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Abstract In this article, we investigate the portmanteau tests and the Lagrange
multiplier (LM) test for goodness of fit in autoregressive and moving average models
with uncorrelated errors. Under the assumption that the error is not independent, the
classical portmanteau tests and LM test are asymptotically distributed as a weighted
sumof chi-squared randomvariables that can be far from the chi-squared distribution.
To conduct the tests, we must estimate these weights using nonparametric methods.
Therefore, by employing the method of Kiefer et al. (Econometrica, 68:695–714,
2000, [11]), we propose new test statistics for the portmanteau tests and the LM
test. The asymptotic null distribution of these test statistics is not standard, but can
be tabulated by means of simulations. In finite-sample simulations, we demonstrate
that our proposed test has a good ability to control the type I error, and that the loss
of power is not substantial.

1 Introduction

We consider goodness-of-fit tests for univariate autoregressive moving average
(ARMA) models with uncorrelated errors. Portmanteau tests and the Lagrange mul-
tiplier (LM) test are popular tools in ARMA modeling. Portmanteau test statistics,
defined by the sum of squares of the first m residual autocorrelations, are com-
monly used in time series analysis to describe the goodness of fit. This approach
was first presented by Box and Pierce [1] and Ljung and Box [15] for univari-
ate autoregressive (AR) models. McLeod [18] derived the large sample distribution
of the residual autocorrelations and the portmanteau statistic for ARMA models.
LM tests for ARMA time series models have been investigated by many authors,
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e.g., Godfrey [6], Newbold [19], and Hosking [7]. The test statistics compare the null
hypothesis model ARMA(p, q) against either ARMA(p + m, q) or ARMA(p, q +
m). From the viewpoint of finite sample size and power, these two test statistics are
often used in combination. Li [14, Chap. 2] reviews several such tests. However,
most of these tests impose the restriction that the errors must be independent. This
precludes the application of a nonlinear model.

In recent years, the time series literature has been characterized by a grow-
ing interest in nonlinear models. Francq et al. [3] reported that many important
classes of nonlinear processes admit ARMAmodels with uncorrelated errors. Some
examples include bilinear processes, autoregressive-conditional duration processes,
the Markov-switching ARMA model, generalized autoregressive conditionally het-
eroscedastic (GARCH) model, and hidden Markov models. Francq et al. [3] also
reported that, under the Wold decomposition theorem, any purely nondeterministic
second-order stationary process admits an infinite-order moving average (MA) rep-
resentation, where the noise is considered to be white noise. The ARMAmodel with
uncorrelated errors also has this representation, and is regarded as an approximation
of theMAmodel. Therefore, this model covers a very wide class of second-order sta-
tionary processes. Fitting nonlinear models is often difficult, whereas fitting ARMA
models is easy and computable using statistical software (e.g., SAS, R, SPSS). Addi-
tionally, the estimators are easy to interpret. Therefore, ARMAmodels can be useful
tools, even if the true process appears to be nonlinear.

There are now three portmanteau tests forARMAmodelswith uncorrelated errors:
(i) Francq et al. [3] presented an asymptotic distribution of Ljung and Box’s [15]
portmanteau statistics under the condition of uncorrelated errors. The distribution
is given by the weighted sum of a chi-squared random variable that contains the
unknown ARMA parameters. Therefore, we have to compute the critical values in
each test. (ii) Katayama [9] modified the portmanteau statistic with a correction
term that is asymptotically chi-squared. However, these two test statistics require an
estimate of the covariance structure of a high-dimensional multivariate process and a
large sample size. (iii) Kuan and Lee’s [12] portmanteau test is based on the approach
developed by Kiefer, Vogelsang, and Bunzel [11] (referred to as KVB). Instead of
estimating the asymptotic covariance matrix, Kuan and Lee’s [12] portmanteau test
statistic employs a random normalizing matrix to eliminate the nuisance parameters
of the asymptotic covariance matrix. The asymptotic critical values are tabulated by
a series of simulations. We review these test statistics in Sect. 2.

To overcome these weaknesses, we propose a new portmanteau test and an LM
test in Sect. 3. Our proposed tests are based on the KVB approach. The test statistics
have no use for recursive estimators, and do not require an estimate of the covariance
structure of a high-dimensional multivariate process. Therefore, our test statistics
have a significantly lower computational cost. We compare the finite sample per-
formance of these test statistics via simulations in Sect. 4. We demonstrate that our
proposed test exhibits sufficiently efficient empirical size and power properties with
existing portmanteau tests.
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In the remainder of this paper, ⇒ denotes weak convergence (of associated

probability measures) and
d→ denotes the convergence in distribution. Throughout

the paper, convergence is described for a sample size n going to infinity. Therefore,
we omit the phrase “as n → ∞,” except in a few cases. Wm denotes a vector of
m independent standard Wiener processes, and Bm is the Brownian bridge with
Bm(τ ) = Wm(τ ) − τWm(1) for τ ∈ (0, 1]. A matrix A+ denotes the MP-inverse
of A. Let ∂ f (y)/∂x denote ∂ f (x)/∂x |x=y,∇x f (y) denote ∂ f (y)/∂x ′, and ∇′

x f (y)
denote ∂ f (y)/∂x . Additionally, [c] denotes the integer part of c.

Finally, this paper is based on Katayama [8], which extended new KVB-based
tests to the M test and considered not only portmanteau tests and LM tests, but also
GMM over-identification tests and the Hausman tests. This paper is available on
request.

2 Review of the Portmanteau Tests

Suppose that a univariate time series {Yt } is generated by an autoregressive-moving
average model ARMA(p, q):

Yt =
p∑

i=1

a0i Yt−i + εt +
q∑

j=1

b0jεt− j , t = 0,±1,±2, . . . , (1)

where {εt } provides white-noise sequences with variance σ 2
0 . It is assumed that the

above model is stationary, invertible, and not redundant, so that the polynomials
1 − a01 z − · · · − a0pz

p = 0 and 1 + b01z + · · · + b0q z
q = 0 have no common roots,

and that all roots are outside the unit circle. We denote the true parameter vector as
θ0 = (a01, . . . , a

0
p, b

0
1, . . . , b

0
q)

′; this belongs to the parameter space Θ ⊂ R
p+q . We

suppose that a0p 	= 0 or b0q 	= 0 and any θ ∈ Θ satisfies the conditions of the poly-
nomials. Given a process {Yt }nt=1, as defined in Eq. (1), the nonlinear least-squares
estimator of θ0, θ̂n = (̂a1, . . . , âp, b̂1, . . . , b̂q)′, is obtained byminimizing the sum of
the squared residuals. The residuals ε̂t = εt (θ̂n) (t = 1, . . . , n) from the fitted mod-
els are given by ε̂t = Yt − â1Yt−1 − · · · − âpYt−p − b̂1̂εt−1 − · · · − b̂q ε̂t−q , where
the unknown starting values are set to 0: ε̂0 = · · · = ε̂1−q = Y0 = · · · = Y1−p = 0.
Throughout this paper, we assume that:

Assumption 1 {Yt } is strictly stationary, satisfies the ARMA(p, q) model (1),
E |εt |4+2ν < ∞, and {εt } is an α-mixing of size −(2 + ν)/ν for some ν > 0.

This assumption is somewhat stronger thanAssumption1′ in Francq et al. [3], because
it implies the summability of α-mixing coefficients raised to the ν/(2 + ν)th power.
Francq and Zakoïan [4] showed that, under this assumption, θ̂n is

√
n-consistent and

asymptotically normal. Francq et al. [3] note that Assumption 1 does not require
the noise to be independent or a martingale difference sequence (MDS). In Sect. 3,
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we apply this assumption to establish a functional central limit theorem (FCLT) of
near-epoch dependence (NED) in the mixing process {εt }.

To check the adequacy of the model fit, we examine the residual autocorrelations
as follows:

r̂( j) = γ̂ ( j)

γ̂ (0)
, γ̂ ( j) = 1

n

n∑

i= j+1

ε̂i ε̂i− j , j = 0, 1, . . . , n − 1.

The vector of residual autocorrelations, r̂ = [̂r(1), . . . , r̂(q)]′, is used to test for H0 :
E[zt ] = 0 for any t , where zt = (εt−1, . . . , εt−m)′εt . The asymptotic joint distribution
of r̂ has been analyzed by Box and Pierce [1] and McLeod [18]. When {εt } is
independent and identically distributed (i.i.d.), the asymptotic distribution of

√
nr̂ is a

multivariate normal distributionwithmean zero and an asymptotic covariancematrix
that is approximately idempotent for large m. Therefore, both of the abobe papers
proposed a portmanteau statistic, Qm = n

∑m
i=1 r̂(i)

2 for p + q < m < n, which
is approximately distributed as χ2

m−p−q . Ljung and Box [15] showed that a better
approximation of Qm can be achieved using the following modified portmanteau
statistic:

Q∗
m = n(n + 2)

m∑

i=1

r̂(i)2

n − i
.

These statistics have been adopted by many practitioners, and have been modified
or extended in various ways (see Li [14] and references therein).

2.1 The Portmanteau Test of Francq et al. [3]

The portmanteau tests using Q∗
m are originally chi-squared tests, assuming the error

is i.i.d. Francq et al. [3] established the asymptotic distribution of Q∗
m under Assump-

tion 1. The statistic Q∗
m is no longer a chi-squared random variable, but is given by

the weighted sums of the chi-squared random variables. Therefore, the present port-
manteau test cannot control type I error. Francq et al. [3] established a portmanteau
test using the asymptotic distribution of Q∗

m . FromMcLeod [18] and Francq et al. [3],
we have:

r̂ = γ̂ /σ 2
0 + Op(1/n),

γ̂ = γ + σ 2
0 �′

0

(
θ̂n − θ0

) + Op(1/n), (2)

where γ̂ = [γ̂ (1), . . . , γ̂ (m)]′, γ = [γ (1), . . . , γ (m)]′,



The Portmanteau Tests and the LM Test for ARMA Models . . . 135

γ (i) = 1

n

n∑

j=i+1

εiε j−i , i = 0, 1, . . . , n − 1,

�0 = �(θ0) = (λ1, . . . , λm) is anm × (p + q) matrix, and {λ j } is a (p + q)-vector
of sequences defined by

∂εt (θ0)

∂θ
=

∞∑

j=1

λ jεt− j .

Note that rank{�(θ)} = p + q for any θ ∈ Θ . The distribution of
√
n{γ ′, (θ̂n −

θ0)
′}′ is asymptotically normal with mean zero and covariance matrixΣγ,θ . Estimat-

ing this covariance matrix is not easy, as it is the long-run variance of a stationary
process. For example, the asymptotic variance of

√
nγ is given by:

Γ =
∞∑

j=−∞
E

(
zt z

′
t− j

)
.

When {εt } is i.i.d., Γ = σ 4
0 Im . However, when {εt } is uncorrelated but non-

independent, Γ is not always simple.
Francq et al. [3] also showed that, when {εt } is uncorrelated but non-independent,

the asymptotic variance of
√
nr̂ is no longer idempotent and the asymptotic distri-

bution of Q∗
m is the weighted sum of the chi-squared random variables. Therefore,

their proposed portmanteau test with Q∗
m uses critical regions of the non-pivotal dis-

tribution with the nonparametric estimator of Σγ,θ . Francq et al. [3] referred to their
portmanteau test as a modified Ljung–Box (MLB) test. Therefore, we call this the
MLB test throughout this paper.

2.2 The Portmanteau Test of Katayama [9]

Francq et al. [3]’s MLB test must estimate critical values, because the asymptotic
distribution is non-pivotal. Recently, Katayama [9] proposed another approach that
provides a chi-squared distribution. First, let D = �′

0(�0Γ
−1�′

0)
−1�0Γ

−1 and S
be the square root of Γ . Katayama [9] assumed that:

Assumption 2 The matrix S is nonsingular.

This assumption is satisfied for stationary, ergodic, and square-integrableMDSs; see,
e.g., Francq and Zakoïan [5, Theorem 5.1]. From (2) and (Im − D)�′

0 = 0, we have:

(Im − D)γ̂ = (Im − D)γ + Op(1/n),

S−1(Im − D)
√
nγ̂

d→ N (0, Im − F(F ′F)−1F ′),
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where F = S−1�′
0. Therefore, Katayama [9] proposed that

QK
m = γ̂ ′Tn(Im − D̂′)Γ̂ −1(Im − D̂)Tn γ̂ ,

where D̂ is a
√
n-consistent estimator of D and Tn = {n(n + 2)}1/2 diag{(n −

1)−1/2, . . . , (n − m)−1/2}. ThematrixTn is the small-sample approximationof
√
nIm ,

similar to the weights of Q∗
m . The matrix Γ̂ is a consistent estimator of Γ com-

puted from nonparametric methods. Katayama [9] showed that QK
m is approximately

χ2
m−p−q . However, simulations indicated that, similarly to the MLB test, the finite-

sample properties of QK
m result in some size distortions as m increases [9]. This may

be due to the difficulty in establishing a non-parametric estimation of Γ .

2.3 The Portmanteau Test of Kuan and Lee [12] and Lee [13]

Themain difficulty of conducting the Francq et al. [3] andKatayama [9] portmanteau
tests is obtaining nonparametric estimates ofΣγ,θ and Γ . These estimates require an
approximation of the covariance matrix of a high-dimensional multivariate process
and a large sample size. FollowingKVB,Kuan andLee [12] andLee [13] proposed an
alternative approach. Their approach uses random normalized matrices to eliminate
the nuisance covariance matrix. Let θ̃t denote the nonlinear least-squares estimator
from subsample {yi }ti=1, and let {̃εi }ti=1 be the residual sequences given by θ̃t . Define
the matrices

Ĉn = 1

n

n−1∑

i, j=1

i∑

t=1

j∑

s=1

{
(κi j − κi, j+1) − (κi+1, j − κi+1, j+1)

}
(̂zt − γ̂ )(̂zs − γ̂ ) (3)

C̃n = 1

n

n−1∑

i, j=1

i∑

t=1

j∑

s=1

{
(κi j − κi, j+1) − (κi+1, j − κi+1, j+1)

}
(̃zt − γ̂ )(̃zs − γ̂ ),

with ẑt = ε̂t (̂εt−1, . . . , ε̂t−m)′ and z̃t = ε̃t (̃εt−1, . . . , ε̃t−m)′. Additionally, κi j =
κ(|i − j |/n), where κ denotes a kernel function. The main idea underlying the KVB
approach is to employ a normalizing randommatrix instead of estimating the asymp-
totic variance of Tn γ̂ . Kuan and Lee [12] and Lee [13] considered two generalized
test statistics. These are given by:

Q̂KL
m = γ̂ ′TnĈ−1

n Tn γ̂ ,

Q̃KL
m = γ̂ ′TnC̃−1

n Tn γ̂ .
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Under conditions of the FCLT, Kuan and Lee [12] and Lee [13] showed that

Tn γ̂
d→ VWm(1),

Ĉn ⇒ S′UmS,

C̃n ⇒ V ′UmV,

where V is the matrix square root of the asymptotic covariance matrix of
√
nγ̂ , and

Um = ∫ 1
0

∫ 1
0 κ(t − s)dBm(t)dBm(s)′. It follows that

Q̂KL
m

d→ Wm(1)′V ′(S′UmS)−1VWm(1),

Q̃KL
m

d→ Wm(1)′U−1
m Wm(1).

Therefore, Q̃KL
m is an asymptotically pivotal distribution, critical values for which can

be obtained via simulations. The critical values of Wm(1)′U−1
m Wm(1) are given by

KVB (Table II), Lobato [16, Table 1], Kiefer and Vogelsang [10, Tables I and II], and
Su [23, Table 1]. Note that Kuan and Lee [12] and Lee [13] assume V is nonsingular.
However, this assumption is restrictive, as Francq et al. [3] noted in their Remark 2
that V may be singular. Additionally, because elements of V are nonlinear functions
of θ0, it is difficult to confirm this assumption.

3 New Portmanteau Tests and LM Tests Using the KVB
Approach

The KVB-based portmanteau statistics proposed by Kuan and Lee [12] and Lee [13]
do not estimate asymptotic covariance matrices of

√
nγ̂ . However, these statistics

contain a recursive estimator, and the assumption on the covariance matrix is restric-
tive. To solve these problems, in this section, we propose new KVB-based test sta-
tistics.

3.1 New Portmanteau Tests Using the KVB Approach

We now re-examine (2). Kuan and Lee’s [12] approach was based on the asymptotic
joint distribution of

√
n(γ ′, (θ̂n − θ0)

′). However, the the asymptotic distribution
of

√
n(θ̂n − θ0) is cumbersome. Therefore, our approach eliminates this estimation

effect in a similar manner to Katayama [9].
LetP P

n = Im − �̂′(�̂�̂′)−1�̂, where �̂ = �(θ̂n) andP P
0 = Im − �′

0(�0�
′
0)

−1

�0. Then, P P
n

p→ P P
0 and P P

0 �′
0 = 0. It follows from (2) that:
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P P
n γ̂ = P P

0 γ + op
(
n−1/2

)
. (4)

We now construct a KVB-based portmanteau statistic based on this equation.
Under Assumption 1, the FCLT for NED functions of some mixing process {εt }
(Davidson [2], Corollary 29.19) gives:

1√
n

[nτ ]∑

t=1

zt ⇒ SWm(τ ) (5)

for any τ ∈ (0, 1]. It follows from (4), (5), and the continuous mapping theorem that:

TnP
P
n γ̂

d→ � P
0 Wm(1) (6)

and

P P
n ĈnP

P
n

′ ⇒ � P
0 Um� P

0
′
, (7)

where � P
0 = P P

0 S and Ĉn is given by (3). We define the following portmanteau test
statistic:

QNEW
m = γ̂ TnP

P
n

(
P P

n ĈnP
P
n

′)+
P P

n Tn γ̂ .

Since P P
n ĈnP P

n
′
is singular with rank m − p − q, we use the MP inverse as a

normalizing matrix. Thus, we obtain a new portmanteau test that extends those of
Lobato [16] and Su [23] to the estimated parameter case.

Theorem 1 Given Assumptions 1 and 2, QNEW
m

d→ Wm−p−q(1)′U−1
m−p−qWm−p−q(1).

Proof The necessary and sufficient condition for the continuity of the MP-inverse
matrix is that the rank of the matrices is constant: rank(P P

n ĈnP P
n

′
) = rank(� P

0 Um

� P
0

′
); see, e.g., Schott [22, Theorem 5.21]. Because rank�(θ) = p + q for any θ ∈

Θ , we have rank(P P
n ĈnP P

n
′
) = rank(P P

n ) = m − p − q and rank(� P
0 Um� P

0
′
) =

rank(� P
0 ) = rank(P P

0 ) = m − p − q. Therefore, thismatrix satisfies the continuity
condition of the MP-inverse. It follows from (6) and (7) that

QNEW
m ⇒ Wm(1)′� P

0
′ (

� P
0 Um� P

0
′)+

� P
0 Wm(1).

The rest of the proof is similar to that of Equation (9) in Kuan and Lee [12].

As noted by Kuan and Lee [12, Remark 2], we can modify Q̃KL
m using the MP-

inverse. However, it is difficult to estimate rank(V ), as V is generally a complicated
matrix. Our proposed portmanteau test overcomes this problem without using a
recursive estimator.
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3.2 New LM Test Using the KVB Approach

The LM test as a goodness-of-fit test of ARMAmodels is a special case of a test for a
parameter constraint of a nonlinear regression model. Therefore, we briefly discuss
LM tests for nonlinear regression models. Similar to our approach in the previous
subsection, the new KVB-based LM test statistic uses a projection matrix. We now
consider the following nonlinear regression model:

Yt = ft (Y
t−1;β) + εt , (8)

where Yt is the t th observation of a dependent variable, β is an r -dimensional vector
of parameters to be estimated, and ft is a function of Y t−1 = {Y j , j < t} and β

and third-order differentiable with respect to β. We consider the null hypothesis
β0 = c(δ0), where β0 is a true parameter of β, δ0 is an s-dimensional constrained
vector, and c is a differentiable function from R

s to Rr with values in Rr and r > s.
We set et (β) = Yt − ft (Y t−1;β), and define

Ln(β) = − 1

2n

n∑

t=1

et (β)2 (9)

as a quasi-maximum log-likelihood function. Let δ̂n be a root-n consistent estimator
of δ0 and β̂n = c(̂δn) so as to satisfy the first-order condition:

∂Ln(c(δ))

∂δ

∣∣∣∣
δ=δ̂n

= ∂c(δ)′

∂δ

∂Ln(β)

∂β

∣∣∣∣
δ=δ̂n , β=β̂n

= 0. (10)

The classical LM test is:

LM = n
∂Ln(β)

∂β ′ E

[
∂2Ln(β)

∂β∂β ′

]−1
∂Ln(β)

∂β

∣∣∣∣∣
β=β̂n

.

Under standard regularity conditions, and when {εt } is i.i.d., this test statistic is
asymptotically χ2

r−s when β0 = c(δ0) is true; see, e.g., White [24, Section 10.1].
However, when {εt } is not independent but uncorrelated, LM is not always approx-
imately chi-squared, because the asymptotic variance of

√
n times the score vector

does not always coincide with the Fisher information matrix. One modification is to
employ a nonparametric estimator of the asymptotic variance. Another is to use the
KVB-based LM test statistic given by Kuan and Lee [12] with a recursive estimator.

We nowpropose anotherKVB-basedLM test statisticwith a full sample estimator.
To proceed, we further suppose that

∣∣−∇′
β∇βLn(β) − E

[∇′
βet (β)∇βet (β)

]∣∣ p→ 0 (11)
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uniformly in β. From (11) and the first-order Taylor series approximation around
δ̂n = δ0, we have that:

∂Ln(β̂n)

∂β
= ∂Ln(β0)

∂β
+ J0C

′
0(̂δn − δ0) + op(n

−1/2), (12)

where J0 = −E[∇′
βet (β0)∇βet (β0)] and C0 = ∇δc(δ0)′. We define the matrices

P LM
0 = Ir − J0C

′
0(C0J0C

′
0)

−1C0 and P LM
n = Ir − JnC

′
n(CnJnC

′
n)

−1Cn , where
Cn = ∇′

δc(̂δn) andJn denotes a consistent estimator ofJ0. These projection matri-
ces are used in a similar way to QNEW

m . From (12), we have that:

∂Ln(β̂n)

∂β
= P LM

n

∂Ln(β̂n)

∂β
= P LM

0
∂Ln(β0)

∂β
+ op(n

−1/2). (13)

The first equality comes from (10), as Cn∇′
βLn(β̂n) = 0. The second equality fol-

lows from (12), as P LM
n is a consistent estimator of P LM

0 and P LM
0 J0C

′
0 = 0.

Therefore, if we suppose that n1/2∇′
βLn(β0)

d→ GWr (1), then (13) implies that

n1/2∇′
βLn(β̂n)

d→ P LM
0 GWr (1). We note that the asymptotic variance of n1/2∇′

βLn

(β̂n),I0 = GG ′, is not always equal toJ0.
We define the following new LM test statistic:

LMNEW = n
∂Ln(β̂n)

∂β ′

⎛

⎝
n−1∑

i=1

n−1∑

j=1

ki j ϕ̂i ϕ̂
′
j

⎞

⎠
+

∂Ln(β̂n)

∂β
,

ϕ̂ j = 1√
n
P LM

n

j∑

i=1

{
−∂ei (β̂n)

∂β
ei (β̂n) − ∂Ln(β̂n)

∂β

}
.

Theorem 2 gives the limiting distribution of the LM test statistic:

Theorem 2 Assume that

(i) Rank(CnJnC
′
n) = rank(C0J0C

′
0) = s.

(ii)
1√
n

[nτ ]∑

t=1

∂et (β0)

∂β
et (β0) ⇒ GWr (τ ) for any τ ∈ (0, 1] as n → ∞, where G is

a r × r positive definite matrix.
(iii) Equation (11) or (12) holds.

Then, LMNEW ⇒ Wr−s(1)′U−1
r−sWr−s(1) as n → ∞.

Proof The proof is similar to that for Theorem 1. Hence, it is omitted here.

This result can be applied to the goodness-of-fit test for ARMA models with
uncorrelated errors, e.g., H0 : ARMA(p, q) against H1 : ARMA(p + m, q) and
H0 : ARMA(p, q) against H1 : ARMA(p, q + m), where p + q = s and m =
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r − s. The constrained estimator θ̂n is a quasi-maximum-likelihood estimator of
ARMA(p, q) and β̂ ′

n = (θ̂ ′
n, 0

′). The residuals {et (β̂n)} are given by the residuals of
ARMA(p, q). The residuals {∇βet (β̂n)} are derived from the residuals of the alter-
native model. These statistics can be computed using standard statistical software,
such as R and SAS, as they are the same as for ARMAmodels with i.i.d. errors. The
first-order Taylor series approximatin of (12) is obtaiend from the proof of Lemma
5 and Theorem 2 in Francq and Zakoïan [4]. For example, when the null model is
AR(1) and the alternative model is AR(1 + m), θ0 = a01 and β0 = (1, 0, . . . , 0)′θ0.
ft (Y t−1;β0) = a01Yt−1 + a02Yt−2 + · · · + a0m+1Yt−m−1, et (β̂) = Yt − θ̂nYt−1,∇βet
(β̂n) = −(Yt−1, . . . ,Yt−m−1), and Jn are given by the sample mean of {∇′

βet (β̂n)

∇βet (β̂n)}.

4 Some Simulation Studies

In this section, we examine the empirical size and power of the various portmanteau
tests and the LM test to diagnose the goodness of fit of AR(1) models.

4.1 Empirical Significance Level

We first examine the empirical significance level of the following univariate AR(1)
models Yt = a01Yt−1 + εt , where {εt } is defined by:

DGP 1 (Gaussian GARCH(1, 1) model): εt = σt zt , σ 2
t = 10−6 + 0.1ε2t−1+ 0.8σ 2

t−1, where {zt } ∼ i.i.d.N (0, 1);
DGP 2 (Non-Gaussian ARCH(1) model): εt = σt vt , σ 2

t = 10−6 + 0.1ε2t−1, where{vt } ∼ i.i.d. Skew-Normal distribution with location, scale, and shape para-
meters (0.8, 1.0, 0);

DGP 3 (All-PassARMA(1, 1)model): εt = 0.8εt−1 + wt − 0.8−1wt−1, where {wt }
is i.i.d. Student’s t distribution with 10 degrees of freedom;

DGP 4 (Bilinear model): εt = zt−1 + 0.5zt−1εt−2.

Weselected these data generating processes (DGPs) fromFrancq et al. [3] andLobato
et al. [17]. DGPs 1 and 2 areMDS examples, and use the R function garchSim from
the fGarch R package with default parameter values. DGPs 3 and 4 are non-MDS
examples, where the parameters are given by Lobato et al. [17]. We set a01 = 0.9 and
considered sample sizes of n = 200, 400, and 3000 in each experiment.

Five different test statistics were examined. The first two have to estimate the
long-run variance matrices:

(i) QMLB
m : Francq et al. [3]’s MLB portmanteau test (discussed in Sect. 2.1), where

M = 30 in step 2 of Francq et al. [3].
(ii) QK

m : Katayama’s [9] modified portmanteau test statistic (discussed in Sect. 2.2).
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The remaining three test statistics are based on KVB, where we use sharp original
kernels with the ρ value proposed by Phillips et al. [20]:

(iii) Q̃KL
m,ρ : Kuan and Lee’s KVB-based portmanteau statistics with the AR(1) recur-

sive estimator (discussed in Sect. 2.3).
(iv) QNEW

m,ρ : Our proposed portmanteau test, described in Sect. 3.1.
(v) LMNEW

m,ρ : Our proposed LM test, discussed in Sect. 3.2, where the null model is
AR(1) and the alternative model is AR(1 + m).

The sharp original kernel κρ(x) is given by:

κρ(x) =
{

(1 − |x |)ρ |x | ≤ 1

0 otherwise,

where ρ is a positive integer. When ρ = 1, the sharp original kernel is the usual
Bartlett kernel. As ρ increases, κρ(x) becomes concentrated at the origin with a
sharper, more pronounced peak. We investigated the cases ρ = 1, 8, 16, 32, 48, 64;
for reasons of space, we present the cases ρ = 1, 16, 64 here.

The asymptotic distributions of (iii)–(v) areWτ (1)′U−1
τ Wτ (1), where κ = κρ and

τ = m or m − 1. The critical values of the distribution are obtained by simulations.
The Brownian motion and Brownian bridge process are approximated using the
normalized partial sum of n = 2000 i.i.d. N (0, 1) random variables, and the simula-
tion involves 30,000 replications. These critical values have also been computed by
Su [23].

Tables 1 and 2 present the relative rejection frequencies (in%) form = 2, 6, 10, 14
and n = 200, n = 400, respectively. The tests using QMLB

m , QK
m , and Q̃KL

m,ρ seem to
have noticeable under-rejection probabilities for larger m. Our proposed tests using
QNEW

m,ρ and LMNEW
m,ρ exhibit relatively stable sizes, which for a finite number of samples

is one of the superior features of our proposed tests. The tests using QNEW
m,ρ and LM

NEW
m,ρ

seem to have a slight under-rejection probability for DGP 1 asm increases. The tests
using LMNEW

m,ρ seem to have an over-rejection tendency for some cases when n = 200,
though this is not observed when n = 400.

4.2 Empirical Power

We next conducted 3000 replications with n = 200 for the univariate AR(2) models
defined by: Yt = a01Yt−1 + a02Yt−2 + εt , where a01 = 0.9, a02 = −0.15,−0.3 and {εt }
is defined by DGPs 1, 2, . . . , 4. We fitted an AR(1) model and conducted the tests to
a 5% significance level. Tables 3 and 4 present the empirical powers corresponding
to the empirical size in Table 1; Table 3 corresponds to a02 = −0.15 and Table 4 to
a02 = −0.30.

The tests using LMNEW
m,64 were confirmed to be the most powerful in almost all

cases. All three KVB-based tests produce an increase in power as ρ increases, which
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is consistent with the asymptotic power envelope under the local alternatives given
by Phillips et al. [20, 21]. Tests using QMLB

m and QNEW
m,64 were also powerful, although

the QMLB
m case showed a serious under-rejection frequency. It is interesting that our

proposed tests, QNEW
m,ρ and LMNEW

m,ρ , give similar powers for m = 6, 10, 14. This sim-
ilarity is explained by Hosking [7, Section 4]. The portmanteau tests examine the
goodness of fit without particular alternatives. However, Hosking [7, Section 4] noted
that portmanteau tests can be approximately interpreted as LM tests for a particular
form of ARMA models.

To compare the potential power properties, we also computed the size-adjusted
powers; the results are listed in Tables 5 and 6. The tests using QMLB

m aremost powerful
for m = 6, 10, 14. We confirmed that tests using LMNEW

2,64 are the most powerful, and
that QNEW

2,64 have a comparatively greater power than QMLB
2 . Our proposed portmanteau

test QNEW
m,ρ exhibited a superior power to Kuan and Lee’s Q̃KL

m,ρ .
From these simulations, we can state that our proposed tests are sufficiently effi-

cient in terms of their empirical size and power properties compared with existing
portmanteau tests. Besides their empirical size and power, our proposed tests are
also superior in terms of computational cost. Asm increases, QMLB

m , QK
m , and the LM

test need a large sample size n, because these statistics have to estimate long-run
variance matrices containing Γ . In summary, we recommend our proposed test for
determining the goodness of fit for the ARMA model.
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