(u, v − u) ≥ �(v − u), v ∈ KDD. (10.10)

In what follows, we shall consider the equivalent problem u ∈ KDD such that

q(u) ≤ q(v), q(v) = 1

2
a(v, v) − �(v), v ∈ KDD. (10.11)

10.4 Discretization

After introducing regular grids with the discretization parameter h in the subdomains
Ω i j , so that they match across the interfaces Γ i j,kl , indexing contiguously the nodes
and entries of corresponding vectors in the subdomains, and using a Lagrangian
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finite element discretization, we get the discretized version of problem (10.11) with
auxiliary domain decomposition

min
1

2
uTKu − fTu s.t. BIu ≤ o and BEu = o. (10.12)

In (10.12), K ∈ R
n×n denotes a block diagonal SPS stiffness matrix, the full rank

matrices BI and BE describe the discretized non-penetration and gluing conditions,
respectively, and f represents the discrete analog of the linear term �(u). If we replace
the couples of indices by single indices, we can write the stiffness matrix and the
vectors in the block form

K =

⎡

⎢
⎢
⎣

K1 O . . . O
O K2 . . . O
. . . . . . . . . . . .

O O . . . Ks

⎤

⎥
⎥
⎦ , u =

⎡

⎣
u1

. . .

us

⎤

⎦ , f =
⎡

⎣
f1
. . .

fs

⎤

⎦ , s = 2p.

The rows of BE and BI are filled with zeros except 1 and −1 in the positions that cor-
respond to the nodes with the same coordinates on the artificial or contact boundaries,
respectively. We get three types of equality constraints as in Fig. 10.3.

i j

k l

i j i

Fig. 10.3 Three types of constraints

If bi denotes a row of BI or BE , then bi does not have more than four nonzero
entries. The continuity of the solution in the “wire basket” (see Fig. 10.3 left) and
on the interface (see Fig. 10.3 middle) or the fulfillment of Dirichlet’s boundary
conditions (see Fig. 10.3 right) are enforced by the equalities

ui = u j , uk = u�, ui + u j = uk + ul; ui = u j ; ui = 0;

respectively, which can be expressed by means of the vectors

bi j = (si − s j )T , bk� = (sk − s�)T , bi jkl = (si + s j − sk − sl)T ;
bi j = (si − s j )T ; bi = sTi ;
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where si denotes the i th column of the identity matrix In . The continuity of the
solution across the subdomains interface (see Fig. 10.3 middle) is implemented by

bi jx = 0,

so that bi jx denotes the jump across the boundary.
The non-penetration is enforced similarly. If i and j are the indices of matching

nodes on Γ 1
C and Γ 2

C , respectively, then any feasible nodal displacements satisfy

bi jx ≤ 0.

The construction of the matrices BE and BI guarantees that any couple of their rows
is orthogonal. We can easily achieve by scaling that B = [BT

E , BT
I ]T satisfies

BBT = I.

10.5 Dual Formulation

Our next step is to simplify the problem using the duality theory, in particular we
replace the general inequality constraints

BIu ≤ o

by the nonnegativity constraints. To this end, let us define the Lagrangian associated
with problem (10.12) by

L(u,λI ,λE ) = 1

2
uTKu − fTu + λT

I BIu + λT
EBEu, (10.13)

where λI and λE are the Lagrange multipliers associated with the inequalities and
equalities, respectively. Introducing the notation

λ =
[

λI

λE

]
and B =

[
BI

BE

]
,

we can observe that B ∈ R
m×n is a full rank matrix and write the Lagrangian briefly

as

L(u,λ) = 1

2
uTKu − fTu + λTBu.

Thus the solution satisfies the KKT conditions, including

Ku − f + BTλ = o. (10.14)
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Equation (10.14) has a solution if and only if

f − BTλ ∈ ImK, (10.15)

which can be expressed more conveniently by means of a matrix R the columns of
which span the null space of K as

RT (f − BTλ) = o. (10.16)

The matrix R can be formed directly so that each floating subdomain is assigned to
a column of R with ones in the positions of the nodal variables that belong to the
subdomain and zeros elsewhere. It may be checked that RTBT is a full rank matrix.

Now assume that λ satisfies (10.15), so that we can evaluate λ from (10.14) by
means of any (left) generalized matrix K+ which satisfies

KK+K = K. (10.17)

It may be verified directly that if u solves (10.14), then there is a vector α such that

u = K+(f − BTλ) + Rα. (10.18)

For the effective evaluation of the generalized inverse, we can use

K# = diag(K#
1, . . . , K#

2p),

where K#
i is defined in (2.6). Using Lemma 2.1, we can check that we can get a full

rank submatrix Ai of Ki , which appears in the definition of K#
i , by deleting any row

and corresponding column of Ki . The best conditioning of K#
i can be achieved by

deleting those corresponding to a node near the center of Ω i [5]. The action of K#

can be evaluated by the Cholesky decomposition. See Sect 11.7 for more details and
an alternative procedure.

Using Proposition 3.13, we can find λ by solving the minimization problem

min θ(λ) s.t. λI ≥ o and RT (f − BTλ) = o, (10.19)

where

θ(λ) = 1

2
λTBK+BTλ − λTBK+f . (10.20)

Notice that θ is obtained from the dual function Θ defined by (3.50) by changing the
signs and omitting the constant term. Once the solution λ̂ of (10.19) is known, the
vector û which solves (10.12) can be evaluated by (10.18) and the formula (3.67).
We get

α = −(RT B̃T B̃R)−1RT B̃T B̃K+(f − BT λ̂), (10.21)

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
http://dx.doi.org/10.1007/978-1-4939-6834-3_2
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_3
http://dx.doi.org/10.1007/978-1-4939-6834-3_3
http://dx.doi.org/10.1007/978-1-4939-6834-3_3
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where B̃ = [B̃T
I , BT

E ]T , and the matrix B̃I is formed by the rows bi of BI that corre-
spond to the positive components of the solution λ̂I characterized by λ̂i > 0.

10.6 Natural Coarse Grid

Even though problem (10.19) is much more suitable for computations than (10.12)
and was used to effective solving of discretized variational inequalities [6], further
improvement can be achieved using orthogonal projectors associated with the feasible
set. Let us denote

F = BK+BT , d̃ = BK+f,
G̃ = RTBT , ẽ = RT f,

and let T denote a regular matrix that defines orthonormalization of the rows of G̃
so that the matrix

G = TG̃

has orthonormal rows. After denoting

e = T̃e,

problem (10.19) reads

min
1

2
λTFλ − λT d̃ s.t. λI ≥ o and Gλ = e. (10.22)

Next we shall transform the problem of minimization on the subset of the affine
space to that on the subset of the vector space by looking for the solution of (10.22)
in the form

λ = μ + λ̃, where Gλ̃ = e.

The following rather trivial lemma shows that we can even find λ̃ such that λ̃I ≥ o.

Lemma 10.1 There is λ̃I ≥ 0 such that Gλ̃ = ẽ.

Proof Take

λ̃ = arg min
1

2
‖λ‖2 s.t. λI ≥ o and Gλ = e.

�
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To carry out the transformation, denote λ = μ + λ̃, so that

1

2
λTFλ − λT d̃ = 1

2
μTFμ − μT (̃d − Fλ̃) + 1

2
λ̃
T
Fλ̃ − λ̃

T
d̃

and problem (10.22) is, after returning to the old notation, equivalent to

min
1

2
λTFλ − λTd s.t. Gλ = o and λI ≥ −λ̃I (10.23)

with d = d̃ − Fλ̃ and λ̃I ≥ o.
Our final step is based on the observation that problem (10.23) is equivalent to

min θρ(λ) s.t. Gλ = o and λI ≥ −λ̃I , (10.24)

where ρ is a positive constant and

θρ(λ) = 1

2
λTHλ − λTPd, H = PFP + ρQ, Q = GTG, P = I − Q.

(10.25)
The matrices P and Q are the orthogonal projectors on the kernel of G and the image
space of GT , respectively. The regularization term is introduced in order to enable
the reference to the results on strictly convex QP problems.

10.7 Bounds on the Spectrum

We shall solve the bound and equality constrained QP problem (10.24) by SMALBE
(Algorithm 9.2) with the inner loop implemented by MPRGP (Algorithm 8.2). These
algorithms can solve the class of problems (10.24) arising from the discretization
of (10.11) with varying discretization and decomposition parameters in a uniformly
bounded number of iterations provided there are positive bounds on the spectrum of
the Hessian H of the cost function θρ .

First observe that ImP and ImQ are invariant subspaces of H, ImP+ImQ = R
m

as P + Q = I, and for any λ ∈ R
m

HPλ = (PFP + ρQ)Pλ = P(FPλ) and HQλ = (PFP + ρQ)Qλ = ρQλ.

It follows that
σ(H|ImQ) = {ρ},

so it remains to find the bounds on

σ(H|ImP) = σ(F|ImP).
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The next lemma reduces the problem to the analysis of local Schur complements.

Lemma 10.2 Let there be constants 0 < c < C such that for each λ ∈ R
m

c‖λ‖2 ≤ ‖BTλ‖2 ≤ C‖λ‖2. (10.26)

Then for each λ ∈ ImP

c

(
max

i=1,...,s
‖Si‖

)−1

‖λ‖2 ≤ λTFλ ≤ C

(
min

i=1,...,s
λmin(Si )

)−1

‖λ‖2, (10.27)

where Si denotes the Schur complement of Ki with respect to the indices of the
interior nodes of Ω i and λmin(Si ) denotes the smallest nonzero eigenvalue of Si .

Proof Let B be a block matrix which complies with the structure of K, so that

F = BK+BT = [
B1, B2, . . . , Bs

]

⎡

⎢⎢
⎣

K+
1 O . . . O

O K+
2 . . . O

. . . . . . . . . . . .

O O . . . K+
s

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

BT
1

BT
2

. . .

BT
s

⎤

⎥⎥
⎦ =

s∑

i=1

BiK+
i BT

i .

Since the columns of Bi that correspond to the interior nodes of Ω i are formed by
zero vectors, we can renumber the variables to get Bi = [Ci O] and

c‖λ‖2 ≤
s∑

i=1

‖CT
i λ‖2 ≤ C‖λ‖2.

Let us now denote by Si the Schur complement of Ki , i = 1, . . . , s, with respect
to the interior variables. Notice that it is well defined, as eliminating of the interior
variables of any subdomain amounts to solving the Dirichlet problem which has a
unique solution. Moreover, if we denote by B the set of all indices which correspond
to the variables on the boundary of Ωi and choose a generalized inverse S+

i , we can
use Lemma 2.2 to get

F = BK+BT =
s∑

i=1

BiK+
i BT

i =
s∑

i=1

CiS+
i CT

i = B∗BS+BT
∗B,

where
S = diag(S1, . . . , Ss).

For the analysis, we shall choose the Moore–Penrose generalized inverse K†.
Observing that for each λ ∈ R

m , BTPλ ∈ ImK, ImK = ImK†, and by Lemma 2.2
BT

∗BPλ ∈ ImS†, we get

λTPFPλ = λTPBK†BTPλ = λTPB∗BS†BT
∗BPλ.

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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Using the assumptions, we get for any λ ∈ ImP

cλ−1
max(S)‖λ‖2 ≤ λ−1

max(S)‖BTλ‖2 ≤ λTB∗BS†BT
∗Bλ ≤ λ

−1
min(S)‖BTλ‖2

≤ Cλ
−1
min(S)‖λ‖2.

To finish the proof, notice that

λmax(S) = max
i=1,...,s

λmax(Si ) = max
i=1,...,s

‖Si‖ and λmin(S) = min
i=1,...,s

λmin(Si ). �

Remark 10.1 Lemma 10.2 indicates that the conditioning of H can be improved by
the orthonormalization of the rows of the constraint matrix B.

We have reduced the problem to bound the spectrum σ(H) of H to the analysis of
the spectra σ(Si ) of the Schur complements of the stiffness matrices of the subdo-
mains with respect to their interior. The following lemma is important in the analysis
of optimality of the presented algorithms.

Lemma 10.3 Let H and h denote the decomposition and discretization parameter,
respectively, and let SH,h denote the Schur complement of the stiffness matrix of a
subdomain of Ω with respect to its interior.

Then there are constants c and C independent of h and H such that for each
λ ∈ ImSH,h

c
h

H
‖λ‖2 ≤ λTSH,hλ ≤ C‖λ‖2. (10.28)

Proof See, e.g., Bramble, Pasciak, and Schatz [7] or Pechstein [8, Theorem 2.38 and
its proof]. The estimate was a key ingredient of the first optimality analysis of FETI
for linear problems by Farhat, Mandel, and Roux [9]. �

The following theorem is now an easy corollary of Lemma 10.2 and Lemma 10.3.

Theorem 10.1 Let ρ > 0 and let Hρ,H,h denote the Hessian of θρ resulting from the
decomposition and discretization of problem (10.7) with the parameters H and h.

Then there are constants c and C independent of h and H such that for each
λ ∈ R

n

c‖λ‖2 ≤ λTHρ,H,hλ ≤ C
H

h
‖λ‖2. (10.29)

Proof Substitute (10.28) into Lemma 10.2, take into account the regularization term
ρQ, and notice that (10.26) is satisfied with c = 1 and C = 4. �
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10.8 Optimality

To show that Algorithm 9.2 (SMALBE) with the inner loop implemented by Algo-
rithm 8.2 (MPRGP) is optimal for the solution of a class of problems arising from
the varying discretizations of a given variational inequality, let us introduce new
notations which comply with that used in the analysis of algorithms in Part II.

Let
T = {(H, h) ∈ R

2 : H ≤ 1, 0 < 2h ≤ H, and H/h ∈ N}

denote the set of indices, where N denotes the set of all positive integers. Given a
constant C ≥ 2, we shall define a subset TC of T by

TC = {(H, h) ∈ T : H/h ≤ C}.

For any t ∈ T and ρ > 0, we define

At = PFP + ρQ, bt = Pd,

Bt = G, � t
I = −˜λI

by the vectors and matrices arising from the discretization of (10.11) with the dis-
cretization and decomposition parameters H and h, t = (H, h), so that we get a class
of problems

min ft (λ) s.t. Btλ = o and λI ≥ � t
I , t ∈ TC , (10.30)

with ft (λ) = 1
2λTAtλ − bT

t λ. Using Lemma 10.1, we can achieve that � t
I ≤ o, and

using GGT = I, we obtain
‖Bt‖ ≤ 1. (10.31)

It follows by Theorem 10.1 that for any C ≥ 2, there are constants aCmax > aCmin > 0
such that

aCmin ≤ λmin(At ) ≤ λmax(At ) ≤ aCmax (10.32)

for any t ∈ TC . As above, we denote by λmin(At ) and λmax(At ) the extreme eigen-
values of At . Our optimality result then reads as follows.

Theorem 10.2 Let C ≥ 2, ρ > 0, and ε > 0 denote given constants and let
{λk

t }, {μk
t } be generated by Algorithm 9.2 (SMALBE-M) for (10.30) with

‖bt‖ ≥ ηt > 0, 1 > β > 0, Mt,0 > 0, μ0
t = o.

Let Step 1 of Algorithm 9.2 be implemented by means of Algorithm 8.2 (MPRGP)
with parameters Γ > 0 and α ∈ (0, 2/aCmax), so that it generates the iterates

λk,0
t ,λk,1

t , . . . ,λk,l
t = λk

t
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for the solution of (10.30) starting from λ
k,0
t = λk−1

t with λ−1
t = o, where l = lt,k is

the first index satisfying

‖gP(λk,l
t ,μk

t , ρt,k)‖ ≤ Mt,k‖Btλ
k,l
t ‖ (10.33)

or
‖gP(λ

kt
t ,μ

kt
t , ρt,kt )‖ ≤ ε‖bt‖ and ‖Btλ

kt
t ‖ ≤ ε‖bt‖. (10.34)

Then for any t ∈ TC and problem (10.30), an approximate solution λ
kt
t which

satisfies (10.34) is generated at O(1)matrix–vectormultiplications by theHessianAt

of ft .

Proof The class of problems satisfies all assumptions of Theorem 9.4 (i.e., the
inequalities (10.31) and (10.32)). The rest follows by Theorem 9.4. �

Since the cost of matrix–vector multiplications by the Hessian At is proportional
to the number of dual variables, Theorem 10.2 proves the numerical scalability of
SMALBE for (10.30) provided the bound constrained minimization in the inner loop
is implemented by means of MPRGP. The parallel scalability follows directly from
the discussion at the end of Sect. 2.4. See also the next section.

10.9 Numerical Experiments

In this section, we illustrate the numerical scalability of TFETI on the solution of
model variational inequalities (10.1).

The domain Ω was first partitioned into identical squares with the side

H ∈ {1, 1/2, 1/4, 1/8, 1/16, 1/32}.

The square subdomains were then discretized by regular grids with the discretization
parameter h = H/128, so that the discretized problems have the primal dimension n
ranging from 33, 282 to 34,080,768. The computations were performed with the
recommended parameters including

M0 = 1, ρ = ‖At‖, Γ = 1, and ε f = εe = ε = 10−4.

Thus the stopping criterion was

‖gP
t (λk)‖ ≤ 10−4‖bt‖ and ‖Btλ

k‖ ≤ 10−4‖bt‖.

http://dx.doi.org/10.1007/978-1-4939-6834-3_9
http://dx.doi.org/10.1007/978-1-4939-6834-3_9
http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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The solutions for H = 1/4 and h = 1/4 are in Figs. 10.4 and 10.5. The results
of computations are in Fig. 10.6. We can see that the numbers of matrix–vector
multiplications (on vertical axis) vary moderately in agreement with Theorem 10.2
up to a few millions of nodal variables. The reason for the increased number of
iterations for large problems is not clear. The latter could have been caused by very
fine discretization, unmatched by the discretization of any 3D problem, the increased
number of zero active multiplicators, rounding errors, etc.
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10.10 Comments and References

The solvability, approximation, and classical numerical methods for elliptic bound-
ary variational inequalities are discussed in the books by Glowinski [10], Glowinski,
Lions, and Trèmoliéres [11], and Hlaváček et al. [2]. The dual (reciprocal) formula-
tion of boundary variational inequalities can be found, e.g., in the books by Duvaut
and Lions [1] and Hlaváček et al. [2]. More problems described by variational inequal-
ities can be found in Duvaut and Lions [1]. For scalar contact problems, see Sofonea
and Matei [12] or Migorski, Ochal, and Sofonea [13].

The first steps toward the development of scalable algorithms for variational
inequalities were based on multigrid methods. Hackbusch and Mittelmann [14] and
Hoppe [15] used the multigrid to solve auxiliary linear problems and gave a numerical
evidence of the efficiency of their algorithms. Using the observations related to Man-
del [16], Kornhuber [17] proved the convergence of his monotonic multigrid method.
Later overview of multigrid solvers can be found in Gräser and Kornhuber [18].

Our presentation is based on FETI which was proposed by Farhat and Roux [19,
20]. A milestone in the development of domain decomposition algorithms was the
proof of numerical scalability of FETI with preconditioning by the “natural coarse
grid” by Farhat, Mandel, and Roux [9]. TFETI was proposed for linear problems
independently by Dostál, Horák, and Kučera [21] and Of (all floating BETI) [22],
[23]. The idea was considered earlier by Park, Felippa, and Gumaste [24].

Augmented Lagrangians for equality constraints were often used to implement
active constraints as in Glowinski and LeTallec [25] or Simo and Laursen [26]. The
algorithm that combines FETI with the augmented Lagrangians in the outer loop
and the inexact solution of bound constrained problems in the inner loop appeared in
Dostál, Friedlander, and Santos [27]. See also Dostál, Gomes, and Santos [4, 6]. The
first result on the numerical scalability of an algorithm for the solution of a variational
inequality used an optimal penalty in dual FETI problem [28]. Using special features
of 2D problems, the optimality was proved also for the FETI–DP based algorithm
[29, 30] including the solution of coercive problems with non-penetration condition
imposed by mortars [31]. An experimental evidence of the scalability of the algorithm
with the inner loop implemented by the proportioning [32] was given in Dostál and
Horák [33]. The complete proof of optimality that we present here appeared in Dostál
and Horák [34].

Other results related to the scalability include Badea, Tai, and Wang [35], who
proved the linear rate of convergence for an additive Schwarz domain decomposi-
tion method which assumes the exact solution of nonlinear subdomain problems.
The variants of two-level FETI methods with preconditioning in face applied to the
solution of auxiliary linear problems arising in the solution of the model variational
inequality introduced in Sect. 10.1 can be found in Lee [36]. See also the comments
in the following chapter.
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Chapter 11
Frictionless Contact Problems

Now we shall extend the results introduced in the previous chapter to the solution
of multibody contact problems of elasticity without friction. We shall restrict our
attention to the problems of linear elasticity, i.e., we shall assume small deforma-
tions and linear stress-strain relations. Moreover, we shall be interested mainly in
computationally challenging 3D problems.

The presentation of TFETI for the solution of frictionless contact problems is very
similar to the presentation of TFETI for the solution of scalar variational inequalities
in the previous chapter. The main difference, apart from more complicated formulae
and kernel spaces, is in the discretization of linearized non-penetration conditions.
Here we shall restrict our attention to the most simple node-to-node non-penetration
conditions, leaving the discussion of more sophisticated biorthogonal mortars to
Chap.15.

The FETI-type domain decomposition methods comply well with the structure
of contact problems, the description of which enhances the decomposition into the
subdomains defined by the bodies involved in the problem. Notice that if we decom-
pose the bodies into subdomains, we can view the result as a newmultibody problem
to find the equilibrium of a system of bodies that are possibly glued and do not
penetrate each other. The FETI methods treat each domain separately, which can
be effectively exploited in a parallel implementation. Moreover, the algorithm treats
very efficiently the “floating” bodies, the Dirichlet boundary conditions of which
admit a rigid body motion. A unique feature of FETI is the existence of a projector to
the coarse space the complement of which contains the solution. Thus even though
the presented methods were developed primarily for the parallel implementation,
they are also effective in a sequential implementation.

The basic TFETI-based algorithms presented here can use effectively tens of thou-
sands of cores to solve both coercive and semicoercive contact problems decomposed
into tens of thousands of subdomains and discretized by billions of nodal variables.
For larger problems, the initialization of the iterative solving procedure, in particular
the projectors, starts to dominate the costs. Somemodification for emerging exascale
technologies are described in Chap.19.
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11.1 Linearized Non-penetration Conditions

Let a system of bodies in a reference configuration occupy open bounded domains
Ω1, . . . ,Ωs ⊂ R

3 with the Lipchitz boundaries Γ 1, . . . , Γ s . Suppose that some Γ p

comprises a part Γ
pq

C ⊆ Γ p that can get into contact with Ω
q
as in Fig. 11.1. We

assume thatΓ p
C is sufficiently smooth, so that there is awell-defined outer unit normal

np(x) at almost each point x ∈ Γ
p

C .

fΓ

Ω1

Ω2

Γ 1
U

Γ 2
U

Γ 1
C = Γ 12

C

Γ 2
C = Γ 21

C

Γ 2
U

Γ 1
F

Γ 2
F

Γ 1
F

Fig. 11.1 Two-body contact problem

After the deformation, each point x ∈ Ω p ∪ Γ p is transformed into

yp(x) = xp + up(x),

where up = up(xp) is the displacement vector which defines the deformation ofΩ p.
The mapping yp : Ω

p → R
3 is injective and continuous. The non-penetration con-

dition requires

xp ∈ Γ
p

C ⇒ xp + up(xp) /∈ Ωq , q ∈ {1, . . . , s}, p �= q, .

It is difficult to enhance the latter condition into an effective computational
scheme, so we shall replace it by linearized relations. From each couple {p, q}
which identify Γ

pq
C �= ∅, we choose one index to identify the slave side of a possible

contact interface. This choice defines the contact coupling set S of all ordered cou-
ples of indices the first component of which refers to the nonempty slave side of the
corresponding contact interface. For each (p, q) ∈ S , we then define a one-to-one
continuous mapping

χ pq : Γ
pq

C → Γ
qp

C
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which assigns to each x ∈ Γ
pq

C a point of the master side Γ
qp

C ⊆ Γ
q

C that is assumed
to be after the deformation near to x, as in Fig. 11.2. The (strong) linearized non-
penetration condition then reads

(
up(x) − uq ◦ χ pq(x)

) · np(x) ≤ (
χ pq(x) − x

) · np(x), x ∈ Γ
pq

C , (p, q) ∈ S ,

(11.1)
where np is an approximation of the outer unit normal to Γ p after the deformation.

x

np

χ pq(x)

Γ qp
C ⊆ Γ q

C

Γ pq
C ⊆ Γ p

C

Fig. 11.2 Linearized non-penetration

The linearized condition is exact if np = np(x) is orthogonal to Γ
pq

C in the
deformed state and the vector χ pq(x) − x moves into the position which is par-
allel with np. This observation can be used to develop an iterative improvement for
enforcing the non-penetration condition. See also the discussions in the books by
Kikuchi and Oden [1], Laursen [2], or Wriggers [3].

11.2 Equilibrium of a System of Elastic Bodies in Contact

Having described the non-penetration condition, let us switch to the conditions of
equilibrium of a system of bodies Ω1, . . . ,Ωs . Let each Γ p, p = 1, . . . , s, consists
of three disjoint parts Γ

p
U , Γ p

F , and Γ
p

C , Γ p = Γ
p
U ∪ Γ

p
F ∪ Γ

p
C , and let the volume

forces f p : Ω p → R
3, zero boundary displacements up

Γ : Γ
p

U → {o}, and the bound-
ary traction f p

Γ : Γ
p

F → R
3 be given. We admit Γ p

U = ∅, but in this case we assume
some additional restrictions to guarantee that a solution exists. To enhance the contact
with a rigid obstacle, we admit the bodies with a priori defined zero displacements. In
this case, only the contact boundary of such bodies is relevant in our considerations.

Let us choose a contact coupling setS , so that for each (p, q) ∈ S , Γ pq
C denotes

the part of Γ
p

C which can get into contact with Γ q , and let us define a one-to-one
continuous mapping χ pq : Γ

pq
C → Γ

qp
C onto the part Γ qp of Γ q which can come

into contact with Γ p. Thus

Γ
p
C = ∪(p,r)∈S Γ

pr
C and Γ

q
C = ∪(r,q)∈S Γ

rq
C .
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Let vp : Ω p ∪ Γ p → R
3, p = 1, . . . , s, denote a sufficiently smooth mapping,

so that the related concepts are well defined, and denote

v = (v1, . . . , vs), Ω = Ω1 ∪ . . . Ωs .

Notice that if x ∈ Ω , then there is a unique p = p(x) such that x ∈ Ω p, so we can
define

v(x) = vp(x)(x) for x ∈ Ω.

We assume that the small strain assumption is satisfied, so that the strain–
displacement relations are defined for any x ∈ Ω by Cauchy’s small strain tensor

ε(v)(x) = ε(v) = 1/2
(∇v + (∇v)T

)

with the components

ei j (v) = 1

2

(
∂v j

∂xi
+ ∂vi

∂x j

)
, i, j = 1, 2, 3. (11.2)

For simplicity, we assume that the bodies are made of an isotropic linear elastic
material so that the constitutive equation for the Cauchy stress tensor σ is given in
terms of the fourth-order Hooke elasticity tensor C by

σ(v) = Cε(v) = λtr(ε(v))Id + 2με(v), (11.3)

where λ > 0 and μ > 0 are the Lamé parameters which are assumed to be constant
in each subdomainΩ p, p = 1, . . . , s. The Lamé coefficients can be easily calculated
by means of the Poisson ratio ν and Young’s modulus E using

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
,

so the components of the elasticity tensor are given by

Ci jk
 = E

1 + ν

(
ν

1 − 2ν
δi jδk
 + δikδ j


)
, i, j, k, 
 = 1, 2, 3. (11.4)

The components of the stress tensor are given by

σi j (v) =
3∑

k,
=1

Ci jk
 ek
(v), i, j = 1, 2, 3.



11.2 Equilibrium of a System of Elastic Bodies in Contact 187

Using the above notations, the linearized elastic equilibrium condition and the
Dirichlet and Neumann boundary conditions for the displacement u = (u1, . . . ,us)

can be written as
−div σ(u) = f in Ω,

up = o on Γ
p

U ,

σ (up)np = f p
Γ on Γ

p
F ,

(11.5)

where np denotes the outer unit normal to Γ p which is defined almost everywhere.
Here we assume that all objects are sufficiently smooth so that the equations can be
satisfied point-wise, postponing more realistic assumptions to the next section. The
equations can be written componentwise, e.g., the first equation of (11.5) reads

−
3∑

j=1

∂

∂x j
σi j (u) + fi = 0 in Ω, i = 1, 2, 3.

To complete the classical formulation of frictionless contact problems, we have to
specify the boundary conditions onΓC . Assuming that (p, q) ∈ S , we can use (11.1)
and (11.7) to get the non-penetration condition

(u − u ◦ χ) · n ≤ g, x ∈ Γ
p

C , (p, q) ∈ S , (11.6)

where we use the notation
(
u − u ◦ χ

) · n = (
up(x) − uq ◦ χ pq(x)

) · np(x), x ∈ Γ
pq

C ,

g = (
χ pq(x) − x

) · np(x), x ∈ Γ
pq

C .
(11.7)

The surface traction λ on the slave side of the active contact interface Γ
pq

C and on
the rest of Γ

pq
C is given by

λ = λN = −σ(up)np and λ = o,

respectively. Since we assume that the contact is frictionless, the tangential compo-
nent of λ is zero, i.e.,

λ = (λ · np)np,

and the linearized conditions of equilibrium read

λ · np ≥ 0 and (λ · np)
((
up − uq ◦ χ

)
np − g

) = 0, x ∈ Γ
pq

C , (p, q) ∈ S .

(11.8)
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The last condition in (11.8) is called the complementarity condition. Newton’s
law requires that the normal traction acting on the contacting surfaces is equal and
opposite, so that

− σ(uq ◦ χ)np = −λ, x ∈ Γ
pq

C , (p, q) ∈ S . (11.9)

The system of equations and inequalities (11.5)–(11.9) with the assumption that
the tangential component of λ is zero represents the classical formulation of multi-
body frictionless contact problems. Denoting by λn and [un] the contact stress and
the jump of the boundary displacements, respectively, i.e.,

λn = λ · np, [un] = (
up − uq ◦ χ

) · np, x ∈ Γ
pq

C ,

we can write the contact conditions briefly as

[un] ≤ g, λn ≥ 0, λn([un] − g) = 0, λ = λnnp, x ∈ Γ
pq

C , (p, q) ∈ S .

(11.10)

11.3 Variational Formulation

The classical formulation of contact problem (11.5) and (11.10) makes sense only
when the solution complieswith strong regularity assumptionswhich are not satisfied
by the solution of realistic problems. For example, if a body is not homogeneous,
the equilibrium on the material interface requires additional equations.

The basic idea is to require that the equilibrium conditions are satisfied in some
average. To formulate it more clearly, let us define the spaces

V p =
{
v ∈ (

H 1(Ω p)
)3 : v = o on Γ

p
U

}
, p = 1, . . . , s, V = V 1 × · · · × V s,

and the convex set

K = {
v ∈ V : [vn] ≤ g on Γ

pq
C , (p, q) ∈ S

}
.

Let us first assume that up, vp ∈ V p are sufficiently smooth, so that we can define

σ(up) : ε
(
vp

) =
3∑

i, j=1

σi j (up)εi j
(
vp

)
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and the bilinear form

a p(up, vp) =
∫

Ω p

σ
(
vp

) : ε
(
up

)
dΩ.

Using the symmetry of σ , we can get an alternative expression for a p by means of

σ
(
up

) : ε
(
vp

) = 1

2

3∑

i, j=1

σi j (up)

(
∂vp

i

∂x j
+ ∂vp

j

∂xi

)

= 1

2

3∑

i, j=1

(

σi j (up)
∂vp

i

∂x j
+ σ j i (vp)

∂vp
j

∂xi

)

(11.11)

=
3∑

i, j=1

σi j (up)
∂vp

i

∂x j
= σ(up) : ∇vp.

Let us assume that u ∈ K is a sufficiently smooth solution of (11.5) and (11.10),
and let v ∈ V be sufficiently smooth, so that the Green formula is valid, i.e.,

∫

Ω p

σ(up) : ∇(vp − up) dΩ = −
∫

Ω p

div σ(up) · (vp − up) dΩ (11.12)

+
∫

Γ p

σ(up)np · (vp − up) dΓ.

After multiplying the first equation of (11.5) by vp − up and integrating the result
over Ω p, we get

−
∫

Ω p

div σ(up) · (vp − up) dΩ =
∫

Ω p

f p · (vp − up) dΩ.

We can also use (11.11) and (11.12) to get

a p(up, vp − up) = −
∫

Ω p
div σ(up) · (vp − up) dΩ +

∫

Γ p
σ(up)np · (vp − up) dΓ.

After comparing the latter two equations and summing up, we get

s∑

p=1

a p(up, vp − up) =
s∑

p=1

∫

Ω p
f p · (vp − up) dΩ +

s∑

p=1

∫

Γ p
σ(up)np · (vp − up) dΓ.

Using the boundary conditions, the boundary integrals can be modified to
∫

Γ p
σ(up)np · (vp − up) dΓ =

∫

Γ
p

F

f p
Γ · (vp − up) dΓ +

∫

Γ
p

C

σ(up)np · (vp − up) dΓ.
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Denoting

a(u, v) =
s∑

p=1

a p(u, v), 
(v) =
s∑

p=1

∫

Γ
p

F

f p
Γ · (vp − up) dΓ +

s∑

p=1

∫

Ω p
f p · (vp − up) dΩ,

we can rewrite the above relations as

a(u, v − u) = 
(v − u) +
s∑

p=1

∫

Γ
p

C

σ(up)np. (vp − up) dΓ. (11.13)

Moreover, assuming that (p, q) ∈ S , np = −nq ◦ χ , and v ∈ K , we get

∫

Γ
pq

C

σ(up)np · (vp − up) dΓ +
∫

Γ
qp

C

σ(uq)nq · (vq − uq) dΓ

=
∫

Γ
p

C

λ · (
up − vp + (

vq − uq) ◦ χ pq
)
dΓ

=
∫

Γ
p

C

λn([un] − [vn]) dΓ

=
∫

Γ
p

C

λn([un] − g + g − [vn]) dΓ

=
∫

Γ
p

C

λn(g − [vn]) dΓ ≥ 0,

so any solution u of the frictionless problem (11.5) and (11.10) satisfies the
variational inequality

a(u, v − u) ≥ 
(v − u), v ∈ K . (11.14)

Inequality (11.14) characterizes a minimizer of the quadratic function

q(v) = 1

2
a(v, v) − 
(v)

defined on V (Theorem 4.5). Denoting v = u + d, we can rewrite (11.14) as

a(u,d) − 
(d) ≥ 0, u + d ∈ K ,

so

q(u + d) − q(u) = a(u,d) − 
(d) + 1

2
a(d,d) ≥ 0,

i.e.,
u = arg min

v∈K
q(v). (11.15)

http://dx.doi.org/10.1007/978-1-4939-6834-3_4
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The inequality (11.14) and problem (11.15) are well defined for more general
functions than the piece-wise continuously differentiable functions assumed in (11.5)
and (11.10). Indeed, if f p ∈ L2(Ω p) and f p

Γ ∈ L2(Γ
p

F ), then a and 
 can be evaluated
with v ∈ V provided the boundary relations concerning vp are interpreted in the
sense of traces. Moreover, it can be proved that if u is a solution of such generalized
problem, then it has a natural mechanical interpretation.

It is well known that a minimizer of q onK exists when q is coercive onK , i.e.,

v ∈ K , ‖v‖ → ∞ ⇒ q(v) → ∞,

with the norm induced by the broken scalar product

(u, v) =
s∑

p=1

∫

Ω p

uv dΩ.

If Γ
p

U = ∅ for some p ∈ {1, . . . , s}, then the coercivity condition is satisfied if

a(v, v) = 0 ⇒ 
(v) < 0, v ∈ K . (11.16)

In this case a solution exists, but it need not be unique.

11.4 Tearing and Interconnecting

Our next step is to reduce the contact problem into a number of “small” problems
at the cost of introducing additional constraints. To this end, let us decompose each
Ω p into subdomains with sufficiently smooth boundaries as in Fig. 11.3, assign each
subdomain a unique number, and introduce new “gluing” conditions on the artificial
inter-subdomain boundaries. In the early papers, the subdomains were required to be
quasi-regular and have similar shape and size. The latter conditions indeed affect the
performance of the algorithms, but they are not necessary for the optimality theory.

We decompose appropriately also the parts of the boundaries Γ
p

U , Γ
p

F , and Γ
p

C ,
p = 1, . . . s, and introduce their numbering to comply with the decomposition of the
subdomains. For the artificial inter-subdomain boundaries, we introduce a notation
in analogy to that concerning the contact boundary, i.e., Γ pq

G denotes the part of Γ p

which is “glued” to Γ
qp

G . Obviously Γ
pq

G = Γ
qp

G and it is possible that Γ pq = ∅. We
shall also tear the boundary subdomains from the boundary and enforce the Dirichlet
boundary conditions by the equality constraints. An auxiliary decomposition of the
problem of Fig. 11.1 with renumbered subdomains is in Fig. 11.3.
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Ω1

Ω2

Ω1

Ω3

Ω2

Ω4

λλλ E

λλλ I

Fig. 11.3 TFETI domain decomposition with subdomain renumbering

To enhance the gluing conditions

up = uq , x ∈ Γ
pq

G , (11.17)

σ(up)np = −σ(uq)nq , (11.18)

into the variational formulation, we shall choose the contact coupling setS and the
test spaces

V p
DD =

{
v ∈

(
H1(Ω p)

)3 : vp = o on Γ
p

U

}
, p = 1, . . . s,

VDD = V 1 × · · · × V s ,

KDD = {
v ∈ VDD : [vn] ≤ g on Γ

pq
C , (p, q) ∈ S ; vp = vq on Γ

pq
G , p, q = 1, . . . , s.

}
,

where the relations should be interpreted in the sense of traces. Recall that for
x ∈ Γ

pq
C , (p, q) ∈ S , and v ∈ KDD ,

[vn] = (vp − vq ◦ χ pq) · np, g = (χ pq(x) − x) · np.

If u is a classical solution of the decomposed problem which satisfies the gluing
conditions (11.17) and (11.18), then for any v ∈ KDD and p, q = 1, . . . s,

∫

Γ
pq

G

σ(up)np · (vp − up) dΓ +
∫

Γ
qp

G

σ(uq)nq · (vq − uq) dΓ = 0.
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It follows that the inequality (11.14) holds also for the forms defined for the decom-
posed problems. Denoting

a(u, v) =
s∑

p=1

a p(up, vp),


(v) =
s∑

p=1

∫

Γ
p

F

f p
Γ · (vp − up) dΓ +

s∑

p=1

∫

Ω p

f p · (vp − up) dΩ,

we conclude that any classical solution u of the frictionless decomposed problem
(11.5), (11.10), (11.17), and (11.18) satisfies the variational inequality

a(u, v − u) ≥ 
(v − u), v ∈ KDD, (11.19)

and by Theorem 4.5

q(u) ≤ q(v), v ∈ KDD, q(v) = 1

2
a(v, v) − 
(v). (11.20)

It can be proved that any sufficiently sooth solution of (11.19) or (11.20) is a classical
solution of the frictionless contact problem.

11.5 Discretization

Let us now decompose each subdomain into elements, e.g., tetrahedra, the shape of
which is determined by the position of selected nodes (vertices), and let h denote
the maximum of the diameters of the elements. We consider such decomposition
as a member of the family of elements Th . We assume that the elements are shape
regular, i.e., there is a constant cs > 0 independent of h such that the diameter h(τ )

of each element τ ∈ T h and the radius ρ(τ) of the largest ball inscribed into τ satisfy

ρ(τ) ≥ csh(τ ),

and that the discretization is quasi-uniform, i.e., there is a constant cd > 0 indepen-
dent of h such that for any element τ ∈ T h(Ω)

h(τ ) ≥ cd h.

We also assume that the subdomains consist of the unions of elements, i.e., the
subdomain boundaries do not cut through any element and the grids are matching
on the “gluing” interface of the subdomains. Here we also assume that the grids are
matching on the contact interface, i.e., the set of nodes on each slave part Γ

pq
C of a

http://dx.doi.org/10.1007/978-1-4939-6834-3_4
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contact interface is mapped by a bijection χ pq onto the set of nodes on themaster part
Γ

qp
C of the contact interface, postponing the generalization to Chap.15. The finite

element approximation of (11.20) gives rise to the QP problem

min
1

2
uT Ku − fTu subject to BIu ≤ cI and BEu = cE , (11.21)

where
K = diag(K1, . . . , Ks)

denotes an SPS block-diagonal matrix of order n, BI denotes an m I × n full rank
matrix, BE denotes an m E × n full rank matrix, f ∈ R

n , cI ∈ R
m I , and cE ∈ R

m E .
We use the same notation for nodal displacements as we used for continuous dis-
placements. We shall sometimes denote the nodal displacements by uh , indicating
that it was obtained by the discretization with the finite elements with the diameter
less or equal to h.

The blocks Kp, which correspond to Ω p, are SPS sparse matrices with known
kernels, the rigid body modes. Since we consider 3D problems, the dimensions of
the kernels of Kp and K are six and 6s, respectively. The vector f describes the nodal
forces arising from the volume forces and/or some other imposed traction.

The matrix BI ∈ R
m I ×n and the vector cI describe the linearized non-penetration

conditions. The rows bk ofBI are formed by zeros and appropriately placedmultiples
of coordinates of an approximate outer unit normal on the slave side. If np is an
approximate outer normal vector at xp ∈ Γ

p
C on the slave side and xq = χ(xp) is the

corresponding node on the master side, then there is a row bk∗ of BI such that

bkuh = (
up

h − uq
h

)T
np,

where up
h and uq

h denote the discretized displacements at xp and xq , respectively. The
entry ck of cI describes the normal gap between some xp and xq , i.e.,

ck = (xp − xq)Tnp.

ThematrixBE ∈ R
m E ×n enforces the prescribed zero displacements on the part of

the boundary with imposed Dirichlet’s condition and the continuity of the displace-
ments across the auxiliary interfaces. The continuity requires that biuh = ci = 0,
where bi are the rows of BE with zero entries except 1 and −1 at appropriate posi-
tions. Typically m = m I + m E is much smaller than n. If k subdomains have a joint

node x, i.e., x ∈ Ω
i1 ∩ · · · ∩ Ω

ik , then the gluing of the subdomains at x for 3D prob-
lems requires 3(k − 1) rows of BE . Notice that the rows of BE that are associated
with different nodes are orthogonal, so that we can use effectively the Gram–Schmidt
orthonormalization procedure to get BE with orthonormal rows.

Remark 11.1 We can achieve that the rows of B = [BT
E , BT

I ]T are orthonormal pro-
vided each node is involved in at most one inequality. This is always possible for two

http://dx.doi.org/10.1007/978-1-4939-6834-3_15
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bodies or any number of smooth bodies. To simplify the formulation of optimality
results, we shall assume in what follows (except Chap.15) that

BBT = I. (11.22)

11.6 Dual Formulation

Even though (11.21) is a standard convex QP problem, its formulation is not suitable
for numerical solution. The reasons are that K is typically ill-conditioned, singular,
and the feasible set is in general so complex that projections onto it can hardly be
effectively computed.Under these circumstances, it would be very difficult to achieve
fast identification of the solution active set and to find a fast algorithm for the solution
of auxiliary linear problems.

The complications mentioned above can be essentially reduced by applying the
duality theory of convex programming (see Sect. 3.7). The Lagrangian associated
with problem (11.21) reads

L(u,λI ,λE ) = 1

2
uT Ku − fTu + λT

I (BIu − cI ) + λT
E (BEu − cE ), (11.23)

where λI and λE are the Lagrange multipliers associated with the inequalities and
equalities, respectively. Introducing the notation

λ =
[

λI

λE

]
, B =

[
BI

BE

]
, and c =

[
cI

cE

]
,

we can write the Lagrangian briefly as

L(u,λ) = 1

2
uT Ku − fTu + λT (Bu − c).

Using Proposition 3.13, we get that (11.21) is equivalent to the saddle point problem

L (̂u, λ̂) = sup
λI ≥o

inf
u

L(u,λ). (11.24)

For a fixed λ, the Lagrange function L(·,λ) is convex in the first variable and the
minimizer u of L(·,λ) satisfies

Ku − f + BT λ = o. (11.25)

Equation (11.25) has a solution if and only if

f − BT λ ∈ ImK, (11.26)

http://dx.doi.org/10.1007/978-1-4939-6834-3_15
http://dx.doi.org/10.1007/978-1-4939-6834-3_3
http://dx.doi.org/10.1007/978-1-4939-6834-3_3
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which can be expressed more conveniently by means of a matrix R the columns of
which span the null space of K as

RT (f − BT λ) = o. (11.27)

The matrix R may be formed directly, block by block, using any basis of the rigid
body modes of the subdomains. In our case, each Ω p is assigned six columns with
the blocks ⎡

⎣
0 −zi yi 1 0 0
zi 0 −xi 0 1 0

−yi xi 0 0 0 1

⎤

⎦

and O ∈ R
3×6 associated with each node Vi ∈ Ω

p
and Vj /∈Ω

p
, respectively. Using

the Gramm–Schmidt procedure, we can find Ri such that

ImRi = Ker Ki , R = diag(R1, . . . , Rs), RT R = I.

Now assume that λ satisfies (11.26), so that we can evaluate λ from (11.25) by
means of any (left) generalized matrix K+ which satisfies

KK+K = K. (11.28)

It may be verified directly that if u solves (11.25), then there is a vector α such that

u = K+(f − BT λ) + Rα. (11.29)

The evaluation of the action of a generalized inverse which satisfies (11.28) is
simplified by the block structure of K. Using Lemma 2.1, the kernel of each stiffness
matrix Ki can be used to identify a nonsingular submatrix KII of the same rank
as Ki . The action of the left generalized inverse K#

i (2.6) can be implemented by
Cholesky’s decomposition. Observe that

K# = diag(K#
1, . . . , K#

s ).

Alternatively, it is possible to use the fixing points strategy of Sect. 11.7.
After substituting expression (11.29) into problem (11.24), changing the signs,

and omitting the constant term, we get that λ solves the minimization problem

min �(λ) s.t. λI ≥ o and RT (f − BT λ) = o, (11.30)

where

�(λ) = 1

2
λT BK+BT λ − λT (BK+f − c). (11.31)

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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Once the solution λ̂ of (11.30) is known, the solution û of (11.21)may be evaluated
by (11.29) with

α = (RT B̃T B̃R)−1RT B̃T (c̃ − B̃K+(f − BT λ̂)),

where B̃ = [
B̃T

I , BT
E

]T
and B̃I and c̃I are formed by the rows of BI and the compo-

nents of cI that correspond to the positive entries of λI .

11.7 Stable Evaluation of K+x by Using Fixing Nodes

In Sect. 2.4, we described an effective method that can be used for the identification
of a nonsingular submatrixKRR of the local stiffnessmatrixKi that has its dimension
equal to the rank of Ki and used it to the effective evaluation of the action of K+.
Here we shall describe an alternative procedure that can be applied when KRR is
ill-conditioned.

To simplify the notation, let us assume thatK = Ki ∈ R
n×n . If we choose M nodes

that are neither near each other nor placed near any line, M ≥ 3, then the submatrix
KRR of K defined by the set R of remaining indices is “reasonably” nonsingular.
This is not surprising, since KRR is the stiffness matrix of the body that is fixed at
the chosen nodes. Using the arguments of mechanics, we deduce that fixing of the
chosen nodes makes the body stiff. We call the M chosen nodes the fixing nodes and
denote byF the set of indices of the fixed displacements.

We start with the reordering of K to get

K̃ = PKPT =
[

KRR KRF

KFR KFF

]

=
[

LRR O

LFR I

] [
LT
RR LT

FR

O S

]

, (11.32)

where LRR ∈ R
r×r is a lower factor of the Cholesky decomposition of KRR,

LFR ∈ R
s×r , s = 3M , LFR = KFRL−T

RR,P is a permutation matrix, andS ∈ R
s×s

is the Schur complement matrix of K̃ with respect to KRR defined by

S = KFF − KFRK−1
RRKRF .

To find P, we proceed in two steps. First we form a permutation matrix P1 to
decompose K into blocks

P1KPT
1 =

[
KRR KRF

KFR KFF

]

, (11.33)

where KRR is nonsingular and KFF corresponds to the degrees of freedom of
the M fixing nodes. Then we apply a suitable reordering algorithm on P1KPT

1 to get
a permutation matrix P2 which leaves the block KFF without changes and enables
the sparse Cholesky decomposition ofKRR. Further, we decomposePKPT as shown

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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in (11.32) withP = P2P1. To preserve the sparsity, we can use any sparse reordering
algorithm. The choice depends on the way in which the sparse matrix is stored and
on the problem geometry. Using Lemma 2.2, we get

K+ = PT

[
L−T
RR −L−T

RRLT
FRS+

O S+

] [
L−1
RR O

−LFRL−1
RR I

]

P, (11.34)

where S+ ∈ R
s×s denotes a left generalized inverse of S.

Since s is small, we can substitute for S+ the Moore–Penrose generalized inverse
S† ∈ R

s×s computed by SVD. Alternatively, we can use a sparse nonsingular gen-
eralized inverse. First observe that the eigenvectors of S that correspond to zero are
the traces of vectors from KerK on the fixing nodes. Indeed, if K̃e = o, then

KRReR + KRF eF = o, KFReR + KFF eF = o,

and
SeF = (K̃FF − K̃FRK̃−1

RRK̃RF )eF = o. (11.35)

Having the basis of the kernel od S, we can define the orthogonal projector

Q = RF∗
(
RT

F∗RF∗
)−1

RT
F∗

onto the kernel of S and specify S+ in (11.34) by

S+ = (S + ρQ)
−1 = S† + ρ−1Q, ρ > 0.

We use ρ ≈ ‖K‖. To see that S+ is a left generalized inverse, notice that

SS+S = S (S + ρQ)
−1 S = S

(
S† + ρ−1Q

)
S = SS†S + ρ−1SQS = S.

Such approach can be considered as a variant of regularization [4].
To implement the above-mentioned observations, it is necessary to have an effec-

tive procedure for choosing uniformly distributed fixing nodes. Here we describe
a simple but effective method that combines a mesh partitioning algorithm with a
method for finding a mesh center. The algorithm reads as follows.

Algorithm 11.1 Algorithm for finding M uniformly distributed fixing nodes in the graph of
the discretization.

Given a mesh and M > 0.
Step 1. Split the mesh into M submeshes using the mesh partitioning algorithm.
Step 2. Verify whether the resulting submeshes are connected. If not, use a graph

postprocessing to get connected submeshes.
Step 3. In each submesh, choose a node which is near its center.

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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Step 1 can be carried out by any code for graph decompositions such as METIS [5].
The implementation of Step 3 can be based on Corollary 2.1. If the mesh is approx-
imately regular, we can expect that more walks of length k originate from the nodes
that are near a center of the mesh. It simply follows that the node with the index i
which satisfies

w(i, k) ≥ w( j, k), j = 1, 2, . . . , n,

for sufficiently large k is in a sense near to the center of the mesh and can be used to
implement Step 3 of Algorithm 11.1.

Recall that the vector
p = lim

k→∞ ‖Dke‖−1Dke

is a unique nonnegative eigenvector which corresponds to the largest eigenvalue of
the mesh adjacency matrix D. It is also known as the Perron vector of D [6]. It can
be approximated by a few steps of the Lanczos method [7]. Thus the index of an
approximation of the component of the Perron vector of D is a good approximation
of the center of the graph of triangulation. See Brzobohatý et al. [8] for more details
and illustrations of the effect of the choice of fixing nodes on the conditioning of the
generalized inverses.

11.8 Preconditioning by Projectors to Rigid Body Modes

As in Chap.10, further improvement can be achieved by adapting some simple obser-
vations originating in Farhat,Mandel, andRoux [9]. Let us first simplify the notations
by denoting

F̃ = BK
+

BT , F = ‖F̃‖
F = F−1F̃, d̃ = F−1(BK+f − c),
G̃ = RT BT , ẽ = RT f,

and let T denote a regular matrix which defines the orthonormalization of the rows
of G̃ so that the matrix

G = TG̃

has orthonormal rows. After denoting

e = T̃e,

problem (11.30) reads

min
1

2
λT Fλ − λT d̃ s.t. λI ≥ o and Gλ = e. (11.36)

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
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For practical computation, we can use an approximate value of the norm

F ≈ ‖F̃‖.

Notice that a good approximation of ‖F̃‖ can be obtained by substituting the estimates
of ‖S−1

i ‖ into (10.27). The scaling of F was not necessary in Sect. 10.6.
As in Chap.10, we shall transform the problem of minimization on the subset of

an affine space to that on the subset of a vector space by means of arbitrary λ̃ which
satisfies

Gλ̃ = e. (11.37)

Having λ̃, we can look for the solution of (11.36) in the form λ = μ + λ̃. Though a
natural choice for λ̃ is the least squares solution

λ̃ = GT (GGT
)−1e,

the following lemma shows that if we solve a coercive problem (11.20), then we can
even find λ̃ such that λ̃I = o.

Lemma 11.1 Let the problem (11.21) be obtained by the discretization of a coercive
problem, i.e., let the prescribed displacements of each body Ω p be sufficient to prevent
its rigid body motion and let G = [GI , GE ]. Then GE is a full rank matrix and

λ̃ =
[

oI

GT
E (GE GT

E )−1e

]
(11.38)

satisfies λ̃I = oI and Gλ̃ = e.

Proof First observe that
G = [TG̃I , TG̃E ],

so it is enough to prove that G̃T
Eξ = BE Rξ = o implies ξ = o. Since the entries

of BE Rξ denote the jumps of Rξ across the auxiliary interfaces or the violation
of prescribed Dirichlet boundary conditions, it follows that BE Rξ = o implies that
u = Rξ satisfies both the discretized Dirichlet conditions and the “gluing” condi-
tions, but belongs to the kernel of K. Thus ξ �= o contradicts our assumption that the
problem (11.21) was obtained by a correct discretization of (11.20). �

Let us point out that the choice of λ̃ based on Lemma 11.1 guarantees o to be a
feasible vector of the homogenized problem. If the problem (11.20) is semicoercive,
we can achieve the same effect with λ̃ which solves

min
1

2
‖λ‖2 subject to Gλ = e and λ ≥ o.

http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
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To carry out the transformation, denote λ = μ + λ̃, so that

1

2
λT Fλ − λT d̃ = 1

2
μT Fμ − μT (̃d − Fλ̃) + 1

2
λ̃

T
Fλ̃ − λ̃

T
d̃

and problem (11.36) has, after returning to the old notation, the same solution as

min θ(λ) s.t. Gλ = o and λI ≥ �I = −λ̃I (11.39)

with

θ(λ) = 1

2
λT Fλ − λTd, d = d̃ − Fλ̃.

Let us point out that the proof of Lemma 11.1 is the only place where we need the
assumption that our problem (11.21) is coercive.

Our final step is based on the observation that problem (11.39) is equivalent to

min θρ(λ) s.t. Gλ = o and λI ≥ �I , (11.40)

where ρ is an arbitrary positive constant,

θρ(λ) = 1

2
λT (PFP + ρQ)λ − λT Pd, Q = GT G, and P = I − Q.

Recall that P and Q denote the orthogonal projectors on the image space of GT and
on the kernel of G, respectively. The regularization term is introduced in order to
simplify the reference to the results of QP that assume the nonsingular Hessian of f .

11.9 Bounds on the Spectrum

Problem (11.40) turns out to be a suitable starting point for the development of an
efficient algorithm for variational inequalities due to the favorable distribution of
the spectrum of the Hessian H = PFP + ρQ of the cost function θ . The following
lemma, the variant of Lemma 10.3 for linear elasticity, is important for the analysis
of optimality of the presented algorithms.

Lemma 11.2 Let H denote the diameter of a homogeneous body which occupies a
domain Ω ⊂ R

3, let KH,h denote its stiffness matrix obtained by the quasi-uniform
discretization with shape regular elements of the diameter less or equal to h, and let
SH,h denote the Schur complement of KH,h with respect to the interior nodes. Let the
constraint matrix B satisfy (11.22).

Then there are constants c and C independent of h and H such that

c
h2

H
‖λ‖2 ≤ λT SH,hλ ≤ Ch‖λ‖2, λ ∈ ImS. (11.41)

http://dx.doi.org/10.1007/978-1-4939-6834-3_10
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Proof The proof of Lemma 11.2 is similar to the proof of Lemma 10.3. The proof
of the upper bound follows from Lemma 13.1 and the obvious inequality

‖SH,h‖ ≤ ‖KH,h‖. �

The following theorem is now an easy corollary of Lemmas 10.2 and 11.2.

Theorem 11.1 Let ρ > 0 and let Hρ,H,h denote the Hessian of θρ resulting from the
decomposition and quasi-uniform finite element discretization of problem (11.20)
with shape regular elements using the decomposition and discretization parameters
H and h, respectively. Let (11.22) be true.

Then there are constants c and C independent of h and H such that

c‖λ‖2 ≤ λT Hρ,H,hλ ≤ C
H

h
‖λ‖2, λ ∈ R

m . (11.42)

Proof Substitute (11.41) into Lemma 10.2 and take into account the regularization
term ρQ with fixed ρ and the scaling of F.

Remark 11.2 A variant of the theorem was a key ingredient of the first optimality
analysis of FETI for linear problems by Farhat, Mandel, and Roux [9].

11.10 Optimality

To show that Algorithm 9.2 (SMALBE-M) with the inner loop implemented by
Algorithm 8.2 (MPRGP) is optimal for the solution of a class of problems arising
from varying discretizations of a given frictionless contact problem, let us introduce
a new notation that complies with that used in the analysis of the algorithms in Part II.

Let ρ > 0 and C ≥ 2 denote given constants and let

TC = {(H, h) ∈ R
2 : H/h ≤ C}

denote the set of indices. For any t ∈ TC , let us define

At = PFP + ρQ, bt = Pd,

Bt = G, � t
I = −λ̃I ,

where the vectors and matrices are those arising from the discretization of (11.20)
with t = (H, h). We assume that the discretization satisfies the assumptions of
Theorem 11.1 and �t

I ≤ o. We get a class of problems

min ft (λ) subject to Btλ = o and λI ≥ 
 t
I (11.43)

http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_13
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
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with

ft (λ) = 1

2
λT Atλ − bT

t λ.

Using these definitions and GGT = I, we obtain

‖Bt‖ ≤ 1. (11.44)

It follows by Theorem 11.1 that for any C ≥ 2 there are constants

aC
max > aC

min > 0

such that
aC
min ≤ αmin(At ) ≤ αmax(At ) ≤ aC

max (11.45)

for any t ∈ TC . In particular, it follows that the assumptions of Theorem 9.4 are
satisfied for any set of indices TC , C ≥ 2, and we can formulate the main result of
this chapter.

Theorem 11.2 Let C ≥ 2, ρ > 0, and ε > 0 denote given constants and let
{λk

t }, {μk
t }, and {Mt,k} be generated by Algorithm 9.2 (SMALBE-M) for (11.43) with

‖bt‖ ≥ ηt > 0, 1 > β > 0, Mt,0 = M0 > 0, ρ > 0, μ0
t = o.

Let Step 1 of Algorithm 9.2 be implemented by means of Algorithm 8.2 (MPRGP)
with parameters

Γ > 0 and α ∈ (0, 2/aC
max),

so that it generates the iterates

λk,0
t ,λk,1

t , . . . ,λk,l
t = λk

t

for the solution of (11.43) starting from λ
k,0
t = λk−1

t with λ−1
t = o, where l = lt,k is

the first index satisfying

‖gP(λk,l
t ,μk

t , ρ)‖ ≤ Mt,k‖Btλ
k,l
t ‖ (11.46)

or
‖gP(λk,l

t ,μk
t , ρ)‖ ≤ ε‖bt‖ and ‖Btλ

k,l
t ‖ ≤ ε‖bt‖. (11.47)

Then for any t ∈ TC and problem (11.43), Algorithm 9.2 generates an approxi-
mate solution λ

kt
t which satisfies (11.47) at O(1) matrix–vector multiplications by

the Hessian At of ft .

http://dx.doi.org/10.1007/978-1-4939-6834-3_9
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11.11 Numerical Experiments

The algorithms presented here were implemented in several software packages (see
Sect. 19.5) and tested on a number of academic benchmarks and real-world problems.
Here we give some results that illustrate their numerical scalability and effectiveness
usingMatSol (seeSect. 19.5.1 orKozubek et al. [10]), postponing the demonstration
of parallel scalability to Chap.19. All the computations were carried out with the
parameters recommended in the description of the algorithms in Chaps. 7–9. The
relative precision of the computations was ε = 10−4 (see (9.40)).

11.11.1 Academic Benchmark

Let us consider a 3D semicoercive contact problem of two cantilever beams of sizes
2 × 1 × 1 [m] inmutual contact without friction. The beams are depicted in Fig. 11.4.
Zero horizontal displacements were prescribed on right face of the upper beam. The
lower beam (shifted by 1 [m]) was fixed on its left face. The vertical traction f = 20
[MPa] was prescribed on the upper and left faces of the upper beam.

f

f
r

Fig. 11.4 Two beams benchmark and its decomposition

The problemwas discretized with varying discretization and decomposition para-
meters h and H , respectively. For each h and H , the bodies were decomposed
into 2/H × 1/H × 1/H subdomains discretized by hexahedral elements. We kept
H/h = 8, so that the assumptions of Theorem 11.2 were satisfied.

The performance of the algorithms is documented in the following graphs. The
numbers nout of the outer iterations of SMALBE and nHes of the multiplication by
the Hessian F of the dual function depending on the primal dimension n is depicted
in Fig. 11.5. We can see stable numbers of both inner and outer iterations for n
ranging from 431,244 to 11,643,588. The dual dimension of the problems ranged
from 88,601 to 2,728,955. We conclude that the performance of the algorithm is in
agreement with the theory.

http://dx.doi.org/10.1007/978-1-4939-6834-3_19
http://dx.doi.org/10.1007/978-1-4939-6834-3_19
http://dx.doi.org/10.1007/978-1-4939-6834-3_7
http://dx.doi.org/10.1007/978-1-4939-6834-3_9
http://dx.doi.org/10.1007/978-1-4939-6834-3_9
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Fig. 11.5 Cantilever beams—numbers of matrix—vector multiplications by F (left) and outer
iterations (right)

The normal traction along the axis of the contact interface is in Fig. 11.6.
Figure11.6 shows that in the solution of the largest problem, most of 11,550 lin-
ear inequality constraints were active.

0 200 400 600 800
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r
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Fig. 11.6 Normal contact pressures along the line r

11.11.2 Roller Bearings of Wind Generator

We have also tested our algorithms on real-world problems, including the stress
analysis in the roller bearings of a wind generator that is depicted in Fig. 11.7. The
problem is difficult because it comprises 73 bodies in mutual contact and only one
is fixed in space.
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Fig. 11.7 Frictionless roller bearing of wind generator

The solution of the problem discretized by 2,730,000/459,800 primal/dual vari-
ables and decomposed into 700 subdomains required 4270 matrix–vector multipli-
cations, including outer iterations for exact non-penetration. The von Mises stress
distribution is in Fig. 11.7 (right). Though the number of iterations is not small, the
parallel scalability of the algorithm enables to obtain the solution in a reasonable
time.

11.12 Comments and References

A convenient presentation of the variational formulation, including the dual formu-
lation, the results concerning the existence and uniqueness of a solution, the finite
element approximation of the solution, and standard iterativemethods for the solution
can be found in the book by Kikuchi and Oden [1]. For the variational formulation
and analysis, see also Hlaváček et al. [11]. The up-to-date engineering approach to
the solution of contact problems can be found in Laursen [2] or Wriggers [3]. See
Chap.15 for the discussion of combination of TFETI and mortar approximation of
contact conditions.

Probably the first theoretical results concerning the development of scalable algo-
rithms for coercive contact problems were proved by Schöberl [12, 13]. A numerical
evidence of scalability of a different approach combining FETI–DP with a Newton-
type algorithm and preconditioning in face by standard FETI preconditioners for 3D
contact problems was given in Duresseix and Farhat [14] and Avery et al. [15]. See
also Dostál et al. [16]. Impressive applications of the above approach can be found
in [17].

A stable implementation of TFETI requires reliable evaluation of the action of
a generalized inverse of the SPS stiffness matrix. The presentation in Sect. 11.6
combines the earlier observations by Savenkov, Andrä, and Iliev [4] and Felippa and
Park [18] on the regularization and Farhat and Géradin [19] on the application of
the LU and SVD decompositions. Our exposition uses the fixing nodes presented in
Brzobohatý et al. [8].

http://dx.doi.org/10.1007/978-1-4939-6834-3_15
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It should be noted that the effort to develop scalable solvers for coercive varia-
tional inequalities was not restricted to FETI. Optimal properties of multigrid meth-
ods for linear problems were exploited, e.g., by Kornhuber and Krause [20] and
Kornhuber et al. [21], to give an experimental evidence of the numerical scalability
of an algorithm based on monotonic multigrid. However, as pointed out by Iontcheva
and Vassilevski [22], the coarse grid used in the multigrid should avoid the con-
strained variables, so that its approximation properties are limited and not sufficient
to support the proof of optimality of the nonlinear algorithm.Multigrid has been used
also in the framework of the nonsmooth Newton methods, which turned out to be
an especially effective tool for the solution of problems with complex nonlinearities
(see Sect. 12.10).

The augmented Lagrangians were often used in engineering algorithms to imple-
ment equality constraints as in Simo and Laursen [23] or Glowinski and
Le Tallec [24]. It seems that the first application of the LANCELOT style [25]
augmented Lagrangians (proposed for bound and general equality constrains) with
adaptive precision control in combination with FETI to the solution of contact prob-
lems is in Dostál, Friedlander, and Santos [26] and Dostál, Gomes, and Santos [27,
28]. The experimental evidence of numerical scalability was presented in Dostál et
al. [29]. The optimality was proved in [30]—the proof exploits the optimal proper-
ties of MPRGP [31] (see also Sect. 9.10), SMALBE-M (see [32, 33], or Sect. 8), and
TFETI (see [34]). Here we partly follow [30].

The linear steps of MPRGP can be preconditioned by the standard FETI precon-
ditioners, i.e., the lumped preconditioner or Dirichlet’s preconditioner [35]. The pre-
conditioning by the conjugate projector for the FETI–DP solution of contact problem
was presented by Jarošová, Klawonn, and Rheinbach [36]. However, our experience
does not indicate high efficiency of the modified algorithms for contact problems.
The negative effect of jumping coefficients can be reduced by the reorthogonalization
based preconditioning or renormalization based scaling presented in Chap. 16.

There is an interesting corollary of our theory. If we are given a class of contact
problems which involves the bodies that are discretized by quasi-uniform grids using
shape regular elements, so that the regular part of their spectrum is contained in a
given positive interval, then Theorem 11.2 implies that in spite of nonlinearity, there
is a bound, independent of a number of the bodies, on the number of iterations that
are necessary to approximate the solution to a given precision.
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Chapter 12
Contact Problems with Friction

Contact problems become much more complicated when a kind of friction is taken
into account, even in the case that we restrict our attention to 3D problems of linear
elasticity. The problems start with the formulation of friction laws, which are of
phenomenological nature. Themost popular friction law, theCoulomb lawof friction,
makes the problem intrinsically non-convex. The other newdifficultieswhichwe face
in the development of scalable algorithms for contact with friction include the non-
uniqueness of a solution, nonlinear inequality constraints in dual formulation, and
intractable minimization formulation.

To get some kind of useful optimality results, we concentrate our effort on the
solution of a simpler problem with a given (Tresca) friction. This model of friction
assumes that the normal pressure is a priori known on the contact interface. Though
such assumption is not realistic and violates the laws of physics, e.g., it admits positive
contact pressure on a part of contact interface that is not active in the solution, itmakes
the problem well-posed and its solution can be used in the fixed-point iterations
for the solution of problems with Coulomb’s friction. Though such algorithm is
not supported by strong convergence theory, it can often find a solution of contact
problems with friction in a small number of outer iterations.

It is important for our development that the solution of problems with Tresca’s
frictionminimizes a convex nonsmooth cost function subject to a convex set. Switch-
ing to the dual formulation results in a convex QCQP (Quadratically Constrained
Quadratic Programme) problem with linear non-penetration constrains and separa-
ble quadratic inequality constraints defined by the slip bounds. The basic structure
of the problem complies well with TFETI. Rather surprisingly, the optimality results
presented here are very similar to those proved for the frictionless problems.

The TFETI-based algorithms presented here can use tens of thousands of cores
to solve effectively both coercive and semicoercive problems decomposed into tens
of thousands of subdomains and billions of nodal variables. For larger problems, the
initialization of the iterative solving procedure starts to dominate the costs. Some
modifications for emerging exascale technologies are discussed in Chap.19.
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12.1 Equilibrium of Bodies in Contact with Coulomb
Friction

Let us consider a system of bodies Ω1, . . . ,Ωs introduced in Sects. 11.1 and 11.2,
which is illustrated in Fig. 11.1, and let us examine the effect of friction on the
equilibrium in the tangential plane of a smooth contact interface under the assumption
that it complies with Coulomb’s law.

Let us start by assuming that the contact coupling set S was specified and let
(p, q) ∈ S . Using the notation introduced in Sect. 11.2 and assuming that the dis-
placement

u = (u1, . . . ,us), up : Ω
p → R

3,

is sufficiently smooth, we can write the non-penetration contact conditions and the
conditions of equilibrium in the normal direction n briefly as

[un] ≤ g, λn ≥ 0, λn([un] − g) = 0, x ∈ Γ pq . (12.1)

Recall thatλn denotes the normal traction on the slave face of the contact interface and
[un] denotes the jump of the boundary displacements. To formulate the conditions
of equilibrium in the tangential plane, let us introduce the notation

λT = λ − λN , uN = unnp, uT = u − uN , x ∈ Γ
p
C , p = 1, . . . , s,

and
[uT ] = up

T − uq
T ◦ χ pq , x ∈ Γ

pq
C , (p, q) ∈ S .

Let Φ > 0 denote the friction coefficient, which can depend on x provided it is
bounded away from zero. The Coulomb friction law at x ∈ Γ

pq
C , (p, q) ∈ S , can

be written in the form

if [un] = g, then λn ≥ 0, (12.2)

if [un] = g and ‖λT ‖ < Φλn, then uT = o, (12.3)

if |λT ‖ = Φλn, then there is μ > 0 such that [uT ] = μ[λT ], (12.4)

where
g = (

χ − Id
) · np.

The relations (12.1)–(12.4) with constitutive relations (11.4) and

−div σ(u) = f in Ω,

up = o on Γ
p
U ,

σ (up)np = f pΓ on ΓF ,

(12.5)

p = 1, . . . , s, describe completely the kinematics and equilibrium of a system of
elastic bodies in contact obeying the Coulomb friction law.

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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12.2 Variational Formulation

The classical formulation of contact problems with friction (12.1)–(12.5) makes
sense only when the solutions satisfy strong regularity assumptions similar to those
required by the classical solutions of frictionless problems. The remedy is again a
variational formulation which characterizes the solutions by local averages. We shall
use the same tools as in Sect. 11.3, namely the spaces

V p =
{
v ∈ (

H 1(Ω p)
)3 : v = o on Γ

p
U

}
, p = 1, . . . , s,

V = V 1 × · · · × V s,

the convex set

K = {
v ∈ V : [vn] ≤ g on Γ

pq
C , (p, q) ∈ S

}
,

and the forms

a(u, v) =
s∑

p=1

∫

Ωp

σ
(
vp

) : " (
up

)
dΩ, up, vp ∈ V p, (12.6)

�(v) =
s∑

p=1

∫

Γ
p
F

f pΓ · (vp − up) dΓ +
∫

Ω p

f p · (vp − up) dΓ, up, vp ∈ V p.(12.7)

Moreover, we assume that a contact coupling set S has been chosen and we shall
use the short notation of the previous section.

The effect of frictionwill be enhanced by a nonlinear functional j which represents
the virtual work of frictional forces

j (u, v) =
∑

(p,q)∈S

∫

Γ
pq
C

Φ|λn(u)| ‖[vT ]‖ dΓ, u, v ∈ V . (12.8)

We shall start with identity (11.13) which reads

a(u, v − u) − �(v − u) =
s∑

p=1

∫

Γ
p
C

σ(up)np · (vp − up) dΓ

=
∑

(p,q)∈S

∫

Γ
pq
C

λ · (u − v + (v − u) ◦ χ) dΓ

=
∑

(p,q)∈S

∫

Γ
pq
C

λ · ([u] − [v]) dΓ, u, v ∈ V,

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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and show that the classical solution u ∈ K of the contact problem with Coulomb’s
friction (12.1)–(12.5) satisfies

a(u, v − u) − �(v − u) + j (u, v) − j (u,u) ≥ 0, v ∈ K . (12.9)

First notice that using (12.9) and v ∈ K , we get

λ(u) · ([u] − [v]) = λT (u) · ([uT ] − [vT ]) + λn(u) · ([un] − [vn])
= λT (u) · ([uT ] − [vT ]) + λn(u) · ([un] − g + g − [vn])
≥ λT (u) · ([uT ] − [vT ]).

After rewriting the left-hand side of (12.9) and using the above inequality, we get

a( u , v − u) − �(v − u) + j (u, v) − j (u,u)

=
∑

(p,q)∈S

∫

Γ
pq
C

(
λ(u) · ([u] − [v]) + Φ|λn(u)| ‖[vT ]‖ − Φ|λn(u)| ‖[uT ]‖) dΓ

≥
∑

(p,q)∈S

∫

Γ
pq
C

(
λT (u) · ([uT ] − [vT ]) + Φ|λn(u)| (‖vT ‖ − ‖uT ‖)) dΓ.

To show that the last expression is greater or equal to zero, let (p, q) ∈ S be arbitrary
but fixed, let

Ψ = Φ|λn(u)|, x ∈ Γ
pq
C ,

denote the slip bound, and consider two cases.
If ‖λT (u)‖ < Ψ , then [uT ] = o and

λT (u) · ([uT ] − [vT ]) + Φ|λn(u)| (‖vT ‖ − ‖uT ‖) = Ψ ‖[vT ]‖ − λT (u) · [vT ] ≥ 0.

If ‖λT (u)‖ = Ψ , then by (12.4) [uT ] = μ[λT (u)], μ ≥ 0, so

[uT ] · [λT (u)] = ‖[uT ]‖‖[λT (u)]‖

and for x ∈ Γ
pq
C

λT (u) · ([uT ] − [vT ]) + Φ|λn(u)| (‖[vT ]‖ − ‖[uT ]‖)
≥ Ψ (‖[vT ]‖ − ‖[uT ]‖) + λT (u) · [uT ] − Ψ ‖[vT ]‖
= λT (u) · [uT ] − Ψ ‖[uT ]‖
= ‖[uT ]‖(‖[λT (u)]‖ − Ψ ) = 0.

We have thus proved that each classical solution u satisfies (12.9). Choosing special
v ∈ K , it is also possible to show that each sufficiently smooth solution u of (12.9)
is a classical solution of (12.1)–(12.5).
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Though (12.9) is well defined for more general functions than the ones considered
above, its formulation in more general spaces faces considerable difficulties. For
example, such formulation requires that the trace of σ(x) on ΓC is well defined and
the theoretical results concerning the existence and uniqueness require additional
assumptions. Moreover, no true potential energy functional exists for the problem
with friction. For more detailed discussion, see the books by Hlaváček et al. [1],
Kikuchi and Oden [2], Eck, Jarůšek, and Krbec [3], and the comprehensive papers
by Haslinger, Hlaváček, and Nečas [4] or Wohlmuth [5].

12.3 Tresca (Given) Isotropic Friction

We shall now consider a simplification of the variational inequality (12.9) that can be
reduced to a minimization problem which can be solved effectively by the methods
similar to those discussed in Chap. 11.

The basic idea is to assume that the normal traction λn on the contact interface is
known. Though it is possible to contrive a physical situation which can be captured
by such model, the main motivation is the possibility to use the simplified model
in the fixed-point iterations for solving contact problems with Coulomb’s friction.
Using the assumptions, we can formulate the problem to find a sufficiently smooth
displacement field

u = (u1, . . . ,us), up : Ω
p → R

3,

such that for any (p, q) ∈ S and x ∈ Γ pq

if [un] = g, then λn ≥ 0, (12.10)

if [un] = g and ‖λT ‖ < Ψ, then uT = o, (12.11)

if ‖λT ‖ = Ψ, then there is μ > 0 such that [uT ] = μ[λT ], (12.12)

where Ψ ≥ 0 is a sufficiently smooth prescribed slip bound. After substituting into
the friction functional j (12.8) and simplifying the notation, we get

j (v) =
∑

p,q∈S

∫

Γ
pq
C

Ψ ‖[vT ]‖ dΓ (12.13)

and the variational problem (12.9) reduces to the problem to find u ∈ K such that

a(u, v − u) − �(v − u) + j (v) − j (u) ≥ 0, v ∈ K . (12.14)

Observing that
Ψ (x)‖[vT (x)]‖ = max

‖τ‖≤Ψ (x)
τ · [vT (x)],

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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we can write the non-differentiable term in (12.13) as

j (v) =
∑

(p,q)∈S

∫

Γ
pq
C

Ψ ‖[vT ]‖ dΓ =
∑

(p,q)∈S

∫

Γ
pq
C

max
‖τ‖≤Ψ (x)

τ · [vT (x)] dΓ.

(12.15)
For the development of scalable algorithms for solving contact problems with

Tresca friction, it is important that any solution of the variational boundary value
inequality (12.14) solves

min f (v) subject to v ∈ K , f (v) = 1

2
a(v, v) − �(v) + j (v), (12.16)

where a and � are defined in (12.6) and (12.7), respectively. To verify this claim,
notice that if u, v ∈ K satisfy (12.14), then

f (v) − f (u) = 1

2
a(v, v) − �(v) + j (v) − 1

2
a(u,u) + �(u) − j (u)

= 1

2
a(v + u, v − u) − �(v − u) + j (v) − j (u)

= a(u, v − u) − �(v − u) + j (v) − j (u) + 1

2

(
a(v, v − u) − a(u, v − u)

)

≥ 1

2
a(v − u, v − u) ≥ 0.

We conclude that any classical solution of the contact problem with given (Tresca)
friction (12.1), (12.10)–(12.12), and (12.5) satisfies

f (u) ≤ f (v), v ∈ K . (12.17)

Denoting by u(Ψ ) a solution of (12.17), we can try to get a solution of the problem
with Coulomb’s friction by the fixed-point iterations

u0 = u(Ψ 0),

uk+1 = u
(
Φλn(uk)

)
.

The procedure was proposed by Panagiotopoulos [6].

12.4 Orthotropic Friction

Let us briefly describe orthotropic Coulomb friction, which is defined by the matrix

Φ =
[

Φ1 0
0 Φ2

]
, Φ1, Φ2 > 0.
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The diagonal entries ofΦ describe the friction in two orthogonal tangential directions
which are defined at each point of the contact interface by the unit vectors t1, t2. The
friction coefficients Φ1, Φ2 can depend on x, but in this case we assume that they
are bounded away from zero. The orthotropic Coulomb friction law at x ∈ Γ

pq
C ,

(p, q) ∈ S , reads

if [un] = g, then λn ≥ 0, (12.18)

if [un] = g and ‖Φ−1λT ‖ < λn, then uT = o, (12.19)

if |Φ−1λT ‖ = λn, then there is μ > 0 such that [uT ] = μ[Φ−1λT ]. (12.20)

The variational formulation of the conditions of equilibrium for the orthotropic
Coulomb friction is formally identical to (12.9) provided we use the dissipative term
in the form

j (u, v) =
∑

(p,q)∈S

∫

Γ
pq
C

|λn(u)| ‖[ΦvT ]‖ dΓ, u, v ∈ V .

The same is true for the variational formulation of the conditions of equilibrium for
orthotropic Tresca friction, which is formally identical to (12.14) and (12.1) provided
we use the non-differentiable term in the form

j (v) =
∑

(p,q)∈S

∫

Γ
pq
C

Λn‖[ΦvT ]‖ dΓ,

whereΛn ≥ 0 now defines the predefined normal traction. The reasoning is the same
as in Sect. 12.3. Observing that

Λn‖[ΦvT ]‖ = max‖τ‖≤Λn

τ · [ΦvT ] = max‖τ‖≤Λn

Φτ · [vT ]
= max

‖Φ−1Φτ‖≤Λn

Φτ · [vT ] = max
‖Φ−1τ‖≤Λn

τ · [vT ],

we can replace the non-differentiable term in (12.13) by the bilinear term to get

j (v) =
∑

(p,q)∈S

∫

Γ
pq
C

Λn‖[ΦvT ]‖ dΓ =
∑

(p,q)∈S

∫

Γ
pq
C

max
‖Φ−1τ‖≤Λn

τ · [vT (x)] dΓ.

(12.21)
Denoting by u(Λn) a solution of (12.17) with j defined in (12.21), we can try to

get a solution of the problem with orthotropic friction by the fixed-point iterations

u0 = u(Λ0
n),

uk+1 = u
(
λn(uk)

)
.
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To simplify the exposition, we shall restrict our attention in what follows to the
isotropic friction, leaving the modification to the interested reader.

12.5 Domain Decomposition and Discretization

The problem (12.17) has the same feasible set as the frictionless problem (11.15) and
differs only in the cost function. It turns out thatwe can use the domain decomposition
in the same way as in Sect. 11.4. To this end, let us decompose each domain Ω p into
subdomains with sufficiently smooth boundaries, assign a unique number to each
subdomain, decompose appropriately the parts of the boundaries, introduce their
numbering as in Sect. 11.4, and introduce the notation

V p
DD =

{
v ∈ H1(Ω p)3 : v = o on Γ

p
U

}
, p = 1, . . . s,

VDD = V 1 × · · · × V s ,

KDD =
{
v ∈ VDD : [vn] ≤ g on Γ

pq
C , (p, q) ∈ S ; vp = vq on Γ

pq
G , p, q = 1, . . . , s

}
.

The variational decomposed problem with the Tresca (given) friction defined by
a slip bound Ψ reads

find u ∈ KDD such that f (u) ≤ f (v), v ∈ KDD, (12.22)

where

f (v) = 1

2
a(v, v) − �(v) + j (v).

To get the discretized problem (12.22), let us use a quasi-uniform discretization
with shape regular elements as in Sect. 11.5 and apply the procedure described in
Sect. 11.5 to the components of the discretized linear form �, the quadratic form a, the
gap function g, and the matrices that describe the discretized feasible setKDD . Thus
we shall get the block diagonal stiffness matrix K ∈ R

n×n , the vector of nodal forces
f ∈ R

n , the constraint matrix BI ∈ R
mI , the discretized gap function cI ∈ R

mI , and
the matrix BE ∈ R

mI that describes the gluing and Dirichlet conditions.
To define the discretized non-differentiable term j (12.13), we introduce

2mI × n matrix T such that mI blocks of which are Ti = Ti (xi ) ∈ R
2×n are formed

by appropriately placed orthonormal tangential vectors t1(xi ) and t2(xi ) so that the
tangential component of the displacementu is given byTiu. After applying numerical
integration to (12.13), we get the discretized dissipative term in the form

j (u) =
mc∑

i=1

Ψi‖Tiu‖, (12.23)

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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where Ψi is the slip bound associated with xi . Using (12.15), we get

j (u) =
mc∑

i=1

Ψi‖Tiu‖ =
mc∑

i=1

max‖τ i‖≤Ψi

τ T
i Tiu, (12.24)

where τ i ∈ R
2 can be interpreted as a Lagrange multiplier. The right-hand side of

(12.24) is differentiable.
The discretized problem (12.22) reads

find u ∈ K such that f (u) ≤ f (v), v ∈ K , (12.25)

where

f (v) = 1

2
vTKv − fT v + j (v), K = {v ∈ R

n : BIu ≤ cI and BEu = o}.
(12.26)

We assume that BI , BE , and T are full rank matrices. Notice that

TTBI = O.

If each node is involved in at most one inequality, then the rows of BI can be
orthogonal and it is possible (see Remark 11.1) to achieve that

BBT = I, B =
⎡

⎣
BE

BI

T

⎤

⎦ . (12.27)

12.6 Dual Formulation

The problem (12.25) is not suitable for numerical solution, even if we replace j in
the cost function by (12.24). The reasons are that the stiffness matrix K is typically
large, ill-conditioned, and singular and the feasible set is in general so complex that
the projections onto it can hardly be effectively computed. Under the circumstances,
it would be very difficult to solve efficiently auxiliary problems and to effectively
identify the solution active set.

As in Chap.11, the complications can be essentially reduced by applying the
duality theory of convex programming (see, e.g., Bazaraa, Shetty, and Sherali [7]).
In the dual formulation of problem (12.25), we use three types of Lagrange multipli-
ers, namely λI ∈ R

mI associated with the non-interpenetration condition, λE ∈ R
mE

associated with the “gluing” and prescribed displacements, and

τ = [τ T
1 , τ T

2 , . . . , τ T
mT

]T ∈ R
2mT , τ i ∈ R

2, i = 1, . . . ,mT ,

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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which are used to smooth the non-differentiability. The Lagrangian associated with
problem (12.25) reads

L(u,λI ,λE , τ ) = f (u) + τ TTu + λT
I (BIu − cI ) + λT

E (BEu − cE ).

To simplify the notation, we denote m = mE + mI + 2mT = mE + 3mI ,

λ =
⎡

⎣
λE

λI

τ

⎤

⎦ , B =
⎡

⎣
BE

BI

T

⎤

⎦ , c =
⎡

⎣
o
cI
o

⎤

⎦ ,

and

Λ(Ψ ) = {(λT
E ,λT

I , τ T )T ∈ R
m : λI ≥ o, ‖τi‖ ≤ Ψi , i = 1, . . . ,mT },

so that we can write the Lagrangian briefly as

L(u,λ) = 1

2
uTKu − fTu + λT (Bu − c).

Using the convexity of the cost function and constraints, we can reformulate prob-
lem (12.25) by duality to get

min
u

sup
λ∈Λ(Ψ )

L(u,λI ,λE , τ ) = max
λ∈Λ(Ψ )

min
u

L(u,λI ,λE , τ ).

We conclude that problem (12.25) is equivalent to the saddle point problem

L (̂u, λ̂) = max
λ∈Λ(Ψ )

min
u

L(u,λ). (12.28)

Recall that B is a full rank matrix. For a fixed λ, the Lagrange function L(·,λ) is
convex in the first variable and the minimizer u of L(·,λ) satisfies

Ku − f + BTλ = o. (12.29)

Equation (12.29) has a solution if and only if

f − BTλ ∈ ImK, (12.30)

which can be expressed more conveniently by means of a matrix R ∈ R
n×6s the

columns of which span the null space of K as

RT (f − BTλ) = o.
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The matrix R can be formed directly, using any basis of the rigid body modes of the
subdomains. See Sect. 11.6 for details.

Now assume that λ satisfies (12.30) and denote by K+ any matrix which satisfies

KK+K = K. (12.31)

Let us note that the action of a generalized inverse which satisfies (12.31) can be
evaluated at the cost comparable with that of Cholesky’s decomposition applied to
the regularized K (see Sect. 11.7). It can be verified directly that if u solves (12.29),
then there is a vector α ∈ R

6s such that

u = K+(f − BTλ) + Rα. (12.32)

After substituting expression (12.32) into problem (12.28), changing the signs, and
omitting the constant term, we get that λ solves the minimization problem

min Θ(λ) s.t. λ ∈ Λ(Ψ ) and RT (f − BTλ) = o, (12.33)

where

Θ(λ) = 1

2
λTBK+BTλ − λT (BK+f − c).

Once the solution λ̂ of (12.33) is known, the solution û of (12.25) can be evaluated
by (12.32) with

α = (RT B̃T B̃R)−1RT B̃T (̃c − B̃K+(f − BT λ̂)),

where B̃ and c̃ are formed by the rows of B and c corresponding to all equality
constraints and all free inequality constraints.

12.7 Preconditioning by Projectors to Rigid Body Modes

Even though problem (12.33) is much more suitable for computations than (12.25),
further improvement can be achieved by adapting the observations that we used in
the previous chapters. Let us denote

F̃ = BK+BT , F = ‖F̃‖,
F = F−1F̃, d̃ = F−1(BK+f − c),
G̃ = RTBT , ẽ = RT f,

and let U denote a regular matrix that defines the orthonormalization of the rows of
G̃ so that the matrix

G = UG̃

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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has orthonormal rows. After denoting

e = Ũe,

problem (12.33) reads

min
1

2
λTFλ − λT d̃ s.t. λ ∈ Λ(Ψ ) and Gλ = e. (12.34)

Next we transform the problem of minimization on a subset of the affine space to
that on a subset of the vector space using λ̃ which satisfies

Gλ̃ = e. (12.35)

We can choose λ̃ similarly as we did in Sect. 11.8. In particular, if the problem is
coercive, then we can use Lemma 11.1 to get

λ̃ =
[

oI
GT

E (GE GT
E )−1e

]
,

or to use λ̃ which solves

min
1

2
‖λ‖2 s.t. λ ∈ Λ(Ψ ) and Gλ = e. (12.36)

The above choices of λ̃ are important for the proof of optimality as they guarantee
that o is a feasible vector of the modified problem. For practical computations, we
can use the least squares solution of Gλ = e given by

λ̃ = GT e.

Having λ̃, we can look for the solution of (12.34) in the form λ = μ + λ̃. To carry
out the transformation, denote λ = μ + λ̃ and Λ̃(Ψ ) = Λ(Ψ ) − λ̃, so that

1

2
λTFλ − λT d̃ = 1

2
μTFμ − μT (̃d − Fλ̃) + 1

2
λ̃
T
Fλ̃ − λ̃

T
d̃

and problem (12.34) turns, after returning to the old notation, into

min
1

2
λTFλ − λTd s.t. Gλ = o and λ ∈ Λ̃(Ψ ), d = d̃ − Fλ̃. (12.37)

Recall that we can achieve that o ∈ Λ̃.

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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Our final step is based on the observation that problem (12.37) is equivalent to

min θρ(λ) s.t. Gλ = o and λ ∈ Λ̃(Ψ ), (12.38)

where ρ is an arbitrary positive constant,

Q = GTG and P = I − Q

denote the orthogonal projectors on the image space of GT and on the kernel of G,
respectively, and

θρ(λ) = 1

2
λT (PFP + ρQ)λ − λTPd.

12.8 Optimality

To show that Algorithm 9.1 (SMALSE) with the inner loop implemented by Algo-
rithm 7.2 (MPGP) is optimal for the solution of a class of problems arising from
varying discretizations of a given contact problem with Tresca friction, let us intro-
duce a notation which complies with that used in Part II.

Let C ≥ 2 and ρ > 0 denote given constants and let

TC = {(H, h) ∈ R
2 : H/h ≤ C}

denote the set of indices. For any t ∈ TC , let us define

At = PFP + ρQ, bt = Pd,

Bt = G, Ω t
S = Λ̃(Ψ ),

where the vectors and matrices are those arising from the discretization of (12.22)
with the discretization and decomposition parameters H and h, t = (H, h). We shall
assume that the discretization satisfies the assumptions of Theorem 11.1, includ-
ing (12.27), and that o ∈ Ω t

S . We get a class of problems

min ft (λt ) s.t. Btλt = o and λt ∈ Ω t
S (12.39)

with

ft (λt ) = 1

2
λT
t Atλt − bT

t λt .

To see that the class of problems (12.39) satisfies the assumptions of Theorem 9.4,
recall that GGT = I, so

‖Bt‖ ≤ 1. (12.40)

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_9
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It follows by Theorem 11.1 that there are constants aCmax > aCmin > 0 such that

aCmin ≤ αmin(At ) ≤ αmax(At ) ≤ aCmax (12.41)

for any t ∈ TC . Thus the assumptions of Theorem 9.4 are satisfied for any set of
indices TC , C > 2, and ρ > 0. Using the arguments specified in the above discus-
sion, we can state our main result:

Theorem 12.1 Let C ≥ 2, ρ > 0, and ε > 0 denote given constants, let {λk
t }, {μk

t },
and {Mt,k} be generated by Algorithm 9.1 (SMALSE-M) for problem (12.39) with
parameters

‖bt‖ ≥ ηt > 0, 0 < β < 1, Mt,0 = M0 > 0, ρ > 0, and μ0
t = o.

Let Step 1 of SMALSE-M be implemented by Algorithm 7.2 (MPGP) with the para-
meters

Γ > 0 and α ∈ (0, 2/aCmax),

so that it generates the iterates

λk,0
t ,λk,1

t , . . . ,λk,l
t = λk

t

for the solution of (12.39) starting from λ
k,0
t = λk−1

t with λ−1
t = o, where l = lt,k is

the first index satisfying

‖gP(λk,l
t ,μk

t , ρ)‖ ≤ Mt,k‖Ctλ
k,l
t ‖

or
‖gP(λk,l

t ,μk
t , ρ)‖ ≤ ε‖bt‖ and ‖Ctλ

k,l
t ‖ ≤ ε‖bt‖. (12.42)

Then for any t ∈ TC and problem (12.39), Algorithm 9.1 generates an approx-
imate solution λ

kt
t which satisfies (12.42) at O(1) matrix–vector multiplications by

the Hessian At of ft .

12.9 Numerical Experiments

Here we give some results that illustrate the performance of the TFETI-based algo-
rithms implemented for the solution of contact problems with friction using their
implementation in MatSol [8]. All the computations were carried out with the para-
meters recommended in Chaps. 7–9, i.e., M0 = 1, η = 0.1‖Pd‖, ρ = 1 ≈ ‖PFP‖,
Γ = 1, β = 0.2, λ0 = o, andμ0 = o. The relative precision of the computations was
ε = 10−4 (see (9.40)).

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_9
http://dx.doi.org/10.1007/978-1-4939-6834-3_7
http://dx.doi.org/10.1007/978-1-4939-6834-3_9
http://dx.doi.org/10.1007/978-1-4939-6834-3_9
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12.9.1 Academic Benchmark

To demonstrate the efficiency of TFETI for the solution of contact problems with
friction, we consider the two cantilever beams benchmark described in Sect. 11.11.
The geometry of the benchmark is depicted in Fig. 11.4. Its material properties are
defined in Sect. 11.11.

Todemonstrate the scalability,we resolved theproblem inFig. 11.4with theTresca
friction defined by the friction coefficient Φ = 0.1. The slip bounds were defined
as the product of normal traction from the solution of the frictionless problem of
Sect. 11.11 and Φ. The discretizations and the decompositions were defined by the
discretization parameter h and the decomposition parameter H , respectively. For each
h and H , the bodies were decomposed into cubic subdomains and discretized by the
regular mesh with hexahedral elements. We kept H/h = 8, so that the assumptions
of Theorem 12.1 were satisfied. The normal and tangential tractions along the axis of
the contact interface are shown in Fig. 12.1. This figure also shows that in the solution
of the largest problem, most of the linear and quadratic inequality constraints were
active.
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Fig. 12.1 Tresca (left) and Coulomb (right) friction – normal and contact pressures along r

The performance of the algorithms is documented in the following graphs. The
numbers of outer and inner iterations of SMALSE and the multiplications by the
Hessian F of the dual function for the problem with Tresca friction depending on the
primal dimension n are depicted in Fig. 12.2.We can see stable numbers of both inner
and outer iterations for n ranging from 431,244 to 11,643,588. The dual dimension of
the problems ranged from 88,601 to 2,728,955. We conclude that the performance of
the algorithm is in agreement with the theory. The problem is difficult because many
nodes on the contact interface nearly touch each other, making the identification of
the contact interface difficult.

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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Similar results were obtained for the solution of the problem with the Coulomb
friction defined by the friction coefficient Φ = 0.1. The results are in the above
graphs. The number of iterations is naturally grater.
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Fig. 12.2 Tresca and Coulomb: numerical scalability of cantilever beams–matrix–vector multipli-
cations by F and outer iterations (right)

12.9.2 Yielding Clamp Connection

We have tested our algorithms on the solution of many real-world problems. Here
we consider contact with the Coulomb friction, where the coefficient of friction was
Φ = 0.5. The problem was decomposed into 250 subdomains using METIS (see
Fig. 12.3) and discretized by 1,592,853 and 216,604 primal and dual variables,
respectively. The total displacements for the Coulomb friction are depicted in
Fig. 12.4. It required 1,922 matrix–vector multiplications to find the solution.

Fig. 12.3 Yielding clamp connection –
domain decomposition

Fig. 12.4 Coulomb friction: total displace-
ment
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12.10 Comments and References

Early results concerning the formulation of contact problems with friction can be
found in Duvaut and Lions [9]. An up-to-date overview of the theoretical results can
be found in the book by Eck, Jarůšek, and Krbec [3]. See also Haslinger, Hlaváček,
and Nečas [4]. A convenient presentation of the variational formulation, the results
concerning the existence and uniqueness of a solution, the finite element approx-
imation of the solution, and standard iterative methods for the solution of contact
problems with friction can be found in the books by Kikuchi and Oden [2]. For
useful theoretical results, see Hlaváček et al. [1] or Capatina [10]. A comprehensive
presentation of the variationally consistent discretization of contact problems with
friction using biorthogonal mortars (see also Chap. 15), including the approximation
theory and solution algorithms based on the combination of the semi-smooth New-
ton method and multigrid, can be found in the seminal paper by Wohlmuth [5]. An
up-to-date engineering approach to the solution of contact problems with friction
can be found in Laursen [11] or Wriggers [12].

In spite of the difficulties associated with the formulation of contact problems
with friction, a number of interesting results concerning the optimal complexity of
algorithms for solving auxiliary problems were achieved by means of multigrid. The
first papers adapted the earlier approachofKornhuber andKrause to extend the results
on frictionless problems to the problems with friction and gave an experimental
evidence that it is possible to solve frictional two-body contact problems in 2D and
3D with multigrid efficiency (see, e.g., Wohlmuth and Krause [13], Krause [14], or
Krause [15]).

The semi-smooth Newton method [16] became popular due to its capability to
capture several nonlinearities in one loop (see, e.g., Hager and Wohlmuth [17],
Wohlmuth [5], or comments in Sect. 17.6). Themethod is closely related to the active
set strategy [18]. The problems suitable for the application of semi-smooth Newton
include combination of contact with electrostatics (see, e.g., Migorski, Ochal, and
Sofonea [19] or Hüeber, Matei, and Wohlmuth [20]). The lack of global conver-
gence theory was compensated by some globalization strategies (see, e.g., Ito and
Kunisch [21] or [22]).

The development of domain decomposition-based algorithms for contact prob-
lems with friction used from the early beginning the scheme proposed by Pana-
giotopoulos [6] which combines the outer fix point iterations for normal contact
pressure with the solution of a problem with given friction in the inner loop (see
Dostál and Vondrák [23] or Dostál et al. [24]). Though the convergence of the outer
loop is supported by the theory only for very special cases [25], the method works
well in practice. However, it seems that there is a little chance to develop the theory
for contact problems with Coulomb friction as complete as that for the frictionless
problems in the previous chapter. Thus the effort to develop scalable algorithms was
limited to the solution of problems with a given friction.

http://dx.doi.org/10.1007/978-1-4939-6834-3_15
http://dx.doi.org/10.1007/978-1-4939-6834-3_17
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Though the methodology that was developed for the frictionless contact problems
in the previous chapter can be adapted rather easily for 2D problems with Tresca
friction [26], this was not the case for the 3D problems due to the circular or elliptic
constraints arising in dual formulation. The situation changed with the development
of algorithms for the solution of the latter problems with a bound on the rate of
convergence in terms of the bounds on the spectrum of the Hessian (see comments
in Chaps. 7–9). The optimality results presented in this chapter appeared in Dostál
et al. [27]. The latter paper is the result of a graduate development starting with the
approximation of circles by the intersections of squares in Haslinger, Kučera, and
Dostál [28] and the early results without the optimality theory (see Dostál et al. [24]).
Important issues related to the implementation of anisotropic friction are resolved in
Bouchala et al. [29].
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Chapter 13
Transient Contact Problems

In this chapter, we adapt the methods presented above to the solution of contact
problems which take inertia forces into account. The introduction of time is a source
of many complications, even in the case that we restrict our attention to the 3D
problems of linear elasticity without friction. A little is known about a solution of
continuous problems, and the cost of the solution increases also with the number of
time intervals required by a time discretization. On the other hand, the problem is
physically more realistic, as the real world problems are naturally time dependent,
and the time discretization reduces the problem to a sequence of quasi-static prob-
lems with a good initial approximation. It is even possible to develop an explicit
computational scheme that uses the initial approximation at the beginning of each
time step to evaluate explicitly an approximation of a solution at the end of the time
step [1] at the cost of a large number of time steps. Here, we present an implicit
scheme which uses much smaller number of time steps at the cost of solving two
well-conditioned bound constrained QP problems.

The FETI-type domain decomposition methods like TFETI comply well with the
structure of auxiliary problems arising in the solution of transient contact problems.
It turns out that the implementation of the time step problems by TFETI is even
simpler than that in Chap. 11 since the effective stiffness matrices of the “floating”
subdomains are regularized by the mass matrices and have their condition number
uniformly bounded by a constant which is independent of the number of nodal
variables associated with the space discretization. To reduce the number of iterations,
it is possible to use the preconditioning by a conjugate projector (deflation), which
improves the performance of both linear and nonlinear steps of the algorithms.

The basic TFETI-based algorithms presented here are effective for the parallel
solution of transient contact problems. There is no costly orthogonalization of dual
equality constraints, so that it can use tens of thousands of cores to solve, for a
reasonable number of time steps, as large problems as reported in the previous chap-
ters, i.e., tens of thousands of subdomains and billions of nodal variables. For larger
problems, the communication can dominate the costs. Some hints for massively
parallel implementation can be found in Chap. 19.
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13.1 Transient Multibody Frictionless Contact Problem

Ω1

Ω2

t = 0

t = t1

t = t2

Fig. 13.1 Transient multibody contact problem at the time t = 0, t1, t2

Let us consider a system of s homogenous isotropic elastic bodies, each of which
occupies at time t = 0 a reference configuration, a bounded domain Ω p ⊂ R

3,
p = 1, . . . , s, with a sufficiently smooth boundary Γ p. The mechanical properties
of Ω p, which are assumed to be homogeneous, are defined by the Young modulus
E p, the Poisson ratio ν p, and the density ρ p. The density defines the inertia forces.
On each Ω p, there is defined the vector of external body forces

f p : Ω p → R
d .

We suppose that each Γ p consists of three disjoint parts Γ
p
U , Γ

p
F , and Γ

p
C that do

not change in time,
Γ p = Γ

p
U ∪ Γ

p
F ∪ Γ

p
C ,

and that there are prescribed zero displacements

up = o on Γ
p
U × [0, T ]

and traction
f pΓ : Γ

p
F × [0, T ] → R

3.

We denote
Ω = ∪s

p=1Ω
p, ΓU = ∪s

p=1Γ
p
U , ΓF = ∪s

p=1Γ
p
F .
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The part Γ
p
C denotes the part of Γ p that can get into contact with other bodies

in a time interval [0, T ], T > 0. We denote by Γ
pq
C the part of Γ

p
C that can come in

contact with Ωq in the time interval [0, T ]. We admit Γ
p
U = ∅ for any p = 1, . . . , s,

but we assume that all Γ
p
C are sufficiently smooth so that for almost every xp ∈ Γ

p
C ,

there is a unique external normal np = np(xp). See also Fig. 13.1. We assume that
we can neglect the change of np in time.

The main new features of frictionless transient contact problems, as compared
with Sect. 11.2, apart from the time dimension, are the inertia forces and the initial
conditions defined by u0 : Ω → R

3 and d0 : Ω → R
3.

To describe the non-penetration on Γ
pq
C , we choose a contact coupling set S and

for each (p, q) ∈ S , we define a one-to-one continuous mapping

χ pq : Γ
pq
C → Γ

qp
C

as in Sect. 11.2. The (strong) linearized non-penetration condition at x ∈ Γ
pq
C and

time t ∈ [0, T ] then reads

(
up(x) − uq ◦ χ pq(x)

) · np(x) ≤ (
χ pq(x) − x

) · np(x). (13.1)

Denoting the surface traction on the slave side of the active contact interface without
friction by

λ = −�(up)np = (λ · np)np, (x, t) ∈ Γ
p
C × [0, T ],

and using the notation of Sect. 11.2, we can write the complete contact conditions
for (p, q) ∈ S in the form

[un] ≤ g, λn ≥ 0, λn([un] − g) = 0, (x, t) ∈ Γ
pq
C × [0, T ]. (13.2)

The equations of motion and the constraints that should be satisfied by the dis-
placements

up : Ω p ∪ Γ p × [0, T ] → R
3, T > 0,

read

ρü − div σ (u) = f in Ω × [0, T ] , (13.3)

u = o on ΓU × [0, T ] , (13.4)

σ (u) n = fΓ on ΓF × [0, T ] , (13.5)

λ = λnn on Γ
pq
C × [0, T ] , (p, q)∈S , (13.6)

λn ≥ 0 on Γ
pq
C × [0, T ] , (p, q)∈S , (13.7)

[un] ≤ g on Γ
pq
C × [0, T ] , (p, q)∈S , (13.8)

λn ([un] − g) = 0 on Γ
pq
C × [0, T ] , (p, q)∈S , (13.9)

u (., 0) = u0 in Ω, (13.10)

u̇ (., 0) = d0 in Ω. (13.11)

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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The relations (13.3)–(13.11) represent the general formulation of a transient
(dynamic) multibody frictionless contact problem. The relations include Newton’s
equation of motion (13.3), the classical boundary conditions (13.4)–(13.5), the con-
tact conditions (13.6)–(13.9), and the initial conditions (13.10) and (13.11).

13.2 Variational Formulation and Domain Decomposition

To get a formulation of transient contact problem (13.3)–(13.11) that is suitable for
a finite element discretization in space, let us first define the test spaces

V p = {
vp ∈ (H 1

(
Ω p

)
)3 : vp = o on Γ

p
U

}
, V = V 1 × · · · × V s .

If we multiply the Newton equation of motion (13.3) by v ∈ V , integrate the result
over Ω , and notice that (13.3)–(13.5) differ from the conditions of static equilib-
rium (11.5) only by the first term in (13.3), we can use procedures of Sect. 11.3 to
get

s∑

p=1

∫

Ω p

	püp · vp dΩ + a (u, v) +
∑

(p,q)∈S

∫

Γ
pq
C

λn[vn] dΓ = 
(v), (13.12)

where a and 
 are defined in Sect. 11.3. For a sound variational formulation of the
equations of motion (13.3)–(13.5), it is useful to admit λn ∈ M+, where

M+ =
∏

(p,q)∈S

{
μpq ∈ H− 1

2 (Γ
pq
C ) :

∫

Γ
pq
C

〈μpq , [v]n〉 dΓ ≥ 0 for v ∈ V, [v]n ≥ 0
}
.

In this case, we should replace the second sum in (13.12) by the duality pairing
〈λn, [vn]〉. Using the notation

m(ü, v) =
s∑

p=1

∫

Ω p

	püp · vp dΩ, ü, v ∈ V,

we can rewrite the variational equations (13.12) in the compact form

m (ü, v) + a (u, v) + 〈λn, v〉 = 
(v). v ∈ V . (13.13)

To write the contact conditions (13.6)–(13.9) in a form which admits λn ∈ M+,
which we shall use in Chap. 15, let us apply μ ∈ M+ to the non-penetration condition
(13.8) and add the result to (13.9). After a simple manipulation, we get

〈μ − λn, [un]〉 ≤ 〈μ − λn, g〉, μ ∈ M+. (13.14)

Thus we got the problem to find for almost every t ∈ [0, T ] a displacement
u(· , t) ∈ V and λn ∈ M+ that satisfy (13.13), (13.14), (13.10), and (13.11).

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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Moreover, we assume that the solution u is sufficiently smooth so that ü exists
in some reasonable sense and can be approximated by finite differences.

A little is known about the solvability of transient problems, so we shall assume
in what follows that a solution exists. For a more complete discussion of solvability
and variational formulation of dynamic problems, including problems with friction,
see Wohlmuth [2] or Eck, Jarůšek, and Krbec [3].

The domain decomposition is similar to that described in Sect. 11.4. We tear each
body from the part of the boundary with Dirichlet boundary conditions, decompose
each body into subdomains, assign each subdomain a unique number, and intro-
duce new “gluing” conditions on the artificial intersubdomain boundaries and on
the boundaries with imposed Dirichlet conditions. Misusing a little the notation, we
denote the subdomains and their number again by Ω p and s, respectively. For the
artificial intersubdomain boundaries, we introduce the notation analogously to the
notation of the contact boundary, so that Γ

pq
G denotes the part of Γ p that is glued to

Ωq . Obviously Γ
pq
G = Γ

qp
G . The gluing conditions require the continuity of the dis-

placements and their normal derivatives across the intersubdomain boundaries. An
auxiliary decomposition of the problem of Fig. 13.1 with renumbered subdomains
and artificial intersubdomain boundaries is similar to that in Fig. 11.3. The procedure
is essentially the same as that in Sect. 11.4.

13.3 Discretization

Using the finite element quasi-uniform semi-discretization in space with shape regu-
lar elements and the procedure similar to that described in Sect. 11.5, we get a matrix
counterpart of (13.13) and (13.6)–(13.11) at the time t

Mü + Ku = f − BT
I λT

I − BT
EλE , (13.15)

BIu ≤ cI , (13.16)

BEu = cE = o, (13.17)

λI ≥ o, (13.18)

λT (Bu − c) = 0. (13.19)

Here, we use the same notation (bold symbol) for the continuous displacements
u ∈ V × [0, T ] and its vector representation u ∈ R

n × [0, T ]. Due to the TFETI
domain decomposition, the finite element semi-discretization in space results in the
block diagonal stiffness matrix K = diag (K1, . . . , Ks) of the order n with the sparse
SPS diagonal blocks Kp that correspond to the subdomains Ω p. The same structure
has the positive definite mass matrix M = diag (M1, . . . , Ms). The decomposition
also induces the block structure of the vector f ∈ R

n × [0, T ] of the discretized form

 and the vector of nodal displacements u ∈ R

n × [0, T ].
The matrix BI ∈ R

mI×n and the vector cI ∈ R
mI describe the linearized non-

penetration conditions as in Sect. 11.5. Similarly the matrix BE ∈ R
mE×n and the

vector cE ∈ R
mE with the entries ci = 0 enforce prescribed zero displacements on

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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the part of the boundary with imposed Dirichlet conditions and the continuity of
displacements across the auxiliary interfaces, respectively. Typically, bothmI andmE

are much smaller than n. We assume that the matrix B = [BT
E , BT

I ]T has orthonormal
rows so that it satisfies (11.22) (see also Remark 11.1).

Finally, let λI ∈ R
mI and λE ∈ R

mE denote the components of the vector of
Lagrange multipliers λ = λt ∈ R

m , m = mI + mE , at time t . We use the notation

λ =
[

λI

λE

]
, B =

[
BI

BE

]
, and c =

[
cI
cE

]
. (13.20)

For the time discretization, we use the contact-stabilized Newmark scheme intro-
duced by Krause and Walloth [4] with the regular partition of the time interval [0, T ],

0 = t0 < t1 . . . < tnT = T, tk = kΔ, Δ = T/nT , k = 0, . . . , nT .

The scheme assumes that the acceleration vector is split at time tk into two compo-
nents ücon

k and üint
k related to the acceleration affected by the contact and other forces,

respectively,
ük = ücon

k + üint
k , (13.21)

where
üint
k = M−1 (fk − Kuk) and ücon

k = −M−1BTλk . (13.22)

Denoting
K = {u ∈ R

n : BIu ≤ cI and BEu = o},

we can write the solution algorithm in the following form.

Algorithm 13.1 Contact-stabilized Newmark algorithm.

Step 0. {Initialization.}
Set u0, u̇0, K̃ = 4

Δ2 M + K, λpred
0 , T > 0, nT ∈ N, and Δ = T/nT

for k = 0, . . . , nT − 1
Step 1. {Predictor displacement.}

Find the minimizer upred
k+1 and the multiplier λ

pred
k+1 for

minu∈K 1
2u

T Mu −
(
Muk + ΔMu̇k − BT λ

pred
k

)T
u

Step 2. {Contact-stabilized displacement.}
Find the minimizer uk+1 and the multiplier λk+1 for

minu∈K 1
2u

T K̃u −
(

4
Δ2 Mupred

k+1 − Kuk + fk + fk+1 − BT λk

)T
u

Step 3. {Velocity update.}

u̇k+1 = u̇k + 2
Δ

(
uk+1 − upred

k+1

)

end for

The matrix K̃ introduced in Step 0 is called the effective stiffness matrix.

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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13.4 Dual Formulation of Time Step Problems

The cost of the iterates of Algorithm 13.1 is dominated by the cost of the execution
of its Step 1 and Step 2, the implementation of which requires the solution of bound
and equality constrained QP problems

min f (u) subject to BIu ≤ cI and BEu = cE (13.23)

with the strictly convex quadratic function

f (u) = 1

2
uTHu − uTh.

The function f for the problem arising in Step 1 is defined by

H = M and h = Muk + ΔMu̇k − BTλ
pred
k

and for that arising in Step 2 by

H = K̃ and h = 4

Δ2
Mupred

k+1 − Kuk + fk + fk+1 − BTλk .

Even though (13.23) is a standard QP problem, its form is not suitable for numer-
ical solution due to general inequality constraints. This complication can be essen-
tially reduced by applying the duality theory of convex programming (see Sect. 3.7)
as in Sect. 11.6. In the dual formulation of problem (13.23), we use the Lagrange
multipliers with two block components, namely λI ∈ R

mI associated with the non-
penetration condition and λE ∈ R

mE associated with the “gluing” and prescribed
displacements, so the Lagrangian associated with problem (13.23) reads

L(u,λ) = f (u) + λT (Bu − c). (13.24)

Using Proposition 3.13 (with R = [o]), we get that λ solves the strictly convex
minimization problem

min
1

2
λTBH−1BTλ − λT (BH−1h − c) s.t. λI ≥ o. (13.25)

Once the solution λ̂ of (13.25) is known, the solution û of (13.23) may be evaluated
from the KKT condition

Hu − h + BT λ̂ = o.

Problem (13.25) is much more suitable for computations than (13.23) because we
replaced the general inequality constraints in (13.23) by nonnegativity constraints.
The favorable distribution of the spectrum of the mass matrix M and the nonnegativity

http://dx.doi.org/10.1007/978-1-4939-6834-3_3
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_3
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constraints are even sufficient to implement Step 1 by the standard MPRGP algorithm
with the asymptotically linear complexity. The estimates in the next section show
that similar relations hold also for Step 2.

13.5 Bounds on the Spectrum of Dual Energy Function

To simplify the notation, let us denote

F̃ = BK̃−1BT and d = BK̃−1h − c,

so problem (13.25) with H = F̃ reads

min Θ(λ) s.t. λ ∈ ΩB, (13.26)

where

Θ(λ) = 1

2
λT F̃λ − λTd and ΩB = {λ ∈ R

m : λI ≥ o}. (13.27)

In order to avoid a proliferation of constants, we shall use the notation A � B (or
B � A) introduced by Brenner [5] to represent the statement that there are constants
C1 andC2 independent of h, H , Δ, and other variables that appear on both sides such
that A ≤ C1B (or B ≤ C2A). The notation A ≈ B means that A � B and B � A.
Thus the quadratic form defined by the mass matrix satisfies

xTMx ≈ h3‖x‖2, x ∈ R
n (13.28)

(see, e.g., Wathen [6]). We also need a variant of the standard estimate [7].

Lemma 13.1 Let K denote the finite element stiffness matrix of Sect.13.3 arising
from a quasi-uniform discretization of the subdomains Ω p, p = 1, . . . , s, using lin-
ear shape regular tetrahedral elements ω

p
i , i = 1, . . . , np with the discretization

parameter h. Then
‖K‖ � h. (13.29)

Proof First observe that we assume that the components cpi jkl of Hooke’s tensor
of elasticity Cp are bounded, so the energy density produced by the strain "(vp)

associated with the displacement vp in the subdomain Ω p satisfies

σ(vp) : "(vp) � ‖"(vp)‖2
F =

3∑

i, j=1

e2
i j (v

p).
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Let φ
p
1 , . . . ,φ p

np
denote a finite element basis of the subspace V p

h of
(
H 1(Ω p)

)3
that

satisfies the assumptions, p = 1, . . . , s, so that any up
h can be written in the form

up
h = ξ1φ

p
1 + · · · + ξnpφ

p
np

,

and observe that

‖"(φ
p
i )‖2

F � h−2.

Thus the elements ki j of Kp satisfy

k p
i j =

∫

ω
p
i ∩ω

p
j

a(φ
p
i ,φ

p
j ) dω =

∫

ω
p
i ∩ω

p
j

σ(φ
p
i ) : "(φ

p
j ) dω � h3h−2 = h.

Taking into account that k p
i j = 0 for ω

p
i ∩ ω

p
j = ∅, we get

ξ TKpξ � h‖ξ T ‖2.

To complete the proof, just notice that K = diag (K1, . . . , Ks). �
Lemma 13.2 Let the assumptions of Lemma 13.1 hold, C > 0, and

‖BTλ‖2 ≈ ‖λ‖2.

Then
h2Δ2

h3
(
h2 + Δ2

)‖λ‖2 � λT F̃λ � Δ2

h3
‖λ‖2. (13.30)

Proof Let λ ∈ R
m , let μmin and μmax denote the extreme eigenvalues of M, and let

μ = BTλ. Then we have μmin ≈ h3 by (13.28). Since the smallest eigenvalue of K
is zero, we have

λT F̃λ = μT K̃−1μ = μT

(
K + 4

Δ2
M

)−1

μ

≤ Δ2

4μmin
‖μ‖2 ≈ Δ2

h3
‖BTλ‖2 ≈ Δ2

h3
‖λ‖2.

Similarly, using Lemma 13.1 and the assumptions, we get

λT F̃λ = μT K̃−1μ = μT

(
K + 4

Δ2
M

)−1

μ

�
(
h + h3Δ−2

)−1 ‖μ‖2 � h−3
(
h−2 + Δ−2

)−1 ‖λ‖2.

After simple manipulations, we get (13.30). �
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The main result of this section is now an easy corollary of Lemma 13.2.

Proposition 13.1 Let the assumptions of Lemma 13.1 hold, C > 0,

‖BTλ‖2 ≈ ‖λ‖2.

Then the condition number κ(̃F) of F̃ generated with the discretization parameters
h and Δ such that 0 < Δ ≤ Ch satisfies

κ(̃F) � 1. (13.31)

13.6 Preconditioning by Conjugate Projector

Examining the proof of Lemma 13.2, we can see that if we use longer time steps, the
effective stiffness matrix has very small eigenvalues which obviously correspond to
the eigenvectors that are near the kernel of K. This observation was first exploited
for linear problems by Farhat, Chen, and Mandel [8] who used the conjugate pro-
jectors to the natural coarse grid to achieve scalability with respect to the time step.
Unfortunately, this idea cannot be applied to the full extent to the contact problems
as we do not know a priori which boundary conditions are applied to the subdomains
with nonempty contact interfaces. However, we can still define a preconditioning
by the trace of rigid body motions on artificial subdomain interfaces. To implement
this observation, we use the preconditioning by conjugate projector for partially
constrained strictly convex quadratic programming problems that complies with the
MPRGP algorithm for the solution of strictly convex bound constrained problems.
Our approach is based on Domorádová and Dostál [9]. Even though the method
presented here is similar to that used in Chap. 11, it is not identical, as here we work
with the effective stiffness matrix which is nonsingular.

The choice of projectors is motivated by the classical FETI results by Farhat,
Mandel, and Roux [10] and their application to the unconstrained transient problems
by Farhat, Chen, and Mandel [8]. To explain the motivation in more detail, let us
denote by R ∈ R

n×r the full rank matrix, the columns of which whose columns span
the kernel of the stiffness matrix K introduced in Sect. 13.2, i.e.,

KR = O and K̃R = 4

Δ2
MR.

Since all the subdomains are floating the matrix R is known a priori.
In the static case, we get the same minimization problem as in (13.23) but with

H = K and h = f . In this case, H is SPS, so by Proposition 3.13 the dual problem
reads

min
1

2
λTFλ − λT d̃ s.t. λI ≥ o and Gλ = e, (13.32)

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_3
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where
F = BK+BT , d̃ = BK+f − c,
G = TRTBT , e = TRT f,

and T and K+ denote a regular matrix that defines the orthonormalization of the rows
of RTBT and arbitrary generalized inverse to K satisfying K = KK+K, respectively.

The final step in the static case is based on the observation that problem (13.32)
is equivalent to

min
1

2
λT (PFP + ρQ)λ − λTPd s.t. Gλ = o and λI ≥ 
I , (13.33)

where ρ is an arbitrary positive constant,

Q = GTG and P = I − Q

denote the orthogonal projectors onto the image space of GT and onto the kernel
of G, respectively, d = d̃ − Fλ̃, and 
 = −λ̃, where λ̃ is a particular solution of the
equation Gλ = e used for the homogenization as in Sect. 11.6.

The proof of optimality for static problems in Sect. 11.10 was based on a favorable
distribution of the spectrum of F|KerG. Since F̃ can be considered for a large Δ as
a perturbation of F, it seems natural to assume that the reduction of iterations to
KerG guarantees also some preconditioning effect for F̃.

To develop an efficient algorithm for (13.25) based on MPRGP, we have to find
a subspace of Rm that is near to KerG and is invariant with respect to the Euclidean
projection onto the feasible set. The latter condition implements the requirement for
the convergence of multigrid formulated by Iontcheva and Vassilevski [11] that the
coarse grid should be defined by the subspace which is kept away from the contact
interface. A natural choice U = ImUT is defined by the full rank matrix U ∈ R

r×m ,

U = [O, GE ], GE = RTBT
E .

We implement this idea by means of the conjugate projectors

P = I − UT (UF̃UT )−1UF̃ and Q = UT (UF̃UT )−1UF̃ (13.34)

onto the subspaces
V = ImP and U = ImQ = ImUT ,

respectively. It is easy to check directly that P and Q are conjugate projectors, i.e.,

P2 = P, Q2 = Q, and PT F̃Q = O,

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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and that

PT F̃ = PT F̃P = F̃P and QT F̃ = QT F̃Q = F̃Q. (13.35)

From the definition of V and (13.35), we get immediately

PT F̃P(̃FV ) ⊆ F̃V . (13.36)

Thus F̃V is an invariant subspace of PT F̃P. The following simple lemma shows that
the mapping which assigns each λ ∈ F̃V the vector Pλ ∈ V is expansive.

Lemma 13.3 Let P denote a conjugate projector onto V . Then for any λ ∈ F̃V

‖Pλ‖ ≥ ‖λ‖ (13.37)

and
V = P(̃FV ). (13.38)

Proof See [12]. �

Using the projector Q, it is possible to solve the auxiliary problem

min
ξ∈U

Θ(ξ) = min
μ∈Rr

Θ(UTμ) = min
μ∈Rr

1

2
μTUF̃UTμ − dTUTμ,

with Θ defined in (13.27). By the gradient argument, we get that the minimizer
ξ̂ = UT μ̂ of Θ over U is defined by

UF̃UTμ = Ud, (13.39)

so that
ξ̂ = UT (UF̃UT )−1Ud = QF̃−1d. (13.40)

Thus we can find the minimum of Θ over U effectively whenever we are able to
solve (13.39).

We shall use the conjugate projectors Q and P to decompose the minimization
problem (13.25) into the minimization on U and the minimization on V ∩ ΩB ,
V = ImP. In particular, we shall use three observations. First, using Lemma 13.3,
we get that the mapping which assigns to each x ∈ F̃V a vector Px ∈ V is an isomor-
phism. Second, using the definitions of the projectors P and Q, (13.35), and (13.40),
we get

g0 = F̃̂ξ − d = F̃QF̃−1d − d = QF̃F̃−1d − d = QTd − d = −PTd. (13.41)
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Since
ImPT = Im(PT F̃) = Im(̃FP) = F̃V (13.42)

and g0 ∈ ImPT by (13.41), we get that g0 ∈ F̃V . Finally, observe that it follows by
Lemma 13.3 that the restriction PT F̃P|̃FV is positive definite.

For any vector λ ∈ R
m , let I ⊆ {1, . . . ,m} denote the set of indices that corre-

spond to λI , so that λI = λI . Due to our special choice of U, we get that for any
λ ∈ R

m

[Pλ]I = λI . (13.43)

Moreover, for any ξ ∈ U and μ ∈ V , [ξ + l.μ]I ≥ o if and only if μI ≥ o. Using
(13.40), (13.41), and (13.43), we get

min
λ∈ΩB

Θ(λ) = min
ξ∈U,μ∈V
ξ+μ∈ΩB

Θ(ξ + μ) = min
ξ∈U

Θ(ξ) + min
μ∈V∩ΩB

Θ(μ)

= Θ(̂ξ) + min
μ∈V∩ΩB

Θ(μ) = Θ(̂ξ) + min
μ∈F̃V
μI ≥o

1

2
μTPT F̃Pμ − dTPμ

= Θ(̂ξ) + min
μ∈F̃V
μI ≥o

1

2
μTPT F̃Pμ + (

g0
)T

μ.

Thus we have reduced our bound constrained problem (13.25), after replacing μ by
λ, to the problem

min
λ∈F̃V
λI ≥o

1

2
λTPT F̃Pλ + (

g0
)T

λ. (13.44)

The following lemma shows that the above problem can be solved by the standard
MPRGP algorithm without any change.

Lemma 13.4 Let λ1,λ2, . . . be generated by theMPRGP algorithm for the problem

min
λI ≥o

1

2
λTPT F̃Pλ + (

g0
)T

λ (13.45)

starting from λ0 = PΩB

(
g0

)
, where PΩB denotes the Euclidean projection to the

feasible set ΩB. Then λk ∈ F̃V, k = 0, 1, 2, . . . .

Proof See Domorádová and Dostál [9] or the book [13]. �

To discuss at least briefly the preconditioning effect of the restriction of the iterates
to F̃V , let ϕmin and ϕmax denote the extreme eigenvalues of F̃. Let μ ∈ F̃V and
‖μ‖ = 1. Then by Lemma 13.3

μTPT˜̃FPμ = (Pμ)T F̃(Pμ) ≥ (Pμ)T F̃(Pμ)/‖Pμ‖2 ≥ ϕmin (13.46)
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and
μTPT F̃Pμ ≤ μTQT F̃Qμ + μTPT F̃Pμ = μT F̃μ ≤ ϕmax. (13.47)

Thus, it is natural to assume that the preconditioning by the conjugate projector results
in an improved rate of convergence. The preconditioning effect can be evaluated by
means of the gap between the subspace defined by the eigenvectors corresponding to
the smallest eigenvalues of F̃ and the subspace that is defined by the image space of UT

(see Dostál [12] or [13]). Let us stress that the unique feature of the preconditioning
by a conjugate projector is that it preconditions not only linear steps but also the
nonlinear gradient projection steps.

Let us compare our analysis with Farhat, Chen, and Mandel [8], who show that
in the unconstrained case, the conjugate projector for large time steps approaches
the orthogonal projector to the natural coarse grid (defined by the kernel of G). This
observation implies that the convergence properties of their algorithm for longer time
steps are similar to the convergence of FETI1. Unfortunately, these arguments are
not valid for our algorithm. The reason is that our coarse space is smaller. Indeed,
if λ = [λT

I , oT ]T , then obviously λ ∈ KerU, but not necessarily λ ∈ KerG. On the
other hand, the size of λI is typically rather small as compared with the size of λ,
so that it is natural to assume that the preconditioning by the conjugate projector
improves significantly the rate of convergence.

13.7 Optimality

Now we are ready to show that MPRGP can be used to implement the time step of
the implicit Newmark method with a uniformly bounded number of matrix–vector
multiplications. Let us consider a class of problems arising from the finite element
discretization of a given transient contact problem (13.13) and (13.6)–(13.11) with
varying time steps Δ > 0 and the decomposition and discretization parameters H
and h, respectively. We assume that the space discretization satisfies the assumptions
of Theorem 11.1. Given the constants C1,C2 > 0, we shall define

TC1C2 = {(H, h,Δ) ∈ R
3 : 0 < Δ ≤ C1h and h ≤ C2}

as the set of indices.
For any t ∈ TC1,C2 , we shall define

F̃t = F̃, dt = d, It = I ,

by the entities generated with the parameters H , h, and Δ, so that problem (13.25)
is equivalent to the problem

min
1

2
λT
t F̃tλt − dT

t λt s.t. [λt ]It ≥ o. (13.48)

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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The main result reads as follows.

Theorem 13.1 Let C1,C2, ε > 0, and 0 < c < 1 denote given constants. For each
t ∈ TC1C2 , let {λk

t } be generated by Algorithm 8.2 (MPRGP) defined for the solution
of problem (13.48) with

Γ > 0 and c‖F̃t‖−1 ≤ αt < (2 − c)‖F̃t‖−1.

Then MPRGP finds an approximate solution λ̃t which satisfies

‖gP (̂λt )‖ ≤ ε‖dt‖ (13.49)

at O(1) matrix–vector multiplications by the Hessian F̃t of the cost function.

Proof We shall show that the contraction coefficient of MPGP

ηΓ,t = 1 − α̂tλmin (̃Ft )

ϑt + ϑt Γ̂ 2
, Γ̂ = max{Γ, Γ −1},

ϑt = 2 max{αt‖F̃t‖, 1}, α̂t = min{αt , 2‖F̃t‖−1 − αt },

which was established in Theorem 8.1, is bounded away from 1. First recall that by
Proposition 13.1 there is a constant C ≥ 1 such that

κ(̃Ft ) ≤ C, t ∈ TC1C2 .

Since

α̂t = min{αt , 2‖F̃t‖−1 − αt } ≥ min{c‖F̃t‖−1, (2 − c)‖F̃t‖−1} (13.50)

= c‖F̃t‖−1 > 0, (13.51)

it follows that

α̂tλmin (̃Ft ) ≥ c‖F̃t‖−1λmin (̃Ft ) = cκ(̃Ft )
−1 ≥ c/C.

Observing that θt ≤ 4, we get

ηΓ,t = 1 − α̂tλmin (̃Ft )

ϑt + ϑt Γ̂ 2
≤ 1 − c

4C(1 + Γ̂ 2)
< 1.

Thus we have found a nontrivial bound on ηΓ,t which does not depend on H, h,Δ.
The rest follows Theorem 8.1. �

Let us finish by recalling that to achieve any kind of scalability, it is important to
keep H/h bounded in order to keep asymptotically linear complexity of the matrix
decomposition of K̃ that is necessary for the effective evaluation of the action of F̃.

http://dx.doi.org/10.1007/978-1-4939-6834-3_8
http://dx.doi.org/10.1007/978-1-4939-6834-3_8


246 13 Transient Contact Problems

Notice that the optimality concerns also the norm of the projected gradients. The rate
of convergence can be improved by the preconditioning by the conjugate projector.

13.8 Numerical Experiments

The algorithms presented here were implemented in several software packages (see
Sect. 19.5) and tested on a number of academic benchmarks and real world problems.
Here, we give some results that illustrate their numerical scalability and effectiveness
usingMatSol [14], postponing the demonstration of parallel scalability to Chap. 19.
All computations were carried out with the parameters recommended in the descrip-
tion of the algorithms in Chap. 8, i.e., Γ = 1 and α = 1.9|̃F|−1. The relative precision
of the computations was 10−4.

13.8.1 Academic Benchmark

We first tested the performance of the TFETI-based algorithms on 3D impact of the
elastic bodies Ω1 and Ω2 depicted in Fig. 13.2 (see [15]). The top view of the bodies
is 10 × 10 [mm], the top face of the lower body Ω1 and the bottom face of the upper
body Ω2 are described by the functions φ1 and φ2, respectively, where

φ1(x, y) = 5 sin

(
20 −

√
400 − x2 − y2

)
, φ2(x, y) = sin

(√
20.22 − x2 − y2 − 20.2

)
.

GΩ2

Ω1

Fig. 13.2 Geometry with traces of domain decomposition

Material constants are defined by the Young modulus E1 = E2 = 2.1 · 105 [MPa],
the Poisson ratio ν1 = ν2 = 0.3, and the density ρ1 = ρ2 = 7.85 · 10−3 [g/mm3].
The initial gap between the curved boxes is set to g0 = 0.001 [mm]. The initial

http://dx.doi.org/10.1007/978-1-4939-6834-3_19
http://dx.doi.org/10.1007/978-1-4939-6834-3_19
http://dx.doi.org/10.1007/978-1-4939-6834-3_8
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velocity of the upper body Ω2 in the vertical direction is v2 = −1 [m/s]. The upper
body is floating and the lower body is fixed along the bottom side. The linearized
non-interpenetration condition was imposed on the contact interface.

The space discretization was carried out with the brick elements using vary-
ing discretization and decomposition parameters h and H , respectively. We kept
H/h = 16. The number of subdomains ranged from 16 to 250, the number of dual
variables ranged from 21,706 to 443,930, and the number of primal variables ranged
from 196,608 to 3,072,000. For the time discretization, we used the contact-stabilized
Newmark algorithm with the constant time step Δ = 3h10−3 and solved the impact
of bodies in the time t = [0, 45Δ].

The energy development is in Fig. 13.3 shows that the algorithm preserves the
energy as predicted by the theory. The development of contact pressure in the middle
of Γ 2

C is in Fig. 13.4.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
−5

0

0.5

1

1.5

2

2.5

3

3.5

Time τ [s]

Total energy Kinetic energy Potencial energy

Fig. 13.3 Energy conservation [ton · mm2 ·
s−2]
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Fig. 13.4 Contact pressure in the middle of
Γ 2
C [MPa]

The performance of the algorithm is in Fig. 13.5.
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Fig. 13.5 Hessian multiplications for MPRGP and MPRGP-P, Δ2 (left) and Δ1,h (right)
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13.8.2 Impact of Three Bodies

We considered the transient analysis of three elastic bodies in mutual contact. The
bottle is a sample model of Autodesk Inventor (“bottle.ipt”). We prescribed the initial
velocity v3 = −5 [m/s] on the sphere in the horizontal direction. The L-shape body
was fixed along the bottom side. For the time discretization, we used the constant
time step Δ = 1 · 10−3 [s] and solved the impact of bodies in the time interval
t = [0, 150Δ] [s].

The solution (total displacement of the problem discretized by 1.2 · 105 primal and
8.5 · 103 dual variables and decomposed into 32 subdomains using METIS in time
t1 = 20Δ, t2 = 40Δ, t3 = 60Δ, t4 = 80Δ, t5 = 100Δ, t6 = 120Δ [s]) is depicted
in Fig. 13.6. The whole computational process required approximately 300 and 30
matrix–vector multiplications per time step during the impact and the separation,
respectively.

Fig. 13.6 Impact of bodies in time

13.9 Comments

Convenient presentation of the variational formulation, the finite element approxi-
mation of the solution, and standard iterative methods for the solution can be found
in the book by Kikuchi and Oden [16]. More on the formulation of continuous prob-
lem and the existence of solutions can be found in Eck, Jarušek, and Krbec [17]. An
up-to-date engineering approach to the solution of transient contact problems can
be found in Laursen [18] or Wriggers [19]. See Chap. 15 for the discussion of the
combination of TFETI and the mortar approximation of contact conditions.

A conveniently applicable stable energy conserving method, which is based on
quadrature formulas and applicable to frictional contact problems, was proposed by
Hager, Hüber, and Wohlmuth [20]. The method is based on quadrature formulas.
For its analysis, see Hager and Wohlmuth [21]. Important issues related to the time
discretization and avoiding the nonphysical oscillations that result from the appli-
cation of standard time discretization methods for unconstrained problems were
proposed, e.g., by Chawla and Laursen [22], Wohlmuth [2], Bajer and Demkowicz
[23, 24], Khenous, Laborde, and Renard [25, 26], Deuflhard, Krause, and Ertel [27],
and Kornhuber et al. [28]. A discussion of the advantages and disadvantages of the
respective approaches can be found in [29].

http://dx.doi.org/10.1007/978-1-4939-6834-3_15
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The experimental evidence of optimal complexity of the time step for some acad-
emic problems has been reported by the methods discussed in the previous chapters,
in particular in Chap. 11. Thus Krause and Walloth [4] documented that even some
transient problems with friction can be solved very efficiently by the monotone
multigrid method. See also Wohlmuth and Krause [30] and Kornhuber et al. [28]. As
mentioned above, the multigrid methods typically reduce the solution of auxiliary
problems to a sequence of linear problems that are solved with optimal complexity,
typically leaving the nonlinear steps without theoretically supported precondition-
ing, so that the theory does not guarantee the optimal performance of the overall
procedure.

The combination of the standard finite element space discretization with the
contact-stabilized Newmark scheme that we use here was introduced by Krause
and Walloth [4] for the transient problems with friction. The results presented in
this chapter appeared in Dostál et al. [15]. The preconditioning by conjugate pro-
jector (deflation) for linear problems was introduced independently by Marchuk
and Kuznetsov [31], Nicolaides [32], and Dostál [12]). For recent references see
Gutnecht [33]. The procedure was adapted to the solution of inequality constrained
problems by Domorádová–Jarošová and Dostál [9]. The lack of sufficiently small
subspace with the solution does not allow stronger theoretical results. Farhat, Chen,
and Mandel [8] used the preconditioning by the conjugate projector onto the subspace
defined by the natural coarse grid to achieve optimality of FETI for unconstrained
transient problems.
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Chapter 14
TBETI

The optimality results presented in the previous four chapters used the formulation of
the conditions of equilibrium in the domains which were decomposed into nonover-
lapping subdomains and “glued” by the equality constraints. The subdomains were
discretized by means of the finite element method. Using the duality, the origi-
nal problem was reduced to the minimization of a quadratic function in Lagrange
multiplierswith awell-conditionedHessian subject to some separable inequality con-
straints and linear equality constraints. Since the multipliers were associated with
the nodes on the boundaries of the subdomains, the procedure can be viewed also as
the reduction to the skeleton of the decomposition.

There is a natural question whether we can reduce the formulation of the condi-
tions of equilibrium to the boundary on continuous level. Such reduction promises a
lower dimension of the primal discretized problem, simplified discretization, higher
precision of numerical solution, improved flexibility in solving the problems that
include a free boundary as in the contact shape optimization, and an effective treat-
ment of the boundary value problems defined on unbounded domains.

In this chapter, we shall indicate how to reduce frictionless contact problems to
the skeleton of the decomposition. The basic observation is that it is possible to find
the formulae for sufficiently rich sets of so-called fundamental solutions that can be
combined so that they satisfy both the boundary conditions of the original problem
and the “gluing” conditions on the artificial interface.

Our development of scalable algorithms for contact problems is based on theBETI
(Boundary Element Tearing and Interconnecting) method, which was introduced by
Langer and Steinbach [1]. The main new feature of BETI is that it generates the
counterparts of the Schur complements directly by the discretization of the conditions
of equilibrium reduced to the boundary. We use a variant of BETI called TBETI,
which is the boundary element counterpart of TFETI. Here we describe the main
steps of reducing the contact problems to the boundary—first for scalar problems,
then for elasticity.

© Springer Science+Business Media LLC 2016
Z. Dostál et al., Scalable Algorithms for Contact Problems, Advances
in Mechanics and Mathematics 36, DOI 10.1007/978-1-4939-6834-3_14
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14.1 Green’s Representation Formula
for 2D Laplace Operator

To explain the fundamental ideas of boundary element methods, let us first consider
the scalar problems governed by 2D Laplace’s operator introduced in Chap.10. Let
Ω ⊂ R

2 be a bounded Lipschitz domain with the boundary Γ , such as Ω i j in the
benchmarks of Chap.10, but we shall assume that the diameter of Ω satisfies

diamΩ = max
x,y∈Ω

‖x − y‖ < 1.

Though our purpose here is only to present the basic ideas in the extent that is
necessary for understating the algorithms, we shall use some abstract concepts to
simplify the formulation of true statements and identify the steps that are relevant
for implementation. In particular, we shall use the standard interior trace operator γ0
(see (4.3)) and the associated interior conormal derivative operator γ1 (see (4.6)).

If u ∈ C∞(Ω), then

γ0u = u|Γ, 〈γ1u, v〉 =
∫

Γ

∂u

∂n
v dΓ, v ∈ C∞ (

R
2
)
,

where n = n(x) is the outer unit normal vector to Γ at x. In this case, we can identify

γ1u = ∂u

∂n
= ∇u · n, x ∈ Γ.

Let

U (x, y) = − 1

2π
log ‖x − y‖

denote the fundamental solution of Δ in R2. If δy denotes Dirac’s δ-distribution at y,
then

−ΔxU (x, y) = δy for y ∈ R
2

in the sense of distributions in R
2, i.e.,

−
∫

R2
ΔU (x, y)v(x) dΩx = v(y)

for any y ∈ R
2 and v ∈ C∞(R2) with a compact support. A key tool on the way to a

boundary formulation is the following theorem.

Theorem 14.1 (Green’s Representation Formula) Let u ∈ H 1
Δ(Ω) be such that

−Δu = f on Ω . Then for any x ∈ Ω

http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_4
http://dx.doi.org/10.1007/978-1-4939-6834-3_4
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u(x) =
∫

Ω

f (y) U (x, y) dΩy +
∫

Γ

γ1u(y)U (x, y) dΓy −
∫

Γ

γ0u(y)
∂

∂ny
U (x, y) dΓy.

(14.1)

Proof See, e.g., [2]. �

Since all three summands of (14.1) belong to H 1
Δ, we can apply the operators

γ0, γ1 to the representation formula (14.1) to get

1

2
γ0u(x) =

∫

Ω

f (y) U (x, y) dΩy +
∫

Γ

γ1u(y) U (x, y) dΓy

−
∫

Γ

γ0u(y)
∂

∂ny
U (x, y) dΓy,

1

2
γ1u(x) = γ1,x

∫

Ω

f (y)U (x, y) dΩy +
∫

Γ

γ1u(y)
∂

∂nx
U (x, y) dΓy

− γ1,x

∫

Γ

γ0u(y)
∂

∂ny
U (x, y) dΓy.

After introducing the standard operators (see [3–5]), we get Calderon’s system of
integral equations valid on Γ

[
γ0u
γ1u

]
=
[ 1

2 I − K V
D 1

2 I + K ′

] [
γ0u
γ1u

]
+
[

N0 f
N1 f

]
(14.2)

with the following integral operators defined for x ∈ Γ :

single-layer potential operator

(V t)(x) =
∫

Γ

t (y) U (x, y) dΓy, V : H−1/2(Γ ) → H 1/2(Γ ),

double-layer potential operator

(K h)(x) =
∫

Γ

h(y)
∂

∂ny
U (x, y) dΓy, K : H 1/2(Γ ) → H 1/2(Γ ),

adjoint double-layer potential operator

(K ′t)(x) =
∫

Γ

t (y)
∂

∂nx
U (x, y) dΓy, K ′ : H−1/2(Γ ) → H−1/2(Γ ),

hypersingular integral operator

(Dh)(x) = −γ1,x

∫

Γ

h(y)
∂

∂ny
U (x, y) dΓy, D : H 1/2(Γ ) → H−1/2(Γ ),
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and Newton’s potential operators

(N0 f )(x) =
∫

Ω

f (y) U (x, y) dΩy, N0 : L2(Ω) → H 1/2(Γ ),

(N1 f )(x) = γ1,x

∫

Ω

f (y) U (x, y) dΩy, N1 : L2(Ω) → H−1/2(Γ ).

The mapping properties of the above integral operators are well known, in particular
all are bounded, V is symmetric and elliptic (see, e.g., Steinbach [4], Theorem 6.23),
and D is symmetric and semi-elliptic with the kernel R of the solutions of the
Neumann homogeneous boundary value problem

Δu = 0 in Ω,

γ1u = 0 on Γ.

14.2 Steklov–Poincaré Operator

For a given f ∈ L2(Ω), observing that the assumption on the diameter of Ω

implies that the operator V is elliptic, we get from the first equation of (14.2) the
Dirichlet–Neumann map

γ1u = V −1

(
1

2
I + K

)
γ0u − V −1N0 f on Γ. (14.3)

We can also substitute the latter formula into the second equation of (14.2) to get
another representation of the Dirichlet–Neumann map

γ1u =
((

1

2
I + K ′

)
V −1

(
1

2
I + K

)
+ D

)
γ0u +

(
N1 −

(
1

2
I + K ′

)
V −1N0

)
f

(14.4)

on Γ . The last equation can be expressed by means of two new operators, the
Steklov–Poincaré operator defined by the equivalent representations

S = V −1

(
1

2
I + K

)
(14.5)

=
(
1

2
I + K ′

)
V −1

(
1

2
I + K

)
+ D (14.6)

and the Newton operator defined by

N = V −1N0 =
(

N1 −
(
1

2
I + K ′

)
V −1N0

)
.
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The Eqs. (14.3) and (14.4) now read

γ1u = Sγ0u − N f on Γ. (14.7)

If g : Γ → R is sufficiently smooth, then the solution of

− Δu = f, γ0u = g (14.8)

can be obtained in the form
u = ug + u f ,

where ug , u f solve
−Δug = 0, −Δu f = f in Ω,

γ0ug = g, γ0u f = 0 on Γ.
(14.9)

Moreover, (14.7) implies that for any v ∈ H 1/2(Γ )

〈Sg, v〉 = 〈γ1ug, v〉 =
∫

Γ

∂

∂n
ug(x)v(x) dΓ (14.10)

and

〈N f, v〉 = −〈γ1u f , v〉 = −
∫

Γ

∂

∂n
u f (x)v(x) dΓ. (14.11)

The properties of the Steklov–Poincaré operator are summarized in the following
theorem.

Theorem 14.2 The Steklov–Poincaré operator

S : H 1/2(Γ ) → H−1/2(Γ )

is symmetric and there are αD > 0 and α > 0 such that

〈Sv, v〉 ≥ αD ‖v‖2H 1/2(Γ ) for all v ∈ H 1/2(Γ )/R

and
〈Sv, v〉 ≥ α ‖v‖2H 1/2(Γ ) for all v ∈ H 1/2

0 (Γ, ΓU ),

where
H 1/2

0 (Γ, ΓU ) = {v ∈ H 1/2(Γ ) : v = 0 on ΓU }

and ΓU is a part of the boundary Γ with a positive measure.

Proof See the books by McLean [2] od Steinbach [4, 6]. �
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Note that the representation (14.5) together with a Galerkin discretization typi-
cally results in nonsymmetric stiffnessmatrices. The symmetry of the stiffnessmatrix
is essential in our further analysis, so we consider only the symmetric representa-
tion (14.6).

14.3 Decomposed Boundary Variational Inequality

Now we are ready to reduce the scalar variational inequality that was introduced in
Sect. 10.3 to the boundaries of the subdomains. Let us recall that a solution of the
variational inequality (10.10) defined on the union of the subdomains Ω i j requires
to find u ∈ KDD such that

a(u, v − u) ≥ 
(v − u), v ∈ KDD, (14.12)

where

V i j =
{

vi j ∈ H1(Ω i j ) : γ0vi j = 0 on Γ i
U ∩ Ω

i j
}

, i = 1, 2, j = 1, . . . , p,

VDD = (V 11 × · · · × V 1p) × (V 21 × · · · × V 2p),

KDD =
{

v ∈ VDD : γ0v2i ≥ γ0v1 j on Γ 2i
C ∩ Γ

1 j
C and γ0vi j = γ0vik on Γ i j ∩ Γ ik

}
,

and

(u, v) =
2∑

i=1

p∑

j=1

∫

Ω i j

ui j vi j dΩ,

a(u, v) =
2∑

i=1

p∑

j=1

∫

Ω i j

(
∂ui j

∂x1

∂vi j

∂x1
+ ∂ui j

∂x2

∂vi j

∂x2

)
dΩ,


(v) = ( f, v). (14.13)

If u is a sufficiently smooth solution of (14.12), then ui defined by

ui = ui j for x ∈ Ω
i j
, i = 1, 2, j = 1, . . . , p,

is a classical solution of (10.1)–(10.2).
To reduce the variational formulation of the decomposed problem to the skeleton

Σ = Γ 11 × · · · × Γ 1p × Γ 21 × · · · × Γ 2p,

let

V i j
b = {

vi j ∈ H 1/2(Γ i j ) : vi j = 0 on Γ i
U ∩ Γ i j

}
, i = 1, 2, j = 1, . . . p,

http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
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denote the closed subspaces of H 1/2(Γ i j ), and let

V b
DD = (V 11

b × · · · × V 1p
b ) × (V 21

b × · · · × V 2p
b ),

K b
DD =

{
v ∈ V b

DD : v2i − v1 j ≥ 0 on Γ 2i
C ∩ Γ

1 j
C and vi j = vik on Γ i j ∩ Γ ik

}
.

On V b
DD we shall define a scalar product

(u, v) =
2∑

i=1

p∑

j=1

∫

Γ i j

ui j vi j dΓ,

a symmetric bilinear form

ab(u, v) =
2∑

i=1

p∑

j=1

〈Si j ui j , vi j 〉,

and a linear form


b(v) =
2∑

i=1

p∑

j=1

〈N i j f i j , vi j 〉,

where the ordered couples of upper indices i j associate the objects with the
subdomains Ω i j .

Let us now assume that u ∈ KDD is a solution of (14.12) and v ∈ KDD . After
substituting Δu = − f into Green’s identity (see Theorem 4.2)

∫

Ω

∇u · ∇v dΩ +
∫

Ω

Δu v dΩ = 〈γ1u, γ0v〉

and using (14.7), (14.10), and (14.11) to its right-hand side, we get

a(u, v − u) − 
(v − u) = ab (γ0u, γ0(v − u)) − 
b (γ0(v − u)) . (14.14)

Thus if u ∈ KDD is a solution of (14.12), then their traces on Γ satisfy

ab (γ0u, γ0(v − u)) ≥ 
b (γ0(v − u)) , v ∈ KDD.

Moreover, if we define

qb : V b
DD → R, qb(v) = 1

2
ab(v, v) − 
b(v),

http://dx.doi.org/10.1007/978-1-4939-6834-3_4
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we can use the same arguments as in Sect. 10.3 to get that any solution u ∈ KDD of
(14.12) satisfies

qb(γ0u) ≤ qb(v), v ∈ K b
DD. (14.15)

Now we are ready to formulate the main result of this section.

Theorem 14.3 Let g ∈ K b
DD satisfy

qb(g) ≤ qb(v), v ∈ K b
DD, (14.16)

and let u = ug + u f denote a solution of (14.9) with u f , ug defined by (14.9). Then
u solves (14.12).

Proof The proofs follow the definitions and (14.14). �

14.4 Boundary Discretization and TBETI

The boundary element discretization of the variational inequality defined on the
skeleton Σ of the decomposition (10.11) is very similar to the finite element dis-
cretization defined onΩ . The only difference is that the basis functionsφ
 are defined
on the boundaries of the subdomains Ω i j .

Let us assume that each domain Ω i is decomposed into p = 1/H 2 square sub-
domains Ω i j , i = 1, 2, j = 1, . . . , p, as in Sect. 10.4, and decompose the boundary
Γ i j of Ω i j into nτ

i j line segments τ
i j

 of the length h. On each τ

i j

 , we can choose

one or more nodes and use them to define the shape functions (see, e.g., Gaul et al.
[7], Sect. 4.2.5) or the boundary element polynomial basis functions. For example,
we can use the piecewise constant functions �

i j

 associated with the elements τ

i j

 or

the linear basis functions φ
i j

 associated with the vertices of the elements which are

depicted in Fig. 14.1. We denote the number of the basis functions by ni j .

i j
kΨ i j

τ i j xk
Γi jΓi j Ω i jΩ i j

Fig. 14.1 Piecewise constant (left) and piecewise linear continuous (right) basis function

We shall look for an approximate solution uh in the trial space Vh which is spanned
by the basis functions,

Vh = V 11
h × · · · × V 1p

h × V 21
h × · · · × V 2p

h ,

V i j
h = Span{φi j


 , 
 = 1, . . . , ni j }.

http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
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Decomposing uh into components, i.e.,

uh = (u11
h , . . . , u1p

h , u21
h , . . . , u2p

h ),

ui j
h (x) =

∑


=1,...,ni j

ui j

 φ

i j

 (x),

we get

〈Suh, uh〉 =
∑

i=1,2; j=1,...,p

〈Si j ui j
h , ui j

h 〉,

〈Si j ui j
h , ui j

h 〉 =
∑


,m=1,...,ni j

ui j

 〈Si jφ

i j

 , φi j

m 〉ui j
m = (ui j )T Si jui j ,

[
Si j
]

m = 〈Si jφ

i j

 , φi j

m 〉, [ui j ]
 = ui j

 .

Similarly


b(uh) =
2∑

i=1

p∑

j=1

〈N i j f i j , ui j
h 〉,

〈N i j f i j , ui j
h 〉 =

∑


=1,...,ni j

〈N i j f i j , ui j

 φ

i j

 〉 = (f b

i j )
Tui j ,

[
f b

i j

]



= 〈N i j f i j , φ
i j

 〉. (14.17)

The effective evaluation of (14.17) can be found, e.g., in Steinbach [4], Chap.10.
Let us now assign each subdomain a unique index and let us index contiguously

the nodes and the entries of corresponding vectors in subdomains, so thatwe canwrite

Sb =

⎡

⎢⎢⎢
⎣

Sb
1 O · · · O

O Sb
2 · · · O

...
...

. . .
...

O O · · · Sb
s

⎤

⎥⎥⎥
⎦

, u =
⎡

⎢
⎣

u1
...

us

⎤

⎥
⎦ , f b =

⎡

⎢
⎣

f b
1
...

f b
s

⎤

⎥
⎦ .

The SPS matrix Sb ∈ R
n×n denotes a discrete analog of the Steklov–Poincaré oper-

ator that assigns each vector u of nodal boundary displacements the vector of cor-
responding nodal forces. Our notation indicates that Sb is closely related to the
Schur complement S introduced in Chap.10. If we denote by Bb

I and Bb
E the full

rank matrices which describe the discretized non-penetration and gluing conditions,

http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
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respectively, we get the discretized version of problem (10.11) with auxiliary domain
decomposition that reads

min
1

2
uT Sbu − (f b)Tu s.t. Bb

Iu ≤ o and Bb
Eu = o. (14.18)

In (14.18), the matrices Bb
I and Bb

E can be obtained from the matrices BE and BI

used in (10.12) by deleting the columns which correspond to the inner nodes of the
subdomains. In particular, we can easily achieve

Bb
(
Bb
)T = I, Bb =

[
Bb

I
Bb

E

]
.

The next steps are very similar to those described in Chap. 10 (details can be found
also in [8]), so we shall switch to the main goal of this chapter, the development of
a scalable BETI-based algorithm for solving the frictionless contact problems of
elasticity.

14.5 Operators of Elasticity

To extend our exposition to frictionless contact problems in 3D, let us briefly recall
some fundamental results concerning the boundary integral operators that can be
used to reduce the conditions of equilibrium of a homogeneous elastic body to its
boundary. Though most of these results are rather complicated, they can be obtained
by the procedures indicated in Sect. 14.1 with Green’s formulae replaced by Betti’s
formulae. The most important point is that the energy associated with a sufficiently
smooth displacement v which satisfies the conditions of equilibrium in the domain
can be evaluated by means of the values of v and its derivatives on the boundary
as in our scalar benchmark (14.14). More details can be found, e.g., in the paper
by Costabel [3] or in the books by Steinbach [4], Rjasanow and Steinbach [5], or
McLean [2]. See also Dostál et al. [9].

Let Ω ⊂ R
3 be a bounded Lipschitz domain with the boundary Γ which is filled

with a homogeneous isotropic material and consider the elliptic operator L which
assigns each sufficiently smooth u : Ω → R

3 a mapping L u : Ω → R
3 by

L u = −div�(u) in Ω,

where the stress tensor σ satisfies, as in Sect. 11.2, Hooke’s law

�(v) = C"(v).

Let us recall the standard interior trace and boundary traction operators

γ0 : (H 1(Ω)
)3 → (

H 1/2(Γ )
)3

and γ1 : (H 1
L (Ω)

)3 → (
H−1/2(Γ )

)3
,

http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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respectively, where H 1/2(Γ ) denotes the trace space of H 1(Ω), H−1/2(Γ ) is the
dual space to H 1/2(Γ ) with respect to the L2(Γ ) scalar product, and

(
H 1

L (Ω)
)3 =

{
v ∈ (H 1(Ω)

)3 : L v ∈ (L2(Ω)
)3}

.

It is well known (see, e.g., [2–4]) that for any u ∈ (H 1
L (Ω)

)3
, there exists the

Dirichlet–Neumann map

γ1u = Sγ0u − NL u on Γ

with the Steklov–Poincaré operator

S = (σ I + K ′)V −1(σ I + K ) + D : (H 1/2(Γ )
)3 → (

H−1/2(Γ )
)3

, (14.19)

where σ(x) = 1/2 for almost all x ∈ Γ , and the Newton operator

N = V −1N0 : (L2(Ω)
)3 → (

H−1/2(Γ )
)3

. (14.20)

In (14.19) and (14.20) we use the single-layer potential operator V , the double-
layer potential operator K , the adjoint double-layer potential operator K ′, and the
hypersingular integral operator D given for x ∈ Γ and i = 1, 2, 3 by

(V t)i (x) =
∫

Γ

t(y) · Ui (x, y) dΓy, V : (H−1/2(Γ )
)3 → (

H 1/2(Γ )
)3

,

(Ku)i (x) =
∫

Γ

u(y) · γ1,yUi (x, y) dΓy, K : (H 1/2(Γ )
)3 → (

H 1/2(Γ )
)3

,

(K ′t)i (x) =
∫

Γ

t(y) · γ1,xUi (x, y) dΓy, K ′ : (H−1/2(Γ )
)3 → (

H−1/2(Γ )
)3

,

(Du)i (x) = −γ1,x

∫

Γ

u(y) · γ1,yUi (x, y) dΓy, D : (H 1/2(Γ )
)3 → (

H−1/2(Γ )
)3

,

and the Newton potential operator N0 given for x ∈ Γ and i = 1, 2, 3 by

(N0f)i (x) =
∫

Ω

f(y) · Ui (x, y) dΩy, N0 : (L2(Ω)
)3 → (

H 1/2(Γ )
)3

,

where Ui are the components of the fundamental solution U of L (Kelvin tensor),

Ui = [Ui1, Ui2, Ui3]T , i = 1, 2, 3, U = UT = [U1,U2,U3],
Ui j (x, y) = 1 + ν

8π E(1 − ν)

(
(3 − 4ν)

δi j

‖x − y‖ + (xi − yi )(x j − y j )

‖x − y‖3
)

, δi j=[ I ]i j .
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The mapping properties of the above integral operators are well known [3, 4],
in particular, the single-layer potential operator V is

(
H−1/2(Γ )

)3
–elliptic, so its

inverse exists. We shall need the following lemmas:

Lemma 14.1 The Steklov–Poincaré operator S is linear, bounded, symmetric, and
semi-elliptic on

(
H 1/2(Γ )

)3
. Moreover, the kernel of S is equal to the space of

linearized rigid body motions, i.e.,

Ker S = Span

⎧
⎨

⎩

⎡

⎣
1
0
0

⎤

⎦ ,

⎡

⎣
0
1
0

⎤

⎦ ,

⎡

⎣
0
0
1

⎤

⎦ ,

⎡

⎣
−x2

x1
0

⎤

⎦ ,

⎡

⎣
0

−x3
x2

⎤

⎦ ,

⎡

⎣
x3
0

−x1

⎤

⎦

⎫
⎬

⎭
. (14.21)

Proof See the book by Steinbach [4]. �

Lemma 14.2 The Newton operator N is linear and bounded on
(
L2(Ω)

)3
.

Proof See the book by Steinbach [4]. �

14.6 Decomposed Contact Problem on Skeleton

Let us consider the variational formulation of the decomposed multibody contact
problem to find u ∈ KDD such that

q(u) ≤ q(v), v ∈ KDD, (14.22)

where

q(v) = 1

2
a(v, v) − 
(v)

and KDD were introduced in Sect. 11.4. Let us recall that

a(u, v) =
s∑

p=1

a p(up, vp), a p(up, vp) =
∫

Ω p
�
(
vp) : "

(
up) dΩ,


(v) =
s∑

p=1

∫

Γ
p

F

f p
Γ · (vp − up) dΓ +

s∑

p=1

∫

Ω p
f p · (vp − up) dΩ,

V i =
{
v ∈

(
H1(Ω i )

)3 : v = o on Γ i
U

}
, i = 1, . . . , s,

VDD = V 1 × · · · × V s ,

KDD =
{
v ∈ VDD : [vn] ≤ g on Γ

i j
C , (i, j) ∈ S ; vi = v j on Γ

i j
G , i, j = 1, . . . , s

}
,

where S denotes the contact coupling set.

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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To describe the boundary variational formulation of (14.22), let us introduce

V i
b = {v ∈ (H 1/2(Γ 1))3 : v = o on Γ i

U }, i = 1, . . . , s,

V b
DD = V 1

b × · · · × V s
b ,

K b
DD = {v∈V b

DD : [vn]≤g on Γ
i j

C , (i, j) ∈ S ; vi=v j on Γ
i j

G , i, j=1, . . . , s}.

For any displacement
u = (u1, . . . , us) ∈ V b

DD,

let us define the energy functional by

qb(u) = 1

2
ab(u,u) − 
b(u),

where ab is a bilinear form on V b
DD defined by

ab(u, v) =
s∑

p=1

〈S pup, vp〉

and 
b is a linear functional on V b
DD given by


b(v) =
s∑

p=1

(
〈N pf p, vp〉 + 〈f p

Γ
p

F
, vp〉

)
.

Recall that

S p : (H 1/2(Γ p)
)3 → (

H−1/2(Γ p)
)3

and N p : (L2(Ω p)
)3 → (

H−1/2(Γ p)
)3

denote the (local) Steklov–Poincaré and Newton operators, respectively.
The boundary formulation of the decomposed problem (14.22) now reads: find

the displacement u ∈ K b
DD such that

qb(u) ≤ qb(u) for v ∈ K b
DD. (14.23)

Due to Lemmas 14.1 and 14.2, the bilinear form ab is bounded, symmetric, and
elliptic on V b

DD and the linear functional 
b is bounded on V b
DD . Thus qb is a bounded

convex quadratic functional on V b
DD and problem (14.23) has a unique solution by

Theorems 4.4 and 4.5.

http://dx.doi.org/10.1007/978-1-4939-6834-3_4
http://dx.doi.org/10.1007/978-1-4939-6834-3_4
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14.7 TBETI Discretization of Contact Problem

The boundary element discretization of contact problems defined on the skeleton of
the decomposition (14.23) is again very similar to that defined on Ω . The main new
feature, as compared with Sect. 14.4, is that the basis functions are defined on 2D
boundaries of subdomains Ω p and are vector valued. After decomposing each Γ p

into nτ
p triangles τ

p
i , p = 1, . . . , s, i = 1, . . . , nτ

p, we can use, e.g., the constant basis
functions ψ

p
i associated with τ

p
i or the linear basis functions φ

p
j associated with the

vertices of τ
p

i (see Fig. 14.2). We denote the number of the basis functions by n p and
look for an approximate solution uh in the trial space

Vh = V 1
h × · · · × V s

h , V p
h = Span

{
φ

p
1 , . . . ,φ

p
n p

}
.

τ

k

xk ΓΓ

Fig. 14.2 Piecewise constant (left) and linear continuous (right) basis functions on the surface

After substituting into the formsab and 
b,weget thematrix of the local discretized
Poincaré–Steklov operators Sb

p and the blocks f b
p of the discretized traction

[
Sb

p

]

m

= 〈S pφ
p

 ,φ p

m〉,
[
f b

p

]



= 〈N pf p,φ
p

 〉 + 〈f p

Γ
p

F
,φ

p

 〉.

To evaluate the entries of the boundary element matrices, we have to approximate
(possibly singular) double surface integrals. This can be carried out effectively, e.g.,
by the semi-analytical approach introduced by Rjasanow and Steinbach in [5], where
the inner integral is calculated analytically and the outer one is approximated by using
a suitable numerical scheme. See also Steinbach [4, Chap. 10]. If we denote by Bb

I
and Bb

E the full rank matrices which describe the discretized non-penetration and
gluing conditions, respectively, we get the discretized version of problem (14.23)
with auxiliary domain decomposition in the form

min
1

2
uT Sbu − (f b)Tu s.t. Bb

Iu ≤ c and Bb
Eu = o, (14.24)
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where

Sb =

⎡

⎢⎢⎢
⎣

Sb
1 O · · · O

O Sb
2 · · · O

...
...

. . .
...

O O · · · Sb
s

⎤

⎥⎥⎥
⎦

, u =
⎡

⎢
⎣

u1
...

us

⎤

⎥
⎦ , f b =

⎡

⎢
⎣

f b
1
...

f b
s

⎤

⎥
⎦ .

The SPS matrix Sb ∈ R
n×n denotes a discrete analog of the Steklov–Poincaré oper-

ator that assigns each vector u of nodal boundary displacements a vector of corre-
sponding nodal forces. Our notation indicates that Sb is closely related to the Schur
complement S introduced in Chap.10. In (14.24), the matrices Bb

I and Bb
E can be

obtained from the matrices BE and BI from (10.12) by deleting the columns the
indices of which correspond to the inner nodes of the subdomains.

Remark 14.1 Since the matrices Bb
I and Bb

E can be obtained from the matrices BI

and BE by deleting the columns whose indices correspond to the inner nodes of
subdomains, it is always possible to achieve that the rows of B are orthonormal
provided each node is involved in at most one inequality. This is always possible
for two bodies or any number of smooth bodies. To simplify the formulation of the
optimality results, we shall assume in what follows (except Chap.15) that

Bb
(
Bb
)T = I. (14.25)

See also Remark 11.1.

14.8 Dual Formulation

Since the problem (14.24) arising from the application of the TBETI method to the
frictionless contact problemhas the same structure as that arising from the application
of the TFETI method in Chap.11, we shall reduce our exposition to a brief overview
of the basic steps—more details can be found in Chap. 11.

Recall that the Lagrangian associated with the problem (14.24) reads

L(u,λI ,λE ) = 1

2
uT Sbu − uT fb + λT

I (Bb
Iu − c) + λT

E Bb
Eu,

where λI and λE are the Lagrange multipliers associated with the inequalities and
equalities, respectively. Introducing the notation

λ =
[

λI

λE

]
, Bb =

[
Bb

I
Bb

E

]
, and c =

[
cI

oE

]
,

we can write the Lagrangian briefly as

L(u,λ) = 1

2
uT Sbu − uT fb + λT (Bbu − c).

http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_15
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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The next steps are the same as in Sect. 11.6. In particular, we get that if (x,λ) is
a KKT couple of the problems (14.18) or (14.24), then λ solves the minimization
problem

min Θ(λ) s.t. λI ≥ o and (Rb)T (fb − (Bb)T λ) = o, (14.26)

where

Θ(λ) = 1

2
λT Bb(Sb)+(Bb)T λ − λT (Bb(Sb)+fb − c),

andRb denotes the matrix the columns of which span the kernel ofSb. ThematrixRb

can be obtained from the matrix R which spans the kernel of the stiffness matrix K
obtained by the volume finite element discretization by deleting the rows which
correspond to the nodal variables in the interior of the subdomains.

Let us denote

F̃b = Bb(Sb)+(Bb)T , F = ‖F̃b‖,
Fb = F−1F̃b, d̃b = F−1

(
Bb(Sb)+fb − c

)
,

G̃ = (BbRb)T , ẽ = (Rb)T fb,

where T denotes a regular matrix that defines the orthonormalization of the rows of
G̃ so that the matrix

G = TG̃

has orthonormal rows. After denoting

e = T̃e,

problem (14.26) reads

min
1

2
λT Fbλ − λT d̃b s.t. λI ≥ o and Gλ = e. (14.27)

Next we shall transform the problem of minimization on the subset of the affine
space to that on the subset of a vector space bymeans of an arbitrary λ̃which satisfies

Gλ̃ = e.

If the problem (14.27) is a dual problem arising from the discretization of a
coercive problem, then we can use Lemma 11.1 to get λ̃ so that

λ̃I ≥ o.

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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Looking for the solution of (14.27) in the form λ = μ + λ̃, we get, after substituting
back λ for μ, the problem to find

min
1

2
λT Fbλ − λTdb s.t. Gλ = o and λI ≥ 
I = −λ̃I (14.28)

with
db = d̃b − Fbλ̃.

Our final step is based on the observation that problem (14.28) is equivalent to

min
1

2
λT Hbλ − λT Pdb s.t. Gλ = o and λI ≥ 
I , (14.29)

where ρ is an arbitrary positive constant and

Hb = PFbP + ρQ, Q = GT G, and P = I − Q.

Recall that P and Q denote the orthogonal projectors on the kernel of G and on
the image space of GT , respectively. If λ̃I ≥ o, then o is a feasible vector for the
problem (14.29).

14.9 Bounds on the Spectrum

First observe that ImP and ImQ are invariant subspaces ofHb and ImP+ImQ = R
m ,

as
P + Q = I

and for any λ ∈ R
m

HbPλ = (PFbP + ρQ)Pλ = P(FbPλ) and HbQλ = (PFbP + ρQ)Qλ = ρQλ.

It follows that
σ(Hb|ImQ) = {ρ},

so it remains to find the bounds on

σ(Hb|ImP) = σ(Fb|ImP).

The following lemma reduces the problem to the analysis of the local Schur com-
plements.

Lemma 14.3 Let there be constants 0 < c < C such that for each λ ∈ R
m

c‖λ‖2 ≤ ‖(Bb)T λ‖2 ≤ C‖λ‖2.
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Then for each λ ∈ ImP

c min
i=1,...,s

λmin(Sb
i )‖λ‖2 ≤ λT Fbλ ≤ C max

i=1,...,s
‖Sb

i ‖‖λ‖2,

where Sb
i denotes the boundary element stiffness matrix associated with Γ i .

Proof See the proof of Lemma 10.2. �

Remark 14.2 Lemma 14.3 indicates that the conditioning of H can be improved by
the orthonormalization of the rows of the constraint matrix Bb.

We have reduced the problem to bound the spectrum of H to the analysis of the
spectrum of the boundary stiffness matrices. The following result, which is due to
Langer and Steinbach, is important in the analysis of the optimality of the presented
algorithms.

Lemma 14.4 Let H and h denote the diameter and the discretization parameter
of a quasi-uniform discretization of a domain Ω ⊆ R

3 with shape regular elements.
Assume that the elements for the discretization of Γ are defined by the traces of those
for the discretization of Ω . Let Sb

H,h and SH,h denote the boundary stiffness matrix
and the Schur complement of the stiffness matrix K of a subdomain of Ω with respect
to its interior variables, respectively.

Then Sb
H,h and SH,h are spectrally equivalent, i.e., there are constants c and C

independent of h and H such that for each λ ∈ ImS

cλT SH,hλ ≤ λT Sb
H,hλ ≤ CλT SH,hλ. (14.30)

Proof See Langer and Steinbach [1]. �

The following theorem is now an easy corollary of Lemmas 14.3 and 14.4.

Theorem 14.4 Let ρ > 0 and let Hb
ρ,H,h denote the Hessian of the cost function of

problem (14.29) resulting from the quasi-uniform discretization of problem (14.15)
using shape regular boundary elements with the parameters H and h. Assume that Bb

satisfies (14.25).
Then there are constants c and C independent of h and H such that for each

λ ∈ R
n

c‖λ‖2 ≤ λT Hb
ρ,H,hλ ≤ C

H

h
‖λ‖2.

Proof Substitute (14.30) into Lemma 14.3, use Lemma 11.2, and take into account
the fixed regularization term ρQ. Notice that F is scaled. �

http://dx.doi.org/10.1007/978-1-4939-6834-3_10
http://dx.doi.org/10.1007/978-1-4939-6834-3_11


14.10 Optimality 269

14.10 Optimality

To show that Algorithm 9.2 (SMALBE-M) with the inner loop implemented by
Algorithm 8.2 is optimal for the solution of the problem (or a class of problems)
(14.29) arising from the varying discretizations of a given frictionless contact prob-
lem, let us introduce, as in Sect. 11.10, a new notation that complies with that used
in the analysis of the algorithms in Part II.

Let ρ > 0 and C ≥ 2 denote given constants and let

TC = {(H, h) ∈ R
2 : H/h ≤ C}

denote the set of indices. For any t ∈ TC , let us define the problem

At = PFbP + ρQ, bt = Pdb,

Bt = G, 
 t
I = −λ̃I ,

where the vectors and matrices of (14.29) arising from varying discretizations
of (14.23) with the parameters H and h, t = (H, h). We shall assume that the dis-
cretization satisfies the assumptions of Theorem 14.4. Using the procedure described
above, we get for each t ∈ TC the problem

minimize ft (λt ) s.t. Btλt = o and λt ≥ 
 t
I (14.31)

with

ft (λ) = 1

2
λT Atλ − bT

t λ.

We shall assume that the discretization satisfies the assumptions of Theorem 14.4
and that


t
I ≤ o.

Using GGT = I, we obtain
‖Bt‖ ≤ 1. (14.32)

Moreover, it follows by Theorem 14.4 that for any C ≥ 2 there are constants
aC
max > aC

min > 0 such that

aC
min ≤ λmin(At ) ≤ λmax(At ) ≤ aC

max (14.33)

for any t ∈ TC . As above, we denote by λmin(At ) and λmax(At ) the extreme eigenval-
ues ofAt . Our optimality result for the solution of the class of problems (14.31) arising
from the boundary element discretization of the multibody contact problem (11.15)
reads as follows.

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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Theorem 14.5 Let C ≥ 2, ε > 0, and ρ > 0 denote given constants, let {λk
t } and

{μk
t } be generated by Algorithm 9.2 (SMALBE-M) for the class of problems (14.31)

with
‖bt‖ ≥ ηt > 0, 1 > β > 0, Mt,0 > 0, and μ0

t = o.

Let Step 1 of Algorithm 9.2 be implemented by means of Algorithm 8.2 (MPRGP)
with parameters

Γ > 0 and α ∈ (0, 2/aC
max),

so that it generates the iterates

λk,0
t ,λk,1

t , . . . ,λk,l
t = λk

t

for the solution of (14.31) starting from λ
k,0
t = λk−1

t with λ−1
t = o, where l = lt,k is

the first index satisfying

‖gP(λk,l
t ,μk

t , ρ)‖ ≤ M‖Btλ
k,l
t ‖

or
‖gP(λk,l

t ,μk
t , ρ)‖ ≤ εM‖bt‖.

Then for any t ∈ TC and problem (14.31), an approximate solution λ
kt
t which

satisfies
‖gP(λ

kt
t ,μ

kt
t , ρ)‖ ≤ εM‖bt‖ and ‖Btλ

kt
t ‖ ≤ ε‖bt‖

is generated at O(1) matrix–vector multiplications by the Hessian of ft .

Proof The class of problems satisfies all assumptions of Theorem 9.4 (i.e., o is
feasible and the inequalities (14.32) and (14.33) hold true) for the set of indices TC .
Thus to complete the proof, it is enough to apply Theorem 9.4. �

Since the cost of a matrix–vector multiplication by the Hessian At is proportional
to the number of dual variables, Theorem 14.5 proves the numerical scalability of
TBETI. The (week) parallel scalability is supported by the structure of At .

14.11 Numerical Experiments

The algorithms presented here were implemented in MatSol [10] and tested on
a number of academic benchmarks and real world problems, see, e.g., Sadowská
et al. [11] or [12]. Here, we give some results that illustrate the numerical scalability
and effectiveness of TBETI using the benchmark of Chap. 12. We also compare the
precision of TFETI and TBETI on the solution of a variant of the Hertz problem
with the known analytic solution. All the computations were carried out with the

http://dx.doi.org/10.1007/978-1-4939-6834-3_9
http://dx.doi.org/10.1007/978-1-4939-6834-3_9
http://dx.doi.org/10.1007/978-1-4939-6834-3_12
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parameters recommended in the description of the algorithms in Chaps. 7–9. The
relative precision of the computations was the same as in Chaps. 11 and 12, i.e., 10−4

for the academic benchmark and the 10−6 for the real world problems.

14.11.1 Academic Benchmark

We consider the contact problems of two cantilever beams in contact with friction
that was introduced in Sect. 12.9. The problems were decomposed and discretized
with varying decomposition and discretization parameters h and H as in Sect. 12.9.
We kept H/h = 12, so that the assumptions of Theorem 14.5 are satisfied. The
performance of the algorithms is documented in the following graphs.

0.07 0.19 0.90 2.48

100

200

300

400

500

600

  4  108  500 1372

Tresca friction
Coulomb friction

n [106]

nsub

n H
es

Fig. 14.3 Tresca and Coulomb BETI: numerical scalability of cantilever beams—matrix–vector
multiplications by F

The numbers of outer iterations and the multiplications by the Hessian F of the
dual function depending on the primal dimension n and the number of subdomains
nsub are in Fig. 14.3, both for the problem with the Tresca and Coulomb friction with
the friction coefficient Φ = 0.1. We can see a stable number of outer iterations and
mildly increasing number of inner iterations for n ranging from 7224 to 2,458,765.
The dual dimension of the problems ranged from 1859 to 1,261,493. We conclude
that the performance of the algorithms based on TBETI is very similar to those based
on TFETI and is in agreement with the theory. Notice that the primal dimension of
the problem discretized by BETI is typically much smaller than that discretized by
BETI with the same discretization parameter h.

http://dx.doi.org/10.1007/978-1-4939-6834-3_7
http://dx.doi.org/10.1007/978-1-4939-6834-3_9
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_12
http://dx.doi.org/10.1007/978-1-4939-6834-3_12
http://dx.doi.org/10.1007/978-1-4939-6834-3_12
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14.11.2 Comparison TFETI and TBETI

We consider a frictionless 3D Hertz problem depicted in Fig. 14.4, with the Young
modulus 2.1 · 105 MPa and the Poisson ratio 0.3. The ball is loaded on the top by the
force F = −5000 [N]. TheANSYSdiscretization of the two bodieswas decomposed
by METIS into 1024 subdomains.

G

Fig. 14.4 Model specification

The comparison of TFETI and TBETI in terms of computational times and the
number of Hessian multiplications is given in Table14.1.

Table 14.1 Numerical performance of TFETI and TBETI applied to the Hertz problem

Method Number of
primal DOFs

Number of
dual DOFs

Preprocessing
time

Solution time Number of
Hessian
applications

TFETI 4,088,832 926,435 21min 1h 49min 593

TBETI 1,849,344 926,435 1h 33min 1h 30min 667

We can see that the time of computation required by the two methods are compa-
rable, especially if we take into account that the preprocessing time can be reduced
very efficiently on more processors than 24 used in the test.

In Fig. 14.5 we can see a fine correspondence of the contact pressures computed
by TFETI and TBETI with the analytical solution. We can see that BETI returns a
bit more precise results, which is not surprising, as TFETI uses the exact solutions in
the interior of subdomains. The convergence criterion was the reduction of the norm
of the projected gradient of the dual energy function by 10−6.
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Fig. 14.5 Correspondence of numerical Hertz contact pressures to the analytic solution

14.11.3 Ball Bearing

We solved also the contact problem of ball bearing depicted in Figs. 1.1 and 1.3. We
imposed the Dirichlet boundary conditions on the outer ring and loaded the opposite
part of the inner diameter with the force 4500 [N]. The discretized geometry was
decomposed into 960 subdomains by Metis. Numerical comparison of TFETI and
TBETI is in Table14.2.

Table 14.2 Numerical performance of TFETI and TBETI applied to the ball bearing problem

Method Number of
primal DOFs

Number of
dual DOFs

Preprocessing
time

Solution time Number of
Hessian
applications

TFETI 1,759,782 493,018 129s 2h 5min 3203

TBETI 1,071,759 493,018 715s 1h 5min 2757

For more information see also [11, 12].

14.12 Comments

For a nice introductory course on the classical boundary element method which cov-
ers also somemore advanced topics, seeGaul, Kögl, andWagner [7]. Formore formal
exposition, see the books by Steinbach [4] or McLean [2]. Engineering applications
can be found in the book edited by Langer et al. [13].

The introduction of BETI method by Langer and Steinbach [1] opened the way to
the development of scalable domain decomposition-based algorithms for the solution
of problems discretized by the boundary element method. A variant of BETI which
we use here appeared first in Thesis by Of [14] as AF (all floating) BETI. See also
Of and Steinbach [15]. Here we call it TBETI (Total) as it is shorter and indicates a
close relation to TFETI, which was developed independently at about the same time.

http://dx.doi.org/10.1007/978-1-4939-6834-3_1
http://dx.doi.org/10.1007/978-1-4939-6834-3_1
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The scalability results reported here were published first for a scalar model prob-
lem in Bouchala et al. [8], then for 3D multibody elastic problems in Bouchala
et al. [8] and Sadowská et al. [11]. The scalability of the algorithm adapted for the
solution of problems with Tresca (given) friction is reported in Sadowská et al. [12].
We are not aware of other scalable methods for the solution of contact problems by
the boundary element method.

The performance of any algorithm which uses BEM can be improved by so-
called fast methods (see, e.g., Rjasanow and Steinbach [5]). They include the hier-
archical matrices introduced by Hackbusch [16] (see a comprehensive exposition in
Bebendorf [17]), theAdaptiveCrossApproximation (ACA) (see, e.g.,Bebendorf [18]
or Bebendorf and Rjasanow [17]), or Fast Multipole Method (FMM) (see, e.g.,
Greengard and Rokhlin [19, 20] or Of, Steinbach, and Rokhlin [21]). These methods
accelerate the evaluation of the matrices and the consequent matrix–vector multipli-
cation and lead to asymptotically nearly linear space and time complexities.
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Chapter 15
Mortars

The theoretical results on numerical scalability of algorithms for the solution of
contact problems presented in Chaps. 10–14 relied essentially on the strong linear
independence of the rows of constraintmatrices that describe “gluing” of subdomains
and non-penetration conditions. The constraint matrices with the desired properties
assumed matching grids and node-to-node linearized non-penetration conditions,
possibly obtained by an effective orthogonalization of the equality constraints. How-
ever, such approach has poor approximation properties and causes problemswhen the
contact conditions are imposed on large curved interfaces or non-matching grids—
the latter are inevitably present in the solution of transient contact problems.

Similar to the description of conditions of equilibrium, most of the drawbacks
mentioned above can be overcome when we impose the non-penetration conditions
in average.Our basic toolwill be so calledmortars,which enforce the non-penetration
by the discretization ofweek non-penetration conditions like (13.14), in particular the
biorthogonal mortars introduced byWohlmuth [1]. The latter are supported by a nice
approximation theory of variationally consistent discretization (see Wohlmuth [2])
and can be effectively implemented.

Until recently, it was not clear whether the mortars can be plugged into the FETI-
based domain decomposition algorithms in a way which preserves the scalability
of the algorithms. The reasons were that the constraint matrices resulting from the
mortar discretization do not have a nice block diagonal structure like those arising
from the node-to-node schemes and that it was not clear how to orthogonalize effec-
tively the rows corresponding to the inequality constraints against those enforcing
the “gluing” of the subdomains, especially those associated with the “wire baskets.”

In this chapter, we briefly review the description of non-penetration conditions by
means of biorthogonal mortars, prove that the constraint matrices arising from the
discretization by some biorthogonal bases are well conditioned under natural restric-
tions, and show that the procedure complies well with the FETI domain decomposi-
tion method. The theoretical results are illustrated by numerical experiments.
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15.1 Variational Non-penetration Conditions

As in Sect. 11.1, let us consider a system of bodies which occupy in the reference
configuration open bounded domains Ω1, . . . ,Ωs ⊂ R

3 with the Lipchitz bound-
aries Γ 1, . . . , Γ s and their parts Γ i

F , Γ i
U , and Γ i

C . Suppose that some nonempty Γ
p

C

comprises a part Γ
pq

C ⊆ Γ
p

C that can get into contact with Ω
q
as in Fig. 11.1. We

assume that Γ
p

C is sufficiently smooth, so that there is a well-defined outer normal
np(x) at almost each x ∈ Γ

p
C . From each couple of indices {p, q} which identify

Γ
pq

C �= ∅, we choose one index to identify the slave side of a possible contact inter-
face and define a contact coupling set S . Thus if (p, q) ∈ S , then Γ

pq
C �= ∅ is the

slave side of the contact interface that can come into contact with the master side
Γ

qp
C .
We shall first discuss the problems that can be explained without loss of generality

on two bodies assuming that S = {(1, 2)}, so that we can simplify the notation to
Γ 1

C = Γ 12
C and Γ 2

C = Γ 21
C . We shall use the notation introduced in Sect. 11.2 to write

the contact conditions briefly as

[un] ≤ g, λn ≥ 0, λn([un] − g) = 0, λλλ = λnn, x ∈ Γ 1
C , (15.1)

where n = n(x) denotes an outer normal unit vector at x ∈ Γ 1
C , λλλ is the contact

traction,
[un] = (u1 − u2 ◦ χ) · n1

denotes the jump in normal displacements, χ = χ12 : Γ 1
C 
→ Γ 2

C denotes the one-to-
one slave–master mapping and

g = g(x) = (
χ(x) − x

) · n(x)

is the initial normal gap. The first of the conditions (15.1) defines the nonempty,
closed, and convex subset K of the Hilbert space

V = V 1 × V 2, V 1 = (H 1(Ω1))3, V 2 = (H 1(Ω2))3

by
K = {v ∈ V : [vn] ≤ g on Γ 1

C }. (15.2)

The feasible set can be alternatively characterized by means of the dual cone. To
describe the weak non-penetration conditions, let us denote

W = H 1/2
(
Γ 1

C

)
, W + = {w ∈ W : w ≥ 0},

M = H−1/2(Γ 1
C ), M+ = {μ ∈ M : 〈μ, w〉 ≥ 0, w ∈ W +},
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so that M denotes the dual space of the trace space W and M+ denotes the dual
cone. The feasible set (with respect to linearized non-penetration conditions) can be
characterized by

K = {v ∈ V : 〈μ, [vn]〉Γ 1
C

≤ 〈μ, g〉Γ 1
C
for all μ ∈ M+}.

15.2 Variationally Consistent Discretization

Let us assume for simplicity that the domains Ω1 and Ω2 are polyhedral, so that
there are independent families of shape regular triangulations T k , k ∈ {1, 2}, such
thatΩ

k = ⋃
ω∈T k ω. LetF k denote the set of contact faces τ of the elements ofT k ,

so thatF k defines a 2-dimensional surface mesh of Γ k
C , Γ

k
C = ⋃

τ∈F k τ , k ∈ {1, 2}.
The surface mesh on Γ 2

C is mapped by χ−1 onto Γ 1
C , resulting in possibly non-

matching meshes on the contact interface.
Following Wohlmuth [2], we use the standard low order conforming finite ele-

ments for the displacements and the dual finite elements which reproduce constants
for surface traction. We shall use the notation

Vh = V 1
h × V 2

h , V k
h = Span{φp : p ∈ Pk}3, k ∈ {1, 2}, (15.3)

M+
h =

⎧
⎨

⎩
μ =

∑

p∈P1
C

βpψp, βp ∈ R
+

⎫
⎬

⎭
, (15.4)

wherePk is the set of all vertices ofT k ,Pk
C is the set of all vertices which belong to

Γ
k
C , k ∈ {1, 2}, φp denotes the standard conforming nodal basis function associated

with the vertex p, and ψp denotes the dual basis function associated with p. In
particular, for any x ∈ Γ k

C

∑

p∈Pk

φp(x) = 1, k = 1, 2. (15.5)

The following properties of the dual basis functions ψp are essential for our
presentation.

• The support of ψp is local, i.e.,

supp ψp = supp φp|Γ 1
C , p ∈ P1

C . (15.6)

• The basis functions ψp and φp are locally biorthogonal, i.e.,

∫

τ

φpψqdΓ = δpq

∫

τ

φpdΓ, p, q ∈ P1
C , τ ∈ F 1, (15.7)
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where F 1 denotes the set of all contact faces on the slave side. The basis functions
are required to enjoy two other properties, the best approximation property and the
uniform inf–sup condition that are essential for the development of the approximation
theory [1]. Notice that there exists no set of nonnegative basis functions that satisfy
(15.7), so M+

h is not a subset of M+. Observing that each v ∈ Vh can be written in
the form

v =
∑

p∈P1

φpxp +
∑

p∈P2

φpxp, xp ∈ R
3,

we can write the non-penetration condition in more detail as

∫

Γ 1
C

ψp

⎛

⎝
∑

q∈P1
C

φqxq −
∑

q∈P2
C

(φq ◦ χ)xq

⎞

⎠ · n dΓ ≤
∫

Γ 1
C

ψpg ds, p ∈ P1
C .

(15.8)
Our approximation of K reads

Kh = {v ∈ Vh : 〈μ, [vn]〉Γ 1
C

≤ 〈μ, g〉Γ 1
C
for all μ ∈ M+

h }.

To write (15.8) in a convenient matrix form, let us assign local indices 1, . . . , n1

and n1 + 1, . . . , n1 + n2 to the vertices on the contact interface on the slave and
master side, respectively, and assume that n(xi ) = n(x) for i = 1, . . . , n1 and
x ∈ suppφi , so that (15.8) is equivalent to

BNx ≤ Σ−1gN , BN = Σ−1
[
D,−M

]
, x = [(x1)T , (x2)T ]T ,

where

D =
⎡

⎣
d1nT

1 . . . oT

. . . . .

oT . . . dn1n
T
n1

⎤

⎦ , di =
∫

Γ 1
C

φ1
i ds, (15.9)

M =
⎡

⎣
m11nT

1 . . . m1n2n
T
1

. . . . .

mn11n
T
n1

. . . mn1n2n
T
n1

⎤

⎦ , mi j =
∫

Γ 1
C

ψ1
i (φ2

j ◦ χ) ds, (15.10)

gN = [gi ], gi =
∫

Γ 1
C

ψ1
p g ds, i = 1, . . . , n1, (15.11)

and Σ denotes the scaling matrix which normalizes the rows of [D,−M], so that the
diagonal entries of BNBT

N are equal to one, i.e.,

[Σ]2i i = d2
i +

n2∑

j=1

m2
i j , i = 1, . . . , n1. (15.12)
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To simplify the reading, we added a superscript k, k ∈ {1, 2} to the basis functions
associated with Γ k

C . Due to the block structure of BN , we have

BNBT
N = Σ−2D2 + Σ−1MMT Σ−1, (15.13)

whereD is diagonal SPD andMMT is SPS. Very useful discussion of implementation
details and catches can be found in Popp et al. [3].

15.3 Conditioning of Mortar Non-penetration Matrix

Now we are ready to give a bound on the squares of the singular values of B, in
particular on the smallest eigenvalue λmin(BNBT

N ) and on the largest eigenvalue
λmax(BNBT

N ). To simplify the description of our results, let us introduce the following
definition.

Definition 15.1 The dual basis functions ψi , ψ j , i �= j, defined on Γ 1
C are near if

there is a finite element basis function φ2
� defined on Γ 2

C such that

supp (φ2
� ◦ χ) ∩ suppψi �= ∅ and supp (φ2

� ◦ χ) ∩ suppψ j �= ∅.

The cover number of a dual basis function ψi is the number of dual basis functions
that are near to ψi . The cover number k of the mortar discretization is the maximal
cover number of the dual basis functions on Γ 1

C .

Theorem 15.1 Let BN denote the matrix arising from the consistent mortar dis-
cretization of the conditions of non-penetration for our model problem with the finite
elements that satisfy (15.5). Then

min
i=1,...,n1

(∫
Γ 1

C
ψi ds

)2

(∫
Γ 1

C
ψi ds

)2 +
(∫

Γ 1
C
|ψi | ds

)2 ≤ λmin(BNBT
N ) ≤ 1 (15.14)

and

λmax(BNBT
N ) ≤ 1 + k max

i=1,...,n1

(∫
Γ 1

C
|ψi | ds

)2

(∫
Γ 1

C
ψi ds

)2 +
(∫

Γ 1
C
|ψi | ds

)2 , (15.15)

where k denotes the cover number of the discretization.

Proof First observe that

λmin
(
BNBT

N

) = λmin
(
Σ−2D2 + Σ−1MMT Σ−1) ≥ λmin

(
Σ−2D2)
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and that Σ−2D2 is diagonal. Using (15.12) and (15.13), we get

[
Σ−2D2

]
i i = d2

i

d2
i +∑n2

j=1 m2
i j

=
(∫

Γ 1
C
ψi ds

)2

(∫
Γ 1

C
ψi ds

)2 +∑n2
j=1

(∫
Γ 1

C
ψi (φ

2
j ◦ χ) ds

)2 .

Noticing that the basis functions φ j satisfy (15.5), we can estimate the last sum in
the denominator of the last term by

n2∑

j=1

(∫

Γ 1
C

ψi (φ
2
j ◦ χ) ds

)2

≤
⎛

⎝
n2∑

j=1

∫

Γ 1
C

∣∣∣ψi (φ
2
j ◦ χ)

∣∣∣ ds

⎞

⎠

2

=
⎛

⎝
∫

Γ 1
C

n2∑

j=1

|ψi |φ2
j ◦ χ ds

⎞

⎠

2

=
(∫

Γ 1
C

|ψi | ds

)2

, i = 1, . . . , n1,

which proves the left inequality of (15.14).
To prove the right inequality, just observe that for the vector ei with the entries

δi j , we have due to the normalization

[BBT ]i i = eT
i BNBT

Nei = 1.

To prove the upper bound (15.15), we recall that the �∞-norm of any squarematrix
dominates its Euclidean norm, i.e.,

λmax
(
BNBT

N

) ≤ max
i=1,...,n1

n1∑

j=1

|bT
i b j | = 1 + max

i=1,...,n1

n1∑

j=1, j �=i

|bT
i b j |. (15.16)

Our next goal will be the upper bound on |bT
i b j |. Using the Cauchy interlacing

inequalities (2.21), we get that the eigenvalues of any submatrix

Ti j =
[

1 bT
i b j

bT
j bi 1

]
, i, j ∈ {1, . . . , n1},

of BNBT
N satisfy

λmin
(
Ti j
) ≥ λmin(BNBT

N ).

http://dx.doi.org/10.1007/978-1-4939-6834-3_2
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Direct computations reveal the spectrum σ(Ti j ) of Ti j ; we get

σ(Ti j ) = {1 + |bT
i b j |, 1 − |bT

i b j |}.

Combining these observations with (15.14), we get

1 − |bT
i b j | ≥ λmin(BNBT

N ) ≥
(∫

Γ 1
C
ψi ds

)2

(∫
Γ 1

C
ψi ds

)2 +
(∫

Γ 1
C
|ψi | ds

)2

= 1 −
(∫

Γ 1
C
|ψi | ds

)2

(∫
Γ 1

C
ψi ds

)2 +
(∫

Γ 1
C
|ψi | ds

)2 ,

so that

|bT
i b j | ≤

(∫
Γ 1

C
|ψi | ds

)2

(∫
Γ 1

C
ψi ds

)2 +
(∫

Γ 1
C
|ψi | ds

)2 . (15.17)

To finish the proof, substitute (15.17) to (15.16) and observe that

bT
i b j =

n2∑

k=1

(∫

Γ 1
C

ψi (φ
2
k ◦ χ) ds

)(∫

Γ 1
C

ψ j (φ
2
k ◦ χ) ds

)

.

It follows that if the dual functionsψi andψ j are not near and i �= j , thenbT
i b j �= 0.�

It is possible to evaluate directly the bounds for the linear elements, so we can
formulate the following corollary.

Corollary 15.1 Let BN denote the matrix arising from the consistent mortar dis-
cretization of the conditions of non-penetration of two 3D bodies using the linear
finite element basis functions reproducing constants. Then

1

7
<

64

425
≤ λmin

(
BNBT

N

) ≤ ‖BN ‖2 ≤ 1 + k. (15.18)

1
i ψi

1
2 Γ 1

C
ψi ds 1

2 Γ 1
C
|ψi|ds

Fig. 15.1 Illustration to Corollary 15.1
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Proof The proof of the corollary is based on the observation that the relevant char-
acteristics of the biorthogonal basis functions associated with linear elements do not
depend on the geometry. The slave continuous basis functions φ1

i and the discontin-
uous dual basis functions ψ1

i for 2D problems (see Fig. 15.1) have end–point values
{1, 0} and {2,−1}, respectively. To evaluate the estimate (15.14), we need explicitly
the ratio between the integrals of ψ1

i and |ψ1
i | over Γ 1

C , which can be shown to be
3/5 (see the gray areas in the right part of Fig. 15.1). The corresponding value for the
3D problems is 8/19. Thus

(∫
Γ 1

C
ψi ds

)2

(∫
Γ 1

C
ψi ds

)2 +
(∫

Γ 1
C
|ψi | ds

)2 ≥ 1

1 + ( 198
)2 = 64

425
.

�

Though the estimate (15.18) captures the qualitative features of the condition-
ing of mortar constraint matrices, it is rather pessimistic. The following Table15.1
provides information about the singular values of BI for non-matching regular dis-
cretizations of the contact interface of Hertz’s problem with varying discretization
parameters. We can see nice numbers for small values of hslave/hmaster, which are rel-
evant from the point of view of the approximation theory. See also Vlach, Dostál, and
Kozubek [4].

Table 15.1 Conditioning of the mortar matricesBI for 3D Hertz problem with non-matching grids

hslave/hmaster 1/6 1/3 2/3 1 3/2 3 6

λmin(BIB�
I ) 0.51 0.52 0.57 0.75 0.89 0.82 0.87

λmax(BIB�
I ) 15.5 5.72 2.01 1.32 1.14 1.30 1.20

κ(BIB�
I ) 30.4 11.4 3.55 1.77 1.28 1.58 1.38

15.4 Combining Mortar Non-penetration with FETI
Interconnecting

Toplug our results intoTFETI orTBETI, let us decompose each bodyΩ1,Ω2 into the
subdomainsΩ1

i ,Ω2
j of the diameter less or equal to H in a way which complies with

the triangulations T k , k ∈ {1, 2}, and use the triangulation to discretize separately
the subdomains. The procedure introduces several local degrees of freedom for the

displacements associated with the nodes on the interfaces Ω
k
i ∩ Ω

k
j . To simplify the

reference to the above discussions, let us first consider only the variables associated
with the nodes on ΓC and denote by xC and x̃C the variables associated with the
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problem without the decomposition considered above and the decomposed problem,
respectively. Using a suitable numbering of both sets of variables, we can define the
matrix LC ∈ R

ñC ×nC which assigns to each vector xC ∈ R
nC of global variables the

vector x̃C ∈ R
ñC of the variables associated with the decomposed problem so that

x̃C = LCxC , LC = diag(e1, · · · , enC ), ei = [1, . . . , 1]T ∈ R
mi .

Thus each component xi associated with a node which belongs to mi faces of the
subdomains ofΩk is assigned the vector x̃i = xiei ∈ R

mi . To test the non-penetration
of the decomposed problem, let us define the matrices

L̃C = diag(‖e1‖−1
1 e1, · · · , ‖enC ‖−1

1 enC ), B̃N = BN L̃T
C , (15.19)

so that
B̃N x̃C = BN L̃T

C x̃C = BN L̃T
CLCxC = BNxC .

To enforce the gluing of the subdomains as in Chap.11, notice that the displace-
ment ỹ ∈ ImLC if and only if yi = yiei , where yi is a block of y induced by the block
structure of ImLC . It follows that ImLC comprises the displacements which corre-
spond to the displacements of the glued subdomains of Ωk , k ∈ {2, 1}, so that the
part B̃G of the “gluing” matrix that acts on the variables associated with ΓC satisfies

ImL̃C = ImLC = KerB̃G, B̃G =
[
B̃1

G O
O B̃2

G

]
.

The blocks B̃i
G can be reordered to be block diagonal, with the nonzero blocks

comprising the row vectors of an orthonormal basis of Ker eT
i ⊂ R

mi so that

L̃T
C B̃

T
G = O

and
B̃N B̃T

G = BN L̃T
C B̃

T
G = O. (15.20)

Let us now return to the discretization of our two body contact problems, so
that x ∈ R

n denotes the vector of coordinates of vh ∈ Vh . The matrices describing
the non-penetration and gluing of variables that correspond to the nodes on ΓC can
be obtained by padding B̃N and B̃G with zeros. If we add the matrices B̃R with
orthonormal rows which enforce the gluing of the remaining variables and enforcing
the Dirichlet conditions, we get the constraint matrix

BI = [
B̃N O

]
, BE =

[
B̃G O
O B̃R

]
, B =

⎡

⎣
B̃N O
B̃G O
O B̃R

⎤

⎦ =
[
BI

BE

]
,

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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and
BBT = diag(BIBT

I ,BEBT
E ) = diag(B̃N B̃T

N , I ). (15.21)

Using (15.19) and assuming that BN has mC rows, we get for any λλλ ∈ R
mC

‖B̃T
Nλλλ‖2 = λλλTBN L̃T

C L̃CBT
Nλλλ = λλλTBN ΣBT

Nλλλ = ‖Σ1/2BT
Nλλλ‖2,

where
Σ = diag(‖e1‖−1

1 , . . . , ‖enC ‖−1
1 ).

To give bounds on the singular values of B̃, recall that ‖ei‖1 denotes the number
of subdomains the boundaries of which contain the node associated with the variable
xi and denote

smax = max
i=1,...,nC

‖ei‖1 ≥ 1.

Then
s−1/2
max ‖BT

Nλλλ‖ ≤ ‖B̃T
Nλλλ‖ ≤ ‖BT

Nλλλ‖. (15.22)

Since the rows of BN and BE∗ are normalized and orthonormalized, respectively,
we can combine (15.21) and (15.22) to get that for any λλλ

s−1
max‖BT

NλλλI ‖2 + ‖λλλE‖2 ≤ ‖BTλλλ‖2 ≤ ‖BT
NλλλI ‖2 + ‖λλλE‖2.

Under the assumptions of Corollary 15.1, we get

1

7smax
‖λλλ‖2 ≤ ‖BTλλλ‖2 ≤ (2 + k)‖λλλ‖2. (15.23)

Now we are ready to formulate the main result on the conditioning of the con-
straints arising in the solution of frictionless contact problems by the TFETI method
with the non-penetration enforced by biorthogonal mortars.

Proposition 15.1 Let the multibody contact problem introduced in Sect.11.4 be
discretized by linear finite elements reproducing constants with the consistent mor-

tar discretization of the conditions of non-penetration. Let Γ
i j
C ∩ Γ

kl
C = ∅ and

χ(Γ
i j
C ) ∩ χ(Γ

kl
C ) = ∅ for any (i, j), (k, l) that belong to the coupling set S . Then

the constraint matrix B can be formed in such a way that

1

7smax
< λmin

(
BBT

)
≤ ‖B‖2 ≤ 2 + k, (15.24)

where k denotes the cover number of the mortar discretization and smax denotes the
maximum number of the subdomains of one body that share a point on ΓC .

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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Proof First notice that inequalities (15.23) are valid for any couple of bodies that
can come into contact. It follows that if we denote by BIi j ∗ the block of rows of B
that enforce the gluing or non-penetration of bodies (or domains) on the interface
Γ

i j
C , (i, j) ∈ S , then for each (i, j), ( j, �) ∈ S

1

7smax
< λmin

(
BIi j ∗B

T
Ii j ∗

)
≤ ‖BIi j ∗‖2 ≤ 2 + k.

Moreover, the assumption guarantees that for each (i, j), (k, �) ∈ S , (i, j) �= (k, l),
we have

BIi j ∗B
T
Ikl∗ = O.

Since the blocksBIi j ∗, (i, j) ∈ S are orthogonal to the block B̃R of the orthonormal
rows of B that define the equality constraints which do not interfere with the contact
interface, it follows that the estimates (15.23) are valid also for the multibody contact
problems that satisfy the assumptions of the proposition. �

Proposition 15.1 shows that the matrix F arising from the mortar discretization of
the non-penetration conditions can be assembled so that it satisfies the assumptions
of Theorem 11.1 which established the H/h bound on the regular condition number
κ(PFP) with B generated by means of node-to-node constraints. It follows that
Theorem 11.2 on optimality of TFETI for the solution of frictionless problems is
valid also for the non-penetration enforced by biorthogonal mortars.

15.5 Numerical Experiments

We have implemented the mortar approximation of the non-penetration conditions
in MATLAB using our MatSol numerical library [5] and examined the conditioning
of both raint and Schur complement matrices on three benchmarks.

15.5.1 3D Hertz Problem with Decomposition

We shall use the benchmark depicted in Fig. 15.2 (left) that was used in Vlach et
al. [4]. The upper body Ω2 is pressed down on the upper face x3 = 10 by the bound-
ary traction (0, 0,−2e3) [MPa]. The material coefficients were the same for both
bodies, ν = 0.3 and E = 210 [GPa]. The symmetry conditions are imposed on the
boundaries x1 = 0 and x2 = 0; the lower body is fixed vertically along the bottom
face x3 = −10.

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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Fig. 15.2 3d Herz example – setting (left); decomposition case (middle); von Mises stress (right)

To illustrate our comments on the application of the theory in the analysis of
the domain decomposition methods, we carried out the computations with each
body either undecomposed or decomposed into 3 × 3 × 3 or 2 × 2 × 2 subdomains,
depending on hslave/hmaster. The decomposition for hslave/hmaster = 2/3 is in Fig. 15.2
(middle).

Table 15.2 3D Hertz problem with domain decomposition

hslave/hmaster 1/6 1/3 2/3 1 3/2 3 6

λmin(BIB�
I ) 0.49 0.40 0.43 0.73 0.86 0.83 0.88

λmax(BIB�
I ) 19.2 7.00 2.30 1.32 1.16 1.31 1.20

κ(BIB�
I ) 42.8 17.5 5.36 1.82 1.35 1.57 1.37

λmin(F|KerG) 1.6e-6 2.4e-6 2.8e-6 3.8e-6 2.7e-6 2.2e-6 1.4e-6

λmax(F|KerG) 1.1e-4 1.1e-4 1.1e-4 1.1e-4 9.9e-5 9.9e-5 9.9e-5

κ(F|KerG) 72.8 46.7 40.7 29.9 37.2 44.0 72.7

The results are in Table15.2. We can see that the decomposition hurts the con-
ditioning of the dual Schur complement F rather mildly, being obviously affected
more by the irregular decomposition which is far from the one required by the the-
ory of domain decomposition reported in Chap.11. In the right part of Fig. 15.2, the
distribution of von Mises stress in the deformed state is depicted. The number of
matrix–vector multiplications that were used to get the solution ranged from 72 to
240.

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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15.6 Comments and References

Mortars were introduced into domain decomposition methods byMaday, Mavripilis,
and Patera [6] with the aim to admit non-matching discretization of subdomains. The
mortar approximation of contact conditions was used by many researchers including
Puso [7], Puso and Laursen [8],Wriggers [9], Dickopf and Krause [10], and Chernov
et al. [11], and was enhanced into the efficient algorithms for contact problems as in
Wohlmuth and Krause [12].

The biorthogonal mortars, which were introduced byWohlmuth [1], turned out to
be the effective tool for solving problems by means of domain decomposition. Our
exposition is based on the variationally consistent approximation of contact condi-
tions bybiorthogonalmortars that can be found in the seminal paper byWohlmuth [2].
See also Popp et al. [3]. Her presentation includes friction and the discretized prob-
lems are solved by means of multigrid in the framework of the nonsmooth Newton
methods.

The estimates for two bodies without the decomposition are due to Vlach (see
Vlach et al. [4]).
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Chapter 16
Preconditioning and Scaling

So far, the scalability results assumed that the bodies and subdomains involved in a
problem are made of the same material and that the stiffness matrices of the subdo-
mains are reasonable conditioned. If this is not the case, we can try to improve the
rate of convergence of the solvers by preconditioning.

Here we present some results that can be used to improve the convergence of the
algorithms for the solution of QP or QCQP problems arising from the application
of TFETI to the solution of contact problems. We are interested especially in the
methods which not only improve the condition number of the Hessian of the cost
function but also preserve the structure of the inequality constraints, so that they
affect both the linear and nonlinear steps.

We first consider a preconditioning which satisfies the above requirements and
can reduce or eliminate the effect of varying coefficients. Our development uses the
structure of thematricesF,B that were introduced in Chap.11 and results concerning
the reduction of upper bounds of the condition number by a diagonal scaling.We show
that the proposed preconditioning guarantees the bounds on the regular condition
number of preconditioned systems that are independent of the coefficients provided
the subdomains are homogeneous and each node is involved in at most one inequality
constraint. The preconditioning can be implemented in such a way that it preserves
the bound constraints and affects both linear and nonlinear steps. If some node is
involved inmore than one inequality then it can be used for the preconditioning in face
(see Sect. 8.6). A simplified diagonal stiffness scaling, which preserves the bound
constraints, is shown to reduce the ill-conditioning caused by varying coefficients in
more general case.

Then we discuss the adaptation of standard Dirichlet and lumped preconditioners
to solving contact problems and their implementation into the preconditioning in
face of the MPRGP and MPGP algorithms.

© Springer Science+Business Media LLC 2016
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16.1 Reorthogonalization-Based Preconditioning

We shall start with the preconditioning of the matrix

F = BTK+B, K = diag(K1, · · · ,Ks),

arising from the application of FETI domain decomposition methods to the solution
of frictionless contact problems with matching grids and homogeneous subdomains
made of isotropic material, so that their stiffness matrices depend linearly on their
modulus of elasticity. We assume that the matrices B and K were obtained by the
procedure described in Chap.11. Notice that the constraint matrixB can be reordered
so that the reordered B̃ is block diagonal with small blocks.

The structure of F,B and Lemma 10.2 suggests that we can try to improve the
conditioningofFbyfirst improving the regular condition number ofK by the diagonal
scaling to get

K̃ = Δ−1/2KΔ−1/2
, Δ = diag(k11, · · · , knn),

and
F = BK+BT = BΔ−1/2K̃+Δ−1/2BT ,

so that K̃ does not depend on the Young coefficients Ei , i = 1, . . . , s, and then
determine T by attempting to make

B̃ = TBΔ−1/2

as close to a matrix with orthonormal rows as possible. If each block of B̃ contains at
most one inequality, we can use T arising from the properly ordered Gram–Schmidt
orthogonalization of BΔ−1/2 to get

TBΔ−1/2
(TBΔ−1/2

)� = I. (16.1)

Notice that B̃ is a reordered block diagonal matrix, so it is not expensive to get
BΔ−1/2

(BΔ−1/2
)T , its Cholesky factorization LLT = BΔ−1BT , and the action of

T = L−1. The effect of the reortogonalization-based preconditioning is formulated
in the following proposition.

Proposition 16.1 Let the domain of a contact problem be decomposed into homoge-
neous subdomains of the diameter H and discretized by the shape regular elements
with the diameter h. Let the discretization be quasi-uniform with shape regular ele-
ments and let the subdomains be homogeneous and isotropic.

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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Then the regular condition number κ satisfies

κ(TFTT
) = κ(B̃K̃†B̃T ) ≤ C

H

h
, (16.2)

where C is independent of H, h, and Young’s modulus.

Proof Neither K̃ nor the conditioning of B̃ depend on Young’s modulus and

TFTT = TBK†BTTT = B̃K̃†B̃T .

The rest follows by Theorem 11.1. �

We can plug the reorthogonalization-based preconditioning into problem (11.40)

min θ(λ) s.t. Gλ = o and λI ≥ �I

by substituting λ = TTμ to get

min θ(TTμ) s.t. GTTμ = o and [TTμ]I ≥ �I . (16.3)

Since the reorthogonalization-based preconditioning turns in general case the bound
constraints into more general inequality constraints, it follows that we can use this
preconditioning only as preconditioning in face. However, if each node is involved in
at most one inequality constraint, as in the two-body problem with a smooth contact
interface, i.e., if each block of B̃ has at most one row corresponding to the inequality
constraint, then it is possible to preserve the bound inequality constraints. It is just
enough to start the orthogonalization of each block of B̃with the rows corresponding
to the equality constraints to get

B̃ =
[
TE O
TI Σ

] [
BE

BI

]
, (16.4)

so that

min θ(TTμ) s.t. GTTμ = o, μI ≥ Σ−1�I , λ = TTμ, (16.5)

where Σ is a diagonal matrix with positive entries. Since such transformation pre-
serves the bound constraints, it follows that the preconditioning by reorthogonaliza-
tion can be applied to discretized dual problem (16.3) and improve the bounds on the
rate of convergence of the algorithms like MPRGP, MPGP, SMALBE, or SMALSE
introduced in Part II.

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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16.2 Renormalization-Based Stiffness Scaling

Let us now consider a general bound and equality constrained problems (11.36)
arising from the discretization of a contact problem with nonsmooth interface or
which admits nodes on the contact interface which belong to more than two bodies,
so that the reorthogonalization-based preconditioning changes the bound constraints
into more general inequality constraints (16.3). To improve the conditioning of the
non-linear steps, we can try to use Δ to find a diagonal matrix

Σ = diag[σ1, . . . , σm]

with positive diagonal entries such that the regular condition number of the scaled
matrixΣFΣ is smaller than that of F. Such scaling can be considered as modification
of the constraints to

ΣIBI v ≤ ΣI gI , ΣEBE v = o, and Σ = diag[ΣI ,ΣE ],

where ΣI and ΣE are the diagonal blocks of Σ that correspond to BI and BE ,
respectively.

As above, we shall first improve the regular condition number ofK by the diagonal
scaling to get

K̃ = Δ−1/2KΔ−1/2

and
F = BK†BT = BΔ−1/2K̃†Δ−1/2BT ,

and then determineΣ by attempting to make B̃ = ΣBΔ−1/2 as close to a matrix with
orthonormal rows as possible, i.e.,

ΣBΔ−1/2(ΣBΔ−1/2)T ≈ I. (16.6)

Probably the simplest idea is to require that (16.6) is satisfied by the diagonal
entries. Denoting by bi the i-th row of B, we get for the diagonal entries σi of Σ

σibiΔ−1/2(σibiΔ−1/2)T and σi = 1/
√
biΔ−1bT

i . (16.7)

Unfortunately, it turns out that the scaling is not sufficient to get an optimality result
similar to Proposition 16.1, though numerical experiments indicate efficiency of the
diagonal scaling. The problem is in the constraintswhich enforce the continuity of the
solution in the corners of the subdomains with different coefficients. The following
proposition on scalar problem partly explains both observations.

Proposition 16.2 Let a 2D Poisson problem on square be decomposed into homo-
geneous subdomains and discretized by finite elements using a regular matching

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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grids. Let the continuity of subdomains be enforced across the faces by the equations
xi − x j = 0 and in the corners by the equations

xi + x j − xk − x� = 0, xi − x j = 0, and xk − x� = 0.

Let the constraint matrix B̃ = ΣBΔ−1/2 and the vectors of Lagrange multipliers
λ ∈ R

m be decomposed into the blocks B̃c and λc ∈ R
mc associated with the corner

constraints and B̃e andλe ∈ R
me associatedwith the edge constraints, m = mc+me,

so that
B̃Tλ = B̃T

c λc + B̃T
e λe. (16.8)

Then there is 0 < C1 ≤ 1 such that

C1‖λc‖2 ≤ ‖B̃T
c λc‖2 ≤ 2‖λc‖2 and ‖B̃T

e λe‖2 = ‖λe‖2. (16.9)

Moreover, there there are subspaces Vc ⊆ R
mc and Wc ⊆ R

mc of the dimension nc
and mc − nc, where nc is the number of corners, such that Rmc = Vc ⊕ Wc and for
any λc ∈ Vc and μc ∈ Wc

λT
c μc = 0, C1‖λc‖2 ≤ ‖B̃T

c λc‖2 ≤ ‖λc‖2, and ‖μc‖2 ≤ ‖B̃T
c μc‖2 ≤ 2‖μc‖2.

(16.10)

Proof Let us denote by B̃i jk�
c the 3 × 4 block of B̃c associated with variables

vi , v j , vk, v� which are glued by the corresponding three rows of B̃c. Denoting the
parts of these rows b̃1, b̃2, b̃3, we get

B̃i jk�
c =

⎡

⎣
b̃1
b̃2
b̃3

⎤

⎦ , B̃i jk�
c (B̃i jk�

c )T =
⎡

⎣
1 b̃T

1 b̃2 b̃
T
1 b̃3

b̃T
1 b̃2 1 0

b̃T
1 b̃3 0 1

⎤

⎦ .

The direct computation using the properties of the eigenvalues of SPSmatrices shows
that the eigenvalues of B̃i jk�

c (B̃i jk�
c )T are given by

μ1 = 1−
√

(̃bT
1 b̃2)2 + (̃bT

1 b̃3)2 > 0, μ2 = 1, μ3 = 1+
√

(̃bT
1 b̃2)2 + (̃bT

1 b̃3)2 < 2.

It follows that we can take for C1 the smallest eigenvalue of the corner blocks. The
rest is easy as the rows of Be are orthonormal and orthogonal to the rows of Bc. �

Remark 16.1 Proposition 16.2 indicates that the effect of varying coefficients can
be reduced by the scaling to a relatively small subspace which does not contain
dominating components of the solution, so that it can improve the convergence of
the iterative contact problems. Notice that the scaling is sufficient to get rid of the
effect of varying coefficients for 2D problems solved by FETI-DP. Nevetherless, the
results indicate that the effect of scaling is limited, at least as far as the non-redundant
coefficients are concerned.
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16.3 Lumped and Dirichlet Preconditioners in Face

There are several well established preconditioners that can be used to improve the
conditioning of the Hessian PFP of the dual function. We can try to adapt them
to improve the rate of convergence for the solution of auxiliary linear problems by
preconditioning in face (see Sect. 8.6), but we shall see that the effect of adapted
preconditioners is supported rather by the intuition than by the theory.

The lumped preconditioner was introduced by Farhat and Roux in their semi-
nal paper on FETI [1]. It is very cheap and often outperforms more sophisticated
preconditioners. For the linear problems solved by TFETI, it is given by

M = BKBT = B∗BKBBBT
∗B, (16.11)

whereB denotes the set of all indices of the nodal variables that are associated with
the nodes on the boundary of the subdomains.

The Dirichlet preconditioner was introduced by Farhat, Mandel, and Roux in
their another important paper on FETI [2]. For the linear problems solved by TFETI,
it is given by

M = B∗BSBT
∗B, (16.12)

The adaptation for the solution of contact problems is not obvious. Taking into
account that the Hessian of the dual cost function θ� in Sect. 11.8 reads PFP+ �Q,
we can consider the adapted lumped preconditioner in the form

M = BKBT = BFBKBBBT
FB + �−1QFF , (16.13)

where F denotes the indices of the variables associated with the free variables in
face and the adapted Dirichlet preconditioner in the form

M = BFBSBT
FB + �−1QFF . (16.14)

Though the second term is not a projector any more, our experience showed that
the lumped preconditioner can modestly reduce the cost of the solution [3], [4]. Let
us mention that replacingQFF by the projector onto the kernel of BFBKBBBT

FB
seems possible only at a rather high cost and that the preconditioning in face does
not improve the performance of the nonlinear steps.

16.4 Numerical Experiments

The variants of scaling were incorporated into MatSol [5] and tested on 2D and 3D
benchmarks.

http://dx.doi.org/10.1007/978-1-4939-6834-3_8
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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16.4.1 3D Heterogeneous Beam

The domain of our first benchmark was a 3D beam of size 2 × 1 [m] divided into
6 × 3 × 3 subdomains made of two materials with Young’s modulus E1 = 1e3 and
E2 = α1e3, α ∈ {1, 10.100, 1000}. The Dirichlet boundary conditions were pre-
scribed on ΓD = {(0, y, z) : y ∈ 〈0, 3〉, z ∈ 〈0, 3〉}. Three different distributions of
materials labeled by a, b, c thatwere used in our experiments are depicted in Fig. 16.1.
The grey regions are filled with the material with Young’s modulus E2. The vertical
traction 2000 [N] was applied on the upper face of the beam. The discretization
resulted in a linear problem with 32,152 primal and 1,654 dual variables.

Fig. 16.1 3D heterogeneous beams – material distribution, E2 grey

Table 16.1 3D beam—κ(PFP) for varying material distributions and preconditioning

E2/E1 I T(diagK) Σ(diagK)

a b c a b c a b c

1 1.84e1 1.84e1 1.84e1 9.89e0 9.89e0 9.89e0 9.89e0 9.89e0 9.89e+00

10−1 1.76e2 1.79e2 1.21e2 9.85e0 1.01e1 1.02e1 5.31e1 6.07e1 5.19e+01

10−2 1.76e3 1.78e3 1.20e3 9.85e0 1.01e1 1.04e1 5.01e2 6.09e2 5.04e+02

10−3 1.76e4 1.78e4 1.20e4 9.85e0 1.01e1 1.04e1 5.00e3 6.10e3 5.02e+03

The regular condition number of PFP for the varying combinations of material
distributionsa,b, c,material scales E2/E1 ∈ {1, 10, 100, 1000}, and preconditioning
by I (no preconditioning), T or Σ are summarized in Table16.1. We can see that the
reorthogonalization-based preconditioning eliminates the effect of heterogeneous
coefficients in agreement with the theory, while the renormalization-based scaling
reduces the effect of jumps in the coefficients, but is far from eliminating it.
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16.4.2 Contact Problem with Coulomb Friction

The effect of reorthogonalization-based preconditioning on a problem with at most
one inequality associated with one node is documented by the analysis of the matrix
with circular insets. The friction on the contact interfaces is described by Coulomb’s
lawwith the coefficient of frictionΦ = 0.3. The discretized problemwas divided into
subdomains in two ways using regular decomposition and Metis, see Fig. 16.2. The
discretization and decomposition resulted in the problemwith 9960 primal variables,
12(28) subdomains, 756(1308) dual variables, 36(84) equality constraints, and 384
box constraints.

The problemwas resolved with varying E2/E1 and the reorthogonalization-based
preconditioning T associated with the diagonal entries of K and S denoted respec-
tively by T(diagK) and T(diagS). The results obtained by a regular and METIS
discretization are reported separately. Young’s modulus E2 of the insets was para-
meterized as α times Young’s modulus E1 of the matrix. The resulting von Misses
stress and the deformation are depicted in Fig. 16.3.

Fig. 16.2 Material with circular insets – regular (left) and Metis (right) decomposition

Fig. 16.3 Material with circular insets – deformation and the vonMisses stress for E2/E1 = 10000

The effective condition number and the number of Hessianmultiplications needed
to achieve the relative error 1e-4 are presented in Table16.2 (regular grid) and
Table16.3 (METIS grid). The regular condition number has been improved in all
cases. Moreover, the number of iterations is nearly constant for regular decomposi-
tion in agreement with the theory as there are no corners on the material interface.
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The computations with the Metis decomposition resulted in an increased number
of Hessian multiplications. An obvious reason is the increased condition number due
to the ill-conditioning of the constraint matrices.

Table 16.2 Material with circular insets – κ(PFP) / iterations (regular grid)

E2/E1 I T(diagK) T(diagS)

1 9.31e1 / 112 9.29e1 / 139 7.21e1 / 128

1e-1 1.26e2 / 129 6.20e1 / 145 5.27e1 / 144

1e-2 6.40e2 / 230 5.56e1 / 188 5.02e1 / 169

1e-3 6.26e3 / 371 5.50e1 / 148 4.99e1 / 128

1e-4 6.25e4 / 588 5.48e1 / 139 4.99e1 / 132

Table 16.3 Material with circular insets – κ(PFP) / iterations (Metis discretization)

E2/E1 I T(diagK) T(diagS)

1 3.85e2 / 203 3.40e2 / 287 3.22e2 / 269

1e-1 6.27e2 / 230 3.03e2 / 216 2.95e2 / 242

1e-2 6.23e3 / 345 2.95e2 / 249 2.89e2 / 207

1e-3 6.23e4 / 712 2.95e2 / 192 2.88e2 / 195

1e-4 6.23e5 / 972 2.94e2 / 251 2.88e2 / 200

16.5 Comments and References

The reorthogonalization based preconditioning and renormalization based scaling
presented here appeared in Dostál et al. [6]. In spite of its simplicity, the renormal-
ization based scaling is just one of the very few methods that are known to precon-
dition the nonlinear steps that identify the contact interface (see also [7]). If there
are no corners on the contact interface as in the problem solved in Sect. 16.3, we can
enhance this preconditioning to get the rate of convergence independent of material
coefficients. Otherwise we can use it as preconditioning in face (see Sect. 8.6).

The reorthogonalization-based scaling has a similar effect as the superlumped
preconditioning developed by Rixen and Farhat (see [8] and [9]). See also Bhard-
way [10]. The results can be extended to the algorithms based onBETI (seeChap. 14).

The scaling is efficient mainly for problems with homogeneous domains of vary-
ing stiffness, but can be useful, at least in some special cases, also for heterogenous
domains [11]. If all the subdomains have the samematerial coefficient, the renormal-
ization based scaling reduces to the multiplicity scaling. The limits of the precondi-
tioning effect that can be achieved by the diagonal scaling are indicated by the results
of Greenbaum [12], Ainsworth, McLean, Tran [13], Forsythe and Strauss [14], van
der Sluis [15]), or Bank and Scott [16].

http://dx.doi.org/10.1007/978-1-4939-6834-3_8
http://dx.doi.org/10.1007/978-1-4939-6834-3_14
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Chapter 17
Contact with Plasticity

In the previous part of the book, we have presented the scalable algorithms for the
solution of some contact problem which comprised elastic bodies, however, these
algorithms are also useful for the solution of more general problems. Here, we shall
indicate how to use the TFETI domain decomposition method for the solution of
frictionless contact problems with elastic bodies that was introduced in Chap.11 to
the solution of contact problemswith elasto-plastic bodies. Let us recall that plasticity
is a time-dependent model of constitutive relations which takes into account the
history of loading.

For simplicity, we shall restrict our attention to the two-body frictionless con-
tact problem. We shall assume that the bodies occupy in a reference configuration
the domains Ω1,Ω2 with the boundaries Γ 1, Γ 2 and their parts Γ k

U , Γ k
F , and Γ k

C ,
k = 1, 2. The bodies are assumed to be fixed on Γ k

U with a nonzero measure and
can come in contact on Γ k

C . The load is represented by the surface traction on Γ k
F

and by the volume forces defined on Ωk , k = 1, 2. We shall assume that the consti-
tutive relations are defined by associated elastoplasticity with the von Mises plastic
criterion and the linear isotropic hardening law (see, e.g., Han and Reddy [1] or de
Souza, Perić, and Owen [2]). More detailed description of the elasto-plastic initial-
value constitutive model can be found, for example, in [3]. The weak formulation of
the corresponding elasto-plastic problem can be found in [1].

Here, we start directly with the discretized elasto-plastic problem. For the sake of
simplicity,we confineourselves to the one-step problem formulated in displacements.
Its solution is approximated by the iterates with the minimization of convex and
smooth functional on a convex set in the inner loop. The discretized inner problem
is a QP optimization problem with simple equality and inequality constraints which
can be solved at the cost nearly proportional to the number of variables.

© Springer Science+Business Media LLC 2016
Z. Dostál et al., Scalable Algorithms for Contact Problems, Advances
in Mechanics and Mathematics 36, DOI 10.1007/978-1-4939-6834-3_17
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17.1 Algebraic Formulation of Contact Problem
for Elasto-Plastic Bodies

Let us start with the discretized formulation of the problem that arises from the
application of the TFETI domain decomposition. We assume that each domain Ωk

is decomposed into the subdomains

Ωk
1 ,Ω

k
2 , . . . ,Ω

k
sk , k = 1, 2,

and that each subdomain is assigned one index, so that the displacements can be
described by the vector v ∈ R

n

v = [vT1 , . . . , vTs ]T , s = s1 + s2.

We define the subspace
V = {

v ∈ R
n : BEv = o

}
, (17.1)

and the set of admissible displacement

K = {
v ∈ R

n : BEv = o, BIv ≤ cI
}
. (17.2)

Here the matrix BE ∈ R
mE×n enforces the gluing of the subdomains and their fix-

ing along the appropriate part of Γ k , k = 1, 2. The inequality constraint matrix
BI ∈ R

mI×n enforces the non-penetration condition on the contact interface. Notice
that K is convex and closed.

The algebraic formulation of the contact elasto-plastic problem can be written as
the following optimization problem [4]:

Find u ∈ K : J (u) ≤ J (v) ∀v ∈ K , (17.3)

where
J (v) := Ψ (v) − fT v, v ∈ R

n. (17.4)

Here, the vector f ∈ R
n represents the load consisting of the volume and surface

forces and the initial stress state. The functional Ψ : Rn → R represents the inner
energy, it is a potential to the nonlinear elasto-plastic operator F : Rn → R

n , i.e.,
DΨ (v) = F(v), v ∈ R

n . The function F is generally nonsmooth but Lipschitz con-
tinuous. It enables us to define a generalized derivative K : Rn → R

n×n of F in the
sense of Clark, i.e., K(v) ∈ ∂F(v), v ∈ R

n . Notice that K(v) is symmetric, block
diagonal, and sparse matrix.
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Problem (17.4) has a unique solution and can be equivalently written as the fol-
lowing variational inequality:

Find u ∈ K : F(u)T (v − u) ≥ fT (v − u) ∀v ∈ K . (17.5)

The properties of F and K can be found in Čermák and Sysala [3].

17.2 Semismooth Newton Method for Optimization
Problem

Problem (17.3) contains two nonlinearities – the non-quadratic functional J (due to
Ψ ) and the non-penetration conditions included in the definition of the convex setK .
Using the semismooth Newton method, we shall approximate Ψ by a quadratic
functional using the Taylor expansion

Ψ (u) ≈ Ψ (uk) + F(uk)T (u − uk) + 1

2
(u − uk)TK(uk)(u − uk)

defined for a given approximation uk ∈ K of the solution u to the problem (17.3).
Let us denote fk = f − F(uk), Kk = K(uk) and define:

Kk = K − uk = {
v ∈ R

n ; BEv = o, BIv ≤ cI,k, cI,k := cI − BIuk
}
,

Jk(v) := 1

2
vTKkv − fTk v, v ∈ Kk . (17.6)

Then, the Newton step reads

uk+1 = uk + δuk, uk+1 ∈ K ,

where δuk ∈ Kk is a unique minimizer of Jk on Kk ,

Jk(δuk) ≤ Jk (v) , ∀v ∈ Kk, (17.7)

i.e., δuk ∈ Kk solves

(
Kkδuk

)T
(v − δuk) ≥ fTk (v − δuk) ∀v ∈ Kk . (17.8)

Notice that if we substitute v = uk+1 ∈ K into (17.5), v = u − uk ∈ Kk into
(17.8), and sum up, then we obtain the inequality

(
K(uk)δuk

)T
(u − uk+1) ≥ (

F(u) − F(uk)
)T

(u − uk+1),
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which can be arranged into the form

(uk+1 − u)TK(uk)(uk+1 − u) ≤ (
F(uk) − F(u) − K(uk)(uk − u)

)T
(u − uk+1).

Hence, one can simply derive the local quadratic convergence of the semismooth
Newton method provided that uk is sufficiently close to u.

17.3 Algorithms for Elasto-Plasticity

The discretized elasto-plastic problem can be solved by the following algorithm:

Algorithm 17.1 Solution of discretized elasto-plastic problem.

{Initialization.}
u0 = o, ε0,T = o, σ 0,T = o, κ0,T = o for any T ∈ Th
{Main loop.}
for k = 0, . . . , n − 1

find δuk+1 ∈ K : Fk(δuk+1)
T (v − δuk+1) = δfTk+1(v − δuk+1), v ∈ K

for T ∈ Th
δεk+1,T = NTRT δuk+1, εk+1,T = εk,T + δεk+1,T
δσ k+1,T = Tk,T (δεk+1,T ), σ k+1,T = σ k,T + δσ k+1,T
δκk+1,T = Tκ,k,T (δεk+1,T ), κk+1,T = κk,T + δκk+1,T

end for
end for

We solve the nonlinear system of equations (17.5) by the semismooth Newton
method (see, e.g., [5]). The corresponding algorithm reads as follows:

Algorithm 17.2 Semismooth Newton method.

{Initialization.}
δuk,0 = o {Main loop.}
for i = 0, 1, 2, . . .

find δui ∈ Kk : Jk(δuk) ≤ Jk(v) ∀v ∈ Kk
compute δuk,i+1 = δuk,i + δui
if ‖δuk,i+1 − δuk,i‖/(‖δuk,i+1‖ + ‖δuk,i‖) ≤ εNewton

then stop
end if

end for

Here εNewton > 0 is the relative stopping tolerance.
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17.4 TFETI Method for Inner Problem and Benchmark

The inner problem (17.7) has the same structure as the primal frictionless TFETI
problem (11.21). Thus, we can switch to dual as in Sect. 11.6 to get the dual problem
to (17.7) in the form

min Θ(λ) s.t. λI ≥ o and RT
k (f − BTλ) = o, (17.9)

where

Θ(λ) = 1

2
λTBK+

k B
Tλ − λT (BK+

k fk − ck), (17.10)

Rk is a full rank matrix such that ImRk=ImKk , and

B =
[
BE

BI

]
c =

[
cE
cI,k

]
=

[
o
cI,k

]
.

After the preconditioning and regularization of (17.10) by the TFETI projector P
to the rigid body modes and regularization by ρQ, ρ > 0, and Q = I − P as in
Sect. 11.8, we can solve the inner problem (17.7) in the same way as a contact
problem with elastic bodies in Chap.11, i.e., to use Algorithm 9.2 (SMALBE) to
generate the iterations for the Lagrange multipliers for the equality constraints and
to use Algorithm 8.2 (MPRGP) to solve the bound constrained problems in the
inner loop. Since the stiffness matrices Kk , k = 1, 2, . . . are spectrally equivalent
to the elastic matrices K that were introduced in Sect. 11.5 (see Čermák et al. [6]
and Kienesberger, Langer, and Valdman [7]), it is possible to get for the solution of
problem (17.7) by TFETI similar optimality results as those developed in Sect. 11.10.

Using the methodology described in Chap.12, the algorithm can be modified to
the solution of elasto-plastic contact problem with friction. Due to the arguments
mentioned above, we can formulate for the solution of such problems with friction
by TFETI similar optimality results as those developed in Sect. 12.9. Of course, the
optimality results are valid only for the inner loop.

17.5 Numerical Experiments

We shall illustrate the performance of the algorithms presented in this chapter on the
solution of a variant of the two-beams academic benchmark that was introduced in
Sect. 11.11. The size of the beams is 3 × 1 × 1 [m].We use regular meshes generated
in MatSol [8]. The Young modulus, the Poisson ratio, the initial yield stress for the
von Mises criterion, and the hardening modulus are

E = 210,000 [MPa], νi = 0.29, σ i
y = 450 [MPa], Hi

m = 10,000 [MPa], i = 1, 2.

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_12
http://dx.doi.org/10.1007/978-1-4939-6834-3_12
http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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The vertical traction 150 [MPa] was prescribed on the top face of the upper beam.
The initial stress (or plastic strain) state was set to zero.

The problem discretized by 1,533,312/326,969 primal/dual variables and 384,000
finite elements was decomposed into 384 subdomains. The solution with 356,384
plastic elements required six Newton iterations, 67 SMALSE-M iterations, and
5,375 multiplications by the Hessian of the dual function. The precision of the New-
ton method and inner loop was controlled by

‖uk+1 − uk‖
‖uk+1‖ + ‖uk‖ ≤ 10−4

and by the relative precision of the inner loop 10−7, respectively. The distribution
of von Mises stress and total displacement for the finest mesh are in Figs. 17.1 and
17.2.

Fig. 17.1 von Mises stress distribution Fig. 17.2 Total displacement

17.6 Comments

The application of domain decomposition methods to the analysis of elasto-plastic
bodies was considered, e.g., by Yagawa, Soneda, and Yoshimura [9] or Carstensen
[10]. Here we followed Čermák [4] and Čermák and Sysala [3]; there can be found
also the solution of an elasto-plastic variant of the yielding clamp connection (see
Fig. 1.6). The adaptation of TFETI to the solution of the inner loop is straightfor-
ward and can be especially useful for the solution of large multibody problems. The
proposed method can be used or can be a part of the solution of other contact inelas-
tic problems, e.g., the analysis of von Mises’ elasto-plastic bodies with isotropic
hardening or loading with perfect plasticity [11, 12].

http://dx.doi.org/10.1007/978-1-4939-6834-3_1


References 309

References

1. Han, W., Reddy, B.D.: Plasticity: Mathematical Theory and Numerical Analysis. Springer,
New York (1999)
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Chapter 18
Contact Shape Optimization

18.1 Introduction

Contact shape optimization problems in 3D have a structure which can be effectively
exploited by the TFETI-based methods introduced in Part III. The reason is that the
preparation of the solution of the state problem can be reused in the solution of a
number of auxiliary contact problems that arise in each design step.

Let us recall that the goal of the contact shape optimization is to find the shape
of a part of the contact boundary that satisfies predefined constraints and minimizes
a prescribed cost function. The unknown shape is defined by the design variables
α ∈ Dadmis defined for α from an admissible set Dadm ⊂ R

p. The cost function
J
(
u(α),α

)
typically depends explicitly not only on the design variables α but also

on the displacement u(α), which corresponds to the solution of the associated contact
problem. The latter problem is called the state problem. The state problem is a contact
problem introduced in Part III, the specification of which depends on α. Thus the
i th body of the state problem which corresponds to α occupies in the reference
configuration the domain Ω i (α), the corresponding boundary traction f iF (α) can
depend on α, etc. Denoting by C (α) the set of the displacements u(α), which satisfy
the conditions of equilibrium and possibly some additional constraints specified for
the problem, the shape optimization problem reads

Find α ∈ Dadm, J
(
u(α),α

) ≤ J
(
u(α),α

)
, α ∈ Dadm, u(α) ∈ C (α).

Here, we use TFETI to minimize the compliance of a system of bodies in mutual
contact subject to box and volume constraints. The TFETI method is especially
useful in the sensitivity analysis, the most expensive part of the design optimization
process. We use the semi-analytical method that reduces the sensitivity analysis to
a sequence of QP problems with the same Hessian matrix, so that the relatively
expensive formulation of the dual problem can be reused (see, e.g., Dostál, Vondrák,
and Rasmussen [1]) and many problems can be solved in parallel.

© Springer Science+Business Media LLC 2016
Z. Dostál et al., Scalable Algorithms for Contact Problems, Advances
in Mechanics and Mathematics 36, DOI 10.1007/978-1-4939-6834-3_18
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18.2 Discretized Minimum Compliance Problem

Let us consider a variant of the Hertz 3D contact problems depicted in Fig. 18.1 and
assume that the shape of the upper face of the lower body is controlled by the vector
of design variables α ∈ Dadm,Dadm = [0, 1]p ⊂ R

p. Our goal is to change the shape
of the lower body in order to minimize the compliance while preserving the volume
of the bodies. The zero normal displacements are prescribed on the faces which share
their boundaries with the axes.

f

Ω1

Ω2(ααα)

Fig. 18.1 Basic notation of the contact problem

After choosing the design vector α, we can decompose and discretize the problem
in Fig. 18.1 as in Chap.11. We get the energy functional in the form

J (u,α) = 1

2
uTK(α)u − uT f(α), (18.1)

where the stiffness matrix K(α) and possibly the vector of external nodal forces f(α)

depend on α.
The matrix BI and the vector cI that describe the linearized condition of non-

interpenetration also depend on α, so that the solution u(α) of the state problem with
the bodies that occupy the domainsΩ1 andΩ2 = Ω2(α) can be found as the solution
of the minimization problem

min J (u,α) subject to u ∈ Ch(α), (18.2)

where
Ch(α) = {u : BI (α)u ≤ cI (α) and BEu = o}.

Denoting the solution of (18.2) by u(α), we can define a function

J (α) = J (u(α),α)

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
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to get the contact shape optimization problem to find

min
α∈Dadm

J (α) = min
α∈Dadm

min
u∈Ch(α)

J (u,α). (18.3)

The set of admissible design variables Dadm defines all possible designs. It has
been proved that the minimal compliance problem has at least one solution and that
the functionJ (α) is differentiable with respect to α under natural assumptions (see,
e.g., Haslinger and Neittanmäki [2]).

18.3 Sensitivity Analysis

The goal of the sensitivity analysis is to find the influence of the design change on the
solution of the state problem. The minimization of the cost function is then carried
out by improving the initial design in a feasible decrease direction using ∇u(α) the
columns of which are defined by the directional derivatives of the solutions of the
state problem

u′(α,d) = lim
t→0+

u(α + td) − u(α)

t
,

where for d are substituted the columns of the identity matrix I.
Here we shall briefly describe the semi-analytical sensitivity analysis. Some com-

parisons of the efficiency of alternative methods on practical problems in the context
of domain decomposition can be found in Dostál, Vondrák, and Rasmussen [1] and
Vondrák et al. [3].

Let us recall the Lagrange function of the TFETI state problem (18.2) has the
form

L(u,λ,α) = 1

2
uTK(α)u − fT (α)u + λT

(
B(α)u − c(α)

)
, (18.4)

where

B(α) =
[

BI (α)

BT
E

]
=

⎡

⎢
⎣

b1(α)
...

bm(α)

⎤

⎥
⎦

and u and λ depend on the vector of design variables α, so that the KKT conditions
for (18.2) read

K(α)u − f(α) + BT (α)λ = o BEu = o, (18.5)

BI (α)u − cI (α) ≤ o, λI ≥ o. (18.6)

Tofind the gradient of the cost function at the solutionu of the state problem (18.2),
let us first consider the derivative u′(α,d) of u = u(α) in a given direction d at
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u = u(α), let I and E denote the indices of the equality and inequality constrains,
respectively, I ∪ E = {1, . . . ,m}, let us denote by A = A (u) the active set of u,

A = {
i ∈ {1, . . . ,m} : biu = ci

}
,

and let us decompose A into the weakly active set Aw and the strongly active set
As ,

Aw = {i ∈ I : λi = 0}, As = A \ Aw,

where λ = λ(α) denotes the vector of Lagrange multipliers associated with u. After
the differentiation of the left equation in the direction d, we get that z = u′(α,d)

satisfies
K(α)z − f ′(α,d) + K′(α,d)u + B′(α,d)Tλ = o, (18.7)

so that u′(α,d) can be obtained by the solution of

min J̃α,d(z) subject to z ∈ D(α,d), (18.8)

where

J̃α,d(z) = 1

2
zTK(α)z − zT

(
f ′(α,d) + K′(α,d)u + B′(α,d)Tλ

)

and

D(α,d) = Dw(α,d) ∩ Ds(α,d),

Dw(α,d) = {z ∈ R
n : bi (α)z ≤ c′

i (α,d) − b′
i (α,d)u(α) for i ∈ Aw}.

Ds(α,d) = {z ∈ R
n : bi (α)z = c′

i (α,d) − b′
i (α,d)u(α) for i ∈ As}.

Recall thatK′(α,d), f ′(α,d),B′(α,d), and c′(α,d) are the directional derivatives
in the direction d that can be simply evaluated. It has been proved (see, e.g., Haslinger
and Mäkinen [4]) that the solution of (18.8) is the directional derivative u′(α, d) of
the solution of the state problem (18.2).

Let us now assume that α,d are fixed and denote

f̃ = f̃(α,d) = f ′(α,d) − K′(α,d)u − B′(α,d)Tλ,

cw = cw(α,d) = c′
Aw

(α,d) − B′
Aw

(α,d)u,

cs = cs(α,d) = c′
As

(α,d) − B′
As

(α,d)u,

Bw = Bw(α) = BAw
(α),

Bs = Bs(α) = BAs (α),

B̃ =
[

Bw

Bs

]
, c̃ =

[
cw

cs

]
,
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where Bw and Bs are the matrices formed by the rows of B corresponding to the
weak and strong constraints, respectively, and similarly for the vectors cw and cs .
Using the duality as in Sect. 11.6, we can get the dual problem

minΦ(μ) subject to μw ≥ o and RT (α)B̃T μ̃ = RT (α)̃f, (18.9)

where

μ̃ =
[

μw

μs

]

are the multipliers enforcing the weak and strong constraints and

Φ(μ) = 1

2
μT B̃K†(α)B̃Tμ − μT

(
B̃K†(α)̃fT − c̃

)
.

Finally, the derivativeu′(α,d) canbeobtainedby theprocedure described inSect. 3.7.
Problem (18.9) with the bound and linear equality constraints is efficiently solv-

able by the combination of the SMALBE and MPRGP algorithms. Notice that the
semi-analytical method for the sensitivity analysis for one design step requires the
solution of p quadratic programming problems (18.9) with the same matrix

K+(α) = diag
(
K+
1 (α), . . . , K+

s (α)
)
.

Thus, we can reuse the factorization and the kernel of the matrix K(α) from the
solution of the state problem to the solution of the problems arising in the semi-
analytical sensitivity analysis and one design step requires only one factorization of
the stiffness matrix. Moreover, if the domains are reasonably discretized so that the
assumptions of Theorem 11.2 are satisfied, then the sensitivity analysis of a design
step has asymptotically linear complexity. Notice that the problems (18.9) for varying
di ∈ R

p, i = 1, . . . , p are independent so that they can be solved in parallel.

18.4 Numerical Experiments

We have tested the performance of the whole optimization procedure on the mini-
mization of the compliance

J (α) = 1

2
u(α)TK(α)u(α) − u(α)T f(α) (18.10)

of the Hertz system defined above subject to the upper bound on the volume of the
lower body. The compliance was controlled by the shape of the top side of the lower
body that is parameterized by means of 3× 3 = 9 design variables defined over this
face. The design variables were allowed to move in vertical directions within the

http://dx.doi.org/10.1007/978-1-4939-6834-3_11
http://dx.doi.org/10.1007/978-1-4939-6834-3_3
http://dx.doi.org/10.1007/978-1-4939-6834-3_11


316 18 Contact Shape Optimization

prescribed box-constraints. The results of semi-analytical sensitivity analysis were
used in the inner loop of the sequential quadratic programming algorithm (SQP) (see
e.g., Nocedal and Wright [5]). The distribution of the normal contact pressure of the
initial and optimized system of bodies are in Figs. 18.2 and 18.3.

Fig. 18.2 Initial design – contact traction Fig. 18.3 Final design – contact traction

The computations were carried out with varying discretization and decomposition
parameters h and H , respectively. The results concerning the solution of the state
problem are in Table18.1. The relative precision of the computations was 10−6.

Table 18.1 State problem – performance for varying decomposition and discretization

Number of
subdomains

2 16 54 128

Primal variables 24,576 196,608 663,552 1,572,864

Dual variables 11,536 23,628 92,232 233,304

Null space 12 96 324 768

Hessian mults. 64 153 231 276

Outer iterations 12 16 13 10

The optimized shape was observed after 121 design steps. The history of the
decrease of the cost function is in Fig. 18.4. More details about this problem can be
found in Vondrák et al. [3].
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Fig. 18.4 3D Hertz – minimization history

18.5 Comments

The contact shape optimization problems have been studied by several authors and
many results are known. The approximation theory and the existence results related
to this problem can be found in Haslinger and Neittanmäki [4] or Haslinger and
Mäkinen [4]. These authors also present basic semi-analytical sensitivity analysis
for the problems governed by a variational inequality, describe its implementation
based on a variant of the SQP (Sequential Quadratic Programming), and give numer-
ical results for 2D problems. More engineering approach to constrained design sen-
sitivity analysis is discussed also by Haug, Choi, and Komkov [6], for enhancing
plasticity and friction see Kim, Choi, and Chen [7]. Younsi et al. [8], who obtained a
numerical solution of 3D problem, exploited the relation between the discretized and
continuous problem by combining the multilevel approach with genetic algorithms.
Their approach can use parallelization on the highest level but does not fully exploit
the structure of the problem. The natural two-level structure of the contact shape
optimization problem for minimization of weight was exploited by Herskovits et al.
[9]. The solution of 3D contact shape optimization problems with friction can be
found in Beremlijski et al. [10].

The presentation of this chapter is based on Dostál, Vondrák, and Rasmussen [1]
and Vondrák et al. [3]. Similar results as those presented here can be obtained with
TBETI. Such approach would simplify remeshing as BETI uses surface grids on the
boundary of the (sub)domains only.
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Chapter 19
Massively Parallel Implementation

The FETI domain decomposition methods that are presented in this book can effec-
tively exploit the parallel facilities provided by modern computers to the solution
of very large problems, currently up to hundereds of billions of nodal variables
provided they are implemented properly. However, this task is far from trivial and
straightforward.

The FETImethods appeared in the early 90s,when the parallel computerswere not
assumed to have some tens or even hundreds of thousands of cores, and an immediate
goal was to use them for the solution of the problems discretized by a few millions
of the degrees of freedom. Thus it is not surprising that we face new problems. For
example, the cost of the assembling of the projector to the “natural coarse grid,”
which is nearly negligible for smaller problems, starts to essentially affect the cost of
the solution when the dimension of the dual problem reaches some tens of millions.
New challenges are posed also by the emerging exascale technologies, the effective
exploitation of which has to take into account a hierarchical organization of memory,
the varying cost of operations depending on the position of arguments in memory,
and the increasing role of communication costs. Last but not least, it is important
to exploit an up-to-date software, either open source or commercial, as the effective
implementation of some standard steps, such as the application of direct solvers, is
highly nontrivial and affects the overall performance of algorithms.

Here, we present some hints concerning the parallel implementation of FETI-type
algorithms for the solution of very large problems, including the implementation of
the action of a generalized inverse K+ of the stiffness matrix K and the action of the
projector to the “natural coarse grid”P.We briefly discuss the possibility to overcome
the bottleneck by introducing the third-level grid by a variant of HTFETI (Hybrid
TFETI). The third level is introduced by the decomposition of TFETI subdomains
into smaller subdomains that are partly glued in corners or by averages at the primal
level (see e.g., Klawonn and Rheinbach [1]). We also briefly describe the packages
that were used for the solution of the benchmarks throughout the book, namely
MatSol based on parallel MATLAB, PERMON based on PETSc, and ESPRESO
based on Intel MKL and Cilk.
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19.1 Stiffness Matrix Factorization and Action of K+

The cost of TFETI iterations, either of the CG steps or of the gradient projection
step, is typically dominated by the multiplication of a vector x byS+, the generalized
inverse of the Schur complement of the stiffness matrix K with respect to the indices
of variables associatedwith the interior of the subdomains. Though there are attempts
to implement this step by iterative solvers, it seems that such approach has a little
chance to succeed due to the necessity to carry out this step in high precision. The
same is true for the application of the projector P to the natural coarse grid, which
requires the solution of the coarse problem with high precision.

The implementation ofK+x can be parallelizedwithout any data transfers because
of the block-diagonal structure of K,

K = diag(K1, . . . , Ks),

so that it is easy to achieve that each CPU core deals with a local stiffness matrix Ki .
If this is not possible, e.g., when the number of the subdomains is greater than the
number of cores, then it is possible to allocatemore blocks to one core. Unfortunately,
the projectorP does not possess the block-diagonal structure that is easy to implement
in parallel. We shall discuss this topic in the next section.

A natural way how to exploit effectively the massively parallel computers is to
maximize the number of subdomains so that the sizes of the subdomain stiffness
matrices are reduced, which accelerates both their factorization and subsequent for-
ward/backward solves. On the other hand, the negative effect of that is the increase of
the dual and the coarse space dimensions. The coarse problem becomes a bottleneck
when its dimension, which is equivalent to the dimension of KerK, attains some ten
thousands.

The performance of the algorithms is affected also by the choice of LU direct
solver. The effect of the choice of the direct solver on the performance of TFETI
in PERMON library (experiments with PETSc, MUMPS, and SuperLU on Cray
XE6 machine HECToR) can be found in Hapla, Horák, and Merta [2]. To evaluate
K+x, each core regularizes a subdomain stiffness matrix using fixing nodes and then
factorizes. The application of K+ then consists of purely local backward and forward
substitutions once per each TFETI iteration.

19.2 Coarse Problem Implementation – Action of P

The action time and the level of communication depend primarily on the implemen-
tation of the solution GGT x = y. Here, we consider two strategies of the solution of
coarse problems, namely using the LU factorization and applying the explicit inverse
of GGT . The explicit orthonormalization of G, which was conveniently used in the
description of the algorithms, turned out to be less efficient.
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19.2.1 Assembling GGT in Parallel

The implementation of the action of the projector P to the coarse grid starts by
assembling GGT . If the number of subdomains is large, then it can be effectively
generated in parallel using the block structure of R, B, in particular

R = diag(R1, . . . , Rs) and B = [B1, . . . , Bs].

The i th core first obtainsRi ,Bi and generatesGi = RT
i BT

i ofG. Then the i th core re-
ceivesG j from the neighboring subdomains, generates in parallelGiGT

j = [GGT ]i j ,
and sends the result to the master node, where GGT is assembled and prepared for
the factorization. Since GGT is symmetric, it follows that for each couple of neigh-
boring subdomains, only the subdomain with a smaller index gets the corresponding
part of G from the subdomain with a greater index j .

19.2.2 Parallel Explicit Inverse

The approach used in the ESPRESO library is based on hybrid parallelization. It
implements the observation that the factorization of GGT is significantly less time
consuming than executing the forward and backward substitution m-times, where m
is the order of GGT . The assembled GGT is broadcasted from the master compute
node (the node with MPI rank equal to 0) to all compute nodes. The factorization is
then carried out on each compute node using the threaded sparse direct solver. During
this step the identical workload is executed on every node and does not cause any
slowdown.Modern sparse direct solvers also contain the threaded implementation of
the solve routine for multiple right-hand sides. This combination leads to the efficient
utilization of all computational resources. Moreover, since each node computes only
that part of the inverse of GGT that is needed by that node, there is no additional
communication.

19.2.3 Parallel Direct Solution

An alternative approach chosen in the PERMON library splits the Nc cores of the
global communicator into the groups of cores called subcommunicators in MPI. The
number of the subcommunicators is Nr (number of cores doing redundant work),
so that the number of cores in each subcommunicator is equal to Nc/Nr . The GGT

matrix can be factorized sequentially on a master core or in parallel using, e.g.,
MUMPSor SuperLU_DIST in subcommunicators. Thematrix–vectormultiplication
(GGT

)−1x then consists of the backward and forward substitutions, which are not
local and a considerable amount of communication is needed in each iteration, but
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the parallelization reduces the memory requirements – there are nearly no memory
limits as more andmore cores can be engaged in the subcommunicators. The optimal
number of cores per subcommunicator for our problems is 3

√
N 2
c based on numerical

experiments.

19.3 Hybrid TFETI (HTFETI)

Even if there are several efficient parallelization strategies, there is still a limit on the
dimension of the coarse problem. It has been observed that we can get beyond this
limit if we aggregate a small number of neighboring subdomains into the clusters,
which naturally results in the smaller coarse problem. The aggregation of the subdo-
mains into the clusters can be enforced partly by the Lagrange multipliers and partly
by identifying the corner nodes as in Fig. 19.1 and/or enforcing zero face and/or edge
averages on the primal level. The result is the HTFETI method (see, e.g., Klawonn
and Rheinbach [1], Říha et al. [3]). The subdomains in clusters are typically joined
in such a way that the clusters have the same dimension of rigid body modes as
each of their floating subdomains (notice that the dimension of the rigid modes of
the cluster in Fig. 19.1 is the same as that of any of its floating subdomains). The
HTFETI decomposition is characterized by the decomposition parameters Hc > Hs

which correspond to the diameters of the clusters and their subdomains, respectively.

Fig. 19.1 Cluster of subdomains joined in corners

This approach allows the parallelization of the original problem into up to hun-
dreds of thousands of cores, which is not reachable with the standard FETI methods.
Thus it enables to exploit the whole current petascale supercomputers. It is not diffi-
cult to see that the optimality results which we have proved for the TFETI methods
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can also be proved for the HTFETI methods provided Hc/Hs and Hs/h is uniformly
bounded, where h is the parameter of the discretization of the subdomains. However,
the convergence of the HTFETImethod is a little slower as compared with the TFETI
method, especially when no edge or face averages are enforced on the primal level,
so that its application is worth the complications only for the solution of very large
problems.

19.3.1 Description of TFETI Method

Let us illustrate the HTFETI method on the analysis of a 2D cantilever beam decom-
posed into four subdomains and two clusters as in Fig. 19.2.

Fig. 19.2 2D cantilever beam decomposed into four subdomains

After the discretization and domain decomposition, the resulting linear system reads

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

K1 O O O BT
c,1 O BT

1
O K2 O O BT

c,2 O BT
2

O O K3 O O BT
c,3 BT

3
O O O K4 O BT

c,4 BT
4

Bc,1 Bc,2 O O O O O
O O Bc,3 Bc,4 O O O
B1 B2 B3 B4 O O O

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

u1
u2
u3
u4
λc,1

λc,2

λ

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

f1
f2
f3
f4
o
o
c

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

, (19.1)

where Bi and Bc,i , i = 1, . . . , 4, denote the blocks of the standard gluing constraints
and the copies of their rows which correspond to the components of λ acting on the
corners associated with Ωi , respectively. Thus if the redundant rows of

Bc =
[

Bc,1 Bc,2 O O
O O Bc,3 Bc,4

]
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are omitted, the primal solution components remain the same. Let us permute (19.1)
to get ⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

K1 O BT
c,1 O O O BT

1

O K2 BT
c,2 O O O BT

2

Bc,1 Bc,2 O O O O O
O O O K3 O BT

c,3 BT
3

O O O O K4 BT
c,4 BT

4

O O O Bc,3 Bc,4 O O
B1 B2 O B3 B4 O O

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

u1
u2
λc,1

u3
u4
λc,2

λ

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

f1
f2
o
f3
f4
o
c

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

. (19.2)

For convenience, let us rewrite (19.2) in the block form which corresponds to the
line partition as ⎡

⎢⎢
⎣

K̃1 O B̃T
1

O K̃2 B̃T
2

B̃1 B̃2 O

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

ũ1

ũ2

λ̃

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

f̃1

f̃2

c̃

⎤

⎥⎥
⎦ . (19.3)

Eliminating ũi , i = 1, 2, we also eliminate the subset of dual variables λc, j , j = 1, 2,
related to the matrix Bc. Thus the structure looks like a problem decomposed into
two clusters – the first and second subdomains belong to the first cluster, the third and
fourth subdomains belong to the second cluster. The rigid body modes (rotations)
associated with the subdomains and clusters are depicted in Fig. 19.3.

Fig. 19.3 Cluster of subdomains joined in corners

Matrices K̃1, K̃2 can be interpreted as the cluster stiffnessmatrices with the kernels
R̃1, R̃2, respectively. Denoting

K̃ = diag(K̃1, K̃2), B̃ = [B̃1, B̃2], R̃ = diag(R̃1, R̃2),

F̃ = B̃K̃+B̃T , G̃ = R̃T B̃T ,

d̃ = B̃K̃+̃f − c̃, ẽ = R̃T f̃,



19.3 Hybrid TFETI (HTFETI) 325

we get the Schur complement system

[
F̃ −G̃T

−G̃ O

] [
λ̃

α̃

]
=

[
d̃
−̃e

]
, (19.4)

which can be solved by the methods used by the classical FETI. The dimension of
G̃G̃T is six, i.e., less than twelve corresponding to FETI.

The primal variables and corner multipliers are eliminated by the implicit fac-
torization. We shall illustrate the procedure on the solution of the linear system
K̃1̃x1 = b̃1, i.e., [

K1:2 BT
c,1:2

Bc,1:2 O

] [
x1
μ

]
=

[
b
z

]
, (19.5)

where
K1:2 = diag(K1, K2), Bc,1:2 = [Bc,1, Bc,2].

Although (19.5) can be interpreted as a FETI problem, we solve it by elimination.
The generalized Schur complement system reads as

[
Fc,1:2 −GT

c,1:2
−Gc,1:2 O

] [
μ

β

]
=

[
dc,1:2

−ec,1:2

]
, (19.6)

where

Fc,1:2 = Bc,1:2K+
1:2BT

c,1:2, Gc,1:2 = RT
1:2BT

c,1:2, dc,1:2 = Bc,1:2K+
1:2b − z,

ec,1:2 = RT
1:2b, R1:2 = diag (R1, R2) .

To obtain x̃1, both systems (19.5), (19.6) are solved in three steps:

β = S+
c,1:2

(
ec,1:2 − Gc,1:2F−1

c,1:2dc,1:2
)
,

μ = F−1
c,1:2

(
dc,1:2 + GT

c,1:2β
)
,

x1 = K+
1:2

(
b − BT

c,1:2μ
) + R1:2β,

(19.7)

where Sc,1:2 = Gc,1:2F−1
c,1:2GT

c,1:2 is a singular Schur complement matrix.
The kernel R̃1 of K̃1 is the last object to be effectively evaluated. The orthogonality

condition K̃1R̃1 = O can be written in the form

[
K1:2 BT

c,1:2
Bc,1:2 O

] [
R1:2
O

]
H1:2 =

[
O
O

]
, R̃1 =

[
R1:2
O

]
H1:2. (19.8)
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Assuming that the subdomain kernels R1 and R2 are known, it remains to deter-
mine H1:2. However, the first equation in (19.8) does not impose any condition onto
H1:2 and the second equation gives

Bc,1:2R1:2H1:2 = GT
c,1:2H1:2 = O. (19.9)

It follows that H1:2 is the kernel of GT
c,1:2, which is not a full-column rank matrix

due to the absence of Dirichlet boundary conditions in Bc,1:2. To get matrix H1:2
efficiently, temporary sparse matrix Gc,1:2GT

c,1:2 is assembled and factorized by the
routine for singular matrices. Such routine provides not only the factors but also the
kernel of Gc,1:2GT

c,1:2, in this case the matrix H1:2. For more details see [4].
Preprocessing in HTFETI starts in the same way as in FETI by preparing the

factors of Ki by direct solver and kernels Ri for each subdomain. Then one pair
consisting of Fc, j :k and Sc, j :k is assembled and factorized on each cluster by a direct
solver. The dimension of Fc,1:2 is controlled by the number of Lagrange multipliers
λc,1 gluing the cluster subdomains. The dimension of Sc,1:2 is given by the sum of
the defects of all matrices Ki belonging to the particular cluster.

19.3.2 Parallel Implementation

In our implementation, the HTFETI decomposition is mapped to the hardware in
the following way. The clusters are mapped to the compute nodes, therefore the
parallelization model for the distributed memory is used. In our case we use the
message passing model (MPI). The subdomains inside the cluster are mapped to the
CPU cores of the particular compute node; therefore the shared memory model is
used for the second level. Our implementation allows us to have multiple clusters
associated with a single compute node, but a single cluster cannot be processed on
more than one node, as this is the limitation of the shared memory parallelization.

There are twomajor parts of theHTFETI solver that affect its parallel performance
and scalability, the communication layer and the inter-cluster processing routines.
The communication level deals with the optimization of the TFETI algorithm tomin-
imize its communication overhead caused mainly by the gluing matrix B̃ multiplica-
tion and the application of the projector P. To have a fully optimized communication
layer is essential for both TFETI and HTFETI methods.

19.3.3 Numerical Experiment

In order to eliminate the effect of nonlinearity of contact conditions, let us illustrate
the power of HTFETI on the analysis of elastic cube without contact computed on
Titan, a supercomputer at the Oak Ridge National Laboratory. It has 18,688 nodes
each containing a 16-core AMD Opteron 6274 CPU with 32GB of DDR3 memory
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and an Nvidia Tesla K20X GPU with 6GB GDDR5 memory. There are a total of
299,008 processor cores, and a total of 693.6 TiB of CPU andGPURAM. The results
with iterative solver accelerated by the lumped preconditioner are depicted in two
graphs.

A weak scalability test is depicted in Fig. 19.4 including all relevant information.
Number of degrees of freedom ranges from 30 millions to 70 billions and number
of nodes from 8 to 17, 576.

The strong scalability test is shown on Fig. 19.5. The undecomposed problemwas
discretized by 11 billion nodal variables.
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Fig. 19.4 HTFETI—linear elasticity—weak scalability test
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Fig. 19.5 HTFETI - linear elasticity—11 billion DOFs—strong scalability test
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19.4 Communication Layer Optimization

The HTFETI solver can be implemented using the hybrid parallelization, which is
well suited for multi-socket and multicore compute nodes provided by the hardware
architecture in most of today’s supercomputers. The first level of parallelization is
designed for the parallel processing of the clusters of subdomains. Each cluster must
be assigned to a single node, but if necessary, multiple clusters can be processed per
node. The distributed memory parallelization is done using MPI. The essential part
of this parallelization is the communication layer. This layer is identical whether the
solver runs in the TFETI or HTFETI mode and comprises:

1. the parallel coarse problem solution using the distributed inverse matrix which
merges two global communication operations (Gather and Scatter) into one (All-
Gather),

2. the optimized version of global gluing matrix multiplication (matrix B for TFETI
and B̃1 for HTFETI)—written as a stencil communication which is fully scalable.

The stencil communication for simple decomposition into four subdomains is shown
in Figs. 19.6 and 19.7, where the Lagrange multipliers that connect different neigh-
boring subdomains are. In each iteration, whenever the multipliers are updated, the
exchange is performed between the neighboring subdomains to finish the update.
This affinity also controls the distribution of the data for the main distributed iter-
ative solver, which iterates over the local multipliers only. In our implementation,
each MPI process modifies only those elements of the vectors used by the solver that
match the multipliers associated with the particular domain in the case of TFETI or
the set of domains in a cluster in the case of HTFETI. We call this operation the
vector compression. In the preprocessing stage, the local part of the gluing matrix is
also compressed using the same approach (in this case it means that the empty rows
are removed from the matrix), so that we can directly use the sparse matrix vector
multiplication on the compressed vectors.

B1 B2 B3 B4 c1 c2 c3 c4

ka
kb

kc

kd

Fig. 19.6 Stencil communication: distribution of B and λ on cores ci
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c1

c2 c3 c4

ka kb

kc kd

Fig. 19.7 Stencil communication: necessary data exchange ki between cores

19.4.1 TFETI Hybrid Parallelization

In pure MPI implementation, each process holds the data of one subdomain, i.e., the
number of cores equals the number of subdomains. The structure of the primal data
and their distribution is shown in Fig. 19.8 left. The matrices K and R have a nice
block-diagonal structure. The diagonal blocks are represented by sequential matrix
types.

The K+y action occurs in each TFETI iteration and is typically implemented with
a direct sparse solver for the sake of robustness. The factorization of the regularized
K is performed in the setup phase. All these computations do not require any MPI
communication.

Fig. 19.8 Parallel distribution of K and R matrices. One core—one subdomain (left) and one
core—more subdomains (right)

For the hybrid parallelization of TFETI with threads, it is necessary to add a new
matrix type holding the array of diagonal blocks. Matrices K, K+, and R can then
be represented in a hybrid way by distributed matrices the diagonal blocks of which
are sequential matrices. It is possible to hold an arbitrary number of subdomains on
one MPI process with this extension. The domain can be divided into any number
of subdomains regardless the number of available cores. The splitting of the original
subdomain into smaller subdomains has a positive effect on the condition number of
the dual operator so the number of iterations decreases. Moreover, the dimensions of
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matrices Ki are smaller so their factorizations are faster at the cost of the increasing
size of the coarse problem.

Asmentioned in the previous section, three approaches to solve the coarse problem
are used. The approach with the direct solver was also used and tested for the hybrid
implementation. The coarse problem can be again solved fully parallel, using either
a smaller number of processes or a single process. Thus, a direct solver using the
shared memory parallelism can be used on a single process or the hybrid parallelism
on more processes. The hybrid parallelization of TFETI enables solving the coarse
problem on a single node in parallel and without communication. It also reduces
MPI overhead if the coarse problem is solved on more processes.

19.5 MatSol, PERMON, and ESPRESO Libraries

19.5.1 MatSol

The algorithms described in Part II and III were developed, implemented, and tested
in MatSol library. The Matsol library serves as a referential implementation of these
algorithms and was the fundamental tool in our research. To parallelize the algo-
rithms, MATLAB Distributed Computing Server and Parallel Computing Toolbox
are used. Hence, the MatSol has full functionality to solve efficiently large problems
of mechanics.

The solution process starts from themodel which is either in themodel database or
it is converted to themodel database from the standard commercial or noncommercial
preprocessors such asANSA,ANSYS,COMSOL, etc. The list of preprocessing tools
is not limited and additional tools can be plugged into the library by creating a proper
database convertor.

The preprocessing part proceeds depending on the problem solved. User can solve
the static or transient analysis, the optimization problems, the problems in linear and
nonlinear elasticity, and contact problems. For discretization, the finite or boundary
element methods are used. As the domain decomposition techniques, the TFETI and
TBETImethods are implemented. The decomposition into subdomains is done using
Metis and spectral methods.

The solution process could be run either in the sequential or parallel mode. The
solution algorithms are implemented in such a way that the code is the same for both
sequential and parallel mode. MatSol library also includes the tools for postprocess-
ing and postplotting. The results are then converted through the model database into
the modeling tools for further postprocessing.
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19.5.2 PERMON

PERMON (Parallel, Efficient, Robust, Modular, Object-oriented, Numerical) is a
software package which aims at the massively parallel solution of problems of con-
strained quadratic programming (QP). PERMON is based on PETSc and combines
aforementioned TFETI method and QP algorithms. The core solver layer consists
of the PermonQP package for QP and its PermonFLLOP extension for FETI. Per-
monQP supports the separation of QP problems, their transformations, and solvers.
It contains all QP solvers described in this book.

More can be found on PERMON website: https://permon.it4i.cz.

19.5.3 ESPRESO

ESPRESO is an ExaScale PaRallel FETI SOlver developed at IT4Innovations. The
aim is to create a highly efficient parallel solver. Apart from the algorithms used by
MatSol and Permon, it also enhances the HFETI method, which is designed to run
on massively parallel machines with thousands of compute nodes and hundreds of
thousands of CPU cores. The algorithms can be seen as a multilevel FETI method
designed to overcome the main bottleneck of standard FETI methods, a large coarse
problem,which arisewhen solving large problems decomposed into the large number
of subdomains. ESPRESO can exploit modern many-core accelerators.

There are threemajor versions of the solver. ESPRESOCPU is a CPU version that
uses the sparse representation of system matrices. It contains an efficient communi-
cation layer on the top of MPI 3.0 combined with the shared memory parallelization
inside nodes. The communication layer was developed specifically for FETI solvers
and uses several state-of-the-art communication hiding and avoiding techniques to
achieve better scalability.

The ESPRESO solver can take advantage of many-core accelerators to speedup
the solver runtime. To achieve this, it uses a dense representation of sparse system
matrices in the form of Schur complements. The main advantage of using this ap-
proach in FETI solvers is the reduction of the iteration time. Instead of calling a
solve routine of the sparse direct solver in every iteration, which by its nature is
a sequential operation, the solver can use the dense matrix–vector multiplication
(GEMV) routine. The GEMV offers the parallelism required by many-core acceler-
ators and delivers up to 4× speedup depending on the hardware configuration. There
are two versions: ESPRESOMIC for Intel Xeon Phi and ESPRESOGPU for graphic
accelerators.

More information can be found on ESPRESO website: https://espreso.it4i.cz.

https://permon.it4i.cz
https://espreso.it4i.cz
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19.6 Numerical Experiments

For the demonstration of weak parallel scalability of the algorithms presented in
Part II and III, we used their implementation in the ESPRESSO software (see
Sect. 19.5.3). As a benchmark, we consider a frictionless rigid punch problem
depicted in Fig. 19.9 left. The rigid punch is pressed against the elastic cube 1 × 1 × 1
[m] which is fixed at the bottom. The punch, which is defined in a reference config-
uration by the function

z(x1, x2) = 1.11 − 0.1 ∗ sin(π ∗ x1),

drops vertically by 0.11 [m]. Thematerial properties are defined by Young’s modulus
E = 2.1 × 105 [MPa] and Poisson’s ratio μ = 0.3. The the deformed cube is in
Fig. 19.9 right.

Fig. 19.9 Frictionless rigid punch problem (left) and deformed cube (right)

All computations were done using the Salomon cluster, operated by the National
Supercomputer Center in Ostrava. The code was compiled with Intel C++ Compiler
15.0.2, and linked against IntelMPI Library for Linux 4.1 and PETSc 3.5.3. Salomon
consists of 1,008 compute nodes, totaling 24,192 compute cores with 129TB RAM
and giving over 2 Pflop/s theoretical peak performance. Each node is a powerful
x86-64 computer, equipped with 24 cores with at least 128GB RAM. The nodes
are interconnected by the 7D Enhanced hypercube Infiniband network and equipped
with the Intel Xeon E5-2680v3 processors. The Salomon cluster consists of 576
nodes without accelerators and 432 nodes equipped with the Intel Xeon Phi MIC
accelerators.

The computations were carried out with varying decompositions into 64, 1,728,
8,000, 21,952, and 64,000 subdomains. When it was necessary, several subdomains
were assigned to a single core. The stopping criterion was defined by the relative
precision of the projected gradient and the feasibility error equal to 10−4 (measured
in the Euclidean norm, see (9.40)) and compared with the Euclidean norm of the
dual linear term. The results of computations are summarized in Table19.1.

http://dx.doi.org/10.1007/978-1-4939-6834-3_9
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Table 19.1 Results of the benchmark—cube contact linear elasticity problem

NS n [106] Hessian mult. Iter. time [s]

64 5,719,872 73 258

1,728 154,436,544 83 311

8,000 714,984,000 117 364

21,952 1,961,916,096 142 418

64,000 5,719,872 000 149 497

The results vizualized in Fig. 19.10 illustrate good numerical and parallel scala-
bility.
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Fig. 19.10 Cube benchmark. Numbers of matrix–vector multiplications by F (left) and solution
times (right)
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CG (conjugate gradient), 73
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MPRGP with preconditioning in face,
131, 132

proportioning, 132
SMALBE, 152
SMALSE, 138
SMALSE-Mw, 138, 155
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B
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C
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Cauchy–Schwarz inequality, 20
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Cholesky factorization, 16
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for bound constraints, 122
for equality and inequality con-

straints, 51
for equality constraints, 43
for inequality constraints, 47

Condition number
effective, 78
regular, 81
spectral, 23

Cone
linear, 48
tangent, 48

Constraint qualification
Abadie, 48

D
Derivative

interior conormal, 62
Design variables, 311
Direction

decrease, 30
feasible, 30
recession, 30

Discretization
boundary element, 258
finite elements, 193
mortar, 279
quasi-uniform, 193
variationally consistent, 279

Dual
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finite elements, 279
function, 52
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problem, 52
constrained, 55

space, 61
Duality pairing, 61

E
Eigenvalue, 22

Cauchy interlacing theorem, 23
Gershgorin’s theorem, 23

Eigenvector, 22
Element

boundary, 258
constant, 258
finite, 193
linear, 258
shape regular, 193

Equation
characteristic, 22
equilibrium, 187
motion, 233

Euclidean scalar product, 20

F
Fixing node, 197
Friction

Coulomb, 212
Coulomb orthotropic, 216
given, 215
Tresca, 215

Function
coercive, 34
convex, 33
cost, 29
dual, 52
strictly convex, 33

G
Gauss elimination, 16

backward substitution, 16
forward reduction, 16

Gershgorin’s theorem, 23
Gradient

chopped, 100, 122
free, 100, 122
projected, 101, 122
reduced, 103

Gramm–Schmidt procedure, 70
Graph of triangulation

adjacency matrix, 26
edges, 26
vertices, 26

walk of length k, 26
Green formula, 62
Green theorem, 62

I
Inequality

Cauchy–Schwarz , 20
Hölder, 59
variational, 190

Iterate
strictly proportional, 123

Iteration
proportioning, 124

K
KKT pair for equality constraints, 40
Kronecker symbol, 12
Krylov space, 71

L
Lagrange multiplier, 41

least square, 42
Lagrangian function, 39
Lamé coefficient, 186
LANCELOT, 138

M
Master side, 185
Matrix, 12

adjacency, 26
band, 17
block, 12
defect, 13
diagonal, 16
effective stiffness, 236
identity, 12
image space, 13
indefinite, 12
induced norm, 19
invariant subspace, 13
inverse, 14
kernel, 13
left generalized inverse, 15, 171, 196
lower triangular, 16
mass, 235
Moore–Penrose generalized inverse, 25,
32

null space, 13
orthogonal, 21
orthogonal projector, 21
permutation, 14
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positive definite, 12
positive semidefinite, 12
projector, 13
range, 13
rank, 13
restriction, 13
saddle point, 43
scalar function, 24
Schur complement, 15, 18
singular, 14
singular value, 24
sparse, 12
SPD, 12
spectral condition number, 23
spectral decomposition, 23
SPS, 12
square root, 24
submatrix, 12
upper triangular, 16
zero, 12

Method
augmented Lagrangian, 138
exterior penalty, 137
FETI, 163
TFETI, 163

Minimizer
global, 29

Moore–Penrose generalized inverse, 25

N
Non-penetration

linearized (strong), 185, 233
weak (variational), 279

Norm
A-norm, 20
Euclidean, 20
induced, 19
�1, 19
�2, 19
Sobolev–Slobodickij, 61
R
n , 19

submultiplicativity, 19

O
Operator

double layer, 261
adjoint, 261

hypersingular, 261
single layer, 261
Steklov–Poincaré, 261
trace, 60

P
Parameter

decomposition, 167
discretization, 175

Perron vector, 199
Preconditioner

conjugate projector, 240
Dirichlet, 296
lumped, 296
reorthogonalization-based, 292

Preconditioning
by conjugate projector, 240
in face, 131

Primal function, 44
Problem

bound and equality constrained QP, 152
separable inequality and linear equality
constraints, 135

bound-constrained QP, 121
dual, 52
inequality constrained QP, 121
primal, 52
QCQP, 29, 211

separable inequality constraints, 99
Projection

Euclidean, 84
free gradient with the fixed steplength,
123

nonexpansive, 38
to convex set, 36

Projector, 13
orthogonal, 21

Pseudoresidual, 80

Q
QCQP, 45, 99

separable constraints, 99

R
Rate of convergence

conjugate gradients, 75
Euclidean error of gradient projection, 87
MPGP cost function, 109
MPGP projected gradient, 110
of cost function in gradient projection, 93
SMALBE feasibility, 153

Relative precision, 139

S
Scalar product, 20

A-scalar product, 20
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broken, 191
Euclidean (Rn), 20
Sobolev–Slobodeckij, 61

Scaling
multiplicity, 299
renormalization-based, 294, 297–299

Schur complement, 15, 44
Selective orthogonalization, 80
Set

active, 45, 122
binding, 122
compact, 35
contact coupling, 184
convex, 32
free, 122
subsymmetric, 89
weakly binding, 122

Shadow prices, 45
Shape optimization problem, 311
Singular value, 24
Singular value decomposition (SVD), 24

reduced (RSVD), 24
Skeleton of the decomposition, 251
Slave side, 184
Slip bound, 214
Solution

dual degenerate, 121, 126
fundamental, 252
least square (LS), 26
range regular, 145
regular, 145

Spectral decomposition, 23
Spectrum, 22
State problem, 311
Steklov–Poincaré operator, 261

T
Taylor’s expansion, 30
Tensor

Cauchy stress, 186

Cauchy’s small strain, 186
Hook elasticity, 186
Kelvin, 261

Theorem
Cauchy intelacing, 23
Gershgorin, 23
Green, 62
Lax–Milgram, 64
Riesz, 61
Weierstrass, 35

Trace, 60

V
Variational inequality, 163
Vector, 11

A-conjugate, 21
A-norm, 20
conjugate, 70
Euclidean norm, 20
feasible, 29
�1-norm, 19
�∞-norm, 19
orthogonal, 21
orthonormal, 21
Perron, 199
span, 11
subvector, 12
zero, 11

Vector space
linear span, 11
norm, 19
standard basis, 12

W
Weierstrass theorem, 35

Y
Young modulus, 186
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