
Optimization
by GRASP

Mauricio G.C. Resende
Celso C. Ribeiro

Greedy Randomized Adaptive
Search Procedures

Optimization by GRASP

Mauricio G.C. Resende • Celso C. Ribeiro

Optimization by GRASP
Greedy Randomized Adaptive Search
Procedures

123

Mauricio G.C. Resende
Modeling and Optimization Group (MOP)
Amazon.com, Inc.
Seattle, WA, USA

Celso C. Ribeiro
Instituto de Ciência da Computação
Universidade Federal Fluminense
Niterói, Rio de Janeiro, Brazil

ISBN 978-1-4939-6528-1 ISBN 978-1-4939-6530-4 (eBook)
DOI 10.1007/978-1-4939-6530-4

Library of Congress Control Number: 2016948721

© Springer Science+Business Media New York 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Science+Business Media LLC
The registered company address is: 233 Spring Street, New York, NY 10013, U.S.A

In memory of
David Stifler Johnson

Foreword

In recent years, advances in metaheuristics have given practitioners a powerful
framework for making key decisions in problems as diverse as telecommunications
network design and supply chain planning to scheduling in transportation systems.
GRASP is a metaheuristic that has enjoyed wide success in practice, with an extraor-
dinarily broad range of applications to real-world optimization problems. Starting
from the seminal 1989 paper by Feo and Resende, over the past 25 years, a large
body of work on greedy randomized adaptive search procedures has emerged. A vast
array of papers on GRASP have been published in the open literature, and numer-
ous MSc and PhD theses have been written on the subject. This book is a timely
and welcome addition to the metaheuristics literature, bringing together this body
of work in a single volume.

The account of GRASP in this book is especially commendable for its readabil-
ity, covering many facets of this metaheuristic, such as solution construction, local
search, hybridizations, and extensions. It is organized into four main sections: in-
troduction to combinatorial optimization, fundamentals of heuristic search, basic
GRASP, and advanced topics. The book can be used as an introductory text, not
only to GRASP but also to combinatorial optimization, local search, path-relinking,
and metaheuristics in general. For the more advanced reader, chapters on hybridiza-
tion with path-relinking and parallel and continuous GRASP present these topics in
a clear and concise fashion. The book additionally offers a very complete annotated
bibliography of GRASP and combinatorial optimization.

For the practitioner who needs to solve combinatorial optimization problems, the
book provides implementable templates for all algorithms covered in the text.

This book, with its excellent overview of the state of the art of GRASP, should
appeal to researchers and practitioners of combinatorial optimization who have a
need to find optimal or near-optimal solutions to hard optimization problems.

Boulder, CO, USA Fred Glover
May 2016

vii

Preface

Greedy randomized adaptive search procedures, or GRASP, were introduced by
T. Feo and M. Resende in 1989 as a probabilistic heuristic for solving hard set
covering problems. Soon after its introduction, it was recognized as a general pur-
pose metaheuristic and was applied to a number of other combinatorial optimization
problems, including scheduling problems, the quadratic assignment problem, the
satisfiability problem, and graph planarization. At the Spring 1991 ORSA/TIMS
meeting in Nashville, T. Feo and M. Resende presented the first tutorial on GRASP
as a metaheuristic, which was followed by their tutorial published in the Journal of
Global Optimization in 1995. Since then, GRASP has gained wide acceptance as an
effective and easy-to-implement metaheuristic for finding optimal or near-optimal
solutions to combinatorial optimization problems.

This book has been many years in planning. Though many books have been writ-
ten about other metaheuristics, including genetic algorithms, tabu search, simulated
annealing, and ant colony optimization, a book on GRASP had yet to be published.
Since the subject has had 25 years to mature, we feel that this is the right time for
such a book. After Springer agreed to publish this book, we began the task of writing
it in 2010.

We have been collaborating on the design and implementation of GRASP heuris-
tics since 1994 when we decided, at the TIMS XXXII International Meeting in An-
chorage, Alaska, to partner in designing a GRASP for graph planarization. Since
then, we have worked together on a number of papers on GRASP, including three
highly cited surveys.

This book is aimed at students, engineers, scientists, operations researchers, ap-
plication developers, and other specialists who are looking for the most appropriate
and recent GRASP-based optimization tools to solve particular problems. It focuses
on algorithmic and computational aspects of applied optimization with GRASP.
Emphasis is given to the end user, providing sufficient information on the broad
spectrum of advances in applied optimization with GRASP.

The book grew from talks and short courses that we gave at many universities,
companies, and conferences. Optimization by GRASP turned out to be not only a
book on GRASP but also a pedagogical book on heuristics, metaheuristics and its

ix

x Preface

basics, foundations, extensions, and applications. We motivate the subject with a
number of hard combinatorial optimization problems expressed in simple descrip-
tions in the first chapter. This is followed by an overview of complexity theory
that makes the case for heuristics and metaheuristics as very effective strategies for
solving hard or large instances of the so-called intractable NP-hard optimization
problems. In our view, most metaheuristics share a number of common building
blocks that are combined following different strategies to overcome premature lo-
cal optimality. Such building blocks are explored, for example, in the chapters or
sections on greedy algorithms, randomization, local search, cost updates and candi-
date lists, solution perturbations and ejection chains, adaptive memory and elite sets,
path-relinking, runtime distributions and probabilistic analysis tools, parallelization
strategies, and implementation tricks, among other topics. As such, preliminary ver-
sions of this text have been used in the last three years as a textbook for the course
on metaheuristics at the graduate program in computer science at Universidade Fed-
eral Fluminense, Brazil, complemented with specific reading material about other
metaheuristics, where it has matured and was exposed to criticisms and suggestions
from many students and colleagues.

The book begins in Chapter 1 with an introduction to optimization and a discus-
sion about solution methods for discrete optimization, such as exact and approxi-
mate methods, including heuristics and metaheuristics.

We then provide in Chapter 2 a short tour of combinatorial optimization and
computational complexity, in which we introduce metaheuristics as a very effective
tool for approximately solving hard optimization problems.

This is followed in Chapter 3 with solution construction methods, including
greedy algorithms and their relation to matroids, adaptive greedy and semi-greedy
algorithms, and solution repair procedures.

Chapter 4 focuses on local search. We discuss solution representation, neigh-
borhoods, and the solution space graph. We then focus on local search methods,
covering neighborhood search strategies, cost function updates, and candidate list
strategies. Ejection chains and perturbations as well as other strategies to escape
from local optima are discussed.

Chapter 5 introduces the basic GRASP as a semi-greedy multistart procedure
with local search. Techniques for accelerating the basic procedure are pointed out.
Probabilistic stopping criteria for GRASP are also discussed. The chapter concludes
with a short introduction to the application of GRASP as a heuristic for multiobjec-
tive optimization.

Chapter 6 focuses on time-to-target plots (or runtime distributions) for compar-
ing exponentially distributed runtimes, such as those for GRASP heuristics, and
runtimes with general distributions, such as those for GRASP with path-relinking.
Runtime distribution will be extensively used throughout this book to assess the
performance of stochastic search algorithms.

Extended GRASP construction heuristics are covered in Chapter 7. The chapter
begins with reactive GRASP and then covers topics such as probabilistic choice of
the construction parameter, random plus greedy and sampled greedy constructions,
construction by cost perturbation, and the use of bias functions in construction.

Preface xi

The chapter continues with the use of memory, learning, and the proximate optimal-
ity principle in construction, pattern-based construction, and Lagrangean GRASP.

Path-relinking is introduced in Chapter 8. The chapter provides a template for
path-relinking and discusses its mechanics and implementation strategies. Other
topics related to path-relinking are also discussed in this chapter. This includes how
to deal with infeasibilities in path-relinking, how to randomize path-relinking, and
external path-relinking and its relation to diversification.

The hybridization of GRASP with path-relinking is covered in Chapter 9. The
chapter begins by providing motivation for hybridizing path-relinking with GRASP
to provide GRASP with a memory mechanism. It then goes on to discuss elite sets
and how they can be used as a way to connect GRASP and path-relinking. The chap-
ter ends with a discussion of evolutionary path-relinking and restart mechanisms for
GRASP with path-relinking heuristics.

The implementation of GRASP on parallel machines is the topic of Chap-
ter 10. The chapter introduces two types of strategies for parallel implementation of
GRASP: multiple-walk independent-thread and multiple-walk cooperative-thread
strategies. It then goes on to illustrate these implementation strategies with three ex-
amples: the three-index assignment problem, the job shop scheduling problem, and
the 2-path network design problem.

Continuous GRASP extends GRASP heuristics from discrete optimization to
continuous global optimization. This is the topic of Chapter 11. After establish-
ing the similarities and differences between GRASP for discrete optimization and
continuous GRASP (or simply C-GRASP), the chapter describes the construction
and local search phases of C-GRASP and concludes with several examples apply-
ing C-GRASP to multimodal box-constrained optimization.

The book concludes with Chapter 12 where four implementations of GRASP and
GRASP with path-relinking are described in detail. These implementations are for
the 2-path network design problem, the graph planarization problem, the unsplit-
table network flow problem, and the maximum cut problem.

Each chapter concludes with bibliographical notes.
Writing this book was certainly a long and arduous task, but most of all it has

been an amazing experience. The many trips between Holmdel, Seattle, and Rio de
Janeiro and the periods the authors spent visiting each other along the last six years
have been gratifying and contributed much to fortify an already strong friendship.
We had a lot of fun and we are very happy with the outcome of this project. We will
be even happier if the readers appreciate reading and using this book as much as we
enjoyed writing it.

Seattle, WA, USA Mauricio G.C. Resende
Rio de Janeiro, RJ, Brazil Celso C. Ribeiro
May 2016

Acknowledgments

Over the years, we have collaborated with many people on research related to topics
covered in this book. We make an attempt to acknowledge all of them below, in
alphabetical order, and apologize in case someone was omitted from this long list:
James Abello, Vaneet Aggarwal, Renata Aiex, Daniel Aloise, Dario Aloise, Adri-
ana Alvim, Diogo Andrade, Alexandre Andreatta, David Applegate, Aletéia Araújo,
Aaron Archer, Silvio Binato, Ernesto Birgin, Isabelle Bloch, Maria Claudia Boeres,
Maria Cristina Boeres, Julliany Brandão, Luciana Buriol, Vicente Campos, Suzana
Canuto, Sergio Carvalho, W.A. Chaovalitwongse, Bruno Chiarini, Clayton Com-
mander, Abraham Duarte, Alexandre Duarte, Christophe Duhamel, Sandra Duni-
Ekişog̃lu, João Lauro Facó, Djalma Falcão, Haroldo Faria Jr., Tom Feo, Eraldo
Fernandes, Daniele Ferone, Paola Festa, Rafael Frinhani, Micael Gallego, Fred
Glover, Fernando Carvalho-Gomes, José Fernando Gonçalves, José Luis González-
Velarde, Erico Gozzi, Allison Guedes, William Hery, Michael Hirsch, Rubén Inte-
rian, David Johnson, Howard Karloff, Yong Li, X. Liu, David Loewenstern, Irene
Loiseau, Abilio Lucena, Rafael Martı́, Cristian Martı́nez, Simone Martins, Ger-
aldo Mateus, Thelma Mavridou, Marcelo Medeiros, Rafael Melo, Claudio Mene-
ses, Renato Moraes, Luis Morán-Mirabal, Leonardo Musmanno, Fernanda Naka-
mura, Mariá Nascimento, Thiago Noronha, Carlos Oliveira, Panos Pardalos, Lu-
ciana Pessoa, Alexandre Plastino, Leonidas Pitsoulis, Marcelo Prais, Fábio Protti,
Tianbing Qian, Michelle Ragle, Sanguthevar Rajasekaran, Martin Ravetti, Vinod
Rebello, Lucia Resende, Alberto Reyes, Caroline Rocha, Noemi Rodriguez, Isabel
Rosseti, Jesus Sánchez-Oro, Andréa dos Santos, Ricardo Silva, Stuart Smith, Cid
de Souza, Mauricio de Souza, Reinaldo Souza, Fernando Stefanello, Sandra Su-
darksy, Franklina Toledo, Giorgio de Tomi, Gerardo Toraldo, Marco Tsitselis, Ed-
uardo Uchoa, Osman Ulular, Sebastián Urrutia, Reinaldo Vallejos, Álvaro Veiga,
Ana Viana, Dalessandro Vianna, Carlos Eduardo Vieira, Eugene Vinod, and Renato
Werneck.

The authors are particularly indebted to Simone Martins for her careful revision
of this manuscript. We are also very thankful to Fred Glover for kindly agreeing to
write the foreword of this book.

xiii

xiv Acknowledgments

The second author is grateful to Jiosef Fainberg, Julieta Guevara, Nelson Macu-
lan, and Segyu Rinpoche for their friendship and support throughout the preparation
of this book.

Finally, a special thanks goes to the artist Frances Stark for agreeing to let us
use a reproduction of an image of her collage I must explain, specify, rationalize,
classify, etc. that appears on page xv of this book. The text in this piece is taken
from Witold Gombrowicz’s novelFerdydurke. As in the commentary by art historian
Alex Kitnick (Kitnick, 2013), the work “has to do with beginnings, blank pages, and
the question of artistic labor, but it is also concerned with how one arranges oneself
in relation to language. The question here is less how to make a first mark than
how to organize a set of information and desires in relation to one’s own person.”
We feel that it perfectly illustrates the effort we made to collect, organize, explain,
and convey as clearly as possible the fundamentals, principles, and applications of
optimization by GRASP.

Seattle, WA, USA Mauricio G.C. Resende
Rio de Janeiro, RJ, Brazil Celso C. Ribeiro
May 2016

Frances Stark
b. 1967; Newport Beach, CA
I must explain, specify, rationalize, classify, etc., 2008.
Acrylic, fiber-tipped pen, graphite pencil, inset laser print, and paper
collage on paper

xv

Contents

1 Introduction . 1
1.1 Optimization problems . 1
1.2 Motivation . 2
1.3 Exact vs. approximate methods . 4
1.4 Metaheuristics . 5
1.5 Graphs: basic notation and definitions . 6
1.6 Organization . 7
1.7 Bibliographical notes . 10

2 A short tour of combinatorial optimization and computational
complexity . 13
2.1 Problem formulation . 13
2.2 Computational complexity . 18

2.2.1 Polynomial-time algorithms . 19
2.2.2 Characterization of problems and instances 20
2.2.3 One problem has three versions . 22
2.2.4 The classes P and NP . 26
2.2.5 Polynomial transformations and NP-complete problems 30
2.2.6 NP-hard problems . 33
2.2.7 The class co-NP . 33
2.2.8 Pseudo-polynomial algorithms and strong

NP-completeness . 34
2.2.9 PSPACE and the polynomial hierarchy 35

2.3 Solution approaches . 36
2.4 Bibliographical notes . 38

3 Solution construction and greedy algorithms . 41
3.1 Greedy algorithms . 41
3.2 Matroids . 46
3.3 Adaptive greedy algorithms . 48
3.4 Semi-greedy algorithms . 59

xvii

xviii Contents

3.5 Repair procedures . 60
3.6 Bibliographical notes . 62

4 Local search . 63
4.1 Solution representation . 63
4.2 Neighborhoods and search space graph . 67
4.3 Implementation strategies . 74

4.3.1 Neighborhood search . 75
4.3.2 Cost function update . 77
4.3.3 Candidate lists . 82
4.3.4 Circular search . 84

4.4 Ejection chains and perturbations . 85
4.5 Going beyond the first local optimum . 88

4.5.1 Tabu search and short-term memory . 88
4.5.2 Variable neighborhood descent . 90

4.6 Final remarks . 91
4.7 Bibliographical notes . 91

5 GRASP: The basic heuristic . 95
5.1 Random multistart . 95
5.2 Semi-greedy multistart . 96
5.3 GRASP . 98
5.4 Accelerating GRASP . 103
5.5 Stopping GRASP . 105

5.5.1 Probabilistic stopping rule . 105
5.5.2 Gaussian approximation for GRASP iterations 106
5.5.3 Stopping rule implementation . 107

5.6 GRASP for multiobjective optimization . 110
5.7 Bibliographical notes . 111

6 Runtime distributions . 113
6.1 Time-to-target plots . 113
6.2 Runtime distribution of GRASP . 114
6.3 Comparing algorithms with exponential runtime distributions 118
6.4 Comparing algorithms with general runtime distributions 123
6.5 Numerical applications to sequential algorithms 126

6.5.1 DM-D5 and GRASP algorithms for server replication 126
6.5.2 Multistart and tabu search algorithms for routing

and wavelength assignment . 132
6.5.3 GRASP algorithms for 2-path network design 132

6.6 Comparing and evaluating parallel algorithms 142
6.7 Bibliographical notes . 145

Contents xix

7 Extended construction heuristics . 147
7.1 Reactive GRASP . 147
7.2 Probabilistic choice of the RCL parameter . 148
7.3 Random plus greedy and sampled greedy. 149
7.4 Cost perturbations . 150
7.5 Bias functions . 151
7.6 Memory and learning . 151
7.7 Proximate optimality principle in construction 152
7.8 Pattern-based construction . 152
7.9 Lagrangean GRASP heuristics . 155

7.9.1 Lagrangean relaxation and subgradient optimization 155
7.9.2 A template for Lagrangean heuristics . 157
7.9.3 Lagrangean GRASP . 159

7.10 Bibliographical notes . 162

8 Path-relinking . 167
8.1 Template and mechanics of path-relinking . 167

8.1.1 Restricted neighborhoods . 167
8.1.2 A template for forward path-relinking 173

8.2 Other implementation strategies for path-relinking 175
8.2.1 Backward and back-and-forward path-relinking 176
8.2.2 Mixed path-relinking . 178
8.2.3 Truncated path-relinking . 179

8.3 Minimum distance required for path-relinking 181
8.4 Dealing with infeasibilities in path-relinking . 182
8.5 Randomization in path-relinking . 185
8.6 External path-relinking and diversification . 186
8.7 Bibliographical notes . 188

9 GRASP with path-relinking . 189
9.1 Memoryless GRASP . 189
9.2 Elite sets . 190
9.3 Hybridization of GRASP with path-relinking 191
9.4 Evolutionary path-relinking . 192
9.5 Restart strategies . 196
9.6 Bibliographical notes . 202

10 Parallel GRASP heuristics . 205
10.1 Multiple-walk independent-thread strategies . 205
10.2 Multiple-walk cooperative-thread strategies . 210
10.3 Some parallel GRASP implementations . 211

10.3.1 Three-index assignment . 212
10.3.2 Job shop scheduling . 216
10.3.3 2-path network design problem . 221

10.4 Bibliographical notes . 226

xx Contents

11 GRASP for continuous optimization . 229
11.1 Box-constrained global optimization . 229
11.2 C-GRASP for continuous box-constrained global optimization 231
11.3 C-GRASP construction phase . 233
11.4 Approximate discrete line search . 236
11.5 C-GRASP local search . 237
11.6 Computing global optima with C-GRASP . 239
11.7 Bibliographical notes . 244

12 Case studies . 245
12.1 2-path network design problem . 245

12.1.1 GRASP with path-relinking for 2-path network design 245
12.2 Graph planarization . 248

12.2.1 Two-phase heuristic . 248
12.2.2 GRASP for graph planarization . 250
12.2.3 Enlarging the planar subgraph . 252

12.3 Unsplittable multicommodity network flow: Application
to bandwidth packing . 253
12.3.1 Problem formulation . 254
12.3.2 GRASP with path-relinking for PVC routing 257

12.4 Maximum cut in a graph . 260
12.4.1 GRASP with path-relinking for the maximum cut

problem . 261
12.5 Bibliographical notes . 270

References . 275

Index . 303

Chapter 1
Introduction

In this first chapter, we introduce general optimization problems and the class of
combinatorial optimization problems. As a motivation, we present a number of fun-
damental combinatorial optimization problems that will be revisited along the next
chapters of this book. We also contrast exact and approximate solution methods
and trace a brief history of approximate algorithms (or heuristics) from A∗ to meta-
heuristics, going through greedy algorithms and local search. We motivate the reader
and outline, chapter by chapter, the material in the book. Finally, we introduce basic
notation and definitions that will be used throughout the book.

1.1 Optimization problems

In its most general form, an optimization problem can be cast as

optimize f (S) (1.1)

subject to

S ∈ F, (1.2)

where F is a feasible set of solutions and f is a real-valued objective function that
associates each feasible solution S ∈ F to its cost or value f (S). In the case of a
minimization problem we seek a solution minimizing f (S), while in the case of a
maximization problem we search for a solution that maximizes f (S) over the entire
domain F of feasible solutions.

A global optimum of a minimization problem is a solution S∗ ∈ F such that
f (S∗) ≤ f (S), ∀S ∈ F . Similarly, the global optimum of a maximization problem
is a solution S∗ ∈ F such that f (S∗)≥ f (S), ∀S ∈ F .

Optimization problems are commonly classified into two groups: those with con-
tinuous variables, that in principle can take any real value, and those represented by
discrete variables, that can take only a finite or a countably infinite set of values.

© Springer Science+Business Media New York 2016
M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP,
DOI 10.1007/978-1-4939-6530-4 1

1

2 1 Introduction

The latter are called combinatorial optimization problems and reduce to the search
for a solution in a finite (or, alternatively, countably infinite) set, which can typi-
cally be formed by binary or integer variables, permutations, paths, trees, cycles, or
graphs. Most of this book is concerned with combinatorial optimization problems
with a single objective function, although Section 5.6 briefly addresses approaches
for multiobjective problems and Chapter 11 describes a method for continuous
problems.

Combinatorial optimization problems and their applications abound in the liter-
ature and in real-life, as will be illustrated later in this book. As a motivation, some
fundamental combinatorial optimization problems will be presented in the next sec-
tion, together with examples of their basic applications. These problems will be
revisited many times along the next chapters of this book. In particular, they will
be formalized and discussed in detail in the next chapter, where we show that some
combinatorial optimization problems are intrinsically harder to solve than others.
By harder, we mean that state-of-the-art algorithms to solve them can be very exp-
ensive in terms of the computation time needed to find a global optimum or that
only small problems can be solved in a reasonable amount of time.

Understanding the inner computational complexity of each problem is an abso-
lute prerequisite for the identification and development of an appropriate, effective,
and efficient algorithm for its solution.

1.2 Motivation

We motivate our introductory discussion with the description of six typical and fun-
damental combinatorial optimization problems.

Shortest path problem

Suppose a number of cities are distributed in a region and we want to travel from
city s to city t. The distances between each pair of cities are known beforehand. We
can either go directly from s to t if there is a road directly connecting these two
cities, or start in s, traverse one or more cities, and end up in t. A path from s to t
is defined to be a sequence of two or more cities that starts in s and ends in t. The
length of a path is defined to be the sum of the distances between consecutive cities
in this path. In the shortest path problem, we seek, among all paths from s to t, one
which has minimum length. �

Minimum spanning tree problem

Suppose that a number of points spread out on the plane have to be intercon-
nected. Once again, the distances between each pair of points are known before-
hand. Some points have to be made pairwise connected, so as to establish a unique

1.2 Motivation 3

path between any two points. In the minimum spanning tree problem, we seek to
determine which pairs of points will be directly connected such that the sum of the
distances between the selected pairs is minimum. �

Steiner tree problem in graphs

Assume that a number of terminals (or clients) have to be connected by optical
fibers. The terminals can be connected either directly or using a set of previously
located hubs at fixed positions. The distances between each pair of points (be them
terminals or hubs) are known beforehand. In the Steiner tree problem in graphs,
we look for a network connecting terminals and hubs such that there is exactly one
unique path between any two terminals and the total distance spanned by the optical
fibers is minimum. �

Maximum clique problem

Consider the global friendship network where pairs of people are considered to be
either friends or not. In the maximum clique problem, we seek to determine the
largest set of people for which each pair of people in the set are mutual friends. �

Knapsack problem

Consider a hiker who needs to pack a knapsack with a number of items to take
along on a hike. The knapsack has a maximum weight capacity. Each item has a
given weight and some utility to the hiker. If all of the items fit in the knapsack, the
hiker packs them and goes off. However, the entire set of items may not fit in the
knapsack and the hiker will need to determine which items to take. The knapsack
problem consists in finding a subset of items with maximum total utility, among all
sets of items that fit in the knapsack. �

Traveling salesman problem

Consider a traveling salesman who needs to visit all cities in a given sales territory.
The salesman must begin and end the tour in a given city and visit each other city in
the territory exactly once. Since each city must be visited only once, a tour can be
represented by a circular permutation of the cities. Assuming the distances between
each pair of cities are known beforehand, the objective of the traveling salesman
problem is to determine a permutation of the cities that minimizes the total distance
traveled. �

4 1 Introduction

1.3 Exact vs. approximate methods

An exact method or optimization method for solving an optimization problem is
one that is guaranteed to produce, in finite time, a global optimum for this problem
and a proof of its optimality, in case one exists, or otherwise show that no feasi-
ble solution exists. Globally optimal solutions are often referred to as exact optimal
solutions. Among the many exact methods for solving combinatorial optimization
problems, we find algorithmic paradigms such as cutting planes, dynamic program-
ming, backtracking, branch-and-bound (together with its variants and extensions,
such as branch-and-cut and branch-and-price), and implicit enumeration. Some of
these paradigms can be viewed as tree search procedures, in the sense that they start
from a feasible solution (which corresponds to the root of the tree) and carry out the
search for the optimal solution by generating and scanning the nodes of a subtree of
the solution space (whose nodes correspond to problem solutions).

Chapter 2 shows that efficient exact algorithms are not known (and are unlikely to
exist) for a broad class of optimization problems classified as NP-hard. These prob-
lems are often referred to as intractable. Even though the size of the problems that
can be solved to optimality (exactly) has been always increasing due to algorithmic
and technological developments, there are problems (or problem instances) that are
not amenable to be solved by exact methods. Other approaches, based on different
paradigms, are needed to tackle such hard and large optimization problems.

As opposed to exact methods, approximate methods are those that provide fea-
sible solutions that, however, are not necessarily optimal. Approximate methods
usually run faster than exact methods. As a consequence, approximate methods are
capable of handling larger problem instances than are exact methods. In this book,
we use the terms heuristic and approximate method interchangeably.

Relevant work on heuristics or approximate algorithms for combinatorial opti-
mization problems can be traced back to the origins of the field of Artificial Intelli-
gence in the 1960s, with the development and applications of A∗ search.

Constructive heuristics are those that build a feasible solution from scratch. They
are often based on greedy algorithms and their connections with matroid theory.
Greedy algorithms and their extensions will be thoroughly studied in Chapter 3.

Local search procedures start from a feasible solution and improve it by succes-
sive small modifications until a solution that cannot be further improved is encoun-
tered. Although they often provide high-quality solutions whose values are close to
those of optimal solutions, in some situations they can become prematurely trapped
in low-quality solutions. Local search heuristics are explored in Chapter 4.

Metaheuristics are general high-level procedures that coordinate simple heuris-
tics and rules to find high-quality solutions to computationally difficult optimization
problems. Metaheuristics are often based on distinct paradigms and offer different
mechanisms to go beyond the first solution obtained that cannot be improved by
local search. They are among the most effective solution strategies for solving com-
binatorial optimization problems in practice and very frequently produce much bet-
ter solutions than those obtained by the simple heuristics and rules they coordinate.

1.4 Metaheuristics 5

1.4 Metaheuristics

In this section, we recall the principles of some of the most used metaheuristics.
These solution approaches have been instrumental and contributed to most devel-
opments and applications in the field of metaheuristics. Among them, we can cite
genetic algorithms, simulated annealing, tabu search, variable neighborhood search
(VNS), and greedy randomized adaptive search procedures (GRASP), with the last
one being the focus of this book.

Genetic algorithms are search procedures based on the mechanics of evolution
and natural selection. These algorithms evolve populations of solutions that are pair-
wise combined to generate offspring. Elements of the solution population are also
submitted to mutation processes that create individuals with new characteristics.
The most fit individuals in each generation are those that most likely survive and
pass their characteristics to the individuals of the next generation. Several opera-
tors and strategies can be used to create the initial population and to implement
the mechanisms of mating, reproduction, mutation, and selection. In general, the
evolution process ends after a number of generations without improvement of the
best individual. Although the original implementations of genetic algorithms were
based almost exclusively on probabilistic choices for mating, reproduction, and mu-
tation, modern versions incorporate developments from the field of optimization and
heuristics, such as the use of greedy randomized algorithms to generate the initial
population and local search to improve the characteristics of the offspring.

Annealing is the physical process of heating up a solid until it melts, followed
by its cooling down until crystallization. The free energy of the solid is minimized
in this process. Practical experiments show that slow cooling schemes lead to final
states with lower energy levels. By establishing associations between the physical
states of the solid submitted to the annealing process and the feasible solutions of an
optimization problem, and between the free energy of the solid and the cost function
to be optimized, the simulated annealing metaheuristic mimics this process for the
solution of a combinatorial optimization problem. It can be seen as a form of con-
trolled random walk in the space of feasible solutions. The method is very general,
can be easily implemented and applied, and has the ability to find good approximate
solutions whose value is often close to the optimal. It can even be proved to con-
verge to the optimal solution under certain circumstances, although at the cost of
unlimited computation time. In practice, it can require large computation times and
its memoryless characteristic does not contribute to more effective iterations and,
consequently, to the efficiency of the approach.

Tabu search is a metaheuristic that guides a local search procedure to explore the
solution space beyond local optimality. Its basic principle consists in pursuing local
search whenever it encounters a local optimum. At such points, instead of moving
to an improving solution, the algorithm moves to the least deteriorating solution in
the neighborhood of that local optimum, under the expectation that after some steps
a better solution will be found. However, moving to a worse solution can lead to
cycling, since the algorithm can return to the previous local optimum at the next or

6 1 Introduction

in a later iteration. To avoid cycling back to solutions already visited, tabu search
makes use of a short-term memory which contains recently visited solutions or,
more often and in more clever implementations, the attributes of the current solution
which should not be changed in order to prevent cycling. This short-term memory of
forbidden solutions or attributes is called a tabu list. More complete or sophisticated
variants of the algorithm also make use of medium-term and long-term memories
which are used to intensify the search in promising regions of the solution space, or
to diversity the search towards new regions that have not been properly explored.

Variable neighborhood search (VNS) is a metaheuristic based on the exploration
of multiple neighborhood definitions imposed on the same solution space. Each of
its iterations has two main steps: shaking and local search. With shaking, a neighbor
of the current solution is randomly generated. Local search is applied to the solution
obtained by the shaking step. VNS systematically exploits the idea of neighborhood
change, both in the search for local optima, as in the process of escaping from the
valleys that contain them.

GRASP is an acronym for greedy randomized adaptive procedures and is among
the most effective metaheuristics for solving combinatorial optimization problems.
It is a multistart procedure, in which each iteration consists basically of two phases:
construction and local search. The construction phase builds a feasible solution,
whose neighborhood is investigated until a local minimum is found during the local
search phase. The best overall solution is kept as the result. GRASP and VNS are
somehow complementary, in the sense that randomization is applied in GRASP at
the construction phase, while in VNS it is applied in the local search phase.

The remainder of this book is entirely devoted to the presentation of the main
building blocks, algorithms, performance evaluation tools, case studies, and strate-
gies for sequential and parallel implementations of GRASP for solving optimization
problems.

1.5 Graphs: basic notation and definitions

As many of the combinatorial optimization problems studied in this book come from
graph theory and its applications, we introduce in this section some basic notation
and definitions that will be used throughout the book.

Given a setV = {1, . . . ,n}, we denote by |V |= n the cardinality (i.e., the number
of elements) of V . We define 2V as the set formed by all subsets of V , including the
empty set ∅ and the set V itself.

A graph G = (V,U) is defined by a set V = {1, . . . ,n} of nodes and a set
U ⊆ V ×V of unordered pairs (i, j) of nodes i, j ∈ V called edges. Therefore, both
pairs (i, j) or (j, i) can be used to represent the same edge between i, j ∈ V in U .
A graph is said to be complete if there is an edge in U between any two distinct
nodes i, j ∈ V . A graph can also be referred to as an undirected graph. A path
Pst(G) in an undirected graph G from s ∈ V to t ∈ V is defined as a sequence of
nodes i1, i2, . . . , iq−1, iq ∈ V , where i1 = s, iq = t, and each edge (ik, ik+1) ∈U , for

1.6 Organization 7

any k = 1, . . . ,q− 1. The number of edges in this path is given by q− 1. A graph
G = (V,U) is said to be connected if there is at least one path Pst(G) connecting
every pair of nodes s, t ∈V . A subgraph G′ = (V ′,U ′) of G= (V,U) is such that for
any pair of nodes i, j ∈ V ′, edge (i, j) ∈U ′ if and only if (i, j) ∈U , and therefore
V ′ ⊆V and U ′ ⊆U .

A spanning tree of a graph G = (V,U) is a connected subgraph of G with the
same node set V and whose edge set U ′ ⊆U has exactly n− 1 edges.

Given a graph G = (V,U) and a subset V ′ of its node set V , the graph G(V ′) =
(V ′,U ′) induced in G by V ′ has U ′ = {(i, j) ∈U : i, j ∈V ′} as its edge set.

A clique of a graph G= (V,U) is a subset of nodes C⊆V such that (i, j) ∈U for
every pair of nodes i, j ∈ C, with i 	= j. Alternatively, we can say thatC is a clique if
the graph G(C) induced in G by C is complete. The size of a clique is defined to be
its cardinality |C|. A subset I ⊆V of the nodes in G is said to be an independent set
or a stable set if every two vertices in I are not directly connected by an edge, i.e.,
if (i, j) /∈U for all i, j ∈ I such that i 	= j.

A directed graph G = (V,A) is defined by a set V = {1, . . . ,n} of nodes and a
set A ⊆ V ×V of ordered pairs (i, j) of nodes i, j ∈ V called arcs. A path Pst(G)
in a directed graph G from s ∈ V to t ∈ V is defined as a sequence of nodes
i1, i2, . . . , iq−1, iq ∈ V , where i1 = s, iq = t, and each arc (ik, ik+1) ∈ A, for any
k = 1, . . . ,q− 1. A directed graph G = (V,A) is said to be strongly connected if
there is at least one path Pst(G) connecting node s to node t and another path Pts(G)
connecting node t to node s, for every pair of nodes s, t ∈V .

A Hamiltonian path in a directed or undirected graph is a path between two nodes
that visits each node of the graph exactly once. A Hamiltonian cycle in a directed or
undirected graph is a Hamiltonian path that is also a cycle, i.e., its extremities coin-
cide. Every Hamiltonian cycle corresponds to a circular permutation of the nodes of
the graph. A Hamiltonian cycle is also known as a Hamiltonian tour or, simply, as
a tour.

1.6 Organization

In addition to this introductory chapter, this book contains another 11 chapters. Each
chapter concludes with a section with bibliographical notes.

Chapter 2 introduces combinatorial optimization problems and their compu-
tational complexity. First, some fundamental problems are formulated and then
basic concepts of the theory of computational complexity are introduced, with spe-
cial emphasis on decision problems, polynomial-time algorithms, and NP-complete
problems. The chapter concludes with a discussion of solution approaches for
NP-hard problems, introducing constructive heuristics, local search, and, finally,
metaheuristics.

Chapter 3 addresses the construction of feasible solutions. We begin by con-
sidering greedy algorithms and showing how they are related with matroid theory.
We then consider adaptive greedy algorithms, which are a generalization of greedy

8 1 Introduction

algorithms. Next, we present semi-greedy algorithms that are obtained by random-
izing greedy or adaptive greedy algorithms. The chapter concludes with a discussion
of solution repair procedures.

Chapter 4 deals with local search. A local search method is one that starts from
any feasible solution and visits a sequence of other (feasible or infeasible) solu-
tions, until a feasible solution that cannot be further improved is found. Local im-
provements are evaluated with respect to neighbor solutions that can be obtained
by slight modifications applied to the solution currently being visited. We introduce
in this chapter the concept of solution representation, which is instrumental in the
design and implementation of local search methods. We also define neighborhoods
of combinatorial optimization problems and moves between neighbor solutions. We
illustrate the definition of a neighborhood by a number of examples for different
problems. Local search methods are introduced and different implementation issues
are discussed, such as neighborhood search strategies, quick cost updates, and can-
didate list strategies.

Chapter 5 presents the basic structure of a greedy randomized adaptive search
procedure (or, more simply, GRASP). We first introduce random and semi-greedy
multistart procedures and show how solutions produced by these procedures differ.
The hybridization of a semi-greedy procedure with a local search method within an
iterative procedure constitutes a GRASP heuristic. Efficient implementation strate-
gies are also discussed in this chapter, as well as probabilistic stopping criteria.
The chapter concludes with a short introduction to the application of GRASP as a
heuristic for multiobjective optimization.

Chapter 6 covers runtime distributions. Also called time-to-target plots, runtime
distributions display on the ordinate axis the probability that an algorithm will find a
solution at least as good as a given target value within a given running time, shown
on the abscissa axis. They provide a very useful tool to characterize the running
times of stochastic algorithms for combinatorial optimization problems and to com-
pare different algorithms or strategies for solving a given problem. Accordingly,
they have been widely used as a tool for algorithm design and comparison.

Chapter 7 considers enhancements, extensions, and variants of greedy random-
ized adaptive construction procedures such as Reactive GRASP, the probabilistic
choice of the parameter used in the construction of restricted candidate lists, ran-
dom plus greedy and sampled greedy constructions, cost perturbations, bias func-
tions, using principles of intelligent construction based on memory and learning,
proximate optimality and local search applied to partially constructed solutions, and
pattern-based construction strategies using vocabulary building or data mining.

Chapter 8 introduces path-relinking, an important search intensification strategy.
Being a major enhancement to heuristic search methods for solving combinatorial
optimization problems, its hybridization with other metaheuristics has led to signif-
icant improvements in both solution quality and running times. In this chapter, we
review the fundamentals of path-relinking, implementation issues and strategies,
and the use of randomization in path-relinking.

1.6 Organization 9

Chapter 9 covers the hybridization of GRASP with path-relinking. Path-relinking
is a major enhancement that adds a long-term memory mechanism to the otherwise
memoryless GRASP heuristics. GRASP with path-relinking implements a long-
term memory with an elite set of diverse high-quality solutions found during the
search. In its most basic implementation, at each GRASP iteration the path-relinking
operator is applied between the solution found by local search and a randomly
selected solution from the elite set. The solution resulting from path-relinking is
a candidate for inclusion in the elite set. In this chapter we examine elite sets,
their integration with GRASP, the basic GRASP with path-relinking procedure, sev-
eral variants of the basic scheme (including evolutionary path-relinking), and restart
strategies for GRASP with path-relinking heuristics.

Chapter 10 introduces parallel GRASP heuristics. Parallel computers and paral-
lel algorithms have been increasingly finding their way into metaheuristics. Most
of the parallel implementations of GRASP found in the literature consist in either
partitioning the search space or the iterations and assigning each partition to a
processor. These implementations can be categorized as following the multiple-
walk independent-thread approach, with the communication among processors dur-
ing GRASP iterations being limited to the detection of program termination and
gathering the best solution found over all processors. Parallel strategies for the
parallelization of GRASP with path-relinking can follow not only the multiple-
walk independent-thread but also the multiple-walk cooperative-thread approach,
in which the processors share the information about the elite solutions they visited
at previous iterations. This chapter covers multiple-walk independent-thread strate-
gies, multiple-walk cooperative-thread strategies, and some applications of parallel
GRASP.

Chapter 11 considers Continuous GRASP, or C-GRASP, which extends GRASP
to the domain of continuous box-constrained global optimization. The algorithm
searches the solution space over a dynamic grid. Each iteration of C-GRASP con-
sists of two phases. In the construction (or diversification) phase, a greedy random-
ized solution is constructed. In the local search (or intensification) phase, a local
search algorithm is applied, starting from the first phase solution, and a locally opti-
mal solution is produced. A deterministic rule triggers a restart after each C-GRASP
iteration. This chapter addresses the construction phase and the restart strategy and
also presents a local search procedure. The chapter concludes with examples of con-
tinuous functions optimized with an implementation of C-GRASP.

The book concludes with Chapter 12, in which we consider four case stud-
ies, 2-path network design, graph planarization, unsplittable multicommodity flow,
and maximum cut, to illustrate the application and the implementation of GRASP
heuristics. The key point here is not to show numerical results or comparative statis-
tics with other approaches but, instead, to show how to customize the GRASP
metaheuristic for each particular problem.

10 1 Introduction

1.7 Bibliographical notes

The shortest path problem and the minimum spanning tree problem that were used
to motivate Section 1.2 have been addressed in many papers and textbooks (see Cor-
men et al. (2009) in particular). Although many references exist for the other prob-
lems discussed in this chapter, we refer the reader to Pardalos and Xue (1994) for
the maximum clique problem, Martello and Toth (1990) for the knapsack problem,
and Lawler et al. (1985), Gutin and Punnen (2002), and Applegate et al. (2006) for
the traveling salesman problem. The Steiner tree problem in graphs appeared first in
Hakimi (1971) and Dreyfus and Wagner (1972). See also Maculan (1987), Winter
(1987), Goemans and Myung (1993), Hwang et al. (1992), Voss (1992), and Ribeiro
et al. (2002).

The textbooks by Nilsson (1971; 1982) and Pearl (1985) are fundamental refer-
ences on the origins, principles, and applications of A∗ search and heuristic search
methods introduced in Section 1.3. Cormen et al. (2009) present a good coverage of
greedy algorithms and an introduction to matroid theory. Pitsoulis (2014) offers a
more in-depth coverage of matroids.

Yagiura and Ibaraki (2002) trace back the history of local search since the work
of Croes (1958). Kernighan and Lin (1970) and Lin and Kernighan (1973) were
among the first to propose local search algorithms for the graph partitioning and the
traveling salesman problem, respectively. The book by Hoos and Stützle (2005) is a
thorough study of the foundations and applications of stochastic local search.

Genetic algorithms and research in metaheuristics were pioneered in the book
of Holland (1975). Other developments in genetic algorithms appeared in textbooks
by Reeves and Rowe (2002), Goldberg (1989), and Michalewicz (1996), among
others. The work on optimization by simulated annealing was pioneered by Kirk-
patrick et al. (1983), with accounts of later developments and applications being
found in textbooks by van Laarhoven and Aarts (1987) and Aarts and Korst (1989).
The seminal papers of Glover (1989; 1990) established the fundamentals, exten-
sions, and uses of tabu search. They provided solid foundations and originated most
of the developments from where the field of metaheuristics flourished. An alter-
native approach based on virtually the same principle of using a short-term mem-
ory was independently proposed by Hansen (1986), in a method named steepest-
ascent mildest-descent. The reader is also referred to the textbook by Glover and
Laguna (1997). Variable neighborhood search (VNS) was proposed by Mladenović
and Hansen (1997), followed by other reviews by Hansen and Mladenović (1999;
2002; 2003).

The fundamentals of GRASP were originally proposed by Feo and Resende
(1989). This article was followed by many others proposing variants, extensions,
hybridizations, and applications of GRASP. Extensive literature reviews contain-
ing late developments and applications appeared in papers by Feo and Resende
(1995), Festa and Resende (2002; 2009a;b), Resende and Ribeiro (2003b; 2005a;
2010; 2014), Pitsoulis and Resende (2002), Ribeiro (2002), Resende and González-
Velarde (2003), Resende et al. (2012), and Resende and Silva (2013).

1.7 Bibliographical notes 11

The reader interested in other relevant, but less explored approaches such as
ant colony optimization, iterated local search, scatter search, and particle swarm
optimization, can look into the broad and ever evolving literature on the subject,
in particular the handbooks edited by Reeves (1993), Glover and Kochenberger
(2003), Gendreau and Potvin (2010), and Burke and Kendall (2005; 2014). Sörensen
(2015) offers a critical view of the explosion of metaheuristic methods based on
metaphors of some natural or man-made processes and concludes by pointing out
some of the most promising research avenues for the field of metaheuristics.

The reader is referred to the books by Bondy and Murty (1976), West (2001),
and Diestel (2010), among others, for notation, definitions, theoretical results, and
algorithms in graphs.

Chapter 2
A short tour of combinatorial optimization
and computational complexity

This chapter introduces combinatorial optimization problems and their computa-
tional complexity. We first formulate some fundamental problems already intr-
oduced in the previous chapter and then consider basic concepts of the theory of
computational complexity, with special emphasis on decision problems, polynomial-
time algorithms, and NP-complete problems. The chapter concludes with a
discussion of solution approaches for NP-hard problems, introducing constructive
heuristics, local search or improvement procedures and, finally, metaheuristics.

2.1 Problem formulation

An instance of a combinatorial optimization problem is defined by a finite ground
set E = {1, . . . ,n}, a set of feasible solutions F ⊆ 2E , and an objective function
f : 2E →R. In the case of a minimization problem, we seek a global optimal solution
S∗ ∈ F such that f (S∗) ≤ f (S), ∀S ∈ F . The ground set E , the cost function f , and
the set of feasible solutions F are defined for each specific problem. Similarly, in
the case of a maximization problem, we seek an optimal solution S∗ ∈ F such that
f (S∗)≥ f (S), ∀S ∈ F .

Each of the six problems considered in Section 1.2 is an example of a combina-
torial optimization problem that can be formulated as described below.

Shortest path problem – Revisited

Let G= (V,A) be a directed graph, where V is its set of nodes and A its set of arcs.
Each city corresponds to a node of this graph. The origin s and destination t are two
special nodes in V . For every pair of cities i, j ∈ V that are directly connected, let

© Springer Science+Business Media New York 2016
M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP,
DOI 10.1007/978-1-4939-6530-4 2

13

14 2 A short tour of combinatorial optimization and computational complexity

di j be the length of arc (i, j) ∈ A. Furthermore, let Pst(G) be a path from s to t in
G, defined as a sequence of nodes i1, i2, . . . , iq−1, iq ∈ V , with i1 = s and iq = t. The

length of path Pst(G) is given by f (Pst(G)) = ∑q−1
k=1 dik,ik+1 .

Therefore, in the case of the shortest path problem, the ground set E consists of
the arc set A. The set of feasible solutions F ⊆ 2E is formed by all subsets of E that
correspond to paths from s to t in G. The objective of the shortest path problem is to
find a path P∗ ∈ F that minimizes the objective function f (P) over all paths P ∈ F
from s to t in G.

Consider the example in Figure 2.1, not drawn to scale. The shortest path from
node 1 to node 6 is 1− 2− 3− 6 and is shown in red. The length of this path is
55+ 20+ 25= 100. �

Fig. 2.1 The shortest path from node 1 to node 6 is 1−2−3−6 and is indicated by red arcs. This
path has length 100.

Minimum spanning tree problem – Revisited

Let G = (V,U) be a graph, where the node set V corresponds to points to be con-
nected and its edge set U is formed by unordered pairs of points i, j ∈V , with i 	= j.
Let di j be the length (or weight) of edge (i, j) ∈U . In addition, let T (G) = (V,U ′)
be a spanning tree of graph G, i.e., a connected subgraph of G with the same node
setV and whose edge setU ′ ⊆U has exactly n−1= |V |−1 edges. The total weight
of tree T (G) is given by f (T (G)) = ∑(i, j)∈U ′ di j.

Therefore, in the case of the minimum spanning tree problem, the ground set
E consists of the set U of edges. The set of feasible solutions F ⊆ 2E is formed
by all subsets of edges that correspond to spanning trees of G. The objective of
the minimum spanning tree problem is to find a spanning tree T∗ ∈ F such that
f (T∗)≤ f (T) for all T ∈ F .

Consider the example in Figure 2.2, not drawn to scale. The minimum spanning
tree of the graph in this figure is shown in red and has five edges: (1,2), (2,3), (2,4),
(3,5), and (3,6). Its total weight is 55+ 20+ 40+35+25= 175. �

2.1 Problem formulation 15

Fig. 2.2 A minimum spanning tree is shown in red and has total length 175.

Steiner tree problem in graphs – Revisited

Let G = (V,U) be a graph, where the node set is V = {1, . . . ,n} and the edge set
U is formed by unordered pairs of points i, j ∈ V , with i 	= j. Let di j be the length
of edge (i, j) ∈U . Furthermore, let T ⊆ V be a subset of terminal nodes that have
to be connected. A Steiner tree S = (V ′,U ′) of G is a subtree of G that connects
all nodes in T , i.e., T ⊆ V ′ ⊆ V . The total length of the Steiner tree S is given by
f (S) = ∑(i, j)∈U ′ di j.

Therefore, in the case of the Steiner tree problem in graphs, the ground set E once
again consists of the set U of edges. The set of feasible solutions F ⊆ 2E is formed
by all subsets of edges that correspond to Steiner trees of G. The objective of the
Steiner tree problem in graphs is to find a Steiner tree S∗ ∈ F such that f (S∗)≤ f (S)
for all S ∈ F .

Consider the graph in the example in Figure 2.3, not drawn to scale. The terminal
nodes are represented by circles, while the optional nodes correspond to squares.
The minimum Steiner tree is shown in red and makes use of the optional nodes 5
and 6. Its total length is 5+ 5+ 5+ 5+5= 25.

Fig. 2.3 A minimum Steiner tree is shown in red and has total length 25.

16 2 A short tour of combinatorial optimization and computational complexity

The nonterminal, optional nodes in V \T that are effectively used to connect the
terminal nodes in T are called Steiner nodes. The Steiner tree problem in graphs
reduces to a shortest path problem whenever |T | = 2. Furthermore, it reduces to a
minimum spanning tree problem whenever T =V . �

Maximum clique problem – Revisited

Let G = (V,U) be a graph, where the node set V = {1, . . . ,n} corresponds to the
set of people in the world. For every two people i, j ∈ V , the edge (i, j) ∈U if and
only if i and j are friends. A clique is a subset C ⊆V such that (i, j) ∈U for every
pair i, j ∈ C with i 	= j. The size of a clique is defined to be its cardinality, i.e.,
f (C) = |C|.

Therefore, in the case of the maximum clique problem, the ground set E corre-
sponds to the set of nodes V . The set of feasible solutions F ⊆ 2E is formed by all
subsets ofV in which all nodes are pairwise adjacent. The objective of the maximum
clique problem is to find a clique C∗ ∈ F such that f (C∗)≥ f (C) for all C ∈ F .

Consider the example in Figure 2.4. The maximum clique is formed by the four
nodes numbered 2, 3, 5, and 6. The edges connecting the nodes of this clique are
illustrated in red. �

Fig. 2.4 A maximum clique of size four formed by nodes 2, 3, 5, and 6 is illustrated with the edges
connecting its nodes in red.

Knapsack problem – Revisited

Let b be an integer representing the maximum weight that can be taken in a hiker’s
knapsack and suppose the hiker has a set I = {1, . . . ,n} of items to be placed in the
knapsack. Let ai and ci be integer numbers representing, respectively, the weight
and the utility of each item i ∈ I. Without loss of generality, we assume that each

2.1 Problem formulation 17

item fits in the knapsack by itself, i.e., ai ≤ b, for all i ∈ I. A subset of items K ⊆ I
is feasible if ∑i∈K ai ≤ b. The utility of this subset is given by f (K) = ∑i∈K ci.

Therefore, in the case of the knapsack problem, the ground set E consists of the
set I of items to be packed. The set of feasible solutions F ⊆ 2E is formed by all
subsets of items K ⊆ I for which ∑i∈K ai ≤ b. The objective of the knapsack problem
is to find a set of items K∗ ∈ F such that f (K∗)≥ f (K) for all K ∈ F .

Fig. 2.5 Four items are candidates to be packed into a knapsack with maximum weight capacity
of 19. The optimal solution packs the yellow and blue items with total weight of 15 and maximum
total utility of 30.

Consider the example in Figure 2.5, where four items are available to a hiker to be
placed in a knapsack of capacity 19. The weights of the yellow and green items are
each equal to 10 and those of the blue and red items are both equal to 5. Therefore,
only two of the four items fit together in the knapsack. The two heaviest items have
utilities 20 and 10 to the hiker, while the two items with least weights have utilities
10 and 5. Since both large items (which combined have the highest utility to the
hiker, but also the greatest weight) cannot be placed together in the knapsack, the
hiker will need to select a large and a small item. Of each group, the hiker selects
the one with maximum utility. The solution is shown on the right side of the figure.
The yellow and blue items are placed in the knapsack and together they have a total
weight of 5+ 10 = 15 and a total maximum utility of 10+ 20= 30. �

Traveling salesman problem – Revisited

Let V = {1, . . . ,n} be the set of cities a traveling salesman has to visit. If we
consider the graph G = (V,U) with non-negative lengths di j associated with each
existing edge (i, j) ∈ U , then any tour visiting each of the n cities exactly once
corresponds to a Hamiltonian cycle in G, i.e., a cycle in G that visits every node
exactly once. A feasible solution to the traveling salesman problem is a tour
defined by a circular permutation π = (i1, i2, . . . , in, i1) of the n cities, with i j 	= ik
for every j 	= k ∈ V . This permutation is associated with the Hamiltonian cycle

18 2 A short tour of combinatorial optimization and computational complexity

H = {(i1, i2),(i2, i3), . . . ,(in−1, in),(in, i1)} in G, i.e., (in, i1) ∈U and (ik, ik+1) ∈U ,
for k = 1, . . . ,n− 1. The total length of this tour is given by f (H) = ∑n−1

k=1 dik,ik+1 +
din,i1 .

In case G = (V,U) is not complete, for any pair of vertices i, j ∈ V such that
(i, j) /∈ E , we can create a new edge (i, j) with a sufficiently large length di j = ∞.
Every Hamiltonian cycle in the original graph corresponds to a finite length Hamil-
tonian cycle in the resulting complete graph. Therefore, we can always assume,
without loss of generality, that G= (V,U) can be viewed as a complete graph.

In the case of the traveling salesman problem, the ground set E consists of the
edge set U . The set of feasible solutions F ⊆ 2E is formed by all subsets of edges
corresponding to Hamiltonian cycles in G. The objective of the traveling salesman
problem is to find a Hamiltonian cycleH∗ ∈F such that f (H∗)≤ f (H) for all H ∈F .
Alternatively, we can view the ground set E as formed by all vertices in V and the
set F of feasible solutions formed by all circular permutations of the elements of the
ground set.

Consider an instance of the traveling salesman problem, defined by the graph in
Figure 2.6. Next, Figure 2.7 depicts in red a tour that visits cities 1−2−4−5−3−
6− 1 in this order and has a total length of 325. The shortest tour, shown in red in
Figure 2.8, visits cities 1− 2− 3− 6− 5− 4− 1 in this order and has a total length
of 285. �

Fig. 2.6 Instance of a traveling salesman problem with six cities.

2.2 Computational complexity

This book is mainly concerned with the solution of computationally difficult com-
binatorial optimization problems. In this section, we discuss the basics of the theory
of computational complexity, which provides useful tools to differentiate between
easy and hard combinatorial optimization problems.

2.2 Computational complexity 19

Fig. 2.7 Example of a tour in this graph visiting cities 1− 2− 4− 5− 3− 6− 1 in this order as
illustrated in red, with a total length of 325.

Fig. 2.8 The shortest tour in this graph visits cities 1 − 2 − 3 − 6 − 5 − 4 − 1 in this order as
illustrated in red and has a total length of 285.

2.2.1 Polynomial-time algorithms

A computational problem is generally considered well-solved when there exists an
efficient algorithm for its exact solution. Basically, efficient algorithms are those that
are not too time-consuming and whose computation times do not grow excessively
fast with the problem size. In fact, the rate of growth of the time taken by an algo-
rithm is the main limitation for its use in practice. Algorithms with fast increasing
computation times quickly become useless to solve real-world applications.

An algorithm is considered efficient and practically useful for solving a compu-
tational problem P whenever its time complexity (or its running time) grows as
a polynomial function of the size of its input. In this context, the input size corre-
sponds to the number of bits or to the amount of memory needed to store the data
of any particular instance of P . If we denote by L the length of any reasonable
encoding of the problem data, using an alphabet defined by at least two symbols, an

20 2 A short tour of combinatorial optimization and computational complexity

algorithm A for this problem is said to run in polynomial time if there is a polyno-
mial function p such that the computation of A is bounded from above by p(L). In
this case, we say that algorithm A runs in time O(p(L)) if there exists an integer
number L0 and a real number c such that the running time of algorithm A applied
to any instance of problem P of size L≥ L0 is less than or equal to c · p(L).
Definition 2.1 (Polynomial algorithm). An algorithm A for a problem P is said
to be polynomial if there is a polynomial function p such that A solves any instance
of P in time bounded by p(L), where L is the length of a reasonable encoding of
this instance.

Polynomial-time algorithms are known for two of the six combinatorial optimiza-
tion problems used to motivate the discussion in this chapter. These are the shortest
path problem and the minimum spanning tree problem. The other four – the Steiner
tree problem in graphs, the maximum clique problem, the knapsack problem, and
the traveling salesman problem – are typical examples of hard problems for which,
to date, no polynomial-time algorithm is known. Hard optimization problems in this
category are the main concern of this book and correspond to those that benefit from
the solution methods presented here.

2.2.2 Characterization of problems and instances

In Section 2.1, we saw that an instance of a combinatorial optimization problem can
be characterized by a finite ground set E = {1, . . . ,n}, a set F of feasible solutions,
and a cost function f : F → R that associates a real value f (S) with each feasible
solution S ∈ F .

For each combinatorial optimization problem, we assume that its set F of feasible
solutions and its cost function f (S) are implicitly given by two algorithms AF and
A f , respectively. Given an object S ∈ 2E and a set PF of parameters, the recognition
algorithm AF determines if the object S belongs to F , the set of feasible solutions
characterized by the parameters in PF . Similarly, given a feasible solution S ∈ F and
a set of parameters Pf , the cost function algorithm A f computes the cost function
value f (S). Therefore, we can say that each combinatorial optimization problem is
characterized by the recognition algorithm AF and the cost function algorithm A f ,
while each of its instances is associated with a pair of parameter sets PF and Pf .
These concepts are illustrated below for some of the problems previously described
in this chapter.

Shortest path problem – Characterizing parameters and algorithms

In the case of the shortest path problem, the parameter set PF that establishes feasi-
bility consists of the description of the directed graph G= (V,A), where V is its set

2.2 Computational complexity 21

of nodes and A its set of arcs, together with the definition of the source and destina-
tion nodes s, t ∈V . An object that is a candidate to be a feasible solution is defined
by a subset P of the arcs in A. The cost function parameter set Pf is defined by the
arc lengths di j, for every arc (i, j) ∈ A. The recognition algorithm AF checks if P
corresponds to a path from s to t in G. Once the feasibility of a solution P has been
established (i.e., P characterizes a path from s to t), the cost function algorithm A f

adds up the lengths of all arcs in P to compute the cost function value f (P). �

Minimum spanning tree problem – Characterizing parameters
and algorithms

In the minimum spanning tree problem, the parameter set PF that establishes feasi-
bility consists exclusively of the description of the graph G= (V,U) itself, whereV
is its set of nodes andU its set of edges. An object that is a candidate to be a feasible
solution is defined by a subset T of the edges in U . The cost function parameter set
Pf consists of the edge lengths di j, for every edge (i, j) ∈U . The recognition algo-
rithm AF checks if T corresponds to a spanning tree in G. Once the feasibility of a
solution T has been established (i.e., the graph induced in G by the edge subset T
is connected and has exactly |V |−1 edges), the cost function algorithm A f adds up
the lengths of all edges in T to compute the cost function value f (T). �

Maximum clique problem – Characterizing parameters and algorithms

In the case of the maximum clique problem, once again the parameter set PF that est-
ablishes feasibility consists exclusively of the description of the graph G = (V,U),
where V is its set of nodes and U its set of edges. An object that is a candidate to
be a feasible solution is defined by a subset C of the nodes in V . Since the cost of
a feasible solution C depends only on the number of nodes in C, no cost parameter
exists and therefore Pf =∅. The recognition algorithm AF checks if C corresponds
to a clique in G. Once the feasibility of a solution C has been established (i.e.,
every two nodes i, j ∈C are pairwise connected by an edge in U), the cost function
algorithm A f simply counts the number of nodes in C to compute the cost function
value f (C). �

Knapsack problem – Characterizing parameters and algorithms

For the knapsack problem, the parameter set PF that establishes feasibility is defined
by the maximum weight b of the knapsack and by the weights ai of each item i ∈ I.
An object that is a candidate to be a feasible solution is defined by a subset B of the
items in I. The cost function parameter set Pf is defined by the utilities ci, for each
i ∈ I. The recognition algorithm AF checks if B corresponds to a feasible subset of
items. Once the feasibility of a solution B has been established (i.e., the sum of the

22 2 A short tour of combinatorial optimization and computational complexity

weights of all items in B is less than or equal to the maximum weight b), the cost
function algorithm A f adds up the utilities of all items in B to compute the cost
function value f (B). �

Traveling salesman problem – Characterizing parameters and algorithms

In the case of the traveling salesman problem, the parameter set PF that establishes
feasibility consists of the number |V | of cities or vertices of the complete graph
G = (V,U). An object that is a candidate to be a feasible solution is characterized
by a circular permutation of all cities in V or by the set H of edges in the associ-
ated Hamiltonian cycle in G. The cost function parameter set Pf is defined by the
distances di j, for every pair of cities i, j ∈ V , with i 	= j. The recognition algorithm
AF checks if H corresponds to a Hamiltonian cycle in G. Once the feasibility of a
solution H has been established (i.e., H characterizes a Hamiltonian cycle visiting
every node of G exactly once), the cost function algorithm A f adds up the distances
of all arcs in H to compute the cost function value f (H). �

2.2.3 One problem has three versions

A combinatorial optimization problem can therefore be alternatively stated in gen-
eral as the following computational task:

Definition 2.2 (Optimization problem). Given representations for the parameter
sets PF and Pf for algorithms AF and A f , respectively, find an optimal feasible
solution.

The above formulation is usually referred to as the optimization version of the
problem. However, if instead of finding an optimal solution itself, we are only in-
terested in finding its value, then we have a more relaxed evaluation form of this
problem:

Definition 2.3 (Evaluation problem). Given representations for the parameter sets
PF and Pf for algorithms AF and A f , respectively, find the cost of an optimal feasi-
ble solution.

Under the reasonable assumption that A f is a polynomial-time algorithm, which
means that the cost of any solution can be efficiently computed, this evaluation
version cannot be harder than the optimization version. This is so because once
the optimization version of the problem has been solved and its optimal solution
is known, its cost can be easily computed in polynomial time by the cost function
algorithm A f .

2.2 Computational complexity 23

A third version of a combinatorial optimization problem is particularly important
in the context of complexity theory. The decision version (or recognition version)
of a minimization problem amounts to a single question requiring a “yes” or “no”
answer:

Definition 2.4 (Decision version of a minimization problem). Given representa-
tions for parameter sets PF and Pf for algorithms AF and A f , respectively, and an
integer number B that represents a bound, is there a feasible solution S∈ F such that
f (S)≤ B?

Analogously, the decision version of a maximization problem asks for the exis-
tence of a feasible solution S ∈ F whose cost f (S) is greater than or equal to B. The
decision version of a combinatorial optimization problem cannot be harder than its
evaluation version. In fact, once the cost of an optimal solution has been obtained as
the solution of the evaluation version, we can just compare it with the value of B to
give a “yes” or “no” answer to the decision version. We have therefore established
a problem hierarchy, in which the decision version is not harder than the evaluation
version that, in turn, is not harder than the optimization version.

Maximum clique problem – Problem versions

1. Optimization version: Given a graph G = (V,U), find a maximum cardinality
clique of G.

2. Evaluation version: Given a graph G = (V,U), find the number of nodes in a
maximum cardinality clique of G.

3. Decision version: Given a graph G = (V,U) and an integer number B, is there a
clique in G with at least B nodes? �

Knapsack problem – Problem versions

1. Optimization version: Given a set I = {1, . . . ,n} of items, integer weights ai and
utilities ci associated with each item i ∈ I, and a maximum weight capacity b,
find a subset K∗ ⊆ I of items such that ∑i∈K∗ ci = maxK⊆I{∑i∈K ci : ∑i∈K ai ≤ b}.

2. Evaluation version: Given a set I = {1, . . . ,n} of items, integer weights ai and
utilities ci associated with each item i ∈ I, and a maximum weight capacity b,
find c∗ = maxK⊆I{∑i∈K ci : ∑i∈K ai ≤ b}.

3. Decision version: Given a set I = {1, . . . ,n} of items, integer weights ai and
utilities ci associated with each item i ∈ I, a maximum weight capacity b, and an
integer B, is there K ⊆ I such that ∑i∈K ai ≤ b and ∑i∈K ci ≥ B? �

24 2 A short tour of combinatorial optimization and computational complexity

Traveling salesman problem – Problem versions

1. Optimization version: Given a complete graph G= (V,U) with non-negative dis-
tances di j between every pair of nodes i, j ∈V , find a shortest Hamiltonian cycle
in G.

2. Evaluation version: Given a complete graph G = (V,U) with non-negative dis-
tances di j between every pair of nodes i, j ∈ V , compute the length of a shortest
Hamiltonian cycle in G.

3. Decision version: Given a complete graph G = (V,U) with non-negative dis-
tances di j between every pair of nodes i, j ∈V and an integer B, is there a Hamil-
tonian cycle in G of length less than or equal to B? �

Under very reasonable assumptions, we can show that the three versions of any
combinatorial problem have roughly the same computational complexity. If we have
a polynomial-time algorithm to solve the decision version of a combinatorial prob-
lem, then in general we can also construct polynomial-time algorithms for solving
the evaluation and the optimization versions.

As an example, consider the case of the asymmetric traveling salesman problem
defined on a complete directed graph G = (V,A), in which the distances di j and d ji

associated with a pair of arcs (i, j)∈A and (j, i)∈A are not necessarily the same. We
first suppose that there exists an algorithm TSPDEC(n,d,B) that solves the decision
version of the traveling salesman problem. This algorithm provides the appropriate
“yes” or “no” answer for any instance defined by n cities, non-negative distances di j
for every pair of cities i, j ∈ V = {1, . . . ,n}, with i 	= j, and an integer B. We also
assume that algorithm TSPDEC(n,d,B) runs in time T (n).

Algorithm TSPOPT(n,d), described in Figure 2.9, solves the optimization ver-
sion of the asymmetric traveling salesman problem by repeatedly applying algo-
rithm TSPDEC(n,d,B) to slightly modified instances of its decision version. Lines 1
and 2 set initial values to LB and UB which are, respectively, trivial lower and upper
bounds for the optimal solution value. Line 3 defines a sufficiently large value BIG
that will be used as a flag. The loop in lines 4 to 10 implements a binary search
procedure that seeks the optimal solution value in the interval [LB,UB]. Line 4 inter-
rupts the search as soon as an optimal solution is found, in which case both bounds
LB and UB are equal to the optimal value. Line 5 asks for the existence of a solution
whose length is less than or equal to �(LB+UB)/2�. If there is one, then the upper
bound UB is reset to �(LB+UB)/2� in line 6. Otherwise, line 8 resets the lower
bound LB to �(LB+UB)/2�. At the end of the execution of the loop in lines 4 to 10,
the optimal solution value LB=UB is saved to OPT in line 11, providing a solution
to the evaluation version.

Lines 12 to 24 compute the solution of the optimization version. The loop in lines
12 to 18 identifies the arcs that belong to an optimal Hamiltonian cycle. Lines 12
and 13 enumerate all ordered pairs of cities. In line 14, we save in TMP the distance
di j associated with the arc (i, j) ∈ A, with i, j ∈ V and i 	= j, and replace it with
a sufficiently large value BIG in line 15. Line 16 asks for the existence of a tour
whose length is less than or equal to OPT with the modified distance di j. If there is

2.2 Computational complexity 25

none, then arc (i, j) must belong to the optimal solution and its length di j is reset to
the original value TMP. The arcs that have their lengths reset to BIG at the end of
the loop in lines 12 to 18 are those that do not belong to an optimal solution. The
optimal solution S∗ is initialized with the empty set in line 19. The loop in lines 20 to
24 builds an optimal tour. Lines 20 and 21 are used to enumerate all arcs or ordered
pairs of cities. Line 22 inserts an arc (i, j) ∈ A in the optimal solution if its length
has not been reset to BIG, in which case it belongs to the optimal solution. Line 25
returns an optimal solution S∗ and its optimal value OPT, solving, respectively, the
optimization and the evaluation versions.

Fig. 2.9 Pseudo-code of algorithm TSPOPT(n,d) for the optimization version of the traveling
salesman problem based on the repeated execution of algorithm TSPDEC(n,d,B) for the decision
version.

Since algorithm TSPDEC(n,d,B) runs in time T (n), both the evaluation and the
optimization versions can be solved in time O(n2 · T (n)), therefore within a poly-
nomial factor of the time needed to solve the decision version. The binary search
approach to solve the evaluation version can be extended to most problems un-
der reasonable assumptions, while similar constructions are available for solving
the optimization version by successive applications of an algorithm that solves the
decision version.

26 2 A short tour of combinatorial optimization and computational complexity

2.2.4 The classes P and NP

We have seen in the previous section that the decision version of a combinatorial
optimization problem amounts to a question that can be answered by either “yes”
or “no”:

SHORTEST PATH: Given a directed graph G= (V,A), an origin node s ∈V ,
a destination node t ∈ V , lengths di j associated with every arc (i, j) ∈ A, and
an integer B, is there a path from s to t in G whose length is less than or equal
to B?

SPANNING TREE: Given a graph G = (V,U), a weight di j associated with
each edge (i, j) ∈U , and an integer B, is there a spanning tree of G such that
the sum of the weights of its edges is less than or equal to B?

STEINER TREE IN GRAPHS: Given a graph G = (V,U), lengths di j asso-
ciated with each edge (i, j) ∈U , a subset T ⊆ V , and an integer B, is there
a subtree of G that connects all nodes in T and such that the sum of its edge
lengths is less than or equal to B?

CLIQUE: Given a graph G = (V,U) and an integer B, is there a clique in G
with at least B nodes?

KNAPSACK: Given a set I = {1, . . . ,n} of items, integer weights ai and
utilities ci associated with each item i ∈ I, a maximum weight capacity b,
and an integer B, is there a subset of items K ⊆ I such that ∑i∈K ai ≤ b and
∑i∈K ci ≥ B?

TRAVELING SALESMAN PROBLEM (TSP): Given a set V = {1, . . . ,n} of
cities and non-negative distances di j between every pair of cities i, j ∈V , with
i 	= j, and an integer B, is there a tour visiting every city of V exactly once
with length less than or equal to B?

Other examples of well-known computational problems that correspond to the
decision versions of combinatorial optimization problems are

LINEAR PROGRAMMING: Given an m×n matrix A of integer numbers, an
integer m-vector b, an integer n-vector c, and an integer B, is there an n-vector
x≥ 0 of rational numbers such that A · x= b and c · x≤ B?

GRAPH COLORING: Given a graph G = (V,U) and an integer B, is it pos-
sible to color the nodes of G with at most B colors, such that adjacent nodes
receive different colors?

INDEPENDENT SET: Given a graph G= (V,U) and an integer B, is there an
independent set of nodes in G (i.e., a subset of mutually nonadjacent nodes)
with at least B nodes?

2.2 Computational complexity 27

INTEGER PROGRAMMING: Given an m× n matrix A of integer numbers,
an integer m-vector b, an integer n-vector c, and an integer B, is there an
n-vector x≥ 0 of integer numbers such that A · x= b and c · x≤ B?

In general, a decision problem is one that has only two possible solutions: either
the answer “yes” or the answer “no.” All the above decision versions of combina-
torial optimization problems are decision problems. However, there are many other
decision problems that have not been originally cast as optimization problems. Some
examples are

HAMILTONIAN CYCLE: Given a graph G= (V,U), is there a Hamiltonian
cycle in G visiting all its nodes exactly once?

GRAPH PLANARITY: Given a graph G= (V,U), is it planar?

GRAPH CONNECTEDNESS: Given a graph G= (V,U), is it connected?

SATISFIABILITY (SAT): Given m disjunctive clauses C1, . . . ,Cm involving
the Boolean variables x1, . . . ,xn and their complements, is there a truth assign-
ment of 0 (false) and 1 (true) values to these variables such that the formula
C1 ∧C2 ∧·· ·∧Cm is satisfiable?

Decision problems and the decision versions of optimization problems are closer
to the prototype of computational problems studied by the theory of computation
and play a very important role in complexity theory. Furthermore, since we have
shown that the decision version of an optimization problem cannot be harder than
the optimization version, if a decision problem cannot be solved in polynomial time,
then its corresponding optimization version cannot be solved in polynomial time as
well.

Definition 2.5 (Class P). A decision problem P belongs to the class P if there
exists an algorithm A that solves any of its instances in polynomial time.

In other words, the class P is formed by “easy” decision problems that can
be efficiently solved by polynomial-time algorithms. Some problems in this class
among those we have already examined are SHORTEST PATH, SPANNING TREE,
GRAPH CONNECTEDNESS, and LINEAR PROGRAMMING. For all of them,
there are efficient algorithms that compute an exact “yes” or “no” answer in poly-
nomial time.

Given a decision problem P and a “yes” instance J , a certificate c(J) is
a string that encodes a solution and makes it possible to reach the “yes” answer
for instance J . A certificate is said to be concise if the length of its encoding
is bounded from above by a polynomial in the amount of memory that is used to
encode instance J . With these definitions, we identify a broader class of decision
problems.

Definition 2.6 (Class NP). A decision problem P belongs to the class NP if there
exists a certificate-checking algorithm A ′ such that, for any “yes” instance J of
P , there is a concise certificate c(J) with the property that algorithm A ′ applied
to instance J and certificate c(J) reaches the answer “yes” in polynomial time.

28 2 A short tour of combinatorial optimization and computational complexity

For a problem to be in NP, it is not required that there exists an algorithm that
computes an answer in polynomial time for every instance of this problem. All that
is required is that there exists a concise certificate for any “yes” instance that can
be checked for validity in polynomial time. The certificate-checking algorithm A ′
is usually a combination of the recognition algorithm AF that checks for feasibility
with the cost function algorithmA f that computes the cost function value as defined
in Section 2.2.1.

We next give examples of concise certificates and membership in NP for several
combinatorial optimization problems.

Maximum clique problem – Concise certificate and membership in NP

A certificate c(J) for the maximum clique problem is an encoding of a possible list
of nodes forming a clique. This certificate is concise, because it cannot have more
than |V | nodes. The certificate-checking algorithm is polynomial, since it amounts
to first checking whether c(J) corresponds to a subset of the nodes of the graph
G = (V,U), then verifying if there is an edge in G for every pair of nodes in the
certificate. This part corresponds to the application of the recognition algorithm AF

and is followed by the application of the cost function algorithm A f that counts the
number of nodes in the certificate and by the comparison with the integer parameter
B. Therefore, the decision problem CLIQUE belongs to NP. �

Knapsack problem – Concise certificate and membership in NP

A certificate c(J) for the knapsack problem is an encoding of a possible sequence
of integer numbers representing a subset of the n available items. Once again this
certificate is concise, because it cannot have more than n elements. The certificate-
checking algorithm is polynomial and corresponds exactly to the recognition al-
gorithm AF , since it amounts to adding up the weights of the items in c(J) and
comparing the total weight with the maximum weight capacity b. Next, the cost
function algorithm A f adds up the utilities of the items in c(J) and their total util-
ity is compared with the integer parameter B. Consequently, the decision problem
KNAPSACK also belongs to NP. �

Traveling salesman problem – Concise certificate and membership in NP

A certificate c(J) for the traveling salesman problem is an encoding of a possible
permutation of the n cities or nodes in the graph G= (V,U). This certificate is also
concise, because it must have exactly |V | nodes. The certificate-checking algorithm
is polynomial and corresponds to the recognition algorithm AF since it amounts to
checking if every city or node in the graph G appears exactly once in the certificate.
Finally, the cost function algorithm A f adds up the lengths of the edges defined by

2.2 Computational complexity 29

the permutation established by certificate c(J) and the total length of the tour is
compared with the integer parameter B. Therefore, the decision problem TSP also
belongs to NP. �

Examples of other decision problems in NP are STEINER TREE IN GRAPHS,
GRAPH PLANARITY, GRAPH COLORING, INDEPENDENT SET, HAMILTO-
NIAN CYCLE, SAT, and INTEGER PROGRAMMING.

To prove that a problem is in NP, one is not required to provide an efficient
algorithm to compute the certificate c(J) for any given instance J . One has only
to prove the existence of at least one concise certificate for each “yes” instance.

Fig. 2.10 Pseudo-code of the nondeterministic algorithm ND-01KSP(n,a,b,c,B) that solves the
decision version of the knapsack problem in polynomial time.

Nothing is required for the “no” instances: concise certificates should exist only for
“yes” instances.

We now suppose that there exists a polynomial-time algorithm A for solving
a decision problem P in P. In other words, algorithm A is able to provide the
appropriate “yes” or “no” answer for every instance of P . Therefore, the steps of
algorithmA applied to a “yes” instance J can be represented as a string of polyno-
mial size. This string is a concise certificate, since it can be checked in polynomial
time to be a valid execution of A . The existence of a concise certificate that can be
checked in polynomial time for any “yes” instance J shows that P is also in NP.
Therefore, whenever a decision problem P ∈ P, it also holds that P ∈NP. In other
words, P⊆ NP.

We remark that the acronym NP stands for nondeterministic polynomial, and
not for nonpolynomial, as it often appears erroneously in the literature. A nonde-
terministic algorithm can be seen as one that makes use of the same instructions
used by (deterministic) algorithms, plus the special GO TO BOTH X,Y command.
This instruction simultaneously transfers the execution flow of a computer program
to two instructions labeled X and Y. This very powerful statement behaves as if it
creates two parallel threads of the algorithm currently under execution, one contin-
uing from the instruction labeled X and the other from that labeled Y. The repeated
application of this command can create very strong algorithms with an unlimited

30 2 A short tour of combinatorial optimization and computational complexity

level of parallelism. As an example, we consider the nondeterministic algorithm
ND-01KSP(n,a,b,c,B) in Figure 2.10 that solves KNAPSACK, i.e., the decision
version of the knapsack problem.

The first part of the algorithm consists of the loop from line 1 to 7, which is used
to create 2n parallel execution threads. Line 1 is used to implement a loop exploring
all variables x1, . . . , xn, starting from x1. Line 2 duplicates each currently active
thread in the execution flow of the algorithm: line 3 sets xi to 0 in the first thread,
while line 5 sets xi to 1 in the second. At the end of the execution of the loop in lines
1 to 7, there are 2n threads of the algorithm, all of them running in parallel. Every
variable xi, for i= 1, . . . ,n, is set to 0 in 2n−1 threads and to 1 in the other 2n−1.

In the second part of the algorithm, each parallel thread verifies in line 8 if the
solution x1, . . . , xn that it contains is feasible and if its total utility is greater than or
equal to B. If so, then the algorithm returns “yes” and stops.

We observe that the first part of the algorithm is equivalent to the creation of
2n concise certificates for KNAPSACK, each of them running in a different thread
and corresponding to a different assignment of 0-1 values to variables x1, . . . , xn.
The second part of the algorithm running in each thread checks the certificate it
stores and answers “yes” if it is valid. Since all possible certificates are explored in
parallel, there will be always at least one thread that will answer “yes” for any “yes”
instance. Once again, we observe that nothing is required for the “no” instances.

We say that a nondeterministic algorithm runs in polynomial time if the first
thread to reach the “yes” answer runs in time polynomial in the size of the instance.
Although the construction of parallel computers with an arbitrarily large number of
processors (i.e., with unlimited parallelism) is unlikely at least in the near future,
nondeterministic algorithms provide a very useful and powerful tool. In particular,
they can be used to provide an alternative to Definition 2.6 of the class NP:

Definition 2.7 (Class NP). A decision problem P belongs to the class NP if and
only if any of its “yes” instances can be solved in polynomial time by a nondeter-
ministic algorithm.

In addition to containing all problems in P, the classNP also contains the decision
versions of many optimization problems and arises very naturally in the study of the
complexity of combinatorial optimization problems.

2.2.5 Polynomial transformations and NP-complete problems

Solving a computational problem often becomes easy as soon as we assume the
existence of an efficient algorithm for solving a second problem, which is equivalent
to the first.

Definition 2.8 (Polynomial-time reduction). Let P1 and P2 be two decision
problems. We say that there is a polynomial-time reduction from problem P1 to
P2 if and only if the first can be solved by an algorithm A1 that amounts to a
polynomial number of calls to an algorithm A2 for solving problem P2.

2.2 Computational complexity 31

As a consequence, if problem P1 polynomially reduces to P2 and there is
a polynomial-time algorithm for P2, then there is also a polynomial-time algo-
rithm for problem P1. A polynomial-time transformation is a special case of a
polynomial-time reduction that is particularly relevant in the context of complexity
theory.

Definition 2.9 (Polynomial-time transformation). Let P1 and P2 be two deci-
sion problems. We say that there is a polynomial-time transformation from problem
P1 to problem P2 if an instance J2 of P2 can be constructed in polynomial time
from any instance J1 of P1, such that J1 is a “yes” instance of P1 if and only if
J2 is a “yes” instance of P2.

We give two examples of polynomial-time transformations between problems
in NP. We first show that CLIQUE polynomially transforms to INDEPENDENT
SET. Let an instance J1 of CLIQUE be defined by a graph G = (V,U) and an
integer B. Let Ḡ= (V,Ū) be the complement of G: for every pair of nodes i, j ∈ V ,
there is an edge (i, j) ∈ Ū if and only if the pair i, j does not constitute an edge in
U . Therefore, an instance J2 of INDEPENDENT SET defined by the complement
of G and the same integer B can be constructed in time O(|V |2) such that J1 is a
“yes” instance of CLIQUE if and only if J2 is a “yes” instance of INDEPENDENT
SET (see Figure 2.11 for the illustration of the transformation from CLIQUE to
INDEPENDENT SET).

(a) Maximum clique in the original graph G (b) Maximum independent set in Ḡ

Fig. 2.11 Polynomial transformation from CLIQUE to INDEPENDENT SET: Nodes 1, 4, and
5 form a maximum clique of the original graph G in (a), while the same nodes correspond to a
maximum independent set of the complement Ḡ of G in (b). The instances defined by G and Ḡ are
“yes” instances for any B≤ 3 and “no” instances for any B> 3.

As a second example, we show that HAMILTONIAN CYCLE polynomially
transforms to TSP. Let an instance J1 of HAMILTONIAN CYCLE be defined by a
directed graph G= (V,A). First, associate a city of the TSP instance with every node

32 2 A short tour of combinatorial optimization and computational complexity

in V . For every pair of cities i, j ∈V , we set the distance di j = 1 if (i, j) ∈ A, di j = 2
otherwise. Next, set B= |V |. Therefore, an instance J2 of TSP can be constructed
in time O(|V |2) such that J1 is a “yes” instance of HAMILTONIAN CYCLE if
and only if J2 is a “yes” instance of TSP. In fact, there is a Hamiltonian cycle in G
if and only if there exists a tour of length B= |V | visiting all cities corresponding to
the nodes in V .

A polynomial-time transformation can be seen as a polynomial-time reduction
that makes a single call to algorithm A2, exactly at the end of algorithm A1, and
spends the rest of the time constructing the instance J2 of problem P2. With this
definition, we can introduce a very important subclass of the problems in NP.

Definition 2.10 (NP-complete problems). A decision problem P ∈ NP is said to
be NP-complete if every other problem in NP can be transformed to it in polynomial
time.

NP-complete problems have therefore a very important property: if there is a
polynomial-time algorithm for any one of them, then there are also polynomial-time
algorithms for all other problems in NP.

The proof that a problem is NP-complete involves two main steps: (1) prov-
ing that it is in NP and (2) showing that all other problems in NP can be trans-
formed to it in polynomial time. The second part is often the hardest and is usually
proved by showing that another problem already proved to be NP-complete is poly-
nomially transformable to the problem on hand. SAT was the first problem to be
explicitly proved to be NP-complete. Other NP-completeness results followed by
polynomial transformations originating with SAT, showing that 3-SAT (a particu-
lar case of SAT, in which every clause has exactly three variables or their com-
plements), KNAPSACK, CLIQUE, INDEPENDENT SET, TSP, STEINER TREE
IN GRAPHS, INTEGER PROGRAMMING, HAMILTONIAN CYCLE, GRAPH
COLORING, and GRAPH PLANARITY are also NP-complete, among many other
problems.

We notice that special cases of NP-complete problems do not necessarily need
to be NP-complete and hard to solve. As an example, we recall that CLIQUE is
NP-complete. We now consider the complexity of the decision problem PLANAR
CLIQUE, which corresponds to a restriction of CLIQUE to planar graphs. We know
from graph theory that a planar graph cannot have a clique with five or more nodes.
Therefore, a maximum clique of a planar graph G = (V,U) can have at most four
nodes and can be found by exhaustive search in time O(|V |4) or even faster by
more specialized algorithms. Therefore, PLANAR CLIQUE is indeed a polynomi-
ally solvable special case of CLIQUE and, consequently, belongs to P.

As a second example, we consider KNAPSACK, the decision version of the
knapsack problem that can be solved in nonpolynomial time O(n ·b) by a straight-
forward dynamic programming algorithm. Suppose now that we are only interested
in a restricted set of KNAPSACK instances, for which the maximum total weight
is limited to b≤ n. In this case, the dynamic programming algorithm runs in O(n2)
time. Therefore, although KNAPSACK is in NP, we conclude that KNAPSACK
restricted to b≤ n is in P.

2.2 Computational complexity 33

2.2.6 NP-hard problems

We say that a problem P is NP-hard if all problems in NP are polynomially trans-
formable to P , but its membership to NP cannot be established. We notice that al-
though P is certainly as hard as any problem in NP, in this case it does not qualify
to be called NP-complete.

Besides its use to describe decision problems that are not proved to be in NP,
the term NP-hard is also used to refer to optimization problems (which are cer-
tainly not in NP, since they are not decision problems) whose decision versions are
NP-complete.

For example, we can say that the maximum clique problem, the knapsack prob-
lem, and the traveling salesman problem introduced as combinatorial optimization
problems in Section 1.2 are all NP-hard, since the decision problems CLIQUE,
KNAPSACK, and TSP are NP-complete, respectively.

2.2.7 The class co-NP

A problem P̄ is said to be the complement of problem P if every “yes” instance of
P̄ is a “no” instance of P and vice-versa. We recall the definition of the CLIQUE
decision problem:

CLIQUE: Given a graph G = (V,U) and an integer B, is there a clique in G
with at least B nodes?

It is easy to show that CLIQUE belongs to NP, since every “yes” instance has a
concise certificate, defined by a list with at least B nodes of G. We now consider the
following complementary version of the same problem:

CLIQUE COMPLEMENT: Given a graph G = (V,U) and an integer B, is it
true that there is no clique in G with at least B nodes?

It is clear that every “yes” instance of CLIQUE is a “no” instance of CLIQUE COM-
PLEMENT and vice-versa. However, there is no proof to date that CLIQUE COM-
PLEMENT belongs to NP, since the only known strategy for proving that there is no
clique with B or more nodes consists in listing all cliques in G, counting the number
of nodes in each of them, and verifying that any of them has fewer than B nodes.
This clique list is indeed a certificate, but it is not concise since its has exponential
length.

We now consider the case of a problem that belongs to P:

SPANNING TREE: Given a graph G = (V,U), weights di j associated with
every edge (i, j) ∈U , and an integer B, is there a spanning tree of G whose
length is less than or equal to B?

34 2 A short tour of combinatorial optimization and computational complexity

The same algorithm that solves any “yes” or “no” instance of SPANNING TREE
can also be used to solve SPANNING TREE COMPLEMENT:

SPANNING TREE COMPLEMENT: Given a graph G = (V,U), weights di j
associated with every edge (i, j) ∈U , and an integer B, is it true that there is
no spanning tree of G whose length is less than or equal to B?

Since a polynomial algorithm that solves any problem in P can also be used to
solve its complement in polynomial time by simply replacing any “yes” answer to
the former by a “no” answer to the latter and vice-versa, we can conclude that the
complement of any problem in P is also in P.

This same argument cannot be used to prove that the complement of a problem
in NP is also in NP. This leads to the definition of a new complexity class:

Definition 2.11 (Class co-NP). A decision problem P belongs to the class co-NP
if its complement is in NP.

2.2.8 Pseudo-polynomial algorithms and strong NP-completeness

Definition 2.12 (Pseudo-polynomial algorithms). An algorithm A for a problem
P is said to be pseudo-polynomial if there is a polynomial function p such that
A solves any instance of P in time bounded by p(L,M), where L and M are,
respectively, the length of a reasonable encoding of this instance and the largest
integer appearing in this instance.

We observe that whenever the largest integer M appearing in any instance of a
problem solvable by a pseudo-polynomial algorithm is bounded by a polynomial
function in the size of the instance, then algorithm A becomes polynomial. As
an example, we recall that KNAPSACK can be solved in pseudo-polynomial time
O(n · b) by a dynamic programming algorithm. This gives rise to a very efficient
algorithm for the case where the maximum weight capacity b is bounded and small.
For instance, this dynamic programming algorithm runs in time O(n2) whenever
b≤ n.

Definition 2.13 (Strongly NP-complete problems). A problem P is said to be
strongly NP-complete if it remains NP-complete even if there is a polynomial func-
tion p such that the largest integer M appearing in each of the instances of P is
bounded by p(L), where L is the length of a reasonable encoding of the instance.

TSP, CLIQUE, and HAMILTONIAN CYCLE are examples of strongly
NP-complete problems. On the other hand, KNAPSACK is a typical example of
a problem that is not strongly NP-complete, since it can be solved in polynomial
time whenever the maximum capacity b is bounded by a polynomial function on the
number n of variables.

2.2 Computational complexity 35

2.2.9 PSPACE and the polynomial hierarchy

We have discussed up to this point the complexity of decision problems exclusively
in terms of the computational time or the number of operations needed for their
solution.

However, we can also consider the computational requirements in terms of the
amount of space or memory that is needed for solving a decision problem. With this
idea in mind, we present the definition of a new class of decision problems:

Fig. 2.12 Complexity classes and the polynomial hierarchy.

Definition 2.14 (Class PSPACE). A decision problem P belongs to the class
PSPACE if there exists an algorithm A that solves any of its instances using an
amount of space (or memory) that is bounded by a polynomial in the length of its
input.

Any algorithm that takes a polynomial amount of time to be solved cannot con-
sume more than a polynomial amount of space, since it cannot write more than a
fixed number of symbols (or words) at any of its operations. Therefore, it is clear
that P⊆ PSPACE.

However, what can we say about the relationship between the classes NP and
PSPACE? In fact, we can prove that NP ⊆ PSPACE also holds, although this might
seem unexpected at first sight. We first notice that any nondeterministic algorithm
for solving a decision problem P ∈ NP can be simulated by a deterministic algo-
rithm that generates all possible concise certificates for any of its “yes” instances,
one after the other. Furthermore, since P ∈ NP, this deterministic algorithm can
check each of these certificates in polynomial time, using an amount of space that is
bounded by a polynomial in the length of the input of P . Although this determinis-
tic algorithm will run in exponential time, the total amount of space will be polyno-
mial, since each certificate can be erased after it is checked and the space it occupied
can be freed and reused for checking the next certificate. Therefore, NP⊆ PSPACE.
Using a similar argument, we can also prove that co-NP⊆ PSPACE.

36 2 A short tour of combinatorial optimization and computational complexity

We conclude this section with Figure 2.12, which depicts the basic polynomial
hierarchy and complexity classes. The preceding discussion has shown that any de-
cision problem that can be solved in polynomial time by either a deterministic or
a nondeterministic algorithm (or, alternatively, sequentially or in parallel), can also
be solved using a polynomial amount of space. Therefore, even problems that take
an exponential amount of time can be solved in polynomial space. Since polynomi-
ality is considered as a limitation for any scarce resource such as time or space, we
can say that time requirements become critical (i.e., superpolynomial) before space
does. This observation supports the consideration of time as the main and critical
scarce resource considered in the analysis and design of computer algorithms, which
in practice very rarely involve space considerations.

2.3 Solution approaches

There are many more NP-complete and NP-hard combinatorial optimization prob-
lems than those presented to illustrate the main concepts introduced in this chapter.
In fact, we can say that the majority of the problems of practical relevance belong
to these classes. The fact that such problems are considered to be computationally
intractable does not preclude the need for their solution. In addition to general su-
perpolynomial exact methods to solve them, a great amount of research is devoted to
identifying special cases or situations that can be solved exactly in reasonable time,
or to developing approximate algorithms that are able to efficiently find high-quality
solutions. Some of these approaches are quickly discussed below:

1. Superpolynomial-time exact algorithms: Theoretical developments in polyhedral
theory, combined with efficient algorithm design and data structures and ad-
vances in computer hardware, have made it possible to solve even very large
instances of NP-complete and NP-hard problems. Methods such as branch-and-
bound and branch-and-cut are routinely applied to exactly solve large instances
in affordable computation time. Such strategies cannot be discarded, in particular
in the case of real-life instances whose sizes are often limited in practice.

2. Pseudo-polynomial algorithms: These algorithms form a subclass of superpoly-
nomial-time algorithms. Pseudo-polynomial algorithms can be very efficient in
practice whenever the maximum integer appearing in any instance of a given
problem is small. We have already noticed that since KNAPSACK can be solved
in pseudo-polynomial time O(n · b) by dynamic programming, this algorithm
becomes very efficient for the case where the maximum weight capacity b is
bounded and small. Pseudo-polynomial algorithms can therefore become very
practical and attractive in some situations, in spite of the fact that they are, essen-
tially, superpolynomial-time algorithms.

3. Polynomially solvable special cases: It is often the case that although the general
formulation of some specific problem is NP-complete or NP-hard, interesting or
practical instances can be solved exactly in polynomial time. If one is interested

2.3 Solution approaches 37

in solving exclusively these special instances, the fact that the general problem
is intractable is less relevant and exact approaches can be used. Some examples
follow:

• We have seen that CLIQUE is NP-complete. However, if one considers only
planar graphs G = (V,U), the special, restricted case of CLIQUE in planar
graphs (or PLANAR CLIQUE) can be exactly solved by exhaustive enumer-
ation in polynomial time O(|V |4) or even faster by direct application of Kura-
towski’s theorem.

• Although SAT is NP-complete (as is 3-SAT), its special case 2-SAT in which
each clause has exactly two literals (a literal is a Boolean variable or its com-
plement) can be solved exactly in polynomial time.

4. Approximation algorithms: These are algorithms that build feasible solutions that
are not necessarily optimal, but whose objective function value can be shown to
be within a guaranteed difference from the exact optimal value. Although in some
cases this gap can be reasonable, for most problems it can be quite large.

5. Heuristics: A heuristic is essentially any algorithm that provides a feasible
solution for a given problem, without necessarily providing a guarantee of per-
formance in terms of solution quality or computation time. Heuristic methods
can be classified into three main groups:

• Constructive heuristics are those that build a feasible solution from scratch.
Greedy and semi-greedy algorithms, to be introduced in Chapter 3, are exam-
ples of constructive heuristics.

• Local search or improvement procedures start from a feasible solution and
improve it by successive small modifications until a locally optimal solution
is found. Although they provide high-quality solutions close to the optimum
in many cases, in some situations they can become prematurely stuck in low-
quality locally optimal solutions. Local search heuristics and their variants
will be explored in Chapter 4.

• Metaheuristics are general high-level procedures that coordinate simple
heuristics and rules to find good-quality solutions to computationally diffi-
cult optimization problems. Among them, we find simulated annealing, tabu
search, greedy randomized adaptive search procedures, genetic algorithms,
scatter search, variable neighborhood search, ant colony optimization, and
others. Metaheuristics are based on distinct paradigms and offer different
mechanisms to escape from locally optimal solutions (as opposed to greedy al-
gorithms or local search methods). They are among the most effective solution
strategies for solving combinatorial optimization problems in practice and
very often produce much better solutions than those obtained by the sim-
ple heuristics and rules they coordinate. Metaheuristics have been applied to
a wide array of academic and real-world problems. The customization (or
instantiation) of a metaheuristic to a given problem yields a heuristic for this
problem.

38 2 A short tour of combinatorial optimization and computational complexity

2.4 Bibliographical notes

Fundamental references for the shortest path problem, the minimum spanning tree
problem, the maximum clique problem, the knapsack problem, the traveling sales-
man problem, and the Steiner problem in graphs that were revisited and formulated
in Section 1.2 have been already presented in Section 1.7.

The foundations of the theory of computational complexity appeared in Cobham
(1964) and Edmonds (1965; 1975), where informal references to P, NP, and related
concepts are made. The landmark reference on the theory of NP-completeness
is the seminal paper of Cook (1971), in which the author proved that SAT and
3-SAT are NP-complete. This work was closely followed by that of Karp (1972),
in which its consequences were discussed and explored, leading to results estab-
lishing the NP-completeness of several other problems. A tutorial on the theory
of NP-completeness was presented by Karp (1975). A discussion about strong
NP-completeness first appeared in Garey and Johnson (1978).

Garey and Johnson (1979) is the most influential textbook on computational
complexity theory. It introduced the theory of NP-completeness and computer in-
tractability. The exposition and the basic notions of computational complexity pre-
sented in Section 2.2 follow closely the textbook by Papadimitriou and Steiglitz
(1982). These ideas were further developed in Papadimitriou (1994) and Yannakakis
(2007).

Accounts of integer programming methods that were cited in Section 2.3, such
as branch-and-bound and branch-and-cut, can be found in textbooks by Schrijver
(1986), Nemhauser and Wolsey (1988), Wolsey (1998), and Bertsimas and Weis-
mantel (2005), among others. The pseudo-polynomial dynamic programming algo-
rithm for the knapsack problem appeared in many references, in particular in the
textbook of Martello and Toth (1990). It is well known that the stable set problem,
the maximum clique problem, the chromatic number problem, and the clique cover
problem are NP-complete for general graphs (Garey and Johnson, 1979). However,
Grötschel et al. (1984) showed that the weighted versions of these problems can be
solved in polynomial time for perfect graphs. Kuratowski’s theorem was originally
published in Kuratowski (1930). Krom (1967) described the first polynomial-time
algorithm for 2-SAT. Early discussions about approximation algorithms appeared
in Johnson (1974) and Garey and Johnson (1976). The reader is also referred to
the textbooks of Vazirani (2001) and Williamson and Shmoys (2011). The first fit
decreasing algorithm for bin packing is a classical example of an approximation al-
gorithm, guaranteeing that no packing it generates will use more than 11/9 times the
optimal number of bins (Johnson, 1973).

As noticed in the previous chapter, the textbooks by Nilsson (1971; 1982) and
Pearl (1985) are fundamental references on the origins, principles, and applications
of A∗ and other heuristic search methods. Cormen et al. (2009) presented a good
coverage of greedy algorithms. Hoos and Stützle (2005) report in detail the founda-
tions and applications of stochastic local search, while Michelis et al. (2007) discuss
theoretical aspects of local search.

2.4 Bibliographical notes 39

Glover and Kochenberger (2003) and Gendreau and Potvin (2010) collected thor-
ough and complete accounts of metaheuristics, with a large coverage of the sub-
ject and detailed chapters about each of them. Other tutorials can also be found
in Reeves (1993) and Burke and Kendall (2005; 2014). Some books provide de-
tailed accounts of individual metaheuristics, see, e.g., van Laarhoven and Aarts
(1987) and Aarts and Korst (1989) for simulated annealing, Glover and Laguna
(1997) for tabu search, and Michalewicz (1996) and Goldberg (1989) for genetic al-
gorithms. Previous surveys and tutorials about greedy randomized adaptive search
procedures and their extensions and applications were authored by Feo and Resende
(1995), Festa and Resende (2002; 2009a;b), Ribeiro (2002), Pitsoulis and Resende
(2002), and Resende and Ribeiro (2003b; 2005a;b; 2010).

Chapter 3
Solution construction and greedy algorithms

This chapter addresses the construction of feasible solutions. We begin by
considering greedy algorithms and show their relationship with matroids. We then
consider adaptive greedy algorithms, a generalization of greedy algorithms. Next,
we present semi-greedy algorithms, obtained by randomizing adaptive greedy algo-
rithms. The chapter concludes with a discussion of solution repair procedures.

3.1 Greedy algorithms

As we saw in Chapter 2, a feasible solution S of a combinatorial optimization prob-
lem is a subset of the elements of the ground set E = {1, . . . ,n}. Since certain subsets
of ground set elements can lead to infeasibilities, by definition a feasible solution
cannot contain any such subset. If ci denotes the contribution to the objective func-
tion value of ground set element i ∈ E , then we assume in this discussion that the
objective function value of a solution S is f (S) = ∑i∈S ci.

Many algorithms for combinatorial optimization problems build a solution incre-
mentally from scratch, where at each step, a single ground set element is added to
the partial solution under construction. A ground set element to be added at each
step cannot be such that its combination with one or more previously added ele-
ments leads to an infeasibility. We call such an element feasible and denote by F
the set of all feasible elements at the time a given step is performed. Since the set of
candidate elements F may contain more than one element, an algorithm designed
to build a feasible solution for some problem must have a mechanism to select the
next feasible ground set element from F to be added to the partially built solution
under construction.

From among all yet unselected feasible elements, a greedy algorithm for mini-
mization always chooses one of least cost. Figure 3.1 shows the pseudo-code of a
greedy algorithm. The solution S to be constructed and its cost f (S) are initialized to
∅ and 0, respectively, in lines 1 and 2. In line 3, the set F of candidate elements is
initialized with all feasible ground set elements. The construction of the solution is

© Springer Science+Business Media New York 2016
M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP,
DOI 10.1007/978-1-4939-6530-4 3

41

42 3 Solution construction and greedy algorithms

Fig. 3.1 Pseudo-code of a greedy algorithm for a minimization problem.

done in the while loop in lines 4 to 9, ending when F becomes empty. In line 5, the
feasible ground set element i∗ having least cost is selected. Then, in lines 6 and 7,
respectively, the solution under construction and its cost are updated to account for
the inclusion of i∗ in the solution under construction. In line 8, the set F is up-
dated, taking into account that i∗ is now part of solution S. Solution S and its cost
are returned in line 10.

The algorithm shown in Figure 3.1 is devised for minimization problems. For the
case of maximization, the argmin operator in line 5 of the pseudo-code is simply
replaced by argmax, which selects a candidate element of maximum cost. We next
show examples of greedy algorithms for some combinatorial optimization problems.

Minimum spanning tree problem - Greedy algorithm

Recall from Chapter 2 that in the minimum spanning tree problem, the ground set
is the set of edges U and di j is the length of edge (i, j) ∈ U . A greedy algorithm
for the minimum spanning tree problem is shown in Figure 3.2. The solution S to
be constructed and its cost f (S) are initialized to ∅ and 0, respectively, in lines 1
and 2. The set of feasible ground set elements is initialized in line 3 with all the edges
in U . A feasible edge of least length is selected in line 5 and added to the spanning
tree in line 6, with the length of the partial tree being updated in line 7. All edges
whose inclusion in the current solution would create a cycle (i.e., an infeasibility)
are removed from the set F of feasible candidate elements in line 8. The solution S
and its cost are returned in line 10.

This greedy algorithm for the minimum spanning tree problem is known as
Kruskal’s algorithm. As we shall see later in this chapter, this algorithm will always
produce an optimal solution for this problem. �

3.1 Greedy algorithms 43

Fig. 3.2 Pseudo-code of Kruskal’s greedy algorithm for the minimum spanning tree problem.

Knapsack problem - Greedy algorithm

As we saw in Chapter 2, the ground set for the knapsack problem consists of the set
I of items to be packed. Each item i ∈ I has weight ai and utility ci. The knapsack
can accommodate a maximum weight of b. We assume, without loss of generality,
that ai ≤ b, for all i ∈ I. A greedy algorithm for the knapsack problem is shown in
Figure 3.3. The solution S to be constructed and its cost f (S) are initialized to ∅ and
0, respectively, in lines 1 and 2. The set of feasible ground set elements is initialized
in line 3 with all items in I. A feasible item of greatest utility per unit weight is
selected in line 5 and added to the knapsack in line 6, with the total utility of the
partial solution being updated in line 7. All items whose inclusion in the current
solution would overflow the knapsack (i.e., create an infeasibility) are removed from
the set F of feasible ground set elements in line 8. The solution S and its cost are
returned in line 10.

As opposed to the greedy algorithm for the minimum spanning tree problem, this
greedy algorithm for the knapsack problem will not always find an optimal solution.
Consider the following counter-example with three items, where the item weight
vector a = (3,2,2), the item utility vector c = (12,7,6), and the knapsack weight
capacity b= 4. The utility per unit weight of each item is c1/a1 = 12/3= 4, c2/a2 =
7/2 = 3.5, and c3/a3 = 6/2 = 3. Consequently, the greedy algorithm considers the
items in the order 1,2,3. Since the weight of item 1 is 3, then it is included in
the solution. Since items 2 and 3 both have weight 2, neither can be included in the
solution together with item 1. Therefore, the total utility of the greedy solution is 12.
However, note that a solution consisting of items 2 and 3, but not item 1, is feasible
(since its total weight is 4, which equals the capacity of the knapsack) and its utility
is 13, which is greater than 12, the utility of the greedy solution. �

44 3 Solution construction and greedy algorithms

Fig. 3.3 Pseudo-code of a greedy algorithm for the knapsack problem.

Steiner tree problem in graphs - Greedy algorithm

We describe here the distance network heuristic for the Steiner tree problem in
graphs. Recall that, in this problem, we are given a graph G = (V,U), where the
node set is V = {1,2, . . . ,n} and the edge set U is formed by unordered pairs of
points i, j ∈V , with i 	= j. There is a length di j associated with each edge (i, j) ∈U
and a subset T ⊆ V of terminal nodes that have to be connected by a minimum
length subtree of G.

The distance network heuristic is based on the construction of the complete graph
of distances D(G), whose node set is formed exclusively by the terminal nodes T
of the original graph G. The length of the edge (i, j) of graph D(G) is equal to the
length of the shortest path between i and j in graph G, for every i, j ∈ T , with i 	= j.
Therefore, each edge of the complete graph D(G) may be seen as a “super-edge”
representing the shortest path between its extremities in G.

Once the graph of distances D(G) has been built, the distance network heuristic
consists basically in the computation of a minimum spanning tree of D(G). This
is followed by the replacement of each super-edge of the minimum spanning tree
by the edges in the shortest path between its extremities in the original graph. We
observe that the shortest paths in G, associated with the super-edges of the graph of
distances, are not necessarily disjoint. Therefore, since the same edge of the original
graph may appear in more than one shortest path, it is possible that the length of the
Steiner tree in the original graph is smaller than that of the minimum spanning tree
of D(G).

The pseudo-code for the main building blocks of the distance network heuristic
for the Steiner tree problem in graphs is given in Figure 3.4. Algorithm GREEDY-
SPG is indeed a greedy algorithm whenever Kruskal’s greedy algorithm is used to
compute the minimum spanning tree in line 5.

Figure 3.5(a) displays an instance of the Steiner tree problem in graphs, whose
optimal solution appears in Figure 3.5(b). Figure 3.6 shows the application of the
GREEDY-SPG distance network heuristic to this instance. The shortest path from
terminal 1 to 2 corresponds to the node sequence 1 - 5 - 2 and has length 2. The
selected alternative path from terminal 1 to 3 is given by the node sequence 1 - 6 - 3

3.1 Greedy algorithms 45

Fig. 3.4 Pseudo-code of the greedy distance network heuristic for the Steiner tree problem in
graphs.

and has length 4. The shortest path from terminal 1 to 4 is formed by nodes 1 - 5 - 7
- 9 - 4 and has also length 4. Similarly, the shortest path from node 2 to 3 is formed
by nodes 2 - 5 - 7 - 9 - 3 and has the same length 4. The selected alternative path
from terminal 2 to 4 is given by the node sequence 2 - 8 - 4 and has length 4. The
shortest path from terminal 3 to 4 corresponds to the node sequence 3 - 9 - 4 and
has length 2. The graph of distances D(G) appears in Figure 3.6(a). Figure 3.6(b)
depicts a minimum spanning tree of D(G). Finally, Figure 3.6(c) shows the Steiner
tree for the original graph recovered from the minimum spanning tree computed for
D(G). We observe that the solution found by the heuristic has length 8. Therefore,
it is not optimal. �

(a) (b)

Fig. 3.5 An instance of the Steiner problem in graphs (a) and a minimum Steiner tree with total
length 6 (b).

46 3 Solution construction and greedy algorithms

(a) (b)

(c)

Fig. 3.6 Application of the GREEDY-SPG distance network heuristic: (a) graph of distances D(G),
(b) minimum spanning tree of D(G) with length 8, and (c) Steiner tree with length 8, which is not
optimal.

3.2 Matroids

We stated earlier in this chapter that the greedy algorithm for the minimum spanning
tree problem always produces an optimal solution. In this section, we make use of
the theory of matroids to show that this is indeed the case. This theory is useful in
showing many situations in which a greedy algorithm does find an optimal solution.

A matroidM =(S ,I) is a combinatorial structure defined by a finite nonempty
set S of elements and a nonempty family I of independent subsets ofS , such that:

Property 3.1. I is hereditary, i.e., ∅ ∈I and all proper subsets of a set I ∈I are
also in I .

3.2 Matroids 47

Property 3.2. If I′ and I′′ are sets in I and |I′| < |I′′|, then there exists an element
e ∈ I′′ \ I′ such that I′ ∪ {e} ∈I .

As an example of a matroid, consider the graphic matroid MG = (SG,IG)
defined on the graph G= (V,U), where V is the set of nodes and U the set of edges
of G. In this matroid, SG is defined to be the set U of edges and IG is such that if
U ′ ⊆U , then U ′ ∈IG if and only if the graph induced in G by U ′ is acyclic.

To see that the graphic matroid is indeed a matroid, we must verify properties 3.1
and 3.2 above. Property 3.1 clearly holds, since a graph with an empty set of edges
is acyclic and all subgraphs of an acyclic graph are also acyclic. Suppose now that
I′ and I′′ are the edge sets of two forests in G such that |I′| < |I′′|. To verify prop-
erty 3.2, we must show that there is some edge e∈ I′′ \ I′ such that the graph induced
in G by the edge set I′ ∪ {e} is acyclic. Since the number of trees in any forest in-
duced in G by the edge set I can be proved by induction to be equal to |V |− |I|, then
the forest induced by I′ has more trees than the one induced by I′′. Consequently,
there must exist some edge e ∈ I′′ having its extremities in two disjoint trees in
the forest induced by I′. Therefore, e ∈ I′′ \ I′. Since adding an edge between two
disjoint trees does not create a cycle, then I′ ∪ {e} ∈I .

An important property of a matroid is that all its maximal independent subsets
are of the same size. In the graphic matroid, a maximal independent subset is the
largest edge set that induces an acyclic graph in G, i.e., the |V | − 1 edges of any
spanning tree of G.

A weighted matroid is a matroid M = (S ,I) with a weight function
w : S → R

+ that assigns a positive weightw(x) to each element x∈S . This weight
function is also defined for any subset U ′ ⊆S as w(U ′) = ∑x∈U ′ w(x). In a graphic
matroid, if w(e) denotes the weight of edge e ∈U and U ′ ⊆ U is a subset of the
edges of G, then w(U ′) denotes the total weight of the edges in set U ′. A natural
optimization problem on a weighted matroid is to find a maximum-weight inde-
pendent set. Since w(x) > 0 for all x ∈ S , then any maximum-weight indepen-
dent set is maximal. A minimum-weight spanning tree of the graph G = (V,U)
is simply a maximum-weight independent set on the weighted graphic matroid
MG =(SG,IG) with weights w′(e) = w̄−w(e), where w̄= 1+max{w(e) : e∈U}
and w(e) is the weight of edge e ∈U .

A greedy algorithm for finding a maximum-weight independent set of any
weighted matroid M = (S ,I) is shown in Figure 3.7. At each iteration, the al-
gorithm adds to the solution the element of maximum weight that maintains inde-
pendence within the solution. In case no element can be added to the initial solution
while maintaining independence, the algorithm returns ∅, which by definition is
independent. Otherwise, line 8 guarantees that only elements that maintain feasibil-
ity are considered for inclusion in the solution under construction. Therefore, this
algorithm returns in line 10 an independent subset S of S .

We now state some properties of weighted matroids and of the greedy algorithm
for finding a maximum-weight independent set of a weighted matroid M = (S ,I)
that show the correctness of the algorithm.

Property 3.3. Let i∗ ∈S be the first element selected in line 5 of the greedy algo-
rithm in Figure 3.7. Then, there exists an optimal subset U ′ ⊆S such that i∗ ∈U ′.

48 3 Solution construction and greedy algorithms

Fig. 3.7 Pseudo-code of a greedy algorithm for finding a maximum-weight independent set of a
weighted matroid.

Property 3.4. If i ∈ S and ∅∪ {i} 	∈ I , then U ′ ∪ {i} 	∈ I , for any independent
subset U ′ ⊆S .

Property 3.5. Let i∗ ∈S be the first element selected in line 5 of the greedy algo-
rithm in Figure 3.7. The remaining problem reduces to finding a maximum-weight
independent set of the weighted matroid M ′ = (S ′,I ′), where S ′ = {i ∈ S :
{i∗, i} ∈I }, I ′ = {U ′ ⊆S \ {i∗} : U ′ ∪ {i∗} ∈I }, and the weight function for
M ′ is the same for M , although restricted to S ′.

Property 3.3 says that once an element is added to S, it will never be removed
from S later. This is so because there is some optimal subset U ′ ⊆S that contains
that element. Property 3.4 tells us that if an element is initially disregarded from
S, then we can definitely discard it since it will never be added to solution S later.
Finally, Property 3.5 states that once an element is added to S, the problem reduces
itself to the same problem on a reduced weighted matroid.

Summarizing, Properties 3.1 to 3.5 ensure that the greedy algorithm will always
find an optimal solution whenever it is applied to a combinatorial optimization prob-
lem defined over a weighted matroid. For this reason, a greedy algorithm for the
minimum spanning tree problem will always produce an optimal solution, while
a greedy algorithm applied to the knapsack problem will not necessarily find an
optimum.

3.3 Adaptive greedy algorithms

The greedy algorithm of Figure 3.1, as well as the other greedy algorithms described
in the previous section, selects an element i∗ of the set of feasible candidate elements
F as

i∗ ← argmin{ci : i ∈F},

3.3 Adaptive greedy algorithms 49

where ci is the cost associated with the inclusion of element i∈F in the solution. In
all of these algorithms, this cost is constant. Therefore, the elements can be sorted in
the increasing order of their costs in a preprocessing step. The while loop in lines 4
to 9 of the algorithm in Figure 3.1 will then scan the elements in this order. Upon
considering the k-th element, if its inclusion in the solution causes an infeasibility,
then it is discarded for good and the next element is considered. Otherwise, it is
added to the solution and the next element is considered.

Although the greedy algorithm described in Figure 3.1 is applicable in many situ-
ations, such as to the minimum spanning tree problem and to the knapsack problem
(in which case it will not always find an optimal solution), there are other situations
where the cost of the contribution of an element is affected by the previous choices
of elements made by the algorithm. We shall call these adaptive greedy algorithms.

Fig. 3.8 Pseudo-code of a generic adaptive greedy algorithm for a minimization problem.

Figure 3.8 shows the pseudo-code of an adaptive greedy algorithm for a min-
imization problem. As before, a solution S is constructed, one element at a time.
This solution and its cost are initialized in lines 1 and 2, respectively. The initial
set of feasible elements from the ground set E is determined in line 3. The greedy
choice function g(i) measures the suitability of element i to be included in the partial
solution S, for all i ∈F . The values of the greedy choice function are initialized in
line 4. The while loop in lines 5 to 11 constructs the solution. In line 6, a candidate
element with minimum greedy choice function value is selected. This element is
included in the solution in line 7. The value of the cost function is updated in line 8.
The set of feasible candidate elements is updated in line 9 and the values of the
greedy choice function are updated in line 10, for all remaining feasible candidate
elements. Construction ends when there are no more feasible candidate elements to
be added, i.e., when F =∅. Solution S and its cost are returned in line 12.

50 3 Solution construction and greedy algorithms

We next give examples of adaptive greedy algorithms for four combinatorial op-
timization problem: the minimum spanning tree problem, the set covering problem,
the maximum clique problem, and the traveling salesman problem.

Minimum spanning tree problem – Adaptive greedy algorithm

In Section 3.1 we saw a greedy algorithm for the minimum spanning tree problem.
The first example of an adaptive greedy algorithm is one for the same problem. As
before, we are given a graph G = (V,U), where V is the set of nodes and U is the
set of weighted edges. Let di j be the weight of edge (i, j) ∈U .

An adaptive greedy approach for this problem is to grow the set of spanned nodes
of the tree, at each step adding a new edge with the least weight among all edges
with only one endpoint in the set of already spanned nodes. The other endpoint of
this edge is then added to the set of spanned nodes. This is repeated until all nodes
are spanned. Figure 3.9 shows the pseudo-code of this adaptive greedy algorithm
for the minimum spanning tree problem. In lines 1 and 2, respectively, the set S of
edges in the spanning tree and its weight f (S) are initialized. The set V of nodes
yet to be spanned is initialized in line 3. The loop in lines 4 to 7 is used to initialize
the greedy choice function g(i) in lines 5 and the pointer π(i) to the other endpoint
of the minimum weight edge connecting node i to the current set V \V of spanned
nodes in line 6, for every i ∈ V . In line 8, a node j ∈ V is chosen to be placed in
the set of spanned nodes and, in line 9, its greedy choice function is set to 0. The
main loop of the algorithm, in lines 10 to 24, is repeated until the set V of nodes
yet to be spanned becomes empty. In line 11, node j is added to the set of spanned
nodes (in fact, it is removed from the set of nodes yet to be spanned). Node i is
set in line 12 to be the closest node to j yet to be spanned. In the first iteration of
the loop, i is 0 and, consequently, lines 14 and 15 are not computed. For all other
iterations, edge (i, j) is added to the spanning tree S in line 14 and the partial cost
f (S) of the spanning tree is updated in line 15. Lines 17 to 22 update the greedy
choice function g(k) and the pointer π(k) for each node k adjacent to j that has not
yet been spanned. In line 23, a yet unspanned node j with minimum greedy choice
function value is chosen to become spanned. The minimum-weight spanning tree S
and its weight f (S) are returned in line 25.

This adaptive greedy algorithm for the minimum spanning tree problem is known
as Prim’s algorithm. �

Minimum cardinality set covering problem – Adaptive greedy algorithm

Given a set I = {1, . . . ,m} of objects, let {P1, . . . ,Pn} be a collection of finite subsets
of I such that ∪n

j=1Pj = I, with a non-negative cost c j associated with each subset

Pj, for j = 1, . . . ,n. A subset Ĵ ⊆ J = {1, . . . ,n} is a cover of I if ∪ j∈ĴPj = I. The

cost of a cover Ĵ is given by ∑ j∈Ĵ c j. The set covering problem consists in finding
a minimum cost cover. In the minimum cardinality set covering problem,we seek

3.3 Adaptive greedy algorithms 51

Fig. 3.9 Pseudo-code of Prim’s adaptive greedy algorithm for the minimum spanning tree problem.

a cover of minimum cardinality, which is equivalent to setting c j = 1 in the set
covering problem, for j = 1, . . . ,n. Let the m× n binary matrix A = {ai j} be such
that for all i ∈ I and for all j ∈ J, ai j = 1 if and only if i ∈ Pj; ai j = 0, otherwise.
A solution Ĵ of the minimum cardinality set covering problem can be represented
by a binary n-vector x, where x j = 1 if and only if j ∈ Ĵ; x j = 0 otherwise, for
j = 1, . . . ,n. An integer programming formulation for the minimum cardinality set
covering problem is then

min {∑
j∈J

x j : ∑
j∈J

ai j · x j ≥ 1 ∀i ∈ I, x j ∈ {0,1} ∀ j ∈ J}.

We say that column j of matrix A covers row i if ai j = 1. A greedy approach to
this problem is to select columns of matrix A, one at a time, such that each selected
column covers the maximum number of yet-uncovered rows of A. Let g(j) be the
greedy choice function which measures the number of yet-uncovered rows of A
that would become covered if the still unused column j were to be added to the
cover under construction. Initially, we set g(j) = ∑i∈I ai j, for all j = 1, . . . ,n. We
denote by j∗ the first column selected by the greedy algorithm, which is the one that
maximizes g(j), for j = 1, . . . ,n: g(j∗) = max j∈J g(j). Once column j∗ is placed in

52 3 Solution construction and greedy algorithms

Fig. 3.10 Pseudo-code of an adaptive greedy algorithm for minimum cardinality set covering.

the partial solution under construction, every unselected column thatcovers a row
newly covered by column j∗ must have its g(j) value updated, since g(j) measures
the number of yet-uncovered rows that will be covered with the inclusion of column
j in the solution. The adaptive greedy algorithm repeats this column selection and
greedy choice function update process until all rows of A are covered.

Figure 3.10 shows the pseudo-code of an adaptive greedy algorithm for the min-
imum cardinality set covering problem. Lines 1 to 5 initialize the cover S, its cost
f (S), the set of potential cover elements F , the set of covered row indices C , and
the greedy choice function g(j) for each potential cover element j ∈F . The cover
is constructed in the while loop in lines 6 to 17. In line 7, a column j∗ that maxi-
mizes the greedy choice function is selected. This column is included in the cover
in line 8, while the cover’s cost f (S) is updated in line 9. Element j∗ is removed
from the set of potential cover elements in line 10. The greedy choice function is
updated in the for loop in lines 11 to 16, which scans all uncovered rows that have
just became covered by j∗. The index of each such row is inserted in the set C of
covered rows in line 12. The value of the greedy choice function g(j) is updated
in line 14 for each column j other than j∗ that also covers that row. The algorithm
terminates when a cover is produced. A cover S and its cost f (S) are returned in
line 18. �

Maximum clique problem – Adaptive greedy algorithm

We now give an adaptive greedy algorithm for the maximum clique problem. Given
an undirected graph G = (V,U), we recall that a clique is any subset of nodes of

3.3 Adaptive greedy algorithms 53

Fig. 3.11 Pseudo-code of an adaptive greedy algorithm for maximum clique.

G that are mutually adjacent. In the maximum clique problem, we want to find
a largest cardinality clique in G. An adaptive greedy algorithm for the maximum
clique problem builds a clique, one node at a time. Initially, all nodes are candidates
to be included in the clique. We shall call the candidate set F . A natural measure of
suitability for a node v ∈ V to be the first node included in the clique is its degree,
which is equal to the number of nodes adjacent to it. Let us denote this greedy choice
function by g(v), for all v∈F . Once the node with maximum degree is placed in the
clique, all nodes that are not adjacent to it can no longer be considered for placement
in the clique. Let us redefine F as the set of remaining nodes that can be added to
the current clique. The greedy choice function g(v) for all nodes v ∈ F must be
updated to account for the fact that the clique now consists of the first selected
node. The suitability of a node v ∈ F to be the next node to be included in the
clique is related with the number of nodes adjacent to it in F . The adaptive greedy
algorithm repeats this node selection and greedy choice function update process
until the candidate list becomes empty, i.e., F =∅.

Figure 3.11 shows the pseudo-code for an adaptive greedy algorithm for the max-
imum clique problem. Lines 1 to 4 initialize the clique S, its cost f (S), the set F of
yet unselected potential clique elements, and, for each potential clique node v ∈F ,
its initial greedy choice function value g(v) that is set to degF (v), which represents
the number of nodes that are adjacent to v in G and belong to F (or, alternatively,
the degree of node v with respect to the nodes in F). The clique is constructed in the
while loop in lines 5 to 11. In line 6, a node v′ maximizing the greedy choice func-
tion is selected. This node is included in the clique S in line 7, while the clique’s size
is updated in line 8. The set of potential clique nodes is updated in line 9 and con-
sistsof all yet unselected nodes that are adjacent to all nodes in the current clique S.
The greedy choice function is updated in line 10. The algorithm terminates when
a maximal clique is produced, i.e., when F = ∅. The largest clique found and its
cardinality are returned in line 12. �

54 3 Solution construction and greedy algorithms

Fig. 3.12 Pseudo-code of the nearest neighbor adaptive greedy algorithm for the traveling sales-
man problem.

Traveling salesman problem – Adaptive greedy algorithm

The next example of an adaptive greedy algorithm is known as the nearest neighbor
heuristic for the traveling salesman problem. We are given a graph G = (V,U),
whereV is the set of nodes and U is the set of weighted edges. Let di j be the length
(or weight) of edge (i, j) ∈U .

An adaptive greedy approach for this problem is to grow the set of visited nodes
of the tour, starting from any initial node. Denote by v the last visited node of the
partial tour under construction. At each step we add to the tour a nearest unvisited
node adjacent to v. This is repeated until the tour visits all nodes.

Figure 3.12 shows the pseudo-code of this algorithm. In lines 1 and 2, the set
S of edges in the tour and its total length f (S) are initialized. In line 3, we select
any initial node i ∈ V to start the tour and save it as i0 to be used later. The set of
unvisited nodes F is initialized in line 4. The main loop of the algorithm, in lines 5
to 13, is repeated until the set F of unvisited nodes becomes empty. In line 6, we
build the set H of candidate nodes that can be added to the tour following the last
added node i. For each candidate node, the greedy choice function is set in line 7.
Node j′ is set to be the nearest unvisited node adjacent to i in line 8. Edge (i, j′) is
added to the Hamiltonian cycle under construction in line 9 and the length f (S) of
the tour is updated in line 10. The set F of candidateunvisited nodes is updated in
line 11 and j′ is made the last visited node in line 12. The while loop terminates
when all nodes have been visited, i.e., when F becomes empty. At this point, we
add a return edge connecting the last visited node i with the initial node i0 in line 14.

3.3 Adaptive greedy algorithms 55

5

1

2

34

1

3

5

3

5

27

3

42

5

1

2

34

1

33

7

2

5

1

2

34

1

3

2

42

Fig. 3.13 Examples of a TSP instance solved with two adaptive greedy algorithms. The leftmost
graph shows all edge lengths. The one in the middle shows a tour of length 16 produced by the
nearest neighbor adaptive greedy algorithm that grows the path from one end of the partial path.
The rightmost graph shows the tour of length 12 produced by a variant of this adaptive greedy
algorithm that grows the partial path from both of its extremities.

The length of the tour is updated in line 15 and the solution and its total length are
returned in line 16.

We remark that if the graph G= (V,U) is not complete, then it is possible that at
some iteration in line 6 there is no edge connecting node i with an unvisited node.
Note also that if the graph is not complete then in line 14 the return edge (i, i0)
may not exist. Therefore, a sufficient condition for this algorithm to find a feasible
solution is that the graph be complete.

An example of the application of the nearest neighbor adaptive greedy algorithm
of Figure 3.12 to the leftmost graph in Figure 3.13 is described in the following. The
algorithm starts by selecting some node to be the start of the tour. Suppose node 1
is selected as the starting node. From node 1, the distances to nodes 2, 3, 4, and 5
are, respectively, 1, 2, 7, and 5. Since d12 = 1 is the smallest of the distances, node
2 is selected to be the next node in the tour and the partial tour becomes 1 → 2.
From node 2, the distances to nodes 3, 4, and 5 (nodes not yet in the tour) are,
respectively, 3, 4, and 3. Since d23 = d25 = 3 is the smallest distance from node 2 to
a yet unselected node, either node 3 or node 5 could be selected as the next node in
the tour. Suppose node 3 is chosen. The partial tour is now formed by 1 → 2 → 3.
From node 3, the distances to nodes 4 and 5 are, respectively, 5 and 2. Since d35 = 2
is the smallest distance from node 3 to any of the yet unselected nodes, then node
5 is chosen next to be in the partial tour, which becomes 1 → 2 → 3 → 5. The only
yet unselected node is node 4 and it is then selected to be the next node on the tour.
Consequently, the full tour is 1 → 2 → 3 → 5 → 4 → 1. The length of the tour is
d12+d23+d35+d54+d41 = 1+3+2+3+7= 16. It is shown in the middle graph
of Figure 3.13.

The adaptive greedy algorithm of Figure 3.12 always extends the path from the
last node to be added, i.e., the path is grown out from only one side of the partial
path. If instead of only considering one side of the partial path, we considerboth
sides, we get a new modified adaptive greedy algorithm for the TSP. Again consider
node 1 as the initial node of the path. As before, from node 1, the distances to nodes
2, 3, 4, and 5 are, respectively, 1, 2, 7, and 5. Since d12 = 1 is the smallest of the

56 3 Solution construction and greedy algorithms

Fig. 3.14 Example of an instance of the traveling salesman problem on which, assuming M > 3,
the nearest neighbor adaptive greedy algorithm always produces a tour of length M+ 4 that may
be arbitrarily bad as M grows, since there exists an optimal tour of length 7 shown in red on the
graph on the right of the figure.

distances, node 2 is selected to be the next node in the tour and the partial tour
becomes 1 → 2. The two extremities of the path are nodes 1 and 2. As before, from
node 2, the distances to nodes 3, 4, and 5 (nodes not yet in the tour) are, respectively,
3, 4, and 3. From node 1, the distances to nodes 3, 4, and 5, are, respectively, 2, 7,
and 5. Since d13 = 2 is the smallest of the lengths, node 3 is selected to be the next
node in the tour. It is connected to node 1 and the partial tour becomes 3 → 1 → 2.
The two extremities of the path are now nodes 3 and 2. From node 2, the distances to
nodes 4 and 5 are, respectively, 4 and 3, while from node 3 the distances to nodes 4
and 5 are, respectively, 5 and 2. Since d35 = 2 is the smallest of the lengths, node 5 is
selected to be the next node in the tour. It is connected to node 3 and the partial tour
becomes 5 → 3 → 1 → 2. Node 2 can now only connect to node 4, which in turns
connects to node 5. The final tour becomes 4→ 5→ 3→ 1→ 2 with a corresponding
length of d45 + d53 + d31 + d12 + d24 = 3+ 2+ 2+ 1+ 4 = 12 < 16. This solution
improves the previous one and appears as the rightmost graph of Figure 3.13. �

We observe that even if the graph is complete, the nearest neighbor adaptive
greedy algorithm may still find a very bad solution for some instances. Consider the
graph on the left side of Figure 3.14, where M > 3 is an arbitrarily large number.
If the nearest neighbor adaptive greedy algorithm starts from node 1, it produces a
tour of length M+4 containing all the edges of length 1 and edge (1,2) of length M.
This tour is shown in red on the graph on the left of the figure. It can be arbitrarily
longer than the optimal tour of length 7, which is shown on the right of the figure.

Steiner tree problem in graphs – Adaptive greedy algorithm

Once again, recall that we are given a graph G= (V,U), a length di j associated with
each edge (i, j) ∈U , and a subset T ⊆V of terminal nodes that have to be connected
by a minimum length subtree of G. The adaptive greedy heuristic for the Steiner tree

3.3 Adaptive greedy algorithms 57

problem in graphs may be seen as an extension of Prim’s algorithm for the minimum
spanning tree problem presented earlier in this section. At each iteration, the closest
yet unconnected terminal node is connected to the current partial tree by a minimum
shortest path.

A pseudo-code for this heuristic is given in Figure 3.15. The algorithm starts in
line 1 from any randomly selected terminal node s ∈ T , which is used to initialize
the Steiner tree in line 2. The set of terminal nodes already connected by the Steiner
tree is initialized with terminal s in line 3. Next, in line 4, the algorithm computes the
shortest path SP(i,S) from each yet unconnected terminal i ∈ T \M to node s. The
loop in lines 5 to 10 connects one new terminal in each iteration, until a Steiner tree
connecting all terminals is built. The closest terminal s to the current partial tree is
selected in line 6. The set of connected terminal nodes is expanded by node s in line
7 and all nodes and edges in the path SP(s,S) are added to the Steiner tree S in line 8.
In line 9, the shortest path SP(i,S) from each yet unconnected terminal i ∈ T \M to
the updated tree S is recomputed. The Steiner tree S is returned in line 11.

Fig. 3.15 Pseudo-code of the adaptive greedy heuristic for the Steiner tree problem in graphs.

Figure 3.16 illustrates the application of the ADAPTIVE-GREEDY-SPG heuris-
tic to the same instance in Figure 3.5. The Steiner tree is initialized in Figure 3.16(a)
with terminal node 1 that has been randomly selected from the set of terminals. The
length of the shortest path from terminal 2 to node 1 is two, while that from termi-
nal 3 is four and that from terminal 4 is also four. Since terminal 2 is the closest
to node 1, it is the next to be connected and the path 1 - 5 - 2 is added to the par-
tial Steiner tree in Figure 3.16(b). The shortest paths from terminals 3 and 4 to the
partial Steiner tree are updated. The new lengths of the shortest paths from either
terminal 3 or 4 to the partial Steiner tree become equal to three and any of these
terminals may be selected at the next iteration. Suppose that terminal 4 is selected
to be added to the set of connected terminals. The path 4 - 9 - 7 - 5 is incorporated

58 3 Solution construction and greedy algorithms

into the tree in Figure 3.16(c). Terminal 3 is the last to be connected to the previ-
ously selected terminal nodes and the path 3 - 9 is added to complete a Steiner tree
in Figure 3.16(d). �

(a) (b)

(c) (d)

Fig. 3.16 Application of the ADAPTIVE-GREEDY-SPG: (a) terminal node 1 is added to the tree
that is initially empty, (b) terminal 2 is the next to be connected, since it is the closest to terminal
node 1, (c) terminal 4 is connected to the tree, and (d) terminal node 3 is the last to be connected
forming a Steiner tree with length 6, which is optimal.

3.4 Semi-greedy algorithms 59

3.4 Semi-greedy algorithms

Consider the graph shown in Figure 3.17 and suppose we wish to find a shortest
Hamiltonian cycle in this graph applying the nearest neighbor adaptive greedy algo-
rithm presented in Figure 3.12. The algorithm starts from any node and repeatedly
moves from the current node to its nearest unvisited node. Suppose the algorithm
were to start from node 1, in which case it should move next to either node 2 or 3. If
it moves to node 2, then it must necessarily move next to node 3 and then to node 4.
Since there is no edge connecting node 4 to node 1, the algorithm will fail to find
a tour. By symmetry, the same situation occurs if it were to start from node 4. Now
suppose the algorithm starts from node 2. Node 3 is the nearest to node 2 and from
node 3 it can move either to node 1 or node 4, failing in either case to find a tour.
Again, by symmetry, the same situation occurs if one were to start from node 3.
Therefore, this adaptive greedy algorithm fails to find a tour, no matter which node
it starts from.

Fig. 3.17 Example of a traveling salesman problem instance for which the nearest neighbor adap-
tive greedy algorithm fails to find an optimal solution, while a semi-greedy algorithm succeeds.

Now, consider the following randomized version of the same adaptive greedy al-
gorithm. This randomized variant starts from any node and repeatedly moves, with
equal probability, to one of its two nearest unvisited nodes. Starting from node 1,
it then moves to either node 2 or node 3 with equal probability. Suppose it were to
move to node 2. Now, again with equal probability, it moves to either node 3 or node
4. On the one hand, if it were to move to node 3, it would fail to find a tour. On the
contrary, by moving to node 4, it would then go to node 3, and then back to node 1,
thus finding a tour of length 40. Therefore, there is a 50% probability that the algo-
rithm will find a tour if it starts from node 1. By applying this algorithm repeatedly,
the probability that it will eventually find the optimal cycle quickly approaches one.
For example, after only ten attempts, the probability that this algorithm finds the
optimal solution is over 99.9%.

Algorithms like the one above, which add randomization to a greedy or adap-
tive greedy algorithm, are called semi-greedy or randomized-greedy algorithms.
Figure 3.18 shows the pseudo-code of a generic semi-greedy algorithm for a min-
imization problem. This pseudo-code is similar to that of the greedy algorithm in

60 3 Solution construction and greedy algorithms

Fig. 3.18 Pseudo-code of a semi-greedy algorithm for a minimization problem.

Figure 3.1, differing only in how the ground set element is chosen from the set F of
feasible candidate ground set elements (lines 5 and 6). In line 5, a subset of lowest-
cost elements of set F is placed in a restricted candidate list (RCL). In line 6, a
ground set element is selected at random from the RCL to be incorporated into the
solution in line 7. Although random selection usually assigns equal probabilities to
each RCL element, probabilities proportional to the quality of each element can also
be used.

Two simple schemes to define a restricted candidate list are cardinality-based
and quality-based. In the former, the k least-costly feasible candidate ground set
elements of set F are placed in the RCL. In the latter, let cmin = min{ci : i ∈
F} and cmax = max{ci : i ∈ F}. Furthermore, let α be such that 0 ≤ α ≤ 1.
The RCL is formed by all ground set elements i ∈F satisfying cmin ≤ ci ≤ cmin +
α(cmax − cmin). We observe that setting α = 0 corresponds to an implementation of
a pure greedy algorithm, since a lowest-cost element will always be selected at any
iteration. On the other hand, setting α = 1 leads to a completely random algorithm,
since any new element may be added with equal probability at any iteration. Later
in this book, we present other variants and applications of semi-greedy algorithms.

3.5 Repair procedures

Suppose that in the greedy algorithm of Figure 3.1 (or in the adaptive greedy algo-
rithm of Figure 3.8 or, still, in the semi-greedy algorithm of Figure 3.18) we reach
a situation in which F = ∅ but S is not yet a feasible solution. We illustrate this
situation with two problems: the knapsack problem with an equality constraint and
the traveling salesman problem.

3.5 Repair procedures 61

Knapsack problem with an equality constraint – Infeasible construction

In the knapsack problem, we seek a solution maximizing the total utility and whose
total weight is at most equal to the maximum weight capacity of the knapsack b. In
case of the knapsack problem with an equality constraint, we also seek a solution
maximizing the total utility, but whose total weight is exactly equal to the maximum
capacity of the knapsack b.

A naive adaptation of the greedy algorithm for the knapsack problem, whose
pseudo-code is shown in Figure 3.3, will not always find a feasible solution. Con-
sider the following counter-example with three items, where the item weight vector
is a = (3,2,2), the item utility vector is c = (3,1,1), and the knapsack capac-
ity is b = 4. The utility per unit weight of each item is c1/a1 = 3/3 = 1 and
c2/a2 = c3/a3 = 1/2= 0.5. Consequently, the greedy algorithm considers the items
in the order 1,2,3. Since the weight of item 1 is 3, then it would be included in the
solution. Since items 2 and 3 both have weight equal to 2, neither can be included
in the solution together with item 1 because otherwise the equality constraint would
be violated. Note, however, that if the items were to be packed in the reverse order,
then items 2 and 3 would be packed and a feasible solution produced. �

Traveling salesman problem – Infeasible construction

Consider again the graph shown in Figure 3.17, on which we wish to find a tour
with minimum length by applying the nearest neighbor greedy algorithm described
in Figure 3.12. If the tour were to start at node 1, then we could add either arc (1,2)
or (1,3) without causing any infeasibility. If we chose arc (1,2), then from node 2
we could add either arc (2,3) or (2,4). Since the greedy choice is to add arc (2,3),
we do so. From node 3, all ground set elements lead to infeasibility: if we were to
add arc (3,1), we would get a sub-tour; if we add arc (3,4) we get a path that cannot
be extended to form a tour. �

We saw in Section 3.4 that one way to try to produce a feasible solution is to
add randomization to the greedy algorithm, thus repeatedly applying the resulting
semi-greedy algorithm until a feasible solution is produced.

Another way is through a repair procedure. A repair procedure undoes erroneous
selections made by the construction procedure and attempts to correct them so that
a feasible solution can be found.

A possible strategy for implementing a repair procedure consists in removing
the last element added to the solution and attempting to add another feasible (but
not necessarily greedy) element. In the above example for the traveling salesman
problem, arc (2,3) would be removed from the solution. The only remaining feasi-
ble element that could be added from node 2 is arc (2,4). By doing so, we easily
construct a feasible solution by then adding arcs (4,3) and (3,1) to the tour. An
extension of this strategy consists in backtracking, if the removal of the last added
element is not sufficient to recover feasibility.

62 3 Solution construction and greedy algorithms

A generalization of the previous strategy, which was based on backtracking and
replacing the last added element, is to repeatedly apply destructive modifications
to the solution, followed by constructive steps that attempt to recover feasibility.
However, all these strategies are problem-specific and are difficult to generalize.
Examples will be presented later in this book.

3.6 Bibliographical notes

Kruskal (1956) proposed the greedy algorithm for the minimum weighted spanning
tree problem described in Section 3.1. Greedy algorithms for knapsack problems
were discussed by Martello and Toth (1990). A more efficient implementation of
the distance network heuristic for the Steiner tree problem in graphs was developed
by Melhorn (1988), based on Voronoi diagrams.

Edmonds (1971) established the connection between weighted matroids and
greedy algorithms. Chapter 7 of Lawler (1976) and Chapter 16 of Cormen et al.
(2009) cover greedy algorithms and an introduction to matroid theory. Many of the
properties of matroids listed in Section 3.2 are proved there. Matroid theory was in-
troduced by Whitney (1935) and was independently discovered by Takeo Nakasawa
(see Nishimura and Kuroda (2009) for a historical note and English translation of
his original work). Pitsoulis (2014) offered an in-depth coverage of matroids.

Prim (1957) developed the adaptive greedy algorithm for the minimum spanning
tree problem described in Section 3.3. Prim’s algorithm was originally proposed by
Jarnı́k (1930). The adaptive greedy algorithm for the set covering problem was first
described by Johnson (1974) and studied by Chvátal (1979). The adaptive greedy
algorithm for the maximum clique problem was based on an adaptive greedy algo-
rithm for finding maximum independent sets proposed by Feo et al. (1994). Heuris-
tics for the traveling salesman problem were discussed by Lawler et al. (1985), Gutin
and Punnen (2002), and Applegate et al. (2006). The shortest path adaptive greedy
heuristic for the Steiner tree problem in graphs was developed by Takahashi and
Matsuyama (1980).

Semi-greedy algorithms presented in Section 3.4 were first introduced by Hart
and Shogan (1987) and independently developed by Feo and Resende (1989).
Bang-Jensen et al. (2004) characterized cases where the greedy algorithm fails and
applied their results to the traveling salesman problem and to the minimum bisection
problem.

Examples of the repair procedures described in Section 3.5 were reported, e.g.,
by Duarte et al. (2007a), Duarte et al. (2007b), and Mateus et al. (2011).

Chapter 4
Local search

Local search methods start from any feasible solution and visit other (feasible or
infeasible) solutions, until a feasible solution that cannot be further improved is
found. Local improvements are evaluated with respect to neighboring solutions that
can be obtained by slight modifications applied to a solution being visited. We int-
roduce in this chapter the concept of solution representation, which is instrumental
in the design and implementation of local search methods. We also define neigh-
borhoods of combinatorial optimization problems and moves between neighboring
solutions. We illustrate the definition of a neighborhood by a number of examples
for different problems. Local search methods are introduced and different imple-
mentation issues are discussed, such as neighborhood search strategies, quick cost
updates, and candidate list strategies.

4.1 Solution representation

We consider that any solution S for a combinatorial optimization problem is defined
by a subset of the elements of the ground set E . A feasible solution is one that
satisfies all constraints of the problem. We denote by F the set of feasible solutions
for this problem and by F̂ the set formed by all subsets of ground set elements,
which includes all feasible and infeasible solutions. We assume in the following
that the objective function value of any (feasible or infeasible) solution S is given
by f (S) = ∑i∈S ci, where ci denotes the contribution to the objective function value
of the ground set element i ∈ E .

Maximum clique problem – Solution representation

Let G = (V,U) be a graph, in which we seek a maximum cardinality clique. In
the case of the maximum clique problem, the ground set E corresponds to the set
of nodes V = {1, . . . ,n}. Every solution S can be represented by a binary vector

© Springer Science+Business Media New York 2016
M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP,
DOI 10.1007/978-1-4939-6530-4 4

63

64 4 Local search

(x1, . . . ,xn), in which xi = 1 if node i belongs to S, xi = 0 otherwise, for every
i = 1, . . . ,n. The set of feasible solutions F ⊆ F̂ = 2E is formed by all subsets of
V in which all nodes are pairwise adjacent. �

Knapsack problem – Solution representation

In the case of the knapsack problem, one has a set I = {1, . . . ,n} of items to be
placed in a knapsack. Integer numbers ai and ci represent, respectively, the weight
and the utility of each item i ∈ I. We assume that each item fits in the knapsack
by itself and denote by b its maximum total weight. As for the previous problem,
every solution S can be represented by a binary vector (x1, . . . ,xn), in which xi = 1 if
item i is selected, xi = 0 otherwise, for every i= 1, . . . ,n. A solution S= (x1, . . . ,xn)
belongs to the feasible set F if ∑i∈I ai · xi ≤ b. �

Steiner tree problem in graphs – Solution representation

Let G = (V,U) be a graph, where the node set is V = {1, . . . ,n} and the edge set
isU . We recall that, in the Steiner tree problem in graphs, we are also given a subset
T ⊆V of terminal nodes that have to be connected. A Steiner tree S= (V ′,U ′) of G
is a subtree of G that connects all nodes in T , i.e., T ⊆V ′ ⊆V .

Given any subset V ′ of nodes such that T ⊆ V ′ ⊆ V , we note that any spanning
tree of the graph induced in G byV ′ is also a Steiner tree of G connecting all terminal
nodes in T . Therefore, any Steiner tree of G connecting the terminal nodes may
be obtained by selecting a subset of optional nodes W ⊆ V \ T and computing a
minimum spanning tree of the graph G(W ∪T) induced in G by V ′ =W ∪T .

As a consequence, every solution S of the Steiner tree problem can be represented
by a binary vector (x1, . . . ,xn), in which xi = 1 if node i ∈ V ′ = W ∪ T ; x j = 0
otherwise, for every i = 1, . . . ,n. We notice that this solution representation is very
similar to those adopted for the maximum clique and knapsack problems.

Figure 4.1 illustrates these ideas for an instance of the Steiner tree problem in
graphs. This instance is depicted in Figure 4.1(a) and has 15 nodes. The terminal
nodes 1, 2, 3, and 4 are represented by circles, while the optional nodes 5 to 15
correspond to squares. The graph induced by the terminal nodes 1, 2, 3, and 4 and
the optional nodes 6, 7, 10, 13, and 14 is shown in Figure 4.1(b), with the edges of
the corresponding minimum spanning tree marked in red. This minimum spanning
tree of length 72 contains edge (6,10), which is not needed to form a Steiner tree of
the original graph. Node 10 is removed from the set of optional nodes and the graph
induced by the terminal nodes 1, 2, 3, and 4 and the optional nodes 6, 7, 13, and 14
is shown in Figure 4.1(c). The new minimum spanning tree has a smaller length 64
and its edges are marked in red. To conclude this example, we show in Figure 4.2 a
still better Steiner tree with length 62 for the same instance, formed by the red edges
and containing the optional nodes 9, 11, 12, and 13. �

4.1 Solution representation 65

(a) Instance of the Steiner tree problem in a graph with 15 nodes and four terminals
(nodes 1, 2, 3, and 4).

(b) The Steiner tree defined by the optional nodes 6, 7, 10, 13, and 14 is formed by the
red edges and has length 72.

(c) If node 10 is removed from the set of optional nodes, then the new Steiner tree
defined by the optional nodes 6, 7, 13, and 14 has a smaller length 64.

Fig. 4.1 Solution representation for the Steiner tree problem in graphs.

66 4 Local search

Fig. 4.2 Smaller Steiner tree with length 62 for the instance in Figure 4.1(a).

Traveling salesman problem – Solution representation

Let V = {1, . . . ,n} be the set of cities a traveling salesman has to visit, with non-
negative lengths di j associated with each pair of cities i, j ∈V .

Any tour visiting each of the n cities exactly once corresponds to a feasible
solution. Every feasible solution S can be represented by a binary vector (x1, . . . ,xm),
wherem= n(n−1)/2 and xk = 1 if the edge indexed by k belongs to the correspond-
ing tour, xk = 0 otherwise, for every k = 1, . . . ,m. However, this representation ap-
plies to any edge subset, regardless if it corresponds to a tour or not. Therefore, the
edge subset {k= 1, . . . ,m : xk = 1} must define a tour for this solution to be feasible.

Figure 4.3 illustrates a complete graph with four nodes. Numbers on the six
edges represent their indices. Every solution can be represented by a binary vector
(x1,x2,x3,x4,x5,x6). There are three different tours, corresponding to the incidence
vectors (1,1,1,1,0,0), (1,0,1,0,1,1), and (0,1,0,1,1,1).

Fig. 4.3 Hamiltonian cycles on a complete graph with four nodes.

We notice that any solution to the traveling salesman problem can alternatively
be represented by a circular permutation (π1, . . . ,πn) of the n cities, with πi ∈ V

4.2 Neighborhoods and search space graph 67

for every i = 1, . . . ,n and πi 	= π j for every i, j = 1, . . . ,n : i 	= j. This permutation
is associated with the tour defined by the edges (π1,π2), (π2,π3), . . . , (πn−1,πn),
and (πn,π1). Referring to Figure 4.3, the three tours represented by the incidence
vectors (1,1,1,1,0,0), (1,0,1,0,1,1), and (0,1,0,1,1, 1) correspond, respectively,
to the circular permutations (a,b,c,d), (a,b,d,c), and (a,c,d,b). �

This discussion illustrates the fact that alternative representations can exist for
a combinatorial optimization problem. The choice of one over another can lead to
easier implementations or faster algorithms. In some occasions, it can also be helpful
to work simultaneously with two different representations for every solution, since
each of them can be more effective than the other for the implementation of some
specific operations. We find the following schemes among the most frequently used
solution representation techniques:

• 0-1 incidence vector: This representation is typically used whenever the ground
set is partitioned into two subsets, one of them corresponding to the elements that
belong to the solution, while the others do not. This representation was applied
in the three examples described above.

• Generalized incidence vector: This representation is often used whenever the
ground set has to be partitioned into a number of subsets, each of them with a
different interpretation. We can cite as examples the graph coloring problem and
its variants, in which different colors have to be assigned to adjacent nodes of a
graph. Another example is that of the vehicle routing and scheduling problem,
in which a number of vehicles have to be assigned to clients. Still another exam-
ple is that of the bin packing problem, in which a number of items have to be
accommodated in different bins with the same size.

• Permutation: This representation typically applies to scheduling problems in
which one is interested in establishing an optimal order for the execution of a
number of tasks. It was illustrated above in the context of the traveling salesman
problem.

4.2 Neighborhoods and search space graph

A neighborhood of a solution S ∈ F can be defined by any subset of F . More for-
mally, a neighborhood is a mapping that associates each feasible solution S∈ F with
a subset N(S) = {S1, . . . ,Sp} of feasible solutions also in F .

Each solution S′ ∈ N(S) can be reached from S by an operator called move. Nor-
mally, two neighboring solutions S and S′ ∈ N(S) differ only by a few elements and
a move from a solution S consists simply in changing one or more elements in S.
Usually, S ∈ N(S′) whenever S′ ∈ N(S).

The search space graph G = (F,M) has a node set that corresponds to the set F
of feasible solutions. The edge set M of the search space graph is such that there
is an edge (S,S′) ∈M between two solutions S,S′ ∈ F if and only if S′ ∈ N(S) and
S ∈N(S′). An extended search space graph may be similarly defined, encompassing

68 4 Local search

not only the set of feasible solutions F but, instead, the whole set F̂ = 2E formed by
all subsets of elements of the ground set E .

Figure 4.4 displays an example of an instance of a combinatorial problem in
which the set F is formed by 16 feasible solutions depicted in a square grid and
represented by S(i, j), for i, j = 1, . . . ,4.

Fig. 4.4 Set of 16 feasible solutions of a combinatorial optimization problem.

A search space graph associated with the above problem instance can be cre-
ated by imposing a neighborhood definition on the node set F . Neighborhood N1 is
defined such that any solution S(i, j) has neighbors S(i+1, j), S(i−1, j), S(i, j+1),
and S(i, j− 1), whenever they exist. Figure 4.5 displays the corresponding search
space graph.

However, other different neighborhoods can be defined and imposed on the same
set of feasible solutions. Another neighborhood N2 can be defined, such that any
solution S(i, j) has neighbors S(i+ 1, j+ 1), S(i+ 1, j− 1), S(i− 1, j+ 1), and
S(i− 1, j− 1), whenever they exist. Figure 4.6 displays the search space graph de-
fined by this neighborhood.

We observe that some pairs of solutions are closer within one neighborhood or
another. For instance, six moves are necessary to traverse the search space graph de-
fined by neighborhood N1 from S(1,1) to S(4,4), although only three are necessary
if neighborhood N2 is applied. On the other hand, every feasible solution is reach-
able from any other one if neighborhood N1 is used. Contrarily, if the search starts
from a solution S(i, j) where i+ j is odd and takes moves defined by neighborhood
N2, only half of the solutions in the search space graph are reachable. However, if
i+ j is even, then only the other half of the solutions can be visited. Therefore, the
search space graph is not connected in this case. This can lead to implementation
difficulties and can even make it impossible for the search procedure to find good
solutions located at the part of the graph that cannot be reached from the initial
solution.

4.2 Neighborhoods and search space graph 69

Fig. 4.5 Search space graph with 16 feasible solutions and neighborhood N1.

Fig. 4.6 Search space graph with 16 feasible solutions and neighborhood N2.

Since each of the neighborhoods N1 and N2 leads to different search paths
through the set F of feasible solutions, a natural idea is to combine them into a
single neighborhood. Therefore, neighborhoodN3 can be defined as the union of N1

and N2: within this new neighborhood, any feasible solution S(i, j) has up to eight
neighbors S(i+1, j), S(i−1, j), S(i, j+1), S(i, j−1), S(i+1, j+1), S(i+1, j−1),
S(i−1, j+1), and S(i−1, j−1), whenever they exist. Figure 4.7 displays the search
space graph defined by this enlarged neighborhood.

At this point, it is very insightful to present some analogies between these three
neighborhoods on the 4 × 4 grid of feasible solutions of our illustrative combi-
natorial optimization problem and the way chess pieces move on a chess board.

70 4 Local search

Fig. 4.7 Search space graph with 16 feasible solutions and neighborhood N3.

Moves along neighborhood N1 are similar to those of rooks, which move along
rows and columns of the chess board. Moves following neighborhoodN2 are equiv-
alent to those of bishops, which traverse the diagonals of the chess board. While
the white bishop can visit only white squares of the chess board, the black bishop
can visit only the black squares. Each bishop can visit only half of the chess board
squares, in the same way as moves within neighborhood N2 starting from any fea-
sible solution in Figure 4.4 can visit only half of the set of feasible solutions. The
queen is stronger than both a rook and a bishop, since it can perform all kinds of
moves, along rows, columns, and diagonals. Analogously, neighborhood N3 entails
all moves that can be performed within neighborhoods N1 and N2.

The above discussion illustrates the notion that different neighborhoods can
be defined and used in the implementation of a local search method. The larger
the neighborhood, the denser will be the search space graph and the shorter will be
the paths connecting any two solutions. However, the use of large neighborhoods re-
quires the evaluation of more neighboring solutions, leading to larger computation
times during the investigation of the current solution.

It is important to note that the search space does not need to be formed exclu-
sively by feasible solutions in F , but can also contain any subset of the set F̂ = 2E

formed by all solutions, either feasible or infeasible. The definitions presented in
this section remain the same, with the search space graph being now defined over F̂
and not only over F . In this situation, the search can visit feasible and infeasible so-
lutions but, in any case, it must terminate at a feasible solution. Working with more
complex search space graphs, which include infeasible solutions, can be essential in
some cases to ensure connectivity between any pair of feasible solutions.

In conclusion, finding an appropriate neighborhood and the best way to explore
it is a crucial step towards the implementation of effective and efficient local search
methods.

4.2 Neighborhoods and search space graph 71

Knapsack problem – Neighborhood and search space graph

We have already seen that any solution of the knapsack problem can be represented
by a binary vector (x1, . . . ,xn), in which xi = 1 if item i is selected, xi = 0 other-
wise, for every i = 1, . . . ,n. A solution S = (x1, . . . ,xn) belongs to the feasible set
F if ∑n

i=1 ai · xi ≤ b. In this context, a move from any solution amounts to comple-
menting the value of any single variable among x1, . . . , xn, while keeping the others
fixed. Each solution has exactly n neighbors and the full search space graph defined
over the set F̂ formed by all feasible and infeasible solutions is an n-dimensional
hypercube, as depicted in Figure 4.8. �

Fig. 4.8 Search space graph for a knapsack problem with three items.

Traveling salesman problem – Neighborhood and search space graph

We consider the case of a traveling salesman problem defined over a set V =
{1, . . . ,n} of cities that have to be visited exactly once. We have already seen that
a feasible solution is a tour visiting each of the cities in V exactly once. Any fea-
sible solution of the traveling salesman problem can be represented by a circular
permutation (π1,π2, . . . ,πn−1,πn) of the n cities, with πi ∈ V for every i = 1, . . . ,n
and πi 	= π j for every i, j = 1, . . . ,n : i 	= j. This circular permutation is equivalent
to any of the n linear permutations (π1,π2, . . . ,πn−1,πn), (π2,π3, . . . ,πn,π1), . . . ,
and (πn,π1, . . . ,πn−2,πn−1), each of them originating at a different city. All of them
correspond to the same tour (π1,π2), (π2,π3), . . . , (πn−1,πn), (πn,π1). The three
tours in Figure 4.3 correspond to the circular permutations (a,b,c,d), (a,b,d,c),
and (a,c,d,b).

72 4 Local search

The search space graph has exactly n! nodes, each of them corresponding to
a permutation of the n cities to be visited. Several neighborhood definitions are
possible in this context. Neighborhood N1 is defined as that formed by all permu-
tations that can be obtained by exchanging the positions of two consecutive cities
of the current permutation. Any solution (π1, . . . ,πi−1,πi, . . . ,πn) has exactly n− 1
neighbors within neighborhood N1, each of them defined by a different permuta-
tion (π1, . . . ,πi,πi−1, . . . ,πn) characterized by the swap of cities πi−1 and πi, for
i= 2, . . . ,n. Figure 4.9 illustrates the search space graph corresponding to this neigh-
borhood for a symmetric traveling salesman problem with four cities. Every solution
has exactly three neighbors. As an example, the neighbors of solution (1,2,3,4) are
(2,1,3,4), (1,3,2,4), and (1,2,4,3).

Neighborhood N2 is defined by associating a solution (π1, . . . ,πi, . . . ,π j, . . . ,πn)
with all n(n−1)/2 neighbors (π1, . . . ,π j, . . . ,πi, . . . ,πn) that can be obtained by ex-
changing the positions of any two cities πi and π j, for i, j = 1, . . . ,n : i 	= j. Consid-
ering the same example of a symmetric traveling salesman problem with four cities,
every solution has exactly six neighbors. In particular, the same solution (1,2,3,4)
has now (2,1,3,4), (1,3,2,4), (1,2,4,3), (3,2,1,4), (1,4,3,2), and (4,2,3,1) as its
neighbors.

We can also define a third neighborhood N3 for the same problem by associ-
ating a solution (π1, . . . ,πi−1,πi,πi+1, . . . ,π j, . . . ,πn) with all n(n− 1)/2 neighbors
(π1, . . . ,πi−1,πi+1, . . . ,πi,π j, . . ., πn) that can be obtained by moving city πi to posi-
tion j, with 1 ≤ i< j ≤ n, and shifting by one position to the left all cities between
positions i+1 and j. Considering once again the same example of a traveling sales-
man problem with four cities as above, every solution has also exactly six neigh-
bors. In particular, solution (1,2,3,4) has now (2,1,3,4), (2,3,1,4), (2,3,4,1),
(1,3,2,4), (1,3,4,2), and (1,2,4,3) as its neighbors.

Each solution has three neighbors in neighborhoodN1 and six neighbors in neigh-
borhoods N2 and N3, for this example. Neighbors in neighborhoods N2 and N3 are
not the same. Therefore, even if the feasible solution set is the same in the three ex-
amples, the search space graphs defined by the three neighborhoods have different
edge sets and, consequently, are different. Figure 4.10 superimposes neighborhoods
N1, N2, and N3, illustrating the neighbors of solution (1,2,3,4) within each of the
three neighborhoods.

We recall that each tour (π1,π2), (π2,π3), . . . , (πn−1,πn), (πn,π1) corresponds
to exactly n linear permutations of the cities to be visited. Considering the same
example of a traveling salesman problem with four cities, the tour that starts at city 1,
visits cities 2, 3, and 4 in this order, and then returns to city 1, can be represented by
any one of the following four linear permutations: (1,2,3,4), (2,3,4,1), (3,4,1,2),
and (4,1,2,3). Furthermore, if the problem is symmetric, then each tour can be
traversed in two opposite directions with the same total traveled distance. Therefore,
permutations(4,3,2,1), (1,4,3,2), (2,1,4,3), and (3,2,1,4) also correspond to the

4.2 Neighborhoods and search space graph 73

Fig. 4.9 Search space graph defined by neighborhood N1 for a traveling salesman problem with
four cities.

same tour, but traversed in reverse order. In the general case, each tour corresponds
to a circular permutation of the n cities. Since each circular permutation can be
indistinctly traversed in two different orders, the number of feasible solutions in F
can be reduced from n! to (n− 1)!/2, leading to a more compact representation of
the problem. However, this reduction is not sufficient to make the solution of large
problems easier, since the size of the search space graph remains superpolynomial
in the number of cities. �

74 4 Local search

4.3 Implementation strategies

We have shown that the search space can be seen as a graph whose vertices corre-
spond to feasible solutions that are connected by edges associated with neighboring
solutions. A path in the search space graph consists of a sequence of feasible solu-
tions, in which any two consecutive solutions are neighbors of each other.

This definition of the search space graph can be enlarged to allow also for vertices
that correspond to infeasible solutions. In this case, paths in the search space can
visit feasible as well as infeasible solutions.

Fig. 4.10 Neighborhoods N1, N2, and N3 of solution (1,2,3,4) in the search space graph of a
traveling salesman problem with four cities. Nodes connected by red edges belong to the three
neighborhoods. Nodes connected by blue edges are those within neighborhood N2, while those
connected by green edges belong to neighborhood N3.

4.3 Implementation strategies 75

Given any instance of a minimization problem defined by a finite ground set E =
{1, . . . ,n}, a set of feasible solutions F ⊆ 2E , and an objective function f : 2E → R,
we have noted in Section 2.1 that we seek a globally optimal solution S∗ ∈ F such
that f (S∗)≤ f (S), ∀S ∈ F .

We have also seen in Section 4.2 that a neighborhood of a feasible solution S∈ F
is defined by a mapping that associates S with a subset N(S) of feasible solutions
also in F . A solution S+ is said to be a local optimum for a minimization problem
with respect to neighborhoodN if and only if f (S+)≤ f (S), ∀S∈N(S+). We notice
that a global optimum is also locally optimal with respect to any neighborhood,
while a local optimum is not necessarily a global optimum.

Local search methods can be viewed as a traversal of the search space graph
starting from any given solution and stopping whenever some optimality condition
is met. In most cases, a local search procedure is made to stop after a locally opti-
mal solution is encountered. Metaheuristics such as tabu search extend the search
beyond the first local optimum found, offering different escape mechanisms. The ef-
fectiveness and efficiency of a local search method depend on several factors, such
as the starting solution, the neighborhood structure, and the objective function being
optimized. The main components or phases of a local search method are

Phase 4.1 – Start: Construction of the initial solution, from where the search starts.
Methods that may be applied to build an initial solution have already been discussed
in Chapter 3 and will be further considered in Chapter 7.

Phase 4.2 – Neighborhood search: Application of a subordinate heuristic or search
strategy to find an improving solution in the neighborhood of the current solution.
Neighborhood search strategies will be discussed along this section.

Phase 4.3 – Stop: Interruption of the search by a stopping criterion, which in most
cases consists in the identification that a locally optimal solution has been found.
Stopping criteria for the neighborhood search will be considered at different points
of this chapter.

4.3.1 Neighborhood search

We consider in the following first-improving, best-improving, and other variants and
strategies for the implementation of the neighborhood search.

At any iteration of an iterative improvement or first-improving neighborhood
search strategy, the algorithm moves from the current solution to any neighbor with
a better value for the objective function. In general, the new solution is the first-
improving solution identified along the neighborhood search. The pseudo-code in
Figure 4.11 describes a local search procedure based on a first-improving strategy
for a minimization problem. The search starts from a given initial solution S. A flag

76 4 Local search

Fig. 4.11 Pseudo-code of a first-improving local search procedure for a minimization problem.

indicating whether or not an improving solution was found is set in line 1. The loop
in lines 2 to 10 is performed until it becomes impossible to replace the current so-
lution with a better neighbor. The flag is reset to .FALSE. in line 3 at the beginning
of a new iteration. The loop in lines 4 to 9 visits every neighbor S′ ∈ N(S) of the
current solution S until an improving solution is found. If the test in line 5 detects
that S′ is better than the current solution S, then the latter is replaced by the former
in line 6 and the flag is reset to .TRUE. in line 7, indicating that a better solution
was found. The algorithm returns the local optimum S in line 11.

Fig. 4.12 Pseudo-code of a best-improving local search procedure for a minimization problem.

4.3 Implementation strategies 77

At any iteration of a best-improving local search strategy, the algorithm moves
from the current solution to the best of its neighbors, whenever this neighbor
improves upon the current solution. The pseudo-code in Figure 4.12 describes a
local search procedure based on a best-improving strategy for a minimization prob-
lem. As in the previous algorithm, the search starts from any given initial solution S.
A flag indicating whether or not an improving solution was found is set to .TRUE. in
line 1. The loop in lines 2 to 15 is performed until it becomes impossible to replace
the current solution with a better neighbor. The flag is reset to .FALSE. in line 3
at the beginning of a new iteration. The variable fbest that stores the best objective
function value over all neighbors of the current solution S is set to a large value in
line 4. The loop in lines 5 to 10 visits every neighbor S′ ∈ N(S) of the current solu-
tion S. If the test in line 6 detects that a new neighbor S′ is better than the current
best neighbor, then the current best is replaced by the improved neighbor in line 7
and the best objective function value fbest in the neighborhood is updated in line 8.
In line 11, we compare the current solution S with its best neighbor Sbest . If fbest is
less than f (S), then the current solution is updated in line 12 and the flag is reset to
.TRUE. in line 13, indicating that a better solution was found. The algorithm returns
the local optimum S in line 16.

To illustrate the main ideas discussed in this section, we consider the traveling
salesman problem instances with four cities whose search space graph was repre-
sented in Figure 4.9. We assume that the edge lengths are such that the values of
the objective function for each solution are those depicted in Figure 4.13. For this
minimization problem, there is only one local minimum, which is, necessarily, also
a global optimum. The node of the search space graph corresponding to this solu-
tion is colored red. We observe that independently of the starting solution and of the
neighborhood search strategy, the local search always stops at the global optimum.

We now suppose that the edge lengths are modified and that the solution costs
are now as depicted in Figure 4.14. Considering this new situation, there are six
nodes of the search space graph corresponding to locally optimal solutions: two
nodes colored green have their objective function values equal to 49, two colored
blue have their objective function values equal to 48, and two colored red have
their objective function values equal to 46. Among those, we observe that only the
red nodes correspond to globally optimal solutions. Furthermore, we notice that
the solution obtained by local search varies, depending on both the starting solution
and the neighborhood search strategy.

4.3.2 Cost function update

The complexity of each neighborhood search iteration depends not only on the num-
ber of neighbors of each visited solution, but also on the efficiency of the computa-
tion of the cost function value for each neighbor.

78 4 Local search

Efficient implementations of neighborhood search usually compute the cost of
each neighbor S′ by updating the cost of the current solution S, instead of calculating
it from scratch, avoiding repetitive and unnecessary calculations, as illustrated in the
two examples that follow.

Fig. 4.13 Search space graph for a minimization problem with a unique local optimum.

Knapsack problem – Cost function update

Consider a solution S for the knapsack problem, represented by a binary vector
(x1, . . . ,xn), in which xi = 1 if item i is selected, xi = 0 otherwise, for every item
i= 1, . . . ,n. The cost of solution S is given by f (S). Consider now a neighbor so-
lution S′ ∈ N(S) that differs from S by a single element, i.e., S′ = (x′1, . . . ,x

′
n), with

4.3 Implementation strategies 79

x′j = 1− x j for some j ∈ {1, . . . ,n} and x′i = xi for every i= 1, . . . ,n : i 	= j. The cost
f (S′) can be computed from scratch in time O(n) by adding up the costs of all items
for which x′j = 1. However, this value can be computed much faster in time O(1) as
f (S′) = f (S)+ c j if x j = 0 and x′j = 1, or as f (S′) = f (S)− c j if x j = 1 and x′j = 0.

�

Fig. 4.14 Search space graph for a minimization problem with six local optima.

Traveling salesman problem – Cost function update

In Section 4.2 we examined three different neighborhoods for the traveling salesman
problem. Here, we discuss the implementation of a local search procedure for the
traveling salesman problem based on a different neighborhood definition.

80 4 Local search

Recall that every solution S for an instance of the traveling salesman problem
can be represented by an incidence binary vector (x1, . . . ,xm), where m = n(n−
1)/2 and x j = 1 if the edge indexed by j belongs to the corresponding tour, x j =
0 otherwise, for j = 1, . . . ,m. Figure 4.15 (a) depicts an example involving a 5-
vertex weighted graph, whose edges are numbered as indicated in Figure 4.15 (b).
Figure 4.15 (c) shows the initial solution S corresponding to the incidence vector
(1,1,1,1,1,0,0,0,0,0), whose cost is 17.

(a) Graph and lengths (b) Edge indexation

(c) Initial solution: S = (1,1,1,1,1,0,0,0,0,0)

Fig. 4.15 Instance of the traveling salesman problem with five vertices and its initial solution.

The 2-opt neighborhood for the traveling salesman problem is defined by replac-
ing any pair of nonadjacent edges of solution S by the unique pair of edges that
recreates a Hamiltonian cycle. Figure 4.16 displays the five neighbors of the initial
solution S= (1,1,1,1,1,0,0,0,0,0) together with their costs, indicating for each of
them the eliminated edges by dashed lines. Suppose that the neighbors are generated
and examined from left to right. In that case, a first-improving neighborhood search
strategy would return the second generated neighbor (with cost 16) as the improving
solution. However, if a best-improving strategy were applied, then it would return

4.3 Implementation strategies 81

the fourth neighbor as the best one (with cost 14). Assuming that this fourth neigh-
bor is selected and becomes the new current solution S = (1,0,1,1,0,1,0,0,0,1),
Figure 4.17 displays its five neighbors. The best of those is the second from left to
right (with cost 12). Since this solution cannot be improved by any of its neighbors,
then it is a local optimum and the search is interrupted.

Each solution has exactly n(n− 1)/2− n neighbors. As for the case of the knap-
sack problem, the cost of each neighbor S′ can be recomputed in time O(1) from the
cost of solution S, by simply taking the cost f (S), subtracting the lengths of the two
removed edges, and adding those of the two edges that replaced them.

The 3-opt neighborhood for the traveling salesman can be defined by taking three
nonadjacent edges of the current solution and replacing them with any of the only
four possible combinations of three edges that recreate a tour, as illustrated in Fig-
ure 4.18. In that case, the number of neighbors increases to O(n3) and the search
becomes slower, although more solutions can be investigated andbetter neighbors

Fig. 4.16 First local search iteration: fourth neighbor is returned.

might be possibly found. This neighborhood can be generalized to any k≤m: neigh-
borhood k-opt is formed by all solutions that can be obtained by replacing k edges
from the current solution by k others that do not belong to it, so as to recreate a new
tour. �

82 4 Local search

4.3.3 Candidate lists

Candidate list strategies correspond to different techniques that make it possible
to implement local search methods in the most efficient ways by dealing faster or
with fewer neighbors instead of the full neighborhood. Basically, these candidate
list strategies provide a number of techniques to speed up the local search either by
restraining the number of neighbors investigated (for instance, when the neighbor-
hood is very large) or by avoiding repetitive computations that can be saved from
one iteration to the next (typically, whenever the computation of the objective func-
tion is expensive).

Fig. 4.17 Second local search iteration: second neighbor is a local optimum.

Instead of describing the types of candidate list strategies that are useful for the
efficient implementation of local search, we illustrate with an example of one of the
most simple and effective variants often used.

We assume that a best-improving neighborhood search strategy is applied as part
of a local search method to solve a minimization problem. We also assume that the
current solution S with cost f (S) at a given local search iteration has p neighboring
solutions, each of them associated with a move indexed by j= 1, . . . , p. Each neigh-
bor is obtained by applying one of the p moves to the current solution S. Each move
j = 1, . . . , p may correspond, for instance, to flipping a 0-1 variable indexed by j,
or to interchanging the values of the j-th pair of variables, or, still, to removing the

4.3 Implementation strategies 83

j-th pair of edges in a 2-opt neighborhood for the traveling salesman problem and
replacing them by the unique pair of edges that makes it possible to recover a tour.
We denote by S⊕{ j} the solution obtained by applying the move indexed by j to
the current solution S. The incremental cost associated with the move indexed by j is
computed and stored in Δ(j), for j = 1, . . . , p. Therefore, the cost of each neighbor
is given by f (S⊕{ j}) = f (S)+Δ(j), for j = 1, . . . , p. In particular, suppose that
p= 10 and Δ(1) =−10, Δ(2) = 1, Δ(3) =−8, Δ(4) =−12, Δ(5) = 4, Δ(6) =−3,
Δ(7) =−5, Δ(8) = 6, Δ(9) =−1, and Δ(10) = 5. Since we are dealing with a min-
imization problem and a best-improving strategy is being used, the best-improving
move is that indexed by j∗ = argmin{Δ(j) : Δ(j)< 0, j = 1, . . . , p}. Consequently,
j∗ = 4 in this example and the search moves to solution S⊕{4}, whose cost is
f (S⊕{4}) = f (S)+Δ(4) = f (S)− 12.

Fig. 4.18 3-opt neighborhood for the traveling salesman problem.

At this time, the best-improving neighborhood search strategy would investigate
the full neighborhood of solution S⊕ {4}. Instead, we consider a candidate list
formed by all yet unselected negative cost moves j= 1, . . . , p : j 	= j∗ and Δ(j)< 0.
Therefore, all other possible moves from S⊕{4} are discarded and the candidate
list is formed exclusively by the yet unselected negative cost moves indexed by 1,
3, 6, 7, and 9. In addition to reducing the number of neighbors investigated, we use
the already-available values of Δ(j) as estimates of the new incremental costs asso-
ciated with each move from S⊕{4}. The best-improving strategy selects j∗ = 1 as
the best candidate move and only now the true value of the incremental cost Δ(1)

84 4 Local search

associated with the application of the move indexed by 1 to solution S⊕{4} will be
recomputed. If this move remains an improving move (i.e., if the recently updated
value Δ(1) is negative), then it is applied to S⊕{4} and the search moves to solu-
tion S⊕{4}⊕ {1} with cost f (S⊕{4}⊕ {1}) = f (S)+Δ(4)+Δ(1). Otherwise,
if Δ(1) ≥ 0, then this move became nonimproving. Therefore, it can be discarded
from the candidate list and the procedure resumes from the reduced candidate list
formed by the still remaining moves, which are indexed by 3, 6, 7, and 9.

This procedure continues until the candidate list is exhausted and becomes empty.
The incremental costs of all possible moves from the current solution are fully
reevaluated and the search continues from this updated candidate list, until a local
optimum is found.

Different variants of candidate lists strategies have been proposed in the literature
and successfully applied to a number of problems. Additional references are given
in the bibliographical notes presented at the end of this chapter.

4.3.4 Circular search

In the case of a local search procedure following a first-improving strategy, a very
effective strategy for exploring a full neighborhood or a candidate list consists in
performing a circular search. A circular search amounts to using a circular list of
candidate moves. As before, consider an example in which local search is applied
to a minimization problem. Again, we assume that the current solution S with cost
f (S) at a given local search iteration has p neighboring solutions, each of them asso-
ciated with a move indexed by j = 1, . . . , p. Each neighbor is obtained by applying
one of the p moves to the current solution S. As before, we denote by S⊕{ j} the
solution obtained by applying the move indexed by j to the current solution S. The
incremental cost associated with the move indexed by j is computed and stored in
Δ(j), for j = 1, . . . , p. Suppose that the moves are investigated in ascending order
of their indices j = 1, . . . , p, until the first-improving neighbor j′ ≥ 2 is found, i.e.,
Δ(j′) < 0 and Δ(j) ≥ 0 for all j = 1, . . . , j′ − 1. At this point, the new solution be-
comes S⊕{ j′} and the search would resume from the first move, i.e., from j = 1.
However, since in the last iteration this was not an improving move since Δ(1)≥ 0,
it most likely will still be a nonimproving move. The same applies to all moves
j = 2, . . . , j′ − 1. Therefore, we profess that a more effective strategy resumes the
search from j = j′+ 1, instead of from j = 1. In this context, the move defined by
j = p is followed by that indexed by j = 1, as if they were organized as a circular
list. The first-improving local search strategy stops at a local optimum as soon as
a complete tour of this circular list is performed without any improvement in the
current solution.

The use of a candidate list strategy using a circular search to implement a local
search method based on a first-improving strategy can speed up the search by several
orders of magnitude, without any loss in terms of solution quality.

4.4 Ejection chains and perturbations 85

4.4 Ejection chains and perturbations

Simple moves as those described in Section 4.2 can be extended to define broader
neighborhoods associated with compound moves. These can be seen as sequences
of simple moves that introduce structural changes in the current solution. Algo-
rithms that incorporate compound moves are called variable depth methods, since
the number of components of a compound move may vary from step to step.

Ejection chains are variable depth methods that make use of a sequence of int-
errelated, consecutive simpler moves to create more complex moves. They are de-
signed to induce successive changes following an initial move that entailed infeasi-
bilities in the neighbor solution, until feasibility is recovered. We say that an ejec-
tion chain has a variable depth because the number of simpler moves that are needed
to recover feasibility may vary from one iteration to another. The length of the se-
quence of simple consecutive moves that lead to a compound move may be long and
the evaluation of a compound move defining an ejection chain can be very costly
in terms of computational effort. Therefore, the full exploration of neighborhoods
defined by ejection chains can hardly be done. However, ejections chains may be
employed as random or biased perturbations to destroy the structure of a local op-
timum, followed by the generation of a new solution that still shares part of the
original local optimum that originated it.

Many metaheuristics make use of diversification strategies to drive the search
towards unexplored regions of the search space. In particular, iterated local search
(ILS) explores perturbation moves to escape from locally optimal solutions, obtain-
ing new, different initial solutions from where the search restarts. Ejection chains
are a very attractive alternative to generate perturbation moves in the context of
diversification steps in tabu search or iterated local search.

We illustrate the use of ejection chains with an application to the traveling tour-
nament problem. In this problem, one seeks to schedule the games of a compact
round robin tournament involving n teams. Each team plays exactly once with ev-
ery other team. The tournament takes n− 1 rounds to be completed and every team
plays exactly one game in each round. The tournament can be represented by the
complete graph Kn, in which each node represents one team and each edge corre-
sponds to the game between the two teams represented by its two extremities. Each
round can be seen as a 1-factor of Kn, containing exactly n/2 edges. The goal is
to minimize the total distance traveled by the teams, subject to constraints on the
number of consecutive games each team plays at home and away. The discussion
that follows regards exclusively feasibility issues.

Simple and easy moves to be applied within a local search method for the travel-
ing tournament problem consist, for example, of team swaps (the opponents of any
two teams are interchanged over all rounds) or round swaps (the games played in
any two rounds are interchanged), as illustrated in Figure 4.19.

86 4 Local search

However, moves such as round swaps and team swaps are not sufficient to make
the search space graph connected and some solutions may be unreachable from the
initial solution. The game rotation neighborhood consists in enforcing any given
game to be played in any particular round. Only this neighborhood is capable of
breaking the inner structure of the 1-factorization corresponding to the initial solu-
tion and making the search space graph connected. Nevertheless, whenever a game
is removed from the round where it is currently being played and enforced to be
played in a different round, infeasibilities are created in both rounds. Appropriate
modifications to avoid clashes of teams playing more than once in the same round
should be applied. To eliminate these infeasibilities, new edges have to be succes-
sively removed from one round and reassigned to another, until a feasible solution is
recovered. The sequence of reassignments of games to new rounds gives rise to an
ejection chain, as illustrated in Figures 4.20 to 4.22 for an instance of the traveling
tournament problem with six teams.

(a) Current solution of a traveling tournament problem instance with six teams.

(b) Example of a round swap move applied to the solution in (a): rounds 2 and 4 (edges in red)
are interchanged and all games played in one of them are reassigned to the other.

(c) Example of a team swap move applied to the solution in (b): teams 1 and 2 (nodes in red) are
interchanged and all their opponents are swapped over all rounds.

Fig. 4.19 Round swap and team swap moves for the traveling tournament problem.

4.4 Ejection chains and perturbations 87

In Figure 4.20(a), game (1,3) is selected to be reassigned from round 5 to
round 2. In the seven steps in Figures 4.20(b) to 4.22(b) one game is reassigned to a
new round and another game is selected for reassignment. Finally, in Figure 4.22(c)
game (2,3) is assigned to round 5 and a feasible solution is reached.

To conclude, we may say that ejection chains are then based on the principle of
generating compound sequences of moves by linked steps in which changes in se-
lected elements cause other elements to be ejected from their current state, position,
or value assignment. Although they are often costly to be used as regular moves
in a local search method in terms of computation time, they are very effective to
generate perturbations and for search diversification.

(a) Game (1,3) will be removed from round 5 to be played in round 2.

(b) Game (1,3) is now played in round 2, while game (2,5) will be removed from round 4 to be
played in round 2.

(c) Game (2,5) is now played in round 2, while game (1,5) will be removed from round 2 to be
played in round 4.

Fig. 4.20 Ejection chain moving game (1,3) from round 5 to round 2: first three moves.

88 4 Local search

4.5 Going beyond the first local optimum

We have shown that local search methods always stop at the first local optimum,
from which they are unable to escape. In the following, we illustrate two extended
variants of local search that may overcome this limitation.

4.5.1 Tabu search and short-term memory

Tabu search is a memory-based metaheuristic whose philosophy is to derive and ex-
ploit a collection of principles of intelligent problem solving. The method is based
on procedures designed to cross boundaries of feasibility or local optimality, which
are often treated as barriers. It guides a local search procedure to explore the solution

(a) Game (1,5) is now played in round 4, while game (2,6) will be removed from round 1 to be
played in round 4.

(b) Game (2,6) is now played in round 4, while game (1,6) will be removed from round 4 to be
played in round 1.

(c) Game (1,6) is now played in round 1, while game (2,4) will be removed from round 5 to be
played in round 1.

Fig. 4.21 Ejection chain moving game (1,3) from round 5 to round 2: intermediate three moves.

4.5 Going beyond the first local optimum 89

space beyond local optimality. In its simplest version, which makes exclusive use of
short-term memory to avoid cycling, tabu search may be seen as a powerful exten-
sion of a local search procedure that accepts nonimproving moves to escape from
locally optimal solutions, until some alternative stopping criterion is satisfied.

In this context, a reasonable strategy to extend a pure local search method be-
yond optimality consists in accepting only a small, limited number of nonimproving
moves in order to give the search a chance of escaping from the first local optimum
found, without either being trapped or increasing too much the computation time.
A short-term memory has to be used to keep track of recent nonimproving moves
whose reversal should be forbidden to avoid cycling, i.e., visiting a solution that has
been already visited in a previous iteration.

(a) Game (2,4) is now played in round 1, while game (1,4) will be removed from round 1 to be
played in round 5.

(b) Game (1,4) is now played in round 5, while game (2,3) will be removed from round 2 to be
played in round 5.

(c) Game (2,3) is now played in round 5 and a new feasible schedule is finally obtained.

Fig. 4.22 Ejection chain moving game (1,3) from round 5 to round 2: final three moves.

90 4 Local search

4.5.2 Variable neighborhood descent

A local optimum with respect to some neighborhood is not necessarily optimal
with respect to another neighborhood. For example, a locally optimal solution for
the traveling salesman problem under the 2-opt neighborhood may not be optimal
within the 3-opt neighborhood. Changes of neighborhoods can be successfully per-
formed within a local search procedure. They are crucial and instrumental in some
cases. Exploring different neighborhoods in an appropriate order can save a signifi-
cant amount of computation time.

In this context, small neighborhoods or those whose elements can be quickly
evaluated may be explored first, with the search moving to progressively larger
or more complex neighborhoods as locally optimal solutions are found within the
lower order neighborhoods. This local search strategy is called variable neighbor-
hood descent (VND) and its main steps are presented in the pseudo-code of Fig-
ure 4.23 for a minimization problem, in which N k denotes the k-th neighborhood
to be explored, for k= 1, . . . ,kmax.

Fig. 4.23 Pseudo-code of a VND local search procedure for a minimization problem.

At any iteration of a VND local search strategy, the algorithm moves from the
current solution to the best of its neighbors within the current neighborhood, when-
ever the best neighbor improves upon the current solution. The search starts from
a given initial solution S. A flag indicating whether or not an improving solution
was found is set to .TRUE. in line 1. The loop in lines 2 to 14 is performed until
it becomes impossible to replace the current solution by a better neighbor. The flag
is reset to .FALSE. in line 3 at the beginning of a new iteration. The index of the
current neighborhood is set initially to 1 in line 4. The loop in lines 5 to 13 consec-
utively investigates all neighborhoods. Line 6 returns the best neighbor solution S′

4.7 Bibliographical notes 91

of the current solution S within neighborhood N k. If the test in line 7 detects that
S′ is better than the current solution S, then S is replaced by S′ in line 8, the cur-
rent neighborhood is reset to 1 in line 9, and the flag is reset to .TRUE. in line 10,
indicating that a better solution was found. Otherwise, the neighborhood counter is
increased by one, indicating that a higher-order neighborhood will be investigated
next. The algorithm returns the local optimum S with respect to all neighborhoods
in line 15.

4.6 Final remarks

We have seen that local search methods start from an initial solution and iteratively
improve it until a local optimum is found. They are memoryless search methods that
are very sensitive to the initial solution and stop at the first local optimum, being
unable to escape from it. They are also sensitive to the neighborhood structure and
to the search strategy applied to explore each neighborhood.

Metaheuristics are general high-level procedures that coordinate simple heuris-
tics and rules to find good (often optimal) approximate solutions to computationally
difficult combinatorial optimization problems. Among them, we find simulated an-
nealing, tabu search, GRASP, VNS, genetic algorithms, scatter search, ant colonies,
and others. They are based on distinct paradigms and offer different mechanisms
to escape from locally optimal solutions, as opposed to greedy algorithms or local
search methods. Metaheuristics are among the most effective solution strategies for
solving combinatorial optimization problems in practice and they have been applied
to a large variety of areas and situations. The customization (or instantiation) of
some metaheuristic to a given problem yields a heuristic to the problem.

In the next chapter we give an introductory presentation to the fundamentals
of the GRASP (which stands for greedy randomized adaptive search procedures)
metaheuristic and is one of the most effective approximate solution methods for hard
combinatorial optimization problems. GRASP is one of the alternatives to overcome
some of the main limitations of basic local search methods, such as the sensitivity
to the initial solution and stopping at the first local optimum.

4.7 Bibliographical notes

Local search methods are a common component of a number of metaheuristics.
Hoos and Stützle (2005) defined stochastic local search algorithms to be methods
based on local search that make use of randomization to generate or select candi-
date solutions for combinatorial optimization problems. Yagiura and Ibaraki (2002)
traced the history of local search since the work of Croes (1958), where a local
search algorithm for the traveling salesman problem was proposed. Kernighan and
Lin (1970) and Lin and Kernighan (1973) were early proponents of local search for,

92 4 Local search

respectively, graph partitioning and the traveling salesman problem. Michelis et al.
(2007) discussed theoretical aspects of local search. The simplex algorithm devel-
oped by Dantzig (1953) can be seen as a local search algorithm for solving linear
programming problems.

The principles discussed in Sections 4.1 to 4.3 of this chapter are usually des-
cribed in books, chapters, and articles devoted to metaheuristics, such as simulated
annealing, tabu search, GRASP, variable neighborhood search, iterated local search,
genetic algorithms, and ant colony optimization, which all make use of local search.
In particular, we refer the reader to the aforementioned book of Hoos and Stützle
(2005), to the textbook on tabu search by Glover and Laguna (1997), to different
chapters in the handbooks edited by Glover and Kochenberger (2003), Gendreau
and Potvin (2010), and Burke and Kendall (2005; 2014), and to the book chapters
by Rego and Glover (2002) and Yagiura and Ibaraki (2002).

We showed in Section 4.4 that simple moves can be extended to define broader
neighborhoods associated with compound moves that are called ejection chains.
They were defined by Rego and Glover (2002) as variable depth methods that gen-
erate a sequence of interrelated simple moves to create more complex moves. We
refer the reader to Cao and Glover (1997), Glover (1996a), Glover and Punnen
(1997), Pesch and Glover (1997), Glover (1991), and Rego (1998) for a comprehen-
sive description of ejection chains and their applications to the traveling salesman
problem and other optimization problems in graphs. Dorndorf and Pesch (1994),
Laguna et al. (1995), Yagiura et al. (2004), and Cavique et al. (1999) applied ejec-
tion chains to problems in other domains. The traveling tournament problem was
introduced in the seminal paper by Easton et al. (2001). Ribeiro and Urrutia (2007)
presented a successful application of ejection chains to generate perturbations in
the context of a hybridization of GRASP with iterated local search to solve the
mirrored variant of the traveling tournament problem. We also refer the reader
to Kendall et al. (2010) and Ribeiro (2012) for surveys of optimization problems in
sports. Accounts of the iterated local search metaheuristic (ILS) were presented by
Lourenço et al. (2003), Martin and Otto (1996), and Martin et al. (1991).

We showed in Section 4.5 that tabu search and variable neighborhood descent
represent two extended variants of local search that make it possible to go beyond
the first local optimum encountered. Tabu search is a memory-based metaheuris-
tic proposed and developed by Glover (1989; 1990) in two seminal papers, see
also Glover and Laguna (1997). A similar idea was independently developed by
Hansen (1986) in what was called the steepest-ascent mildest-descent method. The
use of a tabu search procedure based on a small short-term memory to replace a
pure local search method for going beyond the first local optimum was success-
fully used by Souza et al. (2004) in the context of a GRASP heuristic developed
for the capacitated minimum spanning tree problem. The idea of using nested
neighborhoods to improve a local search procedure was around for a long time, see,
e.g., the aforementioned applications to the traveling salesman problem (Lin, 1965;
Lin and Kernighan, 1973) and to graph partitioning (Kernighan and Lin, 1970).

4.7 Bibliographical notes 93

Variable neighborhood descent was completely described and its VND acronym
coined by Mladenović and Hansen (1997), see also Hansen and Mladenović (2002;
2003). VND was used to implement the local search phase of GRASP heuristics for
the Steiner problem in graphs (Martins et al., 2000) and for the phylogeny problem
(Andreatta and Ribeiro, 2002), among other applications.

Chapter 5
GRASP: The basic heuristic

This chapter presents the basic structure of a greedy randomized adaptive search
procedure (or, more simply, GRASP). We first introduce random and semi-greedy
multistart procedures and show how solutions produced by both procedures differ.
The hybridization of a semi-greedy procedure with a local search method consti-
tutes a GRASP heuristic. The chapter concludes with some implementation details,
including stopping criteria.

5.1 Random multistart

A multistart procedure is an algorithm which repeatedly applies a solution con-
struction procedure and outputs the best solution found over all trials. Each trial, or
iteration, of a multistart procedure is applied under different conditions. An exam-
ple of a random multistart procedure for minimization is shown in Figure 5.1. The
algorithm repeatedly generates random solutions. Similar to the GREEDYalgorithm
presented in Figure 3.1 of Chapter 3, a new random solution is generated in line 3
by adding to the partial solution (initially empty) a new feasible ground set element,

Fig. 5.1 Pseudo-code of a random multistart procedure for a minimization problem.

© Springer Science+Business Media New York 2016
M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP,
DOI 10.1007/978-1-4939-6530-4 5

95

96 5 GRASP: The basic heuristic

one element at a time. Unlike in the greedy algorithm, each ground set element is
chosen at random from the set of candidate ground set elements. If the solution has
a better objective function value than the incumbent solution, then it is saved and
made the incumbent in lines 5 and 6. The best solution over all iterations is returned
as the solution of the random multistart algorithm.

5.2 Semi-greedy multistart

In Chapter 3 we introduced the adaptive greedy algorithm whose pseudo-code was
given in Figure 3.8. In line 5 of the pseudo-code, the index of the next ground set
element to be added to the partial solution under construction is chosen. Since there
may exist more than one index i ∈F that minimizes the greedy g(i), the algorithm
needs to have a tie-breaking rule. If ties are not broken at random, then embedding
a greedy algorithm in a multistart strategy would be useless since the same solution
would be produced at each iteration of the multistart procedure.

We also introduced in Figure 3.18 of Chapter 3 the semi-greedy construction
procedure which adds randomization to the greedy algorithm. The semi-greedy al-
gorithm can also be embedded in a multistart framework as shown in Figure 5.2.
This algorithm is almost identical to the random multistart method, except that so-
lutions are generated with a semi-greedy procedure instead of at random. Note that
each invocation of procedure SemiGreedy(·) in line 3 of Figure 5.2 is independent
of the others, therefore producing independent solutions.

Fig. 5.2 Pseudo-code of a semi-greedy multistart procedure for a minimization problem.

The semi-greedy procedure can use either a quality-based or a cardinality-based
restricted candidate list (RCL), as described in Section 3.4. In the former case, a
quality-enforcing parameter α regulates how random or how greedy the construc-
tion will be. In a minimization problem, the value α = 0 leads to a purely greedy
construction, since it places in the RCL all ground set elements i ∈ F for which
the cost associated with its inclusion in the solution is minimum. On the other hand,
the value α = 1 leads to a random construction, since it now places all feasible

5.2 Semi-greedy multistart 97

ground set elements in the RCL. Other values of α , i.e., 0 < α < 1, mix greediness
and randomness in the construction. The same outcomes can be achieved with a
cardinality-based restricted candidate list. A cardinality-enforcing parameter value
k= 1 places in the RCL only one candidate element, with minimum cost associated
with its inclusion in the solution and therefore corresponds to a greedy construction.
On the other hand, a parameter value k = |F | places all candidate elements in the
RCL, and therefore corresponds to a random construction. Other values of k, i.e.,
2 ≤ k≤ |F |− 1, mix greediness and randomness in the construction.

Conversely, in the case of a maximization problem, a value α = 1 would lead
to a greedy construction, since it would place in the RCL all ground set elements
i ∈F for which the cost associated with the inclusion of the element in the solution
is maximum. A value α = 0 would lead to a random construction, since it would
place all feasible ground elements in the RCL.

Figure 5.3 shows the distribution of solution values produced by a random mul-
tistart procedure and by a semi-greedy multistart algorithm with the RCL parameter
α = 0.85 on an instance of the maximum covering problem. In this problem, we are
given a set of m demand points, each with an associated weight, a set of n potential
facility locations, each of which can provide service (or cover) to a given subset of
the demand points, and are asked to find p≤ n facility locations such that the sum of
the weights of the demand points covered by the p facility points is maximized. The
figure compares the two distributions with the greedy solution value and the best
known solution value for this problem instance. It illustrates four important points:

1. Semi-greedy solutions are on average much better than random solutions.
2. There is more variance in the solution values produced by a random multistart

method than by a semi-greedy multistart algorithm.

1

10

100

1000

5000

2 3 4 5 6 7 8 9 10 11

O
cc

ur
re

nc
es

 o
ve

r 5
00

0
tri

al
s

Solution value

be
st

 k
no

w
n

so
lu

tio
n

va
lu

egreedy

semi-greedy

random

Fig. 5.3 Distributions of 5000 random solution values and 5000 semi-greedy solution values for
an instance of the maximum covering problem. The figure also shows the values of the greedy
solution and of the best known solution for this problem instance.

98 5 GRASP: The basic heuristic

3. The greedy solution is on average better than both the random and the semi-
greedy solutions but, even if ties are broken at random, it has less variance than
the random or semi-greedy solutions.

4. Random, semi-greedy, and greedy solutions are usually sub-optimal.

Figure 5.4 further illustrates the three first points above. It shows the distribution
of 1000 independent semi-greedy solutions with RCL parameters α = 0 (random),
0.2, 0.4, 0.6, 0.8, and 1 (greedy) on an instance of the maximum weighted satisfia-
bility problem. In this problem, we are given m disjunctive clauses C1, . . . ,Cm, with
corresponding real-valued weights w1,w2, . . . ,wm, involving the Boolean variables
x1, . . . ,xn and their complements. The problem is to find a truth assignment of 0
(false) and 1 (true) values to these variables such that the sum of the weights of the
satisfiable clauses (i.e., clauses that evaluate to true) is maximized.

5.3 GRASP

Local search was introduced in Chapter 4 as a solution improvement procedure that
is given a starting solution and iteratively explores the neighborhood of the current
solution, looking for one with a better objective function value. If such solution
is found, it is made the current solution and the algorithm proceeds with a new
iteration. Local search ends when no solution in the neighborhood of the current
solution has a better objective function value than the current solution. In this case,
the current solution is called a local optimum.

We observed that in designing a local search algorithm, one is usually given
an objective function but has the flexibility to choose one or more neighborhood
structures. We also observed that given an objective function and a neighborhood
structure, the success of a local search algorithm to find a global optimum solution
will depend on the starting solution it uses, among other factors. Regardless of the
neighborhood search strategy used, some starting solutions always lead to a global
optimum, while others always lead to a local optimum that is not globally opti-
mal. Others, yet, can lead to either a global optimum or to a local optimum that is
not globally optimal, depending on the search strategy used. Having the capability
of producing different starting solutions for the local search, one would like to in-
crease the likelihood of producing at least one starting solution that leads to a global
optimum with the application of a local search procedure.

A greedy randomized adaptive search procedure (GRASP) is the hybridization
of a semi-greedy algorithm with a local search method embedded in a multistart
framework. The method consists of multiple applications of local search, each start-
ing from a solution generated with a semi-greedy construction procedure. The best
local optimum, over all GRASP iterations, is returned as the solution provided by
the algorithm.

Figure 5.5 illustrates a basic GRASP heuristic for minimization. After initiali-
zing the value of the incumbent in line 1, the GRASP iterations are carried out in the
while loop in lines 2 to 12. A solution S is constructed with a semi-greedy algorithm

5.3 GRASP 99

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

200

400

600

800

1000

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

(a) RCL parameter α = 0 (random
construction)

(b) RCL parameter α = 0.2

(c) RCL parameter α = 0.4 (d) RCL parameter α = 0.6

(e) RCL parameter α = 0.8 (f) RCL parameter α = 1 (greedy
construction)

Fig. 5.4 Distribution of semi-greedy solution values as a function of the quality-based RCL
parameter α (1000 repetitions were recorded for each value of α) on an instance of the maximum
weighted satisfiability problem.

in line 3. As shown in Chapter 3, a semi-greedy algorithm may not always generate
a feasible solution. When this happens, a repair procedure must be invoked in line 5
to make changes in S so that it becomes feasible (alternatively, solution S may be
simply discarded and followed by a new run of the semi-greedy algorithm, until a
feasible solution is built). In line 7, local search is applied starting from a feasi-
ble solution provided by the semi-greedy algorithm or, if necessary, by the repair

100 5 GRASP: The basic heuristic

Fig. 5.5 Pseudo-code of a basic GRASP heuristic for minimization.

procedure. We use LOCAL-SEARCH to denote any variant of the local search
methods considered in Sections 4.3.1 and 4.5.2, such as FIRST-IMPROVEMENT,
BEST-IMPROVEMENT, or VND. If the objective function value f (S) of the local
minimum produced in line 7 is better than the objective function value f ∗ of the in-
cumbent, then the local minimum is made the incumbent in line 9 and its objective
function value is recorded as f ∗ in line 10. The while loop is repeated until some
stopping criterion is satisfied. The best solution found over all GRASP iterations is
returned in line 13 as the GRASP solution.

Figure 5.6 shows the distribution of the solution values obtained after local search
is applied to 1000 solutions built by the semi-greedy algorithm as a function of the
RCL quality-enforcing parameter α of the semi-greedy construction procedure for
an instance of the maximum weighted satisfiability problem. This figure is similar
to Figure 5.4, with the difference being that here local search is applied to the semi-
greedy solution. For each value of α , 1000 GRASP iterations were carried out and a
histogram was produced showing the frequency of solution values in different cost
ranges. The distributions show that the variance of the solution values decreases
as α increases, as already observed in Figure 5.4 for the distributions of the solu-
tion values obtained by semi-greedy construction. As occurs with semi-greedy con-
struction, GRASP solutions improve on average as we move from a totally random
construction to a greedy construction. However, they differ in one important way
from those of Figure 5.4. The best solution found, over all 1000 runs, improves as
we move from random to semi-greedy construction (until some value of parameter
α), and then deteriorates as α approaches 1. This is illustrated better in Figure 5.7,
where we superimpose two plots: one for the average solution value and the other
for the best solution value, both displayed as a function of α .

Figures 5.8 and 5.9 show, respectively, the objective function values for solu-
tions of an instance of the maximum covering problem constructed with random
and semi-greedy algorithms, each followed by local search in a multistart procedure.
For each iteration, the plots show in red the value of the constructed solution and in
blue the value of the local maximum solution. The iterations are sorted in increasing

5.3 GRASP 101

0

50

100

150

200

250

300

437000 438000 439000 440000 441000 442000 443000 444000 445000

oc
cu

rr
en

ce
s

cost of local optimal solution

0

50

100

150

200

250

300

437000 438000 439000 440000 441000 442000 443000 444000 445000

oc
cu

rr
en

ce
s

cost of local optimal solution

0

50

100

150

200

250

300

437000 438000 439000 440000 441000 442000 443000 444000 445000

oc
cu

rr
en

ce
s

cost of local optimal solution

0

50

100

150

200

250

300

437000 438000 439000 440000 441000 442000 443000 444000 445000

oc
cu

rr
en

ce
s

cost of local optimal solution

0

50

100

150

200

250

300

437000 438000 439000 440000 441000 442000 443000 444000 445000

oc
cu

rr
en

ce
s

cost of local optimal solution

0

50

100

150

200

250

300

437000 438000 439000 440000 441000 442000 443000 444000 445000

oc
cu

rr
en

ce
s

cost of local optimal solution

(a) RCL parameter α = 0 (random
construction)

(b) RCL parameter α = 0.2

(c) RCL parameter α = 0.4 (d) RCL parameter α = 0.6

(e) RCL parameter α = 0.8 (f) RCL parameter α = 1 (greedy
construction)

Fig. 5.6 Distribution of the solution values obtained after local search as a function of the quality-
based parameter α of the semi-greedy construction procedure (1000 repetitions for each value of
α) on an instance of the maximum weighted satisfiability problem.

order of the values of their local maxima. The figures illustrate further why the it-
erations of a random multistart method with local search are longer than those of
a GRASP. While random construction can be slightly faster than semi-greedy con-
struction, this does not compensate for the poor quality of the randomly constructed
solutions when compared to the semi-greedy solutions. Note that the average value
of solutions constructed with the random approach is 3.55, while the average value

102 5 GRASP: The basic heuristic

 415000

 420000

 425000

 430000

 435000

 440000

 445000

 0 0.2 0.4 0.6 0.8 1

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

RCL parameter (alpha)

best solution

average solution

random greedy

Fig. 5.7 Best and average solution values for GRASP as a function of the RCL parameter α for
1000 GRASP iterations on an instance of the maximum weighted satisfiability problem.

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0 500 1000 1500 2000 2500 3000 3500 4000

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

iteration (sorted by local max solution values)

random solutions

local max solutions

Fig. 5.8 Random construction and local maximum solution values, sorted by local maximum val-
ues, for an instance of the maximum covering problem.

of solutions constructed with the semi-greedy algorithm is 9.70. This indicates that
the path taken by local search to a local optimum from the semi-greedy solution is
much shorter than the path taken from the random solution.

Figure 5.10 shows, for an instance of the maximum weighted satisfiability prob-
lem, the effect of different RCL parameter values on the Hamming distance between

5.4 Accelerating GRASP 103

9.50

9.60

9.70

9.80

9.90

10.00

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

iteration (sorted by local max solution)

semi-greedy solutions

local max solutions

Fig. 5.9 Semi-greedy construction and local maximum solution values, sorted by local maximum
values, for an instance of the maximum covering problem.

the constructed solutions and the corresponding local maxima, the number of moves
made by local search, and the local search and total running times. The figure shows
a strong correlation between Hamming distance, number of moves taken by local
search, and local search running time. Figure 5.11 displays, again for the same in-
stance of the maximum covering problem considered in Figures 5.8 and 5.9, the best
objective function solution value as a function of running time for GRASP (with
α = 0.85), random multistart (GRASP with α = 0) with local search, and greedy
multistart (GRASP with α = 1) with local search. While greedy multistart with local
search fails to find the best known solution of value 9.92926, GRASP finds it after
only 126 seconds, while random multistart with local search takes 152,664 seconds
to reach that solution, i.e., over one thousand times longer.

5.4 Accelerating GRASP

The local search phase takes considerably longer than the construction phase in most
GRASP applications. Many times, a single execution of the local search algorithm
may be more time-consuming than the overall time spent in constructing all starting
solutions along the main GRASP loop. In addition to quick cost updates, candidate
lists, and circular search strategies already explored in Section 4.3, a number of
filtering strategies have been used to speedup the time spent with local search in
GRASP.

Filtering consists basically in not applying local search at every GRASP itera-
tion, but only to the most promising solutions built by the construction phase. One
strategy is to apply local search only if the semi-greedy solution is better than a

104 5 GRASP: The basic heuristic

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1Ti
m

e
(s

ec
on

ds
),

H
am

m
in

g
di

st
an

ce
, o

r n
um

be
r o

f m
ov

es

RCL parameter α

Construction + local search time

Local search time only

random greedy

Hamming distance between starting solution and local maximum

Moves made by local search

Fig. 5.10 Total GRASP running time, total local search running time, average Hamming distance
between constructed solution and local maximum, and average number of local search moves as
a function of the RCL parameter α on 1000 GRASP iterations on an instance of the maximum
weighted satisfiability problem. Note that since the local search traverses a 1-flip neighborhood,
the curve for the number of moves made by local search coincides with the curve for the Hamming
distance between the starting solution and the local maximum.

given threshold. Another strategy often applied consists in considering an integer
parameter η and applying local search only to the best solution built along the η
previous applications of the construction phase. Since the local search phase is usu-
ally much more time-consuming, this strategy may lead to a reduction by a factor of
up to η in the total time needed to perform a number of iterations.

Another filtering strategy consists in calculating, observing, and making use
of performance statistics computed along successive applications of local search.
We describe a typical, simple use of this idea. Considering a minimization problem,
one can keep track of the maximum relative reduction ρ , resulted from applying
local search, in the value of the starting solution S created by the construction al-
gorithm in the same iteration. Although the value of ρ may increase as the number
of iterations grows, it is likely to quickly stabilize. Since it becomes progressively
more and more unlikely that local search will cause a reduction in the objective
function f (S) that is greater than ρ , we may discard the application of local search
whenever f (S) > ρ · f ∗, where f ∗ is the value of the incumbent solution, with low
risk of missing good starting solutions.

Other variations of these strategies exist and have been applied. Although all of
them contribute to significantly accelerate the main GRASP loop, there is always the
possibility that some good initial solutions may be discarded by filtering, leading to
a small deterioration in the quality of the best solution obtained at the end of the
algorithm.

5.5 Stopping GRASP 105

 9.895

 9.9

 9.905

 9.91

 9.915

 9.92

 9.925

 9.93

 9.935

100 1000 10000 100000

B
es

t o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Time (seconds)

GRASP (α = 0.85)

Random + local search (GRASP with α = 0)

Greedy + local search (GRASP with α = 1)

Fig. 5.11 Best solution value for GRASP, random multistart with local search, and greedy multi-
start with local search as a function of time (in seconds) for an instance of the maximum covering
problem. GRASP reaches the best solution in less than one thousandths of the time taken by ran-
dom multistart with local search.

5.5 Stopping GRASP

The main drawback of most metaheuristics is the absence of effective stopping cri-
teria. Most implementations of these algorithms stop after performing a given max-
imum number of iterations or a given maximum number of consecutive iterations
without improvement in the best known solution value, or after the stabilization
of the set of elite solutions found along the search. In some cases, the algorithm
can perform an exaggerated and unnecessary number of iterations, when the best
solution is found quickly (as often happens in GRASP implementations). In other
situations, the algorithm can stop just before the iteration in which an optimal solu-
tion would be found. Dual bounds can be used to implement quality-based stopping
rules, but they are often hard to compute or far from the optimal value, which make
them unusable in both situations.

Randomization plays a very important role in the design of metaheuristics.
Effective probabilistic stopping rules can be applied to randomized metaheuristics.

5.5.1 Probabilistic stopping rule

Let X be a random variable that denotes the objective function value of the local
minima obtained at each iteration of a GRASP heuristic for a minimization prob-
lem. Let the probability density function and cumulative probability distribution of

106 5 GRASP: The basic heuristic

X be denoted, respectively, by fX (·) and FX(·). Let fk be the solution value obtained
at iteration k of a GRASP heuristic and f1, . . . , fk be a sample formed by the solu-
tion values obtained along the first k iterations. Let f kX (·) and Fk

X(·) be, respectively,
estimates of the probability density function and of the cumulative probability dis-
tribution of the random variable X , obtained after the first k GRASP iterations.

Let UBk be the value of the best solution found along the first k GRASP itera-
tions. Therefore, the probability of finding a solution value smaller than or equal to
UBk in the next iteration can be estimated by

Fk
X(UB

k) =

∫ UBk

−∞
f kX (τ)dτ.

For sake of computational efficiency, the value of Fk
X(UB

k) can be recomputed
periodically or whenever the value of the incumbent improves, rather than at ev-
ery iteration of the heuristic.

For any given threshold β , the GRASP iterations can be interrupted when
Fk
X(UB

k) becomes less than or equal to β , i.e., as soon as the probability of finding a
solution at least as good as the incumbent in the next iteration becomes smaller than
or equal to the threshold β . The probability value Fk

X(UB
k) can be used to estimate

the number of iterations that must be performed by the algorithm to find a new so-
lution that is at least as good as the incumbent. Since the user is able to account for
the average time taken by each GRASP iteration, the threshold defining the stopping
criterion can either be fixed or determined online so as to limit the computation time
when the probability of finding an improving solution becomes very small.

5.5.2 Gaussian approximation for GRASP iterations

Computational experiments and statistical tests have shown that the solution values
obtained by GRASP heuristics for a number of combinatorial optimization prob-
lems fit a normal distribution. If f1, . . . , fN denote a sample formed by all solution
values obtained along N GRASP iterations, the null hypothesis stating that the sam-
ple f1, . . . , fN follows a normal distribution usually cannot be rejected with 90%
confidence level by the chi-square test after relatively few iterations are performed.

We illustrate below that the solution values obtained along the GRASP iterations
fit a normal distribution with numerical results obtained for four instances of the 2-
path network design problem. The chi-square test shows that, already after as few as
50 iterations, the solution values obtained by the heuristic fit a normal distribution
very closely. Table 5.1 lists the mean, standard deviation, skewness, and kurtosis for
these four instances for N = 50, 100, 500, 1,000, 5,000, and 10,000 GRASP iter-
ations. Skewness measures the symmetry of the original data, while kurtosis mea-
sures the shape of the fitted distribution. Ideally, they should be equal to 0 and 3,
respectively, in the case of a perfect normal fit. This table shows that the mean
consistently converges very quickly to a steady-state value when the number of

5.5 Stopping GRASP 107

iterations increases. Furthermore, the mean after 50 iterations is already very close
to that of the normal fit after 10,000 iterations. The skewness values are consistently
very close to 0, while the measured kurtosis of the sample is always close to 3.

Table 5.1 Statistics for normal fittings for a heuristic to the 2-path network design problem.

Instance Iterations Mean Std. dev. Skewness Kurtosis
50 372.920000 7.583772 0.060352 3.065799

100 373.550000 7.235157 -0.082404 2.897830
2pndp50 500 373.802000 7.318661 -0.002923 2.942312

1,000 373.854000 7.192127 0.044952 3.007478
5,000 374.031400 7.442044 0.019068 3.065486

10,000 374.063500 7.487167 -0.010021 3.068129
50 540.080000 9.180065 0.411839 2.775086

100 538.990000 8.584282 0.314778 2.821599
2pndp70 500 538.334000 8.789451 0.184305 3.146800

1,000 537.967000 8.637703 0.099512 3.007691
5,000 538.576600 8.638989 0.076935 3.016206

10,000 538.675600 8.713436 0.062057 2.969389
50 698.100000 9.353609 -0.020075 2.932646

100 700.790000 9.891709 -0.197567 2.612179
2pndp90 500 701.766000 9.248310 -0.035663 2.883188

1,000 702.023000 9.293141 -0.120806 2.753207
5,000 702.281000 9.149319 0.059303 2.896096

10,000 702.332600 9.196813 0.022076 2.938744
50 1,599.240000 13.019309 0.690802 3.311439

100 1,600.060000 14.179436 0.393329 2.685849
2pndp200 500 1,597.626000 13.052744 0.157841 3.008731

1,000 1,597.727000 12.828035 0.083604 3.009355
5,000 1,598.313200 13.017984 0.057133 3.002759

10,000 1,598.366100 13.066900 0.008450 3.019011

Figure 5.12 displays the normal distribution fit for each instance and for each
value of N. Together with the statistics reported in Table 5.1, these plots illustrate
the robustness of the normal fits to the solution values obtained along the iterations
of the GRASP heuristic.

Since the null hypothesis cannot be rejected with a 90% confidence level, we
can approximate the solution values obtained by a GRASP heuristic with a normal
distribution whose fit is progressively better as more iterations are accounted for.

5.5.3 Stopping rule implementation

Recall that X is a random variable representing the value of the objective function
for the local minimum obtained by each GRASP iteration. We illustrated in the
previous section that the distribution of X can be approximated by a normal

108 5 GRASP: The basic heuristic

0.000

0.010

0.020

0.030

0.040

0.050

0.060

 340 350 360 370 380 390 400

pr
ob

ab
ili

ty

solution value

50 iterations
100 iterations
500 iterations

1,000 iterations
5,000 iterations

10,000 iterations

0.000

0.010

0.020

0.030

0.040

0.050

 500 510 520 530 540 550 560 570

pr
ob

ab
ili

ty

solution value

50 iterations
100 iterations
500 iterations

1,000 iterations
5,000 iterations

10,000 iterations

0.000

0.010

0.020

0.030

0.040

0.050

 660 670 680 690 700 710 720 730

pr
ob

ab
ili

ty

solution value

50 iterations
100 iterations
500 iterations

1,000 iterations
5,000 iterations

10,000 iterations

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

 1540 1560 1580 1600 1620 1640

pr
ob

ab
ili

ty

solution value

50 iterations
100 iterations
500 iterations

1,000 iterations
5,000 iterations

10,000 iterations

ecnatsniedon-07)b(ecnatsniedon-05)a(

ecnatsniedon-002)d(ecnatsniedon-09)c(

Fig. 5.12 Normal distribution fits for four instances of the 2-path network design problem.

distribution N(mk,Sk) with mean mk = (1/k) · ∑k
j=1 f j and standard deviation

Sk = [(1/(k− 1)) ·∑k
j=1(f j −mk)2]1/2, whose probability density function and cu-

mulative probability distribution are, respectively, f kX (·) and Fk
X(·).

The pseudo-code in Figure 5.13 extends the previous template of a GRASP
heuristic for minimization presented in Figure 5.5, implementing the termination
rule based on stopping the GRASP iterations whenever the probability Fk

X(UB
k)

of improving the best known solution value becomes smaller than or equal to the
threshold β . Lines 14 and 15 update the sample f1, . . . , fk and the best known
solution value UBk = f ∗ at each iteration k. The mean and the standard deviation of
the fitted normal distribution in iteration k are computed in line 16. The probability
of finding a solution whose value is better than the currently best known solution
value is computed in line 17.

This approach also makes it possible to apply stopping rules based on estimat-
ing the number of iterations needed to improve the value of the best solution found
by each percentage point. For example, consider instance 2pndp90 of the 2-path
network design problem, with the threshold β = 10−3. Figure 5.14 plots the ex-
pected number of additional iterations needed to find a solution that improves the
best known solution value by each percentage point that might be sought. For in-
stance, the expected number of iterations needed to improve the best solution value

5.5 Stopping GRASP 109

Fig. 5.13 Pseudo-code of a basic GRASP with probabilistic stopping rule.

1000

10,000

100,000

1,000,000

10,000,000

100,000,000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

E
st

im
at

ed
 n

um
be

r o
f i

te
ra

tio
ns

Percentage improvement over best solution value

Fig. 5.14 Estimated number of additional iterations needed to improve the best solution value.

found at termination by 0.5% is 12,131. If one seeks a percentage improvement of
1%, then the expected number of additional iterations to be performed increases to
54,153.

110 5 GRASP: The basic heuristic

5.6 GRASP for multiobjective optimization

In this section, we consider a multiobjective optimization problem in which one
seeks a solution S∗ belonging to the set of feasible solutions F that optimizes a set
of k objective functions f j(S) = ∑i∈S c

j
i , for j = 1, . . . ,k. Specifically, we want to

determine the set P of efficient points (usually called the efficient Pareto frontier).
In its minimization form, a point or solution S∗ ∈ F is said to be efficient if there is
no other solution S∈F such that fi(S)≤ fi(S∗) for all i= 1, . . . ,k and f j(S)< f j(S∗)
for at least one j ∈ {1, . . . ,k}. In summary, efficiency requires that a solution to a
multiobjective function be such that no single objective can be improved without
deteriorating some other objective. In this context, we say that a solution S∗ domi-
nates another solution S ∈ F if S∗ is not worse than S for all the objectives, and is
better for at least one objective. Similarly, we say that S∗ weakly dominates S if it is
not worse than S with respect to all objectives.

Since GRASP is a heuristic, instead of computing an exact Pareto efficient set,
we will determine an approximation of this set. The pseudo-code in Figure 5.15
illustrates a multiobjective GRASP. In line 1, the Pareto efficient set P is initialized
empty. The iterations take place in the loop from line 2 to 14. The steps are similar
to those of the standard single-objective GRASP, except that multiobjective versions
of the construction and local search algorithms are used and the approximate Pareto
optimal set has to be managed.

Fig. 5.15 Pseudo-code of a multiobjective GRASP heuristic.

Multiobjective construction takes place in line 3, where a solution S is built. If
the Pareto efficient set P is empty, then the constructed solution S is added to it in
line 4. Otherwise, if S is not dominated by any solution in P, then it is added to P in

5.7 Bibliographical notes 111

line 7 and any other solution in P that is dominated by S is removed from P in line 9.
In line 13, multiobjective improvement takes as input the constructed solution S and
the current Pareto efficient set P and returns an improved solution. Instead of verify-
ing only if the solution returned by the improvement procedure should be included
in the Pareto efficient set, multiobjective improvement also verifies every solution
visited along the search. The algorithm returns an approximate Pareto efficient set
in line 15.

5.7 Bibliographical notes

Early proposals for what we called multistart methods in Section 5.1 can be found
in the domains of heuristic scheduling (Muth and Thompson, 1963; Crowston et al.,
1963), the traveling salesman problem (Held and Karp, 1970; Lawler et al., 1985),
and the knapsack problems with single and multiple constraints (Senju and Toyoda,
1968; Wyman, 1973; Kochenberger et al., 1974). The survey by Martı́ et al. (2013a)
gives an account of multistart methods and briefly sketches historical developments
that have motivated the field. Focusing on contributions that define the current state
of the art, two categories of multistart methods are considered: memory-based and
memoryless procedures.

The semi-greedy multistart algorithm (without local search) discussed in Sec-
tion 5.2 was proposed by Hart and Shogan (1987) and was independently developed
by Feo and Resende (1989). In that paper, Feo and Resende described for the first
time a GRASP heuristic, not referring to either the name GRASP or to greedy ran-
domized adaptive search procedures, but simply calling the algorithm a probabilistic
heuristic.

GRASP as a metaheuristic was presented and discussed in Section 5.3. This
acronym was first introduced in the technical report by Feo et al. (1989) that
appeared later as a journal paper in Feo et al. (1994). GRASP, as a general-
purpose metaheuristic, was introduced by Feo and Resende (1995). Other tutorials
on the method were authored by Pitsoulis and Resende (2002), Resende and Ribeiro
(2003b; 2010; 2014), Ribeiro (2002), and Resende and Silva (2011). Annotated bib-
liographies of GRASP appeared in Festa and Resende (2002; 2009a;b).

The GRASP for the maximum covering problem, for which Figures 5.8, 5.9,
and 5.11 were originally produced, appeared in Resende (1998). The GRASP for the
maximum weighted satisfiability problem, for which Figures 5.4, 5.6, 5.7, and 5.10
were produced, was presented in Resende et al. (1997). See also Resende and Feo
(1996) for the first proposal of a GRASP for the weighted satisfiability problem and
Festa et al. (2006) for an improved GRASP for the maximum weighted satisfiability
problem.

Filtering strategies discussed in Section 5.4 to accelerate the local search phase
were originally proposed and applied by Feo et al. (1994) and Martins et al. (2000).

112 5 GRASP: The basic heuristic

Proposed Bayesian stopping rules were not followed by sufficient computational
studies to validate their effectiveness or to give evidence of their efficiency (Bartkutė
et al., 2006; Bartkutė and Sakalauskas, 2009; Boender and Kan, 1987; Dorea, 1990;
Hart, 1998). Orsenigo and Vercellis (2006) developed a Bayesian framework for
stopping rules aimed at controlling the number of iterations in a GRASP heuristic.
Stopping rules have also been discussed by Duin and Voss (1999) and Voss et al.
(2005) in another context. The statistical estimation of optimal values for com-
binatorial optimization problems as a way to evaluate the performance of heuris-
tics was also addressed by Rardin et al. (2001) and Serifoglu and Ulusoy (2004).
Ribeiro et al. (2011; 2013) proposed and developed the probabilistic stopping rules
described in Section 5.5. The 2-path network design problem was introduced and
proved to be NP-hard by Dahl and Johannessen (2004). The GRASP heuristic used
in the computational experiments with the 2-path network design problem was pro-
posed by Ribeiro and Rosseti (2002; 2007).

Martı́ et al. (2015) surveyed applications of GRASP to multiobjective optimiza-
tion, such as the multiobjective knapsack problem (Vianna and Arroyo, 2004), the
multicriteria minimum spanning tree problem (Arroyo et al., 2008), the multiob-
jective quadratic assignment problem (Li and Landa-Silva, 2009), a learning clas-
sification problem (Ishida et al., 2009), the biobjective path dissimilarity and biori-
enteering problems (Martı́ et al., 2015), environmental investment decision making
(Higgins et al., 2008), partial classification of databases (Reynolds and de la Igle-
sia, 2009; Reynolds et al., 2009), flow shop scheduling (Davoudpour and Ashrafi,
2009), biobjective set packing (Delorme et al., 2010), biobjective commercial terri-
tory design (Salazar-Aguilar et al., 2013), path dissimilarity (Martı́ et al., 2009), line
balancing (Chica et al., 2010), and locating and sizing capacitors for reactive power
compensation (Antunes et al., 2014), among others.

Chapter 6
Runtime distributions

Runtime distributions or time-to-target plots display on the ordinate axis the prob-
ability that an algorithm will find a solution at least as good as a given target value
within a given running time, shown on the abscissa axis. They provide a very use-
ful tool to characterize the running times of stochastic algorithms for combinatorial
optimization problems and to compare different algorithms or strategies for solving
a given problem. They have been widely used as a tool for algorithm design and
comparison.

6.1 Time-to-target plots

Let P be an optimization problem and H a randomized heuristic for this problem.
Furthermore, let I be a specific instance of P and let look4 be a solution cost
target value for this instance.

Heuristic H is run N times on the fixed instance I and the algorithm is made to
stop as soon as a solution whose objective function is at least as good as the given
target value look4 is found. For each of the N runs, the random number generator
used in the implementation of the heuristic is initialized with a distinct seed and,
therefore, the runs are assumed to be independent. The solution time of each run
is recorded and saved. To compare their empirical and theoretical distributions, we
follow a standard graphical methodology for data analysis. This methodology is
used to produce the time-to-target plots (TTT-plots) and is described next.

After concluding the N independent runs, solution times are sorted in increasing
order. We associate with the i-th sorted solution time ti a probability
pi = (i− 1/2)/N, and plot the points zi = (ti, pi), for i = 1, . . . ,N. We comment
on this choice of pi later in Section 6.2. Figure 6.1 illustrates this estimated cumu-
lative probability distribution plot for problem P , a GRASP heuristic H , instance
I , and target look4. We can see that the probability that the heuristic finds a solu-
tion at least as good as the target value in at most 416 seconds is about 50%, in at
most 1064 seconds is about 80%, and in at most 1569 seconds is about 90%.

© Springer Science+Business Media New York 2016
M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP,
DOI 10.1007/978-1-4939-6530-4 6

113

114 6 Runtime distributions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

Fig. 6.1 Cumulative probability distribution plot of measured data.

6.2 Runtime distribution of GRASP

The plot in Figure 6.1 appears to fit an exponential distribution, or more gener-
ally, a shifted exponential distribution. To estimate the parameters of this two-
parameter exponential distribution, we first draw the theoretical quantile-quantile
plot (or Q-Q plot) for the data. To describe Q-Q plots, we recall that the cumula-
tive distribution function for the two-parameter exponential distribution is given by
F(t) = 1− e−(t−μ)/λ , where λ is the mean of the distribution data (and also is the
standard deviation of the data) and μ is the shift of the distribution with respect to
the ordinate axis.

The quantiles of the data of an empirical distribution are derived from the (sorted)
raw data, which in our case are N measured (sorted) running times. Quantiles are
cutpoints that group a set of sorted observations into classes of equal (or approx-
imately equal) size. For each value pi, i = 1, . . . ,N, we associate a pi-quantile
q(pi) of the theoretical distribution. For each pi-quantile we have, by definition,
that F((q(pi)) = pi. Hence, q(pi) = F−1(pi) and therefore, for the two-parameter
exponential distribution, we have q(pi) =−λ · ln(1− pi)+ μ . Note that if we were
to use pi = 1/N, for i= 1, . . . ,N, then q(pN) would be undefined.

A theoretical quantile-quantile plot (or theoretical Q-Q plot) is obtained by plot-
ting the quantiles of the data of an empirical distribution against the quantiles of a

6.2 Runtime distribution of GRASP 115

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

m
ea

su
re

d
tim

es

exponential quantiles

empirical
estimated

Fig. 6.2 Q-Q plot showing fitted line.

theoretical distribution. This involves three steps. First, the data (in this case, the
measured solution times) are sorted in ascending order. Second, the quantiles of the
theoretical exponential distribution are obtained. Finally, a plot of the data against
the theoretical quantiles is made.

In a situation where the theoretical distribution is a close approximation of the
empirical distribution, the points in the Q-Q plot will have a nearly straight config-
uration. In a plot of the data against a two-parameter exponential distribution with
λ = 1 and μ = 0, the points would tend to follow the line y = λ̂ · x+ μ̂ . Conse-
quently, parameters λ and μ of the two-parameter exponential distribution can be
estimated, respectively, by the slope λ̂ and the intercept μ̂ of the line depicted in the
Q-Q plot.

The Q-Q plot shown in Figure 6.2 is obtained by plotting the measured times in
the ordinate against the quantiles of a two-parameter exponential distribution with
λ = 1 and μ = 0 in the abscissa, given by q(pi) = − ln(1− pi), for i = 1, . . . ,n.
To avoid possible distortions caused by outliers, we do not estimate the distribution
mean with the data mean or by linear regression on the points of the Q-Q plot.
Instead, we estimate the slope λ̂ of the line y = λ · x+ μ using the upper quartile
qu and lower quartile ql of the data. The upper quartile qu and lower quartile ql
are, respectively, the q(1/4) and q(3/4) quantiles. We take λ̂ = (zu − zl)/(qu −
ql) as an estimate of the slope, where zu and zl are the u-th and l-th points of the
ordered measured times, respectively. This informal estimation of the distribution
of the measured data mean is robust since it will not be distorted by a few outliers.
Consequently, the estimate for the shift is μ̂ = zl − λ̂ql .

116 6 Runtime distributions

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

m
ea

su
re

d
tim

es

exponential quantiles

Fig. 6.3 Q-Q plot with variability information.

To analyze the straightness of the Q-Q plots, we superimpose them with vari-
ability information. For each plotted point, we show plus and minus one standard
deviation in the vertical direction from the line fitted to the plot. An estimate of
the standard deviation for point zi, i = 1, . . . ,n, of the Q-Q plot is σ̂ = λ̂ [pi/(1−
pi)n]

1
2 . Figure 6.3 shows an example of a Q-Q plot with superimposed variability

information.
When observing a theoretical quantile-quantile plot with superimposed standard

deviation information, one should avoid turning such information into a formal test.
One important fact that must be kept in mind is that the natural variability of the
data generates departures from the straightness, even if the model of the distribution
is valid. The most important reason for portraying standard deviation is that it gives
us a sense of the relative variability of the points in the different regions of the plot.
However, since one is trying to make simultaneous inferences from many individual
inferences, it is difficult to use standard deviations to judge departures from the
reference distribution. For example, the probability that a particular point deviates
from the reference line by more than two standard deviations is small. However, the
probability that any of the points deviates from the line by two standard deviations
is probably much greater. In order statistics, this is made more difficult by the high
correlation that exists between neighboring points. If one plotted point deviates by
more than one standard deviation, there is a good chance that a whole bunch of them
will too. Another point to keep in mind is that standard deviations vary substantially
in the Q-Q plot. As one can observe in the Q-Q plot in Figure 6.3, the standard devia-
tion of the points near the high end is substantially larger than the standard deviation
of the points near the other end.

6.2 Runtime distribution of GRASP 117

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

Fig. 6.4 Superimposed empirical runtime distribution and best exponential fit.

Once the two parameters of the distribution have been estimated, a superimposed
plot of the empirical and theoretical distributions can be made. Figure 6.4 depicts
the superimposed empirical and theoretical distributions corresponding to the Q-Q
plot in Figure 6.3.

The runtime distribution of a pure GRASP heuristic has been shown experimen-
tally to behave as a random variable that fits an exponential distribution. Later in
this book, we will discuss the implication of this observation with respect to parallel
implementations of GRASP and restart strategies.

However, in the case of more elaborate heuristics where setup times are not neg-
ligible, the runtimes fit a two-parameter or shifted exponential distribution.

Therefore, the probability density function of the time-to-target random variable
is given by f (t) = (1/λ) · e−t/λ in the first case (exponential distribution) and by
f (t) = (1/λ) · e−(t−μ)/λ in the second (shifted exponential distribution), with the
parameters λ ∈R

+ and μ ∈R
+ being associated with the shape and the shift of the

exponential function, respectively. Figure 6.4 illustrates this result, depicting the
superimposed empirical and theoretical distributions observed for an instance of
the maximum covering problem where one wants to choose 500 out of 1000 facility
locations such that, of the 10,000 customers, the sum of the weights of those that are
covered is maximized. The best known solution for this instance is 33,343,542 and
the target solution value used was 33,339,175 (about 0.01% off of the best known
solution).

118 6 Runtime distributions

However, if path-relinking is applied as an intensification step at the end of each
GRASP iteration (see Chapter 9 in this book), then the iterations are no longer inde-
pendent and the memoryless characteristic of GRASP is destroyed. This also hap-
pens in the case of cooperative parallel implementations of GRASP (see also Chap-
ter 10 in this book). Consequently, the time-to-target random variable may not fit
an exponential distribution in such situations. This result is illustrated by two imple-
mentations of GRASP with bidirectional path-relinking. The first is an application to
the 2-path network design problem. The runtime distribution and the corresponding
quantile-quantile plot for an instance with 80 nodes and 800 origin-destination pairs
are depicted in Figure 6.5. The second is an application to the three-index assign-
ment problem. Runtime distributions and the corresponding quantile-quantile plots
for Balas and Saltzman problems 22.1 (target value set to 8) and 24.1 (target value
set to 7) are shown in Figures 6.6 and 6.7, respectively. For both heuristics and these
three example instances, we observe that points steadily deviate by more than one
standard deviation from the estimate for the upper quantiles in the quantile-quantile
plots (i.e., many points associated with large computation times fall outside the plus
or minus one standard deviation bounds). Therefore, we cannot say that these run-
time distributions are exponentially distributed.

6.3 Comparing algorithms with exponential runtime
distributions

We assume the existence of two randomized algorithms A1 and A2 for the approx-
imate solution of some optimization problem. Furthermore, we assume that their
solution times fit exponential (or shifted exponential) distributions. We denote by
X1 (resp. X2) the continuous random variable representing the time needed by algo-
rithm A1 (resp. A2) to find a solution as good as a given target value:

X1 �→
{

0, τ < T1

λ1 · e−λ1(τ−T1), τ ≥ T1

and

X2 �→
{

0, τ < T2

λ2 · e−λ2(τ−T2), τ ≥ T2

where T1, λ1, T2, and λ2 are parameters (λ1 and λ2 define the shape of each shifted
exponential distribution, whereas T1 and T2 denote by how much each of them is
shifted). The cumulative probability distribution and the probability density function
of X1 are depicted in Figure 6.8.

Since both algorithms stop when they find a solution at least as good as the target,
we can say that algorithm A1 performs better than A2 if the former stops before the
latter. Therefore, we must evaluate the probability Pr(X1 ≤ X2) that the random
variable X1 takes a value smaller than or equal to X2. Conditioning on the value of
X2 and applying the total probability theorem, we obtain

6.3 Comparing algorithms with exponential runtime distributions 119

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 1 2 3 4 5 6

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

(a) Runtime distribution

(b) Quantile-quantile plot

Fig. 6.5 Runtime distribution and quantile-quantile plot for GRASP with bidirectional path-
relinking of an instance of the 2-path network design problem with 80 nodes and 800 origin-
destination pairs, with target set to 588.

120 6 Runtime distributions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

-10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

(a) Runtime distribution

(b) Quantile-quantile plot

Fig. 6.6 Runtime distribution and quantile-quantile plot for GRASP with bidirectional path-
relinking on Balas and Saltzman problem 22.1, with the target value set to 8.

6.3 Comparing algorithms with exponential runtime distributions 121

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

-10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

(a) Runtime distribution

(b) Quantile-quantile plot

Fig. 6.7 Runtime distribution and quantile-quantile plot for GRASP with bidirectional path-
relinking on Balas and Saltzman problem 24.1, with the target value set to 7.

122 6 Runtime distributions

1

)(
1

11 Te

1

)(111 Te

()
1

()

Xf

1T

1T
0

0

1XF

Fig. 6.8 Probability density function and cumulative probability distribution of the random vari-
able X1.

Pr(X1 ≤ X2) =

∫ ∞

−∞
Pr(X1 ≤ X2|X2 = τ) · fX2(τ) ·dτ =

=
∫ ∞

T2

Pr(X1 ≤ X2|X2 = τ) ·λ2 ·e−λ2(τ−T2) ·dτ =
∫ ∞

T2

Pr(X1 ≤ τ) ·λ2 ·e−λ2(τ−T2) ·dτ.

Let ν = τ −T2. Then, dν = dτ and

Pr(X1 ≤ X2) =

∫ ∞

0
Pr(X1 ≤ (ν +T2)) ·λ2 · e−λ2ν ·dν. (6.1)

Using the formula of cumulative probability function of the random variable X1 (see
Figure 6.8), we obtain

Pr(X1 ≤ (υ +T2)) = 1− e−λ1(υ+T2−T1). (6.2)

Replacing (6.2) in (6.1) and solving the integral, we conclude that

Pr(X1 ≤ X2) = 1− e−λ1(T2−T1) · λ2

λ1 +λ2
. (6.3)

6.4 Comparing algorithms with general runtime distributions 123

This result can be better interpreted by rewriting expression (6.3) as

Pr(X1 ≤ X2) = (1− e−λ1(T2−T1))+ e−λ1(T2−T1) · λ1

λ1 +λ2
. (6.4)

The first term of the right-hand side of equation (6.4) is the probability that
0 ≤ X1 ≤ T2, in which case X1 is clearly less than or equal to X2. The second term
is given by the product of the factors e−λ1(T2−T1) and λ1/(λ1 + λ2), in which the
former corresponds to the probability that X1 ≥ T2 and the latter to the probability
that X1 be less than or equal to X2, given that X1 ≥ T2.

To illustrate the above result, we consider two algorithms for solving the server
replication for reliable multicast problem. Algorithm A1 is an implementation of
pure GRASP with α = 0.2, while algorithm A2 is a pure GRASP heuristic with
α = 0.9. The runs were performed on an Intel Core2 Quad with 2.40 GHz of
clock speed and 4 GB of RAM memory. Figure 6.9 depicts the runtime distri-
butions of each algorithm, obtained after 500 runs with different seeds of an in-
stance with the target value set at 2830. The parameters of the two distributions
are λ1 = 0.524422349, T1 = 0.36, λ2 = 0.190533895, and T2 = 0.51. Applying ex-
pression (6.3), we get Pr(X1 ≤ X2) = 0.684125. This probability is consistent with
Figure 6.10, in which we superimposed the runtime distributions of the two pure
GRASP heuristics for the same instance. The plots in this figure show that the pure
GRASP with α = 0.2 outperforms one with α = 0.9, since the runtime distribution
of the former is to the left of the runtime distribution of the latter.

If the solution times do not fit exponential (or two-parameter shifted exponen-
tial) distributions, as for the case of GRASP with path-relinking heuristics, then the
the closed form result established in expression (6.3) does not hold. Algorithms in
this situation cannot be compared by this approach. The next section extends this
approach to general runtime distributions.

6.4 Comparing algorithms with general runtime distributions

Let X1 and X2 be two continuous random variables, with cumulative probability
distributions FX1(τ) and FX2(τ) and probability density functions fX1(τ) and fX2(τ),
respectively. Then,

Pr(X1 ≤ X2) =

∫ ∞

−∞
Pr(X1 ≤ τ) · fX2(τ) ·dτ =

∫ ∞

0
Pr(X1 ≤ τ) · fX2(τ) ·dτ,

since fX1(τ) = fX2(τ) = 0 for any τ < 0. For an arbitrary small real number ε , the
above expression can be rewritten as

Pr(X1 ≤ X2) =
∞

∑
i=0

∫ (i+1)·ε

i·ε
Pr(X1 ≤ τ) · fX2(τ) ·dτ. (6.5)

Since Pr(X1 ≤ i ·ε)≤ Pr(X1 ≤ τ)≤ Pr(X1 ≤ (i+1) ·ε) for i ·ε ≤ τ ≤ (i+1) ·ε , then
replacing Pr(X1 ≤ τ) by Pr(X1 ≤ i · ε) and by Pr(X1 ≤ (i+ 1) · ε) in (6.5) leads to

124 6 Runtime distributions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

(a) Pure GRASP with α = 0.2

(b) Pure GRASP with α = 0.9

Fig. 6.9 Runtime distributions of an instance of the server replication for reliable multicast prob-
lem with m= 25 and the target value set at 2830.

6.4 Comparing algorithms with general runtime distributions 125

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0 5 10 15 20 25 30

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

GRASP (alpha = 0.2)
GRASP (alpha = 0.9)

Fig. 6.10 Superimposed runtime distributions of pure GRASP with α = 0.2 and pure GRASP with
α = 0.9.

∞

∑
i=0

FX1(i · ε)
∫ (i+1)·ε

i·ε
fX2(τ) ·dτ ≤ Pr(X1 ≤ X2)≤

∞

∑
i=0

FX1((i+1) · ε)
∫ (i+1)·ε

i·ε
fX2(τ) ·dτ.

Let L(ε) and R(ε) be the value of the left- and right-hand sides of the above expres-
sion, respectively, with Δ(ε) = R(ε)−L(ε) being the difference between the upper
and lower bounds to Pr(X1 ≤ X2). Then, we have that

Δ(ε) =
∞

∑
i=0

[FX1((i+ 1) · ε)−FX1(i · ε)]
∫ (i+1)·ε

i·ε
fX2(τ) ·dτ. (6.6)

Let δ = maxτ≥0{ fX1(τ)}. Since |FX1((i+ 1) · ε)− FX1(i · ε)| ≤ δ · ε for i ≥ 0,
expression (6.6) turns out to be

Δ(ε)≤
∞

∑
i=0

δ · ε
∫ (i+1)·ε

i·ε
fX2(τ) ·dτ = δ · ε

∫ ∞

0
fX2(τ) ·dτ = δ · ε.

Consequently,
Δ(ε) ≤ δ · ε, (6.7)

i.e., the difference Δ(ε) between the upper and lower bounds to Pr(X1 ≤ X2) (or
the absolute error in the integration) is smaller than or equal to δε . Therefore, this
difference can be made as small as desired by choosing a sufficiently small value
for ε .

126 6 Runtime distributions

In order to numerically evaluate a good approximation to Pr(X1 ≤ X2), we se-
lect the appropriate value of ε such that the resulting approximation error Δ(ε) is
sufficiently small. Next, we compute L(ε) and R(ε) to obtain the approximation

Pr(X1 ≤ X2)≈ L(ε)+R(ε)
2

. (6.8)

In practice, the above probability distributions are unknown. Instead of the dis-
tributions, the information available is limited to a sufficiently large number N1

(resp. N2) of observations of the random variable X1 (resp. X2). Since the value of
δ =maxτ≥0{ fX1(τ)} is also unknown beforehand, the appropriate value of ε cannot
be estimated. Then, we proceed iteratively as follows.

Let t1(j) (resp. t2(j)) be the value of the j-th smallest observation of the
random variable X1 (resp. X2), for j = 1, . . . ,N1 (resp. N2). We set the bounds
a = min{t1(1), t2(1)} and b = max{t1(N1), t2(N2)} and choose an arbitrary num-
ber h of integration intervals to compute an initial value ε = (b− a)/h for each
integration interval. For sufficiently small values of the integration interval ε , the
probability density function fX1(τ) in the interval [i · ε,(i+ 1) · ε] can be approxi-
mated by f̂X1(τ) = (F̂X1((i+ 1) · ε)− F̂X1(i · ε))/ε , where

F̂X1(i · ε) = |{t1(j), j = 1, . . . ,N1 : t1(j) ≤ i · ε}|. (6.9)

The same approximations hold for random variable X2.
Finally, the value of Pr(X1 ≤ X2) can be computed as in expression (6.8), using

the estimates f̂X1(τ) and f̂X2(τ) in the computation of L(ε) and R(ε). If the approx-
imation error Δ(ε) = R(ε)− L(ε) becomes sufficiently small, then the procedure
stops. Otherwise, the value of ε is halved and the above steps are repeated until
convergence.

6.5 Numerical applications to sequential algorithms

We illustrate next an application of the procedure described in the previous sec-
tion for the comparison of randomized algorithms (running on the same instance)
on three problems: server replication for reliable multicast, routing and wavelength
assignment, and 2-path network design.

6.5.1 DM-D5 and GRASP algorithms for server replication

Multicast communication consists of simultaneously delivering the same informa-
tion to many receivers, from single or multiple sources. Network services specially
designed for multicast are needed. The scheme used in current multicast services
creates a delivery tree, whose root represents the sender, whose leaves represent the

6.5 Numerical applications to sequential algorithms 127

receivers, and whose internal nodes represent network routers or relaying servers.
Transmission is performed by creating copies of the data at split points of the tree.
An important issue regarding multicast communication is how to provide reliable
service, ensuring the delivery of all packets from the sender to receivers. A success-
ful technique to provide reliable multicast service is the server replication approach,
in which data is replicated at some of the multicast-capable relaying hosts (also
called replicated or repair servers) and each of them is responsible for the retrans-
mission of packets to receivers in its group. The problem consists in selecting the
best subset of the multicast-capable relaying hosts to act as replicated servers in a
multicast scenario. It is a special case of the p-median problem.

DM-GRASP is a hybrid version of GRASP described in Section 7.8 of this book,
which incorporates a data mining process. We compare two heuristics for the server
replication problem: algorithm A1 is an implementation of the DM-D5 version of
DM-GRASP, in which the mining algorithm is periodically applied, while A2 is a
pure GRASP heuristic. We present results for two instances using the same network
scenario, with m= 25 and m= 50 replication servers.

Each algorithm was run 200 times with different seeds. The target was set at
2,818.925 (the best known solution value is 2,805.89) for the instance with m= 25
and at 2,299.07 (the best known solution value is 2,279.84) for the instance with
m= 50. Figures 6.11 and 6.12 depict runtime distributions and quantile-quantile
plots for DM-D5, for the instances with m = 25 and m = 50, respectively. Run-
ning times of DM-D5 did not fit exponential distributions for any of the instances.
GRASP solution times were exponential for both.

The empirical runtime distributions of DM-D5 and GRASP are superimposed
in Figure 6.13. Algorithm DM-D5 outperformed GRASP, since the runtime dis-
tribution of the DM-D5 is to the left of the distribution for GRASP on the both in-
stances, with m= 25 and m= 50. Consistently, the computations show that Pr(X1 ≤
X2) = 0.619763 (with L(ε) = 0.619450, R(ε) = 0.620075, Δ(ε) = 0.000620, and
ε = 0.009552) and Pr(X1 ≤ X2) = 0.854113 (with L(ε) = 0.853800,
R(ε) = 0.854425, Δ(ε) = 0.000625, and ε = 0.427722) for the instances with
m= 25 and m= 50, respectively.

We also investigate the convergence of the proposed measure with the sample
size (i.e., with the number of independent runs of each algorithm). Convergence with
the sample size is illustrated next for the same m = 25 instance of the server repli-
cation problem, with the same target 2,818.925 already used in the previous experi-
ment. Once again, algorithmA1 is the DM-D5 version of DM-GRASP and algorithm
A2 is the pure GRASP heuristic. The estimation of Pr(X1 ≤ X2) is computed for
N = 100,200,300,400,500,600,700,800,900,1000, 2000,3000,4000, and 5000
independent runs of each algorithm. Table 6.1 shows the results obtained, which
are also displayed in Figure 6.14. We notice that the estimation of Pr(X1 ≤ X2)
stabilizes as the sample size N increases.

128 6 Runtime distributions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

(a) Runtime distribution

(b) Quantile-quantile plot

Fig. 6.11 Runtime distribution and quantile-quantile plot for algorithm DM-D5 on the instance
with m= 25 and the target value set at 2,818.925.

6.5 Numerical applications to sequential algorithms 129

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

(a) Runtime distribution

(b) Quantile-quantile plot

Fig. 6.12 Runtime distribution and quantile-quantile plot for algorithm DM-D5 on the instance
with m= 50 and the target value set at 2,299.07.

130 6 Runtime distributions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

DM-D5
GRASP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1 10 100 1000 10000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

DM-D5
GRASP

(a) m= 25 with target 2,818.925

(b) m= 50 with target 2,299.07

Fig. 6.13 Superimposed runtime distributions of DM-D5 and GRASP: (a) Pr(X1 ≤ X2) =
0.619763, and (b) Pr(X1 ≤ X2) = 0.854113.

6.5 Numerical applications to sequential algorithms 131

Table 6.1 Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the m = 25
instance of the server replication problem.

N L(ε) Pr(X1 ≤ X2) R(ε) Δ(ε) ε
100 0.655900 0.656200 0.656500 0.000600 0.032379
200 0.622950 0.623350 0.623750 0.000800 0.038558
300 0.613344 0.613783 0.614222 0.000878 0.038558
400 0.606919 0.607347 0.607775 0.000856 0.038558
500 0.602144 0.602548 0.602952 0.000808 0.038558
600 0.596964 0.597368 0.597772 0.000808 0.038558
700 0.591041 0.591440 0.591839 0.000798 0.038558
800 0.593197 0.593603 0.594009 0.000812 0.042070
900 0.593326 0.593719 0.594113 0.000788 0.042070

1000 0.594849 0.595242 0.595634 0.000785 0.042070
2000 0.588913 0.589317 0.589720 0.000807 0.047694
3000 0.583720 0.584158 0.584596 0.000875 0.047694
4000 0.582479 0.582912 0.583345 0.000866 0.047694
5000 0.584070 0.584511 0.584953 0.000882 0.050604

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

 0.66

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

pr
ob

ab
ili

ty

N

Fig. 6.14 Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the m = 25
instance of the server replication problem.

132 6 Runtime distributions

6.5.2 Multistart and tabu search algorithms for routing
and wavelength assignment

A point-to-point connection between two endnodes of an optical network is called
a lightpath. Two lightpaths may use the same wavelength, provided they do not
share any common link. The routing and wavelength assignment problem is that of
routing a set of lightpaths and assigning a wavelength to each of them, minimizing
the number of wavelengths needed. A decomposition strategy is compared with a
multistart greedy heuristic. Two networks are used for benchmarking. The first has
27 nodes representing the capitals of the 27 states of Brazil, with 70 links connecting
them. There are 702 lightpaths to be routed. Instance Finland is formed by 31 nodes
and 51 links, with 930 lightpaths to be routed. Each algorithm was run 200 times
with different seeds. The target was set at 24 (the best known solution value) for
instance Brazil and at 50 for instance Finland (the best known solution value is 47).
Algorithm A1 is the multistart heuristic, while A2 is the tabu search decomposition
scheme. The multistart solution times fit exponential distributions for both instances.
Figures 6.15 and 6.16 display runtime distributions and quantile-quantile plots for
instances Brazil and Finland, respectively.

The empirical runtime distributions of the decomposition and multistart strate-
gies are superimposed in Figure 6.17. The direct comparison of the two approaches
shows that decomposition clearly outperformed the multistart strategy for instance
Brazil, since Pr(X1 ≤ X2) = 0.13 in this case (with L(ε) = 0.129650, R(ε) =
0.130350, Δ(ε) = 0.000700, and ε = 0.008163). However, the situation changes, for
instance Finland. Although both algorithms have similar performances, multistart is
slightly better with respect to the measure proposed in this work, since Pr(X1 ≤
X2) = 0.536787 (with L(ε) = 0.536525, R(ε) = 0.537050, Δ(ε) = 0.000525, and
ε = 0.008804).

As done for the server replication problem in Section 6.5.1, we also investigate
the convergence of the proposed measure with the sample size (i.e., with the num-
ber of independent runs of each algorithm). Convergence with the sample size is
illustrated next for the Finland instance of the routing and wavelength assignment
problem, with the target set at 49. Once again, algorithm A1 is the multistart heuris-
tic and algorithm A2 is the tabu search decomposition scheme. The estimation of
Pr(X1 ≤ X2) is computed for N = 100, 200, 300, 400, 500, 600, 700, 800, 900,
1000, 2000, 3000, 4000, and 5000 independent runs of each algorithm. Table 6.2
shows the results obtained, which are also displayed in Figure 6.18. Once again, we
notice that the estimation of Pr(X1 ≤ X2) stabilizes as the sample size N increases.

6.5.3 GRASP algorithms for 2-path network design

Given a connected undirected graph with non-negative weights associated with its
edges, together with a set of origin-destination nodes, the 2-path network design

6.5 Numerical applications to sequential algorithms 133

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

(a) Runtime distribution

(b) Quantile-quantile plot

Fig. 6.15 Runtime distribution and quantile-quantile plot for tabu search on Brazil instance with
the target value set at 24.

134 6 Runtime distributions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

(a) Runtime distribution

(b) Quantile-quantile plot

Fig. 6.16 Runtime distribution and quantile-quantile plot for tabu search on Finland instance with
the target value set at 50.

6.5 Numerical applications to sequential algorithms 135

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

Multistart
Tabu search

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

Multistart
Tabu search

(a) Brazil instance with target 24

(b) Finland instance with target 50

Fig. 6.17 Superimposed runtime distributions of multistart and tabu search: (a) Pr(X1 ≤ X2) =
0.13, and (b) Pr(X1 ≤ X2) = 0.536787.

136 6 Runtime distributions

Table 6.2 Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the Finland
instance of the routing and wavelength assignment problem.

N L(ε) Pr(X1 ≤ X2) R(ε) Δ(ε) ε
100 0.000001 0.000200 0.000400 0.000400 1.964844
200 0.000100 0.004875 0.009650 0.009550 0.000480
300 0.006556 0.012961 0.019367 0.012811 0.000959
400 0.007363 0.013390 0.019425 0.012063 0.000959
500 0.007928 0.014694 0.021460 0.013532 0.000610
600 0.006622 0.013069 0.019517 0.012894 0.000610
700 0.005722 0.011261 0.016800 0.011078 0.000610
800 0.005033 0.011667 0.018302 0.013269 0.000610
900 0.004556 0.010461 0.016367 0.011811 0.000610

1000 0.004100 0.009425 0.014750 0.010650 0.000610
2000 0.006049 0.011580 0.017112 0.011063 0.000610
3000 0.007802 0.014395 0.020987 0.013185 0.000610
4000 0.007408 0.013698 0.019988 0.012580 0.000610
5000 0.006791 0.013090 0.019389 0.012598 0.000623

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

pr
ob

ab
ili

ty

N

Fig. 6.18 Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the Finland
instance of the routing and wavelength assignment problem.

problem consists in finding a minimum weighted subset of edges containing a path
formed by at most two edges between every origin-destination pair. Applications
can be found in the design of communication networks, in which paths with few
edges are sought to enforce high reliability and small delays.

6.5 Numerical applications to sequential algorithms 137

6.5.3.1 Instance with 90 nodes

We first compare four GRASP heuristics for solving an instance of the 2-path net-
work design problem with 90 nodes. The first heuristic is a pure GRASP (algo-
rithm A1). The others integrate different path-relinking strategies (see Chapters 8
and 9) for search intensification at the end of each GRASP iteration: forward path-
relinking (algorithm A2), bidirectional path-relinking (algorithm A3), and backward
path-relinking (algorithm A4).

Each algorithm was run 500 independent times on the benchmark instance with
90 nodes and 900 origin-destination pairs, with the solution target value set at 673
(the best known solution value is 639). The runtime distributions and quantile-
quantile plots for the different versions of GRASP with path-relinking are shown
in Figures 6.19 to 6.21.

The empirical runtime distributions of the four algorithms are superimposed in
Figure 6.22. Algorithm A2 (as well as A3 and A4) performs much better than A1,
as indicated by Pr(X2 ≤ X1) = 0.986604 (with L(ε) = 0.986212, R(ε) = 0.986996,
Δ(ε) = 0.000784, and ε = 0.029528). Algorithm A3 outperforms A2, as illustrated
by the fact that Pr(X3 ≤ X2) = 0.636000 (with L(ε) = 0.630024, R(ε) = 0.641976,
Δ(ε) = 0.011952, and ε = 1.354218× 10−6). Finally, we observe that algorithms
A3 and A4 behave very similarly, although A4 performs slightly better for this in-
stance, since Pr(X4 ≤ X3) = 0.536014 (with L(ε) = 0.528560, R(ε) = 0.543468,
Δ(ε) = 0.014908, and ε = 1.001358× 10−6).

As for the problems considered in Sections 6.5.1 and 6.5.2, we also investigate
the convergence of the proposed measure as a function of sample size (i.e., with
the number of independent runs of each algorithm). Convergence with the sample
size is illustrated next for the 90-node instance of the 2-path network design prob-
lem, with the same target 673 previously used. We recall that algorithm A1 is the
GRASP with backward path-relinking heuristic, while algorithm A2 is the GRASP
with bidirectional path-relinking heuristic. The estimation of Pr(X1 ≤ X2) is com-
puted for N = 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000,
and 5000 independent runs of each algorithm. Table 6.3 shows the results, which are
also displayed in Figure 6.23. Once again, the estimation of Pr(X1 ≤ X2) stabilizes
as the sample size N increases.

6.5.3.2 Instance with 80 nodes

We next compare five GRASP heuristics for the 2-path network design problem,
with and without path-relinking, for solving an instance with 80 nodes and 800
origin-destination pairs, with target value set at 588 (the best known solution value is
577). In this example, the first algorithm is a pure GRASP (algorithm A1). The other
heuristics integrate different path-relinking strategies at the end of each GRASP
iteration (see Chapters 8 and 9): forward path-relinking (algorithmA2), bidirectional
path-relinking (algorithm A3), backward path-relinking (algorithm A4), and mixed
path-relinking (algorithm A5). As before, each heuristic was run independently 500
times.

138 6 Runtime distributions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5 6

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

(a) Runtime distribution

(b) Quantile-quantile plot

Fig. 6.19 Runtime distribution and quantile-quantile plot for GRASP with forward path-relinking
on 90-node instance with the target value set at 673.

6.5 Numerical applications to sequential algorithms 139

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 1 2 3 4 5 6

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

(a) Runtime distribution

(b) Quantile-quantile plot

Fig. 6.20 Runtime distribution and quantile-quantile plot for GRASP with bidirectional path-
relinking on 90-node instance with the target value set at 673.

140 6 Runtime distributions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 1 2 3 4 5 6

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

(a) Runtime distribution

(b) Quantile-quantile plot

Fig. 6.21 Runtime distribution and quantile-quantile plot for GRASP with backward path-
relinking on 90-node instance with the target value set at 673.

6.5 Numerical applications to sequential algorithms 141

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.001 0.01 0.1 1 10 100 1000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

GRASP
GRASP+forPR
GRASP+biPR

GRASP+backPR

Fig. 6.22 Superimposed runtime distributions of pure GRASP and three versions of GRASP with
path-relinking.

Table 6.3 Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the 90-node
instance of the 2-path network design problem.

N L(ε) Pr(X1 ≤ X2) R(ε) Δ(ε) ε
100 0.553300 0.559150 0.565000 0.011700 4.387188×10−7

200 0.553250 0.553850 0.554450 0.001199 4.501629×10−7

300 0.551578 0.557483 0.563389 0.011811 4.501629×10−7

400 0.545244 0.551241 0.557238 0.011994 4.730511×10−7

500 0.546604 0.552420 0.558236 0.011632 5.035686×10−7

600 0.538867 0.544749 0.550631 0.011764 5.073833×10−7

700 0.536320 0.542181 0.548041 0.011720 5.073833×10−7

800 0.537533 0.543298 0.549064 0.011531 5.073833×10−7

900 0.533912 0.539671 0.545430 0.011517 5.073833×10−7

1000 0.531595 0.537388 0.543180 0.011585 5.073833×10−7

2000 0.528224 0.533959 0.539698 0.011469 5.722427×10−7

3000 0.530421 0.536128 0.541835 0.011414 6.027603×10−7

4000 0.532695 0.538364 0.544033 0.011338 6.027603×10−7

5000 0.530954 0.536566 0.542178 0.011225 6.027603×10−7

The empirical runtime distributions of the five algorithms are superimposed in
Figure 6.24. Algorithm A2 (as well as A3, A4, and A5) performs much better than A1,
as indicated by Pr(X2 ≤ X1) = 0.970652 (with L(ε) = 0.970288, R(ε) = 0.971016,
Δ(ε) = 0.000728, and ε = 0.014257). Algorithm A3 outperforms A2, as shown by
the fact that Pr(X3 ≤ X2) = 0.617278 (with L(ε) = 0.610808, R(ε) = 0.623748,
Δ(ε) = 0.012940, and ε = 1.220703× 10−6). Algorithm A4 performs slightly bet-
ter than A3 for this instance, since Pr(X4 ≤ X3) = 0.537578 (with L(ε) = 0.529404,

142 6 Runtime distributions

 0.53

 0.535

 0.54

 0.545

 0.55

 0.555

 0.56

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

pr
ob

ab
ili

ty

N

Fig. 6.23 Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the 90-node
instance of the 2-path network design problem.

R(ε) = 0.545752, Δ(ε) = 0.016348, and Δ(ε) = 1.201630× 10−6). Algorithms
A5 and A4 also behave very similarly, but A5 is slightly better for this instance
since Pr(X5 ≤ X4) = 0.556352 (with L(ε) = 0.547912, R(ε) = 0.564792, Δ(ε) =
0.016880, and ε = 1.001358× 10−6).

6.6 Comparing and evaluating parallel algorithms

We conclude this chapter by describing the use of the runtime distribution method-
ology to evaluate and compare parallel implementations of stochastic local search
algorithms. Once again, the 2-path network design problem is used to illustrate this
application.

Figures 6.25 and 6.26 superimpose the runtime distributions of, respectively, co-
operative and independent parallel implementations of GRASP with bidirectional
path-relinking for the same problem on 2, 4, 8, 16, and 32 processors, on an in-
stance with 100 nodes and 1000 origin-destination pairs, using 683 as target value.
Each algorithm was run independently 200 times. We denote by Ak

1 (resp. Ak
2) the

cooperative (resp. independent) parallel implementation running on k processors,
for k = 2,4,8,16,32.

Table 6.4 shows the probability that the cooperative parallel implementation per-
forms better than the independent implementation on 2, 4, 8, 16, and 32 processors.
We observe that the independent implementation performs better than the cooper-

6.6 Comparing and evaluating parallel algorithms 143

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.01 0.1 1 10 100

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

GRASP
GRASP+forPR
GRASP+biPR

GRASP+backPR
GRASP+mixPR

Fig. 6.24 Superimposed empirical runtime distributions of pure GRASP and four GRASP with
path-relinking heuristics.

ative implementation on two processors. In that case, the cooperative implementa-
tion does not benefit from the availability of two processors, since only one of them
performs iterations, while the other acts as the master. However, as the number of
processors increases from two to 32, the cooperative implementation performs pro-
gressively better than the independent implementation, since more processors are
devoted to perform GRASP iterations. The proposed methodology is clearly con-
sistent with the relative behavior of the two parallel versions for any number of
processors. Furthermore, it illustrates that the cooperative implementation becomes
progressively better than the independent implementation when the number of pro-
cessors increases.

Table 6.5 displays the probability that each of the two parallel implementations
performs better on 2 j+1 than on 2 j processors, for j = 1,2,3,4. Both implementa-
tions scale appropriately as the number of processors grows. Once again, we can
see that the performance measure appropriately describes the relative behavior of
the two parallel strategies and provides insight on how parallel algorithms scale
with the number of processors. The table shows numerical evidence to evaluate the
trade-offs between computation times and the number of processors in parallel im-
plementations.

144 6 Runtime distributions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1 10 100 1000 10000 100000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

2 procs
4 procs
8 procs

16 procs
32 procs

Fig. 6.25 Superimposed empirical runtime distributions of cooperative parallel GRASP with bidi-
rectional path-relinking running on 2, 4, 8, 16, and 32 processors.

Table 6.4 Comparing cooperative (algorithm A1) and independent (algorithm A2) parallel imple-
mentations.

Processors (k) Pr(Xk
1 ≤ Xk

2)
2 0.309784
4 0.597253
8 0.766806
16 0.860864
32 0.944938

Table 6.5 Comparing the parallel implementations on 2 j+1 (algorithm A1) and 2 j (algorithm A2)
processors, for j = 1,2,3,4.

Processors (a) Processors (b) Pr(Xa
1 ≤ Xb

1) Pr(Xa
2 ≤ Xb

2)
4 2 0.766235 0.651790
8 4 0.753904 0.685108

16 8 0.724398 0.715556
32 16 0.747531 0.669660

6.7 Bibliographical notes 145

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 10 100 1000 10000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

2 procs
4 procs
8 procs

16 procs
32 procs

Fig. 6.26 Superimposed empirical runtime distributions of independent parallel GRASP with bidi-
rectional path-relinking running on 2, 4, 8, 16, and 32 processors.

6.7 Bibliographical notes

The time-to-target, or runtime distribution, plots introduced in Section 6.1 were first
used by Feo et al. (1994). They have been also advocated by Hoos and Stützle
(1998b;a) as a way to characterize the execution times of stochastic algorithms for
combinatorial optimization. Aiex et al. (2007) developed a perl program to create
time-to-target plots for measured times that are assumed to fit a shifted exponential
distribution, following closely the work of Aiex et al. (2002).

Section 6.2 reports that the runtime distributions of GRASP heuristics follow
exponential distributions and shows how the best fittings can be obtained. In fact,
Aiex et al. (2002), Battiti and Tecchiolli (1992), Dodd (1990), Eikelder et al. (1996),
Hoos (1999), Hoos and Stützle (1999), Osborne and Gillett (1991), Selman et al.
(1994), Taillard (1991), Verhoeven and Aarts (1995), and others observed that in
many implementations of randomized heuristics, such as simulated annealing, ge-
netic algorithms, iterated local search, tabu search, and GRASP, the random variable
time-to-target value (i.e., the runtime) is exponentially distributed or fits a shifted ex-
ponential distribution. Hoos and Stützle (1998c; 1999) conjectured that this is true
for all methods for combinatorial optimization based on stochastic local search.

Aiex et al. (2002) used TTT-plots to show experimentally that the running times
of GRASP heuristics fit shifted exponential distributions, reporting computational
results for 2400 runs of GRASP heuristics for each of five different problems:
maximum stable set (Feo et al., 1994; Resende et al., 1998), quadratic assignment

146 6 Runtime distributions

(Li et al., 1994; Resende et al., 1996), graph planarization (Resende and Ribeiro,
1997; Ribeiro and Resende, 1999; Resende and Ribeiro, 2001), maximum weighted
satisfiability (Resende et al., 2000), and maximum covering (Resende, 1998). To
compare the empirical and the theoretical runtime distributions, a standard graphical
methodology for data analysis was used (Chambers et al., 1983). Experiments with
instances of the 2-path network design problem and of the three-index assignment
problem were reported to show that implementations of GRASP with path-relinking
may not follow exponential distributions. The 2-path network design problem was
introduced and proved to be NP-hard by Dahl and Johannessen (2004). The GRASP
heuristics used in the computational experiments with this problem were proposed
by Ribeiro and Rosseti (2002; 2007). The three-index assignment problem consid-
ered in the experiments reported by Aiex et al. (2005) was studied by Balas and
Saltzman (1991), from where problem instances 22.1 and 24.1 were taken.

The closed form result developed in Section 6.3 to compare two exponential
algorithms and the iterative procedure proposed in Section 6.4 to compare two algo-
rithms following generic distributions were first presented by Ribeiro et al. (2009).
This work was extended by Ribeiro et al. (2012) and was also applied in the compar-
ison of parallel heuristics. Ribeiro and Rosseti (2015) developed the code to com-
pare runtime distributions of randomized algorithms.

Different problems and algorithms were used in Sections 6.5 and 6.6 to illustrate
the application of the iterative procedure to compare generic runtime distributions of
two algorithms. Algorithms for solving the server replication for reliable multicast
problem were described by Fonseca et al. (2008) and Santos et al. (2008). The DM-
GRASP hybrid version of GRASP that incorporates a data mining process appeared
in Santos et al. (2008). Its basic principle consisted in mining for patterns found in
high-quality solutions to guide the construction of new solutions. Variant DM-D5
appeared in Fonseca et al. (2008).

Noronha and Ribeiro (2006) proposed a decomposition heuristic for solving the
routing and wavelength assignment problem. First, a set of possible routes is pre-
computed for each lightpath. Next, one of the precomputed routes and a wavelength
are assigned to each lightpath by a tabu search heuristic solving an instance of the
partition coloring problem. Manohar et al. (2002) developed the multistart greedy
heuristic for the same problem. The Finland instance of the routing and wavelength
assignment problem came from Hyytiä and Virtamo (1998).

Chapter 7
Extended construction heuristics

In Chapter 3, we considered cardinality-based and quality-based adaptive greedy
algorithms as a generalization of greedy algorithms. Next, we presented semi-
greedy algorithms that are obtained by randomizing adaptive greedy algorithms and
constitute the main foundation for developing the construction phase of GRASP
heuristics. In this chapter, we consider enhancements, extensions, and variants of
greedy randomized adaptive construction procedures such as Reactive GRASP, the
probabilistic choice of the construction parameter α , random plus greedy and sam-
pled greedy constructions, cost perturbations, bias functions, principles of intelli-
gent construction based on memory and learning, the proximate optimality prin-
ciple and local search applied to partially constructed solutions, and pattern-based
construction strategies using vocabulary building or data mining.

7.1 Reactive GRASP

The choice of the parameter α of a quality-based semi-greedy algorithm used in
the GRASP construction phase determines the blend of greediness and randomness
that is used in the construction. One basic strategy is to use a fixed value for α .
Another strategy consists in using a different value chosen at random in each
iteration. Reactive GRASP is a strategy in which the algorithm progressively learns
and updates the best value of α . It was the first proposal to incorporate a learning
mechanism in the otherwise memoryless construction phase of GRASP.

In the context of Reactive GRASP, the value of the restricted candidate list
parameter α is not fixed, but instead is randomly selected at each iteration from a
discrete set of possible values. This selection is guided by the solution values found
during previous iterations. One way to accomplish this is to use a rule that considers
a set Ψ = {α1, . . . ,αm} of possible values for α . The probabilities associated with
the choice of each value are all initially made equal to pi = 1/m, for i = 1, . . . ,m.
Furthermore, let f ∗ be the incumbent solution value and let Ai be the average value
of all solutions found using α = αi, for i= 1, . . . ,m. The selection probabilities are

© Springer Science+Business Media New York 2016
M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP,
DOI 10.1007/978-1-4939-6530-4 7

147

148 7 Extended construction heuristics

periodically reevaluated by taking pi = qi/∑m
j=1 q j, with qi = f ∗/Ai for i= 1, . . . ,m.

For the case of minimization, the value of qi will be larger for values of α = αi lead-
ing to the best solutions on average. Larger values of qi correspond to more suitable
values for the parameter α . Therefore, the probabilities associated with the more
appropriate values increase when they are reevaluated.

The reactive approach leads to improvements over the basic GRASP in terms of
robustness and solution quality, due to greater diversification and less reliance on
parameter tuning.

7.2 Probabilistic choice of the RCL parameter

The computational results obtained by Reactive GRASP show that using a single
fixed value for the restricted candidate parameter α very often hinders finding high-
quality solutions, which could be found if other values were used. These results
motivated the study of the behavior of GRASP using alternative strategies for the
variation of the value of the restricted candidate list parameter α:

(R) α self tuned according with the Reactive GRASP procedure;
(E) α randomly chosen from a uniform discrete probability distribution;
(H) α randomly chosen from a decreasing nonuniform discrete probability distri-

bution; and
(F) fixed value of α , close to the purely greedy choice.

We summarize the results obtained in experiments incorporating these four
strategies into the GRASP procedures developed for four different optimization
problems: (P-1) matrix decomposition for traffic assignment in communication
satellites, (P-2) set covering, (P-3) weighted MAX-SAT, and (P-4) graph planariza-
tion. Let Ψ = {α1, . . . ,αm} be the set of possible values for the parameter α for
the first three strategies. The strategy for choosing and self-tuning the value of α in
the case of the Reactive GRASP procedure (R) is the one described in Section 7.1.
In the case of the strategy (E) based on using a discrete uniform distribution, all
choice probabilities are equal to 1/m. The third case corresponds to a hybrid strat-
egy (H), in which the following probabilities are considered: p(α = 0.1) = 0.5,
p(α = 0.2) = 0.25, p(α = 0.3) = 0.125, p(α = 0.4) = 0.03, p(α = 0.5) = 0.03,
p(α = 0.6) = 0.03, p(α = 0.7) = 0.01, p(α = 0.8) = 0.01, p(α = 0.9) = 0.01, and
p(α = 1.0) = 0.005. In the last strategy (F), the value of α is fixed as tuned and
recommended in the original references reporting results for these problems. A sub-
set of instances from the literature was considered for each class of test problems.
Numerical results are reported in Table 7.1. For each problem, we first list the num-
ber of instances considered. Next, for each strategy, we give the number of instances
for which it found the best solution (hits), as well as the average computation time
(in seconds) on an IBM 9672 model R34. The number of GRASP iterations was
fixed at 10,000.

7.3 Random plus greedy and sampled greedy 149

Table 7.1 Computational results for different strategies for the variation of parameter α .

R E H F

Problem Instances Hits Time (s) Hits Time (s) Hits Time (s) Hits Time (s)

P-1 36 34 579.0 35 358.2 32 612.6 24 642.8
P-2 7 7 1346.8 6 1352.0 6 668.2 5 500.7
P-3 44 22 2463.7 23 2492.6 16 1740.9 11 1625.2
P-4 37 28 6363.1 21 7292.9 24 6326.5 19 5972.0

Total 124 91 85 78 59

Strategy (F) presented the shortest average computation times for three of the
four problem types. It was also the one with the least variability in the constructed
solutions and, as a consequence, found the best solution the fewest times. The reac-
tive strategy (R) is the one which most often found the best solutions, however, at the
cost of computation times that are longer than those of some of the other strategies.
The high number of hits observed by strategy (E) also illustrates the effectiveness
of strategies based on the variation of α , the parameter that defines the size of the
restricted candidate list.

7.3 Random plus greedy and sampled greedy

In Section 3.4 of Chapter 3, we described the semi-greedy scheme used in the
construction phase of GRASP to build solutions that serve as starting points for
local search. Two alternative randomized greedy approaches that run faster than the
semi-greedy algorithm are introduced next. Both have been originally applied to the
p-median problem.

Instead of combining greediness and randomness at each step of the construction
procedure, the random plus greedy scheme applies randomness during the first p
construction steps to produce a random partial solution. Next, the algorithm com-
pletes the solution with one or more pure adaptive greedy construction steps. The
resulting solution is randomized greedy. One can control the balance between greed-
iness and randomness in the construction by changing the value of the parameter p.
Larger values of p are associated with solutions that are more random, while smaller
values result in greedier solutions.

Similar to the random plus greedy procedure, the sampled greedy construction
also combines randomness and greediness, but in a different way. This procedure
is also controlled by a parameter p. At each step of the construction process, the
procedure builds a restricted candidate list by sampling min{p, |C|} elements of
the candidate set C of elements that can be added to the current partial solution.
Each element of the restricted candidate list is evaluated by the greedy function.
The element with the smallest greedy function value is added to the partial solu-
tion. This two-step process is repeated until there are no more candidate elements.
The resulting solution is also randomized greedy. Once again, the balance between

150 7 Extended construction heuristics

greediness and randomness can be controlled by changing the value of the param-
eter p, i.e., the number of candidate elements that are sampled. Small sample sizes
lead to more random solutions, while large sample sizes lead to greedier solutions.

7.4 Cost perturbations

The idea of introducing noise into the original costs to change the objective function
adds more flexibility to algorithm design. Furthermore, in circumstances where the
construction algorithm is not very sensitive to randomization, it can also be more
effective than the greedy randomized adaptive construction of the basic GRASP
procedure. This is indeed the case for the shortest path heuristic used as one of the
main building blocks of the construction phase of GRASP heuristics for the Steiner
problem in graphs.

The cost perturbation methods used in a hybrid algorithm for the Steiner prob-
lem in graphs incorporate learning mechanisms associated with intensification and
diversification strategies. Three distinct weight randomization methods were applied
to generate cost perturbations for the shortest path heuristic. At any given GRASP
iteration, the modified weight of each edge is randomly selected from a uniform dis-
tribution in an interval which depends on the selected weight randomization method
applied at that iteration. The different weight randomization methods use frequency
information and are used to enforce intensification and diversification strategies. Ex-
perimental results show that the strategy combining these three perturbation meth-
ods is more robust than any of them used in isolation, leading to the best overall
results on a quite broad mix of test instances with different characteristics. The
GRASP heuristic using this cost perturbation strategy was among the most effective
heuristics available for the Steiner problem in graphs at the time of its development.

Another situation where cost perturbations can be very effective appears when
no greedy algorithm is available for straightforward randomization. A typical situ-
ation is the case of a hybrid GRASP developed for the prize-collecting Steiner tree
problem, which makes use of a primal-dual approximation algorithm to build ini-
tial solutions using perturbed costs. A new solution is built at each iteration using
node prizes updated by a perturbation function, according to the structure of the
current solution. Two different prize perturbation schemes were used. In perturba-
tion by eliminations, the primal-dual algorithm used in the construction phase is
driven to build a new solution without some of the nodes that appeared in the solu-
tion constructed in the previous iteration. In perturbation by prize changes, noise is
introduced into the node prizes to change the objective function.

7.6 Memory and learning 151

7.5 Bias functions

In the construction phase of the basic GRASP heuristic, the next element to be
introduced in the solution is chosen at random from the elements in the restricted
candidate list. The elements of the restricted candidate list are assigned equal prob-
abilities of being chosen. However, as was the case for Reactive GRASP, any prob-
ability distribution can be used to bias the selection towards some particular candi-
dates. Another selection mechanism used in the construction phase makes use of a
family of such probability distributions. They are based on the rank r(σ) assigned
to each candidate element σ , according to its greedy function value. Several bias
functions can be used:

• random bias: bias(r(σ)) = 1;
• linear bias: bias(r(σ)) = 1/r(σ);
• log bias: bias(r(σ)) = log−1(r(σ)+ 1);
• exponential bias: bias(r(σ)) = e−r(σ); and
• polynomial bias of order n: bias(r(σ)) = r(σ)−n.

Consider that any one of the above bias functions is being used. Once the rank
r(σ) and its corresponding bias, bias(r(σ)), are evaluated for all elements in the
candidate set C, the probability π(σ) of selecting element σ is given by

π(σ) =
bias(r(σ))

∑σ ′∈C bias(r(σ ′))
.

The basic GRASP heuristic uses a random bias function. The evaluation of these
bias functions can be applied to all candidate elements or can be limited to the
elements of the restricted candidate list.

7.6 Memory and learning

Flexible and adaptive memory techniques have been the source of a number of de-
velopments to improve multistart methods, which otherwise would simply resort to
random restarts.

The basic memoryless GRASP heuristic does not make use of information gath-
ered in previously performed iterations. As in tabu search and other multistart
heuristics, a long-term memory strategy can be used to add memory to GRASP.

An elite solution is a high-quality solution found during the iterations of a search
algorithm. Long-term memory can be implemented by maintaining a pool or set of
elite solutions. To become an elite solution, a solution must be either better than the
best member of the pool, or better than its worst member and sufficiently different
from the other solutions in the pool. For example, one can count identical solution
attributes and set a threshold for rejection. In Chapter 9, we revisit elite sets.

152 7 Extended construction heuristics

A strongly determined variable is one that cannot be changed without eroding
the objective or changing significantly other variables. A consistent variable is one
that receives a particular value in a large portion of the elite solution set. Let I(e) be
a measure of the strong determination and consistency features of a solution element
e of the ground set E . Then, I(e) becomes larger as e appears more often in the pool
of elite solutions. The intensity function I(e) is used in the construction phase as
follows. Recall that g(e) is the greedy function, i.e., the incremental cost associated
with the incorporation of element e ∈ E into the solution under construction. Let
K(e) = F(g(e), I(e)) be a composite function of the greedy and the intensification
functions. For example, K(e) = λ · g(e) + I(e). The intensification scheme biases
selection from the restricted candidate list RCL to those elements e ∈ E with a high
value of K(e) by setting its selection probability to be p(e) = K(e)/∑s∈RCLK(s).
FunctionK(e) can vary with time by changing the value of λ . For example, λ can be
set to a large value when diversification is required and can be gradually decreased
as intensification is called for.

7.7 Proximate optimality principle in construction

The proximate optimality principle is based on the idea that good solutions at one
level of the search are likely to be found close to good solutions at an adjacent level.
A GRASP interpretation of this principle suggests that imperfections introduced
during steps of the GRASP construction can be ironed-out by applying local search
during (and not only at the end of) the construction phase.

Because of efficiency considerations, a practical implementation of the proximate
optimality principle to GRASP consists in applying local search a few times during
the construction phase, but not necessarily at every construction iteration.

7.8 Pattern-based construction

Different strategies have been devised to intelligently explore adaptive memory
information. Their main underlying principle consists in exploring information col-
lected and updated along the search to improve the performance of different con-
struction and local search methods.

Vocabulary building is an intensification strategy for creating new solutions from
good fragments of high-quality solutions previously found and stored in an elite
set. Data mining refers to the automatic extraction of new and potentially useful
knowledge from data sets. The extraction of frequent items is often at the core of
data mining methods. Frequent items extracted from the elite set represent patterns
appearing in high-quality solutions that may be used as building blocks in an adapted
construction phase.

7.8 Pattern-based construction 153

Both data mining and vocabulary building can be combined into more efficient
implementations of GRASP or other multistart procedures. Since data mining has
been further explored in this context, we focus our presentation of pattern-based
construction strategies in the hybridization GRASP with data mining.

The main kinds of rules and patterns mined from data sets are frequent items,
association rules, sequential patterns, classification rules, and data clusters. In the
context of a data set formed by solutions obtained by GRASP, the extracted frequent
items represent patterns that are common to high-quality solutions, i.e., subsets of
variables that often appear in the elite set.

Let I = {i1, . . . , in} be a set of items. A transaction t is a subset of I and a data
set T is a set of transactions. An item set F , with support s ∈ [0,1], is a subset of I
which occurs in at least s · |T | transactions of T . An item set F is said to be frequent
if its support s is greater than or equal to a minimum threshold s specified by the
user. The frequent item mining problem consists in extracting all frequent item sets
from a data set T with a minimum support s specified as a parameter. A frequent
item set is maximal if it has no superset that is also frequent. Maximal frequent item
sets are useful to avoid mining and using patterns that are subsets of larger patterns.

The principle behind the incorporation of a data mining process in GRASP is
that patterns or frequent item sets found in high-quality solutions obtained in earlier
iterations can be used in later iterations to improve the search procedure.

The DM-GRASP (Data Mining GRASP) heuristic starts with the elite set gen-
eration phase, which consists of executing niter pure GRASP iterations to obtain
an elite set E formed by the nE best distinct solutions found along these iterations.
Next, a data mining process is applied to extract a set P of common patterns from the
solutions in the elite set E . These patterns are subsets of attributes that frequently
appear in solutions of the elite set E (or, equivalently, variables that are set at per-
sistent values in these solutions). A frequent pattern mined from the elite set with
support s ∈ [0,1] represents a subset of attributes that occur in s ·nE elite solutions.
The hybrid phase is the last to be performed. An additional niter slightly modified
GRASP iterations are executed. The construction phase of each of these modified
iterations starts from a pattern selected from the set of mined patterns P, and not
from scratch. Therefore, DM-GRASP spends the first half of its iterations in the
elite set generation phase and the second half in the hybrid phase, which makes use
of the mined frequent patterns. We observe that the number of iterations niter may
be replaced by any other stopping criterion.

A pseudo-code of the DM-GRASP hybridization for a minimization problem is
illustrated in Figure 7.1. The best solution value f ∗ and the elite set E are initialized
in lines 1 and 2, respectively. The niter pure GRASP iterations of the first phase
are carried out in the while loop in lines 3 to 14. A solution S is constructed with a
semi-greedy algorithm in line 4. Since a semi-greedy algorithm cannot always gen-
erate a feasible solution, a repair procedure may have to be invoked in line 6 to make
changes in S so that it becomes feasible (alternatively, the solution S may be simply
discarded and followed by a new run of the semi-greedy algorithm, until a feasible
solution is built). Local search is then applied starting from the feasible solution
provided by the semi-greedy algorithm or by the repair procedure. If the objective

154 7 Extended construction heuristics

function value f (S) of the local minimum produced in line 8 is better than the value
f ∗ of the incumbent, then the local minimum is made the incumbent and its objec-
tive function value is placed in f ∗ in lines 10 and 11. The elite set E is updated in
line 13: if the new solution S is added to E , then a previously obtained elite solution
is discarded. Algorithm UPDATE-ELITE-SET described in Section 9.2 receives as
inputs the local optimum S and the current elite set E and returns the updated elite
set. The data mining algorithm extracts the set of frequent patterns P from the elite
set E in line 15. The loop from line 16 to 27 corresponds to the hybridization phase
and runs until an additional niter iterations are performed. Each iteration starts in
line 17 by the selection of a pattern p∈ P. An adapted construction procedure based
on the SemiGreedy algorithm is performed in line 18, starting from a partial solu-
tion defined by pattern p as a starting point, and not from scratch. The feasibility of
solution S is tested in line 19. A repair procedure may have to be invoked in line 20
to make changes in S so that it becomes feasible (as before, the solution S may also
be simply discarded and followed by a new run of the adapted semi-greedy algo-
rithm, until a feasible solution is built). Local search is applied in line 22 to solution
S. If the objective function value f (S) of the local minimum S is better than the
value f ∗ of the incumbent, then this new local minimum is made the incumbent in
line 24 and its objective function value is placed in f ∗ in line 25. The best solution
S∗ and its cost f (S∗) are returned in line 28.

To illustrate the improvements brought by DM-GRASP to the basic GRASP pro-
cedure, we summarize below some computational results obtained for the problem
of server replication for reliable multicast, which was introduced in Section 6.5.1 of
Chapter 6.

In computational experiments performed to compare the performance of GRASP
and DM-GRASP both heuristics were implemented in C++ and were run ten times
for each problem instance, with different random seeds. The GRASP parameter α
was set to 0.7. Each run consisted of 500 iterations. In the hybrid DM-GRASP, the
elite set generation phase made use of niter = 250 iterations and the hybrid phase
performed the remaining niter = 250 iterations. The size of the elite set E was set at
ten, as well as that of the set P of mined patterns. The pattern extraction algorithm
used a support value such that a set of nodes may be considered as a frequent pattern
if it appears at least in two elite solutions.

The computational results are shown in Table 7.2. The first two columns sum-
marize the characteristics of the problem instances, showing the multicast scenario
and the number m of nodes to be set as replicated servers. The next three columns
contain the results obtained by a previously developed GRASP heuristic (best solu-
tion value, average solution value, and computation time in seconds), while the last
three columns depict the same results for DM-GRASP. The best solution obtained
by DM-GRASP improved on the solution obtained by GRASP in 12 out of the 20
instances in this table, while GRASP never obtained a better solution. The best re-
sults are indicated in boldface. DM-GRASP obtained better average solution values
for 13 out of the 20 instances, while GRASP obtained better average values for only
four instances. Furthermore, DM-GRASP was considerably faster for all instances.

7.9 Lagrangean GRASP heuristics 155

Fig. 7.1 Pseudo-code of a DM-GRASP heuristic for minimization.

The last column shows the average reduction in time obtained by DM-GRASP with
respect to GRASP. On average, DM-GRASP ran in 36.8% time less than GRASP.

7.9 Lagrangean GRASP heuristics

7.9.1 Lagrangean relaxation and subgradient optimization

Lagrangean relaxation can be used to provide lower bounds for combinatorial op-
timization problems. However, the primal solutions produced by the algorithms
used to solve the Lagrangean dual problem are not necessarily feasible. Lagrangean
heuristics exploit dual multipliers to generate primal feasible solutions.

156 7 Extended construction heuristics

Table 7.2 Comparison between GRASP and DM-GRASP for the reliable multicast problem.

Instances GRASP DM-GRASP Time
Scenario m Best Average Time (s) Best Average Time (s) reduction

CONF 1

5 63762.2 63762.2 28231.5 63762.2 63762.2 20292.0 28.1%
10 44480.7 44480.7 43826.0 44480.7 44480.7 30881.8 29.5%
15 31328.6 31347.2 43374.8 31328.6 31328.6 30058.0 30.7%
20 23625.2 23775.9 43314.2 23625.2 23763.7 26831.3 38.0%

CONF 2

10 11894.1 11894.1 3083.9 11894.1 11894.1 2631.8 14.7%
20 10076.3 10076.3 5239.0 10047.1 10047.1 3280.1 37.4%
30 9207.8 9208.7 7211.5 9207.8 9211.7 4196.7 41.9%
40 8668.5 8676.6 6787.9 8642.3 8646.3 4418.2 34.9%

CONF 3

20 11130.1 11177.4 7518.6 11114.5 11114.5 5661.6 24.7%
40 9631.7 9652.9 15077.0 9584.3 9596.5 8724.9 42.1%
60 8855.9 8869.3 19683.5 8848.1 8869.4 11312.0 42.5%
80 8550.4 8557.8 17747.8 8550.4 8559.1 10628.1 40.1%

BROAD 1

25 2818.9 2818.9 1555.1 2807.2 2807.2 1004.8 35.4%
50 2296.6 2299.0 3709.2 2281.8 2287.4 2301.7 38.0%
75 2039.3 2045.9 5530.9 2020.9 2030.8 3366.7 39.1%
100 1873.6 1877.5 7183.0 1873.6 1877.9 4160.2 42.0%

BROAD 2

50 2444.0 2444.2 5096.8 2425.6 2431.4 2994.0 41.3%
100 2019.0 2020.2 9246.2 2018.9 2020.1 5188.1 43.9%
150 1836.3 1837.0 11482.1 1836.2 1836.9 6098.7 46.9%
200 1727.9 1729.6 14047.3 1726.5 1729.3 7705.9 45.1%

Average reduction in time: 36.8%

Given a mathematical programming problem P formulated as

f ∗ = min f (x) (7.1)

gi(x)≤ 0, i= 1, . . . ,m, (7.2)

x ∈ X , (7.3)

its Lagrangean relaxation is obtained by associating dual multipliers λi ∈R+ to each
inequality (7.2), for i= 1, . . . ,m. This results in the following Lagrangean relaxation
problem LRP(λ)

min f ′(x) = f (x)+
m

∑
i=1

λi ·gi(x) (7.4)

x ∈ X , (7.3)

whose optimal solution x(λ) gives a lower bound f ′(x(λ)) to the optimal value of
the original problem P defined by (7.1) to (7.3). The best (dual) lower bound is
given by the solution of the Lagrangean dual problem D

fD = f ′(x(λ ∗)) = max
λ∈Rm

+

f ′(x(λ)). (7.5)

7.9 Lagrangean GRASP heuristics 157

Subgradient optimization is used to solve the dual problem D defined by (7.5).
Subgradient algorithms start from any feasible set of dual multipliers, such as λi= 0,
for i= 1, . . . ,m, and iteratively generate updated multipliers.

At any iteration q, let λ q be the current vector of multipliers and let x(λ q) be an
optimal solution to problem LRP(λ q), whose optimal value is f ′(x(λ q)). Further-
more, let f̄ be a known upper bound to the optimal value of problem P defined by
(7.1) to (7.3). Additionally, let gq ∈R

m be a subgradient of f ′(x) at x= x(λ q), with
gqi = gi(x(λ q)) for i= 1, . . . ,m. To update the Lagrangean multipliers, the algorithm
makes use of a step size

dq =
η · (f̄ − f ′(x(λ q)))

∑m
i=1(g

q
i)

2
, (7.6)

where η ∈ (0,2]. Multipliers are then updated as

λ q+1
i = max{0;λ q

i + dq ·gqi }, i= 1, . . . ,m, (7.7)

and the subgradient algorithm proceeds to iteration q+ 1.

7.9.2 A template for Lagrangean heuristics

We describe next a template for Lagrangean heuristics that make use of the dual
multipliers λ q and of the optimal solution x(λ q) to each problem LRP(λ q) to build
feasible solutions to the original problem P defined by (7.1) to (7.3). In the follow-
ing, we assume that the objective function and all constraints are linear functions,
i.e., f (x) = ∑n

i=1 c jx j and gi(x) = ∑n
j=1 di jx j− ei, for i= 1, . . . ,m.

Let H be a primal heuristic that builds a feasible solution x to P , starting from
the initial solution x0 = x(λ q) at every iteration q of the subgradient algorithm.
Heuristic H is first applied using the original costs c j, i.e., using the cost function
f (x). In any subsequent iteration q of the subgradient algorithm, H uses either
Lagrangean reduced costs c′j = c j −∑m

i=1 λ q
i di j or complementary costs c̄ j = (1−

x j(λ q)) · c j.
Let xH ,γ be the solution obtained by heuristic H , using a generic cost vector γ

corresponding to either one of the above modified cost schemes or to the original
cost vector. Its cost can be used to update the upper bound f̄ to the optimal value
of the original problem (7.1) to (7.3). This upper bound can be further improved by
local search and is used to adjust the step size defined by equation (7.6).

The algorithm in Figure 7.2 shows the pseudo-code of a Lagrangean heuristic.
Lines 1 to 4 initialize the upper and lower bounds, the iteration counter, and the dual
multipliers. The iterations of the subgradient algorithm are performed along the loop
in lines 5 to 24. The reduced costs are computed in line 6 and the Lagrangean relax-
ation problem is solved in line 7. In the first iteration of the Lagrangean heuristic,
the original cost vector is assigned to γ in line 9, while in subsequent iterations a

158 7 Extended construction heuristics

modified cost vector is assigned to γ in line 11. Heuristic H is applied in line 13 at
the first iteration and after every H iterations thereafter (i.e., whenever the iteration
counter q is a multiple of the input parameter H) to produce a feasible solution xH ,γ

to problem (7.1) to (7.3). If the cost of this solution is smaller than the current upper
bound, then the best solution and its cost are updated in lines 14 to 18. If the lower
bound f ′(x(λ q)) is greater than the current lower bound fD , then fD is updated in
line 19. Line 20 computes a subgradient at x(λ q) and line 21 computes the step size.
The dual multipliers are updated in line 22 and the iteration counter is incremented
in line 23. The best solution found and its cost are returned in line 24.

Fig. 7.2 Pseudo-code of a template for a Lagrangean heuristic.

Different choices for the initial solution x0, for the modified costs γ , and for the
primal heuristic H itself lead to different variants of the above algorithm. The in-
teger parameter H defines the frequency in which H is applied. The smaller the
value of H, the greater the number of times H is applied. Therefore, the computa-
tion time increases as the value of H decreases. In particular, one should set H = 1
if the primal heuristic H is to be applied at every iteration.

7.9 Lagrangean GRASP heuristics 159

7.9.3 Lagrangean GRASP

Different choices for the primal heuristic H in the template of Algorithm 7.2 lead
to distinct Lagrangean heuristics. We consider two variants: the first makes use of
a greedy algorithm with local search, while in the second a GRASP with path-
relinking heuristic is used.

Greedy heuristic: This heuristic repairs the solution x(λ q) produced in line 7 of
the Lagrangean heuristic described in Algorithm 7.2 to make it feasible for problem
P . It makes use of the modified costs (c′ or c̄). Local search can be applied to the
resulting solution, using the original cost vector c. We refer to this approach as a
greedy Lagrangean heuristic (GLH).

GRASP heuristic: Instead of simply performing one construction step followed
by local search as for GLH, this variant applies a GRASP heuristic to repair the
solution x(λ q) produced in line 7 of the Lagrangean heuristic to make it feasible for
problem P .

Although the GRASP heuristic produces better solutions than the greedy heuris-
tic, the greedy heuristic is much faster. To appropriately address this trade-off, we
adapt line 10 of Algorithm 7.2 to use the GRASP heuristic with probability β and
the greedy heuristic with probability 1−β , where β is a parameter of the algorithm.

We note that this strategy involves three main parameters: the number H of iter-
ations after which the basic heuristic is always applied, the number Q of iterations
performed by the GRASP heuristic when it is chosen as the primal heuristic, and
the probability β of choosing the GRASP heuristic as H . We shall refer to the
Lagrangean heuristic that uses this hybrid strategy as LAGRASP(β ,H,Q).

We next summarize computational results obtained for 135 instances of the set
k-covering problem. These instances have up to 400 constraints and 4000 binary
variables.

The first experiment with the GRASP Lagrangean heuristic established the rela-
tionship between running times and solution quality for different parameter settings.
Parameter β , the probability of GRASP being applied as the heuristic H , was set to
0, 0.25, 0.50, 0.75, and 1. Parameter H, the number of iterations between successive
calls to the heuristic H , was set to 1, 5, 10, and 50. Parameter Q, the number of
iterations carried out by the GRASP heuristic, was set to 1, 5, 10, and 50. By com-
bining some of these parameter values, 68 variants of the hybrid LAGRASP(β ,H,Q)
heuristic were created. Each variant was applied eight times to a subset formed by 21
instances, with different initial seeds being given to the random number generator.

The plot in Figure 7.3 summarizes the results for all variants evaluated, display-
ing points whose coordinates are the values of the average deviation from the best
known solution value and the total time in seconds for processing the eight runs on
all instances, for each combination of parameter values. Eight variants of special
interest are identified and labeled with the corresponding parameters β , H, and Q,
in this order. These variants correspond to selected Pareto points in the plot in Fig-
ure 7.3. Setting β = 0 and H = 1 corresponds to the greedy Lagrangean heuristic
(GLH) or, equivalently, to LAGRASP(0,1,-), whose average deviation from the best

160 7 Extended construction heuristics

value amounted to 0.12% in 4,859.16 seconds of total running time. Table 7.3 shows
the average deviation from the best known solution value and the total time for each
of the eight selected variants.

 100

 1000

 10000

 100000

 1e+06

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

T
im

e
(s

)

AvgDev (%)

(0,1,-)

(0,50,-)

(0.25,5,1)

(0.25,5,5)

(0.25,5,10)

(0.25,50,5)

(0.50,1,1)

(1,1,50)

Fig. 7.3 Average deviation from the best value and total running time for 68 different variants of
LAGRASP on a reduced set of 21 instances of the set k-covering problem: each point represents a
unique combination of parameters β , H, and Q.

Table 7.3 Summary of the numerical results obtained with the selected variants of the GRASP
Lagrangean heuristic on a reduced set of 21 instances of the set k-covering problem. These values
correspond to the coordinates of the selected variants in Figure 7.3. The total time is given in
seconds.
Heuristic Average deviation Total time (s)

LAGRASP(1,1,50) 0.09 % 399,101.14
LAGRASP(0.50,1,1) 0.11 % 6,198.46
LAGRASP(0,1,-) 0.12 % 4,859.16
LAGRASP(0.25,5,10) 0.24 % 4,373.56
LAGRASP(0.25,5,5) 0.25 % 2,589.79
LAGRASP(0.25,5,1) 0.26 % 1,101.64
LAGRASP(0.25,50,5) 0.47 % 292.95
LAGRASP(0,50,-) 0.51 % 124.26

In another experiment, all 135 test instances were considered for the compari-
son of the above selected eight variants of LAGRASP. Table 7.4 summarizes the
results obtained by the eight selected variants. It shows that LAGRASP(1,1,50)

7.9 Lagrangean GRASP heuristics 161

found the best solutions, with their average deviation from the best values amount-
ing to 0.079%. It also found the best known solutions in 365 executions, again with
the best performance when the eight variants are evaluated side by side, although
at the cost of the longest running times. On the other hand, the smallest running
times were observed for LAGRASP(0,50,-), which was over 3000 times faster than
LAGRASP(1,1,50) but found the worst-quality solutions among the eight variants
considered.

Table 7.4 Summary of the numerical results obtained with the selected variants of the GRASP
Lagrangean heuristic on the full set of 135 instances of the set k-covering problem. The total time
is given in seconds.

Heuristic Average deviation Hits Total time (s)

LAGRASP(1,1,50) 0.079 % 365 1,803,283.64
LAGRASP(0.50,1,1) 0.134 % 242 30,489.17
LAGRASP(0,1,-) 0.135 % 238 24,274.72
LAGRASP(0.25,5,10) 0.235 % 168 22,475.54
LAGRASP(0.25,5,5) 0.247 % 163 11,263.80
LAGRASP(0.25,5,1) 0.249 % 164 5,347.78
LAGRASP(0.25,50,5) 0.442 % 100 1,553.35
LAGRASP(0,50,-) 0.439 % 97 569.30

Figure 7.4 illustrates the merit of the proposed approach for one of the test
instances. We first observe that all variants reach the same lower bounds, which
is expected since they depend exclusively on the common subgradient algorithm.
However, as the lower bound appears to stabilize, the upper bound obtained by
LAGRASP(0,1,-) (or GLH) also seems to freeze. On the other hand, the other vari-
ants continue to make improvements in discovering better upper bounds, since the
randomized GRASP construction help them to escape from locally optimal solu-
tions and find new, improved upper bounds.

Finally, we also report on the comparison of the performance of GRASP with
backward path-relinking and LAGRASP when the same time limits are used as the
stopping criterion for all heuristics and variants running on all 135 test instances.
Eight runs were performed for each heuristic and each instance, using different
initial seeds for the random number generator. The results in Table 7.5 show that
all variants of LAGRASP outperformed GRASP with backward path-relinking and
were able to find solutions whose costs are very close to or as good as the best known
solution values, while GRASP with backward path-relinking found solutions whose
costs are on average 4.05% larger than the best known solution values.

Figure 7.5 displays for one test instance the typical behavior of these heuristics.
As opposed to the GRASP with path-relinking heuristic, the Lagrangean heuristics
are able to escape from local optima for longer and keep on improving the solutions
to obtain the best results.

To conclude, we note that an important feature of Lagrangean heuristics is that
they provide not only a feasible solution (which gives an upper bound, in the case
of a minimization problem), but also a lower bound that may be used to give an
estimate of the optimality gap that may be considered as a stopping criterion.

162 7 Extended construction heuristics

 10300

 10400

 10500

 10600

 10700

 10800

 10900

 0 500 1000 1500 2000 2500

Lo
w

er
 a

nd
 u

pp
er

 b
ou

nd
s

Iterations

LAGRASP(1,1,50) UB
LAGRASP(0.50,1,1) UB

LAGRASP(0,1,-) UB
LAGRASP(0.25,5,10) UB

LAGRASP(0.25,5,5) UB
LAGRASP(0.25,5,1) UB

LAGRASP(0.25,50,5) UB
LAGRASP(0,50,-) UB

Lower Bound

Fig. 7.4 Evolution of lower and upper bounds over the iterations for different variants of LA-
GRASP. The number of iterations taken by each LAGRASP variant depends on the step size,
which in turn depends on the upper bounds produced by each heuristic.

Table 7.5 Summary of results for the best variants of LAGRASP and GRASP.

Heuristic Average deviation Hits

LAGRASP(1,1,50) 3.30 % 0
LAGRASP(0.50,1,1) 0.35 % 171
LAGRASP(0,1,-) 0.35 % 173
LAGRASP(0.25,5,10) 0.45 % 138
LAGRASP(0.25,5,5) 0.45 % 143
LAGRASP(0.25,5,1) 0.46 % 137
LAGRASP(0.25,50,5) 0.65 % 97
LAGRASP(0,50,-) 0.65 % 93
GRASP with backward path-relinking 4.05 % 0

7.10 Bibliographical notes

The Reactive GRASP approach considered in Section 7.1 was developed by Prais
and Ribeiro (2000a) in the context of a traffic assignment problem in communi-
cation satellites. It has been widely explored and used in a number of successful
applications. Computational experiments on this traffic assignment problem,
reported in Prais and Ribeiro (2000a), showed that Reactive GRASP found bet-
ter solutions than the basic algorithm for many test instances. In addition to the
applications in Prais and Ribeiro (1999; 2000a;b), this approach was used in power

7.10 Bibliographical notes 163

 10400

 10450

 10500

 10550

 10600

 10650

 10700

 10750

 10800

 0 5 10 15 20 25 30

C
os

t

Time (s)

GPRb
LAGRASP(1,1,50)

LAGRASP(0.50,1,1)
LAGRASP(0,1,-)

LAGRASP(0.25,5,10)
LAGRASP(0.25,5,5)
LAGRASP(0.25,5,1)

LAGRASP(0.25,50,5)
LAGRASP(0,50,-)

Fig. 7.5 Evolution of solution costs with time for the best variants of LAGRASP and GRASP with
backward path-relinking.

transmission network expansion planning (Bahiense et al., 2001; Binato and Oliveira,
2002), job shop scheduling (Binato et al., 2002), parallel machine scheduling with
setup times (Kampke et al., 2009), balancing reconfigurable transfer lines (Es-
safi et al., 2012), container loading (Parreño et al., 2008), channel assignment in
mobile phone networks (Gomes et al., 2001), broadcast scheduling (Butenko et al.,
2004; Commander et al., 2004), just-in-time scheduling (Alvarez-Perez et al., 2008),
single machine scheduling (Armentano and Araujo, 2006), examination schedul-
ing (Casey and Thompson, 2003), semiconductor manufacturing (Deng et al., 2010),
rural road network development (Scaparra and Church, 2005), maximum diver-
sity (Duarte and Martı́, 2007; Santos et al., 2005; Silva et al., 2004), max-min
diversity (Resende et al., 2010a), capacitated location (Delmaire et al., 1999),
locating emergency services (Silva and Serra, 2007), point-feature cartographic
label placement (Cravo et al., 2008), set packing (Delorme et al., 2004), strip-
packing (Alvarez-Valdes et al., 2008b), biclustering of gene expression data (Dharan
and Nair, 2009; Das and Idicula, 2010), constrained two-dimensional nonguillo-
tine cutting (Alvarez-Valdes et al., 2004), capacitated clustering (Deng and Bard,
2011), capacitated multi-source Weber problem (Luis et al., 2011), capacitated
location routing (Prins et al., 2005), vehicle routing (Repoussis et al., 2007), fam-
ily traveling salesperson (Morán-Mirabal et al., 2014), driver scheduling (Leone
et al., 2011), portfolio optimization (Anagnostopoulos et al., 2010), automated test
case prioritization (Maia et al., 2010), Golomb ruler search (Cotta and Fernández,

164 7 Extended construction heuristics

2004), commercial territory design motivated by a real-world application in a
beverage distribution firm (Rı́os-Mercado and Fernández, 2009), combined produc-
tion-distribution (Boudia et al., 2007), and therapist routing and scheduling (Bard
et al., 2014), among others.

The use of probabilistically determined values of the construction parameter α
reported in Section 7.2 originally appeared in Prais and Ribeiro (1999; 2000b).
The four tested strategies were incorporated into basic GRASP heuristics imple-
mented for matrix decomposition for traffic assignment in communication satel-
lites (Prais and Ribeiro, 2000a), set covering (Feo and Resende, 1989), weighted
MAX-SAT (Resende et al., 1997; 2000), and graph planarization (Resende and
Ribeiro, 1997; Ribeiro and Resende, 1999).

The two alternative randomized greedy approaches described in Section 7.3 were
originally proposed in Resende and Werneck (2004) and compared with the semi-
greedy algorithm for the p-median problem.

The idea of introducing perturbations into the original costs discussed in Sec-
tion 7.4 is similar to that used in the so-called “noising” method of Charon and
Hudry (1993; 2002). It was first applied in the context of GRASP to the shortest
path heuristic of Takahashi and Matsuyama (1980), which is used as the main build-
ing block of the construction phase of the hybrid procedure proposed by Ribeiro
et al. (2002) for the Steiner tree problem in graphs.

Another situation where cost perturbations can be very effective appears when
no greedy algorithm is available for straightforward randomization. Canuto et al.
(2001) made effective use of cost perturbations in their GRASP heuristic for the
prize-collecting Steiner tree problem in graphs, for which no greedy algorithm was
available to build starting solutions. In that case, the primal-dual algorithm of Goe-
mans and Williamson (1996) was applied to build initial solutions, using different
perturbed costs at each iteration of the hybrid GRASP procedure.

In the construction procedure of the basic GRASP, the next element to be in-
troduced in the solution is chosen at random from the restricted candidate list. The
elements of the restricted candidate list are assigned equal probabilities of being
chosen. However, any probability distribution can be used to bias the selection to-
wards some particular candidates. Bresina (1996) proposed a family of probability
distributions to bias the selection mechanism in the construction phase of GRASP
towards some particular candidates, as described in Section 7.5, instead of randomly
choosing any element in the restricted candidate list (the basic GRASP heuristic
uses a random bias function). Bresina’s selection procedure applied to elements of
the restricted candidate list was used in Binato et al. (2002).

Adaptive memory fundamentals and uses are reported by Rochat and Taillard
(1995), Fleurent and Glover (1999), Patterson et al. (1999), Melián et al. (2004),
and Martı́ et al. (2013a). Fleurent and Glover (1999) proposed the use of the long-
term memory scheme described in Section 7.6 in multistart heuristics. The function
K(e) can vary with time by changing the value of λ . Procedures for changing the
value of λ were reported by Binato et al. (2002).

Glover and Laguna (1997) stated the proximate optimality principle as intro-
duced in Section 7.7. Fleurent and Glover (1999) provided its interpretation in the

7.10 Bibliographical notes 165

context of GRASP and suggested the application of local search also during the con-
struction phase. Local search was applied by Binato et al. (2002) after 40% and 80%
of the construction moves have been taken, as well as at the end of the construction
phase.

Section 7.8 presented alternative construction strategies based on the use of fre-
quent patterns that appear in high-quality solutions previously detected. Vocabulary
building and data mining can be combined into efficient pattern-based implementa-
tions of GRASP or other multistart procedures. Vocabulary building is an intensifi-
cation strategy originally proposed in Glover and Laguna (1997) and Glover et al.
(2000) for creating new solutions from good fragments of high-quality solutions
previously found and stored in an elite set. See also Scholl et al. (1998) and Berger
et al. (2000) for some successful applications. Aloise and Ribeiro (2011) developed
a multistart procedure based on vocabulary building for multicommodity network
design.

Data mining refers to the automatic extraction of new and potentially useful
knowledge from data sets (Han et al., 2011; Witten et al., 2011). The extracted
knowledge, expressed in terms of patterns or rules, represents important features
of the data set at hand. The extraction of frequent items is one of the issues in-
volved in the data mining process. Some algorithms exist to efficiently mine fre-
quent items (Agrawal and Srikant, 1994; Han et al., 2000; Orlando et al., 2002;
Goethals and Zaki, 2003). The patterns mined in the context of GRASP correspond
to subsets of attributes that frequently appear in elite solutions.

The hybridization of GRASP with a data mining process was first introduced
and applied to the set packing problem by Ribeiro et al. (2004; 2006). Afterwards,
the method was evaluated in the context of three other applications, namely the
maximum diversity problem (Santos et al., 2005), the server replication for reliable
multicast problem (Santos et al., 2006), and the p-median problem (Plastino et al.,
2009), with equally successful outcomes. The DM-GRASP hybrid heuristic, devel-
oped by Ribeiro et al. (2006), used a frequent item strategy that enhanced GRASP
in terms of both solution quality and computation times. Frequent items extracted
from the elite set represent patterns appearing in high-quality solutions, which are
then used to perform an adapted construction phase which makes use of them. Fre-
quent patterns are mined by the FPMax* algorithm (Grahne and Zhu, 2003). This
hybridization strategy was also successfully applied to other combinatorial opti-
mization problems (Santos et al., 2008; Plastino et al., 2009; 2011).

The MDM-GRASP variant, which performs data mining not only in the first
phase, but also along the entire execution of the algorithm whenever the elite set
changes, was developed by Barbalho et al. (2013) and Plastino et al. (2014). These
references give numerical evidence that DM-GRASP and MDM-GRASP are able to
improve not only the basic GRASP heuristic, but also implementations of Reactive
GRASP and of GRASP with path-relinking.

Lagrangean relaxation (Beasley, 1993; Fisher, 2004) is a mathematical program-
ming technique that can be used to provide lower bounds for minimization prob-
lems. Held and Karp (1970; 1971) were among the first to explore the use of the dual
multipliers produced by Lagrangean relaxation to derive lower bounds, applying

166 7 Extended construction heuristics

this idea in the context of the traveling salesman problem. Lagrangean heuristics
further explore the use of different dual multipliers to generate feasible solutions.
Beasley (1987; 1990b) described a Lagrangean heuristic for set covering, which can
be extended to the set k-covering problem. The set multicovering or set k-covering
problem is an extension of the classical set covering problem, in which each object
is required to be covered at least k times. The problem finds applications in the de-
sign of communication networks and in computational biology. Pessoa et al. (2011;
2013) proposed the hybridization of GRASP and Lagrangean relaxation leading to
the Lagrangean GRASP heuristic described in Section 7.9. They generated 135 set
k-covering instances from 45 set covering instances of the OR-Library (Beasley,
1990a), using three different coverage factors k. The experiments they performed
were on a 2.33 GHz Intel Xeon E5410 Quadcore computer running Linux Ubuntu
8.04. All algorithms were implemented in C and compiled with gcc 4.1.2. They
used the same strategy proposed by Held et al. (1974) for updating the dual multi-
pliers from one iteration to the next. Beasley (1990b) reported as computationally
useful the adjustment of components of the subgradients to zero whenever they do
not effectively contribute to the update of the multipliers, i.e., arbitrarily setting
gqi = 0 whenever gqi > 0 and λ q

i = 0, for i= 1, . . . ,m.

Chapter 8
Path-relinking

Path-relinking is a search intensification strategy. As a major enhancement to heuris-
tic search methods for solving combinatorial optimization problems, its hybridiza-
tion with other metaheuristics has led to significant improvements in both solution
quality and running times of hybrid heuristics. In this chapter, we review the fun-
damentals of path-relinking, implementation issues and strategies, and the use of
randomization in path-relinking.

8.1 Template and mechanics of path-relinking

Path-relinking is an intensification strategy to explore trajectories connecting elite
solutions (i.e., high-quality solutions) of combinatorial optimization problems. In
this section, we focus on the path-relinking operator, including its template and
mechanics.

As introduced in Chapter 4, we consider the search space graph G = (F,M) as-
sociated with a combinatorial optimization problem. The nodes of this graph corre-
spond to the set F of feasible solutions. There is an edge (S,S′) ∈M if and only if
S ∈ F , S′ ∈ F , S′ ∈ N(S), and S ∈ N(S′), where N(S)⊆ F is the neighborhood of S.
Path-relinking is usually carried out between two solutions in F: one is the initial
solution Si, while the other is the guiding solution Sg. One or more paths connecting
these solutions in the search space graph can be explored by path-relinking in the
search for better solutions. Local search is often applied to the best solution in each
of these paths since there is no guarantee that this solution is locally optimal.

8.1.1 Restricted neighborhoods

Let S ∈ F be any solution (i.e., a node) on a path in G leading from the initial
solution Si ∈ F to the guiding solution Sg ∈ F . Not all solutions in the neighborhood

© Springer Science+Business Media New York 2016
M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP,
DOI 10.1007/978-1-4939-6530-4 8

167

168 8 Path-relinking

N(S) are allowed to follow S on this path from Si to Sg. Path-relinking restricts its
possible choices to the feasible solutions in N(S) that are more similar to Sg than S is
(measures of solution similarity will be discussed later). We denote by N(S : Sg) ⊆
N(S) this restricted neighborhood, which is therefore defined exclusively by moves
that introduce in S attributes of the guiding solution Sg that do not appear in S.

The elements of the ground set E that appear in S but not in Sg are those that
must be removed from the current solution S in a path leading to Sg. Similarly, the
elements of the ground set E that appear in Sg but not in S are those that must be
incorporated into S in a path leading to Sg. The restricted neighborhood N(S : Sg) is
formed by all feasible solutions in N(S) that may appear in a path from S to Sg.

Therefore, path-relinking may be viewed as a strategy that seeks to incorporate
attributes of a guiding solution (which is often a high-quality solution) into the cur-
rent solution, by favoring these attributes in the selected moves. After evaluating
each potential move leading to a feasible solution in N(S : Sg), the most common
strategy is a greedy approach, where one selects the move resulting in a best-quality
restricted neighbor of S that is closer to Sg than S is.

We next illustrate the restricted neighborhoods used by path-relinking with three
examples.

Minimum spanning tree problem – Restricted neighborhood

Consider the weighted graph depicted in Figure 8.1(a) and two of its spanning trees
in Figures 8.1(b) and 8.1(c). Suppose the spanning tree in Figure 8.1(b) is the current
solution S and the one in Figure 8.1(c) is the guiding solution Sg. The total weight
of solution S is 35, while that of Sg is 32.

Fig. 8.1 Current and guiding solutions for path-relinking applied to the minimum spanning tree
problem.

Edges (3,4), (1,3), and (2,5) are present in Sg but not in S, while edges (2,4),
(1,2), and (1,5) appear in S but not in Sg. Therefore, to transform solution S into
Sg it is necessary that all edges (2,4), (1,2), and (1,5) be removed from S and be
replaced by the three edges (3,4), (1,3), and (2,5) that originally appear only in Sg.

8.1 Template and mechanics of path-relinking 169

If N is a swap neighborhood, then there are nine moves associated with ordered pairs
of edges such that the first belongs to S but not to Sg (edge to be removed from S),
while the second belongs to Sg but not to S (edge to be added to S). However, note
that only four of the solutions resulting from these moves are feasible, corresponding
to four ordered pairs of edges to be swapped: swap edge (2,4) with (3,4), edge (1,2)
with (1,3), edge (1,5) with (2,5), and edge (1,2) with (2,5). Swapping, e.g., edge
(1,2) with (3,4) would lead to an infeasible solution corresponding to a graph with
two connected components (the first would be the cycle formed by nodes 2, 3, and
4, with the second being the edge connecting nodes 1 and 5).

This situation is illustrated in Figure 8.2, in which only four moves lead to the
feasible solutions in the restricted neighborhoodN(S : Sg). If edge (3,4) is added to
S, then the cycle (3,4)− (2,4)− (2,3) is created. This is followed by the removal of
edge (2,4), leading to solution A. If edge (1,3) is added to S, then the cycle (1,3)−
(2,3)−(1,2) is created. In this case, edge (1,2) is removed from S and solution B is
obtained. If edge (2,5) is added to S, then the cycle (2,5)− (1,5)− (1,2) is created.
One possible edge to be removed is (1,5), leading to solution C. Finally, we note
that edge (1,2) may also be removed following the addition of edge (2,5), in which
case the feasible solution D is obtained.

Traveling salesman problem – Restricted neighborhood

We now consider the traveling salesman problem associated with the weighted
graph in Figure 8.3(a). Two of its Hamiltonian cycles are depicted in Figures 8.3(b)
and 8.3(c). Suppose the tour in Figure 8.3(b) is the current solution represented by
the linear permutation S= (1,2,3,4,5), while that in Figure 8.3(c) is the guiding so-
lution associated with the linear permutation Sg = (1,3,5,2,4). We note that these
two linear permutations correspond to two different circular permutations of the five
cities, i.e., they are associated with two different tours. The total length of solution
S is 17, while that of Sg is 18.

We observe that these two solutions only match in the first component of their as-
sociated linear permutations, i.e., both start from vertex 1: S(1) = Sg(1) = 1. There-
fore, there are four misplaced cities between S and Sg, each of them corresponding
to a position in the tour for which the two linear permutations originally differ.

Let us suppose that neighborhoodN2 defined for the traveling salesman problem
in Section 4.1 is being used. Each neighbor is obtained by a move consisting of
the exchange of two cities in different positions of the current solution S. Therefore,
solution S=(1,2,3,4,5) has six neighbors if node 1 is fixed as the first: (1,3,2,4,5),
(1,2,4,3,5), (1,2,3,5,4), (1,4,3,2,5), (1,2,5,4,3), and (1,5,3,4,2). Since Sg =
(1,3,5,2,4) is the guiding solution, four out of these six solutions in neighborhood
N2(S) also belong to the restricted neighborhood N(S : Sg), each of them making
the position of a new city coincide in the new solution and in Sg: solution A =
(1,3,2,4,5) makes node 3 the second in the tour, solution B = (1,2,5,4,3) makes
node 5 the third in the tour, solution C = (1,4,3,2,5) makes node 2 the fourth in the
tour, and solution D = (1,2,3,5,4) makes node 4 the last in the tour.

170 8 Path-relinking

Fig. 8.2 Minimum spanning tree problem: four swap moves from the current solution S towards
the guiding solution Sg.

The restricted neighborhood N(S : Sg) is shown in Figure 8.4, where we
denote by swap(i, j) the move that swaps the cities in positions i and j of the linear
permutation associated with the current solution S and makes at least one of them
coincide with its final position in the linear permutation corresponding to the guiding
solution Sg. �

8.1 Template and mechanics of path-relinking 171

Fig. 8.3 Current solution S = (1,2,3,4,5) and guiding solution Sg = (1,3,5,2,4) for path-
relinking applied to the traveling salesman problem.

Knapsack problem – Restricted neighborhood

We consider the optimization version of the knapsack problem, as introduced in
Section 1.2. In this problem, one has a set I = {1, . . . ,n} of items to be placed in
a knapsack. Integer numbers ai and ci represent, respectively, the weight and the
utility of each item i ∈ I. We assume that each item fits in the knapsack by itself and
denote by b the maximum total weight that can be taken in the knapsack. We have
seen in Section 4.1 that every solution S of the knapsack problem can be represented
by a binary vector (x1, . . . ,xn), in which xi = 1 if item i is selected, xi = 0 otherwise,
for every i= 1, . . . ,n. A solution S = (x1, . . . ,xn) is feasible if ∑i∈I ai · xi ≤ b.

We recall the example in Figure 2.5, where four items are available to be placed
in a knapsack of capacity 19. The weights of the yellow and green items are each
equal to 10 and those of the blue and red items are both equal to 5. Therefore,
only two of the four items fit together in the knapsack. The two heaviest items have
utilities 20 and 10 to the hiker, while the two items with least weights have utilities
10 and 5. We consider the red, green, blue, and yellow items indexed by 1, 2, 3,
and 4, respectively. The four items are illustrated in Figure 8.5(a) and two feasible
solutions appear in Figures 8.5(b) and 8.5(c). Suppose the solution in Figure 8.5(b)
is the current solution represented by vector S = (1,1,0,0), while the solution in
Figure 8.5(c) is the guiding solution associated with vector Sg = (0,0,1,1).

These two solutions differ in all elements. Therefore, there are four moves in a
path leading from S to Sg, each of them corresponding to an item that appears in one
solution, but not in the other. Following the solution representation proposed for the
knapsack problem in Section 4.1, there are four possible neighbors in N(S), each
of them corresponding to flipping the value of one variable of the current solution
S. We denote by flip(j) the move that replaces the value of x(j) by 1− x(j), for
j = 1, . . . ,n: flip(1) sets x1 = 0, flip(2) sets x2 = 0, flip(3) sets x3 = 1, and flip(4)
sets x4 = 1. However, since the two last moves lead to infeasible solutions, the re-
stricted neighborhoodN(S : Sg) illustrated in Figure 8.6 contains only two solutions:
solution A = (0,1,0,0) and solution B = (1,0,0,0), corresponding, respectively, to
the moves flip(1) that sets x1 = 0 and flip(2) that sets x2 = 0. �

172 8 Path-relinking

Fig. 8.4 Traveling salesman problem: four moves from the current solution S towards the guiding
solution Sg.

8.1 Template and mechanics of path-relinking 173

Fig. 8.5 Current and guiding solutions for a knapsack problem with four items.

Fig. 8.6 Knapsack problem: two moves from the current solution S towards the guiding solu-
tion Sg.

8.1.2 A template for forward path-relinking

The algorithm in Figure 8.7 is an implementation of forward path-relinking for a
minimization problem, where Si ∈ F is the initial solution and Sg ∈ F is the guiding
solution. We assume that the guiding solution Sg is at least as good as (and possibly
better than) the initial solution Si, hence the qualification of this strategy as forward.
The current solution, the incumbent, and their cost are initialized in lines 1 to 3.

In line 4, the algorithm checks if the restricted neighborhood N(S : Sg) ⊆ N(S)
contains at least one feasible solution. In most cases, the restricted neighborhood
N(S : Sg) does not have to be explicitly computed and stored: instead, its elements
may only be implicitly enumerated on-the-fly.

174 8 Path-relinking

Fig. 8.7 Pseudo-code for a template of a forward path-relinking algorithm for minimization prob-
lems.

As the algorithm traverses the path from S to Sg, the best restricted neighbor
solution of the current solution is selected at each iteration. A path from the initial
solution Si to the guiding solution Sg is created in the loop going from line 4 to 10.
The best restricted neighbor S is selected in line 5. Lines 6 to 9 update the best
solution S∗ and its cost if a new best-quality solution is found.

Since the best solution found along the path from Si to Sg may not be locally
optimal, local search is applied to it in line 11 and the final solution obtained by
forward path-relinking and its cost are returned in line 12.

Knapsack problem – Forward path-relinking

Figure 8.8 illustrates the full application of forward path-relinking to the same in-
stance of the knapsack problem with four items that was used in the last exam-
ple presented in the previous section. As before, we consider the red, green, blue,
and yellow items indexed by 1, 2, 3, and 4, respectively, and we denote by flip(j)
the move that replaces the current value of x j by 1 − x j. The initial solution is
Si = (1,1,0,0) and the guiding solution is Sg = (0,0,1,1). We recall that the knap-
sack capacity is 19.

The first iteration of path-relinking corresponds to the example in Section 8.1.
The initial solution is S = Si = (1,1,0,0) and there are two possible moves in the
restricted neighborhood: flip(1) sets x1 = 0 and leads to solution A = (0,1,0,0),
whose utility is 10, while flip(2) sets x2 = 0 and leads to solution B = (1,0,0,0),
whose utility is 5. Since we are facing a maximization problem, move flip(1) is
selected. Item 1 is removed from the knapsack and path-relinking proceeds from
solution A. The second iteration begins with two possible moves to incorporate
attributes of the guiding solution Sg = (0,0,1,1,) into the current solution A: flip(2)
sets x2 = 0 and leads to solution C = (0,0,0,0), whose utility is 0, while flip(3)
sets x3 = 1 and leads to solution D = (0,1,1,0), whose utility is 20. Move flip(3) is
selected, item 3 is included in the knapsack, and path-relinking moves to solution
D. At this time, there is only one possible remaining move to be applied to solution

8.2 Other implementation strategies for path-relinking 175

Fig. 8.8 Example of forward path-relinking applied to an instance of the knapsack problem with
four items: the path from the initial solution Si = (1,1,0,0) to the guiding solution Sg = (0,0,1,1)
has exactly four moves, corresponding to the number of items by which the initial and guiding
solutions differ. In this example, the best solution along the generated path coincides with the
guiding solution Sg.

D that makes the resulting solution closer, or more similar, to the guiding solution:
flip(2) sets x2 = 0 and leads to solution E = (0,0,1,0), whose utility is 10. Finally,
once again there is only one possible move to be performed at the fourth and last
iteration: flip(4) sets x4 = 1 and leads to solution F = (0,0,1,1), which coincides
with Sg and whose utility is 30.

The initial and guiding solutions differ by all four elements, each of them cor-
responding to a move that would make the current solution closer to the guiding
solution. As expected, path-relinking reaches the guiding solution after exactly four
moves. In this particular example, the best solution along the generated path coin-
cided with the guiding solution Sg. However, in many cases, the best solution found
improves both the initial and the guiding solutions, as will be illustrated later in this
chapter. �

8.2 Other implementation strategies for path-relinking

Path-relinking can be implemented using different strategies, as illustrated in Fig-
ure 8.9. These include not only forward path-relinking, as seen in Section 8.1.2, but
also backward, back-and-forward, mixed, truncated, greedy randomized adaptive,

176 8 Path-relinking

gnikniler-htapdrawkcaBgnikniler-htapdrawroF

Mixed path-relinking

Fig. 8.9 Different implementations of path-relinking: (a) Forward path-relinking: a path is tra-
versed from the initial solution Si to a guiding solution Sg at least as good as Si. (b) Backward
path-relinking: a path is traversed from the initial solution Si to a guiding solution Sg that is not
better than Si. (c) Mixed path-relinking: two subpaths are traversed, one starting at Si and the other
at Sg, which eventually meet in the middle of the trajectory connecting Si and Sg.

external, and evolutionary path-relinking, together with their hybrids. All these
strategies involve trade-offs between computation time and solution quality.

8.2.1 Backward and back-and-forward path-relinking

Suppose that path-relinking is applied to a minimization problem between two so-
lutions S1 and S2 such that f (S1)≤ f (S2), where f (S) denotes the value of solution
S for the objective function to be minimized. Path-relinking is always carried out
from an initial solution Si to a guiding solution Sg. We have seen in Section 8.1.2
that in the case of forward path-relinking, the initial and guiding solutions are set as
Si = S2 and Sg = S1: in this case, the initial solution is not better than the guiding
solution.

8.2 Other implementation strategies for path-relinking 177

Conversely, in backward path-relinking, we set Si = S1 and Sg = S2: now,
the guiding solution is not better than the initial solution. In back-and-forward
path-relinking, backward path-relinking is applied first, followed by forward path-
relinking. Path-relinking explores the restricted neighborhood of the initial solution
more thoroughly than the restricted neighborhood of the guiding solution because,
as it moves along the path, the size of the restricted neighborhood progressively
decreases. If one of the solutions S1 or S2 is strictly better than the other, then back-
ward path-relinking explores more thoroughly the restricted neighborhood of the
solution which is the best among S1 and S2. Since it is more likely to find an im-
proving solution in the restricted neighborhood of the better solution than in that
of the worse, backward path-relinking usually tends to perform better than forward
path-relinking. Back-and-forward path-relinking does at least as well as either back-
ward or forward path-relinking, but takes about twice as long to compute, since
two (usually distinct) paths of the same length are traversed. Computational exper-
iments have confirmed that backward path-relinking usually outperforms forward
path-relinking in terms of solution quality, while back-and-forward path-relinking
finds solutions at least as good as forward or backward path-relinking, but at the
expense of longer running times. Figure 8.10 illustrates this behavior on an instance
of a routing problem in private virtual networks.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

GRASP (no PR)
GRASP+forward-PR

GRASP+backward-PR
GRASP+back-and-forward-PR

Fig. 8.10 Time-to-target plots for pure GRASP and three variants of GRASP with path-relinking
(forward, backward, and back-and-forward) on an instance of a routing problem in private virtual
networks. The plots show that GRASP with backward path-relinking outperformed the other path-
relinking variants as well as the pure GRASP heuristic, which was the slowest to find a solution
whose value is at least as good as the target value.

178 8 Path-relinking

8.2.2 Mixed path-relinking

In applying mixed path-relinking between two feasible solutions Si and Sg, the con-
necting path is explored from both extremities. At each iteration of path-relinking,
the closest extremity to the new current solution alternates between the original
initial solution Si and the original guiding solution Sg. The search behaves as if so-
lutions in two different subpaths were visited alternately: the first of these subpaths
leaves from the initial solution Si and leads to the guiding solution Sg, while the sec-
ond emanates from Sg and develops towards Si. These two subpaths meet at some
feasible solution in the middle of the trajectory, thus connecting Si and Sg with a
single path. We observe that, in this case, the qualification of a solution as being
the initial or the guiding solution is meaningless, since the procedure behaves as if
they keep permanently interchanging their role until the end. Figure 8.11 illustrates
the steps of the application of mixed path-relinking to two solutions Si and Sg for
which the path connecting them is formed by five arcs. Moves alternate between the
subpath leaving from the left and the subpath leaving from the right.

Fig. 8.11 Mixed path-relinking between two solutions Si and Sg for which the path connecting
them is formed by five arcs: numbers above the arrows represent the order in which the moves
are performed. Moves alternate between the subpath leaving from the left and the subpath leaving
from the right.

Figure 8.12 shows the pseudo-code of a template for a mixed path-relinking al-
gorithm between solutions Si and Sg for a minimization problem. The pseudo-code
of algorithm MIXED-PR is basically the same of algorithm FORWARD-PR, except
for lines 10 to 12, in which the direction of the path is reversed by the exchange of
the roles of the guiding and current solutions.

8.2 Other implementation strategies for path-relinking 179

Fig. 8.12 Pseudo-code for a template of a mixed path-relinking algorithm for minimization prob-
lems.

While back-and-forward path-relinking thoroughly explores both restricted neigh-
borhoods of Si and Sg, the mixed variant explores the entire restricted neighborhood
of Si and all but one solution of the restricted neighborhood of Sg. This is in contrast
with both forward and backward path-relinking, which each fully explore only one
of the restricted neighborhoods.

Furthermore, mixed path-relinking explores half as many restricted neighbors
as back-and-forward path-relinking and the same number of neighbors as either
the backward or forward variants. Figure 8.13 illustrates the comparison of a pure
GRASP heuristic with four of its variants combined with path-relinking and applied
to an instance of the 2-path network design problem: forward, backward, back-and-
forward, and mixed path-relinking. The time-to-target plots show that GRASP with
mixed path-relinking has the best runtime profile among the variants compared.

8.2.3 Truncated path-relinking

One can expect to see most solutions produced by path-relinking to come from
subpaths that are close to either the initial or the guiding solution.

Figure 8.14 illustrates this observation for 80 instances of the max-min diver-
sity problem, where a GRASP with back-and-forward path-relinking was run on
each instance for two minutes. In each application of path-relinking, the step which
produced the best path-relinking solution was recorded. For each instance, the to-
tal numbers of best path-relinking solutions found in each tenth of the traversed
paths were added up and the average numbers of solutions found in each tenth were

180 8 Path-relinking

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

GRASP+ mixed PR
GRASP+backward PR

GRASP+back-and-forward PR
GRASP+forward PR

GRASP (no PR)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

GRASP+mixed PR
GRASP+backward PR

GRASP+back-and-forward PR
GRASP+forward PR

Fig. 8.13 Time-to-target plots for pure GRASP and four variants of GRASP with path-relinking
(forward, backward, back-and-forward, and mixed) on an instance of the 2-path network design
problem. The plot on the bottom compares only the variants that include path-relinking.

computed. It was shown experimentally that exploring only the subpaths near the
extremities often produces solutions as good as those found by exploring the en-
tire path, since there is a higher concentration of better solutions close to the initial
and guiding solutions explored by path-relinking. The figure shows that most of the

8.3 Minimum distance required for path-relinking 181

best solutions obtained by path-relinking are found near the initial and guiding solu-
tions, and only in 15% of the calls to path-relinking would it be necessary to exploit
subpaths longer than 20% of the total number of moves.

It is straightforward to adapt path-relinking to explore only the restricted neigh-
borhoods that are close to the extremities. Truncated path-relinking can be applied to
either forward, backward, backward-and-forward, or mixed path-relinking: instead
of exploring the entire path, it just explores a fraction of the path and, consequently,
takes a fraction of the running time.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

fr
ac

tio
n

of
 b

es
t s

ol
ut

io
ns

 fo
un

d
in

 r
an

ge

range of path length in percent

0.518

0.018

0.166
0.140

Fig. 8.14 Fraction of the best solutions found by GRASP with backward-and-forward path-
relinking that appear in each range of the path length from the initial to the guiding solutions
on two-minute runs over 80 instances of the max-min diversity problem. Fifty four percent of the
best solutions were found in subpaths that originate at the initial solutions and appear within the
first 20% of the total number of moves performed, while 31% are close to the guiding solutions
and appear in the last 20% of the moves performed in each path.

8.3 Minimum distance required for path-relinking

We assume that we want to connect two locally optimal solutions S1 and S2 with
path-relinking. If S1 and S2 differ by only one of their components, then the path
directly connects the two solutions and no solution, other than S1 and S2, is visited.

Since S1 and S2 are both local minima, then f (S1)≤ f (S) for all S ∈ N(S1) and
f (S2)≤ f (S) for all S ∈ N(S2), where N(S) denotes the neighborhood of solution S.

182 8 Path-relinking

If S1 and S2 differ by exactly two moves, then any path between S1 and S2 visits ex-
actly one intermediary solution S ∈ N(S1)∩N(S2). Consequently, solution S cannot
be better than either S1 or S2.

Likewise, if S1 and S2 differ by exactly three moves, then any path between
them visits two intermediary solutions S ∈ N(S1) and S′ ∈ N(S2) and, consequently,
neither S nor S′ can be better than both S1 and S2.

Therefore, things only get interesting when the two solutions S1 and S2 differ by
at least four moves. Consequently, we can discard the application of path-relinking
to pairs of solutions differing by less than four moves.

8.4 Dealing with infeasibilities in path-relinking

So far in our discussion about path-relinking, we assumed that at least one restricted
neighbor of a solution S with respect to a target guiding solution Sg was feasible.
Consider line 5 of both path-relinking templates shown earlier in this chapter, where
we minimize f (S), for S ∈ F . This step selects the best restricted neighbor of the
current solution as argmin{ f (S′) : S′ ∈ N(S : Sg)}. However, it may occur that all
moves from the current solution S lead to infeasible solutions, i.e., N(S : Sg) = ∅

and the result of the argmin operator is undefined. In this situation, path-relinking
would have to stop.

Consider the example in Figures 8.15 to 8.17, where we are given a bipartite
graph with six nodes, A, B, C, D, E , and F , and seek a maximum independent set,
i.e., a set of mutually nonadjacent nodes of maximum cardinality. Suppose we are
given the initial solution Si = {A,B,C} and the guiding solution Sg = {D,E,F}, and
that we consider a neighborhood characterized by moves defined as swap(out, in),
where the node out is replaced by the node in in the solution. Since all nodes in
the initial solution must be removed from it and all nodes in the guiding solution Sg

must be inserted, there are nine moves that might be applied to build a path from
Si to Sg: swap(A,D), swap(A,E), swap(A,F), swap(B,D), swap(B,E), swap(B,F),
swap(C,D), swap(C,E), and swap(C,F). Applying any of these moves to Si results
in one of nine infeasible solutions. Infeasibilities correspond to edges connecting
pairs of nodes in a candidate independent set, i.e., they are associated with conflict-
ing edges. In the figures, infeasibilities are indicated by edges in red. Of the nine
moves, six lead to solutions that have a single infeasibility, while three lead to solu-
tions that have two conflicting edges. In such situations, one possible strategy that
might be applied is a greedy path-relinking operator that proceeds by moving to a
least-infeasible solution.

In this example, suppose solution {B,C,D} with a single infeasibility corre-
sponding to edge (B,D) is chosen, i.e., the algorithm moves to solution S =
{B,C,D}. Now, there are only four moves that might be applied to S to build a
path to Sg: swap(B,E), swap(B,F), swap(C,E), and swap(C,F). Again, all moves
lead to infeasible solutions, but two lead to a single infeasibility, while the others to
two infeasibilities. Suppose the greedy choice is to apply move swap(B,E) resulting

8.4 Dealing with infeasibilities in path-relinking 183

Fig. 8.15 First iteration of path-relinking for a 6-node maximum independent set problem where
all nine restricted neighbors of the initial solution are infeasible.

in solution S′ = {C,D,E}, with a single infeasibility corresponding to edge (C,E).
There is now only the move swap(C,F) leading from S′ to the guiding solution
Sg. In this example, all restricted neighbors on all paths from the initial solution to
the target solution are infeasible. In general, however, some may be feasible, some
infeasible.

In a revised path-relinking operator that allows moves to infeasible solutions,
each visited solution S may be in either one of two possible situations: either at
least one move from S leads to a feasible solution, in which case |N(S : Sg)| ≥ 1),

184 8 Path-relinking

Fig. 8.16 Second iteration of path-relinking for a 6-node maximum independent set problem where
all four restricted neighbors of the current solution are infeasible.

or, alternatively, all restricted moves lead to infeasible solutions and the restricted
neighborhood N(S : Sg) becomes empty before the guiding solution is reached. In
the first case, a greedy version of path-relinking selects a move that leads to a least
cost feasible neighbor of S. Otherwise, the selected move is one that leads to an
infeasible neighbor of S with minimum infeasibility.

The pseudo-code in Figure 8.18 presents a revised mixed path-relinking proce-
dure that allows feasible and infeasible moves. It is very similar to the template

8.5 Randomization in path-relinking 185

Fig. 8.17 Third iteration of path-relinking for a 6-node maximum independent set problem, in
which the path finally reaches the guiding solution.

presented in Figure 8.12, with the main difference corresponding to lines 4 to 10.
Both feasible and infeasible moves are allowed in the neighborhood N(S). As al-
ready observed for algorithm FORWARD-PR in Figure 8.7, the neighborhoodN(S)
does not necessarily have to be explicitly enumerated. If the algorithm detects in
line 5 that there is at least one move that once applied to S leads to a feasible so-
lution that is closer to Sg than S is, then the best restricted neighbor is selected in
line 6. Otherwise, the restricted neighborhood is empty. Denoting by infeasibility(S)
a measure of the degree of infeasibility of a solution S, line 8 selects the best infea-
sible neighbor of the current solution, i.e., the one with the smallest measure of
infeasibility. The updates in lines 11 and 12 are performed if the new incumbent
solution S is feasible and improves the best solution previously known.

8.5 Randomization in path-relinking

All previously described path-relinking strategies follow a greedy criterion to se-
lect the best move at each of their iterations. Therefore, path-relinking is limited to
exploring a single path from a set of exponentially many paths between any pair
of solutions. By adding randomization to path-relinking, greedy randomized adap-
tive path-relinking is not constrained to explore a single path. Instead of always
selecting the move that results in the best solution, a restricted candidate list is con-
structed with the moves that result in promising solutions with costs in an interval

186 8 Path-relinking

Fig. 8.18 Pseudo-code for a revised template of a mixed path-relinking algorithm for minimization
problems, with feasible and infeasible moves.

that depends on the values of the best and worst moves, as well as on a parameter
in the interval [0,1]. A move is selected at random from this set to produce the next
solution in the path.

By applying this strategy several times to the initial and guiding solutions, sev-
eral paths can be explored. This strategy is useful when path-relinking is applied
more than once to the same pair of solutions as it may occur in evolutionary path-
relinking, which we will introduce in the next chapter.

8.6 External path-relinking and diversification

So far in this chapter, we have considered variants of path-relinking in which a path
in the search space graph G = (F,M) connects two feasible solutions S,T ∈ F by
progressively introducing in one of them (the initial solution) attributes of the other
(the guiding solution). Since attributes common to both solutions are not changed
and all solutions visited belong to a path between the two solutions, we may also
refer to this type of path-relinking as internal path-relinking.

External path-relinking extends any path connecting S and T in G = (F,M)
beyond its extremities. To extend such a path beyond S, attributes not present in
either S or T are introduced in S. Symmetrically, to extend it beyond T , attributes
not present in either S or T are introduced in T . In its greedy variant, all moves are

8.6 External path-relinking and diversification 187

Fig. 8.19 An internal path (red arcs, red nodes) from solution S to solution T and two external
(blue arcs, blue nodes) paths, one emanating from solution S and the other from solution T . These
paths are produced by internal and external path-relinking.

evaluated and the solution chosen to be next in the path is one with best cost or, in
case they are all infeasible, the one with least infeasibility. In either direction, the
procedure stops when all attributes that do not appear in either S or T have been
tested for extending the path. Once both paths are complete, local search may be
applied to the best solution in each of them. The best of the two local minima is
returned as the solution produced by the external path-relinking procedure.

Figure 8.19 illustrates internal and external path-relinking. The path with red
nodes and edges is one resulting from internal path-relinking applied with S as the
initial solution and T as the guiding solution. We observe that the orientation intro-
duced by the arcs in this path is due only to the choice of the initial and guiding
solutions. If the roles of solutions S and T were interchanged, it could have been
computed and generated in the reverse direction. The same figure also illustrates
two paths obtained by external path-relinking, one emanating from S and the other
from T , both represented with blue nodes and edges. The orientations of the arcs
in each of these paths indicate that they necessarily emanate from either solution
S or T .

To conclude, we establish a parallel between internal and external path-relinking.
Since internal path-relinking works by fixing all attributes common to the initial and
guiding solutions and searches for paths between them satisfying this property, it is
clearly an intensification strategy. Contrarily, external path-relinking progressively
removes common attributes and replaces them by others that do not appear in either
one of the initial or guiding solution. Therefore, it can be seen as a diversification

188 8 Path-relinking

strategy which produces solutions increasingly farther from both the initial and the
guiding solutions. External path-relinking becomes therefore a tool for search diver-
sification.

8.7 Bibliographical notes

Path-relinking, as introduced in Section 8.1, was originally proposed by Glover
(1996b) as an intensification strategy to explore trajectories connecting elite solu-
tions obtained by tabu search or scatter search (Glover and Laguna, 1997; Glover,
2000; Glover et al., 2000; 2003; 2004). Accounts and surveys of path-relinking,
mostly in the context of GRASP applications, were authored by Resende and
Ribeiro (2005a), Resende et al. (2010b), and Ribeiro and Resende (2012). Forward
path-relinking corresponds to the original proposal for the implementation strategy.

Section 8.2 discussed other, more elaborate implementation strategies. The con-
cepts of backward as well as of back-and-forward path-relinking appeared first
in Ribeiro et al. (2002), with both names being later introduced in Aiex et al.
(2005). Computational experiments reported in Ribeiro et al. (2002) and Resende
and Ribeiro (2003a) were the first to show that backward path-relinking usually
outperforms forward path-relinking, while back-and-forward path-relinking finds
solutions at least as good as forward or backward path-relinking, but at the expense
of longer running times.

Mixed path-relinking was suggested by Glover (1996b) and was first imple-
mented and tested in the context of the 2-path network design problem by Rosseti
(2003), followed by results in Resende and Ribeiro (2005a) and Ribeiro and Rosseti
(2009), where it was shown that mixed path-relinking usually outperforms forward,
backward, and back-and-forward path-relinking.

Resende et al. (2010a) showed empirically, for instances of the max-min diversity
problem, that most of the best solutions obtained by path-relinking are found near
the initial and guiding solutions, and that more are found near the best of these two
solutions. Andrade and Resende (2007a) and Resende et al. (2010a) were the first
to apply truncated path-relinking.

Sections 8.3 to 8.6 introduced several extensions of path-relinking. The require-
ment of a minimum distance between the initial and guiding solutions for the
application of path-relinking appeared originally in Festa et al. (2005) and Festa
et al. (2006). Infeasibility in path-relinking was first addressed by Mateus et al.
(2011). Morán-Mirabal et al. (2013b) developed the approach to deal with infeasi-
bility in path-relinking. Greedy randomized adaptive path-relinking was proposed
by Faria Jr. et al. (2005). External path-relinking was introduced by Glover (2014)
and first applied by Duarte et al. (2015) in a heuristic for differential dispersion
minimization.

Chapter 9
GRASP with path-relinking

Path-relinking is a major enhancement to GRASP, adding a long-term memory
mechanism to GRASP heuristics. GRASP with path-relinking implements long-
term memory using an elite set of diverse high-quality solutions found during the
search. In its most basic implementation, at each iteration the path-relinking oper-
ator is applied between the solution found at the end of the local search phase and
a randomly selected solution from the elite set. The solution resulting from path-
relinking is a candidate for inclusion in the elite set. In this chapter we examine
elite sets, their integration with GRASP, the basic GRASP with path-relinking pro-
cedure, several variants of the basic scheme, including evolutionary path-relinking,
and restart strategies for GRASP with path-relinking heuristics.

9.1 Memoryless GRASP

The basic GRASP heuristic, as presented in Chapter 5, searches the solution
space by repeatedly applying independent searches in the solution space graph
G = (F,M), each search starting from a different greedy randomized solution. Each
independent search uses no information produced by any other search performed at
previous iterations. The choices of starting solutions for local search are not influ-
enced by information produced during the search. However, Reactive GRASP and
adaptive memory techniques (introduced in Sections 7.1 and 7.6, respectively) do
make use of information produced during the search. Reactive GRASP does so to
select the blend of randomness and greediness used in the construction of the start-
ing solutions for local search, while programming with adaptive memory determines
the amount of intensification and diversification in the construction phase.

The memoryless nature of basic, or pure, GRASP is in contrast with many
successful metaheuristics, such as tabu search, genetic algorithms, and ant colony
optimization, which make extensive use of information gathered during the search
process to guide their choice of the region of the solution space to explore.

© Springer Science+Business Media New York 2016
M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP,
DOI 10.1007/978-1-4939-6530-4 9

189

190 9 GRASP with path-relinking

In this chapter, we show how path-relinking can be used with any GRASP heuris-
tic to result in a hybrid procedure with a long-term memory mechanism. Given the
same running time, this hybridization almost always produces better solutions than
pure GRASP. Alternatively, given a target value, it almost always finds a solution at
least as good as this target in less running time than pure GRASP.

9.2 Elite sets

An elite set E of solutions is a set formed by at most a fixed number nE of diverse,
high-quality solutions found during the run of a heuristic. The elite solutions should
represent distinct promising regions of the solution space and therefore should not
include solutions that are too similar, even if they are of high quality.

A basic scheme to maintain an elite set E for a minimization problem is outlined
in the algorithm of Figure 9.1. The algorithm is given a candidate solution S and
determines if S should be added to E and, if so, which solution, if any, should be
removed from E .

Fig. 9.1 Pseudo-code of a template for the maintenance of the elite set E of at most nE elements
in the context of a minimization problem.

If line 1 determines that the elite set E is not full, i.e., if |E |< nE , then a candidate
solution S is always added to E if it is different from any solution currently in the
set. This case is treated in lines 2 to 7 of the pseudo-code. In line 3, S is added to
E if the elite set is empty. Let the symmetric difference Δ(S,S′) be formed by the
ground set elements that belong to either S or S′. In line 5, the minimum cardinality

9.3 Hybridization of GRASP with path-relinking 191

δ among the symmetric differences between S and the elements of E is computed.
If S is different from all elite solutions, then it is added to E in line 6.

Otherwise, if the elite set is full (i.e., if |E | = nE), then any time a solution is
added to the set, another solution must be removed from it, thus maintaining the
size of E equal to nE . Our goal is to first improve the average quality of the elite
set, and then maximize the diversity of its elements, which amounts to maximizing
the cardinalities of the symmetric differences between all pairs of solutions in the
set. This case is treated in lines 9 to 14. In line 9, the cost f+ of the worst-valued
elite set solution is computed, while in line 10 the minimum cardinality δ among
the symmetric differences between S and any element of E is determined. S is added
to E if it is better than the worst solution in the elite set and if it is different from
all elite solutions, i.e., if f (S) < f+ and δ > 0 in line 11. This is accomplished in
lines 12 and 13. Line 12 determines, among all elite set solutions valued no better
than S, one which is most similar to S, i.e., one which minimizes the cardinality of
its symmetric difference with respect to S. This solution, S−, is removed from E in
line 13. The new elite solution S is inserted in the pool as a replacement for S− at
the same line. The updated elite set is returned in line 16.

The algorithm in Figure 9.1 can be modified to increase the diversity of the elite
set solutions by modifying lines 6 and 11, where condition δ > 0 can be changed
to δ ≥ δ , where δ > 0 is a parameter. In this case, instead of requiring that S only
be different from all other elite set solutions, we now require that it be sufficiently
different by at least a given number of attributes.

9.3 Hybridization of GRASP with path-relinking

Path-relinking is a major enhancement to GRASP, equipping GRASP heuristics
with a long-term memory mechanism and enabling search intensification beyond
simple local search. In this section, we show how to hybridize path-relinking with
GRASP.

To implement GRASP with path-relinking, we make use of an elite set E , such as
the one introduced in Section 9.2, to collect a diverse set of high-quality solutions
found during the search. The elite set starts empty and is constrained to have at
most nE solutions. Each new locally optimal solution produced by the GRASP local
search phase is relinked with one or more solutions from the elite set. Each solution
resulting from path-relinking is considered as a candidate to be inserted in the elite
set according to algorithm UPDATE-ELITE-SET of Figure 9.1.

The pseudo-code of Figure 9.2 outlines the main steps of a GRASP with path-
relinking heuristic for minimization. This simple variant relinks the locally optimal
solution produced in each GRASP iteration with a single, randomly chosen, solu-
tion from the elite set, following the forward path-relinking strategy described in
Section 8.1.2. The output of the path-relinking operator is a candidate for inclusion
in the elite set.

192 9 GRASP with path-relinking

Fig. 9.2 Pseudo-code of a template of a basic GRASP with path-relinking heuristic for minimiza-
tion.

Line 1 of the pseudo-code initializes the elite set E as empty. The loop from line 2
to line 13 makes up the steps of GRASP with path-relinking. Lines 3 to 7 correspond
to the semi-greedy construction, repair (in case of infeasibility), and local search
phases of a basic GRASP heuristic. Forward path-relinking is performed in lines 9
and 10 in case the elite set is not empty: in line 9, an elite set solution S′ is selected
at random from E while, in line 10, S′ is relinked with the locally optimal solution
S produced in line 7. The resulting solution, S, is tested for inclusion in the elite
set in line 12, which updates E by applying algorithm UPDATE-ELITE-SET of
Figure 9.1. The algorithm returns the best-valued elite solution in line 14, after a
stopping criterion is met.

Enhancing GRASP with path-relinking almost always improves the performance
of the heuristic. As an illustration, Figures 9.3 and 9.4 show time-to-target plots (or
runtime distributions) for GRASP with and without path-relinking for four different
applications. These plots show the empirical cumulative probability distributions of
the time-to-target random variable, i.e., the time needed to find a solution at least as
good as a given target value. For all problems, the plots show that GRASP with path-
relinking is able to find target solutions faster than the memoryless basic algorithm.

9.4 Evolutionary path-relinking

As aforementioned, GRASP with path-relinking heuristics maintain an elite set of
high-quality solutions. In the variant of GRASP with path-relinking introduced in
Section 9.3, locally optimal solutions produced by local search are relinked with
elite set solutions. Path-relinking can also be applied to pairs of elite set solutions
to search for new high-quality solutions and to improve the quality of the elite set.

9.4 Evolutionary path-relinking 193

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution (seconds)

3-index assignment: Balas & Statzman 26.1

GRASP+forward PR
GRASP (no PR)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

QAP: ste36b

GRASP+forward PR
GRASP (no PR)

Fig. 9.3 Time-to-target plots comparing running times of GRASP with and without path-relinking
on distinct problems: three-index assignment and maximum satisfiability. Forward path-relinking
was used in these two examples.

194 9 GRASP with path-relinking

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

Bandwidth packing: fr750

GRASP (no PR)
GRASP+forward PR

GRASP+backward PR
GRASP+back-and-forward PR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

QAP: ste36b

GRASP+forward PR
GRASP (no PR)

Fig. 9.4 Time-to-target plots comparing running times of GRASP with and without path-relinking
on distinct problems: bandwidth packing and quadratic assignment. Forward path-relinking was
used in these two examples. In addition, on the bandwidth packing example, plots for GRASP
with backward and back-and-forward path-relinking are also shown.

9.4 Evolutionary path-relinking 195

This procedure, called evolutionary path-relinking (EvPR), can be applied as a post-
optimization phase of GRASP, after the main heuristic stops, or periodically, when
the main heuristic is still running.

Fig. 9.5 Pseudo-code of a template of a GRASP with evolutionary path-relinking heuristic where
evolutionary path-relinking is applied at a post-processing step.

The pseudo-codes in Figures 9.5 and 9.6 correspond to the post-processing and
periodic variants, respectively. The pseudo-code in Figure 9.5 is identical to that
of the GRASP with path-relinking of Figure 9.2, with an additional step in line 15
where EvPR is applied.

The pseudo-code of Figure 9.6 adds lines 3 and 15 to 19 to manage the periodic
application of EvPR. Line 3 initializes it2evPR, a counter of iterations to EvPR,
with evPRfreq being the number of GRASP iterations between consecutive calls
to EvPR. If evPRfreq iterations have passed without the application of EvPR, then
in line 16 it is applied and the counter it2evPR is reinitialized in line 17. Finally, in
line 19, it2evPR is decreased by one iteration.

Evolutionary path-relinking takes as input the elite set and returns either the same
elite set or a renewed one with an improved average cost. This approach is outlined
in the pseudo-code of Figure 9.7. While there exists a pair of solutions in the elite set
for which path-relinking has not yet been applied, the two solutions are combined
with path-relinking and the resulting solution is tested for membership in the elite
set. If it is accepted, it then replaces the elite solution most similar to it among all so-
lutions having worse cost. To explore more than one path connecting two solutions,
evolutionary path-relinking can apply greedy randomized adaptive path-relinking a
fixed number of times between each pair of elite solutions.

This strategy outperformed several other heuristics using GRASP with path-
relinking, simulated annealing, tabu search, and a multistart strategy for the

196 9 GRASP with path-relinking

Fig. 9.6 Pseudo-code of a template of a GRASP with evolutionary path-relinking heuristic where
evolutionary path-relinking is applied periodically during the search.

Fig. 9.7 Pseudo-code of a template of the evolutionary path-relinking strategy.

max-min diversity problem. Figure 9.8 shows the evolution of the best solution
found by the multistart strategy, pure GRASP, and GRASP with evolutionary path-
relinking for a 500-element max-min diversity instance.

9.5 Restart strategies

Figure 9.9 shows a typical iteration count distribution for a GRASP with path-
relinking heuristic. Observe in this example that for most of the independent runs
whose iteration counts make up the plot, the algorithm finds a target solution in

9.5 Restart strategies 197

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500 3000 3500

A
ve

ra
ge

 p
er

ce
nt

ag
e

de
vi

at
io

n

CPU time (seconds)

GRASP with evolutionary PR

GRASP

Multistart

Fig. 9.8 Percent deviation from best known solution value for GRASP with evolutionary path-
relinking, pure GRASP, and a multistart algorithm for a 500-element instance of a max-min diver-
sity problem with a time limit of 60 minutes.

relatively few iterations: about 25% of the runs take at most 101 iterations; about
50% take at most 192 iterations; and about 75% take at most 345. However, some
runs take much longer: 10% take over 1000 iterations; 5% over 2000; and 2% over
9715 iterations. The longest run took 11607 iterations to find a solution at least as
good as the target. These long tails contribute to a large average iteration count as
well as to a high standard deviation. This section proposes strategies to reduce the
tail of the distribution, consequently reducing the average iteration count and its
standard deviation.

Consider again the distribution in Figure 9.9. The distribution shows that each
run will take over 345 iterations with about 25% probability. Therefore, any time the
algorithm is restarted, the probability that the new run will take over 345 iterations
is also about 25%. By restarting the algorithm after 345 iterations, the new run will
take more than 345 iterations with probability of also about 25%. Therefore, the
probability that the algorithm will be still running after 345+ 345 = 690 iterations
is the probability that it takes more than 345 iterations multiplied by the probability
that it takes more than 690 iterations given that it took more than 345 iterations,
i.e., about (1/4)× (1/4) = (1/4)2. It follows by induction that the probability that
the algorithm will still be running after k periods of 345 iterations is 1/(4k). In this
example, the probability that the algorithm will be running after 1725 iterations will
be about 0.1%, i.e., much less than the 5% probability that the algorithm will take
over 2000 iterations without restart.

198 9 GRASP with path-relinking

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

iterations to target solution

(1982, 0.955)

(345, 0.745)

(192, 0.495)

(101, 0.245)

GRASP+PR (no restart)

Fig. 9.9 Typical iteration count distribution of GRASP with path-relinking.

A restart strategy is defined as an infinite sequence of time intervals τ1,τ2,τ3, . . .
which define epochs τ1,τ1 +τ2,τ1+τ2+τ3, . . . when the algorithm is restarted from
scratch. It can be shown that the optimal restart strategy uses τ1 = τ2 = · · · = τ∗,
where τ∗ is some (unknown) constant.

Implementing the optimal strategy may be difficult in practice because it requires
inputting the constant value τ∗. Runtimes can vary greatly for different combina-
tions of algorithm, instance, and solution quality sought. Since usually one has no
prior information about the runtime distribution of the stochastic search algorithm
for the optimization problem under consideration, one runs the risk of choosing a
value of τ∗ that is either too small or too large. On the one hand, a value that is too
small can cause the restart variant of the algorithm to take much longer to converge
than a no-restart variant. On the other hand, a value that is too large may never lead
to a restart, causing the restart-variant of the algorithm to take as long to converge as
the no-restart variant. Figure 9.10 illustrates the restart strategies with time-to-target
plots for the maximum cut instance G12 on an 800-node graph with edge density of
0.63% with target solution value 554 for τ = 6, 9, 12, 18, 24, 30, and 42 seconds.
For each value of τ , 100 independent runs of a GRASP with path-relinking heuristic
with restarts were performed. The variant with τ = ∞ corresponds to the heuristic
without restart. The figure shows that, for some values of τ , the resulting heuristic
outperformed its counterpart with no restart by a large margin.

In GRASP with path-relinking, the number of iterations between improvements
of the incumbent (or best so far) solution tends to vary less than the runtimes for
different combinations of instance and solution quality sought. If one takes this into
account, a simple and effective restart strategy for GRASP with path-relinking is

9.5 Restart strategies 199

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 to

 fi
nd

 ta
rg

et
 s

ol
ut

io
n

time to target solution (seconds)

Restart every:
6 seconds
9 seconds

12 seconds
18 seconds
24 seconds
30 seconds
42 seconds

no restart

Fig. 9.10 Time-to-target plot for target solution value of 554 for maximum cut instance G12 using
different values of τ .

to keep track of the last iteration when the incumbent solution was improved and
restart the GRASP with path-relinking heuristic if κ iterations have gone by without
improvement. We shall call such a strategy restart(κ). A restart consists in saving
the incumbent and emptying out the elite set.

The pseudo-code shown in Figure 9.11 summarizes the steps of a GRASP with
path-relinking heuristic using the restart(κ) strategy for a minimization problem.
The algorithm keeps track of the current iteration (CurrentIter), as well as of the
last iteration when an improving solution was found (LastImprov). If an improving
solution is detected in line 16, then this solution and its cost are saved in lines 17
and 18, respectively, and the iteration of last improvement is set to the current itera-
tion in line 19. If, in line 21, it is determined that more than κ iterations have gone
by since the last improvement of the incumbent, then a restart is triggered, emptying
out the elite set in line 22 and resetting the iteration of last improvement to the cur-
rent iteration in line 23. If restart is not triggered, then in line 25 the current solution
S is tested for inclusion in the elite set and the set is updated if S is accepted. The
best overall solution found S∗ is returned in line 28 after the stopping criterion is
satisfied.

As an illustration of the use of the restart(κ) strategy within a GRASP with path-
relinking heuristic, consider the maximum cut instance G12. For the values κ = 50,
100, 200, 300, 500, 1000, 2000, and 5000, the heuristic was run independently 100
times, stopping when a cut of weight 554 or higher was found. A strategy without
restarts was also implemented. Figures 9.12 and 9.13, as well as Table 9.1, summa-
rize these runs, showing the average time to target solution as a function of the value

200 9 GRASP with path-relinking

Fig. 9.11 Pseudo-code of a template of a GRASP with path-relinking heuristic with restarts for a
minimization problem.

of κ and the time-to-target plots for different values of κ . These figures illustrate
well the effect on running time of selecting a value of κ that is either too small
(κ = 50,100) or too large (κ = 2000,5000). They further show that there is a wide
range of κ values (κ = 200, 300, 500, 1000) that result in lower runtimes when
compared to the strategy without restarts.

Figure 9.14 further illustrates the behavior of the restart(100), restart(500), and
restart(1000) strategies for the previous example, when compared with the strategy
without restarts on the same maximum cut instance G12. However, in this figure,
for each strategy, we plot the number of iterations to the target solution value. It is
interesting to note that, as expected, each strategy restart(κ) behaves exactly like
the strategy without restarts for the κ first iterations, for κ = 100,500,1000. After
this point, each trajectory deviates from that of the strategy without restarts. Among
these strategies, restart(500) is the one with the best performance.

9.5 Restart strategies 201

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 100 1000 10000 100000

av
er

ag
e

tim
e

to
 ta

rg
et

 s
ol

ut
io

n

restart period (in iterations)

Fig. 9.12 Average time-to-target solution for maximum cut instance G12 using different values of
κ . All runs of all strategies have found a solution at least as good as the target value of 554.

We conclude this chapter with some observations about these experiments. The
effect of the restart strategies can be mainly observed in the column corresponding
to the fourth quartile of Table 9.1. Entries in this quartile correspond to those in the
heavy tails of the distributions. The restart strategies in general did not affect the
other quartiles of the distributions, which is a desirable characteristic. Compared to
the no-restart strategy, at least one restart strategy was always able to reduce the
maximum number of iterations, the average number of iterations, and the standard
deviation of the number of iterations. Compared to the no-restart strategy, restart
strategies restart(500) and restart(1000) were able to reduce the maximum number
of iterations, as well as the average and the standard deviation. Strategy restart(100)
did so, too, but not as much as restart(500) and restart(1000). Restart strategies
restart(500) and restart(1000) were clearly the best strategies of those tested.

Table 9.1 Summary of computational results on maximum cut instance G12 with four strategies.
For each strategy, 100 independent runs were executed, each stopped when a solution as good
as the target solution value 554 was found. For each strategy, the table shows the distribution of
the number of iterations by quartile. For each quartile, the table gives the maximum number of
iterations taken by all runs in that quartile, i.e., the slowest of the fastest 25% (1st), 50% (2nd),
75% (3rd), and 100% (4th) of the runs. The average number of iterations over the 100 runs and the
standard deviation (st.dev.) are also given for each strategy.

Iterations in quartile
Strategy 1st 2nd 3rd 4th Average st.dev.
Without restarts 326 550 1596 68813 4525.1 11927.0
restart(1000) 326 550 1423 5014 953.2 942.1
restart(500) 326 550 1152 4178 835.0 746.1
restart(100) 509 1243 3247 8382 2055.0 2005.9

202 9 GRASP with path-relinking

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution (seconds)

Restart frequency:
5000 iterations
2000 iterations
1000 iterations

500 iterations
300 iterations
200 iterations
100 iterations
50 iterations

no restart

Fig. 9.13 Time-to-target plots for maximum cut instance G12 using different values of κ . The
figure also shows the time-to-target plot for the strategy without restarts. All runs of all strategies
found a solution at least as good as the target value of 554.

9.6 Bibliographical notes

GRASP with path-relinking as proposed in Section 9.3 was first introduced by
Laguna and Martı́ (1999), where a forward path-relinking operator from the
solution found by local search to a randomly selected elite solution was applied.
This was followed by a number of applications of GRASP with path-relinking, e.g.,
to maximum cut (Festa et al., 2002), 2-path network design (Ribeiro and Rosseti,
2002), Steiner problem in graphs (Ribeiro et al., 2002), job-shop scheduling (Aiex
et al., 2003), private virtual circuit routing (Resende and Ribeiro, 2003a), p-median
(Resende and Werneck, 2004), quadratic assignment (Oliveira et al., 2004), set pack-
ing (Delorme et al., 2004), three-index assignment (Aiex et al., 2005), p-hub median
(Pérez et al., 2005), uncapacitated facility location (Resende and Werneck, 2006),
project scheduling (Alvarez-Valdes et al., 2008a), maximum weighted satisfiabil-
ity (Festa et al., 2006), maximum diversity (Silva et al., 2007), network migration
scheduling (Andrade and Resende, 2007a), capacitated arc routing (Labadi et al.,
2008; Usberti et al., 2013), disassembly sequencing (Adenso-Dı́az et al., 2008),
flowshop scheduling (Ronconi and Henriques, 2009), multi-plant capacitated lot siz-
ing (Nascimento et al., 2010), workover rig scheduling (Pacheco et al., 2010), max-
min diversity (Resende et al., 2010a), biobjective orienteering (Martı́ et al., 2015),
biobjective path dissimilarity (Martı́ et al., 2015), generalized quadratic assign-
ment (Mateus et al., 2011), antibandwidth (Duarte et al., 2011), capacitated clus-
tering (Deng and Bard, 2011), linear ordering (Chaovalitwongse et al., 2011), data

9.6 Bibliographical notes 203

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

iterations to target solution

no restart
restart(1000)
restart(500)
restart(100)

Fig. 9.14 Comparison of the iterations-to-target plots for maximum cut instance G12 using strate-
gies restart(100), restart(500), and restart(1000). The figure also shows the iterations-to-target plot
for the strategy without restarts. All runs of all strategies found a solution at least as good as the
target value of 554.

clustering (Frinhani et al., 2011), two-echelon location routing (Nguyen et al.,
2012), image registration (Santamarı́a et al., 2012), drawing proportional symbols
in maps (Cano et al., 2013), family traveling salesperson (Morán-Mirabal et al.,
2014), handover minimization in mobility networks (Morán-Mirabal et al., 2013b),
facility layout (Silva et al., 2013b), survivable network design (Pedrola et al., 2013),
equitable dispersion (Martı́ and Sandoya, 2013), 2D and 3D bin packing (Alvarez-
Valdes et al., 2013), microarray data analysis (Cordone and Lulli, 2013), community
detection (Nascimento and Pitsoulis, 2013), set k-covering (Pessoa et al., 2013), net-
work load balancing (Santos et al., 2013), power optimization in ad hoc networks
(Moraes and Ribeiro, 2013), capacitated vehicle routing (Sörensen and Schittekat,
2013), and symmetric Euclidean clustered traveling salesman (Mestria et al., 2013).

Surveys on GRASP with path-relinking can be found in Resende and Ribeiro
(2005a), Aiex and Resende (2005), Resende (2008), Resende et al. (2010b),
Resende and Ribeiro (2010), Ribeiro and Resende (2012), and Festa and Resende
(2013). A special issue of Computers & Operations Research (Martı́ et al., 2013b)
was dedicated to GRASP with path-relinking.

Section 9.4 discussed evolutionary path-relinking that was originally proposed
by Resende and Werneck (2004), where it was used as a post-processing phase
for a GRASP with path-relinking for the p-median problem. Andrade and Resende
(2007a) were the first to apply evolutionary path-relinking periodically during the

204 9 GRASP with path-relinking

search. The term evolutionary path-relinking was introduced by Andrade and Re-
sende (2007b). This was followed by a number of applications of GRASP with
evolutionary path-relinking, e.g., to uncapacitated facility location (Resende and
Werneck, 2006), max-min diversity (Resende et al., 2010a), image registration (San-
tamarı́a et al., 2010; Santamarı́a et al., 2012), power transmission network expan-
sion planning (Rahmani et al., 2010), vehicle routing with trailers (Villegas, 2010),
antibandwidth minimization (Duarte et al., 2011), truck and trailer routing (Villegas
et al., 2011), parallel machine scheduling (Rodriguez et al., 2012), linear order-
ing (Duarte et al., 2012), family traveling salesperson (Morán-Mirabal et al., 2014),
handover minimization in mobility networks (Morán-Mirabal et al., 2013b), set cov-
ering (Morán-Mirabal et al., 2013a), maximum cut (Morán-Mirabal et al., 2013a),
node capacitated graph partitioning (Morán-Mirabal et al., 2013a), capacitated arc
routing (Usberti et al., 2013), and 2D and 3D bin packing (Alvarez-Valdes et al.,
2013),

Figures 9.3 and 9.4 show time-to-target plots comparing pure GRASP and
GRASP with path-relinking implementations on instances of the three-index
assignment problem (Aiex et al., 2005), maximum satisfiability (Festa et al., 2006),
bandwidth packing (Resende and Ribeiro, 2003a), and the quadratic assignment
problem (Oliveira et al., 2004).

Figure 9.8 shows results from Resende et al. (2010a), where a GRASP and
GRASP with evolutionary path-relinking for max-min diversity were proposed. The
simulated annealing and multistart algorithms were the ones described in Kincaid
(1992) and Ghosh (1996), respectively.

The restart(κ) strategy for GRASP with path-relinking discussed in Section 9.5
was proposed by Resende and Ribeiro (2011). Besides the experiments presented
in this chapter for the maximum cut instance G12, that paper also considered five
other instances of maximum cut, maximum weighted satisfiability, and bandwidth
packing. Strategies for speeding up stochastic local search algorithms using restarts
were first proposed by Luby et al. (1993), where they proved the result for an
optimal restart strategy. Restart strategies in metaheuristics have been addressed
in D’Apuzzo et al. (2006), Kautz et al. (2002), Nowicki and Smutnicki (2005),
Palubeckis (2004), and Sergienko et al. (2004). Further work on restart strategies
can be found in Shylo et al. (2011a) and Shylo et al. (2011b).

Chapter 10
Parallel GRASP heuristics

Parallel computers and parallel algorithms have increasingly found their way into
metaheuristics. Most parallel implementations of GRASP found in the literature
consist in either partitioning the search space or the GRASP iterations and assigning
each partition to a processor. GRASP is applied to each partition in parallel. These
implementations can be categorized as multiple-walk independent-thread, with the
communication among processors during GRASP iterations being limited to the de-
tection of program termination and gathering the best solution found over all proces-
sors. Approaches for the parallelization of GRASP with path-relinking can be cat-
egorized as either multiple-walk independent-thread or multiple-walk cooperative-
thread, with processors sharing and exchanging information about elite solutions
visited during the GRASP iterations. This chapter is an introduction to parallel
GRASP heuristics, covering multiple-walk independent-thread strategies, multiple-
walk cooperative-thread strategies, and some applications of parallel GRASP and
parallel GRASP with path-relinking.

10.1 Multiple-walk independent-thread strategies

Most parallel implementations of GRASP follow the multiple-walk independent-
thread strategy, based on the distribution of the iterations among the processors.
In general, each search thread has to perform MaxIterations/p iterations, where p
and MaxIterations are, respectively, the number of processors and the total number
of iterations. Each processor has a copy of the sequential algorithm, a copy of the
problem data, and an independent seed to generate its own pseudo-random num-
ber sequence. To avoid that the processors find the same solutions, each processor
uses a different sequence of pseudo-random numbers. A single global variable is
required to store the best solution found over all processors. One of the processors
acts as the master, reading and distributing problem data, generating the seeds which
will be used by the pseudo-random number generator at each processor, distributing
the iterations, and collecting the best solution found by each processor. Since the

© Springer Science+Business Media New York 2016
M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP,
DOI 10.1007/978-1-4939-6530-4 10

205

206 10 Parallel GRASP heuristics

iterations are independent and very little information is exchanged, linear speedups
are easily obtained provided that no major load imbalance occurs. The speedup of a
parallel GRASP heuristic running on p processors is the ratio of the time taken by
the sequential GRASP heuristic and the time taken by the parallel heuristic running
on p processors. To improve load balancing, the iterations can be evenly distributed
over the processors or according to their demands.

Implementations of this strategy in machines with different architectures and us-
ing different software platforms have shown linear or almost-linear speedups for a
number of applications. We illustrate the case for independent-thread strategies with
two examples of parallel implementations.

The first example is of a parallel GRASP for the MAX-SAT problem running
on a cluster of SUN-SPARC 10 workstations, sharing the same file system, with
communication done using Parallel Virtual Machine (PVM). The parallel GRASP
was applied to each test instance using 1, 5, 10, and 15 processors, and the max-
imum number of iterations was set at 1000, 200, 100, and 66, respectively. The
computation time required to perform the specified number of iterations and the
best solution found were recorded. Since communication was kept to a minimum,
linear speedups were expected. Figure 10.1 shows individual speedups and average
speedups for these runs. Figure 10.2 shows that the average quality of the solutions
found was not greatly affected by the number of processors used.

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

average speedup

Fig. 10.1 Average speedups on 5, 10, and 15 processors for the maximum satisfiability problem.

The second example is an implementation of a parallel GRASP for the Steiner
problem in graphs. Parallelization was achieved by the distribution of 512 itera-
tions over the processors, with the value of the restricted candidate list parameter α

10.1 Multiple-walk independent-thread strategies 207

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12 14 16

%
 e

rr
or

 X
 1

.0
 E

-0
3

number of processors

average error

Fig. 10.2 Error on 1, 5, 10, and 15 processors for the maximum satisfiability problem.

randomly chosen in the interval [0.0,0.3] at each iteration. The algorithm was tested
on an IBM SP-2 machine with 32 processors, using the Message Passing Interface
(MPI) library for communication. The 60 problems from series C, D, and E of the
OR-Library were used for the computational experiments. The parallel implementa-
tion obtained 45 optimal solutions over the 60 test instances. The relative deviation
with respect to the optimal value was never larger than 4%. Almost-linear speedups
were observed for 2, 4, 8, and 16 processors with respect to the sequential imple-
mentation and are illustrated in Figure 10.3.

Path-relinking may also be used in conjunction with independent-thread paral-
lel implementations of GRASP. An independent-thread implementation for the job
shop scheduling problem keeps local sets (or pools) of elite solutions in each proces-
sor and path-relinking is applied to pairs of elite solutions stored in each local pool.
Computational results using MPI on an SGI Challenge computer with 28 R10000
processors showed linear speedups for the 3-index assignment problem.

Multiple-walk independent-thread approaches for the parallelization of GRASP
may benefit from load balancing techniques, whenever heterogeneous processors
are used or if the parallel machine is simultaneously shared by several users. In
this case, almost-linear speedups can be obtained with a heterogeneous distribu-
tion of the iterations among the p processors in q ≥ p packets. Each processor
starts performing one packet of �MaxIterations/q� iterations and informs the mas-
ter when it finishes its packet of iterations. The master stops the execution of each
worker processor when there are no more iterations to be performed and collects the
best solution found. Faster or less loaded processors will perform more iterations
than the others. In the case of the parallel GRASP implemented for the problem of

208 10 Parallel GRASP heuristics

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of processors

Series C
Series D
Series E

Fig. 10.3 Average speedups on 2, 4, 8, and 16 processors on Steiner tree problem in graphs.

traffic assignment discussed in Chapter 7, this dynamic load balancing strategy al-
lows reductions in the elapsed times of up to 15% with respect to the times observed
for the static strategy, in which the iterations are uniformly distributed over the pro-
cessors.

The efficiency of multiple-walk independent-thread parallel implementations of
metaheuristics (based on running multiple copies of the same sequential algorithm)
has been addressed in the literature. The efficiency of the parallel heuristic running
on p processors is given by its speedup divided by p. We have seen in Section 6.2 of
this book that the time taken by a pure GRASP heuristic to find a solution with cost
at least as good as a certain target value has been shown experimentally to behave as
a random variable that fits an exponential distribution. In the case where the setup
times are not negligible, the runtimes fit a two-parameter shifted exponential distri-
bution. Therefore, the probability density function of the time-to-target random vari-
able is given by f (t) = (1/λ) · e−t/λ in the first case or by f (t) = (1/λ) · e−(t−μ)/λ

in the second, with the parameters λ ∈ R
+ and μ ∈ R

+ being associated with the
shape and the shift of the exponential function, respectively.

Recall that the speedup of a parallel GRASP heuristic running on p proces-
sors measures the ratio between the time needed to find a solution with value
at least as good as the target value using a sequential algorithm and that taken
by a parallel implementation with p processors. The linear speedups of parallel
GRASP implementations with negligible setup times naturally follow from the ex-
pression of the probability density function f (t) = (1/λ) ·e−t/λ of the exponentially

10.1 Multiple-walk independent-thread strategies 209

distributed time-to-target random variable, as illustrated with the previous exam-
ples. For example, suppose t1, t2, . . . , tp are p independent exponentially distributed
runtimes, each with parameter λ . Suppose ti is the runtime on processor
i= 1,2, . . . , p. By definition, the expected value of ti is E(ti) = λ , for i= 1,2, . . . , p.
Define τ to be the runtime of the parallel process, i.e., the time taken by a parallel
implementation with p processors:

τ = min{t1, t2, . . . , tp},

which is the runtime of the fastest of the p processes. Then,

P(τ > a) = P(min{t1, t2, . . . , tp}> a)

= P(t1 > a, t2 > a, . . . , tp > a)

= P(t1 > a) ·P(t2 > a) · · ·P(tp > a)

= e−a/λ · e−a/λ · · ·e−a/λ

= e−a/(λ/p).

Therefore, the cumulative distribution function of τ is given by Fτ(a) = 1−P(τ > a)
= 1−e−a/(λ/p). Hence, the random variable τ is also exponentially distributed with
expected value E(τ) = λ/p, showing that with p processors there is an expected
linear speedup of p.

Let Pp(t) be the probability of not having found a given (target) solution value
in t time units with p independent processors. If P1(t) = e−(t−μ)/λ , with λ ∈ R

+

and μ ∈ R, i.e., P1 corresponds to a two-parameter exponential distribution, then
Pp(t) = e−ρ(t−μ)/λ . This follows from the definition of the two-parameter expo-
nential distribution. It implies that the probability of finding a solution of a given
value in time pt with one processor is equal to 1− e−(ρt−μ)/λ , while the probabil-
ity of finding a solution at least as good as that given target value in time t with p
independent parallel processors is 1− e−ρ(t−μ)/λ . Note that if μ = 0, correspond-
ing to the case of nonshifted exponential distributions, then both probabilities are
equal. Furthermore, since p≥ 1, then the two probabilities are approximately equal
if p|μ | � λ and it is possible to approximately achieve linear speedup in solution
time-to-target value using multiple independent processors.

The observation above suggests a test using a one-processor, sequential imple-
mentation to determine whether it is likely that a parallel implementation using mul-
tiple independent processors will be efficient. We say a parallel implementation is
efficient if it achieves linear speedup (with respect to wall, or elapsed, time) to find
a solution at least as good as a given target value. The test consists in performing a
large number of independent runs of the sequential program to build a Q-Q plot and
estimate the parameters μ and λ of the shifted exponential distribution. If p|μ |� λ ,
then we can predict that the parallel implementation will be efficient. Later in this
chapter (on page 218), we illustrate this test.

210 10 Parallel GRASP heuristics

10.2 Multiple-walk cooperative-thread strategies

In this section, we focus on the use of path-relinking as a mechanism for imple-
menting GRASP as a multiple-walk cooperative-thread strategy, in which proces-
sors share and exchange information (in this case, about elite solutions previously
visited) collected during previous GRASP iterations.

Path-relinking and its hybridization with GRASP heuristics have been exten-
sively discussed in Chapters 8 and 9 of this book. The algorithm in Figure 10.4
recalls the pseudo-code of a hybrid GRASP with path-relinking for minimization,
as already presented in Section 9.3.

Fig. 10.4 Pseudo-code of a template of a basic GRASP with path-relinking heuristic for minimiza-
tion (revisited).

Two basic mechanisms may be used to implement a multiple-walk cooperative-
thread GRASP with path-relinking heuristic. In distributed strategies, each thread
maintains its own pool of elite solutions. Each iteration of each thread consists
initially of a GRASP construction, followed by local search. Then, the local op-
timum is combined with a randomly selected element of the thread’s pool using
path-relinking. The output of path-relinking is finally tested for insertion into the
pool. If accepted for insertion, the solution is sent to the other threads, where it
is tested for insertion into the other pools. Collaboration takes place at this point.
Though there may be some communication overhead in the early iterations, this
tends to ease up as pool insertions become less frequent.

The second mechanism corresponds to centralized strategies based on a single
pool of elite solutions. As before, each GRASP iteration performed by each thread
starts with the construction and local search phases. Next, an elite solution is
requested and received from the centralized pool. Once path-relinking has been

10.3 Some parallel GRASP implementations 211

performed, the solution obtained as the output is sent to the pool and tested for
insertion. Collaboration takes place when an elite solution is sent from a pool to a
processor distinct from the one in which the solution was originally computed.

We note that, in both the distributed and the centralized strategies, each processor
has a copy of the sequential algorithm and a copy of the data. One processor acts as
the master, reading and distributing the problem data, generating the seeds used by
the pseudo-random number generators at each processor, distributing the iterations,
and collecting the best solution found by each processor. In the case of a distributed
strategy, each processor has its own pool of elite solutions and all available proces-
sors perform GRASP iterations. Contrary to the case of a centralized strategy, one
particular processor does not perform GRASP iterations and is used exclusively to
store the pool and handle all operations involving communication requests between
the pool and the workers. In the next section, we describe three examples of parallel
implementations of GRASP with path-relinking.

10.3 Some parallel GRASP implementations

In this section, we report comparisons of multiple-walk independent-thread and
multiple-walk cooperative-thread strategies for GRASP with path-relinking for the
three-index assignment problem, the job shop scheduling problem, and the 2-path
network design problem. For each problem, we first state the problem and describe
the construction, local search, and path-relinking procedures. Next, we show numer-
ical results comparing the different parallel implementations.

The experiments described in Sections 10.3.1 and 10.3.2 were done on an SGI
Challenge computer (16 196-MHz MIPS R10000 processors and 12 194-MHz
MIPS R10000 processors) with 7.6 Gb of memory. The algorithms were coded in
Fortran and were compiled with the SGI MIPSpro F77 compiler using flags -O3
-static -u. The parallel codes used SGI’s Message Passing Toolkit 1.4, which
contains a fully compliant implementation of version 1.2 of the Message Passing
Interface (MPI) specification. In the parallel experiments, wall clock times were
measured with the MPI function MPI WT. This was also the case for runs with a
single processor that are compared to multiple-processor runs. Timing in the paral-
lel runs excludes the time to read the problem data, to initialize the random number
generator seeds, and to output the solution.

In the experiments described in Section 10.3.3, both variants of the parallel
GRASP with path-relinking heuristic were coded in C and were compiled with ver-
sion egcs-2.91.66 of the gcc compiler. MPI LAM 6.3.2 was used in the imple-
mentation. Computational experiments were performed on a cluster of 32 Pentium
II 400MHz processors with 32 Mbytes of RAM memory each, running under the
Red Hat 6.2 implementation of Linux. Processors were connected by a 10 Mbits/s
IBM 8274 switch.

212 10 Parallel GRASP heuristics

10.3.1 Three-index assignment

10.3.1.1 Problem formulation

The three-index assignment problem (AP3) is a straightforward extension of the
classical two-dimensional assignment problem and can be formulated as follows.
Given three disjoint sets I, J, and K, with |I| = |J| = |K| = n, and a weight ci jk
associated with each ordered triplet (i, j,k) ∈ I× J×K, find a minimum weight
collection of n disjoint triplets (i, j,k) ∈ I× J×K. Another way to formulate the
AP3 is with permutations. There are n3 cost elements. The optimal solution consists
of the n triplets with the smallest total cost, such that the constraints are not violated.
The constraints are enforced if one assigns to each set I, J, and K, the numbers
1,2, . . . ,n and none of the chosen triplets (i, j,k) is allowed to have the same value
for indices i, j, and k as another. The permutation-based formulation for the AP3 is

min
p,q∈πN

n

∑
i=1

cip(i)q(i),

where πN denotes the set of all permutations of the set of integers N = {1,2, . . . ,n}.

10.3.1.2 GRASP construction

The construction phase selects n triplets, one at a time, to form a three-index
assignment S. A random choice in the interval [0,1] for the restricted candidate
list parameter α is made at each iteration. The value remains constant during the
entire construction phase. Construction begins with an empty solution S. The ini-
tial set C of candidate triplets consists of the set of all triplets. Let c and c denote,
respectively, the values of the smallest and largest cost triplets in C. All triplets
(i, j,k) in the candidate set C having cost ci jk ≤ c+α · (c− c) are placed in the
restricted candidate list. Triplet (ip, jp,kp) ∈ C′ is chosen at random and is added
to the solution, i.e., S = S∪{(ip, jp,kp)}. Once (ip, jp,kp) is selected, any triplet
(i, j,k) ∈ C such that i = ip or j = jp or k = kp is removed from C. After n− 1
triplets have been selected, the set C of candidate triplets contains one last triplet
which is added to S, thus completing the construction phase.

10.3.1.3 Local search

If the solution of AP3 is represented by a pair of permutations (p,q), then the
solution space consists of all (n!)2 possible combinations of permutations. If p is
a permutation vector, then a 2-exchange permutation of p is a permutation vec-
tor that results from swapping two elements in p. In the 2-exchange neighborhood
scheme used in this local search, the neighborhood of a solution (p,q) consists of
all 2-exchange permutations of p plus all 2-exchange permutations of q. In the local

10.3 Some parallel GRASP implementations 213

search, the cost of each neighbor solution is compared with the cost of the current
solution. If the cost of the neighbor is lower, then the solution is updated, the search
is halted, and a search in the new neighborhood is initialized. The local search ends
when no neighbor of the current solution has a lower cost than the current solution.

10.3.1.4 Path-relinking

A solution of AP3 can be represented by two permutation arrays of numbers
1,2, . . . ,n in sets J and K, respectively. Path-relinking is done between an initial
solution

S= {(pS1, pS2, . . . , pSn),(qS1,qS2, . . . ,qSn)}
and a guiding solution

T = {(pT1 , pT2 , . . . , pTn),(qT1 ,qT2 , . . . ,qTn)}.

Let the difference between S and T be defined by the two sets of indices

δ S,T
p = {i= 1, . . . ,n

∣∣ pSi 	= pTi },
δ S,T
q = {i= 1, . . . ,n

∣∣ qSi 	= qTi }.

During a path-relinking move, a permutation π (for either p or q) array in S, given
by

(. . . ,πS
i ,π

S
i+1, . . . ,π

S
j−1,π

S
j , . . .),

is replaced by a permutation array

(. . . ,πS
j ,π

S
i+1, . . . ,π

S
j−1,π

S
i , . . .),

by exchanging permutation elements πS
i and πS

j , where i∈ δ S,T
π and j ∈ {1,2, . . . ,n}

are such that πT
j = πS

i .

10.3.1.5 Parallel independent-thread GRASP with path-relinking for AP3

We study the parallel efficiency of the multiple-walk independent-thread GRASP
with path-relinking on AP3 instances B-S 20.1, B-S 22.1, B-S 24.1, and
B-S 26.1, using 7, 8, 7, and 8 as target solution values, respectively. Table 10.1
shows the estimated shifted exponential distribution parameters for the multiple-
walk independent-thread GRASP with path-relinking strategy, obtained from 200
independent runs of a sequential variant of the algorithm. In addition to the sequen-
tial variant, 60 independent runs of 2-, 4-, 8-, and 16-thread variants were run on the
four test problems. Average speedups were computed dividing the sum of the exe-
cution times of the independent parallel program executing on one processor by the
sum of the execution times of the parallel program on 2, 4, 8, and 16 processors, for

214 10 Parallel GRASP heuristics

60 runs. The execution times of the independent parallel implementation executing
on one processor and the execution times of the sequential program are approxi-
mately the same. The average speedups can be seen in Table 10.2 and Figure 10.5.

Table 10.1 Estimated shifted exponential distribution parameters μ and λ obtained with 200 in-
dependent runs of a sequential GRASP with path-relinking on AP3 instances B-S 20.1, B-S
22.1, B-S 24.1, and B-S 26.1, with target values 7, 8, 7, and 8, respectively.

Estimated parameter

Problem μ λ |μ |/λ
B-S 20.1 -26.46 1223.80 0.021
B-S 22.1 -135.12 3085.32 0.043
B-S 24.1 -16.76 4004.11 0.004
B-S 26.1 32.12 2255.55 0.014

average 0.020

Table 10.2 Speedups for multiple-walk independent-thread implementations of GRASP with
path-relinking on instances B-S 20.1, B-S 22.1, B-S 24.1, and B-S 26.1, with target
values 7, 8, 7, and 8, respectively. Speedups are computed with the average of 60 runs.

Number of processors

2 4 8 16

Problem speedup efficiency speedup efficiency speedup efficiency speedup efficiency

B-S 20.1 1.67 0.84 3.34 0.84 6.22 0.78 10.82 0.68
B-S 22.1 2.25 1.13 4.57 1.14 9.01 1.13 14.37 0.90
B-S 24.1 1.71 0.86 4.00 1.00 7.87 0.98 12.19 0.76
B-S 26.1 2.11 1.06 3.89 0.97 6.10 0.76 11.49 0.72

average 1.94 0.97 3.95 0.99 7.30 0.91 12.21 0.77

10.3.1.6 Parallel cooperative-thread GRASP with path-relinking for AP3

We now study the multiple-walk cooperative-thread strategy for GRASP with path-
relinking on AP3. As with the independent-thread GRASP with path-relinking
strategy, the target solution values 7, 8, 7, and 8 were used for instances B-S
20.1, B-S 22.1, B-S 24.1, and B-S 26.1, respectively. Table 10.3 and Fig-
ure 10.6 show super-linear speedups on instances B-S 22.1, B-S 24.1, and
B-S 26.1 and about 90% efficiency for B-S 20.1. Super-linear speedups are
possible
because good elite solutions are shared among the threads and are combined with
GRASP solutions, whereas they would not be combined in an independent-thread
implementation, making the parallel cooperative-thread GRASP with path-relinking
converge faster to the target.

10.3 Some parallel GRASP implementations 215

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of processors

B-S 20.1
B-S 22.1
B-S 24.1
B-S 26.1

Fig. 10.5 Average speedups on 2, 4, 8, and 16 processors for multiple-walk independent-thread
parallel GRASP with path-relinking on AP3 instances B-S 20.1, B-S 22.1, B-S 24.1, and
B-S 26.1.

Table 10.3 Speedups for multiple-walk cooperative-thread implementations of GRASP with path-
relinking on instances B-S 20.1, B-S 22.1, B-S 24.1, and B-S 26.1, with target values
7, 8, 7, and 8, respectively. Average speedups were computed over 60 runs.

Number of processors

2 4 8 16

Problem speedup efficiency speedup efficiency speedup efficiency speedup efficiency

B-S 20.1 1.56 0.78 3.47 0.88 7.37 0.92 14.36 0.90
B-S 22.1 1.64 0.82 4.22 1.06 8.83 1.10 18.78 1.04
B-S 24.1 2.16 1.10 4.00 1.00 9.38 1.17 19.29 1.21
B-S 26.1 2.16 1.08 5.30 1.33 9.55 1.19 16.00 1.00

average 1.88 0.95 4.24 1.07 8.78 1.10 17.10 1.04

Figure 10.7 compares the average speedup of the two implementations tested
in this section, namely the multiple-walk independent-thread and the multiple-walk
cooperative-thread GRASP with path-relinking implementations using target solution
values 7, 8, 7, and 8, on the same instances. The figure shows that the cooperative
variant of GRASP with path-relinking achieves the best parallelization, since the
largest speedups are observed for that variant.

216 10 Parallel GRASP heuristics

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of processors

B-S 20.1
B-S 22.1
B-S 24.1
B-S 26.1

Fig. 10.6 Average speedups on 2, 4, 8, and 16 processors for multiple-walk cooperative-thread
parallel GRASP with path-relinking on AP3 instances B-S 20.1, B-S 22.1, B-S 24.1, and
B-S 26.1.

10.3.2 Job shop scheduling

10.3.2.1 Problem formulation

The job shop scheduling problem (JSP) has long challenged researchers. It consists
in processing a finite set of jobs on a finite set of machines. Each job is required
to complete a set of operations in a fixed order. Each operation is processed on a
specific machine for a fixed duration. Each machine can process at most one job
at a time. Once a job initiates processing on a given machine, it must complete
processing on that machine without interruption. A schedule is a mapping of the
operations to time slots on the machines. The makespan is the maximum completion
time of the jobs. The objective of the JSP is to find a schedule that minimizes the
makespan.

A feasible solution of the JSP can be built from a permutation of the set of jobs
J on each of the machines in the set M , observing the precedence constraints, the
restriction that a machine can process only one operation at a time, and requiring that
once started, processing of an operation cannot be interrupted until its completion.
Since each set of feasible permutations has a corresponding schedule, the objective
of the JSP is to find, among the feasible permutations, the one with the smallest
makespan.

10.3 Some parallel GRASP implementations 217

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of processors

Cooperative GRASP+PR
Independent GRASP+PR

Fig. 10.7 Average speedups on 2, 4, 8, and 16 processors for the parallel algorithms tested on
instances of AP3: multiple-walk independent-thread GRASP with path-relinking and multiple-
walk cooperative-thread GRASP with path-relinking.

10.3.2.2 GRASP construction

Each single operation is a building block of the GRASP construction phase for the
JSP. A feasible schedule is built by scheduling individual operations, one at a time,
until all operations have been scheduled.

While constructing a feasible schedule, not all operations can be selected at a
given stage of the construction. An operation σ j

k can only be scheduled if all prior
operations of job j have already been scheduled. Therefore, at each construction
phase iteration, at most |J | operations are candidates to be scheduled. Let this set
of candidate operations be denoted byOc and the set of already scheduled operations
by Os. Denote the value of the greedy function for candidate operation σ j

k by h(σ j
k).

The greedy choice is to next schedule operation σ j
k = argmin{h(σ j

k) | σ j
k ∈ Oc}.

Let σ j
k = argmax{h(σ j

k) | σ j
k ∈ Oc}, h = h(σ j

k), and h = h(σ j
k). Then, the GRASP

restricted candidate list (RCL) is defined as

RCL = {σ j
k ∈ Oc | h≤ h(σ j

k)≤ h+α(h− h)},

where α is a parameter such that 0 ≤ α ≤ 1.
A typical iteration of the GRASP construction is summarized as follows: a partial

schedule (which is initially empty) is on hand, the next operation to be scheduled is
selected from the RCL and is added to the partial schedule, resulting in a new partial
schedule. The selected operation is inserted into the earliest available feasible time

218 10 Parallel GRASP heuristics

slot on machine Mσ j
k
. Construction ends when the partial schedule is complete, i.e.,

all operations have been scheduled.
The algorithm uses two greedy functions. Even numbered iterations use a greedy

function based on the makespan resulting from the inclusion of operation σ j
k to

the already-scheduled operations, i.e., h(σ j
k) = Cmax for O = {Os ∪σ j

k }. On odd
numbered iterations, solutions are constructed by favoring operations from jobs
having long remaining processing times. The greedy function used is given by
h(σ j

k) =−∑σ j
l 	∈Os

p j
l , which measures the remaining processing time for job j. The

use of two different greedy functions produce a greater diversity of initial solutions
to be used by the local search.

10.3.2.3 Local search

As an attempt to decrease the makespan of the solution produced in the construction
phase, we employ a 2-exchange local search procedure based on a disjunctive graph
model.

10.3.2.4 Path-relinking

Path-relinking for job shop scheduling is similar to path-relinking for three-index
assignment. Where in the case of three-index assignment each solution is repre-
sented by two permutation arrays, in the job shop scheduling problem, each solution
is made up of |M | permutation arrays of numbers 1,2, . . . , |J |.

10.3.2.5 Parallel independent-thread GRASP with path-relinking for JSP

We study the efficiency of the multiple-walk independent-thread GRASP with path-
relinking on JSP instances abz6, mt10, orb5, and la21 of ORLib
using 943, 938, 895, and 1100 as target solution values, respectively. Table 10.4
shows the estimated shifted exponential distribution parameters for the multiple-
walk independent-thread GRASP with path-relinking strategy obtained from 200
independent runs of a sequential variant of the algorithm. In addition to the sequen-
tial variant, 60 independent runs of 2-, 4-, 8-, and 16-thread variants were run on
the four test problems. As before, the average speedups were computed dividing the
sum of the execution times of the independent parallel program executing on one
processor by the sum of the execution times of the parallel program on 2, 4, 8, and
16 processors, over 60 runs. The average speedups can be seen in Table 10.5 and
Figure 10.8.

Compared to the efficiencies observed on the AP3 instances, those for these in-
stances of the JSP were much worse. While with 16 processors average speedups of
12.2 were observed for AP3, average speedups of only 5.9 occurred for JSP. This is

10.3 Some parallel GRASP implementations 219

Table 10.4 Estimated shifted exponential distribution parameters μ and λ obtained with 200 in-
dependent runs of a sequential GRASP with path-relinking on JSP instances abz6, mt10, orb5,
and la21, with target values 943, 938, 895, and 1100, respectively.

Estimated parameter

Problem μ λ |μ |/λ
abz6 47.67 756.56 0.06
mt10 305.27 524.23 0.58
orb5 130.12 395.41 0.32
la21 175.20 407.73 0.42

average 0.34

Table 10.5 Speedups for multiple-walk independent-thread implementations of GRASP with
path-relinking on instances abz6, mt10, orb5, and la21, with target values 943, 938, 895,
and 1100, respectively. Speedups are computed with the average of 60 runs.

Number of processors

2 4 8 16

Problem speedup efficiency speedup efficiency speedup efficiency speedup efficiency

bz6 2.00 1.00 3.36 0.84 6.44 0.81 10.51 0.66
mt10 1.57 0.79 2.12 0.53 3.03 0.39 4.05 0.25
orb5 1.95 0.98 2.97 0.74 3.99 0.50 5.36 0.34
la21 1.64 0.82 2.25 0.56 3.14 0.39 3.72 0.23

average 1.79 0.90 2.67 0.67 4.15 0.52 5.91 0.37

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

MT10
ABZ6
LA21

ORB5

Fig. 10.8 Average speedups on 2, 4, 8, and 16 processors for multiple-walk independent-thread
parallel GRASP with path-relinking on JSP instances abz6, mt10, orb5, and la21.

consistent with the test proposed earlier in this chapter (page 209), since the average
|μ |/λ values for AP3 and JSP are equal to 0.02 and 0.34, respectively.

220 10 Parallel GRASP heuristics

10.3.2.6 Parallel cooperative-thread GRASP with path-relinking for JSP

We now study the multiple-walk cooperative-thread strategy for GRASP with path-
relinking on the JSP. As with the independent-thread GRASP with path-relinking
strategy, the target solution values 943, 938, 895, and 1100 were used for instances
abz6, mt10, orb5, and la21, respectively. Table 10.6 and Figure 10.9 show
super-linear speedups on instances abz6 and mt10, linear speedup on orb5 and
about 70% efficiency for la21. As before, super-linear speedups are possible be-
cause good elite solutions are shared among the threads and these elite solutions
are combined with GRASP solutions whereas they would not be combined in an
independent-thread implementation.

Table 10.6 Speedups for multiple-walk cooperative-thread implementations of GRASP with path-
relinking on instances abz6, mt10, orb5, and la21, with target values 943, 938, 895, and 1100,
respectively. Average speedups were computed over 60 runs.

Number of processors

2 4 8 16

Problem speedup efficiency speedup efficiency speedup efficiency speedup efficiency

abz6 2.40 1.20 4.21 1.05 11.43 1.43 23.58 1.47
mt10 1.75 0.88 4.58 1.15 8.36 1.05 16.97 1.06
orb5 2.10 1.05 4.91 1.23 8.89 1.11 15.76 0.99
la21 2.23 1.12 4.47 1.12 7.54 0.94 11.41 0.71

average 2.12 1.06 4.54 1.14 9.05 1.13 16.93 1.06

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of processors

MT10
ABZ6
LA21

ORB5

Fig. 10.9 Average speedups on 2, 4, 8, and 16 processors for multiple-walk cooperative-thread
parallel GRASP with path-relinking on JSP instances abz6, mt10, orb5, and la21.

10.3 Some parallel GRASP implementations 221

Figure 10.10 compares the average speedup of the two implementations tested
in this section, namely the multiple-walk independent-thread and the multiple-walk
cooperative-thread GRASP with path-relinking implementations using target solu-
tion values 943, 938, 895, and 1100, on instances abz6, mt10, orb5, and la21,
respectively. The figure shows that the cooperative variant of GRASP with path-
relinking achieves the best parallelization.

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of processors

Cooperative GRASP+PR
Independent GRASP+PR

Fig. 10.10 Average speedups on 2, 4, 8, and 16 processors for the parallel algorithms tested on
instances of JSP: multiple-walk independent-thread GRASP with path-relinking and multiple-walk
cooperative-thread GRASP with path-relinking.

10.3.3 2-path network design problem

10.3.3.1 Problem formulation

Let G= (V,U) be a connected graph, whereV is the set of nodes andU is the set of
edges. A k-path between nodes s, t ∈V is a sequence of at most k edges connecting
s and t. Given a non-negative weight function w :U → R+ associated with the edges
of G and a set D of pairs of origin-destination nodes, the 2-path network design
problem (2PNDP) consists in finding a minimum weighted subset of edges U ′ ⊆U
containing a 2-path between every origin-destination pair.

Applications of 2PNDP can be found in the design of communications networks,
in which paths with few edges are sought to enforce high reliability and small delays.

222 10 Parallel GRASP heuristics

10.3.3.2 GRASP construction

The construction of a new solution begins by the initialization of modified edge
weights with the original edge weights. Each iteration of the construction phase
starts by the random selection of an origin-destination pair still in D. A shortest
2-path between the extremities of this pair is computed, using the modified edge
weights. The weights of the edges in this 2-path are set to zero until the end of the
construction procedure, the origin-destination pair is removed from D, and a new
iteration resumes. The construction phase stops when 2-paths have been computed
for all origin-destination pairs.

10.3.3.3 Local search

The local search phase seeks to improve each solution built in the construction
phase. Each solution may be viewed as a set of 2-paths, one for each origin-
destination pair in D. To introduce diversity to drive different applications of the
local search to different local optima, the origin-destination pairs are investigated at
each GRASP iteration in a circular order, defined by a different random permutation
of their original indices.

Each 2-path in the current solution is tentatively eliminated. The weights of the
edges used by other 2-paths are temporarily set to zero, while those which are not
used by other 2-paths in the current solution are restored to their original values.
A new shortest 2-path between the extremities of the origin-destination pair under
investigation is computed, using the modified weights. If the new 2-path improves
the current solution, then the current solution is updated with the new 2-path; other-
wise the previous 2-path is restored. The search stops if the current solution is not
improved after a sequence of |D| iterations along which all 2-paths are investigated.
Otherwise, the next 2-path in the current solution is investigated for substitution and
a new iteration resumes.

10.3.3.4 Path-relinking

A solution to 2PNDP is represented as a set of 2-paths connecting each origin-
destination pair. Path-relinking starts by determining all origin-destination pairs
whose associated 2-paths are different in the starting and guiding solutions. These
computations amount to determining a set of moves which should be applied to the
initial solution to reach the guiding solution. Each move is characterized by a pair of
2-paths, one to be inserted and the other to be eliminated from the current solution.

10.3 Some parallel GRASP implementations 223

10.3.3.5 Parallel implementations of GRASP with path-relinking for 2PNDP

As for AP3 and JSP, in the case of an independent-thread parallel implementation of
GRASP with path-relinking for 2PNDP, each processor has a copy of the sequential
algorithm, a copy of the data, and its own pool of elite solutions. One processor acts
as the master, reading and distributing the problem data, generating the seeds used
by the pseudo-random number generators at each processor, distributing the itera-
tions, and collecting the best solution found by each processor. All the p available
processors perform GRASP iterations.

On the other hand, in the case of a cooperative-thread parallel implementation
of GRASP with path-relinking for 2PNDP, the master handles a centralized pool of
elite solutions, collecting and distributing elite solutions upon request (recall that in
the case of AP3 and JSP each processor had its own pool of elite solutions). The
p− 1 workers exchange elite solutions found along their search trajectories. In this
implementation for 2PNDP, each worker can send up to three different solutions to
the master at each iteration: the solution obtained by local search, and solutions w1

and w2 obtained by forward and backward path-relinking between the same pair of
starting and guiding solutions, respectively.

10.3.3.6 Computational results

The results illustrated in this section are for an instance with 100 nodes, 4950 edges,
and 1000 origin-destination pairs. We use the methodology based on time-to-target
plots showing empirical runtime distributions of the random variable time to target
solution value. To plot the empirical distribution, we fix a solution target value and
run each algorithm 200 times, recording the running time when a solution with cost
at least as good as the target value is found. For each algorithm, we associate with
the i-th sorted running time ti a probability pi = (i− 1

2)/200 and plot the points
zi = (ti, pi), for i= 1, . . . ,200.

Results obtained for both the independent-thread and the cooperative-thread par-
allel implementations of GRASP with path-relinking on the above instance with the
target value set at 683 are reported in Figure 10.11. The cooperative implementa-
tion is already faster than the independent implementation for eight processors. For
fewer processors the independent implementation is naturally faster, since it em-
ploys all p processors in the search (while only p− 1 worker processors effectively
take part in the computations performed by the cooperative implementation).

Three strategies further improve the performance of the cooperative-thread im-
plementation, by reducing the cost of the communication between the master and
the workers when the number of processors increases:

• Strategy 1: Each send operation is broken into two parts. First, the worker only
sends only the cost of the solution to the master. If this solution is better than the
worst solution in the pool, then the full solution is sent. The number of messages
increases, but most of them will be very small, with light memory requirements.

224 10 Parallel GRASP heuristics

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 1000 10000 100000 1e+06

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time (seconds) to target solution

cooperative (3 solutions)
independent

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000 1e+06

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time (seconds) to target solution

cooperative (3 solutions)
independent

(b)

Fig. 10.11 Running times for 200 runs of the multiple-walk independent-thread and the multiple-
walk cooperative-thread implementations of GRASP with path-relinking using (a) two processors
and (b) eight processors, with the target solution value set at 683.

• Strategy 2: Only one solution is sent to the pool at each GRASP iteration.
• Strategy 3: A distributed implementation, in which each worker handles its own

pool of elite solutions. Every time a processor finds a new elite solution, the
newly found elite solution is broadcast to the other processors.

10.3 Some parallel GRASP implementations 225

Comparative results for these three strategies on the same problem instance are
plotted in Figure 10.12. The first strategy outperforms the others.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000 1e+06

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time (seconds) to target solution

cooperative (3 solutions)
(1) cooperative (3 solutions + 3 costs)

(2) cooperative (1 solution + 1 cost)
(3) distributed

Fig. 10.12 Strategies for improving the performance of the centralized multiple-walk cooperative-
thread implementation on eight processors.

Table 10.7 lists the average computation times and the best solutions found over
ten runs of each strategy when the total number of GRASP iterations is set at 3200.
There is a clear degradation in solution quality for the independent-thread strategy
when the number of processors increases, despite the fact that speedups are high,
of the same order as the number of processors used in the computations. As fewer
iterations are performed by each processor, the pool of elite solutions gets poorer
with the increase in the number of processors. Since the processors do not commu-
nicate, the overall solution quality is worse. In the case of the cooperative strategy,
the information shared by the processors guarantees the high quality of the solutions
in the pool. The cooperative implementation is more robust: solution quality does
not deteriorate and very good solutions are obtained as the number of processors in-
creases. Smaller speedups than those obtained with the independent-thread strategy
are observed. However, the efficiency remains close to one for up to 16 processors.

226 10 Parallel GRASP heuristics

Table 10.7 Average times and best solutions over ten runs of 2PNDP.

Independent Cooperative

Processors best value avg. time (s) speedup best value avg. time (s) speedup efficiency

1 673 1310.1 — — — — —
2 676 686.8 1.91 676 1380.9 0.95 0.48
4 680 332.7 3.94 673 464.1 2.82 0.71
8 687 164.1 7.98 676 200.9 6.52 0.82

16 692 81.7 16.04 674 97.5 13.44 0.84
32 702 41.3 31.72 678 74.6 17.56 0.55

10.4 Bibliographical notes

Metaheuristics, such as GRASP, have found their way into the standard toolkit of
combinatorial optimization methods. Parallel computers have increasingly found
their way into metaheuristics.Verhoeven and Aarts (1995), Cung et al. (2002), Duni
Ekşog̃lu et al. (2002), Alba (2005), and Talbi (2009) presented good accounts of
parallel implementations of metaheuristics.

Most multiple-walk independent-thread parallel implementations of GRASP
(with or without path-relinking) described in Section 10.1 are based on partition-
ing the search space or the iterations among a number of processors and appeared in
Alvim and Ribeiro (1998), Canuto et al. (2001), Feo et al. (1994), Drummond et al.
(2002), Li et al. (1994), Martins et al. (1998), Martins et al. (1999), Martins et al.
(2000), Martins et al. (2004), Murphey et al. (1998), Pardalos et al. (1995), Pardalos
et al. (1996), Resende et al. (1998), and Ribeiro and Rosseti (2002), among other
references. Linear speedups can be expected in parallel multiple-walk independent-
thread implementations. This was illustrated with applications to the maximum
satisfiability problem and to the Steiner problem in graphs. Pardalos et al. (1996)
implemented a parallel GRASP for the MAX-SAT problem using PVM (Geist
et al., 1994). Martins et al. (1998) implemented a parallel GRASP for the Steiner
problem in graphs using MPI (Snir et al., 1998) on test problems taken from the
OR-Library (Beasley, 1990a).

In the case of the multiple-walk independent-thread implementation described
by Aiex et al. (2005) for the 3-index assignment problem and by Aiex et al. (2003)
for the job shop scheduling problem, each processor applies path-relinking to pairs
of elite solutions stored in a local pool. The test for predicting whether a parallel
implementation using multiple independent processors will be efficient was pro-
posed in Aiex and Resende (2005).

Path-relinking has been increasingly used to introduce memory in the otherwise
memoryless original GRASP procedure and was also used in conjunction with par-
allel implementations of GRASP. The hybridization of GRASP and path-relinking
led to some effective multiple-walk cooperative-thread implementations. Collabo-
ration between the threads is usually achieved by sharing elite solutions, either in

10.4 Bibliographical notes 227

a single centralized pool or in distributed pools. In some of these implementations,
super-linear speedups were achieved even for cases where small speedups occurred
in multiple-walk independent-thread variants.

Section 10.2 dealt with multiple-walk cooperative-thread implementations of
GRASP with path-relinking using distributed strategies that appeared in Aiex et al.
(2003) and Aiex and Resende (2005), in which each thread maintains its own pool of
elite solutions. Centralized strategies appeared in Martins et al. (2004) and Ribeiro
and Rosseti (2002), in which only a single pool of elite solutions was used.

The three-index assignment problem (AP3) (Pierskalla, 1967) is a straightfor-
ward NP-hard (Frieze, 1983; Garey and Johnson, 1979) extension of the classi-
cal two-dimensional assignment problem. The parallel implementations and the
computational experiments reported in Section 10.3.1 appeared originally in Aiex
et al. (2005). Exact and heuristic algorithms exist for this problem in the literature
(Balas and Saltzman, 1991; Burkard and Fröhlich, 1980; Burkard and Rudolf, 1993;
Burkard et al., 1996; Crama and Spieksma, 1992; Hansen and Kaufman, 1973;
Leue, 1972; Pardalos and Pitsoulis, 2000; Pierskalla, 1967; 1968; Vlach, 1967;
Voss, 2000). Test instances were described in Balas and Saltzman (1991), Crama
and Spieksma (1992), and Burkard et al. (1996).

The job shop scheduling problem (JSP) considered in Section 10.3.2 was proved
to be NP-hard by Lenstra and Rinnooy Kan (1979). The GRASP construction phase
is the one proposed in Binato et al. (2002) and Aiex et al. (2003). The 2-exchange
local search is used in Aiex et al. (2003), Binato et al. (2002), and Taillard (1991),
and is based on the disjunctive graph model of Roy and Sussmann (1964). We also
refer to Aiex et al. (2003) and Binato et al. (2002) for a description of the im-
plementation of the local search procedure. Test instances are available from the
OR-Library (Beasley, 1990a).

Applications of the 2-path network design problem (2PNDP) introduced in Sec-
tion 10.3.3 can be found in the design of communications networks, in which paths
with few edges are sought to enforce high reliability and small delays. The problem
was shown to be NP-hard by Dahl and Johannessen (2004). Ribeiro and Rosseti
(2002; 2007) developed parallel GRASP heuristics for 2PNDP.

Chapter 11
GRASP for continuous optimization

Continuous GRASP, or C-GRASP, extends GRASP to the domain of continuous
box-constrained global optimization. The algorithm searches the solution space over
a dynamic grid. Each iteration of C-GRASP consists of two phases. In the construc-
tion (or diversification) phase, a greedy randomized solution is constructed. In the
local search (or intensification) phase, a local search algorithm starts from the first
phase solution and produces an approximate locally optimal solution. A determin-
istic rule triggers a restart after each C-GRASP iteration. This chapter addresses the
construction phase and the restart strategy, and presents a local search procedure for
continuous GRASP.

11.1 Box-constrained global optimization

Continuous global optimization seeks a minimum or maximum of a multimodal
function over a continuous domain. In its minimization form, global optimiza-
tion can be stated as finding a global minimum S∗ ∈ F ⊆ R

n such that f (S∗) ≤
f (S), ∀ S ∈ F , where F is some region of Rn and the multimodal objective function
is defined by f :F →R. In this chapter, we limit ourselves to box constraints: the do-
main is a hyper-rectangleF = {S= (S1, . . . ,Sn)∈R

n : �i ≤ Si ≤ ui}, where �i,ui ∈R

such that �i ≤ ui, for i = 1, . . . ,n. Therefore, the minimization problem considered
here consists in finding S∗ = argmin{ f (S) : � ≤ S ≤ u}, where f : Rn → R, and
�,S,u ∈ R

n.

© Springer Science+Business Media New York 2016
M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP,
DOI 10.1007/978-1-4939-6530-4 11

229

230 11 GRASP for continuous optimization

Five examples of classical box-constrained continuous global optimization prob-
lems are

• Ackley function:

min An(x) =−20e−0.2
√

1
n ∑n

i=1 x
2
i − e

1
n ∑n

i=1 cos(2πxi) + 20+ e,

where (x1, . . . ,Sn) ∈ [−15,30]n.

• Bohachevsky function:

min B2(x) = x2
1 + 2x2

2 − 0.3cos(3πx1)− 0.4cos(4πx2)+ 0.7,

where (x1,x2) ∈ [−50,100]2.

• Schwefel function:

min SCn(x) = 418.9829n−
n

∑
i=1

xi sin(
√
|xi|),

where (x1, . . . ,xn) ∈ [−500,500]n.

• Shekel function:

min S4,m(x) =−
m

∑
i=1

[(x− ai)
T (x− ai)+ ci]

−1,

where (x1,x2,x3,x4) ∈ [0,10]4,

a=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.0 4.0 4.0 4.0
1.0 1.0 1.0 1.0
8.0 8.0 8.0 8.0
6.0 6.0 6.0 6.0
7.0 3.0 7.0 3.0
2.0 9.0 2.0 9.0
5.0 5.0 3.0 3.0
8.0 1.0 8.0 1.0
6.0 2.0 6.0 2.0
7.0 2.6 7.0 3.6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and c= (0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5).

• Shubert function:

min SH(x) =
[5

∑
i=1

icos[(i+ 1)x1 + i]
][5

∑
i=1

icos[(i+ 1)x2 + i]
]
,

where (x1,x2) ∈ [−10,10]2.

11.2 C-GRASP for continuous box-constrained global optimization 231

11.2 C-GRASP for continuous box-constrained global
optimization

Continuous GRASP, or C-GRASP, extends GRASP to the domain of continuous
box-constrained global optimization. The algorithm searches the solution space over
a dynamic grid with hypercubed cells of side h each, fully contained in the domain.
The initial grid is formed by hypercubes of sides of size hs. As each approximate
local minimum is found during local search, the grid density is increased by halving
the side of the current hypercube. When the size of the grid side becomes very small,
i.e., when h < he, for some given minimum grid size he, a restart of the search is
triggered.

Figure 11.1 shows a hyper-rectangle approximated by three grids: a sparse grid
on top (red grid); a medium-density grid in the middle (green grid); and a dense grid
in the bottom (blue grid). In all hyper-rectangles, an optimal solution is represented
as a point in the upper right-hand corner of the feasible domain. As the grid density
increases, more grid points are placed in the hyper-rectangle and the upper right
point on the grid becomes an increasingly better approximation of the solution.

The initial solution S of the algorithm, as well as the sequence of initial solutions
right after each restart, are randomly generated points in the interior of the hyper-
rectangle, i.e., �i < Si < ui for i = 1, . . . ,n. Each iteration of C-GRASP consists
of two phases. In the construction (or diversification) phase, a greedy randomized
solution is constructed, while in the local search (or intensification) phase, a local
search algorithm is applied, starting from the first phase solution and producing an
approximate locally optimal solution. A deterministic rule can trigger a restart after
each C-GRASP iteration.

The pseudo-code in Figure 11.2 shows the template of a continuous GRASP
heuristic for the minimization of f (S), with �≤ S≤ u, where �,S,u∈R

n. The value
f ∗ of the best solution found is initialized in line 1. The loop from line 2 to 15
is repeated until some predefined stopping criterion is satisfied. In line 3, the cur-
rent iterate S is initialized (or reinitialized) with a point from the interior of the
hyper-rectangle defined by the n-vectors � and u, drawn randomly by procedure
RANDOM-IN-BOX(�,u). The grid size h is initialized in line 4. The loop from
line 5 to 14 is repeated until an approximate global minimum is found, i.e., while
the grid size is not too small. The current solution is saved in line 6. In lines 7 and 8,
the construction and local search phases of C-GRASP are applied, always starting
from the current solution S and using the grid size value h. If the current iterate S
obtained by local search is better than the best solution found so far, then the best
found solution and its objective function value are updated in lines 10 and 11, re-
spectively. Otherwise, if no improvement was found by either the construction or
the local search phases, then the grid size is halved in line 13. If a stopping crite-
rion is satisfied in line 2, then the best solution found S∗ (together with its objective
function value f (S∗)) is returned as an approximate globally optimal solution in
line 16.

232 11 GRASP for continuous optimization

Fig. 11.1 This figure illustrates the effect of changing the resolution of the dynamic grid. From top
(red) to bottom (blue), both the grid density and the search resolution increase. As the grid density
increases, the closest distance from a point on the grid to the solution represented by a point in
the upper-right corner of the domain decreases and a point on the grid better approximates this
solution.

11.3 C-GRASP construction phase 233

Fig. 11.2 Pseudo-code of the basic C-GRASP heuristic for box-constrained continuous global
minimization.

11.3 C-GRASP construction phase

The construction phase of C-GRASP mimics the construction phase of GRASP.
The main difference is that while the GRASP construction starts from scratch, the
construction in C-GRASP starts from a given initial solution S.

At each of its iterations, the construction modifies one of the n components of
S. It does so by performing a discrete line search in each yet unmodified canonical
basis direction to build a restricted candidate list (RCL) of canonical components.
A discrete line search is an approximate search that evaluates the objective function
for a discrete set of points, all laying on a line, defined by a given canonical basis
direction, that passes through the current iterate. The line search returns the point
with the best objective function value. The restriction for the RCL is by value and
is based on a parameter α . A component is selected at random from the RCL, its
value is set to the value found in the discrete line search, and its index is removed
from further consideration. This is repeated until all components are examined and
possibly modified.

The pseudo-code in Figure 11.3 summarizes the steps of the construction proce-
dure of C-GRASP. In line 1, the set of yet unconsidered indices of search directions
(which corresponds to the set of all still unfixed components) is initialized to corre-
spond to all directions. In line 2, the RCL parameter α is assigned to a random real
value in the interval [0,1]. Each iteration of the loop from lines 3 to 21 potentially
modifies the value of one component of S. In lines 4 and 5, the best and worst val-
ues that will be obtained by line search over all possible directions are initialized.
The for loop in lines 6 to 12 evaluates the objective function, for all still unfixed

234 11 GRASP for continuous optimization

Fig. 11.3 Pseudo-code of the C-GRASP construction phase.

components of the solution being constructed. Since the line search is always per-
formed along one of the directions of the canonical basis, it can modify at most
one component of the solution. Line 7 invokes DISCRETE-LINE-SEARCH and re-
turns the potentially modified component S∗i that minimizes f (S) along the canon-
ical direction ei. In line 8, the current iterate is tentatively modified with its i-th
component taking on the value S∗i . The tentative solution is evaluated in line 9 and
the lower and upper bounds on the solutions obtained by line search are updated in
lines 10 and 11, if necessary. These values, along with α and the objective function
values produced by the line searches, are used in lines 13 to 17 to set up the RCL.
In line 18, an index j is selected at random from the RCL and the j-th component
of S is set, in line 19, to the value S∗j found in the line search corresponding to the
j-th canonical basis direction. In line 20, index j is removed from the set of unfixed
components. Finally, in line 22 the constructed solution S and its objective function
value f (S) are returned.

The randomized greedy procedure CONTINUOUS-RANDOMIZED-GREEDY
of Figure 11.3 can be made more efficient by noting that, right after line 18, the
values of S j and S∗j may be identical. In this case, there will be no change, or move-
ment, of solution S with the assignment made in line 19. Consequently, in the next
iteration of the while loop from line 3 to line 21, the values returned by the line

11.3 C-GRASP construction phase 235

Fig. 11.4 First iteration of a bi-dimensional randomized greedy construction: discrete line searches
start from a solution represented by the blue point and are performed in both directions to populate
the RCL with solutions represented by the green points. Each line search starts at the blue point
(initial solution) and evaluates the blue point and the black points determined by the initial solution,
each search direction, the grid size h, and the upper and lower bounds. Suppose the green point
furthest to the right is selected at random from the RCL. It will be represented as the blue point
in Figure 11.5 and will act as the new initial solution for the discrete line search of the second
iteration of the bi-dimensional randomized greedy construction.

Fig. 11.5 Second (last) iteration of a bi-dimensional randomized greedy construction: the blue
point in this figure is the green point chosen at random from the RCL in Figure 11.4. It is the
starting point for the discrete line search in the last direction of the randomized construction. As
for the line search of Figure 11.4, the blue point and black points are evaluated. The green point is
the best solution among the evaluated points and is the final solution produced by the randomized
greedy construction procedure.

236 11 GRASP for continuous optimization

search procedure DISCRETE-LINE-SEARCH in line 7 will be identical to those
produced in the current iteration. The pair (S∗i ,gi) computed in the current iteration
can therefore be reused in the next iteration, where there will be no need to compute
lines 7 to 9.

11.4 Approximate discrete line search

At each iteration of algorithm CONTINUOUS-RANDOMIZED-GREEDY in Fig-
ure 11.3, the approximate discrete line search DISCRETE-LINE-SEARCH proce-
dure is applied several times along different directions (line 7 of the pseudo-code of
Figure 11.3). This line search evaluates a discrete set of points on the line determined
by the starting solution S and one of the canonical search directions ei, i = 1, . . . ,n.
The set of visited points depends on the current iterate S, the grid size h, and the
upper and lower bounds defined by the box constraints.

Figures 11.4 and 11.5 show two iterations of the randomized construction pro-
cedure, where the discrete line search is applied to a two-dimensional function. In
the first iteration (shown in Figure 11.4), the line search is applied in two direc-
tions, each defined by the current iterate (or starting solution) and a canonical basis
direction (e1 = (1,0) or e2 = (0,1)). Note that the points in which the function is
evaluated are determined by the initial solution, by the grid size h, and by the upper
and lower bounds, as well as by the canonical basis directions. Once a solution is
chosen in one of the line searches, this point becomes the new initial solution and
another line search is performed (see Figure 11.5).

Figure 11.6 shows the pseudo-code of algorithm DISCRETE-LINE-SEARCH to
perform a discrete line search for minimization. Lines 1 and 2 initialize, respectively,
the best objective function value f ∗ and the distance Δ to the next point to be visited.
The loop in lines 3 to 9 perform the search from the initial solution S along the
canonical direction ei while the upper bound ui is not violated, using h as the step
size. If a new visited point improves the best solution along this direction in line 4,
then S∗ and its cost f ∗ are updated in lines 5 and 6, respectively. The step size
is updated in line 8 and a new iteration resumes. Lines 10 to 17 perform the same
search from the initial solution S along the opposite direction, while the lower bound
�i is not violated, once again using h as the step size. Line 18 returns S∗i , i.e., the i-th
component of the best solution found S∗.

Example of approximate discrete line search

Suppose we want to minimize f (x1,x2) =
√
x1 + x2, with 0≤ x1 ≤ 1 and 0≤ x2 ≤ 2.

We use C-GRASP and consider that at some iteration we wish to perform an approx-
imate discrete line search starting from (0.25,0.25) along the canonical direction
e1 = (1,0), with the grid parameter h = 0.15. The points to be evaluated along the
line search are all defined by (0.25,0.25)+ k ·h ·e1 = (0.25,0.25)+ k ·h · (1,0), for
k=−1,0,1,2,3,4,5, i.e., (0.10, 0.25), (0.25, 0.25), (0.40, 0.25), (0.55, 0.25), (0.70,

11.5 C-GRASP local search 237

Fig. 11.6 Pseudo-code of the approximate discrete line search algorithm.

0.25), (0.85, 0.25), and (1.00, 0.25). Note that any other point along this direction
will violate constraint 0 ≤ x1 ≤ 1. Of the seven trial points, (x∗1,x

∗
2) = (0.10,0.25)

is the one minimizing
√
x1 + x2. Then, algorithm DISCRETE-LINE-SEARCH will

return 0.10 as the best value for the first component. �

11.5 C-GRASP local search

The local search procedure CONTINUOUS-LOCAL-SEARCH is called from line 8
of the pseudo-code of algorithm CONTINUOUS-GRASP in Figure 11.2 as an
attempt to improve the constructed solution S with a search on the largest grid of
size h that fits in the domain F and for which one of its grid points coincides with
the current iterate S.

The local search described in this section makes no use of derivatives. Though
derivatives can be easily computed for many functions, there are some for which
they cannot be computed or are computationally difficult to compute. The approach
described in this section can be seen as approximating the role of the gradient of the
objective function f .

From a given input point S ∈ F , the local improvement algorithm generates
a neighborhood and determines at which points in the neighborhood, if any, the
objective function improves. If an improving point is found, then it is made the
current point and the local search continues from this new solution.

238 11 GRASP for continuous optimization

(a) Projection of all grid points onto the ball (b) Sampling of points on the ball

(c) Determine best of sampled points (d) Move to new solution and shift position
of grid

Fig. 11.7 One step of procedure CONTINUOUS-LOCAL-SEARCH: (a) All gridpoints in F are
projected onto the ball of radius h centered at the current solution S; (b) A subset of the projected
points on the ball is sampled; (c) Best sampled point is determined (in green); and (d) Solution S
is moved to best point, the grid is shifted to coincide with the new solution, and new ball of radius
h is centered at the new current solution.

Let S be the current solution and h be the current grid discretization parameter.
Define

Fh(S) = {S′ : �≤ S′ ≤ u, S′ = S+ h · τ, ∀ τ ∈ Z
n}

to be a lattice of points in F whose coordinates are integer steps (of size h) away
from those of S (see Figure 11.7(a)). Let

Bh(S) = {S′′ : S′′ = S+ h · (S′− S)/‖S′− S‖, ∀ S′ ∈ Fh(S)\ {S}}

be the projection of the points in Fh(S) \ {S} onto the ball of radius h centered
at S (see Figure 11.7(a)). The h-neighborhood of solution S is defined as the set of
points in Bh(S). The size of this neighborhood is bounded from above by ∏n

i=1�(ui−
�i)/h+ 1�. If all of these points are examined and no improving solution is found,
then the current solution S∗ is called an h-local minimum. Since the number of points
in Bh(S) can be huge, it may be only feasible to evaluate the objective function on
a subset of them. If a subset of these points is examined and no improving point is
found, then the current solution S∗ is considered an approximate h-local minimum.

11.6 Computing global optima with C-GRASP 239

Fig. 11.8 Pseudo-code of the C-GRASP local search phase.

The pseudo-code of the algorithm that performs the local search phase is shown
in Figure 11.8. It takes as input the current solution S ∈ F , the grid size h, and the
maximum number of points to be sampled in each neighborhoodBh(S). The current
best solution S∗ is initialized to S in line 1. The cost of the best known solution is set
in line 2. The number of points sampled in the neighborhood is initialized in line 3.
Starting from S∗, the loop in lines 4 to 12 investigates at most kmax neighbors of the
current solution. A new neighbor S ∈ Bh(S∗) is selected in line 5 and the number
of solutions sampled in this neighborhood is incremented by one in line 6. If line 7
detects that the newly selected neighbor S is feasible and better than S∗, then a move
is performed: solution S∗ is set to S in line 8, the cost of the best solution is updated
in line 9, and the process restarts with S∗ as the new best solution after the counter
k is reset to 0 in line 10. Local improvement terminates if an approximate h-local
minimum solution S∗ is found. At that point, S∗ is returned in line 13 as the solution
produced by local search.

11.6 Computing global optima with C-GRASP

We conclude this chapter by showing the results of running an implementation of
C-GRASP on the five functions listed in Section 11.1 of this chapter: Ackley (for
n= 10), Bohachevsky, Schwefel (for n= 10), Shekel, and Shubert. These functions
have global optimal objective function values of, respectively, 0, 0, 0, −10.5364,
and −186.7309. Since all global optima are known, the inner loop of the algorithm
is made to stop when either the grid size h ≤ he (as in the case when the global
optimum is unknown) or when the gap

240 11 GRASP for continuous optimization

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

be
st

 o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

function evaluations

global optimum value: 0

stopping criterion value: eps = 0.001

Ackley
Bohachevsky

Schwefel

Fig. 11.9 Best objective function value as a function of the number of function evaluations for
C-GRASP runs on three functions: Ackley, Bohachevsky, and Schwefel. All three functions have
global optima of value zero.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.001 0.01 0.1 1 10 100

be
st

 o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

time (seconds)

global optimum value: 0

stopping criterion value: eps = 0.001

Ackley
Bohachevsky

Schwefel

Fig. 11.10 Best objective function value as a function of the computation time (in seconds) for
C-GRASP runs on three functions: Ackley, Bohachevsky, and Schwefel. All three functions have
global optima of value zero.

11.6 Computing global optima with C-GRASP 241

-12

-10

-8

-6

-4

-2

 0

 1 10 100 1000 10000

be
st

 o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

function evaluations

global optimum value: -10.5364

Shekel

Fig. 11.11 Best objective function value f (S) as a function of the number of function evalua-
tions for one C-GRASP run on function Shekel whose global optimum objective function value is
f (S∗) =−10.5364.

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90

be
st

 o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(s
hi

fte
d)

time (seconds)

0.01 * 10.5364 = 0.0105364

Shekel

Fig. 11.12 Best shifted objective function value | f (S)− f (S∗)| as a function of the computation
time (in seconds) for one C-GRASP run on function Shekel whose global optimum objective func-
tion value is f (S∗) =−10.5364. Optimization ends when | f (S)− f (S∗)|< ε · f (S∗) = 0.0105364.

242 11 GRASP for continuous optimization

-200

-150

-100

-50

 0

 50

 1 10 100 1000 10000

be
st

 o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

function evaluations

global optimum value: -186.7309

Shubert

Fig. 11.13 Best objective function value f (S) as a function of the number of function evaluations
for one C-GRASP run on function Shubert whose global optimum objective function value is
f (S∗) =−186.7309.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 0.01 0.02 0.03 0.04 0.05 0.06

be
st

 o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(s
hi

fte
d)

time (seconds)

0.01 * 186.7309 = 0.1867309

Shubert

Fig. 11.14 Best shifted objective function value | f (S)− f (S∗)| as a function of the computation
time (in seconds) for one C-GRASP run on function Shubert whose global optimum objective func-
tion value is f (S∗) =−186.7309. Optimization ends when | f (S)− f (S∗)|< ε · f (S∗) = 0.1867309.

11.6 Computing global optima with C-GRASP 243

| f (S)− f (S∗)| ≤
{

ε, if f (S∗) = 0,

ε · | f (S∗)|, if f (S∗) 	= 0,
(11.1)

where S is the current best solution found by the heuristic, S∗ is the known global
minimum solution, and ε = 0.001.

Each run used the same parameter values: initial grid size hs = 0.5, final grid size
he = 0.0001, and local search maximum sampling parameter kmax = 100.

For all runs, the algorithm stopped because of stopping rule (11.1), before the size
of the grid h became less than 0.0001. Therefore, only a single outer iteration was
carried out. Figures 11.9 to 11.14 show the convergence of C-GRASP on the five
test functions. Convergence is shown both as a function of the number of function
evaluations and of the computation time (in seconds).

Figures 11.9 and 11.10 show, respectively, the convergence of the algorithm with
respect to the number of function evaluations and the computation time for the three
functions whose global minima are zero, i.e., for Ackley, Bohachevsky, and Schwe-
fel. The true optimum for Ackley is S∗ = (0, . . . ,0) with f (S∗) = 0, while C-GRASP
stopped with

S= (0.000189,0.000277,0.000212,0.000083,0.000120,

0.000160,−0.000051,0.000150,0.000187,−0.000217)

and f (S) = 0.000708. The true optimum for Bohachevsky is S∗ = (0,0) with
f (S∗) = 0, while C-GRASP stopped with S= (−0.004350,−0.003859) and f (S) =
0.000771. The true optimum for Schwefel is S∗ = (420.9687, . . . ,420.9687) with
f (S∗) = 0, while C-GRASP stopped with

S= (420.970126,420.962594,420.981758,420.974012,420.945996.

420.963734,420.957748,420.952840,420.986939,420.975983)

and f (S) = 0.000321. Of those three functions, Ackley was the most difficult to op-
timize, requiring 1,681,424 function evaluations and 20.9 seconds of running time,
while Bohachevsky required only 38,415 evaluations and 0.22 seconds. The final
grid sizes for Ackley, Bohachevsky, and Schwefel were, respectively, 0.000977,
0.015625, and 0.062500.

Figures 11.11 and 11.12 illustrate, respectively, the convergence of the algorithm
with respect to the number of function evaluations and the computation time for the
function Shekel with m = 10. The true optimum for Shekel is S∗ = (4,4,4,4) with
f (S∗) =−10.5365, while C-GRASP stopped with

S = (4.002639,3.998661,3.995356,3.999527)

and f (S) = −10.529192. C-GRASP required 6565 function evaluations and 89.6
seconds to find this solution. The final grid size was 0.015625.

244 11 GRASP for continuous optimization

Finally, Figures 11.13 and 11.14 show, respectively, the convergence of the
algorithm with respect to the number of function evaluations and computation
time for the function Shubert. The function Shubert has many global minima,
all with f (S∗) = −186.7309. C-GRASP stopped with S = (4.859558,5.483684)
and f (S) = −186.724170. C-GRASP required 5550 function evaluations and 0.06
seconds to find this solution. The final grid size was 0.015625.

In each of the five runs of C-GRASP, procedure RANDOM-IN-BOX(�,u) was
never called more than once, since the grid size h was never smaller or equal than
he = 0.0001.

11.7 Bibliographical notes

C-GRASP was first introduced by Hirsch et al. (2007b) and in the Ph.D. thesis of
Hirsch (2006). Hirsch et al. (2010) made several observations to speed up the com-
putations of C-GRASP, including the reuse of line search results. The local search
algorithm GENCAN (Birgin and Martı́nez, 2002), an active-set method for bound-
constrained local minimization, was used by Birgin et al. (2010) to play the role of
local search in a C-GRASP for minimization of functions for which gradients can
be computed. Martin et al. (2013) proposed improvements to C-GRASP, including
the use of direct searches in the local search phase. Araújo et al. (2015) presented
several direct search procedures that are used in a C-GRASP heuristic. They named
their algorithm DC-GRASP. Silva et al. (2013a) described libcgrpp, a GNU-style
dynamic shared Python/C library for quick implementation of C-GRASP heuristics.

C-GRASP has been applied to a range of problems. These include sensor regis-
tration in a sensor network (Hirsch et al., 2006), finding correspondence of projected
3D points and lines (Hirsch et al., 2011), solving systems of nonlinear equations
(Hirsch et al., 2009), determining the relationship between drug combinations and
adverse reactions (Hirsch et al., 2007a), economic dispatch of thermal units (Vianna
Neto et al., 2010), robot path planning (Macharet et al., 2011), thermodynamics
(Guedes et al., 2011), target tracking (Hirsch et al., 2012), and finding the largest
ellipse, with prescribed eccentricity, inscribed in a nonconvex polygon (da Silva
et al., 2012).

The global minima for the five test functions used in Section 11.6 were computed
with the Python/C library of Silva et al. (2013a). Andrade et al. (2014) presented a
parallel implementation of C-GRASP construction using a GPU. Speedups of up to
1.56 were measured, even though construction only accounts for 10 to 40% of the
execution time in C-GRASP.

Chapter 12
Case studies

In this final chapter of the book, we consider four case studies to illustrate the
application and implementation of GRASP heuristics. These heuristics are for
2-path network design, graph planarization, unsplittable multicommodity flows, and
maximum cut in a graph. The key point here is not to show numerical results or com-
pare these GRASP heuristics with other approaches, but instead simply show how
to customize the GRASP metaheuristic for each particular problem.

12.1 2-path network design problem

Let G= (V,U) be a connected undirected graph, where V is the set of nodes and U
is the set of edges. A k-path between nodes s, t ∈V is a sequence of at most k edges
connecting s and t. Given a non-negative weight function w : U → R+ associated
with the edges of G and a set D of pairs of origin-destination nodes, the 2-path
network design problem (2PNDP) consists in finding a minimum weighted subset
of edges U ′ ⊆U containing a 2-path between every origin-destination pair.

12.1.1 GRASP with path-relinking for 2-path network design

In the remainder of this section, we customize a parallel GRASP heuristic for the
2-path network design problem. We describe the construction and local search pro-
cedures, as well as a path-relinking intensification strategy.

© Springer Science+Business Media New York 2016
M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP,
DOI 10.1007/978-1-4939-6530-4 12

245

246 12 Case studies

12.1.1.1 Solution construction

The construction of a new solution begins with the initialization of modified edge
weights with their original weights. Each iteration of the construction phase starts
by the random selection of an origin-destination pair still in D. A shortest 2-path
between the extremities of this pair is computed, using the modified edge weights.
The weights of the edges in this 2-path are set to zero until the end of the con-
struction procedure, the origin-destination pair is removed from D, and a new itera-
tion begins. The construction phase stops when 2-paths have been computed for all
origin-destination pairs.

12.1.1.2 Local search

The local search phase seeks to improve each solution built in the construction
phase. Each solution can be viewed as a set of 2-paths, one for each origin-
destination pair in D. To introduce diversity by driving different applications of the
local search to different local optima, the origin-destination pairs are investigated at
each GRASP iteration in a circular order defined by a different random permutation
of their original indices.

Each 2-path in the current solution is tentatively eliminated. The weights of the
edges used by other 2-paths are temporarily set to zero, while those that are not
used by other 2-paths in the current solution are restored to their original values.
A new shortest 2-path between the extremities of the origin-destination pair under
investigation is computed, using the modified weights. If the new 2-path improves
the current solution, then the current solution is modified; otherwise the previous
2-path is restored. The search stops if the current solution is not improved after a
sequence of |D| iterations along which all 2-paths are investigated. Otherwise, the
next 2-path in the current solution is investigated for substitution and a new iteration
begins.

12.1.1.3 Path-relinking

Path-relinking is applied to solution pairs composed of an initial solution, chosen at
random from a pool formed by a limited number of previously found elite solutions,
and by the solution produced by local search, which we call the guiding solution.
The pool is initially empty. Each locally optimal solution is considered a candidate
to be inserted into the pool if it is different from every other solution currently in
the pool. If the pool is full and the candidate is better than the worst elite solution,
then the candidate replaces the worst elite solution. If the pool is not full, then the
candidate is simply inserted.

The algorithm starts by determining all origin-destination pairs whose associated
2-paths are different in the initial and guiding solutions. These computations amount
to determining a set of moves that should be applied to the initial solution to reach

12.1 2-path network design problem 247

the guiding solution. Each move is characterized by a pair of 2-paths, one to be
inserted and the other to be eliminated from the current solution. The best solution
is initialized with the initial solution. At each path-relinking iteration, the best yet
unselected move is applied to the current solution, the incumbent solution is up-
dated, and the selected move is removed from the set of candidate moves, until the
guiding solution is reached. The incumbent is returned as the best solution found by
path-relinking and is inserted into the pool if it satisfies the membership conditions.

12.1.1.4 Parallel GRASP implementation and numerical results

Parallel implementations of metaheuristics such as GRASP are more robust than
their sequential versions. We describe a parallel implementation of the GRASP
sequential heuristic described in the previous sections, corresponding to a typical
multiple-walk independent-thread strategy introduced in Chapter 10. The iterations
are evenly distributed over the processors. However, to improve load balancing, the
iterations could also be distributed by demand, when faster processors perform more
iterations than slower processors.

The processors perform MaxIterations/p iterations each, where p is the num-
ber of processors and MaxIterations is the total number of iterations. Each pro-
cessor has a copy of the sequential GRASP algorithm, a copy of the problem data,
and its own pool of elite solutions. One of the processors acts as the master, read-
ing and distributing the problem data, generating the seeds that are used by the
pseudo-random number generators at each processor, distributing the iterations, and
collecting the best solution found by each processor.

The results of the parallel GRASP algorithm are compared with those obtained
by a greedy heuristic, using two samples of solution values and Student’s t-test
for unpaired observations. The main statistics are summarized in Table 12.1. These
results show with 40% confidence level that GRASP finds better solutions than the
greedy heuristic. The average value of the solutions obtained by GRASP was 2.2%
smaller than that of the solutions obtained by the greedy heuristic. The dominance
of GRASP is even stronger when harder or larger instances are considered. The
parallel GRASP was applied to problems with up to 400 nodes, 79,800 edges, and
4,000 origin-destination pairs, while the greedy heuristic solved problems with no
more than 120 nodes, 7,140 edges, and 60 origin-destination pairs.

Table 12.1 Statistics for GRASP (sample A) and the greedy heuristic (sample B).

Parallel GRASP (sample A) Greedy (sample B)
Size nA = 100 nB = 30
Mean μA = 443.73 μB = 453.67
Standard deviation SA = 40.64 SB = 61.56

248 12 Case studies

12.2 Graph planarization

A graph is said to be planar if it can be drawn on the plane in such a way that
no two of its edges cross. Given a graph G = (V,E) with vertex set V and edge
set E , the objective of graph planarization is to find a minimum cardinality subset
of edges F ⊆ E such that the graph G′ = (V,E \F) resulting from the removal of
the edges F from G, is planar. This problem is also known as the maximum planar
subgraph problem. A maximal planar subgraph is a planar subgraphG′ =(V ′,E ′) of
G= (V,E), such that the addition of any edge e ∈ E \E ′ to G′ destroys the planarity
of the subgraph. Applications of graph planarization include graph drawing and
numerous layout problems. Graph planarization is known to be NP-hard.

We begin with a review of a two-phase heuristic used as part of the GRASP
heuristic for graph planarization. Then, the GRASP heuristic itself is described.
Finally, we describe a post-optimization algorithm to further improve the solution
obtained by GRASP.

12.2.1 Two-phase heuristic

In this section, we review the main components of the GT two-phase heuristic for
graph planarization. The first phase of this heuristic is depicted in Figure 12.1 and
consists in devising a sequence Π of the set of verticesV of the input graph G. Next,
the vertices of G are placed on a line according to the sequence Π . Let π(v) denote
the relative position of vertex v ∈ V within vertex sequence Π . Furthermore, let
e1 = (a,b) and e2 = (c,d) be two edges of G, such that, without loss of generality,
π(a)< π(b) and π(c)<π(d). These edges are said to cross with respect to sequence
Π if π(a) < π(c) < π(b) < π(d) or π(c) < π(a) < π(d) < π(b). Basically, the
second phase of GT partitions the edge set E of G into subsets B, R, and P in
such a way that |B+R| is large (or ideally maximum) and no two edges both in B
or both in R cross with respect to the sequence Π devised in the first phase.

Let H = (E, I) be a graph where each of its vertices corresponds to an edge of the
input graphG. Vertices e1 and e2 of H are connected by an edge if the corresponding
edges of G cross with respect to sequence Π . A graph is called an overlap graph if
its vertices can be placed in one-to-one correspondence with a family of intervals
on a line. Two intervals are said to overlap if they cross and none is contained in
the other. Two vertices of the overlap graph are connected by an edge if and only
if their corresponding intervals overlap. Hence, the graph H as constructed above is
the overlap graph associated with the representation of G defined by sequence Π .

The second phase of the GT two-phase heuristic consists in two-coloring a max-
imum number of vertices of the overlap graph H such that each of the two color
classes B (blue) and R (red) forms an independent set. Equivalently, the second
phase seeks a maximum induced bipartite subgraph of the overlap graph H, i.e., a
bipartite subgraph having the largest number of vertices. This problem is equiva-
lent to drawing the edges of the input graph G above or below the line where its

12.2 Graph planarization 249

Fig. 12.1 Pseudo-code of the first phase of the GT heuristic.

vertices have been placed according to sequence Π . Since the decision version of
the problem of finding a maximum induced bipartite subgraph of an overlap graph is
NP-complete, a greedy algorithm is used in the GT heuristic to construct a maximal
induced bipartite subgraph of the overlap graph. This algorithm finds a maximum in-
dependent set B ⊆ E of the overlap graph H = (E, I), reduces this overlap graph by
removing from the vertex set E all vertices in B and from the edge set I all edges in-
cident to vertices in B, and then finds a maximum independent set R ⊆ E \B in the
resulting overlap graph H ′ = (E \B, I′). The two independent sets obtained induce
a bipartite subgraph of the original overlap graph, not necessarily with a maximum
number of vertices. This procedure has polynomial-time complexity, since finding
a maximum independent set of an overlap graph is polynomially solvable in time
O(|E|3), where |E| is the number of vertices of the overlap graph H = (E, I). The
pseudo-code of the second phase of heuristic GT is given in Figure 12.2. The set
B∪R corresponds to the edges that can be drawn without crossings.

Fig. 12.2 Pseudo-code of the second phase of the GT heuristic.

250 12 Case studies

Fig. 12.3 Pseudo-code of the GRASP construction phase (vertex sequencing).

This two-phase algorithm is not guaranteed to produce an optimal (i.e., maxi-
mum) planar subgraph. Furthermore, even under a simple neighborhood definition,
it does not necessarily produce a locally optimal solution. The first phase of GT is
based on an adaptive greedy algorithm to produce a vertex sequence. This vertex
sequence appears to affect the size of the planar subgraph found in the second phase
of GT. However, it is not clear that the sequence produced by the adaptive greedy
algorithm is the best. To produce other, possibly better, sequences, randomization
and local search can be introduced in the adaptive greedy algorithm. We next explore
these ideas and describe a GRASP heuristic for graph planarization that finds a
locally optimal planar subgraph, often improving on the solution found by GT.

12.2.2 GRASP for graph planarization

The two-phase heuristic presented in the previous section uses an adaptive greedy
algorithm to produce the vertex sequencing of its first phase. In the following, we
show an alternative to the adaptive greedy algorithm: a GRASP for the first phase
vertex sequencing problem. The construction phase of this GRASP heuristic is
described in the pseudo-code of Figure 12.3.

The procedure takes as input the graph G = (V,E) to be planarized, the
restricted candidate list (RCL) parameter 0 ≤ α ≤ 1, and a seed for the pseudo-
random number generator. Let degG(v) be the degree of vertex v with respect

12.2 Graph planarization 251

Fig. 12.4 Pseudo-code of the GRASP local search phase for graph planarization.

to G, d = minv∈V {degG(v)} and d̄ = maxv∈V {degG(v)}. The first vertex in the
sequence is determined in lines 1 to 4, where all vertices having degree in the range
[d,α(d̄− d)+ d] are placed in the RCL and a single vertex is selected at random
from the list. The working vertex set V and graph G1 are defined in lines 5 and 6.

The loop from lines 7 to 18 determines the sequence of the remaining |V | − 1
vertices. To assign the k-th vertex (iteration k of the loop), two cases can occur.
DefineGk to be the graph induced onG byV \{v1,v2, . . . ,vk}. Let ADJGk−1(vk−1) be
the set of vertices of Gk−1 adjacent to vk−1 in G. The RCL is made up of all vertices
in ADJGk−1(vk−1) having degree in the range [d,α(d̄− d)+ d] in Gk. Otherwise, if
ADJGk−1(vk−1) = ∅, the RCL is made up of all unselected vertices having degree
in the range [d,α(d̄ − d)+ d] in Gk. In line 15, the k-th vertex in the sequence is
determined by selecting a vertex, at random, from the RCL. The working vertex
set and the working graph are updated in lines 16 and 17. The vertex sequence
Π = (v1, . . . ,v|V |) is returned in line 19.

The first phase of the GT heuristic seeks a sequence of the vertices, followed
by a second phase minimizing the number of edges that need to be removed to
eliminate all edge crossings with respect to the first phase sequence. One possible
strategy (not taken in GT) is to attempt to reduce the number of crossing edges by
locally searching a neighborhood of the current vertex sequence prior to the second
phase. The local search procedure makes use of a neighborhoodN (Π) of the vertex
sequence Π that is formed by all vertex sequences Π ′ differing from Π in exactly
two positions, i.e.,

N (Π) = {Π ′ = (v′1,v
′
2, . . . ,v

′
|V |) : v′i = vi,∀i 	= j,k, v′j = vk, v

′
k = v j j 	= k}.

Let χ(Π) be the number of pairs of edges that cross if the vertex sequence Π is
adopted. The pseudo-code in Figure 12.4 describes the local search procedure used
in the GRASP heuristic, based on a slightly more restricted neighborhood that only
considers the exchange of consecutive vertices.

Putting together the randomized vertex sequencing procedure displayed in Fig-
ure 12.3, the local search algorithm displayed in Figure 12.4, and the second phase
of the GT heuristic provided in Figure 12.2 we obtain a GRASP for graph planariza-
tion, whose pseudo-code is given in Figure 12.5.

The number of edges in the maximal planar subgraph corresponding to the best
solution found is initialized in line 1. The iterative GRASP procedure in lines 2 to 11

252 12 Case studies

Fig. 12.5 Pseudo-code of the GRASP heuristic for graph planarization.

is repeated MaxIter times. In each iteration, a greedy randomized solution (vertex
sequence Π) is constructed in line 3. In line 4, the local search phase attempts to
produce a vertex sequence that has fewer crossings of pairs of edges than the one
generated in line 3. The vertex sequence Π is given as input to the second phase
heuristic of GT in line 5 to produce a planar subgraph of G. If the new solution
improves the number of the edges in the planar subgraph, then the best solution
found is updated in lines 7 to 9. The best solution found is returned in line 12.

12.2.3 Enlarging the planar subgraph

As already observed, there is no guarantee that the planar subgraph produced by
SecondPhaseGT is optimal. Three edge sets are output: B (blue edges), R (red
edges), and P (the remaining edges, which we refer to as the pale edges). By con-
struction, B, R, and P are such that no red or pale edge can be colored blue.
Likewise, pale edges cannot be colored red. However, if there exists a pale edge p
such that all blue edges that cross with p (let Bp ⊆B be the set of such blue edges)
do not cross with any red edge, then all blue edges in Bp can be colored red and p
can be colored blue. Consequently, this reassignment of color classes increases the
size of the planar subgraph by one edge.

Figure 12.6 shows the pseudo-code of procedure EnlargePlanarGraph that seeks
pale and blue edges allowing the above color class reassignment and enlarges the
planar subgraph whenever such edges are encountered. The pale edges are scanned
in the loop in lines 1 to 17. Set Bp is initialized in line 2 and the pale edge p
is temporarily made a candidate to be recolored by setting variable enlarge to
.TRUE. in line 3. The loop in lines 4 to 11 scans the blue edges to construct the
set Bp for each pale edge p ∈ P . Any blue edge that crosses with the pale edge
p is added to the candidate set Bp in line 6. Red edges are scanned in the loop in

12.3 Unsplittable multicommodity network flow: Application to bandwidth packing 253

lines 7 to 9. If a blue edge b ∈Bp crosses any red edge, then the pale edge p will be
discarded by setting the variable enlarge to .FALSE. in line 8. If none of the blue
edges in Bp crosses a red edge, then all blue edges in Bp will be recolored as red
and the pale edge p will be colored as blue in lines 13 to 15. The possibly enlarged
solution is returned in line 18.

Fig. 12.6 Pseudo-code of the improvement procedure to enlarge a planar subgraph.

The improvement procedure EnlargePlanarGraph can be applied to each solution
obtained in line 5 of the GRASP heuristic displayed in Figure 12.5 or, alternatively,
exclusively to the best solution found returned by GRASP-GP in line 12.

12.3 Unsplittable multicommodity network flow: Application
to bandwidth packing

Telecommunication service providers offer virtual private networks to customers by
provisioning a set of permanent (long-term) private virtual circuits (PVCs) between
endpoints on a large backbone network. During the provisioning of a PVC, rout-
ing decisions are made either automatically by the routing equipment (the router)
or by the network operator, through the use of preferred routing assignments and
without any knowledge of future requests. Over time, these decisions usually cause
inefficiencies in the network and occasional rerouting of the PVCs is needed. The
new routing scheme is then implemented on the network through preferred routing

254 12 Case studies

assignments. Given a preferred routing assignment, the switch will move the PVC
from its current route to the new preferred route as soon as this move becomes
feasible.

One possible way to create preferred routing assignments is to appropriately
order the set of PVCs currently in the network and apply an algorithm that mim-
ics the routing algorithm used by the router to each PVC in that order. However,
more elaborate routing algorithms, which take into account factors not considered
by the router, could further improve the efficiency of network resource utilization.

Typically, the routing scheme used by the routers to automatically provision
PVCs is also used to reroute the PVCs in the case of trunk or card failures. There-
fore, this routing algorithm should be efficient in terms of running time, a require-
ment that can be traded off for improved network resource utilization when building
preferred routing assignments offline.

We discuss variants of a GRASP with path-relinking algorithm for the problem of
routing offline a set of PVC demands over a backbone network, such that a combi-
nation of the delays due to propagation and congestion is minimized. This problem
and its variants are also known in the literature as bandwidth packing problems. The
set of PVCs to be routed can include not only all or a subset of the PVCs currently
in the network, but also possibly a set of forecast PVCs. The explicit handling of
propagation delays, as opposed to just handling the number of hops, is particularly
important in international networks, where distances between backbone nodes vary
considerably. The minimization of network congestion is important for providing
the maximum flexibility to handle overbooking (which is typically used by network
operators to account for noncoincidence of traffic), rerouting (due to link or card
failures), and bursting above the committed rate (which is not only allowed, but
sold to customers as one of the attractive features of the service).

We next formulate the offline PVC routing problem as an integer multicommod-
ity flow problem with additional constraints and a hybrid objective function, which
takes into account delays due to propagation as well as delays due to network con-
gestion. Minimum cost multicommodity network flow problems are characterized
by a set of commodities flowing through an underlying network, each commodity
having an associated integral demand that must flow from its source to its desti-
nation. The flows are simultaneous and the commodities share network resources.
We conclude this section by describing variants of a GRASP with path-relinking
heuristic for this problem.

12.3.1 Problem formulation

Let G= (V,E) be an undirected graph representing a backbone network. Denote by
V = {1, . . . ,n} the set of backbone nodes where routers reside, while E is the set of
trunks (or edges) that connect the backbone nodes, with |E|=m. Parallel trunks are
allowed. Since G is an undirected graph, flows through each trunk (i, j) ∈ E have
two components to be summed up, one in each direction. However, for modeling

12.3 Unsplittable multicommodity network flow: Application to bandwidth packing 255

purposes, costs and capacities are associated only with ordered pairs (i, j) ∈ E satis-
fying i< j. For each trunk (i, j) ∈ E , we denote by bi j its maximum allowed band-
width (in kbits/second), while ci j denotes the maximum number of PVCs that can be
routed through it and di j is the propagation (or hopping) delay associated with the
trunk. Each commodity k ∈K = {1, . . . , p} is a PVC to be routed, associated with an
origin-destination pair and with a bandwidth requirement rk (or demand, also known
as its effective bandwidth). It takes into account the actual bandwidth required by
the customer in the forward and reverse directions, as well as an overbooking factor.

The ultimate objective of the offline PVC routing problem is to minimize prop-
agation delays or network congestion, subject to several technological constraints.
Queuing delays are often associated with network congestion and in some networks
account for a large part of the total delay. In other networks, distances can be long
and loads low, causing the propagation delay to account for a large part of the total
delay. Two common measures of network congestion are the load on the most uti-
lized trunk, and the average delay in a network of independent M/M/1 queues. An-
other measure, which we use here, is a cost function that penalizes heavily loaded
trunks. This function resembles the average delay function, except that it allows
loads to exceed trunk capacities. Routing assignments with minimum propagation
delays may not achieve the least network congestion. Likewise, routing assignments
having the least congestion may not minimize propagation delays. A compromising
objective is to route the PVCs such that a desired point in the trade-off curve be-
tween propagation delays and network congestion is achieved.

The upper bound on the number of PVCs allowed on a trunk depends on the
technology used to implement it. A set of routing assignments is feasible if and only
if, for every trunk (i, j) ∈ E , the total PVC effective bandwidth requirements routed
through it does not exceed its maximum bandwidth bi j and the number of PVCs
routed through it is not greater than ci j.

Let xki j be a 0-1 variable such that xki j = 1 if and only if trunk (i, j) ∈ E is used to
route commodity k ∈ K from node i to node j. The following linear integer program
models the problem:

minφ(x) = ∑
(i, j)∈E,i< j

φi j(x1
i j, · · · ,xpi j,x1

ji, · · · ,xpji) (12.1)

subject to

∑
k∈K

rk(x
k
i j+ xkji)≤ bi j, ∀(i, j) ∈ E, i< j, (12.2)

∑
k∈K

(xki j+ xkji)≤ ci j, ∀(i, j) ∈ E, i< j, (12.3)

∑
(i, j)∈E

xki j− ∑
(i, j)∈E

xkji = aki , ∀i ∈V,∀k ∈ K, (12.4)

xki j ∈ {0,1}, ∀(i, j) ∈ E,∀k ∈ K. (12.5)

Constraints of type (12.2) limit the total flow on each trunk to at most its capacity.
Constraints of type (12.3) enforce the limit on the number of PVCs routed through

256 12 Case studies

each trunk. Constraints of type (12.4) are flow conservation equations, which
together with constraints (12.5) state that the flow associated with each PVC cannot
be split, where aki = 1 if node i is the source for commodity k, aki = −1 if node i is
the destination for commodity k, and aki = 0 otherwise.

The cost function φi j(x1
i j, · · · ,xpi j ,x1

ji, · · · ,xpji) associated with each trunk (i, j) ∈E
with i < j is the linear combination of a trunk propagation delay component and a
trunk congestion component. The propagation delay component is defined as

φd
i j(x

1
i j, · · · ,xpi j,x1

ji, · · · ,xpji) = di j · ∑
k∈K

ρk(x
k
i j+ xkji), (12.6)

where coefficients ρk are used to model two plausible delay functions:

• If ρk = 1, then this component leads to the minimization of the number of hops
weighted by the propagation delay on each trunk.

• If ρk = rk, then the minimization takes into account the effective bandwidth
routed through each trunk weighted by its propagation delay.

Let yi j = ∑k∈K rk(xki j + xkji) be the total flow through trunk (i, j) ∈ E with i < j.
The trunk congestion component depends on the utilization rates ui j = yi j/bi j of
each trunk (i, j) ∈ E with i< j. This piecewise linear function,

φb
i j(x

1
i j, · · · ,xpi j,x1

ji, · · · ,xpji) = bi j ·

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ui j, ui j ∈ [0,1/3)
3 ·ui j− 2/3, ui j ∈ [1/3,2/3),
10 ·ui j− 16/3, ui j ∈ [2/3,9/10),
70 ·ui j− 178/3, ui j ∈ [9/10,1),
500 ·ui j− 1468/3, ui j ∈ [1,11/10),
5000 ·ui j− 16318/3, ui j ∈ [11/10,∞),

(12.7)

depicted in Figure 12.7, increasingly penalizes flows approaching or violating the
capacity limits. The value

Ω = max
(i, j)∈E,i< j

{ui j}

is a global measure of the maximum congestion in the network.
Let weights (1−δ) and δ correspond, respectively, to the propagation delay and

to the network congestion components, with δ ∈ [0,1]. The cost function

φi j(x1
i j, · · · ,xpi j ,x1

ji, · · · ,xpji) =
(1− δ) ·φd

i j(x
1
i j, · · · ,xpi j,x1

ji, · · · ,xpji)+ δ ·φb
i j(x

1
i j, · · · ,xpi j,x1

ji, · · · ,xpji) (12.8)

is associated with each trunk (i, j) ∈ E with i < j. Note that if δ > 0, then the
network congestion component is present in the objective function, which allows us
to relax capacity constraints (12.2). This will be assumed in the algorithms discussed
in Section 12.3.2.

Model (12.1)–(12.5) proposed in this section has two distinctive features. First,
it takes into account a two component objective function, which is able to handle

12.3 Unsplittable multicommodity network flow: Application to bandwidth packing 257

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.2 0.4 0.6 0.8 1 1.2

co
st

 p
er

 u
ni

t o
f c

ap
ac

ity

trunk utilization rate

Fig. 12.7 Piecewise linear load balance cost component associated with each trunk.

both delays and load balance. Second, it enforces constraints that limit the maxi-
mum number of PVCs that can be routed through any trunk. A GRASP with path-
relinking heuristic for its solution is described in the next section.

12.3.2 GRASP with path-relinking for PVC routing

In the remainder of this section, we customize a GRASP heuristic for the offline
PVC routing problem. We describe construction and local search procedures, as
well as a path-relinking intensification strategy.

12.3.2.1 Construction phase

In the construction phase, the routes are determined, one at a time. In each iteration
of construction a new PVC is selected to be routed. To reduce the computation
times, we make use of a combination of the strategies usually employed by GRASP
and heuristic-biased stochastic sampling. We create a restricted candidate list (RCL)
with a fixed number of elements nc. At each iteration, the RCL is formed by the nc
unrouted PVC pairs with the largest demands. An element � is selected at random
from this list with probability π(�) = r�/∑k∈RCL rk.

Once a PVC � ∈ K is selected, it is routed on a shortest path from its ori-
gin to its destination. The capacity constraints (12.2) are relaxed and handled via
the penalty function introduced by the load balance component (12.7) of the edge

258 12 Case studies

weights. The constraints of type (12.3) are explicitly taken into account by for-
bidding routing through trunks already using its maximum number of PVCs. The
weight Δφi j of each edge (i, j) ∈ E is given by the increment of the cost function
value φi j(x1

i j, · · · ,xpi j,x1
ji, · · · ,xpji) associated with routing r� additional units of de-

mand through edge (i, j).
More precisely, let K ⊆ K be the set of previously routed PVCs and Ki j ⊆ K

be the subset of PVCs that are routed through trunk (i, j) ∈ E . Likewise, let
K̄ = K ∪{�} ⊆ K be the new set of routed PVCs and K̄i j = Ki j ∪{�} ⊆ K̄ be the
new subset of PVCs that are routed through trunk (i, j). Then, we define x�i j = 1 if

PVC � ∈ K is routed through trunk (i, j) ∈ E from i to j, x�i j = 0 otherwise. Sim-

ilarly, we define x̄�i j = 1 if PVC � ∈ K̄ is routed through trunk (i, j) ∈ E from i

to j, x̄�i j = 0 otherwise. According with (12.8), the cost associated with each edge
(i, j) ∈ E in the current solution is given by φi j(x1

i j, · · · ,xpi j,x1
ji, · · · ,xpji). In the same

manner, the cost associated with each edge (i, j) ∈ E after routing PVC � will be
φi j(x̄1

i j, · · · , x̄pi j , x̄1
ji, · · · , x̄pji). Then, the incremental edge weight Δφi j associated with

routing PVC � ∈ K through edge (i, j) ∈ E , used in the shortest path computations,
is given by

Δφi j = φi j(x̄1
i j, · · · , x̄pi j, x̄1

ji, · · · , x̄pji)−φi j(x1
i j, · · · ,xpi j,x1

ji, · · · ,xpji). (12.9)

The enforcement of type (12.3) constraints may lead to unroutable demand pairs.
In this case, the current solution is discarded and a new construction phase starts.

12.3.2.2 Local search

Each solution built in the first phase may be viewed as a set of routes, one for
each PVC. The local search procedure seeks to improve each route in the current
solution. For each PVC k ∈ K, we start by removing rk units of flow from each edge
in its current route. Next, we compute incremental edge weights Δφi j associated
with routing this demand through each trunk (i, j) ∈ E according to equation (12.9),
as described in Section 12.3.2.1. A tentative new shortest path route is computed
using the incremental edge weights. If the new route improves the solution, then it
replaces the current route of PVC k. This is continued until no improving route can
be found.

12.3.2.3 Path-relinking

Path-relinking for bandwidth packing is applied to pairs {y,z} of solutions, where
one solution is the locally optimum obtained after local search and the other solution
is randomly chosen from an elite set E formed by a limited number nE of elite
solutions found along the search. This elite pool is initially empty. Each locally
optimal solution obtained by local search is considered as a candidate to be inserted

12.3 Unsplittable multicommodity network flow: Application to bandwidth packing 259

into the pool if it differs by at least one trunk in one route from every other solution
currently in the pool. If the pool already has nE solutions and the candidate is better
than the worst solution in the pool, then the candidate replaces the worst solution.
If the pool is not full, the candidate is simply inserted in the pool.

Fig. 12.8 Pseudo-code of the GRASP with path-relinking procedure for the bandwidth packing
problem.

Either y or z is selected to be the initial solution, while the other will be the
guiding solution. The algorithm starts by computing the set of moves that should be
applied to the initial solution to reach the guiding solution. Starting from the initial
solution, the best move still not performed is applied to the current solution, until
the guiding solution is attained. The best solution found along this trajectory is also
considered as a candidate for insertion in the pool and the incumbent is updated.
Several alternatives have been considered and combined to explore trajectories con-
necting y and z. All these alternatives involve the trade-offs between computation
time and solution quality, as already discussed in Chapters 8 and 9.

In this application of path-relinking, the set of moves between any pair {y,z} of
solutions is the subset Ky,z ⊆ K of PVCs routed through different routes in y and z.
Without loss of generality, let us suppose that path-relinking starts from any elite
solution z in the pool and uses the locally optimal solution y as the guiding solution.

The best solution ȳ along the new path to be constructed is initialized with z.
For each PVC k ∈ Ky,z, the same shortest path computations described in Sec-
tions 12.3.2.1 and 12.3.2.2 are used to evaluate the cost of the new solution obtained
by rerouting the demand associated with PVC k through the route used in the guid-
ing solution y instead of the route used in the current solution originated from z. The
best move is selected and removed from Ky,z. The new solution obtained by rerout-
ing the above selected PVC is computed, the incumbent ȳ is updated, and a new

260 12 Case studies

Fig. 12.9 Example of the maximum cut problem on a graph with five vertices and seven edges.
Four cuts are shown. The maximum cut is (S, S̄) = ({1,2,4},{3,5}) and has a weight w(S, S̄) = 50.

iteration resumes. These steps are repeated, until the guiding solution y is reached.
The incumbent ȳ is returned as the best solution found by path-relinking and inserted
into the pool if it satisfies the membership conditions.

The pseudo-code with the complete description of procedure GRASP+PR-BPP
for the bandwidth packing problem arising in the context of offline PVC rerouting
is given in Figure 12.8. This description incorporates the construction, local search,
and path-relinking phases.

12.4 Maximum cut in a graph

Given an undirected graph G = (V,U), where V is the set of vertices and U is the
set of edges, and weights wuv associated with each edge (u,v) ∈U , the maximum
cut (MAX-CUT) problem consists in finding a nonempty proper subset of vertices
S⊂V (S 	=∅), such that the weight of the cut (S, S̄), given by

w(S, S̄) = ∑
u∈S,v∈S̄

wuv,

is maximized.
Figure 12.9 shows four cuts having different weights on a graph with five nodes

and seven edges. The maximum cut has S = {1,2,4} and S̄ = {3,5}, with weight
w(S, S̄) = 50.

12.4 Maximum cut in a graph 261

Fig. 12.10 Pseudo-code of a GRASP with path-relinking for the MAX-CUT problem.

12.4.1 GRASP with path-relinking for the maximum cut problem

A GRASP with path-relinking heuristic for the MAX-CUT problem consists in
repeatedly constructing a cut (S, S̄) with a semi-greedy algorithm, applying
local search from (S, S̄) to produce a locally maximal solution, and applying path-
relinking from the local maximum to a solution (Sg, S̄g) selected from a pool E of
elite solutions. The best local maximum (S∗, S̄∗), found over all GRASP iterations,
is returned as the GRASP solution.

The pseudo-code of a GRASP with path-relinking heuristic for the MAX-CUT
problem is shown in Figure 12.10. In line 1, the value w∗ of the best cut found is
initialized to −∞ and in line 2 the pool of elite solutions E is initialized empty. The
while loop from line 3 to line 18 carries out the GRASP with path-relinking iter-
ations. The algorithm terminates when a stopping criterion is satisfied. In line 4, a
semi-greedy solution (S, S̄) is constructed and, in line 5, it is tentatively improved
with local search. The local maximal produced by local search in line 5 is (S, S̄).
Path-relinking is applied if the pool has at least one elite solution. In that case, a
guiding solution (Sg, S̄g) is selected at random from the pool in line 7 and the path-
relinking operator is applied from the locally maximal cut (S, S̄) to the guiding solu-
tion in line 8. The solution obtained by path-relinking is saved in (S, S̄). If solution
(S, S̄), obtained by either local search or path-relinking, satisfies the membership
conditions, then the pool of elite solutions E is updated in line 11. Though the cut
weight w(S, S̄) is computed in the local search procedure and in the path-relinking
procedure, its computation is shown in line 13 of the pseudo-code. If the weight of

262 12 Case studies

the local maximum is greater than the weight w∗ of the best cut found so far, then
the best cut (S∗, S̄∗) and its weight are updated in lines 15 and 16, respectively. The
best cut and the best solution found are returned in line 19.

In the remainder of this chapter we describe the components of this GRASP with
path-relinking heuristic in more detail.

12.4.1.1 A greedy algorithm for the maximum cut problem

The construction phase of the GRASP for the MAX-CUT problem described here
is a semi-greedy algorithm. Recall that we wish to build a proper subset S⊂V , such
that (S, S̄) forms a partition of V , i.e., S∪ S̄ = V and S∩ S̄ = ∅. The ground set for
the MAX-CUT problem is the set V of vertices of graph G= (V,U).

We first describe a greedy algorithm that is the basis for this GRASP. It builds a
solution incrementally in sets X and Y by assigning vertices from the ground set V
to either X or Y . Initially, sets X and Y each contain an endpoint of a largest-weight
edge. At each other step of the construction, a new ground set element v∈V is added
to either set X or set Y of the partial solution. This is repeated until X ∪Y = V , at
which point we set S to X , S̄ to Y , and a feasible solution (S, S̄) is on hand.

At each iteration of this greedy construction, an element is selected from a
candidate list whose elements are the yet-unassigned ground set elements, i.e.,
V \ (X ∪Y), according to an adaptive greedy function described next.

The greedy function takes into account the contribution to the objective function
(the weight of the partial cut) achieved by assigning a particular element to either set
X or setY . Formally, let (X ,Y) be the partial solution under construction. Recall that,
for any partial solution, X ∪Y ⊂V . For each yet-unassigned vertex v ∈V \ (X ∪Y),
define

σX(v) = ∑
u∈Y

wvu (12.10)

and
σY (v) = ∑

u∈X
wvu (12.11)

to be, respectively, the incremental contributions to the cut weight resulting from
the assignment of node v to sets X and Y of the partial partition (X ,Y). The greedy
function

g(v) = max{σX(v),σY (v)},
for v ∈ V \ (X ∪Y), measures how much additional weight results from the assign-
ment of vertex v to X or Y . The greedy choice is

v∗ = argmax{g(v) : v ∈V \ (X ∪Y)}.

Vertex v∗ is assigned to set X if σX (v)> σY (v) or to set Y , otherwise.

12.4 Maximum cut in a graph 263

Fig. 12.11 Five-node graph for maximum cut problem.

Maximum cut problem – Adaptive greedy algorithm to find a large-weight cut

Consider the following example on the five-node graph G= (V,U) of Figure 12.11,
for which we seek a large-weight cut. We build a partition (X ,Y) of the nodes of
G incrementally, with the greedy algorithm described above. Initially, sets X and Y
are such that each contains an endpoint of a largest-weight edge of G. Since edge
(3,4) is the one with the largest weight, then X = {3}, Y = {4}, and the weight of
the partial cut is w(X ,Y) = w3,4 = 15.

To select the next node to be added to the partial cut, we consider only nodes 2
and 5, since node 1 is not adjacent to any node in X ∪Y and, consequently, σX (1) =
σY (1) = 0. Consider first node 2. Its contribution to the cut if added to set Y is
σY (2) = ∑u∈X w2,u = w2,3 = 9. Since it is not adjacent to any node in set Y , then it
will not contribute to the partial cut if added to X , i.e., σX(2) = ∑u∈Y w2,u = 0. Now
consider node 5. Its contribution to the cut if added to sets X andY are, respectively,
σX(5) =∑u∈Y w5,u =w5,4 = 10 and σY (5) =∑u∈X w5,u =w5,3 = 2. Since the greedy
function values are

g(1) = max{σX(1),σY (1)}= 0,

g(2) = max{σX(2),σY (2)}= 9,

g(5) = max{σX(5),σY (5)}= 10,

then the greedy choice is node 5, because

argmax{g(1),g(2),g(5)}= 5.

Furthermore, since σX (5)> σY (5), then node 5 is assigned to set X . The partial cut
becomes (X ,Y) = ({3,5},{4}) with weight 25.

The remaining nodes are 1 and 2. Consider first node 1. Its contribution to the
cut if added to set Y is σY (1) = ∑u∈X w1,u = w1,5 = 6. Since node 1 is not adjacent
to node 4, the only node in Y , then σX(1) = ∑u∈Y w1,u = 0. Now, consider node 2.
Its contribution to the cut if added to set Y is σY (2) = ∑u∈X w2,u = w2,5 +w2,3 = 19.

264 12 Case studies

Since node 2 is not adjacent to node 4, the only node in Y , then σX (2) = ∑u∈Y
w2,u = 0. Since the greedy function values are

g(1) = max{σX(1),σY (1)}= 6,

g(2) = max{σX(2),σY (2)}= 19,

then the greedy choice is node 2, because

argmax{g(1),g(2)}= 2.

Furthermore, since σY (2)> σX(2), then node 2 is assigned to set Y . The partial cut
becomes (X ,Y) = ({3,5},{2,4}) with weight 44.

Finally, consider node 1 that is the last remaining. Its contribution to the cut
if added to sets X and Y are, respectively, σX (1) = ∑u∈Y w1,u = w1,2 = 5 and
σY (1) = ∑u∈X w1,u = w1,5 = 6. Since σY (1) > σX (1), then node 1 is assigned to
set Y . The final cut is (S, S̄) = (X ,Y) = ({3,5},{1,2,4}) with weight 50. This cut is
the best one of the four shown in Figure 12.9. �

12.4.1.2 A semi-greedy algorithm for the maximum cut problem

Chapter 3 introduced the randomization of greedy algorithms to construct their
semi-greedy variants. We next present a semi-greedy variant of the greedy algo-
rithm for maximum cut described in Section 12.4.1.1.

To start the construction process, a large-weight edge (i∗, j∗) ∈U is selected and
each of its endpoints is assigned to a different subset of the partial solution, e.g., i∗
is assigned to X and j∗ to Y . To add variability to this choice process, one adopts a
greedy randomized approach by building a restricted candidate list with all edges in
U having weights above the cutoff threshold μ = wmin +α · (wmax −wmin), where
wmin and wmax are, respectively, the smallest and largest edge weights of edges in U
and α is a real number in the interval [0,1]. Edge (i∗, j∗) is randomly selected from
this initial restricted candidate list.

To define the construction mechanism for the restricted candidate list used at
each iteration, let

wmin = min{min
v∈V ′ σX (v), min

v∈V ′ σY (v)}

and

wmax = max{max
v∈V ′ σX(v), max

v∈V ′ σY v)},

where V ′ = V \ (X ∪Y) is the set of nodes that are not yet assigned to either subset
X or subset Y . Denoting by μ = wmin +α · (wmax−wmin) the cut-off value, where
α is a parameter such that 0 ≤ α ≤ 1, the restricted candidate list is made up by all

12.4 Maximum cut in a graph 265

Fig. 12.12 Pseudo-code of the semi-greedy GRASP construction phase algorithm for the MAX-
CUT problem.

nodes whose value of the greedy function is greater than or equal to μ . A node v is
randomly selected from the list. If σX (v)> σY (v), then node v ∈V ′ is placed in X ;
otherwise it is placed in Y .

The pseudo-code of the semi-greedy GRASP construction procedure for the
maximum cut problem is shown in Figure 12.12. The restricted candidate list pa-
rameter α is generated at random in line 1. The initial edge of the cut is determined
in lines 2 to 8. Lines 2 and 3 determine the smallest and largest edge weights wmin

and wmax, respectively. The cutoff value μ is computed in line 4 and the restricted
candidate list RCLe is set up in line 5. Finally, in line 6, edge (i∗, j∗) is randomly
selected from RCLe and each endpoint of the selected edge is assigned in lines 7
and 8.

The while loop in lines 9 to 25 builds the remainder of the cut. It stops when
a cut (X ,Y) is on hand, i.e., when X ∪Y = V . In line 10, the set V ′ of candidate
vertices still to be added to each side of the cut under construction is determined.

266 12 Case studies

In lines 11 to 14, the incremental contributions σX(v) and σY (v) associated with
the addition of each vertex v ∈ V ′ to subsets X and Y , respectively, are computed.
Lines 15 and 16 compute, respectively, the smallest and largest contributions of
vertex v ∈ V ′. Line 17 computes the cutoff value for membership in the restricted
candidate list RCLv, which is set up in line 18. The next vertex, v∗, to be added to X
or Y is selected at random from RCLv in line 19. If it contributes more to the cut by
being added to X , then it is added to that set in line 21. Otherwise, it is added to Y
in line 23. In lines 26 and 27, X and Y are assigned, respectively, to sets S and S̄ that
form the cut (S, S̄). Line 28 returns the constructed cut (S, S̄) and its weight w(S, S̄).

12.4.1.3 Local search for the maximum cut problem

Since a solution (S, S̄) generated with the semi-greedy algorithm of Section 12.4.1.2
is not guaranteed to be locally optimum with respect to any neighborhood structure,
a local search algorithm may improve its weight. We base the local search algorithm
presented next on the following neighborhood structure. To each vertex v ∈ V , we
associate either the neighbor (S \{v}, S̄∪{v}) if v ∈ S, or the neighbor (S∪{v}, S̄\
{v}), otherwise. In other words, we move vertex v from one side of the cut to the
other. Let

σS(v) = ∑
u∈S̄

wvu (12.12)

be the sum of the weights of the edges incident to v that have their other endpoint in
S̄ and

σS̄(v) = ∑
u∈S

wvu. (12.13)

be the sum of the weights of the edges incident to v that have their other endpoint in
S. The value

δ (v) =

{
σS̄(v)−σS(v), if v ∈ S,

σS(v)−σS̄(v), if v ∈ S̄,

represents the change in the objective function associated with moving vertex v from
one subset of the cut to the other. All possible moves are investigated. The current
solution is replaced by the first improving neighbor found. The search stops after all
possible moves have been evaluated and no improving neighbor is found.

The pseudo-code of the local search procedure is given in Figure 12.13. The loop
from line 2 to line 16 is repeated until no improving move is possible. In line 3 the
move indicator variable change is initialized to indicate that no move has been made.
The for loop from line 4 to line 15 scans all vertices and attempts to move vertices
from one set of the cut to the other. The loop concludes scanning the vertices either
if all moves are tested and no move improves the total weight of the cut or if an
improving move is found. Lines 5 to 7 moves node v from S to S̄ if σS(v) > σS̄(v),
where σS(v) and σS̄(v) are defined, respectively, in equations (12.12) and (12.13).
Line 8 sets the indicator variable change to indicate a move has been made. Line 10

12.4 Maximum cut in a graph 267

Fig. 12.13 Pseudo-code of the GRASP local search phase algorithm for the MAX-CUT problem.

to 12 moves node v from S̄ to S if σS̄(v)> σS(v). Line 13 sets the indicator variable
change to indicate a move has been made. A locally maximal cut (S, S̄) and its
weight w(S, S̄) are returned by the local search procedure in line 17.

12.4.1.4 GRASP with path-relinking for maximum cut

As we saw in Chapter 9, during GRASP with path-relinking, trajectories connecting
high-quality solutions in the search space graph G =(F,M) are explored in search of
other high-quality solutions. In the GRASP with path-relinking algorithm described
here, we apply the usual strategy of saving high-quality, or elite, solutions in an elite
set E of size nE . This elite set is initially empty and it is constructed during the
initial GRASP iterations. Then, after each GRASP iteration, one or more paths in
G connecting the solution produced by the local search procedure and one of the
elite solutions is explored in search for other high-quality solutions. In a forward
path-relinking scheme, we specify the local search solution to be the initial solution
and a randomly selected elite solution to be the guiding solution. A series of moves
take the current solution from the initial solution to the guiding solution. Each move
along the path introduces attributes contained in the guiding solution into the current
solution. At each step, the chosen move to a solution in a restricted neighborhood
of the current solution is usually one that maximizes some greedy criteria. As we
saw in Chapter 8, choices other than a greedy choice are possible. However, in this
discussion we assume that the move made is one that increases the weight of the
current solution the most or, if no move increases its weight, then we choose one
that decreases it the least.

268 12 Case studies

We next describe a forward path-relinking procedure for the MAX-CUT prob-
lem, going from an initial solution (Si, S̄i) to a guiding elite solution (Sg, S̄g). Note
that other forms of path-relinking, such as backward and mixed path-relinking, can
be applied in place of forward path-relinking. Also note that the guiding solution can
be represented not only as (Sg, S̄g), but also as (S̄g,Sg). Since different solutions can
be traversed in the path from an initial solution (Si, S̄i) to a guiding solution (Sg, S̄g)
and in the path from (Si, S̄i) to (S̄g,Sg), then traversing both paths may enable the
algorithm to find better solutions.

The path-relinking procedure starts by initializing the current solution with the
initial solution, i.e., setting (S, S̄) = (Si, S̄i) and computing the restricted neighbor-
hood

N((S, S̄) : (Sg, S̄g)) = N+((S, S̄) : (Sg, S̄g)) ∪ N−((S, S̄) : (Sg, S̄g)),

where

N+((S, S̄) : (Sg, S̄g)) = {(S∪{v}, S̄\ {v}) : v ∈ ((S∪Sg)\ (S∩Sg))∩Sg}

and

N−((S, S̄) : (Sg, S̄g)) = {(S \ {v}, S̄∪{v}) : v ∈ ((S∪Sg)\ (S∩Sg))∩S}.

Set N+((S, S̄) : (Sg, S̄g)) is the neighborhood formed by solutions that result from
moving from S̄ to S a vertex v that belongs to Sg (but not to S). Conversely, set
N−((S, S̄) : (Sg, S̄g)) corresponds to the neighborhood formed by solutions that result
from moving from S to S̄ a vertex v that does not belong to Sg (but belongs to S).

Maximum cut problem – Path-relinking iteration

Consider the following example on the graph in Figure 12.11, where V = {1,2,3,
4,5}. Let the current solution (S, S̄) be such that S = {1,2} and S̄ = {3,4,5} and
let the guiding solution (Sg, S̄g) be such that Sg = {1,3,5} and S̄g = {2,4}. Since
S∪Sg = {1,2,3,5} and S∩Sg = {1}, then

((S∪Sg)\ (S∩Sg))∩Sg = {2,3,5}∩{1,3,5}= {3,5}

and
((S∪Sg)\ (S∩Sg))∩S= {2,3,5}∩{1,2}= {2}.

Consequently,

12.4 Maximum cut in a graph 269

N((S, S̄) : (Sg, S̄g)) =N+((S, S̄) : (Sg, S̄g)) ∪ N−((S, S̄) : (Sg, S̄g))

={(S∪{v}, S̄\ {v}) : v ∈ ((S∪Sg)\ (S∩Sg))∩Sg} ∪
{(S \ {v}, S̄∪{v}) : v ∈ ((S∪Sg)\ (S∩Sg))∩S}

={(S∪{v}, S̄\ {v}) : v ∈ {3,5}} ∪
{(S \ {v}, S̄∪{v}) : v ∈ {2}}

={({1,2,3},{4,5}), ({1,2,5},{3,4}), ({1},{2,3,4,5})}.

Since w({1,2,3},{4,5}) = 33, w({1,2,5},{3,4}) = 21, and w({1},{2,3,
4,5}) = 11, path-relinking would make the greedy choice and make the move to
solution

(S, S̄) = ({1,2,3},{4,5}).
�

The best solution in the restricted neighborhoodN((S, S̄) : (Sg, S̄g)) =N+((S, S̄) :
(Sg, S̄g)) ∪ N−((S, S̄) : (Sg, S̄g)) is selected, the current solution is updated, and a
new path-relinking iteration is performed, until the guiding solution is reached. The
total number of iterations performed by path-relinking is

|N((Si, S̄i) : (Sg, S̄g))|+ |N((Si, S̄i) : (S̄g,Sg))|,

where (Si, S̄i) is the starting solution and (Sg, S̄g) and (S̄g,Sg) are the two represen-
tations of the guiding solution.

Figure 12.14 shows the pseudo-code for a forward path-relinking algorithm for
the maximum cut problem. The procedure takes as input an initial solution (Si, S̄i)
and two representations of a guiding solution, (Sg, S̄g) and (S̄g,Sg), and returns a
locally maximum cut (S, S̄) in line 25. Lines 1 through 12 traverse a path from
(Si, S̄i) to (Sg, S̄g), while in lines 13 through 24 a path from (Si, S̄i) to (S̄g,Sg) is
traversed. Lines 1 and 2 initialize the current solution (S, S̄) with the initial solution
(Si, S̄i) and line 3 initializes the largest cut weight to −∞. Traversal of the path from
(Si, S̄i) to (Sg, S̄g) in the solution space graph takes place in the while loop from
line 4 to line 11. This loop is applied until the guiding solution is reached, i.e., until
N((S, S̄) : (Sg, S̄g)) becomes empty. In line 5, a best solution among all solutions in
the restricted neighborhoodN((S, S̄) : (Sg, S̄g)) is assigned to (S+, S̄+) and, in line 6,
the move to (S+, S̄+) is made. If the weight of the cut corresponding to the new
solution is the largest seen so far in this path, then the cut and its weight are saved
in (S∗, S̄∗) (line 8) and in w∗ (line 9), respectively. Since there is no guarantee that
the solutions in the path traversed by path-relinking are local maxima, local search
is applied to (S∗, S̄∗) in line 12 and the local maximum found is (S1, S̄1). Traversal
of the second path is similar and takes place in lines 13 to 24. The local maximum
found starting from the best solution in this path is (S2, S̄2) and is computed in
line 24. The best solution (S, S̄) returned in line 25 is the solution with the largest
cut weight among (S1, S̄1) and (S2, S̄2).

Once a new solution (S, S̄) is produced by path-relinking, the GRASP with path-
relinking procedure verifies in lines 10 to 12 of the pseudo-code in Figure 12.10 if

270 12 Case studies

Fig. 12.14 Pseudo-code of the forward path-relinking procedure for the MAX-CUT problem.

this solution can be inserted into the elite set E . Denote by nE the maximum number
of elite elements. If |E | < nE , then (S, S̄) is simply inserted into E . Otherwise, if
|E | = nE , then two cases can arise. In the first case, if w(S, S̄) is greater than the
largest cut weight in E , then (S, S̄) is inserted into the pool E . In the second case, it
will be added to the pool E only if it is sufficiently different from all pool elements.
In both cases, an elite solution (S−, S̄−) of less weight than w(S, S̄) is replaced by
(S, S̄) in the pool. There can be one or more such lower-weight solutions in the pool.
Among those, the chosen solution (S−, S̄−) is the one that is most similar to (S, S̄).

12.5 Bibliographical notes

Applications of the 2-path network design problem can be found in the design of
communication networks, in which paths with few edges are sought to enforce high
reliability and small delays. Dahl and Johannessen (2004) proved that the decision
version of the 2-path network design problem is NP-complete and proposed a greedy
heuristic based on the linear relaxation of its integer programming formulation.

12.5 Bibliographical notes 271

They also gave an exact cutting plane algorithm and presented computational results
for randomly generated problems with up to 120 nodes, 7,140 edges, and 60 origin-
destination pairs. The numerical results reported in Section 12.1 appeared originally
in Ribeiro and Rosseti (2002), where 100 test instances with 70 nodes and 35 origin-
destination pairs were randomly generated with the same parameters of those used
by Dahl and Johannessen (2004), since neither the instances nor the code of the
greedy heuristic were available for a straightforward comparison with the parallel
GRASP algorithm. Student’s t-test for unpaired observations was applied as in Jain
(1991). Efficient parallel cooperative implementations of GRASP heuristics for the
2-path network design problem appeared in Ribeiro and Rosseti (2007), as did the
implementation details of the algorithms used in the computational experiments.

The graph planarization problem discussed in Section 12.2 is NP-hard, see Liu
and Geldmacher (1977). Applications of graph planarization include graph drawing,
such as in CASE tools (Tamassia and Di Battista, 1988), automated graphical dis-
play systems, and numerous layout problems, such as circuit layout and the layout of
industrial facilities (Hassan and Hogg, 1987). A survey of some of these applications
appeared in Mutzel (1994). The two-phase GT heuristic for graph planarization was
originally proposed by Goldschmidt and Takvorian (1994). Since the decision ver-
sion of the problem of finding a maximum induced bipartite subgraph of an overlap
graph is NP-complete (Sarrafzadeh and Lee, 1989), a greedy algorithm is used by
the two-phase heuristic GT to construct a maximal induced bipartite subgraph of the
overlap graph. Finding the maximum independent set of an overlap graph has been
shown by Gavril (1973) to be polynomially solvable in time O(|E|3), where |E| is
the number of vertices of the overlap graph H = (E, I) (see Golumbic (1980) for
another description of this algorithm). The GRASP heuristic for graph planariza-
tion was developed by Resende and Ribeiro (1997), where extensive computational
results have been reported. Its code is detailed and available from Ribeiro and Re-
sende (1999).

The bandwidth packing problem introduced in Section 12.3 can be solved in
polynomial time (Ouorou et al., 2000) if the cost function in each edge is convex.
However, the problem is NP-hard if the flows are required to be integral (Even et al.,
1976) or if each commodity is required to follow a single path from its source to
its destination (Chlamtac et al., 1994). The cost function adopted in model (12.1)-
(12.5) is the same piecewise linear function originally proposed by Fortz and Thorup
(2000).

Several heuristics have been proposed for different variants of the bandwidth
packing problem. One of the first algorithms for routing virtual circuits in communi-
cation networks was proposed by Yee and Lin (1992). Resende and Resende (1999)
proposed a GRASP for frame relay permanent virtual circuit routing different from
the one described in this chapter. Sung and Park (1995) developed a Lagrangean
heuristic for a similar variant of this problem. Laguna and Glover (1993) consid-
ered a bandwidth packing problem in which they want to assign calls to paths in a
capacitated graph, such that capacities are not violated and some measure of the
total profit is maximized. They developed a tabu search algorithm which makes use
of an efficient implementation of the k-shortest path algorithm.

272 12 Case studies

Amiri et al. (1999) proposed another formulation for the bandwidth packing
problem, considering both revenue losses and costs associated with communica-
tion delays as part of the objective. A heuristic procedure based on Lagrangean
relaxation was applied for finding bounds and solutions. Shyur and Wen (2001)
proposed a tabu search algorithm for optimizing the system of virtual paths. The
objective function consisted in minimizing the maximum link load, by requiring
that each route visits the minimum number of hubs. The load of a link is defined
as the sum of the virtual path demands, summed over the virtual paths that traverse
this link.

A number of exact approaches for solving variants of the bandwidth packing
problem have also appeared in the literature. Parker and Ryan (1994) described a
branch-and-bound procedure for optimally solving a bandwidth packing problem,
in which the linear relaxation of the associated integer programming problem is
solved by using column generation. LeBlanc et al. (1999) addressed packet switched
telecommunication networks, considering restrictions on paths and flows: hop lim-
its, node and link capacity constraints, and high- and low-priority flows. They min-
imize the expected queuing time and do not impose integrality constraints on the
flows. Dahl et al. (1999) studied a network configuration problem in telecommuni-
cations, searching for paths in a capacitated network to accommodate a given traffic
demand matrix. Their model also involves an intermediate pipe layer. The problem
is formulated as an integer linear program. An associated integral polytope is stud-
ied and different classes of facets are described. Barnhart et al. (2000) proposed a
branch-and-cut-and-price algorithm for origin-destination integer multicommodity
flow problems. This problem is a constrained version of the linear multicommodity
network flow problem, in which each flow can use only one path from its origin to
its destination.

The GRASP algorithm for the bandwidth packing problem discussed in this
chapter was originally proposed by Resende and Ribeiro (2003a), where computa-
tional results illustrating the trade-offs between different implementation strategies
and their application in practice are reported in detail. The construction mechanism
based on heuristic-biased stochastic sampling was introduced by Bresina (1996),
in which the candidates are ranked according to the greedy function. Binato et al.
(2002) also used this selection procedure, but restricted to elements of the RCL.

The GRASP with path-relinking heuristic for the maximum cut problem, dis-
cussed in this chapter, was originally proposed in Festa et al. (2002). In that paper, a
variable neighborhood search (VNS) heuristic for MAX-CUT and its hybridization
with path-relinking were also proposed.

The decision version of the MAX-CUT problem was proved to be NP-complete
by Karp (1972). Applications of MAX-CUT are found in VLSI design and statistical
physics, see, e.g., Barahona et al. (1988), Chang and Du (1987), Chen et al. (1983),
and Pinter (1984), among others. The reader is referred to Poljak and Tuza (1995)
for an introductory survey of MAX-CUT.

The idea that the MAX-CUT problem can be naturally relaxed to a semidefi-
nite programming problem was first observed by Lovász (1979) and Shor (1987).
Goemans and Williams (1995) proposed a randomized algorithm that uses semidef-

12.5 Bibliographical notes 273

inite programming to achieve a performance guarantee of 0.87856 if the weights are
non-negative. Algorithms for solving the semidefinite programming relaxation of
MAX-CUT are particularly efficient because they explore the structure of the prob-
lem. One approach along this line is the use of interior point methods (Benson et al.,
2000; Fujisawa et al., 1997; 2000).

Other nonlinear programming approaches have also been presented for the
MAX-CUT semidefinite programming relaxation, solution see Helmberg and Rendl
(2000) and Homer and Peinado (1997). Homer and Peinado (1997) reformulated the
constrained problem as an unconstrained one and used the standard steepest-ascent
method on the latter. A variant of the Homer and Peinado algorithm was proposed
by Burer and Monteiro (2001). Their idea is based on the constrained nonlinear pro-
gramming reformulation of the MAX-CUT semidefinite programming relaxation
obtained by a change of variables.

Burer et al. (2001) proposed a rank-2 relaxation heuristic for MAX-CUT and
described the circut computer code that produces better solutions in practice than
the randomized algorithm of Goemans and Williamson.

Following the paper by Festa et al. (2002) that proposed GRASP, path-relinking,
and variable neighborhood search for the MAX-CUT, other heuristics based on
metaheuristic concepts were proposed, including a hierarchical social heuristic
(Duarte et al., 2004), ant colony optimization (Gao et al., 2008), scatter search
(Martı́ et al., 2009), memetic algorithms (Wu and Hao, 2012), genetic algorithms
(Seo et al., 2012), tabu search (Kochenberger et al., 2013), and breakout local search
(Benlic and Hao, 2013).

References

E.H.L. Aarts and J. Korst. Simulated annealing and Boltzmann machines:
A stochastic approach to combinatorial optimization and neural computing.
Wiley, New York, 1989.

B. Adenso-Dı́az, S. Garcı́a-Carbajal, and S.M. Gupta. A path-relinking approach
for a bi-criteria disassembly sequencing problem. Computers & Operations
Research, 35:3989–3997, 2008.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Pro-
ceedings of the 20th International Conference on Very Large Data Bases, pages
487–499. Morgan Kaufmann Publishers, 1994.

R.M. Aiex and M.G.C. Resende. Parallel strategies for GRASP with path-relinking.
In T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuristics: Progress as
real problem solvers, pages 301–331. Springer, New York, 2005.

R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. Probability distribution of
solution time in GRASP: An experimental investigation. Journal of Heuristics,
8:343–373, 2002.

R.M. Aiex, S. Binato, and M.G.C. Resende. Parallel GRASP with path-relinking
for job shop scheduling. Parallel Computing, 29:393–430, 2003.

R.M. Aiex, M.G.C. Resende, P.M. Pardalos, and G. Toraldo. GRASP with path
relinking for three-index assignment. INFORMS Journal on Computing, 17:
224–247, 2005.

R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. TTTPLOTS: A perl program to
create time-to-target plots. Optimization Letters, 1:355–366, 2007.

E. Alba. Parallel metaheuristics: A new class of algorithms. Wiley, New York,
2005.

D. Aloise and C.C. Ribeiro. Adaptive memory in multistart heuristics for multicom-
modity network design. Journal of Heuristics, 17:153–179, 2011.

G.A. Alvarez-Perez, J.L. González-Velarde, and J.W. Fowler. Crossdocking – Just
in time scheduling: An alternative solution approach. Journal of the Operational
Research Society, 60:554–564, 2008.

© Springer Science+Business Media New York 2016
M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP,
DOI 10.1007/978-1-4939-6530-4

275

276 References

R. Alvarez-Valdes, F. Parreño, and J.M. Tamarit. A GRASP algorithm for con-
strained two-dimensional non-guillotine cutting problems. Journal of the Opera-
tional Research Society, 56:414–425, 2004.

R. Alvarez-Valdes, E. Crespo, J.M. Tamarit, and F. Villa. GRASP and path relinking
for project scheduling under partially renewable resources. European Journal of
Operational Research, 189:1153–1170, 2008a.

R. Alvarez-Valdes, F. Parreño, and J.M. Tamarit. Reactive GRASP for the strip-
packing problem. Computers & Operations Research, 35:1065–1083, 2008b.

R. Alvarez-Valdes, F. Parreño, and J.M. Tamarit. A GRASP/path relinking algo-
rithm for two- and three-dimensional multiple bin-size bin packing problems.
Computers & Operations Research, 40:3081–3090, 2013.

A.C. Alvim and C.C. Ribeiro. Load balancing for the parallelization of the GRASP
metaheuristic. In Proceedings of the X Brazilian Symposium on Computer Archi-
tecture, pages 279–282, Búzios, 1998.

A. Amiri, E. Rolland, and R. Barkhi. Bandwidth packing with queueing delay costs:
Bounding and heuristic solution procedures. European Journal of Operational
Research, 112:635–645, 1999.

K.P. Anagnostopoulos, P.D. Chatzoglou, and S. Katsavounis. A reactive greedy
randomized adaptive search procedure for a mixed integer portfolio optimization
problem. Managerial Finance, 36:1057–1065, 2010.

D.V. Andrade and M.G.C. Resende. GRASP with path-relinking for network
migration scheduling. In Proceedings of the International Network Optimiza-
tion Conference, Spa, 2007a. URL http://bit.ly/1NfaTK0. Last visited on April
16, 2016.

D.V. Andrade and M.G.C. Resende. GRASP with evolutionary path-relinking. In
Proceedings of the Seventh Metaheuristics International Conference, Montreal,
2007b.

L.M.M.S. Andrade, R.B. Xavier, L.A.F. Cabral, and A.A. Formiga. Parallel con-
struction for continuous GRASP optimization on GPUs. In Anais do XLVI
Simpósio Brasileiro de Pesquisa Operacional, pages 2393–2404, Salvador, 2014.
URL http://bit.ly/1SS3lte. Last visited on April 16, 2016.

A.A. Andreatta and C.C. Ribeiro. Heuristics for the phylogeny problem. Journal of
Heuristics, 8:429–447, 2002.

C.H. Antunes, E. Oliveira, and P. Lima. A multi-objective GRASP procedure
for reactive power compensation planning. Optimization and Engineering, 15:
199–215, 2014.

D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook. The traveling salesman
problem: A computational study. Princeton University Press, Princeton, 2006.

T.M.U. Araújo, L.M.M.S. Andrade, C. Magno, L.A.F. Cabral, R.Q. Nascimento,
and C.N. Meneses. DC-GRASP: Directing the search on continuous-GRASP.
Journal of Heuristics, 2015. doi: 10.1007/s10732-014-9278-6. Published online
on 6 January 2015.

V.A. Armentano and O.C.B. Araujo. GRASP with memory-based mechanisms for
minimizing total tardiness in single machine scheduling with setup times. Journal
of Heuristics, 12:427–446, 2006.

http://bit.ly/1NfaTK0
http://bit.ly/1SS3lte

References 277

J.E.C. Arroyo, P.S. Vieira, and D.S. Vianna. A GRASP algorithm for the multi-
criteria minimum spanning tree problem. Annals of Operations Research, 159:
125–133, 2008.

L. Bahiense, G.C. Oliveira, M. Pereira, and S. Granville. A mixed integer disjunctive
model for transmission network expansion. IEEE Transactions on Power Systems,
16:560–565, 2001.

E. Balas and M.J. Saltzman. An algorithm for the three-index assignment problem.
Operations Research, 39:150–161, 1991.

J. Bang-Jensen, G. Gutin, and A. Yeo. When the greedy algorithm fails. Discrete
Optimization, 1:121–127, 2004.

F. Barahona, M. Grötschel, M. Jürgen, and G. Reinelt. An application of combinato-
rial optimization to statistical optimization and circuit layout design. Operations
Research, 36:493–513, 1988.

H. Barbalho, I. Rosseti, S.L. Martins, and A. Plastino. A hybrid data mining GRASP
with path-relinking. Computers & Operations Research, 40:3159–3173, 2013.

J.F. Bard, Y. Shao, and A.I. Jarrah. A sequential GRASP for the therapist routing
and scheduling problem. Journal of Scheduling, 17:109–133, 2014.

C. Barnhart, C.A. Hane, and P.H. Vance. Using branch-and-price-and-cut to solve
origin-destination integer multicommodity flow problems. Operations Research,
48:318–326, 2000.

V. Bartkutė and L. Sakalauskas. Statistical inferences for termination of Markov
type random search algorithms. Journal of Optimization Theory and Applica-
tions, 141:475–493, 2009.

V. Bartkutė, G. Felinskas, and L. Sakalauskas. Optimality testing in stochastic and
heuristic algorithms. Technical Report 12, Vilnius Gediminas Technical Univer-
sity, Vilnius, 2006.

R. Battiti and G. Tecchiolli. Parallel biased search for combinatorial optimization:
Genetic algorithms and tabu. Microprocessors and Microsystems, 16:351–367,
1992.

J.E. Beasley. An algorithm for set-covering problems. European Journal of Opera-
tional Research, 31:85–93, 1987.

J.E. Beasley. OR-Library: Distributing test problems by electronic mail. Journal of
the Operational Research Society, 41:1069–1072, 1990a.

J.E. Beasley. A Lagrangean heuristic for set-covering problems. Naval Research
Logistics, 37:151–164, 1990b.

J.E. Beasley. Lagrangean relaxation. In C.R. Reeves, editor, Modern heuristic tech-
niques for combinatorial problems, pages 243–303. Blackwell Scientific Publi-
cations, Oxford, 1993.

U. Benlic and J.-K. Hao. Breakout local search for the Max-Cut problem. Engi-
neering Applications of Artificial Intelligence, 26:1162–1173, 2013.

S. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs
for combinatorial optimization. SIAM Journal on Optimization, 10:443–461,
2000.

278 References

D. Berger, B. Gendron, J.-Y Potvin, S. Raghavan, and P. Soriano. Tabu search
for a network loading problem with multiple facilities. Journal of Heuristics,
6:253–267., 2000.

D. Bertsimas and R. Weismantel. Optimization over integers. Dynamic Ideas, Bel-
mont, 2005.

S. Binato and G.C. Oliveira. A reactive GRASP for transmission network expan-
sion planning. In C.C. Ribeiro and P. Hansen, editors, Essays and surveys in
metaheuristics, pages 81–100. Kluwer Academic Publishers, Boston, 2002.

S. Binato, W.J. Hery, D. Loewenstern, and M.G.C. Resende. A GRASP for job
shop scheduling. In C.C. Ribeiro and P. Hansen, editors, Essays and surveys in
metaheuristics, pages 59–79. Kluwer Academic Publishers, Boston, 2002.

E.G. Birgin and J.M. Martı́nez. Large-scale active-set box-constrained optimiza-
tion method with spectral projected gradients. Computational Optimization and
Applications, 23:101–125, 2002.

E.G. Birgin, E.M. Gozzi, M.G.C. Resende, and R.M.A. Silva. Continuous GRASP
with a local active-set method for bound-constrained global optimization. Journal
of Global Optimization, 48:289–310, 2010.

C.G.E. Boender and A.H.G. Rinnooy Kan. Bayesian stopping rules for multistart
global optimization methods. Mathematical Programming, 37:59–80, 1987.

J.A. Bondy and U.S.R. Murty. Graph theory with applications. Elsevier, 1976.
M. Boudia, M.A.O. Louly, and C. Prins. A reactive GRASP and path relinking for a

combined production–distribution problem. Computers & Operations Research,
34:3402–3419, 2007.

J.L. Bresina. Heuristic-biased stochastic sampling. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pages 271–278, Portland, 1996.
Association for the Advancement of Artificial Intelligence.

S. Burer and R.D.C. Monteiro. A projected gradient algorithm for solving the Max-
Cut SDP relaxation. Optimization Methods and Software, 15:175–200, 2001.

S. Burer, R.D.C. Monteiro, and Y. Zhang. Rank-two relaxation heuristics for MAX-
CUT and other binary quadratic programs. SIAM Journal on Optimization, 12:
503–521, 2001.

R.E. Burkard and K. Fröhlich. Some remarks on 3-dimensional assignment prob-
lems. Methods of Operations Research, 36:31–36, 1980.

R.E. Burkard and R. Rudolf. Computational investigations on 3-dimensional axial
assignment problems. Belgian Journal of Operational Research, Statistics and
Computer Science, 32:85–98, 1993.

R.E. Burkard, R. Rudolf, and G.J. Woeginger. Three-dimensional axial assignment
problems with decomposable cost coefficients. Discrete Applied Mathematics,
65:123–139, 1996.

E.K. Burke and G. Kendall, editors. Search methodologies: Introductory tutorials
in optimization and decision support techniques. Springer, New York, 2005.

E.K. Burke and G. Kendall, editors. Search methodologies: Introductory tutorials in
optimization and decision support techniques. Springer, New York, 2nd edition,
2014.

References 279

S.I. Butenko, C.W. Commander, and P.M. Pardalos. A GRASP for broadcast
scheduling in ad-hoc TDMA networks. In Proceedings of the International Con-
ference on Computing, Communications, and Control Technologies, volume 5,
pages 322–328, Austin, 2004.

R.G. Cano, G. Kunigami, C.C. de Souza, and P.J. de Rezende. A hybrid GRASP
heuristic to construct effective drawings of proportional symbol maps. Computers
& Operations Research, 40:1435–1447, 2013.

S.A. Canuto, M.G.C. Resende, and C.C. Ribeiro. Local search with perturbations
for the prize-collecting Steiner tree problem in graphs. Networks, 38:50–58, 2001.

B. Cao and F. Glover. Tabu search and ejection chains – Application to a node
weighted version of the cardinality-constrained TSP. Management Science, 43:
908–921, 1997.

S. Casey and J. Thompson. GRASPing the examination scheduling problem. In
E. Burke and P. De Causmaecker, editors, Practice and theory of automated
timetabling IV, volume 2740 of Lecture Notes in Computer Science, pages
232–244. Springer, Berlin, 2003.

L. Cavique, C. Rego, and I. Themido. Subgraph ejection chains and tabu search for
the crew scheduling problem. Journal of the Operational Research Society, 50:
608–616, 1999.

J.M. Chambers, W.S. Cleveland, B. Kleiner, and P.A. Tukey. Graphical methods for
data analysis. Duxbury Press, Boston, 1983.

K.C. Chang and D.-Z. Du. Efficient algorithms for layer assignment problems. IEEE
Transactions on Computer-Aided Design, CAD-6:67–78, 1987.

W.A. Chaovalitwongse, C.A.S Oliveira, B. Chiarini, P.M. Pardalos, and M.G.C. Re-
sende. Revised GRASP with path-relinking for the linear ordering problem. Jour-
nal of Combinatorial Optimization, 22:572–593, 2011.

I. Charon and O. Hudry. The noising method: A new method for combinatorial
optimization. Operations Research Letters, 14:133–137, 1993.

I. Charon and O. Hudry. The noising methods: A survey. In C.C. Ribeiro and
P. Hansen, editors, Essays and surveys in metaheuristics, pages 245–261. Kluwer
Academic Publishers, Boston, 2002.

R. Chen, Y. Kajitani, and S. Chan. A graph-theoretic via minimization algorithm
for two-layer printed circuit boards. IEEE Transactions on Circuits and Systems,
CAS-30:284–299, 1983.

M. Chica, O. Cordón, S. Damas, and J. Bautista. A multiobjective GRASP for the
1/3 variant of the time and space assembly line balancing problem. In N. Garcı́a-
Pedrajas, F. Herrera, C. Fyfe, J. Benı́tez, and M. Ali, editors, Trends in applied
intelligent systems, volume 6098 of Lecture Notes in Computer Science, pages
656–665. Springer, Berlin, 2010.

I. Chlamtac, A. Faragó, and T. Zhang. Optimizing the system of virtual paths.
IEEE/ACM Transactions on Networking, 2:581–587, 1994.

V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Oper-
ations Research, 4:233–235, 1979.

280 References

A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel,
editor, Proceedings of the 1964 International Congress for Logical Methodology
and Philosophy of Science, pages 24–30, Amsterdam, 1964. North Holland.

C.W. Commander, S.I. Butenko, P.M. Pardalos, and C.A.S. Oliveira. Reactive
GRASP with path relinking for broadcast scheduling. In Proceedings of the 40th
Annual International Telemetry Conference, pages 792–800, San Diego, 2004.

S.A. Cook. The complexity of theorem-proving procedures. In M.A. Harrison,
R.B. Banerji, and J.D. Ullman, editors, Proceedings of the Third Annual ACM
Symposium on Theory of Computing, pages 151–158, New York, 1971. ACM.

R. Cordone and G. Lulli. A GRASP metaheuristic for microarray data analysis.
Computers & Operations Research, 40:3108–3120, 2013.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, Cambridge, 3rd edition, 2009.

C. Cotta and A.J. Fernández. A hybrid GRASP–evolutionary algorithm approach to
Golomb ruler search. In X. Yao, E.K. Burke, J.A. Lozano, J. Smith, J.J. Merelo-
Guervós, J.A. Bullinaria, J.E. Rowe, P. Tiňo, A. Kabán, and H.-P. Schwefel,
editors, Parallel Problem Solving from Nature, volume 3242 of Lecture Notes
in Computer Science, pages 481–490. Springer, Berlin, 2004.

Y. Crama and F.C.R. Spieksma. Approximation algorithms for three-dimensional
assignment problems with triangle inequalities. European Journal of Operational
Research, 60:273–279, 1992.

G.L. Cravo, G.M. Ribeiro, and L.A.N. Lorena. A greedy randomized adaptive
search procedure for the point-feature cartographic label placement. Computers
& Geosciences, 34:373–386, 2008.

G.A. Croes. A method for solving traveling-salesman problems. Operations Re-
search, 6:791–812, 1958.

W.B. Crowston, F. Glover, G.L. Thompson, and J.D. Trawick. Probabilistic and
parametric learning combinations of local job shop scheduling rules. Technical
Report 117, Carnegie-Mellon University, Pittsburgh, 1963.

V.-D. Cung, S.L. Martins, C.C. Ribeiro, and C. Roucairol. Strategies for the par-
allel implementation of metaheuristics. In C.C. Ribeiro and P. Hansen, editors,
Essays and surveys in metaheuristics, pages 263–308. Kluwer Academic Pub-
lishers, Boston, 2002.

V.B. da Silva, M. Ritt, J.B. da Paz Carvalho, M.J. Brusso, and J.T. da Silva.
Identificação da maior elipse com excentricidade prescrita inscrita em um
polı́gono não convexo através do Continuous GRASP. Revista Brasileira de
Computação Aplicada, 4:61–70, 2012.

G. Dahl and B. Johannessen. The 2-path network design problem. Networks, 43:
190–199, 2004.

G. Dahl, A. Martin, and M. Stoer. Routing through virtual paths in layered telecom-
munication networks. Operations Research, 47:693–702, 1999.

G.B. Dantzig. Linear programming and extensions. Princeton University Press,
Princeton, 1953.

References 281

M.M. D’Apuzzo, A. Migdalas, P.M. Pardalos, and G. Toraldo. Parallel comput-
ing in global optimization. In E. Kontoghiorghes, editor, Handbook of parallel
computing and statistics. Chapman & Hall / CRC, Boca Raton, 2006.

S. Das and S.M. Idicula. Application of reactive GRASP to the biclustering of gene
expression data. In Proceedings of the International Symposium on Biocomput-
ing, page 14, Calicut, 2010. ACM.

H. Davoudpour and M. Ashrafi. Solving multi-objective SDST flexible flow shop
using GRASP algorithm. The International Journal of Advanced Manufacturing
Technology, 44:737–747, 2009.

H. Delmaire, J.A. Dı́az, E. Fernández, and M. Ortega. Reactive GRASP and tabu
search based heuristics for the single source capacitated plant location problem.
INFOR, 37:194–225, 1999.

X. Delorme, X. Gandibleux, and J. Rodriguez. GRASP for set packing problems.
European Journal of Operational Research, 153:564–580, 2004.

X. Delorme, X. Gandibleux, and F. Degoutin. Evolutionary, constructive and hy-
brid procedures for the bi-objective set packing problem. European Journal of
Operational Research, 204:206–217, 2010.

Y. Deng and J.F. Bard. A reactive GRASP with path relinking for capacitated clus-
tering. Journal of Heuristics, 17:119–152, 2011.

Y. Deng, J.F. Bard, G.R. Chacon, and J. Stuber. Scheduling back-end operations in
semiconductor manufacturing. IEEE Transactions on Semiconductor Manufac-
turing, 23:210–220, 2010.

S. Dharan and A.S. Nair. Biclustering of gene expression data using reactive greedy
randomized adaptive search procedure. BMC Bioinformatics, 10 (Suppl 1):S27,
2009.

R. Diestel. Graph theory. Springer, New York, 2010.
N. Dodd. Slow annealing versus multiple fast annealing runs: An empirical investi-

gation. Parallel Computing, 16:269–272, 1990.
C. Dorea. Stopping rules for a random optimization method. SIAM Journal on
Control and Optimization, 28:841–850, 1990.

U. Dorndorf and E. Pesch. Fast clustering algorithms. INFORMS Journal on Com-
puting, 6:141–153, 1994.

S.E. Dreyfus and R.A. Wagner. The Steiner problem in graphs. Networks, 1:
195–201, 1972.

L.M.A. Drummond, L.S. Vianna, M.B. Silva, and L.S. Ochi. Distributed parallel
metaheuristics based on GRASP and VNS for solving the traveling purchaser
problem. In Proceedings of the Ninth International Conference on Parallel and
Distributed Systems, pages 257–263, Chungli, 2002. IEEE.

A. Duarte and R. Martı́. Tabu search and GRASP for the maximum diversity prob-
lem. European Journal of Operational Research, 178:71–84, 2007.

A. Duarte, F. Fernández, Á. Sánchez, and A. Sanz. A hierarchical social metaheuris-
tic for the Max-Cut problem. In J. Gottlieb and G.R. Raidl, editors, Evolution-
ary computation in combinatorial optimization, volume 3004 of Lecture Notes in
Computer Science, pages 84–94. Springer, Berlin, 2004.

282 References

A. Duarte, R. Martı́, M.G.C. Resende, and R.M.A. Silva. GRASP with path relink-
ing heuristics for the antibandwidth problem. Networks, 58:171–189, 2011.

A. Duarte, R. Martı́, A. Álvarez, and F. Ángel-Bello. Metaheuristics for the lin-
ear ordering problem with cumulative costs. European Journal of Operational
Research, 216:270–277, 2012.

A. Duarte, J. Sánchez-Oro, M.G.C. Resende, F. Glover, and R. Martı́. GRASP
with exterior path relinking for differential dispersion minimization. Information
Sciences, 296:46–60, 2015.

A.R. Duarte, C.C. Ribeiro, and S. Urrutia. A hybrid ILS heuristic to the referee
assignment problem with an embedded MIP strategy. In T. Bartz-Beielstein,
M.J.B. Aguilera, C. Blum, B. Naujoks, A. Roli, G. Rudolph, and M. Sampels,
editors, Hybrid metaheuristics, volume 4771 of Lecture Notes in Computer Sci-
ence, pages 82–95. Springer, Berlin, 2007a.

A.R. Duarte, C.C. Ribeiro, S. Urrutia, and E.H. Haeusler. Referee assignment in
sports leagues. In E.K. Burke and H. Rudová, editors, Practice and theory of
automated timetabling VI, volume 3867 of Lecture Notes in Computer Science,
pages 158–173. Springer, Berlin, 2007b.

C. Duin and S. Voss. The Pilot method: A strategy for heuristic repetition with
application to the Steiner problem in graphs. Networks, 34:181–191, 1999.

S. Duni Ekşog̃lu, P.M. Pardalos, and M.G.C. Resende. Parallel metaheuristics for
combinatorial optimization. In R. Corrêa, I. Dutra, M. Fiallos, and F. Gomes, edi-
tors, Models for parallel and distributed computation – Theory, algorithmic tech-
niques and applications, pages 179–206. Kluwer Academic Publishers, Boston,
2002.

K. Easton, G. Nemhauser, and M.A. Trick. The travelling tournament problem:
Description and benchmarks. In T. Walsh, editor, Principles and practice of
constraint programming, volume 2239 of Lecture Notes in Computer Science,
pages 580–585. Springer, Berlin, 2001.

J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:
449–467, 1965.

J. Edmonds. Matroids and the greedy algorithm. Mathematical Programming, 1:
125–136, 1971.

J. Edmonds. Minimum partition of a matroid in independent subsets. Journal of
Research, National Bureau of Standards, 69B:67–72, 1975.

H.T. Eikelder, M. Verhoeven, T. Vossen, and E. Aarts. A probabilistic analysis
of local search. In I. Osman and J. Kelly, editors, Metaheuristics: Theory and
applications, pages 605–618. Kluwer Academic Publishers, Boston, 1996.

M. Essafi, X. Delorme, and A. Dolgui. A reactive GRASP and path relinking
for balancing reconfigurable transfer lines. International Journal of Production
Research, 50:5213–5238, 2012.

S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing, 5:691–703, 1976.

H. Faria Jr., S. Binato, M.G.C. Resende, and D.J. Falcão. Transmission network
design by a greedy randomized adaptive path relinking approach. IEEE Transac-
tions on Power Systems, 20:43–49, 2005.

References 283

T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally dif-
ficult set covering problem. Operations Research Letters, 8:67–71, 1989.

T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6:109–133, 1995.

T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized adaptive search
procedure for maximum independent set. Technical report, AT&T Bell Labora-
tories, 1989.

T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized adaptive search
procedure for maximum independent set. Operations Research, 42:860–878,
1994.

P. Festa and M.G.C. Resende. GRASP: An annotated bibliography. In C.C. Ribeiro
and P. Hansen, editors, Essays and surveys in metaheuristics, pages 325–367.
Kluwer Academic Publishers, Boston, 2002.

P. Festa and M.G.C. Resende. An annotated bibliography of GRASP, Part I: Algo-
rithms. International Transactions in Operational Research, 16:1–24, 2009a.

P. Festa and M.G.C. Resende. An annotated bibliography of GRASP, Part II:
Applications. International Transactions in Operational Research, 16, 2009b.
131–172.

P. Festa and M.G.C. Resende. Hybridizations of GRASP with path-relinking.
In E-G. Talbi, editor, Hybrid metaheuristics, volume 434 of Studies in Compu-
tational Intelligence, pages 135–155. Springer, New York, 2013.

P. Festa, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Randomized heuristics
for the MAX-CUT problem. Optimization Methods and Software, 7:1033–1058,
2002.

P. Festa, P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. GRASP with path-
relinking for the weighted maximum satisfiability problem. Lecture Notes in
Computer Science, 3503:367–379, 2005.

P. Festa, P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. GRASP with path-
relinking for the weighted MAXSAT problem. ACM Journal of Experimental
Algorithmics, 11:1–16, 2006.

M.L. Fisher. The Lagrangean relaxation method for solving integer programming
problems. Management Science, 50:1861–1871, 2004.

C. Fleurent and F. Glover. Improved constructive multistart strategies for the
quadratic assignment problem using adaptive memory. INFORMS Journal on
Computing, 11:198–204, 1999.

E. Fonseca, R. Fuchsuber, L.F.M. Santos, A. Plastino, and S.L. Martins. Exploring
the hybrid metaheuristic DM-GRASP for efficient server replication for reliable
multicast. In International Conference on Metaheuristics and Nature Inspired
Computing, Hammamet, 2008.

B. Fortz and M. Thorup. Increasing Internet capacity using local search. Computa-
tional Optimization and Applications, 29:13–48, 2000.

A.M. Frieze. Complexity of a 3-dimensional assignment problem. European Jour-
nal of Operational Research, 13:161–164, 1983.

284 References

R.D. Frinhani, R.M. Silva, G.R. Mateus, P. Festa, and M.G.C. Resende. GRASP
with path-relinking for data clustering: A case study for biological data. In P.M.
Pardalos and S. Rebennack, editors, Experimental algorithms, volume 6630 of
Lecture Notes in Computer Science, pages 410–420. Springer, Berlin, 2011.

K. Fujisawa, M. Fojima, and K. Nakata. Exploiting sparsity in primal-dual interior-
point methods for semidefinite programming. Mathematical Programming, 79:
235–253, 1997.

K. Fujisawa, M. Fukuda, M. Kojima, and K. Nakata. Numerical evaluation of
SDPA (Semidefinite Programming Algorithm). In H. Frenk, K. Roos, T. Terlaky,
and S. Zhang, editors, High performance optimization, pages 267–301. Springer,
Boston, 2000.

L. Gao, Y. Zeng, and A. Dong. An ant colony algorithm for solving Max-cut prob-
lem. Progress in Natural Science, 18:1173–1178, 2008.

M.R. Garey and D.S. Johnson. Approximation algorithms for combinatorial prob-
lems: An annotated bibliography. In J.F. Traub, editor, Algorithms and complex-
ity: New directions and recent results, pages 41–52. Academic Press, Orlando,
1976.

M.R. Garey and D.S. Johnson. Strong NP-completeness results: Motivation, exam-
ples, and implications. Journal of the ACM, 25:499–508, 1978.

M.R. Garey and D.S. Johnson. Computers and intractability. Freeman, San Fran-
cisco, 1979.

F. Gavril. Algorithms for a maximum clique and a maximum independent set of a
circle graph. Networks, 3:261–273, 1973.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, and V. Sunderam. PVM:
Parallel virtual machine, A user’s guide and tutorial for networked parallel com-
puting. Scientific and Engineering Computation. MIT Press, Cambridge, 1994.

M. Gendreau and J.-Y. Potvin, editors. Handbook of metaheuristics. Springer, New
York, 2nd edition, 2010.

J.B. Ghosh. Computational aspects of the maximum diversity problem. Operations
Research Letters, 19:175–181, 1996.

F. Glover. Tabu Search - Part I. ORSA Journal on Computing, 1:190–206, 1989.
F. Glover. Tabu Search - Part II. ORSA Journal on Computing, 2:4–32, 1990.
F. Glover. Multilevel tabu search and embedded search neighborhoods for the trav-

eling salesman problem. Technical report, University of Colorado, Boulder, 1991.
F. Glover. Ejection chains, reference structures and alternating path methods for

traveling salesman problems. Discrete Applied Mathematics, 65:223–253, 1996a.
F. Glover. Tabu search and adaptive memory programing – Advances, applications

and challenges. In R.S. Barr, R.V. Helgason, and J.L. Kennington, editors, In-
terfaces in computer science and operations research, pages 1–75. Kluwer Aca-
demic Publishers, Boston, 1996b.

F. Glover. Multi-start and strategic oscillation methods – Principles to exploit adap-
tive memory. In M. Laguna and J.L. González-Velarde, editors, Computing tools
for modeling, optimization and simulation: Interfaces in computer science and
operations research, pages 1–24. Kluwer Academic Publishers, Boston, 2000.

References 285

F. Glover. Exterior path relinking for zero-one optimization. International Journal
of Applied Metaheuristic Computing, 5(3):1–8, 2014.

F. Glover and G. Kochenberger, editors. Handbook of metaheuristics. Kluwer Aca-
demic Publishers, Boston, 2003.

F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers, Boston, 1997.
F. Glover and A.P. Punnen. The travelling salesman problem: New solvable cases

and linkages with the development of approximation algorithms. Journal of the
Operational Research Society, 48:502–510, 1997.

F. Glover, M. Laguna, and R. Martı́. Fundamentals of scatter search and path relink-
ing. Control and Cybernetics, 39:653–684, 2000.

F. Glover, M. Laguna, and R. Martı́. Scatter search and path relinking: Advances
and applications. In F. Glover and G. Kochenberger, editors, Handbook of meta-
heuristics, pages 1–35. Kluwer Academic Publishers, Boston, 2003.

F. Glover, M. Laguna, and R. Martı́. Scatter search and path relinking: Foundations
and advanced designs. In G.C. Onwubolu and B.V. Babu, editors, New opti-
mization techniques in engineering, volume 141 of Studies in Fuzziness and Soft
Computing, pages 87–100. Springer, Berlin, 2004.

M.X. Goemans and Y. Myung. A catalog of Steiner tree formulations. Networks,
23:19–28, 1993.

M.X. Goemans and D.P. Williams. Improved approximation algorithms for Max-
Cut and Satisfiability problems using semidefinite programming. Journal of the
ACM, 42:1115–1145, 1995.

M.X. Goemans and D.P. Williamson. The primal dual method for approximation
algorithms and its application to network design problems. In D. Hochbaum,
editor, Approximation algorithms for NP-hard problems, pages 144–191. PWS
Publishing Company, Boston, 1996.

B. Goethals and M.J. Zaki. Advances in frequent itemset mining implementations:
Introduction to FIMI03. In B. Goethals and M.J. Zaki, editors, Proceedings of
the IEEE ICDM 2003 Workshop on Frequent Itemset Mining Implementations,
pages 1–12, Melbourne, 2003.

D.E. Goldberg. Genetic algorithms in search, optimization and machine learning.
Addison-Wesley, Reading, 1989.

O. Goldschmidt and A. Takvorian. An efficient graph planarization two-phase
heuristic. Networks, 24:69–73, 1994.

M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press,
New York, 1980.

F.C. Gomes, P. Pardalos, C.S. Oliveira, and M.G.C. Resende. Reactive GRASP with
path relinking for channel assignment in mobile phone networks. In Proceed-
ings of the 5th International Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications, pages 60–67, Rome, 2001. ACM Press.

G. Grahne and J. Zhu. Efficiently using prefix-trees in mining frequent itemsets,
2003. URL http://bit.ly/1qxiKbl. Last visited on April 16, 2016.

M. Grötschel, L. Lovász, and A. Schrijver. Polynomial algorithms for perfect
graphs. Annals of Discrete Mathematics, 21:325–356, 1984.

http://bit.ly/1qxiKbl

286 References

A.L. Guedes, F.D. Moura Neto, and G.M. Platt. Double Azeotropy: Calculations
with Newton-like methods and continuous GRASP (C-GRASP). International
Journal of Mathematical Modelling and Numerical Optimisation, 2:387–404,
2011.

G. Gutin and A.P. Punnen, editors. The traveling salesman problem and its varia-
tions. Kluwer Academic Publishers, Boston, 2002.

S.L. Hakimi. Steiner’s problem in graphs and its applications. Networks, 1:113–133,
1971.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proceedings of the 2000 ACM SIGMOD International Conference on Manage-
ment of Data, pages 1–12, Dallas, 2000. ACM.

J. Han, M. Kamber, and J. Pei. Data mining: Concepts and techniques. Morgan
Kaufmann Publishers, San Francisco, 3rd edition, 2011.

P. Hansen. The steepest ascent mildest descent heuristic for combinatorial program-
ming. In Proceedings of the Congress on Numerical Methods in Combinatorial
Optimization, pages 70–145, Capri, 1986.

P. Hansen and L. Kaufman. A primal-dual algorithm for the three-dimensional
assignment problem. Cahiers du CERO, 15:327–336, 1973.

P. Hansen and N. Mladenović. An introduction to variable neighbourhood search.
In S Voss, S. Martello, I.H. Osman, and C. Roucairol, editors, Metaheuristics:
Advances and trends in local search procedures for optimization, pages 433–458.
Kluwer Academic Publishers, Boston, 1999.

P. Hansen and N. Mladenović. Developments of variable neighborhood search.
In C.C. Ribeiro and P. Hansen, editors, Essays and surveys in metaheuristics,
pages 415–439. Kluwer Academic Publishers, Boston, 2002.

P. Hansen and N. Mladenović. Variable neighborhood search. In F. Glover and
G. Kochenberger, editors, Handbook of metaheuristics, pages 145–184. Kluwer
Academic Publishers, Boston, 2003.

J.P. Hart and A.W. Shogan. Semi-greedy heuristics: An empirical study. Operations
Research Letters, 6:107–114, 1987.

W.E. Hart. Sequential stopping rules for random optimization methods with ap-
plications to multistart local search. SIAM Journal on Optimization, 9:270–290,
1998.

M.M. Hassan and G.L. Hogg. A review of graph theory applications to the facilities
layout problem. Omega, 15:291–300, 1987.

M. Held and R.M. Karp. The traveling-salesman problem and minimum spanning
trees. Operations Research, 18:1138–1162, 1970.

M. Held and R.M. Karp. The traveling-salesman problem and minimum spanning
trees: Part II. Mathematical Programming, 1:6–25, 1971.

M. Held, P. Wolfe, and H.P. Crowder. Validation of subgradient optimization. Math-
ematical Programming, 6:62–88, 1974.

C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming.
SIAM Journal on Optimization, 10:673–696, 2000.

References 287

A.J. Higgins, S. Hajkowicz, and E. Bui. A multi-objective model for environmental
investment decision making. Computers & Operations Research, 35:253–266,
2008.

M.J. Hirsch. GRASP-based heuristics for continuous global optimization problems.
PhD thesis, Department of Industrial and Systems Engineering, University of
Florida, Gainesville, 2006.

M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende. Sensor registration in a sensor
network by continuous GRASP. In IEEE Conference on Military Communica-
tions, pages 501–506, Washington, DC, 2006.

M.J. Hirsch, C.N. Meneses, P.M. Pardalos, M.A. Ragle, and M.G.C. Resende.
A continuous GRASP to determine the relationship between drugs and adverse
reactions. In O. Seref, O. Erhun Kundakcioglu, and P.M. Pardalos, editors, Data
mining, systems analysis and optimization in biomedicine, volume 953 of AIP
Conference Proceedings, pages 106–121. Springer, 2007a.

M.J. Hirsch, C.N. Meneses, P.M. Pardalos, and M.G.C. Resende. Global optimiza-
tion by continuous GRASP. Optimization Letters, 1:201–212, 2007b.

M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende. Solving systems of nonlinear
equations with continuous GRASP. Nonlinear Analysis: Real World Applica-
tions, 10:2000–2006, 2009.

M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende. Speeding up continuous GRASP.
European Journal of Operational Research, 205:507–521, 2010.

M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende. Correspondence of projected
3D points and lines using a continuous GRASP. International Transactions in
Operational Research, 18:493–511, 2011.

M.J. Hirsch, H. Ortiz-Pena, and C. Eck. Cooperative tracking of multiple targets by
a team of autonomous UAVs. International Journal of Operations Research and
Information Systems, 3:53–73, 2012.

J.H. Holland. Adaptation in natural and artificial systems: An introductory analysis
with applications to biology, control, and artificial intelligence. University of
Michigan Press, Ann Arbor, 1975.

S. Homer and M. Peinado. Two distributed memory parallel approximation algo-
rithms for Max-Cut. Journal of Parallel and Distributed Computing, 1:48–61,
1997.

H.H. Hoos. On the run-time behaviour of stochastic local search algorithms for SAT.
In Proceedings of the Sixteenth National Conference on Artificial Intelligence,
pages 661–666, Orlando, 1999. American Association for Artificial Intelligence.

H.H. Hoos and T. Stützle. On the empirical evaluation of Las Vegas algorithms -
Position paper. Technical report, Computer Science Department, University of
British Columbia, Vancouver, 1998a.

H.H. Hoos and T. Stützle. Evaluating Las Vegas algorithms – Pitfalls and remedies.
In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence,
pages 238–245, Madison, 1998b.

288 References

H.H. Hoos and T. Stützle. Some surprising regularities in the behaviour of stochastic
local search. In M. Maher and J.-F. Puget, editors, Principles and practice of
constraint programming, volume 1520 of Lecture Notes in Computer Science,
page 470. Springer, Berlin, 1998c.

H.H. Hoos and T. Stützle. Towards a characterisation of the behaviour of stochastic
local search algorithms for SAT. Artificial Intelligence, 112:213–232, 1999.

H.H. Hoos and T. Stützle. Stochastic local search: Foundations and applications.
Elsevier, New York, 2005.

F.K. Hwang, D.S. Richards, and P. Winter. The Steiner tree problem. North-Holland,
Amsterdam, 1992.

E. Hyytiä and J. Virtamo. Wavelength assignment and routing in WDM networks. In
Proceedings of the Fourteenth Nordic Teletraffic Seminar NTS-14, pages 31–40,
Lyngby, 1998.

C. Ishida, A. Pozo, E. Goldbarg, and M. Goldbarg. Multiobjective optimization and
rule learning: Subselection algorithm or meta-heuristic algorithm? In N. Nedjah,
L.M. Mourelle, and J. Kacprzyk, editors, Innovative applications in data mining,
pages 47–70. Springer, Berlin, 2009.

R. Jain. The art of computer systems performance analysis: Techniques for experi-
mental design, measurement, simulation, and modeling. Wiley, New York, 1991.

V. Jarnı́k. O jistém problému minimálnı́m. Práce Moravské Přı́rodovědecké
Společnosti, 6:57–63, 1930.

D.S. Johnson. Near-optimal bin-packing algorithms. PhD thesis, Massachusetts
Institute of Technology, Cambridge, 1973.

D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9:256–278, 1974.

E.H. Kampke, J.E.C. Arroyo, and A.G. Santos. Reactive GRASP with path relink-
ing for solving parallel machines scheduling problem with resource-assignable
sequence dependent setup times. In Proceedings of the World Congress on Na-
ture and Biologically Inspired Computing, pages 924–929, Coimbatore, 2009.
IEEE.

R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W.
Thatcher, editors, Complexity of computer computations. Plenum Press, New
York, 1972.

R.M. Karp. On the computational complexity of combinatorial problems. Networks,
5:45–68, 1975.

H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman. Dynamic restart poli-
cies. In Proceedings of the Eighteenth National Conference on Artificial intel-
ligence, pages 674–681, Edmonton, 2002. American Association for Artificial
Intelligence.

G. Kendall, S. Knust, C.C. Ribeiro, and S. Urrutia. Scheduling in sports: An anno-
tated bibliography. Computers & Operations Research, 37:1–19, 2010.

B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal, 49:291–307, 1970.

R.K. Kincaid. Good solutions to discrete noxious location problems via metaheuris-
tics. Annals of Operations Research, 40:265–281, 1992.

References 289

S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simulated anneal-
ing. Science, 220(4598):671–680, 1983.

A. Kitnick. Frances Stark: Text after text. Parkett, 93:66–71, 2013.
G.A. Kochenberger, B.A. McCarl, and F.P. Wyman. A heuristic for general integer

programming. Decision Sciences, 5:36–41, 1974.
G.A. Kochenberger, J.-K. Hao, Z. Lu, H. Wang, and F. Glover. Solving large scale

Max Cut problems via tabu search. Journal of Heuristics, 19:565–571, 2013.
M.R. Krom. The decision problem for a class of first-order formulas in which all

disjunctions are binary. Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik, 13:15–20, 1967.

J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7:48–â50, 1956.

K. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta
Mathematicae, 15:271–283, 1930.

N. Labadi, C. Prins, and M. Reghioui. GRASP with path relinking for the capaci-
tated arc routing problem with time windows. In A. Fink and F. Rothlauf, editors,
Advances in computational intelligence in transport, logistics, and supply chain
management, pages 111–135. Springer, Berlin, 2008.

M. Laguna and F. Glover. Bandwidth packing: A tabu search approach. Manage-
ment Science, 39:492–500, 1993.

M. Laguna and R. Martı́. GRASP and path relinking for 2-layer straight line cross-
ing minimization. INFORMS Journal on Computing, 11:44–52, 1999.

M. Laguna, J.P. Kelly, J.L. González-Velarde, and F. Glover. Tabu search for mul-
tilevel generalized assignment problem. European Journal of Operational Re-
search, 82:176–189, 1995.

E.L. Lawler. Combinatorial optimization: Networks and matroids. Holt, Rinehart
and Winston, New York, 1976.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, editors. The
traveling salesman problem: A guided tour of combinatorial optimization. John
Wiley & Sons, New York, 1985.

L.J. LeBlanc, J. Chifflet, and P. Mahey. Packet routing in telecommunication net-
works with path and flow restrictions. INFORMS Journal on Computing, 11:
188–197, 1999.

J.K. Lenstra and A.H.G. Rinnooy Kan. Computational complexity of discrete opti-
mization problems. Annals of Discrete Mathematics, 4:121–140, 1979.

R. De Leone, P. Festa, and E. Marchitto. Solving a bus driver scheduling problem
with randomized multistart heuristics. International Transactions in Operational
Research, 18:707–727, 2011.

O. Leue. Methoden zur Lösung dreidimensionaler Zuordnungsprobleme. Ange-
wandte Informatik, 14:154–162, 1972.

H. Li and D. Landa-Silva. An elitist GRASP metaheuristic for the multi-objective
quadratic assignment problem. In M. Ehrgott, C.M. Fonseca, X. Gandibleux,
J.-K. Hao, and M. Sevaux, editors, Evolutionary multi-criterion optimization,
volume 5467 of Lecture Notes in Computer Science, pages 481–494. Springer,
Berlin, 2009.

290 References

Y. Li, P.M. Pardalos, and M.G.C. Resende. A greedy randomized adaptive
search procedure for the quadratic assignment problem. In P.M. Pardalos and
H. Wolkowicz, editors, Quadratic assignment and related problems, volume 16
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 237–261. American Mathematical Society, Providence, 1994.

S. Lin. Computer solutions of the traveling salesman problem. Bell System Technical
Journal, 44:2245–2260, 1965.

S. Lin and B.W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21:498–516, 1973.

P.C. Liu and R.C. Geldmacher. On the deletion of nonplanar edges of a graph.
In Proceedings of the 10th Southeastern Conference on Combinatorics, Graph
Theory and Computing, pages 727–738, Boca Raton, 1977.

H.R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In F. Glover and
G. Kochenberger, editors, Handbook of metaheuristics, pages 321–353. Kluwer
Academic Publishers, Boston, 2003.

L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information
Theory, IT-25:1–7, 1979.

M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algorithms.
Information Processing Letters, 47:173–180, 1993.

M. Luis, S. Salhi, and G. Nagy. A guided reactive GRASP for the capacitated multi-
source Weber problem. Computers & Operations Research, 38:1014–1024, 2011.

D.G. Macharet, A.A. Neto, V.F. da Camara Neto, and M.F.M. Campos. Nonholo-
nomic path planning optimization for Dubins’ vehicles. In 2011 IEEE Inter-
national Conference on Robotics and Automation, pages 4208–4213, Shanghai,
2011. IEEE.

N. Maculan. The Steiner problem in graphs. Annals of Discrete Mathematics, 31:
182–212, 1987.

C.L.B. Maia, R.A.F. Carmo, F.G. Freitas, G.A.L. Campos, and J.T. Souza. Auto-
mated test case prioritization with reactive GRASP. Advances in Software Engi-
neering, 2010, 2010. doi: 10.1155/2010/428521. Article ID 428521.

P. Manohar, D. Manjunath, and R.K. Shevgaonkar. Routing and wavelength assign-
ment in optical networks from edge disjoint path algorithms. IEEE Communica-
tions Letters, 5:211–213, 2002.

S. Martello and P. Toth. Knapsack problems: Algorithms and computer implemen-
tations. John Wiley & Sons, New York, 1990.

R. Martı́ and F. Sandoya. GRASP and path relinking for the equitable dispersion
problem. Computers & Operations Research, 40:3091–3099, 2013.

R. Martı́, A. Duarte, and M. Laguna. Advanced scatter search for the MAX-CUT
problem. INFORMS Journal on Computing, 21:26–38, 2009.

R. Martı́, J.L. González-Velarde, and A. Duarte. Heuristics for the bi-objective path
dissimilarity problem. Computers & Operations Research, 36:2905–2912, 2009.

R. Martı́, M.G.C. Resende, and C.C. Ribeiro. Multi-start methods for combinatorial
optimization. European Journal of Operational Research, 226:1–8, 2013a.

References 291

R. Martı́, M.G.C. Resende, and C.C. Ribeiro. Special issue of Computers & Op-
erations Research: GRASP with path relinking: Developments and applications.
Computers & Operations Research, 40:3080, 2013b.

R. Martı́, V. Campos, M.G.C. Resende, and A. Duarte. Multiobjective GRASP with
path relinking. European Journal of Operational Research, 240:54–71, 2015.

B. Martin, X. Gandibleux, and L. Granvilliers. Continuous-GRASP revisited.
In P. Siarry, editor, Heuristics: Theory and applications, chapter 1. Nova Science
Publishers, Hauppauge, 2013.

O. Martin and S.W. Otto. Combining simulated annealing with local search heuris-
tics. Annals of Operations Research, 63:57–75, 1996.

O. Martin, S.W. Otto, and E.W. Felten. Large-step Markov chains for the traveling
salesman problem. Complex Systems, 5:299–326, 1991.

S.L. Martins, C.C. Ribeiro, and M.C. Souza. A parallel GRASP for the Steiner
problem in graphs. In A. Ferreira, J. Rolim, H. Simon, and S.-H. Teng, editors,
Solving irregularly structured problems in parallel, volume 1457 of Lecture Notes
in Computer Science, pages 285–297. Springer, Berlin, 1998.

S.L. Martins, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Greedy random-
ized adaptive search procedures for the Steiner problem in graphs. In P.M. Parda-
los, S. Rajasejaran, and J. Rolim, editors, Randomization methods in algorithmic
design, volume 43 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 133–145. American Mathematical Society, Providence,
1999.

S.L. Martins, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. A parallel GRASP
for the Steiner tree problem in graphs using a hybrid local search strategy. Journal
of Global Optimization, 17:267–283, 2000.

S.L. Martins, C.C. Ribeiro, and I. Rosseti. Applications and parallel implemen-
tations of metaheuristics in network design and routing. In S. Manandhar,
J. Austin, U. Desai, Y. Oyanagi, and A.K. Talukder, editors, Applied computing,
volume 3285 of Lecture Notes in Computer Science, pages 205–213. Springer,
Berlin, 2004.

G.R. Mateus, M.G.C. Resende, and R.M.A. Silva. GRASP with path-relinking
for the generalized quadratic assignment problem. Journal of Heuristics, 17:
527–565, 2011.

K. Melhorn. A faster approximation algorithm for the Steiner problem in graphs.
Information Processing Letters, 27:125–128, 1988.

B. Melián, M. Laguna, and J.A. Moreno-Pérez. Capacity expansion of fiber optic
networks with WDM systems: Problem formulation and comparative analysis.
Computers & Operations Research, 31:461–472, 2004.

M. Mestria, L.S. Ochi, and S.L. Martins. GRASP with path relinking for the sym-
metric Euclidean clustered traveling salesman problem. Computers & Operations
Research, 40:3218–3229, 2013.

Z. Michalewicz. Genetic algorithms + Data structures = Evolution programs.
Springer, Berlin, 1996.

W. Michelis, E.H.L. Aarts, and J. Korst. Theoretical aspects of local search.
Springer, Berlin, 2007.

292 References

N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Oper-
ations Research, 24:1097–1100, 1997.

R.E.N. Moraes and C.C. Ribeiro. Power optimization in ad hoc wireless network
topology control with biconnectivity requirements. Computers & Operations
Research, 40:3188–3196, 2013.

L.F. Morán-Mirabal, J.L. González-Velarde, and M.G.C. Resende. Automatic tun-
ing of GRASP with evolutionary path-relinking. In M.J. Blesa, C. Blum, P. Festa,
A. Roli, and M. Sampels, editors, Hybrid metaheuristics, volume 7919 of Lecture
Notes in Computer Science, pages 62–77. Springer, Berlin, 2013a.

L.F. Morán-Mirabal, J.L. González-Velarde, M.G.C. Resende, and R.M.A. Silva.
Randomized heuristics for handover minimization in mobility networks. Journal
of Heuristics, 19:845–880, 2013b.

L.F. Morán-Mirabal, J.L. González-Velarde, and M.G.C. Resende. Randomized
heuristics for the family traveling salesperson problem. International Transac-
tions in Operational Research, 21:41–57, 2014.

R.A. Murphey, P.M. Pardalos, and L.S. Pitsoulis. A parallel GRASP for the data
association multidimensional assignment problem. In P.M. Pardalos, editor, Par-
allel processing of discrete problems, volume 106 of The IMA Volumes in Math-
ematics and Its Applications, pages 159–180. Springer, New York, 1998.

J.F. Muth and G.L. Thompson. Industrial scheduling. Prentice-Hall, Boston, 1963.
P. Mutzel. The maximum planar subgraph problem. PhD thesis, Universität zu

Köln, Cologne, 1994.
M.C.V. Nascimento and L. Pitsoulis. Community detection by modularity maxi-

mization using GRASP with path relinking. Computers & Operations Research,
40:3121–3131, 2013.

M.C.V. Nascimento, M.G.C. Resende, and F.M.B. Toledo. GRASP heuristic with
path-relinking for the multi-plant capacitated lot sizing problem. European Jour-
nal of Operational Research, 200:747–754, 2010.

G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial optimization. Wiley,
New York, 1988.

V.-P. Nguyen, C. Prins, and C. Prodhon. Solving the two-echelon location rout-
ing problem by a GRASP reinforced by a learning process and path relinking.
European Journal of Operational Research, 216:113–126, 2012.

N.J. Nilsson. Problem-solvingmethods in artificial intelligence. McGraw-Hill, New
York, 1971.

N.J. Nilsson. Principles of artificial intelligence. Springer, Berlin, 1982.
H. Nishimura and S. Kuroda, editors. A lost mathematician, Takeo Nakasawa. The
forgotten father of matroid theory. Birkhäuser Verlag, Basel, 2009.

T.F. Noronha and C.C. Ribeiro. Routing and wavelength assignment by partition
coloring. European Journal of Operational Research, 171:797–810, 2006.

E. Nowicki and C. Smutnicki. An advanced tabu search algorithm for the job shop
problem. Journal of Scheduling, 8:145–159, 2005.

C.A. Oliveira, P.M. Pardalos, and M.G.C. Resende. GRASP with path-relinking
for the quadratic assignment problem. In C.C. Ribeiro and S.L. Martins, editors,
Experimental and efficient algorithms, volume 3059, pages 356–368. Springer,
Berlin, 2004.

References 293

S. Orlando, P. Palmerini, and R. Perego. Adaptive and resource-aware mining of
frequent sets. In Proceedings of the 2002 IEEE International Conference on
Data Mining, pages 338–345, Maebashi City, 2002. IEEE.

C. Orsenigo and C. Vercellis. Bayesian stopping rules for greedy randomized pro-
cedures. Journal of Global Optimization, 36:365–377, 2006.

L. Osborne and B. Gillett. A comparison of two simulated annealing algorithms ap-
plied to the directed Steiner problem on networks. ORSA Journal on Computing,
3:213–225, 1991.

A. Ouorou, P. Mahey, and J.P. Vial. A survey of algorithms for convex multicom-
modity flow problems. Management Science, 46:126–147, 2000.

A.V.F. Pacheco, , G.M. Ribeiro, and G.R. Mauri. A GRASP with path-relinking for
the workover rig scheduling problem. International Journal of Natural Comput-
ing Research, 1:1–14, 2010.

G. Palubeckis. Multistart tabu search strategies for the unconstrained binary
quadratic optimization problem. Annals of Operations Research, 131:259–282,
2004.

C.H. Papadimitriou. Computational complexity. Addison-Wesley, Reading, 1994.
C.H. Papadimitriou and K. Steiglitz. Combinatorial optimization: Algorithms and
complexity. Prentice Hall, Englewood Cliffs, 1982.

P.M. Pardalos and L.S. Pitsoulis. Nonlinear assignment problems: Algorithms and
applications. Kluwer Academic Publishers, Boston, 2000.

P.M. Pardalos and J. Xue. The maximum clique problem. Journal of Global Opti-
mization, 4:301–328, 1994.

P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A parallel GRASP implemen-
tation for the quadratic assignment problem. In A. Ferreira and J. Rolim, edi-
tors, Parallel algorithms for irregular problems: State of the art, pages 115–133.
Kluwer Academic Publishers, Boston, 1995.

P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A parallel GRASP for MAX-
SAT problems. In J. Waśniewski, J. Dongarra, K. Madsen, and D. Olesen, edi-
tors, Applied parallel computing industrial computation and optimization, vol-
ume 1184 of Lecture Notes in Computer Science, pages 575–585. Springer,
Berlin, 1996.

M. Parker and J. Ryan. A column generation algorithm for bandwidth packing.
Telecommunication Systems, 2:185–195, 1994.

F. Parreño, R. Alvarez-Valdes, J.M. Tamarit, and J.F. Oliveira. A maximal-space
algorithm for the container loading problem. INFORMS Journal on Computing,
20:412–422, 2008.

R.A. Patterson, H. Pirkul, and E. Rolland. A memory adaptive reasoning technique
for solving the capacitated minimum spanning tree problem. Journal of Heuris-
tics, 5:159–180, 1999.

J. Pearl. Heuristics: Intelligent search strategies for computer problem solving.
Addison-Wesley, Reading, 1985.

O. Pedrola, M. Ruiz, L. Velasco, D. Careglio, O. González de Dios, and J. Comellas.
A GRASP with path-relinking heuristic for the survivable IP/MPLS-over-WSON
multi-layer network optimization problem. Computers & Operations Research,
40:3174–3187, 2013.

294 References

M. Pérez, F. Almeida, and J.M. Moreno-Vega. A hybrid GRASP-path relinking
algorithm for the capacitated p-hub median problem. In M.J. Blesa, C. Blum,
A. Roli, and M. Sampels, editors, Hybrid metaheuristics, volume 3636 of Lecture
Notes in Computer Science, pages 142–153. Springer, Berlin, 2005.

E. Pesch and F. Glover. TSP ejection chains. Discrete Applied Mathematics, 76:
165–181, 1997.

L.S. Pessoa, M.G.C. Resende, and C.C. Ribeiro. Experiments with the LAGRASP
heuristic for set k-covering. Optimization Letters, 5:407–419, 2011.

L.S. Pessoa, M.G.C. Resende, and C.C. Ribeiro. A hybrid Lagrangean heuristic
with GRASP and path-relinking for set k-covering. Computers & Operations
Research, 40:3132–3146, 2013.

W.P. Pierskalla. The tri-substitution method for the three-multidimensional assign-
ment problem. Journal of the Canadian Operational Research Society, 5:71–81,
1967.

W.P. Pierskalla. The multidimensional assignment problem. Operations Research,
16:422–431, 1968.

R.Y. Pinter. Optimal layer assignment for interconnect. Advances in VLSI and
Computer Systems, 1:123–137, 1984.

L.S. Pitsoulis. Topics in matroid theory. SpringerBriefs in Optimization. Springer,
2014.

L.S. Pitsoulis and M.G.C. Resende. Greedy randomized adaptive search procedures.
In P.M. Pardalos and M.G.C. Resende, editors,Handbook of applied optimization,
pages 168–183. Oxford University Press, New York, 2002.

A. Plastino, E.R. Fonseca, R. Fuchshuber, S.L. Martins, A.A. Freitas, M. Luis,
and S. Salhi. A hybrid data mining metaheuristic for the p-median problem.
In H. Park, S. Parthasarathy, H. Liu, and Z. Obradovic, editors, Proceedings of
the 9th SIAM International Conference on Data Mining, pages 305–316, Sparks,
2009. SIAM.

A. Plastino, R. Fuchshuber, S.L. Martins, A.A. Freitas, and S. Salhi. A hybrid data
mining metaheuristic for the p-median problem. Statistical Analysis and Data
Mining, 4:313–335, 2011.

A. Plastino, H. Barbalho, L.F.M. Santos, R. Fuchshuber, and S.L. Martins. Adaptive
and multi-mining versions of the DM-GRASP hybrid metaheuristic. Journal of
Heuristics, 20:39–74, 2014.

S. Poljak and Z. Tuza. Maximum cuts and largest bipartite subgraphs. In W. Cook,
L. Lovász, and P. Seymour, editors, Papers from the special year on Combina-
torial Optimization, volume 20 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 181–244. American Mathematical Society,
Providence, 1995.

M. Prais and C.C. Ribeiro. Parameter variation in GRASP implementations. In C.C.
Ribeiro and P. Hansen, editors, Extended Abstracts of the Third Metaheuristics
International Conference, pages 375–380, Angra dos Reis, 1999.

M. Prais and C.C. Ribeiro. Reactive GRASP: An application to a matrix decompo-
sition problem in TDMA traffic assignment. INFORMS Journal on Computing,
12:164–176, 2000a.

References 295

M. Prais and C.C. Ribeiro. Parameter variation in GRASP procedures. Investigación
Operativa, 9:1–20, 2000b.

R.C. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36:1389–1401, 1957.

C. Prins, C. Prodhon, and R.Wolfler-Calvo. A reactive GRASP and path relinking
algorithm for the capacitated location routing problem. In Proceedings of the
International Conference on Industrial Engineering and Systems Management,
Marrakech, 2005. I4E2. ISBN 2-9600532-0-6.

M. Rahmani, M. Rashidinejad, E.M. Carreno, and R.A. Romero. Evolutionary
multi-move path-relinking for transmission network expansion planning. In 2010
IEEE Power and Energy Society General Meeting, pages 1–6, Minneapolis, 2010.
IEEE.

R.L. Rardin, R., and Uzsoy. Experimental evaluation of heuristic optimization al-
gorithms: A tutorial. Journal of Heuristics, 7:261–304, 2001.

C. Reeves and J.E. Rowe. Genetic algorithms: Principles and perspectives.
Springer, Berlin, 2002.

C.R. Reeves. Modern heuristic techniques for combinatorial problems. Blackwell,
London, 1993.

C. Rego. Relaxed tours and path ejections for the traveling salesman problem.
European Journal of Operational Research, 106:522–538, 1998.

C. Rego and F. Glover. Local search and metaheuristics. In G. Gutin and
A.P. Punnen, editors, The traveling salesman problem and its variations, pages
309–368. Kluwer Academic Publishers, Boston, 2002.

P.P. Repoussis, C.D. Tarantilis, and G. Ioannou. A hybrid metaheuristic for a real life
vehicle routing problem. In T. Boyanov, S. Dimova, K. Georgiev, and G. Nikolov,
editors, Numerical methods and applications, volume 4310 of Lecture Notes in
Computer Science, pages 247–254. Springer, Berlin, 2007.

L.I.P. Resende and M.G.C. Resende. A GRASP for frame relay permanent virtual
circuit routing. In C.C. Ribeiro and P. Hansen, editors, Extended Abstracts of
the III Metaheuristics International Conference, pages 397–401, Angra dos Reis,
1999.

M.G.C. Resende. Computing approximate solutions of the maximum covering prob-
lem using GRASP. Journal of Heuristics, 4:161–171, 1998.

M.G.C. Resende. Metaheuristic hybridization with greedy randomized adaptive
search procedures. In Zhi-Long Chen and S. Raghavan, editors, Tutorials in Op-
erations Research, pages 295–319. INFORMS, 2008.

M.G.C. Resende and T.A. Feo. A GRASP for satisfiability. In D.S. Johnson and
M.A. Trick, editors, Cliques, coloring, and satisfiability: The second DIMACS
implementation challenge, volume 26 of DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, pages 499–520. American Mathematical
Society, Providence, 1996.

M.G.C. Resende and J.L. González-Velarde. GRASP: Procedimientos de búsqueda
miope aleatorizado y adaptativo. Inteligencia Artificial, 19:61–76, 2003.

M.G.C. Resende and C.C. Ribeiro. A GRASP for graph planarization. Networks,
29:173–189, 1997.

296 References

M.G.C. Resende and C.C. Ribeiro. Graph planarization. In C. Floudas and
P.M. Pardalos, editors, Encyclopedia of optimization, volume 2, pages 368–373.
Kluwer Academic Publishers, Boston, 2001.

M.G.C. Resende and C.C. Ribeiro. A GRASP with path-relinking for private virtual
circuit routing. Networks, 41:104–114, 2003a.

M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search proce-
dures. In F. Glover and G. Kochenberger, editors, Handbook of metaheuristics,
pages 219–249. Kluwer Academic Publishers, Boston, 2003b.

M.G.C. Resende and C.C. Ribeiro. GRASP with path-relinking: Recent advances
and applications. In T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuris-
tics: Progress as real problem solvers, pages 29–63. Springer, New York, 2005a.

M.G.C. Resende and C.C. Ribeiro. Parallel greedy randomized adaptive search
procedures. In E. Alba, editor, Parallel metaheuristics: A new class of algorithms,
pages 315–346. Wiley-Interscience, Hoboken, 2005b.

M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures:
Advances and applications. In M. Gendreau and J.-Y. Potvin, editors, Handbook
of metaheuristics, pages 293–319. Springer, New York, 2nd edition, 2010.

M.G.C. Resende and C.C. Ribeiro. Restart strategies for GRASP with path-
relinking heuristics. Optimization Letters, 5:467–478, 2011.

M.G.C. Resende and C.C. Ribeiro. GRASP: Greedy randomized adaptive search
procedures. In E.K. Burke and G. Kendall, editors, Search methodologies: In-
troductory tutorials in optimization and decision support systems, chapter 11,
pages 287–312. Springer, New York, 2nd edition, 2014.

M.G.C. Resende and R.M.A. Silva. GRASP: Greedy randomized adaptive search
procedures. In J.J. Cochran, L.A. Cox, Jr., P. Keskinocak, J.P. Kharoufeh, and J.C.
Smith, editors, Encyclopedia of operations research and management science,
volume 3, pages 2118–2128. Wiley, New York, 2011.

M.G.C. Resende and R.M.A. Silva. GRASP: Procedimentos de busca gulosos,
aleatórios e adaptativos. In H.S. Lopes, L.C.A. Rodrigues, and M.T.A. Steiner,
editors, Meta-heurı́sticas em pesquisa operacional, chapter 1, pages 1–20. Om-
nipax Editora, Curitiba, 2013.

M.G.C. Resende and R.F. Werneck. A hybrid heuristic for the p-median problem.
Journal of Heuristics, 10:59–88, 2004.

M.G.C. Resende and R.F. Werneck. A hybrid multistart heuristic for the uncapaci-
tated facility location problem. European Journal of Operational Research, 174:
54–68, 2006.

M.G.C. Resende, P.M. Pardalos, and Y. Li. Algorithm 754: Fortran subroutines
for approximate solution of dense quadratic assignment problems using GRASP.
ACM Transactions on Mathematical Software, 22:104–118, 1996.

M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Approximate solution of
weighted MAX-SAT problems using GRASP. In J. Gu and P.M. Pardalos, edi-
tors, Satisfiability problems, volume 35 of DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, pages 393–405. American Mathematical
Society, Providence, 1997.

References 297

M.G.C. Resende, T.A. Feo, and S.H. Smith. Algorithm 787: Fortran subroutines
for approximate solution of maximum independent set problems using GRASP.
ACM Transactions on Mathematical Software, 24:386–394, 1998.

M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Fortran subroutines for com-
puting approximate solutions of MAX-SAT problems using GRASP. Discrete
Applied Mathematics, 100:95–113, 2000.

M.G.C. Resende, R. Martı́, M. Gallego, and A. Duarte. GRASP and path relink-
ing for the max-min diversity problem. Computers & Operations Research, 37:
498–508, 2010a.

M.G.C. Resende, C.C. Ribeiro, F. Glover, and R. Martı́. Scatter search and path-
relinking: Fundamentals, advances, and applications. In M. Gendreau and J.-Y.
Potvin, editors, Handbook of metaheuristics, pages 87–107. Springer, New York,
2nd edition, 2010b.

M.G.C. Resende, G.R. Mateus, and R.M.A. Silva. GRASP: Busca gulosa, aleator-
izada e adaptativa. In A. Gaspar-Cunha, R. Takahashi, and C.H. Antunes, edi-
tors, Manual da computação evolutiva e metaheurı́stica, pages 201–213. Coim-
bra University Press, Coimbra, 2012.

A.P. Reynolds and B. de la Iglesia. A multi-objective GRASP for partial classifica-
tion. Soft Computing, 13:227–243, 2009.

A.P. Reynolds, D.W. Corne, and B. de la Iglesia. A multiobjective GRASP for
rule selection. In Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, pages 643–650, Montreal, 2009. ACM.

C.C. Ribeiro. GRASP: Une métaheuristique gloutonne et probabiliste. In J. Teghem
and M. Pirlot, editors, Optimisation approchée en recherche opérationnelle,
pages 153–176. Hermès, Paris, 2002.

C.C. Ribeiro. Sports scheduling: Problems and applications. International Trans-
actions in Operational Research, 19:201–226, 2012.

C.C. Ribeiro and M.G.C. Resende. Algorithm 797: Fortran subroutines for approxi-
mate solution of graph planarization problems using GRASP. ACM Transactions
on Mathematical Software, 25:341–352, 1999.

C.C. Ribeiro and M.G.C. Resende. Path-relinking intensification methods for
stochastic local search algorithms. Journal of Heuristics, 18:193–214, 2012.

C.C. Ribeiro and I. Rosseti. A parallel GRASP heuristic for the 2-path network
design problem. In B. Monien and R. Feldmann, editors, Euro-Par 2002 Parallel
Processing, volume 2400 of Lecture Notes in Computer Science, pages 922–926.
Springer, Berlin, 2002.

C.C. Ribeiro and I. Rosseti. Efficient parallel cooperative implementations of
GRASP heuristics. Parallel Computing, 33:21–35, 2007.

C.C. Ribeiro and I. Rosseti. Exploiting run time distributions to compare sequen-
tial and parallel stochastic local search algorithms. In Proceedings of the VIII
Metaheuristics International Conference, Hamburg, 2009.

C.C. Ribeiro and I. Rosseti. tttplots-compare: A perl program to compare time-to-
target plots or general runtime distributions of randomized algorithms. Optimiza-
tion Letters, 9:601–614, 2015.

298 References

C.C. Ribeiro and S. Urrutia. Heuristics for the mirrored traveling tournament prob-
lem. European Journal of Operational Research, 179:775–787, 2007.

C.C. Ribeiro, E. Uchoa, and R.F. Werneck. A hybrid GRASP with perturbations for
the Steiner problem in graphs. INFORMS Journal on Computing, 14:228–246,
2002.

C.C. Ribeiro, I. Rosseti, and R. Vallejos. On the use of run time distributions to eval-
uate and compare stochastic local search algorithms. In T. Stützle, M. Biratari,
and H.H. Hoos, editors, Engineering stochastic local search algorithms, vol-
ume 5752 of Lecture Notes in Computer Science, pages 16–30. Springer, Berlin,
2009.

C.C. Ribeiro, I. Rosseti, and R.C. Souza. Effective probabilistic stopping rules for
randomized metaheuristics: GRASP implementations. In C.A.C. Coello, editor,
Learning and intelligent optimization, volume 6683, pages 146–160. Springer,
Berlin, 2011.

C.C. Ribeiro, I. Rosseti, and R. Vallejos. Exploiting run time distributions to com-
pare sequential and parallel stochastic local search algorithms. Journal of Global
Optimization, 54:405–429, 2012.

C.C. Ribeiro, I. Rosseti, and R.C. Souza. Probabilistic stopping rules for GRASP
heuristics and extensions. International Transactions in Operational Research,
20:301–323, 2013.

M.H.F. Ribeiro, V.F. Trindade, A. Plastino, and S.L. Martins. Hybridization of
GRASP metaheuristic with data mining techniques. In Proceedings of the ECAI
Workshop on Hybrid Metaheuristics, pages 69–78, Valencia, 2004.

M.H.F. Ribeiro, A. Plastino, and S.L. Martins. Hybridization of GRASP meta-
heuristic with data mining techniques. Journal of Mathematical Modelling and
Algorithms, 5:23–41, 2006.

R.Z. Rı́os-Mercado and E. Fernández. A reactive GRASP for a commercial territory
design problem with multiple balancing requirements. Computers & Operations
Research, 36:755–776, 2009.

Y. Rochat and É. Taillard. Probabilistic diversification and intensification in local
search for vehicle routing. Journal of Heuristics, 1:147–167, 1995.

F.J. Rodriguez, C. Blum, C. Garcı́a-Martı́nez, and M. Lozano. GRASP with path-
relinking for the non-identical parallel machine scheduling problem with min-
imising total weighted completion times. Annals of Operations Research, 201:
383–401, 2012.

D.P. Ronconi and L.R.S. Henriques. Some heuristic algorithms for total tardiness
minimization in a flowshop with blocking. Omega, 37:272–281, 2009.

I. Rosseti. Sequential and parallel strategies of GRASP with path-relinking for the
2-path network design problem. PhD thesis, Department of Computer Science,
Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 2003. In Por-
tuguese.

B. Roy and B. Sussmann. Les problèmes d’ordonnancement avec contraintes dis-
jonctives. Technical Report Note DS no. 9 bis, SEMA, Montrouge, 1964.

References 299

M.A. Salazar-Aguilar, R.Z. Rı́os-Mercado, and J.L. González-Velarde. GRASP
strategies for a bi-objective commercial territory design problem. Journal of
Heuristics, 19:179–200, 2013.

J. Santamarı́a, O. Cordón, S. Damas, R. Martı́, and R.J. Palma. GRASP & evolu-
tionary path relinking for medical image registration based on point matching. In
2010 IEEE Congress on Evolutionary Computation, pages 1–8. IEEE, 2010.

J. Santamarı́a, O. Cordón, S. Damas, R. Martı́, and R.J. Palma. GRASP and path
relinking hybridizations for the point matching-based image registration problem.
Journal of Heuristics, 18:169–192, 2012.

D. Santos, A. de Sousa, and F. Alvelos. A hybrid column generation with GRASP
and path relinking for the network load balancing problem. Computers & Oper-
ations Research, 40:3147–3158, 2013.

L.F. Santos, M.H.F. Ribeiro, A. Plastino, and S.L. Martins. A hybrid GRASP with
data mining for the maximum diversity problem. In M.J. Blesa, C. Blum, A. Roli,
and M. Sampels, editors, Hybrid metaheuristics, volume 3636 of Lecture Notes
in Computer Science, pages 116–127. Springer, Berlin, 2005.

L.F. Santos, C.V. Albuquerque, S.L. Martins, and A. Plastino. A hybrid GRASP with
data mining for efficient server replication for reliable multicast. In Proceedings
of the 49th Annual IEEE GLOBECOM Technical Conference, pages 1–6, San
Francisco, 2006. IEEE. doi: 10.1109/GLOCOM.2006.246.

L.F. Santos, S.L. Martins, and A. Plastino. Applications of the DM-GRASP heuris-
tic: A survey. International Transactions on Operational Research, 15:387–416,
2008.

M. Sarrafzadeh and D. Lee. A new approach to topological via minimization. IEEE
Transactions on Computer-Aided Design, 8:890–900, 1989.

M. Scaparra and R. Church. A GRASP and path relinking heuristic for rural road
network development. Journal of Heuristics, 11:89–108, 2005.

A. Scholl, R. Klein, and W. Domschke. Pattern based vocabulary building for effec-
tively sequencing mixed-model assembly lines. Journal of Heuristics, 4:359–381,
1998.

A. Schrijver. Theory of linear and integer programming. Wiley, New York, 1986.
B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local search.

In Proceedings of the Twelfth National Conference on Artificial Intelligence,
pages 337–343, Seattle, 1994. American Association for Artificial Intelligence.

S. Senju and Y. Toyoda. An approach to linear programming with 0-1 variables.
Management Science, 15:196–207, 1968.

K. Seo, S. Hyun, and Y.-H. Kim. A spanning tree-based encoding of the MAX CUT
problem for evolutionary search. In C.A.C. Coello, V. Cutello, K. Deb, S. Forrest,
G. Nicosia, and M. Pavone, editors, Parallel problem solving from nature - Part
I, volume 7491 of Lecture Notes in Computer Science, pages 510–518. Springer,
Berlin, 2012.

I.V. Sergienko, V.P. Shilo, and V.A. Roshchin. Optimization parallelizing for dis-
crete programming problems. Cybernetics and Systems Analysis, 40:184–189,
2004.

300 References

F.S. Serifoglu and G. Ulusoy. Multiprocessor task scheduling in multistage hybrid
flow-shops: A genetic algorithm approach. Journal of the Operational Research
Society, 55:504–512, 2004.

N.Z. Shor. Quadratic optimization problems. Soviet Journal of Computer and Sys-
tems Science, 25:1–11, 1987.

O.V. Shylo, T. Middelkoop, and P.M. Pardalos. Restart strategies in optimization:
Parallel and serial cases. Parallel Computing, 37:60–68, 2011a.

O.V. Shylo, O.A. Prokopyev, and J. Rajgopal. On algorithm portfolios and restart
strategies. Operations Research Letters, 39:49–52, 2011b.

C.-C. Shyur and U.-E. Wen. Optimizing the system of virtual paths by tabu search.
European Journal of Operational Research, 129:650–662, 2001.

F. Silva and D. Serra. Locating emergency services with different priorities: The
priority queuing covering location problem. Journal of the Operational Research
Society, 59:1229–1238, 2007.

G.C. Silva, L.S. Ochi, and S.L. Martins. Experimental comparison of greedy
randomized adaptive search procedures for the maximum diversity problem.
In C.C. Ribeiro and S.L. Martins, editors, Experimental and efficient algorithms,
volume 3059 of Lecture Notes in Computer Science, pages 498–512. Springer,
Berlin, 2004.

G.C. Silva, M.R.Q. de Andrade, L.S. Ochi, S.L. Martins, and A. Plastino.
New heuristics for the maximum diversity problem. Journal of Heuristics, 13:
315–336, 2007.

R.M.A. Silva, M.G.C. Resende, P.M. Pardalos, and M.J. Hirsch. A Python/C library
for bound-constrained global optimization with continuous GRASP. Optimiza-
tion Letters, 7:967–984, 2013a.

R.M.A. Silva, M.G.C. Resende, P.M. Pardalos, G.R. Mateus, and G. de Tomi.
GRASP with path-relinking for facility layout. In B.I. Goldengorin, V.A. Kalya-
gin, and P.M. Pardalos, editors, Models, algorithms, and technologies for net-
work analysis, volume 59 of Springer Proceedings in Mathematics & Statistics,
pages 175–190. Springer, Berlin, 2013b.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI – The com-
plete reference, Volume 1 – The MPI core. MIT Press, Cambridge, 1998.

K. Sörensen. Metaheuristics – The metaphor exposed. International Transactions
in Operational Research, 22:1–16, 2015.

K. Sörensen and P. Schittekat. Statistical analysis of distance-based path relinking
for the capacitated vehicle routing problem. Computers & Operations Research,
40:3197–3205, 2013.

M.C. Souza, C. Duhamel, and C.C. Ribeiro. A GRASP heuristic for the capacitated
minimum spanning tree problem using a memory-based local search strategy.
In M.G.C. Resende and J. Souza, editors, Metaheuristics: Computer decision-
making, pages 627–658. Kluwer Academic Publishers, Boston, 2004.

C.S. Sung and S.K. Park. An algorithm for configuring embedded networks in
reconfigurable telecommunication networks. Telecommunication Systems, 4:
241–271, 1995.

References 301

E.D. Taillard. Robust taboo search for the quadratic assignment problem. Parallel
Computing, 17:443–455, 1991.

H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem
in graphs. Mathematica Japonica, 24:573–577, 1980.

E.-G. Talbi. Metaheuristics: From design to implementation. Wiley, New York,
2009.

R. Tamassia and G. Di Battista. Automatic graph drawing and readability of dia-
grams. IEEE Transactions on Systems, Man, and Cybernetics, 18:61–79, 1988.

F.L. Usberti, P.M. França, and A.L.M. França. GRASP with evolutionary path-
relinking for the capacitated arc routing problem. Computers & Operations
Research, 40:3206–3217, 2013.

P.J.M. van Laarhoven and E. Aarts. Simulated annealing: Theory and applications.
Kluwer Academic Publishers, Boston, 1987.

V.V. Vazirani. Approximation algorithms. Springer, Berlin, 2001.
M.G.A. Verhoeven and E.H.L. Aarts. Parallel local search. Journal of Heuristics,

1:43–66, 1995.
D.S. Vianna and J.E.C. Arroyo. A GRASP algorithm for the multi-objective knap-

sack problem. In Proceedings of the 24th International Conference of the Chilean
Computer Science Society, pages 69–75, Arica, 2004. IEEE.

J.X. Vianna Neto, D.L.A. Bernert, and L.S. Coelho. Continuous GRASP algorithm
applied to economic dispatch problem of thermal units. In Proceedings of the 13th
Brazilian Congress of Thermal Sciences and Engineering, Uberlandia, 2010.

J.G. Villegas. Vehicle routing problems with trailers. PhD thesis, Universite de
Technologie de Troyes, Troyes, 2010.

J.G. Villegas, C. Prins, C. Prodhon, A.L. Medaglia, and N. Velasco. A GRASP with
evolutionary path relinking for the truck and trailer routing problem. Computers
& Operations Research, 38:1319–1334, 2011.

M. Vlach. Branch and bound method for the three index assignment problem.
Ekonomicko-Mathematický Obzor, 3:181–191, 1967.

S. Voss. Steiner’s problem in graphs: Heuristic methods. Discrete Applied Mathe-
matics, 40:45–72, 1992.

S. Voss. Heuristics for nonlinear assignment problems. In P.M. Pardalos and L.S.
Pitsoulis, editors, Nonlinear assignment problems: Algorithms and applications,
pages 175–215. Kluwer Academic Publishers, Boston, 2000.

S. Voss, A. Fink, and C. Duin. Looking ahead with the Pilot method. Annals of
Operations Research, 136:285–302, 2005.

D.B. West. Introduction to graph theory. Pearson, 2001.
H. Whitney. On the abstract properties of linear dependence. American Journal of
Mathematics, 57:509–533, 1935.

D.P. Williamson and D.B. Shmoys. The design of approximation algorithms. Cam-
bridge University Press, New York, 2011.

P. Winter. Steiner problem in networks: A survey. Networks, 17:129–167, 1987.
I.H. Witten, E. Frank, and M.A. Hall. Data mining: Practical machine learning
tools and techniques. Morgan Kaufmann, San Francisco, 3rd edition, 2011.

L.A. Wolsey. Integer programming. Wiley, New York, 1998.

302 References

Q. Wu and J.-K. Hao. A memetic approach for the Max-Cut problem. In C.A.C.
Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, and M. Pavone, editors, Par-
allel problem solving from nature - Part II, volume 7492 of Lecture Notes in
Computer Science, pages 297–306. Springer, Berlin, 2012.

F.P. Wyman. Binary programming: A occasion rule for selecting optimal vs. heuris-
tic techniques. The Computer Journal, 16:135–140, 1973.

M. Yagiura and T. Ibaraki. Local search. In P.M. Pardalos and M.G.C. Resende,
editors, Handbook of applied optimization, pages 104–123. Oxford University
Press, 2002.

M. Yagiura, T. Ibaraki, and F. Glover. An ejection chain approach for the generalized
assignment problem. INFORMS Journal on Computing, 16:133–151, 2004.

M. Yannakakis. Computational complexity. In E.H.L. Aarts and J.K. Lenstra, edi-
tors, Local search in combinatorial optimization, chapter 2, pages 19–55. Wiley,
Chichester, 2007.

J.R. Yee and F.Y.S. Lin. A routing algorithm for virtual circuit data networks with
multiple sessions per O-D pair. Networks, 22:185–208, 1992.

Index

A
A∗ search, 4, 10
adaptive memory, 151, 189
ant colony optimization, 11

maximum cut problem, 273
approximate methods, 4
approximation algorithms, 37–38
artificial intelligence, 4

B
backtracking, 4
bandwidth packing, 253–260, 271–272

branch-and-bound, 272
branch-and-cut-and-price, 272
complexity, 271
exact approaches, 272
GRASP with path-relinking, 257–260, 272

construction, 257–258
local search, 258
path-relinking, 258–260
pseudo-code, 259

heuristics, 271
Lagrangean relaxation, 272
piecewise-linear cost function, 256, 271
polytope, 272
problem formulation, 254–257
tabu search, 271–272

best-improving neighborhood search, 77
bias functions, 151
bin packing problem, 38
box-constrained continuous global

optimization, 229, 229–244
continuous GRASP, 231–244
examples, 230–231

Ackley function, 230
Bohachevsky function, 230

Schwefel function, 230
Shekel function, 230
Shubert function, 230

branch-and-bound, 4
branch-and-cut, 4
branch-and-price, 4

C
C-GRASP, see continuous GRASP
combinatorial optimization

cost function algorithm, 20, 28
knapsack problem, 22
maximum clique problem, 21
minimum spanning tree problem, 21
shortest path problem, 21
traveling salesman problem, 22

ground set, 13
knapsack problem, 17
maximum clique problem, 16
minimum spanning tree problem, 14
shortest path problem, 14
Steiner tree problem in graphs, 15
traveling salesman problem, 18

recognition algorithm, 20, 28
knapsack problem, 21
maximum clique problem, 21
minimum spanning tree problem, 21
shortest path problem, 21
traveling salesman problem, 22

solution approaches, 36–37
approximation algorithms, 37–38
constructive heuristics, 4, 37
dynamic programming, 4, 32, 34
genetic algorithms, 39
greedy algorithm, 4, 10, 37, 38, 41,

41–45

© Springer Science+Business Media New York 2016
M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP,
DOI 10.1007/978-1-4939-6530-4

303

304 Index

combinatorial optimization (cont.)
greedy randomized adaptive search

procedures, 6, 10, 39, 98, 111
heuristics, 4, 10, 37–38
integer programming, 38
local search, 4, 10, 37–38, 91–93
metaheuristics, 4, 37–39, 92
multistart, 95–99, 111
polynomially solvable special cases,

36–38
pseudo-polynomial algorithms, 34, 36, 38
semi-greedy algorithms, 59–60, 96–99,

111
simulated annealing, 5, 5, 10, 39
tabu search, 5, 5–6, 10, 39, 92, 188

combinatorial optimization problems, 2
feasible solutions, 13
input size, 19
instance, 13, 20–22
objective function, 13
polynomially solvable special cases, 36–38

2-SAT, 37
planar clique, 37

problem versions, 22–25
decision, 23, 23–24
equivalence, 24–25, 27
evaluation, 22, 23, 24
optimization, 22, 23, 24

computational complexity
classes
co-NP, 34
NP, 27, 30
NP-complete, 32
NP-hard, 4, 33, 33
P, 27
polynomial hierarchy, 35–36
PSPACE, 35
strongly NP-complete, 34

foundations, 38
computational problem, 19
constructive heuristics, 4, 37
continuous global optimization, 229
continuous GRASP, 231

applications, 244
computational geometry, 244
correspondence of projected 3D points

and lines, 244
drug combinations and adverse reactions,

244
economic dispatch of thermal units, 244
robot path planning, 244
sensor registration, 244
system of nonlinear equations, 244
target tracking, 244

thermodynamics, 244
approximate discrete line search, 233,

236–237
approximate h-local minimum, 238
canonical basis direction, 233
construction phase, 231, 233–236
DC-GRASP variant, 244
directed search, 244
diversification phase, see construction phase
dynamic grid, 231
examples, 239–244
GENCAN local search, 244
grid density mechanics, 231
h-local minimum, 238
h-neighborhood, 238
hyper-rectangle approximation, 231
hypercubed cells, 231
improvements, 244
initial grid, 231
initial solution, 231
initial solution after restart, 231
intensification phase, see local search phase
local search phase, 231, 237–239
parallel implementation, 244
pseudo-code

C-GRASP, 233
construction phase, 234
continuous local search, 239
discrete line search, 237

Python/C library, 244
RCL parameter, 233
restart trigger, 231
restricted candidate list, 233
reuse of line search results, 244
test functions

Ackley, 230, 243
Bohachevsky, 230, 243
Schwefel, 230, 243
Shekel, 230, 243
Shubert, 230, 244

cutting planes, 4

D
decision problem, 27, 27

complement, 33
concise certificate, 27, 27–29, 33

knapsack problem, 28
maximum clique problem, 28
traveling salesman problem, 28

definitions
graph coloring, 26
graph connectedness, 27
graph planarity, 27
Hamiltonian cycle, 27

Index 305

integer programming, 27
knapsack, 26
linear programming, 26
maximum clique, 26
maximum independent set, 26
maximum planar subgraph, 248
minimum spanning tree, 26
satisfiability, 27
shortest path, 26
Steiner tree in graphs, 26
traveling salesman, 26

polynomial-time reduction, 30, 32
polynomial-time transformation, 31, 31–33

diversification, 187
dynamic programming, 4, 32, 34

E
efficient algorithms, 19, 19
ejection chains, 85, 85–87, 92
elite pool, see elite set
elite set, 151, 190, 191, 258

maintenance, 151, 190–191
pseudo-code, 190

elite solution, 151, 167, 190
evaluation problem, 22
evolutionary path-relinking, 192–196

greedy randomized adaptive path-relinking,
195

exact method, 4
exact optimal solution, see global optimum

F
feasible set, 1
feasible solutions, 1, 13
filtering, 103, 103–104, 111
first-improving neighborhood search, 75

G
genetic algorithms, 5, 5, 10, 39

maximum cut problem, 273
global optimal solution, see global optimum
global optimization, 229
global optimum, 1, 4
graph, 6
graph planarization, 248, 248–253, 271

applications, 248, 271
complexity, 248, 271
GRASP, 250–252, 271

code, 271
computational results, 271

improvement procedure, 252–253
pseudo-codes

first phase of GT heuristic, 249
GRASP, 252

GRASP construction, 250
GRASP local search, 251
planar subgraph enlargement, 253
second phase of GT heuristic, 249

two-phase heuristic, 248–250, 271
graphs, 6–7, 11

chromatic number, 38
clique, 7
clique cover, 38
complete, 6
connected, 7
directed, 7
Hamiltonian cycle, 7
Hamiltonian path, 7
Hamiltonian tour, 7
independent set, 7, 249
induced, 7
maximal planar subgraph, 248
maximum clique, 38
maximum induced bipartite subgraph, 248

complexity, 249
overlap, 248
path in a directed graph, 7
path in an undirected graph, 6
perfect, 38
planar, 248
planarization, 248, 248–253

complexity, 248
spanning tree, 7
stable set, 7
strongly connected, 7
subgraph, 7
tour, 7
two-coloring, 248
undirected, 6

GRASP, see greedy randomized adaptive
search procedures

GRASP with path-relinking
applications, 202–204
elite pool, see elite set
elite set, 151, 190, 191, 258

maintenance, 151, 190–191
elite solution, 151, 167, 190
evolutionary, 195, 192–196, 203–204
hybridization, 191–192, 202–203
pseudo-code, 192

evolutionary, 195, 196
with restarts, 200

restart strategies, 198, 196–201, 204
runtime distributions, 198–200

runtime distributions, 192
greedy algorithm, 4, 10, 37, 38, 41, 41–45, 62,

95

306 Index

greedy algorithm (cont.)
adaptive greedy, 49, 48–58, 96

maximum clique problem, 52–53, 62
maximum independent set problem, 62
minimum cardinality set covering

problem, 50–52, 62
minimum spanning tree problem, 43, 50,

62
Steiner tree problem in graphs, 56–58, 62
tie-breaking rule, 96
traveling salesman problem, 54–56

candidate element selection, 41
connection with matroids, 62
greedy choice function, 49, 49–54, 96
knapsack problem, 43, 62
matroids, 46–48
minimum spanning tree problem, 42–43, 62
pseudo-codes

adaptive greedy algorithm, 49
semi-greedy algorithm, 60

repair procedures, 61, 61–62
semi-greedy, 59, 59–60, 62
Steiner tree problem in graphs, 44–45

greedy choice function, 49, 49–54, 96
greedy randomized adaptive search

procedures, 6, 10, 39, 98, 111
accelerating, 103–104
applications

2-path network design problem, 112, 146,
245–247

3-index assignment, 146
automated test case prioritization, 163
balancing reconfigurable transfer lines,

163
bandwidth packing, 253–260
biclustering, 163
biobjective commercial territory design,

112
biobjective path dissimilarity problem, 112
biobjective set packing problem, 112
biorienteering problem, 112
broadcast scheduling, 163
capacitated clustering, 163
capacitated location, 163
capacitated location routing, 163
capacitated minimum spanning tree, 164
capacitated multi-source Weber problem,

163
capacity expansion of fiber optic

networks, 164
channel assignment in mobile phone

networks, 163
classification of databases, 112
combined production-distribution, 164

commercial territory design, 164
constrained two-dimensional

nonguillotine cutting, 163
container loading, 163
driver scheduling, 163
environmental investment decision

making, 112
examination scheduling, 163
family traveling salesman, 163
flow shop scheduling, 112
Golomb ruler search, 164
graph planarization, 146, 164, 248–253
job shop scheduling, 163, 164
just-in-time scheduling, 163
learning classification problem, 112
line balancing, 112
locating emergency services, 163
matrix decomposition for traffic

assignment in communication satellites,
164

max-min diversity, 163
maximum covering, 111, 146
maximum cut problem, 260, 260–270, 272
maximum diversity, 163, 165
maximum stable set problem, 145
maximum weighted satisfiability, 111, 146
multicommodity network design, 165
multicriteria minimum spanning tree

problem, 112
multiobjective knapsack problem, 112
multiobjective quadratic assignment

problem, 112
p-median, 164, 165
parallel machine scheduling with setup

times, 163
path dissimilarity, 112
point-feature cartographic label

placement, 163
portfolio optimization, 163
power compensation, 112
power transmission network expansion

planning, 163
prize-collecting Steiner tree problem in

graphs, 164
quadratic assignment problem, 145, 164
rural road network development, 163
semiconductor manufacturing, 163
server replication for reliable multicast,

126–127, 146, 165
set covering, 164
set k-covering, see set multicovering
set multicovering, 166
set packing, 163, 165
single machine scheduling, 163

Index 307

Steiner tree problem in graphs, 164
strip packing, 163
therapist routing and scheduling, 164
unsplittable multicommodity flow,

253–260
vehicle routing, 163, 164
weighted maximum satisfiability, 164

cost perturbations in construction, 150, 164
perturbation by eliminations, 150
perturbation by prize changes, 150

distribution of solution values, 103
diversification, 187
filtering, 103, 103–104, 111
intensification, 191
Lagrangean GRASP heuristics, 155–161,

165–166
Lagrangean relaxation and subgradient

optimization, 155–157, 165–166
LAGRASP, 159
pseudo-code, 158
template, 157–158

local search, 100
memory and learning in construction,

151–152, 164
consistent variable, 152
elite pool, see elite set
elite set, 151
elite solution, 151
intensity function, 152
long-term memory, 151
strongly determined variable, 152

multiobjective optimization, 2, 110–112
dominance, 110
efficient solution, 110
Pareto frontier, 110
pseudo-code, 110
weak dominance, 110

pattern-based construction, 152–155, 165
data mining, 153, 165
pseudo-code for GRASP with data

mining, 155
vocabulary building, 153, 165

probabilistic choice of RCL parameter,
148–149, 164

decreasing, 148
greedy, 148
reactive, 148
uniform, 148

proximate optimality principle in
construction, 152, 164–165

pseudo-codes
GRASP, 100
GRASP construction for MAX-CUT, 265
GRASP for bandwidth packing, 259

GRASP for graph planarization, 252
GRASP for multiobjective optimization,

110
GRASP local search for MAX-CUT, 267
GRASP with data mining, 155
GRASP with evolutionary path-relinking,

195, 196
GRASP with path-relinking, 192
GRASP with path-relinking for

MAX-CUT, 261
GRASP with path-relinking with restarts,

200
GRASP with probabilistic stopping rule,

109
path-relinking for MAX-CUT, 270
random multistart, 95
semi-greedy multistart, 96

random plus greedy construction, 149,
149–150, 164

reactive, 147–148, 162–164, 189
diversification, 148
dynamic restricted candidate list

parameter, 147
parameter tuning, 148
robustness, 148
selection probabilities, 147–148

runtime distribution, 114–118, 145
exponential, 114
shifted exponential, 114
two-parameter exponential, see shifted

exponential
sampled greedy construction, 149, 149–150,

164
stopping, 105–109

Gaussian approximation for GRASP
iterations, 106–107

implementation of stopping rule, 107–109,
112

probabilistic stopping rule, 105–106, 112
pseudo-code, 109

with path-relinking
applications, 202–204
elite pool, see elite set
elite set, 151, 190, 191, 258
elite set maintenance, 151, 190–191
elite solution, 151, 167, 190
evolutionary, 195, 192–196, 203–204
hybridization, 191–192, 202–203
pseudo-code, 192, 195, 196, 200
restart strategies, 198, 196–201, 204
runtime distributions, 192
with restarts, 200

ground set, 13, 13, 41, 60, 63, 96, 97, 190

308 Index

H
heuristics, 4, 10, 37–38

traveling salesman problem, 62

I
implicit enumeration, 4
input size, 19
integer programming, 38
intensification, 187, 188, 191
intractable problems, 4
iterated local search, 11, 92
iterative improvement, see first-improving

neighborhood search

K
k-shortest path algorithm, 271
knapsack problem, 3, 10, 38

characterization, 21–22
concise certificate, 28
cost function update, 78–79
formulation, 16–17
forward path-relinking, 174–175
greedy algorithm, 43
ground set, 17
motivation, 3
neighborhood, 71
restricted neighborhood, 171
solution representation, 64
versions, 23

L
Lagrangean GRASP heuristics, 155–161,

165–166
Lagrangean relaxation and subgradient

optimization, 155–157, 165–166
dual problem, 156
multipliers, 157
relaxed problem, 156

LAGRASP, 159
pseudo-code, 158
template, 157–158

local optimum, 75
escaping, 88–91

short-term tabu search, 88–89, 92
variable neighborhood descent, 90–93

local search, 4, 10, 37–38, 91–93
ejection chains, 85–87, 92
graph partitioning, 10
history, 91
implementation strategies, 74–84

candidate lists, 82–84, 103
circular search, 84, 103
cost function update, 77–81, 103
neighborhood search, 75–79

iterative improvement, see first-improving
neighborhood search

local optimum, 75
move, 67, 67–87
neighborhood, 67, 67–73
neighborhood search

best-improving, 77
first-improving, 75
variable neighborhood descent, 90–93

perturbations, see ejection chains
pseudo-codes

VND local search, 90
restricted neighborhood, 168
search space graph, 67, 67–73, 167
simplex method, 92
theory, 92
traveling salesman problem, 10

2-opt neighborhood, 80
3-opt neighborhood, 81

M
matroid, 4, 10, 46, 46–48, 62

connection with greedy algorithm, 62
properties, 46–47
weighted, 47–48, 62

MAX-CUT, see maximum cut problem
maximum clique problem, 3, 10, 38

adaptive greedy algorithm, 52–53
pseudo-code, 53

characterization, 21
concise certificate, 28
formulation, 16
ground set, 16
motivation, 3
solution representation, 63–64
versions, 23

maximum covering problem, 100–103
maximum cut problem, 260, 260–270,

272–273
ant colony optimization, 273
applications, 272
approximation algorithm, 272
breakout local search, 273
complexity, 272
example, 260, 263–264, 268–269
genetic algorithm, 273
GRASP, 261–270, 272–273

construction phase, 262–266
local search phase, 266–267
path-relinking, 267–270
pseudo-code for GRASP construction,

265
pseudo-code for GRASP local search, 267
pseudo-code for path-relinking, 270

Index 309

GRASP with path-relinking
pseudo-code, 261

interior point methods, 273
memetic algorithm, 273
nonlinear programming approaches, 273
path-relinking, 273
pseudo-codes

GRASP construction, 265
GRASP local search, 267
GRASP with path-relinking, 261
path-relinking, 270

rank-2 heuristic, 273
scatter search, 273
semidefinite programming relaxation,

272–273
tabu search, 273
variable neighborhood search, 272, 273
variable neighborhood search with

path-relinking, 272
maximum independent set of an overlap graph

complexity, 271
maximum induced bipartite subgraph, 248

complexity, 249, 271
maximum planar subgraph problem, see graph

planarization
maximum weighted satisfiability problem, 98
memetic algorithms

maximum cut problem, 273
metaheuristics, 4, 37–39, 92

ant colony optimization, 11
genetic algorithms, 5, 5, 10
greedy randomized adaptive search

procedures, 6, 10, 98, 111
iterated local search, 11, 92
particle swarm optimization, 11
scatter search, 11
simulated annealing, 5, 5, 10
tabu search, 5, 5–6, 10, 92, 92
variable neighborhood search, 6, 6, 10

minimum cardinality set covering problem
adaptive greedy algorithm, 50–52

pseudo-code, 52
minimum spanning tree problem, 3, 10

adaptive greedy algorithm, 50
pseudo-code, 51

characterization, 21
formulation, 14
greedy algorithm, 42–43

pseudo-code, 43
ground set, 14
motivation, 2–3
restricted neighborhood, 168–169

move, 67, 67–87
MST, see minimum spanning tree problem
multimodal function, 229
multiobjective optimization, 2, 110–112

dominance, 110
efficient solution, 110
Pareto frontier, 110
pseudo-code, 110
weak dominance, 110

multistart, 95, 111
random, 95–96

pseudo-code, 95
semi-greedy, 96–99

pseudo-code, 96

N
neighborhood, 67, 67–73
neighborhood search, 75–79

best-improving, 77
first-improving, 75
iterative improvement, see first-improving

neighborhood search
variable neighborhood descent, 90–93

O
objective function, 1, 13
optimization method, 4
optimization problem, 1, 113

combinatorial, 2, 22
feasible set, 1
feasible solutions, 1
global, 229
maximization, 1
minimization, 1

overlap graph, 248

P
parallel GRASP heuristics, see parallel

GRASP implementations
parallel GRASP implementations

computational results, 211–225
2-path network design problem, 221–225,

227
job shop scheduling, 216–221, 227
three-index assignment, 212–215, 227

efficiency, 208
multiple-walk cooperative-thread, 210,

210–211, 226–227
centralized strategies, 210
distributed strategies, 210

multiple-walk independent-thread, 205,
205–209, 226

310 Index

parallel GRASP implementations (cont.)
load balancing, 207
MAX-SAT problem, 206
path-relinking, 207
speedup, 206, 208
Steiner problem in graphs, 206

speedup, 206
parallel metaheuristics, 226
particle swarm optimization, 11
path-relinking, 167, 167–188

back-and-forward, 177, 176–177, 188
backward, 177, 176–177, 188
diversification, 187
elite pool, see elite set
elite set, 151, 190, 191, 258

maintenance, 151, 190–191
pseudo-code, 190

elite solution, 151, 167, 190
evolutionary, 195, 192–196, 203–204

pseudo-code, 195, 196
external, 186, 188
forward, 173, 173–175, 188

knapsack problem, 174–175
greedy randomized adaptive, 185, 188
ground set, 168
guiding solution, 167, 259
implementation strategies, 173–181, 188
infeasibilities in, 182–185, 188
initial solution, 167, 259
intensification, 187, 188
minimum distance in, 181–182, 188
mixed, 178, 178–179, 188
pseudo-codes

elite set maintenance, 190
evolutionary, 196
forward, 174
mixed, 179
mixed with feasible and infeasible moves,

186
with GRASP, 192, 195, 196
with GRASP with restarts, 200

randomization in, 185–186
restricted neighborhood, 168, 167–171

knapsack problem, 171
minimum spanning tree problem, 168–169
traveling salesman problem, 169–170

search space graph, 167
truncated, 181, 179–181, 188

pattern-based construction, 152–155, 165
data mining, 153, 165
pseudo-code for GRASP with data mining,

155
vocabulary building, 153, 165

penalty function, 257

polynomial-time algorithm, 20
private virtual circuit, 253
private virtual circuit routing, see bandwidth

packing
pseudo-codes

adaptive greedy algorithm, 49
maximum clique problem, 53
minimum cardinality set covering, 52
nearest neighbor heuristic for the traveling

salesman problem, 54
Prim’s algorithm for minimum spanning

tree, 51
Steiner tree problem in graphs, 57

continuous GRASP, 233
approximate discrete line search, 237
construction phase, 234
continuous local search, 239

elite set maintenance, 190
graph planarization

first phase of GT heuristic, 249
GRASP, 252
GRASP construction, 250
GRASP local search, 251
planar subgraph enlargement, 253
second phase of GT heuristic, 249

GRASP for minimization, 100
GRASP for multiobjective optimization,

110
GRASP with data mining, 155
GRASP with evolutionary path-relinking,

195, 196
GRASP with path-relinking, 192
GRASP with path-relinking (revisited), 210
GRASP with path-relinking for bandwidth

packing, 259
GRASP with path-relinking with restarts,

200
GRASP with probabilistic stopping rule,

109
greedy algorithm

distance network heuristic for the Steiner
tree problem in graphs, 45

Kruskal’s algorithm for minimum
spanning tree, 43

maximum-weight independent set of a
weighted matroid, 48

Lagrangean heuristic, 158
maximum cut problem

GRASP construction, 265
GRASP local search, 267
GRASP with path-relinking, 261
path-relinking, 270

path-relinking
evolutionary, 196

Index 311

forward, 174
mixed, 179
mixed with feasible and infeasible moves,

186
random multistart, 95
semi-greedy algorithm, 60
semi-greedy multistart, 96
variable neighborhood descent local search,

90
pseudo-polynomial algorithms, 34, 36, 38
PVC, see private virtual circuit
PVC routing, see private virtual circuit routing

R
randomized-greedy, see semi-greedy
RCL, see restricted candidate list
reactive GRASP, 147, 147–148, 162–164, 189

diversification, 148
dynamic restricted candidate list parameter,

147
parameter tuning, 148
robustness, 148
selection probabilities, 147–148

repair procedures, 61, 60–62
restart strategies, 198, 196–201, 204

pseudo-code, 200
runtime distributions, 198–200

restricted candidate list, 60
bias functions, 151, 164

exponential bias, 151
linear bias, 151
log bias, 151
polynomial bias, 151
random bias, 151

cardinality based, 60
cardinality-based parameter, 97
distribution of solution values, 96–103
quality based, 60
quality-based parameter, 96

restricted neighborhood, 168, 167–171
knapsack problem, 171
minimum spanning tree problem, 168–169
traveling salesman problem, 169–170

routing and wavelength assignment problem,
132, 146

runtime distributions, 113–118, 145
comparing algorithms with exponential

runtime distributions, 118–123, 146
comparing algorithms with general runtime

distributions, 123–126, 146
2-path network design problem, 132–142
routing and wavelength assignment

problem, 132

server replication for reliable multicast
problem, 126–127

comparing parallel algorithms, 142–144
graphical methodology for data analysis,

113–118, 146
GRASP, 114–118, 145

exponential distribution, 114
shifted exponential distribution, 114
two-parameter exponential distribution,
see shifted exponential distribution

GRASP with path-relinking, 192
lower quartile, 115
outliers, 115
Q-Q plots, see quantile-quantile plots
quantile-quantile plots, 114–117
quantiles, 114
shift estimate, 115
slope estimate, 115
target value, 113
upper quartile, 115
variability information, 115–116

S
scatter search, 11, 188

maximum cut problem, 273
search space graph, 67, 67–73, 167
semi-greedy algorithm, 59, 59–60, 62, 111

cardinality-based RCL, 97
distribution of solution values, 96–103
greedy construction, 96, 97
probabilistic choice of RCL parameter,

148–149, 164
decreasing, 148
greedy, 148
reactive, 148
uniform, 148

pseudo-code, 60
quality-based RCL, 96
random construction, 96, 97
random plus greedy construction, 149,

149–150, 164
reactive construction, 147–148, 162–164
restricted candidate list, 60

bias functions, 151, 164
sampled greedy construction, 149, 149–150,

164
server replication for reliable multicast

problem, 126–127, 146
short-term memory tabu search, 88–89
shortest path problem, 2, 10

characterization, 20–21
formulation, 13–14
ground set, 14
motivation, 2

312 Index

simulated annealing, 5, 5, 10, 39
solution approaches

approximation algorithms, 37–38
constructive heuristics, 4, 37
dynamic programming, 4, 32, 34
genetic algorithms, 5, 5, 10, 39
greedy algorithm, 4, 10, 37, 38, 41, 41–45,

62, 95
greedy randomized adaptive search

procedures, 6, 10, 39, 98, 111
heuristics, 4, 10, 37–38
integer programming, 38
local search, 4, 10, 37–38, 91–93
metaheuristics, 4, 37–39, 92
multistart, 95–99, 111
polynomially solvable special cases, 36–38

2-SAT, 37
planar clique, 37

pseudo-polynomial algorithms, 34, 36, 38
semi-greedy algorithms, 59–60, 96–99, 111
simulated annealing, 5, 5, 10, 39
tabu search, 5, 5–6, 10, 39, 92, 188

solution representation, 63–67
0-1 incidence vector, 67
generalized incidence vector, 67
permutation, 67

steepest-ascent mildest-descent, 10
Steiner tree problem in graphs, 3, 10

adaptive greedy algorithm, 56–58
pseudo-code, 57

formulation, 15–16
greedy algorithm, 44–45

pseudo-code, 45
ground set, 15
motivation, 3
solution representation, 64
Steiner nodes, 16
Steiner tree, 15

symmetric difference, 190, 191

T
tabu search, 5, 5–6, 10, 39, 88–89, 92, 188

bandwidth packing, 271
maximum cut problem, 273

three-index assignment problem, 146
time-to-target plots, see runtime distributions
traveling salesman problem, 3, 10

adaptive greedy algorithm, 54–56
pseudo-code, 54

characterization, 22
concise certificate, 28–29
cost function update, 79–81

2-opt, 80
3-opt, 81

formulation, 17–18
ground set, 18
heuristics, 62
motivation, 3
neighborhood, 71–73
restricted neighborhood, 169–170
solution representation, 66–67
versions, 24

TTT-plots, see time-to-target plots
2-path network design problem, 146, 245,

245–247, 270–271, 271
applications, 270
complexity, 270
GRASP, 245–247, 271

construction, 245–246
local search, 246
parallel implementation, 247, 271
path-relinking, 246–247

greedy heuristic, 270
2-SAT, 38

V
variable neighborhood descent, 90–93
variable neighborhood search, 6, 6, 10
virtual circuit routing, 271

Lagrangean heuristic, 271
virtual private network, 253
VND, see variable neighborhood descent
VNS, see variable neighborhood search

	Foreword
	Preface
	Acknowledgments
	Contents
	1 Introduction
	1.1 Optimization problems
	1.2 Motivation
	1.3 Exact vs. approximate methods
	1.4 Metaheuristics
	1.5 Graphs: basic notation and definitions
	1.6 Organization
	1.7 Bibliographical notes

	2 A short tour of combinatorial optimization and computational complexity
	2.1 Problem formulation
	2.2 Computational complexity
	2.2.1 Polynomial-time algorithms
	2.2.2 Characterization of problems and instances
	2.2.3 One problem has three versions
	2.2.4 The classes P and NP
	2.2.5 Polynomial transformations and NP-complete problems
	2.2.6 NP-hard problems
	2.2.7 The class co-NP
	2.2.8 Pseudo-polynomial algorithms and strongNP-completeness
	2.2.9 PSPACE and the polynomial hierarchy

	2.3 Solution approaches
	2.4 Bibliographical notes

	3 Solution construction and greedy algorithms
	3.1 Greedy algorithms
	3.2 Matroids
	3.3 Adaptive greedy algorithms
	3.4 Semi-greedy algorithms
	3.5 Repair procedures
	3.6 Bibliographical notes

	4 Local search
	4.1 Solution representation
	4.2 Neighborhoods and search space graph
	4.3 Implementation strategies
	4.3.1 Neighborhood search
	4.3.2 Cost function update
	4.3.3 Candidate lists
	4.3.4 Circular search

	4.4 Ejection chains and perturbations
	4.5 Going beyond the first local optimum
	4.5.1 Tabu search and short-term memory
	4.5.2 Variable neighborhood descent

	4.6 Final remarks
	4.7 Bibliographical notes

	5 GRASP: The basic heuristic
	5.1 Random multistart
	5.2 Semi-greedy multistart
	5.3 GRASP
	5.4 Accelerating GRASP
	5.5 Stopping GRASP
	5.5.1 Probabilistic stopping rule
	5.5.2 Gaussian approximation for GRASP iterations
	5.5.3 Stopping rule implementation

	5.6 GRASP for multiobjective optimization
	5.7 Bibliographical notes

	6 Runtime distributions
	6.1 Time-to-target plots
	6.2 Runtime distribution of GRASP
	6.3 Comparing algorithms with exponential runtime distributions
	6.4 Comparing algorithms with general runtime distributions
	6.5 Numerical applications to sequential algorithms
	6.5.1 DM-D5 and GRASP algorithms for server replication
	6.5.2 Multistart and tabu search algorithms for routing and wavelength assignment
	6.5.3 GRASP algorithms for 2-path network design
	6.5.3.1 Instance with 90 nodes
	6.5.3.2 Instance with 80 nodes

	6.6 Comparing and evaluating parallel algorithms
	6.7 Bibliographical notes

	7 Extended construction heuristics
	7.1 Reactive GRASP
	7.2 Probabilistic choice of the RCL parameter
	7.3 Random plus greedy and sampled greedy
	7.4 Cost perturbations
	7.5 Bias functions
	7.6 Memory and learning
	7.7 Proximate optimality principle in construction
	7.8 Pattern-based construction
	7.9 Lagrangean GRASP heuristics
	7.9.1 Lagrangean relaxation and subgradient optimization
	7.9.2 A template for Lagrangean heuristics
	7.9.3 Lagrangean GRASP

	7.10 Bibliographical notes

	8 Path-relinking
	8.1 Template and mechanics of path-relinking
	8.1.1 Restricted neighborhoods
	8.1.2 A template for forward path-relinking

	8.2 Other implementation strategies for path-relinking
	8.2.1 Backward and back-and-forward path-relinking
	8.2.2 Mixed path-relinking
	8.2.3 Truncated path-relinking

	8.3 Minimum distance required for path-relinking
	8.4 Dealing with infeasibilities in path-relinking
	8.5 Randomization in path-relinking
	8.6 External path-relinking and diversification
	8.7 Bibliographical notes

	9 GRASP with path-relinking
	9.1 Memoryless GRASP
	9.2 Elite sets
	9.3 Hybridization of GRASP with path-relinking
	9.4 Evolutionary path-relinking
	9.5 Restart strategies
	9.6 Bibliographical notes

	10 Parallel GRASP heuristics
	10.1 Multiple-walk independent-thread strategies
	10.2 Multiple-walk cooperative-thread strategies
	10.3 Some parallel GRASP implementations
	10.3.1 Three-index assignment
	10.3.1.1 Problem formulation
	10.3.1.2 GRASP construction
	10.3.1.3 Local search
	10.3.1.4 Path-relinking
	10.3.1.5 Parallel independent-thread GRASP with path-relinking for AP3
	10.3.1.6 Parallel cooperative-thread GRASP with path-relinking for AP3

	10.3.2 Job shop scheduling
	10.3.2.1 Problem formulation
	10.3.2.2 GRASP construction
	10.3.2.3 Local search
	10.3.2.4 Path-relinking
	10.3.2.5 Parallel independent-thread GRASP with path-relinking for JSP
	10.3.2.6 Parallel cooperative-thread GRASP with path-relinking for JSP

	10.3.3 2-path network design problem
	10.3.3.1 Problem formulation
	10.3.3.2 GRASP construction
	10.3.3.3 Local search
	10.3.3.4 Path-relinking
	10.3.3.5 Parallel implementations of GRASP with path-relinking for 2PNDP
	10.3.3.6 Computational results

	10.4 Bibliographical notes

	11 GRASP for continuous optimization
	11.1 Box-constrained global optimization
	11.2 C-GRASP for continuous box-constrained global optimization
	11.3 C-GRASP construction phase
	11.4 Approximate discrete line search
	11.5 C-GRASP local search
	11.6 Computing global optima with C-GRASP
	11.7 Bibliographical notes

	12 Case studies
	12.1 2-path network design problem
	12.1.1 GRASP with path-relinking for 2-path network design
	12.1.1.1 Solution construction
	12.1.1.2 Local search
	12.1.1.3 Path-relinking
	12.1.1.4 Parallel GRASP implementation and numerical results

	12.2 Graph planarization
	12.2.1 Two-phase heuristic
	12.2.2 GRASP for graph planarization
	12.2.3 Enlarging the planar subgraph

	12.3 Unsplittable multicommodity network flow: Application to bandwidth packing
	12.3.1 Problem formulation
	12.3.2 GRASP with path-relinking for PVC routing
	12.3.2.1 Construction phase
	12.3.2.2 Local search
	12.3.2.3 Path-relinking

	12.4 Maximum cut in a graph
	12.4.1 GRASP with path-relinking for the maximum cutproblem
	12.4.1.1 A greedy algorithm for the maximum cut problem
	12.4.1.2 A semi-greedy algorithm for the maximum cut problem
	12.4.1.3 Local search for the maximum cut problem
	12.4.1.4 GRASP with path-relinking for maximum cut

	12.5 Bibliographical notes

	References
	Index

