
Chapter 9
GRASP with path-relinking

Path-relinking is a major enhancement to GRASP, adding a long-term memory
mechanism to GRASP heuristics. GRASP with path-relinking implements long-
term memory using an elite set of diverse high-quality solutions found during the
search. In its most basic implementation, at each iteration the path-relinking oper-
ator is applied between the solution found at the end of the local search phase and
a randomly selected solution from the elite set. The solution resulting from path-
relinking is a candidate for inclusion in the elite set. In this chapter we examine
elite sets, their integration with GRASP, the basic GRASP with path-relinking pro-
cedure, several variants of the basic scheme, including evolutionary path-relinking,
and restart strategies for GRASP with path-relinking heuristics.

9.1 Memoryless GRASP

The basic GRASP heuristic, as presented in Chapter 5, searches the solution
space by repeatedly applying independent searches in the solution space graph
G = (F,M), each search starting from a different greedy randomized solution. Each
independent search uses no information produced by any other search performed at
previous iterations. The choices of starting solutions for local search are not influ-
enced by information produced during the search. However, Reactive GRASP and
adaptive memory techniques (introduced in Sections 7.1 and 7.6, respectively) do
make use of information produced during the search. Reactive GRASP does so to
select the blend of randomness and greediness used in the construction of the start-
ing solutions for local search, while programming with adaptive memory determines
the amount of intensification and diversification in the construction phase.

The memoryless nature of basic, or pure, GRASP is in contrast with many
successful metaheuristics, such as tabu search, genetic algorithms, and ant colony
optimization, which make extensive use of information gathered during the search
process to guide their choice of the region of the solution space to explore.

© Springer Science+Business Media New York 2016
M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP,
DOI 10.1007/978-1-4939-6530-4 9

189

190 9 GRASP with path-relinking

In this chapter, we show how path-relinking can be used with any GRASP heuris-
tic to result in a hybrid procedure with a long-term memory mechanism. Given the
same running time, this hybridization almost always produces better solutions than
pure GRASP. Alternatively, given a target value, it almost always finds a solution at
least as good as this target in less running time than pure GRASP.

9.2 Elite sets

An elite set E of solutions is a set formed by at most a fixed number nE of diverse,
high-quality solutions found during the run of a heuristic. The elite solutions should
represent distinct promising regions of the solution space and therefore should not
include solutions that are too similar, even if they are of high quality.

A basic scheme to maintain an elite set E for a minimization problem is outlined
in the algorithm of Figure 9.1. The algorithm is given a candidate solution S and
determines if S should be added to E and, if so, which solution, if any, should be
removed from E .

Fig. 9.1 Pseudo-code of a template for the maintenance of the elite set E of at most nE elements
in the context of a minimization problem.

If line 1 determines that the elite set E is not full, i.e., if |E |< nE , then a candidate
solution S is always added to E if it is different from any solution currently in the
set. This case is treated in lines 2 to 7 of the pseudo-code. In line 3, S is added to
E if the elite set is empty. Let the symmetric difference Δ(S,S′) be formed by the
ground set elements that belong to either S or S′. In line 5, the minimum cardinality

9.3 Hybridization of GRASP with path-relinking 191

δ among the symmetric differences between S and the elements of E is computed.
If S is different from all elite solutions, then it is added to E in line 6.

Otherwise, if the elite set is full (i.e., if |E | = nE), then any time a solution is
added to the set, another solution must be removed from it, thus maintaining the
size of E equal to nE . Our goal is to first improve the average quality of the elite
set, and then maximize the diversity of its elements, which amounts to maximizing
the cardinalities of the symmetric differences between all pairs of solutions in the
set. This case is treated in lines 9 to 14. In line 9, the cost f+ of the worst-valued
elite set solution is computed, while in line 10 the minimum cardinality δ among
the symmetric differences between S and any element of E is determined. S is added
to E if it is better than the worst solution in the elite set and if it is different from
all elite solutions, i.e., if f (S) < f+ and δ > 0 in line 11. This is accomplished in
lines 12 and 13. Line 12 determines, among all elite set solutions valued no better
than S, one which is most similar to S, i.e., one which minimizes the cardinality of
its symmetric difference with respect to S. This solution, S−, is removed from E in
line 13. The new elite solution S is inserted in the pool as a replacement for S− at
the same line. The updated elite set is returned in line 16.

The algorithm in Figure 9.1 can be modified to increase the diversity of the elite
set solutions by modifying lines 6 and 11, where condition δ > 0 can be changed
to δ ≥ δ , where δ > 0 is a parameter. In this case, instead of requiring that S only
be different from all other elite set solutions, we now require that it be sufficiently
different by at least a given number of attributes.

9.3 Hybridization of GRASP with path-relinking

Path-relinking is a major enhancement to GRASP, equipping GRASP heuristics
with a long-term memory mechanism and enabling search intensification beyond
simple local search. In this section, we show how to hybridize path-relinking with
GRASP.

To implement GRASP with path-relinking, we make use of an elite set E , such as
the one introduced in Section 9.2, to collect a diverse set of high-quality solutions
found during the search. The elite set starts empty and is constrained to have at
most nE solutions. Each new locally optimal solution produced by the GRASP local
search phase is relinked with one or more solutions from the elite set. Each solution
resulting from path-relinking is considered as a candidate to be inserted in the elite
set according to algorithm UPDATE-ELITE-SET of Figure 9.1.

The pseudo-code of Figure 9.2 outlines the main steps of a GRASP with path-
relinking heuristic for minimization. This simple variant relinks the locally optimal
solution produced in each GRASP iteration with a single, randomly chosen, solu-
tion from the elite set, following the forward path-relinking strategy described in
Section 8.1.2. The output of the path-relinking operator is a candidate for inclusion
in the elite set.

192 9 GRASP with path-relinking

Fig. 9.2 Pseudo-code of a template of a basic GRASP with path-relinking heuristic for minimiza-
tion.

Line 1 of the pseudo-code initializes the elite set E as empty. The loop from line 2
to line 13 makes up the steps of GRASP with path-relinking. Lines 3 to 7 correspond
to the semi-greedy construction, repair (in case of infeasibility), and local search
phases of a basic GRASP heuristic. Forward path-relinking is performed in lines 9
and 10 in case the elite set is not empty: in line 9, an elite set solution S′ is selected
at random from E while, in line 10, S′ is relinked with the locally optimal solution
S produced in line 7. The resulting solution, S, is tested for inclusion in the elite
set in line 12, which updates E by applying algorithm UPDATE-ELITE-SET of
Figure 9.1. The algorithm returns the best-valued elite solution in line 14, after a
stopping criterion is met.

Enhancing GRASP with path-relinking almost always improves the performance
of the heuristic. As an illustration, Figures 9.3 and 9.4 show time-to-target plots (or
runtime distributions) for GRASP with and without path-relinking for four different
applications. These plots show the empirical cumulative probability distributions of
the time-to-target random variable, i.e., the time needed to find a solution at least as
good as a given target value. For all problems, the plots show that GRASP with path-
relinking is able to find target solutions faster than the memoryless basic algorithm.

9.4 Evolutionary path-relinking

As aforementioned, GRASP with path-relinking heuristics maintain an elite set of
high-quality solutions. In the variant of GRASP with path-relinking introduced in
Section 9.3, locally optimal solutions produced by local search are relinked with
elite set solutions. Path-relinking can also be applied to pairs of elite set solutions
to search for new high-quality solutions and to improve the quality of the elite set.

9.4 Evolutionary path-relinking 193

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution (seconds)

3-index assignment: Balas & Statzman 26.1

GRASP+forward PR
GRASP (no PR)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

QAP: ste36b

GRASP+forward PR
GRASP (no PR)

Fig. 9.3 Time-to-target plots comparing running times of GRASP with and without path-relinking
on distinct problems: three-index assignment and maximum satisfiability. Forward path-relinking
was used in these two examples.

194 9 GRASP with path-relinking

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

Bandwidth packing: fr750

GRASP (no PR)
GRASP+forward PR

GRASP+backward PR
GRASP+back-and-forward PR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

QAP: ste36b

GRASP+forward PR
GRASP (no PR)

Fig. 9.4 Time-to-target plots comparing running times of GRASP with and without path-relinking
on distinct problems: bandwidth packing and quadratic assignment. Forward path-relinking was
used in these two examples. In addition, on the bandwidth packing example, plots for GRASP
with backward and back-and-forward path-relinking are also shown.

9.4 Evolutionary path-relinking 195

This procedure, called evolutionary path-relinking (EvPR), can be applied as a post-
optimization phase of GRASP, after the main heuristic stops, or periodically, when
the main heuristic is still running.

Fig. 9.5 Pseudo-code of a template of a GRASP with evolutionary path-relinking heuristic where
evolutionary path-relinking is applied at a post-processing step.

The pseudo-codes in Figures 9.5 and 9.6 correspond to the post-processing and
periodic variants, respectively. The pseudo-code in Figure 9.5 is identical to that
of the GRASP with path-relinking of Figure 9.2, with an additional step in line 15
where EvPR is applied.

The pseudo-code of Figure 9.6 adds lines 3 and 15 to 19 to manage the periodic
application of EvPR. Line 3 initializes it2evPR, a counter of iterations to EvPR,
with evPRfreq being the number of GRASP iterations between consecutive calls
to EvPR. If evPRfreq iterations have passed without the application of EvPR, then
in line 16 it is applied and the counter it2evPR is reinitialized in line 17. Finally, in
line 19, it2evPR is decreased by one iteration.

Evolutionary path-relinking takes as input the elite set and returns either the same
elite set or a renewed one with an improved average cost. This approach is outlined
in the pseudo-code of Figure 9.7. While there exists a pair of solutions in the elite set
for which path-relinking has not yet been applied, the two solutions are combined
with path-relinking and the resulting solution is tested for membership in the elite
set. If it is accepted, it then replaces the elite solution most similar to it among all so-
lutions having worse cost. To explore more than one path connecting two solutions,
evolutionary path-relinking can apply greedy randomized adaptive path-relinking a
fixed number of times between each pair of elite solutions.

This strategy outperformed several other heuristics using GRASP with path-
relinking, simulated annealing, tabu search, and a multistart strategy for the

196 9 GRASP with path-relinking

Fig. 9.6 Pseudo-code of a template of a GRASP with evolutionary path-relinking heuristic where
evolutionary path-relinking is applied periodically during the search.

Fig. 9.7 Pseudo-code of a template of the evolutionary path-relinking strategy.

max-min diversity problem. Figure 9.8 shows the evolution of the best solution
found by the multistart strategy, pure GRASP, and GRASP with evolutionary path-
relinking for a 500-element max-min diversity instance.

9.5 Restart strategies

Figure 9.9 shows a typical iteration count distribution for a GRASP with path-
relinking heuristic. Observe in this example that for most of the independent runs
whose iteration counts make up the plot, the algorithm finds a target solution in

9.5 Restart strategies 197

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500 3000 3500

A
ve

ra
ge

 p
er

ce
nt

ag
e

de
vi

at
io

n

CPU time (seconds)

GRASP with evolutionary PR

GRASP

Multistart

Fig. 9.8 Percent deviation from best known solution value for GRASP with evolutionary path-
relinking, pure GRASP, and a multistart algorithm for a 500-element instance of a max-min diver-
sity problem with a time limit of 60 minutes.

relatively few iterations: about 25% of the runs take at most 101 iterations; about
50% take at most 192 iterations; and about 75% take at most 345. However, some
runs take much longer: 10% take over 1000 iterations; 5% over 2000; and 2% over
9715 iterations. The longest run took 11607 iterations to find a solution at least as
good as the target. These long tails contribute to a large average iteration count as
well as to a high standard deviation. This section proposes strategies to reduce the
tail of the distribution, consequently reducing the average iteration count and its
standard deviation.

Consider again the distribution in Figure 9.9. The distribution shows that each
run will take over 345 iterations with about 25% probability. Therefore, any time the
algorithm is restarted, the probability that the new run will take over 345 iterations
is also about 25%. By restarting the algorithm after 345 iterations, the new run will
take more than 345 iterations with probability of also about 25%. Therefore, the
probability that the algorithm will be still running after 345+ 345 = 690 iterations
is the probability that it takes more than 345 iterations multiplied by the probability
that it takes more than 690 iterations given that it took more than 345 iterations,
i.e., about (1/4)× (1/4) = (1/4)2. It follows by induction that the probability that
the algorithm will still be running after k periods of 345 iterations is 1/(4k). In this
example, the probability that the algorithm will be running after 1725 iterations will
be about 0.1%, i.e., much less than the 5% probability that the algorithm will take
over 2000 iterations without restart.

198 9 GRASP with path-relinking

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

iterations to target solution

(1982, 0.955)

(345, 0.745)

(192, 0.495)

(101, 0.245)

GRASP+PR (no restart)

Fig. 9.9 Typical iteration count distribution of GRASP with path-relinking.

A restart strategy is defined as an infinite sequence of time intervals τ1,τ2,τ3, . . .
which define epochs τ1,τ1+τ2,τ1+τ2+τ3, . . . when the algorithm is restarted from
scratch. It can be shown that the optimal restart strategy uses τ1 = τ2 = · · · = τ∗,
where τ∗ is some (unknown) constant.

Implementing the optimal strategy may be difficult in practice because it requires
inputting the constant value τ∗. Runtimes can vary greatly for different combina-
tions of algorithm, instance, and solution quality sought. Since usually one has no
prior information about the runtime distribution of the stochastic search algorithm
for the optimization problem under consideration, one runs the risk of choosing a
value of τ∗ that is either too small or too large. On the one hand, a value that is too
small can cause the restart variant of the algorithm to take much longer to converge
than a no-restart variant. On the other hand, a value that is too large may never lead
to a restart, causing the restart-variant of the algorithm to take as long to converge as
the no-restart variant. Figure 9.10 illustrates the restart strategies with time-to-target
plots for the maximum cut instance G12 on an 800-node graph with edge density of
0.63% with target solution value 554 for τ = 6, 9, 12, 18, 24, 30, and 42 seconds.
For each value of τ , 100 independent runs of a GRASP with path-relinking heuristic
with restarts were performed. The variant with τ = ∞ corresponds to the heuristic
without restart. The figure shows that, for some values of τ , the resulting heuristic
outperformed its counterpart with no restart by a large margin.

In GRASP with path-relinking, the number of iterations between improvements
of the incumbent (or best so far) solution tends to vary less than the runtimes for
different combinations of instance and solution quality sought. If one takes this into
account, a simple and effective restart strategy for GRASP with path-relinking is

9.5 Restart strategies 199

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 to

 fi
nd

 ta
rg

et
 s

ol
ut

io
n

time to target solution (seconds)

Restart every:
6 seconds
9 seconds

12 seconds
18 seconds
24 seconds
30 seconds
42 seconds

no restart

Fig. 9.10 Time-to-target plot for target solution value of 554 for maximum cut instance G12 using
different values of τ .

to keep track of the last iteration when the incumbent solution was improved and
restart the GRASP with path-relinking heuristic if κ iterations have gone by without
improvement. We shall call such a strategy restart(κ). A restart consists in saving
the incumbent and emptying out the elite set.

The pseudo-code shown in Figure 9.11 summarizes the steps of a GRASP with
path-relinking heuristic using the restart(κ) strategy for a minimization problem.
The algorithm keeps track of the current iteration (CurrentIter), as well as of the
last iteration when an improving solution was found (LastImprov). If an improving
solution is detected in line 16, then this solution and its cost are saved in lines 17
and 18, respectively, and the iteration of last improvement is set to the current itera-
tion in line 19. If, in line 21, it is determined that more than κ iterations have gone
by since the last improvement of the incumbent, then a restart is triggered, emptying
out the elite set in line 22 and resetting the iteration of last improvement to the cur-
rent iteration in line 23. If restart is not triggered, then in line 25 the current solution
S is tested for inclusion in the elite set and the set is updated if S is accepted. The
best overall solution found S∗ is returned in line 28 after the stopping criterion is
satisfied.

As an illustration of the use of the restart(κ) strategy within a GRASP with path-
relinking heuristic, consider the maximum cut instance G12. For the values κ = 50,
100, 200, 300, 500, 1000, 2000, and 5000, the heuristic was run independently 100
times, stopping when a cut of weight 554 or higher was found. A strategy without
restarts was also implemented. Figures 9.12 and 9.13, as well as Table 9.1, summa-
rize these runs, showing the average time to target solution as a function of the value

200 9 GRASP with path-relinking

Fig. 9.11 Pseudo-code of a template of a GRASP with path-relinking heuristic with restarts for a
minimization problem.

of κ and the time-to-target plots for different values of κ . These figures illustrate
well the effect on running time of selecting a value of κ that is either too small
(κ = 50,100) or too large (κ = 2000,5000). They further show that there is a wide
range of κ values (κ = 200, 300, 500, 1000) that result in lower runtimes when
compared to the strategy without restarts.

Figure 9.14 further illustrates the behavior of the restart(100), restart(500), and
restart(1000) strategies for the previous example, when compared with the strategy
without restarts on the same maximum cut instance G12. However, in this figure,
for each strategy, we plot the number of iterations to the target solution value. It is
interesting to note that, as expected, each strategy restart(κ) behaves exactly like
the strategy without restarts for the κ first iterations, for κ = 100,500,1000. After
this point, each trajectory deviates from that of the strategy without restarts. Among
these strategies, restart(500) is the one with the best performance.

9.5 Restart strategies 201

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 100 1000 10000 100000

av
er

ag
e

tim
e

to
 ta

rg
et

 s
ol

ut
io

n

restart period (in iterations)

Fig. 9.12 Average time-to-target solution for maximum cut instance G12 using different values of
κ . All runs of all strategies have found a solution at least as good as the target value of 554.

We conclude this chapter with some observations about these experiments. The
effect of the restart strategies can be mainly observed in the column corresponding
to the fourth quartile of Table 9.1. Entries in this quartile correspond to those in the
heavy tails of the distributions. The restart strategies in general did not affect the
other quartiles of the distributions, which is a desirable characteristic. Compared to
the no-restart strategy, at least one restart strategy was always able to reduce the
maximum number of iterations, the average number of iterations, and the standard
deviation of the number of iterations. Compared to the no-restart strategy, restart
strategies restart(500) and restart(1000) were able to reduce the maximum number
of iterations, as well as the average and the standard deviation. Strategy restart(100)
did so, too, but not as much as restart(500) and restart(1000). Restart strategies
restart(500) and restart(1000) were clearly the best strategies of those tested.

Table 9.1 Summary of computational results on maximum cut instance G12 with four strategies.
For each strategy, 100 independent runs were executed, each stopped when a solution as good
as the target solution value 554 was found. For each strategy, the table shows the distribution of
the number of iterations by quartile. For each quartile, the table gives the maximum number of
iterations taken by all runs in that quartile, i.e., the slowest of the fastest 25% (1st), 50% (2nd),
75% (3rd), and 100% (4th) of the runs. The average number of iterations over the 100 runs and the
standard deviation (st.dev.) are also given for each strategy.

Iterations in quartile
Strategy 1st 2nd 3rd 4th Average st.dev.
Without restarts 326 550 1596 68813 4525.1 11927.0
restart(1000) 326 550 1423 5014 953.2 942.1
restart(500) 326 550 1152 4178 835.0 746.1
restart(100) 509 1243 3247 8382 2055.0 2005.9

202 9 GRASP with path-relinking

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution (seconds)

Restart frequency:
5000 iterations
2000 iterations
1000 iterations
500 iterations
300 iterations
200 iterations
100 iterations
50 iterations

no restart

Fig. 9.13 Time-to-target plots for maximum cut instance G12 using different values of κ . The
figure also shows the time-to-target plot for the strategy without restarts. All runs of all strategies
found a solution at least as good as the target value of 554.

9.6 Bibliographical notes

GRASP with path-relinking as proposed in Section 9.3 was first introduced by
Laguna and Martı́ (1999), where a forward path-relinking operator from the
solution found by local search to a randomly selected elite solution was applied.
This was followed by a number of applications of GRASP with path-relinking, e.g.,
to maximum cut (Festa et al., 2002), 2-path network design (Ribeiro and Rosseti,
2002), Steiner problem in graphs (Ribeiro et al., 2002), job-shop scheduling (Aiex
et al., 2003), private virtual circuit routing (Resende and Ribeiro, 2003a), p-median
(Resende and Werneck, 2004), quadratic assignment (Oliveira et al., 2004), set pack-
ing (Delorme et al., 2004), three-index assignment (Aiex et al., 2005), p-hub median
(Pérez et al., 2005), uncapacitated facility location (Resende and Werneck, 2006),
project scheduling (Alvarez-Valdes et al., 2008a), maximum weighted satisfiabil-
ity (Festa et al., 2006), maximum diversity (Silva et al., 2007), network migration
scheduling (Andrade and Resende, 2007a), capacitated arc routing (Labadi et al.,
2008; Usberti et al., 2013), disassembly sequencing (Adenso-Dı́az et al., 2008),
flowshop scheduling (Ronconi and Henriques, 2009), multi-plant capacitated lot siz-
ing (Nascimento et al., 2010), workover rig scheduling (Pacheco et al., 2010), max-
min diversity (Resende et al., 2010a), biobjective orienteering (Martı́ et al., 2015),
biobjective path dissimilarity (Martı́ et al., 2015), generalized quadratic assign-
ment (Mateus et al., 2011), antibandwidth (Duarte et al., 2011), capacitated clus-
tering (Deng and Bard, 2011), linear ordering (Chaovalitwongse et al., 2011), data

9.6 Bibliographical notes 203

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

iterations to target solution

no restart
restart(1000)
restart(500)
restart(100)

Fig. 9.14 Comparison of the iterations-to-target plots for maximum cut instance G12 using strate-
gies restart(100), restart(500), and restart(1000). The figure also shows the iterations-to-target plot
for the strategy without restarts. All runs of all strategies found a solution at least as good as the
target value of 554.

clustering (Frinhani et al., 2011), two-echelon location routing (Nguyen et al.,
2012), image registration (Santamarı́a et al., 2012), drawing proportional symbols
in maps (Cano et al., 2013), family traveling salesperson (Morán-Mirabal et al.,
2014), handover minimization in mobility networks (Morán-Mirabal et al., 2013b),
facility layout (Silva et al., 2013b), survivable network design (Pedrola et al., 2013),
equitable dispersion (Martı́ and Sandoya, 2013), 2D and 3D bin packing (Alvarez-
Valdes et al., 2013), microarray data analysis (Cordone and Lulli, 2013), community
detection (Nascimento and Pitsoulis, 2013), set k-covering (Pessoa et al., 2013), net-
work load balancing (Santos et al., 2013), power optimization in ad hoc networks
(Moraes and Ribeiro, 2013), capacitated vehicle routing (Sörensen and Schittekat,
2013), and symmetric Euclidean clustered traveling salesman (Mestria et al., 2013).

Surveys on GRASP with path-relinking can be found in Resende and Ribeiro
(2005a), Aiex and Resende (2005), Resende (2008), Resende et al. (2010b),
Resende and Ribeiro (2010), Ribeiro and Resende (2012), and Festa and Resende
(2013). A special issue of Computers & Operations Research (Martı́ et al., 2013b)
was dedicated to GRASP with path-relinking.

Section 9.4 discussed evolutionary path-relinking that was originally proposed
by Resende and Werneck (2004), where it was used as a post-processing phase
for a GRASP with path-relinking for the p-median problem. Andrade and Resende
(2007a) were the first to apply evolutionary path-relinking periodically during the

204 9 GRASP with path-relinking

search. The term evolutionary path-relinking was introduced by Andrade and Re-
sende (2007b). This was followed by a number of applications of GRASP with
evolutionary path-relinking, e.g., to uncapacitated facility location (Resende and
Werneck, 2006), max-min diversity (Resende et al., 2010a), image registration (San-
tamarı́a et al., 2010; Santamarı́a et al., 2012), power transmission network expan-
sion planning (Rahmani et al., 2010), vehicle routing with trailers (Villegas, 2010),
antibandwidth minimization (Duarte et al., 2011), truck and trailer routing (Villegas
et al., 2011), parallel machine scheduling (Rodriguez et al., 2012), linear order-
ing (Duarte et al., 2012), family traveling salesperson (Morán-Mirabal et al., 2014),
handover minimization in mobility networks (Morán-Mirabal et al., 2013b), set cov-
ering (Morán-Mirabal et al., 2013a), maximum cut (Morán-Mirabal et al., 2013a),
node capacitated graph partitioning (Morán-Mirabal et al., 2013a), capacitated arc
routing (Usberti et al., 2013), and 2D and 3D bin packing (Alvarez-Valdes et al.,
2013),

Figures 9.3 and 9.4 show time-to-target plots comparing pure GRASP and
GRASP with path-relinking implementations on instances of the three-index
assignment problem (Aiex et al., 2005), maximum satisfiability (Festa et al., 2006),
bandwidth packing (Resende and Ribeiro, 2003a), and the quadratic assignment
problem (Oliveira et al., 2004).

Figure 9.8 shows results from Resende et al. (2010a), where a GRASP and
GRASP with evolutionary path-relinking for max-min diversity were proposed. The
simulated annealing and multistart algorithms were the ones described in Kincaid
(1992) and Ghosh (1996), respectively.

The restart(κ) strategy for GRASP with path-relinking discussed in Section 9.5
was proposed by Resende and Ribeiro (2011). Besides the experiments presented
in this chapter for the maximum cut instance G12, that paper also considered five
other instances of maximum cut, maximum weighted satisfiability, and bandwidth
packing. Strategies for speeding up stochastic local search algorithms using restarts
were first proposed by Luby et al. (1993), where they proved the result for an
optimal restart strategy. Restart strategies in metaheuristics have been addressed
in D’Apuzzo et al. (2006), Kautz et al. (2002), Nowicki and Smutnicki (2005),
Palubeckis (2004), and Sergienko et al. (2004). Further work on restart strategies
can be found in Shylo et al. (2011a) and Shylo et al. (2011b).

	9 GRASP with path-relinking
	9.1 Memoryless GRASP
	9.2 Elite sets
	9.3 Hybridization of GRASP with path-relinking
	9.4 Evolutionary path-relinking
	9.5 Restart strategies
	9.6 Bibliographical notes

