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Abstract Regression analysis for multinomial/categorical time series is not ade-
quately discussed in the literature. Furthermore, when categories of a multinomial
response at a given time are ordinal, the regression analysis for such ordinal cate-
gorical time series becomes more complex. In this paper, we first develop a lag 1
transitional logit probabilities based correlation model for the multinomial responses
recorded over time. This model is referred to as a multinomial dynamic logits (MDL)
model. To accommodate the ordinal nature of the responses we then compute the
binary distributions for the cumulative transitional responses with cumulative logits
as the binary probabilities. These binary distributions are next used to construct a
pseudo likelihood function for inferences for the repeated ordinal multinomial data.
More specifically, for the purpose of model fitting, the likelihood estimation is devel-
oped for the regression and dynamic dependence parameters involved in the MDL
model.

Keywords Category transition over time · Cumulative logits · Marginal
multinomial logits · Multinomial dynamic logits · Pseudo binary likelihood

1 Introduction

There are situations in practicewhere a univariatemultinomial response, for example,
the economic profit status of a pharmaceutical industry such as poor,medium, or high,
may be recorded over the years along with known covariates such as type of industry,
yearly advertising cost, and other research and development expenditures. It is likely
that the profit status of an industry in a given year is correlated with status of profits
from the past years. It is of interest to know both (i) the effects of the time dependent
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covariates, and (ii) the dynamic relationship among the responses over the years.
This type of multinomial time series data has been analyzed by some authors such as
Fahrmeir andKaufmann [4], Kaufmann [8], Fokianos andKedem [5–7], and Loredo-
Osti and Sutradhar [10]. As far as the dynamic relationship is concerned, Loredo-Osti
and Sutradhar [10] have considered a multinomial dynamic logit (MDL) model as
a generalization of the binary time series model used in Tagore and Sutradhar [16]
(see also Tong [17]).

Suppose that yt = (yt1, . . . , yt j , . . . , yt,J−1)
′ denotes the (J − 1)-dimensional

multinomial response variable and for j = 1, . . . , J − 1,

y( j)
t = (y( j)

t1 , . . . , y( j)
t j , . . . , y( j)

t,J−1

)′ = (01′
j−1, 1, 01

′
J−1− j

)′ ≡ δt j (1)

indicates that themultinomial response recorded at time t belongs to the j th category.
For j = J, one writes y(J )

t = δt J = 01J−1.Here and also in (1), for a scalar constant
c, we have used c1 j for simplicity, to represent c ⊗ 1 j ,⊗ being the well known
Kronecker or direct product. This notation will also be used through out the rest of
the paper when needed. Note that in the non-stationary case, that is, when covariates
are time dependent, one uses the time dependent marginal probabilities. Specifically,
suppose that at time point t (t = 1, . . . , T ), xt = (xt1, . . . , xt�, . . . , xt,p+1)

′ denotes
the (p + 1)-dimensional covariate vector and β j = (β j0, β j1, . . . , β j p)

′ denotes the
effect of xt on y( j)

t for j = 1, . . . , J − 1, and all t = 1, . . . , T, T being the length
of the time series. In such cases, the multinomial probability at time t, has the form

P
[
yt = y( j)

t
] = π(t) j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp
(
x ′
tβ j
)

1 +∑J−1
g=1 exp

(
x ′
tβg
) for j = 1, . . . , J − 1; t = 1, . . . , T

1

1 +∑J−1
g=1 exp

(
x ′
tβg
) for j = J ; t = 1, . . . , T,

(2)

and the elements of yt = (yt1, . . . , yt j , . . . , yt,J−1)
′ at time t follow the multinomial

probability distribution given by

P[yt1, . . . , yt j , . . . , yt,J−1] = Π J
j=1π

yt j
(t) j , (3)

for all t = 1, . . . , T . In (3), yt J = 1 −∑J−1
j=1 yt j , and πt J = 1 −∑J−1

j=1 πt j .

Next we define the transitional probability from the gth (g = 1, . . . , J ) category
at time t − 1 to the j th category at time t, given by

η
( j)
t |t−1(g) = P

(
Yt = y( j)

t

∣∣∣ Yt−1 = y(g)
t−1

)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp
[
x

′
tβ j + γ ′

j y
(g)
t−1

]

1 + ∑J−1
v=1 exp

[
x

′
tβv + γ ′

v y
(g)
t−1

] , for j = 1, . . . , J − 1

1

1 + ∑J−1
v=1 exp

[
x

′
tβv + γ ′

v y
(g)
t−1

] , for j = J,

(4)
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whereγ j = (γ j1, . . . , γ jv, . . . , γ j,J−1)
′ denotes the dynamic dependence parameters.

Note that this model in (4) is referred to as the multinomial dynamic logits (MDL)
model. For the binary case (J = 2), this type of non-linear dynamic logit model has
been studied by some econometricians. See, for example,Amemiya [3, p. 422] in time
series setup, and the recent book by Sutradhar [13, Sect. 7.7] in the longitudinal setup.
Now for further notational convenience, we re-express the conditional probabilities
in (4) as

η
( j)
t |t−1(g) =

⎧
⎪⎨

⎪⎩

exp
[
x

′
t β j+γ ′

j δ(t−1)g

]

1+∑J−1
v=1 exp

[
x

′
t βv+γ ′

vδ(t−1)g

] , for j = 1, . . . , J − 1

1

1+∑J−1
v=1 exp

[
x

′
t βv+γ ′

vδ(t−1)g

] , for j = J,
(5)

where for t = 2, . . . , T, δ(t−1)g, by (1), has the formula

δ(t−1)g =
{ [01′

g−1, 1, 01
′
J−1−g]′ for g = 1, . . . , J − 1

01J−1 for g = J.

Remark that in (5), the category g occurred at time t − 1.Thus the category g depends
on time t − 1, and δ(t−1)g ≡ δgt−1 . However for simplicity we have used g for gt−1.

Letβ = (β ′
1, . . . , β

′
j , . . . , β

′
J−1)

′ : (p + 1)(J − 1) × 1, andγ = (γ ′
1, . . . , γ

′
j , . . . ,

γ ′
J−1)

′ : (J − 1)2 × 1. These parameters are involved in the unconditional mean,
variance and covariances of the responses. More specifically one may show [10] that

E[Yt ] = π̃(t)(β, γ ) = (π̃(t)1, . . . , π̃(t) j , . . . , π̃(t)(J−1))
′ : (J − 1) × 1

=
{ [π(1)1, . . . , π(1) j , . . . , π(1)(J−1)]′ for t = 1

η(t |t−1)(J ) +
[
η(t |t−1),M − η(t |t−1)(J )1′

J−1

]
π̃(t−1) for t = 2, . . . , T − 1

(6)

var[Yt ] = diag[π̃(t)1, . . . , π̃(t) j , . . . , π̃(t)(J−1)] − π̃(t)π̃
′
(t)

= (cov(Yt j , Ytk )) = (σ̃(t t) jk ), j, k = 1, . . . , J − 1

= Σ̃(t t)(β, γ ), for t = 1, . . . , T (7)
cov[Yu , Yt ] = Π t

s=u+1
[
η(s|s−1),M − η(s|s−1)(J )1′

J−1
]
var[Yu ], for u < t, t = 2, . . . , T

= (cov(Yu j , Ytk )) = (σ̃(ut) jk ), j, k = 1, . . . , J − 1

= Σ̃(ut)(β, γ ), (8)

where

η(s|s−1)(J ) = [η(1)
s|s−1(J ), . . . , η

( j)
s|s−1(J ) . . . , η

(J−1)
s|s−1 (J )]′ = π(s) : (J − 1) × 1

η(s|s−1),M =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

η
(1)
s|s−1(1) · · · η

(1)
s|s−1(g) · · · η

(1)
s|s−1(J − 1)

...
...

...
...

...

η
( j)
s|s−1(1) · · · η

( j)
s|s−1(g) · · · η

( j)
s|s−1(J − 1)

...
...

...
...

...

η
(J−1)
s|s−1 (1) · · · η

(J−1)
s|s−1 (g) · · · η

(J−1)
s|s−1 (J − 1)

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

: (J − 1) × (J − 1).
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Notice that there is a relation between the vector η(s|s−1)(J ) and the matrix η(s|s−1),M .

This is because the transition matrix η(s|s−1),M contains the transitional probabilities
from any of the first J − 1 states at time s − 1 to any of the J − 1 states at time s,
whereas the transition vector η(s|s−1)(J ) contains transitional probabilities from the
J th state at time s − 1 to any of the first J − 1 states at time s − 1. Consequently,
once the transition matrix η(s|s−1),M is computed, the transition vector η(s|s−1)(J )

becomes known.
It is of importance to estimate β and γ parameters mainly to understand the

aforementioned basic properties including the pair-wise correlations of the responses.
Note however that themultinomial time seriesmodel (2)–(5) and its basicmoment

properties shown in (6)–(8) are derivedwithout any order restrictions of the categories
of the responses. The purpose of this paper is to estimate the parameters β and γ

under an ordinal categorical response model which we describe in Sect. 2. In Sect. 3,
we demonstrate the application of a pseudo likelihood approach for the estimation
for these parameters. Some concluding remarks are made in Sect. 4.

2 Cumulative MDL Model for Ordinal Categorical Data

When categories for a response at a given time t are ordinal, onemay then collapse the
J > 2 categories in a cumulative fashion into two (J ′ = 2) categories and use simpler
binarymodel to fit such collapsed data. Note however that therewill be various binary
groups depending on which category in the middle is used as a cut point. For the
transitional categorical response from time t − 1 (say) to time t, cumulation of the
categories at time t has to be computed conditional on the cumulative categories
at time t − 1. This will also generate a binary model for cumulative transitional
responses. These concepts of cumulative probabilities for a cumulative response are
used in the next section to construct the desired cumulative MDL model.

2.1 Marginal Cumulative Model at Time t = 1

Suppose that for a selected cut point j ( j = 1, . . . , J − 1), F(1) j =∑ j
c=1 π(1)c rep-

resents the probability for a multinomial response to be in category c between 1 and
j, where π(1)c by (2) defines the probability for the response to be in category c
(c = 1, . . . , J ) at time t = 1. Thus, 1 − F(1) j =∑J

c= j+1 π(1)c would represent the
probability for the multinomial response to be in category c beyond j. To reflect this
binary nature of the observed response in category c with regard to cut point j, we
define a binary variable b( j)

c (1) such that

P
[
b( j)
c (1) = 1

] = 1 − F(1) j =
J∑

c= j+1

π(1)c. (9)
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Notice that because there are J − 1 possible cut points, if the categories are ordered
and the response falls in cth category, by (11) below, we then obtain the cut points
based observed vector at time t = 1 as

[
b(1)
c (1) = 1, . . . , b(c−1)

c (1) = 1, b(c)
c (1) = 0, . . . , b(J−1)

c (1) = 0
]
.

For other values of t, the observed responses are constructed similarly depending on
the response category.

2.2 Lag 1 Transitional Cumulative Model at Time
t = 2, . . . , T

In order to develop a transitional model, suppose we observe that the multinomial
response at time t − 1(t = 2, . . . , T )was in c1th category (c1 = 1, . . . , J ),whereas
at time t it is observed in c2(c2 = 1, . . . , J ) category. Let (g, j) denote a bivariate
cut point which facilitates the binary variables [similar to (9)] given by

b(g)
c1 (t − 1) =

{
1 for the response in category c1 > g at time t − 1
0 for the response in category c1 ≤ g at time t − 1,

(10)

and

b( j)
c2 (t) =

{
1 for the response in category c2 > j at time t
0 for the response in category c2 ≤ j at time t.

(11)

Consequently, a transitional probability model based on conditional probabilities (5)
may be written as

P
[
b( j)
c2 (t) = 1|b(g)

c1 (t − 1)
] = λ̃

(2)
g j

(
b(g)
c1 (t − 1)

)

=
{

λ̃
(2)
g j (1) for b

(g)
c1 (t − 1) = 0

λ̃
(2)
g j (2) for b

(g)
c1 (t − 1) = 1,

(12)

=
{

1
g

∑g
c1=1

∑J
c2= j+1 λ

(c2)
t |t−1(c1)

1
J−g

∑J
c1=g+1

∑J
c2= j+1 λ

(c2)
t |t−1(c1),

(13)

where the conditional probability λ
(c2)
t |t−1(c1), has the known multinomial dynamic

logit (MDL) form given by (5). For convenience, following (12)–(13), we also write

P[b( j)
c2 (t) = 0|b(g)

c1 (t − 1)] = 1 − λ̃
(2)
g j (b

(g)
c1 (t − 1))

=
{

λ̃
(1)
g j (1) = 1 − λ̃

(2)
g j (1) for b

(g)
c1 (t − 1) = 0

λ̃
(1)
g j (2) = 1 − λ̃

(2)
g j (2) for b

(g)
c1 (t − 1) = 1,

(14)
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=
⎧
⎨

⎩

1
g

∑g
c1=1

[
1 −∑J

c2= j+1 λ
(c2)
t |t−1(c1)

]

1
J−g

∑J
c1=g+1

[
1 −∑J

c2= j+1 λ
(c2)
t |t−1(c1)

] (15)

=
{

1
g

∑g
c1=1

∑ j
c2=1 λ

(c2)
t |t−1(c1)

1
J−g

∑J
c1=g+1

∑ j
c2=1 λ

(c2)
t |t−1(c1).

(16)

3 Pseudo Binary Likelihood Estimation
for the Ordinal Model

In this section, we construct a binary data based likelihood function, where the
binary data are obtained by collapsing the available ordinalmultinomial observations.
Consequently, we refer to this likelihood approach as the so-called pseudo likelihood
approach. However, for convenience, we use the terminology ‘likelihood’ for the
‘pseudo likelihood’, through out the section.

At t = 1, the marginal likelihood for β by (9) has the form

L1(β) = Π J−1
j=1

[
{F(1) j }1−b( j)

c (1)
] [

{1 − F(1) j }b( j)
c (1)

]

= Π J−1
j=1

⎡

⎢
⎣

{
j∑

c=1

π(1)c

}1−b( j)
c (1)

⎤

⎥
⎦

⎡

⎢
⎣

⎧
⎨

⎩

J∑

c= j+1

π(1)c

⎫
⎬

⎭

b( j)
c (1)

⎤

⎥
⎦ , (17)

where

b( j)
c (1) =

{
1 for c > j
0 for c ≤ j.

(18)

Next for the construction of the conditional likelihood at t given the information
fromprevious timepoint t − 1,wefirst re-express the binary conditional probabilities
in (12) and (14), as

λ̃
(2)
g j (g

∗) =
{

λ̃
(2)
g j (1) for b(g)

c1 (t − 1) = 0

λ̃
(2)
g j (2) for b(g)

c1 (t − 1) = 1,
(19)

λ̃
(1)
g j (g

∗) =
{

λ̃
(1)
g j (1) for b(g)

c1 (t − 1) = 0

λ̃
(1)
g j (2) for b(g)

c1 (t − 1) = 1.
(20)

One may then write the conditional likelihood for β and γ, as

Lt |t−1(β, γ ) = Π J−1
g=1 Π J−1

j=1 Π2
g∗=1

[{
λ̃

(2)
g j (g

∗)
}b( j)

c2 (t) {
λ̃

(1)
g j (g

∗)
}1−b( j)

c2 (t)
]

, (21)
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where the binary data b( j)
c2 (t) for observed c2 are obtained by (11), and similarly

b(g)
c1 (t − 1) to define g∗ for given c1 are obtained from (10).
Next by combining (17) and (21), one obtains the likelihood function for β

and γ as

L(β, γ ) = L1(β)Π T
t=2Lt |t−1(β, γ )

= Π J−1
j=1

[
{F(1) j }1−b( j)

c (1)
] [

{1 − F(1) j }b( j)
c (1)

]

×ΠT
t=2Π

J−1
g=1 Π J−1

j=1 Π2
g∗=1

[{
λ̃

(2)
g j (g

∗)
}b( j)

c2 (t) {
λ̃

(1)
g j (g

∗)
}1−b( j)

c2 (t)
]

. (22)

For the benefit of the practitioners,we nowdevelop the likelihood estimating equa-
tions for these parameters β and γ, as in the following sections. Remark that for the
construction of similar likelihood estimating equations in the stationary longitudinal
setup, one may be referred to Sutradhar [14, Sect. 3.6.2.2].

Note that the likelihood function in (22) is constructed by collapsing the ordinal
multinomial responses to the binary responses at all suitable cut points. This likeli-
hood function, therefore, can not be used for nominal multinomial time series data.
When the categories are nominal, it is appropriate to construct the likelihood function
by exploiting the marginal probability function π(t) j from (2) for t = 1, and the con-
ditional multinomial logit probability function η

( j)
t |t−1(g) from (4) for t = 2, . . . , T

(see Loredo-Osti and Sutradhar [10]). Notice that in practice the time dependent
covariates xt in (2) and (4) are fixed in general. However, by treating xt as a random
covariate vector, Fokianos and Kedem [6] obtained parameter estimates by maxi-
mizing a partial likelihood function without requiring any extra characterization of
the joint process {yt , xt }. Loredo-Osti and Sutradhar [10] have, however, argued that
in Fokianos and Kedem’s [6] approach, the conditional Fisher information matrix is
not the same as the one obtained by conditioning on {xt }, the observed covariates.
In fact, when the estimation is carried out in a general linear models framework that
uses the canonical link function, this conditional information matrix obtained by
Fokianos and Kedem, is just the Hessian matrix multiplied by −1, i.e., the observed
information matrix.

As far as the ordinal multinomial time series data are concerned, the construction
of binary mapping based likelihood function in (22) is a new concept. The core idea
comes from the cumulative binary property for theMDL (multinomial dynamic logit)
model (4) because of the present ordinal nature of the data. In the cross sectional setup,
that is, for the case with t = 1 only, the likelihood function for ordinal multinomial
data has been used by many authors such as Agresti [1]. Note that the marginal
multinomial probability in (2) has themultinomial logit form. In the cluster data setup,
many existing studies use this multinomial logit model (2) as the marginal model at
a given time t. As far as the correlations between repeated responses are concerned,
some authors such as Agresti [1], Lipsitz et al. [9], Agresti and Natarajan [2] do
not model them, rather they use ‘working’ correlations to construct the so-called
generalized estimating equations and solve them to obtain the estimates for regression
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parameters involved in the marginal multinomial logits model (2). These estimates
however may not be reliable as they can be inefficient as compared to the ‘working’
independence assumption based estimates (see Sutradhar and Das [15], Sutradhar
[13, Chap.7] in the context of binary longitudinal data analysis). Thus, their extension
to the time series setup may be useless. Moreover, it is not clear how to model the
ordinal data using this type of ‘working’ correlations approach.

3.1 Likelihood Estimating Equations for the Regression
Effects β

Recall that β = (β ′
1, . . . , β

′
j , . . . , β

′
J−1)

′ : (J − 1)(p + 1) × 1, with β j = (β j0,

β j1, . . . , β j p)
′. For known γ, in this section, we exploit the likelihood function (22)

and develop the likelihood estimating equation for β. For convenience, we use log
likelihood function, which, following the likelihood function in (22), is written as

Log L(β, γ ) =
J−1∑

j=1

[{1 − b( j)
c (1)}logF(1) j + {b( j)

c (1)}log{1 − F(1) j }
]

+
T∑

t=2

J−1∑

g=1

J−1∑

j=1

2∑

g∗=1

[
b( j)
c2 (t)log

{
λ̃

(2)
g j (g

∗)
}

+ {1 − b( j)
c2 (t)}log

{
λ̃

(1)
g j (g

∗)
}]

, (23)

yielding the likelihood estimating equation for β as

∂Log L(β, γ )

∂β
=

J−1∑

j=1

[
{1 − b( j)

c (1)}
F(1) j

− {b( j)
c (1)}

{1 − F(1) j }

]
∂F(1) j

∂β

+
T∑

t=2

J−1∑

g=1

J−1∑

j=1

2∑

g∗=1

[
b( j)
c2 (t)

λ̃
(2)
g j (g

∗)
− {1 − b( j)

c2 (t)}
{1 − λ̃

(2)
g j (g

∗)}

]
∂λ̃

(2)
g j (g

∗)
∂β

= 0, (24)

where
∂F(1) j

∂β
=

j∑

c=1

[
π(1)c(δ(1)c − π(1))

]⊗ x1; (25)

and

∂λ̃
(2)
g j (g∗)

∂β
=
⎧
⎨

⎩

1
g
∑g

c1=1
∑J

c2= j+1

[
η
(c2)
t |t−1(c1)(δ(t−1)c2 − ηt |t−1(c1))

]
⊗ xt for g∗ = 1

1
J−g

∑J
c1=g+1

∑J
c2= j+1

[
η
(c2)
t |t−1(c1)(δ(t−1)c2 − ηt |t−1(c1))

]
⊗ xt for g∗ = 2,

(26)
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with

π(1) = [
π(1)1, . . . , π(1)c, . . . , π(1)(J−1)

]′

δ(t−1)c =
{ [01′

c−1, 1, 01
′
J−1−c]′ for c = 1, . . . , J − 1

01J−1 for c = J,

ηt |t−1(c1) =
[
η

(1)
t |t−1(c1), . . . , η

(c2)
t |t−1(c1), . . . , η

(J−1)
t |t−1 (c1)

]′
. (27)

The details for the derivatives in (25) and (26) are given in “Appendix”.
For given γ , the likelihood equations in (24) may be solved iteratively by using

the iterative equation for β given by

β̂(r + 1) = β̂(r) −
⎡

⎣
{

∂2Log L(β, γ )

∂β ′∂β

}−1
∂Log L(β, γ )

∂β

⎤

⎦

|β=β̂(r)

; (J − 1)(p + 1) × 1, (28)

where the formula for the second order derivative matrix ∂2Log L(β,γM )

∂β ′∂β may be derived
by taking the derivative of the (J − 1)(p + 1) × 1 vector with respect to β ′. The
exact second order derivative matrix has a complicated formula. We provide an
approximation as follows.
An approximation to ∂2Log L(β,γM )

∂β ′∂β :
Re-express the likelihood estimating equation from (24) as

∂Log L(β, γ )

∂β
=

J−1∑

j=1

∂F(1) j

∂β
{(1 − F(1) j )F(1) j }−1

[{1 − b( j)
c (1)} − F(1) j

]

+
T∑

t=2

J−1∑

g=1

J−1∑

j=1

2∑

g∗=1

∂λ̃
(2)
g j (g

∗)
∂β

{
λ̃

(2)
g j (g

∗)
(
1 − λ̃

(2)
g j (g

∗)
)}−1 [

b( j)
c2 (t) − λ̃

(2)
g j (g

∗)
]

= 0. (29)

Notice that in the first term in the left hand side of (29), {1 − b( j)
c (1)} is, by (9), a

binary variable with

E
{
1 − b( j)

c (1)
} = F(1) j

var{1 − b( j)
c (1)} = F(1) j {1 − F(1) j }, (30)

and similarly in the second term, by (12), b( j)
c2 (t) conditional on b(g)

c1 (t − 1) is a binary
variable with

E
[
b( j)
c2 (t)|b(g)

c1 (t − 1)
] = λ̃

(2)
g j (g

∗)

var
[
b( j)
c2 (t)|b(g)

c1 (t − 1)
] = λ̃

(2)
g j (g

∗)
[
1 − λ̃

(2)
g j (g

∗)
]
, (31)
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for g∗ ≡ b(g)
c1 (t − 1).Thus, the likelihood estimating function in (29) is equivalent to a

conditional quasi-likelihood (CQL) function in β for the cut points based binary data
[e.g. see Tagore and Sutradhar [16, Eq. (27), p. 888]. Now because the variance of the
binary data is a function of the mean, the variance and gradient functions in (29) may
be treated to be knownwhenmean is known. Thus, when a QL estimating equation is
solved iteratively, the gradient and variance functions use β from a previous iteration
[11, 18]. Consequently, by (29), the second derivative matrix required to compute
(28) has a simpler approximate formula

∂2Log L(β, γ )

∂β∂β ′ = −
J−1∑

j=1

∂F(1) j

∂β
{(1 − F(1) j )F(1) j }−1 ∂F(1) j

∂β ′

−
T∑

t=2

J−1∑

g=1

J−1∑

j=1

2∑

g∗=1

∂λ̃
(2)
g j (g

∗)
∂β

{
λ̃

(2)
g j (g

∗)
(
1 − λ̃

(2)
g j (g

∗)
)}−1 ∂λ̃

(2)
g j (g

∗)
∂β ′ . (32)

Furthermore for known γ , by (28) and (29), under somemild conditions it follows
that the solution of (29), say β̂, satisfies

β̂ ∼ N (β, V (β, γ )), (33)

(see Kaufmann [8, Sect. 5]) where the covariance matrix is estimated by

V̂ (·) =
[
−∂2Log L(β, γ )

∂β∂β ′

]−1

β=β̂

. (34)

3.2 Likelihood Estimating Equations for the Dynamic
Dependence Parameters γ

In Sect. 3.1, we have estimated β for known γ, for example, initially by using γ = 0,
where by (4)–(5),

γ = (γ ′
1, . . . , γ

′
j , . . . , γ

′
J−1

)′
, with γ j = (γ j1, . . . , γ jv, . . . , γ j,J−1

)′
.

Note that F(1) j for all j = 1, . . . , J − 1, are free from γ. Hence, by exploiting the
log likelihood function (23), similar to (24), we write the likelihood equation for γ as

∂Log L(β, γ )

∂γ
=

T∑

t=2

J−1∑

g=1

J−1∑

j=1

2∑

g∗=1

⎡

⎣ b( j)
c2 (t)

λ̃
(2)
g j (g

∗)
−
{
1 − b( j)

c2 (t)
}

{
1 − λ̃

(2)
g j (g

∗)
}

⎤

⎦
∂λ̃

(2)
g j (g

∗)
∂γ

= 0,

(35)
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where

∂λ̃
(2)
g j (g∗)
∂γ

=
⎧
⎨

⎩

1
g

∑g
c1=1

∑J
c2= j+1

[
η

(c2)
t |t−1(c1)(δ(t−1)c2 − ηt |t−1(c1))

]
⊗ δ(t−1)c1 for g∗ = 1

1
J−g

∑J
c1=g+1

∑J
c2= j+1

[
η

(c2)
t |t−1(c1)(δ(t−1)c2 − ηt |t−1(c1))

]
⊗ δ(t−1)c1 for g∗ = 2.

(36)
An outline for this derivative is given in the “Appendix”.

By similar calculations as in (28), onemay solve the likelihood estimating equation
in (35) for γ using the iterative equation

γ̂ (r + 1) = γ̂ (r) −
[{

∂2Log L(β, γ )

∂γ ∂γ ′

}−1
∂Log L(β, γ )

∂γ

]

|γ=γ̂ (r)

; (J − 1)2 × 1,

(37)
where the second order derivative matrix, following (32), may be computed as

∂2Log L(β, γ )

∂γ ∂γ ′ = −
T∑

t=2

J−1∑

g=1

J−1∑

j=1

2∑

g∗=1

∂λ̃
(2)
g j (g∗)

∂γ

{
λ̃
(2)
g j (g∗)

(
1 − λ̃

(2)
g j (g∗)

)}−1 ∂λ̃
(2)
g j (g∗)

∂γ ′ . (38)

Furthermore for known β, by (37) and (38), it follows under somemild conditions
that the solution of (35), say γ̂ , satisfies

γ̂ ∼ N (γ, V ∗(β, γ )), (39)

(see Kaufmann [8, Sect. 5]) where the covariance matrix is estimated by

V̂ ∗(·) =
[
−∂2Log L(β, γ )

∂γ ∂γ ′

]−1

γ=γ̂

. (40)

3.3 Joint Likelihood Estimating Equations for β and γ

Let θ = (β ′, γ ′)′. One may then combine (28) and (37) and solve the iterative
equation

θ̂ (r + 1) = θ̂ (r) −
⎡

⎣

⎛

⎝
∂2Log L(β,γ )

∂β∂β ′
∂2Log L(β,γ )

∂β∂γ ′
∂2Log L(β,γ )

∂γ ∂β ′
∂2Log L(β,γ )

∂γ ∂γ ′

⎞

⎠

−1⎛

⎝
∂Log L(β,γ )

∂β

∂Log L(β,γ )

∂γ

⎞

⎠

⎤

⎦

|θ=θ̂ (r)

(41)

to obtain the joint likelihood estimates for β and γ. In order to construct the iter-
ative equation (41), we require the formula for the second order derivative matrix
∂2Log L(β,γ )

∂β∂γ ′ which, using (29), may be approximately computed as
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∂2Log L(β, γ )

∂β∂γ ′ = −
T∑

t=2

J−1∑

g=1

J−1∑

j=1

2∑

g∗=1

∂λ̃
(2)
g j (g∗)

∂β

{
λ̃
(2)
g j (g∗)

(
1 − λ̃

(2)
g j (g∗)

)}−1 ∂λ̃
(2)
g j (g∗)

∂γ ′ , (42)

where the formulas for
∂λ̃

(2)
g j (g

∗)
∂β

and
∂λ̃

(2)
g j (g

∗)
∂γ

are given by (26) and (36), respectively.
Furthermore, by similar arguments to (33) and (39), under somemild conditions it

follows that the solution of (41), say

(
β̃

γ̃

)
has the multivariate Gaussian distribution

(
β̃

γ̃

)
∼ N

[(
β

γ

)
,

(
Ṽ11(β, γ ) Ṽ12(β, γ )

Ṽ ′
12(β, γ ) Ṽ22(β, γ )

)]
, (43)

where cov(β̃) = Ṽ11(β, γ ) and cov(γ̃ ) = Ṽ22(β, γ ) are estimated as

ˆcov(β̃) = A−1 + FE−1F ′

ˆcov(γ̃ ) = E−1, (44)

Rao [12, p. 33] with E = D − B ′A−1B, and F = A−1B, where by (41)

A = ∂2Log L(β, γ )

∂β∂β ′ ; B = ∂2Log L(β, γ )

∂β∂γ ′ ; and D = ∂2Log L(β, γ )

∂γ ∂γ ′ .

4 Concluding Remarks

Recently some authors such as Loredo-Osti and Sutradhar [10] (see also Fokianos
andKedem [6]) have developed a likelihood approach for the estimation of regression
and dynamic dependence parameters involved in amultinomial dynamic logit (MDL)
model used for categorical time series data. This inference issue becomes more
complex when the categorical response collected at a given time point also exhibit
an order. In this paper we have demonstrated that this type of ordinal categorical
responses collected over time may be analyzed by collapsing a multinomial response
to a binary response at a given possible cut point and fitting binary dynamic model
to all such binary responses collected based on all possible cut points over all times.
For simplicity, we have fitted a low order, namely lag 1 dynamic model among
all possible cut points based binary responses. A pseudo likelihood method using
binary responses (in stead of the multinomial observations) is then constructed for
the estimation of the regression and dynamic dependence parameters. The authors
plan to undertake an empirical study involving simulations and real life data analysis
in order to investigate the performance of the proposed estimation approach both
for moderate and large size time series. The empirical results will be published
elsewhere.



Regression Models for Ordinal Categorical Time Series Data 191

Acknowledgments The authors are grateful to Bhagawan Sri Sathya Sai Baba for His love and
blessings to carry out this research in Sri Sathya Institute of Higher Learning. The authors thank the
editorial committee for the invitation to participate in preparing this Festschrift honoring Professor
Ian McLeod. It has brought back many pleasant memories of Western in early 80’s experienced by
the first author during his PhD study. We have prepared this small contribution as a token of our
love and respect to Professor Ian McLeod for his long and sustained contributions to the statistics
community through teaching and research in time series analysis, among other areas. The authors
thank two referees for their comments and suggestions on the earlier version of the paper.

Appendix

Derivation for ∂F(1) j

∂β
:

Recall from Sect. 2.1 that F(1) j =∑ j
c=1 π(1)c, where π(1)c is given by (2). It then

follows that

∂F(1) j

∂β
= ∂

∂β

j∑

c=1

π(1)c = ∂

∂β

j∑

c=1

exp
(
x ′
1βc
)

1 +∑J−1
g=1 exp

(
x ′
1βg
) . (45)

Now because

∂π(1)c

∂βc
= π(1)c[1 − π(1)c]x1, and

∂π(1)c

∂βk
= −[π(1)cπ(1)k]x1, (46)

it follows that

∂π(1)c

∂β
=

⎛

⎜⎜
⎜⎜⎜⎜
⎝

−π(1)1π(1)c
...

π(1)c[1 − π(1)c]
...

−π(1)(J−1)π(1)c

⎞

⎟⎟
⎟⎟⎟⎟
⎠

⊗ x1 : (J − 1)(p + 1) × 1

= [
π(1)c(δ(1)c − π(1))

]⊗ x1. (47)

The formula for ∂F(1) j

∂β
in (25) follows by using (47) and (45).

Derivation for
∂λ̃

(2)
g j (g

∗)
∂β

:
By using the formula for λ̃

(2)
g j (g

∗) from (13) we write

∂λ̃
(2)
g j (g

∗)
∂β

= ∂

∂β

{
1
g

∑g
c1=1

∑J
c2= j+1 λ

(c2)
t |t−1(c1) for g∗ = 1

1
J−g

∑J
c1=g+1

∑J
c2= j+1 λ

(c2)
t |t−1(c1) for g∗ = 2,

(48)
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where λ
(c2)
t |t−1(c1) is given in (5), that is,

η
(c2)
t |t−1(c1) =

⎧
⎪⎨

⎪⎩

exp
[
x

′
t βc2+γ ′

c2
δ(t−1)c1

]

1+∑J−1
v=1 exp

[
x

′
t βv+γ ′

vδ(t−1)c1

] , for c2 = 1, . . . , J − 1

1

1+∑J−1
v=1 exp

[
x

′
t βv+γ ′

vδ(t−1)c1

] , for c2 = J.
(49)

Now, for t = 2, . . . , T, it follows from (49) that

∂η
(c2)
t |t−1(c1)

∂βc2

= η
(c2)
t |t−1(c1)

[
1 − η

(c2)
t |t−1(c1)

]
xt

∂η
(c2)
t |t−1(c1)

∂βk
= −

[
η

(c2)
t |t−1(c1)η

(k)
t |t−1(c1)

]
xt , (50)

yielding

∂η
(c2)
t |t−1(c1)

∂β
=

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

−η
(1)
t |t−1(c1)η

(c2)
t |t−1(c1)

...

η
(c2)
t |t−1(c1)[1 − η

(c2)
t |t−1(c1)]

...

−η
(J−1)
t |t−1 (c1)η

(c2)
t |t−1(c1)

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

⊗ xt : (J − 1)(p + 1) × 1

=
[
η

(c2)
t |t−1(c1)(δ(t−1)c2 − ηt |t−1(c1))

]
⊗ xt . (51)

The formula for the derivative in (26) follows now by applying (50) into (48).

Derivation for
∂λ̃

(2)
g j (g

∗)
∂γ

:
By using the formula for λ̃

(2)
g j (g

∗) from (13) we write

∂λ̃
(2)
g j (g

∗)
∂γ

= ∂

∂γ

{
1
g

∑g
c1=1

∑J
c2= j+1 λ

(c2)
t |t−1(c1) for g∗ = 1

1
J−g

∑J
c1=g+1

∑J
c2= j+1 λ

(c2)
t |t−1(c1) for g∗ = 2,

(52)

where λ
(c2)
t |t−1(c1) is given in (5) [see also (49)].

Next, for t = 2, . . . , T, it follows from (49) that

∂η
(c2)
t |t−1(c1)

∂γc2
= η

(c2)
t |t−1(c1)

[
1 − η

(c2)
t |t−1(c1)

]
δ(t−1)c1

∂η
(c2)
t |t−1(c1)

∂γk
= −

[
η

(c2)
t |t−1(c1)η

(k)
t |t−1(c1)

]
δ(t−1)c1 , (53)
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where

δ(t−1)c1 =
{ [01′

c1−1, 1, 01
′
J−1−c1

]′ for c1 = 1, . . . , J − 1
01J−1 for c1 = J.

These derivatives in (53) may further be re-expressed as

∂η
(c2)
t |t−1(c1)

∂γ
=

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

−η
(1)
t |t−1(c1)η

(c2)
t |t−1(c1)

...

η
(c2)
t |t−1(c1)[1 − η

(c2)
t |t−1(c1)]

...

−η
(J−1)
t |t−1 (c1)η

(c2)
t |t−1(c1)

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

⊗ δ(t−1)c1 : (J − 1)2 × 1

=
[
η

(c2)
t |t−1(c1)(δ(t−1)c2 − ηt |t−1(c1))

]
⊗ δ(t−1)c1 . (54)

The formula for the derivative in (36) now follows by applying (53) into (52).
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