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Abbreviations
s Tau
AC Alternating current
ACNS American clinical neurophysiology society
ADC Analog-to-digital conversion
C Capacitor
CMRR Common mode rejection ratio
dB Decibels
DC Direct current
DR Dynamic range
EEG Electroencephalography
ELI Voltage–Inductor–Current
HFF High-frequency filter
HPF High-pass filter
ICE Current–Capacitance–Voltage
L Inductor
LFF Low-frequency filter
LPF Low-pass filter
R Resistor
RC Tau
XC Capacitive reactance
XL Inductive reactance
Z Impedance

Introduction

In order to understand the significance of polysomnographic
(PSG) and other clinical neurophysiologic tests to practice
first-rate sleep medicine, it is important to have a basic
knowledge about the principles of physics and electronics
underlying the techniques for recording multiple physiolog-
ical characteristics. Biological, physical, and chemical envi-
ronment of the body tissues (e.g., brain, heart, lungs, and
others) continually generates electromagnetic signals move-
ments of which tell us about internal physiological changes in
the body from which we can differentiate normal from

abnormal phenomena. The physiological signals are minute
in magnitude and hence must be amplified to recognize them
visually. Amplification of essential signals and filtering of
unwanted signals are the two most fundamental processes in
understanding PSG and other neurophysiologic recording
techniques. It should be noted that electrical signals in human
body manifested as waveforms are generated by flow of
charged ions (e.g., Na, K, Cl) opposed by the resistance and
capacitance of the tissues. Using analog and now digital
electronic devices, we can measure and analyze current flow
and potential differences between different areas of the body
and scalp to assess normal functions and alterations by dis-
ease. This chapter briefly outlines the basic electronics for
sleep specialists and clinical neurophysiologists.
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Definitions and Circuit Analysis

Charge

In a copper wire at room temperature with no externally
applied force, the outermost shell of a copper atom loses an
electron as a result of surrounding thermal energy. When a
copper atom loses a free electron, it becomes a positive ion
because electrons carry a negative charge. With no applied
force on the wire, electrons continue to move about in a
random manner without a net flow. As the electron moves
about randomly the positive ion it leaves behind does little
more than oscillate in place; the electron thus acts as a
charge carrier. Coulombs law states that like charges repel
and opposite charges attract and is the reason why free
negatively charged electrons are attracted to positive ions.
The symbol for charge is “Q.” One coulomb of electrons is
equal to 6.242 � 1018. If one coulomb of electrons flows at
uniform velocity through a circular cross-sectional area of
conductor in one second, the flow of charge is said to be one
ampere. Charge or Q may also be expressed as shown in
Eq. 16.1 where I equals current and t is time in seconds [1–
3]. For current to flow and perform work in a circuit, such as
to light an incandescent bulb, electrons must move in the
same direction through the load. Recording an electro-
graphic event requires the movement of ions in large pop-
ulations of neurons. An applied force causes the electrons or
ions to move directionally, and in a basic electric circuit, this
applied force is the source voltage also referred to as an
electromotive force. In the case of a neuron, the applied
force is the stimulus (spontaneous or applied) with the
electrons replaced by ions. The flow of charge regardless of
form is accomplished through the application of an applied
force.

Q ¼ I � t ð16:1Þ

Power Sources

The two types of power sources are alternating current or
AC and direct current or DC. The most commonly
encountered DC source is the battery. A battery is the con-
version of chemical or solar energy using positive and
negative electrodes and electrolytes to provide direct current.
Direct current moves in one direction and remains constant
for the life of the source. Generators on the other hand

produce AC power through the use of any number of energy
sources to turn a rotor housed in a set of windings called a
stator, inducing a voltage in the wires of the stator. One end
product is the common 120-V household outlet. In North
America, AC power is delivered at 60 Hz, whereas in Eur-
ope 50 Hz is the predominant frequency. Both AC and DC
provide the electromotive force to move electrons direc-
tionally supplying current to power the recording equipment.

Resistors and Resistance

Resistance is the ability to inhibit the flow of current or
charge. Resistance is one of the things that slows down
electron movement described earlier. While copper wire has
resistive properties, it has better conductive properties which
make it ideal for movement of charge. Resistance occurs
naturally, and resistors are specifically manufactured for use
in circuit design. Resistors behave the same regardless of the
type of power applied. The current through a resistor is in
phase with the applied voltage. This means both current and
voltage follow the same path at the same time. Resistors do
not store energy, and they dissipate energy through heat.
Figure 16.1 illustrates the schematic symbol of the resistor.
The unit of resistance for a resistor is ohms and is indicated
by the capital Greek symbol omega “X.” Resistors can be
connected in parallel or series.

The manner in which resistors are connected determines
the total resistance of the circuit. Figure 16.2a, b illustrates
simple series and parallel resistive circuits, respectively,
arrows indicating direction of voltage and current. Notice
that in the series circuit, the voltage has only one path to
travel; it must pass through each resistor in an orderly
manner. In the parallel circuit, the full voltage is applied to
each resistor at the same time. When voltage is applied, it
pushes the electrons in a uniform direction; in Fig. 16.2a, b,
it is through the resistors of the circuit. When electrons are
pushed, they develop a charge or Q which is current over
time as shown in Eq. 16.1.

As voltage passes through each resistor in the series cir-
cuit, some of the supply voltage is lost because the resistor
dissipates the supplied energy in the form of heat and this is
called voltage drop. The amount of voltage dropped or
consumed by each resistor is determined by the size of the
resistor and the charge or current through it. In Fig. 16.2a,
resistor R1 receives the full voltage and is the first to con-
sume some of voltage dissipating the energy as heat.
Resistor R2 receives the voltage left over following the
voltage drop from R1, and it too consumes voltage passing
on to R3 the remaining voltage leftover from the source.

In the parallel circuit, the full voltage is impressed upon
each resistor immediately. Each resistor drops voltage, and
how much voltage is consumed by each resistor is dependent

Fig. 16.1 Schematic symbol of
a resistor
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upon the resistive value and current through each branch.
The relationship between current, voltage, and resistance is
explained and easily calculated by Ohm’s law discussed
further on.

Calculation of the total amount of resistance in a given
circuit is different for series or parallel configurations. In a
series circuit, the resistance value of each resistor is added
to obtain the total resistance of the circuit. The total
resistance in a series circuit is higher than the highest value
of any single circuit resistor. In a parallel circuit, total
resistance is calculated by adding the reciprocal of each
individual resistor and then taking the reciprocal of that
sum. The total resistance in a parallel circuit is lower than
the lowest single resistive value in the circuit. Equa-
tions 16.2 and 16.3 illustrate the formulas used to calculate
the total resistance in series and parallel resistive circuits,
respectively [1–4]. Whether in parallel or series circuit, the
current and voltage in a purely resistive circuit are in phase
with one another. This means they both follow the same
path at the same time.

RT ¼ R1 þR2 þR3 þ � � � þRn

Series Circuit
ð16:2Þ

RT ¼ 1
1
R1

þ 1
R2

þ 1
R3

þ ��� þ 1
Rn

Parallel Circuit
ð16:3Þ

Capacitors and Capacitance

Capacitors are formed by two metal plates or any two con-
ducting surfaces that are separated by a dielectric. A dielec-
tric is an electrical insulator, e.g., air is a dielectric. Two
parallel ribbons of wire on a printed circuit board create a
capacitor. Power lines running parallel between poles create
capacitors by virtue of the definition of a capacitor. An

electrode on the surface of the body creates a capacitor.
Capacitors are no more than two conductive surfaces sepa-
rated by a dielectric. There are additional criteria to further
define the properties of capacitance; however, this discus-
sion is limited to series and parallel configurations of
capacitors and the resistive value they pose in a circuit based
on applied frequency. Figure 16.3 shows the schematic
symbol of a capacitor.

A capacitor is rated in farads, “F” described below, its
symbol is “C,” and the resistance it poses to a circuit is
called capacitive reactance symbolized by XC (X of C) and is
calculated as shown in Eq. 16.4 [1, 4].

XC ¼ 1
2pfC

ð16:4Þ

Similar to a resistor, the capacitive reactance or XC is
indicated in ohms “X,” and unlike a resistor, the capacitive
reactance of a capacitor changes with the applied frequency.
In Eq. 16.4, the only variable that is not a constant is the
frequency or “f,” the remaining terms are fixed with 2p
equivalent to 6.28, and C is the value of the capacitor in
farads. In the case of a DC source, “f” is equal to zero. If the
denominator becomes zero, the resistance is infinite. If that is
true what happens when a capacitor is connected across a
DC source such as a battery? Electrons move between the
battery terminals and the metal surfaces of the capacitor until
the capacitor is fully charged with one of the metal con-
ductive plates (positive or negative). You now have an
additional power source. How long does this take? The
answer depends on time constants. It is important that you
understand the behavior of capacitors. Capacitors are effec-
tively an open circuit with a DC source after charging up to
their final capacitive value [1, 4].

We still have to account for the energy applied to a
capacitor because the law of conservation of energy dictates
that energy cannot be lost. Unlike resistors which dissipate
energy in heat and drop voltage, capacitors store charge. The
ability of a capacitor to store charge is termed capacitance,
and its units are farads (F), the higher the rating (F), the
more charge it can store. The symbol of the charge stored on

Fig. 16.2 Resistors in series in
(a) and in parallel in (b); arrow
indicates direction of voltage and
current flow

Fig. 16.3 Schematic symbol of
a capacitor
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a capacitor is termed “Q,” because it is electrons that move
charging the capacitor. It is the nature of capacitors to resist a
change in voltage across them; therefore, the applied voltage
lags the current in a purely capacitive circuit by 90°. Fig-
ure 16.4 illustrates the phase difference between voltage and
current in a purely capacitive circuit. Equation 16.5 states
the law of capacitors, where C is the capacitor in farads, Q is
the charge, and V is the applied voltage [1, 4].

C ¼ Q

V
ð16:5Þ

Figure 16.5 illustrates capacitors in series (a) and parallel
(b) left to right, respectively. In a series, circuit capacitors
add like resistors in parallel that is the total capacitance in
the circuit is lower than the lowest capacitive value in the
entire series circuit. Capacitors in parallel, as you may have
guessed, add like resistors in series that is the total capaci-
tance in the circuit is higher than the highest capacitive value
in the entire parallel circuit. Formulas for total capacitance in
parallel and series circuits are shown in Eqs. 16.6 and 16.7,
respectively [1, 3, 4].

CT ¼ C1 þC2 þC3 þ � � � þCn

Parallel Circuit
ð16:6Þ

CT ¼ 1
1
C1

þ 1
C2

þ 1
C3

þ ��� þ 1
Cn

Series Circuit
ð16:7Þ

Table 16.1 illustrates the changes in resistance of a 1 lF
(10−6) capacitor as the applied frequency increases. Equa-
tion 16.4 was used to calculate the change in resistance. It is
easily seen that there is a dramatic change in the resistance
offered to the circuit by the capacitor as the frequency
increases even slightly. This is due to the alternating positive
and negative phases of an AC power source. As the alter-
nating phases of the input signal change, more and more
rapidly the capacitor ceases to become a resistive factor in
the circuit.

Inductors and Inductance

Inductors are coils of wire. The coils of wire can be hollow
or the coil can be wrapped around a magnetic or
non-magnetic core. Inductors are rated in henries and are
indicated by a capital H and are identified in a circuit by
capital L. Figure 16.6 illustrates the circuit schematic sym-
bol for an inductor.

Inductors also store energy, but in a magnetic field, they
cannot, however, store energy in the absence of a power
source. Once the power source is removed from an inductor,
it releases its stored energy. Unlike a capacitor, the resistance
of an inductor is directly proportional to the applied

Fig. 16.4 The relationship
between current and voltage in a
purely capacitive circuit. Voltage
lags current by 90°. When the
voltage waveform (higher
amplitude) is at its peak, the
current waveform (lower
amplitude) is crossing zero, and
this equates to 90°. This is
illustrated by the vertical line just
beyond the 700 ms point. Current
flow began 90° prior to any
voltage change on the capacitor.
Code and output created using
MatLab R2012a

Fig. 16.5 Circuit configurations of capacitors in series (a) and in
parallel (b)
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frequency of the source. The nature of an inductor is to resist
a change in current through it; thus, current lags voltage in a
purely inductive circuit by 90°. Like a capacitor, the resis-
tance of an inductor, called inductive reactance which is
rated in ohms, is termed XL (X of L) with symbol X and is
calculated as indicated in Eq. 16.8 [1].

XL ¼ 2pfL ð16:8Þ
There is only one variable in Eq. 16.8 that is not a con-

stant, and this is “f” or the applied frequency, 2p is equivalent
to 6.28, and L is the measure of the inductor in henries. The
phase relationship between an inductor and capacitor is 180°.

Representative circuits for inductors are not shown. The
circuit configuration for inductors in series and parallel is
identical to the circuit configurations previously shown for
resistors and capacitors with the simple change of circuit
components to inductors. Figure 16.7 illustrates the output
of an inductive circuit with voltage leading current by 90°;
this is identical to Fig. 16.4, but voltage and current have
changed places. This phase relationship exists because
inductors resist a change in current through them so current
lags voltage.

It should be remembered that the physical properties of a
capacitor cause it to resist an instantaneous change in voltage
across it and that an inductor resists an instantaneous change
in current through it. This is why each of these properties
lags in their respective circuit as illustrated in Fig. 16.7 for
inductors and Fig. 16.4 for capacitors.

Circuit calculations for the total inductance of inductors
in series or parallel configurations are identical to those of
resistors in the same configuration and are shown in
Eqs. 16.9 and 16.10, respectively [1].

LT ¼ L1 þ L2 þ L3 þ � � � þ Ln
Series Circuit

ð16:9Þ

LT ¼ 1
1
L1
þ 1

L2
þ 1

L3
þ ��� þ 1

Ln

Parallel Circuit
ð16:10Þ

Cartesian Plane

A Cartesian plane is a coordinate system with four quadrants
that are labeled with Roman numerals I–IV counterclock-
wise beginning in the upper right quadrant. The “X” or real
axis is the horizontal plane, and the “Y” or imaginary axis is
the vertical plane. The zero point in the Cartesian coordinate
system is where the X and Y axes cross. All X-coordinate
points to the left of zero are negative; all X-coordinate points
to the right of zero are positive. All Y-coordinate points
below zero are negative; all Y-coordinate points above zero
are positive. This coordinate system allows for the unique
identification of points in space with two specific coordi-
nates, an X value and a Y value. These points are always
shown in that order and usually in parentheses as (X, Y). For
instance, a point on the Cartesian coordinate system of (3,
−3) indicates that it is located three positive units along the
X axis horizontally and three negative units along the Y axis
vertically, so the point is located in the lower right quadrant
or quadrant IV. Figure 16.8 shows an illustration of a
Cartesian coordinate system or Cartesian plane.

Here, the Cartesian system is used to create an impedance
diagram by plotting resistance, capacitive reactance, and
inductive reactance using vectors. Vectors are lines with
arrowheads that indicate direction and magnitude. The
longer the vector the greater the magnitude of the repre-
sentative quantity; the arrowhead is an indication of direc-
tion. Discussion of phase is not addressed other than what

Table 16.1 Capacitive
reactance as a result of applied
frequency

Capacitor in farads (lF) Applied frequency Capacitive reactance (XC)

1 0.5 Hz 318.3 kX

1 1 Hz 159.2 kX

1 5 Hz 31.8 kX

1 15 Hz 10.6 kX

1 20 Hz 8 kX

1 25 Hz 6.4 kX

1 50 Hz 3.2 kX

1 100 Hz 1.59 kX

1 1 kHz 159 X

1 10 kHz 15.9 X

1 100 kHz 1.59 X

Fig. 16.6 Schematic symbol of
an inductor
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has previously been described in resistive and purely
capacitive or inductive circuits. Resistance R is always
plotted on the positive X axis, capacitive reactance XC on the
negative Y axis, and inductive reactance XL on the positive
Y axis all by vectors. The phase relationship between
inductive and capacitive reactance is 180° which is why XL

points up and XC points down. The length of the vector
indicates the magnitude of the resistance in each case.
Because XC and XL are 180° out of phase, the smaller value
is subtracted from the larger value to determine their com-
bined reactance. The direction, pointing up or down in the
impedance diagram, is dependent upon the larger value. The
resultant vector will point up if XL is larger than XC or will
point down if XC is larger than XL and should be scaled to
indicate the relative reactance value. In Fig. 16.8, XC is a
longer vector than XL, so capacitive reactance has a higher
value than inductive reactance leaving a resultant XC vector

on the Y axis pointing downward. Drawing a straight line
from the arrowhead of the resultant vector, here it would be
XC to the vector representing R forms a right triangle. This
new line is the hypotenuse of a right triangle, and
Pythagoreans theorem shown in Eq. 16.11 is used to cal-
culate this value which is the total impedance of the circuit
indicated by the capital letter “Z” [1, 4, 5].

In a circuit containing R, XL, and XC, the phase angle
between voltage and current is less than 90° and depends on
the relative size of the resistor compared to the resultant
reactance.

Z ¼
ffiffiffiffiffiffiffi

ðR2
p

þðXLarger � XSmallerÞ2Þ ð16:11Þ
Impedance Z is a complex value; in simple AC circuits

such as those with a single voltage or current source,
Eq. 16.11 will suffice, but for complex circuitry, more
sophisticated circuit analysis is required.

Ohm’s Law

Ohm’s law is the equation that defines the relationship
between resistance, voltage, and current. Equation 16.12
illustrates the Ohm’s law voltage equation where “R” is
resistance, “E” is voltage, and “I” is current, voltage may be
shown as “V,” and this does not change the formula [1–4].

E ¼ I � R ð16:12Þ
From Eq. 16.12, it is clear that voltage (E) is directly

proportional to resistance and current. Manipulation of this

Fig. 16.8 Cartesian coordinate system with labeled quadrants and
vectors indicating resistance “R,” inductive reactance “XL,” and
capacitive reactance “XC”

Fig. 16.7 The relationship
between current and voltage in a
purely inductive circuit. Voltage
leads current by 90°. When the
voltage waveform (higher
amplitude) is at its peak, the
current waveform (lower
amplitude) is crossing zero, and
this equates to 90°. The vertical
line through the 500 ms point
illustrates this point. The voltage
through the inductor began 90°
prior to current flow. Code and
output created using MatLab
R2012a
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basic formula reveals that both current (I) and resistance
(R) are proportional to the applied voltage and inversely
proportional to one another. These relationships are illus-
trated in Eqs. 16.13 (a) and (b) for current and resistance,
respectively [1, 3, 4].

I ¼ E
R R ¼ E

IðaÞ ðbÞ ð16:13Þ

In Eq. 16.13 (a), for a fixed resistance as the applied
voltage increases so does the current. Conversely, if the
applied voltage remains the same and the resistance is
increased, the current decreases. Using Eq. 16.13 (b), the
applied voltage and current resistance are easily calculated.

Power

Power in an electrical circuit is a measure of the rate of
performing work and is measured in watts, indicated by a
capital “W,” and is calculated by the formula in Eq. 16.14
[1]. A light bulb rated 60 W utilizes 60 W of energy, and a
120-W bulb provides more light and consumes more energy.

P ¼ E � I ð16:14Þ
Through direct substitution of Ohm’s law, Eq. 16.13

(a) for current, and Eq. 16.12 for voltage, power can be
expressed as indicated in Eqs. 16.15 (a) and (b),
respectively.

P ¼ E2

R P ¼ I2 � R
ðaÞ ðbÞ ð16:15Þ

Kirchhoff’s Voltage and Current Laws

Kirchhoff’s laws will be defined simply without considera-
tion or explanation of power supply orientation or polarity of
any circuit devices. Kirchhoff’s voltage law states that the

sum of the voltage drops in a closed loop must equal the
applied source. Kirchhoff’s current law states that the current
into a junction, node, or system must equal the current
exiting that same junction, node, or system [1–6]. Energy
must always be accounted because it cannot be lost.
Kirchhoff’s voltage and current laws are mathematically
stated in Eqs. 16.16 (a) and (b), respectively, and illustrated
graphically in Fig. 16.9.

RCurrent In ¼ RCurrent Out ðaÞ
RSource ¼ RVoltage Drops ðbÞ ð16:16Þ

Frequency and Period

Frequency is a rate quantity measured in cycles per second.
Frequency is an indication of how often something happens
in one second time. The symbol for frequency is lower case
“f,” and its units are Hertz, abbreviated Hz. Period is a time
quantity and is a measure of the time it takes for one cycle of
a periodic waveform to occur. The symbol for period is
capital “T” and is expressed as a unit of time. Frequency and
period are inversely related, as one increases the other
decreases. The period of a signal with a frequency of 60 Hz
is 1/60th of a second. This means there are 60 cycles per
second in a 60 Hz periodic signal, and it takes 1/60th of a
second for one of those cycles to occur [1]. If you know one
quantity you know the other. Equation 16.17 indicates the
inverse relationship between period and frequency.

f ¼ 1
T

T ¼ 1
f

ð16:17Þ

When identifying frequency of any waveform, verify the
time line and determine the frequency in one second. Fig-
ure 16.10 shows a 3 Hz signal with one period indicated.

Decibels, Logarithms, Gain, and Bode Plots

These topics are discussed briefly because filter frequency
response curves are shown in logarithmic scale in “Bode”
plots, filters are designed with a cutoff stated in decibels, and
gain is usually indicated in decibels. Gain is the output of an
amplifier; in neurodiagnostic technology, this is termed a
differential amplifier which is a sophisticated device made
up of resistors, capacitors, and transistors. When transistors
are used in filter design, they are called active filters,
whereas passive filters only use resistors and capacitors in
their design.

The voltage gain of a circuit denoted “AV” is a ratio of the
output voltage to the input voltage as shown in Eq. 16.18
(a). Gain is a measure of how much larger the output is

Fig. 16.9 Kirchhoff’s voltage law in a the sum of the voltage drops
8 V + 12 V + 4 V = 24 V, which equals the source voltage. In b,
three current values are entering one central node (arrows pointing into
the node) and two exiting (arrows pointing away from the node) current
pathways. The sum of the input current is 8 A which equals the sum of
the output current meeting the requirements of Kirchhoff’s current law
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compared to the input and is a term used in reference to
amplifiers. The voltage gain of an amplifier expressed in
decibels (dB) is found by using logarithms as illustrated in
Eq. 16.18 (b) [1, 7].

AV ¼ VOut
VIn

AVdB ¼ 20 log VOut
VInðaÞ ðbÞ ð16:18Þ

The technical specifications of a machine can indicate the
gain in decibels (dB) or as a whole number, i.e., 100,000 that
can be obtained by using Eqs. 16.18 (a) and (b). For

example, given 1 lV input and an output of 0.1 V, the gain
would be 100,000 or 100 dB.

Bode plots represent the frequency response of a filter and
are plotted on a log frequency axis. An example of a Bode
plot is shown in Fig. 16.11; in this example, the cutoff fre-
quency of the filter is 1 kHz and is indicated on the plot as
the −3 dB point.

There are several names for the cutoff of a filter. We
already are familiar with −3 dB; there is also fC for fre-
quency cutoff, and half power point, and there are others.
The term half power point means that the effective value of
the voltage is 0.707 V, and the signal is now equivalent to
half its original power. Rather than introducing additional
equations, I will illustrate this property using the power
formula of Eq. 16.15(a). In reiteration, I have just stated that
−3 dB is equal to the half power point of the signal, and the
output effective value has dropped to 0.707 V of its full
value [1, 6, 7]. By inserting 0.707 into Eq. 16.15(a) as
shown in Eq. 16.19, the output at −3 dB is half the power of
the input.

P ¼ E2
Max

R
¼ ð0:707 � EMaxÞ2

R
¼ 0:7072 � E2

Max

R

¼ 0:5 � E
2
Max

R
¼ 0:5 � P ð16:19Þ

The Bode plot of Fig. 16.11 is initially flat at zero and
does not begin to drop off until the frequency of the signal
approaches the filter cutoff. This flat part of the Bode plot is
maximum power passing through the filter; any signal in this
frequency range is passing through the filter at full amplitude
or full power. As frequency increases and nears the −3 dB

Fig. 16.10 3 Hz signal, its
period from one peak to the next,
is indicated by the double arrow,
and this equals one cycle whose
period is 1/3 s the inverse of the
signal frequency. Code and
output created using MatLab
R2012a

Fig. 16.11 The “y” axis in the Bode plot indicates magnitude in dB,
and a logarithmic “x” axis indicates frequency. Maximum signal
magnitude begins at “0” and slopes negative as the frequency increases.
The −3 dB point or filter cutoff is indicated by the arrow, and this is a
high-frequency filter (HFF) with cutoff of 1 kHz. Code and output
created using MatLab R2012a
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point, or the filter cutoff, the amplitude of the input voltage
drops to 70.7 % of its maximum value. For the Bode plot of
Fig. 16.11, the filter cutoff is 1 kHz; if a 2 V 1 kHz signal
was passed through the filter, the output would be 1.414 V
or 70.7 % of the input amplitude [1]. This is illustrated in
Eq. 16.20 and is called attenuation. This is how filters
work; they are not perfect, and they incrementally remove
the power from the signal as the frequency increases by
dropping the signal amplitude.

2V � 0:707 ¼ 1:414V ð16:20Þ
Filters vary in design and can be cascaded to improve

attenuation at the filters cutoff point. In this chapter, we
discuss simple single-stage filter circuits with a −3 dB cutoff.

Filters

The three types of filters used in neurodiagnostic equipment
are high pass, low pass, and notch [2–6]. The low-pass filter
(LPF), in clinical neurophysiology, is commonly referred to
as a high-frequency filter (HFF) because it eliminates high
frequencies allowing low frequencies to pass up to the
design cutoff of the filter. The high-pass filter (HPF) is
commonly called a low-frequency filter (LFF) because it
excludes low frequencies and passes high frequencies. The
notch filter is designed to eliminate a specific frequency
band. In North America, power is generated at a frequency
of 60 Hz, whereas in Europe it is generated at 50 Hz. In
equipment design, the notch filter would be set to match the
generated frequency, and thus, in North America, the notch
would eliminate 60 Hz, and in Europe, it would eliminate
50 Hz.

What separates a LFF from a HFF is the location of the
capacitor in the circuit which dictates filter behavior. If a
capacitor is the first component the signal encounters, the
capacitor will resist a change in voltage across it and have a
very high resistance at low frequencies, and so this must be a

low-frequency filter. The high resistance at low frequencies
causes these signals to be severely attenuated. As the
capacitive reactance of the capacitor decreases with
increasing frequency, the filter will incrementally pass the
higher-frequency components. When the incoming signal
frequency reaches the filter cutoff, 70.7 % of the signal
amplitude passes (this assumes a—3 dB design). As fre-
quency increases beyond the −3 dB point, increasing
amounts of the signals are passed until the full signal
strength is passed through the filter.

If a capacitor is second in line in a filter circuit, the design
is that of a high-frequency filter. A high-frequency filter will
allow low frequencies to pass until the frequency of the
incoming signal approaches the design cutoff of the filter. At
the filter cutoff, the signal is attenuated to 70.7 % of its
amplitude. Amplitude continues to decrease and is attenu-
ated as frequency increases. The frequencies that filters pass
are called the pass band of the filter, and those that are
attenuated are considered in the stop band of the filter. In any
filter, attenuation is indicated in a Bode plot by the slope of
the line, the steeper the slope, the higher the percentage of
attenuation with increasing frequency. Figure 16.12a, b
illustrates the circuit design, frequency behavior, and the
stop and pass bands of high- and low-frequency filters,
respectively.

The output of a HFF as illustrated in Fig. 16.12a is taken
across the capacitor; for an LFF, the output is taken across
the resistor as in Fig. 16.12b. The filter behavior at the
respective output can be demonstrated through the use of
Eqs. 16.21 (a) and (b) as shown in Table 16.2.

VOut ¼ VIn � XC
ffiffiffiffiffiffiffiffiffiffiffiffi

R2 þX2
C

p
ðaÞ HFF

VOut ¼ VIn � R
ffiffiffiffiffiffiffiffiffiffiffiffi

R2 þX2
C

p
ðbÞ LFF

ð16:21Þ

The cutoff frequency of a filter is determined by the
combination of the resistive and capacitive values of the

Fig. 16.12 High-frequency filter
circuit (a), low-frequency filter
circuit (b). Frequency behavior,
−3 dB and the stop and pass
bands are identified for each
circuit
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filter circuit. This is shown in Eq. 16.22 where 2p is
equivalent to 6.28, R is the resistor value in ohms, and C is
the capacitor value in farads. The product R * C is called
tau, is indicated by the lower case Greek letter s, represents a
time constant, and can be substituted for RC as shown in
Eq. 16.22 [1–5]. Time constants are discussed in the next
section; however, it is important to understand that filters
may be discussed in their cutoff point in Hz or by their time
constant tau.

fC ¼ 1
2pRC

¼ fC ¼ 1
2ps

ð16:22Þ

Bode plots of HFF and LFF are shown in Fig. 16.13a, b,
respectively. In the Bode plot of Fig. 16.13a, the HFF pass
band extends from the vertical axis to the −3 dB point, and
beyond the filter cutoff is the filter stop band. This is also
true for the LFF Bode plot in Fig. 16.13b; however, the stop
band and pass bands are reversed relative to the vertical axis.

Time Constants

A time constant is the product of the resistor and capacitor
values in a filter circuit (RC) and is measured in seconds
[1–5]. How does the product of a resistor in ohms and a

capacitor in farads result in a time quantity? Using for-
mulas already discussed for resistance (R), capacitance (C),
and current (I), this can be answered and is shown in
Eq. 16.23.

RC ¼ E

I
� Q
E
¼ E

Q
t

� Q
E
¼ t ð16:23Þ

Filters may be described in terms of their time constant or
frequency cutoff. It is important to be conversant between
the two and to understand the behavior of the charge and
discharge cycles for each filter. The voltage charge and
discharge cycles of a capacitive transient are illustrated in
Fig. 16.14a, b, respectively. A typical HFF setting in clinical
neurophysiology is 70 Hz, with tau of 2.2 ms, and a 1-Hz
LFF is synonymous with tau of 0.159 s. The term tau was
introduced in the section on Filters and illustrated in
Eq. 16.22, the formula for frequency cutoff of a filter.
Equation 16.22 solved for tau is shown in Eq. 16.24.

s ¼ 1
2pfC

ð16:24Þ

Time constants can quite effectively be explained through
the use of calculus; however, I will eliminate derivations and
illustrate the equations along with a table. Equation 16.25

Table 16.2 Filter output at
varying input frequencies with VIn

1 V, resistance 5 kX, and
capacitance 50 nF. Equation 16.4
was used to calculate XC.
Equations 16.21 (a) and (b) were
used to calculate VOut for the
respective filter

Frequency (f) Capacitive reactance XC VOut HFF VOut LFF

2 Hz 1.59 MX 1 V 0 V

200 Hz 15.9 kX 0.95 V 0.30 V

2 kHz 1.59 kX 0.30 V 0.95 V

20 kHz 159 X 0.03 V 1 V

200 kHz 15.9 X 0 V 1 V

Fig. 16.13 Frequency response plots of the filters in Fig. 16.12a, b,
respectively. In a, the filter attenuates high frequencies, and in b, the
filter attenuates low frequencies. An arrow indicates the −3 dB point;

in (a), fC is 70 Hz, and in (b), fC is 0.16 Hz. Code and output created
using MatLab R2012a
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(a) and (b) are the rise and decay of voltage in a capacitor,
respectively.

VðtÞ ¼ Vð1� e
�t
s Þ VðtÞ ¼ Ve

�t
s

ðaÞ ðbÞ ð16:25Þ

The results of Eqs. 16.25 (a) and (b) are shown graphically
in Fig. 16.14a, b respectively and numerically in Table 16.3.

It is clear from Fig. 16.14a, b and the values in Table 16.3
that in five time constants (5s), the capacitor resistor com-
bination has either completely charged or discharged.
Another useful observation is this: Following one time con-
stant, the circuit has completed 63 % of its course regardless
of direction, charging, or discharging. With a DC source after
5s, the capacitor has fully charged, and current has stopped
flowing. With a DC source applied after 5tau, the capacitor
has fully charged and current has stopped flowing. With an
AC source applied charging and discharging of the capacitor
alternate with the alternating AC source. The higher the
applied frequency of the AC source the faster the alternating
state of the capacitor. The higher the frequency the lower the
capacitive reactance as illustrated in Eq. 16.4. The higher the
frequency, the faster the alternating states. The time constant
remains the product of the resistance and capacitance (RC),
and this is the design of the circuit.

In terms of Bode plots if the time constant is a small value,
the −3 dB point would be further from zero on the frequency
scale, and the filter cutoff would be a larger value. If the time
constant is a relatively large value, the −3 dB point would be
closer to zero on the frequency scale, and the frequency cutoff
would be a smaller value. This can be illustrated in several
ways: One is using Eqs. 16.25 (a) and (b) to form Table 16.3.
Another method is to use Eq. 16.24 to derive tau with various
values of fC as illustrated in Table 16.4. A third way is to
view the concept graphically as in Fig. 16.15.

Differential Amplifiers and Polarity
Convention

This is a general discussion of the operation of differential
amplifiers in clinical neurophysiology. There is no in-depth
electrical or electronic explanation, and the internal opera-
tion and electrical requirements of the operational amplifier
are assumed satisfied.

Differential amplifiers do exactly what their name
implies, and they take the difference of two inputs, amplify,
and output the result. The schematic diagram of a differential
amplifier is indicated in Fig. 16.16.

Table 16.3 Behavior of rising
and decaying exponential time
constants 0s is initial conditions

Tau (s) Rise VðtÞ ¼ 1 � ð1� e
�t
s Þ Decay VðtÞ ¼ 1 � e�t

s

s = tau V % of rise V % of decay

0 0 0 1 0

1 0.63 63 0.37 63

2 0.86 86 0.14 86

3 0.95 95 0.05 95

4 0.98 98 0.02 98

5 0.99 99 0.01 99

Fig. 16.14 The capacitive transient characteristics of Eqs. 16.25
(a) and (b) are shown in (a) and (b), respectively. In 1s, the output
has risen to 63 % in (a) and declined to 37 % in (b). In 5s, in a DC

circuit the components are either fully charged or discharged. Code and
output created using MatLab R2012a
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As can be seen in Fig. 16.16, the amplifier has two
inputs, input 1 and input 2, and a single output representing
the amplified difference of the two inputs. Input 1 is referred
to as the active input and input 2 the reference input [2–6].
Each amplifier represents one channel of digital recording. In
clinical neurophysiology, electrodes are connected to the
differential amplifier with one on each input. The differential
amplifier then subtracts input 2 from input 1, amplifies, and
outputs the difference as one channel of recording.

The deflection of the channel output up or down is a
result of the polarity convention [4, 5]. All electroen-
cephalography (EEG) machines are designed the same way
allowing for a standard definition of polarity. If input 1 is

relatively more negative than input 2, the deflection of the
output is upward, and if input 2 is more negative than input
1, the deflection of the output is downward. In short, the
deflection of the output follows the negativity [4].

Common mode rejection ratio (CMRR) is a design
parameter of a differential amplifier. It is a measure of the
amplifiers ability to reject common signals [2–7]. Common
mode rejection is a ratio of two measured outputs of the
amplifier. One output, called ADiff, is measured with a dif-
ferent and controlled voltage level applied to each amplifier
input. This may also be accomplished by applying a voltage
to one input and grounding the other. The other output ter-
med ACom is measured with an identical, i.e., common and
controlled voltage level applied to both amplifier inputs [1,
7]. In this way, it is possible to determine the integrity of the
amplifier. Does the amplifier properly take the difference of
the inputs, amplify, and output the result and is the output
zero when identical voltage levels are applied to both inputs?
There are inherent imperfections in electronic design, so the
output is rarely if ever zero when identical and controlled
voltages are applied to the inputs; however, the output is
extremely low. CMRR is indicated in decibels (dB) although
it may be shown as a whole number. The equation for
CMRR and its conversion to decibels are shown in
Eqs. 16.26 (a) and (b) [2, 3, 7].

ACMRR ¼ ADiff
ACom

dBCMRR ¼ 20 logðACMRRÞ
ðaÞ ðbÞ ð16:26Þ

This is an important design criterion of the amplifier, the
higher the CMRR, the better the component design. Com-
mon mode voltage would be noise, such as 60 Hz induced
on the electrode wires from a variety of sources. If it is
common to both inputs, it should be rejected, and so it is not
amplified as part of the signal of interest which could
potentially lead to misinterpretation. One way to assist an
amplifier to perform up to its design potential is to bundle all

Table 16.4 The inverse
relationship between tau and fC.
Values are rounded up to the
highest integer. Note the change
in units from seconds (s) to
milliseconds (ms) at 3 Hz

Cutoff −3 dB fC (Hz) s ¼ 1
2pfC

0.25 0.64 s

0.5 0.32 s

1 0.16 s

1.5 0.11 s

3 53 ms

5 32 ms

10 16 ms

15 10.6 ms

35 4.5 ms

70 2.3 ms

100 1.6 ms

Fig. 16.15 Graphic illustration of the inverse relationship between the
filter frequency cutoff and the value of its time constant. Horizontal axis
begins at 0 Hz with increasing frequency moving to the right. With
larger values of tau, the frequency cutoff moves toward 0 Hz indicated
by a lower-frequency value cutoff. With smaller values of tau, the
frequency cutoff moves away from 0 Hz taking on a larger-frequency
cutoff value

Fig. 16.16 Schematic symbol of
a differential amplifier
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connected electrode wires together. Bundling the wires
causes induced noise to be common to all the wires allowing
the differential amplifier to remove common mode noise.

Analog-to-Digital Conversion

Neurodiagnostic recording captures analog signals through
the application of externally applied electrodes. Analog
signals are continuous in time versus a digital signal which is
composed of discrete points in time. In older pen and paper
machines, it was the analog signal that was captured and
faithfully recorded in full. Digital equipment has many
advantages over older pen-driven machines; however,
computers cannot capture and store signals that are contin-
uous in time; they must be converted to digital form for
storage and display. All neurodiagnostic equipments begin
with an analog signal, and all convert it to a digital signal
through a circuit called an analog-to-digital converter or
ADC. Digital signals are discrete points in time represented
by 1’s and 0’s and stored in memory on a computer.

All biological signals are analog, but all stored signals are
digitally obtained by sampling and analog-to-digital con-
version. The signal being recorded is filtered, sampled at
equidistant points in time, and stored transforming it into a
digital signal. An ADC has several design parameters, which
come in various speeds and have differing degrees of
accuracy and resolution, and an input voltage range, but all
are rated in the number of bits of information they can store
[4, 6, 7]. A bit is a single unit of information represented by
a 1 or a 0 in binary notation; calculation of bits is shown in
Eq. 16.27.

2n ¼ # of bits 24 ¼ 16 bits ð16:27Þ
The design criterion of the ADC dictates the price, and

hence the more bits, the higher is the cost. A typical ADC
size of 216 is 65,536 bits, and if the ADC had a resolution of
0.06 lV, its dynamic range would be ±1.97 mV. Calcula-
tion of dynamic range requires knowledge about the size of
the ADC and its resolution. Calculation of dynamic range
(DR) indicated in our example is shown in Eq. 16.28.

DR ¼ 2n � resolution
per bit

¼ 65536 bits � 0:06 lV
bit

¼ �0:001966 V ð16:28Þ
This means that the ADC can assign values to the sam-

ples with a minimum or maximum value of 1.97 mV.
Without consideration for sign bits, the number of bins
available to assign values to these samples is 65,536, with
half (32,768) dedicated to the positive values and the other
32,768 is dedicated to the negative values. Each bin in this
ADC represents a 60 nV increment, that is 10−9, lending to

very accurate placement of the digital samples to match their
true analog values. The current American Clinical Neuro-
physiology Society (ACNS) guideline #8 calls for a mini-
mum of an 11 bit ADC with 12 or higher preferred, to
resolve the EEG to 0.5 lV or better and record up to plus or
minus several millivolts without clipping [8]. Clipping may
occur when the sample falls out of the range of the ADC as it
has nowhere left to place a value larger than its dynamic
range (positive or negative). Anything beyond these values
is assigned to the maximum available value and appears
clipped off in the positive or negative range.

Quantization (or signal processing is the process of
mapping a large set of input values to a smaller set) is an
indication of how much rounding, up or down, the ADC will
have to do with the samples taken to make the value “fit”
into its available steps [6, 7]. The higher the number of bits,
the less rounding the ADC has to do, and thus, the sample
will be assigned a value closer to its actual value. Our
example of ±32,768 available steps at a resolution of
0.06 lV decreases the quantization error, which is defined as
the round-off error introduced by quantization, for example,
a decimal number of 12.65 representing as 13 in which there
is an inherent error. This is what a larger number of bits
does; it provides more alternatives for the ADC to more
accurately represent the value of the samples taken as they
are converted to digital form.

Nyquist Theorem

We need to sample and convert analog to digital signal, but
we do not know yet how often to sample. This is where the
Nyquist sampling theorem will help. Nyquist theorem states
that a band-limited signal can be faithfully reproduced,
providing the sampling rate is twice the maximum frequency
of the signal being sampled [4–6]. For example, if the
highest frequency content of a signal of interest is 70 Hz,
then per Nyquist theorem it must be sampled at a minimum
of 140 samples per second or 140 Hz for perfect recon-
struction. What happens to the information between each
sample? It is discarded, and the computer does not store any
information other than the value of the analog signal at the
time a sample is taken. One must understand the frequency
content of a signal and ensure Nyquist criterion is met to
obtain perfect reconstruction of an analog signal in digital
form. If Nyquist theorem is not followed, “aliasing” of the
signal occurs. Aliasing describes a situation that generates
false (i.e., alias) frequency signals with jagged distortions
making it difficult to recognize the original signal. Aliasing
results in misinterpretation of the recorded signal because
the original signal can no longer be perfectly reconstructed
from its digital samples as there is not enough information
from which to properly reconstruct the signal [4–6].
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To faithfully follow the Nyquist theorem, the signal is
filtered before sampling so the maximum frequency is
known and Nyquist sampling theorem can be applied. In
practice, sampling is performed at a higher rate than Nyquist
theorem. The current American Clinical Neurophysiology
Society (ACNS) guideline #8 requires a minimum sampling
rate of three times the highest frequency content of the signal
[8]. Higher sampling rate or over sampling is preferable and
not generally an issue as the cost of storage is fairly

inexpensive. More storage capacity is needed with a higher
sampling rate because the faster a signal is sampled the more
discrete points in time are taken that must be stored by the
analog-to-digital converter. Taking constant snapshots of an
event at evenly spaced intervals, stacking up all the snap-
shots sequentially, and flipping through them will give a
fairly accurate and animated picture of the event. If sufficient
snapshots are not available, there would be missing infor-
mation and voids without properly depicting the event as it

Fig. 16.17 The consequences of
violating Nyquist sampling
criteria. In a, 3 Hz signal is
sampled at 4 Hz. In b, it has been
reconstructed from its samples
and appears to have been a 0.5-Hz
signal, and this is aliasing,
improper reconstruction due to
insufficient sampling. Code and
output created using MatLab
R2012a

Fig. 16.18 In a, 3-Hz signal is
sampled at 6 Hz meeting Nyquist
criteria, and in b, the signal is
over sampled at four times the
signal frequency or 12 Hz.
Perfect reconstruction is virtually
ensured in both (a) and (b);
however, (b) provides additional
information for reconstruction
with preserved morphology. Code
and output created using MatLab
R2012a
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occurred. During sampling, the values are briefly held up in
a sample, and the circuit reassembled time locked and then
displayed as “X” number of channels.

Figure 16.17a illustrates a 3 Hz signal that has been
under sampled at 4 Hz violating Nyquist criteria. Note that
the samples would never faithfully reproduce a 3 Hz signal,
and on reconstruction, it would appear to have been a 0.5 Hz
signal as shown in Fig. 16.17b; this is aliasing. Remember
information between samples is lost, and the only values
available to reconstruct the signal are the stored sampled
values.

In Fig. 16.18a, the 3 Hz signal has been sampled at 6 Hz,
meeting Nyquist criteria; notice, however, that only the
peaks have been captured during sampling. While this would
be sufficient to reconstruct the original signal, its morphol-
ogy could be compromised upon reconstruction. It may
appear to have had sharper peaks than the original signal. It
is best to oversample as in Fig. 16.18b to capture additional
information and ensure reconstruction.

Conclusion

The recording of a biological signal requires the application
of electrodes that interface with sophisticated electronic
equipment in order to capture and record minute electrical
activity generated by the movement of ions in biological

tissue. Neurodiagnostic machines have a variety of settings
that must be adjusted during the course of the recording to
enhance data acquisition providing meticulous recording.

In order to appropriately adjust variables, it is vital to
possess an understanding of the controls available, the
appropriateness of making variable adjustments, and a
complete understanding of the effect on the integrity of the
recording.
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