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Introduction: Setting the Scene,  
Morphology to Molecular

Revolution and/or evolution is a constant theme in pathology, but never has it been 
more pertinent than today with the adoption by diagnostic laboratories of a number 
of new key technologies. Borne out of the research environment, these have driven 
significant changes in laboratory practice and changes in workforce especially in 
the field of cancer diagnostics. The increase in our understanding underlying the 
biology of cancer has spawned a new generation of tests using previously unused 
“tissue” sources with levels of detection that only a few years ago would have seen 
inconceivable. Thus, we are now able to identify DNA sequence mutations using 
whole-genome approaches in single cells isolated from peripheral blood, assess the 
underlying aetiology of tumours from their mutational signatures and perform 
methylation and expression analysis with profiles that give prognostic and/or pre-
dictive information.

Much of our increased knowledge have been underpinned by platform enablers 
such as autopsy and tissue banking which have become disciplines of their own, with 
the emergence of speciality expertise that is needed to provide appropriately col-
lected, processed and stored samples for molecular interrogation in cancer research.

The changes in the use of new methods and applications in the pathology of 
cancer are in many ways analogous to the introduction of the microscope in Paris in 
the 1840s when morphology challenged conventional wisdom and the use of clini-
cal classification of tumours. Thus, the applications from the technologies and tech-
niques outlined in this book in a similar manner raise fundamental questions on 
tumour classification, biology and therapeutics. Indeed for the classification of 
tumours, there is a similar discourse around whether tumours should be genomi-
cally “binned” or whether conventional morphology should continue to be used. 
There is emerging data to demonstrate close similarities between tumours of vastly 
different origins but look, behave and respond to therapeutic targets in the same 
manner. This discussion will continue over the coming decade, but it is likely that a 
combination of conventional and innovative technologies will be used to go from a 
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standard classification system to more of an ontology definition of tumours with all 
the ancillary information that this provides. A highly thought-provoking and pro-
vocative “future scoping” further explores how pathology and the revolution in 
technology and platform enablers may change the face of pathology across not only 
the neoplastic diseases but throughout all pathology.

Melbourne, VIC, Australia� Stephen B. Fox 
Brisbane, QLD, Australia � Sunil R. Lakhani 
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Molecular Diagnostics: Translation 
from Discovery to Clinical Practice

Fares Al-Ejeh and Andrew V. Biankin

Over the past decade, there has been broad publicity and discussions over the 
potential of “personalized medicine” to transform clinical practice in oncology. In 
its broad definition, personalized medicine in oncology refers to the use of biomark-
ers to make decisions such as the type of therapies, prognosis, and extent of moni-
toring of disease progression. As such, oncologists have been practicing personalized 
medicine throughout modern medicine where patients are treated according to clini-
cal staging and the current understanding of specific cancer behaviors. It may be 
argued that even chemotherapy is personalized, not only in terms of using different 
chemotherapeutics for different cancer types but also for the concept of using anti-
proliferation cytotoxic drugs against highly, uncontrolled proliferative cancers.

Recent examples of personalized targeted therapies include trastuzumab and 
crizotinib. Diagnostic tests for Erbb2 amplification for Herceptin in breast cancer 
and ALK-gene fusion for crizotinib in non-small cell lung cancer are required to 
identify the patients who would benefit from these treatments. More recently, 
genome-wide molecular profiling has accelerated deeper understanding of the 
architecture of cancers in general and their heterogeneity in their response to thera-
pies specifically. Transcriptome and genome profiling, and proteome profiling to 
some extent, have expounded the heterogeneity of cancers even of similar origins 
which has been recognized by clinicians and pathologists for decades. The rapid 
growth of molecular profiling has been paralleled with an exponential growth in the 
use of the term “personalized medicine” (Fig. 1). The promise made is that such 

F. Al-Ejeh (*)
Personalised Medicine, QIMR Berghofer Medical Research Institute, Bancroft Building,  
300 Herston Road, Herston, QLD 4006, Australia 
e-mail: Fares.Al-Ejeh@qimrberghofer.edu.au 

A.V. Biankin (*) 
Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Garscube Estate,  
Switchback Road, Bearsden, Glasgow, Scotland G61 1BD, UK
e-mail: Andrew.Biankin@glasgow.ac.uk

mailto:Fares.Al-Ejeh@qimrberghofer.edu.au
mailto:Andrew.Biankin@glasgow.ac.uk


2

advances in the field would deliver sophisticated diagnostic tests and precise 
therapies beyond the “one marker-one drug” model of the past. Accordingly, it may 
be more suitable to refer to the new model as “precision medicine” or “precision 
oncology” to distinguish from personalized medicine although both terms may be 
related.

In this chapter, we will discuss the advances of “omics” technologies particularly 
their translation into multiplexed molecular pathological tests, which are central for 
personalized/precision oncology. The pathways towards clinical development of 
such tests will also be discussed within the current and future regulatory landscapes, 
and the perspective of clinical utility and impact on patient management and 
benefit.

�New Technologies and Their Promise

Cancer molecular diagnostics are based on the analysis of biomarkers such DNA, 
RNA, or protein to identify risk or incidence of disease, determine disease progres-
sion (prognostic tests), determine therapy, and/or predict response (predictive or 
companion diagnostic tests). Microarrays enable high throughput measurements of 
DNA, RNA, or protein and have contributed vastly to our current research practice. 
One of the earliest descriptions of the use of “DNA microarrays” or “DNA chips” is 
probably the study by Augenlicht et al. in 1987 which measured the relative expres-
sion of each of 4000 complementary DNA (cDNA) sequences from biopsies of 
human colonic tissue and in colonic carcinoma cells [1]. A follow-up study focused 
on 30 cDNA clones in an attempt to compare the expression profiles between two 
genetic groups from patients at high risk for developing colorectal cancer and 

Fig. 1  PubMed search of “personalized medicine” (http://www.ncbi.nlm.nih.gov/pubmed/?term=
personalized+medicine)

F. Al-Ejeh and A.V. Biankin

http://www.ncbi.nlm.nih.gov/pubmed/?term=personalized+medicine
http://www.ncbi.nlm.nih.gov/pubmed/?term=personalized+medicine
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normal colonic mucosa in low-risk individuals [2]. The earliest precursors of current 
gene-expression microarrays were reported in 1995 and 1996 by Schena et al. [3, 4]. 
Genomic sequencing arrays, “sequencing by hybridization” (SBH), were first 
reported in 1992 by Drmanac et al. [5]. Shortly after, Drmanac et al. in 1994 [6] and 
1996 [7] reported on newly developed methods for large-scale production of cDNA 
and genomic DNA microarrays. One particularly pivotal development was the 
Affymetrix gene-expression array by Lockhart et al. in 1996 [8, 9]. Comparative 
genome hybridization arrays (array—CGH or aCGH) were also developed in 1992 
to enable high throughput cytogenic analysis in cancer [10] and further developed 
in 1999 for higher resolution and applied in breast cancer [11]. Protein microarrays, 
based on reverse-phase method where proteins are spotted onto membranes and 
detected by antibodies, were not developed until 1999 by Lueking et  al. [12]. 
Alternative to the solid surface chips described so far, bead-based microarrays 
(BeadArray™ technology) were a later addition to the field which were based on 
the invention of David Walt and colleagues reported in 1998 [13] and developed by 
Illumina Inc. (founded in 2001). Illumina Inc. was the new competitor of the then 
microarray-market dominant Affymetrix Inc. (founded in 1992). BeadArrays™ 
were initially used for single nucleotide polymorphism (SNP) profiling but later 
developed for gene-expression profiling in 2004 [14]. Since the 1990s, microarrays 
have developed and expanded considerably to enable high throughput, genome-
wide profiling of DNA mutations, copy number variations (CNVs), gene expression 
(mRNA), proteins, methylation, and microRNA (miRNA). Next-generation 
sequencing (NGS) methods developed in the late 1990s are now providing the next 
levels of accuracy, speed, and low cost to employ in molecular profiling of cancer. 
NGS applies to genome sequencing, transcriptome profiling (RNA-Seq), DNA–
protein interactions (ChIP-sequencing), and epigenome characterization.

Early examples of differential molecular profiling include those carried out in 
melanoma in 1996 [15], and prostate [16], renal [17], and breast [18, 19] cancers in 
1999. Such studies have attracted several reviews, commentaries, and views on the 
paradigm shift in research where “the hypothesis is there is no hypothesis” [20] and 
early recognition of the potential of microarrays in drug discovery and response to 
therapies [21, 22]. The feasibility of molecular classification of cancer based solely 
on gene expression was first demonstrated in leukemia in 1999 based on class dis-
covery/prediction methods [23]. Perhaps, the seminal studies by Perou et al. in 2000 
[24] and Sørlie et al. in 2001 [25] were the first to demonstrate the utility of molecu-
lar profiling to explain heterogeneity and more importantly the discovery of the 
association between the distinct molecular profiles and clinical outcomes. The util-
ity of gene-expression profiling in predicting clinical outcomes was further demon-
strated in the study by van ’t Veer in 2002 which identified gene-expression signature 
that is strongly predictive of a short interval to distant metastases in lymph node-
negative breast cancer [26]. The importance behind these three fundamental studies 
in breast cancer [24–26] is their translation into three commercial diagnostic prod-
ucts: the Oncotype DX® breast cancer assay, the MammaPrint® 70-gene breast can-
cer recurrence assay, and the Prosigna® Breast Cancer Prognostic Gene Signature 
Assay. Oncotype DX® was developed from 250 candidate genes selected from three 

Molecular Diagnostics: Translation from Discovery to Clinical Practice
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studies by Perou et al. [24], Sørlie et al. [25], and van ’t Veer [26] and 16 cancer-related 
genes and 5 reference genes (21-genes) were selected for RT-PCR based test to 
calculate a recurrence score [27–29]. MammaPrint® is based on a 70-gene signature 
developed from the study by van ’t Veer [26]. Prosigna® is based on the PAM50 
breast cancer subtype predictor [30] which was developed from the intrinsic gene-
expression profiles [24, 25, 31]. These success stories in breast cancer support the 
burst in molecular profiling over the past decade. This eruption may be beyond any 
review capability, however, may be appropriately illustrated by two major interna-
tional projects, The Cancer Genome Atlas (TCGA) [32] and the International 
Cancer Genome Consortium (ICGC) [33] projects. The TCGA and ICGC projects 
continue to expand our understanding of several cancer types at multiple levels of 
molecular architecture by genome-scale profiling of DNA, RNA, and proteins as 
well as the integration of such profiles to provide more comprehensive portraits of 
complex regulatory interactions in cancers. Notwithstanding the clear benefit of 
biological insights delivered by such “big data” studies, one persistent question 
remains: how can we translate our findings to benefit patients?

�Currently Approved Molecular Diagnostics in Pathology

In Europe, CE marking for an in vitro diagnostic (IVD) product is required before 
it can be launched in the market (Directive 98/79/EC). In the USA, pathological 
tests are regulated by the Food and Drug Administration (FDA) as in vitro diagnos-
tic medical devices (IVDMD) under two main types of applications: 510(k) and the 
more comprehensive Premarket Approval (PMA). These applications govern patho-
logical tests and related instrumentation used to carry out testing when used to assist 
in clinical diagnosis/patient management. We reviewed all the FDA 510(k)1- 
(Table 1) and PMA2-approved (Table 2) IVDMD in the field of pathology with deci-
sion made in the past 25 years (1990–2015).

Apart from clinical pathology instruments and single biomarker tests, the FDA-
approved IVDMD lists to date contain very few examples of multi-biomarker tests 
(gene expression of mutation panels). This is in contrast to the growing consensus 
envisioned by genome-wide profiling (e.g., TCGA and ICGC) that multiple biomark-
ers are a better reflection of the multidimensional nature of cancer heterogeneity and 
association with clinical outcomes. Multi-biomarker tests are limited to the following:

•	 Cologuard® (Exact Sciences Corp.) is a DNA test that includes quantitative 
molecular assays for KRAS mutations, aberrant NDRG4 and BMP3 methylation, 
and β-actin as reference control, plus a hemoglobin immunoassay [34].

•	 GeneSearch BLN Assay (Veridex, LLC) is a stand-alone intraoperative RT-PCR 
molecular test for sentinel node staging in breast cancer which measures the 

1 http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm [Pathology “Panel”].
2 http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm [Pathology “Advisory 
Committee”].

F. Al-Ejeh and A.V. Biankin

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm
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Table 1  FDA 510(k)-approved in vitro diagnostic in medical devices in pathology

Company Product 510(k) Number Year

Abbott Molecular 
Inc.

Vysis D7S486/CEP 7 FISH Probe Kit K131508 2013

Vysis EGR1 FISH Probe Kit K091960 2011

Vysis CLL FISH Probe Kit (TP53/ATM) K100015 2011

Agendia MammaPrint FFPE K141142 2015

MammaPrint K101454 2011

Modification to MammaPrint K081092 2009

Modification to MammaPrint K080252 2008

MammaPrint K070675 2007

American 
Fluoroseal Corp.

Kapton peel pouch K933228 1994

Aperio 
Technologies

ScanScope XT system K080564 2009

ScanScope XT system K080254 2008

ScanScope XT system K073677 2008

ScanScope XT system K071671 2007

ScanScope XT system K071128 2007

Applied Imaging 
Corp.

Ariol HER-2/neu FISH K043519 2005

Ariol K033200 2004

Ariol HER-2/neu IHC K031715 2004

Applied Spectral 
Imaging

ScanView System K110345 2011

GenASIs HiPath IHC family K140957 2015

GenASIs ScanView System K122554 2013

ScanView HER2/neu FISH system K101291 2010

FISHView K050236 2005

BandView system K012103 2001

Asuragen Inc. RNA Retain K113420 2012

AsymmetRx Prostate-63 cancer diagnostic test K050063 2005

AutoGenomics 
Inc.

INFINITI System K060564 2007

BioGenex 
Laboratories

Anti-Progesterone Receptor (InSite® PR) K012960 2002

Anti-Estrogen Receptor (InSite® ER) K013148 2002

BioImagene Inc. PATHIAM™ with iScan for p53 and Ki67 K092333 2010

PATHIAM™ system for HER2/neu IHC 
reagents & kits

K080910 2009

PATHIAM™ imaging software for HER2/
neu

K062756 2007

BioView Ltd. BioView Duet™ System (Automated ALK 
FISH Scanning of Lung Cancer)

K130775 2014

Celera Diagnostics Cystic Fibrosis Genotyping Assay 6L20-01 K062028 2007

Cell Analysis Inc. QCA (version 3.1) K031363 2004

Cepheid Xpert HemosIL Factor II and Factor V 
assay

K082118 2009

ChromaVision 
Medical Systems, 
Inc.

ACIS (automated cellular imaging system) K032113 2003

Modification to ACIS (automated cellular 
imaging system)

K012138 2002

(continued)

Molecular Diagnostics: Translation from Discovery to Clinical Practice
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Table 1  (continued)

Company Product 510(k) Number Year

Clinical Micro 
Sensors, Inc.

eSensor Cystic Fibrosis Carrier test 
(eSensor 4800 DNA detection system)

K051435, 
K060543

2006

Dako Corp. FLEX Monoclonal Mouse Anti-Human 
Progesterone Receptor, Clone PgR 636

K020023 2002

Monoclonal Mouse Anti-Human Estrogen 
Receptor b1 (Clone PPG5/10)

K993957 2000

FLEX Monoclonal Mouse Anti-Human 
Progesterone Receptor, Clone PgR 636

K130861 2013

Monoclonal Rabbit Anti-Human Estrogen 
Receptor α Clone EP1

K120663 2013

Monoclonal Rabbit Anti-Human Estrogen 
Receptor α Clone SP1 model M3634

K081286 2009

ER/PR pharmDx™ Kits K042884 2005

DiagnoCure, Inc. ImmunoCyt/uCyt+ K994356 2000

Hologic Inc. Invader Factor II K100943 2011

Invader Factor V K100980 2011

Invader MTHFR 677 K100987 2011

Invader MTHFR 1298 K100496 2011

Ikonisys Inc. Ikoniscope oncoFISH HER2 test system 
model 2000

K080909 2008

Illumina Inc. Illumina MiSeqDx Cystic Fibrosis 
139-Variant Assay

K124006 2013

Illumina MiSeqDx Cystic Fibrosis clinical 
sequencing assay

K132750 2013

VeraCode Genotyping Test for Factor V 
(Leiden) and Factor II

K093129 2010

Immunicon Corp. CELLTRACKS ANALYZER II® System K060110 2006

CELLTRACKS ANALYZER II® System K050145 2005

Incstar Corp. Incstar Herpes Simplex Virus I/II IgG 
“fast” ELISA assay

K955362 1996

Instrumentation 
Laboratory Co.

HemosiL F11 & FV DNA Control K093737 2010

International 
Remote Imaging 
Systems

iQ200 System K022774 2002

IRIS 939 Udx urine pathology system K000373 2000

IRIS International 
Inc.

iQ® 200 System and iQ Lamina Cradle K093861 2010

Lab Vision Corp. NeoMarkers Rabbit Monoclonal Anti-
Human Estrogen Receptor (Clone SP1)

K061360 2006

NeoMarkers Rabbit Monoclonal anti-
Human Progesterone Receptor (Clone SP2)

K060462 2006

Leica Biosystems 
Inc.

Aperio ePathology eIHC IVD system K141109 2014

Vision biosystems estrogen receptor clone 
6F11

K122556 2014

(continued)

F. Al-Ejeh and A.V. Biankin
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Table 1  (continued)

Company Product 510(k) Number Year

Luminex Corp. The FLEXMAP 3D K133302 2014

xTAG Cystic Fibrosis 60 (CF60) Kit v2 K083845 2009

xTAG Cystic Fibrosis 39 (CF39) Kit v2 K083846 2009

Maine Molecular 
Quality Controls 
Inc.

INTROL CF Panel I Control (model: G106) K083171 2008

MetaSystems 
GMBH

Ikaros Karyotyping System K940240 1995

Nanosphere Inc. Verigene CFTR and Verigene CFTR PolyT 
Nucleic Acid Tests

K083294 2009

NanoString 
Technologies Inc.

Prosigna breast cancer prognostic gene 
signature assay

K141771 2014

Olympus Inc./
Scientific 
Equipment Group

Virtual Slide System Olympus system K111914 2012

Omnyx LLC Omnyx IDP for HER2 manual application K131140 2014

Osmetech 
Molecular 
Diagnostics

eSenor FII-FV-MTHFR genotyping test K093974 2010

eSensor cystic fibrosis (CF) genotyping test 
models XT-8

K090901 2009

Pathwork 
Diagnostics Inc.

Pathwork Tissue of Origin Test Kit-FFPE K092967 2010

Pathwork Tissue of Origin Test Kit-FFPE K120489 2012

Pathwork Tissue of Origin Test Kit-FFPE K080896 2008

Philips Medical 
Systems 
Nederland B.V.

Philips HercepTest digital score K130021 2013

QC Sciences LLC QCS HER2 immunocontrols (product no. 
C010)

K023335 2003

Roche Diagnostics 
Corp.

Factor II (Prothrombin) G20210A Kit K033612 2003

Sequenom Inc. IMPACT Dx Factor V Leiden and Factor II 
Genotyping Test

K132978 2014

Sysmex Inc. Sysmex UF-500i automated urine particle 
analyzer

K083002 2009

Sysmex UF-1000i automated urine particle 
analyzer with software

K080887 2008

Tecan Ltd. ProfiBlot K933996 1994

Third Wave 
Technologies Inc.

InPlex CF Molecular Test K063787 2008

Tm Bioscience 
Corp.

Tag-It Cystic Fibrosis Kit K060627 2006

TriPath Imaging 
Inc.

Ventana image analysis system—pathway 
HER2 (4b5)

K061613 2007

Ventana image analysis system (VIAS) K062428 2006

Ventana image analysis system Ki-67 K053520 2006

Ventana image analysis system—HER2/neu K051282 2005

Ventana image analysis system K050012 2005

(continued)

Molecular Diagnostics: Translation from Discovery to Clinical Practice
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expression of two genes: mammaglobin (SCGB2A2) and cytokeratin 19 (KRT19) 
in lymph nodes [35].

•	 ResponseDX Tissue of Origin Test (previously Pathwork® Tissue of Origin Test 
Kit-FFPE) is an FDA-cleared test marketed Response Genetics Inc. and per-
formed on FFPE tissue at their CLIA (Clinical Laboratory Improvement 
Amendments) certified laboratory. The test measures the expression of 2000 
genes using microarrays to assist pathologists and oncologists in determining the 
primary sites of tumors, thus help guiding appropriate therapy [36–38].

•	 BRACAnalysis CDx (Myriad Genetics, Inc.) is a companion diagnostic (CDx), 
CLIA-certified laboratory test for BRCA1 and BRCA2 mutations to aid in treat-
ment decision of ovarian cancer with the PARP inhibitor Lynparza™ (olaparib, 
AstraZeneca Ltd.). Myriad Genetics Inc. also markets several other multigene 

Table 1  (continued)

Company Product 510(k) Number Year

Ventana Inc. Ventana ER primary antibody (clone 6F11) K984567 1999

Ventana Medical 
Systems Inc.

Virtuoso system for IHC ER (SP1), HER2 
(4B5), PR (1E2), Ki67 (30-9), p53 (DO-7), 
and PgR (1A6)

K140465, 
K130515, 
K121516, 
K122143, 
K121033 
K110215, 
K121350, 
K111872, 
K111869, 
K111755, 
K111543, 
K990618, 
K103818

1999–
2014

Veridex LLC Celltracks analyzer II system, Autoprep 
system and kits

K130794, 
K122821, 
K110406, 
K113181, 
K103502, 
K073338, 
K071729, 
K062013, 
K052191, 
K050245

2005–
2013

Vision 
BioSystems Inc.

Vision BioSystems Progesterone Receptor 
PGR Clone 16

K062615 2007

Vision BioSystems Estrogen Receptor 
Clone 6F11

K060227 2006

Vysis Inc. AneuVysion Multicolor DNA Probe Kits K010288, 
K972200, 
K954214, 
K962873, 
K953591

1996–
2001

F. Al-Ejeh and A.V. Biankin
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Table 2  FDA PMA approved in vitro diagnostic in medical devices in pathology

Company Product PMA Number(s) Year

Abbott Molecular 
Inc. Vysis

Vysis ALK break apart 
FISH probe kit

P110012, P110012/
S001-P110012/S008

2011–
2014

UroVysion bladder cancer 
kit

P030052, P030052/
S001-P030052/S016

2005–
2014

PATH Vysion HER-2 
DNA probe kit

P980024, P980024/
S001-P980024/S013

1998–
2014

BD Diagnostic 
Systems
TriPath Imaging Inc.

BD PrepStain System P970018, P970018/
S001-P970018/S031

1999–
2015

BD FocalPoint Slide 
Profiler

P950009, P950009/
S001-P950009/S018

1995–
2014

PapNet(R) testing system P940029, P940029/
S001-P940029/S003

1995–
1997

BioGenex 
Laboratories Ltd.

InSite Her-2/neu kit P040030 2004

bioMerieux Inc. THxID-BRAF kit P120014, P120014/
S005-P120014/S005

2013–
2015

Cytyc Corp.
Hologic Inc.

ThinPrep Imaging System P020002, P020002/
S001-P020002/S010

2003–
2015

ThinPrep Processors P950039, 950039/S001-
950039/S032

1996–
2014

Dako Corp. HercepTest P980018, P980018/
S001-P980018/S019

1998–
2015

HER2 CISH pharmDx Kit P100024, P100024/
S001-P100024/S006

2011–
2014

TOP2A FISH pharmDx 
Kit

P050045, P050045/
S001-P050045/S004

2008–
2012

HER2 IQFISH pharmDx P040005, P040005/
S001-P040005/S010

2005–
2013

c-Kit pharmDx Kits P040011, P040011/
S001-P040011/S002

2005–
2012

EGFR pharmDx Kits P030044, P030044/
S001-P030044/S002

2004–
2006

Exact Sciences Corp. Cologuard P130017, P130017/S001 2014–
2015

Gen-Probe Inc.
Hologic Inc.

Progensa PCA3 assay P100033, P100033/
S001-P100033/S003

2012–
2015

Hologic Inc.
MonoGen Inc.

MonoPrep Pap Test P040052-P040052/S008 2006–
2008

Janssen Diagnostics
Veridex LLC

GeneSearch Breast Lymph 
Node Assay

P060017, P060017/
S001-P060017/S004

2007–
2009

Leica Biosystems 
Ltd.

Leica Bond Oracle HER2 
IHC System

P090015, P090015/
S001-P090015/S003

2012–
2015

Life Technologies 
Inc.
Invitrogen Inc.

SPOT-Light HER2 CISH 
Kit

P050040, P050040/
S001-P050040/S003

2008–
2012

(continued)

Molecular Diagnostics: Translation from Discovery to Clinical Practice
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kits (not FDA approved) including: hereditary cancer tests which detect gene 
mutations (myRisk™ Hereditary Cancer, BRACAnalysis®, COLARIS®, 
COLARIS AP®, MELARIS®, and PANEXIA®) and prognostic tests which mea-
sure gene-expression panels (myPlan® lung cancer, myPath® melanoma, and 
Prolaris® for prostate cancer).

•	 Oncotype Dx® (Genomic Health Inc.) discussed earlier is another CLIA-certified 
laboratory test and is supported by level of evidence (LOI) II [39, 40], and may be 
reaching LOI IB in accordance to a proposed refined LOI guidelines for prognos-
tic/predictive biomarkers using archival specimens [41, 42]. ASCO (American 
Society of Clinical Oncology) and NCCN (National Comprehensive Cancer 
Network) have included the Oncotype DX assay in their guidelines as an option to 
aid decision whether patients with node-negative (N0), estrogen-receptor-positive 
(ER+) breast cancer will benefit from chemotherapy. Two large prospective clinical 
trials are underway to support Oncotype DX by level I of confidence and hopefully 
can address whether the test prediction is not driven by inclusion of non-luminal 
breast cancer or low ER+ and HER2-positive (HER2+) cases [43–46]. Other prod-
ucts by Genomic Health Inc. (not approved yet) include: Oncotype DX Genomic 

Table 2  (continued)

Company Product PMA Number(s) Year

Myriad Genetics 
Laboratories

BRACAnalysis CDx P140020 2014

QIAGEN Manchester 
Ltd.

Therascreen EGFR RGQ 
PCR Kit

P120022, P120022/
S002-P120022/S009

2013–
2015

Therascreen KRAS RGQ 
PCR Kit

P110030, P110027, 
P110027/S002-P110027/
S007

2012–
2015

Roche Molecular 
Diagnostics Inc.

Cobas 4800 BRAF V600 
Mutation Test

P110020, P110020/
S001-P110020/S013

2011–
2015

Cobas EGFR Mutation 
Test

P120019, P120019/
S001-P120019/S006

2013–
2015

Cobas KRAS Mutation 
Test

P140023 2015

Ventana Medical 
Systems Inc.

INFORM HER2 Dual ISH 
DNA Probe Cocktail

P100027, P100027/
S001-P100027/S021

2011–
2015

PATHWAY anti-c-KIT 
(9.7) Primary Antibody

P020055, P020055/
S001-P020055/S016

2004–
2014

PATHWAY anti-HER-2/
neu (4B5) Antibody

P990081, P990081/
S001-P990081/S031

2000–
2015

Inform HER-2/neu breast 
cancer test

P940004, P940004/S001 1997, 
2000

VENTANA ALK (D5F3) 
CDx Assay

P140025 2015

Zeus Technology Fluoro-Cep Estrogen assay 
reagent

P860015/S001 1992

F. Al-Ejeh and A.V. Biankin
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Prostate Score which measures the expression of 12 genes and 5 reference genes 
using RT-PCR to aid clinical decisions by assessing the aggressiveness of early 
stage prostate cancer [47]; Oncotype DX® Colon Cancer Assay is another RT-PCR 
based test that measures the expression of 7 genes and 5 reference genes for pre-
dicting recurrence risk in patients with stage II and III colon cancer [48].

•	 MammaPrint® (Agendia Inc.) is supported by LOI III evidence [49–51] and has 
FDA 510(k) approval. Similar to Oncotype DX, several clinical trials are under-
going with MammaPrint® to obtain higher LOI for the utility in ER+/HER2− 
breast cancer.3 Agendia is also running a prospective study assessing recurrence 
risk in stage II colon cancer patients (NCT00903565) using the ColoPrint® 
18-Gene Colon Cancer Recurrence Assay [52].

•	 Prosigna® (NanoString Technologies Inc.) is another FDA 510(k)-approved 
multigene expression test for use in postmenopausal women with hormone 
receptor-positive (HR+) N0 stage I or II or N1 stage II node-positive (Stage II) 
breast cancer to be treated with adjuvant endocrine therapy. Prosigna® is sup-
ported by level I of evidence based on prospective clinical trials [53, 54] and 
additional indications for influencing treatment decisions [55] and predicting 
response to neoadjuvant chemotherapy in HR+/HER2− patients [56].

In line with the purpose of regulating IVDMDs that assist in clinical diagnosis/
patient management, the FDA-approved molecular pathology tests invariably serve as 
companion diagnostic (CDx) tests for currently approved drugs (Table 3).4 Similarly, 
the multi-biomarker molecular diagnostics outlined above also operate as CDx 
(BRACAnalysis CDx for Lynparza™; Oncotype DX®, MammaPrint®, and Prosigna® 
CDx for the benefit of chemotherapy in ER+/HER2− breast cancer) or aid clinical 
diagnosis (Cologuard® for diagnosis of colorectal cancer, GeneSearch BLN Assay for 
diagnosis of sentinel lymph node involvement in breast cancer, and ResponseDX 
Tissue of Origin Test to diagnose the origin of cancers of unknown origins). This mar-
riage between companion diagnostics and therapies clearly illustrates the practice of 
personalized medicine and brings clinical and commercial benefits; however, one 
question arises: Do the molecular profiles and prognostics gene-expression/mutation 
signature from “omics” have any clinical/commercial potential?

�Translation of ‘Omics to Molecular Diagnostics

Molecular profiling studies, best illustrated by the TCGA and ICGC projects, are 
cohort studies primarily focused on gaining biological insights of the molecular 
architecture of human cancers. These studies are not controlled clinical trials, obser-
vatory or intervention trials, thus any findings from the ‘omics studies require rigor-
ous validation. Such validations are demonstrated by the studies conducted to 

3 http://www.agendia.com/healthcare-professionals/breast-cancer/current-clinical-trials/.
4 http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/
ucm301431.htm.

Molecular Diagnostics: Translation from Discovery to Clinical Practice

http://www.agendia.com/healthcare-professionals/breast-cancer/current-clinical-trials/
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm301431.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm301431.htm
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support the currently approved gene signatures in ER+ breast cancer (Oncotype DX, 
MammaPrint, and Prosigna). Earlier, we raised the question how can we translate 
our ‘omics findings to benefit patients? A prior question may be which findings 
would have clinical utility if translated? More specifically is the question whether 
the molecular profiles and prognostics gene-expression/mutation signature from 
“omics” have any clinical/commercial potential?

Scientific publications using whole genome arrays and describing molecular 
profiles that identify cancer molecular subtypes and/or predict clinical outcomes 
are beyond any review capacity. Some studies take such defined profiles to the next 
step and validate and/or develop more accurate mathematical models to predict 
outcomes using retrospective cohorts. However, it is disappointing that less than 
handful of genomic tests have made it to FDA-approved clinical practice 
(ResponseDX Tissue of Origin, Oncotype DX, MammaPrint, and Prosigna) and 
not many more are being marketed as commercial products without an approved 
clinical decision utility (e.g., Myriad Genetics Inc. products mentioned earlier). 
This has been discussed as a “diagnostics pipeline problem” with a key issue being 
clinically relevant biomarkers that have clear utility to improve clinical outcomes 
[57]. Other major issues behind the “pipeline problem” include regulation and 
development models, money, and lack of sufficient clinical specimens for rigorous 
validations [57].

In 2012, a comprehensive review of the translation of ‘omics-based tests to clini-
cal trials/practice was conducted by a committee of experts convened by the US 
Institute of Medicine (IOM). The committee defined an ‘omics-based test as “an 
assay composed of or derived from multiple molecular measurements and inter-
preted by a fully specified computational model to produce a clinically actionable 
result.” Importantly, the committee developed a 30-item checklist as a guideline to 
the development of such tests for clinical use [58, 59] and has been adopted by the 
National Cancer Institute (NCI) [60]. The roadmap to follow during the develop-
ment of new ‘omics-based tumor biomarker tests comprises of three stages: (1) 
discovery, (2) test development, and (3) evaluation of clinical utility and use [61]. 
The 30-item checklist identified five key issues and the corresponding checklist 
attempts to guide and facilitate appropriate developments of ‘omics-based tests. The 
issues included: (1) specimen issues, (2) assay issues, (3) model development, spec-
ification, and preliminary performance evaluation, (4) clinical trial design, and (5) 
ethical, legal, and regulatory issues. This effort mirrors the previous NCI guideline 
for REporting recommendations for tumor MARKer prognostic studies (REMARK) 
in 2005 [62–64]. In 2013, the FDA published a document “Paving the Way for 
Personalized Medicine: FDA’s role”5 describing how the FDA is responding to reg-
ulate and drive the rapid developments in personalized medicine. In 2014, the FDA 
notified the US Congress regarding laboratory developed tests (LDTs; such as 
CLIA-cleared tests)6 with a draft guidance of framework for regulatory oversight of 

5 http://www.fda.gov/scienceresearch/specialtopics/personalizedmedicine/default.htm.
6 http://www.fda.gov/medicaldevices/productsandmedicalprocedures/ucm407296.htm.
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such tests,7,8 which are becoming more complex and with higher risk in the new era 
of ‘omics. More recently, the Precision Medicine Initiative (PMI) was announced 
by the US President [65, 66].

Examples of efforts to support personalized medicine in Europe include the 2012 
Declaration in Rome [67] and The European Alliance for Personalised Medicine 
(EAPM)9 founded in 2012, an advocate initiative with the objective to accelerating 
the development and uptake of personalized medicine and diagnostics. In 2013, the 
European Commission published a report “Use of ‘omics technologies in the devel-
opment of personalised medicine”10 to evaluate the progress made in personalized 
medicine, and the opportunities and challenges it presents for healthcare systems. 
The report recognized the potential of personalized medicine as well as the chal-
lenges (e.g., in research). Collectively, the new era of personalized/precision medi-
cine is currently being recognized and efforts to support its development and provide 
guidelines and regulations are taking place. While these policy changes are under-
way, we, the scientific/medical community, have the responsibility to address the 
major issue: what is the clinical utility of ‘omics?

During the first stage of development, discovery, biologically and clinically 
interesting ‘omics-based biomarkers need to demonstrate the intended clinical use. 
The vast majority of ‘omics-based molecular profiles arise from cancer patient 
cohort studies where a statistically significant separation of clinical outcomes 
(e.g., cancer-specific survival) based on a “genomic-profile” brings claims and 
suggestions of clinical utility. Some studies, although limited, take the next leap to 
illustrate the ability of the ‘omics-based profiles as an assay, which may or may not 
have analytical validity, to stratify some clinical outcomes using independent ret-
rospective cohorts. Even with this effort, this remains to be in the “discovery” 
phase and should be labeled as clinical validity rather than utility. Clinical utility is 
achieved if high levels of evidence have been generated to consistently demon-
strate that the ‘omics-based tests can improve clinical outcomes for the patient 
when compared to not using the assay. Such evidence comes either from prospec-
tively directed clinical trials [68, 69] or from “prospective-retrospective” studies 
exploiting archived specimens from previous clinical trials [41]. Thus, the valida-
tion of new ‘omics-based tests requires financial investment which is merited by 
the intellectual property position as well as the return on investment projected 
based on the utility of the tests.

Genomic studies, such as the TCGA and ICGC projects, are not clinical trials 
although clinical outcomes such as overall survival or recurrence/metastasis-free 
survival are recorded for the patients who are receiving the standard treatments for 
the given cancer. As such, ‘omics-profiles or derived assays remain to be limited to 
prognosis or at best serving as predictive biomarkers for standard therapies (surgery, 

7 http://www.regulations.gov/#!documentDetail;D=FDA-2011-D-0360-0002.
8 http://www.regulations.gov/#!documentDetail;D=FDA-2011-D-0357-0002.
9 http://euapm.eu/.
10 http://ec.europa.eu/health/human-use/personalised-medicine/index_en.htm.
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radiotherapy, or chemotherapy). The genomic tests currently approved for breast 
cancer are very clear illustration of this nature. Oncotype DX, MammaPrint, and 
Prosigna were all discovered and developed based on gene-expression profiling of 
retrospective breast cancer cohorts. Estrogen receptor (ER) status is a major player 
in the molecular stratification of breast cancer reported according to the PAM50 and 
the 70-gene signature; for example, the group identified by the 70-gene signature 
with high metastatic incidence is almost entirely composed of high grade (Grade 3) 
tumors with lymphocytic infiltrate and are negative for ER by IHC (Figure 1  in 
[26]). It may be argued that the prognostication by these signatures being limited to 
ER+ breast cancer is merely driven by the identification, molecularly, of ER+-
annotated breast cancer cases with gene-expression profiles that are closer to ER− 
breast cancer with the worse prognosis [43–46, 70]. Without the demonstration of 
the clinical utility in aiding the decision for inclusion of chemotherapy in the treat-
ment planning of ER+/HER2− patients, these breast cancer kits would have remained 
as prognostic signatures without any clinical success.

Researcher: “This prognostic test identifies aggressive tumors”
Clinician: “so what can we offer these patients?”

‘Omics provide panels of DNA, RNA, or protein and even integration of these 
biomarkers to reflect the biological complexity of cancers. Such information needs 
to translate into an action in order to make an impact on patient management. 
Prognostication that lacks insight, and more importantly evidence, for how to treat 
or not-treat the “poor prognosis” patient will be just bad news. Additionally, devel-
oping prognostic ‘omics-tests would be such an expensive practice particularly if 
the clinician can reach to similar prognosis using current, simpler clinicopathologi-
cal indictors. To this end, there may be two models for translating ‘omics-based 
tests in the future; one model has been previously proposed “fit-for-purpose” [71] 
where the ‘omics-based tests are developed along with the therapies—prospective 
CDx/drug development model. This model is probably limited to pharmaceutical 
companies where biomarker development is integrated in their drug development 
program. Indeed, there has been a marked increase in co-development and co-
commercialization agreements between pharmaceutical companies and diagnostics/
sequencing companies. Currently, it is not clear whether these joint development 
efforts are focusing on whole genome profiling or limited to predefined cancer pan-
els (gene mutation panels or cancer transcriptome profiles). The latter may be less 
fruitful than genome-wide profiling which do not make prior assumptions but may 
require investment in bioinformatics teams (in-house or by contract). The second 
model is more appropriate to the already existing ‘omics knowledge or new knowl-
edge generated from genome-wide studies in cohort studies—prospective develop-
ment of retrospective signatures. Molecular profiles/signatures discovered in ‘omics 
studies reflect biological characteristics that often associate with clinical outcomes 
and behavior, but may also hold companion diagnostic ability to certain classes of 
drugs. Biological and pathway understanding of these prognostic signatures may 
enable some prediction of the types of drugs that may be effective against these 
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molecular profiles. Alternatively, preclinical studies using cancer cell lines and 
more appropriately patient-derived xenografts may aid in determining if prognostic 
signatures have CDx capabilities [71–73]. These “preclinical trials” would support 
further discovery studies to be conducted on human cancer specimens from clinical 
trials to test such CDx capabilities of ‘omics signatures. A simpler path may be pos-
sible if whole genome profiling arrays conducted by pharmaceutical companies 
during drug development are published. These data could be mined by researchers 
similar to the extensive mining of scientific publications of all genome studies.

�Future Outlook

The IVDs market, although a fraction of the pharmaceutical market today, is pro-
jected for strong annual growth owing to the rising promise of new and novel per-
sonalized/precision medicine approaches. Factors affecting the growth of the IVDs 
market are a topic for specialist commercial discussions [74–77]. These factors 
include regulatory landscape, clinician endorsement/use, and uptake by payers 
(consumers/health insurers’ reimbursement). As mentioned earlier, policies and 
guidelines are changing to standardize how ‘omics-based tests are developed and 
validated to obtain the appropriate evidence. Evidence should include clinical vali-
dation to gain regulatory approvals as well as evidence to demonstrate clinical util-
ity to gain coverage by payers (health systems/health insurers).

For personalized/precision medicine to have a significant impact on the increas-
ing cost of health care, approaches to stratify patients effectively to determine who 
will require or be spared additional therapy and to decide on the types of additional 
therapies need to be robust. This precision model will need to outperform the 
“blockbuster” model which favors treatments and pharmaceuticals that may be pre-
scribed to “all comers” and are less affected by the heterogeneous molecular archi-
tectures of tumors. An integrative model to modernize clinical management of 
cancer patients would translate the accumulating biological knowledge from ‘omics 
studies. Routine clinical and pathological workups have been standardized over 
decades of clinical practice and research to provide actionable information for clini-
cal decisions in oncology (e.g., TNM staging and clinicopathology). Prognostic 
‘omics-tests may play an important role in decisions about patients who can be 
spared more extensive treatments than patients who may require additional thera-
pies due to poorer prognosis (Fig. 2). This is already practiced in oncology using 
single biomarkers; for example, early stage ER+ node-negative breast cancers are 
spared from chemotherapy whereas chemotherapy is included for ER+ node-positive 
breast cancer patients. Indeed, the risk prediction based on gene expression based 
tests in breast cancer such as Oncotype DX is now aiding clinical decisions to man-
age the fact that some early ER+ node-negative breast cancer patients have disease 
recurrence or metastatic spread while others do not. More value would be added if 
such prognostic ‘omics signature can make validated predictions for the type of 
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treatments that would be effective against the tumors which these tests classify as 
high risk. For example, the gene-expression based tests that are prognostic in ER+ 
breast cancer contain genes involved in proliferation, or more accurately regulating 
chromosome segregation and aneuploidy [78, 79], thus anti-aneuploidy drugs such 
as Aurora kinase inhibitors may benefit the high-risk patients [79]. Following the 
stratification of patients according to risk of cancer progression, high-risk patients 
would benefit from predictive tests (companion diagnostics, CDx such as single 
marker CDx in Table 3) to determine their eligibility for targeted therapies (Fig. 2). 
Development/validation of ‘omics-based CDx would also contribute to patient 
selection for targeted therapies and could provide deeper understanding of complex 
disease than single biomarker CDx. Moreover, ‘omics-based CDx may enable 
expansion of drug labels to additional indications and drug repositioning if similar 
molecular profiles are observed across cancers of different origins. Future develop-
ment of single biomarker and/or ‘omics-based CDx tests to determine the response 
to a given therapy may add to this integrated model (Fig.  2) and could provide 
mechanistic explanation for the failure of therapy to allow consequent adjustment or 
modification (e.g., stop the treatment). Finally, while the use of NGS in clinical 
diagnostics is currently undergoing debates [80, 81], some advances have been 
achieved already such as the FDA clearance of the first NGS sequencer, Illumina’s 
MiSeqDx, in 2013 [82]. Notwithstanding the reform in regulatory aspects, success 
of NGS in clinical diagnostics will depend on clinical relevance and actionability of 
sequencing information. Better understanding of genotype–phenotype and geno-
type–drug response relationships and ethical and effective bioinformatics manage-
ment of genomic are required for the transition of NGS to clinical use [83]. It is 
important to emphasize here that NGS is not limited to genotype (DNA variation) 
but also to transcriptome (RNA-Seq) which provides another layer of biological 
regulation of cancer behavior and should not be ignored for clinical relevance as 

Fig. 2  Integrative model to exploit ‘omics as molecular diagnostics in precision medicine
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genomic mutation profiles, while informative, are a limited view of the complex 
cancer biology. Over the next 5–10 years, NGS may provide deep understanding of 
complex genetic profiles of human cancers and enable informed selection of effec-
tive treatments tailored to individual patients given that the relationships between 
genotype–phenotype–drug responses are well-defined.
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�Introduction

The availability of a biological resource such as human tissue and its derivatives for 
research that is fit for purpose and linked to well-annotated clinical data under 
approved ethical protocols is an essential facility for biomedical research, especially 
in the present era of personalized, translational medicine. The importance of these 
facilities have been recognized in the popular media with Time Magazine (2009) 
identifying biobanks as one of the ten tools of significance in recent times that have 
contributed to health and well-being [1]. Recent investments to upgrade the health 
department’s databases held by government and institutional registries, with elec-
tronic data mining and linkage tools, now means it is possible to perform data link-
age to a specific disease, such as a cancer diagnosis and the related treatments but in 
addition, to have access to the other non-cancer related conditions and treatments so 
the effect of co-morbidities can be researched and the overall influence of the treat-
ments determined. This important data linkage can be routinely performed by a 
biobank with the participant’s informed consent whilst still protecting the privacy 
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and security of all personal information [2]. Access to the national health depart-
ment’s clinical databases also provides practical and great economies to a biobank 
whose routine task is to perform clinical follow-up on all recruited participants. The 
reason being, the national health records database provides the additional clinical 
history and treatment regimen information that a biobank cannot currently obtain, as 
it is impractical for the biobank team to know about, or even try to cover, all hospital 
and/or general practitioner interactions that a biobank participant may have.

Whilst biobanks have been established over many centuries, over the past 15 
years as the current facilities have matured, there has been recognition that harmo-
nization and professionalism for all work activities needed to be established glob-
ally. This approach has provided benefits and is now allowing researchers and 
clinicians to advance our knowledge in disease prevention and treatment and trans-
late these research findings to provide better health outcomes for patients. Just as 
critical when establishing and operating a biobank is an understanding of the pub-
lic’s perception and acceptance of the decision-making process in deciding to be a 
participant and contribute to a biobank. This requires extra consideration, specifi-
cally when it involves a biobank for genomic research [2–4].

One essential activity of a biobank manager is the constant review of the facili-
ties strategic plan to ensure they are always relevant to the market’s needs. 
Incorporated into the strategic planning is the constant engagement and collabora-
tion with academic and commercial researchers and clinicians accessing their 
resource so that the management team can modify the collection protocol regimes, 
if indicated. That may include the type of biological sample being collected and the 
processing, storage conditions of the samples so they are suitable for new technolo-
gies being used and the type of linked clinical data. A willingness to frequently 
review and modify a strategic plan and collection protocols at different time points 
is essential, as there is no point in spending allocated funds to collect biological 
samples and data that are never used. In regards to funding, the identification of as 
many avenues as possible to fund the biobank facility is prudent and this may 
involve applications and engagement with government agencies, not for profit agen-
cies and philanthropic donations. All forward budgets need to include a plan for 
sustainability to protect the infrastructure for long term storage, all within the 
framework of ethics approvals, the legal jurisdictions of where the biobank is 
located and observance to social acceptance and the research and community needs.

Biobanks have been broadly defined into three major types [5]:

	1.	 Population biobanks where biological samples and data are used to determine 
markers of susceptibility and population identity, representative of a country or 
ethnic cohort.

	2.	 Disease focus biobanks (or cohorts) for epidemiology and genomic analysis 
where the research focus is on exposure and modifier influences using DNA and 
the large collection of specifically collected baseline and clinical follow-up data. 
All generated results are frequently compared to a population based healthy con-
trol group.
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	3.	 Disease focussed general biobanks whose participants provide biological 
samples and limited clinical data to be used to identify markers for disease. The 
data in most cases is minimal and baseline and is not collected for a specific 
research project but is a more speculative collection in nature.

There are many hundreds if not thousands of combinations of the three types of bio-
banks worldwide and beyond the numerous references in the scientific literature [6–11].

Our understanding of what is required to facilitate translational research and the 
role a biobank may play for improved patient outcomes is becoming more stream-
lined and specialist in nature due to experience. In a recent British “gap-analysis” 
publication of the critical tools needed for translational research to advance the 
understanding and successful treatment of breast cancer, the authors outlined ten 
points to be addressed, one of the points being the vital need for the development of 
collaborative infrastructure (biobanks) that contains clinically annotated and longi-
tudinal biological sampling in patients with this disease, was repeatedly identified 
[12]. The southern Swedish malignant melanoma research initiatives have also 
highlighted the gap between the bio-analytical and clinical translation and have 
developed the required biobank infrastructure with a multi-discipline group mem-
bership to provide best practice protocols and procedures for an integrated platform 
and work flow to advance the understanding and improved diagnosis and treatment 
in this disease stream [13].

Biobanks can be established as individual entities; however, it is increasingly com-
mon for biobanks to contribute their collected resources as part of a national or inter-
national network. This enables biospecimens and data to be provided in sufficient 
numbers for large scale analysis that generates the required power calculations and 
adequate sample size for biomarker studies, analysis of rare diseases, or small sub-
types of common diseases [14–16]. The models available for the establishment of a 
biobank are also numerous with all models acceptable and best framed around the 
most suitable conditions related to the geography, social and political landscape. 
There are two common forms of biobank structures, the first one is a network that is 
known as a Centralized model where samples and data are collected from staff at 
potentially multiple sites and transported to a central laboratory and data centre for 
processing, storage, value adding and distributed to approve research projects. 
Examples of this are BancoADN, Spain (http://www.bancoadn.org/en/presentacion.
htm); kConFab, Australia (http://www.kconfab.org); the Singapore Tissue Network, 
now the Singapore Biobank (http://www.stn.org.sg); and the UK Biobank (http://
www.ukbiobank.ac.uk). The second model is known as the Federated model and is 
where samples are stored at numerous collection sites and the collections are com-
bined in a virtual sense by transferring sample information to a central database. This 
allows researchers to identify collections or series of samples of interest and access 
them from multiple collection sites. Examples include the Australian Prostate Cancer 
BioResource (http://www.apccbioresource.org.au), the Canadian Tumour Repository 
Network (https://www.ctrnet.ca), the Wales Cancer Bank (http://www.walescancer-
bank.com), Tubafrost (http://www.tubafrost.org), as well as the P3G catalog of large 
epidemiology based cohorts (http://www.p3g.org). The two models have different 

Biobanking in Cancer Research

http://www.bancoadn.org/en/presentacion.htm
http://www.bancoadn.org/en/presentacion.htm
http://www.kconfab.org/
http://www.stn.org.sg/
http://www.ukbiobank.ac.uk/
http://www.ukbiobank.ac.uk/
http://www.apccbioresource.org.au/
https://www.ctrnet.ca/
http://www.walescancerbank.com/
http://www.walescancerbank.com/
http://www.tubafrost.org/
http://www.p3g.org/


30

advantages and disadvantages. The Centralized model allows for the storage and 
processing of samples to be easily controlled and processed and managed in a stan-
dardized manner, which is an extremely important benefit. The disadvantage is all 
health professional contributors need to support having the one site as the overall 
custodian of the biobank collection. The Federated model is potentially more accept-
able to stakeholders at the numerous collection sites because they remain more 
involved throughout the biobanking and decision-making processes for the samples 
and data being collected. The disadvantage is the difficulty in processing the biologi-
cal samples and data in a standardized manner and, delivering the material in a timely, 
organized, coordinated manner from multiple sites to approved research projects [17]. 
While a clinical pathology department’s primary role is not as a biobank, the clinical 
diagnostic samples and linked data retained by these facilities are a valuable resource 
for research. Many of these facilities have been actively involved with biobanking 
activity and are integral to the operations of the two biobanking models detailed 
above. This retained resource is an economical use of an established infrastructure 
that can be made available to researchers for analysis where appropriate approvals are 
obtained.

�Ethical Considerations

A biobank, as the “trusted third party” in any setting involving patients, researchers 
and clinicians, provides an essential mechanism for separating consent to clinical 
care from consent to use donated biospecimens and data in research.

In most jurisdictions around the world, oversight of the use of human biospeci-
mens for research is the responsibility of a committee charged with reflecting com-
munity norms and ethically defensible opinion on appropriate research conduct. 
These independent ethics committees, known as Institutional Review Boards (IRBs) 
or Human Research Ethics Committees (HRECs), commonly have responsibility 
for monitoring the activity of a biobank at their respective institutions. Very large, 
national biobanks such as the UK Biobank in the United Kingdom and CaHUB in 
the USA have established an independent entity to oversee the governance and ethi-
cal oversight of their large biobank facilities. In Australia, the National Health and 
Medical Research Council (NH&MRC) provides guidance to HRECs through the 
National Statement and has established a registry of committees [18].

�Consent

A vital consideration and key to the usefulness of a biobank for future research is the 
explanation and definition of what the term “consent” means when approaching donors. 
The goal of informed consent is to ensure that subjects are fully aware of the risks and 
potential benefits of the research to be performed and make a voluntary decision about 
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participating in the research. The dilemma facing all biobank facilities is that due to the 
speed of advances in technology, the future use of the stored biospecimens and data are 
sometimes unpredictable and not fully articulated at the time of the consenting process. 
Previously collected biospecimens and data distributed to researchers, sometimes years 
after the collection, made it difficult, if not impossible, in many cases to describe in 
detail at the time of the consenting process, what the exact future research of the samples 
and linked data will entail, or the significance and impact of possible findings. Therefore 
practically, it is important to recognize that in many cases the legal and ethical require-
ments of informed consent for all future uses cannot be satisfied at the time the biospeci-
mens and data are collected. Even so, research into the community attitudes about this 
issue indicate that most participants would agree that stored specimens and data are a 
valuable resource and should be used to advance research if appropriate protections are 
in place.

Basically, the type of participant consent gained falls broadly into three categories:

	1.	 Specific consent for use in a defined and finite project;
	2.	 Extended consent for use of biospecimens in research that is related to, or a 

direct extension of, the original project for which consent was given;
	3.	 Unspecified, broad consent for use in future research. Such consent is usually 

underpinned by the knowledge that any future research will be conducted under 
oversight of the relevant ethical oversight committee.

Many ethical oversight committees now consider, in some circumstances, a 
waiver of donor consent. This option is included on the majority of IRB/HREC 
application forms in recent times. For a waiver to be granted, in general the follow-
ing conditions need to be determined:

	1.	 The research involves no more than minimal risk to the subjects;
	2.	 The waiver or alteration will not adversely affect the rights and welfare of the 

subjects;
	3.	 The research could not practicably be carried out without the waiver or altera-

tion; and
	4.	 Whenever appropriate, the subjects will be provided with additional pertinent 

information after participation.

In regards to point 1, when a waiver is requested by the researcher, there needs to 
be consideration by the IRB/HREC about whether research using stored biospeci-
mens and/or data meets the criteria of involving no more than minimal risk. Some 
have argued that because the risks are primarily informational, as long as adequate 
privacy protections have been adopted the research should be considered minimal 
risk. However, research shows that IRB/HREC chairs are not always in agreement of 
what constitutes minimal risk and tend in the main to be conservative in their judg-
ments. A standardized, global definition of minimal risk in this context would aide 
researchers and IRB/HRECs in their determinations of whether a particular research 
project using identifiable specimens or data can go forward with a waiver of informed 
consent. With point 2 and 3, as long as appropriate security measures are in place and 
the research does not involve traits or conditions that would be viewed by the subject 
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or the community to be highly sensitive or stigmatizing, a waiver of consent should 
not adversely affect the rights and welfare of consented participants. In addition, in 
many cases granting a waiver to consent is a practical decision as there can be logisti-
cal difficulties in re-contacting participants, some might have changed address there-
fore potentially difficult or impossible to locate or they may be deceased with no 
next-of-kin details available to obtain a proxy consent. For this reason it is under-
stood that some valid research facilitated by a biobank could not practicably be 
carried out without a waiver of consent on occasion [19–23].

There has been discussion and some resistance to such a waiver in recent times. 
The University of California, San Francisco initiated a blog calling for public com-
ment on issues of consent to raise awareness and generate community discussion 
about research ethics and the use of de-identified biospecimens in genome sequenc-
ing activity [24]. Oliver et al. recently conducted a randomized trial of three consent 
types affording varying levels of control over data release decisions on participants 
recently recruited into one of six on-going genetic research studies that covered a 
broad spectrum of diseases and traits. Follow-up interviews were held to assess their 
attitudes towards genetic research, privacy and data sharing. The results found that 
participants were more restrictive in their reported data sharing preferences than in 
their actual data sharing decisions as they saw both benefits and risks associated 
with sharing their genomic data. Risks were seen as less concrete or happening in 
the future, and were largely outweighed by asserted benefits [25]. In the discussions 
around waiver of consent, these studies highlight the ethical conduct considerations 
when it specifically involves genome research and that proposed policy changes 
should carefully consider the research participants perspectives, including privacy 
concerns [26, 27].

Another major consideration for biobank governance and management that has 
been widely discussed in the literature and tested in law is the question and obser-
vance of ownership and secondary use of the biospecimens and data samples [28–
30]. In Australia, community and industry views have been important in shaping 
guidelines for the ethical use of human tissue in research and jurisdictions interna-
tionally have also developed positions relevant to local law [31]. Training of bio-
bank management in this area is essential so there is adherence to the legal 
requirements and statutory guidelines to maintain the public’s trust and respect of 
these facilities. Therefore, when preparing a Participant Information and Consent 
Form (PICF), a number of broad questions should be considered and addressed:

•	 Will the biobank collect for future unspecified research?
•	 Will the biobank supply de-identified, or potentially re-identifiable biospecimens 

for research?
•	 Will the biobank return genetic research results of clinical significance to the 

donor, the donor’s nominated family member(s) and treating doctors?
•	 What is the scope of applications considered by the biobank for access to 

resources, i.e. would the biobank be open to receive applications from research-
ers in both the academic and commercial setting?
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•	 What other records or information will be needed. Does the biobank plan to 
acquire clinical or other data to annotate specimens through linkage with other, 
external national or international databases?

•	 Will the collected de-identified data potentially be downloaded and pooled with 
other similar external research groups?

Including the relevant clauses in the PICF at the establishment phase of the bio-
bank operations will deliver the most efficient and cost effective ethical framework 
under which to operate the biobank and be ethically compliant.

Consideration must also be given to the legal and ethical framework of the juris-
diction in which the biobank operates as we are increasingly moving towards inter-
national collaborations so it is essential that the elements of consent under which 
biospecimens and data are collected are robust to allow sharing of this material 
across international borders. The guidelines and policies established by The 
International Cancer Genome Consortium (ICGC) on informed consent and access 
policies were specifically drafted to address the requirements of an international 
genome wide sequencing project. The elements of informed consent described in 
this document are an excellent guide to produce a robust and enduring consent 
document for biobanks in the genomic age [32].

Translational work is being performed by cancer genetic cohort research studies 
that collect blood for germ-line mutation identification. When personally relevant 
genetic information is discovered, established protocols are in place to notify par-
ticipants of these clinically significant, research generated mutation test results. 
With the best intent by the researchers and clinicians involved in these cohorts, and 
a confirmed indication from the participants when they were recruited into the 
genetic research study that they wanted to be notified of clinically significant muta-
tion test results, it remains to be a challenge to effectively notify participants from 
high risk cancer families, and increase the proportion whose risk is managed clini-
cally, particularly for males and individuals unaffected by cancer. Improving notifi-
cation of at-risk cancer individuals is an important goal in both the research and 
clinical environment. Further investigation of the potential barriers to communica-
tion between genetics research groups, family cancer clinicians, at-risk individuals 
and their family members is urgently needed. The ethical implications of these 
types of studies are also important, and highlight issues for further discussion in the 
genetics community. A key ethical question does remain unanswered: “If research 
studies are obliged to notify participants when new genetic information becomes 
available, to what lengths should they go to meet these obligations?” This question 
also raises important financial and logistical considerations regarding how many 
resources research studies should (and can) use to notify their at-risk research par-
ticipants involved with a biobank or cohort study [33].

The other important issue to be considered and addressed when developing the 
PICF is when researchers accessing the resource are conducting genetic research 
that has the potential for finding a heritable genetic alteration that is incidental to the 
purpose of the analysis or research, and may be considered by a research partici-
pant, a clinician or the researcher to be of significance to the health or reproductive 
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decision making of the research participant or their family. This is particularly true 
of research involving whole genome sequencing (WGS) or any high throughput 
research techniques that have the potential to generate incidental findings of heri-
table genetic alterations. Incidental findings (IFs) are made in the course of conduct-
ing research, but are, by definition, beyond the aims of the research project. IFs may 
or may not be anticipated and researchers and others may disagree about their valid-
ity, reliability, significance and need for reporting back to the participant.

Whether researchers have a moral obligation to provide findings of this nature 
back to research participants is a vexed issue with an international consensus just 
starting to be defined [34, 35]. The matter is complicated by the fact that, unlike 
clinically validated genetic tests, WGS and other high throughput research tech-
niques are research tools, that is they are not designed for clinical diagnosis and 
they produce results that are of questionable clinical utility and difficult to validate. 
Results from these analyses may identify genetic variants that are related to 
increases in disease risk, but the increased risk may be particularly small. Further, 
genetic associations that are found may well be non-replicable or difficult to inter-
pret. Nevertheless, findings that are currently uncertain may in future become 
clinically relevant. Accordingly, the identification of an IF raises questions regard-
ing the potential need for evaluation of the finding and for communication to the 
participant’s clinician or to the participant. One recent study examined the attitudes 
of individuals diagnosed with sarcoma and their family members towards genetics, 
genomic research and incidental information arising as a result of participating in 
genetic research. The results demonstrated that no matter whether they were indi-
viduals affected with cancer or their family members, they were generally positive 
about new genetic discoveries and genetic testing. Possibly not surprisingly, age 
and gender were factors that influenced how people thought about genetic discov-
eries and genetic testing. Although intention to receive results did not necessarily 
translate into action by attending a clinic to obtain their personal genetic test 
results, the research team believe that if genetic testing for sarcoma becomes avail-
able in the foreseeable future, it is likely that family members may demonstrate 
more reservation towards such testing than the cancer affected and their spouses 
and this should be taken into consideration. Finally, the majority of sarcoma par-
ticipants believe people would like to be informed about incidental information 
arising as a result of research [36].

For these reasons, developing management pathways between the researchers, 
biobank management and the local IRB/RHEC to determine whether or what infor-
mation should be feedback to research participants, their families, or clinicians 
involved in their care and who should be responsible for feeding back these results 
is necessary. More research in this area about decision-aids to notify participants 
and evidence based research on attitudes and what is understood by the participants 
who are signing consent forms to be engaged in this area of researcher is essential. 
The PICF or other information designed for presentation to research participants 
should be designed, as a minimum, to clarify that, in the course of the research, 
information may arise suggesting the presence of mutations that are unrelated to the 
specific disease or trait being investigated [37].
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�Sustainability

Whether a biobank, cohort or registry is established with a defined participant 
recruitment criteria to address a specific research question, or is a speculative col-
lection with the view for future use, the issue of sustainability for the estimated life 
of the resource that includes procurement, sample processing, data linkage, value 
adding, clinical follow-up, maintenance, infrastructure and the supply chain for dis-
tribution needs to be addressed with all management and operations scoped before 
a facility is started. Establishing such facilities, even small ones, is a very expensive 
operation [6, 10, 38–40] (Table 1). Funding for such facilities can be sourced from 
one or a combination of organizations: not-for profit granting agencies, universities 
and research facilities, government, private foundations, commercial biotechnology 
and pharmaceutical companies. In addition to the financial commitment, sustain-
ability may also require long term support and commitment from the donor partici-
pants to provide updates about clinical information and biological samples as new 
diagnosis and treatments are made. The on-going interaction and communication 
strategies between the biobank management and donors are an important demon-
stration that the facility is adding to our knowledge base about the population that 
has been recruited and is beneficial and rewarding to all parties. Such interaction 

Table 1  Costs in establishing a bio-bank facility

Facility name Funding source
Funding 
received

Years 
funds 
awarded Facility size

Australian (Oncology 
only) enabling grants

Federal Government 
(NH&MRC)

Aus$ 22 
million

2004–
2014

Medium, 12 
independent 
networks

The pan-European 
Biobanking and 
Biomolecular Resources 
Research Infrastructure—
European Research 
Infrastructure Consortium 
(BBMRI-ERIC)

National governments €135 
million

2013 Large, 10 
networked 
counties

caHUB, NCI, USA NCI USA 
$23 
million

2009 Large, numerous 
networks

Israel National 
Biorepository

National government 
and philanthropy

$10 
million

2008–
2013

Small, numerous 
networks

Stellenbosch Biobank 
H3Africa—H3Africa 
Consortium

National and 
International 
government

$74 
million

2012–
2018

Large, numerous 
networks

UK Biobank Numerous national 
and regional 
government and not 
for profit organizations

£87 
million

2006–
2016

Large, numerous 
networks
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can be invaluable in highlighting a biobanks aim and purpose to funding agencies. 
When establishing a facility it is important to recognize in the budget projections 
that most biological samples linked to data become more valuable for research pur-
poses after 5–10 years of clinical follow-up, often with repeat sampling of biologi-
cal material and data. Exploring all options to ensure that the collected material is 
used to facilitate research is essential, for example, biological samples and data may 
have been collected originally for a specific project with the samples embargoed 
until that research project is completed. At the completion of that project the remain-
ing samples, excess to the original project’s needs, will be free to be used by other 
groups, potentially with the value added data generated from the original projects 
findings. Therefore, when determining the overall costs for sustainability it is 
important to capture all expenses that include the costs for the initial set up and the 
on-going operational costs, on average 15–20 years, for management and laboratory 
staff, laboratory facilities, equipment and maintenance, databases, supply of mate-
rial to researchers and data linkage to external agencies such as cancer agencies, 
medical records and health departments, as the facility matures.

Government and not for profit granting agencies will frequently provide funds 
for the establishment of a biobank, cohort or registry but unfortunately, it is fre-
quently the case that the agencies then fail to recognize that on-going funding, even 
at a small percentage of the original grant total, is still required to fund the existing 
infrastructure to maintain the facilities operations, even when co-funding from other 
organizations and cost recovery schemes are in place. A common occurrence 
appears to be that at best, biobank facilities can obtain 5–10 years of funding before 
being informed that they need to be 100 % self-sufficient by their funding agencies. 
For biobank facilities who are relying on predominately academic researchers 
funded through peer review government awarded grants, being 100 % self-sufficient 
by the implementation of a cost recovery scheme isn’t an achievable goal as the 
researchers grants are usually lean in value and committed to other aspects of their 
research project. Academic based researchers do not have grant funding anywhere 
near the levels required for a reasonable cost recovery linked to the true collection 
and supply cost. In addition, the demand to supply biological samples and data held 
by a biobank and linked to a cost recovery fee can vary year to year, sometimes 
dramatically. This makes budget predictions based on a cost recovery scheme alone 
very difficult and not sustainable.

Linked to the issue of biospecimen and data usage and sustainability, it is impor-
tant at the facilities establishment stage to understand what the market requirements 
are and the potential demand so to optimize the use of the collected resource. The 
strategy of collecting all surgical material in a speculative manner in the hope that it 
might be used at some stage has led, in the majority of cases, to a very small per-
centage of usage of the collected material. A more strategic plan can be seen where 
the biobank is embedded within the clinical pathology department as the biological 
samples and associated pathology and treatment data have already been collected 
for clinical diagnostic purposes and eventually will be available for research pur-
poses when deemed to be in excess to diagnostic purposes [40, 41]. The other pro-
ductive model is associated with the cohort biorepositories and registries where 
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there is often a rich collection of biological samples such as multiple sampling of 
tissue, primary and metastatic, and blood from the recruited participants. The bio-
logical samples and data in a cohort facility have usually been collected to support 
a series of specific research questions. The associated data may have been collected 
for 10 years or more linked to comprehensive epidemiological and clinical follow-
up data. The cohorts traditionally demonstrate flexibility in its expansion of sample 
and data collection as the specific clinical and scientific aims of the cohort study 
evolve [42–44] with a large percentage of the biological samples and associated 
data used by research approved groups multiple times.

A recent review of 636 biobanks in the USA characterized their origins, speci-
mens collected, market context and the issue of sustainability. Importantly, linked 
to the issue of sustainability, the researchers found that having a biobank embed-
ded in a larger organization, such as a hospital or research institution, was essential 
to the biobanks financial structure and survival. The majority were associated with 
an academic institution 78 %, hospitals or research institutions 27 % and 15 %, 
respectively.

When the biobanks were asked about how competitive they were in the market 
place, only 14 % answered in the affirmative. Significantly, only 4/57 (7 %) of the 
biobanks stated that there was a “great deal” of competition for their resource, 51 % 
stated a modest amount and 42 % indicated that they had very little competition. 
They found that for profit biobanks were significantly more likely to be competitive 
(61 % vs. 12 %) and it appeared that most of the biobanks surveyed filled a specific 
niche within their organization and were not concerned about holding the share of 
their “market”. In response to a question about the demand for their collected facil-
ity products, 51 % reported that demand for their biobanks products had increased 
over the past 2 years, 6 % found demand for material had decreased and 45 % 
answered that it had remained about the same. In the current period of financial 
restraint, it was a surprise that only 13 % of biobanks had a major concern about the 
under-utilization of their resource, 28 %, respectively, had moderate or minor con-
cerns while for 31 % of biobank facilities it was not a concern at all [7].

As on-going funding for such facilities is a recognized challenge internationally, 
options for sustainability have led to many funding avenues being explored and 
adopted, depending on the local funding landscape. By far the best and potentially 
easiest option is to have the host institute fund the facility 100 %, and for the facility 
to become part of the health care structure of the institute. From a practical sense 
this model is best suited to a smaller, single site type of facility as the political logis-
tics of funding sourced from a single site to support a multi-site network where 
numerous sites collect and pool their samples and data is problematic. In the 
expanded, multi-site collection model, ultimately one site from the group will have 
the responsibility for specimen and data collation and responsibility for the facilities 
management. The challenge for the management of a multi-site networked group is 
to convince a local hospital or research institutions management where the central-
ized facility is based that funds should not just support the local sites collection but 
that part of the funds are needed to support the broader networks activities to col-
late, value add and distribution the biobanks material.
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Whilst there are many valid arguments about the merits for the consolidation of 
biobank activity across networks with standardization being the essential aim for 
best practice and efficiency, unfortunately, the funding required to support this type 
of centralized, broader network is rarely taken up by one sole institute due to that 
organizations own budget restraints, legal nuances and other competing interests 
within that groups health structure. In the current financial climate, largess is becom-
ing harder to find in publically funded organizations. Fortunately there are a few 
good examples of regional and inter- and intra-country networks that have managed 
to resolves many of these problems and established medium to large scale facilities 
receiving a combination of government, not for profit and foundation funding [6, 
10, 14, 38, 44, 45] to support their combined networks.

As previously mentioned, another popular model for sustainability is the lever-
age of a cost recovery or administration fee. Many facility managers strongly argue 
that even if a facility has 100 % funding coverage for all aspects associated with the 
operational, logistics and supply costs, a small fee labelled as an administration or 
cost recovery fee that is associated with the managers time and for a small portion 
of the costs associated with the collection and value added component of the bio-
logical material or data being supplied can be a useful tool as it makes researcher 
accessing the resource think responsibly about what material they are requesting. 
This fee also assists in avoiding inappropriate or over ordering, therefore, wastage 
of the valuable biological samples. In addition to an administration fee, the dilemma 
for all biobank facility managers is how to structure a cost recovery fee that takes 
into account the original cost to recruit and consent a participant, collect the relevant 
biological material and data, value add and supply to an approved research project, 
hopefully multiple times. Against this value, and already mentioned in this article, 
is the realistic cost that a researcher wishing to access the resource can afford to pay, 
especially if they are an academic researcher on a modest government awarded 
research grant that needs to cover multiple laboratory wages and consumables and 
where there has not been an allocated budget to access a biobanks resource due to a 
research project evolving. In addition, most biobanks in the not for profit arena need 
permission from the relevant government authority to charge a cost recovery fee and 
certainly are not allowed to make a profit from the supply of material to an approved 
research project [46]. When dealing with a private or industry partner, the regula-
tions in some countries are even stricter in regards to the implementation of a cost 
recovery fee [6]. Cost recovery charges are usually reviewed annually and adjusted, 
if need be, to reflect the level of grant funding from other sources. At best, interna-
tionally most biobanks would only be recouping 10 % of their total budget costs 
related to recruitment and on-going overheads.

Though small in number, economic models have recently been developed around 
using centralized consolidated biobank resources to produce budget savings and effi-
ciencies to aid the long term sustainability of these facilities. The prepared economic 
model provides a more accurate estimation of direct vs. indirect biobank costs and 
establishes the cost effectiveness and cost benefit evidence that is required to justify, 
usually to government, spending in this area. Variable and fixed costs, cost recovery 
schedules that incorporate internal and or external funding sources, access fees, 
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administration infrastructure costs and potentially intellectual property considerations 
have all been built into these models. The authors hypothesize that these models will 
lead to analysis efficiencies, improved data accuracy and infrastructure costs, there-
fore, improvements in patient welfare and a higher professionalism within the work 
place and sustainability [47]. The authors also highlight the practical aspect of an 
efficient biobank, that is, it isn’t the number of samples that are collected and stored 
but rather how many samples are out going to support research projects, making sure 
that you do have a “product” that the market wants, and ensuring that the biological 
material and data is of the highest quality possible. Linked to this is the aspect of a cost 
recovery fee that can be modified at any stage, that is, “stepped” or “graduated” as the 
collection matures, or funding streams become available or cease, hence a developing 
business model over time to ensure the sustainability and protection of a vital resource 
[48]. Another funding revenue source that has also been increasingly adapted by bio-
bank facilities in recent times is a contracted service fee offered by research groups 
and pharmaceutical companies who want a patient group recruited with specific bio-
logical samples and data collected under strict collection protocols. There are econo-
mies for all involved by piggy-backing onto this type of customized service as a 
business model. The down side is that the biobanks main collection and recruitment 
may be reduced as the contracted service takes up the biobanks routine scheduled 
work time, but at least it secures another streaming of funding to keep the facility 
operational. Whilst the majority of biobanks are supporting academic research groups, 
facility managers should be aware of the demand for well-annotated biological sam-
ples linked to clinical, genomic data and treatments that can be used by pharmaceuti-
cal companies for drug discovery and validation analysis. In determining a cost 
recovery fee to be charged to academic researchers vs. commercial research groups, 
academic researchers may argue that a public biobank that has been funded in the 
main from a government grant whose revenue has been obtained from public taxes 
should not be charged all, whereas private commercial entities who have the ability to 
pay for access to the resource, due to the potential profit generated, should be required 
to pay a higher cost recovery user fee. This is not an easy issue to manage, especially 
against the background of lower government grants to fund biobank facilities in recent 
time. Overall, there does appear to be consensus that it is reasonable and fair that the 
cost recovery schedule for the supply of biological samples and data to an academic 
researcher is less in value than to a commercial company and charging all of the 
groups that access the resources, thereby, the established infrastructure in the public 
domain to advance their own interests promotes an equitable approach for the financ-
ing of public funded programs [44, 48].

�Best Practice and Access Protocols

The protocols around sample collection are driven by a number of factors as not all 
biobanks have the same brief. A biobank may focus on specimens collected during 
routine clinical care for therapeutic or diagnostic purposes that are then in excess to 
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clinical purposes, specimens collected for clinical trials, specimens collected as part 
of specific research projects or specimens collected as part of population based or 
cohort biobanks.

Collections for a specific research question will be built around the methodology 
developed by the researchers although whatever the biobanks design and function is, 
harmonization of biobank operational procedures and a recognition of international 
best practices is an essential requirement for the management and all staff. As the 
diverse types of biobanks in existence have different roles in their operations and 
translation of the generated research results, there is also a recognition that it impos-
sible and potentially undesirable to harmonize completely all practices, policies and 
operations [49]. It is essential though that the biobank manager and staff recognize 
when complete adherence is or isn’t required, for example, in the era of large scale 
global collaboration that requires the exchange and pooling of data and samples, 
exacting standardization of SOPs and harmonization ensures the effective inter-
change of valid information and samples from numerous groups to be pooled for 
analysis [50]. There are many excellent papers and documents listing extensive 
descriptions of appropriate collection protocols and SOPs developed by peak bio-
bank groups over many years [8, 51–53]. As well as their documents being a practi-
cal resource for day to day use, these protocols also provide confidence to funders, 
participants and researchers accessing the resource. One dilemma that is currently 
being discussed and urgently needs to be addressed by all biobank facilities is the 
fact that researchers are highlighting that they are having trouble accessing sufficient 
numbers of samples from a biobank and that the available samples are not always 
suitable for their research purpose. From the biobank operational and usage mile-
stones, they have 1000s upon 1000s of biospecimens and data stored that no one is 
using. This is one of the issues that the ESBB working party (http://www.esbb.org) 
is currently addressing (personal communication with Drs Dominic Allen and 
Christina Schröder) with the development of a register of all biobanks that list their 
specific features. This is to be followed by a greater dialogue between the biobanks, 
academic and commercial researchers to help identify and solve collection and sup-
ply issues between all parties. Linked to the problem of previously collected biologi-
cal samples not being fit for purpose, or having an under developed matched data set, 
in recent times it has become common for the research departments of pharmaceuti-
cal companies to contract a biobank to collect the samples required for a defined 
research protocol. There is still a problem with this strategy as the challenge then lies 
in recruiting enough participants and collecting enough biospecimens linked to clini-
cal follow-up data in a prompt and reasonable time frame, i.e. what was the response 
to a first line treatment regime that may be administered over a 6–8 month period.

The final governance issue for the biobank management to address is the devel-
opment of a policy and procedures document that clearly outlines how to access the 
biobank resource to facilitate research in a transparent, effective and equitable man-
ner. It is also important that these documents are visible and easily located so exter-
nal researchers can see what biospecimens and data are available and what the 
formal application process is to access the material. Establishing such policies and 
procedures can be a challenge as obviously some of the stakeholders involved in 
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establishing the biobank will have a legitimate and positive vested interest in 
establishing the infrastructure as it will bring a productive flow of material and data 
to their personal research work. The handling of potential conflict of interest (COI) 
does need to be addressed and worked through. Many groups have resolved the COI 
issue by establishing a working committee that includes multi-discipline profes-
sionals with a wide range of relevant specialties and that includes community rep-
resentation. There also needs to be a recognition and a willingness by everyone in 
the organization and stated in the groups Terms of Reference (ToR) that members 
will be excused from discussions and decision making if a COI is evident or per-
ceived. The primary aim for the whole organization is to provide access to the bio-
bank resource to everyone, internal and external investigators, who apply and who 
has an IRB/HREC approved project linked to a peer reviewed research study that is 
funded. Operationally, it is important that all applications are reviewed formally and 
all decisions documented. This can be achieved by researchers submitting a research 
proposal to the biobank management that outlines the research aims, hypothesis, 
plan and conclusion, the overall number of participant numbers required and the 
specific amounts of biospecimens and data points and suggested timelines for the 
supply of material. Proposals can be reviewed and commented on by a sub-commit-
tee with expertise in the field of interest. Once all questions and concerns about the 
project application are addressed, the project can be approved. It is essential at this 
stage that the researcher accessing the resource is aware of the terms and conditions 
required to access the biobank resource. Practically this can occur in a formal proj-
ect acceptance letter that may include requirements such as the submission of annual 
progress report, the length of the project approval period, depending on the circum-
stance the signing of either a Material Transfer Agreement (MTA), Memorandum of 
Understanding (MOU) and Data Transfer Agreement (DTA), acknowledging the 
biobank in all publications and the return of all generated research results back to 
the biobank after publication. This last step is an invaluable data adding contribu-
tion from the researcher to the overall data held by the biobank facility and has the 
added benefit of avoiding duplication of research efforts on the precious biological 
samples. The same requirements have been applied when a biobank or researcher 
accessing a biobank resource then contributes to another consortia with a new set of 
MOU, MTA and DTA agreements being signed to protect all stakeholder’s interest. 
Whilst non-compliance to the ToRs by researchers accessing a biobank resource is 
thankfully uncommon, it is important for the biobanks policy and procedures docu-
ment to state what penalties will be enforced should any access policy and proce-
dure requirements be broken.

�Quality Assurance and Quality Control

It is essential that a biobank incorporate a quality assurance (QA) and quality control 
(QC) programme into their routine work so the facility managers are observing the 
international best practice guidelines and the programme requirements are meet to 
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achieve the highest standard possible for the supplied biological samples and data for 
research projects [54–58]. Robust QA and QC protocols will ensure that the bio-
banks management group is aware of what specimens and associated data has been 
received, the relevant transport conditions, the multiple samples that have been pro-
cessed and stored and what has then been supplied to approved research projects. 
Researchers receiving the biological samples and data need to be confident that the 
materials they have received are of high quality and able to support their planned 
research projects. The process through which the product is obtained is referred to 
QA, whereas the product generated is part of the QC. For example, quality assurance 
is defined as “that part of quality management that focuses on providing confidence 
that quality requirements will be fulfilled” [59]. QA requires the systematic monitor-
ing and evaluation of all aspects of the biobank processes; it covers the way in which 
the biobank is operated as well as the quality of the samples and data held. QC con-
sists of specific tests defined by the QA programme to be performed to monitor pro-
curement, processing, preservation and storage, specimen quality and test accuracy. 
These tests may include but are not limited to: performance evaluations, testing and 
controls used to determine the accuracy and reliability of the biobank equipment and 
operational procedures as well as monitoring of the supplies, reagents, equipment 
and facilities. Standard operating procedures (SOPs) are an essential part of quality 
assurance; a biobank will determine and document its ways of working to ensure that 
samples and data are collected and handled consistently. As the global biobank com-
munity matures, most of the different facilities have shared and published their SOPs 
to further standardize what is being done in QA and QC. This has been a benefit for 
researchers receiving samples from different biobanks as there is a degree of confi-
dence that all of the samples will be of a similar quality and for facility managers 
who are starting to establish a biobank facility [8, 52, 60, 61].

As published by the NCI Best practices in 2007 and revised in 2011, and adopted by 
many biobank facilities internationally, QA and QC should address the following:

�Facility Infrastructure

Equipment validation and change control, calibration, maintenance, repair proce-
dures and environmental monitoring; e.g., temperature monitoring of freezers.

Supplier management programmes, including inspection and validation of 
reagents and other supplies.

�Biospecimen Control and Documentation

Control of biospecimen collection, processing and tracking.
Documentation of biospecimen collection, processing and tracking, with detailed 

annotation of pre-analytical parameters.
Measurement and analysis of key process indicators to drive quality improvement.
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�System Security

Recordkeeping and document control.
Employment of a data quality management, assessment and reporting system.

�Clinical Data Records

Accessibility of policies and procedures.
Documentation records, including audit reports, deviation reports and corrective 

action and preventive action reports.
External document monitoring to ensure that the facility remains up to date with 

relevant laws, standards and best practice publications.
Staff training records, including record of staff adherence to training schedules.
Data quality management (source documentation and electronic records), assess-

ment of reporting system.

�Supply Records

Internal audit of program and its policies, scheduled and unscheduled.
Audit for accuracy of all annotation data; e.g., the biospecimen and where it is 

purported to be, in the purported volume, with the appropriate labels and unique 
identifiers.

Audit for accuracy of patient data associated with biospecimens; e.g., age, gen-
der, date of diagnosis and processing, etc.

Audit of the compliance of the biospecimen resource with institution policies; 
e.g., human subjects and privacy and confidentiality protections, prioritization of 
biospecimen use.

Audit of SOPs for all activities, processes and supply.
Each biospecimen resource ensures that SOPs are written, reviewed and are an 

appropriately approved process that exists for review and updating at designated 
time intervals.

In addition to the best practice guidelines published by the NCI in recent times, 
as many biobanks have matured they have been innovative in the era of molecular 
pathology and genomics to also include a rich collection of phenotypic data and 
comprehensive clinical follow-up data linked to each biological samples. This extra 
data value adding via these new technologies has led to the biobank facility sharing 
new genomic platforms either within or external to their work site for high through-
put technology to derive data for bio-informatics analysis. A key requirement for 
data to be analysed when samples and data have been pooled from multiple sites 
depends on harmonization and standardization of SOPs have been developed and 
used by all of the contributing biobanks so uniform, combined data analysis can 
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occur. In recent times there are good international examples where cancer consortia 
have agreed on harmonized SOPs so large scale analysis can occur to gain the 
required statistical power for analysis [62, 63]. In these multi-site global consortia, 
biological samples being supplied such as DNA or RNA undergo rigorous QA and 
QC using concentration determination methods best suited to the platform technol-
ogy being used, i.e. picogreen or qubit readings for DNA concentration are often 
used in preference to nanodrop for Next Gen Sequencing or whole genome Copy 
Number Analysis. For the supply of fresh or archival tumour tissue, researchers will 
often request to know the % tumour, stroma, ducts and necrotic tumour in every 
specimen before deciding on the optimal case with the best cellular component for 
their analysis [64]. Using a scanning microscope to capture and catalogue the tissue 
image also aids external researchers in deciding the tissue they wish to access by 
having log in rights to view the scanned tissue. This process has provided a speedier 
supply of tissue for review, and eliminated the hazards and delays associated with 
the shipment of glass slides to external sites [65].

Whilst it is a challenge to implement flexibility and adaption for biospecimen 
SOPs to address the needs of emerging technologies, a lack of attention to SOPs and 
adjusting the SOPs for a project requirements in molecular pathology research can 
lead to misconception of molecular findings and discrepant results if the sample 
being tested isn’t of a high quality, contains contaminants or has not been prepared 
under the appropriate protocol. Having the correct specimen characteristics, pre-
pared under standardized SOPs that includes stringent QA and QC, is the recog-
nized way to advance translational research.

�Databases

In addition to the acquisition of biospecimens and data, the other important item in 
the SOPs is the purchase or development of a database so that the entry of all of the 
items associated with the biological samples linked to a data dictionary are entered 
for every participant recruited. With the evolving technology and laboratory find-
ings translated into clinical practice, it is also important to consider when purchas-
ing or developing a database that upgrades and modifications may need to be made 
within a few years of purchase due to the extension of the data dictionary to record 
additional data parameters or potential linkage with other groups due to data shar-
ing. Awareness of the international standardization and published protocols for 
specimen and data collection is required so compatible data fields are implemented. 
Analysing data generated from biological samples and clinical data is becoming 
more complex as combined datasets become larger due to the new technologies and 
data sharing of multiple groups to gain statistical power. Therefore, databases are 
integral to performing the required large scale analysis to understand a complex 
disease such as cancer. Depending on the nature of the biobank, databases can be 
purchased off the shelf or purpose built. A database provides not just management, 
operations, governance and details of the researcher access approval, but they also 
enable the results that have been generated on the supplied samples to be 
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downloaded back into the database as a value adding exercise for further analysis. 
Tracking of this information manually is not practical and in fact impossible to do, 
especially with the larger networked consortia, without a database. It also ensures 
that specific data searches can be performed to avoid duplication of work and locate 
a required sub-set of biological samples. There are many international examples of 
where supplied biological samples and/or data to a researcher are returned back to 
the facility after publication by the researcher [44, 66]. A good practical example of 
this activity is when a researcher might perform immunohistochemistry (IHC) using 
a panel of antibodies on supplied tissue. These IHC results can be returned to the 
biobank and entered into the facilities database and then made available to other 
researchers with the same research question.

All countries have laws and guidelines for the security of information entered 
into a database to protect privacy and confidentiality of the participants to protect 
and minimize accidental or intentional abuse. In most cases participant’s identifi-
able information can’t be entered into a biobank database without a participant’s 
acknowledgement and approval although these requirements can vary between 
regions and countries [67–70]. A database containing information should have the 
information held on servers at a secure site and be password protected. This security 
aspect has become even more important now that many databases are web based 
and accessed via multiple sites. SOPs should include specific guidelines for fre-
quent staff training about all aspects of best practice in regards to the information 
entered into the database with adherence to the privacy and confidentiality laws and 
guidelines for their location or country whilst facilitating the researchers’ needs for 
appropriate biospecimens and data [71, 72].

Recently developed databases can generate a de-identified number that can be 
used when supplying material to researchers but that can be decoded, if required, by 
the biobank staff. Many cohort studies also have the ability to generate via their data-
bases a unique family specific number when multiple family members are recruited 
into familial cancer research studies. The decoding of the de-identified number by 
the biobank staff is a practical function as it means in addition to the baseline data 
collected at the recruitment phase, clinical data from external facilities, such as the 
death and cancer registry, hospital discharge diagnosis data, general practitioner 
data; medication prescriptions, pathology reports, imaging reports, screening prac-
tices and health-related data can be linked at any stage which greatly adds to the 
depth of the data available for research purposes. The external number of all clinical 
procedures should also have been entered into the database, if possible, so contact 
with the clinical service can be made if extra treatment details are required.

�Equipment and General Requirements

It is difficult to be to prescriptive about what equipment is required for a biobank as 
variation will occur depending on the scope of the facility. SOPs have been pub-
lished by all of the major groups such as ABNA oncology, BBMRI, ISBER and the 
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NCI on general requirements. In brief, all groups agree that thorough planning and 
resource design is required so suitable space is available for equipment such as 
freezers that includes −20, −80 and liquid nitrogen banks, bio hazard hoods and 
centrifuges all with automated alarm systems in place to alert the staff of equipment 
failures. Linked to this is the need for maintenance, delivery, warranty, service con-
tracts, lifespan, performance and efficiency cost savings, along with current and 
future service provision options. The depreciation for all capital equipment and 
replacement costs need to be factored into on-going budgets.

As part of the QA/QC protocols and to ensure the best conditions possible for the 
biological resource, all maintenance visits and routine staff checks for equipment 
should be scheduled for and be logged into the dedicated files and cover validation 
and change control, calibration, maintenance, repair procedures and environmental 
monitoring; e.g., temperature monitoring of freezers. Contingencies plan also needs 
to be in place and part of the SOPs for back up equipment should there be equip-
ment failure, especially for freezers and liquid nitrogen vats.

�Conclusion

After 15 years of a professional approach to the operations associated with biobank-
ing, it has been demonstrated that these facilities have more than just the potential to 
be a major infrastructure to facilitate a range of benefits for improved health benefits 
for our community. Global efforts are already utilizing biobanks that are leading to 
translation of new research findings. Harmonization by biobanks is recognized as 
being crucial in order to make facilities more robust, targeted and economical that is 
associated with the important issue of sustainability. The efforts made by the various 
professional biobank groups have led to a high observance in the development of 
policies and procedures in the design and management of biobanks, the SOPs for 
sample handling linked to QA and QC, database entry and data cleaning, all within 
the national and international ethico-legal frameworks. As research funding for all 
activity becomes more difficult to secure, one of the biggest challenges for biobanks 
is to keep networking and forming strategic alliances between governmental bodies, 
funding agencies, public and private science enterprises and other stakeholders to 
keep the importance of our work on the agenda.
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Cytogenetics: Methodologies

Chiyan Lau

�Introduction

A range of clinical disorders can be caused by abnormal changes in the DNA of a 
patient’s cells. These ‘genetic disorders’ can arise from large DNA changes which 
affect whole chromosomes, such as numerical loss or gain of entire chromosomes 
(i.e. aneuploidies, including trisomies and monosomies), or breaking and joining of 
parts of chromosomes (i.e. structural variations, such as translocations, inversions, 
insertions, duplications, and deletions). At the other end of the size spectrum, the 
DNA change may be quite small and only affect a single nucleotide base or a few 
bases (i.e. sequence variations). In between these extremes, some DNA changes 
involve gains or losses of a few thousand to a few million bases (commonly referred 
to as ‘copy number changes’, or CNCs), or expansions in the number of units of 
repetitive DNA (e.g. oligonucleotide repeat expansions, such as triplet repeats). 
These DNA changes may be present in every single cell of an individual (germline 
change, which can be passed on to the next generation because gonadal cells are 
also affected), or only in a subpopulation of cells (somatic change or mosaicism).

The methodology needed to detect these various types of genetic changes 
depends on both the size of the change and whether it is somatic or germline. For 
numerical and structural aberrations affecting whole chromosomes or a large part of 
a chromosome, cytogenetic methodologies are commonly used. Classical cytoge-
netics are based on visual analysis of chromosomal material by microscopy. For the 
detection of small DNA changes such as those at the nucleotide sequence level, 
molecular genetic methods are used which include such techniques as direct DNA 
sequencing, Southern blotting, multiplex ligation-dependent probe amplification 
(MLPA), and so on.
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Traditionally, cytogenetic and molecular genetic testing were considered sepa-
rate disciplines, but there are now some laboratory methods which bridge this sepa-
ration and are termed ‘molecular cytogenetic’ methods. These include fluorescence 
in situ hybridisation (FISH) and microarray analyses. In addition, there are emerg-
ing methods which defy strict classification as cytogenetic or molecular genetic 
techniques, such as massively parallel sequencing (MPS) (so-called next generation 
sequencing) mostly used in research laboratories but which are now increasingly 
adopted for clinical use. The division between cytogenetics and molecular genetics 
is becoming blurred, and the critical issue for the practising clinician, scientist, or 
pathologist is the knowledge of the strengths and limitations of each technique, and 
to match the appropriate method to the particular disorder or patient presentation in 
question.

In this chapter, we will not only look at common cytogenetic and molecular 
cytogenetic laboratory techniques, but also discuss some commonly used molecular 
genetic techniques. We will focus on the principles underpinning these techniques 
as well as their strengths and weaknesses. In the following chapter, we will look at 
how these laboratory techniques are applied in some common clinical situations.

�Classical Cytogenetics/Karyotyping

In classical cytogenetics, the aim of the analysis is to determine if the cells in a 
specimen have the correct number of chromosomes and whether the structure of 
each individual chromosome is normal. This analysis is called ‘karyotyping’, where 
individual chromosomes in a cell are visualised by microscopy and arranged in a 
conventional order and format (essentially in order of size from largest to smallest) 
to facilitate analysis and comparison [1].

In order to perform this analysis, first a suitable specimen is obtained from the 
patient. For diagnosis of constitutional genetic disorders in the postnatal period, the 
most common sample type is a peripheral blood specimen collected in lithium hepa-
rin anticoagulant. For haematological malignancies, bone marrow aspirate collected 
in lithium heparin is usually suitable. The specimen should be transported at ambi-
ent temperature or in a cool container (not frozen), to arrive in the cytogenetics labo-
ratory within 48 h of collection.

The critical thing about specimens for karyotyping is that the cells should be 
viable and can be induced to divide in cell culture. For obvious reasons the specimen 
should also contain a sufficient number/proportion of cells expected to carry the 
abnormality of interest (e.g. cells from the malignant clone in the cancer setting).

Viable cells are required because the majority of cells in most specimen types are 
in interphase. At this point in the cell cycle, the DNA of the cell exists in a decon-
densed, elongated form. If one were to examine an interphase cell nucleus under the 
microscope, individual chromosomes cannot be distinguished or counted. To per-
form a karyotype, one must allow the cells to go through the cell cycle, and catch 
them in metaphase when the chromatin is condensed into separate identifiable chro-
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mosomes. For peripheral blood specimens, this is accomplished by adding a mitogen 
such as phytohaemagglutinin (PHA) to stimulate T cell proliferation. For malignan-
cies, stimulation may or may not be necessary, since the cells may already be 
actively dividing, but mitogens may be used to expand specific cell populations (e.g. 
PHA for T cell stimulation, or the phorbol ester TPA for B cell stimulation). The cell 
culture is then incubated in a temperature, humidity, and CO2 (pH) controlled envi-
ronment for a period of time, usually around 48–72 h.

At the end of culture, there should be sufficient numbers of actively dividing 
cells. A compound such as colcemid is added at this point to disrupt the cell spindle 
and block cells from exiting metaphase. This enriches the proportion of cells con-
taining condensed (metaphase) chromosomes which can be analysed.

The cells are then swollen with a hypotonic solution, then fixed and washed in a 
combination of acid and alcohol. The fixed cell suspension is dropped onto a micro-
scope slide and dried. The slide is aged at 60–65 °C overnight, then incubated with 
a trypsin solution briefly to preferentially digest the histone proteins at parts of the 
chromosome with an open conformation. The slides are then washed and stained 
with Giemsa stain, which produces ‘G banding’ of chromosomes. This stain binds 
to the histone proteins still attached to the chromosomal DNA, creating characteris-
tic dark and light band patterns which allow different chromosomes to be 
recognised.

After staining, slides are examined by light microscopy, usually at a final magni-
fication of 1000×. Traditionally, microscopic examination is performed manually, 
and the whole slide is scanned by the human operator to identify cells that are in 

Another specimen type suitable for postnatal cytogenetics is skin biopsy, 
where the fibroblasts from the dermis are cultured. This requires special liai-
son with the receiving laboratory to ensure that the laboratory is prepared to 
receive this specimen type, that suitable transport medium is used (e.g. cell 
culture medium), and the specimen is delivered to the laboratory as soon as 
possible after collection. For prenatal diagnoses, cells from amniocentesis 
(amniocytes) or chorionic villus sampling (CVS) can be used.

Alternative staining processes are also sometimes used, to create other band-
ing patterns. For example, ‘R banding’ (reverse banding) which creates the 
opposite pattern to G banding, ‘C banding’ which stains centromeric regions 
of chromosomes, distamycin/DAPI which preferentially stains heterochroma-
tin, and silver stains for nucleolar organising regions (NOR) on acrocentric 
chromosomes (13, 14, 15, 21, and 22).
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metaphase. Each chromosome is examined band by band and compared to its homol-
ogous partner to determine if there is any structural abnormality (such as transloca-
tion, inversion, and deletion) or numerical abnormality (i.e. aneuploidy). This process 
is repeated for multiple cells per specimen (e.g. 15–20 cells, but more if an abnormal-
ity is detected). This ensures that if an abnormality is only present in a subset of cells 
(i.e. not only a mosaic or somatic mutation, such as in cancer but also a possibility in 
constitutional disorders), it can still be detected with sufficient sensitivity. As one can 
imagine, this process is highly labour intensive and time consuming.

More recently, it has become possible to semi-automate part of this process, with 
robotic image capture instruments that can take whole batches of slides and auto-
matically recognise and capture metaphases at high resolution. Software with image 
recognition algorithms can perform rudimentary analyses of the chromosomes, but 
the images and computer-generated karyograms still require trained cytogeneticists 
to analyse to verify correct chromosomal assignment, and when abnormalities are 
present, to ‘call’ the abnormality.

�Molecular Cytogenetics

In addition to classical cytogenetics, the modern clinical cytogenetics laboratory 
usually performs a number of molecular cytogenetic techniques. These include 
FISH (fluorescence in situ hybridisation) and microarray analyses.

�Fluorescence In Situ Hybridisation

Karyotyping provides a whole-genome survey of the chromosomal make-up of 
cells. FISH can generally be thought of as a targeted interrogation of a specific 
genomic location. It allows one to determine, for example, how many copies of a 
gene are present in a cell, or if a particular rearrangement is present [2–4].

For this technique, a piece of DNA which corresponds to the sequence of a 
genomic region of interest is used as a ‘FISH probe’. This FISH probe is labelled 
with fluorescent dye. More than one genomic target (usually up to three in a routine 
clinical laboratory) can be interrogated concurrently by using different colour probes. 
A fixed cell suspension from the patient is spotted onto a microscope slide, and the 
FISH probes are added. The slide is incubated at 95 °C to denature the DNA of the 
cells, then the incubation temperature is reduced to 60 °C to allow the FISH probe to 
anneal overnight to its complementary region in the genome. Excess probes and non-
specifically bound probes are washed off with a series of stringent washes. The sig-
nals from the FISH probes are detected by fluorescence microscopy, using lasers of 
different wavelengths and different filter sets for different colour FISH probes.

FISH can be used to interrogate the copy number of a genomic region of interest. 
If the copy number for an autosomal region is normal in a cell, then two fluorescent 
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signals will be observed for the locus-specific FISH probe. If one copy is deleted, 
there will only be one signal. Conversely if the region is duplicated (or amplified), 
there will be three signals (or more). Usually, for copy number detection, in addition 
to the ‘test’ probe of interest, a ‘control probe’ labelled with a different colour which 
targets a control genomic region will be used (which is expected to have a normal 
copy number), to help interpret the signal pattern.

Although FISH can be performed on dividing metaphase cells (metaphase FISH), 
it can also be used on resting cells. This is called ‘interphase FISH’. The FISH 
probes will hybridise to decondensed DNA just as well as to DNA in condensed 
metaphase chromosomes. This means that specimens not suitable for karyotyping 
such as formalin fixed paraffin embedded tissue (FFPE) and uncultured cells can be 
interrogated by interphase FISH.

When FFPE samples are used for FISH, a tissue section is mounted on a micro-
scope slide and deparaffinised in xylene. Then, through a series of steps of xylene/
alcohol solvent exchanges, the tissue is brought back to aqueous phase. A suitable 
FISH probe is then applied to a defined area of the section, and the rest of the pro-
cedure is similar to FISH on other types of specimens. One important point to note 
for FFPE FISH is that a suitably trained person (e.g. a histopathologist) should 
examine the slide and mark out the area of interest, e.g., by comparison to a H&E 
guide slide. This is an often neglected but important step. In the case of a tumour 
specimen, for example, there may only be a small area in the section containing the 
tumour of interest, surrounded by large areas of normal tissue. FISH probes are usu-
ally applied in a very small volume of buffer to a small defined area of the slide. It 
would be completely pointless to apply the FISH probes to the normal parts of the 
slide, which would only produce a false negative result.

In addition to determining copy number, FISH can be used to determine if a 
particular chromosomal locus is involved in a structural rearrangement, or whether 
a specific fusion event is present in a cell. To achieve this, ‘break apart’ or ‘fusion’ 
probes are used, which are really just clever ways of placing and tagging locus-
specific FISH probes [5, 6]. A ‘break-apart’ probe can be used to determine if a 
specific chromosomal location of interest has been ‘broken apart’ by a rearrange-
ment (e.g. a translocation). This strategy involves placing a red-labelled probe and 
a green-labelled probe in close proximity on either side of the potential breakpoint. 
If the breakpoint is intact, the red and green signals will co-localise, and merge as a 
yellow signal under fluorescent microscopy. If the breakpoint is involved in a trans-
location and thus ‘broken apart’, the green and red probes will be physically sepa-
rated and appear as separate green and red signals. Therefore, for a breakpoint 
located on an autosome, there will be two yellow signals in a normal cell (one on 
each homologous chromosome), while in a cell with a translocation, there will be 1 
green signal, 1 red signal, and 1 yellow signal (on the homologous unbroken chro-
mosome). Break-apart probes can be used with either interphase cells or metaphase 
cells. Note that a break-apart probe only tells you that a chromosomal site is involved 
in a rearrangement. It does not tell you what the other partner is in the rearrange-
ment. For this, one needs a fusion probe, which detects the presence of a specific 
translocation between two defined chromosomal locations.
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In a fusion probe design, two FISH probes are used, one against each potential 
partner of the fusion. Each probe is labelled with a different colour (e.g. green/red). 
For example, to detect a reciprocal translocation between 9q34 and 22q11.2, a FISH 
probe straddling the breakpoint at 9q34 will be labelled red, and a probe for the 
22q11.2 breakpoint will be labelled green. In a normal cell which does not have the 
t(9;22) reciprocal translocation, there will be two green signals and two red signals, 
corresponding to two normal chromosome 9 s and two normal chromosome 22 s. In a 
cell with a t(9;22), there will be one normal chromosome 9 (with a single red signal), 
one normal chromosome 22 (with a single green signal), one derivative chromosome 
9 [der(9q)] joined to 22q11.2 (where half the green signal from one fusion partner will 
be juxtaposed with half the red signal from the other partner creating a merged yellow 
signal), and one derivative chromosome 22 [der(22q)] joined to 9q34 (also with a yel-
low signal). This is known as a ‘dual fusion’ design. ‘Single fusion’ designs are also 
sometimes used and are similar in principle. The difference is in the location of the 
FISH probes relative to the breakpoint. In single fusion FISH, the probe is placed to 
one side of the breakpoint rather than straddling it as in dual fusion FISH. This means 
that in the presence of a reciprocal translocation, only one yellow fusion signal will be 
produced (e.g. on the der(22q)). The reciprocal event (der(9q)) is not visualised.

There are many other variations to the basic FISH technique. One variant is 
‘whole chromosome painting’ (WCP) [7]. In WCP, rather than using one locus-
specific probe, a mixture of hundreds to thousands of probes which target different 
parts of one specific chromosome (e.g. chromosome 3) are labelled the same colour 
and used together to ‘paint’ the chromosome. This technique is typically used in 
metaphase cells to characterise rearrangements which are suspected to involve a 
particular chromosome.

A further extension of the WCP strategy is multicolour FISH (M-FISH), where 
each of the 24 different chromosomes (22 autosomes + X and Y) are painted with a 
different ‘colour’, using different ratios and combinations of multiple fluorophores 
to label the FISH probes. The image is acquired using special filter sets, and com-
puter image analysis is used to pseudocolourise the different chromosomes to allow 
human interpretation of the image. This technique requires special hardware and 
software setup, and is available only in specialist centres. M-FISH is especially use-
ful for interpretation of complex karyotypes and/or extra structurally abnormal 
chromosomes (ESACs) whose material of origin is uncertain and may be derived 
from multiple chromosomes.

All the FISH techniques discussed so far require fluorescence microscopy for 
detection of probe hybridisation signals. There are modifications to FISH which 
allow non-fluorescence-based signal detection. One example is chromogenic in situ 
hybridisation (CISH) [8], where the locus-specific DNA probes are labelled with a 
protein tag (e.g. digoxigenin) instead of fluorescent tags. This allows colour signal 
production using standard direct or indirect immunoreactions (e.g. using anti-
digoxigenin antibodies coupled directly or via a secondary antibody to alkaline 
phosphatase or peroxidase, followed by incubation with chromogenic substrates). 
CISH is particularly useful for FFPE samples, since the ISH signals and tissue mor-
phology can be concurrently examined under bright field microscopy.

C. Lau



57

�Microarrays

In recent years, microarray testing is becoming an increasingly common method 
used in the clinical cytogenetics laboratory as an alternative to karyotyping. 
Microarrays have a number of advantages over conventional cytogenetics, but it 
should be noted from the outset that microarrays cannot detect all types of chromo-
somal abnormalities detectable by karyotyping. Specifically, while microarrays can 
detect copy number losses and gains (i.e. deletions and duplications), they cannot 
detect copy number neutral ‘balanced’ structural abnormalities (e.g. balanced trans-
locations, inversions, etc.). Microarrays also have a lower sensitivity for mosaic 
changes. To understand why, let us take a look at what a microarray is and how the 
technology works.

A microarray consists of thousands of DNA molecules (probes) covalently 
immobilised in an ordered pattern on the surface of a solid substrate similar to a 
microscope slide. Each ‘coordinate’ on the microarray contains a DNA probe of 
known sequence, with different spots having probes with different sequences cor-
responding to different locations spread throughout the genome. Most cytogenetic 
microarrays commercially available today are ‘oligo arrays’, where the individual 
probes are oligonucleotides of ~50–60 bases in length.

Microarray designs are often designated by the number of different probe 
sequences, or features, on the array. For example, a ‘180 k array’ has approximately 
180,000 unique probe features. The sequences of the DNA probes are designed to 
map to genomic loci at more or less regularly spaced intervals throughout the 
human genome. Usually, arrays for cytogenetic use are designed to have a ‘back-
bone’ coverage across the genome at a certain density (e.g. one probe every 25 kb 
for one particular 180 k array design), but with denser coverage (e.g. one probe 
approximately every 5 kb) in targeted genomic regions which are gene-rich and/or 
known to be associated with disease. The higher the number of features on an array, 
the denser the genome coverage, and the higher the technical resolution of the 
array. Some arrays in clinical use today have more than a million ‘features’, and are 
technically capable of detecting genomic deletions and duplications only a few 
kilobases in size. To put this in context, traditional karyotyping cannot detect dele-
tions/duplications smaller than ~3–5 megabases, and will sometimes miss changes 
5–10 megabases in size (depending on the microscopic appearance of the cytoge-
netic band, the quality of the chromosome sample/preparation, and the skills of the 
operator), which are a few hundred times bigger than those detectable by microar-
ray. In fact, in most clinical cytogenetics laboratories today, the reporting resolu-
tion of microarrays are less limited by the raw technical capabilities of the array 
than practical considerations, such as the difficulties with validating a microarray 
method to a satisfactory standard for very small changes, the lack of availability of 
a suitable alternative method to confirm a small abnormality, or the difficulties with 
interpreting the clinical significance of very small changes. As a result, most clini-
cal laboratories set a reporting resolution for microarray studies somewhere 
between 100 kb and 400 kb.
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There are two main types of microarray platforms currently used in clinical 
cytogenetic laboratories: array comparative genomic hybridisation (aCGH) and 
single nucleotide polymorphism array testing (SNP arrays). The two methods have 
similarities in principle but also have some methodological differences which result 
in different workflows, analytical outputs, and capabilities. These methods will be 
explained in more detail below.

�Array Comparative Genomic Hybridisation

For aCGH, the principle behind determination of copy number status is to compare 
the patient’s sample against a gender-matched reference sample (‘normal control’) 
taken from phenotypically normal individuals. Conceptually, if the patient’s sample 
contains less DNA hybridising to a probe compared to the reference sample, then 
the patient has a ‘copy number loss’ relative to the reference, at the genomic loca-
tion corresponding to the probe [9].

In practice, the comparison cannot be undertaken directly since there are other 
factors which influence the inter-sample signal ratio, such as differences in amount 
and quality of input DNA between the patient and the reference, variability intro-
duced at different points in the process such as efficiency of the sample DNA label-
ling reaction, differences in binding affinity between DNA at different genomic loci, 
stochastic differences in hybridisation kinetics, and non-specific background bind-
ing. A number of correction strategies need to be employed, e.g., fluorescent inten-
sity normalisation, background correction, signal averaging across redundant 
probes, etc., before the signal from the patient or reference can be compared [10].

The basic workflow for aCGH is as follows. Genomic DNA is extracted from a 
suitable patient specimen (e.g. peripheral blood collected in EDTA for constitu-
tional cytogenetics), and labelled with a fluorescent dye (e.g. green). Genomic DNA 
from a reference sample (‘normal control’) is labelled with a different fluorescent 
dye (e.g. red). Equal amounts of the two DNA are mixed together, then co-hybridised 
onto the microarray. Each DNA molecule will preferentially hybridise to the corre-
sponding oligo probe on the microarray with the complementary nucleotide 
sequence. Unbound DNA is washed off and the microarray with the bound labelled 
DNA is scanned with a laser scanner in the two colour channels corresponding to 
patient and reference to determine how much DNA is bound to each probe on the 
array. The intensity of the fluorescent signal at each spot on the microarray will be 
proportional to the amount of captured sample or reference DNA. For each genomic 
locus, if the copy number is identical in the patient and reference, there will be a 
roughly 1:1 ratio between green and red fluorescent signals (ratio = 1.0). If there is a 
copy number loss in the patient, the green:red ratio will be approximately 0.5 (1:2). 
Conversely, if there is a copy number gain in the patient, the green:red ratio will be 
approximately 1.5 (3:2). The green:red ratio for each probe is plotted graphically by 
computer software across the genome. Chromosomal regions with consecutive 
probes which show deviation from a 1:1 ratio are interpreted as regions with copy 
number change in the patient. If the copy number losses and gains are mosaic, such 
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as may be found in tumour specimens ‘contaminated’ by normal stromal tissue, the 
green:red ratios will be intermediate between 0.5 and 1.0 or between 1.0 and 1.5, 
respectively. As the level of mosaicism decreases, the ratio will get closer and closer 
to 1.0. Low level mosaicism (less than approximately 10–20 % abnormal cells) is 
difficult to detect by array CGH.

�Single Nucleotide Polymorphism Arrays

In contrast to array CGH, only a single DNA sample is hybridised at a time to each 
SNP array chip [11]. Reference samples are run on a completely separate array chip 
to the patient sample. In an SNP array, the probes are designed to map to areas in the 
human genome which commonly show sequence variation in the general popula-
tion. The type of sequence variation targeted by SNP arrays are, as the name sug-
gests, single nucleotide polymorphisms (SNPs).

The SNP sites targeted by SNP array probes are typically biallelic (i.e. has two 
common forms, or alleles, in the population). For example, for a hypothetical SNP 
site ‘N’ in the genome flanked by the sequence …CCNACG…, one allele of N 
might be a T (…CCTACG…), the other allele might be a G (…CCGACG…). 
Some individuals are homozygous for T at the SNP (genotype = T/T), some are 
homozygous for G (genotype = G/G), while some individuals are heterozygous 
(genotype = T/G).

One way that SNP arrays detect genotype at an SNP site is to use short probes 
approximately 25 nucleotides in length. Compared to the longer probes used on 
CGH arrays, these shorter probes show lower hybridisation affinity to sequence-
mismatched DNA, to allow discrimination between alleles. With this method, there 
are usually four probes designed for each SNP site to detect the two alleles in both 
the forward and reverse direction, for example, two to detect the ‘T’ allele (one 
forward and one reverse), and two to detect the ‘G’ allele. If a sample shows hybrid-
isation predominantly to the ‘T’ probes, the individual will be genotyped as ‘T/T’. 
Conversely, if the sample shows roughly equal hybridisation to the ‘T’ and ‘G’ 
probes, the individual will be genotyped as heterozygous ‘T/G’ at the SNP. When a 
sample is run on an SNP array, each of the thousands of SNP sites across the genome 
which is targeted by the array is genotyped.

In addition to genotype information, SNP arrays can also provide copy number 
information by inter-array comparisons, i.e., by comparing the signal from each 
SNP site in the patient’s sample against the corresponding signal from reference 
samples. Conceptually this is similar to array CGH. However, in addition to the 
inter-array comparison, the genotype information from a sample also helps to con-
firm copy number changes. In a region with normal copy number (CN = 2), each 
SNP in the region have only 3 possible genotypes: AA, AB, or BB (if we arbi-
trarily call the alleles ‘A’ and ‘B’). In a genomic region which shows a deletion 
(CN =1), only a single allele is left, which means there will not be any heterozy-
gous genotype calls within a deletion, resulting in a stretch of apparent homozy-
gosity. For a duplicated region (CN = 3), there are three alleles present with the 
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possible genotype combinations being AAA, AAB, ABB, and BBB.  The 
‘heterozygous’ SNPs within the duplicated region will show fluorescent intensity 
ratios of 2:1 rather than 1:1, thus providing support to the detection of a copy 
number gain. SNP arrays can also detect regions with copy neutral absence of 
heterozygosity, which are relevant for disease conditions which involve uniparen-
tal disomy or loss of heterozygosity.

�Limitations of Microarrays

Although microarrays allow detection of deletions and duplications at a much 
higher resolution than standard karyotyping, there are limitations to their use. The 
most fundamental limitation is that arrays provide no information on the positional 
relationship between probes. This means that if two probes which are normally 
adjacent to each other on a normal genome are split up by a structural variation like 
a translocation or inversion, arrays will not detect the abnormality unless there is 
also a copy number imbalance as a result of the structural rearrangement. In con-
trast, karyotype and FISH can potentially provide positional information.

Also, arrays cannot provide any information on the parts of the genome that are 
not targeted by the array probes. Therefore, even though SNP arrays provide some 
genotype information at common SNP sites, they cannot detect most sequence vari-
ations in the intervening sequences in genes or triplet-repeat expansions such as in 
Fragile X syndrome.

Microarrays detect the averaged signal from the DNA extracted from many 
cells. Therefore, as explained earlier, if an abnormality is present only in a small 
proportion of cells in the sample (low level mosaicism, or low mutation burden in 
a cancer sample), it may not be detected by array. In contrast, standard karyotyping 
and FISH are in effect ‘single cell analyses’. Provided that a sufficient number of 
cells are examined, FISH and karyotype will have a higher sensitivity for abnor-
malities at a low level of mosaicism, with the caveat that the disease clone meets 
the other requirements of karyotyping and FISH, such as the ability for the cells to 
divide in culture (for karyotyping), or that the target chromosomal aberration is 
known (for FISH).

The implications of these limitations in terms of choice of test methodology for 
particular disease conditions will be discussed further in the next chapter.

The use of cDNA microarrays for gene expression profiling (GEP), i.e., to 
determine which genes are actively transcribed, or SNP arrays for genome 
wide association studies (GWAS), are quite different applications of microar-
ray technology than those described in this chapter, and are not commonly 
performed by the clinical cytogenetic laboratory.
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�Molecular Genetics

�Polymerase Chain Reaction + Direct DNA Sequencing (Sanger 
Sequencing)

This is one of the most commonly used techniques in the molecular genetic laboratory. 
This method can be used to directly determine the DNA sequence in a particular 
genomic region of interest in the patient’s sample. The methodology most widely used 
today is based on modifications of the pioneering techniques of Fred Sanger [12, 13].

In this technique, two rounds of DNA amplification are performed. In the first 
round, the genomic region that needs to be sequenced is first amplified by standard 
polymerase chain reaction (PCR), using a pair of PCR primers which flank the 
region. In this PCR reaction, the patient’s DNA is incubated with a mixture of the 
PCR primers, deoxynucleotides (dNTPs), and a thermostable DNA polymerase 
enzyme (e.g. Taq polymerase), and undergoes multiple rounds of heating and cool-
ing (‘thermocycling’) where the genomic region of interest between the primers is 
exponentially amplified using the patient’s DNA as template.

At the end of the PCR reaction, the PCR product (amplicon) is cleaned up to 
remove any excess reagents remaining (such as excess primers and dNTPs). The PCR 
product is then taken into a second round ‘sequencing reaction’, where only one of 
the PCR primers is used in each reaction (either the ‘forward’ or ‘reverse’ primer), and 
in addition to dNTPs, a mixture of fluorescently tagged dideoxy-nucleotides (ddNTPs) 
is added. A different colour is used for each of the ddNTPs, e.g., red for G, green for 
A, blue for T, and yellow for C. The DNA polymerase will extend the sequencing 
primer by incorporating the unlabelled dNTPs in the growing strand using the first 
round PCR product as template, but when a labelled ddNTP is eventually incorpo-
rated, further extension cannot take place and the chain is terminated. Therefore, at 
the end of the sequencing reaction, a mixture of different sized sequencing products 
will be present, each terminating in a fluorescently labelled end with a colour corre-
sponding to the identity of the last base incorporated. To ‘read’ the DNA sequence, 
these sequencing products are run on a genetic analyser instrument, where the mole-
cules are separated according to size using capillary electrophoresis. The colour of the 
fluorescent label on each molecule is read by a detector as the molecules move past a 
detection window, starting from the shortest molecule. The output of the instrument 
is a ‘chromatogram’ consisting of a series of peaks corresponding to the order of the 
colours of the nucleotide bases. The chromatogram is interpreted by a computer pro-
gram to determine the DNA sequence, which is compared to a ‘normal’ reference 
sequence to determine if a sequence variation is present.

Sanger sequencing can detect sequence variations including point mutations and 
small insertions/deletions (indels). However, deletions and insertions/duplications 
which span a range larger than the size of the PCR product cannot be detected, i.e., 
Sanger sequencing cannot detect the types of copy number changes detected by 
cytogenetics techniques, even if the copy number change affects the region covered 
by the PCR product.
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�Multiplex Ligation-Dependent Probe Amplification

In contrast to Sanger sequencing, MLPA [14, 15] detects copy number changes, but 
does not provide sequence information.

In this technique, for each genomic region of interest, two oligonucleotide probes 
are designed which bind to DNA sequences directly adjacent to each other within the 
region. These MLPA probes are mixed with the patient’s DNA to allow hybridisation 
overnight at 60 °C. The next day, a DNA ligase is added to join together those pairs 
of probes which have hybridised to the patient’s DNA. Unhybridised free-floating 
probes are not ligated. The ligation products are then used as templates for a second 
round PCR reaction, using fluorescently tagged PCR primers. For analysis, the PCR 
products are resolved by capillary electrophoresis on a genetic analyser. The fluores-
cently labelled PCR products are detected as peaks on the electropherogram, where 
the area under each peak corresponds to the amount of PCR products generated.

The amount of PCR product from each genomic locus is proportional to the 
amount of ligation product generated from the locus, which in turn is proportional 
to the number of copies of the genomic region in the sample used in the first part of 
the reaction. By comparing the result from the patient’s sample against a set of 
known normal reference samples (after normalising for signals from control genes), 
the copy number status of the genomic regions can be calculated. Multiple genomic 
regions can be tested in a single MLPA reaction, by designing the hybridisation 
probes such that the length of the PCR product for each region is different, hence the 
‘multiplex’ in the name of the technique.

�Southern Blot

This is one of the classic techniques of molecular biology. Although it is quite a labour-
intensive method, it is still used in many molecular genetics laboratories today.

The basic premise of a Southern blot [16, 17] is to determine the presence and/or 
size of a piece of DNA fragment from a known genomic location. The process is as 
follows. First, the genomic DNA from the patient and control samples is digested 
with a DNA restriction endonuclease (e.g. EcoRI, BamHI, etc.). These enzymes rec-
ognise short specific palindromic DNA sequence motifs which recur at somewhat 
irregular intervals throughout the genome. The restriction digestion converts the long 
genomic DNA into a mixture of shorter DNA fragments of varying sizes. These frag-
ments are separated by gel electrophoresis. The gel containing the separated DNA 
fragments is then placed on a nylon or nitrocellulose membrane and sandwiched in 
an assembly of filter paper and paper towels wetted with transfer buffer solution. This 
‘blotting’ process allows the DNA in the gel to transfer onto the membrane.

To detect the DNA fragment that we are specifically interested in, a DNA probe 
which corresponds to a part of the sequence of the genomic region of interest is 
radioactively labelled (e.g. with 32P) and incubated with the membrane. This allows 
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the probe to hybridise to its complementary DNA fragment on the membrane. The 
membrane is washed to remove excess probe, then exposed to an X-ray film or 
phosphorimaging screen to detect the radioactive probe. The pattern and location of 
band(s) on the film for the patient are compared with a set of molecular weight 
standards and with the patterns for negative and positive control samples. Depending 
on the indication for testing, one might be interested in an abnormal shortening of 
the target fragment (indicating a deletion), or lengthening of the fragment (indicat-
ing a duplication or expansion). Southern blots can detect fragments which are 
thousands of bases in length.

�PCR + Fluorescent Fragment Sizing

This is another method to determine if there is a change in the size of a genomic 
region. The method is quite simple. A pair of PCR primers are designed to flank the 
genomic region of interest. One of the PCR primers is covalently labelled with a 
fluorescent dye. Standard PCR is performed using the patient’s sample DNA as 
template. At the end of the PCR reaction, the PCR product, which will be fluores-
cently labelled, is mixed with a set of molecular size standards labelled with a dif-
ferent colour, and run out on a genetic analyser by capillary electrophoresis. The 
molecular size of the PCR product (in base pairs) is determined by comparison with 
the size standards, and can in turn be compared to the size of known negative and 
positive control samples.

Compared to Southern blotting, this method provides a much higher resolution 
in size estimate, with the ability to determine the size of a fragment down to the 
single base level. However, it is limited by the ability of PCR to amplify a region. 
Using standard PCR on DNA extracted by standard methods, this is usually limited 
to a few hundred base pairs or so, depending on sample quality. PCR reaction will 
fail to produce a product if the primers are spaced further than the amplifiable size. 
Therefore, for disorders where it is possible for a genomic region to grossly expand 
in size (e.g. triplet-repeat disorders where the number of repeats can go into the 
thousands), it is generally necessary to use a combination of fragment sizing and 
Southern blot to cover the possible size ranges of the expanded region.

�Real-Time PCR (Quantitative PCR)

This is a method used to quantify the number of copies of a DNA target of interest 
in a specimen. It is commonly used for gene expression analysis. To quantify the 
number of transcripts for a gene in a specimen, the total RNA in the specimen is first 
converted to cDNA by reverse transcription. The number of copies of cDNA cor-
responding to the gene of interest is then measured by real-time PCR using primer 
pairs which target the transcript.
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There are some differences between standard PCR and real-time PCR. In stan-
dard PCR, analysis of the PCR product is undertaken at the end point of the reac-
tion. In contrast, in real-time PCR, the amplification reaction is monitored as it 
happens (in real time), with the amount of PCR product measured continuously at 
each cycle. The cycle number at which the amount of accumulated product exceeds 
a predefined threshold is called the threshold cycle value (Ct value). The higher the 
number of target templates (transcripts) in the input DNA, the lower the Ct value 
will be in a reaction. The Ct value of a patient specimen can be compared against 
the Ct values of a set of standards with known concentrations, to determine the 
concentration of targets in the patient specimen.

�Emerging/Translational Techniques

�Massively Parallel Sequencing

MPS, also sometimes called next generation sequencing, is a technique which has 
seen very rapid development in research laboratories, and is only just beginning to 
be used in clinical laboratories [18]. It is a very powerful technique with huge 
potential, but also produces many challenges for implementation in a clinical diag-
nostic environment.

There are a number of vendors offering MPS platforms. Each is based on a 
slightly different technology. It is beyond the scope of this chapter to describe each 
of these in detail, so we will only provide a basic overview of the common elements 
which define MPS, and look at the types of genetic variations it can detect.

In basic terms, MPS determines the sequences and quantity of a representative 
sample of all the DNA molecules in a specimen. A ‘library’ is first constructed from 
the sample DNA, for example, by ligating adaptors to each fragment. The whole 
library of DNA molecules is sequenced simultaneously (in parallel) on the MPS 
instrument, using a sequencing-by-synthesis approach or sequencing-by-ligation 
approach (depending on vendor/platform), both of which involve monitoring the 
sequencing reaction as it occurs in real time. For example, with sequencing by syn-
thesis, a camera in the instrument takes a snapshot image after each base is added to 
the growing strand to identify which base is added to each of the millions of DNA 
molecules. The raw output of the MPS sequencing run is the set of snapshot images, 
which is then computationally analysed to determine the nucleotide sequence (‘base 
calls’) of each DNA molecule. This in turn produces a computer file with a list of 
millions of ‘reads’, each read being the sequence of a part of a DNA molecule in the 
original specimen. These reads are then mapped to the reference genomic sequence. 
Deviations from the reference genome sequence are noted as sequence variations 
(such as point mutations and small indels) in the specimen. Using additional tech-
niques, such as algorithms which note the genomic distance and location of mate-
pair and/or paired-end reads, or which measure the read depth of a genomic region 
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in the patient’s sample compared to a reference control sample, it is also possible to 
detect copy number changes or chromosomal structural rearrangements. MPS can 
be used for whole-genome sequencing (WGS), or to sequence a subset of the 
genome, for example, all coding exons (WES) or selected genes (targeted gene 
panel), by targeting the selected genomic regions using capture methods or 
amplicon-based methods.

In other words, MPS can potentially detect all types of genetic aberrations, span-
ning the spectrum from small changes traditionally detected by molecular genetic 
techniques to large changes traditionally detected by cytogenetic techniques. 
However, although the developments in MPS are rapid, there are many challenges in 
clinical implementation of the technology. The different platforms have different 
limitations in terms of read length, error rates, or the ability to handle homopolymeric 
sequences. Due to the large number of sequences produced and the large size of files 
created by each sequencing run, the need for bioinformatic data analysis is crucial. 
The lack of standardised analysis pipelines and issues of data storage are non-trivial 
problems. Although the cost per base sequenced by MPS is plummeting, the cost per 
sequence run is still in the order of thousands of dollars at the time of writing. There 
are also issues at the post-analytical stage of testing such as interpretability of results 
and handling of incidental findings. While these issues remain, there are already fur-
ther developments in the technology such as long-read MPS or the so-called third 
generation sequencing. MPS clearly has tremendous potential in revolutionising 
genetic testing. It will be very interesting to see how the field evolves.
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Cytogenetics: Applications

Chiyan Lau

�Introduction

In the previous chapter, we discussed the laboratory techniques used to detect various 
types of genetic abnormalities, from single nucleotide changes to changes that affect 
entire chromosomes. We discussed the principles behind some of the more com-
monly used cytogenetic and molecular genetic techniques. In this chapter, we will 
look at how these techniques are used clinically in various diseases/conditions 
including cancer and constitutional disorders, and we will discuss some of the con-
siderations that may go into deciding what would be appropriate genetic tests to 
perform in these clinical scenarios.

�Cancer Cytogenetics

One important area of application for cytogenetic techniques is in cancer manage-
ment, to detect somatic genetic changes in the neoplastic cells. This is particularly 
relevant for haematological malignancies, but there are increasing numbers of solid 
tumours where cytogenetics has a role. In cancer, cytogenetic investigations can be 
used to help with diagnosis, inform prognosis, or help prioritise treatment options. 
The following are some examples. We shall also discuss situations where molecular 
genetic techniques may be more appropriate.
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�Diagnosis and Monitoring

�Chronic Myelogenous Leukaemia

Chronic myelogenous leukaemia (CML) is a myeloproliferative neoplasm, a clonal 
proliferation of haematopoietic stem cells of one of the myeloid lineages. One of the 
defining features of CML is the presence of the Philadelphia chromosome (Ph), 
which is present in 90–95 % of CML cases [1]. The Ph chromosome is the result of 
a reciprocal translocation between the long arms of chromosomes 9 and 22, t(9;22)
(q34;q11.2). This structural rearrangement results in the creation of a fusion gene 
formed from the 5′ part of BCR on chromosome 22 and the 3′ part of ABL1 on 
chromosome 9. ABL1 is a tyrosine kinase, and the active promoter element of BCR 
in myeloid cells overactivate the transcription of the fusion BCR-ABL1 product, 
leading to constitutive activation of tyrosine kinase signalling, resulting in deregu-
lated cell proliferation [2].

The Ph chromosome looks like a shortened chromosome 22, and was historically 
detected by standard karyotyping on bone marrow aspirate [3]. It is now more com-
monly detected by FISH using fusion probes, where the ABL1 breakpoint region on 
chromosome 9 is targeted with a FISH probe labelled with one colour (e.g. red), and 
the BCR breakpoint region on chromosome 22 is targeted with a probe labelled with a 
different colour (e.g. green). In a normal cell with no Ph chromosome, there will be 
two red and two green signals. If a t(9;22) translocation is present in the cell, there will 
be two yellow fusion signals, together with one red and one green signal. The use of 
FISH has an advantage over karyotyping in that ~5–10 % of CML cases do not have a 
typical Ph chromosome. Some of these are atypical translocations involving a third or 
even fourth chromosome, while others are cryptic translocations which cannot be 
detected by karyotyping [4]. In these atypical Ph-negative cases, BCR-ABL1 fusion is 
still present, and therefore can be detected by FISH. Another advantage of FISH is that 
it can be performed on interphase cells, thus eliminating the need for cell culture.

At the time of diagnosis, the number of CML cells in the patient’s blood is high, 
therefore BCR-ABL1 fusions are quite easy to detect by FISH. However, once the 
patient has undergone treatment, e.g., with the kinase inhibitor imatinib (Glivec), the 
number of cells from the CML clone would decrease and eventually fall below the 
limit of detection of karyotyping and FISH if treatment is successful (‘Complete 
Cytogenetic Response’) [5]. In order to continue to monitor the patient for signs of 
relapse at this stage of the disease, a more sensitive method is required, such as real-
time PCR [6]. This molecular method quantifies the number of copies of BCR-ABL1 
transcripts in the patient sample, and allows early detection of relapse before the CML 
clone has expanded above cytogenetically detectable levels. Loss of disease control 
may be due to ABL1 kinase site mutations leading to acquired resistance to therapy, 
and can be detected by ABL1 sequencing [7]. Depending on the mutation, changes in 
treatment (e.g. to newer generation kinase inhibitors such as nilotinib or dasatinib) 
may be possible to maintain control over the CML [8, 9]. Therefore, while cytoge-
netic methods are useful at the time of CML diagnosis, molecular methods are the 
investigations of choice during minimal residual disease monitoring [10].
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�Prognosis and Management

�Multiple Myeloma

Multiple myeloma (MM) is a malignant proliferation of plasma cells. It is a 
heterogeneous disorder, with several subtypes differing in prognosis and the under-
lying genetics. There are a number of recurrent chromosomal abnormalities in MM 
which are predictive of prognosis, therefore standard cytogenetics and FISH analy-
ses can be useful in MM.

Multiple myeloma can be broadly divided by genetic changes into two main 
groups: hyperdiploid and non-hyperdiploid. The hyperdiploid group (h-MM) shows 
numerous trisomies (resulting in chromosome number >46) and generally has a bet-
ter prognosis. This group has a low prevalence for translocations involving the immu-
noglobulin heavy chain gene locus (IGH) at 14q32. In contrast, the non-hyperdiploid 
group (nh-MM), which includes hypodiploid, pseudodiploid, and near-tetraploid 
cases, tends to have a poorer prognosis. This group is enriched for 14q32 IGH trans-
locations, although not all IGH translocations confer a poor prognosis. Specifically, 
the t(11;14) IGH/CCND1 translocation appears to have a neutral or even favourable 
prognosis, while the t(4;14) IGH/FGFR3-MMSET translocation and t(14;16) IGH/
MAF translocation are associated with poorer survival. Other cytogenetic changes 
which are markers of poor prognosis in MM include deletion of the TP53 gene at 
17p13 which codes for the p53 tumour suppressor protein, 1q21 gains, 1p21 dele-
tions, and cytogenetically detected monosomy 13 and 13q deletions [11, 12].

Interphase FISH can be used to detect these chromosomal changes. One strategy 
is to use a 14q32 break-apart probe to determine if the IGH locus is involved in a 
translocation, and if so, specific fusion probes for t(11;14), t(4;14), and t(14;16) can 
be used to determine the fusion partner. Karyotyping can also provide useful infor-
mation on other chromosomal abnormalities which may be present, but can be prob-
lematic because plasma cells from the MM clone often show poor growth in culture. 
This results in an apparently normal karyotype result since the metaphases are dom-
inated by normal cells. Sole use of karyotyping for MM cytogenetics is therefore 
not recommended.

For FISH testing in MM, to maximise sensitivity, it is recommended that either 
purified plasma cells are used, or that FISH analysis/scoring is confined to plasma 
cells by performing cytoplasmic immunoglobulin-enhanced FISH (cIg-FISH) [13] 
or CD138 immunostaining [14]. The reason for this is that the bone marrow aspirate 
specimen for cytogenetics often has a low concentration of plasma cells from the 
MM clone, and this is further lowered by the effects of haemodilution. Standard 
interphase FISH without cell enrichment would have a low sensitivity of abnormal-
ity detection on such a sample. Enrichment of the sample for plasma cells can be 
achieved by using anti-CD138-conjugated beads. Alternatively, the use of cIg-FISH 
allows identification of plasma cells during FISH analysis by immunofluorescently 
staining cytoplasmic kappa or lambda light chains. This allows FISH scoring to be 
restricted to plasma cells. These strategies maximise the chance that FISH analysis 
is obtained on cells relevant to the disease process.
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Microarrays also play a role in current research in MM, for example, to identify 
new cytogenetic changes which may have prognostic significance [15]. However, 
standard arrays are unable to characterise translocations which play an important 
prognostic role in MM, and at the present time, arrays are not widely used for clini-
cal testing in MM.

�Chronic Lymphocytic Leukaemia

Chronic lymphocytic leukaemia (CLL) is a neoplastic disorder of mature B lym-
phocytes, where the neoplastic cells are commonly present in peripheral blood, 
bone marrow, spleen, and lymph nodes [16]. A number of recurrent cytogenetic 
abnormalities are commonly found in CLL cases, including deletions at 13q14.3, 
trisomy 12, and deletions at 11q22-23 (including the ATM gene) and 17p13 (includ-
ing the TP53 gene) [17]. Among these, the deletions at 11q and 17p are associated 
with adverse prognosis, while isolated deletion at 13q or the absence of cytogenetic 
changes is associated with a more favourable disease outcome. These cytogenetic 
changes, when used in conjunction with other clinical and laboratory information, 
may also help to guide choice of therapy [18]. Commonly, a FISH panel consisting 
of probes which map to 13q14.3, ATM, TP53, and CEP12 (centromere of chromo-
some 12) are used for detection of the common cytogenetic changes in interphase 
peripheral blood cells. Conventional karyotyping in CLL is more difficult and less 
sensitive than FISH owing to the poor growth of CLL cells in culture, and karyotyp-
ing has a lower resolution for small deletions. Microarray-based testing (especially 
SNP arrays) may become a viable alternative to FISH [19], since it also does not 
require dividing cells, has a high enough resolution for small deletions and is a sur-
vey of the entire genome (and can therefore detect additional chromosomal abnor-
malities other than those targeted by specific FISH probes), although currently it has 
not yet been widely adopted in clinical CLL testing outside of research settings.

In addition to cytogenetic changes, somatic hypermutation status at the IGHV 
locus (immunoglobulin heavy chain V region) also has prognostic significance, with 
CLLs which show hypermutation having a better prognosis than unmutated cases 
[20, 21]. Also, there is emerging evidence that pathogenic mutations in the TP53, 
BIRC3, SF3B1, and NOTCH1 genes also influence prognosis [22, 23]. These 
changes cannot be detected by cytogenetic techniques, but require molecular 
sequencing methods for detection.

�Acute Leukaemias

In patients affected by acute leukaemias, including acute myeloid leukaemia (AML) 
and acute lymphoblastic leukaemia (ALL), disease classification and prognosis 
depend substantially on the genetic abnormalities in the malignant clone [24]. There 
are a number of recurrent cytogenetic rearrangements which define particular sub-
types of AML. These include translocations and inversions such as t(8;21)(q22;q22) 
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[RUNX1-RUNX1T1], inv(16)(p13.1q22)/t(16;16)(p13.1;q22) [CBFB-MYH11], 
and t(15;17)(q22;q12) [PML-RARA], which are associated with better chances of 
long-term survival [25, 26]. The PML-RARA rearrangement is specifically associ-
ated with a subtype of AML known as acute promyelocytic leukaemia (APL), which 
responds to treatment with all-trans retinoic acid (ATRA) [27]. Other rearrange-
ments such as inv(3)(q21q26.2)/t(3;3)(q21;q26.2) RPN1-EVI1 and t(6;9)(p23;q34) 
DEK-NUP214, as well as monosomies of chromosome 5 and 7, or complex karyo-
type (defined as 3 or more clonal cytogenetic abnormalities) are associated with 
poorer outcomes [25, 26]. Likewise, in ALL of precursor B cell origin (B-ALL), 
some cytogenetic changes have prognostic significance and are also used to define 
disease subgroups and determine treatment options. For example, rearrangements 
involving the MLL gene at 11q23 (especially t(4;11) MLL-AF4 translocations) are 
associated with poor prognosis [28]. The presence of the Philadelphia chromosome 
t(9;22) also confers a poor prognosis in adult ALL, although the availability of ima-
tinib treatment for this subgroup has improved patient survival [29].

Conventional karyotyping of bone marrow aspirate specimens is the standard 
method for detecting these cytogenetic abnormalities in acute leukaemias. However, 
in malignancy karyotyping, often the chromosome quality is poor, therefore FISH 
testing (e.g. using fusion probes for specific rearrangements) is sometimes used to 
confirm karyotype findings.

In addition to cytogenetic changes, mutations in genes such as FLT3, NPM1, and 
CEBPA also have prognostic significance in acute leukaemias, but these require 
molecular methods for detection [26, 30].

The prognostic information from cytogenetic (and molecular) studies allow the 
clinician to adjust the aggressiveness of treatment and balance the risks and benefits 
of offering allogeneic stem cell transplant, which is ultimately the treatment option 
that offers a chance of cure in poor risk patients but is associated with significant 
morbidity and mortality.

�Non Small Cell Lung Cancer

Non-small cell lung cancer (NSCLC) is an aggregate category of lung cancers 
which includes adenocarcinoma, squamous cell carcinoma, large cell carcinoma as 
well as a number of rarer histologic subtypes. Most cases are discovered at an 
advanced stage of disease and prognosis is poor. Traditionally, in metastatic 
NSCLC the main pharmacological treatment option was combination cytotoxic 
chemotherapy including platinum-based agents. Recently a number of genetic 
abnormalities have been found in NSCLC (especially adenocarcinoma) which 
allow targeted treatment of those subgroups of patients whose NSCLC carry spe-
cific mutations [31].

One of the specific mutations in NSCLC is a chromosomal structural rear-
rangement involving the anaplastic lymphoma kinase (ALK) gene, which codes 
for a receptor tyrosine kinase. This rearrangement is found in approximately 
2–7 % of NSCLCs, although it appears to be enriched in never- or light-smokers 
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[32, 33]. The most common form is a paracentric inversion on the short arm of 
chromosome 2 which creates a fusion product between the 5′ end of the EML4 
gene at 2p21 and the 3′ end of the ALK gene at 2p23.2 [34]. This leads to activa-
tion of kinase signalling in the affected cell. The clinical importance of this ALK 
rearrangement is the availability of a small molecule ALK inhibitor crizotinib 
which has been shown to improve outcomes in patients who carry the ALK rear-
rangement [33].

The most common way to detect ALK rearrangements is by the use of a dual 
colour break-apart FISH probe located at the 3′ end of ALK [32]. Karyotyping is 
inappropriate because commonly the only specimen type available in NSCLC are 
formalin fixed paraffin embedded (FFPE) tumour biopsies, which do not contain 
viable cells capable of dividing. The use of break-apart FISH also has the advantage 
of being able to detect atypical ALK rearrangements where the fusion partner is not 
EML4. Theoretically, a molecular strategy (e.g. real-time PCR) could also be 
designed to detect the specific EML4-ALK fusion event, but due to potential vari-
ability in breakpoints particularly in EML4 [35], this would be impractical espe-
cially in a clinical laboratory setting.

Another type of tumour-specific mutation in NSCLC is activating mutations 
of the epidermal growth factor receptor (EGFR) gene. The majority of reported 
mutations are small in-frame deletions in exon 19, and point mutations in exon 
21 of the gene, including a missense mutation which replaces a leucine at amino 
acid position 858 by arginine (p.Leu858Arg) [36]. These mutations lead to con-
stitutive activation of kinase activity in EGFR.  Patients with activating muta-
tions in EGFR show improved response to anti-EGFR therapy, such as the 
tyrosine kinase inhibitors (TKIs), gefitinib, and erlotinib [37]. Detection of these 
activating mutations require molecular methods, since the DNA changes are too 
small to detect by cytogenetic methods including FISH.  Direct PCR/Sanger 
sequencing of the EGFR gene is one way to identify the mutations. This method 
has the advantage of identifying the exact mutation in the gene, and is also able 
to detect rare mutations. The disadvantage is that if the mutation load in the 
specimen is low (e.g. less than ~20 %), then sequencing may not be able to detect 
the change, although there is some evidence that the analytical sensitivity of 
Sanger sequencing may be higher for at least some mutations [38]. Also, tumour 
DNA extracted from FFPE specimens tend to be lower quality and more frag-
mented, and may be difficult to sequence. Therefore a more commonly used 
method in the clinical laboratory is a targeted mutation panel using strategies 
such as real-time PCR, with specific PCR primers and probes which target a 
panel of common activating EGFR mutations (and/or mutations which confer 
resistance to TKI inhibitors) [39].

In addition to sequence variations, some NSCLCs have amplifications in the 
copy number of EGFR genes. For these tumours, FISH probes against EGFR may 
be used to detect the gene amplification, which will show up as multiple signals 
per cell under fluorescence microscopy [40]. However, molecular methods are 
required to determine if the amplified EGFR contains activating sequence 
variations.
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�Breast Cancer

Breast cells express receptors on the cell surface which respond to extracellular 
growth signals. These include oestrogen receptors (ER), progesterone receptors 
(PR), and HER2 receptors. Human epidermal growth factor receptor 2 (HER2) is a 
receptor tyrosine kinase which belongs to the same protein family as EGFR, and is 
encoded by the ERBB2 gene on chromosome 17. In normal cells, there are two cop-
ies of the ERBB2 gene, one on each chromosome 17. In some breast cancers 
(~20 %), there is amplification in the copy number of the ERBB2 gene, leading to 
overexpression of HER2 receptors on the cell surface. These HER2-positive breast 
cancers have an aggressive disease course, but respond favourably to monoclonal 
antibodies directed against HER2, such as trastuzumab (Herceptin) and pertuzumab 
(Perjeta®) [41]. Testing for ERBB2 copy number has clinical utility since patients 
with HER2-negative breast cancer do not benefit from anti-HER2 treatment, and 
trastuzumab is also known to have cardiac toxicity [42]. Therefore currently trastu-
zumab therapy is only recommended in patients with HER2-positive cancers.

ERBB2 amplification can be detected by FISH on an FFPE tumour specimen. 
HER2-positive cells show multiple signals for the ERBB2 FISH probe, while nor-
mal cells only show two signals. Alternatively, some centres use a related non-
fluorescence in situ hybridisation (ISH) method for detection of ERBB2 copy 
number, such as CISH (chromogenic ISH). These methods allow detection of sig-
nal in bright field microscopy rather than requiring fluorescence microscopy. Yet 
another alternative is the detection of HER2 protein overexpression rather than 
gene amplification. This method utilises immunohistochemistry (IHC) staining for 
the HER2 protein. CISH and IHC allow co-examination of tissue morphology and 
HER2 status, and are less expensive compared to FISH analyses, although some 
tumours show discordance between protein expression and gene amplification 
results [43, 44].

In some breast cancer patients, there is a strong family history (e.g. with multiple 
closely related relatives affected, who may also have developed breast cancer at a 
younger age than average), which suggests a familial rather than sporadic form of 
breast cancer. Germline mutations in some genes have been associated with familial 
breast cancer. The most recognised of these are BRCA1 and BRCA2 which are 
associated with autosomal dominant forms of breast (and ovarian) cancer predispo-
sition. In contrast to detection of ERBB2 amplification, which is performed on 
tumour material, mutation screening of BRCA1/BRCA2 genes for familial cancer 
predisposition requires germline DNA (e.g. from peripheral blood specimens), 
because the aim here is to determine if there is a heritable mutation in these genes. 
The method used is most commonly a combination of direct Sanger sequencing and 
MLPA, since the types of mutations reported in BRCA1 and BRCA2 include 
sequence variations as well as whole exon deletions/duplications. FISH and karyo-
typing are generally not applicable, since the deletions/duplications are usually 
below the resolution of these techniques. Microarrays, on the other hand, can tech-
nically detect the exonic deletions/duplications, but is seldom used in the clinical 
laboratory for this indication because of factors such as cost.
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Some centres are moving to a massively parallel sequencing (MPS) approach for 
BRCA1 and BRCA2 mutation screening [45]. Theoretically, MPS can detect both 
sequence variations and whole exon deletions/duplications with the one technique. 
However, at the time of writing, there are still technical issues with clinical imple-
mentation of MPS, especially with detection of copy number changes and bioinfor-
matic analyses, so this is still at a research and development stage in most clinical 
centres.

�Germline Disorders

Another major area of application for cytogenetic techniques is the diagnosis of con-
stitutional genetic disorders, either in the postnatal or prenatal period of life. The fol-
lowing are some examples of how cytogenetics are used in these clinical settings.

�Postnatal Testing

�Intellectual Disability/Developmental Delay

Intellectual disability (ID) and developmental delay (DD) are common presenta-
tions in the paediatric population with a wide range of severity. These encompass 
disorders in one or more neurodevelopmental domains, including motor skills 
(gross and fine), psychosocial, language, and cognitive development. Both environ-
mental factors and genetic factors may contribute to ID/DD.

One of the most common genetic causes of ID/DD is Down syndrome (DS), or 
trisomy 21 [46]. DS patients commonly present with very typical and recognisable 
facial features (dysmorphism), intellectual disability, and a range of other complica-
tions which may include heart and other organ defects, immune deficiency, etc. The 
majority of Down syndrome patients have three separate copies of chromosome 
21 in every cell of the body. However, in some DS patients, the extra copy of chro-
mosome 21 is fused to another acrocentric chromosome (chromosome 13, 14, 15, 
21 or 22) at the centromere (as a Robertsonian translocation), rather than being free 
in the cell. The translocation may have arisen de novo, but may also be inherited 
from one of the parents, in which case the recurrence risk of aneuploidy in a subse-
quent pregnancy would be increased. Therefore the detection of translocation is 
important for genetic counselling. Also, a small proportion of DS patients have 
mosaic trisomy 21, where some of the patient’s cells have two chromosome 21 s but 
other cells have three copies. The presentation of mosaic DS is variable and may be 
milder than typical DS patients.

The most informative and appropriate test for Down syndrome is conventional 
karyotyping, because of the known possibility of mosaicism and translocation. 
Microarrays and FISH would also be able to detect the extra chromosome 21. 
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However, microarrays have a lower sensitivity for mosaic Down syndrome, and 
neither array nor FISH can detect a Robertsonian translocation. On the other hand, 
a karyotype can, in the one test, detect and confirm the presence of the extra chro-
mosome 21, and determine if the extra copy is free or translocated to another chro-
mosome. If mosaicism is present, karyotype has a higher sensitivity for detecting 
the abnormality than microarray.

Apart from Down syndrome, many other chromosomal deletions and duplica-
tions also cause ID/DD. The clinical presentations in these cases may often be non-
specific. In the past, karyotyping was used as the standard screening test for 
non-specific ID/DD, with an abnormality detection rate of ~3–5 %. More recently, 
microarray testing has become the preferred test, due to its ability to detect submi-
croscopic copy number changes (CNCs), i.e., microdeletions/microduplications. 
Many of these CNCs also show significant association with autism spectrum disor-
der (ASD) and/or multiple congenital anomalies (MCA). Therefore, in the setting of 
ID/DD, ASD, or MCA, microarrays are now recommended as a first line investiga-
tion, with an abnormality detection rate of up to ~15 % [47].

However, with the increased resolution of microarrays come new issues. Some of 
the many CNCs detected by microarrays turn out to be relatively common in the 
general population and are now believed to be benign ‘normal’ variation. However, 
some of the detected CNCs appear to be rare, and have not been reported either in 
the normal population or in affected patients. These CNCs are called variants of 
uncertain clinical significance (VUCS). Other CNCs have been reported at a low 
frequency in normal individuals, but appear to be ‘enriched’ in individuals with 
certain phenotypes such as ASD and schizophrenia. Some of these are now thought 
to be ‘susceptibility variants’ with variable penetrance or expressivity for the asso-
ciated phenotypes. In addition, microarray testing sometimes uncovers ‘incidental 
findings’ such as deletion of genes associated with familial cancer syndromes (e.g. 
BRCA1, BRCA2, APC, etc.). These findings do not explain the patient’s presenting 
complaint of ID/DD, but may have important clinical implications for other mem-
bers in the extended family or for the patient later in life. These findings raise issues 
of consent and disclosure, and present challenges for clinical management of the 
patient and family. They highlight the importance of adequate counselling and 
informed consent prior to embarking on genetic testing [48].

Syndromic Presentations

Sometimes ID/DD patients present with additional phenotypic features and/or facial 
dysmorphism which suggest a specific syndromic diagnosis. In some cases where 
the syndrome is associated with a specific chromosomal deletion/duplication, it is 
possible to target the genomic region with a locus-specific FISH probe. For exam-
ple, in a child with conotruncal heart defects and cleft lip/palate, it is possible to 
perform FISH using a probe which localises to the 22q11.2 DiGeorge/velocardiofa-
cial syndrome (DGS/VCFS) critical region [49]. Observation of only one signal for 
this probe would indicate heterozygous deletion of the locus and confirm the 
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clinical diagnosis of VCFS.  However, depending on the clinical circumstances, 
microarray testing may in fact be a more efficient investigation, especially if there 
is genetic heterogeneity (i.e. several genomic loci associated with the syndrome).

Single Gene Disorders

Apart from deletions/duplications, other genetic defects such as sequence variations 
or triplet repeat expansion may also lead to ID/DD. These are not detectable by 
cytogenetic methods, and will require the application of molecular techniques. One 
important example is Fragile X syndrome.

The molecular mechanism underlying Fragile X is an expansion in the CGG tri-
nucleotide repeat at the 5′ upstream region of the FMR1 gene. The number of CGG 
repeats is variable in the population, but is normally <45. In affected individuals, the 
number of CGG repeats expand to >200 (‘full mutation’ range), which leads to meth-
ylation of the promoter region of the FMR1 gene and silencing of expression of the 
FMR1 protein product (FMRP). Intermediate repeat sizes (56–200 repeats) are 
known as pre-mutations, and can be found in asymptomatic males or carrier females. 
Pre-mutation expansions do not cause ID/DD, but may have other late-onset health 
implications such as premature ovarian failure or tremor-ataxia syndrome [50].

The expansion in the trinucleotide repeat creates a folate-sensitive fragile site 
(FRAXA) on the affected X chromosome, and historically a special cytogenetic 
method (karyotype after culture of cells in a modified folate-deficient media) was 
used to detect the fragile site [51, 52]. However, this method is rarely performed today 
due to costs, low sensitivity, and slow turn-around time. It should be noted that routine 
karyotyping using standard culture techniques cannot detect the fragile site. FISH or 
microarray testing also cannot detect the triplet repeat expansions. Instead, molecular 
methods are now the method of choice for diagnosis of Fragile X. A common approach 
is to use two complementary molecular methods to detect the entire range of possible 
triplet repeat sizes. For smaller repeats, PCR followed by fragment analysis is used. 
PCR primers are designed to amplify the genomic region containing the CGG repeats. 
The size of the PCR product is determined by fragment analysis, which is used to 
calculate the number of repeats. This method provides a highly precise estimate of the 
repeat size (usually to ±1 to 3 repeats) at the low end of the repeat size range (up to a 
maximum of ~100 repeats), but for individuals with full mutations (>200 repeats), the 
repeat tract is too long to amplify by PCR. Therefore, if no amplification product is 
detected by PCR/fragment analysis in an affected male, Southern blot would be per-
formed, using a probe which binds to the restriction fragment containing the CGG 
repeat. The size of the restriction fragment provides only a rough estimate of the 
repeat size, but is able to detect expansions in excess of a thousand repeats [53, 54].

It is worth pointing out that in extremely rare instances, FMR1 gene deletions 
and sequence variations have also been reported to cause Fragile X syndrome [55, 
56]. In these very rare cases, FISH, microarray, and MLPA could be used to detect 
deletions, and PCR/Sanger sequencing could be used to detect sequence variations. 
But for the vast majority of Fragile X patients (>99 %), fragment analysis and 
Southern blot are the mainstay of diagnosis.
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�Infertility/Recurrent Pregnancy Loss

Another application of cytogenetic testing is for couples who suffer from infertility 
or recurrent pregnancy loss. There are many possible underlying causes for this 
clinical presentation, including anatomical, endocrine, and genetic factors either in 
the male or female partner. One important genetic factor which may contribute to 
this presentation is balanced chromosomal rearrangements, such as balanced recip-
rocal translocations, which may be present in the male or female partner.

In a balanced translocation, there is no net gain or loss of chromosomal material 
in the carrier. Therefore, in most cases there are no phenotypic consequences in the 
carrier unless the breakpoints interrupt an important gene. However, when the 
gonadal cells in a carrier undergo meiosis, there is a high likelihood that some of the 
gametes produced will be unbalanced, depending on the way the chromosomes seg-
regate. If the resulting unbalanced gametes were used in fertilisation, the zygote 
formed would contain a chromosomal imbalance (typically a partial trisomy and a 
concomitant partial monosomy of the chromosomes involved in the translocation). 
The level of imbalance in these zygotes is such that many are not compatible with 
full-term gestation, resulting in recurrent miscarriage.

Microarray analysis cannot detect balanced rearrangements in carriers since 
there is no net copy number gain or loss. FISH testing is also impractical as a screen-
ing test since there is no way to predict which chromosomes are potentially involved. 
Karyotype analysis is therefore the most appropriate method in this clinical 
setting.

In addition to providing a precise diagnosis for the couple, cytogenetic investiga-
tion is also of value for planning subsequent use of artificial reproductive techniques 
including pre-implantation genetic diagnosis (PGD). With PGD, knowing the spe-
cific rearrangement in the carrier parent allows specific FISH probes to be designed 
to screen in vitro fertilised embryos. It then allows selective implantation of only 
those embryos which contain a balanced chromosomal complement.

�Prenatal Testing

In the prenatal setting, cytogenetic testing is often requested as a result of concerns 
over the risk of aneuploidy, due to advanced maternal age or ‘high risk’ results of 
biochemical maternal serum screening. Other common indications include the find-
ing of abnormalities on foetal ultrasound.

The most common prenatal diagnostic test is a conventional karyotype con-
ducted on an amniotic fluid (AF) specimen or chorionic villus sample (CVS). These 
are invasive tests and carry a finite risk of miscarriage (estimated to be 1/100 to 
1/200, depending on the centre) [57, 58]. These types of samples contain cells of 
fetal origin that will divide in culture, thus allowing the use of standard cytogenetic 
techniques to directly visualise the chromosomes in metaphase and confirm a tri-
somy or any other chromosomal abnormality if present. The turn-around time for a 
result is typically in the order of 7–10 days.
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Many expectant mothers who have a ‘high risk’ for aneuploidy are understandably 
anxious and often wish to have a faster answer. Another method which may be used 
in this setting is aneuploidy FISH testing. This test is performed as interphase FISH 
using probes which target the centromeres or specific loci on chromosomes 13, 18, 
and 21 (and optionally chromosome X and Y) on uncultured fetal cells [59]. This 
test provides a faster turn-around time, typically within 24–48  h. The cells are 
scored for the number of signals for each probe. Two signals for each of the chromo-
some 13, 18, and 21 probes is the ‘normal’ pattern. The presence of three signals for 
the chromosome 21 probe would strongly suggest Trisomy 21. However, this test 
cannot be considered a definitive test. The absence of a third signal does not exclude 
the potential for duplication of a part of the chromosome which is not targeted by 
the FISH probe. Abnormalities of chromosomes other than 13, 18, 21, X, and Y, or 
unusual rearrangements, cannot be detected. Also, if trisomy is detected, it cannot 
distinguish between translocation trisomy and a free extra chromosome.

For these reasons, aneuploidy FISH testing should only be considered an extra 
screening step to fast-track an abnormal result. Whether the FISH result is positive 
or negative, it should always be followed up with karyotype for a definitive 
diagnosis.

More recently, some centres have started to offer microarrays for prenatal testing 
[60]. The technical principles of prenatal array are similar to the use of microarrays 
postnatally. As discussed already, microarray may have less sensitivity for mosaic 
results compared to karyotyping or FISH, especially if the level of abnormal cells is 
low (e.g. below 10–20 %), but can detect submicroscopic copy number changes. 
This increased resolution may be perceived as an advantage, but it can also lead to 
challenges to interpretation of results. For example, if a copy number change cor-
responds to a well-known microdeletion or microduplication syndrome, and is con-
sistent with malformations seen on fetal ultrasound, then the interpretation may be 
straightforward, in which case the microarray testing has provided a diagnosis 
where karyotyping could not. However, if the copy number change is a VUCS or 
susceptibility variant or incidental finding, then interpretation of the finding and 
counselling of the parents will be challenging.
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�Introduction

Cancer is a genetic disease, from the predisposing alleles carried in the constitutive 
genome to the random somatic events selected for during tumorigenesis. In the last 
15 years, the analysis of cancer genomes has dramatically improved in scope and 
level of detail. Low resolution and low-throughput methods such as G-banded 
karyotyping and comparative genomic hybridization have been superseded, first by 
array-based and more recently by sequencing-based technologies that enable afford-
able genome-wide single nucleotide resolution analysis of hundreds and even thou-
sands of tumors. In a research setting this has led to novel insights regarding the 
initiation and evolution of cancer, and the genetic events detected are increasingly 
having clinically relevant implications.

This chapter introduces the main classes of genetic events that are commonly 
seen in cancer genomes and discusses the contemporary methodologies with 
which they are detected. Applying these methods has led to a number of discover-
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ies with implications for molecular pathology, including using genetic events to 
evaluate cancer risk, refine diagnoses, provide prognostic information, and most 
critically, determining genetic events against which molecular therapeutics can 
be targeted.

�Classes of Genetic Events in Cancer

Cancer has long been recognized as a genetic disease, since the earliest observa-
tions of deranged chromosomes [1] and familial clustering of cases [2–5]. 
Predisposition to cancer, initiating events, and progression are all influenced by 
genetics whether they be constitutive or somatic aberrations. There are many dif-
ferent types of genetic alteration that can occur, each of which arise through differ-
ent mechanisms and each having varying consequences. The vast majority of 
somatic changes that occur in a tumor are thought to have little functional effect 
and are consequently described as “passengers,” carried along by coincidence 
upon selection of a co-existing “driver” in the same cell [6, 7]. Discerning driver 
mutations from passenger mutations remains a major challenge in translating 
genomic data into the clinic.

�Somatic Mutation

Acquired changes in the constitutional DNA sequence are common in most cancer 
types and include base-pair substitutions and small (<1  kb) insertion–deletions 
(indels). Mutations are caused by a failure of one or more of the DNA repair path-
ways to recognize or accurately repair DNA following a genetic insult, which can 
include inherent replication errors, deamination of methylated cytosine, and muta-
genic exposures such as UV light. The rate of such mutations per cancer genome 
varies greatly depending on the cancer type and has been estimated at 0.57/Mb of 
coding sequence for acute lymphoblastic leukemia [7], 0.19/Mb for breast cancer 
[7], ~1.8/Mb for high grade ovarian cancer [8], ~18/Mb for mutagen-exposed can-
cers like melanoma and non-small cell lung cancer [7, 9], and as high as 400/Mb for 
cancers with a DNA repair defect such as loss of mismatch repair in colorectal 
cancer [10]. Different cancer types often have unique mutation signatures in terms 
of the type of mutation, e.g. UV-exposed cancers have high rates of C:G > T:A tran-
sitions resulting in an enrichment of dipyrimidines.

The impact of a somatic mutation will vary widely depending on its location 
(coding/non-coding/splice site/regulatory) and type of change following translation 
(missense, nonsense, frameshift, etc.) (Fig. 1). Some mutations will have an imme-
diate impact and are considered dominant while others may require loss of the 
remaining normal allele.
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�Copy Number

An abnormal chromosome number (aneuploidy) is a common feature of many 
carcinomas. The subsequent imbalance in gene copies is thought to lead to 
global changes in gene expression with wide-ranging effects on cell phenotype. 
Aneuploidy is caused by errors in chromosome segregation during mitosis or 
cytokinesis, leading to gain or loss of whole chromosomes, and not uncom-
monly duplication of the entire chromosome complement leading to 
tetraploidy.

Copy number aberrations can also occur at a sub-chromosomal level through 
various mechanisms, often involving compromised repair of double strand (ds) 
DNA breaks [11, 12], a breakage-fusion-bridge cycle subsequent to dsDNA breaks 
or telomere dysfunction [13], and less commonly chromothripsis [14]. Copy num-
ber changes include losses of material, either hemizygous or homozygous deletions, 
and gains of material, which can be low level changes, such as a duplication, or 
high-level amplification (from five to possibly hundreds of copies) (Fig. 2), as is 
often observed with ERBB2 in breast cancer.

Fig. 1  Mutation types. (a) Wildtype transcript. Shaded boxes depict coding exons, white boxes 
depict the untranslated regions (UTRs) of the transcript, and intervening grey lines indicate inter-
genic and intronic regions (b) Coding variants: Frameshift (triangle) and nonsense (X) variants are 
often overtly deleterious due to protein truncation. Missense variants may be deleterious depend-
ing on the function of the specific amino acid changed and the effect on protein folding, or have no 
effect. Synonymous mutations do not change the amino acid identity, but may influence splice site 
function or binding of regulatory proteins, or have no effect. (c) Essential splice site variants 
(2  bp ± intron–exon boundary, arrow) can result in exon skipping or cryptic exons being tran-
scribed. (d) Non-coding variants (intergenic, UTRs, intronic, arrows) may have an effect on tran-
scription regulatory regions, transcript splicing, and mRNA stability, or often no effect on transcript 
function. (e) Translocations resulting in an in-frame fusion can produce functional protein
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�Loss of Heterozygosity

Loss of heterozygosity (LOH) refers to the change in genotype from heterozygous 
to homozygous of polymorphic alleles that arises through chromosome loss, sub-
chromosomal deletion or gene conversion via homologous recombination and DNA 
repair. LOH is often associated with copy number loss; however, gene conversion or 
duplication of chromosomes can lead to copy number neutral LOH (Fig. 2). LOH is 
distinct from allelic imbalance (AI), in which both alleles are still present but in a 
ratio different from 1:1 following copy number gain. The effect of LOH is to unmask 
recessive alleles, either inherited (e.g., BRCA1) or somatic (e.g., TP53), leading to 
loss of tumor suppressor gene function.

�Structural Chromosome Changes

Any event involving inappropriate repair of a dsDNA break can lead to structural 
changes in chromosomes, including not only the aforementioned sub-chromosomal 
copy number changes, but also inversions and translocations. These latter events 
lead to the novel juxtaposition of genetic material, which can cause inappropriate 
gene regulation or novel protein products, such as the BCR-ABL translocation in 
chronic myelogenous leukemia [15, 16].

�Germline Variation

The constitutive genetic variation carried by individuals is extensive and encom-
passes many of the same forms observed as somatic events. The most common class 
of germline aberrations most relevant to cancer are considered to be single nucleo-
tide polymorphisms (SNPs) and small indels. It is likely that larger copy number 
variations and structural changes such as inversions are also important, but there are 
few conclusive incidences reported to date. SNPs and indels can vary widely in 
population frequency, from common (>10 % minor allele frequency) to rare (1–10 % 
frequency) to extremely rare (<1 % frequency). Most are inherited from parents, but 
some occur de novo, at a frequency estimated at 13 × 10−3/Mb for SNPs and 
0.78 × 10−3/Mb for indels per generation [17, 18].

�Methods of Genomic Analysis

High-resolution screening for genetic lesions on a genome-wide scale has only 
recently become feasible, i.e., on a kilobase-down to base-pair level. Prior to the 
invention of array and massively parallel sequencing-based methods (MPS; also 
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referred to as next-generation sequencing, Sanger sequencing is considered first 
generation sequencing), analysis resolution was limited to tens of megabase-pairs 
using comparative genomic hybridization (CGH) or G-banded karyotyping. In 
addition, these methods were time-consuming and required a high degree of indi-
vidual skill to interpret the chromosome spreads, limiting the number of samples 
that could be studied. Other, more targeted techniques could be readily applied to 
multiple samples such as fluorescence in situ hybridization (FISH), Sanger sequenc-
ing, and microsatellite genotyping by PCR, but these were not easily scaled up to a 
genome-wide analysis. These methodologies have now been supplemented by sev-
eral whole genome techniques that have delivered myriad research findings and are 
increasingly been applied in clinical settings (Table 1).

�Karyotyping

The advent of fluorescence-based chromosome painting in the 1990s enabled a 
more automated karyotyping procedure compared to traditional G-banding. 
Variously known as Spectral karyotyping (SKY), M-FISH, and 24-color FISH, this 
technique uses paints made from individual flow-sorted chromosomes each labeled 
with a different mix of fluorophores. This paint is applied to metaphase chromo-
some spreads usually generated from primary tumors after short term cell culture. 
SKY is able to resolve complex marker chromosomes and is the only method dis-
cussed here that can measure exact ploidy (Fig. 3a). It can also give some indication 
of tumor genetic heterogeneity, as each nucleus is individually analyzed. However, 
it is still a low-resolution method (~10 Mb) and relies heavily on good quality meta-
phase spreads. Thus its use is limited to fresh tumor material and to laboratories 
with a cell culture facility.

�Array-Based

All array-based methods for genomic analysis operate on the same basic princi-
ple: hybridization of a labeled DNA sample to complementary probe sequences 
that are immobilized to a solid substrate in known locations. The strength of the 
signal is proportional to the amount of each target sequence in the sample, how-
ever, with most platforms, the dynamic range tends to become compressed at high 
copy number and generally cannot accurately distinguish, for example, 8 copies 
from 12 copies.

Array-based systems all require some kind of normalization strategy to calculate 
copy number, where the signal intensity of the tumor sample is converted to a ratio 
using normal diploid samples. Normalization can be performed against matched 
normal DNA, which is useful for discriminating constitutional copy number vari-
ants, or against the average of multiple normal DNA samples. All data for a sample 
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are median- or mean-centered, which means that it is not possible to distinguish 
between perfectly tetraploid and diploid samples, and exact ploidy cannot be deter-
mined unless genotype information is also available (see below).

The level of genomic resolution of array-based platforms is inherently limited by 
the number and type of probe sequences selected. Initially, detection of copy num-
ber was done using cDNA arrays produced for expression analysis but these were 
quickly superseded by superior platforms including bacterial artificial chromosome 
(BAC) arrays, oligonucleotide arrays, and SNP arrays.

Table 1  Methods of genomic analysis

Platform Detects Advantages Disadvantages

Spectral karyotyping 
(SKY), M-FISH

Ploidy; translocations Single-cell analysis; 
only technology not 
requiring comparison 
to normal baseline

Requires cell culture; low 
resolution

Multiplex ligation 
probe amplification 
(MLPA, e.g., 
MRC-Holland)

Ploidy; LOH PCR-based; fast; 
inexpensive; simple 
analysis

Low resolution; each 
fragment requires a 
unique primer pair

BAC aCGH CN Internal control from 
two-color analysis

Low resolution; irregular 
spacing

SNP arrays (e.g., 
Affymetrix, Ilumina)

CN; LOH; SNP 
genotyping

Detect copy number 
neutral LOH; 
genotyping

Irregular probe spacing

Oligonucleotide 
arrays (e.g., Agilent, 
NimbleGen)

CN Relatively cheap Cannot detect copy 
number neutral LOH 
events

Molecular inversion 
probe arrays (e.g., 
Affymetrix)

CN; LOH; SNP 
genotyping; limited 
mutations

Applicable to 
low-quality and  
limited DNA; good 
dynamic range

Lower-density arrays

Exome sequencing 
(e.g., Illumina, 
NimbleGen)

SNP; somatic 
mutation data;  
LOH; CN

Comprehensive 
analysis

Complex bioinformatics 
to extract CN; expensive; 
need high quality DNA; 
need matching normal 
DNA; irregular spacing; 
risk of incidental findings

Whole genome 
sequencing  
(low read depth)

CN; translocations Good dynamic range Expensive; low 
sensitivity for SNP and 
mutation data

Whole genome 
sequencing  
(high read depth)

SNP; somatic 
mutation data; LOH; 
CN; translocation

Comprehensive 
analysis; base-pair 
resolution of 
breakpoints

Very expensive; complex 
bioinformatics; risk of 
incidental findings

M-FISH multi-color fluorescence in-situ hybridization, BAC bacterial artificial chromosome, 
aCGH array comparative genomic hybridization, CN copy number, LOH loss of heterozygosity, 
SNP single nucleotide polymorphism
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BACs are large plasmid vectors with inserts of tens to hundreds of kilobases but 
because of the way they are constructed, they tend to be irregularly spaced across 
the genome, although whole genome tiling arrays with better uniformity have been 
produced. The resolution of BAC arrays is also limited by the large insert size. 
However, the signal-to-noise ratio and dynamic range are generally good.

Fig. 3  Genomic analysis data. (a) Spectral karyotyping of the breast cancer cell line VP229, dem-
onstrating aneuploidy and extensive translocations and structural rearrangements. (b) Array CGH 
method overview, with data analysis of one representative chromosome (log ratio data plotted), 
indicating where regions of chromosome have been gained (red) or lost (green). (c) SNP CGH 
method overview, with Partek® plot of Affymetrix® SNP6™ data from an ovarian tumor, showing 
chromosomes linearly mapped from 1 through X showing total copy number (upper) and allele-
specific copy number (lower). (d) Circos plot demonstrating typical genomic copy number aberra-
tions and structural rearrangements in the 94778 cell line derived from a retroperitoneal relapse of 
a well-differentiated liposarcoma [19] 94778 cells were provided by Florence Pedeutour 
(Laboratory of Solid Tumors Genetics, Nice University Hospital, Nice, France). The data was 
analyzed and figure generated by Anthony Papenfuss (Bioinformatics Division, The Walter and 
Eliza Hall Institute of Medical Research, Parkville, VIC, Australia, courtesy of D. Thomas and 
D. Garsed. CGH comparative genomic hybridization, SNP single nucleotide polymorphism
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As a consequence of the completion of the sequence of the entire human genome 
in the early 2000s, synthetic oligonucleotide-based arrays have become possible. 
These arrays utilize relatively short (25–60 bp) synthesized oligonucleotides, over-
coming issues with appropriately spacing probes throughout the genome, and 
increasing the resolution of breakpoint detection. Array comparative genomic 
hybridization (aCGH; Fig. 3b) typically refers to the use of non-polymorphic oligo-
nucleotide arrays, which can detect changes in total copy number but not changes in 
allelic ratios and therefore cannot identify copy number neutral LOH (Fig.  2). 
Single nucleotide polymorphism (SNP) arrays, a type of oligonucleotide array, 
allow the detection of both total copy number and LOH by designing probes span-
ning known common polymorphisms in the human genome (Fig. 3c).

Oligonucleotide-based arrays perform well on good quality DNA from fresh or 
frozen tissues and lymphocyte DNA; however, they are less useful for degraded 
DNA such as that obtained from formalin-fixed, paraffin-embedded (FFPE) tissue.

DNA from FFPE sources is predominantly highly fragmented and alternative 
approaches have been successfully developed for its analysis (Fig. 4). Molecular inver-
sion probe (MIP) technology has been incorporated into the Affymetrix® OncoScan™ 
assay. This approach involves circularizable “padlock” probes with two terminal 
sequences that bind to homologous sequences either side of an SNP, followed by 
highly specific closing of the padlock through incorporation of a nucleotide comple-
mentary to the SNP. This approach circumvents the issue of having to directly digest, 
ligate, and amplify the fragmented DNA. An alternative approach, taken by Illumina®, 
is to “restore” the FFPE DNA by ligating the fragmented DNA together to generate 
fragments large enough for whole genome amplification prior to labeling and hybrid-
ization. This DNA can then be hybridized to a standard bead array.

Fig. 4  Copy number analysis of FFPE DNA.  DNA extracted from ductal carcinoma in situ 
assayed using OncoScan™ (Affymetrix®). The upper panel illustrates total copy number, while the 
bottom panel illustrates allele ratios. Detectable copy number aberrations include whole chromo-
some and chromosome arm gains and losses, focal deletions, and high-level amplifications
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�Sequencing-Based

�Sanger Sequencing

In the mid-1970s, Fredrick Sanger first described “Sanger Sequencing,” and since 
this time huge advances in the technology and its applications have been made, with 
the technology notably underpinning the Human Genome Project. The current itera-
tion of the technology is based on sequencing by synthesis, with the products 
resolved using capillary electrophoresis and laser optics. Selective incorporation of 
fluorescently labeled, chain terminating dideoxynucleotides occurs during modified 
PCR amplification, and following purification of the products, they are resolved 
based on size using a capillary sequencer. Lasers excite the fluorescent dyes, and 
sequences of up to 700–900 bases can be determined, which are exported as a chro-
matogram (Fig. 5a).

�Massively Parallel Sequencing

The advent of massively parallel sequencing (MPS), or the so-called next-
generation sequencing, represents an enormous step forward in the genomics field. 
While continuing to “sequence by synthesis,” these technologies vastly increase 
throughput by simultaneously sequencing multiple DNA strands (in “parallel”). 
Unlike Sanger sequencing, MPS generates millions of random short reads (35–
700 bp) that must then be mapped to a reference genome (Fig. 5b). The most com-
monly employed technologies in cancer research are ion semi-conductor sequencing 
and optics-based dye sequencing. Semi-conductor sequencing (Ion Torrent Systems 
Inc.) measures the hydrogen release following incorporation of a nucleotide as 
determined by the template strand of DNA. Conversely, dye sequencing (Illumina®) 
relies on the immobilization of template DNA clusters onto a solid surface, upon 
which fluorescently labeled nucleotides competitively bind; a laser excites the 
label, and images of incorporated bases are recorded. Prior to sequencing, DNA 
samples are prepared into libraries, representing all of the desired DNA target 
sequences, be they the entire genome (whole genome sequencing, WGS), only the 
exons (whole exome sequencing, WES), or a targeted panel (Fig. 6). A targeted 
panel allows for specific enrichment of certain sequences; the enrichment can be 
performed using either a nucleic acid bait (“capture”) or through PCR-based ampli-
fication. It is at the library preparation stage that samples can be barcoded and 
pooled to increase throughput.

Using MPS, it is possible to simultaneously detect single nucleotide mutations 
and SNPs, as well as small indels, large copy number aberrations, LOH, and struc-
tural rearrangements, depending on the type of sequencing performed (Fig.  2). 
Variants are identified (“called”) by programs that assess the sequence evidence for 
the particular variant (read depth, base quality, etc.) and are exported into a mutation 
annotation format (MAF) file. This calling procedure is typically performed against 
a matched normal for the detection of somatic variants as the number of non-reference 
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germline variants in any given individual is substantial. Copy number and LOH 
events are assessed by comparing read depths and allele frequencies from the tumor 
to those from the matched normal sample. Structural rearrangements (transloca-
tions) and large indels are identified by assessing paired reads that did not map 

Fig. 5  Sequencing data. (a) Geneious (Biomatters) browser view of Sanger sequencing traces of 
wildtype KRAS (lower) and KRAS c.34G > A, p.G12D mutant (upper). (b) IGV browser view of 
MPS reads mapped to KRAS demonstrating wildtype and mutant (T) reads (KRAS c.34G > A, 
p.G12D mutant)
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within the expected distance from each other (determined by the average fragment 
length of the DNA library prepared for sequencing) or that mapped to different 
chromosomes (Fig. 3c).

�Limitations of Genomic Analyses

All genomic analyses of tumors using dissociated and homogenized tissues suffer 
potential dilution of tumor-derived genomic events by the genomes of surrounding 
non-neoplastic cells. Estimating the percentage of tumor cells in a sample and 
enriching for tumor cells using laser or needle microdissection or selective enrich-
ment using a tumor-specific cell surface marker (e.g., EpCam) is an important pro-
cess upstream of genomic analysis. Heterogeneity of genomic events within the 
tumor cell population can also contribute to dilution of signals, resulting in sub-
populations not being discernible at any great resolution.

Sanger sequencing and array-based copy number outputs are an average of the 
genomes of all of the cells from which DNA has been isolated (Figs. 3b and 5a) and 
therefore have limited sensitivity to detect events occurring only in a subpopulation 
of tumor cells. MPS, particularly at very high read depth, offers greater scope to 
resolve events occurring in a small subpopulation of cells and gives a digital count 
of variant reads (Fig. 5b). Paired-end sequencing also allows the mapping of trans-
location events, which cannot be resolved using array technology where chromo-
somes are linearly mapped (Fig.  3b, c). MPS is not without its own issues; a 
problematic area of MPS is the accurate mapping of reads to a reference genome 
and the calling of variants. Reads become difficult to correctly map to areas of the 
genome that are highly homologous to other regions, have repetitive sequence, or 
when there is an indel in the read or region relative to the reference.

Fig. 6  MPS sequencing. Schematic of the input genome (intronic DNA in red, exons in shades of 
blue, green and orange) and the sequences represented in libraries generated for the three major 
types of sequencing; whole genome, whole exome, and targeted
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Whole genome and exome sequencing provide the possibility of simultaneously 
detecting all variants in the genome or all coding variants. Along with real variants, 
PCR and sequencing artifacts are also detected, resulting in a huge number of 
potential variants to analyze for validity, recurrence, and functional impact. 
Differentiating between mutations that are driving tumorigenesis (“drivers”) from 
those that are not anticipated to have any involvement in the development of a 
tumor (“passengers”) is difficult and is made more onerous because passenger 
mutations are predicted to far outnumber driver mutations. The bioinformatic 
analysis burden of MPS should not be underestimated, although efforts to improve 
software design and usability are ongoing (see Chapter “Bioinformatics Analysis 
of Sequence Data”).

�Applications of Genomic Analysis in Cancer

�Genome-Wide Association Studies

One of the most common uses of SNP arrays has been to the application of genome-wide 
association studies (GWAS), where linkage of SNPs to an increased (or decreased) 
risk of disease is assessed across the genome. Due to cost constraints, these studies 
are most often performed in a staged process, where a few hundred or thousand 
individuals with features suggestive of a genetic predisposition to cancer such as 
family history or early age of onset are first compared to age- and ethnicity-matched 
controls. Significant hits from this analysis are then validated in tens of thousands 
of cases and controls. This strategy has been applied to all common cancer types, 
with multiple predisposing SNPs identified in breast, colorectal, lung, and ovarian 
cancers. The risks associated with individual SNPs are usually low (1.2–1.5-fold 
above the general population), however, the polygenic risk when multiple low-risk 
SNPs are inherited together can reach much greater significance. In addition, 
because the resolution of the studies is limited by the array density, the SNPs with 
the highest risk association may not be the causative variant, but only closely linked. 
Thus, fine mapping is required for more precise information on the gene affected 
and the possible mechanism of the increase in risk. Nonetheless, some risk alleles, 
which have been validated in multiple independent cohorts, are now being utilized 
for testing in familial cancer clinics [20].

More recently, as the cost of MPS continues to fall, exome and genome sequenc-
ing of large cohorts are being undertaken. For example, large databases have been 
established with a focus on thoroughly characterizing common cancers [International 
Cancer Genome Consortium (ICGC), The Cancer Genome Atlas (TCGA)] and pro-
viding a population baseline for common and rare variants [Exome Variant Server 
(EVS), 1000 Genomes, dbSNP, Exome Aggregation Consortium (ExAC)]. These 
studies will have the advantage of being able to detect rare variants and causative 
alleles; however, it may be some years before they are powerful enough to identify 
rare, low to moderate risk alleles.
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�Mapping of Oncogenes and Tumor Suppressor Genes

A major goal of genomic analyses in the research setting is the discovery of the 
full repertoire of genes with a role in tumorigenesis. These genes can be tumor 
promoting when their activity is deregulated (oncogenes) or when they are inacti-
vated (tumor suppressors [TSG]). Some genes can act as either oncogene or TSG 
depending on the cellular context and the pathways driving tumorigenesis; for 
example, NOTCH1 is targeted by activating mutations in hematopoietic malignan-
cies [21] and inactivating mutations in solid tumors such as head and neck squa-
mous cell carcinoma [22].

Oncogenes commonly act in a dominant fashion, with the genetic aberration 
ranging from copy number increase (e.g. ERBB2), recurrent activating point muta-
tion (e.g. KRAS, BRAF) (Fig. 7a, b), translocation (e.g. BCR-ABL), or other struc-
tural chromosomal changes leading to loss of transcriptional (e.g. MYC) or 
post-translational control (e.g. EGFR). These types of recurrent activating events 
typically make oncogenes easier to design clinical tests for (compared to TSGs) 
because there is a limited number of functionally relevant mutational events.

Methods for discovering new oncogenes include mapping regions of copy number 
gain, exome sequencing for somatic mutations, and karyotyping or genome sequenc-
ing for structural chromosome changes. Regardless of methodology, a common chal-
lenge is distinguishing the driving genetic events from benign passenger events.

Identifying genes affected by copy number alterations has been most effectively 
achieved using array technologies. The increases in copy number are mapped in 
multiple samples, and those regions of the genome that most often display increases 
in copy number are short-listed as potential sites of oncogenes. However, this is 
complicated by the degree of copy number change—should any increase be investi-
gated even if only a single copy, or should only high-level amplifications be consid-
ered? Both methods have been applied, and bioinformatic techniques that balance 
both possibilities have been developed (e.g. GISTIC [23, 24]). The list of genes in 
minimal regions of copy number change can still be long, and expression and func-
tional analyses are then required to identify putative drivers. For example, inte-
grated copy number and expression analysis identified novel growth promoting 
genes in ovarian carcinomas [25] and candidate oncogenes driving ovarian cancer 
were functionally investigated using RNA interference [26].

Full genome sequencing is the most comprehensive and sensitive method to iden-
tify structural chromosome changes, although to date fusion genes have also been 
detected using the much cheaper approach of RNAseq to short-cut to those transloca-
tions with an expressed gene moiety. For example, RNAseq analysis identified the 
MHC II transactivator CIITA as a recurrent fusion partner in lymphoid cancers [27].

Tumor suppressor genes are characterized by loss-of-function genetic events 
(Fig. 7c, d). Apart from a few examples where dominant negative mutations can be 
selected for (e.g. TP53), it is usually expected that both copies of a tumor suppressor 
gene must be inactivated, either through bi-allelic point mutation, homozygous 
deletion, methylation, or a combination of mutation and LOH. Thus, mapping of 
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copy number loss and LOH has been applied to try and identify new TSGs. While 
early successes included genes where the initial mutation event was inherited (e.g. 
RB1 [28]), in the genomic age there have been very few genes identified through 
this method [29].

Exome sequencing studies have been applied to multiple cancer types to identify 
both oncogenes and tumor suppressor genes. Initially, only a small number of sam-
ples were investigated, with candidates followed up in larger cohorts (e.g., CANgenes 
[30]). More recently, as sequencing has become relatively cheap, cohorts of hundreds 
of samples have been analyzed. Interestingly, apart from a few histologically defined 
tumor types (e.g., granulosa cell tumors) there have been very few genes identified 
that are mutated at high frequency. It seems that for solid tumors each tissue type has 
1–5 commonly mutated genes (>10 % frequency), and a long tail of genes each with 
a mutation frequency of just a few percent. Thus, the issue of identifying drivers 
versus passengers is again a problem. One strategy used to enrich for potential driver 
mutations is the employment of algorithms to predict the deleteriousness of an SNV 
given the nature of the amino acid change, the position within the protein sequence 
and the level of conservation of the protein sequence compared to other species [31–
33]. Another strategy is the use of statistical methods to assess the mutation rate for 
a given gene relative to the background mutation rate and gene size [34, 35]. 
Increasingly, gene discovery studies are applying algorithms to identify common 
pathways that are affected which can assist in identifying the likely driver genes. For 
example, pathway analysis identified axonal guidance pathway aberrations in pan-
creatic cancer, revealing novel tumorigenic roles for these proteins [36].

�Association of Genetic Events with Clinical Features

Genetic events are intrinsic to the development of malignant characteristics, thus, it 
is logical to assume that differences in clinical behavior may be attributed to specific 
genetic aberrations. Many studies have investigated the association of clinical with 
genetic features on a genome-wide scale. Associated features may then assist in 
prediction and risk management, diagnosis, prognosis, or treatment.

�Germline Predisposition to Cancer

Many of the well-known cancer predisposition genes, such as APC (familial adeno-
matous polyposis), BRCA1 and BRCA2 (hereditary breast and ovarian cancer), and 
MLH1 (hereditary non-polyposis colon cancer), were identified through linkage 
analysis and candidate gene approaches [37–40]. This was possible because of their 
relative commonness and high penetrance in these hereditary conditions. Identifying 
additional candidates is now primarily undertaken through large-scale exome and 
genome sequencing of multiple members of high-risk families. However, the task of 
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identifying these genes remains difficult since pathogenic mutations are often van-
ishingly rare, as encountered with RAD51C mutations in BRCA1/2 mutation-
negative breast/ovarian cancer families [41–43], and definitive classification as a 
cancer predisposition requires very large case and control cohorts to achieve suffi-
cient power.

Genome-wide association studies (GWAS) have identified many more common 
genomic variants with much lower individual effect on cancer risk. Although the 
functionally relevant genes may not be identified, the SNPs from these studies can 
prove useful for risk prediction. Common risk alleles may act in concert to produce 
a multiplicative polygenic risk or act as risk modifiers [20].

In order to effectively incorporate new risk alleles into the clinic, current prac-
tices for genetic testing are undergoing a shift towards gene panels, where all known 
cancer susceptibility genes and SNPs can be sequenced simultaneously using 
MPS. This approach substantially decreases the time and cost per gene tested.

�Molecular Subtyping and Diagnostics

Most subtyping studies have used expression microarrays to determine classes of 
tumors with distinct characteristics; however, it is becoming clear that these expres-
sion subtypes are often correlated with specific underlying genetic profiles. For 
example, a number of prognostic tests have been developed for breast cancer sub-
typing (e.g., OncotypeDX, MammaPrint, and PAM50) and these reflect both histo-
logical and genetic differences [44–46]. Targeted sequencing panels are increasingly 
being used to inform clinical decision-making by matching patients with appropri-
ate conventional therapies or to direct patients to relevant clinical trials. Many bio-
technology companies offer companion diagnostic cancer gene panels, enriched for 
the so-called druggable mutations and those associated with prognostication, 
including, for example, Illumina® (TruSight® Cancer/Tumor; TruSeq® Cancer 
Amplicon [47]); Foundation One™ [48]; and Ion Torrent (IonAmpliSeq™ 
Comprehensive Cancer/Cancer HotSpot [49]).

�Prognostic Markers

Treatment of cancer tends to be aggressive, with side effects that can have a severe 
impact on the quality of life both in the short and long term, including radical sur-
gery leading to scarring and loss/reduction of organ function, radiotherapy-induced 
burns and increased risk of subsequent malignancy, systemic cytotoxics leading to 
hair loss, nausea, etc. The consequences of disease progression or recurrence are 
sufficiently severe that these outcomes are accepted as a necessary evil. However, 
not all patients are at the same risk of progression, even after controlling for known 
prognostic factors such as stage, grade, and histological subtype. Genomic analysis 
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has been applied to attempt to identify robust prognostic markers that may indicate 
that an aggressive treatment regime may not be necessary. For example, the pres-
ence of microsatellite instability in colorectal cancer has been shown to be a good 
prognostic indicator, identifying a proportion of colorectal tumors that do not 
respond to 5-fluorouracil (5-FU) systemic treatment, the mainstay of colorectal can-
cer systemic therapy [50, 51]. At the clinical level these data mean that individuals 
with stage II mismatch-deficient colorectal cancer are unlikely to be treated with 
systemic 5-FU treatment compared with mismatch repair proficient tumors as the 
clinical benefits do not outweigh the complications associated with this treatment.

�Pharmacogenomics

�Response to Conventional Therapies

In a similar manner to identifying prognostic markers of general tumor aggressiveness, 
studies have also tried to find markers that indicate a likely response to chemothera-
pies. Such a marker could be constitutional, for example, polymorphisms in cell 
transporter channels that affect the rate of drug efflux are strong determinants of 
chemotherapy toxicity and tolerable dosage [52–54]. Alternatively, deleterious 
germline mutations in BRCA1 and BRCA2 that are cancer predisposing paradoxi-
cally tend to improve the patient’s response to treatment due to a heightened suscep-
tibility to the DNA damage caused by chemotherapy. Alternatively, response to 
therapies could be tumor-intrinsic, for example, CCNE1 gene amplification was 
determined to be an intrinsic resistance mechanism to platinum-taxol-based chemo-
therapy in high grade serous ovarian cancer [55].

�Targeted Molecular Therapeutics

Recently, targeted molecular therapies have emerged with the potential to transform 
cancer treatment by personalizing drug regimens to the genetic “Achilles heels” of 
each tumor. Genome-wide analyses are key to identifying such targets in a research 
setting, and could be used clinically in the future, especially to identify the cause of 
therapy resistance. Obvious candidates for targeted therapies are over-active onco-
genes as reducing activity is theoretically straightforward. Some prime examples of 
successful targeted treatments are imatinib (Glivec), which acts as an inhibitor of 
several tyrosine kinases including the BCR-ABL fusion, trastuzumab (Herceptin), 
targeted against overexpressed HER2 (first used in HER2+ breast cancers), and 
PLX 4032 (Vemurafenib), which targets the constitutively active form of BRAF 
(BRAF V600E) frequently mutated in melanoma. Targeted therapies for gene products 
where function has been lost tend to rely on unique weaknesses arising as a 

S.M. Hunter et al.



101

side-effect of the loss of gene function. For example, deleterious mutations in 
homologous recombination repair genes BRCA1/BRCA2/PALB2 that impede the 
efficient repair of DNA double-stranded breaks leave the cells susceptible to both 
conventional DNA damaging chemotherapies (e.g. cisplatin) and more molecularly 
targeted poly ADP ribose polymerase (PARP) inhibitors, which affect alternative 
DNA repair pathways and impede subsequent DNA replications [56].

Despite the breakthroughs in targeted molecular therapies, these almost always 
induce drug resistance and are often not directly transferable to other tumor types 
characterized by the same mutation or pathway alteration. For example, attempts to 
treat BRAF V600E positive colon cancers with the same BRAF inhibitors that had 
been successful in melanoma resulted in poor clinical response rates due to feed-
back activation of EGFR in response to BRAF inhibition [57]. However, in this case 
combination therapy with BRAF inhibitors and EGFR or PI3K inhibitors looks 
more promising [58].

Cancer cells can become resistant through a range of mechanisms, finding alter-
native ways to activate pathways or undergoing secondary mutations that reverse 
susceptibility. For example, initially successful treatment of colon cancer patients 
with EGFR inhibitors has been found to select for cancer cells with activating KRAS 
mutations, leading to bypassing of the receptor tyrosine kinase signal and resistance 
to EGFR inhibition [59]. Secondary mutations in BRCA1 and BRCA2 have been 
detected in chemotherapy resistant ovarian cancers, that result in restoration of pro-
tein function through reestablishment of the reading frame, mutation of deleterious 
nonsense codons to missense codons, and gene conversion where the mutant allele 
is lost [60, 61]. Detection of these resistance mechanisms is crucial for patient prog-
nosis and identifying effective treatments for patients to progress.

�Future and Near-Term Clinical Applications

New technologies are expediting the identification of cancer driver genes and poten-
tial new therapeutic targets, leading genomics to take center stage in diagnosis, 
prognosis, treatment planning, and the search for new treatment options. The pos-
sibility of affordable whole genome sequencing is likely to result in many current 
clinical tests becoming ancillary and potentially redundant.

With the advent of accessible genome-wide molecular analysis, the molecular 
subtyping of all cancer types using next-generation DNA and RNA sequencing, and 
copy number and expression arrays is currently being realized. This offers the pos-
sibility of mutation, copy number, and expression profiles superseding histological 
classification, particularly concerning selection of the most effective treatment 
options and prediction of recurrence risk.

Whole genome and whole exome sequencing of germline and tumor DNA are 
likely to become standard practice, both for the identification of predisposing 
genetic variation and to identify molecular targets for treatment and potential resis-
tance mechanisms. Before these technologies become standard clinical techniques, 
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however, there are the ethical and legal hurdles of incidental findings and patents 
concerning certain cancer predisposition genes. In the meantime, clinical tests are 
being converted to these modern technologies with the creation of high-throughput 
panels of cancer genes.

Advancements in genomics technologies that allow very limiting amounts of 
DNA to be sequenced are providing future potential for real-time monitoring of 
treatment response and development of resistance. Isolation of circulating tumor 
DNA from plasma offers a non-invasive “liquid biopsy” that gives an indication of 
tumor burden and provides a more representative sampling of the tumor cell popula-
tion than traditional core biopsies [62]. Highly sensitive monitoring of patients at 
the molecular level as they progress through treatment and altering treatment based 
on resistance mutations as they arise could drastically alter the outcome for many 
cancer patients. These applications are currently under investigation and offer a 
paradigm shift in cancer screening and treatment in the near future [62].
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Gene Expression Analysis: Current Methods

Zhi Ling Teo, Peter Savas, and Sherene Loi

�Introduction

Cancer is a genetic disease characterised by multiple heterogeneous genetic and 
epigenetic changes. Recent studies have identified extensive heterogeneity between 
and within tumours [1–3]. The genes need to be studied as a functioning collective 
in order to tease apart and understand the myriad different levels of processes and 
interactions that are coordinated towards the common goal of assuring vital func-
tioning of a cell. The study of the transcriptome of cancer cells, a fundamental link 
between genotype and phenotype, is essential to understanding the complexity of 
cancer evolution.

Traditional methods of gene expression measurements include Northern blot, 
quantitative reverse transcription PCR (qRTPCR), serial analysis of gene expres-
sion (SAGE) and DNA microarrays. Northern blot [4] analysis is a low throughput 
method that uses electrophoresis to separate RNA by size. The separated RNA is 
transferred onto a nylon membrane and immobilised to the membrane through 
covalent linkage by UV light or heat. A labelled short oligonucleotide sequence or 
probe that is complementary to a sequence in the target transcript is introduced onto 
the membrane and its hybridisation to the target transcript is detected via the use of 
X-ray. The Northern blot procedure is useful for determining RNA size and to detect 
alternative splice products. However, Northern blot uses RNA without conversion 
into complementary DNA (cDNA), therefore, the quality of quantification is com-
promised by even low levels of RNA degradation. Northern blot has also relatively 
low sensitivity, due to non-specific hybridisation, requires the use of radioactivity 
and requires greater amounts of RNA compared to qRTPCR [5].
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qRTPCR [6, 7] involves the reverse transcription of the target RNA into cDNA 
followed by PCR of the cDNA to amplify the signal for detection. It is a fluorescence-
based real-time reaction method that allows for detection and relative quantitation 
of target RNAs. The qRTPCR method has improved to enable high throughput mul-
tiplexed reactions to quantify multiple genes in a single reaction [8, 9]. However, the 
throughput capability of the current technology of qRTPCR remains on the order of 
only hundreds of known transcripts in one assay, and is not adept for transcriptome-
wide gene expression analysis.

SAGE [10] is a gene expression profiling method that involves creating cDNA 
which is biotin-labelled at the 3′-end of the cDNA. Short sequence tags of 14 or 21 bp 
that can uniquely identify specific transcripts are extracted using restriction enzymes 
(normally Nla III). Nla III cleaves the cDNA at the 5′-end of every CATG site. The 
cleaved sequence closest to the 3′-end of the cDNA is isolated using streptavidin 
beads. This isolated sequence is shortened again to contain only the CATG and the 
next ten nucleotides. This final sequence is the SAGE tag. These tags are ligated and 
cloned into a vector which are Sanger sequenced to identify the sequence tags. This 
method allows direct measurement of transcript abundance and comparison between 
multiple samples. SAGE does not require a priori knowledge of the transcript sequence 
and has been used for discovery of novel transcripts and alternative splice isoforms. 
Nonetheless, SAGE is a costly technique with a laborious cloning procedure.

The DNA microarray technology has superseded single-gene approaches, allow-
ing the measurement of RNA expression levels of thousands of known or putative 
transcripts simultaneously [11] and was further developed to characterise the gene 
expression profile of a complete eukaryotic genome (Saccharomyces cerevisiae) 
[12]. Global gene expression analysis has been a significant revolution in biology. 
The advent of DNA microarray technology has enabled comprehensive characteri-
sation and/or comparison of expression signatures of various cell types and disease 
phenotypes. Gene profiling with microarrays have provided evidence of molecular 
heterogeneity in cancer. Microarray technology was used to identify four subgroups 
in breast cancer, each with a distinct gene signature [13]. Subsequently, it has been 
shown that these molecular distinct subtypes of breast cancer are associated with 
prognosis and response to treatment [14]. In the past decade, numerous cancer gene 
expression signatures have been established but few have progressed to be available 
commercially and used to inform on prognosis or treatment choice in the clinic set-
ting. The two more significant assays are the Mammaprint [15] and the Oncotype 
DX [16] assays which help identify early stage breast cancer patients who are at 
lower risk of recurrence and may not be subjected to unnecessary chemotherapy and 
ultimately reduce healthcare costs [17–19].

Despite the success of gene expression profiling using DNA microarrays in its 
contribution to the field of biology, the technique remains limited by its requirement 
of a priori knowledge of the genes of interest. To overcome this limitation, tiling 
arrays have been developed [20, 21]. Prior to the advent of massively parallel 
sequencing technology, tiling arrays was the method of choice to identify novel 
transcribed regions [22, 23]. At present, it is still used for transcriptome profiling or 
to identify novel genes in the human genome [24, 25]. Like the DNA microarrays, 
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tiling arrays are also based on the hybridisation of labelled target transcripts to 
probes covalently attached to a solid surface. Probes on tiling arrays have been 
designed to map in an unbiased manner to contiguous sequences in the genome 
regardless of whether the regions have been previously annotated. RNA resequenc-
ing using tiling arrays has been made possible. Advancements to the microarray 
technology produced a high resolution (1 bp) high density array using a set of highly 
tiled and overlapping probes. Four probes (25 bp each) are used for the interroga-
tion of one base; the central position of the probe carries one of the four possible 
bases (A, T, C, G), one of which represents the reference sequence. A single nucleo-
tide variant (SNV) will reduce binding efficiency and hybridisation signal of the 
probe. The probe that best matches the sequence will have the highest fluorescence 
intensity [26]. Resequencing of both strands of a chromosome of length N requires 
8 N probes. The large number of probes required for the complete resequencing of 
a typical eukaryote genome makes the array-based resequencing seem impractical, 
costly and inefficient but has been shown to be feasible for resequencing small tar-
geted sequences [27] and high throughput mutation detection [28–30]. Tiling array 
designing can lead to specific design and analysis problems. A drawback to using 
the hybridisation approach is cross-hybridisation between probes. Non-specific 
cDNA molecules which can result in significant background noise which is ampli-
fied with increased regions of coverage and shorter probe sequences [31]. The spec-
ificity of potential probes for tiling arrays can be verified by an alignment algorithm 
against a sequence database and repetitive sequences can be identified and masked 
before the probe design to minimise the potential for cross-hybridisation [31–33]. 
Nonetheless, intensive normalisation is required to counteract the cross-hybridisa-
tion and background noise [34]. Probes also need to hybridise at similar efficiencies 
at a given temperature and need to be designed to be non-palindromic to prevent 
self-hybridisation. While tiling arrays are a powerful tool for genomic analysis, 
there remain significant practical limitations in terms of the design of probes and 
numerous number of chips required to cover an entire genome [26].

Meanwhile, another breakthrough in the analysis of RNA has been brought about 
through the development of massively parallel sequencing technology. RNA 
sequencing provides a cost-effective and rapid approach to sequence the transcrip-
tome [35]. It has obvious advantages over microarray technology. RNA sequencing 
directly sequences the reverse transcribed transcripts which allow resolution to a 
single base. Transcript sequences are mapped to a reference genome. The number 
of reads that are mapped is an indication of the level of gene expression. Direct 
access to the sequence removes the need for a priori knowledge of the transcript 
target(s) and allows detection of RNA editing events, novel alternate splicing. 
Moreover, RNA sequencing can be performed on species that do not have full 
genome sequence available. RNA sequencing has been used in conjunction with 
whole genome or whole exome sequencing technology to further our understanding 
of cancer, its evolution, or to advance our progress in the identification of genes with 
previously unknown implications of carcinogenesis or cancer progression [36, 37].

Transcriptome-wide gene expression analysis has allowed insights into global 
mechanisms, for instance, interactions between biological pathways in an orchestrated 
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response to external stimuli, compensatory mechanisms in an event of the disruption 
of a specific pathway, or evolutionary process underlying the mechanisms of drug 
resistance. These tools have been shown to be applicable in both the clinical and 
research setting. The exponential advancement of our understanding of biological pro-
cesses underlying various disease phenotypes will enrich our progress in the era of 
personalised medicine.

This chapter will focus on DNA microarray and RNA sequencing gene expres-
sion profiling techniques due to their ability to interrogate large numbers of tran-
scripts simultaneously.

�DNA Microarray

�DNA Microarray Technology

A DNA microarray is a collection of single-stranded oligonucleotides or probes, 
complementary to target transcript sequences, which are covalently bonded on the 
5′ end to chemically compatible matrices on a solid surface. The identity of each 
probe is defined by its location on the array. The transcripts to be analysed are 
reverse transcribed into cDNA.  The cDNA are labelled with fluorescent dyes, 
radioisotopes, biotin, amine groups, or micro- and nanoparticles which are excited 
by lasers to allow detection of the hybridisation of the target transcript to the probe 
on the microarray [38, 39]. The fluorescence emitted on each probe is used as a 
measure of gene expression and its intensity correlates to the level of gene 
expression.

There are different gene expression microarray platforms available commer-
cially. Affymetrix (Santa Clara, CA, USA) and Agilent Technologies (Santa Clara, 
CA, USA) are renowned providers of gene expression microarray solutions. The 
25-mer oligonucleotide probes on Affymetrix GeneChip® microarrays are built up 
using light-directed oligonucleotide synthesis on glass surfaces [40, 41]. Attached 
on the glass surfaces are photolabile protecting groups. When illuminated through a 
photolithographic mask, the illuminated regions yield reactive hydroxyl groups. 
Deoxynucleosides which are protected at the 5′-hydroxyl end with a photolabile 
group are then introduced to the surface. Coupling occurs at sites that are exposed 
to light. Since photolithography is used, high-density microarrays, where each 
probe is in a spacing of only 5 μm, can be generated. The Affymetrix GeneChips® 
are designed for whole exome and whole transcriptome gene expression profiling. 
The GeneChips® are one-colour arrays and only allow one sample to be hybridised 
to the microarray and are read on GeneChip® Scanner 3000 7G.

Agilent Technologies provides human gene expression microarray solutions that 
interrogate the whole transcriptome, whole exome and also provides a web-based 
tool (Agilent eArray) to allow users to rapidly design custom microarrays. Agilent 
microarrays are manufactured using the Agilent 60-mer SurePrint technology [42]. 
The SurePrint technology is a non-contact in situ synthesis inkjet printing process. 
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It involves delivering monomers to defined positions by commercial inkjet printer 
heads onto hydrophobic glass wafers (25  mm × 75  mm) containing exposed 
hydroxyl groups for nucleotide coupling. At present, Agilent microarrays are avail-
able in a variety of formats allowing flexibility to suit specific experimental require-
ments. Agilent 60-mer oligonucleotide microarrays can be used for one- and 
two-colour experiments and standard 25 mm × 75 mm glass slides can be read using 
Agilent SureScan Microarray laser induced fluorescence scanner or the Agilent 
SureScan Dx Microarray Scanner that is marketed for in vitro diagnostic use in 
Europe.

For different platforms, standard operating procedures are provided by the man-
ufacturers. These different protocols commonly require as low as 10 ng of RNA per 
sample which is used to generate cDNA or cRNA as targets for hybridisation. cDNA 
or cRNA can be labelled by covalently binding to biotin via terminal deoxynucleo-
tidyl transferase, through incorporating fluorescently labelled dUTP or in vitro tran-
scription using T7 polymerase that incorporates biotin-labelled nucleotides. For 
two-colour arrays, any two dyes with a good separable excitation and emission 
spectrum can be applied [43]. Cyanine-3 and Cyanine-5 are most commonly used 
fluorescent dyes in two-colour arrays. Biotin labels are detected using streptavidin 
phycoerythrin, the streptavidin binds to the biotin and the phycoerythrin exhibits 
bright fluorescence when excited. The labelled cDNA or cRNA are then introduced 
to the microarray and are allowed to hybridise to the covalently bonded probes on 
the microarray surface. Fluorescent scanners are used to excite the fluorescent dyes 
on the target sequence that is hybridised to the microarray. The fluorescence intensi-
ties at each position are measured by the scanner and transformed into a digital 
signal using a photomultiplier tube or a charge coupled device using a dye-specific 
emission filter [43]. The intensity levels at each probe position are the raw data 
which are the basis for further data analysis.

�Experimental Design

The objective of an experimental design is to ensure that the analysis and interpretation 
of the data remains as simple and powerful as possible by working around limitations 
of cost and experimental material [44]. The main objectives of the experiment need to 
be well defined in order to select the most suitable design for the experiment.

�Experimental Objectives

The objectives of a microarray experiment can be classified into three broad categories: 
class comparison, class discovery, and class prediction [45, 46]. Class comparison 
experiments look for genes that are differentially expressed among samples of different 
groups, for instance, experimental treatments, phenotypes, gender or age. Class 
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discovery, as the name suggests, refers to the search for previously unknown taxonomy 
(i.e., previously unrecognised tumour subtypes) that can be identified by a gene expres-
sion signature. This is achieved through cluster analysis where microarray data is clus-
tered and validated through gene annotations or by replicating results in other data sets. 
Class prediction refers to the identification and validation of a classifier that is predic-
tive of a previously known class or phenotype (i.e. a gene signature that can be used to 
identify a specific tumour subtype or predict response to treatment). The aims of class 
prediction experiments are to (1) determine if there is a relationship between gene 
expression profile and a phenotype or clinical outcome and (2) develop a gene expres-
sion signature to predict target phenotype, prognosis or response to treatment.

�Replication

There are several significant sources of random variation in microarray studies 
which can be classified into biological variation (e.g. the variation of gene expres-
sion between individuals within a population which could be influenced by environ-
mental or genetic factors), technical variation (e.g. the variation of gene expression 
between specimens from the same individual which could be introduced during the 
extraction process, hybridisation or labelling) and measurement error associated 
with reading fluorescent signals [47].

Biological replicates are samples taken from different individuals, animals or 
primary cell cultures of different cell lines. These replicates are important to account 
for the variation between individuals. Each experimental condition should have 
multiple independent biological replicates in order for valid statistical testing and 
for extrapolation of conclusions that may be drawn from the experiment [47].

Technical replicates can refer to replication of the microarray hybridisation pro-
cess, replication of probes on one microarray, dye-swap labelling (discussed further 
in the subsequent section), processing more than one specimen from the same indi-
vidual, or repeating the processing of the same specimen more than once. Technical 
replicates are essential in all experiments to ensure that the experimental proce-
dures, reagents and equipment are performing uniformly across samples and should 
show good agreement.

�One- or Two-Colour Systems

There are two main approaches to the design of a DNA microarray gene expression 
profiling experiment: (1) one-colour (i.e. cDNA from one sample is hybridised to one 
microarray); (2) two-colour (i.e. cDNA from two samples are hybridised on a single 
microarray). In the one-colour system, the cDNA from one sample labelled with a single 
fluorophore (Cyanine-3, Cyanine-5, radioisotopes or phycoerythrin). The fluorescent 
intensity on each spot (i.e. one transcript) is compared to other spots within the sample, 
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or reference normalising probes can be used to calibrate data across one microarray or 
across multiple microarrays to obtain a measurement of relative gene expression. To 
compare two sets of conditions (e.g. treatment versus control), two separate one-colour 
hybridisations are required. The two-colour system involves the cDNA from the refer-
ence sample to be labelled with a different fluorophore than that of the test sample (usu-
ally Cyanine-3, emitting at 570 nm, and Cyanine-5, emitting at 670 nm). The cDNAs 
from the two samples are then hybridised on a single microarray. The ratio of relative 
intensities of each fluorophore is then used to identify up- or down-regulated genes.

There are advantages and disadvantages associated with both one-colour and two-
colour systems. A strength of the one-colour system is that a low-quality or aberrant 
sample is unable to affect the raw data of other samples as one microarray is exposed 
to only one sample. This is in contrast to the two-colour system where a single low-
performing sample could significantly affect overall data precision even if the other 
sample is of high quality. In addition, the data from one-colour systems may be com-
pared with microarrays from various experiments or between studies, as long as 
batch effects are accounted for, and is unaffected by time. However, a drawback of 
the one-colour system is that, compared to the two-colour system, twice as many 
microarrays are required to assess samples from different treatments within one 
experiment. The two-colour system compares two samples on one microarray which 
eliminates variability between runs and microarray, therefore, reducing the error that 
could be introduced by these variables as compared to the one-colour system. A dis-
advantage of the two-colour hybridisation system is that the use of two different dyes 
on one microarray could generate dye-specific biases, resulting from differences in 
the incorporation efficiency of the two fluorescent dyes used in the experiment, which 
can confound the true biological signal [44]. Dye-biases can be circumvented by dye-
swap labelling or the use of split control hybridisations [48]. The dye-swap labelling 
method involves a technical replicate of a two-colour microarray where the same 
samples are hybridised by with reversed fluorescent labelling. Split control hybridi-
sation is a more cost-effective alternative to the dye-swap labelling method where a 
control sample is split and each portion is labelled separately with either Cyanine-3 
or Cyanine-5 before being combined and hybridised on the same microarray.

Although there are certain advantages and disadvantages associated with both 
approaches, studies comparing one- and two-colour microarrays have shown that 
both methods perform equally well in terms of data quality and accuracy of gene 
expression measurement [49, 50]. After using dye-reversed replicates to mitigate the 
effects of dye-specific biases associated with two-coloured microarrays, Patterson 
et al. [49] showed that the quality of data (reproducibility, sensitivity, specificity and 
accuracy) produced by the one- and two-colour systems was comparable and yielded 
highly concordant results regarding detection of differentially expressed genes 
within each platform. The two approaches were compared within the same platform 
(Aligent, CapitalBio and TeleChem were tested) and across multiple test sites (a 
total of five test sites). These results suggest that the decision between the one- and 
two-colour systems is not a primary factor regarding experimental microarray 
design. Therefore, the decision to use either the one- or two-colour approach will 
mainly be determined by cost and experimental design considerations [49].
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�Designs

Single-colour arrays involve one sample per microarray chip and therefore do not 
require designs for pairing and labelling of samples as is required for two-colour arrays. 
There are a few designs for two-colour arrays: the reference design, the balanced block 
design, the loop design and the reverse labelling design. The reference design and the 
loop design are the two main types of designs which will be the focus of this section.

The reference design is the most common design for two-colour microarrays. A 
common reference RNA sample is used as one of the two samples hybridised on one 
microarray. This means that only one experimental sample of interest is hybridised 
per microarray. The reference sample usually consists of a mixture of RNA from 
various tissues or cell lines to ensure that every probe on the array is hybridised by 
the reference sample. As the reference sample is used repeatedly across each micro-
array, there needs to be sufficient amounts of RNA of the reference sample avail-
able. The fluorescent intensity of one spot on the experimental sample of interest on 
the microarray is measured relative to the fluorescent intensity of the reference at 
the same location. It has been found that dye effects are confounded with treatment 
effects in the reference design [44] but this can be corrected by using dye swap on 
two arrays to compare each sample [47]. Despite the inefficiency of this design, it 
enables large number of samples to be assayed over a period of time as long as the 
same reference sample is being used for all microarrays [47].

The loop design [51] can be an efficient alternative to the reference design [44]. 
This design requires that two aliquots of an experimental sample of interest are each 
arrayed on different microarrays. The two microarrays that contain the same sample 
of interest can be used to control for variations that can exist between each microar-
ray and between each run. However, the loop design is inferior to the reference 
design for use in cluster analysis [46].

�DNA Microarray: Data Pre-processing

It has been shown repeatedly that there are several significant sources of systematic 
errors which can arise from RNA sample preparation [52], binding efficiency of target 
cDNA to probe (affected by GC content of the target sequence) [53] and spatial uni-
formity [54]. It is essential to identify and correct these sources of error from the data 
to ensure that the assessment of gene expression differences is precise and accurate.

�Background Correction

There are several correction methods that can address non-specific hybridisation 
and/or spatial non-uniformity. The traditional correction method for non-specific 
hybridisation uses local background (ambient) intensity per spot, provided by the 

Z.L. Teo et al.



115

image analysis software, and it is removed from the overall measure of intensity of 
the same spot [55]. However, it has been shown to result in a significant number of 
false positives compared to other background correction methods [55]. GeneChip® 
microarrays (Affymetrix) incorporated probes that were of perfect match (PM) and 
mismatch (MM) to the target genes of interest onto each microarray [56]. The non-
specific hybridisation signal, captured by the MM probes, is then used to infer the 
true specific hybridisation signal exhibited by the PM probes. However, it was 
shown that some of the MM intensities are greater than their PM pairs suggesting 
that they capture specific as well as non-specific signals and are therefore not opti-
mal for this purpose [57, 58]. Comparing eight different background correction 
methods that produce markedly different bias and precision, Ritchie et al. [55] intro-
duced and identified normexp + offset as the method that produced the lowest false 
discovery rate overall. The normexp + offset method was shown to be better in preci-
sion than most other methods despite the increase in bias (attenuation of hybridisa-
tion signals). The normexp + offset method is based on the Robust Multi-array 
Average (RMA) algorithm [57, 59] with changes made to make the method more 
suitable for use with two-colour microarrays and with the addition of a small posi-
tive offset, k, to more corrected intensities away from zero [55].

Spatial bias refers to the difference in intensity measures over the surface of a 
single array. Factors that may underlie spatial artefacts include fibres, scratches and 
uneven washing and temperature gradient. Normalisation methods do not specifi-
cally account for spatial biases even though these biases can affect analysis of 
results [60, 61]. Several methods addressing spatial biases in gene expression 
microarrays have been proposed. One method of spatial bias correction that has 
been widely accepted consists of applying loess-based intensity dependent bias cor-
rection method individually within each print tip group [62–64].

�Normalisation

Dye intensity measures are affected by various factors such as image scanner set-
tings and chemical characteristics of different dyes on the microarray [65, 66]. It is 
important that this dye intensity variability is corrected through normalisation meth-
ods to reduce system variability and to allow data from multiple microarrays to be 
directly compatible [67]. Locally weighted scatterplot smoothing (LOWESS) [67–
69] and quantile normalisation algorithm [64] are widely used normalisation meth-
ods. LOWESS is a scatterplot-based normalisation that locally fits a line for each 
subset of probes with a similar intensity. It results in a non-linear transformation and 
does not require assumptions of the relationship between the different channels on 
the microarrays or between different microarrays [43]. The quantile normalisation 
algorithm is an extension of the LOWESS normalisation method. The quantile nor-
malisation method aims to make the probe intensity distribution for each microarray 
in a set of microarrays the same [64]. This method has been shown to effectively 
reduce variability across microarrays [64].
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�Probes Summarisation

Some microarrays, such as Affymetrix GeneChips®, are designed to contain different 
probes that interrogate a single transcript (i.e. probe set) to reduce probe-specific 
effects. After background correction and normalisation, probes in each probe set are 
summarised to get a single-gene expression measure per probe set. There can be 
significant variability amongst the probes in each probe set [57]. RMA is a robust, 
one of the most widely used, procedure that can account for such outlier probes [57, 
70]. It estimates an overall expression value for each probe set and probe-specific 
measurement error by fitting a linear model to the probe values. RMA was shown to 
outperform other methods of probe summarisation [57]. It can also be used to per-
form background corrections and normalisation in addition to probe summarisation. 
However, it is important to note that microarray spatial artefacts need to be cor-
rected prior to using RMA, as despite its robustness, it was shown to be unable to 
accurately correct for such artefacts [71].

�DNA Microarray: Quality Control

Quality control of microarray sample processing and microarray data is essential. 
Accurate sample processing is important and should be monitored by different quality 
checks of the sample, for example the Agilent Bioanalyzer or the Nanodrop 
Spectrophotometer, before hybridisation of the sample on the microarray.

The first microarray data quality check should be performed after scanning the 
microarray images. Quality reports of the microarray data should be provided after 
each scan which could be useful to detect corrupted chips or a flawed experiment. 
The samples deemed unreliable based on the quality control results can be removed 
from the analysis.

Bioconductor packages such as the Simpleaffy [72, 73] were developed to pro-
vide access to a series of quality control metrics such as:

–– background level: where high background level can affect signal to noise ratio 
and is indicative of problems during sample processing,

–– 3′/5′ ratio: the microarray contains probe sets that hybridise to the 5′ and 3′ ends 
of long transcripts, usually GAPDH and beta-actin. The 3′/5′ ratio of these genes 
is used to assess RNA quality and labelling as RNA degradation or problems 
during fluorescence labelling can lead to variability in the ratio, and

–– percentage of genes called present: where percentage of present calls is used as 
an overall measure of quality and large variations of present calls between similar 
samples could be indicative of problems in the experiment.

For Agilent microarrays, GeneSpring GX [74] can be used to assess sample qual-
ity using various criteria such as:

–– Principal Component Analysis (PCA) on samples: samples of the same experi-
mental conditions are expected to be more similar to each other and group closer 
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together in a PCA plot than to samples of different experimental conditions. 
Deviation from this assumption could suggest poor quality samples or genuine 
biological variation of samples within the condition,

–– Internal Controls: similar to Simpleaffy 3′/5′ ratio where ratios for beta-actin and 
GAPDH should be three or less otherwise indicating sample degradation, and

–– Correlation Coefficients calculated for all pairwise comparisons of samples in the 
experiment: a pair of samples of the same experimental group should have a higher 
correlation coefficient than a pair of samples of different experimental groups.

Quality checks after data processing is also important to ensure that the normalisation 
was implemented as intended and to identify any outlier microarray after the normalisa-
tion process. PCA and simple correlation in GeneSpring and arrayQualityMetrics [75] 
from BioConductor [72] can be used to detect possible outlier microarrays [43].

�DNA Microarray: Statistical Analysis

The appropriate statistical methods to use for microarray data analysis depend on 
the hypothesis of the experiment. There are three broad objectives that underlie 
microarray analyses that are discussed below. Before application of these statistical 
methods, the microarray data should be appropriately pre-processed to ensure that 
any systematic errors and confounding effects have been removed.

�Class Comparison

Differential expression analysis is used to identify differences of gene expression 
between two experimental conditions. The t test is a simple statistical method for 
detecting gene differential expression in two conditions. t = R/SE, where R is the mean 
log ratio of the expression levels of one gene and SE is the standard error. SE is computed 
by combining data across all genes [76]. However, it has low power in experiments 
that involve only a small number of samples in each experimental condition. In addi-
tion, the small sample size leads to inaccurate variance estimates for each gene which 
could lead to high t statistic despite very small fold changes in gene expression [76]. 
There have since been a few modifications to the t test to find a balance between 
power and bias in differential expression analysis. The significance analysis of micro-
arrays (SAM) version of the t test, known as the S test [77] a constant positive term to 
the denominator of the standardised average, therefore, genes with small gene expres-
sion fold changes will not be selected as significant. The B statistic [78] is a Bayes log 
posterior odds ratio of differential expression versus non-differential gene expression. 
The B statistic uses data from all the genes which makes it more stable than the t sta-
tistic. Moderated t statistic [79] is similar to the t statistic except that the standard 
errors have been moderated to borrow information from all genes to allow inference 
about each individual gene so as to increase precision of variance estimates [80].
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After statistical significance has been calculated for each gene, it is essential to 
correct for multiple testing. When the level of significance is set at 0.05, up to 5 % 
of the genes will be falsely scored as differentially expressed. In an experiment 
where thousands of genes are interrogated simultaneously, a substantial number of 
false positives may accumulate by chance. There are a few methods available to 
address this problem: the Family-wise error-rate (FWER) control methods and the 
False-discovery-rate (FDR) control method. FWER is the probability of accumulat-
ing one or more false positive errors over a number of statistical tests. Controlling 
FWER involves increasing the stringency applied to each test. The Bonferroni cor-
rection is the simplest FWER procedure where the significance level is divided by 
the number of tests. Other FWER control methods are the permutation-based one-
step correction [81] and the Westfall and Young step-down adjustment methods [63] 
which are more powerful but more complex applications than the Bonferroni cor-
rection [76]. FWER criteria are stringent and may substantially result in low statisti-
cal power if the number of tests is too large. FDR is the expected proportion of false 
positives among all the genes initially identified as differentially expressed [82, 83]. 
An FDR control method proposed by Benjamini-Hochberg (BH method) is a simple 
Bonferroni-type procedure. It uses information from the microarray experiment to 
estimate the proportion of false positives that have been called. The BH method 
controls the expected proportion of falsely rejected hypotheses by adjusting the p 
value accordingly. The BH method of controlling FDR is a less stringent way to 
correct for multiple testing compared to methods that control for FWER. However, 
FDR also allows for a higher rate of false positive results and is less powerful than 
FWER control procedures.

�Class Discovery

The basic methodology of class discovery is the cluster analysis algorithms which 
are mainly divided into hierarchical (Genesis [84]) or partitioning methods (k-means 
clustering [85]) or a hybrid of the two [43]. The goal of these algorithms is to find 
clusters of genes that are more similar to each other than to genes in other clusters.

Hierarchical clustering begins with each gene in its own cluster and each is rep-
resented in the tips of a dendrogram and the distance between two genes on the 
dendrogram (representing the similarities of expression patterns between the two 
connected genes or clusters, i.e. shorter distance equals more similar) is calculated 
[86]. The hierarchical clustering algorithms search the distance matrix for two or 
more genes that have the smallest distance. Applications of RNAseq to cancer biol-
ogy between them and merge them into a cluster. The distance matrix is recalculated 
to include the new cluster containing more than one gene and the rest of the single-
gene clusters. Hierarchical clustering algorithms do not compute a formal test sta-
tistic and therefore are unable to measure if the distances between the clusters are 
statistically different. External criteria are used to guide the number of clusters that 
can be made (e.g., if splitting the tree at one point leads to a cluster which is mostly 
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made up of tumour samples and the other cluster which is mostly made up of normal 
samples, the split is considered appropriate). Nonetheless, this approach is subjec-
tive and may be prone to bias [86].

Partitioning algorithms normally require specification of a pre-defined number 
of classes to which the genes are partitioned into. The number of clustering param-
eters will also need to be defined. Partitioning clustering algorithm, k-means, begins 
with k initial clusters, each with a mean value. The aim is to assign each gene to the 
cluster whose mean has the least within-cluster sum of squares (i.e. the nearest 
mean). After which, the mean for each cluster is recalculated. This process is 
repeated until the assignment of genes to clusters no longer changes.

�Class Prediction

The first step of class prediction is to identify a set of features (i.e. gene expression pat-
terns) that has the highest discriminatory power of the class or phenotype of interest. 
Feature selection methods include the filter and wrapper approaches. The filter approach, 
in general, assesses the relevance of features by looking at the intrinsic properties of the 
data. The relevance is scored and the low-scoring features are removed [87]. The filter 
approach is computationally fast and simple but ignores the performance of the selected 
feature subset on the performance of the induction algorithm and is therefore, less accu-
rate than the wrapper approach [88]. The wrapper feature selection approach involves 
using classifiers to evaluate subsets of features in the dataset [87]. The cross-validation, 
Bootstrap or split-sample approach is used to estimate the accuracy of the classifiers on 
an independent set of samples and the feature subset with the highest evaluation is cho-
sen as the final set. The wrapper approach involves training a new classifier, using the 
induction algorithm, for each feature subset to identify the best feature subset which 
makes it very computationally intensive but also underlies its ability to identify feature 
sets with higher classification accuracies than filter approaches [88].

Once the features have been selected, a classifier is built to predict the class or 
phenotype of interest. This can be done using several different prediction methods 
such as the nearest neighbour approach [89], classification and regression trees [90] 
and the support vector machine [91].

A classifier can be evaluated through statistical measures such as variance or 
confidence intervals which can be obtained by split-sample or cross-validation 
procedures. In the split-sample procedure, the dataset containing samples of the 
class or phenotype of interest is randomly split into two; one is used to as a training 
set to build up the classifier whereas the other is used as a test set to measure the 
accuracy of the predictions made by the classifier. The cross-validation proce-
dure is an iterative process. In each iteration process, a subset (normally one 
sample in the leave-one-out process [92]) of the dataset containing n samples of 
the class or phenotype of interest is left aside for testing, and the rest of the 
dataset (n − 1) is used as a training set and a group of genes whose gene expres-
sion patterns are associated with the target class or phenotype is selected and is 
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used to build the classifier. The classifier is used to test the left out test sample. 
A different subset of the dataset is used in each iteration process for n times until 
each sample has been left out once for testing. The series of classifiers built from 
each iteration process is then merged to form a fully developed classifier. One 
rule of assessing the results of the classifier is that the samples used for valida-
tion, using either split-sample or cross-validation procedures, must not be used 
for building the classifier [93].

�Pathway Analysis

After identifying a subset of genes that are differentially expressed across experi-
mental conditions, the next step is to put these findings into biological context (e.g. 
do these gene expression differences underlie any biological mechanism or are they 
predictive of the biological process that is being studied).

Gene ontology (GO) [94] is a database that provides standardised annotation of 
gene products that allows users of this database to query and retrieve genes and 
proteins based on their biological function. GO can be used to characterise the 
biological functions of the differentially expressed genes identified via microar-
ray experiments. There are also other curated databases such as KEGG [95] and 
Biocarta [96] that provide stringently reviewed interactions between genes and 
gene products in different pathways. Pathway Explorer [97] and Ingenuity® 
Pathway Analysis (Ingenuity® Systems, http://www.ingenuity.com) are applica-
tions that enable users to analyse data from gene expression microarrays and 
allow mapping of the gene expression data to biological pathways. Chi-square or 
Fisher’s exact test can be used to determine if the proportion of differentially 
expressed genes associated with particular pathways is larger than expected after 
correcting for multiple testing.

Gene Set Enrichment Analysis (GSEA) [98, 99] is a method that allows iden-
tification of sets of genes rather than single genes that are differentially expressed. 
The gene sets are defined based on previously known, published biological 
knowledge. Examples of gene sets include genes encoding products in a DNA 
repair pathway or genes that share the same GO category). The aim of GSEA is 
to determine if members of a gene set are significantly over- or under-expressed 
when comparing two experimental conditions and correlates the significant dif-
ferential expression with phenotype. GSEA is applied to the whole data set from 
a microarray experiment. This is in contrast to the previously described methods 
which are applied only to genes identified to be significantly differentially 
expressed. The advantage of GSEA to single gene analysis is that GSEA can 
detect biological processes whose activity levels are significantly affected by 
expression changes across a whole network of genes despite the subtle expres-
sion changes of individual genes. Accurate definition of gene sets is crucial for a 
correct interpretation of the results.
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�Validation

Microarray technology is an efficient method for interrogating the transcrip-
tome or a multitude of gene targets simultaneously. However, variability in 
microarray results exists and there is always a certain degree of uncertainty 
associated with each method used to detect differential gene expression despite 
employing the best statistical analysis tools available. Therefore, it is essential 
to use an orthogonal method to validate the accuracy of the technology (i.e. the 
target genes are in fact differentially expressed and the extent of differential 
expression) and also to extend the same experiment to different biological rep-
licates from the same test population to validate the biological conclusions of 
the experiment (i.e. a test condition is associated with differential expression in 
the same sets of genes) [100]. The techniques traditionally used for validation 
of microarray data are qRT-PCR.  The MicroArray Quality Control (MAQC) 
project has often used the TaqMan® Gene Expression Assays as a validation tool 
[49, 101].

�RNASEQ

�Introduction

Following the success of DNA microarrays, RNA sequencing as a technology 
platform has provided further insights into gene expression in cancer. It leverages 
rapid progress in the performance of short-read next-generation sequencing 
(NGS) technologies and the exponential decline in the cost of sequencing. It does, 
however, remain a technology under development. In particular, a gold standard 
software pipeline for quality control and interpretation of sequencing data is not 
well defined, but efforts to compare computational methods in a consistent fash-
ion are underway [102, 103]. Improvements in RNA extraction and library prepa-
ration are also occurring constantly. Although it is not possible to describe a 
consensus protocol for RNAseq, an overview of methodological issues will be 
provided.

As has been mentioned, RNAseq does not require prior knowledge of mRNA 
sequence, which affords a unique advantage over DNA microarrays. This property 
is particularly relevant to the cancer transcriptome, which may contain unique 
mRNA transcripts generated through splice variants or genomic alterations. An 
example of this was seen in chemotherapy resistant colon cancer cell lines, where 
there was widespread splicing disruption detected with RNAseq [104]. RNAseq has 
also been used to detect novel gene fusions in tumours [105] that are difficult to 
detect with genome sequencing, and can represent particularly attractive drug tar-
gets [106, 107].
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The most touted advantage of RNAseq for expression analysis per se, however, 
is the unlimited dynamic range when quantifying RNA transcripts. This property 
arises because RNAseq detects single RNA molecules, creating a linear relationship 
between the concentration of an RNA transcript in a sample and the number of 
sequence reads produced [108]. RNAseq has almost zero background signal for a 
given transcript, and has effectively no upper detection limit on the quantity of a 
transcript. This affords accurate quantification of transcripts over a very large range 
of expression levels. Studies in yeast suggest that greater than 9000 fold differences 
in expression are detectable with RNAseq [109]. In contrast microarrays have high 
background signal that masks detection of rare transcripts, and saturation occurs at 
high expression levels, limiting the dynamic range to 100 to 200 fold. This is 
reflected in the poor correlation of microarray data with RNAseq for low and highly 
expressed transcripts [110].

The aim of an RNAseq experiment is critical in refining the proposed methodol-
ogy. RNAseq may be used to provide a global picture of the transcriptional activity 
of a tissue; examine alternative splicing of genes; discover novel transcripts, includ-
ing gene-fusion events; compare transcriptional activity under different experimen-
tal conditions or between different samples, so-called differential expression. 
Examples of these applications of RNAseq to cancer biology are provided in 
Table 1.

�Methods

Although the sequencing step in RNAseq is identical to that performed in next-
generation sequencing of genomic DNA, RNAseq has unique requirements for 
sample preparation, RNA extraction and bioinformatics analyses.

Table 1  Applications of RNAseq to cancer biology

Application Examples Reference

Global transcriptional 
activity

RNAseq of 79 cervical carcinoma samples [111]

Alternate splicing RNAseq of chemotherapy resistant and sensitive colon 
cancer cell lines. Widespread disruption of splicing seen 
in resistant cell lines

[104]

Novel transcript 
discovery

RNAseq of prostate cancer samples. Discovery of 
chimeric transcripts mediated by splicing events

[112]

Gene-fusion discovery Discovery of gene-fusion events across multiple cancer 
types

[105]

Differential expression RNAseq of different breast cancer subtypes identifies 
significant differential expression of transcripts

[113]
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�Sample Preparation

RNAseq is a highly sensitive procedure. Sample input quality is a major determinant 
of subsequent data quality. Gene expression may change rapidly depending on 
external conditions, and therefore care must be taken to preserve a biologically valid 
transcriptome for the sample in question. This is particularly important if differen-
tial expression is to be studied between different samples.

For tumour samples harvested fresh from living tissues, it is optimal if tissue is 
immediately snap frozen in liquid nitrogen, or alternatively stored in commercially 
available RNA preservatives that operate at room temperature. Preservatives may be 
added to tissue before freezing, to minimise degradation during eventual thawing.

Formalin-fix paraffin-embedded (FFPE) samples may be used for RNAseq experi-
ments, with several important caveats. Fixation itself degrades RNA in a complex fashion, 
which biases the transcript pool available for sequencing. Of more concern is that tissue 
handling for FFPE processing is usually carried out according to the needs of routine 
histological procedures, which are far removed from those of high fidelity RNAseq. There 
may be delays until fresh tissue is fixed due to the need for tissue transport and processing 
in the pathology department, and fixation procedures and subsequent tissue storage may 
be variable. Therefore, differential expression analysis between different FFPE samples 
may require large numbers of samples to control for non-biologic variability.

�RNA Extraction

RNA extraction is carried out according to established procedures. Commercial kits 
are used for this purpose in published RNAseq protocols. The type of sample may 
determine the best method. For FFPE tumour samples, FFPE optimised RNA 
extraction kits may be more appropriate [114–116], although the performance of 
different kits has not been systematically compared for FFPE tissues. For tissues 
where RNA degradation is expected, this should be quantified prior to the next step.

�RNA Purification

The primary RNA species of interest for RNAseq is messenger RNA (mRNA). 
mRNA generally comprises less than 5 % of the total RNA in a cell (Table  2). 
Sequencing of the gross total RNA pool will therefore produce only a small fraction 
of useful sequence reads. For this reason, it is desirable to enrich transcripts of interest, 
including mRNA and other non-coding regulatory RNAs. There are two methods 
currently in generalised use. The first is to subtract structural RNA (including ribo-
somal and transfer RNA) from the total RNA pool. Commercial kits available for 
this purpose remove rRNA using magnetic bead or microsphere separation [125]. 
Another method is to hybridise DNA to the rRNA and degrade the RNA-DNA 
duplexes using RNase H [126]. A less common alternative method, duplex specific 
nuclease (DSN) normalisation, involves a double stranded DNA specific DNase 
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[127]. Abundant cDNAs re-anneal faster during cooling after heat denaturation, 
thus becoming susceptible to selective degradation by DSN, while less abundant 
cDNAs remain denatured and resistant to degradation. This step is carried out after 
reverse transcription to cDNA.

The second enrichment method exploits the fact that mRNA are poly-adenylated 
at their tails (poly(A) + RNA). These repeat adenine sequences can be used to purify 
mRNA by hybridising them to complementary thymine oligonucleotides (oligo(dT)) 
linked to a purification medium [128] such as a column or magnetic beads [129]. 
The method has sufficient specificity that it may be repeated multiple times to fur-
ther enrich a sample.

Sample quality aside, the choice between rRNA depletion and poly(A) + enrich-
ment rests on the need to detect non-coding RNA, which is only possible with rRNA 
depletion [130]. Alternatively, if coding mRNA are the RNA species of interest, 
then poly(A) + enrichment is preferable as it is a more cost-effective use of sequenc-
ing consumables. Poly(A) + enrichment is also more effective at excluding rRNA, 
reducing ribosomal reads to 2 % or less of total sequence reads, whereas rRNA 
depletion still permits 5–10 % ribosomal reads [126, 130]. Although rRNA 
sequences can be removed from the sequencing data post-hoc, this may reduce the 
power to discriminate novel transcripts [131].

Sample RNA quality is an important determinant of the optimal RNA enrich-
ment method. Highly degraded RNA is not suitable for poly(A) + enrichment, as the 
3′ end of transcripts will be selectively enriched, and discontiguous 5′ fragments 
from the same transcript depleted from the sample [132]. The degree of RNA frag-
mentation in a sample is therefore an important factor in selecting an enrichment 
method, and the most widely used metric of fragmentation is the RNA integrity 
number (RIN) [133]. The metric is calculated from various features of the RNA 
electropherogram of a sample, and is accessible in the analytic software 
accompanying the Agilent Bioanlyzer™. Samples with a RIN of 8–10 are ideal for 
sequencing library preparation [131]. The RIN of FFPE tumour samples is generally 

Table 2  RNA species in mammalian cells

Species
Approximate relative abundance 
of total cellular RNA Reference

Ribosomal RNA 80 % [117]
Transfer RNA 15 % [118]
mRNA 1–5 % [118]
Low abundance non-coding RNAs

Small nuclear RNA [119]
Small nucleolar RNA [120]
Long noncoding RNA [121]
Antisense RNA [122]
Telomerase RNA [123]
Small interfering RNA [124]
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poor, ranging from 2–3, compared to 7–8 if the same tumour tissue is fresh frozen 
[115, 134]. There is no clear relationship between age of fixation and degree of 
RNA fragmentation, suggesting that most RNA fragmentation occurs at the time of 
fixation during tissue autolysis [135].

A further complication is that the RNA degradation induced by formalin fixation 
may not affect all RNA species equally. FFPE tissues display a reduction in exonic 
reads and an increase in intronic reads compared with fresh frozen tissues [126, 
132]. In summary FFPE samples are highly fragmented and apparently depleted of 
coding transcripts, and thus poly(A) + enrichment is inappropriate for these archival 
samples with current technology. It should also be noted that for the same reasons 
discussed above, even with high quality input RNA, poly(A) + enrichment is sensi-
tive to RNA fragmentation induced by experimental handling. It has been suggested 
that some older mRNA enrichment protocols employing centrifugation at 
13,000 rpm may fragment transcripts and cause loss of 5′ end exons [130].

The performance of different rRNA depletion protocols was compared system-
atically in 2013 for low quality and degraded input RNA [132]. In this analysis, the 
RNase H method proved superior for low quality samples, followed by Ribo-Zero™ 
(Epicentre), a commercial capture hybridization method using magnetic beads. 
RNase H was also the cheapest method per sample, and had the lowest ribosomal 
reads which in this study were comparable to even poly(A) + depletion. RNase H is 
not available as a kit, however. Since publication of this comparison, several new 
rRNA depletion methods have been published, but their performance compared to 
other methods is unknown.

�Generation of Complementary DNA (cDNA) Libraries

All commonly used next-generation sequencing platforms utilise DNA libraries. 
RNA must therefore be converted to cDNA to be sequenced. Although a method for 
directly sequencing RNA has been developed, it is not widely adopted [136]. 
Synthesis of cDNA has numerous variations in the published literature, and there 
are now RNAseq commercial kits available that incorporate this process. The essen-
tial elements are listed below

	1.	 Priming of RNA for initiation of cDNA synthesis. This is commonly performed 
using random hexamer primers. For poly(A) + RNA, oligo(T) priming is less 
commonly used, and introduces a bias for the 3′ end of transcripts. Random 
primers also cause bias, as their coverage of transcript fragments is not uniform, 
which may affect downstream quantification of expression [137].

	2.	 Fragmentation. This may be performed on extracted RNA or after cDNA synthe-
sis, using chemical or mechanical fragmentation. Fragmentation of RNA has the 
theoretical advantage of disrupting RNA secondary structure that may prevent 
accurate reverse transcription thus reducing 5′ biases due to incomplete 
cDNA synthesis. Sequencing read coverage was more evenly distributed 
with RNA hydrolytic fragmentation than shearing of cDNA in one study [138]. 
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All fragmentation methods produce their own biases, and should be tailored to 
the planned sequencing technology. Measurement of existing RNA degradation 
using the Bioanalyser or gel electrophoresis may show that FFPE or low quality 
samples do not require fragmentation. Removal of very small RNA fragments 
from degraded samples via bead purification can be performed here to improve 
library quality [132].

	3.	 cDNA synthesis. Reverse transcriptase synthesis of cDNA following random 
priming removes information regarding the DNA strand of origin of the RNA 
transcript. This ‘strandedness’ of the RNA adds useful information to the analy-
sis including: identification of regulatory antisense transcripts; more accurate 
assessment of gene expression levels; aiding detection of novel transcripts. 
Strand specific procedures rely on differentiating the primary RNA or cDNA 
strand. Preservation of strandedness has been achieved using selective adaptors 
to differentiate primary RNA or cDNA prior to subsequent cDNA synthesis or 
amplification, respectively. Chemical modification of the primary transcript has 
also been used. A number of methods were compared in Levin et al. [139], with 
dUTP second strand marking and Illumina RNA ligation performing the best. 
Any method of preserving strandedness will not be completely specific, and may 
introduce bias that should be accounted for when analysing sequence data [140]. 
The ongoing project of annotating non-coding RNA in the human genome will 
assist in these analyses. Commercial kits that preserve strandedness are available 
for major sequencing platforms. Stranded library preparation is not mandatory 
for differential gene expression analysis.

	4.	 Library preparation. This is conducted using commercial kits optimised for the 
planned sequencing platform. It is decided here if paired-end or single-end 
sequencing will be performed, and the appropriate kit selected. Paired-end 
sequencing is preferred for novel transcripts and isoform discovery, but is not 
necessary for comparing expression between samples. Library preparation con-
sists of attaching specific adapters to the cDNA fragment ends. This is discussed 
in more detail in the chapter on NGS. An important aspect of the process for 
RNAseq is restricting the fragment size. This may be done prior to or after 
adapter ligation. The optimal fragment size is generally 200 base pairs, although 
this may vary with the specific methodology and sequencing platform [113].

�Sequencing

Next-generation sequencing of cDNA occurs according to methods used for 
sequencing genomic DNA, this would be discussed in more detail in the chapter on 
NGS. The majority of RNAseq experiments in cancer, including those performed 
by The Cancer Genome Atlas, have been conducted using the Illumina platform 
[141], and is the focus of this discussion. It should be noted that the maximum read 
length of any Illumina sequencer is 300 base pairs at present, although 100–150 
base pair reads are usually employed. The length of these so-called short reads is 
generally much shorter than the length of RNA transcripts. Most of the work in 
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interpreting Illumina sequencing data arises from assigning these short reads to the 
parent transcripts. The Pacific Biosciences Single Molecule, Real Time (SMRT) 
technology is able to sequence reads in excess of 1000 base pairs [142]. It thus has 
a theoretical advantage over Illumina technology in resolving comprehensive splic-
ing architecture and fusion transcripts, but remains an immature platform.

The sequencing parameters for RNAseq depend on the aim of the experiment. 
The first consideration is multiplexing of samples. A sample may be barcoded and 
then mixed with other barcoded samples such that it can be sequenced in the same 
functional unit of the NGS platform. For Illumina sequencers, this refers to mix-
ing samples on the same flow cell lane. This reduces the sequencing cost per 
sample. Barcoding is performed by adding a short nucleotide sequence to a sam-
ple during library preparation. Reads pertaining to that sample can then be identi-
fied after sequencing.

Read length and sequence depth are two important parameters in planning for a 
sequencing run. Read length refers to how much of each cDNA fragment is 
sequenced. Generally, shorter read lengths 35–50 bp are adequate for quantifying 
gene expression, and longer read lengths 100 bp or more are preferable for novel 
transcript discovery [131].

Sequencing depth refers to the number of reads arising from a particular RNA 
transcript. In practical terms, to generate a certain amount of read data a sequenc-
ing run uses fixed units of consumables that have an associated cost. The total 
number of reads therefore scales in a linear fashion with the cost of the experiment. 
Modern Illumina sequencers produce at least 100 million reads per flow cell lane. 
The number of samples multiplexed per lane will therefore determine the number 
of expected reads per sample and the sequencing cost per sample. Multiple factors 
will decide the number of desired reads per sample, which may range from ten 
million reads for simply establishing the presence or absence of abundant tran-
scripts, to 20–40 million reads for quantification of abundantly expressed tran-
scripts, to 80 million reads for quantification of rare transcripts. It has been 
estimated that to provide a comprehensive overview of all transcripts and isoforms 
in human samples, >200 million paired-end reads may be required [143]. An 
alternative approach to escalating sequencing depth for less abundant transcripts is 
to perform targeted enrichment of select RNA transcripts in a similar fashion to 
targeted exome enrichment [144, 145]. This approach provides very high read cov-
erage for the selected transcripts and has been performed using commercially 
available exome capture kits applied to cDNA libraries after reverse transcription 
from RNA [146]. Capture efficiency does introduce another potential source of 
noise into quantification of gene expression.

�Data Analysis

As discussed above, the majority of RNAseq data is in short read form produced on 
the Illumina platform. Analysis of short read RNAseq data will be discussed here.
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�Pre-processing and Alignment

Analysis of RNAseq data follows many of the usual steps in analysing any sequencing 
data. Sequencing data arrives as a list of sequence reads with an associated index of 
the quality of each base in the read. This list will often be a mixture of several samples. 
The first step is to de-multiplex the samples by segregating the reads based on the 
indexes which were attached during library preparation, and this is often performed 
by the sequencer. The next step is to trim any adapter sequences. There are many 
publicly available software solutions for adapter trimming, summarised in [147].

The next step in cancer RNAseq is to align the processed reads to the reference 
genome. In contrast to DNAseq, the sequence of RNA transcripts contains exon 
junctions, as intronic sequences have been spliced out during transcription. To map 
these exon junctions to the genome, the aligner must use additional information 
regarding the sequences of all known exon junctions, or be able to map exonic 
subsequences within a sequence read in a naïve fashion. There are many aligners 
available which may employ both of these methods, and several have been devel-
oped specifically for RNAseq data [148, 149]. Some aligners such as MapSplice, 
for example, have a function to determine possible fusion transcripts [141, 150].

�Annotation

Annotation is the process of allocating the aligned sequence reads to known gene 
model features such as genomic loci, exons or transcripts. This is a prelude to quali-
tative and quantitative expression analyses. There are multiple annotation databases 
which contain information on the transcript sequences and splicing of known genes, 
such as Ensembl, RefSeq and AceView [151–153]. The annotation data used in this 
process will have significant effects on downstream analyses and should be chosen 
carefully and consistently [154, 155]. RefSeq is the simplest annotation and appears 
to give the most consistent gene expression results between samples, whereas 
AceView is the most comprehensive.
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�DNA Microarray

�Introduction

Cancer is a highly variable, heterogeneous disease induced by the accumulation of 
numerous genetic and environmental factors. Understanding of such a complex 
system and the intertwining of its multitude of biological functions would require 
complete deciphering of the human genome [1]. In the post-genomic era, the field 
of biology has transitioned from detecting differentially expressed single genes to a 
more systems-based focus, turning to approaches for finding differentially altered 
pathways. The DNA microarray has emerged as one of the key tools used in gene 
expression profiling. The power of microarrays, compared with other traditional 
methods of gene expression analysis (i.e. serial analysis of gene expression and 
quantitative real time PCR), lies in its ability to quanitify in parallel thousands of 
genes across multiple samples. The increased availability and affordability of 
genomic technologies together with the development of information processing 
technologies has enabled the generation and analysis of copious amounts of data. 
As a result, gene expression profiling has become a readily used tool, integral to 
characterising tumour molecular profiles.
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�Classifying Tumour Molecular Profile

Understanding the complex factors that induce tumourigenesis is an arduous task. 
The process of discovery and development of a therapeutic target necessitates com-
prehensive knowledge of the functions and effects of the target on cellular activities. 
The genetic diversity of cancers has alluded to the need for a more tailored medi-
cine, where decisions regarding prevention, diagnosis and treatment of disease are 
guided by the individual’s genetic profile. The specific molecular pathways deregu-
lated in the tumour need to be identified so that each patient receives the optimal 
targeted therapy. Microarray technology has proven to be a robust yet affordable 
tool for this purpose by illuminating the differences between healthy and diseased 
tissues, and identifying key biological pathways that are commonly involved across 
different cancer types.

Key examples of these pathways are the Wnt signalling pathway that is involved 
in cell differentiation, migration and polarity [2–5], the p53 signalling pathways 
involved in genomic stability, cell cycle regulation and inhibition of angiogenesis 
[6–8], the MAPK growth signalling pathway [2, 9, 10] and the NF-kB pathway that 
is involved in immune response to infection and cellular responses to free radicals 
and cytokines [3, 6, 9, 11]. Gene expression profiling through the use of microarrays 
has also allowed for the identification of potential therapeutic targets [12–16] and 
depiction of the actions of therapeutic targets at the molecular level, illustrating the 
engagement of the targeted pathway(s), receptor(s) or network through up- or 
down-regulated patterns of the intended drug target(s).

The capability of this approach has also been further demonstrated via its use in 
characterising a variety of cancers including breast, colon, head and neck, liver, 
lung, ovary, pancreatic, prostate and stomach cancers [17–27]. These cancers have 
been characterised into different biologically and clinically relevant subgroups 
based on the relative differences in abundance of certain groups of mRNAs and 
some of these gene signatures have been put forward as predictors of prognosis or 
treatment response. The large scale gene expression data sets that have been collected 
and used to characterise these cancers have been analysed in two fundamentally 
different ways. One approach is the unsupervised classification or hierarchical clus-
tering approach (class discovery) [28] where similarities in gene expression pat-
terns, which could translate into similarities in biological behaviour or phenotype, 
can be used to classify a cancer into its subtypes. Additional clinical data is not 
required for this approach. The other approach is known as supervised classification 
(class prediction). Samples are first grouped according to different clinical end-
points (i.e. response to therapy) and the analysis identifies the gene expression pat-
terns that best distinguish between the groups.

In the case of breast cancer, microarray analysis, via the unsupervised classifica-
tion approach, has divided the disease into at least five subtypes with clinical rele-
vance [29, 30]: luminal A, luminal B, basal-like, HER2 enriched and normal-like. 
The luminal A and B subtypes are oestrogen receptor (ER) positive, luminal B 
tumours are associated with increased expression of proliferation-related genes and 
also have poorer outcomes compared with luminal A tumours [31]. Microarray 
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studies show that luminal tumours are associated with high expression of luminal 
cytokeratins and genetic markers of luminal epithelial cells of normal breast tissue 
[32]. HER2-enriched tumours show amplification and high expression of the ERBB2 
gene and are associated with high levels of proliferation. Over-expression of the 
ERBB2 gene has been found to be associated with low expression levels of ER and 
numerous other genes shown to be associated with ER expression. This trait was 
also shown in basal-like tumours [29]. Basal-like breast cancers are ER, progester-
one receptor (PR) and HER2 negative and do not express some genes that are typi-
cal of myoepithelial cells of normal breast tissue. Instead, basal-like breast cancers, 
as the name suggests, express basal cell markers such as keratins 5/6 and/or 17 [29].

�Prognostic and Predictive Multigene Signatures

The main purpose of the above studies was to establish a molecular classification of 
tumours and does not serve well in the search for prognostic or predictive classifiers. 
The supervised approach is normally used for the latter. There are two main strategies 
involved in the development of prognostic or predictive gene signatures: the ‘top-down’ 
approach and the ‘bottom-up’ approach. In the ‘top-down’ approach, gene expression 
data from groups of patients with known clinical outcomes are compared in the search 
for genes that are associated with prognosis without a priori biological assumptions. 
The strength of this approach is that it is unbiased as there are no assumptions made 
about which genes are likely to be involved in the biological pathway of interest. The 
shortcoming of this approach is that the outcome of the analysis is highly dependent on 
the quality of the samples and data produced. The ‘bottom-up’ approach identifies gene 
expression patterns that are previously known to be associated with a specific disease 
phenotype or aberrant molecular pathway which are then subsequently correlated with 
clinical outcome. A drawback to this approach is that the outcome is as good as the 
state of knowledge: gene expression patterns not previously known to be involved in 
the process of interest are not incorporated or considered in the analysis [28, 33].

The MammaPrint (Agendia®, The Netherlands) 70-gene prognostic signature 
uses a supervised ‘top-down’ approach to predict the risk of breast cancer distant 
metastases and was the first commercialised DNA microarray predictor. 
Retrospective information from 78 patients, from the Netherlands Cancer Institute, 
diagnosed with node-negative breast cancer and who had not received systemic 
adjuvant therapy was used [34]. It was subsequently validated in a cohort of both 
node-positive and node-negative patients from the same institution [35]. The prog-
nostic value of MammaPrint was established in patients with node-positive and 
node-negative breast cancers [35, 36]. It predicts early metastasis in post-menopausal 
women between the ages of 55–70 years [37] and is also predictive of response to 
neoadjuvant and adjuvant chemotherapy [38, 39].

Using the ‘bottom-up’ strategy, a 97 prognostic gene-signature was identified to 
consistently discriminate between low- and high-grade breast tumours [40]. The set 
of genes that were commonly overexpressed in grade three tumours and which 
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distinguished between grade three and grade one tumours have been previously associ-
ated with cell cycle progression and proliferation. It has also helped to restratify 
grade two tumours into grade one or grade three tumours. This 97 gene-signature 
has been shown to be associated with pathological response to primary chemother-
apy [41] and has been developed commercially as the MapQuant Dx© Genomic 
Grade Assay (Ipsogen®, France).

The efficacies of single agent therapeutic targets are usually short-lived either 
through de novo or acquired resistance. Presence of intra-tumoural heterogeneity 
could be a factor that contributes to de novo resistance. Acquired drug resistance 
occurs after prolonged drug treatment and tumour cells develop derangements to 
bypass dependence on the targeted cell survival/proliferation pathway to over-
come the toxic effect of treatment. Gene expression profiling through microarrays 
has demonstrated the potential to determine response to treatment, identify mech-
anisms of resistance and further uncover potential therapeutic pathways that can 
be targeted in combination therapies to overcome resistance. The ‘bottom-up’ 
strategy was also used to determine if the various molecular subtypes of breast 
cancer respond differently to preoperative chemotherapy [42]. Rouzier et  al. 
defined the four molecular classes of breast cancer by clustering and found that 
the rates of pathologic complete response to preoperative chemotherapy, T/FAC, 
(paclitaxel followed by 5-fluorouracil, doxorubicin and cyclophosphamide) were 
significantly different among the four classes. They also identified gene sets 
within the HER2-enriched and basal-like groups that were associated with patho-
logic complete response to preoperative T/FAC. Another 74-multigene signature 
was developed to predict response to preoperative chemotherapy (T/FAC) [43]. 
The combination of these two gene sets were used to create a 30-gene set to pre-
dict complete response to T/FAC chemotherapy and a 200-gene set that predicts 
tumour recurrence after 5 years of endocrine therapy (NuvoSelect™, Nuvera 
Bioscience, USA).

A recent pilot study showed that gene expression profiling of tumours that 
have become treatment-resistant can identify molecular profiles that are associ-
ated with sensitivity to certain currently available therapies [16]. The progression 
free survival (PFS) of a patient using the treatment regimen selected by their 
molecular profile was compared to the PFS for the most recent regimen on which 
the same patient had experienced progression. 27 % (p = 0.007) of the patients 
had a longer PFS on the molecular profiling suggested regimen than on the regi-
men on which the patient experienced progression. New strategies, like that of 
the pilot study, based on tumour genomic or gene expression profiles will be able 
to guide patients to early phase trials that are focused on small dedicated popula-
tions of patients which could result in theoretically increased efficacy of thera-
peutics, further translating into shorter and more cost effective trials [44]. 
Nonetheless, it is important to note that such biopsy-driven therapeutic targeting 
is limited by the emerging concept of tumoural heterogeneity [45, 46], suggesting 
that single tumour biopsies might lead to the underestimation of the tumour 
genomic landscape.
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�Data Analysis Challenges

While microarray is a robust technology that has allowed significant headway to be 
gained in our battle against cancer, one of the major hurdles lies in the integration 
of extensive amounts of dynamic data. The ability to perform robust statistical analy-
ses to generate clinically relevant gene expression signature continues to remain 
challenging. Despite widespread use of microarray technology in the field of cancer, 
only very few useful biomarkers have been identified and have been or are being 
translated into useful clinical assays or companion diagnostics (MammaPrint®, 
NuvoSelect™). Some of the more salient limitations of the technology have been its 
lack of reproducibility [47–49] and our ability to tease useful information out of the 
often noisy and complex amount of data that is generated. The use of DNA microar-
ray for cancer prognosis has been demonstrated [50]. Nonetheless, much more work 
needs to be done to understand the most accurate way to analyse such complex data 
and the generalisability of a classifier derived from the data. The Microarray Quality 
Control project has started a second phase, comparing various approaches to the 
development and validation of microarray-based classifiers to be used in clinical 
practices [51].

�Conclusion

The capability of microarrays to analyse gene expression patterns of thousands of 
transcripts in parallel provides us with a unique insight into the biological mecha-
nisms underlying malignancy. There have been successful employments of gene 
expression signatures in the field of cancer, taking us one step closer to person-
alised treatment. Appropriate experimental design and robust bioinformatics 
analysis are required to generate results that are of clinical relevance. Recent 
advances in the next generation sequencing technologies have made whole exome 
and whole genome sequencing increasingly affordable and accessible for more 
comprehensive detection of genetic mutations in tumours. Integrating gene expres-
sion patterns with genetic mutation data is an approach that has the potential to 
allow detailed dissection of the biological pathways underlying the diverse 
responses to treatments and the mechanisms of resistance that are innate or develop 
in response to treatment, paving the way for greater clinical efficacy at the popula-
tion level. Nevertheless, the concept of personalised medicine still faces several 
challenges and issues before its translation to the clinic. These include the need for 
new bioinformatics tools to allow quick yet accurate access to genomic/transcrip-
tomic explorations. Furthermore, these high throughput technologies provide us 
with the tools that can potentially allow us to further identify and characterise new 
tumour subsets and/or biomarkers. As such, there is further potential to stratify 
patients into more homogeneous populations.
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�RNASeq

RNAseq is growing in importance as a research tool. There has been a steadily 
growing list of applications and associated computational methods. The discus-
sion here relates to the use of RNAseq for analyses of gene expression, and in 
particular comparing differential expression between samples, time points or 
experimental conditions.

Following on from the discussion in the Methods chapter, after basic data pro-
cessing of sequencer reads, RNAseq data is presented as an annotated transcript 
with an associated read count. Simply the presence or absence of certain transcripts 
detected via RNAseq has a variety of uses, such as determining if a genomic muta-
tion detected with DNAseq is expressed [52], and as orthogonal validation of muta-
tions detected with whole exome or whole genome DNAseq [53]. RNAseq has also 
been used to improve detection of low frequency variants detected with DNAseq in 
low purity tumour samples [54].

Quantitative analysis requires further processing to permit statistical modelling. 
The nature of short read sequencing requires the read counts to be normalised to 
enable comparison between different genes in the same sample, or the same gene 
under different experimental conditions. This has two aspects. Firstly, longer RNA 
transcripts will produce more sequencer reads than a shorter transcript, despite the 
two having the same level of expression. The simplest method of correcting for this 
is to divide the read count for an annotated transcript by the total number of bases 
in the transcript, which is determined by combining the exons. This will produce a 
‘reads per kilobase of exon model’ measurement for each transcript.

An additional factor requiring normalisation is the inherent variability in sample 
handling and library preparation which means that the total number of sequencer 
reads and therefore mapped reads varies between different samples and sequencing 
runs. To correct for this, the ‘reads per kilobase of exon model’ is further divided by 
the number of mapped reads for the sample, in millions of reads. This double nor-
malisation procedure expresses read counts as RPKM or ‘reads per kilobase of exon 
model per million mapped reads’. For paired end reads ‘fragments per kilobase of 
exon model per million mapped reads’ or FPKM is used. PKM normalisation was 
used in the earliest RNAseq experiments, and has been shown to perform well when 
known quantities of known transcripts, so-called spike ins are added into a sample 
which is then sequenced under differing conditions [55].

It has since been recognised that normalising by transcript length and mapped 
reads is overly simplistic [56, 57]. In particular, abundantly expressed genes may 
take up most of the mapped reads in a sample, thus causing less abundant transcripts 
to appear under-represented. RPKM remains a useful metric, but more robust nor-
malisation methods such as scaling factors should be used when trying to quantify 
differential gene expression [58]. A comparative analysis of normalisation methods 
suggested that the normalisation methods employed by the software edgeR and 
DESeq were most appropriate [59]. Both of these software packages are available 
for use with the statistical programming language R.
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One of the most commonly used packages for RNAseq data analysis is Cufflinks 
[60]. Cufflinks models gene expression at the transcript level, and rather than rely-
ing on raw read counts it estimates the gene expression level which would produce 
the detected reads. This requires accurate splice variant detection, which adds 
another layer of complexity in comparison to read counting.

Differential expression involves applying a statistical test to the observed differences 
in gene expression between two different states. The output from the analysis is gener-
ally a fold change in expression between the experimental groups with an associated 
p-value corrected for multiple comparisons. Some examples of differential expression 
experiments: comparing the differentially expressed genes between different subtypes 
of gastric cancer [61], or between cell lines that are variably sensitive to some drug 
therapy [62]. Statistical approaches to differential expression differ in their flexibility, 
underlying statistical methodology, sensitivity and computational requirements. The 
performance of different software packages providing a statistical treatment of differ-
ential expression has been compared. In general, edgeR, DESeq or baySeq-based 
analysis performed well, and were superior to Cuffdiff which is part of the Cufflinks 
package [63]. Of note, in this study some of the more successful approaches involved 
applying the robust and mature methods developed for differential expression analysis 
of microarrays using, for example, the limma package in R [64]. The discrete count-
based data produced by RNAseq must be transformed into continuous data reminiscent 
of microarray gene expression values to enable this approach.

Experimental design is important to achieving sufficient statistical power in a dif-
ferential expression experiment. The nature of RNAseq is that it is highly sensitive to 
experimental conditions. In the example of conducting an experiment in cell lines, 
subtle differences in culture conditions or treatment may introduce variability that 
will reduce the external validity of the results or obscure a true effect. No analytical 
method can overcome this limitation, which must be mitigated by using biological 
replicates—that is, repeating the experiment several times attempting to keep the 
experimental conditions constant. This provides an estimate of the inherent variabil-
ity in the gene expression levels, which in turn allows appropriate statistical model-
ling. In less controlled experimental situations, such as comparing patient samples, 
much larger sample sizes are required to estimate the background variability [65].

Tools are available to estimate the sample size and power of differential expression 
experiments [66]. These tools are most useful if pilot data on expression levels can be 
supplied prior to planning an experiment. Several published analyses have shown that 
in general, the statistical power of an RNAseq experiment is most easily improved by 
increasing the number of biological replicates, rather than sequencing more deeply 
[63, 67]. Increasing replicates and reducing sequencing depth is also a cost effective 
strategy. If replicates are not possible, then attempts can be made to estimate the back-
ground variability of the genes in question using housekeeper genes that are not 
thought to change expression, or using publicly available RNAseq datasets [65].

Following differential expression analysis, functional annotation of the expressed 
genes is usually undertaken. This may be conducted using pathway analysis tools such 
as Gene Ontology [68]. Careful consideration must still be given to the biases inherent 
to RNAseq when performing functional annotation, however [69]. Normalised 
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RNAseq expression data may also be used for feature extraction and clustering into 
molecular subtypes, using the same methods employed for gene expression microarray 
data such as non-negative matrix factorisation and k-means clustering [61, 70].

�Limitations

RNAseq remains a new technology, and has important limitations. There are many 
sources of potential variability in sample acquisition, library preparation and data 
analysis, which create concerns for the reproducibility of results. A number of biases 
are known to exist, shown in Table 1. Analytical methods must account for these 
biases, some of which have only been discovered recently. A consortium led by the 
United States FDA examined the reproducibility and accuracy of RNAseq per-
formed on multiple platforms and in multiple laboratories [71]. This study found 
that although absolute quantification of gene expression was unreliable, relative 
gene expression was consistent on different platforms in different laboratories. It 
was also noted that there is currently no reliable gold standard reference sample of 
RNA to test workflow performance—the supposed reference samples in this study 
showed considerable variability. For this reason, multiple technical replicates—that 
is, repeating library preparation and sequencing using the same initial sample—
were recommended. Another recently published study used transcribed cDNA 
libraries to test RNAseq performance [72]. This removed the complicating factor of 
splice variants. Using a number of library preparation methods, unexpected read 
count variability was seen that appeared dependent on the library preparation proto-

col and transcript sequence characteristics in various combinations.

�Conclusion

Future directions of RNAseq still under development include single cell RNAseq 
and in situ RNAseq. Single cell RNAseq has already been performed by several 
groups [75, 76], and efforts are underway to improve the accuracy and throughput 

Table 1  Sources of bias in RNASeq

Bias Source

Overrepresentation of introns FFPE processing [73]
GC bias: increased coverage of GC rich sequences Library preparation chemistry [72]
More reads for longer transcripts Short read platform [55]
Bias towards 3′ transcript sequence reads Poly(A) enrichment
Bias towards 5′ transcript sequence reads Random hexamer priming [74]
Variable coverage Ribosomal RNA depletion [72]
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of the technique [77, 78]. In situ RNAseq refers to sequencing RNA transcripts in 
their native cellular location and allows the integration of cellular spatial organisation 
with the transcriptome providing a direct link between gene expression, 
microenvironment and phenotype. It has been achieved recently in tissue slides and 
whole mount embryos [79]. As these technologies improve in efficiency, cost and 
throughput, an overwhelming amount of transcriptome data will be generated. The 
success of RNAseq will depend, however, on optimising experimental design, 
library preparation and analytical methods.
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�Background

A fundamental mechanism underlying the etiology of cancer appears to be the imbal-
anced expression of genes controlling cell growth, resulting in abnormal control of 
cell proliferation. For more than half a century the dominant paradigm was that 
tumourigenesis happened as a result of the accumulation of mutations in the regions 
of key genes that encoded proteins, such as oncogenes and tumor suppressor genes, 
leading to alteration of the normal cellular signaling processes that governed cellular 
proliferation and development. However, recent research has revealed that specific 
classes of RNA molecules—which were previously believed to only convey genetic 
information from DNA to protein—can also play diverse roles in cellular processes, 
and these Noncoding RNA molecules (ncRNA) have added a new layer of complex-
ity to our understanding of gene regulation and disease progression [1–5].

Recent genome and transcriptome studies have revealed ncRNAs (excluding 
ribosomal RNA and transfer RNA) make up the majority of transcribed RNA spe-
cies and have a wide range of functions in cellular and developmental processes. 
Moreover, due to their regulatory functions ncRNAs are involved in the develop-
ment and pathophysiology of many diseases, and represent potential targets for 
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therapeutic intervention [1, 2, 4, 6, 7]. Classification of ncRNAs is typically based 
on their size, with transcripts larger than 200 bases categorized as long ncRNA 
(lncRNA), while those RNA species smaller than 200 bases are generally referred 
to as short or small ncRNAs.

Identification of the genetic and epigenetic events that disrupt ncRNA loci pro-
vides opportunities for targeting these disruptions for novel diagnostic or therapeu-
tic applications, and can also offer prognostic and predictive possibilities. Here we 
briefly explain the role of ncRNAs in cellular function before detailing the methods 
involved in their isolation and analysis.

�Small ncRNA

Transcriptome analysis has now profiled a large number of small ncRNAs, and 
many of them are accepted as powerful regulatory molecules in gene expression. 
To date, many different types of small ncRNAs such as miRNA [8], PIWI-
interacting RNA (piRNAs) [9], small nucleolar RNAs (snoRNAs) [10], or small 
Cajal body-specific RNA (scaRNAs) [11] have been identified; of these, miRNA 
have been studied extensively and are arguably the best studied ncRNAs that 
directly modulate gene expression. A mature miRNA is typically 22 nucleotides in 
length and functions in the transcriptional and post-transcriptional regulation of 
gene expression. The biogenesis and post-transcriptional regulatory mechanism of 
miRNAs are well studied, and involve a complex protein machinery which includes 
the Argonaute family, RNA polymerase II dependent transcription, and the Drosha 
and Dicer RNase IIIs. Mature miRNAs and their associated proteins combine to 
form the RNA-induced silencing complexes (RISC), of which the Argonaute pro-
teins are the catalytic endonuclease components. The translation of mRNA into 
proteins is then controlled through imperfect pairing between the miRNA and the 
3′UTR of the targeted mRNA, and the subsequent translation of mRNA into pro-
teins is then repressed by miRNAs through two key mechanisms: mRNA degrada-
tion, or the inhibition of translation initiation (reviewed in [8, 12]). It is estimated 
that miRNAs regulate more than 60 % of protein coding genes in this fashion 
(reviewed in [1]).

�Long ncRNA

Initially ncRNA research was focused on small regulatory RNAs such as miR-
NAs, but more recent transcriptome studies have identified a great number of 
long transcripts—the so-called lncRNAs [13–16]. These studies have now made 
it clear that mammalian genomes encode numerous lncRNAs that lack open 
reading frames of significant length (<100 amino acids) [17, 18]. These lncRNAs 
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often serve key regulatory roles that can induce or suppress the expression of 
protein coding genes, can modulate the activity, localization, and stability of 
protein(s) which bind to them [19–21], and serve as key structural components 
[22, 23]. In addition, many lncRNAs also host small RNAs such as snoRNAs or 
scaRNAs in their introns [24], and some miRNAs can also be derived from 
lncRNAs via sequential cleavage by Drosha and Dicer, further broadening the 
complexity of ncRNA processing [25, 26]. Therefore it is becoming increasingly 
clear that lncRNAs can function via numerous mechanisms and are key regula-
tory molecules in the cell.

For these reasons ncRNAs have great potential to be used as novel indepen-
dent biomarkers for early diagnosis, prognosis, and prediction in cancer. For 
example, MALAT-1 is a Noncoding transcript highly expressed in the lung, pan-
creas, and other healthy organs, but in NSCLC (non-small cell lung carcinoma) 
was identified as prognostic for patient survival in stage I NSCLC [27]. Similarly, 
an lncRNA termed HOTAIR shows increased in expression in primary breast 
tumors and metastases, and the HOTAIR expression level in primary tumors is a 
powerful predictor of eventual metastasis and death [28]. Together with the iden-
tification of a spectrum of small Noncoding transcripts such as miRNAs that are 
deregulated in cancer [29, 30], the number of Noncoding transcripts suggested as 
biomarkers in cancer has exploded. As such, both long and short ncRNAs repre-
sent new avenues of investigation for drug discovery with several advantages 
over traditional protein-based targets; however, they come with their own unique 
set of challenges. Due to the rapidly evolving pace of ncRNA research in cancer 
pathology, this review will not attempt to catalogue the current state of ncRNAs 
implicated in cancer etiology and pathogenesis. Similarly, step-by-step method-
ologies will not be covered, as detailed protocol breakdowns are available else-
where and are provided in many of the kits that are mentioned below. Rather, this 
review will focus on the key applications that are used in ncRNA analysis, high-
lighting critical steps and points, and attempting to provide a general guide to 
working with Noncoding RNAs based on years of user experience.

�Isolation of ncRNA from Different Human Sources

Although ncRNA can be isolated from whole tissue or paraffin sections, there are 
also other sources from which ncRNAs can be isolated such as urine, saliva, plasma, 
serum, and Pap smears [31–35]. NcRNAs also can be isolated from exosomes, 
which are small membrane vesicles [36] that are released to the extracellular envi-
ronment and are present in different body fluids [37]. Laser capture micro-dissection 
can also be employed to enrich tissue sections, but this suffers the double disadvan-
tage of providing low yields as well as extremely degraded RNA, which can be 
problematic for some analysis streams.
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�Quality of RNA

The first key parameter to address when working with RNA relates to RNA quality. 
Of the three major classes of biomolecules typically worked with in a research or 
pathology laboratory (i.e., DNA, RNA, and proteins), RNA is generally the most 
fragile and sensitive to degradation, due in large part to the ubiquitous presence of 
exogenous RNases in the environment.

When working with total RNA the 28S and 18S ribosomal bands make up >90 % 
of the total amount of RNA, and one metric by which to gauge the overall quality of 
the extracted sample is the relative intensity of these two transcripts, which can be 
easily visualized on a standard agarose gel. The 28S and 18S ribosomal bands are 
5070 bp and 1869 bp in size, respectively [source, NCBI nucleotide website], and 
when visualized by eye on a standard DNA agarose gel, high quality intact RNA 
yields two bright bands with the upper 28S band approximately twice as bright as 
the lower 18S, with minimal signs of smearing.

Alternatively, certain platforms for RNA analysis which perform digital electro-
phoresis (i.e., Agilent Bioanalyzer, Qiaxcel, and LabChipGX) employ an algorithm 
to analyze the electrophoretic trace of the RNA sample, including the presence or 
absence of degradation products. It then uses this spectrum to determine sample 
integrity and assign an RNA Integrity Score (RIN) between 1 and 10, where 1 is 
highly degraded and 10 is completely intact. Advantages of these platforms are the 
relative sterility when performing lab-on-a-chip analyses, which limits exposure to 
contaminating RNases; as well as the quantitative interpretation of the RNA electro-
pherogram, which occurs automatically and is not subject to individual interpreta-
tion, thereby limiting bias and improving repeatability of experiments [38]. 
However, it should be noted that some RNA sources such as exosomes and circulat-
ing free RNAs do not contain rRNA, and thus RNA integrity cannot be easily 
determined.

Broadly speaking, superior results will always be obtained when starting with 
high quality intact RNA, but depending on the application a degraded sample does 
not necessarily curtail analysis, and high quality data can still be generated even 
when an RNA sample has experienced substantial degradation.

�Methods of Sample Fixation

The ubiquitous use of formalin fixation and the embedding of tissue in paraffin 
blocks (formalin-fixed paraffin embedded, or FFPE) in most pathology laboratories 
means that if a sample has undergone fixation, it mostly likely has been treated with 
formalin. Although the process of formalin fixation preserves tissue morphology for 
immunohistochemistry, the fixation method is problematic for when RNA and DNA 
are extracted from the fixed sample. Although several vendors have kits on the mar-
ket which are optimized for sample extraction from FFPE tissues, in our experience 
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formalin fixation typically results in lower yields and lower nucleic acid quality 
(both RNA and DNA), as compared with extractions performed with fresh tissue. 
When high quality RNA is required alternative fixatives such as Paxgene or 
RNALater (Ambion) can be employed, and we observe Paxgene in particular to 
preserve RNA integrity quite well. However, while Paxgene or other alternatives 
may result in higher nucleic acid quality they typically require separate fixation and 
processing stations, which may not be a feasible option for many pathology labs.

�RNA Purification

All analyses related to characterization and quantitation of RNAs are dependent on 
effective isolation from source material. This will typically involve extraction from 
fresh tissue, fresh-frozen tissue, or FFPE sections. The two main extraction methods 
used for RNA purification can be broadly grouped into two applications: column-
based isolation methods employing a silica filter, and methods which involve 
organic solvent/phenol-chloroform.

�Phenol/Chloroform Extractions

Commercial phenol-chloroform-based extraction methods (i.e., Trizol from Life 
Technologies or Qiazol from Qiagen) are readily available on the market. While 
users are capable of making their own lots of buffered phenol for nucleic acid 
extractions, the toxicity of phenol, and the need to ensure it is properly buffered 
typically mean that the convenience and safety in purchasing commercially pre-
pared reagents outweigh any marginal cost-benefits that accrue from making the 
reagents in-house.

One critical consideration is that phenol is typically buffered at different pHs 
depending on whether DNA or RNA isolation is intended; DNA isolations usually 
employ phenol at pH 8.0, which results in both DNA and RNA being isolated from 
the aqueous phase. In contrast, using phenol buffered at pH 5.2 helps to partition 
DNA away from the aqueous phase, resulting in superior RNA enrichment. This is 
a critical parameter, as differences in pH can affect the overall performance and 
fidelity of the purification.

While phenol-based methods of RNA extraction are extremely effective at puri-
fying and isolating the small RNA fraction, the toxicity and relative hazard of work-
ing with buffered phenol means that some laboratories may prefer to explore 
alternate means. The second most common method of RNA extraction employs 
chaotropic guanidinium salts to denature proteins in a tissue or cell sample and 
protect the RNA from degradation, followed by binding of the RNA to silica filters 
in plastic columns; the RNeasy (Qiagen) and Nucleospin (Macherey-Nagel) kits are 
good examples of this.
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Although both methods of RNA extraction perform well, it is important to note 
that both protocols can cause carry-over of genomic DNA into the purified RNA. In 
general, phenol-chloroform extractions are more prone to protein and DNA carry-
over, as these contaminants partition at the interphase and are easy to accidently 
aspirate while attempting to remove the aqueous upper layer. This can be some-
what reduced by removing only a portion of the aqueous layer, which minimizes 
the chance of accidental aspiration of contaminants, but this sacrifices some of the 
RNA sample which may not be ideal, particularly for precious clinical samples. 
The stability of the interphase can be increased by using bromochloropropane (i.e., 
1-bromo-2 chloropropane) instead of chloroform, but this offers only modest 
improvements. After removal of the aqueous supernatant, the RNA is then precipi-
tated with isopropanol or ethanol, followed by washes in 70 % ethanol to remove 
residual salts and trace phenol. However, it is recommended that for small RNA 
ethanol washes be performed with 80 % ethanol, as small RNAs may retain some 
solubility in 70 % concentrations of ethanol. As mentioned, these ethanol washes 
are mostly used to remove residual salts and solvents from the RNA pellet, but are 
not effective at removing either contaminating protein or DNA. To remove these 
contaminants, separate processing steps must be taken; for example, additional 
rounds of phenol-chloroform purification can be performed to remove protein 
contamination.

In comparison, the column method is somewhat simpler and more straight-
forward, relying on the selective binding of RNA to a silica filter and using wash 
steps to remove residual salts and other contaminants. The wash step in particular is 
quite effective at removing protein and salt contaminants, and these washes are also 
somewhat effective at removing contaminating genomic DNA (gDNA), although 
trace gDNA still remains.

It should be noted that in the absence of DNase treatment both methods of extrac-
tion will still have residual gDNA, in our experience typically in the range from 10 
to >30 %. This residual gDNA can be problematic in some applications, because 
while transcripts which encode for proteins or lncRNAs are frequently spliced, 
small ncRNAs frequently retain the same sequence as the genomic DNA from 
which they were derived, making it difficult to design PCR primers and probes in 
such a way as to limit the effects of contaminating DNA. For this reason, DNase 
treatment is a critical step, particularly when employing RT-qPCR methods of 
ncRNA detection and quantitation.

In our experience phenol-chloroform-extracted RNA is more prone to DNA 
contamination, and residual proteins—including RNases—are frequently co-iso-
lated along with the RNA due to the nature of the extraction. As most purified 
RNA will be resuspended in DEPC, TE, or purified water and kept on ice, the 
effect of these contaminating RNases tends to be limited. However, care must be 
taken when DNasing phenol-chloroform-extracted RNA, since upon the addition 
of 1× DNase buffer and incubation of the sample at 37 °C, contaminating RNases 
can be activated leading to degradation of RNA, which can impact downstream 
processes.
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Column-based methods of purification are better suited for DNase treatment, as the 
residual washes tend to remove these contaminating RNases before the addition of 
DNase buffer. As well, while contaminating DNA is still problematic, the nature of 
column purifications is such that smaller DNA fragments (i.e., 500 bp and less) tend to 
be preferentially lost during column purification. Moreover, some vendors such as 
Qiagen, Ambion, and NucleoSpin have protocol adaptions that allow isolation of the 
small RNA fraction separate from the larger RNA pool, and this small RNA fraction 
tends to be highly pure, with most residual DNA contamination co-localizing with the 
larger RNA fraction. Interestingly, we have observed that column-based DNase treat-
ment frequently increases the RIN quality score of treated RNA, presumably due to the 
removal of background gDNA fluorescence from the digital electrophoretic trace, 
which the automated analysis software interprets as degraded RNA.

For the reasons outlined above, column-based methods of RNA purification are 
generally recommended, except for those instances where RNAs smaller than ~18 nt 
are being worked with, in which cases phenol-based extraction methods may offer 
greater enrichment.

�Working with Degraded RNA: Enzymatic Verses Physical 
Degradation of RNA

RNA integrity is frequently referred to when working with RNA, and given the 
sample source (i.e., FFPE versus fresh tissue biopsies), the integrity of the RNA 
sample can inform the downstream application. As mentioned, RNA integrity is a 
metric that refers to the relative intensities of the 28S and 18S ribosomal peaks, 
when visualized by either agarose-gel electrophoresis, or digitally using the Agilent 
Bioanalyzer RNA chips (or similar application).

Depending on the application, degraded RNA is not necessarily problematic; 
although superior results will always be achieved with a more intact starting sample, 
many applications will function quite well even with substantial degradation of the 
sample. For example, microarrays and RT-qPCR applications can perform very well 
with RINs below 5, whereas next-generation sequencing applications will start to 
suffer due to the saturating effects of degraded rRNA in sequencing libraries, which 
produce non-informative rRNA reads.

�Detection of RNAs/Validation of High-Throughput Data

One of the most common techniques to investigate the expression of candidate 
genes is the polymerase chain reaction. Here we explain how this technology can be 
used to determine the expression of ncRNAs and validate the data derived from 
high-throughput methods such as microarray or deep-sequencing.
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�Polymerase Chain Reaction

The expression of ncRNAs can be examined by reverse transcription (RT) PCR and/
or quantitative real-time PCR. Measuring the level of ncRNAs is a crucial method to 
understand the roles they play in cells and how they may contribute towards cancer 
progression. However, despite the widespread use of PCR in diagnostic and research 
laboratories, there are still frustrations in performing successful PCR, and key 
parameters which may enhance the success of PCR applications are outlined below.

�Preparation of cDNA

The total amount of RNA required for complementary DNA (cDNA) synthesis can 
vary between 100 and 1000 ng of total RNA. Since the amount of RNA derived 
from clinical samples is normally limiting, RT-PCR applications depend on the 
sample quality and quantity. Reverse-transcription can be performed easily using 
many commercially available kits.

To prepare cDNA to amplify lncRNA and/or precursor and mature miRNA, RNA 
first needs to be extracted using TRIZOL or another appropriate RNA purification kit, 
then treated with DNase I. Only after the RNA has been treated with DNAse can it be 
used in reverse transcription reactions. It has been shown that great numbers of lncRNAs 
are polyadenylated (poly-A) and their interactions with poly-A binding proteins affect 
their stability and turnover [39], therefore to detect the expression of lncRNAs, oligo-
dT primers can be used to prepare the cDNA library used in PCR. For pre-miRNA or 
snoRNA and lncRNA lacking a polyadenylated tail gene-specific primers can be used 
instead, and random hexamers can also be employed for cDNA synthesis of lncRNA 
transcripts. However, to reverse transcribe stable hairpins, such as those found in pre-
miRNA, the use of gene-specific primers at an elevated temperature rather than short 
primers (i.e., random hexamers) at room temperature is recommended [40]. Publicly 
available data can be examined to determine the existence of poly-A tail.

�Designing Gene-Specific Primers

For lncRNAs containing more than two exons it is best to design the primers that 
cover exon–intron junctions to eliminate the effect of genomic DNA contamination 
in PCR reactions, which can induce false positives and reduce sensitivity. To design 
the primers several software programs such as Primer3, Primer Express, and NCBI 
primer design are available, and we have used these with excellent success.

For detection and quantification of RNA, the presence of particular RNA isoforms in 
the sample represent a major issue that needs to be considered carefully. For example, 
the isoforms of some lncRNAs are tissue specific, and it is important to select the exons 
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that are expressed in most of the identified isoforms when designing primers. However, 
in some cases, to identify the exact sequence and length of isoforms other techniques are 
required. Figure 1 shows an example of five different isoforms of lncRNA, but each set 
of primers can distinguish between four isoforms at most. Therefore in this case to iden-
tify the 5′ end of the gene 5′ Rapid Amplification of cDNA Ends (5′ RACE) is required; 
alternately the tissue specific isoform could also potentially be identified by RT-PCR 
followed by Sanger sequencing or next-generation sequencing [41].

The need for high-stringency reliable PCR methods with reproducibility, selectivity, 
and sensitivity requires optimization of several conditions such as annealing tempera-
ture, elongation time, salt concentration, and can be further optimized by addition of 
additives (e.g., formamide, DMSO, and BSA) in the reaction mix (reviewed in [42]). 
The most common cause of unreliable PCR is off-target amplifications, which are nor-
mally thought to originate during lower temperatures of annealing, less stringent condi-
tions of sample preparation, and thermal cycler ramping to the initial denaturation 
temperature of PCR (~94 °C). Therefore a number of methods such as touch-down and 
hot-start PCR have been developed to reduce the off-target amplification [42, 43].

�Real-Time PCR

Real-time RT-PCR or quantitative PCR (qPCR) can easily and reliably quantitate 
the expression level of ncRNAs, and relies on the amplification of cDNA by gene-
specific primers, similar to what was covered above. The recommended length of 
amplified products is between 80 and 250 nucleotides. The primers are also recom-
mended to cover exon–intron junctions so that the effects of contamination by 
genomic DNA can be eliminated during the amplification process.

In qPCR the amount of amplified product is measured at the end of each cycle by 
the use of a fluorescent signal, typically either a dye that is incorporated into the 
PCR product during amplification, or by a fluorescent probe included into the 

Fig. 1  Schematic of five different isoforms (1–5) of a gene and of primer sets used to identify 
those isoforms by RT-PCR. Different primers are designed to detect the variety of isoforms. Gray 
(A–D) and hashed (E–G) boxes are forward and reverse primers, respectively. The combination of 
each set of primers identifies only one to four isoforms: for instance, primers A and E identify 1, 4, 
and 5, primers B and E identify 1, 3, 4, and 5, primers A and G identify isoforms 1, 2, 4 and 5 while 
primers A and F identify isoform 4
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amplification. In this manner the intensity of the fluorescent signal is positively 
correlated with the quantity of PCR product produced every cycle, and by monitor-
ing the increase in fluorescence during the exponential phase of amplification the 
amount of RNA present in the original sample can be determined. The most com-
mon method of quantifying specific gene expression is by comparing its expression 
in relation to another gene(s) called a normalizing gene(s) [44, 45]. Normalized or 
housekeeping genes are selected for their almost constant rate of expression (e.g., 
GAPDH, Actin, Tubulin, and HPRT) and are usually involved in functions related to 
basic cellular survival. For best practice we recommend the use of more than one 
normalizer and use the average or geometric mean of gene expression level of mul-
tiple housekeeping transcripts as a reference point.

�TaqMan PCR

Small ncRNAs such as miRNAs are abundant transcripts which can exhibit differ-
ential expression among tissues during development and disease [46]. However, 
less abundant RNAs can escape detection with some technologies such as cloning, 
northern hybridization, and microarray analysis, and since many miRNAs also have 
isoforms almost identical to the mature and precursor sequences, different methods 
must be used in expression analysis. In these situations, SYBR green detection is 
not sensitive enough to discriminate between related isoforms if primers are 
designed to the hairpin. For these reasons the TaqMan RNA assay offers a sensitive 
alternative which can be used to detect low levels of small RNAs [47]. Furthermore, 
using TaqMan PCR expands the real-time PCR technology for detecting long tran-
scripts such as mRNA or lncRNA as well as smaller transcripts such as miRNA or 
snoRNA. It is designed to increase the specificity of quantitative PCR and is used 
for both diagnostic (e.g., Roche Molecular Diagnostic) and research (e.g., Applied 
Biosystems) purposes, and for these reasons is the preferred method for detection 
and quantification.

�Microarrays Versus Sequencing for Detecting RNA Expression

With the decrease in cost of next-generation sequencing and the rise of bench-top 
sequencers such as the Ion Torrent PGM, Proton, and Miseq, there is the question of 
which application provides the most clinical utility given the pathology question to 
be addressed. As part of this issue, there is the question as to whether applications 
such as microarrays remain relevant to the clinic.

One advantage of microarray technology is the fact that it works quite well for 
samples for which there is limited input, as well as samples which show RNA deg-
radation. Total RNA extractions from small biopsies are typically limiting, and 
while microgram amounts of total RNA can sometimes be achieved, yields in the 
hundreds of nanograms are the more likely outcome. Next-generation sequencing 
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(NGS) library construction becomes more challenging when the total sample 
amount is in the nanogram range, and in these cases some microarray platform 
(such as Affymetrix miRNA arrays) can tolerate an input as low as 120 ng of total 
RNA for miRNA and lncRNA detection; by comparison, most NGS library proto-
cols will struggle to construct quality libraries with such small amounts of starting 
material. As well, while sequencing will also provide the ability to identify miRNA 
isoforms (i.e., isomiRs), only one miRNA species will typically dominate, and the 
identification of uncharacterized and/or lowly expressed ncRNA isoforms will be of 
lesser concern for many cancer pathologists.

�Differential Expression of ncRNAs: Tumor Versus Normal

Similar to protein coding genes, the genes encoding ncRNAs can act as tumor sup-
pressor or oncogenes, and differential expression of those has been reported in dif-
ferent types of cancer [1, 48–50]. The clinical utility of ncRNA expression typically 
relates to whether or not ncRNA species (or biomarkers) exhibit differential expres-
sion as compared with a normal control. This opens up the next topic, which is how 
to identify differentially expressed species between two sample sets.

There has been a substantial amount of data generated in the literature comparing 
different methods for ncRNA quantitation (e.g., microarrays, NGS library construc-
tion kits, RT-qPCR, etc.). For example, one paper [51] identified clear biases that 
related to the type of library kit construction method that was used for miRNA 
sequencing. Although the absolute numbers of miRNA molecules present determined 
by each method conflicted, one major conclusion from this paper was that the dif-
ferential expression calls between normal and experimental samples, using the same 
kits, were highly concordant. Thus, while attempting to infer absolute values for the 
total number of copies of ncRNA molecules will be affected by the library construc-
tion method used, differential expression calls for ncRNA between control and exper-
imental samples (i.e., normal versus tumor) show high concordance in spite of the 
method used, as long as the control and experimental samples are prepared in the 
same manner. When analysis methods are the same between the two samples being 
compared, then differential expression calls are typically quite reliable.

�Bioinformatic Analysis of ncRNA Expression

When NGS and microarray applications emerged on the market, most analysis was 
restricted to either vendor-specific software for that particular application, or 
LINUX-based tools implemented from a command prompt. In both cases a certain 
amount of bioinformatic and programming experience was required to parse the 
data and determine expression profiles and statistical significance. However, there 
are now a variety of user-friendly commercial software solutions which can rapidly 
assist most pathologists in identifying noncoding transcripts that are differentially 
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expressed between a tumor and normal sample. Two examples of analysis software 
which can be used with a variety of data (i.e., microarray, NGS, and qPCR) to deter-
mine differentially expressed ncRNAs of prognostic or predictive benefit are the 
Partek and DNASTAR software packages. Although a certain amount of user train-
ing is still required to effectively use these software suites, an afternoon or one-day 
training seminar is typically sufficient to provide the necessary skills to get the 
answer desired. There is also a rise in vendor-specific application packages, for 
example, Life Technologies Ion Reporter, which is designed to largely automate the 
process of analyzing sequencing data.

�Detection and Localization of ncRNA

�In Situ Hybridization

In situ hybridization (ISH) has become a powerful tool for studying the expression 
level and localization of specific RNA species within individual cells, or in tissue 
sections. Identifying the sub-cellular localization of ncRNAs can provide invaluable 
insights into the physiological and pathological processes in which they are involved, 
and in principle these applications are very similar to the immunohistochemistry 
used in standard pathology to determine the localization and expression of key pro-
tein biomarkers (i.e., HER2 in breast cancer). Several laboratories have successfully 
used ISH to detect and localize ncRNA in different cell types or tissue sections [22, 
52, 53], and since the expression of ncRNA can occur at key points in disease pro-
gression, its detection and localization can be used as a diagnostic marker.

In situ hybrization utilizes the principle of Watson–Crick base pairing, in which a 
labeled RNA sequence (the probe) can be used to quantify the expression and define the 
sub-cellular localization of target RNA molecules in fixed tissues/cells, followed by 
visualization of target transcripts via a fluorescence dye incorporated into the probe. 
This method can be employed to detect the presence of the target of interest, and gain 
information which relates to the intracellular spatial localization of lncRNAs and small 
RNAs. Determining the spatial expression of these ncRNAs may provide an insight to 
whether they are involved in post-transcriptional regulation of gene expression [54].

The key requirements for successful ISH are preparation of samples, making the 
right template for the probe, labeling the probe appropriately, permeability of the 
cells, defining optimum hybridization conditions, and imaging techniques.

�Probe Labeling

The technique of probe labeling has undergone substantial changes since its con-
ception in 1968. Initially probes were labeled using radioactive isotopes like 32P, 35S, 
and 3H [55] which were soon replaced by enzyme linked probes which catalyzed 
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chromogenic or fluorogenic reactions [56]. Amidst all this fluorescence-labeled 
probes were introduced for the first time in 1980 by Bauman et al. [57], and since 
then fluorescence labeled probes have been engineered and developed to increase 
efficiency/sensitivity, specificity and facilitate easy detection of target RNA 
transcripts.

�Probe Design

The design of the probes has also evolved substantially from their inception. Initially 
probes were produced from clones and were quite large and sparsely labeled to 
allow specific hybridization. However, using long probes resulted in high back-
ground fluorescence, non-specific sites of binding, and non-specific signal detec-
tion; to improve the technique these large probes were then chopped into smaller 
pieces (<200 bases) to obtain more specific signal and improve specificity [58]. 
Femino et al. used several short 50 nucleotide long probes which were complemen-
tary to sequential parts of target mRNAs and each probe was conjugated to five fluo-
rescent moieties at predefined positions, which increased the sensitivity of the 
technique to detect the single mRNA molecules [59].

More recently Raj et al. developed a technique by designing probes to image 
individual mRNA molecules in fixed cells. In this method each mRNA is targeted 
with ≤48 singly labeled oligonucleotide probes which enabled visualization of 
each individual RNA target by fluorescence microscopy [60]; designing the 
probes in this way enables simultaneous detection, localization, and quantifica-
tion of individual RNA molecules at the cellular level [61]. The fluorescence ISH 
(FISH) technique developed by Raj and colleagues has enabled direct visualiza-
tion and quantification of lncRNAs (e.g., TINCR) [62]. Here we explain this 
method in more detail.

�FISH Technique Using Multiple Singly Labeled Probes

The technique requires designing a set of 48 oligonucleotide probes (20 bases long), 
with each of these oligonucleotides complementary to different regions of the target 
RNA molecule (with at least 2 bases separating any two oligonucleotides). The GC 
content of each individual oligonucleotide also needs to be taken into consideration, 
to ensure uniform hybridization potential of all oligonucleotide probes, which also 
ensures the binding of the maximum number of probes at a given hybridization 
stringency [63]. The oligonucleotide probes are then conjugated with a fluorophore 
of choice at the 3′ end.

This protocol involves fixation of cells/tissue, permeabilization of cells, and 
hybridization with probes followed by washing and visualization using a fluorescent 
microscope [60]. The cells are fixed with 3.7 % formaldehyde in PBS, followed by 
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permeabilization of cells with 70 % ethanol. The hybridization step is very critical 
and certain parameters should be considered carefully, such as the concentration of 
probes (normally between 50  nM and 1.25 μM), hybridization temperature (the 
temperature at which probes hybridize to the RNA of interest), and concentration 
of formamide (which is a component of the hybridization and wash buffers to 
enhance specificity); the last two parameters are related and concerned with the 
stringency of the hybridization itself [63]. The concentration of formamide used is 
10 % in both hybridization and wash buffer, with a higher concentration of for-
mamide leading to higher stringency [63]. Hybridization is carried out normally at 
37 °C, and the use of higher temperatures can also lead to higher stringency, since 
fewer probes will bind.

Imaging is done using a wide-field fluorescence microscope using 63×/100× oil 
objectives and z-stack images are obtained. The signals obtained in this case are very 
weak and need a longer exposure time, as compared with standard fluorescence 
microscopy applications. However, one disadvantage of using wide-field fluores-
cence microscopes is that they place a tight limitation on sample thickness, as thicker 
samples lead to more out-of-focus light that may obscure the relatively weak target 
RNA signals. Confocal microscopy stands at a disadvantage in this case as the high 
intensity of the laser excitation can result in rapid photo-bleaching of the sample [63].

This technique is applicable to wide variety of samples, such as adherent mam-
malian cell lines, cells in suspension, frozen specimens, and FFPE tissue [61]. In 
addition to this, the technique can be combined with immunofluorescence to get a 
complete transcription-translation picture, and detect possible interactions between 
the ncRNA of interest and proteins [64].

�LNA-FISH/CISH (Colorimetric in situ DNA probe hybridization)

This is a variation of the FISH technique described in the previous section and 
enables localization of small ncRNA like miRNAs in cultured cells and FFPE tissue 
samples/sections [65].

These techniques utilize locked nucleic acid (LNA)-modified oligonucleotide 
probes which have a greater hybridization affinity towards their complementary/
target RNAs, which enables the use of more stringent hybridization conditions to 
increase specificity and sensitivity. This is particularly important because the small 
size of miRNAs may lead to non-specific binding of the probes. The length of the 
probes is restricted to 17–21 nucleotides for miRNA and LNA modification to 
20–25 % of the probe (i.e., 1–2 bases). Binding of the probes can be detected either 
colorimetrically by antibodies specific for DIG (digoxigenin), which are coupled 
with AP (alkaline phosphatase) or by the use of fluorophores. The sensitivity of the 
probes can be increased further by labeling both 5′ and 3′ ends [65].
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�RNA-Protein Interactions

The functional characterization of many ncRNAs has revealed that they are inter-
acting with proteins, and those interactions are known to be vital for ncRNA func-
tion. NcRNA-protein interactions have been studied, for example, through classical 
biochemical techniques developed for studying translation and RNA-processing 
complexes, as well as more recent technological advances using RNA immunopre-
cipitation (RIP) [66] and cross-linking followed by immunoprecipitation [67, 68]. 
These experiments have demonstrated that ncRNAs specifically interact with pro-
teins in the RISC complex, in chromatin and in the chromatin-modifying machin-
ery such as polycomb repressor complexes and trithorax proteins as well as 
transcription factors, and promoter- or enhancer-associated proteins [28, 69, 70]. 
Long ncRNAs may also act as scaffolds for multiple complexes [71]. Of note, RNA 
molecules can also directly interact with DNA through canonical Watson–Crick 
base pairing, and via non-canonical structures such as triple helices [72] and by 
indirect interactions mediated through another RNA or a protein molecule [73]. 
Most common methods for analyzing RNA-protein interactions, such as RIP or 
chromatin immunoprecipitation (ChIP), rely on using known protein(s) to isolate 
and identify unknown RNA binding partners. The most common methods for 
studying protein-ncRNA interactions are described below.

�RNA Immunoprecipitation

It is known that mRNA molecules interact with several RNA binding proteins 
(RBPs) and those interactions are critical for mRNA stability and function. For this 
reason high-throughput technologies to analyze the entire subset of mRNAs asso-
ciated with a particular RBP are required [74–76]. RIP uses an antibody specific to 
the RBP of interest to capture endogenously formed mRNA-proteins complexes, 
followed by purification of associated mRNAs; the purified RNA can then be used 
for quantitative analysis using microarrays, RT-PCR, or deep-sequencing. This 
technology has been used to identify mRNA bound directly or indirectly as parts of 
the larger mRNA-protein (mRNP) complexes to RBPs. Currently RIP is widely 
used to identify the short and long ncRNAs that are bound to particular RBPs.

The RIP-Chip (also known as RIP on Chip or RIP-SEQ) method is used to 
identify discrete subsets of RNAs associated with multiple RNA targets of RBPs 
globally. This method can be applied to both small and long ncRNAs. Here we 
describe this procedure for analysis of small and long ncRNAs (procedure 
summarized in Fig. 2).
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Fig. 2  RNA immunoprecipitation assay (a) illustrating the RIP assay for long (left) and short 
(right) ncRNA. The cells are lysed and total lysate incubated with an antibody-bead complex. 
Protein-RNA complexes bind to the antibody-bead and after several washes the bound complex is 
eluted and total RNA extracted for further sequence analysis. (b) The ChIP assay. Cells are lysed 
after being fixed and total cell lysate is sonicated or enzymatically digested to fragment chromatin. 
The sample is then incubated with an antibody-bead complex to capture bound RNA and/or DNA-
protein complexes. The captured materials are washed and eluted. The nucleic acids recovered 
from this process are further analyzed
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�Purification and Identification of miRNA by RIP-Chip Assay

To target miRNA present in the cytoplasmic fraction a mild lysis buffer is used, 
which leaves nuclei essentially intact and minimizes inappropriate exchange of 
mRNAs during subsequent immunoprecipitation [77]. Also modifications that 
include the nuclear fraction use stronger detergents that lyse nuclear membrane [77, 
78]. In this method, total, nuclear or cytoplasmic extracts are immunoprecipitated, 
the pellets washed extensively, the RNPs released and dissociated into RNA and 
protein components and total RNA extracted [77]. The purified RNA can then be 
analyzed by various methods including RT-PCR, microarray analysis, or high-
throughput sequencing.

An alternate method is to purify the miRNA bound to its target mRNA, which 
involves using an antibody against a protein in the RISC-complex (such as Argonaute 
proteins) and immunoprecipitating mRNA-miRNA complexes. In this case the 
cytoplasmic fraction is incubated with anti-Argonaute antibody-coated beads that 
bind to mRNA-miRNA complexes and capture all RISC complexes. The precipitate 
then can be extensively washed and total RNA from captured complexes can be 
purified by the appropriate method, and further analyzed using various applications 
(Fig. 2a). This method can be used for any other class of small ncRNAs simply by 
modifying the specific antibody that binds the RBP.

�Purification and Identification of lncRNA by RIP

For purification and identification of lncRNAs, the same procedure as above can be 
applied by selecting an antibody against a protein that binds to the lncRNA of inter-
est. For example, proteins such as poly-A binding proteins and m7GpppG cap-
binding proteins are known to interact with lncRNAs, and antibodies against those 
proteins are commonly used to immunoprecipitate RNA-protein complexes 
(Fig. 2a).

It should be noted that several papers report controversial results when cross-
linking prior to cell lysis. Some found reversible formaldehyde cross-linking led to 
high non-specific binding [79], while others recommend using RNA-protein cross-
linking in RIP-Chip [68, 78, 80]. Such disparities suggest that an optimization step 
may be required to compare cross-linked to non-cross-linked materials, so as to 
determine which yields superior results. If no major differences are obtained one 
should avoid the cross-linking step as this step may introduce artifacts, reduce cell 
lysis efficiency, introduce sequence biases, and increase background binding [77, 
79]. However, using 0.1 % formaldehyde rather than 1 % formaldehyde for cross-
linking RNA to protein is recommended to improve the quality and recovery of 
bound RNA [78].
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�Chromatin Immunoprecipitation

It has been shown that ncRNAs play important regulatory roles in chromatin remodeling, 
and there are several examples of ncRNAs which influence chromatin dynamics 
and function [28, 81–85]. Chromatin immunoprecipitation (ChIP) is a powerful 
method that allows us to probe specific protein-DNA/RNA interactions in vivo, and 
reveals whether a protein-nucleic acid interaction is present at a certain location 
within the genome. It also shows the density of protein or nucleic acid in that region, 
and when combined with other techniques [86, 87] can uncover an extraordinarily 
rich and dynamic chromatin environment [88, 89].

For chromatin immunoprecipitation it is advisable to cross-link the nucleic acids 
to the proteins with formaldehyde prior to cell lysis. The cells then are lysed fol-
lowed by sonication or enzymatic digestion to shear chromatin into fragment sizes 
ranging from 200 to 1000 bp. Complexes containing the factor of interest are then 
immunoprecipitated using an antibody specific to that protein, the immunoprecipi-
tate is washed, cross-links are reversed, and RNA is purified from the isolated chro-
matin (Fig. 2b) [90, 91].

Since this technology is extensively used a number of companies such as Cell 
Signaling, Millipore, and Active Motif have developed kits that can be easily used 
to perform ChIP.

�RNA Pull-Down Assays

The advancement of sequencing technologies has led to the discovery of many new 
ncRNAs, and has revealed their important physiological functions in cells. 
Functional characterization of some ncRNAs has demonstrated that they interact 
with other components in the cell, such as other RNA molecules, proteins, or even 
specific regions of a chromosome. Identification of these interacting components 
can be informative, and as explained in the previous section RIP and ChIP can be 
used for known proteins to identify bound RNAs. Conversely, to identify novel 
proteins bound to an RNA species of interest different technology is required. To 
this end the RNA pull-down assay was developed, which uses labeled RNA to cap-
ture the proteins, RNA or DNA molecules bound to it.

�RNA Pull-Down Assays Using Labeled RNA

This method selectively extracts protein-RNA complexes from a sample by taking 
advantage of high affinity tags, such as biotin. The template to prepare the probe can 
be provided by cloning the region of interest into an appropriate vector, which is 
then used as a template for in  vitro transcription using the necessary kits and 
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biotinylated nucleic acids. The resulting in vitro transcribed RNA is then purified 
and used in pull-down assays [92]. Biotinylated RNA probes are then incubated 
with protein from total cell lysate, cytoplasmic or nuclear fractions, and purified 
using agarose or magnetic beads. After washing the beads several times the com-
plex is dissociated from the beads and the total protein is precipitated and analyzed 
by an appropriate method, such as mass spectrometry (Fig. 3a). Other RNA species 
or DNA from complexes can also be analyzed by RT-PCR or sequencing. One rec-
ommended kit is the Pierce Magnetic RNA-Protein Pull-down Kit which can be 
used for labeling RNA and pull down. The pulled-down proteins can be detected by 
Western blotting or used in mass spectrometry. The other RNA species or DNA 
from such complexes can be analyzed by RT-PCR and sequencing.

a b l ll

l

l

l
l

l

l

Fig. 3  RNA pull-down assay (a) in vitro labeled RNA is incubated with total cell lysate. The 
labeled RNA binds to protein, and the complex is captured by coated beads with affinity for the 
labeled RNA (e.g., biotin-labeled RNA and streptavidin-coated beads). Captured complexes are 
washed and eluted. Total protein from RNA-protein complexes is recovered and analyzed by mass 
spectrometry. (b) RNA antisense purification (RAP). In this method labeled tiled probes specific 
for the RNA of interest are prepared and incubated with total cell lysate. The probes bind to 
lncRNA in complex with protein(s), DNA, or other RNA molecule(s). The complexes are captured 
by beads coated to bind to labeled probe (e.g., biotin-labeled RNA and streptavidin-coated beads). 
After several washes the complexes are eluted and total RNA and/or DNA extracted for further 
sequence analysis
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�RNA Antisense Purification (RAP)

This is a newly developed method that uses labeled antisense probes to hybridize to a 
target RNA to purify the endogenous RNA and its associated proteins, RNA, and genomic 
DNA from cross-linked cell lysate. To achieve high specificity, RAP utilizes 120-nucleo-
tide antisense RNA probes complementary to the RNA of interest that will hybridize and 
capture the target RNA. Strong hybridization conditions provide the opportunity to purify 
the cellular components bound to RNA molecules under denaturing conditions, and non-
specific RNA-protein interactions and non-specific hybridization with RNAs or genomic 
DNA are limited using these conditions. This technology was initially used to purify XIST 
lncRNA and its associated cellular components. DNase I was used to digest genomic 
DNA to ~150 bp fragments to achieve high resolution mapping of binding sites, and the 
DNA bound to XIST was then sequenced [53]. However, the DNAse digestion step can 
be skipped if the ncRNA is derived from cytoplasmic fractions.

RAP uses a pool of overlapping probes tiled across the entire length of the target 
RNA to capture lncRNA. The tiling of probes across the whole length of RNA ensures 
efficient capture of the RNA molecules even in the case of extensive protein-RNA 
interactions, RNA secondary structure, or partial RNA degradation [53]. Isolated pro-
tein bound to RNA molecules can then be analyzed by Western blotting or mass spec-
trometry. The co-localization of RNA and proteins by this method can be examined by 
ISH and immunofluorescence of identified proteins. The RNA and DNA bound to 
target RNA can be further analyzed by microarray or sequencing (Fig. 3b).

�Prospects

In recent years significant developments in genome and transcriptome analysis has 
provided us enormous amounts of data which have led to an appreciation of the 
significant number of ncRNAs present in the human genome. Today there is no 
debate concerning the functionality of ncRNAs, whereas the mechanisms of action 
for those are yet to be answered. Due to ease of access and reduced cost of technolo-
gies for these analyses, the techniques for ncRNA analysis are being used routinely 
in many research and clinical laboratories. Currently, many scientists continue to 
develop methods that will unveil the complex characteristics of ncRNAs. In this 
chapter we have discussed some of the methods which have been developed recently, 
or have been adopted by previous studies to explore the function of ncRNA and 
explore its role in cancer progression. We believe ncRNA research will provide an 
exciting opportunity for scientists and clinicians to collaborate to discover the hid-
den layer of complexity that is the noncoding transcriptome in cancer.
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Applications of Non-coding RNA 
in the Molecular Pathology of Cancer

Keerthana Krishnan and Nicole Cloonan

�Introduction

One of the puzzling discoveries to arise from the first sequencing of the human genome 
was that the number of protein-coding genes (~20,000–25,000) was not significantly 
larger than that of the roundworm Caenorhabditis elegans (~20,000) [1]. Whilst the 
complexity of an organism is clearly not reflected by the number of genes in its 
genome, it does appear to correlate with the size of its genome [2]. Recent studies by 
the Encyclopedia of DNA Elements (ENCODE) have found that the vast majority of 
the genome is transcribed [3, 4], but the transcripts lack an open reading frame of a 
substantial size. This raises the possibility that some of the information required for a 
correctly functioning human cell lies in transcripts that do not code for proteins.

The term non-coding RNAs (ncRNAs) is usually used to describe these ORF-
less transcripts; however, it should be regarded as a name of convenience only. A 
large number of transcripts annotated as ncRNAs appear to be translated as short 
peptides [5], and could therefore be considered as coding transcripts that were not 
detected computationally due to an arbitrary definition of the minimum length of an 
ORF [6]. Complicating the story, several transcripts are now known to be bifunc-
tional—encoding both coding and non-coding functions [7–12]—and if this is a 
common biological theme, the designation of “non-coding” may become more 
arbitrary and ambiguous than first envisaged.

The function and biological relevance is still hotly debated for many types of 
ncRNAs [3, 13–22], and there has been some concern that many of the transcripts 
could be non-functional, or incidental by products of transcription [14, 18, 21, 22]. 
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Given that noise is an integral part of complex systems [23, 24], it does seem likely 
that at least a portion of these transcripts could be considered to be transcriptional 
noise [22]. Nevertheless, a large number of ncRNAs have been demonstrated to 
have regulatory roles in normal and pathological states, including cancer initiation, 
progression, and response to therapy (as discussed below). This evidence, combined 
with the versatility of RNA, makes ncRNAs a rich source of biomarkers that could 
be exploited for the diagnosis, prognosis, and prediction of cancer. This chapter 
describes the different categories of ncRNAs and their association with cancer, 
explores the relevance and practical use of ncRNAs in molecular pathology, and 
examines the major limitations and future challenges.

�Association of Non-coding RNAs with Cancer

The two major categories of ncRNA are separated on size: those less than 200 nt 
long are designated as small ncRNAs, whereas those that are 200 nt or longer are 
classed as long ncRNAs. This distinction is arbitrary, and is based largely on the 
failure of the original protocols based on silica-matrix spin-column purification to 
retain RNA species <200 nt [25]. The major classes within each of these categories 
of ncRNAs are shown in Fig. 1, and their distinguishing features and association 
with cancer are detailed below.

�Small Non-coding RNAs

�MicroRNAs

By far the most well-studied class of non-coding RNAs whether long or short are 
the microRNAs (miRNAs). These were first identified in 1993 [26], but not recog-
nized as a major class of regulators until 2000 [27, 28]. MicroRNAs vary slightly in 
length from 18 nt to 25 nt, but are predominantly 22 nt long [29, 30].

Function and Biogenesis of microRNAs

MicroRNAs negatively regulate the translation of mRNAs to protein through mul-
tiple mechanisms: direct translational inhibition [31–36], mRNA sequestration 
[37], and mRNA degradation [38–40]. Although the majority of protein loss after 
miRNA activity comes from a reduction of mRNA [41], this is a secondary effect of 
miRNAs targeting transcription factors [42], and the most common result of 
miRNA–mRNA interactions is translational inhibition [43].

Maturation of miRNAs involves multiple enzymatic steps to convert secondary 
structures in long RNAs into 80 nt hairpins, and then into 22 nt miRNA duplexes 
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(Fig. 2). A nuclear primary miRNA transcript (pri-miRNA) is cleaved into hairpins 
by multi-protein enzyme complexes containing Drosha [44]. Introns of protein-
coding genes can also be processed to hairpins by mRNA splicing machinery [45, 
46]. Dicer-containing complexes were originally thought to be essential for the 
maturation of hairpins into miRNA duplexes [44]; however, recent work has 
revealed many miRNAs undergo maturation through an alternative Argonaut-
dependent cleavage [30, 47–49].

Notes on microRNA Nomenclature

As our understanding of miRNAs and their function has evolved over time, so has 
their nomenclature, which can lead to headaches for those studying these molecules 
individually or collectively. Initially, mature miRNA sequences were named using the 
prefix “miR” (note the uppercase “R”) followed by a hyphen and then a unique 
numeral identifier, and the loci from which they were derived were named “mir”(note 
the lowercase “r”) followed by the same number (e.g., miR-1 and mir-1). The 

lincRNAs (variable)

miRNAs (22nt)

sense strand DNA

antisense strand DNA

PASRs (20-200nt)

tiRNAs (18nt) TASRs (20-200nt)

mRNAs (variable)PROMPTs (100-500nt)

eRNAs (50-2000nt) miRNAs (22nt)

snoRNAs (100nt)

eRNAs (50-2000nt) PASRs (20-200nt)

PROMPTs (100-500nt) lncRNAs (variable)

Fig. 1  Most of the genome is transcribed; some of the genome is functional. The sense and anti-
sense strands of DNA are represented by the helix and lines in blue. Exons are depicted by rect-
angles, introns or intergenic sequences are represented by lines. Coding sequences are represented 
by thick rectangles, non-coding sequences by thinner rectangles. Coding transcripts are colored 
blue, small non-coding RNAs are orange, and long non-coding RNAs are red. The transcription 
start site (TSS) and the direction of transcription (5′ to 3′) are represented by arrows. Dashed lines 
represent points of bidirectional transcription
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Fig. 2  Biogenesis of miRNAs through multiple redundant pathways. Pre-miRNA hairpins can be 
generated by DROSHA cleavage of non-coding primary miRNA transcripts (pri-miRNA), or as a 
byproduct of splicing mRNA and disbranching and refolding of the lariat. Pre-miRNA hairpins are 
exported to the cytoplasm through the action of Exportin 5 (XPO5). Most of the time, DICER 
cleaves the pre-miRNA hairpins to form mature miRNA duplexes which then unwind and incorpo-
rate into the RNA Induced Silencing Complex (RISC). In an alternative pathway, Argonaute 2 
(AGO2) cleaves one arm of the hairpin to create AGO2-cleaved pre-miRNA (ac-pre-miRNA) 
which undergoes exonuclease processing to generate the mature miRNA. Complimentary base-
pairing between the miRNA and mRNA is used to guide RISC to its mRNA targets
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indentifying numbers are allocated sequentially based on the order of publication or 
by sequence similarity with miRNAs from another species (now handled by miRBase.
org). This last usage required the addition of a three letter species prefix (hsa for Homo 
sapiens, mmu for Mus musculus, etc.) to the beginning of the miRNA name to distin-
guish these orthologous miRNAs as in many cases, the sequence similarity was very 
close (drosophila miR-1 differs from hsa-miR-1 by a single nucleotide). Within a 
single species, letter suffixes to the numeral identifier are also used to denote sequence 
similarity, such as hsa-miR-19a and hsa-miR-19b which derive from different genomic 
loci, but are only different by one nucleotide. For the miRNA loci, a second hyphen-
ated number is appended if there are multiple genomic loci in the genome that produce 
the same mature sequence. Two loci on human chromosomes 17 (hsa-mir-196a-1) and 
12 (hsa-mir-196a-2) produce different stem-loop structures (110 nt and 70 nt, respec-
tively) but the same major miRNA product (hsa-miR-196a-5p).

Initially, it was thought that miRNAs were only ever derived from one arm of a 
hairpin (the “mature” or “sense” strand), and the other arm of the hairpin was degraded 
and non-functional (the “star” or “anti-sense” strand) [50]. However, it appears that 
only the most highly expressed miRNAs have such striking arm-expression bias, and 
there are a number of examples of equal expression from both arms (such as miR-
199-5p/3p). In these cases, miRNAs were annotated as either 5p or 3p (short for 5 
prime or 3 prime, respectively), referring to which arm of the hairpin the mature 
miRNA derives from in the direction of transcription (Fig. 3). However the mature/
star annotation remained to annotate which arm was dominant in expression.

From an annotation perspective, this turned out to be troublesome, as more and 
more evidence accumulated for arm-switching [30, 51, 52], where different arms of 
the miRNA would be dominantly expressed in different tissues. As there was no 
clear relationship between the mature/star and the 5p/3p annotations, the commu-
nity moved to annotate based on a static feature of the miRNA, and abandoned the 
mature/star annotations. Naturally, this leaves footprints in the existing literature; 
however, this chapter has used the most recent nomenclature accepted by the 
miRNA community, not the names under which they were originally published.

MicroRNAs and Cancer

The first evidence that miRNAs were associated with cancer was based on a study 
looking for tumor suppressors within the 13q14 locus, a region of the genome which 
was frequently deleted in chronic lymphocytic leukemia (CLL). This locus con-
tained two very similar pre-miRNA hairpins encoded on the same pri-miRNA [53], 
and are now called hsa-miR-15a-5p and hsa-miR-16-5p. Although there was no 
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causal link established, these two miRNAs were deleted or not expressed in 41 of 
60 (68.3 %) patient samples tested [53]. Subsequent studies showed that these two 
miRNAs inhibit progression of the cell cycle [54–56], promote apoptosis [57], and 
suppress tumorigenesis both in vivo [58] and in vitro [57], confirming the strong 
association originally discovered as causal.

The first oncogenic miRNA locus was the miR-17-92 cluster, which encodes 
six pre-miRNA hairpins and at least seven mature and functional miRNAs [59]. 
In a mouse model of B-cell lymphoma, the introduction of the miR-17-92 cluster 
promoted both initiation and progression of the disease, and these miRNAs were 
found to be amplified or over-expressed in 30 of 46 (65 %) human patient sam-
ples [59]. Some of this effect has been attributed to hsa-miR-17-5p, which regu-
lates progression from G1 to S phase of the cell cycle [60] and inhibits apoptosis 
in many cell types [61, 62], although other miRNAs are also required for this 
phenotype [63–65].

Genomics evidence also supports major regulatory roles for miRNAs in cancer. 
MicroRNAs repressing oncogenes are often located in regions of deletions or 
mutations (so-called fragile loci), whereas miRNAs repressing tumor suppressors 
are frequently found in regions of amplification [66–68]. Large scale expression 
profiling of miRNAs shows that change in miRNA profiles between normal tissue 
and cancerous samples is the norm, not the exception [69, 70]. Gain of function 
and loss of function experiments have also been critical in demonstrating that miR-
NAs are involved in each of the 10 major hallmarks of cancer (Fig. 4; [71]). So 
much evidence now exists for the role of specific miRNAs in every aspect of can-
cer that it would be impractical to list it all. More than 26,000 articles have been 
published on miRNAs and cancer, detailing the association between 236 miRNAs 
and 79 types of cancer [72]). Instead, the following sections detail some of the key 
examples for each hallmark.

Proliferative Signaling and miRNAs

One of the major hallmarks of cancer cells is that they stimulate their own growth 
regardless of exogenous signals [73]. A number of miRNAs have been directly 
linked to this facet of cancer biology. KRAS is a particularly common and potent 
oncogene, and is usually targeted for suppression by hsa-miR-143-3p [74]. 
However this miRNA is lost in a wide variety of tumors (including bladder [75–
77]; breast [78], cervical [79]; colorectal [80–85]; esophageal [86]; glioma [87]; 
nasopharyngeal [88]; osteosarcoma [89, 90]; prostate [91–93]; and renal [94]), 
leading to its over-expression and activation of proliferative pathways. The G1/S 
cell cycle checkpoint usually stops cells from proliferating in the absence of mito-
genic signals. MicroRNA hsa-miR-17-5p suppresses this checkpoint through a 
highly connected network of genes [95], leading to growth factor independence. 
Another miRNA, hsa-miR-15b-5p, also acts at the G1/S checkpoint, but this time 
by suppressing Cyclin E1 (CCNE1), a protein required for progression through 
the cell cycle [55]. Loss of this miRNA leads to CCNE1 over-expression and 
proliferation in glioma cells [96].
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Evading Growth Suppressors and miRNAs

The second hallmark of cancer is the ability to resist endogenous and exogenous 
signals that may otherwise prevent growth [73]. By repressing the tumor suppressor 
PTEN, hsa-miR-21-5p promotes the growth of cancer [97], and is the most com-
monly up-regulated miRNA in all cancers [98]. Another miRNA targeting PTEN is 
hsa-miR-301a-3p, where over-expression leads to proliferation in breast cancer 
cells [99]. Prohibitin (PHB) is a different tumor suppressor that inhibits DNA syn-
thesis [100], and is targeted by hsa-miR-27a-3p [101]. This miRNA is up-regulated 
in breast cancer [102], gastric cancer [101, 103, 104], and ovarian cancer [105], 
leading to cellular proliferation.

Avoiding Immune Destruction and miRNAs

Surveillance by the immune system is thought to play a substantial role in recog-
nizing and eliminating the vast majority of cancer cells, and therefore it is 
believed that tumors that do grow must be able to avoid or reduce the impact of 
immunological clearance [71]. Transient expression of miR-155 is required for 
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Fig. 4  MicroRNA involvement in the 10 hallmarks of cancer as defined by Hanahan and Weinberg 
[71]. The miRNAs presented here do not represent a comprehensive list, and there are many miR-
NAs associated with each hallmark. As miRNAs can have hundreds of bona fide targets, individual 
miRNAs can be associated with more than one hallmark
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normal immune function [106], and loss of this miRNA prevents the immune 
system from mounting an effective anti-tumor response [107]. Both hsa-miR-
222-3p and hsa-miR-339-3p enhance the resistance of cancer cells to immuno-
logical clearance by down-regulating ICAM-1 [108], and miR-10b performs a 
similar role by down-regulating MICB [109]. Unsurprisingly, as their mecha-
nism of action is very generalized, these miRNAs have been associated with a 
wide range of cancer types: hsa-miR-10b-5p is up-regulated in glioblastoma 
[110, 111], pancreatic cancer [112], breast cancer [113], and leukemias [114, 
115]; hsa-miR-222-3p is associated with breast [116–118], bladder [119], pros-
tate [120–122], gastric [123], colorectal [124], lung [125], ovarian [126], and 
pancreatic cancers [127].

Enabling Replicative Immortality and miRNAs

Mammalian cells are limited in their ability to replicate based on the length of 
their telomeres. Cancer cells escape this limit to become immortalized, and are 
capable of indefinite growth and division [73]. The length of telomeres is regu-
lated by the telomerase protein [128], and several miRNAs regulate its expres-
sion. The microRNA hsa-miR-138-5p directly targets telomerase, and expression 
is down-regulated in anaplastic thyroid carcinoma [129], hepatocellular carci-
noma [130], and head and neck squamous cell carcinoma cell lines [131]. The 
vitamin-D inducible hsa-miR-498-5p also directly targets telomerase and is 
down-regulated in ovarian tumors [132]. Similarly, loss of hsa-miR-150-5p leads 
indirectly to the up-regulation of telomerase through loss of AKT targeting [133]. 
However it’s not only loss of miRNAs that lead to telomerase activation. Loss of 
p53 function also leads to an increase in telomerase [134], and over-expression of 
hsa-miR-372-3p or hsa-miR-373-3p leads to deactivation of p53 and an increase 
in telomerase activity [135].

Tumor-Promoting Inflammation and miRNAs

Although the immune system attempts to clear the tumor before it takes hold, the 
inflammation created by immune attack can have the paradoxical effect of enhanc-
ing tumorigenesis and progression, and assisting the cancer cells to acquire other 
cancer hallmarks [71]. Some miRNAs that are involved with evasion of the immune 
system (hsa-miR-29-3p and hsa-miR-155-5p, see section “Avoiding Immune 
Destruction and miRNAs”) also play roles in tumor-promoting inflammation. 
During the macrophage inflammatory response, expression of hsa-miR-155-5p is 
induced [136], and this leads to an increased frequency of mutations through the 
suppression of targets that safeguard the genome [137]. Cancerous cells also secrete 
hsa-miR-21-5p and hsa-miR-29-3p which bind to Toll-like receptors [138]. This 
induces inflammatory cytokines which not only enhances metastasis [138] and 
inhibits apoptosis [139], but also creates a positive feedback loop as inflammation 
induces the expression of hsa-miR-21-5p [140–142].
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Invasion, Metastasis, and miRNAs

At least 90 % of the mortality from human cancer is due to metastasis [143]. The 
ability of pioneering cells to migrate from the site of the primary tumor, and colo-
nize to distant sites in the body is acquired during tumor development [73], and 
several miRNAs have been shown to regulate this process. hsa-miR-21-5p is the 
most well-known miRNA to promote metastasis and is over-expressed in a broad 
range of cancer types [144, 145]. The key metastatic genes ITGAV, RDX, and 
RHOA are all regulated by hsa-miR-31-5p [146]. Over-expression of hsa-miR-
139-5p correlates with reduced metastatic activity in hepatocellular carcinoma and 
gastric cancer cells [147–149], while loss of hsa-miR-139-5p expression is associ-
ated with increased metastatic disease in patients with invasive squamous cell car-
cinoma [150]. This miRNA also increases the migration and invasion of breast 
cancer cell lines, and directly targets the TGFβ, Wnt, Rho, and MAPK/PI3K signal-
ing cascades [151].

Angiogenesis and miRNAs

Angiogenesis, the process by which new blood vessels are formed, is a process 
required by developing cancers to ensure a continuous supply of oxygen and 
nutrients [73]. The association of miRNAs with fine-tuning angiogenesis has 
been reviewed [152, 153], but in a cancer context, it is the response to hypoxia 
that stimulates angiogenesis, and this process is augmented through hsa-miR-
107-3p targeting of HIF1 [154]. The miR-17-92 cluster (see MicroRNAs and 
Cancer) also appears to promote angiogenesis when over-expressed [155], and 
this may be due directly to hsa-miR-17-5p also targeting HIF1 [95]. However 
over-expression of hsa-miR-92a-1-3p (the final member of the miR-17-92 cluster) 
appears to inhibit angiogenesis, by repressing the expression of pro-angiogenic 
proteins [156].

Genome Instability and miRNAs

The hypothesis of multi-step tumor formation relies on the chance acquisition of 
mutations that confer a selective advantage to those cells. Usually the rates of spon-
taneous mutations are extremely low, and therefore some level of genomic instabil-
ity is required to drive these acquisitions [71]. A number of miRNAs target DNA 
repair pathways, such as hsa-miR-24-3p and hsa-miR-182-5p which target the 
homologous repair pathway of double stranded breaks [157, 158], and hsa-miR-
373-3p which targets the nucleotide excision repair pathway [159]. However so far 
only a single miRNA (hsa-miR-155-5p) has been demonstrated to be sufficient to 
directly increase the mutation burden in cells [137]. Intriguingly, as hsa-miR-155-5p 
also is involved with the inflammatory response (see tumor-promoting inflamma-
tion and miRNAs), this molecule may provide the much sought after link between 
inflammation and cancer.
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Resisting Apoptosis and miRNAs

A primary safeguard of cellular integrity is apoptosis, programmed cell death, a 
naturally occurring process that prevents cells with minor or major defects from 
proliferating. Cancer cells need to resist apoptotic signals [73], and miRNAs such 
as hsa-miR-17-5p and hsa-miR-20a-5p are likely to be involved in that process, 
given that their knock-down in cancer cell lines using results in increased apoptosis 
[61]. This aspect of miRNA regulation has been studied extensively, and many miR-
NAs have been identified as regulating all aspects of apoptosis [160].

Deregulating Cellular Energetics and miRNAs

Cancer cells are able to reprogram their energy generation from oxidative phos-
phorylation to glycolysis, even in the presence of oxygen. This switch (known as the 
Warburg Effect [161]) is as widespread as the other hallmarks, and forms the basis 
for positron emission tomography (PET) using radio-labeled glucose as the reporter. 
Although the functional rational for this is not yet clear, the Warburg Effect may 
provide the cancer with sufficient macromolecules for other metabolic pathways 
[71]. In breast cancer cells, hsa-miR-378-5p targets GABPA and ESRRG to induce 
the Warburg Effect, and the expression of this miRNA correlates with tumor pro-
gression in breast cancer patients [162]. Some miRNAs have been shown to inhibit 
the Warburg Effect, essentially acting as tumor suppressors. These include hsa-
miR-124-3p, hsa-miR-137-3p, and hsa-miR-340-5p [163].

Bifunctional microRNAs

Although the above examples almost always tell a story of miRNAs targeting specific 
genes to induce an effect, it’s important to remember that these relationships are but 
one part of a large and integrated cellular network. In recent years, it has become clear 
that miRNAs do not typically exert their effect through one or two key genes, but 
instead target biological pathways to achieve specific outcomes [30, 95, 164–167]. 
Sometimes, hundreds or thousands of mRNAs are directly targeted by a single miRNA 
[30], and this lies behind the ability of some of the miRNAs listed here to target mul-
tiple facets of cancer biology. For example, the loss of hsa-miR-143-3p in cancers not 
only activates proliferation pathways through one set of targets [74], but the loss also 
promotes invasion and migration through another set of targets [168]. These dual 
functions are coherent, but not all targets of miRNAs make such intuitive sense.

There are a number of miRNAs that appear to have contradictory effects on cancer 
initiation and progression depending on the tissue under study. In endometrial, lung, 
prostate, breast and colon cancers, hsa-miR-182-5p has an oncogenic-like role [169–
173], however, in some lung and gastric cancers its role appears to be tumor sup-
pressor-like [174–176]. Similarly, hsa-miR-17-5p was originally found to promote 
proliferation in B-cell lymphoma, bladder, breast, gastric, liver, lung, and pancreatic 
cancers [59, 61, 177–188], but in some breast, ovarian, and cervical cell lines expression 
of this miRNA inhibited proliferation [189, 190]. This may be a common occurrence. 
Using miRCancer, a database of miRNA association with cancer [72], 46 of the 236 
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(19.5  %) cancer associated miRNAs had apparently conflicting biological roles 
where at least two independent studies supported these roles. When only one study 
was required, this number doubles to 100 of 236 (42.4 %). Although these results can 
only be considered to be indicative, not conclusive, it does suggest that these phe-
nomena may be more common than first appreciated.

In the case of hsa-miR-17-5p, the molecular mechanism was demonstrated by 
systematic identification of targets associated with the cell cycle [95]. This work, 
later confirmed by alternative techniques [30], demonstrated that miRNAs can simul-
taneously target a large number of genes with opposing functions, and the final out-
come is dependent on the stoichiometry between the miRNA and its target sequences, 
and how that ratio affects the cellular network (Fig. 5). Therefore the extrapolation of 
the effect of an miRNA from one biological context to another is not wise.

�Small Interfering RNAs

Like miRNAs, small (or short) interfering RNAs (siRNAs) are ~21  nt single-
stranded RNA molecules that incorporate into the RNA induced silencing complexes 
(RISC) [191]. The term siRNA is usually used to describe synthetic or exogenous 
molecules that promote mRNA cleavage of complementary RNA targets through 
perfect Watson–Crick base-pairing [192–194], however, endogenous siRNAs also 
exist in mammals [195]. The distinction between endogenous siRNAs and miRNAs 
is based largely on biogenesis. Whereas miRNAs are derived from the short second-
ary structure in a single-stranded RNA molecule, siRNAs are cleaved from long 
secondary structures, or double-stranded RNAs that can derive from inverted repeat 
structures and sense/anti-sense transcripts [191, 196].
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Fig. 5  The biological outcome of bifunctional miRNAs depends upon the expression level of the 
groups of genes targeted by that miRNA.  In the example of cellular proliferation, if the anti-
proliferative targets of an miRNA were expressed higher than the pro-proliferative targets in a 
particular cell line or cancer type, then we would expect a net anti-proliferative outcome from 
over-expression of the bifunctional miRNA. This model explains how miRNAs targeting identical 
genes can have different biological outcomes in different cancer types
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As the siRNA RISC is biochemically identical to miRNA RISC, miRNAs can 
function as siRNAS [191], and siRNAs can function as miRNAs [197]. The primary 
biological role of endogenous siRNAs is proposed to be the silencing of repetitive 
elements that would otherwise activate or alter transcription of nearby genes [198]. 
While there are no direct studies linking endogenous siRNAs to cancer, there are 
now tentative links between retrotransposon activity and cancer [199], so a link 
between siRNAs and cancer may emerge with further research.

�PIWI-Interacting RNAs

The PIWI-interacting RNAs (piRNAs) are typically 24–32 nt long and were origi-
nally thought to only be present in germ cells, where they are involved in maintain-
ing genome stability [200]. Subsequent studies have found they are expressed far 
more widely, and are in fact present in all somatic tissues [201]. Although the role 
for most piRNAs is not clear, there appears to be some functional redundancy 
between these molecules and endogenous siRNAs (see above) in silencing ret-
rotransposon activity [202]. Links between piRNAs and cancer are still preliminary 
and based largely on differential expression. Certain piRNAs such as piR-651 [203] 
and piR-20365 [204] have been shown to be highly expressed in certain cancer types 
whereas others such as piR-823 are down-regulated in other cancers [205]. The links 
between piRNAs and cancer have been recently reviewed elsewhere [206].

�Small Nucleolar RNAs

Another well-studied small RNA family are the small nucleolar RNAs (snoRNAs) 
which are best known for directing chemical modifications of other non-coding 
RNAs, such as transfer RNA (tRNA) and ribosomal RNA (rRNA) [207], however, 
can also be processed to regulate the splicing of mRNAs [208]. There are two well-
defined categories of snoRNAs that are based on their sequence and structural char-
acteristics (Fig. 6). The first, C/D box snoRNAs mediate 2′-O-methylation of RNA 
residues in complementary RNA molecules [209], while H/ACA box RNAs pseu-
douridylate their target RNAs [210]. Like piRNAs, snoRNAs have been linked to 
cancer through primarily through differential expression studies, and functional 
links are few and preliminary [211]. However lack of evidence for a causal link to 
cancer does not preclude these molecules from use as a biomarker, as only correla-
tion is required. The snoRNA U50 is under-expressed in prostate cancer, and breast 
cancer and re-expressing in prostate cancer cells inhibits colony formation [212, 
213]. A second example, SNORA42, is frequently over-expressed in lung cancer 
and is associated with decreased survival [214, 215]. Knocking down SNORA42 in 
lung cancer cell lines induced apoptosis and reduced tumor formation in mice [215].
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�Small Nuclear RNAs

Small nuclear RNAs are key players in the splicing and maturation of messenger 
RNA (mRNA) [216]. Their other common name, U-RNAs, refers to their high uri-
dine composition. They are the very longest of the “small” RNA classes (with 
lengths not far under 200  nt), and serve as templates to recognize the 5′ and 3′ 
intron/exon boundaries. Since they are involved in regulation of the spliceosome, it 
is unsurprising that links between snRNAs and cancer have been uncovered. 
Examples include the U1 snRNA with pro-apoptotic functions in cervical cancer 
[217], and the tumor suppressor p53 regulation of RNA polymerase II and III-
dependent snRNA gene transcription [218].

�Y RNAs

Y-RNAs are 80–120 nt non-coding RNAs so named in order to distinguish them 
from U-RNAs (see snRNAs above). These molecules form stem-loop secondary 
structures (analogous to pre-miRNA hairpins) that are proposed to stimulate DNA 
replication during the cell cycle [219], as well as marking misfolded RNAs for deg-
radation [220]. It is likely to be the former biological role that leads to a proliferative 
advantage in the pathogenesis of cancer when over-expressed. All four human 
Y-RNAs have been shown to be over-expressed in different carcinomas, with their 
inhibition leading to decrease in cell proliferation [221].
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�Vault RNAs

Vault RNAs are another stem-loop structure associated with the eukaryotic vault 
organelle [222]. 8–16 vault RNAs are complexed with many copies of the major 
vault protein (MVP) and two types of minor vault proteins (VPARP and TEP1) 
which together form the vault ribonucleoprotein complex [223]. The vault complex 
is known to shuttle between the nucleus and cytoplasm and has hence been impli-
cated in intracellular transport (10087261) what is this?. Its major association with 
cancer comes from the role in multi-drug resistance where knock-down of the vault 
RNA re-sensitized cancer cells to chemotherapeutics [224].

�Other Small RNAs Not Yet Associated with Cancer

Many other classes of small RNAs have been described (Fig. 1), including: promoter 
associated short RNAs (PASRs)) and termini associated short RNAs (TASRs) [225], 
transcription initiation RNAs (tiRNAs) [226], promoter upstream transcripts (PROMPTs) 
[227], transcription start site associated RNAs (TSSa-RNAs) [228], and splice-site 
RNAs (spliRNAs) [229]. In all these cases, the classification is based around the genomic 
location of transcriptional products rather than a specific biological function. Indeed, 
there has been substantial controversy as to whether the wealth of RNA expression that 
we can now detect using massively parallel sequencing technologies are merely byprod-
ucts of transcriptional processing or are functional molecules in their own right (see 
Introduction). For the purposes of molecular pathology, this is not a debate that needs to 
be resolved, as a molecule does not need to be causally associated with a disease to be a 
useful biomarker, however, in the case of these small RNA classes, there has not yet been 
an association with any disease or pathological state, including cancer.

�Long Non-coding RNAs

�Structure and Function of lncRNAs

Unlike small RNAs, no functionally distinct classes based on location or sizes have 
emerged for long non-coding RNAs (lncRNAs). The term lncRNA tends to exclude 
RNAs that make up more than 80 % of total cellular RNA (ribosomal RNAs), and 
some people distinguish between the lncRNAs found within protein-coding loci and 
long intergenic non-coding RNAs (lincRNAs) [230]. This distinction is arbitrary, 
and given the variable lengths and sheer number different non-coding transcripts 
[231], it seems likely that the individual biological functions of lncRNAs could be 
as diverse as the functions of protein-coding RNAs. Even so, several functional 
themes are emerging, and these include: (1) regulating the expression of other genes 
[232]; (2) interfering with miRNA function by competitive binding [233]; (3) inter-
actions with chromatin remodeling complexes [234]; and (4) as an intermediate 
product in processing to smaller RNA species [235].
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�Long Non-coding RNAs and Cancer

Although the characterization of cancer associated lncRNAs has taken place at a 
substantially slower rate than miRNAs due to the lack of a well studied and com-
mon mechanism of action, there are still lncRNA candidates identified for most of 
the 10 hallmarks of cancer (Fig. 7).

Proliferative Signaling and ncRNAs

Through RNA-seq of prostate tissue and cell lines, PCAT1 was identified to be as 
associated with prostate cancer, and shown to regulate the proliferative ability of 
cells [236]. Other lncRNAs that regulate cell proliferation in cancer include RN7SK 
which regulates transcriptional elongation via pTEFb [237] and SRA which acts as 
a coactivator for the estrogen, progesterone, and glucocorticoid receptors [11]. The 
lncRNA HULC was also recently reported to regulate the proliferation of gastric 
cancers [238].

Tumor-promoting
inflammation

+
Proliferative

Signaling
Deregulating

cellular energetics

∞ Replicative
immortality

Evading growth
suppressors

Immune
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Metastasis and
invasion
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Genome
instability

Resisting
apoptosis

CDKN2B-AS1

PCAT1
RN7SK

SRA
HULCGAS5
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?
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TERRA*

Lethe*
MALAT1
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lncRNA-ATB*
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GAS5
INXS*
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PCAT1

Fig. 7  MicroRNA involvement in the 10 hallmarks of cancer as defined by Hanahan and Weinberg 
[71]. Asterisks represent lncRNA names that do not yet have an official gene symbol. The lncRNAs 
presented here do not represent a comprehensive list. Just like protein-coding genes, non-coding 
genes can have multiple biological roles in different pathways
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Evading Growth Suppressors and ncRNAs

Silencing of tumor suppressor genes has been one way by which tumorigenesis 
proceeds. Similarly lncRNAs also promote tumorigenesis through the evasion of 
growth suppression. A well-studied example is CDKN2B-AS1 (more commonly 
known as ANRIL), which interacts with SUZ12, recruiting the PRC2 complex to 
repress the expression of p15 (INK4B) [239], a well-documented tumor suppressor.

Avoiding Immune Destruction and ncRNAs

Although lncRNAs that play a direct role in immune evasion of tumors have not yet 
been identified, examples of immune response regulators can be found [240]. It 
seems reasonable to assume that discovery of lncRNAs for this category is only a 
matter of time.

Enabling Replicative Immortality and ncRNAs

Replicative immortality is a hallmark of tumor cells which is achieved through the 
action of telomerase. Telomerase is a holoenzyme consisting of an lncRNA compo-
nent (TERC) which is amplified in several human cancers [241]. Other lncRNAs 
associated with telomerase include the TERRA family members which are believed 
to be negative regulators of telomerase [242].

Tumor-Promoting Inflammation and ncRNAs

Rapicavoli et al. reported the identification of a novel lncRNA, Lethe, induced by 
TNF and IL-1β in response to inflammation [243]. Lethe negatively regulates nuclear 
factor-kB signaling, which is a classical regulator of inflammation in cancer [244].

Invasion, Metastasis, and ncRNAs

The MALAT1 lncRNA (Metastasis-Associated Lung Adenocarcinoma Transcript 
1) was first reported to be able to predict metastasis in non-small cell lung cancers 
[245]. It has since been shown to enhance motility of lung cancer cells [232] and 
also leads to increased invasive ability of cervical cancer cells [246]. Another 
lncRNA, HOTAIR, has been shown to enhance tumor cell invasiveness by repro-
gramming the chromatin state of the cells in breast cancer [234] and gastric cancer 
[247]. More recently, lncRNA-ATB was shown to be activated by TGFbeta 
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promoting an epithelial–mesenchymal transition in hepatocellular carcinomas, pro-
moting the invasion-metastasis cascade [248].

Angiogenesis and ncRNAs

lncRNA-MVIH is over-expressed in hepatocellular carcinomas and activates tumor-
inducing angiogenesis, potentially serving as a predictor of recurrence-free survival 
[249]. A natural anti-sense transcript, aHIF, has been shown to inhibit the expres-
sion of HIF1 which is a key regulator of angiogenesis [250].

Genome Instability and ncRNAs

PCAT1, originally identified to regulate cell proliferation in prostate cancers, has 
more recently been shown to interfere with homologous recombination by repres-
sion of BRCA2 [251]. Significantly, active PCAT1 has also been shown to impart 
high sensitivity to PARP inhibitors, and could therefore mark a cohort of tumors 
sensitive to this chemotherapy.

Resisting Apoptosis and ncRNAs

PCGEM1, a prostate cancer associated lncRNA plays an anti-apoptotic role pre-
venting cell death following treatment with chemotherapeutic drugs such as doxo-
rubicin [252]. In contrast, the lncRNA GAS5 has been shown to promote a 
pro-apoptotic function in prostate cancers [253]. The lncRNA INXS was shown to 
be a critical regulator of BCL-XS-induced apoptosis in tumor cell lines from vari-
ous tissue types [254]. PANDAR, an lncRNA induced upon onset of DNA damage, 
has been shown to limit the expression of pro-apoptotic genes, its loss leading to 
greater sensitivity to doxorubicin [255].

Deregulating Cellular Energetic and ncRNAs

In addition to playing a role in apoptosis, GAS5 has also been shown to modulate 
cellular metabolism by antagonizing the glucocorticoid receptor (GR) by repressing 
GR-induced genes [256]. lncRNA UCA1 was also shown to promote glycolysis 
through the induction of mTOR and hexokinase 2, playing a role in cancer cell glu-
cose metabolism [257].
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�Applications of Non-coding RNAs in Cancer Pathology

Nucleic acids in general and RNAs in particular have a number of advantages when 
used as a clinical tool for diagnosis and prognosis. Unlike proteins, all nucleic acids 
are easily amplifiable for exquisite sensitivity, which means that small sample sizes 
can be used without compromising the accuracy of the tests. Depending on the 
detection method used, assays for nucleic acids can be less open to misinterpretation 
than colorimetric or other visual assays. For RNA specifically, although it is not usu-
ally as robust as DNA due to the high levels of environmental RNAses, RNA profil-
ing allows a snapshot of cellular activity that static DNA information cannot 
provide.

Just as the vast majority of basic research on non-coding RNAs has been per-
formed on miRNAs, the majority of research on ncRNA biomarkers has also been 
directed towards miRNAs. This has been driven primarily by the discovery that 
despite the high levels of nucleases in the blood [258], miRNAs are easily and sta-
bly detected in whole blood [259], plasma [260], and sera [261]. This stability is 
mediated by either association with protein partners including RISC [262, 263], or 
inclusion of miRNAs in exosomes [264], both of which shield the miRNA from 
nuclease attack. MicroRNAs have also been identified in all remaining bodily fluids 
[265], sputum [266], and stool samples [267], making less-invasive and non-invasive 
assay development possible. Other ncRNAs have also been identified in body fluids 
[268], although it is less clear whether their presence is due to active or passive 
export. Providing that robust differences between disease fluids and healthy fluids 
are identified, this distinction may not be necessary.

Tests that use next-generation sequencing methods to study the DNA or RNA of 
all genes simultaneously are being developed (e.g., acute myeloid leukemia [269] 
and an adenocarcinoma [270]), and are in common use as research tools [271], but 
none are currently approved as diagnostic or prognostic tools. Most current clinical 
assays for ncRNAs rely on either quantitative reverse-transcriptase PCR (qRT-PCR) 
or microarrays for signal detection. The following sections outline the applications 
for which non-coding RNAs are currently being used in the clinic, are in clinical 
trials, or are on the research horizon.

�Non-coding RNAs as Diagnostic Tools

The first major use of non-coding RNAs in the clinic has been for diagnostic pur-
poses, exploiting the highly tissue specific nature of both short and long non-coding 
RNAs. Assays in this category are more often in clinical use, although some of the 
applications in this category remain highly speculative.
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�Early Detection

It is generally accepted that the earlier a cancer is detected, the more effective and 
more successful subsequent treatment is. Using melanoma as an example, the 5-year 
survival rate of stage I disease is 98 %. However, survival drops to approximately 
16 % by stage IV [272]. Only certain cancers have screening tests that reduce mor-
tality (including breast [273], cervical [274], lung [275], and colon cancer [276]), 
and there is still debate as to whether the screening tests available for others are 
effective at preventing deaths [277]. Nevertheless, non-coding RNAs have already 
contributed to this particular diagnostic use, and the potential for more widespread 
application is large.

Whole Population Screening

Routine screening for cancer in healthy subjects is generally considered an unviable 
option, both because of the low incidence of most specific cancer types within the 
general population (as individual cancer types would need to be screened for indi-
vidually) and the lack of highly sensitive and specific markers [268, 278, 279]. Given 
the higher tissue specificity in the expression of non-coding RNAs, it seems unlikely 
that candidates for general cancer screening will be discovered. However as the pop-
ulation ages, and the incidence of cancer rises [280], it may become viable to screen 
for specific prevalent cancers, and ncRNAs would be ideally suited for this role.

Top non-coding RNA candidates for early detection of cancer would include a 
group of three miRNAs (hsa-miR-205-5p, hsa-miR-210-3p, and hsa-miR-708-5p) 
which can distinguish between sputum from healthy patients and those with squa-
mous cell lung carcinoma with 73 % sensitivity and 96 % specificity [281]. A second 
example, hsa-miR-378, appears to discriminate the serum of healthy controls from 
patients with gastric cancer with 87.5 % sensitivity and 70.73 % specificity [282].

Targeted Population Screening

Where whole population screening is not economically viable, screening sub-
populations of at-risk individuals may still provide substantial social benefits. The 
best known example of a non-coding RNA in this role is the use of PCA3 as a marker 
for prostate cancer [283]. Marketed as PROGENSA PCA3, this FDA approved urine 
test is used to determine whether men with elevated PSA in their serum but a negative 
biopsy should be referred for a second biopsy. The strong pathological-specificity of 
PCA3 expression [284, 285] means that this assay has a specificity of 76 % for the 
prediction of prostate cancer at follow-up biopsy, compared to PSA alone with a 
specificity of 47 % [268]. Importantly, the assay appears not to be affected by impor-
tant clinical variables such as age, inflammation, or prostate volume [268].
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Genetic Risk

Inherited DNA polymorphisms can increase the risk of developing cancer, and 
genetic screening individuals with family history of cancer can influence the man-
agement of their future medical care. An example of this are the polymorphisms in 
the BRCA1 and BRCA2 genes which increase the likelihood of developing breast 
[286, 287], ovarian [287, 288], and other types of cancers [289]. A test result 
confirming the presence of a risk polymorphism allows a patient to take action to 
reduce their risk of cancer, such as changing personal behavior, medication, preven-
tative surgery, or earlier and more frequent screening [290].

Obviously, DNA is largely identical in most cells of a body, whereas the RNA 
expression levels can vary dramatically, and therefore RNA would not usually be 
considered as a potential screening molecule for genetic risk. However, it is con-
ceivable that for clearly familial cancers, where the DNA test has not revealed a 
known polymorphism, non-coding RNAs that phenocopy a particular set of poly-
morphisms could be examined. For the BRCA1/BRCA2 genes, the leading candi-
date would be hsa-miR-182-5p, which has been shown to repress BRCA1 and other 
members of the HR DNA repair pathway [157, 291]. Not only does over-expression 
of this miRNA replicate the sensitivity of cells to PARP inhibitor therapy, but it may 
also explain why some BRCA-like familial cancers may not have obvious BRCA1/2 
polymorphisms [292]. Such an application is still highly speculative, and would 
require substantial basic and confirmatory studies before even exploratory clinical 
use could be considered.

�Tumors of Unknown Origin

Cancers that present as metastatic lesions where the primary tumor site cannot be 
identified with certainty prevent adequate management of treatment which is 
increasingly based on the tissue of origin [293]. Failure to identify the tissue of 
origin can also be a psychological burden on the patient, although it is thought to be 
unlikely to impact the prognosis of metastatic disease [294]. Leveraging the tissue 
specificity of miRNAs, Rosetta Genomics developed a microarray based assay 
(originally qRT-PCR based [295]) that is able to distinguish between 42 different 
tumor types (covering 92 % of all solid tumors) using the expression levels of 64 
microRNAs [296]. The reported sensitivity of the test was 85 %, and the specificity 
>99 %. Given the very high tissue specificity of long non-coding RNAs, it is con-
ceivable that a test developed with lncRNAs could show even higher sensitivity.

�Classification of Molecular Subtypes

Even when the primary cancer can be identified, highly heterogeneous tumor types 
will have subtypes with different prognoses and different management strategies. For 
example, breast cancer can be classified into approximately 20 major and 18 minor 
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subtypes primarily by histology and morphological properties of the tumor at the time 
of diagnosis which correlates with response to treatment and clinical outcome [297].

Several assays based on miRNAs are currently being used clinically. In 2012, 
Rosetta Genomics was given FDA approval to use their Lung Cancer Test as a diag-
nostic to differentiate between four major types of lung cancer: (1) small cell lung 
cancer (SCLC); (2) squamous non-small cell lung cancer (NSCLC); (3) non-
squamous NSCLC; and (4) carcinoid [298, 299]. This is a qRT-PCR based assay for 
8 miRNAs which is performed on FFPE samples. Specificity and sensitivity are 
98 % and 97.3 %, respectively.

Two more clinical assays, also produced by Rosetta Genomics, distinguish the 
subtypes of kidney cancers and mesothelioma. The first test uses a custom microar-
ray of miRNAs to differentiate between benign oncocytoma and the three most 
common subtypes of renal cell carcinoma (RCC): clear cell, papillary, and chromo-
phobe [300]. The second test uses qRT-PCR on 3 miRNAs to differentiate between 
mesothelioma and other primary and metastatic lung cancers [301, 302].

�Non-coding RNAs as Prognostic or Predictive Tools

The second major use for non-coding RNAs has been to understand their prognostic 
or predictive power in a clinical setting. Fewer examples of commercial clinical 
assays exist in this category; however, there is far more research in the pipeline reflect-
ing the enormous potential of these molecules to impact upon patient outcomes.

�Patient Stratification

Underscored by the genomics research demonstrating that no two patients have the 
same spectrum of mutations within the same cancer subtype [303, 304] there has 
been a desire to move towards personalized or precision medicine—treating and 
understanding the individual patient rather than understanding a population of 
patients. This has driven a desire to stratify patient therapies, prognosis, and predic-
tions on recurrence and metastasis based on meaningful biological markers.

Assignment of Therapeutic Intervention

The classification of cancers into subtypes helps in the making of therapeutic deci-
sions, providing guidelines on how individual tumors may respond to certain kinds 
of therapy. For example, in breast cancer, classification of tumors into different 
molecular subtypes [305] has ensured straightforward means of identifying HER2 
positive tumors which will respond to treatment with trastuzumab [306]. Similar 
molecular approaches have also been used to classify lung cancers [307], melanoma 
[308], and glioblastoma [309] amongst others.
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Traditional methods of molecular classification have often relied on identifying 
genomic alterations and measuring the expression levels of protein-coding genes. 
Often classification of tumors into different subtypes requires large efforts in expres-
sion profiling and analyses, however, are beneficial in diagnosis, predicting progno-
sis, and directing therapy. More recently, the diagnostic and prognostic power of 
using non-coding RNA has been uncovered. MicroRNA signatures have been used 
to segregate molecular subtypes of breast cancer as well as differentiate between the 
DCIS and IDC stages of tumor progression [310, 311]. miRNA expression has been 
associated with clinicopathological features and to specifically identify ER, PR, and 
HER2 status of breast cancers [312]. Therefore it is possible that the identification 
of a small number of miRNAs that are more predictive of tumor prognosis could 
substitute for having to perform extensive molecular profiling and analyses.

Survival Prognosis

Patients and clinicians alike need to understand the likely impact of cancer on the patient 
to make informed choices about therapies or palliative care. MicroRNA signatures have 
been used to stratify TNBCs based on predictability of overall survival and metastasis-
free survival [313], and a great many more examples exist in the literature.

Recurrence Prediction

Even when a treatment appears to be successful (where the tumor burden drops 
below the sensitivity limits of the available tests), a recurrence of that cancer can 
occur months or years later. While it is desirable to remove any unnecessary chemo-
therapy treatments from consideration, it is also important that those most likely to 
have a recurrence are treated more aggressively. Expression of hsa-miR-221-3p was 
been shown to be inversely correlated with the likelihood of recurrence of prostate 
cancer [314], and a small panel of less than ten miRNAs was observed to predict the 
recurrence of non-small cell lung cancer after surgical resection [315].

Metastatic Potential

Metastasis is the leading cause of mortality in patients suffering from cancer, 
accounting for over 90 % of cancer-related deaths [316]. This is indicative of both 
our inability to detect cancers at an early enough stage to prevent metastasis, and 
our inability to predict which tumors are more likely to metastasize, implying the 
need for quicker and more reliable diagnostics. Since miRNAs have been shown to 
be able to segregate tumors based on their grades and aggressiveness [310, 311], 
they might present with unique tools to detect tumors that have a higher propensity 
to metastasize.
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�Monitoring Tumor Burden

It is beneficial to measure the burden of cancer in the patient in order to monitor the 
effectiveness (or otherwise) of a prescribed treatment. This style of monitoring has 
been described for chromosomal rearrangements that are unique to a tumor (so-
called personalized diagnostics [317, 318]), however, non-coding RNAs also have 
potential to impact in this space. Although the purpose behind the cancer detection 
may be different (post-diagnosis rather than pre-diagnosis), all the potential and 
caveats of early detection and screening apply to this application too.

�A Note on Non-coding RNAs as Therapeutics

Although not strictly within the bounds of molecular pathology, it is useful to under-
stand that where functional contribution to disease has been demonstrated (as is the 
case for most of the miRNAs described here), the molecule being detected is the 
same molecule that can be targeted for replacement or inhibition with some variety 
of anti-sense molecule. While using non-coding RNAs as therapeutics has a number 
of challenges that have been reviewed extensively elsewhere [319–321], the scope 
for precision medicine in this context is exciting given that the disease specific 
expression of many non-coding RNAs could lead to treatments with very few side 
effects.

�Challenges and Limitations

So far this chapter has highlighted many of the potential benefits of using non-
coding RNAs for diagnosis, prognosis, and prediction in a clinical setting, but this 
strategy is not without its challenges. Some of these issues are described in the fol-
lowing sections.

�Validation of Non-coding RNA Biomarkers

The preceding sections have sampled the wide range of studies associating non-
coding RNAs with cancer, many of which report on the possibility of using ncRNAs 
as biomarkers for diagnostic and prognostic purposes. A large number also report 
the potential of using miRNAs as therapeutics for several cancer types [319]. 
Despite this enormous interest, there are currently no phase II or III clinical trials 
that involve either long or short ncRNAs, and the numbers of markers available to 
the clinic are very small. There are a fair number of trials that are investigating the 
possibility of using miRNAs as potential biomarkers in different cancers (Table 1), 
and some that are being considered as diagnostics (Table 2), however, none have 
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gone past the initial discovery stage. This may indicate that a large number of poten-
tial candidates are about to be validated in the near future, or, it may reflect on the 
failure in the translation of pre-clinical studies to the human context [322, 323]. The 
following sections discuss some of the validation that will be critical to adoption of 
non-coding RNAs for clinical use.

Analytic Validation

Any clinical assay using non-coding RNAs would have to undergo analytical 
validation to ensure its reproducibility and quality. Because of differences in both 
practice and skill sets between research and clinical laboratories, techniques that are 
routine in research labs may not be robust enough for inclusion in a clinical lab 
repertoire. For example, assays such as quantitative real-time PCR are routinely 
carried out in research laboratories and the results obtained at different times may 
vary depending on a number of factors [324]. Such variability may hinder the use of 

Table 2  Non-coding RNAs currently being explored for use as diagnostic tumor biomarkers in 
registered clinical trials

Cancer type ncRNA Title Trial ID

Colorectal Multiple 
miRNAs

Analysis of microRNA profiles 
in blood samples of patients 
with colorectal cancer

DRKS00005982

Gastric MicroRNA as novel markers of 
gastric adenoma

JPRN-UMIN000005902

Glioma hsa-miR-
10b

Evaluating the expression levels 
of microRNA-10b in patients 
with gliomas

NCT01849952

Leukemia Multiple 
miRNAs

Studying RNA biomarkers in 
tissue samples from infants 
with acute myeloid leukemia

NCT01229124

Neurofibromatosis, 
glioma

Multiple 
miRNAs

MicroRNAs as disease markers 
for central nervous system 
tumors in patients with 
neurofibromatosis type 1

NCT01595139

Prostate Multiple 
miRNAs

Analysis and quantification of 
microRNAs in prostate tumors

ISRCTN67055660

Prostate Serum microRNAs in the 
diagnosis of prostate cancer

DRKS00003155

Rhabdoid Multiple 
miRNAs

Biomarkers in samples from 
patients with rhabdoid tumor of 
the kidney and atypical teratoid 
rhabdoid tumor

NCT01453465

Thyroid Multiple 
miRNAs

Use of a microRNA panel to 
identify thyroid malignancy in 
FNA leftover cells

NCT01964508
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this technique in a clinical setting for diagnostic purposes as these differences may 
greatly impact diagnostics leading to differences in results and interpretation.

To a certain extent, issues of reproducibility can be overcome using quality con-
trol initiatives that, when implemented, could reduce inter- and intra-lab variability. 
An example of such an initiative is MACQ (Microarray Quality Control)—initiated 
to improve microarray technology and foster its appropriate application in discov-
ery, development, and review of FDA-regulated products [324]. This initiative has 
also progressed to include next-generation sequencing (SEQC), which aims to 
increase accuracy and reproducibility in RNA-seq [95, 325], a tool that is increas-
ingly becoming pertinent to clinical diagnosis [326]. Such initiatives may enable the 
use of tools such as sequencing for clinical applications, although it seems unlikely 
until automated and robust workflow robotics can ease the burden of these labor 
intensive research techniques.

Additionally, while a patient’s genotype does not change, the RNA expression 
profile varies substantially with cell type and biological state. Blood cells in particu-
lar are poised and ready to respond to small changes in the extracellular environ-
ment, and small variation in protocol to collect or process blood samples can lead to 
substantial changes in gene expression [327], an obvious challenge to overcome for 
clinical assays reliant upon non-coding RNAs.

The variation in expression of both non-coding and protein-coding genes is also 
challenging for biomarker development. Protein expression is considered to be less 
variable than mRNA expression due to canalization—the tolerance of living sys-
tems to slight fluctuations to both endogenous and exogenous signals [328]. Such 
tolerance is important to ensure the stability of phenotypes, but leads to variability 
of RNA profiles that are not reflected in protein profiles from the same samples 
[329]. MicroRNAs appear to be an exception to this rule. Indeed, a biological role 
proposed for these molecules is to stabilize the expression from mRNAs and assist 
in canalization [330, 331]. If true, this could be an argument for preferring miRNAs 
over ncRNAs for more robust biomarker development.

Finally, care needs to be taken when deciding upon the method of RNA extrac-
tion, especially for the small non-coding RNAs, as non-random loss of certain 
sequences can occur when comparing one set of extraction methods with another 
[332]. This may mean that the optimal extraction technique may depend upon the 
transcript being detected.

Clinical Validation

The clinical validation of an assay refers to its ability to differentiate a positive and 
negative outcome, and assays to be used for diagnostic purposes require a large 
multi-institutional effort to ensure that bias from small sample sizes and single insti-
tution studies do not affect the evaluation. Several bodies such as Consolidated 
Standard Randomized Trials (CONSORT) movement and the Standard for Reporting 
Diagnostic Accuracy (STARD) group [333, 334] have initiated quality criteria that 
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should be fulfilled before a diagnostic can be approved. Additionally, the Statistics 
Subcommittee of the NCI-EORTC Working Group on Cancer Diagnostics released 
reporting recommendation for tumor marker prognostic studies to address the “piti-
fully small” proportion of markers that have emerged as clinically useful from the 
thousands of publish articles [335]. Although issued before the bulk of non-coding 
RNA research has been conducted, the guidelines are no less applicable.

A factor that may complicate the clinical validation of miRNAs is their ability to 
play dual oncogenic and tumor suppressive functions across different tumors types 
(see Bifunctional microRNAs). While there have not yet been reports of differences 
in miRNA function between subtypes, if the function of an miRNA is largely depen-
dent on the mRNAs that it targets, then it is conceivable that its phenotypic effects 
could vary significantly based on whether or not its targets are expressed. This begs 
the question, how important is it to understand the target genes for a given miRNA? 
And how important is it to incorporate the expression of target genes into the diag-
nostic/prognostic algorithm? It is possible that a detailed understanding of the 
mechanism by which the miRNA acts may be essential to prevent misinterpretation 
of miRNA based assays.

Clinical Utility

The development of new applications for non-coding RNA tools should be dictated 
by the benefit to patients, and should additionally offer an independent benefit over 
existing clinical assays. So far it is unclear whether there would be any wide-
reaching benefit to using lncRNAs over protein-coding RNAs for clinical applica-
tions based on multi-gene expression profiles. Whilst ncRNAs are often more tissue 
specific than protein-coding genes, and can therefore offer benefits in classifying 
poorly differentiated tumors, the expression of lncRNAs in particular is often sub-
stantially lower [3]. It is still unknown whether this lower level of expression is due 
to high base-expression in a small sub-population of cells, or low-level expression 
in all cells. The answer has substantial importance for its use as a biomarker. 
Although highly cell type specific expression may be of use diagnostically and ther-
apeutically, a poorly expressed marker may lead into a trade-off between sensitivity 
and specificity.

�Conclusions

It’s clear that non-coding RNAs are an extremely active area of both basic and 
applied research in the detection and management of cancer, and that the results 
generated so far are undeniably in support of non-coding RNAs playing a 

Applications of Non-coding RNA in the Molecular Pathology of Cancer



204

substantial role in every aspect of cancer biology. Regarding their application to 
molecular pathology, prospects are high for their widespread use in many areas of 
diagnostics and prognostics, provided that issues surrounding the analytical valida-
tion, clinical validation, and clinical utility can be addressed.
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�Introduction

The key to treating patients is early and accurate diagnosis. Molecular pathology 
provides diagnostic information by measuring the presence and concentration of 
distinct molecular species (DNA, metabolites, proteins and lipids), so that changes 
in levels between health and disease can be used to guide diagnosis and therapy. 
Biological systems are dynamic. They contain many molecular species that interact 
with each other, resulting in complex series of physico-chemical, spatial and tem-
poral changes. Since proteins carry out the majority of the biochemical reactions in 
cells, as well as performing many key signalling functions and forming structural 
elements, it follows that measuring the concentration and state of proteins both in 
their biochemical and temporal context will yield means of distinguishing health 
from disease. This is often called biomarker analysis [1, 2]. The term proteome was 
coined by Wilkins [3] and led to the field of protein biochemistry being dubbed 
proteomics [4]. The proteome was originally defined as the proteins present in a 
cell or organism at any one time. The proteome is clearly dynamic, and unlike the 
genome varies highly over time and biological location (e.g. Plasma vs. Serum vs. 
Tissue vs. Urine vs. CSF vs. CVF vs. Saliva, etc.). Another important consideration 
in analysing proteins especially in a higher eukaryote such as man is the critical 
role played by post-translational modifications in cell signalling [5] which not only 
includes such changes as phosphorylation, glycosylation, ubiquitination and meth-
ylation but also activation through proteolytic cleavage, e.g., the conversion of pro-
thrombin to thrombin or the excision of the c-peptide to yield active insulin. This 
all implies the proteome is information rich but poses a significant analytical chal-
lenge. As there is no protein equivalent of the DNA polymerase chain reaction, 
PCR, various sample preparation and analytical strategies are used to identify and 
quantify proteins and peptides. The following pages describe the methods currently 
in use.

�Sample Preparation

Robust and reproducible sample preparation is an essential component in any analyti-
cal technique. There are numerous possible sources of samples for proteomics analysis: 
serum vs. plasma, urine, fresh frozen vs. paraffin embedded tissue, etc. Something 
that is often underappreciated is the experimental design and statistical interpretation 
of clinical samples. Experimental design and interpretation are closely linked. In pro-
teomic profiling experiments, a set of reference disease specimens and a balanced 
number of controls may be sufficient since only a hypothesis of potential biomarker 
candidates will be built and subsequently more stringent validation will occur in a 
second verification step. Figure 1 shows a typical assay development workflow using 
mass spectrometry as the analytical technique. The key point is, as the assay is moved 
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towards clinical use the number of samples must be increased to ensure both the 
robustness of the method and assessing individual variation.

To make meaningful clinical conclusions from follow-up verification studies, it 
is essential to design the experimental workflow around a suitably sized controlled 
collection of clinical specimens [6, 7]. This starts with the selection of a sufficient 
number of representative patients and suitable case controls to achieve statistical 
significance in terms of differential biomarker abundance. Without proper design, 
the collected information might well be useless to link a certain molecular pattern 
to a given disease state. Follow-up reports should provide statistical statements 
about the significance of each finding at the individual patient level.

The most frequently analysed clinical sample is blood, since its collection is 
rapid and non-invasive. From the proteomics standpoint, however, there are a num-
ber of issues to consider when analysing the protein content of blood or more spe-
cifically serum and plasma [8]. The dynamic range of concentration of individual 
proteins in blood covers 10 orders of magnitude, with albumin at 34–54 mg/mL and 
cytokines such as IL1-beta 0.16 ± 0.17 pg/mL (http://www.copewithcytokines.de) 
[9, 10] This poses significant analytical problems since the linear dynamic range of 
the current analytical methods is only 4–5 orders of magnitude. Hence, to measure 
the low concentration analytes either an enrichment step, e.g. an antibody and or a 
signal amplification, e.g. ELISA is required. The collection protocol can have a 
significant affect on the analysis, the timing, method of sampling and even the type 
of tube can affect the result [11].

Fig. 1  Mass spectrometry-based assay development
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�Proteome Analysis Methods

�Two Dimensional Polyacrylamide Gel Electrophoresis 
(2DPAGE)

2D-PAGE is a form of polyacrylamide gel electrophoresis in which proteins are 
separated in two dimensions oriented at right angles to each other [12–14]. It makes 
use of two distinct physical properties of proteins, charge and mass (see Table 1). 
The first dimension, isoelectric focusing, separates proteins on the basis of their net 
charge while the second dimension, SDS-PAGE, further separates the proteins 
according to their mass. Small changes in charge and mass can easily be detected by 
this method, because it is rare that two different proteins will resolve to the same 
place in both dimensions. 2D-PAGE in combination with mass spectrometry to 
identify proteins was used for the first large scale comparative proteomics experi-
ments [15, 16]. The introduction of fluorescent difference gel electrophoresis 
(DIGE) technology [17] and the use of an internal standard [18] made it possible to 
quantify differentially expressed proteins in a series of samples. Software has been 
developed to image the gels and quantify the proteins based on the strength of the 
fluorescent signal or if another staining technique is used (e.g. Coomassie blue, 
Sypro Ruby, silver), the intensity of the staining [19]. The protein(s) in the spots are 
identified by excision and in gel digestion with Trypsin then analysing the resulting 
peptides by mass spectrometry [20, 21].

�Immuno-Blotting or Western Blotting

The technique of protein blotting or Western blotting (WB) [22, 23] separates pro-
teins by polyacrylamide gel electrophoresis, either on one dimensional sodium 
dodecyl sulphate polyacrylamide gels (SDS-PAGE) or 2D-PAGE, then subsequently 

Table 1  Methods of protein analysis

Protein property Method

Size Size exclusion 
chromatography

SDS PAGE Mass spectrometry

Charge Ion exchange 
chromatography

Isoelectric focussing Capillary 
electrophoresis

Hydrophobicity Reversed phase HPLC Hydrophobic 
interaction

Hydrophilic interaction

Affinity Antibodies, lectins Binding proteins,  
e.g. protein A

Metal chelation

Activity Enzyme substrate 
conversion

Reaction inhibition

Structure Mass spectrometry Nuclear magnetic 
resonance

X-Ray crystallography

K. Ashman et al.
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transfers them to an adsorbent membrane support under the influence of an electric 
current. After transfer the membrane is blocked, with a detergent or protein solution 
to prevent further proteins binding non-specifically to the membrane. The mem-
brane is then incubated with an antibody against a specific target protein. A second 
incubation with a secondary reporter antibody, coupled to an enzyme that generates 
a detectable signal, is then used to determine if the primary antibody has bound to 
its target. The developed membrane can then be analysed by densitometry to obtain 
semi-quantitative data. It is important to control for sample loading between sam-
ples by measuring in the same way the levels of a protein common to all samples, 
e.g., actin or tubulin [24].

�Radioimmunoassay

RIA was the first type of immunoassay to be developed [25] for the measurement of 
insulin in serum. Immunoassays now play a prominent role in the clinical laboratory 
analysis for analytes such as proteins, hormones, drugs and nucleic acids [26]. To 
perform a radioimmunoassay, a known quantity of an antigen is made radioactive, 
frequently by labelling it with gamma-radioactive isotopes of iodine attached to 
tyrosine. The radiolabeled antigen is then mixed with a known amount of antibody 
for that antigen, and as a result forms a labelled complex. Then, a sample of serum 
from a patient containing an unknown quantity of that same antigen is added. This 
causes the unlabelled (or ‘cold’) antigen from the serum to compete with the radio-
labeled antigen (‘hot’) for antibody binding sites. As the concentration of ‘cold’ 
antigen is increased, more of it binds to the antibody, displacing the radiolabeled 
variant, and reducing the ratio of antibody-bound radiolabeled antigen to free radio-
labeled antigen. The bound antigens are then separated from the unbound ones, and 
the radioactivity of the free antigen remaining in the supernatant is measured using 
a gamma counter. Using known standards, a binding curve can then be generated 
which allows the amount of antigen in the patient’s serum to be derived.

�Enzyme Linked Immunosorbent Assay

ELISAs are 96 or 384 well polystyrene plate-based immunoassays designed for 
detecting and quantifying substances such as peptides, proteins, antibodies and hor-
mones. In its simplest form an antigen is immobilized on a solid surface and then 
complexed with an antibody that is linked to an enzyme. Detection is accomplished 
by assessing the conjugated enzyme activity via incubation with a substrate to pro-
duce a detectable product. A second common type of ELISA, referred to as a sand-
wich assay (see Fig. 2), first coats the plate well with a primary antibody, which can 
capture an antigen from solution. Non-bound material is washed away and a second 
antibody, which recognizes another epitope on the captured antigen and has been 
coupled to an enzyme is added. Excess antibody is washed away before adding 
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substrate to produce a detectable product. The advantage of this form of ELISA is that 
it contains both a capture and signal amplification step, but it does require two anti-
bodies that recognize two different non-competing epitopes on the analyte of 
interest.

�Array Technologies

�Protein Microarrays

A protein microarray, also known as a protein chip, is a solid surface (typically 
glass) on which thousands of different proteins (e.g. antigens, antibodies, enzymes, 
substrates, etc.) are immobilized in discrete spatial locations, forming a high-density 
protein dot matrix. Depending on their application, protein microarrays can be 

Coat plate with capture antibody

Add samples and standard, aspirate
and wash

Add biotinylated detection antibody
aspirate and wash

Add chromogenic substrate for color development
color develops in proportion to the bound analyte

Add streptavidin labelled enzyme
aspirate and wash

Add stop solution and read, this permits a defined
enzymic reaction endpoint

Sandwich ELISA

Fig. 2  An enzyme linked immunoabsorbent assay workflow
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classified into two types: analytical and functional protein microarrays. Analytical 
protein microarrays are usually composed of well-characterized biomolecules with 
specific binding activities, such as antibodies, to analyse the components of com-
plex biological samples (e.g. serum and cell lysates) or to determine whether a 
sample contains a specific protein of interest. They have been used for protein 
expression profiling, biomarker identification, cell surface marker/glycosylation 
profiling, clinical diagnosis and environmental/food safety analysis. Functional pro-
tein microarrays are constructed by printing a large number of individually purified 
proteins, and are mainly used to comprehensively query the biochemical properties 
and activities of the immobilized proteins. In principle, it is feasible to print arrays 
comprised of virtually all the annotated proteins of a given organism, effectively 
comprising a whole proteome microarray [27–29]. Another type of polypeptide 
array is based on synthetic peptides that are synthesized in situ on a cellulose mem-
brane. The peptides can then be used to probe for specific interactions [30, 31].

�Antibody Arrays

This type of array can be considered a special type of protein array. Since antibodies 
share the same general structure they offer some advantages in terms of defined sup-
port coupling chemistries. Depending on whether the antibodies are immobilized on 
a planar or spherical surface, antibody arrays have been classified into planar and 
suspension/bead formats, respectively [32]. Planar antibody arrays represent a 
versatile platform, with many potential clinical applications. The main planar label-
based formats comprise one-antibody and sandwich assays. Multiplex protein sus-
pension arrays have a number of advantages over current analyte quantification 
technologies, including measurement of many biomarkers (theoretically, up to 100 
different analytes) in a single sample; wider operational dynamic range and 
increased sensitivity and specificity derived from multivariate modelling of combi-
nations of biomarker analytes. This system utilizes a sandwich ELISA-like proto-
col, in which capture antibodies are coupled to spectrally distinct beads. Biotinylated 
sandwich antibody and streptavidin-phycoerythrin fluorophores are used as a 
reporter complex. Bead identity and analyte-specific fluorescence are assessed by 
passing the beads through a flow cytometer [33].

Both these formats may be described as micro-ELISA assays offering the impor-
tant advantages of multiplexing and requiring smaller amounts of sample.

�Immunohistochemistry

Immunohistochemistry (IHC) uses anatomical, immunological and biochemical 
techniques to identify discrete tissue components by the interaction of target anti-
gens with specific antibodies tagged with a visible label. IHC makes it possible to 
visualize the distribution of specific cellular components within cells and in their 
tissue spatial context. The intensity of the labelling provides some quantitative 
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information. While there are multiple approaches and permutations in IHC method-
ology, all of the steps involved are separated into two groups: sample preparation 
and labelling. The principle of IHC has been known since the 1930s, but it was not 
until 1942 that the first IHC study was reported [34]. The study used FITC-labelled 
antibodies to identify Pneumococcal antigens in infected tissue. Since then, 
improvements have been made in protein conjugation, tissue fixation methods, 
detection labels and microscopy, making immunohistochemistry a routine and 
essential tool in diagnostic and research laboratories. A detailed discussion is 
beyond the scope of this article but the reader is referred to [35–37].

�Mass Spectrometry

Mass spectrometry is already an important clinical tool, widely used for the mea-
surement of drug metabolites, steroids, for the detection on inborn metabolic dis-
ease in newborn infants [38]. Recently, it has been applied to bacterial typing and 
identification [39]. Advances in speed, resolution and sensitivity as well as the abil-
ity to perform multiplexed assays will likely see this technology find even wider 
application in clinical diagnosis [40]. Mass spectrometric measurements are carried 
out in the gas phase on ionized analytes. The development of the soft ionization 
techniques electrospray ionization (ESI) [41–43] and Matrix Assisted Laser 
Desorption Ionization (MALDI) [43, 44] that allow proteins and peptides to be 
readily transferred to the gas phase has transformed mass spectrometry into the 
mainstay of proteome analysis. A mass spectrometer consists of an ion source, to 
transfer the analytes into the gas phase, a mass analyzer that measures the mass-to-
charge ratio (m/z) of the ionized analytes and a detector that registers the number of 
ions at each m/z value (Fig. 3). ESI ionizes the analytes out of a solution and is 

Fig. 3  A generic mass spectrometer. ESI electrospray ionization, MALDI matrix assisted laser 
desorption ionization
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therefore readily coupled to liquid-based (for example, chromatographic and 
electrophoretic) separation tools. MALDI sublimates and ionizes the samples out of 
a dry, crystalline matrix via laser pulses. MALDI-MS is normally used to analyse 
relatively simple peptide mixtures, whereas integrated liquid-chromatography 
ESI-MS systems (LC-MS) are preferred for the analysis of complex samples.

Mass spectrometry-based proteomics strategies (Fig. 4) can be divided into tar-
geted and non-targeted (shotgun) approaches. The non-targeted approach aims to 
identify as many protein species as possible in a biological matrix such as a tissue, 
cell lysate or plasma [45]. It is generally a combination of separation methods, see 
Table  1, designed to separate proteins and peptides to the maximum achievable 
degree. The holy grail is to be able to characterize entire proteomes completely, 
which is currently not attainable. It is also important to remember that the proteome 
is highly dynamic and especially in higher eukaryotes such as humans post-transla-
tional modification of a protein(s) can have a profound effect on the function. It is 
therefore necessary not only to detect the presence of a protein but also to know its 
quantity and molecular state. The non-targeted strategy is applied at the discovery 

Fig. 4  Mass spectrometry in clinical proteomics
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stage in the biomarker development process (Fig.  1). Stable isotope labelling is 
being applied extensively in this scenario as it allows the quantitative comparison of 
large sets of proteins (iTraq [46] TMT [47] SILAC [48–51]) (Fig. 4).

Targeted proteomics in contrast aims to obtain quantitative information from 
defined sets of proteins that have been identified as important players in biological 
process either in a non-targeted proteome analysis or by such methods as gene expres-
sion analysis on DNA or RNA microarrays. The field of quantitative proteomics is 
enthusiastically embracing selected reaction monitoring (SRM) MS methods for tar-
geted quantitative proteomic analysis [52]. The alternate term multiple reaction moni-
toring (MRM) will soon be superseded by IUPAC.  Since SRM makes use of the 
analysis of a selected product ion (termed Q3) from a specific precursor ion (termed 
Q1), this provides excellent selectivity, enabling high S/N and very sensitive detection 
of the analyte from ‘noisy’ backgrounds. These features are well suited for proteomic 
applications allowing for the detection of target peptides in highly complex biological 
mixtures (i.e. proteolytically cleaved entire cell lysates, human plasma, etc.). The 
underlying principle of SRM in proteomic applications is that the selected set of pre-
cursor and product ions contain sufficient information to represent the target peptide 
of interest, and thereby its protein of origin. Libraries of SRM-based data are being 
actively established, e.g., SRM protein atlas (http://www.srmatlas.org/ [53]). 
Quantitation is achieved by including in the assay a stable heavy isotope labelled ver-
sion of the target peptide(s) as an internal standard(s) and applying the method of 
isotope dilution [54]. A variation on the general principal of isotope dilution termed 
SISCAPA [55, 56] uses anti-peptide antibodies to capture peptides of interest, primar-
ily from serum, again with a spiked in synthetic isotopically labelled heavy internal 
standard peptide to improve the selectivity and sensitivity of the method [57, 58].

�Phosphoproteomics

Phosphorylation of tyrosine, serine and threonine amino acid residues is a reversible 
and dynamic protein post-translational modification that plays important roles in the 
regulation of the cellular signalling pathways, which control many biological pro-
cesses, including cell growth, differentiation, invasion, metastasis and apoptosis. 
Abnormal protein phosphorylation is known to cause or be a consequence of many 
diseases, including cancer [5, 59, 60]. The deregulation of protein kinase activity 
with its resulting change in protein phosphorylation states has been implicated in 
the onset of tumour formation and cancer progression [61]. The phospho-status of a 
protein is dynamically controlled by protein kinases and counteracting phospha-
tases. Therefore, monitoring of kinase and phosphatase activities, identification of 
specific phosphorylation sites and assessment of their functional significance are 
of crucial importance to understand development and homeostasis of diseases 
such as cancer, where the cell proliferative control mechanisms are severely 
compromised. Recent advances especially in the area in mass spectrometry-based 
phosphoproteomics have opened new possibilities to reach an unprecedented depth 
and a proteome-wide understanding of phosphorylation processes [62, 63].
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�Tissue Imaging Mass Spectrometry

Analysis of clinical tissues using matrix assisted laser desorption ionization (MALDI) 
imaging mass spectrometry (IMS) is a powerful way to assess spatial expression of 
molecules linked with histopathology and associated clinical information [64]. 
MALDI-IMS can be utilized as a biomarker discovery tool as it facilitates a pathol-
ogy-directed, unbiased approach to identifying the cellular origins and relative con-
centrations of biomarker candidates across an entire tissue section. The MALDI 
technique is well suited to this application since it permits the ionization of diverse 
biomolecules, including peptides, proteins, oligonucleotides, sugars and lipids [65]. 
Once a biomarker of interest has been identified, properties related to its localization, 
abundance, regulation and function can be assessed across multiple tissues to better 
understand disease progression at the molecular level.

�Mass Cytometry (CyTOF) Single Cell Analysis

The recent development of ‘mass cytometer’ technology [66–68] offers an exciting new 
approach to single cell analysis. It is premised on the use of elements, or stable isotopes, 
as tags instead of fluorophores, with measurement of the tags using an Inductively 
Coupled Plasma Mass Spectrometer (ICP-MS). The advantage lies in the large number 
of available elements and stable isotopes (potentially greater than 100), the high resolu-
tion of the mass spectrometer between detection channels, and the large dynamic range 
(linearity) of detection of the ICP-MS. These benefits, and others, result in the ability to 
perform multi-parameter assays of high order (up to 100) in single cells without the need 
for mathematical correction of overlap, and with large dynamic range both for a given 
target biomarker and between different biomarkers (Fig. 5).

�Bacterial Identification by Mass Spectrometry

The general workflow of microorganism profiling by Matrix Assisted Laser Desorption 
Mass Spectrometry (MALDI) is straightforward (Fig. 6). Starting from a single col-
ony or other biological material sample deposition followed by the addition of MALDI 
matrix is performed within a few minutes. After sample drying and loading into the 
instrument spectra are rapidly acquired. The instrument used is a time of flight mass 
spectrometer operated in linear mode (TOFMS) and since MALDI produces predom-
inantly singly charged ions the mass peaks in a typical spectrum require less interpre-
tation than those generated in an electrospray instrument. The high reproducibility of 
the methodology is based on the measurement of constantly expressed high-abundant 
proteins, e.g., ribosomal proteins [69]. The observed mass range of spectra is between 
2000 and 20,000 Da. Analysis in this range contains very few measurable metabolites. 
The data are transferred to dedicated software package for rapid identification and/or 

Proteomics Methods



230

classification by comparing the set of masses measured with a library of spectra. In 
contrast to PCR or metabolic pathway analysis, MALDI-TOF MS needs no initial 
assessment such as gram staining, oxidase test of unknown samples or choice of PCR 
primers. Each class of sample material is treated in the same manner. The technology 
is an excellent alternative to classical microbiological identification and classification 
techniques [39, 70, 71].

�Single vs. Multiple Biomarkers

Multiplexed measurement is logical for biological discovery with proteins because 
they constitutively function within networks, pathways, complexes and families 
[72, 73]. The consequence of this is that measuring multiple biomarkers will provide 

Fig. 5  The CyTof workflow
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better predictive and therefore diagnostic capabilities. There is a growing consensus 
that panels of markers may be able to supply the specificity and sensitivity that 
individual markers lack. For example, a panel combining four known biomarkers 
(leptin, prolactin, osteopontin, insulin-like growth factor II), none of which used 
alone could distinguish patients from the controls, achieved a sensitivity and speci-
ficity of 95 % for the diagnosis of ovarian cancer [74]. In another example, multiple 
plasma biomarkers were measured at 11 weeks of gestation in women who experi-
enced normal pregnancy outcomes (n = 14) and women who developed gestational 
diabetes (n = 14). Of the biomarkers considered, receiver operator characteristic 
curves (ROC) for three biomarkers (adiponectin, insulin and blood glucose) are 
presented together with an ROC based on the predicted posterior probability values 
(ppv) generated by a classification model that combined information from all three 
biomarkers (Fig. 7). The model out performed individual biomarkers based upon 
the area under the ROC (model = 0.94; adiponectin = 0.867; insulin = 0.872 and glu-
cose = 0.827). This simple example demonstrates the benefit of a multimarker 
approach for improving diagnostic efficiency [75].

Fig. 6  Bacterial identification by MALDI mass spectrometry
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�Conclusion

Can current proteomic technologies deliver clinically useful biomarkers? The opin-
ion of these authors is yes, but it will require more development of the sample 
preparation, data acquisition and analysis steps. Precise and accurate absolute quan-
tification of proteins represents a challenging task, impaired by multiple potential 
sources of error. These errors, however, can be minimized to a satisfactory level, if 
sample preparation, measurement and data analysis are adjusted to the respective 
sample type under investigation, and if each step of the workflow is conducted thor-
oughly and reproducibly. In order to demonstrate the clinical utility of any diagnos-
tic test it is necessary to show that:

	(a)	 the analyte can be reliably and consistently measured, i.e. it requires a robust 
and well-controlled protocol;

	(b)	 the test has a combined sensitivity and specificity that will with high probability 
segregate disease from health and

	(c)	 the use of the test will improve the clinical outcome of patients by targeting 
interventions, i.e. well documented follow-up.
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Fig. 7  A comparison of ROC curves of the performance of individual biomarkers (adiponectin, 
glucose and insulin) and a combined model (ppv) to correctly classify women who subsequently 
developed gestational diabetes
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To implement appropriate experimental designs, it is important to have in mind 
the purpose of any assay. Studies can be performed to ascertain their utility for 
screening (who is sick?), risk assessment (who may get sick?), what is the correct 
therapy (personalized medicine), assessment of clinical outcome (is the treatment 
working). Laboratories have to be resourced not only to discover biomarkers but 
also to verify their clinical utility. Analysing a few samples to compare their differ-
ences with no reasonable attempt at verification or validation should no longer be 
pursued. It is essential that the analytical laboratory scientist and clinical research-
ers work closely with practicing physicians, so that their combined skills are brought 
to bear. Finding clinically useful biomarkers is not going to be easy, so we should 
stop treating it like it is.
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�Introduction

The key to the successful treatment of patients is early and accurate diagnosis. Molecular 
pathology provides diagnostic information by measuring the presence and concentration 
of distinct molecular species (DNA, metabolites, proteins and lipids), so that changes in 
levels between health and disease can be used to guide diagnosis and therapy. Since pro-
teins carry out the majority of the biochemical reactions in cells, as well as performing 
many key signalling and structural functions, it follows that measuring the concentration 
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and state of proteins both in their biochemical and temporal context will yield means of 
distinguishing health from disease. This is often called biomarker analysis [1, 2]. The term 
proteome was coined by Wilkins and co-workers [3] and led to the field of protein bio-
chemistry being dubbed proteomics [4]. The proteome was originally defined as the pro-
teins present in a cell or organism at any one time but has come to be used in a wider 
context, which covers all aspects of protein measurement. The proteome is clearly 
dynamic, and unlike the genome varies highly and rapidly over time and biological loca-
tion (e.g. plasma vs. serum vs. tissue vs. urine vs. CSF vs. CVF vs. saliva, etc.). Another 
important consideration in analysing proteins especially in a higher eukaryote such as man 
is the critical role played by post-translational modifications in cell signalling [5] which 
not only includes such changes as phosphorylation, glycosylation, ubiquitination and 
methylation but also activation through proteolytic cleavage, e.g. the conversion of pro-
thrombin to thrombin or the excision of the c-peptide to yield active insulin. This all 
implies that the proteome is information rich but poses a significant analytical challenge. 
Despite considerable progress in protein analytical techniques, there are still only a small 
number of validated protein assays in use in the clinic. This relates strongly to the problem 
of measuring molecules that vary highly in their concentration, structure as well as spatial 
and temporal distribution. The study of cancer biomarker proteins began in 1847 with the 
discovery by Bence-Jones [6] of what turned out, more than 100 years later, to be a tumour-
produced free antibody light chain ‘Bence Jones protein’ in the urine of a multiple myeloma 
patient [7] where it was present in large quantities and could be revealed by simple heat 
denaturation. 140 years later this protein was demonstrated to be present also in the serum 
[8], and in 1998 a routine immunodiagnostic test was approved by the FDA. Hormones 
produced by tumours were also detected early on. Adrenocorticotropic hormone (ACTH), 
calcitonin and chorionic gonadotropin (hCG), for example, are elevated in specific cancer 
types, though not with the tumour specificity of Bence-Jones proteins. Polanski and 
Anderson have pointed out that despite large numbers of proteins being identified as 
potential cancer biomarkers, little has been done to systematically validate that potential 
and they generated a list of proteins that could or should be further investigated [9]. The 
following pages describe some examples of protein analyses that are already used in a 
clinical diagnostic context.

�The Analysis of Proteins

Whatever the source of the molecules to be measured, robust and reproducible sam-
ple preparation is the key in any analytical technique. There are numerous possible 
sources of samples for proteomics analysis: serum vs. plasma, urine, fresh frozen 
vs. paraffin embedded tissue, etc. Something that is often under appreciated is the 
experimental design and statistical interpretation of studies and results using clini-
cal samples. Table 1 shows the process that leads to the development of a new clini-
cal assay. It is important to understand that as an assay is progresses towards routine 
clinical use the number of samples tested must be increased to ensure it is robust, as 
well as defining the range of concentrations that are typically present in a patient 
population.
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To make meaningful clinical conclusions from follow-up verification studies, it 
is essential to design the experimental workflow around a suitably sized collection 
of clinical specimens [10, 11]. This starts with the selection of a sufficient number 
of representative patients and suitable case controls to achieve statistical signifi-
cance in terms of differential biomarker abundance. Without proper design, control 
of standard operating procedures (SOP) and data integrity, the information may be 
difficult to translate into clinical practice and/or not relevant to the actual clinical 
cohort. Follow-up reports should provide statistical statements about the signifi-
cance of each finding on the individual patient level.

The most frequently analysed clinical sample is blood, since its collection is 
rapid and non-invasive. From the proteomics standpoint, however, there are a 
number of issues to consider when analysing the protein content of blood or more 
specifically serum and plasma [12]. The dynamic range of concentration of indi-
vidual proteins in blood covers 10 orders of magnitude (see Fig. 1), with albumin 
at 34–54 mg/mL and cytokines such as IL1-beta 0.16 ± 0.17 pg/mL (http://www.
copewithcytokines.de) [9, 16]. This poses significant analytical problems since the 
linear dynamic range of the current analytical methods is only 4–5 orders of mag-
nitude. Hence, to measure the low concentration analytes either an enrichment 
step, e.g. an antibody and or a signal amplification, e.g. ELISA (see chapter on 

Fig. 1  Dynamic plasma protein concentration range and the three main plasma protein categories 
are shown as reported by Anderson and Anderson [13]. Red dots indicate proteins identified by the 
HUPO plasma proteome project (PPP) [14] and yellow dots represent currently used biomarkers in 
the clinic. A suitable minimal range of detection for biomarker targeting in plasma is shown with 
dotted lines. Adapted from Schiess et al. [15]
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proteomic methods) is required. The collection protocol can also have a significant 
affect on the analysis, the timing, method of sampling and even the type of tube 
can also affect the result [17].

Some examples that are already in the clinical laboratory use include analysis of 
genetic variants of the protein transthyretin and detection of carbohydrate-deficient 
transferrin [18–20]. These are applications of targeted proteomics, i.e. analysis of 
structural changes in specific proteins. The following pages discuss several examples 
of protein analysis in a clinical context, while Table  2 gives an overview of the 
proteins that are currently used in cancer diagnosis/prognosis.

�Example 1: Prostate-Specific Antigen

Prostate-specific antigen (PSA) is a 33-kd protein produced by the cells of the prostate 
gland. It is a single-chain glycoprotein of 237 amino acid residues, 4 carbohydrate side 
chains and multiple disulfide bonds. It is homologous with the proteases of the kallikrein 
family. PSA may be referred to as human glandular kallikrein (hK)-3 to distinguish it 
from hK-2, another prostate cancer marker with which it shares 80 % homology. A third 
kallikrein, hK-1, is found mainly in pancreatic and renal tissue but shows 73 and 84 % 
homology with PSA. Because of the similarities between these kallikreins, concern 
exists that both polyclonal and monoclonal assays may have cross-reactivity, which 
could affect PSA measurements. It has been demonstrated that very few monoclonal 
anti-PSA immunoglobulin Gs (IgGs) cross-react with hK-2 [58, 59]. Epitopes have 
been identified that are unique to PSA without possessing cross-reactivity to hK-2. This 
has led to the development of ultrasensitive immunoassays that are specific for PSA and 
hK-2, as well as assays that are fully cross-reactive with both proteins. PSA is a neutral 
serine protease with biochemical attributes that are similar to the proteases involved in 
blood clotting. The role of proteases in the coagulation process has been studied exten-
sively and applies to all serine proteases, including PSA. PSA splits the seminal vesicle 
proteins seminogelin I and II, resulting in liquefaction of the seminal coagulum. The 
complete gene encoding PSA has been sequenced and localised to chromosome 19.

The PSA test measures the concentration of PSA in a man’s blood. The results are 
usually reported as nanograms of PSA per millilitre (ng/mL) of blood. The blood level 
of PSA is often elevated in men with prostate cancer, and the PSA test was originally 
approved by the FDA in 1986 to monitor the progression of prostate cancer in men 
who had already been diagnosed with the disease. In 1994, the FDA approved the use 
of the PSA test in conjunction with a digital rectal exam (DRE) to test asymptomatic 
men for prostate cancer. Men who report prostate symptoms often undergo PSA test-
ing (along with a DRE) to help doctors determine the nature of the problem.

In addition to prostate cancer, a number of benign (not cancerous) conditions can 
cause a man’s PSA level to rise. The most frequent benign prostate conditions that 
cause an elevation in PSA level are prostatitis (inflammation of the prostate) and 
benign prostatic hyperplasia (BPH) (enlargement of the prostate). There is no evi-
dence that prostatitis or BPH leads to prostate cancer, but it is possible for a man to 
have one or both of these conditions and to develop prostate cancer as well [60].
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�Example 2: Carcinoembryonic Antigen

Carcinoembryonic antigen (CEA) is a glycoprotein involved in cell adhesion. It is 
normally produced during fetal development, but the production of CEA stops before 
birth. It, therefore, is not usually present in the blood of healthy adults, although it is 
detectable in heavy smokers. CEA is a glycosyl phosphatidyl inositol (GPI)-cell sur-
face anchored glycoprotein whose specialised sialofucosylated glycoforms serve as 
functional colon carcinoma L-selectin and E-selectin ligands, which may be critical to 
the metastatic dissemination of colon carcinoma cells. The CEA protein consists of 
668 amino acids, and has a configuration that is similar to that of other members of the 
immunoglobulin gene superfamily. The protein extends out from the cell membrane 
into the extracellular space, and is anchored through a hydrophobic C-terminal region. 
Most of the final molecular weight of CEA is provided by N-linked glycosylation.

CEA is most useful to monitor treatment of cancer patients. It is used for patients 
who have had surgery, to measure response to therapy and to monitor whether the 
disease has recurred. A blood test for CEA in this circumstance is used as a tumour 
marker, i.e. an indicator of whether the cancer is present or not. CEA is used as a 
marker for bowel cancer in particular, but may be measured where other forms of 
cancer are present. It has been found helpful in monitoring some patients with 
cancer of the rectum, lung, breast, liver, pancreas, stomach and ovary. Not all 
cancers produce CEA, and a level within the given reference range does not 
guarantee that cancer (even the kinds known to produce CEA) is not present, 
therefore the CEA test is not used for screening the general population. There are 
test kits available that use antibodies to detect CEA. The test device is similar to a 
pregnancy test (see Fig. 2), but uses serum/plasma as the sample, not urine.

�Example 3: KRAS

The use of companion-test molecular assays for oncologic treatment decisions is 
becoming increasingly important. These tests are used to determine whether patients 
are eligible to receive a targeted therapy. In the case of KRAS mutation testing for 
colorectal cancer (CRC), the intent is to avoid unnecessary toxicity and monetary 
costs for patients who are not likely to respond to anti-EGFR therapies by screening 
them before initiating therapy. The cost of cetuximab and panitumumab therapy has 
been estimated to be approximately $100,000/patient/year [61]. Mutations in the 
RAS gene family (HRAS, KRAS and NRAS) have been observed in a variety of 
cancers. They are activating mutations that result in continual signal transduction, 
stimulating downstream signalling pathways involved in cell growth, proliferation, 
invasion and metastasis. The KRAS gene encodes the KRAS protein that regulates 2 
such signalling pathways: PI3K/PTEN/AKT and RAF/MEK/ERK. These pathways 
are targets of anti-cancer drugs that are currently in development. Drugs targeting 
EGFR, which controls these pathways upstream from KRAS, are already available. 
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When bound to its ligand, EGFR stimulates tyrosine kinase activity, leading to 
activation of KRAS and the signalling pathways.

Current therapies targeting EGFR are used to treat colorectal cancer (CRC) and 
non-small cell lung cancer (NSCLC) and employ either (1) monoclonal antibodies 
(e.g. cetuximab and panitumumab) that prevent ligand binding and EGFR activation 
or (2) tyrosine kinase inhibitors (e.g. erlotinib) that prevent activation of the signalling 
pathways. If, however, the signalling pathways are activated independent of EGFR, as 
happens when the KRAS gene is mutated, these drugs are rendered ineffective.

KRAS mutations frequently found in neoplasms include those at exon 1 (codons 
12 and 13) and exon 2 (codon 61) Table 3. Mutations in KRAS codons 12 and 13 
have been associated with lack of response to EGFR-targeted therapies in both CRC 
and NSCLC patients (Table 4) [62].

�Mass Spectrometry to Detect KRAS Point Mutations 
at the Protein Level

Mass spectrometry is already an important clinical tool, widely used for the 
measurement of drug metabolites, steroids, for the detection on inborn metabolic 
disease in newborn infants [63]. It is also beginning to show promise in diagnostic 

Plasma/serum
absorbtion zone

CEA Binding
 zone

antibody Binding
 zone

Negative Result Positive Result

Liquid flows by
capillary action

Fig. 2  Testing for CEA with a commercial testing kit
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proteomics [64–66]. Targeted proteomics aims to obtain quantitative information 
from defined sets of proteins that have been identified as important players in a 
biological process. The field of quantitative proteomics is enthusiastically embracing 
selected reaction monitoring (SRM) MS methods for targeted quantitative proteomic 
analysis [67].

The underlying principle of SRM in proteomic applications is that the selected 
set of precursor and product ions contain sufficient information to represent the 
target peptide of interest, and thereby its protein of origin. Libraries of SRM based 
data are being actively established, e.g. SRM protein atlas (http://www.srmatlas.
org/ [68]). Quantitation is achieved by including a stable heavy isotope labelled ver-
sion of the target peptide(s) as an internal standard in the assay and applying the 
method of isotope dilution [69]. A variation on the general principle of isotope dilu-
tion, termed SISCAPA [70, 71], uses anti-peptide antibodies to capture peptides of 
interest, primarily from serum, again with a spiked in synthetic isotopically labelled 

Table 3  Number and type of mutations, affected codons and corresponding altered amino acids in 
exon 2, codon 12 and 13 of the KRAS gene detected in 1018 metastatic colorectal cancers [62]

Codon Type of point mutation
Number of point mutations 
(% of all tumours)

12 c.35G4A (p.G12D) 144 (14.1 %)
c.35G4T (p.G12V) 87 (8.5 %)
c.34G4T (p.G12C) 32 (3.1 %)
c.34G4A (p.G12S) 26 (2.6 %)
c.35G4C (p.G12A) 24 (2.4 %)
c.34G4C (p.G12R) 5 (0.5 %)
c.34G4T, c.35G4T (p.G12F) 2 (0.2 %)
c.34G4A, c.35G4T (p.G12I) 1 (0.1 %)

13 c.38G4A (p.G13D) 75 (7.3 %)
c.37G4T (p.G13C) 3 (0.3 %)
c.37G4C (p.G13R) 1 (0.1 %)
Wild type 618 (60.7 %)

Table 4  RAS mutation 
frequency

Cancer Frequency (%)

Adenocarcinoma
Lung 30
Colon 43
Pancreas 80
Thyroid cancer
Follicular 53
Undifferentiated 60
Myeloid disorders
MDS (myelodysplastic syndromes) 27
AML (Acute myeloid leukaemia) 27
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heavy internal standard peptide, to improve the selectivity and sensitivity of the 
method [64, 72]. Recently this technique has been applied to develop a quantitative 
proteomics assay for wild type and mutant K12D KRAS.  The method achieved  
low attomole detection sensitivity, and required only a few milligrams of tumour 
tissue [65]. The result of such an assay is shown in Fig. 3.

�Single vs. Multiple Biomarkers

�OVA5

Multiplexed measurement is logical for biological discovery with proteins because 
they constitutively function within networks, pathways, complexes and families 
[73, 74]. The consequence of this is that measuring multiple biomarkers will pro-
vide better predictive and therefore diagnostic capabilities. There is a growing con-
sensus that panels of markers may be able to supply the specificity and sensitivity 
that individual markers lack. For example, a panel combining four known 

Fig. 3  Detection of mutant KRAS by targeted mass spectrometry
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biomarkers (leptin, prolactin, osteopontin and insulin-like growth factor II), none of 
which used alone could distinguish patients from the controls, achieved a sensitivity 
and specificity of 95 % for the diagnosis of ovarian cancer [75].

In another example, multiple plasma biomarkers were measured at 11 weeks of 
gestation in women who experienced normal pregnancy outcomes (n = 14) and women 
who developed gestational diabetes (n = 14). Of the biomarkers considered, receiver 
operator characteristic curves (ROC) for three biomarkers (adiponectin, insulin and 
blood glucose) are presented together with an ROC based on the predicted posterior 
probability values (ppv) generated by a classification model that combined informa-
tion from all three biomarkers. The model out performed individual biomarkers based 
upon the area under the ROC (model = 0.94; adiponectin) [76].

�OVA1

In September 2009, the OVA1 test (submitted to FDA by Vermillion and later 
acquired by Quest Diagnostics) was the first de novo 510(k)-cleared IVDMIA that 
was protein based (21 CFR 866.6050, ovarian adnexal mass assessment score test 
system). The test was launched in March 2010 by Quest Diagnostics Inc. The test 
combines into a single score the results of five protein biomarkers that change due 
to the presence of ovarian cancer. It is indicated for women who are older than 18 
years, who have an ovarian adnexal mass present for which surgery is planned, and 
have not yet been referred to an oncologist. The OVA1 test is an aid to further 
assess the likelihood that malignancy is present when the physician’s independent 
clinical and radiological evaluation does not indicate malignancy. The five serum 
biomarkers that comprise the test are prealbumin, apolipoprotein A-1, transferrin, 
beta-2-microglobulin and CA125, and they are measured using standard immuno-
assays. The results are analysed with software to produce a single result ranging 
from 1 to 10 to classify the likelihood that a woman’s pelvic mass is cancerous or 
benign. The OVA1 test was developed in collaboration with academic medical cen-
tres testing more than 2500 clinical samples [77]. Extensive analytical studies were 
done to evaluate repeatability and reproducibility of the OVA1 test result and each 
of the five component proteins. These studies supported the 510(k). In early 2007 
Vermillion began a multicenter prospective clinical trial to demonstrate the clinical 
performance of the OVA1 test. Clinical specimens were collected at 27 sites, and 
test performance was determined based on 516 evaluable subjects who underwent 
surgery to remove a documented ovarian tumour and for whom a pathology result 
was available. After surgery, the specimen was examined by a surgical pathologist 
using routine procedures. The ability of physicians to predict malignancy without 
the OVA1 test was compared with the ability of physicians and the OVA1 test via 
dual assessment to predict malignancy. With dual assessment, 80 % of cancers 
missed by clinician impression alone were detected, and the sensitivity and negative 
predictive value were each more than 90 %.
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�Conclusion

Do current proteomic technologies deliver clinically useful results? The opinion of 
these authors is yes, and the examples described here support that conclusion. 
However, the potential of techniques such as mass spectrometry to expand the range 
of proteins analysed has yet to be realised. The required sensitivity and the ability to 
multiplex assays have been demonstrated, but it will require more development of 
the sample preparation, data acquisition and analysis steps. Precise and accurate 
absolute quantification of proteins represents a challenging task, impaired by 
multiple potential sources of error. These errors, however, can be minimised to a 
satisfactory level, if sample preparation, measurement and data analysis are adjusted 
to the respective sample type under investigation, and if each step of the workflow 
is conducted thoroughly and reproducibly. As pointed out in the previous chapter, to 
demonstrate the clinical utility of any diagnostic test it is essential to show that:

	(a)	 the analyte can be reliably and consistently measured, i.e., it requires a robust 
and well-controlled protocol;

	(b)	 the test has a combined sensitivity and specificity that will permit the clear and 
consistant diagnosis of a disease state from a healthy state, leading to the 
correct treatment regime.

	(c)	 the use of the test will improve the clinical outcome of patients by targeting 
precise effective interventions, and providing well-documented follow-up.

To implement appropriate assay designs, it is important to have in mind the 
purpose of any assay. Studies can be performed to ascertain their utility for screening 
(who is sick?), risk assessment (who may get sick?), what is the correct therapy 
(personalised medicine) and assessment of clinical outcome (is the treatment 
working). The achievement of these goals requires strong multi-disciplinary teams 
that combine the respective skills and knowledge of clinicians, pathologists and 
researchers. Analysing a few samples to compare their differences with no reasonable 
attempt at verification or validation will not result in new diagnostic tests that can be 
used to make a more personalised medicine a reality. Finding clinically useful 
molecular biomarkers is not easy, but it is essential if diagnosis is to improve, and it 
will only happen if clinicians, analytical scientists and patients work together.
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Analysis of DNA Methylation in Clinical 
Samples: Methods and Applications

Alexander Dobrovic

�Methods for Analysis of DNA Methylation: Introduction 
and Overview

DNA methylation usually occurs at the cytosine of a CpG dinucleotide. This chapter 
will focus on DNA methylation detection methods relevant to analysis of the clini-
cal cancer specimens that would be found in a pathology laboratory. Certain key 
applications that are in use in cancer diagnostics will also be considered. However, 
much of the methodological considerations will also be applicable to the pre-clinical 
research laboratory with cell line or xenograft models of cancer.

As DNA methylation is a covalent modification of cytosine in a CpG dinucleo-
tide context, its consequent stability makes it an attractive target for diagnostics. 
However, assessing DNA methylation has not yet become commonplace in the 
diagnostic molecular pathology laboratory. Before tests involving methylation anal-
ysis become part of routine practice, extensive validation is necessary as has been 
recently reviewed [1, 2]. Consensus is difficult as major discrepancies can occur 
between studies due to different methodologies and different regions being anal-
ysed. For this reason, meta-analyses evaluating DNA methylation biomarkers that 
do not take these discrepancies into account should be treated with caution.

Methylation analysis is more complex than mutational analysis. Although the 
methylation of individual CpG dinucleotides can have a profound effect (for 
example, on transcription factor binding), the methylation density of multiple 
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adjacent CpG dinucleotides in a region is usually more important. Thus, analysis 
first requires the recognition of a key region. This is often not a trivial task, espe-
cially when methylation needs to be related to transcriptional inactivation. As 
methylation needs to be considered in terms of the combinatorial modifications 
of multiple adjacent CpG dinucleotides in a region, different PCR-based method-
ologies can yield varying results [3] and an appropriate methodology must be 
chosen [1, 4].

Methodologies for DNA methylation analysis can be broadly divided into two 
categories. Locus-specific methodologies analyse single regions. Global meth-
odologies are often more complex, require bioinformatic processing in order to 
analyse the information, and thus usually entail significantly longer turn around 
times for both methodology and analysis, making them currently less clinically 
applicable.

Currently, the principal question likely to be asked in the specialist pathology 
laboratory is whether a specific gene or region is methylated in a specific pathologi-
cal situation; for example, is the MLH1 gene promoter methylated in a colorectal 
cancer specimen showing MLH1 negative immunohistochemistry? The locus-
specific methodologies can be divided into those that interrogate single sites for 
DNA methylation and those that examine a region for DNA methylation. The for-
mer are of limited use unless multiplexed (thereby becoming a methodology that 
examines a region) as methylation should be considered over multiple CpGs in a 
region.

Each of the various methods used to study locus-specific methylation has its 
characteristic advantages and disadvantages, particularly when dealing with com-
plex methylation patterns (reviewed in [3]). The methods chosen should be dictated 
by the nature of the sample that needs to be analysed and the information required.

Many of the methodologies developed for methylation analysis either were not 
widely adopted or have fallen out of general use. Some of these can be found in 
older reviews of methylation methodology (e.g. [5]).

Much of this chapter will focus on methodologies that are most likely to be uti-
lised by diagnostic laboratories. These will be mainly polymerase chain reaction 
(PCR) based. There will be an inevitable bias to those methodologies that the author 
of this chapter has had direct experience with. The reader is thus encouraged to read 
some of the other excellent recent reviews that are available (e.g. [6]) as a comple-
ment to this chapter.

5-Methylcytosine can undergo active demethylation mediated by the TET (ten-
eleven translocation) family of enzymes via 5-hydroxymethylcytosine (5hmC) to 
5-formylcytosine and 5-carboxylcytosine, which are then removed by the base exci-
sion repair enzyme thymine DNA glycosylase (reviewed in [7]). The significance of 
these intermediates in cellular processes is still poorly understood. 5hmC is depleted 
in many tumours indicating a key role for this epigenetic modification [8]. It should 
be noted that most non-global methodologies do not differentiate 5-methylcytosine 
from its breakdown intermediates. It is unclear what the implication of this will be 
for diagnostics.
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�Bisulfite Modification

DNA methylation information is lost once the DNA is amplified in vitro. Thus, to 
retain methylation information during PCR, the DNA must be modified. Sodium 
bisulfite treatment, which deaminates cytosine to uracil, is the method of choice for 
modification.

5-methylcytosine but not cytosine is resistant to deamination during sodium 
bisulfite treatment [9]. Thus, following PCR of bisulfite-modified DNA, the remain-
ing cytosines are a direct readout of the methylated cytosines in the original DNA 
template [10, 11]. Accordingly, methylation can be determined by comparison to 
the original sequence.

The key parameters for effective bisulfite modification have been described [12, 
13]. It is highly advisable to use one of the kits that are available as the conse-
quences of incomplete bisulfite conversion can be serious for accurate interpretation 
of methylation information, particularly when using methylation-specific PCR (see 
below). Incomplete bisulfite conversion can be readily observed by sequencing as 
some of the non-CpG cytosines will remain as cytosines. In practice, there is a low 
rate (1 % or less) of non-conversion.

�PCR-Based Methods for the Detection of DNA Methylation

Importantly, the amount of tissue available for molecular studies in the molecular 
pathology laboratory is often limited and the DNA from formalin-fixed paraffin-
embedded (FFPE) tissues is frequently highly fragmented (reviewed in [14]). All of 
the PCR-based techniques can potentially use DNA made from FFPE tissues. 
Perhaps the most important adaptation is the use of short amplicons to compensate 
for the fragmentation. In most methods, bisulfite-modified DNA is amplified with 
strand-specific primers framing the region of interest, which undergoes sequencing 
or other analysis.

Analysis of tumour material is further complicated, both because specimens can 
contain substantial amounts of normal cells with normal methylation patterns, and 
because there can be intra-tumoural heterogeneity of methylation patterns.

�Sanger Sequencing and Pyrosequencing

The bisulfite-modification-based genomic sequencing methodology [10, 15] revolu-
tionised methylation analysis. The PCR product is directly sequenced providing a 
readout of the mean methylation of each CpG in the sequence. This type of direct 
sequencing methylation analysis is still widely used.

The gold standard for analysis of methylation is clonal sequencing as it reveals 
the complexity of epialleles present in a sample. For tumour samples, sequence 
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information from many clones is desirable, as a considerable amount of the 
sequences may be derived from normal tissue, even when the tumour content is 
enriched. Individual PCR products are cloned prior to sequencing of multiple clones 
to determine the methylation of each cytosine in individual DNA molecules [10]. 
An early example of clonal sequencing revealed the complexity of epiallelic meth-
ylation patterns in the promoter region of the retinoblastoma gene.

Originally, clonal sequencing was performed by cloning PCR products into plas-
mid vectors and sequencing multiple individual clones. Limiting dilution prior to 
PCR amplification proved to be a much more cost-effective path to clonal sequenc-
ing [16, 17]. In this digital approach, epialleles are separated prior to PCR amplifi-
cation. Separation eliminates PCR bias and enables accurate quantification. Samples 
for sequencing can be chosen based on their melting pattern (see below) leading to 
significant cost reductions [16, 17]. Nevertheless, Sanger sequencing of individual 
epialleles remains an expensive proposition.

Pyrosequencing was introduced as an alternative to Sanger sequencing for direct 
sequencing [18–20]. Pyrosequencing has now established itself as a leading 
sequencing methodology for the analysis of clinical samples [4]. Pyrosequencing 
provides accurate sequencing immediately adjacent to the sequencing primer, 
allowing sequencing of PCR products with small inserts. Moreover, it enables quan-
titative assessment of methylation at each CpG site with sensitivities approaching 
5–10 % [21].

Deep sequencing of methylation is now becoming increasingly common, either 
at individual loci [22] or at multiple multiplexed sites [23]. Massively parallel 
sequencing of amplicons or captured sequences is likely to become the principal 
tool for methylation analysis in the clinic. Due to the complexity of the data that can 
be obtained, synoptic algorithms must be developed for its visualisation [24].

�Methylation-Specific PCR

A variety of readily performed methylation detection methods that did not involve 
sequencing were developed for the cost-effective analysis of multiple samples. 
Methylation-specific PCR (MSP) was the first of these [25] and is still widely used 
to interrogate whether a given region is methylated. The primers specifically amplify 
methylated DNA.  MSP is based on the principle that PCR primers with a mis-
matched 3′ end will not extend under stringent conditions and thus the 3′ ends of 
both primers are designed to overlay CpGs in the bisulfite-modified DNA. This usu-
ally involves the placing of one or more CpG Cs at the 3′ base or near to the 3′ end. 
If a band is seen on a gel after PCR, it is concluded that the sample is methylated. 
Use of second pair of primers specific for unmethylated sequences was reported in 
the original publication [25], and is often used but rarely useful as there is always a 
degree of normal cell content in tumour samples. MSP is the most sensitive non-
quantitative technique available and can detect very low levels of methylation.
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MSP is a useful rapid method to screen for methylation when the regions are 
heavily methylated. It is less suited when regions show highly variable methylation, 
as has been reported for many genes including the promoter CpG island of CDKN2A 
(p15) [26, 27] as exact matches to the primer sequences occur less frequently and 
methylation can be underestimated.

An important limitation of the MSP approach is its susceptibility to false posi-
tives. Considerable overestimates for the methylation frequency of particular genes 
have been reported by some laboratories when MSP is used (reviewed in [28, 29]). 
Incomplete bisulfite conversion can lead to false positives. Alternatively, amplifica-
tion can occur across the 3′ mismatch(es), especially if the annealing temperature is 
too low. Thus, appropriate negative controls such as a cell line with known methyla-
tion status are critical. Raising the annealing temperature and the use of a hot-start 
methodology can minimise this problem.

The sensitivity of MSP can also lead to (false) positives because of the amplifica-
tion of rare populations of methylated sequences either in the tumour or in the nor-
mal somatic tissue [29]. For some genes, peripheral blood is not suitable as a 
negative control as low levels of methylation are present [30]. If the tumour is het-
erogeneous, with only a small proportion of methylated cells, it would not be cor-
rect to call the tumour methylated for that particular gene. It is difficult to determine 
whether the signal arises from the predominant proportion of cells or from a small 
subpopulation thereof.

The above limitations arise because standard MSP is a non-quantitative method-
ology. For this reason, it is recommended that a quantitative MSP assay using real-
time PCR is always used. Real-time PCR analysis also requires no further 
manipulation after the PCR step, which allows high-throughput analysis and elimi-
nates problems resulting from possible cross-contamination by PCR products when 
they are removed from their amplification tubes or wells.

�Quantitative Methylation-Specific PCR

There are several adaptations of MSP using real-time PCR for methylation analysis. 
MSP can be carried out with the TaqMan methodology, which uses a fluorescent 
probe to monitor amplification [31], an approach that has become known as 
MethyLight [32]. Bisulfite-modified DNA is amplified using MSP primers and 
monitored by a TaqMan probe containing a 5′ fluorescent reporter and a 3′ quencher 
which binds inside the amplified region. The 5′ to 3′ nuclease activity of Taq DNA 
polymerase cleaves the hybridised probe, separating the fluorescent reporter from 
the quencher each time an amplification occurs. The intensity of the fluorescent 
signal is proportional to the amount of PCR product, allowing quantification of the 
PCR reaction.

MethyLight is capable of detecting methylated alleles in the presence of a 
10,000-fold excess of unmethylated alleles [32]. However, it should be noted that 
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10 ng of bisulfite-modified DNA contains at best 6600 allelic templates and often 
much less dependent on DNA fragmentation both before and post-bisulfite treat-
ment [12]. Methylation of candidate genes needs to be scored relative to standard 
curves constructed from dilutions of DNA that is methylated for the gene in ques-
tion. These dilutions can be made in DNA prepared from a cell line or normal DNA 
that is correspondingly unmethylated.

Most commonly used MethyLight probes contain several CpG sites in their 
sequence. According to the probe design and the PCR conditions used, the TaqMan 
probe may bind only if all the probe target CpG sites are also methylated or may 
bind when only some of the sites are methylated. This may result in underestimating 
of the methylation levels when the methylation is heterogeneous.

A simpler real-time approach is to convert an established MSP protocol to a 
quantitative protocol using a dye such as SYBR Green which fluoresces when it 
intercalates into double-stranded DNA [33]. It is critical that the MSP reaction is 
highly specific, as intercalating dye-based methods cannot readily distinguish 
between specific and non-specific reactions in the way that probe-based assays can.

One solution to the problem of specificity in dye-based qMSP is to follow the 
qPCR step with a high resolution melting (HRM) analysis as in the SMART-MSP 
protocol [34]. The same intercalating dye enables both the qPCR and the HRM 
analysis. The assay is typically performed with no CpGs between the primers 
though other designs are possible. Non-specific amplification is identified by an 
atypical melting pattern.

�DNA Melting Analysis

Several methylation typing methods are based directly on melting analysis [35, 36]. 
Melting monitors the fluorescence of a double-stranded DNA-binding dye as the 
double-stranded PCR product is slowly denatured by increasing temperature. The 
analysis is done in the same tube or well as the PCR, which allows high throughput 
and reduces potential problems resulting from PCR product contamination.

These methods screen a number of CpG sites occurring close together in the 
same PCR amplicon. DNA denatures in discrete segments called melting domains 
as the concentration of a denaturant or the temperature increases. The melting of a 
domain is determined by its sequence. After bisulfite modification, unmethylated 
sequences or partially methylated sequences are less cytosine rich and more thy-
mine rich than methylated sequences and consequently melt at a lower temperature. 
Therefore, amplicons will have melting temperatures according to their degree of 
methylation.

Melting methodologies became more widely adopted after the introduction of 
high-resolution melting capable machines. Methylation-sensitive high-resolution 
melting (MS-HRM) [35] is now widely used. In many cases, MS-HRM can achieve 
sensitivities as low as 0.1–1 % methylated sequences. This latter sensitivity is useful 
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when it is desirable to assess low-level methylation such as with constitutional 
mosaic methylation [37] or for the detection of circulating tumour DNA [38].

Use of short PCR amplicons is desirable not only to gain maximum information 
from fragmented DNA but also to reduce the complexity of the melting patterns by 
reducing the amount of melting domains. When multiple amplicons with small dif-
ference in methylation are present, heteroduplexes will form in the later stages of 
PCR, where already formed complementary strands increasingly out-compete 
primers for duplex formation. The resultant complex melting profiles allow visuali-
sation of the heterogeneity of methylation but confound accurate quantification of 
methylated epialleles [17].

MS-HRM is particularly powerful when teamed with Pyrosequencing. Melting 
analysis replaces the quality control using agarose gel analysis normally used prior 
to the Pyrosequencing step and also provides important qualitative information 
about the degree of epiallelic heterogeneity in its own right [39].

An important adaptation of MS-HRM is the use of limiting dilution so that 
amplification can occur from individual templates (digital MS-HRM). This can 
either be directly analysed to count methylated and unmethylated templates [16] or 
used to analyse more complex methylation patterns in which individual reactions 
can be directly sequenced [17]. MS-HRM can thus be used effectively as the first 
step for genomic sequencing studies of methylation as both a quality measure and 
for cost reduction. PCR amplicons that are clearly unmethylated do not need to be 
sequenced [17].

�Primer Design

Primer design is a critical aspect of PCR-based analysis of bisulfite-modified 
DNA. Primers can be designed to analyse any region but are often designed so that 
the amplified region overlaps the transcriptional start site and consists mainly of 
sequence prior to the start site.

Primer design is often challenging. Several websites for designing methylation 
primers have become available but do not in our opinion replace careful manual 
design. An important consequence of bisulfite modification is that the two DNA 
strands are no longer complementary. Accordingly, forward and reverse primers are 
designed using either the sense or antisense strand after modification. Primers are 
generally designed to amplify from the modified sense strand, but when it is difficult 
to design primers, the modified antisense strand can be considered. We always check 
the primers using the Macintosh freeware program Amplify to identify potential 
primer dimers as well as non-specific primer binding within the region of interest.

Primers are either designed to amplify both methylated and unmethylated 
sequences (methylation independent PCR (MIP) primers) or only methylated 
sequences (methylation-specific PCR (MSP) primers). For most methodologies, 
MIP primers are used.
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Careful primer choice is important to minimise the amplification of unmodified 
or incompletely modified DNA. This is particularly important for MSP-based meth-
ods. Primers are chosen to have one or more Ts derived from a non-CpG cytosine at 
or as near as possible to the 3′ end of each primer.

For MSP, regions that contain frequent CpG sites are chosen and often the 3′ end 
of the primers is positioned over several CpG dinucleotides. For maximum specific-
ity, it is desirable to have the 3′ end corresponding to a cytosine of a CpG dinucleo-
tide, but this is not always possible. MSP is best suited for screening genes where 
detailed methylation patterns are already known and the 3′ ends can be placed at the 
most frequently methylated sites.

Quite different requirements are necessary for MIP primers that amplify all con-
verted sequences regardless of methylation status prior to analysis [5, 40]. MIP 
primers are positioned to avoid CpG sites or including as few as possible and plac-
ing them as far as possible to the 5′ end of the primer. For HRM, we try to retain one 
cytosine of a CpG as close as possible to the 5′ end of the primer which can subse-
quently be used to steer amplification in favour of methylated sequences. Because 
methylated sequences can have an amplification disadvantage, manipulation of 
annealing temperature can either be used to minimise PCR bias or to favour ampli-
fication of rare methylated sequences.

It is preferable to use primers with high melting temperatures to help with speci-
ficity, particularly because the DNA sequence is less complex after bisulfite modifi-
cation due to the depletion of cytosines. The last five 3′ nucleotides preferably 
should contain two or three (but not more) G’s (C’s on the anti-sense strand) to 
stabilise the 3′ end of the primer. The Web program OligoCalc: Oligonucleotide 
Properties Calculator is used to check the melting temperatures (http://www.basic.
northwestern.edu/biotools/oligocalc.html). The most reliable results are when the 
salt adjusted Tm is set at 5 °C above the intended annealing temperature.

The use of nesting is not recommended because of the increased potential for 
PCR contamination. There is no need for nesting when the PCR conditions are suf-
ficiently sensitive to amplify a single template.

�Bisulfite Independent Methods

Instead of using bisulfite modification, some methodologies exploit the properties 
of restriction enzymes with a CpG in their recognition sequence that only cleaves 
DNA if the cytosine is unmethylated. The first methodologies to analyse methyla-
tion relied on Southern blotting analysis using these restriction enzymes (e.g. [41]). 
These were followed by PCR-based methods in which PCR amplification was used 
to determine if the restriction enzyme cuts the pre-amplified sequence [42]. 
Incomplete enzyme digestion can be a problem. This approach has now been refined 
in the MS-RE PCR protocol to allow analysis of multiple sites from a small starting 
amount of DNA [43].
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Methylation-specific multiplex ligation-dependent probe amplification 
(MS-MLPA) is an adaption of multiplex ligation-dependent probe amplification 
that also enables methylation analysis of multiple CpG sites [44]. Each assay can 
analyse up to 40 CpG sites. The PCR products are separated on an automated DNA 
sequencer or equivalent. MS-MLPA requires little prior expertise in methylation 
analysis to run the assay, especially as no bisulfite modification needs to be per-
formed, and assays can be purchased directly from the commercial supplier.

�Global DNA Methylation Analysis

It would be clearly advantageous to analyse cancer specimens (and matched normal 
tissues) for the methylation of dozens if not hundreds or thousands of CpG islands 
at the same time. Such methods can be economical with the often limited amounts 
of tissues available from cancer biopsies. As always, methods that can deal with 
highly fragmented DNA are desirable.

Earlier important methodologies to attempt global methylation analysis like 
restriction landmark genomic sequencing [45] and differential methylation hybridi-
sation [46] are now superseded. As with single locus assays, some methods require 
bisulfite modification while others utilise methylation-sensitive restriction enzymes. 
Other methods use the capability of some DNA-binding proteins to bind specifically 
to methylated sequences. Currently, the most promising approaches are array based 
or sequencing based.

Deep methylome sequencing, which is based on multiple parallel sequencing, 
would be the ideal technology for use in methylation analysis due to its complete 
genomic coverage at single base resolution and reproducibility (reviewed in [47]). 
However, cost of both the reagents and the bioinformatic analysis restrict this 
approach to research applications.

�Infinium 450 K Arrays

The platform that currently dominates global methylation analysis is the Infinium 
450 K array (Illumina HumanMethylation450 BeadChip) which analyses more than 
485,000 CpG sites across the genome. Although, this is a fraction of the approxi-
mately 30,000,000 CpGs in the genome, the CpGs are chosen such that they cover 
99 % of RefSeq genes, 96 % of CpG islands and the CpG shore flanking regions, as 
well as microRNA promoter regions and CpNpG methylated cytosines previously 
identified in stem cells. Recently, an 850 K array was introduced.

Like most array-based approaches, Infinium 450 K arrays are oligonucleotide 
based. Bisulfite-modified DNA samples are amplified, made single-stranded, and 
hybridised to the arrayed oligonucleotides. The proportional methylation of each 
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CpG site, referred to as the beta value, is determined by one of either of two chem-
istries [48]. In the Infinium type I chemistry (also used in the older Infinium 
HumanMethylation27 BeadChip array), unmethylated and methylated CpGs are 
measured by different probes using the same colour channel. The majority of CpG 
sites are assayed by the Infinium type II chemistry where unmethylated (red chan-
nel) and methylated (green channel) cytosines are quantified by a single probe that 
undergoes primer extension with differently labeled nucleotides (basically an adap-
tation of the methylation-sensitive single nucleotide primer extension [49]). As the 
Infinium 27 K array was developed first, proportionately more CpGs measured by 
type I map to CpG islands.

The Infinium II probes have been reported to be less sensitive for the detection 
of both high and low methylation values and to display greater variance between 
replicates [48, 50, 51]. It is thus safer to consider anything with a beta value of 
less than 0.2 as unmethylated [48]. In addition, despite the claimed single CpG 
resolution, probes also often contain other CpG sites which can affect hybridisa-
tion depending on their methylation status. Because of this, the beta values may 
not directly correspond to the actual methylation of the CpG dinucleotide being 
examined.

Despite these reservations, the Infinium 450 K arrays have had conspicuous suc-
cess as a discovery tool. Importantly, DNA from most archival FFPE tissues can be 
used with 450 k beadchips [52]. In many cases, results can be improved by using a 
proprietary reagent supplied by Illumina.

In addition, epigenome-wide association studies (EWAS) are being used to 
determine the role of DNA methylation in complex disease states including can-
cer predisposition. Infinium 450 K arrays have become the platform of choice for 
these studies. The most widely used tissue for EWAS studies is peripheral blood. 
However, in contrast to genomic GWAS studies where genotype is constant 
across somatic cells, differential DNA methylation across cell types and changes 
that occur over time add considerable complexity that may confound the analy-
ses [53].

�Clinical Applications of DNA Methylation

�Quality Control Issues

As with all PCR-based tests, utmost care must be taken to ensure that there is no 
carry-over of PCR amplicons into the PCR setup areas. Thus, negative extraction 
controls are advisable. This is particularly important to avoid false positives when 
minimal residual disease is being determined. The appropriate methylated and 
unmethylated controls should also be used. In addition, a sample of unmodified 
DNA should be run to ensure that no amplification is observed under the conditions 
being used, particularly when an assay is being developed.
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�DNA Methylation as a Biomarker for Minimal Residual Cancer

DNA methylation biomarkers are being investigated for the early detection of can-
cer or for monitoring response to treatment. Tumours show characteristic profiles of 
methylated biomarkers that are specific for given types and subtypes of cancer [54, 
55]. Remarkably, similar profiles may also be seen for the same type of cancer 
across species. Thus, there is considerable potential for using methylation of panels 
of recurrently methylated genes as a source of tumour-type specific biomarkers. It 
is, however, critical to verify that the biomarkers are generally not methylated to 
any significant degree in normal tissue, particularly the blood [30].

Currently, the best example of a tumour-specific methylation biomarker is the 
GSTP1 gene, which is methylated in 95 % of prostate cancers but not in benign 
prostatic hyperplasia [56]. In patients with prostate cancer, GSTP1 promoter hyper-
methylation was detected in 72 % of plasma or serum samples, 50 % of ejaculates, 
and 36 % of urine samples after prostate massage [57]. For most other cancers, such 
very high-frequency methylation biomarkers have not yet been identified. On the 
other hand, with the right choice of a limited number of high-frequency methylated 
genes, greater than 90 % coverage can be readily achieved. This contrasts with 
mutations. Although there are high-frequency, single-site mutations known for 
some cancers it is virtually impossible to construct a panel of such mutations to 
cover more than 90 % of patients even in cancers such as colorectal cancer and 
melanoma that do have high-frequency recurrent mutations.

The detection of methylated sequences in the circulating free DNA of cancer 
patients is increasingly being recognised as a non-invasive monitoring method for 
cancer. In cancer patients, the circulating free DNA in the plasma has a varying 
amount of tumour-derived DNA (ctDNA). The ctDNA derives from apoptosis or 
necrosis of tumour cells. Detection of ctDNA requires using a DNA biomarker that 
is found in the cancer cells and not in the normal cells. Such DNA alterations have 
been detected in derived the plasma or serum of most patients even some with small 
or even in situ lesions [58]. Plasma DNA concentration in breast cancer patients can 
reach several hundred ng/mL [59], though after treatment levels can be in the nor-
mal range of less than ten ng/ml.

The source of normal DNA in plasma is principally from hematopoietic cells 
[60]. Thus, it is likely that DNA from normal leukocytes will affect biomarker spec-
ificity if methylated. SMART-MSP was used to evaluate the methylation levels in 
normal peripheral blood mononuclear cells for a panel of genes that are commonly 
methylated in breast cancer (APC, BRCA1, CDH1, CDKN2A, DAPK1, GSTP1, 
HIC1, RARB, RASSF1A, and TWIST1) [30]. Some of the biomarkers were found to 
be methylated at low levels in peripheral blood mononuclear cells, whereas meth-
ylation was undetectable in others.

RASSF1A is one of the biomarkers that is unmethylated in peripheral blood 
mononuclear cells [30]. RASSF1A is methylated in more than 80 % of breast cancers 
as well as ductal carcinoma in situ [61]. RASSF1A was recently studied in consecutive 
serum samples from patients with locally advanced breast cancer during neoadju-
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vant chemotherapy [38]. In four patients who achieved complete pathological 
response, RASSF1A methylation became undetectable early during therapy. In con-
trast, in the patients that had partial or minimal pathological response, serum 
RASSF1A methylation persisted for longer or throughout the treatment.

The utility of methylation as an early detection tumour biomarker has been sug-
gested by numerous studies though few of these studies have been validated let 
alone passed into clinical use. Methylation of the p16 (CDKN2A) tumour suppres-
sor gene, which was shown to be an early change in lung cancer, was detected in the 
sputum of 3/7 patients with squamous cell carcinoma compared to 5/26 high-risk 
cancer-free individuals [62]. In ductal lavage specimens, methylated alleles of the 
cyclin D2 (CCND2) and RARβ2 genes were detected in fluid from patients with 
endoscopically detected carcinomas and ductal carcinoma in situ, but rarely in fluid 
from healthy ducts [63]. However, it is the GSTP1 methylation biomarker in pros-
tate cancer that is likely to have the greatest utility in the still difficult area of early 
detection.

�DNA Methylation as a Predictive Biomarker

�DNA Methylation of DNA Repair Genes

Loss of gene expression due to DNA methylation leads to a wide variety of poten-
tially targetable lesions in cancer. DNA repair genes are a good example of this. 
Many therapies targeting cancer cells are effective because they cause DNA damage 
that the cancer cells are deficient in repairing. Whereas de novo silencing of DNA 
repair genes can lead to accelerated carcinogenesis by increasing the mutation rate, 
loss of DNA repair capacity can also be the Achilles’ heel for the tumour during 
chemotherapy and or radiotherapy. Knowledge of the affected pathways can thus 
lead to rational choice of therapy.

A compelling example is methylation of the O6 methylguanine DNA methyl-
transferase (MGMT) gene, which removes small alkyl groups from the O6 position 
of guanine. MGMT is methylated in a variety of cancers. In gliomas, MGMT pro-
moter methylation is associated with response to chemotherapy with alkylating 
agents due to their inability to repair alkylation damage [64, 65]. Thus, loss of activ-
ity of MGMT, which may initially favour tumourigenesis, is now responsible for the 
tumour’s exquisite sensitivity to alkylating agents. Whereas attention has been 
focused on glioma, MGMT methylation should also indicate sensitivity to alkylating 
agents in other cancers such as colorectal cancer where alkylating agents are rarely 
used and melanoma where temozolomide is a therapeutic option [66, 67].

More recently, there has been interest in BRCA1 methylation as a predictive bio-
marker for response to platinum compounds or PARP inhibitors in breast and ovar-
ian cancer. Whereas the TCGA ovarian cancer study indicated that based on survival, 
BRCA1 methylated tumours clustered with wild type tumours rather than BRCA1 
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mutated tumours [68], further work needs to be done in this because pre-clinical 
data indicates that BRCA1 methylated tumours are responsive to platinum com-
pounds or PARP inhibitors [69, 70].

�DNA Methylation and the Evaluation of Lynch Syndrome

Mutations in one or more of the genes involved in mismatch repair underlie heredi-
tary non-polyposis colorectal cancer (HNPCC) and other tumour types, such as 
endometrial cancer, belonging to Lynch syndrome. Deciding which patients to 
screen for mutations in the mismatch repair genes, and which of the genes to test, is 
still an issue in the identification of new pedigrees with Lynch syndrome.

Tumour tissue from an affected member of a pedigree is thus first screened by 
immunohistochemistry for the MLH1, PMS2, MSH2, and MSH6 enzymes. When 
immunohistochemistry is negative for MLH1 and/or PMS2 (which form a heterodi-
mer), MLH1 mutation testing is indicated. However, the MLH1 locus undergoes 
frequent methylation in colorectal tumours [71], particularly those tumours with the 
CpG island methylator (CIMP) phenotype [72]. Tumours are considered CIMP 
positive if the majority of a panel of promoter region CpG islands including that of 
MLH1 are methylated.

Both MLH1-methylated tumours and tumours arising in patients with a germline 
MLH1 mutation have the same phenotype: microsatellite instability and negative 
immunohistochemistry for MLH1 and PMS2. MLH1 methylation in tumours of this 
phenotype is associated with a very low likelihood of there being a MLH1 germline 
mutation [73]. Most CIMP tumours also have BRAF V600E mutations and testing 
for this mutation has been extensively utilised to identify patients that will not be 
tested for MLH1 mutations [74]. However, it makes more sense to test directly for 
MLH1 methylation when immunohistochemistry is negative for MLH1. Moreover, 
MLH1 methylated endometrial cancers do not have BRAF mutations so MLH1 
methylation is the only option in this instance [75].

�The Future

Barriers to the implementation of methylation-based biomarkers have been dis-
cussed in recent reviews [1, 2]. Nevertheless epigenetic alterations in tumours (or 
their gene expression consequences) will be increasingly considered for decision-
making in precision medicine. Following the increase of interest in non-invasive 
monitoring of tumours, there will be increasing use of tumour-specific DNA meth-
ylation biomarkers for liquid biopsies [76].

Methylation data will ideally be integrated with mutational and gene expression 
to enable precision medicine. It is likely that methylation analysis of a panel of key 
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genes will become a part of profiling for predictive medicine. Considerable valida-
tion work will need to be done before this becomes a reality. Appropriate diagnostic 
platforms, probably based on multiple parallel sequencing, need to be developed to 
enable DNA methylation detection across multiple regions. Methodologies used 
will need to be compatible with degraded DNA. Quantitative approaches need to 
replace non-quantitative methodologies.
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Clinical Flow Cytometry for Hematopoietic 
Neoplasms

David Wu, Brent L. Wood, and Jonathan R. Fromm

�Introduction

Immunophenotypic analysis of hematopoietic neoplasms is commonly required for 
disease classification and is currently accomplished by immunohistochemistry and 
flow cytometry [1]. Multi-parameter flow cytometry is an advanced diagnostic tech-
nology that is widely used for the clinical evaluation of complex cellular mixtures 
such as peripheral blood, bone marrow aspirates, body fluids, lymph nodes, and 
other tissue specimens [2]. The ability of the technique to rapidly and simultane-
ously characterize the expression of multiple cell surface and cytoplasmic antigens 
in numerous cellular populations has resulted in the clinical adoption of flow cytom-
etry as “standard-of-care” analysis for the evaluation of hematopoietic processes in 
the clinical laboratory.

In flow cytometry, a suspension of cells such as that derived from a patient sample 
is injected into a fluid stream under laminar flow conditions [3] resulting in individ-
ual cells being directed through a quartz capillary tube (flow cell). Following illumi-
nation by one or more light sources, typically lasers, multiple cellular properties may 
be simultaneously assessed, including light scatter and the expression of surface and/
or cytoplasmic antigens [3, 4] when cells are pre-labeled with fluorochrome-
conjugated antibodies directed against specific antigens [5]. Peripheral blood, bone 
marrow, cerebrospinal fluid, and tissue specimens are routinely analyzed to provide 
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unique diagnostic information about hematopoietic populations [2]. In general, flow 
cytometry permits the evaluation of multiple antigens on cells in a given experiment, 
typically at least 4–6, and increasingly in up to 10 or more antigens simultaneously 
[4]. Here, we discuss practical aspects of lymphoma, leukemia, and myeloma diag-
nosis and classification by flow cytometry. Critical to the approach described herein 
is the assumption that an abnormal cell population will have an aberrant immunophe-
notype as compared to the background normal or reactive cells. As such, emphasis is 
placed on identifying an aberrant immunophenotype of cells by multi-parametric 
analysis. As there have been numerous articles describing various strategies for flow 
cytometry [2, 3], the reader is also advised to access other articles in the field to 
address deficiencies or intentional omissions herein.

�Materials

Reagents are generally used as provided from the manufacturer. However, it is 
important to titer antibodies for optimal signal-to-noise response under the condi-
tions to be used, and this may result in the use of antibodies at concentrations below 
(or above) that recommended by the manufacturer. The antigens that we target for 
routine analysis of hematopoietic neoplasms are included in Table 1, with specific 
antibodies and fluorochromes employed using a modified LSRII flow cytometer 
(Becton-Dickinson).

�Buffers and Cell Staining Reagents

	1.	 PBS-BSA buffer: Dulbecco’s Phosphate-Buffered Saline (GIBCO®) containing 
3 % bovine serum albumin. PBS contains 2.67  mM KCl, 1.47  mM KH2PO4, 
137.9 mM NaCl, 8.1 mM Na2HPO4.

	2.	 RPMI 1640.
	3.	 Lysing/fixation solution (solution fixes cells and lyses red blood cells): 0.15 mol/L 

NH4Cl, pH 7.2 containing 0.25 % ultrapure formaldehyde (Polysciences).
	4.	 Medium A and B for cytoplasmic/nuclear antibody staining are from Invitrogen 

(Fix & Perm®).

�Methods

�Sample Preparation

�Disaggregation of Tissue Specimens

Tissue specimens are initially disaggregated to create a single cell suspension:
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	1.	 Mince the tissue with a scalpel in RPMI (5 ml).
	2.	 Filter the disaggregated cell suspension through a 40 μm filter.
	3.	 Pellet the cells by centrifugation (550 × g for 5 min) and decant the remaining 

supernatant.
	4.	 Re-suspend the cells (in RPMI), pellet the cells again by centrifugation (550 × g 

for 5 min), and re-suspend in RPMI to a cell count of 10,000 cells/μl or less.
	5.	 Add sufficient cell suspension to deliver up to one million cells in a volume of 

less than 200 μl.

�Cell Surface Labeling of Cell Suspensions

	1.	 Add appropriate fluorescently labeled, titered antibodies to cell suspension 
derived from disaggregated tissue, bone marrow, blood, etc., typically 5–20 μl of 
each antibody and mix gently. The antibodies may be combined in a cocktail 
prior to use.

	2.	 In the dark, incubate the labeled cells for 15 min at room temperature (RT).
	3.	 Add 1.5 mL of lysing/fixation solution.
	4.	 Incubate for 15 min at RT in the dark.
	5.	 Centrifuge the cells (550 × g for 5 min) and discard the supernatant.
	6.	 Add 3  mL of PBS-BSA, centrifuge (550 × g for 5  min), and decant the 

supernatant.
	7.	 Re-suspend the cells in 100 μL of PBS-BSA.
	8.	 Collect 150,000 events (if possible) for routine evaluations or up to one million 

events for minimal residual disease detection.

�Cytoplasmic and Surface Labeling of Cell Suspensions (for Cytoplasmic 
Immunoglobulin, MPO, ZAP-70, and Bcl-2)

	1.	 Add appropriate fluorescently labeled, titered cell surface antibodies to cell sus-
pension and gently mix.

	2.	 Incubate the labeled cells for 15 min at room temperature (RT) in the dark.
	3.	 After washing the cells twice with PBS-BSA, add 100 μl of Medium A and mix 

well.
	4.	 Incubate for 15 min at RT in the dark.
	5.	 Wash the cells twice with PBS-BSA and add 100 μl of Medium B and mix.
	6.	 Add appropriate amount of cytoplasmic/nuclear antibody, mix, and incubate the 

labeled cells for 30 min (1 h for MPO) in the dark at room temperature.
	7.	 Wash the cells twice with PBS-BSA and re-suspend the cells in 100  μl of 

PBS-BSA.
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�Immunophenotyping of Cells Using DRAQ5

	1.	 Process sample as described in section “Cell Surface Labeling of Cell 
Suspensions”.

	2.	 Prior to analysis on the flow cytometer, add 5 μl of DRAQ5 solution (1:25 dilu-
tion of commercially available 5 mM solution (from Enzo Life Sciences)) to the 
sample followed by incubation in the dark for 10 min.

	3.	 Run on flow cytometer.
	4.	 Note that DRAQ5 emits over a broad range of wavelengths in the red range of 

the spectrum under both blue and red laser excitation and is not recommended 
for use with PE-Cy5.5, PE-Cy5, APC, APC-A700, or APC-Cy7 fluorochromes. 
Additionally, if surface immunophenotyping with CD41 and CD61 is to be per-
formed, washing the cell suspension 3 times with PBS-BSA or RPMI prior to 
adding the surface antibodies is recommended to reduce platelet adhesion to 
white cell populations.

For presentation specimens, we typically analyze approximately 150,000 cells 
per tube in order to allow detection and enumeration of populations at a frequency 
of 103. For Hodgkin lymphoma, the sample processing and immunostaining proto-
cols are the same as those used for non-Hodgkin lymphoma (NHL) with the excep-
tion that more events should be analyzed, preferably ~500,000 or more. This 
classical Hodgkin assay has only been validated on lymph nodes and thus this assay 
is only recommended for tissue specimens. Likewise, collection of more events 
(typically 5 × 105 to 1 × 106) is critical for the evaluation of specimens for minimal 
residual disease (MRD).

�Gating Strategies, Data Analysis, and Interpretation

With the exception of Hodgkin lymphoma, the analysis for hematopoietic neo-
plasms begins with the exclusion coincident or aggregated events, so-called dou-
blets, using a plot of forward scatter area versus forward scatter height. The use of 
other combinations of area, height, and width may also be used for this purpose. The 
doublet events represent coincident cells in the flow cell and need to be excluded as 
the antigenic profile derived from these events may result in an apparent composite 
immunophenotype due to the combined antigenic expression of two or more cells. 
Subsequently, non-viable events are excluded using forward and side light scatter 
gating. As cells degenerate, initially forward scatter decreases while side scatter 
increases and later both decrease in intensity. These non-viable events can be read-
ily excluded by selective gating using these findings. However, it is important that 
in some cases the population of interest may show preferential degradation, e.g., 
Burkitt lymphoma, and evaluation of the low forward scatter events is recommended 
prior to their exclusion.
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�B-Cell Analysis

The evaluation for B-cell NHL involves identification of B cells with subsequent 
evaluation for aberrant immunophenotypes concurrently showing the presence of 
surface immunoglobulin light chain restriction. We gate lymphocytes with forward 
and side light scatter, computationally subtract the CD5-positive, CD19-negative T 
cells, and then isolate the B cells on a plot of CD19 vs side scatter. Data is subse-
quently evaluated by examining various antigens (Table 1) plotted against each other 
for both the B cells and lymphocytes. Evaluation of lymphocytes based on forward 
versus side scatter (in addition to CD19-positive B cells) prevents inadvertent exclu-
sion of B-cell populations that have aberrant loss or decreased expression of CD19. 
In general, the normal kappa to lambda ratio of the B cells is approximately 1.4; 
however, sole emphasis on a skewed light chain ratio for identifying an abnormal 
B-cell population is discouraged due to its poor sensitivity and specificity—such an 
approach is especially problematic when small clonal B-cell populations are encoun-
tered that do not alter the kappa to lambda ratio. Rather, an emphasis is placed on 
identifying abnormalities (under- or over-expressed antigens relative to a normal 
population) of other antigens assessed in these studies (CD5, CD10, CD19, CD20, 
CD38, and CD45), that allow separation of the abnormal and normal populations. 
Restricted light chain expression should then be present on the gated population. 
Examples of typical examples of CLL/SLL (Fig.  1), Burkitt lymphoma (Fig.  2), 
hairy cell leukemia-variant (Fig.  3), minimal residual disease in a case of B-cell 
lymphoma (Fig.  4), and CD10+ B-cell lymphoma (Fig.  5) are provided. While 

Fig. 1  Flow cytometric characterization of chronic lymphocytic leukemia/small lymphocytic 
lymphoma (CLL/SLL). The neoplastic population is in black; all other events are in gray. Where 
relevant, T cells are indicated with an arrow. The CLL/SLL population demonstrates expression of 
CD45, CD19, CD5, kappa surface light chains, decreased CD20, CD23, and no expression of 
FMC7 or CD10. The neoplastic population expresses ZAP-70 (positive cells determined by a dis-
criminator which is negative on the normal B cells and positive on the normal T cells) and CD38, 
features associated with a less favorable prognosis in CLL/SLL [91, 92]. The first dot plot of the 
top panel shows all cells, the second shows lymphocytes, and the last three shows only B cells. In 
the bottom panel of dot plots, all lymphocytes are shown in the first and fourth plots, while the 
second, third and fifth plots show only B cells
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Fig. 2  Flow cytometric characterization of Burkitt lymphoma in a liver biopsy. The neoplastic 
Burkitt cells (darker gray, arrows) demonstrate lambda light chain restriction with expression of 
CD10, CD19, CD20, CD38 (expressed at a level somewhat above normal germinal center B cells), 
and CD45 without CD5. Fluorescence in situ hybridization (FISH) studies demonstrate the pres-
ence of an MYC translocation

Fig. 3  Immunophenotypic characterization of a case of hairy cell leukemia-variant in the bone 
marrow. The first panel shows all leukocytes, the second all lymphocytes, and the remaining three 
panels show only B cells. Neoplastic cells are in darker gray or black; all other events are gray. The 
neoplastic population demonstrates expression of CD45, bright CD19 and CD20, lambda light 
chains, CD11c, CD38 (data not shown), and CD103, without CD5, CD10 (data not shown), or 
CD25. The lack of expression of CD25 is one of the features that distinguish hairy cell leukemia-
variant from hairy cell leukemia

Fig. 4  Minimal residual disease detection of Burkitt lymphoma in the bone marrow. Overall, this 
bone marrow specimen demonstrates a normal kappa lambda ratio of 1.2 and multiple projections 
of the data do not demonstrate an abnormal B-cell population. However, a small (1.3 % of leuko-
cytes) kappa restricted B-cell population is noted (arrows) with relatively bright expression of 
CD38 and CD10 can be identified on plots of CD10 and CD38 vs CD45 (last two panels). This 
immunophenotype is identical to that identified previously in a tissue specimen. The first dot plot 
shows all white cells, while the remaining four panels show B cells. T cells are colored green; 
kappa and lambda restricted mature B cells are colored blue and red, respectively; immature, nor-
mal B lymphoblasts are colored cyan
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individual cases vary, a summary of common immunophenotypes seen in typical 
B-cell lymphomas is provided (Table 2). A more comprehensive discussion of immu-
nophenotypes in B-cell NHL can be found in the review by Craig and Foon [2].

The approach for evaluating specimens for B-cell NHL minimal residual disease 
(MRD) is identical to that used for evaluating samples at disease presentation, with 
the obvious difference being that the abnormal population post-therapy is usually 
very small (often less than 0.1 % of the viable cells). In practice, a series of sequential 
gates to selectively include and/or exclude various populations may be required to 
convincingly isolate the abnormal population and evaluate for definite light chain 
restriction (Fig. 4). Identifying these small population is facilitated by knowledge of 
the original immunophenotype of the abnormal B-cell population at presentation 
(when the population is usually present at significantly increased proportion) prefer-
ably using the identical reagent combination used to immunophenotype the presen-
tation specimen.

A number of caveats related to the analysis of B cells deserve mention. Some 
B-cell populations may demonstrate aberrant loss of surface light chains, although 
occasionally evaluation of cytoplasmic light chains may show monotypic restric-
tion. While hematogones (normal immature B cells in the marrow and rarely in 
lymphoid tissues) and plasma cells largely lack surface light chains, their absence 
on mature B-cell populations is usually considered aberrant antigen expression [6]. 
Note, however, that some normal B-cell populations may exhibit decreased light 
chain expression (for example, germinal center B cells [1]), and consequently this 
finding should be interpreted cautiously.

Fig. 5  Immunophenotypic characterization of a case of CD10+ B-cell lymphoma. Components of 
both diffuse large B-cell lymphoma and follicular lymphoma (grade 3) are present on morphologic 
evaluation. The first dot plot of the top panel shows all leukocytes, the second shows all lympho-
cytes, and the last three in the top panel show B cells. All plots in the bottom panel show B cells. 
Neoplastic B cells are in dark gray or black; all other events are in gray. The neoplastic cells show 
variable expression of CD45, increased forward light scatter, normal expression of CD19 relatively 
to the reactive B cells, lambda light chain restriction, and expression CD10, CD20, bcl-2 (relative 
to the reactive B cells), and CD38 (normal to slight decreased relative to the expression of a normal 
germinal center population [7]) and no expression of CD5

Clinical Flow Cytometry for Hematopoietic Neoplasms



288

Some large cell B-cell lymphomas may be missed if analyzed using the gating 
strategy described above if the lymphocyte gate is too restrictive due to increased 
light scatter of the neoplastic cells. Consequently, evaluating events that fall outside 
the normal expected size range for typical small lymphoid cells based on light scat-
ter properties is critical for proper diagnosis and for ensuring that complete sam-
pling has been achieved. Similarly, some B-cell lymphomas may show absent or 
decreased expression of CD19 [7–9] and/or CD20 [7] and may therefore be inadver-
tently excluded from analysis. Evaluating multiple B-cell antigens and examining 
B-cell antigen expression of all lymphocytes gated by light scatter help to avoid this 
pitfall.

In the last 15 years, it has become increasingly apparent that not every clonal 
B-cell populations is neoplastic. Small clonal B-cell populations that do not repre-
sent B-cell lymphoma are relatively common in normal (most commonly older) 
individuals and have been described in the literature [10, 11]. Larger clonal but non-
malignant germinal center B-cell populations can occur in reactive states [12], par-
ticularly Hashimoto’s thyroiditis [13]. For this reason, antigenic abnormality rather 
than clonality is what provides specificity for these assays and one should not rely 
on clonality alone in making a diagnosis of lymphoma. Ultimately, flow cytometric 
evaluation in the context of clinical findings, all laboratory findings (such as periph-
eral blood counts), and morphology is required for the diagnosis of B-cell 
lymphoma.

It is important to remember that not all neoplastic populations that express CD19 
represent B-cell lymphoma. B lymphoblastic leukemia/lymphoma (B-ALL) and 
rarely, myeloid neoplasms (namely myeloid neoplasms with t(8;21) [14]) may show 
expression of CD19. It is the composite immunophenotype that is required for 

Table 2  Immunophenotypes of common B-cell NHLa

B-cell lymphoma Immunophenotype

Chronic lymphocytic leukemia/
small lymphocytic lymphoma

CD5, CD20 (dim), CD23, CD38 (variable), CD45, and 
ZAP-70 (variable) positive; mono- or bi-typic dim to absent 
surface light chain expression; FMC-7 negative

Mantle cell lymphoma CD5, CD20 (normal), CD45, monotypic surface light chain 
restriction, FMC-7 positive; CD23 negative

Marginal zone lymphoma CD19, CD20, and CD45 positive; negative for CD5 and 
CD10. Occasional cases have expression of CD43

Hairy cell leukemia CD11c, CD19, CD20 (bright), CD25, monotypic surface light 
chain expression, and CD103 positive; CD5 and CD10 
negative

Burkitt lymphoma CD10, CD20, CD38 (increased), CD45, and monotypic 
surface light chain expression positive; BCL2 negative

Follicular lymphoma CD10, CD19 (decreased), CD20, CD38 (decreased), CD45, 
BCL-2, and monotypic surface light chain restriction positive

Diffuse large B-cell lymphoma CD19, CD20, and monotypic surface light chain positive; 
increased forward and side light scatter; CD10 may or may 
not be expressed

aUnless otherwise stated, these are the most common immunophenotypes for these neoplasms
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assignment of a population to a particular cell lineage and maturational stage, not 
the expression of any single antigen.

Finally, dying cells and debris may appear to express B-cell antigens and appear 
clonal. While the differentiation of debris and authentic abnormal B-cell populations 
can be challenging, as a general rule, debris binds antibodies non-specifically, often 
resulting in a correlated (diagonal) relationship between antigens in multiple 
2-dimensional projections of the immunophenotypic data. The exclusion of low 
forward scatter events, e.g., a viability gate, may significantly reduce apparent non-
specific binding and simplify analysis. However, neoplasms with a high prolifera-
tive rate may show preferential degeneration with loss of forward scatter, e.g., 
Burkitt lymphoma, so examination of events prior to exclusion by viability gating is 
important to detect this occurrence.

�T-Cell Analysis

In general, the strategy for gating of T cells is similar to that for B cells. Compensated 
data files are first gated to exclude doublet events and then non-viable events. As 
with B cells, debris can mimic an authentic abnormal T-cell population. In general, 
we use two gating strategies to identify T cells. The first approach is by analyzing 
forward versus side scatter to identify lymphocytes. The second approach is by 
analyzing CD3 versus side scatter to identify T cells. To identify T cells that have 
aberrant decreased or absence of CD3 expression, the former approach is helpful. 
To identify larger cells that may have increased side scatter, the latter approach is 
helpful. It is important to remember that some large T-cell lymphomas may be 
missed if analyzed using the routine gating strategy due to increased light scatter. In 
every case, it is important to consider events that fall outside the normal expected 
size range for typical small lymphoid cells based on light scatter properties. 
Evaluating events with increased scatter properties is helpful to ensure complete 
sampling has been achieved.

Whereas the analysis of the B cells rests on identifying an immunophenotypi-
cally abnormal B-cell population that is clonal with respect to surface light chain 
expression, the evaluation of T cells involves the identification of an immunopheno-
typically abnormal T-cell population. In this approach, it is critical to recognize that 
numerous reactive T-cell populations may be otherwise present in any given sample. 
These T cells may include memory T cells (decreased CD7 expression), gamma-
delta T cells (increased CD3, absent CD4, and CD8 (partial)), and large granular 
lymphocytes (typically CD8+/CD5 dim/absent) and may be identified in any given 
patient sample, sometimes in increased proportion [2]. Evaluation of T-cell receptor 
V-beta repertoire may be pursued as a measure of clonality of T-cell population by 
flow cytometry. Critical to prevent misinterpretation of a reactive population of T 
cells as a possible malignant clone is the recognition and familiarity with this nor-
mal spectrum of antigenic variation of reactive T cells, which is developed during 
the routine review of many reactive cases. On the other hand, it is also important to 
recognize that a neoplastic, clonal population of T cells may also have immunophe-
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notypic change similar or identical to these reactive populations. As such, careful 
clinical and pathologic correlation is required in every case. Lastly, it is important 
to remember that not all clonal and immunophenotypically aberrant T-cell popula-
tions represent T-cell lymphomas [2]. For example, in some situations, clonal 
populations may arise as part of the normal process of the adaptive immune system, 
such as in response to cytomegalovirus [15].

Multi-parametric identification of these normal variations in antigenic changes 
can permit one to reliably identify an abnormal T-cell population, which in conjunc-
tion with histologic findings or clinical data can permit subsequent definite classifi-
cation. In general, it is fortuitous that the majority of T-cell lymphoproliferative 
disorders will demonstrate some aberrant antigenic expression, such that the level 
of expression of T-cell associated antigens (CD2, CD3, CD4, CD5, CD7, CD8, and 
CD45) can be either increased, decreased, or completely absent, as compared to the 
background, normal reactive T cells [16, 17]. Some examples of the flow cytometry 
data for mature T-cell lymphomas (adult T-cell leukemia/lymphoma and angioim-
munoblastic T-cell lymphoma) are shown in Fig.  6. As another example, flow 
cytometry of a liver core needle sample from a 69-year-old man with multiple liver 
lesions (Fig. 7). While individual cases vary, a summary of common immunopheno-
types of typical T-cell lymphomas is provided (Table 3). A more comprehensive 
discussion of immunophenotypes in T-cell NHL can be found elsewhere [2]. Lastly, 
some T-cell lymphomas may show aberrant expression of CD19 or CD20 [18, 19]. 

Fig. 6  Examples of mature T-cell lymphomas. (a) Adult T-cell leukemia/lymphoma. An abnormal 
population of T cells (dark gray) is identified, comprising 72.3 % of total leukocytes, with aberrant 
expression of CD2 (slightly decreased), CD3 (decreased), CD4 (slightly decreased), CD5 (absent), 
CD7 (absent on major subset), CD8 (variable, dim to absent), and CD45 (slightly decreased), 
without CD34, CD56, TdT, or CD1a. Additional studies show that both CD25 and CD52 are uni-
formly expressed. Additional serologic studies were positive for HTLV-1, supporting the diagno-
sis. (b) Probable, angioimmunoblastic T-cell lymphoma. An abnormal T-cell population (dark gray 
and identified with arrows) comprising 67.6 % of total white cells from this lymph node biopsy has 
aberrant expression of CD3 (low to absent) and CD7 (absent) with normal expression of CD2, 
CD4, CD5, and CD45 without CD8, CD34, or CD56
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This should not be inadvertently interpreted as a B-cell neoplasm. It is the compos-
ite immunophenotype that provides specificity and analysis of other T-cell antigens 
(cytoplasmic CD3) and additional B-cell antigens (cytoplasmic CD79a or CD22) 
may be required.

At presentation, a common question is whether a T-cell population of interest 
represents a clonal process or alternatively is a reactive oligoclonal or polyclonal 
expansion of an immunophenotypically distinct subset. To determine if the identi-
fied T-cell populations represent a reactive or clonal process, flow cytometric analy-
sis of TCR V-beta repertoire has been used. This is a methodology that uses 
fluorescently labeled anti-TCR V-beta antibodies to assess clonality [20–23]. As 

Table 3  Immunophenotypes of common T-cell NHLa

T-cell lymphoma Immunophenotype

ATLL CD3, CD4, CD7 (decreased), and CD25 positive

T-PLL CD2 (variable), CD3 (variable), CD4, CD5 (variable), and CD7 
(variable) positive, CD8 negative. Occasional cases are CD4+/
CD8+ or CD4-/CD8+

T-LGL CD3, CD5 (decreased), CD7 (decreased), and CD8 positive; CD4 
negative

Mycosis fungoides/Sezary 
syndrome

CD3, CD4, CD5, CD7 (decreased), and CD45 positive

ALCL CD30, variable loss of T-cells antigens. ALK, and TIA1/granzyme 
B positive (by immunohistochemistry). A minority of cases are 
ALK negative

AITL CD4, CD5, and CD10 positive; surface CD3 negative (but 
cytoplasmic CD3 positive)

PTCL-NOS CD4 positive; often negative for CD5 and/or CD7

Abbreviations: T-PLL T-cell prolymphocytic leukemia, AITL angioimmunoblastic T-cell lym-
phoma, PTCL-NOS peripheral T-cell lymphoma, not otherwise specified, ATLL adult T-cell leuke-
mia/lymphoma; ALCL anaplastic large cell lymphoma, T-LGL T-cell large granular lymphocyte 
leukemia, TIA1 T-cell intracellular antigen 1
aUnless otherwise stated, these are the most common immunophenotypes for these neoplasms

Fig. 7  Example of a CD30+ T-cell lymphoma. An abnormal T-cell population (dark gray) is iden-
tified comprising 25.5 % of this liver core biopsy with aberrant expression of uniform CD30, dim 
CD4, and aberrant absence of CD3, CD5, CD7 without CD8 or CD56. Of note, although the 
expression of CD2 and possible dim expression of CD4 is not considered T-cell lineage specific, 
subsequent molecular analysis of T-cell receptor gamma gene rearrangement confirms the popula-
tion is clonal and of T-cell origin
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provided by the manufacturer, the IOTest® Beta Test Mark assay is a set of 24 anti-
bodies that covers approximately 70 % of the normal human TCR V-beta repertoire. 
These V-beta specific antibodies are each conjugated to one of three fluorochromes: 
FITC, PE, or PE and FITC conjugate. According to the manufacturer’s protocol, the 
assay is run in eight separate tubes, such that three V-beta family specific antibodies 
(one labeled with FITC, one labeled with PE, and one labeled with FITC and PE) 
are present in each tube. The T-cell population of interest can be identified through 
the use of gating reagents (for example, CD3, CD4, or CD8), and then this popula-
tion can be isolated and evaluated for over-representation of a particular TCR V-beta 
isoform relative to normal. This finding of TCR V-beta over-representation would 
strongly be suggestive of clonality. Numerous studies have demonstrated the utility 
of this approach for assessing putative T-cell clonality in both the clinical and 
research environment [20–23].

At our institution, we have developed and used a simple permutation of the origi-
nal protocol for TCR V-beta repertoire analysis (manuscript in preparation). By 
combining all of the fluorescently labeled TCR V-beta antibodies into a single-tube, 
we minimize the standard 8-tube analysis intended by the manufacturer. With this 
approach, we can rapidly determine putative TCR V-beta restricted T-cell popula-
tion with emphasis on concurrent evaluation for aberrant antigenic expression 
through the use of an increased number of T-cell specific gating reagents (Table 1). 
As compared to the standard method, this modified approach can be adopted in any 
laboratory currently performing routine TCR V-beta analysis, is relatively quick and 
not labor-intensive, and substantially minimizes the amount of reagent and sample 
requisite for analysis, thus permitting analysis of samples, such as skin biopsies and 
cerebrospinal fluids that are typically hypocellular in nature. An example of this 
modified approach is shown in which an expanded large granular lymphocyte popu-
lation is identified with expression of CD8 and decreased expression of CD5 and 
CD7 (Fig.  8). Subsequent assessment of TCR V-beta repertoire analysis using a 
modified approach in which all V-beta antibodies are combined together permits 
identification of probable FITC-fluorochrome labeled TCR V-beta isoform. 
Molecular analysis of TCR gene rearrangement could be subsequently performed to 
confirm the presumed clonal nature of such a population, if clinically indicated. 
Further, if determination of the specific TCR V-beta isoform is important, such as 
for future minimal residual disease monitoring, one could perform the standard 
TCR V-beta repertoire assay to subsequently identify which TCR V-beta isoform is 
labeled by the combined anti-V beta reagents.

�Hodgkin Cell Analysis

Classical Hodgkin lymphoma (CHL) is an unusual type of B-cell lymphoma [24–
26] in which the rare neoplastic Hodgkin and Reed–Sternberg (HRS) cells, less than 
1 % of the cells in lymph node [25, 27], are embedded in a reactive infiltrate includ-
ing reactive lymphocytes, eosinophils, plasma cells, and histiocytes [27]. HRS 
binds to non-neoplastic T cells, resulting in HRS cell-T-cell rosettes [28–34]. 
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Traditionally, CHL has been diagnosed by a combination of morphology and immu-
nohistochemistry (HRS cells demonstrate expression of CD15 and CD30 but lack 
expression of CD20, CD3, and CD45 [24, 27, 35, 36]). Our work, however, has 
demonstrated that CHL can be diagnosed by flow cytometry with high clinical sen-
sitivity and specificity [34, 37]. The interaction of T cells and HRS cells (rosetting) 
can be directly detected by flow cytometry (Fig. 9), as demonstrated by the observa-
tion of a composite immunophenotype of the HRS cells and T cells; that is, events 
with expression of both Hodgkin and T-cell antigens [34]. T-cell-HRS cell rosetting 
can be abrogated by the addition of unlabeled antibodies that can compete for the 
binding of the adhesion molecule binding partner (“blocking” antibodies) [32, 34], 
a practice useful for purifying HRS cells [34]. Blocking of T-cell-HRS cells interac-
tions is not necessary for diagnostic flow cytometry [37], and in fact, observation of 
these interactions can be a useful diagnostically finding. Reagent combinations are 
proposed for either 9-color [37] (Table 1) or 6-color [38] flow cytometry platforms. 
In addition, a reactive T-cell population (CD4+ T-cell population with CD45bright, 
CD7bright) has been identified in lymph nodes involved by CHL, a finding that can be 
used to suggest a diagnosis of CHL (see section “Analysis of T Cells in Classical 
Hodgkin Lymphoma”) [39].

The gating strategy to identify HRS cells differs from that for non-Hodgkin lym-
phomas. The first difference is that because of the relatively large cell size of HRS 
and rosetted cells, increased side scatter is used to identify these populations (Figs. 9 
and 10); HRS cells are then identified by their relatively bright expression of 
CD30, CD40, and CD95 with absence of strong CD20 expression [37, 38].  

Fig. 8  Example of combined using modified TCR V-beta assay showing clonality of T-LGL popu-
lation. An abnormal CD8+ T-cell population is identified in this 76-year-old female with decreased 
CD5 and CD7 expression as compared to background CD4+ and CD8+ T cells. Subsequent analy-
sis of TCR V-beta expression using the modified assay in which all TCR V-beta antibodies are 
combined together shows the T-LGL population with apparent TCR V-beta restriction limited to an 
FITC-labeled isoform. By comparison, background, reactive T cells show variable expression of 
PE (red), FITC (blue), PE-FITC (green), and unlabeled TCR V-beta isoforms (gray). In the top 
panel, the neoplastic population is in teal, while reactive CD4 and CD8 positive T cells are colored 
in red and green, respectively
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A HRS population must be present in all four gates shown in Fig. 10  having: 1) 
increased side scatter as compared to background lymphocytes, 2) expression of 
CD30 and increased autofluorescence, as assessed using the FITC channel, 3) 
absence of or decreased expression of CD20 (relative to reactive B cells), and 4) 
strong expression of CD40 (relative to reactive B cells), and strong expression of 
CD40 (relative to reactive B cells). CD30+ reactive immunoblasts show minimally 
increased autofluorescence (relative to small lymphocytes), a finding that is useful 
in distinguishing these cells from HRS cells. If properly gated, HRS cells may 
appear as two subset populations, one with apparent T-cell antigen expression (such 
as CD3 or CD5) and the second with decreased (but not absent) CD45 expression 
but no expression of T-cell antigens, due to presence and absence, respectively, of 
T-cell rosetting. This phenomenon can provide support for the diagnosis of CHL 
and one should attempt to identify the presence of a diagonal relationship on a plot 
of CD45 versus CD3 or CD5. This diagonal relationship occurs due to the presence 
of varying numbers of T-cells rosetting of the HRS cells.

While the flow cytometry-derived immunophenotype is characteristic of CHL, 
there may be slight variance from case to case. For instance, while most HRS cells 
do not express CD20, some cells may have low-level expression. Further, some 
HRS populations may lack expression of CD15, a finding that correlates with 
reported immunohistochemical studies (~20 % of CHL case show lack expression 
of CD15 [40–42]).

Fig. 9  Representative examples of 9- (top panel) and 6-color (bottom panel) flow cytometry stud-
ies of CHL cases. HRS cells (arrows, where needed; also shown in red and emphasized) are identi-
fied by their absence of expression of CD64 (position of negative determined by control 
experiments, not shown), expression of CD30, CD40, CD95, and increased side light scatter (SSC-
H) compared to normal lymphocytes; all remaining viable events are in blue. For the 9-color study, 
the population of neoplastic HRS cells has expression of intermediate CD15, intermediate to bright 
CD30, intermediate to bright CD40, variable CD71 (data not shown), and intermediate to bright 
CD95, without expression of CD64 or CD20. The diagonal relationship between CD45 and CD5 
is due to the presence of T cells bound to the HRS cells. For the 6-color study, neoplastic HRS cells 
have expression of intermediate to bright CD30, bright CD40, and intermediate CD95, without 
expression of CD64 or CD20. CD3 is expressed suggesting some degree of HRS-T-cell rosetting
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In clinical samples, there may be a population of cells with an apparent immuno-
phenotype that has some resemblance to HRS cells. However, since the immuno-
phenotype does not meet the four basic criteria outlined in Table 4, these events are 
almost always shown to be a different type of hematologic neoplasm or cellular 
debris. For example, anaplastic large T-cell lymphoma cells will commonly express 
CD30 with increased scatter properties. However, its expression of CD40 (if 
expressed) is usually at a lower level than reactive, background B cells, as also 
observed in immunohistochemical studies [43, 44]. Diffuse large B-cell lymphoma 
may occasionally show expression of CD30; however, the level of expression of 
CD30 in DLBCL (if present) is usually lower than that seen for a typical HRS popu-
lation. Further, DLBCL cells will have intermediate to bright expression of CD20 
(not dim as compared to HRS) with a slight increase in side scatter properties (but 
not as increased in CHL). Lastly, nodular lymphocyte predominant Hodgkin lym-
phoma is a type of Hodgkin lymphoma in which the neoplastic cells, referred to 
now as lymphocyte predominant (LP) cells, express CD20, CD40, CD45 without 
CD30 or CD15 [45]. Although these cells cannot yet be reliably identified by flow 
cytometry, the expression of CD20 without CD30 would argue against this popula-
tion from being a putative HRS population.

One important caveat deserves mention. It is critical to note that HRS cells may 
occasionally be identified by flow cytometry in patients with non-Hodgkin lympho-
mas, such as peripheral T-cell lymphoma (PTCL) [46] and chronic lymphocytic 
leukemia (CLL/SLL) [47–49]. However, all cases for which this phenomenon 
occurred in our laboratory showed an abnormal B-cell (two cases of CLL/SLL) or 
T-cell population (two cases of PTCL) in the NHL tubes that were run. Accordingly, 
the determination of the presence of a HRS population should be considered in the 
context of all the flow cytometry data. Ultimately, the diagnosis of lymphoma 
requires the integration of all the clinical, morphologic, and immunophenotypic 
data.

A summary of the immunophenotypic criteria for identifying a putative HRS 
population is provided in Table 4 [34, 37, 38].

Fig. 10  Gating strategy to identify HRS cells in CHL. HRS cells are in red and are emphasized, 
while all other events are in blue. The B cells are the large population that is CD20 and CD40+. 
Putative HRS cells events must fall in all four gates and form a distinct population. Specifically, the 
cells must have increased side scatter (first plot), be CD30+ and have increased auto-fluorescence 
in the FITC channel compared to small lymphocytes (second plot), express CD40 at or greater 
intensity than a reactive B cell (third plot), and express no or low CD20 (fourth plot)
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Analysis of T Cells in Classical Hodgkin Lymphoma

In the absence of specific analysis for HRS cells, the presence of a characteristic, 
reactive T-cell population may suggest the diagnosis of CHL in the appropriate 
clinical and histologic context [50, 51]. We have noted that increased expression of 
CD2, CD5, CD7, and CD45 on the CD4+ T-cells, increased CD5 and CD45 on the 
CD8+ T-cells, and decreased expression of CD3 on the CD4 and CD8+ T cells is 
suggestive of CHL [39]. The increased expression of CD45 and CD7 on CD4+ T 
cells (Fig. 11) may be the most useful reactive T-cell finding to suggest involvement 
bya CHL [39]. In addition to suggesting the diagnosis, this observation can also 
suggest that a specific tube for CHL (above) be run.

�Plasma Cell Analysis

Given their derivation from B cells, it is perhaps not surprising that the evaluation 
of plasma cell neoplasms is similar to that for B-cell NHL. After excluding doublets 
from compensated flow cytometry data, viable events are identified on a plot of 
forward scatter versus side scatter. Events that do not produce a signal from the 
DNA binding dye DAPI (that is, those events that lack DNA) are also excluded. 
Plasma cells are then identified either by their expression of bright CD38 or CD138 
(on plots of CD45 vs. CD38 and CD138 that are computationally summed). Like 
with the B-cell analysis, one useful feature for plasma cell analysis is identifying 
cytoplasmic kappa or lambda light chain restricted plasma cells. Plasma cell neo-
plasms almost invariably have a characteristic immunophenotype (decreased or 
absent CD19 and/or CD45 with or without expression of CD56 [2]) that allows the 
ready identification of abnormal populations. Additionally, CD38 is often slightly 
decreased in plasma cell neoplasms compared to polyclonal plasma cells [52]. 
When abnormal, DAPI affords the identification of aneuploid plasma cells that 
increase diagnostic certainty. An example of a typical plasma cell neoplasm is 
shown in Fig. 12. Analysis of MRD for plasma cell neoplasms is essentially identi-
cal to that for B-cell NHL (see above): a given case is evaluated for cytoplasmic 
kappa or lambda restricted plasma cells with an aberrant immunophenotype identi-
fied in multidimensional space.

Table 4  Criteria for identifying a HRS population

1 Have increased forward and side light scatter (compared to background lymphocytes)

2 Express CD30, CD40 and CD95

3 Absence of moderate to bright expression of CD20

4 Absence of expression of CD64

5 Represents a discrete population in multidimensional projections of the immunophenotypic 
data; increased autofluorescence as compared to CD30+ reactive immunoblasts

The putative HRS population must meet all of the following criteria
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A few caveats regarding the evaluation of plasma cells deserve mention. CD138 
(syndecan-1) is shed and consequently decreased expression of this antigen can be 
frequently identified [53]. It is recommended at presentation that evaluation for a 
plasma cell neoplasm includes evaluation of the B cells, as a subset of B-cell non-
Hodgkin’s lymphomas will demonstrate evidence of plasmacytic differentiation and 
consequently may show an abnormal plasma cell population. Importantly, the 
plasma cell component of a B-cell neoplasm, in contrast to plasma cell neoplasms, 
often does not show decreased expression of CD45 and CD19 and does not show 
expression of CD56 [54, 55].

�Acute Myeloid Leukemia Analysis

The diagnosis and classification of AML require a combination of diagnostic 
modalities including morphology, immunophenotyping (most commonly by flow 
cytometry), cytogenetics, and (increasingly) molecular studies [56]. This section is 

Fig. 11  Reactive T cells in classical Hodgkin lymphoma. CD4+ T cells from classical Hodgkin 
lymphoma (CHL) demonstrate increased expression of CD45 and CD7 when compared to reactive 
lymph nodes. First to third dot plots, three examples of CHL cases from three different patients. 
Fourth dot plot, typical reactive lymph node

Fig. 12  Example of plasma cell neoplasm. An expanded, abnormal plasma cell population is 
identified in this 60-year-old male patient, pre-transplant. The abnormal plasma cells (black) have 
aberrant expression of CD19 (absent), CD45 (variable, low to absent), subset CD56, and monoclo-
nal lambda light chain restriction with normal expression of CD38 and CD138. The first plot 
shows all cells, while the last four plots show only plasma cells. Plasma cells are identified by 
expression of CD38 and CD138 (see text). Gates in the second panel show very few cytoplasmic 
kappa and many cytoplasmic lambda restricted plasma cells
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focused on immunophenotyping AML by flow cytometry; the reader is advised to 
consult reviews on the other diagnostic modalities for a more complete description 
of AML diagnosis [57, 58].

Our evaluation of a putative case of AML begins with evaluation of the blast 
population with two myeloid, B cell, and T-cell tubes (Table 1), the foci being blast 
identification and lineage assignment. Analysis of myeloid blasts by flow cytometry 
begins within an inclusive blast gate drawn from a plot of CD45 vs side scatter. 
From this gate, myeloid blasts can subsequently be identified either by their expres-
sion of CD34 and/or CD117 in conjunction with low side scatter and B-cell pro-
genitors can be subsequently excluded based on their expression of CD19. Erythroid 
cells are identified by their expression of bright CD71 and lack of expression of 
CD15 and CD34, and reduced CD45. Monocytes are initially identified in the first 
myeloid tube by gating all myelomonocytic cells on a plot of CD45 vs side scatter, 
identifying those cells with expression of variable HLA-DR and bright expression 
of CD33, and then refining on a plot of CD45 vs side scatter. In the second myeloid 
tube, monocytes are identified first by their expression of bright CD64, exclusion of 
mature neutrophils expressing CD16 without HLA-DR, usual maturational expres-
sion of CD14 and HLA-DR, and finally gated on their characteristic side scatter 
properties; myeloid cells are typically identified as the majority of the events in the 
myelomonocytic gate that are not monocytes. Eosinophils can easily be identified in 
the second myeloid tube by their increased expression of CD45 compared to other 
myeloid cells, generally higher side scatter, and lack of expression of CD16. 
Eosinophils also have increased autofluorescence, easily demonstrated in the Pacific 
Blue channel and may be useful for their identification. As basophils and dendritic 
cells fall in the blast gate and demonstrate high-level expression of CD123, these 
cells can be readily identified in the second myeloid tube; basophils have bright 
expression of CD123 but lack expression of HLA-DR, while dendritic cells have 
bright expression of CD123 and also express HLA-DR.

Expression of abnormal T-cell antigens on the myeloid blasts is facilitated by the 
inclusion of CD34 in the usual T-cell tube (Table 1; blasts gated on a plot of CD45 
vs side scatter), allowing CD34+ blasts with aberrant T-cell antigen expression to be 
recognized (Fig. 13). Likewise, blasts (identified on a plot of CD45 vs side scatter) 
can be evaluated in the B-cell tube (Table 1) to identify any expression of B-cell 
associated antigens (CD19, CD20, or CD10).

At presentation, myeloid blasts in AML are markedly expanded and demon-
strated an abnormal immunophenotype. The abnormal blast population by flow 
cytometry usually represents greater than 35–40 % of the leukocytes in a given 
blood or bone marrow specimen. As the formal definition of AML requires the pres-
ence of 20 % blasts on a morphologic count that includes nucleated red blood cells 
(cells that often are excluded during acquisition or analysis of flow cytometry data), 
we recommended against formally diagnosing “AML” by flow cytometry, if the 
blast population is less than 35 % in a bone marrow specimen. In peripheral blood 
specimens, this issue is less problematic and a diagnosis of AML can be established 
if the blast percentage is more than 20 % of the white blood cells in the blood.
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Analysis of blast populations requires knowledge of normal myeloid progenitor 
maturation (Fig.  14) and comparison of a given patient’s blast population to the 
normal patterns of maturation for that cell lineage to determine if immunopheno-
typic abnormalities are present. Such an approach is particularly important as 
expanded, but reactive myeloid blast population can occasionally be encountered in 
the setting of bone marrow regeneration and growth factor therapy when AML min-
imal residual disease detection (MRD; see below) is performed or during evaluation 

Fig. 13  T-cell antigen expression on myeloid blasts. The first panel demonstrates a normal frac-
tion of CD34-positive cells expressing CD7. The second panel demonstrates a population with 
uniform expression of CD7 (an immunophenotypic abnormality). CD34-positive blasts represent 
approximately 7 % of the leukocytes in both cases. Blasts were initially identified on a plot of 
CD45 vs side scatter; CD34-positive, CD7-negative cells are identified with a single arrow; CD34-
positive, CD7-positive cells are identified with a double arrow

Fig. 14  Normal patterns of myeloid blast maturation. Blasts are first identified in a blast gate 
drawn on a plot of CD45 vs side scatter (not shown). CD34-positive blasts (red) are shown matur-
ing toward immature myeloid cells (green), and the path is described by black arrows. At the tail 
of the marrow, the most immature blasts (stem cell population) are present. Where indicated, a blue 
arrow notes the presence of CD34-positive cells maturing to erythroid cells. CD34-positive blasts 
represent approximately 1.2 % of the leukocytes
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of myeloid progenitors in other myeloid stem cell disorders (myelodysplastic syn-
dromes and myeloproliferative neoplasms; see below). When viewing progenitor 
maturation, all events in the blast gate are displayed, allowing maturation of the 
progenitors to monocytes, myeloid cells, basophils, and dendritic cells to be identi-
fied. An initial orientation to early progenitor maturation is provided by examina-
tion of the expression of CD34 and CD38, the putative hematopoietic stem cells 
being those with bright CD34 and low CD38 expression. Once lineage commitment 
has occurred the level of CD38 is uniform and moderate in intensity and a progres-
sive decline in CD34 expression occurs. Concurrently, the subsequent emergence of 
specific cell lineages can be seen by the acquisition of lineage-associated antigens 
or patterns of antigenic expression in conjunction with CD34 or CD117, e.g., CD19 
for B cells, bright CD71 for erythroid cells, and CD15 for myelomonocytic cells. 
Early myelomonocytic cells may be further delineated in early myeloid and mono-
cytic lineages based on differential expression of CD13, being high on early promy-
elocytes and low on promonocytes. Additionally, identification of immunophenotypic 
abnormalities on progenitor “stem cell” populations can be facilitated by gating 
CD34-positive progenitors and displaying each antigen of interest vs CD38.

Immunophenotypic abnormalities can be broadly defined as one of four types: 
(1) aberrant expression of antigens not normally seen on cells of that type (for 
example, uniform expression of CD7 on a myeloid blast population; Fig. 13); (2) 
increased or decreased expression of antigens normally present on that cell type; (3) 
homogeneous antigen expression (suggesting an arrest in maturation often associ-
ated with clonal expansion); and (4) asynchronous co-expression of antigens (two 
or more antigens that do not show normal co-expression in maturation). In general, 
as the number and severity of immunophenotypic abnormalities increase, the prob-
ability that the blast population in question is abnormal also increases. 
Characterization and grading of every immunophenotypic abnormality is beyond 
the scope of this manuscript; however, Fig. 15 demonstrates selected abnormalities 
that are, in isolation, likely represent an abnormal blast population.

Lineage assignment for most cases of acute leukemia does not require evaluation 
for cytoplasmic antigen expression (see below). In general, the surface expression 
of CD117 and other myeloid-associated antigens (CD13, CD33), in the absence of 
expression of intermediate to bright T-cell antigens (most importantly CD3 and to a 
lesser extent CD5 and CD7) and the absence of significant expression of B-cell 
antigens (CD10, CD19, and CD20), is sufficient to imply myeloid lineage. In diffi-
cult cases, more definitive assessment of lineage can be performed by evaluating for 
cytoplasmic antigen expression [59] (Table  1). While criteria are not formally 
defined in the literature, the presence of at least 10 % of the cells expressing a 
lineage-defining antigen suggests lineage. Cytoplasmic MPO or monocytic antigen 
expression (CD64, CD14, and/or CD11c) define myeloid lineage. Surface or cyto-
plasmic CD3 defines T-cell lineage. Expression of strong CD19 defines B-cell lin-
eage as does expression of more than one of cytoplasmic CD79a, cytoplasmic 
CD22, CD10, and/or CD20.

Some specific AML subtypes (defined by the French–American–British (FAB) 
classification (AML-M1 to M7) and the 2008 WHO [60]) are amenable to flow 
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cytometric diagnosis. Acute myeloid leukemia with minimal differentiation or 
without maturation (AML M0 and M1) and AML with maturation (AML M2) do 
not have distinguishing features by flow cytometry (other than an expanded 
myeloid blast population), and are not described further. Likewise, acute myelo-
monocytic leukemia (AML M4) demonstrates evidence of monocytic differentia-
tion (below) often with a non-descript myeloid blast population. Acute 
promyelocytic leukemia (AML M3) can be strongly suggested by flow cytometry 
with the progenitor population typically expressing CD117, CD13 (variable), and 
CD33 (bright) but without HLA-DR, CD34, or CD15 (in contrast to normal pro-
myelocytes that show expression of CD15). These abnormal promyelocytes often 
show increased side scatter compared to a normal CD34-positive progenitor pop-
ulation and can express CD2 [61], CD64, and CD56 [62] (example of APL in 
Fig. 16). The hallmark of acute monoblastic/monocytic leukemia (AML M5) is 
the presence of greater than 80 % monocyte forms and an expanded population of 

Fig. 15  Immunophenotypic abnormalities that in isolation are suggestive of an abnormal myeloid 
blast population. Except for panel b (which shows all events), blasts were initially identified on a 
plot of CD45 vs side scatter. (a) Bright CD117 (50.2 % of the leukocytes) expression on a CD38-
negative (stem cell) population. This population should be at least 1 log lower in antigen intensity 
for CD117. (b) Blasts (69.3 % of the leukocytes and identified with a horizontal arrow) have aber-
rantly low expression of CD45, best seen relative to the granulocytes (oblique arrow). (c) CD34-
positive blasts (61.5 % of the leukocytes) show uniform increased expression of CD56. A very 
small population of normal CD34-positive, CD56-negative blasts is identified with an arrow. An 
example of uniform expression of CD7 as an immunophenotypic abnormality is shown in Fig. 13. 
(d) CD117-positive blasts (92.7 % of the leukocytes) show uniform and strong expression of CD33 
without expression of HLA-DR. This should compared to Fig. 14. (e) CD34-positive blasts (56.4 % 
of the leukocytes) show a subset with aberrant expression of CD15. CD34 expression is also aber-
rantly increased. (f) CD34/CD117-positive blasts (93 % of the leukocytes) show aberrant loss of 
CD13. Other antigens (not shown) suggest these cells do not have differentiation toward erythroid 
cells and consequently are abnormal
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immature monoblasts/promonocytes that show expression of “monocyte markers” 
CD4, HLA-DR, CD64 without expression of CD14 (mature monocytes show 
expression of CD14). Abnormal immature forms (blast equivalent) are usually 
expanded and, in contrast to normal immature monocytes, often form a distinct 
subset with minimal maturation and immunophenotypic abnormalities (for exam-
ple, increased CD64, CD56, and/or CD15) compared to normal monocytes 
(Fig. 17). Acute erythroid leukemia is defined by two subtypes: erythroleukemia 
(erythroid/myeloid; AML M6a) (on morphologic evaluation, erythroid cells must 
comprise greater than 50 % of the nucleated cells and blasts must represent greater 
than 20 % of the non-erythroid cells) and pure erythroid leukemia (AML M6b). 
Because of the nature of the diagnosis of erythroleukemia (erythroid/myeloid), 
flow cytometry will allow for the identification of an abnormal myeloid blast pop-
ulation, but often at a percentage below that typically seen in other types of 
AML. Pure erythroleukemia is diagnosed morphologically when blasts commit-
ted to the erythroid lineage represent greater than 80 % of the nucleated cells. 
While flow cytometry often underestimates nucleated red blood cells due to 
exclusion during acquisition and analysis, early immature erythroid cells gener-
ally are expanded. The erythroid cells may express CD235a (Glycophorin A) and 
CD117 without CD34, with expression of bright CD71 being more consistently 
seen. Recent studies have suggested that E-cadherin may be useful for identifying 
immature erythroid cells [63]; however, currently our laboratory has not used 
E-cadherin diagnostically.

Acute megakaryoblastic leukemia (AML M7), as its name would suggest, 
expresses early megakaryocytic markers CD41 and CD61 (Fig. 18). Evaluation of 
such antigens requires a special method of specimen preparation to both minimize 

Fig. 16  Example of acute promyelocytic leukemia (APL). The first panel of the top row shows all 
events. All other panels show events in the blast gate (drawn by CD45 vs SS). The blasts have 
expression of CD2, CD7 (low), CD13 (variable), CD33 (bright), CD34 (more than most cases of 
APL), CD64, CD117, and CD123 (bright) without CD15, CD38, or significant HLA-DR. The 
oblique and vertical arrows identify the blast population and a small population of normal imma-
ture myeloid cells, respectively
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white cell-platelet aggregates and exclude platelet–platelet aggregates. The former 
is improved by washing the unprocessed sample multiple times prior to further pro-
cessing, the latter by use of a permeant DNA binding dye, e.g., DRAQ5 (see above), 
to ensure identification of only nucleated cells. These blasts are often negative for 
progenitor antigens including CD34 and/or CD117 and are negative for cytoplasmic 

Fig. 17  Example of acute monocytic leukemia (AML M5). The first panel of the top row shows all 
events. All other panels show events in the blast gate (drawn by CD45 vs SS). The events in the blast 
gate (monocytes) show expression of CD4, CD13 (variable), CD15 (major subset positive), CD38, 
CD45 (variable), CD64, CD117 (small subset positive), and CD123 without CD34. Importantly, the 
immature monocyte population (blast equivalents—promonocytes or monoblasts) shows no expres-
sion of CD14 (double arrows) whereas the mature monocyte population (not a blast equivalent) 
shows the presence of CD14. The immature monocytes show the small subset with CD117 with 
lower CD45. The oblique arrow in the first panel (top row) identifies the blast population

Fig. 18  Example of acute megakaryoblastic leukemia in tissue (AML M7 immunophenotype as 
myeloid sarcoma). The first panel of the top row shows all events. All other panels show events in 
the blast gate (drawn by CD45 vs SS). The blast population is shown with the oblique arrow; reac-
tive lymphocytes are identified with a horizontal arrow in the first panel. The neoplastic mega-
karyoblastic population (67 % of the leukocytes) expresses CD2, CD7, CD13 (dim), CD34 (very 
bright), CD33, CD38, CD41, CD45 (increased), CD61, CD71 (variable), CD117 (dim), and 
CD123, without CD15, CD19, or HLA-DR. These cells were also negative for surface CD3, CD5, 
CD20, and CD64. Bright expression of CD34 and CD45 is unusual for megakaryoblasts
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MPO and CD235a. Other rare entities (acute basophilic leukemia, acute pan myelo-
sis with myelofibrosis) are not described here. Readers should consult specialized 
texts on the subject.

A number of types of AML with recurrent genetic abnormalities demonstrate 
characteristic immunophenotypes (including AML with t(15;17) or acute promy-
elocytic leukemia, see above). AML with t(8;21)(q22;q22) frequently shows 
expression of B-cell antigens CD19 and CD79a, bright CD34 and occasionally 
CD56 [14, 64]. Identification of this immunophenotype is critical to (1) avoid sug-
gesting the diagnosis of mixed phenotype acute leukemia and (2) suggest evalua-
tion for the t(8:21) by conventional cytogenetics or fluorescence in-situ 
hybridization (FISH).

AML Minimal Residual Disease Detection

Evaluation of MRD attempts to assess therapeutic response for a given patient’s 
neoplasm (example Fig. 19). Flow cytometry can often identify abnormal myeloid 
blast populations with sensitivity of 10−4 to 10−5[57]. When evaluating a bone mar-
row specimen for AML MRD, a critical question that must be evaluated is whether 
the myeloid blast population observed is normal. The approach is similar to deter-
mining whether the blast population at presentation in AML is normal, with the 
obvious exception that the MRD populations are typically much smaller. The evalu-
ation for AML MRD is significantly easier if the laboratory has previously immuno-
phenotyped the patient’s neoplastic myeloid blast population at presentation, as 

Fig. 19  Example of a positive AML MRD specimen. The first panel of the top row shows all 
events (myeloid blasts, red; lymphocytes, blue; monocytes, fuchsia; and granulocytes, green). All 
other panels show events in the blast gate (drawn by CD45 vs SS). The abnormal blasts represent 
0.16 % of the white cells and express CD7 (low), CD13 (low), CD15, CD33, CD34 (bright), CD38 
(low), CD45 (variable), CD56 (subset positive), CD117, CD123, and HLA-DR (increased). 
Evidence that the blasts are abnormal include increased expression of CD34, expression of CD15, 
increased expression of HLA-DR, and subset positivity of CD56; this is essentially identical to the 
abnormal blast population seen before in this patient
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many (but frequently not all) of the immunophenotypic abnormalities observed at 
presentation will be present in the MRD specimen.

A number of important caveats regarding AML MRD deserve mention: (1) 
active bone marrow regeneration may show a number of immunophenotypic alter-
ations on progenitors, e.g., the expression of low-level CD5 and CD7 or increases 
in CD123, CD56, and CD33, and these findings should be interpreted with caution; 
(2) occasionally, immunophenotypic abnormalities are encountered where it is not 
clear that the changes observed are sufficient for the diagnosis of an abnormal 
myeloid blast population. In these cases, it is prudent to note the ambiguity and 
suggest close clinical follow-up with a repeat bone marrow specimen be evaluated 
further removed from therapy; (3) immunophenotypic drift (changes in immuno-
phenotype after chemotherapy) can result in abnormal blast populations with unex-
pected immunophenotypes that differ from those seen at diagnosis; (4) some 
leukemic blast populations have only minimal immunophenotypic abnormalities 
with usual clinical reagent panels. While at presentation acute myeloid leukemia 
may be relatively easy to diagnose even with the relatively normal immunopheno-
type (given the markedly increased number of myeloid blasts), AML MRD in this 
setting can be exceedingly difficult; and (5) no unified standards have been adopted 
between laboratories, making comparison of MRD assays between laboratories 
difficult.

Flow Cytometry for Other Myeloid Stem Cell Neoplasms

The evaluation of other myeloid stem cell neoplasms (myelodysplastic syn-
drome and myeloproliferative neoplasms) is essentially identical to the approach 
seen with AML MRD. Maturation of myeloid progenitors, maturing myeloid 
forms and monocytes is compared to normal maturational patterns for each lin-
eage in multidimensional space. While most cases of myelodysplasia exhibit 
immunophenotypic abnormalities [65–68], experience suggests that certain 
myeloproliferative neoplasms are less likely to be detected by flow cytometry. 
For example, changes in the myeloblasts in essential thrombocythemia or poly-
cythemia vera are rarely identified, while immunophenotypic abnormalities on 
the myeloblasts are more common in primary myelofibrosis. Ultimately, corre-
lation of morphologic, cytogenetic, molecular, and flow cytometric data is 
required for diagnosis.

�Lymphoblastic Leukemia/Lymphoma Analysis

Lymphoblastic leukemia/lymphoma or acute lymphoblastic leukemia (ALL) is an 
aggressive immature lymphoid neoplasm that affects both adult and pediatric 
patients. Over the last couple of decades, there has been substantial improvement in 
disease outcomes for these patients as a whole [69]. In large part, this gain has been 
achieved through the systematic application of therapeutic clinical trials and to a 
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lesser extent to an enhanced understanding of the genomic and cytogenetics under-
lying different subtypes of acute lymphoid leukemias. However, contributing to 
these advances has also been the systematic identification of patients requiring addi-
tional therapy based on the assessment of minimal residual disease by flow cytom-
etry [70, 71] and molecular methods [72, 73]. Here, we discuss the utility of flow 
cytometry for the initial diagnosis of B- and T-lymphoid acute lymphoblastic leuke-
mia/lymphoma and also provide an overview of the utility of multi-parametric flow 
cytometry for the assessment of minimal residual disease to guide continuing patient 
therapy [74].

Lineage Assignment in Acute Lymphoblastic Leukemia

At presentation, leukemic lymphoblasts will typically comprise more than 20 % of 
the total leukocyte cellularity. In these scenarios, gating and identification of the 
lymphoblasts will generally be easily performed on a plot of CD45 versus side scat-
ter with lymphoblasts typically having decreased expression levels of both CD45 as 
compared to mature lymphocytes and slightly decreased side scatter as compared to 
myeloid progenitors. Sole reliance, however, on the CD45 versus side scatter gate to 
identify blasts may be problematic in cases with low blast counts, as previously 
considered [75]. Generally, an abnormal lymphoblast population is defined primar-
ily by the identification of aberrant antigen expression and less commonly by the 
relative size of the population, as some individuals may have exuberant, non-neo-
plastic lymphoblastic proliferations that may occur within the marrow [76], periph-
eral blood [77], and even in tissues [78].

B lymphoblastic leukemia/lymphoma is usually positive for CD19 with usually 
strong CD10 [79]. At presentation, these cases are immunophenotyped with stan-
dard lineage screening tubes (Table 1) and B cells identified in a manner similar to 
that used for B-cell NHL as above. For most cases of B-ALL, the composite immu-
nophenotype with expression of CD19, CD10, and/or CD20 is sufficient to suggest 
B-cell lineage, although problematic cases may require evaluation of cytoplasmic 
CD79a or CD22 to define lineage (Table 1). According to the WHO classification 
scheme, B lymphoblasts should also lack evidence of common acute myeloid 
leukemia-defining translocations, such as t(8;21)(q22;q22); RUNX1/RUNXT1 trans-
location as this myeloid neoplasm can frequently have B-lineage antigen expres-
sion, see above.

T-ALL is also immunophenotyped at presentation and T cells evaluated in a man-
ner similar to that described above for T-cell NHL. T lineage acute lymphoblastic 
leukemia/lymphoma is usually positive for strong expression of CD7 with variably 
dim to absent surface CD3 without myeloperoxidase or CD19 and dim to absent 
CD79a [80]. There is often variable expression of T lymphoid antigens, such as CD2, 
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CD4, CD5, and CD8, as well as antigens characteristic of immaturity, including TdT, 
CD1a, CD99, and/or CD34, with CD56 being present on a subset of cases.

In the absence of definite features indicating B- or T-cell lineage, the current 
WHO classification scheme permits the diagnosis of mixed phenotype acute leuke-
mia if there is substantial co-expression of antigens indicating two or more lineages. 
These, however, represent the minority of cases [81]. The reader is advised to con-
sult the section of the WHO 2008 classification on acute leukemia with ambiguous 
lineage [59].

Unique Immunophenotypic Correlates with Genetic Subtypes

There are several unique genetic subtypes of B- and T-lineage acute lymphoblastic 
that may be important clinically to identify, in part to ensure that adequate cytoge-
netic testing is performed. Most of these subtypes have more aggressive behavior 
than standard-risk ALL, so identifying cases could be of substantial clinical impor-
tance for patient and their care-provider.

B Lymphoblastic Leukemia with t(9;22) BCR-ABL1 Translocation

This B-lineage acute leukemia is typically positive for expression of CD10, CD19, 
and TdT with concurrent, aberrant expression of myeloid-associated genes, CD13 
and CD33. Patients with t(9;22) translocation typically have worse clinical progno-
sis and benefit from tyrosine kinase inhibitor therapy. Clinicians may follow treat-
ment response by either flow cytometry and/or molecular analysis of the BCR-ABL1 
fusion gene.

B Lymphoblastic Leukemia/Lymphoma with t(v;11q23); MLL Rearranged

MLL-rearranged B-ALL is an aggressive subtype of B-lineage lymphoblastic leuke-
mia that is usually CD10-negative and CD24-negative with a pro-B immunopheno-
type when the translocation occurs with chromosome 4. Patients with 
MLL-rearranged tumors tend to have aggressive disease and poor prognosis. 
Interestingly, in our experience, some MLL-rearranged tumors that have B lineage 
differentiation may show dramatic immunophenotypic switch to more myeloid dif-
ferentiation during the course of therapy.

Early Thymic Precursor T-ALL

The early thymic precursor subtype of T-ALL is an aggressive variant, estimated to 
involve ~10–12 % of all T-ALL cases [82]. These neoplasms are identified by an 
immunophenotype that is characterized by the absence of CD1a and CD8 with dim 
to absent CD5 and expression of one or more markers of myeloid and immature 
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cells, such as HLA-DR, CD34, CD33, CD117, CD13, CD33 or CD11b,and CD65. 
Recent genetic sequencing studies have shown that this subtype has genetic lesions 
that overlap with acute myeloid leukemia, raising the hypothesis that treatment with 
myeloid-active regimens may be useful.

ALL Minimal Residual Disease Detection

Evaluation of minimal residual disease is critical for identifying patients who 
may require more therapy such as dose-intensification and/or alternative treat-
ments such as stem cell treatments. In order to confidently identify neoplastic 
lymphoblastic populations, it is necessary to have an appreciation for the nor-
mal maturational sequence of B- and T-cell progenitors [83] (Figs. 20 and 21, 
respectively). Normal B- and T-cell progenitors derive from a pluripotent pre-
cursor within the marrow that is CD34+/CD38− and lacks lineage-specific 
markers. These progenitors show a tightly regulated gain and loss of many anti-
gens as early lineage committed precursors differentiate toward mature B and T 
lymphocytes.

For B-cell progenitors, the immature stem cell will mature to become pro-B 
cells with expression of CD34, TdT, and CD22. These cells then acquire bright 
CD10 expression and CD19 and at the pre-B stage show cytoplasmic expres-
sion of IgM. CD20 expression is acquired concurrent with surface expression 
of IgM and decreased expression of CD10. Naïve, resting mature B cells sub-
sequently express no CD10. During this process, levels of expression of vari-
ous antigens, including CD19 and CD45, increase while expression of CD34 is 
lost (Fig. 20).

T lymphoblast maturation begins within the bone marrow as a pluripotent pro-
genitor cell that migrates to the thymus where subsequent T-cell maturation occurs. 
The prothymocyte shows expression of HLA-DR, CD34, TdT, CD2, CD7, and 
cytoplasmic CD3. At the immature thymocyte stage, T lymphoblasts will gain 
expression of CD25 with concurrent rearrangement of T-cell receptor genes. By the 

Fig. 20  Normal maturational sequence for B lymphoblasts (hematogones). Precursor B cells 
(light blue) are derived from an immature stem cell within the marrow. The most immature B-cell 
precusors have expression of CD10, CD34, CD38, without CD20. On maturing, the cells quickly 
lose CD34, subsequently acquire expression of CD20 while simultaneously gaining expression of 
CD45 and losing expression of CD38. Mature B cells (blue) have bright CD20 and CD45 without 
CD10
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common thymocyte stage, there is surface expression of the pre-T-cell receptor, 
including dim expression of CD3. At this point, the cell is double-positive for CD4 
and CD8 with expression of CD2, CD5, and CD7 and the common thymocyte anti-
gen, CD1a. As the thymocyte continues to mature, it loses expression of either CD4 
or CD8 to give rise to cytotoxic (CD8+) and helper (CD4+) mature T-cell subsets 
(Fig. 21).

The assessment of MRD begins with the identification of bulk B- or T-cell 
populations likely to contain any residual leukemia, CD19 or CD7-positive pop-
ulations gated vs. side scatter, respectively, being useful for this purpose. As the 
maturational expression sequence of both B and T lymphoblasts is well-defined 
(at least for the antigens commonly utilized in clinical diagnostic flow cytome-
try), it is possible to readily identify neoplastic lymphoblast populations when 
there is deviation from the normal immunophenotypic expression for detection 
of minimal residual disease [84]. Additionally, evaluation for T-ALL MRD is 
facilitated by evaluation for immature T-cell immunophenotypes that normally 
do not occur outside the thymus, e.g., expression of CD1a, bright CD99 or TdT, 
although following therapy these markers of immaturity may be lost on the leu-
kemia population [85]. A related strategy is the identification of T cells having 
reduced or absent surface CD3 expression in the presence of cytoplasmic CD3. 
Since a subset of NK cells may also have this immunophenotype, the use of NK 
cell-associated antigens such as CD16 and CD56 are helpful to exclude this pop-
ulation. Characterization of the surface immunophenotype alone is similar to the 
evaluation of mature T cells (see above), save for CD48, an antigen that is 
decreased to absent on immature T cells but highly expressed on mature T cells 
(BLW, unpublished results).

As mentioned, an important consideration is that the immunophenotype of B 
and T lymphoblasts may change substantially during the course of therapy. In 
B-ALL, Chen and colleagues showed that in the majority of cases of B-ALL, at 
least one aberrant antigen was lost in the post-treatment period [86]. However, 
fortuitously for MRD detection by flow cytometry, at least 80 % of abnormalities 
in the original lymphoblast population were retained [86]. Such changes in immu-
nophenotype are in part related to the use of steroids in the early phases of ther-
apy, which appear to induce maturational progression [87]. Accordingly, enhanced 
detection of MRD by flow cytometry is best achieved through the use of multidi-
mensional gating strategies that isolate the abnormal population based on its devi-

Fig. 21  Normal maturational sequence for T lymphoblasts. Immature T cells are derived initially 
from an immature stem cell within the marrow, but then subsequently mature in the thymus. T 
lymphoblasts start as double-negative T cells, become double-positive at the common precursor T 
lymphoblast and then subsequently express either CD4 or CD8
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Fig. 22  Utility of flow cytometry for assessment of minimal residual disease in ALL. Assessment 
of minimal residual disease is critical for guiding patient-specific chemotherapeutic decisions. (a) 
Peripheral blood from a 6-year-old boy with B-ALL at day 8 post-therapy. The blasts (black and 
identified with arrows) represented 0.5 % of the white cells (0.04 % of mononuclear cells) and 
abnormally express CD34, CD38 (absent), CD58 (increased) with normal expression of CD10, 
CD19, and CD45 without CD20. (b) 14-year-old girl with history of B-ALL. Abnormal B lympho-
blasts (black and identified selectively with arrows) in this case comprise only 0.009 % of the white 
cells (0.015 % of mononuclear cells). Due to characteristically bright expression of CD10, the 
blasts are readily identified in a background of normal hematogones. The abnormal blasts and 
abnormally expressed CD10 (bright), CD20 (increased), CD34 (variable), CD38 (decreased), and 
CD58 (slightly increased) with normal expression of CD19 and CD45. While the original diagnos-
tic flow cytometry analysis was not performed in our laboratory, we did analyze prior MRD sam-
ples that had higher proportions of blasts thus permitting establishment of the immunophenotype 
to consider for high-sensitivity MRD detection. (c) 23-year-old male with T-ALL. Abnormal T 
lymphoblasts (black), comprising 0.62 % of total white cells (6.7 % of total mononuclear cells), 
have aberrant expression of CD3 (absent on surface, present in cytoplasm), CD5 (decreased), 
CD38 (slightly increased), CD48 (absent), CD34 (variable), CD45 (decreased), and CD56 with 
normal expression of CD7 without CD4, CD8, or CD16. These abnormalities easily separate the 
population from background reactive, mature T cells
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ance from background normal cells and not solely based on the assessment of 
fixed-gates based on pre-treatment immunophenotypes [88]. Given the impor-
tance of identifying MRD in the post-treatment setting and the challenges with 
standardizing MRD measurement, investigators continue to seek out novel mark-
ers that may be useful in MRD monitoring [89]. Examples of MRD detection in 
ALL are shown in Fig. 22.
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Bioinformatics Analysis of Sequence Data

Anthony T. Papenfuss, Daniel Cameron, Jan Schroeder, and Ismael Vergara

�Introduction

Bioinformatics is a relatively young, rapidly evolving discipline, which can be broadly 
defined as the application of mathematics, statistics and computer science to the analy-
sis of biological data. Information technology and software engineering skills are also 
important, particularly in molecular pathology. Bioinformatics is about deriving insight 
from biological data. For the outsider, understanding what bioinformatics is and engag-
ing with practitioners is complicated by the different types, multiple specialties and 
rapid development of bioinformatics. In this chapter, we aim to provide an overview of 
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bioinformatics to help readers engage with bioinformaticians and, since the data and 
methods used in bioinformatics change rapidly, present key concepts of most relevance 
to molecular pathology and point readers in the direction of the major tools.

�Types of Bioinformatician

There are several different types of bioinformatician:

Production bioinformatician is associated with sequencing facilities and involves 
operation of Laboratory Information Management System (LIMS) and ensuring 
data gets from sequencer or other platform to database/disk storage.

Infrastructure bioinformatician involves database development and maintenance, 
and tool development.

Service bioinformatician typically performs on a fee-for-service basis, often, in a 
core facility.

Research bioinformatician may be collaborative, but will typically also have a focus 
on methods development and data analysis. Research bioinformaticians will 
need to write papers and bring in grants. The term computational biologist is 
sometimes used synonymously with research bioinformatician. If one needs to 
draw a distinction, then a research bioinformatician may be more focused on 
methods development, while a computational biologist is focused on drawing 
biological insight from data and modelling.

In molecular pathology, arguably a new type of bioinformatician is needed. The 
clinical bioinformatician needs to work in close partnership with clinicians and 
pathologists, to develop and maintain pipelines in an environment of continuously 
evolving tools, to test tools using carefully designed validation datasets, and to con-
trol change and to meet the needs of diagnostic certification. The clinical bioinfor-
matician needs a good understanding of software engineering principles, practices 
and tools, including version control software, but also be capable of solving analysis 
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problems, as there are still many unsolved problems of relevance to molecular 
pathology, such as analysis of copy number from targeted sequencing data.

Bioinformatics has evolved rapidly and its development is closely linked to the 
emergence of new technologies for generating -‘omics data. Many specialty areas 
have already emerged, for example, sequence analysis, analysis of gene expression 
and gene regulation, analysis of proteomics data, and some would allow statistical 
genetics including genome-wide association studies. Typically, analyses of genom-
ics data from new technologies start out rough, methods and tools improve over 
time and eventually become standardised and even commoditized. In recent years, 
the importance and impact of bioinformatics has grown substantially due to the 
rapid increase in the rate at which we can generate data, particularly using mas-
sively parallel sequencing (MPS) or next-generation sequencing (NGS).

In the remainder of this chapter, key bioinformatics analyses relevant to molecu-
lar pathology are introduced. We cover copy number analysis using single nucleotide 
polymorphism (SNP) arrays, MPS, the primary analysis of this sequencing data, 
prediction of single nucleotide variants (SNVs) and small indels, sequencing-based 
copy number analysis, and prediction of genomic rearrangements.

�Copy Number Analysis Using Single Nucleotide 
Polymorphism Arrays

A number of DNA hybridization technologies have been applied to the detection of 
copy number variants. Here, we describe the use of SNP arrays. These arrays con-
sist of a set of probes that cover SNPs. For example, the Illumina HumanOmni2.5-8 
array covers about 2.5 million polymorphic markers. For each marker, there are 
probes for the A and B alleles with A and B defined by the manufacturer and inde-
pendent of allele population frequency.

The DNA is fragmented, fluorescently labelled and hybridised to the array. The 
fluorescent intensity of each probe is then measured and the intensity is approxi-
mately proportional to the copy number of the allele. Typically, the intensities, A 
and B, are corrected for background and cross-talk between alleles and normalised, 
then expressed as the log2-relative ratio (LRR):
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where m is the median total intensity across all markers. Values of LRR and BAF 
are returned for each SNP. The same relationships hold for the allele-specific copy 
numbers (nA and nB) and median copy number (or average ploidy nm).
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LRR is zero when the total copy number is equal to the median ploidy, while BAF 
is 0 for homozygous A alleles (AA), ½ for heterozygous (AB), 1 for homozygous B 
alleles (BB), and may take other fractional values where there is allelic imbalance 
(e.g. 1/3 for AAB). In reality, these relationships can be further complicated by the 
normalisation process used by the manufacturer and other factors. If the average 
ploidy is known, then these could be solved for the allelic copy numbers. However, 
more typically the ploidy is unknown and somatic samples may be impure or 
heterogeneous.

Unavoidably, there is a loss of information when performing array-based copy 
number estimation on a sample of tissue. The data collected is relative to the aver-
age signal, which results from the overall ploidy of the sample and this is usually 
unknown. There may be contamination by normal tissue and heterogeneity. These 
factors make the mathematical problem underdetermined (i.e. there are more 
unknowns to estimate than data points). Several methods attempt to infer the cel-
lularity (purity) and average ploidy (see, for example, [1]). Another approach, 
which is attractive, but not widely used, is to independently estimate copy number 
in selected regions.

To profile somatic copy number changes in a tumour, DNA from the tumour and 
the patient germline are usually hybridised to arrays. The germline array allows us 
to subtract out the germline copy number profile, so only somatic mutations are 
considered. It can also help to reduce noise in the data through normalisation meth-
ods like CalMaTe [2] and identify somatic Loss of Heterozygosity (LOH).

Figure 1 shows the LRR and BAF for a tumour, where each dot in the scatter plot 
represents one SNP. This is a useful way to represent copy number profiles.

The LRR represents the total relative copy number. The centre of the LRR distri-
bution is centred on zero and corresponds to the average ploidy of the sample. 
Regions that show a decrease in LRR either focally or at the chromosomal arm or 
whole chromosome level correspond to deletions; increases correspond to copy num-
ber gain events. As the LRR is relative and frequently we do not know if the tumour 
is diploid, it can be difficult to assign an absolute copy number to each region.

The BAF shows two, three or four bands of dots (Fig. 1). Three bands of dots occur 
when a region is in allelic balance (i.e. an equal number of copies of each allele are 
present). The bottom band corresponds to homozygous A alleles, the top band corre-
sponds to homozygous B alleles and the central band corresponds to heterozygosity. 
This is the normal situation when a genome is diploid, in which case the bands cor-
respond to the allelic states AA (bottom), AB (middle) and BB (top). However, 3 
bands arise if both chromatids are duplicated, with corresponding allelic states 
AAAA, AABB and BBBB, or more generally occur in allelic balance. Four bands 
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occur if there is allelic imbalance (i.e. one allele is amplified), leading to the splitting 
of the heterozygous band. If there is a gain of 1 copy in a region of a clonal tumour, 
the corresponding allelic states of the middle bands are AAB and ABB. More gener-
ally the separation of these bands tells us about the relative allelic copy number. The 
larger the allelic imbalance, the further the bands are apart. For example, in a pure 
tumour sample, in a region with copy number 3, the central bands will sit at 1/3 
(AAB) and 2/3 (ABB). If the copy number is 4 with allelic imbalance, the bands will 
sit at 1/4 (AAAB) and 3/4 (ABBB). In other words, the closer the bands are to 1/2, the 
closer the region is to allelic balance, while the further they are apart, the greater the 
allelic imbalance. Finally, 2 bands at a BAF of 0 and 1 in a pure tumour correspond 
to LOH. To determine if this coincides with a deletion or is copy number neutral, one 
must look at the LRR. A deletion will be apparent from a drop in LRR.

Since tumours frequently have normal cells contaminating them, the tumour 
DNA is rarely pure. This can be expressed as the cellularity, purity or contamination 
of the tumour. The impact of cellularity is to squeeze the paired heterozygous bands 
due to allelic imbalance (or LOH) back towards a BAF of 1/2. This effect impacts 
every chromosome.

A variety of tools exist to estimate the average ploidy and cellularity of samples 
(e.g. qpure estimates cellularity only [3]). Once these are known, the copy number 
can be estimated. The tool ASCAT predicts the cellularity, ploidy and the allele-
specific copy number.

Fig. 1  Log relative ratio (LRR) and B-allele frequency (BAF) plots from a single nucleotide 
polymorphism (SNP) array of a tumour sample
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A typical analysis performed by most CNV callers is to segment regions of con-
stant copy number and identify the positions in the genome where the copy number 
state jumps. Several approaches exist. Circular binary segmentation (CBS) is a 
commonly used method [4]. Segmentation can be performed on the LRR and BAF, 
or jointly on both, or on the estimated copy number.

�Massively Parallel Sequencing

To sequence a genome to 30 times (30×) coverage using 100 nt long read paired-end 
sequencing of DNA fragments, 450 million reads ((30-fold coverage × 3 billion nt hap-
loid genome)/(2 × 100 nt reads)) are required. The figure of 30× is the estimated cover-
age at which one theoretically detects >99.5 % of heterozygous variants in a diploid 
genome [5]. Empirical analyses have shown that at an average coverage of 30×, 99.15 % 
of SNPs (both heterozygous and homozygous) are correctly identified [6].

�Read Alignment

In re-sequencing projects (as opposed to de novo assembly or other analyses), analysis 
of NGS data typically begins with alignment of reads to the reference genome. To 
align the massive quantities of data generated by NGS platforms, new alignment 
algorithms were necessary. NGS aligners (or mappers) are much faster than generic 
aligners (such as BLAST, BLAT and exonerate). This is achieved by: reducing the 
alignment problem to global alignment (the whole read must be aligned) or simpler 
types of local alignment (a single contiguous section of the read must be aligned, 
allowing the start and end only to be clipped); limiting how different the read can be 
from the reference genome; and most importantly by introducing acceleration tech-
niques (such as the Burrows–Wheeler Transform in BWA [7]).

Reads are generally aligned to the most recent version of the human reference 
genome. However older versions are sometimes used to ensure compatibility either 
with previous analysis, or an analysis package or database not yet updated to the 
latest version. In some cases, the reference can be augmented with additional 
sequences such as Merkel cell polyomavirus or other integrated viruses.

�Prediction of Single Nucleotide Variants and Small Indels

SNVs are the most common form of genetic diversity in the human population, with 
a germline mutation rate of approximately one per 100 million base pairs per gen-
eration [8]. Somatic mutation rates can be much higher [9]. SNP arrays can detect a 
large number of known polymorphisms included in the array, but genome-wide 
detection of novel variants requires a different technology, with MPS being well 
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suited to this task. A typical SNV detection pipeline using GATK software toolkit 
performs the following steps:

	1.	 Sorting: Following read alignment, reads are sorted according to their aligned 
genomic position, allowing for computationally efficient processing in subse-
quent steps.

	2.	 Duplicate removal: If a library preparation protocol involving PCR amplifica-
tion is used, multiple reads originating from a single source fragment may 
appear. This is especially a problem in conjunction with small starting amounts 
of DNA. This can create biases in downstream analyses such as copy number 
analysis and propagate nucleotide sequencing errors into incorrectly called vari-
ants. To overcome this, duplicate reads which have the same alignment start and 
end coordinates for each read pair are flagged or removed. The Picard tools 
(http://broadinstitute.github.io/picard/) subprogram MarkDuplicates is the most 
widely used duplicate removal tool for SNV calling pipelines and identifies 
duplicates based on matching alignment position and strand orientation.

	3.	 Indel realignment: As each read is aligned independently, small insertions or 
deletions occurring in the middle of a read will result in correct alignment. Indels 
occurring near either end of a read however result in spurious SNVs adjacent to 
the indel. Indel realignment removes these artefacts by performing targeted local 
realignment against an alternative indel consensus sequence and, if sufficiently 
improved over the reference sequence alignments, adjusting the alignment of all 
reads supporting the alternate consensus.

	4.	 Base quality score recalibration: For most sequencing runs, the base quality 
scores generated from the sequencer do not match the empirical distribution of 
base mismatches implied by the alignment of the reads to the reference genome. 
Tools such as GATK correct for this by adjusting the quality score for known 
sequencing chemistry effects such as the reported quality score, position within 
the read and the dinucleotide context.

	5.	 Variant calling: For each genomic position, the base calls for each read mapping 
to that location are compared. Low-quality bases and reads with low mapping 
quality are filtered, and each of the four nucleotides in the remaining bases are 
counted. This is sometimes performed explicitly via samtools mpileup (http://
www.htslib.org/), while some methods generate these counts on the fly directly 
from the BAM file (e.g. MuTect [10]). SNVs are then called by either applying a 
series of heuristic thresholds (e.g. VarScan [11–13]) or a statistical model (e.g. 
GATK, MuTect) to the nucleotide counts.

Most variant callers are run from a Unix command-line and take as input one 
or more SAM or BAM read alignment files. Output is a human-readable file 
format VCF (Variant Call Format), or the compressed binary equivalent 
BCF. Each line in a VCF corresponds to a single variant call and includes a vari-
ant identifier, the genomic location of the variant, the reference and alternate 
alleles, the estimated probability of all samples being homozygous reference 
allele (variant quality score), the genotypes for all samples and any additional 
informational fields written by the calling software. Genome visualisation soft-
ware such as IGV can be used to view the location, and supporting evidence for 
the called variants (Fig. 2).
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For applications requiring a high-confidence list of putative variants, the 
results of multiple variant callers can be combined to form a consensus call set. 
Applications of this approach have shown improved sensitivity and specificity 
over any of the single variant callers used to form the consensus [14].

Although usage of mature variant callers such as samtools/bcftools and 
GATK is widespread, specialised callers have become more prevalent. Of par-
ticular interest to cancer researchers are somatic variant callers such as VarScan2, 
SomaticSniper and MuTect. These callers take a germline and somatic sample 
and classify variants according to their source: germline, somatic, or somatic 
LOH (loss of heterozygosity).

	6.	 Variant filtering: Once putative variants have been called, low-quality variants 
and variants likely due to artefacts are filtered. Common filters include:

•	 Quality score: variants below a threshold quality score are filtered
•	 Coverage: variants with insufficient coverage are filtered
•	 Strand bias: variants showing a strong strand bias are indicative of sequencing 

or alignment artefacts

Fig. 2  Single nucleotide variants (SNVs) visualised using IGV. Read bases matching the refer-
ence are grey; mismatched base are coloured. The SNVs (highlighted in the box) are part of a 
single haplotype as reads contain either both or neither of the SNVs
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•	 BAF: variants with a BAF below a threshold value are filtered
•	 Blacklisted regions: variants occurring in known problematic regions are 

filtered

	7.	 Small Indels: The read alignment techniques used to identify SNVs can, with only 
minor modifications, be used to detect small insertions and deletions. Unfortunately, 
there is no consensus in the literature as to what constitutes a small indel, though 
‘small’ is typically taken as a synonym for ‘detectable by the software used’ when 
applied to SNV and small indel variant callers. The most common range used is 
1–50 bp insertions or deletions as this is the range of indel submissions accepted 
by dbSNP. However a smaller or larger size range is sometimes used depending 
on the read length of the dataset (longer read lengths increase the maximum indel 
size that most variant callers can detect), or type of analysis performed.

	8.	 Annotation and phenotypic effect: Once somatic variants have been identified in 
a cancer, their functional impact needs to be determined. Previously reported 
variants can be found in a number of human cancer databases, the largest being 
COSMIC (Catalogue Of Somatic Mutations In Cancer). When known, attributes 
describing the functional impact of listed variants are included in variant annota-
tion databases. However due to the very high heterogeneity of cancers, many 
novel somatic variants can be found. The type of variant strongly determines the 
phenotypic impact of the mutation. As well as classifying the SNV/indel 
according to the mutation type (synonymous, nonsense, missense, insertion, 
deletion and frameshift) and location (exonic, splicing, ncRNA, UTR5, UTR3, 
intronic, upstream, downstream and intergenic), software such as Polyphen2, 
LRT, PhyloP and MutationTaster assign scores based on different in silico 
approaches that indicate how damaging a particular variant is likely to be. 
Emerging technologies, such as deep mutational scanning, may eventually pro-
vide unbiased empirical evidence for whether a particular variant has a signifi-
cant functional impact on a protein [15, 16].

�Prediction of Copy Number Variants from Sequence Data

The primary approach to using sequencing data to identify copy number changes is 
through analysis of read depth. Sequencing-based copy number methods follow the 
same principles of those based on techniques such as array Comparative Genomic 
Hybridization (aCGH) and SNP arrays (described previously). There are typically 
four stages to read depth analyses. The first stage corresponds to the definition of a 
window size over which the number of reads or median read depth is calculated on 
the samples across all covered regions. The main assumption is that this value is 
proportional to the copy number of the sequenced sample, and hence the LRR of 
these values for a case sample and a control/reference set should be indicative of the 
relative presence/absence of CNVs. Importantly, pooling of cells and sequencing 
results in loss of absolute copy number information and the results are relative. 
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Single cell sequencing overcomes this shortcoming. As with arrays, statistical mod-
els can be used to infer ploidy and cellularity. The second stage corrects the read 
depth profiles for technical biases such as GC content and mappability. The third 
stage corresponds to the segmentation of the LRR by merging adjacent windows of 
similar LRR while detecting change points between segments; common methods 
used are CBS [4] and hidden Markov model (HMMs)-based approaches [e.g. 17]. 
The last stage implemented in some methods involves the classification of the seg-
ments into gains and losses, copy number states, LOH and allele-specific CNVs. 
Several reviews have revisited and discussed in detail the main approaches used for 
most read depth-based methods for the steps listed above [18–22].

While there are a large (and growing) number of tools developed for read 
depth-based CNV detection, they can be broadly separated according to their: (1) 
type of sequencing and (2) type of control/reference set.

�Type of Sequencing

While it still suffers from biases due to GC and mappability, detection of CNVs 
using whole genome sequencing (WGS) benefits from a more uniform distribution 
of the reads across the genome compared to capture-based enrichment methods, for 
example, whole exome sequencing (WES) and targeted re-sequencing (TRS), mak-
ing the proportionality between read depth and copy number clearer. Additionally, 
WGS data allows for accurate detection of breakpoints, if the depth of sequencing 
is sufficient. This allows for refinement of the edges of CNVs and single nucleotide 
resolution. In WES and TRS, the reduced proportion of the genome being sequenced 
(1–3 % in the case of WES, and much lower for TRS), the non-uniform distribution 
of exons along the chromosomes and additional technical biases such as differences 
in hybridization capture efficiency across regions and probe concentration chal-
lenges this assumption and makes the accurate detection of copy number changes 
more difficult. A number of tools have been developed specifically for WES and 
TRS data (e.g. ADTEx [23] and CONTRA [24]), as well as amplicon-based TRS 
(oncoCNV [25]) and long-range TRS (cnvCapSeq [26]).

�Type of Control/Reference

Methods for read depth-based CNV detection can be grouped into those that use paired 
case–control data and those that use pooled data to build a reference set. The former 
type requires each case sample to have a matched control against which the LRR is 
built. This is preferable for detection of somatic CNVs. The latter builds a reference 
from pooled samples that is used to measure LRR against each case sample. The pooled 
data approach is useful when matched controls are not available for all samples.
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Two popular tools that can be used for the detection of CNVs include BIC-seq 
[27] and CONTRA [24]. BIC-seq is a tool designed for WGS paired data. In the 
BIC-seq algorithm, mixed bins of uniquely aligned tumour and normal reads (sorted 
by their genomic coordinates and with removed amplification bias—see Section 
“Prediction of Copy Number Variants from Sequence Data” above) are merged 
iteratively according to similarity. The similarity is calculated with the Bayesian 
Information Criterion (BIC), which includes a term to represent how well the model 
fits the data and another to avoid overfitting of complex models. The model is the 
joint likelihood of the reads as a function of their sample of origin and their coordi-
nates. BIC for neighbouring bins is computed and those with a BIC difference lower 
than zero are merged. This is repeated until no BIC difference is less than zero with 
a final merging step of three or more bins in order to improve BIC. The copy ratios 
of the segments are calculated and breakpoints have an assigned confidence inter-
val. The bin size is explicitly assigned by the user and can be as low as 1 bp, enhanc-
ing accurate breakpoint localization [18].

CONTRA is designed for WES and TRS and can be used with paired data and 
pooled data. The first step for detecting small region-level CNVs is the computation 
of a base-level log ratio of the adjusted coverage (excluding regions with coverage 
lower than a threshold and scaled by the geometric mean of the library size between 
case and control). The region-level log ratio (RLR) is then computed as the mean of 
the base-level log ratios across the region and corrected for bias due to unequal 
library size between case and control. The RLR is modelled with a normal distribu-
tion and an adjusted two-tailed p-value is computed for each region. Larger CNV 
regions from the RLR can be obtained with a heuristic approach based on CBS.

The interest in sensitive and specific CNV callers (especially in the WES set-
ting due to its low cost) has sparked a number of comparative studies [18, 19, 21, 
28]. Unfortunately, results from comparative assessments on these tools utilise 
different metrics, types of dataset (e.g. simulated, primary tumour and cell lines), 
gold standards (e.g. aCGH, SNP arrays and WGS) and tools, making them diffi-
cult to compare and highly variable among them. Additionally, tools are usually 
benchmarked with default/recommended settings, without further exploration of 
the space of parameters that may yield better performance on the validation set. 
These make the decision on the best methodology for a given dataset of interest 
hard to make and CNV calling from WES and targeted sequencing remains an 
open research question.

�Cell Admixture, Baseline Ploidy and Subclonal Heterogeneity

Separate technical issues which complicate CNV prediction include: the pres-
ence of cell admixture in the sequenced case samples, which can dilute the signal 
of a CNV; genomes of somatic cases may not be diploid, thus affecting the inter-
pretation of the baseline LRR; and the sample may include an unknown number 
of subclones with different CNV profiles that may be relevant for the disease 
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under study (e.g. subclones that develop resistance to disease). Thus, it is impor-
tant that the pathologist is aware of any prior knowledge that could give insights 
into these. For example, inspection of BAF and Mutant Allele Frequency (MAF) 
plots can be informative regarding the presence of cell admixture and potential 
heterogeneity. Tools like Control-FREEC [25] estimate cell admixture, but it 
requires the user to specify an input ploidy value (and further recommends trying 
different values). ADTEx [23] and Sequenza [29] on the other hand allow the 
user to estimate both ploidy and normal cell contamination, whereas SomatiCA 
[30] estimates cell admixture and subclonal heterogeneity, while bypassing the 
estimation of ploidy (Fig. 3).

�Formalin Fixed Paraffin Embedded Samples

Routine storage of samples by formalin fixation results in degradation of the genetic 
material and deamination. While previous studies using fresh frozen versus matched 
Formalin Fixed Paraffin Embedded (FFPE) samples for MPS [31, 32] have shown that 
the detection of FFPE-based CNVs is feasible and informative, the damaged genetic 
material results in additional sequencing noise. A recent study [33] has shown that 
informative depth of coverage (DOC) profiles can be obtained from shallow WGS of 
fresh frozen and FFPE samples and provides a package—QDNASeq—that performs 
simultaneous GC content and mappability correction via LOESS on the profiles.

�Genomic Rearrangements

Genomic rearrangements or structural variations are large-scale changes to chromo-
somes defined by one or more double-strand break points. Typically, these refer to 
translocations, inversions, and tandem or inverted duplications, large insertions and 
deletions (>50 nt), which may also be detected as copy number changes. Genomic 
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Fig. 3  Copy number from whole exome sequencing (WES) data. The LRR and SNP BAF are 
shown for one chromosome from a tumour sample. Allelic imbalance is apparent from the split in 
BAF on the p-arm and a focal change on part of the q-arm
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rearrangements may involve large-scale gains or losses or be copy number neutral. 
Unlike copy number variation detection, the search for structural variants is aimed at 
identifying breakpoints of genomic fusions rather than amplified or deleted regions. 
Breakpoints may also be associated with finescale deletions or insertion of untemplated 
sequence.

FISH and spectral karyotyping are low-resolution methods of detecting genomic 
rearrangements. Here we focus on the use of high-throughput sequencing data.

The methods to search sequencing data for variants in aligned read data gener-
ally utilise one or more of the following techniques:

�Discordant Paired-End Methods

If paired-end (PE) sequencing of DNA fragments is performed, a cluster of read 
pairs that align discordantly or anomalously to the reference genome may provide 
support for a genomic rearrangement. For example, a number of independent read 
pairs that map to the same neighbourhoods of two different chromosomes provide 
evidence for an interchromosomal genomic fusion. Figure 4b illustrates the concept 
for a single fragment mapping discordantly. The average distance between PE reads 
on a single chromosome can also be utilised to detect rearrangements. Since the PE 
library preparation creates fragments with some size distribution, read pairs that 
map significantly closer or farther than this expected distance to each other can 
reveal the presence of an insertion or deletion event. Figure  4c–d sketches both 
these cases. Again, clusters of fragments with such anomalous mappings increase 
the likelihood of a real event having taken place.

In general, discordant read pair methods do not achieve single nucleotide resolu-
tion, nor can they identify untemplated insertions at the breakpoint. However, they 
can achieve high sensitivity if the physical coverage of the genome by DNA frag-
ments is high, that is if the average fragment size is substantially larger than the 
read length.

BreakDancer is a method for genomic rearrangement prediction that uses a pure 
paired-end analysis tool [30]. After identifying clusters of discordantly aligned read 
pairs, BreakDancer applies a statistical test to filter out false positives. Despite this, 
it is generally reported to have a high false positive rate [34].

�Split-Read Methods

Since genomic rearrangements cause fusions of non-contiguous segments of the 
genome (on the same or different chromosomes), it is possible for reads to be sam-
pled in such a manner that one part of a read is aligned on the ‘left side’ of the fusion 
and the other part on the ‘right’. Figure 4f displays such a scenario. Such reads are 
referred to as split-reads (SR).
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Split-reads cause a particular type of signal in aligned sequencing data. Correctly 
configured aligners allow for partially mapped reads. Such reads align from the read 
start for some length, but then no longer match the genome sequence and enter a 
special clipped state. Only certain aligners support such soft clipped alignment (e.g. 

a)

b)
Interchromosomal
crossover: chrA<->chrB

Interchromosomal
crossover: chrA<->chrB

Point of deletion Point of deletion

Deleted segment

Inserted segment Inserted segment

c)

d)

e)

f)

g)

h)

chrA

chrB

chrA

chrB

Deleted
segment

Fig. 4  Different types of genomic rearrangements and supporting evidence. Details of evidence 
for genomic rearrangements from paired-end and split-reads. The donor genome (from which read 
fragments have been sequenced) is drawn as a dashed line in each panel and the reference genome 
as a solid line. Read fragments are indicated on the donor genome as solid blocks with light ends 
indicating the actually sequenced reads (a–d). Single reads (or parts thereof) are displayed as 
larger solid blocks in panels (e–h). (a) A DNA fragment from a homologous stretch of donor 
genome; both reads are aligned to the same position in concordant distance. (b) A chromosome 
crossover (for example, a translocation) in the donor genome causes the two reads to be mapped to 
two different chromosomes in the reference genome. (c) The donor genome is lacking a stretch of 
DNA from the reference. Read pairs that span the point of deletion cause reads to be mapped fur-
ther apart in the reference genome than the average fragment length. (d) An insertion in the donor 
genome (shorter than the fragment length) causes the read pairs spanning this segment to map 
closer to each other than the average fragment length. (e) A read sampled from a homologous 
region of DNA from the donor gets placed at the same position in the reference. (f) Interchromosomal 
fusions in the donor can create split-reads that partially align to two different chromosomes. (g) A 
deletion in the donor genome results in split-reads that partially align to two distant points in the 
reference genome. (h) A short insertion in the donor genome (shorter than the read length) can 
result in a read whose beginning and ending, but not the middle part, map to the reference genome
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bowtie2). The two halves of a split-read can then be associated with each other by 
realigning the clipping portions of reads, or by assembling them into longer seg-
ments of DNA together with other clipped reads in the vicinity.

One method that uses split-read detection is Socrates [34], which uses standard 
aligners (such as bowtie2) to realign unmapped portions of reads, and then clusters 
sets of split-reads into genomic fusions. Socrates is not as dependent on the library 
design as BreakDancer above, but benefits from longer reads. Socrates provides 
single nucleotide resolution, as well as highlighting micro-homologies and untem-
plated sequence at the fusion site. Other evidence including discordantly aligned 
reads can be integrated post hoc.

An integrative approach to structural variation detection that uses both discor-
dant read pairs and split-reads is Delly [35]. This algorithm searches for anomalously 
aligned PE reads (much like BreakDancer does), but then refines the fusion by also 
investigating the surrounding reads for evidence of split-reads. A consequence of 
this approach is that the sensitivity of Delly is similar to paired-end methods, but 
obtains single nucleotide resolution.

Finally, several methods now also include de novo assembly as part of the 
algorithm to improve the specificity of calls [e.g. 22, 36].

�Summary

In this chapter, we have introduced the area of bioinformatics, covering the basic 
analyses of germline and somatic DNA sequence data using NGS and SNP arrays for 
accurate copy number calling. The field of bioinformatics is complex and fast mov-
ing; ideally specialist bioinformaticians should be engaged to undertake analyses. 
The experience in research is that most new datasets require some level of bioinfor-
matics methods development, or at least exploration. Once established, pipelines 
make analyses more efficient, and in pathology, where routine assays are more likely, 
the majority of analyses can be undertaken this way. However, a trained eye is needed 
to monitor the emergence of better approaches or problematic datasets for which 
default methods fail. These latter edge cases will always come up from time to time.
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Historical value of the autopsy in research
The autopsy procedure and preservation of specimens
Research benefits of the autopsy
–  Investigating the biology of malignancy
–  Evaluate the effects of medical and surgical therapy
–  Ensuring accurate epidemiological data
What makes a good research autopsy program work?

�Historical Value of the Autopsy in Research

An autopsy, also known as a postmortem, is the medical examination of the 
deceased. It is a careful and detailed examination of the body and internal organs, in 
order to determine the cause of death and answer any clinical questions. The term 
“autopsy” means “to see for oneself” and refers to the fact that manifestations of 
disease are directly observed rather than relying solely on clinical findings and 
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investigations [1, 2]. Modern medical understanding of disease originated when 
autopsies were first used to examine the structure and function of normal tissue. 
This could then be compared to the alterations seen in disease [3, 4]. Autopsies 
contributed to Virchow’s theories of cellular pathology in 1876, and to Osler’s great 
advancements of medical knowledge in the early 1900s [2]. Throughout the twentieth 
century autopsies played a key role in the explosion of medical knowledge. In 
recent times, autopsy research has contributed to the understanding of diseases as 
diverse as oesophageal adenocarcinoma, sudden cardiac death in young people, 
avian H1N1 influenza, and Creutzfeldt–Jakob disease [5–8].

Sadly, many believe there is no longer a place for autopsies in modern medical 
research; that an autopsy cannot provide specimens that are adequate for modern 
research techniques, and that all we need to know about a patient and his disease can 
be derived from premortem clinical investigation and imaging. So is there any place 
for autopsies in modern research programs? The answer to this is a resounding 
“YES”! Autopsies can be used to obtain large quantities of tissue for research, 
assess response to therapy, map the distribution of metastases, highlight rare com-
plications, provide feedback for quality assurance assessment of protocols and 
procedures, and provide reliable cause of death information.

The decline in hospital based autopsies and the more rigorous ethical standards 
and consent requirements for tissue retention can make research using autopsy data 
and tissue difficult [3, 9, 10]. However despite these hurdles, there is a recent resur-
gence of interest in the benefits of utilising autopsies for research, including 
obtaining tissue for molecular studies [10–12].

�The Autopsy Procedure and Preservation of Specimens

The body is examined externally, then the internal organs are dissected, examined 
macroscopically, and tissue taken for histologic examination. An autopsy may be 
authorised by the state to establish a cause of death (coronial autopsy). Alternatively 
one may be performed at the request of clinicians or families to answer a clinical question, 
as part of a quality assurance measure, or to obtain tissue for research (hospital based 
autopsy). Coronial autopsies are a legal requirement to establish if the death was due to 
natural causes. Hence, there are additional legal and ethical standards that must be met 
if these autopsies are to be used for research. In contrast, hospital based autopsies are 
performed after a death certificate has been issued, and an autopsy is only performed 
with the consent of the patient (obtained prior to death) of the family.

An autopsy can be targeted, it can exclude designated organs (often the brain), or 
be a detailed examination of the whole body [1]. Appropriate consent for the 
autopsy, and in many countries the retention of tissue samples or organs, must be 
obtained. Autopsy research programs may also require research ethics approval, 
although not all countries mandate this [13]. Tissue and fluids retained for research 
purposes can be subject to a wide range of interrogation that includes histology, 
biochemistry, microbiological studies, immunohistochemistry, histomorphometric 
analysis, and molecular and biochemical studies [2, 14, 15].
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“Rapid” autopsies are performed as soon after death as possible, specifically 
to obtain high quality tissue for research. The autopsy is ideally performed 
within 4  h of death to minimise postmortem tissue degradation [16]. Rapid 
autopsies are performed within an established research program. They require 
hospital infrastructure through which patients can be recruited and give consent 
prior to death. A team of pathology and laboratory staff experienced in biobank-
ing need to be available on call and able to respond within a few hours of the 
tissue donor’s death [17, 18]. To expedite the removal and processing of tissue 
samples, clinical and radiologic information can be used to indicate which sites 
are to be biopsied or organs examined [17]. The extent of autopsy examination 
varies, with some programs continuing with a full autopsy protocol [18], while 
others simply obtain tissue using core needle biopsies of sites of interest. Of 
course, if a complete autopsy is not performed unexpected findings are much 
less likely to be identified.

�Adequacy of Autopsy Tissue for Molecular  
and Biochemical Research

It is a common misconception that autopsy tissue is not good enough for molecular 
and biochemical studies [9, 19]. Although there is no doubt that degradation of 
nucleic acids can be an issue, this may be much less significant than many believe. 
For many research questions, the disadvantages are well outweighed by the avail-
ability of ample tumour and control tissue.

Several research groups, mostly using tissue from rapid autopsy programs, 
have successfully performed genomic copy number analysis of primary and met-
astatic tumours. The methods used include comparative genomic hybridisation 
[20, 21], fluorescent in situ hybridisation [22], and single nucleotide polymor-
phisms (SNP) analysis [20]. Using high-resolution genome-wide SNP arrays, 
Liu et  al. [20] investigated 58 metastatic prostate cancer samples obtained at 
rapid autopsy from 14 subjects. They found subject specific data clustering of the 
58 samples, suggesting a common origin of the metastatic cells [20]. Zarghooni 
et al. [40] also used SNP based DNA microarrays to analyse 11 diffuse intrinsic 
pontine gliomas (DIPG), which are lethal paediatric brainstem tumours. Nine of 
their cases were obtained at postmortem, with a postmortem interval range of 
9–40 h. They found the genomic alterations were different to paediatric supraten-
torial tumours and identified two novel potential biological targets. To control 
for any postmortem alterations the samples were matched with their own normal 
brain tissue, and compared with the two available surgical biopsies [23]. This 
particular study was not from a rapid autopsy program, and several of their sub-
jects died during terminal care at home.

Adequate preservation and evaluation of RNA is important for functional 
genomic studies. RNA is known to deteriorate with increasing time from death to 
autopsy. To consistently obtain high quality RNA requires an organised program 
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that can efficiently obtain and process tissue. The median RIN (RNA Integrity 
Number) of a rapid autopsy program with a median postmortem interval of 3 h 
has been recorded as 8.9 for brain and 7.0 for body tissues [24]. Tissue samples 
are considered to be of high quality if the RIN ≥ 6.5, while samples with RIN ≥ 8.0 
are considered suitable for all downstream molecular techniques [25]. Studies 
with a longer postmortem interval do show more significant deterioration in 
RNA quality [26]. Messenger RNA (mRNA) levels have also been determined 
from brain tissue obtained at autopsy, using reverse transcription followed by 
real-time polymerase chain reaction (PCR). While this showed a general decline 
in measured mRNA levels in the autopsy tissue, when the measured mRNA level 
was adjusted according to a reference gene mRNA level, most genes evaluated 
were not affected by the postmortem status. One gene did have significantly 
decreased adjusted mRNA levels. The results suggest that overall the pattern of 
gene expression in postmortem tissues is similar to surgical biopsy tissue, but 
carefully chosen controls are required. Factors that may alter RNA expression in 
postmortem tissue include both individual variation in gene expression and 
reduced production at the time of death, and possibly relate to the mode of death 
rather than the postmortem delay [9, 27].

Tissue obtained after a long postmortem interval may have partially degraded 
RNA, but this can still be utilised for PCR amplification of smaller fragments, 
so that tissue need not be wasted [28]. Increasingly, new technologies are being 
developed that can tolerate lower quality RNA samples, for example, 
NanoString® technology, meaning that gene expression can still potentially be 
evaluated [29]. DNA can also be obtained from postmortem tissue, including 
formalin-fixed and paraffin embedded tissue; however, larger DNA fragments 
are more prone to degradation than in surgically obtained formalin-fixed and 
paraffin embedded tissue [30].

Studies using proteins are more difficult and complex, as there is significant 
variation in degradation that is not predictable. Each study must therefore commence 
with an evaluation of the preservation of that particular protein [9, 31].

�Expansion of Autopsy Derived Material: Resource Generation 
and Applications

Viable tumour tissue can be harvested to establish both in vitro and in vivo models, 
allowing in-depth studies of both primary and metastatic tumours [18, 32]. Several 
studies have confirmed the viability of growing fibroblasts from autopsy tissue, 
which can be reprogrammed into induced pluripotent stem cells [33, 34]. While 
mouse xenografts of cultured human tumour cell lines have been in the researcher’s 
toolkit for many decades, patient-derived xenograft (PdX) resources are becoming 
increasingly sought after to provide greater clinically predictive insights. The PdX 
benefits pre-clinical research by preserving both tumour heterogeneity and tissue 
architecture, and by facilitating the modeling of specific stages of disease progression 
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(for example, local metastasis, distant metastasis, and/or broad disease dissemination) 
in the absence of the clonal selective pressures of culture in monolayer [35]. 
Furthermore, clinical trials are routinely undertaken in cohorts with advanced 
disease, PdX models generated from metastatic deposits collected in rapid autopsies 
are certainly a more relevant pre-clinical model as opposed to the use of surgical 
resections of primary tumours [36–38].

�Research Benefits of the Autopsy

�Investigate the Biology of Malignancy

Use of autopsy tissue for research is particularly valuable for rare malignancies, 
those that are not managed by surgical excision, tumours that are frequently dis-
seminated at the time of diagnosis, and metastases. For many of these special groups 
obtaining enough tissue for research studies can be problematic. If biopsies are suf-
ficient for clinical diagnosis and management, taking more tissue may be unethical. 
However, biopsies may not be large enough for both clinical diagnosis and research 
studies. If subsequent treatment does not include surgical excision, further tissue 
may never be obtained. Malignancies such as pancreatic carcinoma are often dis-
seminated at the time of diagnosis, consequently those patients will often not 
undergo surgical resection. Metastatic or recurrent malignancy may not undergo 
repeat biopsy, especially if the tumour is deep seated or difficult to biopsy, hence 
comparison with the primary may never occur.

In contrast, tissue samples of both primary and metastatic tumours can be obtained 
at autopsy. Multiple metastases can be sampled, including those in surgically inacces-
sible sites. The true extent of disease can be determined, including any metastases 
not detected antemortem. Tissue for controls can easily be obtained, unlike surgical 
biopsies that target diseased tissue. Research involving rare malignancies also 
benefits from collection of tumour tissue at autopsy, because larger amounts of tissue 
can often be obtained and retained for more extensive investigation [10].

DIPG for example, are diagnosed based on clinical and radiologic findings, and 
biopsy is often not performed at all. The current treatment is ineffectual and they are 
uniformly lethal. Minimal surgically obtained tissue is available for research, so 
autopsies can provide material that is critical to understanding the underlying tumour 
biology [39]. Parents of children with DIPG have been actively encouraging other 
parents to consider an autopsy, via DIPG cancer support networks. Recent studies 
using postmortem tissue have finally begun unraveling the molecular alterations 
present, hopefully allowing more targeted treatments to be identified [40].

With the use of endocrine, chemotherapy, and targeted therapies, the survival for 
a number of cancer types such as breast cancer has improved dramatically over the 
last two decades. While survival is good for localised disease, the outcome remains 
poor once metastases develop [10]. Currently, most metastatic deposits are not 
biopsied and the treatment of metastatic disease is based on the phenotype (including 
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molecular phenotype) of the primary tumour. There is now compelling evidence 
that this may be inappropriate. Changes in biomarkers between primary and metastatic 
sites such as oestrogen receptor (ER), progesterone receptor (PR), and the oncogene 
HER2 have been demonstrated in breast cancer [16, 41]. In fact, the American 
Society of Clinical Oncology Clinical Practice Guidelines recommend the use of 
the ER, PR, and HER2 status of the metastasis to direct therapy, if supported by the 
clinical scenario and patient’s goals for care [42]. Studies investigating metastatic 
pancreatic carcinoma have found reduced expression of DPC4 in tumours that are 
widely disseminated as compared to localised, surgically amenable tumours, 
suggesting an important role for this tumour suppressor gene [43]. Indeed, whole 
exome sequencing of metastatic pancreatic ductal adenocarcinoma sampled at 
autopsy has gone some way towards illuminating the oncogenic drivers of this 
lethal disease progression [38]. Similarly, studies in prostate carcinoma have begun 
to document the clonal evolution and molecular changes from primary to metastatic 
sites. Rapid autopsy derived metastatic deposits from lethal castration-resistant 
prostate cancer were utilised to describe the discordance in ERG gene rearrange-
ments and ERG protein expression between tumour sites in heavily treated patients 
[44]; a subset of these samples have been exome sequenced, identifying recurrent 
mutations in androgen receptor transcriptional cofactors [45].

These approaches will hopefully shed light on the mutations required to metas-
tasise and the “genomic archeology” of multiple metastatic sites [20, 21, 31]. 
Understanding the biology of metastatic disease will become increasingly impor-
tant in order to develop targeted therapies [46] understand why treatment fails and 
find biomarkers of aggressive disease [10].

�Evaluate the Effects of Medical and Surgical Therapies

Autopsy research can provide valuable insights onto the effectiveness of both surgi-
cal and medical treatment of cancer [17, 47–49]. This is particularly important for 
new and rapidly evolving areas, such as transplant medicine [47] and stereotactic 
surgery [50]. Autopsy studies can reveal the effects of treatment on malignancy, 
providing information on both responders and non-responders and exposing 
“privileged sites” not reached by systemic therapies [51]. Autopsy allows the most 
aggressive disease to be sampled, and for samples to be obtained when treatment 
has failed. The genetic makeup of distant metastases following treatment failure in 
patients with breast cancer has been shown to be different to that of local lymph 
node metastases sampled during primary surgical treatment [31]. Toxic effects on 
adjacent normal tissue and the spectrum of side effects can also be documented 
[52]. Many survivors, particularly of paediatric and early adulthood malignancies, 
now live long enough to develop complications from their oncological treatment. 
Complications such as cirrhosis and bronchiolitis obliterans can be severe and 
lead to further morbidity and mortality [51]. A thorough understanding of the 
range of possible complications and their relative incidence is therefore required 
in determining treatment protocols.

D. Smith et al.



341

Within drug therapeutic trials, autopsy examination can be used to accurately 
differentiate between deaths due to treatment (the so-called toxic death), disease 
progression, and deaths from unrelated causes [53, 54]. In 1997 a survey of clinical 
research papers published in the British Medical Journal, Lancet, Annals of Internal 
Medicine, and New England Journal of Medicine indicated that less than a quarter 
used autopsy to evaluate the cause of death [54]. A review in 2012 of studies con-
ducted within the European Organisation for Research and Treatment of Cancer 
(EORTC) showed autopsies had been performed in just 26 treatment related deaths, 
from a total of 255. Of the 26 cases that underwent autopsy, 46 % had a final diag-
nosis that was discrepant with the clinical diagnosis. The reviewers also felt a fur-
ther 64 cases which did not undergo autopsy had a clinical course which did not fit 
with the reported cause of death [53]. The vast majority of deaths were considered 
not treatment related, and no information is available on these.

Discrepancy between clinical diagnoses and autopsy findings are well documented 
[14, 15, 47, 48, 53, 55–63], and involve all levels of clinical practice from community 
hospitals to intensive care units [56]. The rate of major errors, where a principle 
underlying disease or cause of death is missed is approximately 30 %, and ranges 
from 5.5 % to over 45 % [53, 62]. Only a few studies show demonstrable improve-
ment in the major error rate over the past decades [46, 64]. Other studies suggest the 
discrepancy rate has not changed significantly, but the type of unexpected pathology 
found has [58, 61]. This shift in the conditions that are most likely to be missed is 
attributed to both changing diagnostic criteria and changing treatments resulting in 
novel complications. When clinicians are more certain of their diagnoses the discrep-
ancy rate is somewhat lower, but still significant, being 25 % in a large study of 1152 
cases [15]. The lowest discrepancy rates (from 5.5 to 7 %) are reported from centres 
where the autopsy rate remains consistently over 50 % [62, 65].

The diagnosis of neoplastic disease may have a lower discrepancy rate when 
compared to other disease categories [58, 66], although some cultural factors and 
mental health disorders may result in under-diagnosis [67, 68]. Misdiagnosis of 
treatment complications is more problematic; opportunistic infections and cardiac 
complications are the most frequently missed diagnoses in cancer autopsy series 
[53, 63]. For example, invasive mycotic infection in patients following stem cell 
transplant was missed clinically in half of the cases in one study, despite being 
investigated with cultures, antigen testing, and high-resolution CT scans [69]. In a 
case described by Allan et al [47] a man with upper gastrointestinal bleeding thought 
to be secondary to graft versus host disease died despite appropriate therapy. At 
autopsy he was discovered to have instead succumbed to severe fungal infection. 
The patient had been investigated with liver and rectosigmoid biopsies, and the 
clinical diagnoses were compatible with the biopsy results. As this case demon-
strates, clinical history and investigations may appear consistent with a particular 
diagnosis but that doesn’t mean the diagnosis is correct.

Autopsy data should be an essential part of clinical research protocols, particularly 
in the early stages of patient safety assessment. If autopsy following death during 
clinical trials is neglected, an under-reporting bias may be present that preferentially 
favours the death being due to disease, reducing credibility.
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In addition, without autopsies the errors that may occur from misplaced clinical bias 
or suboptimal test performance cannot be documented and learnt from, and unexpected 
events may not be detected.

�Ensuring Accurate Epidemiological Data

Accurate epidemiologic information is required when determining the significance 
within a given population of specific cancer types, and whether screening or treatment 
protocols are effective. For cancers that have the potential to remain occult, epidemio-
logical data is not accurate unless it includes a survey of presumed normal subjects. 
Autopsies of unselected patients provide very accurate epidemiological data as tissue 
from organs presumed to be normal can be obtained and extensively examined. 
Prostate carcinoma is one such disease; without autopsy examination an accurate 
prevalence is unknown. With accurate prevalence data in hand, researchers can better 
determine the actual effects of prostate screening, and focus their attention on separat-
ing the more aggressive carcinomas from those that are indolent [70].

Autopsies also provide comprehensive information about the distribution of 
metastatic disease, which may be much more widespread than clinical records sug-
gest [40]. A recent review has noted the difficulty in ascertaining the true incidence 
of brain metastases given the marked reduction in autopsies [46].

While newer imaging techniques may improve detection of metastases, like all 
diagnostic tests, false positive, and false negative results occasionally occur [71]. 
Even new, sensitive modalities may not detect disease that is present. For instance, 
positron emission tomography is one of the most sensitive imaging modalities clini-
cally available and has a lower limit of 10 mm when imaging lung nodules [72]. 
Over-diagnosis may also occur, with positive scans resulting from active inflamma-
tory nodules or the so-called metabolic flare reaction after chemotherapy [73, 74]. 
Histology on autopsy samples can be much more sensitive, and may detect tiny 
residual foci of malignancy, missed by imaging studies [47, 48].

As a definitive and detailed examination of the deceased, autopsies play a vital role 
in determining the incidence of cancer and proximate cause of death. This will naturally 
affect population statistics of disease incidence. Given the discrepancies documented in 
all studies, the reliability of death certificates has been questioned [15, 74]. Accurate 
population health records are also essential for assessing screening program effective-
ness and developing evidence based public health policy [68, 74].

�What Makes a Good Research Autopsy Program Work?

Although many types of research can utilise autopsy data, prospective autopsy 
research programs are the most valuable as fresh and frozen tissue can be retained for 
molecular studies and future research [11]. Some oncology protocols such as from 

D. Smith et al.



343

the Children’s Oncology Group (COG) provide a facility for storage and dissemination 
of tissue from specific malignancies [12]. Postmortem brain banks have been an integral 
part of neuropathology research for decades, and increasingly, similar banks for 
malignancies are being established within academic medical centres [75, 76]. 
Biobanking of normal tissue is also valuable, and recently the United States National 
Cancer Institute published recommendations regarding the postmortem recovery of 
such specimens for research [77].

To be successful, a research autopsy program requires good collaboration 
between clinicians, pathologists, and researchers in order that sufficient autopsy 
consents are obtained, and that autopsies are performed to a high standard. Much of 
the focus in the literature is on how to achieve a higher autopsy rate and the most 
sensitive method of obtaining consent. Other significant factors that are less fre-
quently examined are the problems of funding and geographic issues.

The consent rate for autopsy research varies greatly between studies from 47 to 
98 % [23, 78]. This variance may reflect the difference between obtaining consent to 
perform research on autopsies that are mandated (Coronial) versus requesting an 
autopsy specifically for research purposes, with the latter having a much lower con-
sent rate. Some studies suggest that higher autopsy rates can be maintained within 
specialised programs [47]. Others emphasise the role that a good pathologist–clini-
cian relationship plays [49]. Autopsy request can be part of the end of life discussion 
when treatment has failed, ideally through the treating oncologist who has already 
established a relationship with the patient and family [18, 23]. Feedback to the 
families can also be arranged through the oncological team [23], and this may pro-
vide closure and answer any lingering questions [10].

Obtaining consent for the use of tissue for research requires explicit consent in many 
countries [79]. Although clinicians who have a close relationship with the deceased’s 
family are often considered to be in the best position to request tissue samples, very 
high consent rates for obtaining tissue for research (96–98 %) have been obtained by 
nurse practitioners contacting bereaved families by telephone [7, 78, 80].

A common theme that emerges is that one of the major barriers to obtaining autopsies is 
the reluctance by medical staff to ask families for consent [12]. It is suggested that 
the response of families to requests for an autopsy is much more positive than medical 
professionals assume [78], and that when doctors ask, the autopsy rate increases [9]. 
A survey of parents of children who had died from cancer found that 93 % indicated they 
would have agreed to donate tissue for research if asked. Of those same parents, only half 
had been given the opportunity to do so [12]. Families of research participants are often 
positive about being given the opportunity to contribute to an area of knowledge that 
caused suffering for a loved one [7, 23, 78, 80]; in exceptional cases tissue donation has 
been initiated by parents [28]. Discussing possibly autopsy prior to death can allow for 
decisions to be made away from the grief of death, although sensitivity is clearly required 
[81]. Involving patient network and advocacy groups may allow researchers to under-
stand and respond to potential concerns, as well as disseminate information [13].

The reasons for refusal are varied, and include emotional distress, religious and 
cultural issues, the feeling a loved one has suffered enough, and time pressures [14, 23]. 
Time pressures are one of the most commonly cited reasons, due to the additional delay 
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imposed by an autopsy [82]; this may be alleviated by a rapid autopsy program. While 
families may refuse consent, few have indicated dissatisfaction with being asked [78]. 
Patients may have terminal care at home or in a hospice, so arrangements to transport 
the body to the mortuary after death will be required [18]. Organisation of the transpor-
tation issues and associated costs in advance was found to be helpful [23], and removes 
an otherwise significant barrier to participation. Some research groups have success-
fully coordinated external non-academic centres to perform the autopsy and obtain 
tissue to overcome geographic barriers [28, 32].

Education of both medical staff and families on the value of obtaining tissue at 
autopsy for research is necessary. Medical staff must be made aware of the presence 
of research protocols that use autopsy tissue, and the value of tissue donations. 
Families need better information regarding the potential benefit of donating tissue 
for research and the process of tumour banking. Education regarding the practical 
aspects of the autopsy procedure is also important [12]. In addition, tailoring request 
protocols according to the specific needs of racial and cultural minorities may 
improve representation of those groups within clinical studies [83].

�Conclusion

The autopsy is an essential component of clinical audit as well as cancer research, but 
remains under-appreciated by many medical researchers. Autopsies can provide large 
quantities of high quality tissue suitable for modern research methods, as well as 
providing accurate information on extent of disease, treatment response, and cause of 
death. Major barriers to obtaining tissue from autopsies for research include a lack of 
awareness of both current research protocols and the potential value of autopsies, and 
reluctance to approach family members. However, patients and families are often 
positive about donating tissue for research, provided consent requests are carefully 
considered. Time pressures and transportation costs are some of the potential barriers 
that can be ameliorated [84]. Funding may also be an obstacle, as the infrastructure 
required is expensive and the benefits may take some years to be realised.
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The Future of Molecular Pathology

John S. Mattick

This is a time of unprecedented change, challenge, and opportunity in molecular 
pathology, which will fundamentally alter its nature, structure, and business models. 
While there will remain a place for traditional tests, and perhaps some opportunities 
for new metabolomic, proteomic, and immunological assays, the emergent field of 
genomics, driven by the extraordinary technical advances and attendant cost reduc-
tions in DNA sequencing, will transform genetic diagnoses and lead to the demise 
of individual genetic tests, cytogenetics analyses and, to a large extent, both cellular 
pathology and traditional microbiology. Moreover, molecular genetic analyses will 
change from being case-by-case diagnostic to prognostic at population scale, reduc-
ing the incidence of diseases and making preventative, mitigating, or ameliorative 
strategies personal and precise. Genome analysis will become standard medical 
practice, not simply in molecular ‘pathology’ but in health management, and trans-
form the healthcare system. It will drive the amalgamation of molecular pathology 
with clinical genetics. It will also require integration of genomic data with pheno-
typic information, both traditional and non-traditional, made available in national 
and global databases that will be used by all parts of the research and healthcare 
systems for biomedical discovery and economic management.
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�Genetic Disability

Until recently, and still substantially, diagnoses of simple (‘Mendelian’) genetic 
diseases (such as muscular dystrophy, cystic fibrosis, motor neuron disease, 
Huntingdon’s disease, and thalassemia) have been informed by clinical symptoms 
and/or family history, and confirmed by specific, usually PCR-based, DNA tests 
limited to those loci which are known to be involved.

However, while specific genetic disabilities are rare and familial inheritance 
rendered almost invisible by the recessive nature of most mutations, cumulatively at 
least 2 % of all babies suffer a serious physiological, developmental, and/or intellec-
tual disability due to damaging mutations in conventional (i.e., protein-coding) genes 
[1–3], of which there are ~19,000–20,000 [4–7]. Indeed it seems that most individu-
als carry a significant burden of such mutations [8], and it has been estimated that 
20–30 % of infant deaths and ~50 % of all admissions to pediatric hospitals are due to 
genetically determined disorders [9–12], and that 12 % of all individuals will suffer a 
consequential hospitalization event at some point in their lives [13].

This also includes the finding that cerebral palsy, thought to be mainly caused by 
perinatal environmental factors such as pregnancy or birth trauma, is substantially 
due to genetic abnormalities [14–16].

Hitherto the vast majority of disease causative mutations were impossible to 
identify and therefore to treat in an informed way, but the system, more for psycho-
social than medical reasons, has been obliged to undertake a litany of phenotypic 
tests—the so-called diagnostic odyssey—which are not expected to and usually do 
not lead to any productive insight about the cause of the condition, as opposed to 
obtaining finer detail of the problem, and reassuring families that “we are doing all 
we can.” This is a lot of (otherwise) useless expenditure.

This situation is changing rapidly with the advent of cost-effective DNA capture 
and sequencing protocols, leading to use of targeted gene panels, for example, in 
cardiac or retinal conditions, and more recently relatively agnostic whole exome 
sequencing, which has less depth but more breadth than panel-based tests, of par-
ticular value in developmental and intellectual disorders of unknown etiology.

Exome sequencing delivers something approaching 25–40 % diagnostic yield 
beyond the obvious, but I predict this phase to be transitory, and be quickly over-
taken by whole genome sequencing (WGS), at least in advanced jurisdictions.

WGS, for technical reasons, has much more even, as well as more comprehen-
sive, exome coverage, and therefore higher diagnostic yield for protein-coding 
mutations. Indeed in our facility, we are obtaining an average of 50 % diagnostic 
yield for undiagnosed genetic disability by WGS (Tony Roscioli, personal 
communication).

It also provides additional information on other sources of genetic variation 
(deletions, insertions, inversions, translocations, etc.) and a lifetime reservoir of 
information that can be interrogated repeatedly in other contexts, including variations 
in regulatory sequences that may be important in other conditions or for determining 
risk for complex diseases.
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I predict that WGS will replace all others and become the universal genetic test, 
notwithstanding some current technical blind spots, which will be rectified soon 
enough. Despite the drag from marginal cost considerations and infrastructure 
requirements, including the analytics, the value proposition is so high that delays in 
moving to WGS are largely due to lack of vision and inertial difficulties of changing 
established systems in commercial laboratories, and the activation costs of moving 
to new protocols and SOPs. Reciprocally, this means that established pathology 
organizations, and those working within them, are more vulnerable to disruptive 
change by more new and less constrained players, a self-destructive cycle that is 
increasingly repeated across the innovation landscape.

�Cancer

High throughput DNA sequencing, to poll the status of the cancer genome, epig-
enome, and transcriptome, will also transform the diagnosis, treatment and preven-
tion of cancer. First, population-scale sequencing of the genomes of children and 
adolescents with cancer will likely identify the inherited components of cancer risk, 
leading to better identification of individuals and more active screening of popula-
tions at risk, and early intervention.

Second, for spasmodic cancers that largely arise later in life, despite systemic 
reluctance, the current well-worn practice of sending biopsies to a cellular patholo-
gist is likely to obligatorily accompanied and possibly completely supplanted by 
genomic sequencing, which is far more informative in terms of identifying the so-
called driver mutations that are amenable to therapeutic inhibition. “Grade 4” will 
not cut it. Cancer genome sequencing will become the expected standard of care, 
driven by patient demand, especially with the rise of targeted drugs.

Third, deep sequencing can identify cancer-derived DNA in circulating blood, 
and be used to monitor its incidence, burden, and progression (drug resistance and 
metastasis) [17–20]. In this and other cancer contexts panel- or exome-based capture 
tests may persist, because of the greater depth of coverage, important where biop-
sies may have mixed normal and cancer cells. Innovative DNA capture protocols 
will provide far more precision in leukemia, making it possible, for example, to 
diagnose many if not most causative translocations in a single test (Tim Mercer, 
personal communication).

�Preconception and Prenatal Screening

One of the surprising findings of recent years has been that 6–8 % of the DNA cir-
culating in the blood of pregnant women is derived from the fetus. Cellular testing 
for trisomies by chorionic villus sampling (CVS) and amniocentesis, the major 
source of demand for cytogenetics is being rapidly supplanted by deep sequencing, 
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which can detect trisomies with greater accuracy and no risk to mother or child [21, 
22]. The word on the street is that even young mothers who are at low risk are 
accessing the test at personal expense. They appreciate the value proposition, and it 
won’t be long before health systems do too. The primary raison d’être and demand 
for cytogenetics is being wiped out overnight.

Furthermore, research papers have appeared reporting WGS of the fetus from 
maternal circulation, which I predict will become common in obstetrics [23–25]. 
Prenatal genomic testing of embryos, however, has its problematic and for many 
unpalatable sequelae. I expect that, especially as population-scale genomic profiling 
becomes more common and accessible, prenatal screening will be rendered largely 
redundant by preconception WGS analysis of the parents, to identify the incidence 
or otherwise of damaged alleles in common, and therefore the high (25 %) risk of a 
homozygous or compound heterozygous child, which can be avoided by pre-
implantation testing of IVF-derived embryos. The value proposition for the health 
system is enormous, and for the families inestimable.

�Adverse Drug Reactions and Optimization of Drug 
Treatments

Adverse reactions to prescription drugs account for up to 7.6 % of hospital admis-
sions in Australia [26, 27], with similar incidences in Europe and the USA [28], 
some with lifelong consequences. Genomic testing can predict and avoid a large 
fraction of such toxic drug buildups, with a recent trial in Melbourne indicating 
national savings of $480 m per annum in the area of psychiatric drugs alone [29]. In 
addition, many drugs, such as beta-blockers, antidepressants, and the anticoagula-
tion drug clopidogrel, only work in a fraction of those individuals for whom they are 
prescribed [30–32], which therefore constitutes, at the other end of the spectrum, 
useless expenditure.

The main thing that is required, following a decision to implement by health 
agencies, is to put in place the infrastructure, which is not complicated, to obtain the 
relevant genetic information in a timely manner at the point of prescription. Of 
course, once population-scale sequencing is commonplace, such information will 
be immediately available by querying the database.

�Infection and Immunity

Microbiological testing will also be revolutionized by WGS, which can not only 
rapidly and agnostically identify pathogenic species, but also their biotype, including 
virulence determinants and antibiotic resistance, as well as complex mixtures thereof. 
This will render eliminate the need for clumsy, incomplete, and expensive culturing 
and make antibody-based tests largely unnecessary. The latter will be further made 
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redundant by innovative sequence capture protocols of B-cell immunoglobulin and 
T-cell receptor loci that will be able to poll the full repertoire and history of pathogen, 
autoantigen, and tumor neoantigen exposure.

�One Test to Rule Them All

There will of course continue to be many situation-specific molecular pathology 
analyses, in cancer, infections, neurological conditions, and immunological diseases, 
among others, where targeted genomic and non-genomic methods will have high 
value and where the choice will be dependent on the combination of cost and 
specificity. Horses for courses.

Nonetheless, a significant proportion of existing tests and many new ones will be 
replaced or introduced, respectively, by WGS. At present the demand for and utility of 
such tests is driven primarily by disease (pathology), but I predict that within the next 
5–20 years every member of our community who consents will have their genome 
sequenced and incorporated into their medical records and health management plans.

The initial uptake of WGS may be driven by disease diagnosis in molecular 
pathology and by preconception screening in clinical genetics, but will rapidly 
expand throughout the community as the costs continue to decline, as they assur-
edly will, and the value proposition grows with more sophisticated and comprehen-
sive genotype–phenotype databases.

The major diseases afflicting society, and the major cost burden on the public and 
private healthcare systems—such as heart disease, cancer, diabetes, autoimmune, 
and inflammatory diseases such as arthritis, osteoporosis, stroke, dementias, and 
neuropsychiatric disorders, among others, as well as viral and bacterial infections—
have major genetic factors.

While it is the case that the genetic risk factors for complex diseases are not well 
understood, it is expected that with the flood of genomic data coming down the 
pipeline that these factors will become increasingly well defined, driving further 
research and incorporated into personalized advice and preventative programs to 
reduce the incidence or severity of chronic disease in an aging population, with 
huge benefits for quality of life and health economics.

There are very few diseases whose impact cannot be mitigated by anticipatory 
action—by lifestyle modification, early detection, and preventative therapies, 
including pharmaceutical intervention, such as regular monitoring of individuals at 
high risk for colon cancer or prescription of anticoagulant drugs for individuals at 
heightened risk for blood clotting disorders like deep vein thrombosis and stroke. In 
cardiovascular disease, a risk-focused approach (as opposed to managing the conse-
quent illnesses) has had a major impact on system burden over the past 30 years. 
The same may be achieved through genomics for anticipating risk for cancer and 
most other diseases that impose whole of life or later life chronic burdens. The dis-
tinction between molecular pathologists and clinical geneticists will disappear.
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�Infrastructure for a New World

No hospital or molecular pathology laboratory, let alone individual clinician, will 
have the capability to analyze genomic data or translate it into medical advice. The 
consequence is that nature of the molecular pathology industry and professional 
practice will fundamentally change.

A number of things are required. First, most molecular medicine and much of the 
healthcare system will need to become genomically literate and receptive. Second, 
genomic medicine clinics staffed by clinical geneticists and genetic counselors will 
need to be established, as a portal for referral entry into genomic testing.

Third, and most importantly, central genotype–phenotype correlation databases 
will need to be built to provide well-curated, evidence-based, continuously-updated 
information on the clinical significance of genetic variants and recommended 
actions (treatments and/or avoidance strategies) across the many domains of medi-
cine and health (e.g., intellectual disability, dementia, diabetes, osteoporosis, can-
cers, cardiac, autoimmune, and neuropsychiatric diseases, to name a few), with 
appropriate consent and privacy provisions and protections, to accredited clinicians, 
primary healthcare providers, health agencies, and researchers.

My view is that these databases, while globally linked, will need to be pulled 
together and run by national governments, because of the scale of the infrastructure 
(including the data storage and computational capacity, software development, and 
domain-specific genotype–phenotype correlation specialists) required the jurisdic-
tional idiosyncrasies in legal and regulatory frameworks and financial rebate 
systems, and because of the public good and privacy imperatives associated with 
the use of such databases.

�From Molecular Pathology to Data Analytics

The integration of genomic data with information from electronic medical records 
and other sources, including smart devices and patient input, which is essential, will 
allow both directed and agnostic interrogation by pattern analysis of the data and 
metadata to identify, for example, patient responses and unexpected co-morbidities 
to inform patient stratification for more effective treatment and more efficient use of 
healthcare and insurance resources.

This will also become a central reservoir, indeed a goldmine, for medical and 
health research, for example, in determining why some people do not respond to a 
particular therapy, and going forward to close the gap. An illustrative example is the 
discovery of the fact that certain people of East Asian origin do not respond to the 
anticancer drug Imantinib, due to a secondary genetic variant in one of the apoptosis 
genes required for Imantinib action, leading to the development of a supplementary 
strategy to bypass the problem and rescue those individuals [33].
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One can only imagine the savings by public and private healthcare system from 
being able to accumulate, access, analyze, and act on such information. However 
there are also many questions and challenges that are and will be raised by the 
transition to genomic medicine.

Incorporating genomic information into routine healthcare will require changes 
to public policy and public health management. These include identification of at-
need communities where genomic information can have an immediate and/or 
lifelong benefit for the individual and their family, as well as the health system; 
assessment of the costs and the net health, social and economic benefits of genomic 
information, and their trajectory; consideration of the approach for equitable 
population-wide introduction of genomic sequencing; definition of the clinical 
support systems and interfaces, databases, analytical systems, educational infra-
structure, and consent and privacy provisions, among others, that will be required 
to obtain maximum benefit from the widespread usage of genomic information in 
healthcare; identification of public policy considerations that will require regulatory 
or legislative change or health system framework development; and provision of 
guidance on public policy and private sector implications of genome sequencing 
on personal insurance, private health and employment disclosures, and introduction 
of protections to be put in place.

As Bill Gates said, we overestimate the change that will occur in the next 2 years 
and underestimate the change that will occur in the next ten. The twentieth century 
was just the warm up—this is the century of molecular medicine.
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