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    Chapter 12   
 CT Afferent-Mediated Affective Touch: 
Brain Networks and Functional Hypotheses                     

     India     Morrison     

    Abstract     Investigating the role of C-tactile (CT) afferents in affective touch 
requires exploration of the subcortical and cortical brain regions which receive 
information from the CT afferent pathway. This chapter summarizes the major 
known cortical targets and wider networks associated with CT-mediated touch, par-
ticularly the posterior insula and parietal operculum. It concludes with an outline of 
three hypotheses regarding the possible function of CT afferents. A central feature 
of each is the idea that C mechanoreceptive afferents contribute to physiological 
regulation, particularly of the sympathetic nervous system, in a manner which can 
extend to the social domain.  

  Keywords     Neural processing   •   Affective touch   •   CT-mediated touch   •   C-tactile 
(CT) afferents   •   Cortical brain   •   Subcortical brain   •   Cortical targets  

      Introduction 

 Neural processing of affective touch starts in the skin. As evidence presented in 
other chapters in this volume demonstrates, mechanoreceptive CT afferents contrib-
ute to the signaling of light touch, associated with affectively valenced percepts. 
However, this implies neither that CT afferent signaling directly  codes  such affec-
tive qualities of tactile stimulation, nor that affective touch is  limited  to  CT signal 
processing   at any level of the nervous system. To explore how CT-mediated touch 
attains hedonic value, and what role CTs play in such processes, it is important to 
investigate the neuroanatomical details of higher-level cortical networks. The dis-
cussion in this chapter will address this, hinging mainly on a distinction between 
“cortical targets” and “cortical networks.” 
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 In the following sections, cortical targets are considered as the earliest synapses 
from thalamic nuclei conveying the signal from the periphery, spinal cord, and 
brainstem—thus refl ecting a high, though not exclusive, specifi city for peripheral 
tactile information. These fi rst cortical synapses are generally third-order neurons 
from  spinothalamic projections  . From these cortical targets, subsequent processing 
of the signal is elaborated in highly interconnected cortical networks, which extend 
throughout the brain and which are less likely to be domain specifi c for touch. These 
networks involve fourth-order connections and beyond. The identifi cation of corti-
cal targets involves tracing a pathway, either physically (by following axons) or 
functionally (by tracking responses to a stimulus). The identifi cation of cortical 
networks, on the other hand, involves a less direct, more inferential approach—
partly because of their complexity and multidimensionality, and partly because they 
are less experimentally accessible, especially in humans. Because a cortical target is 
also part of a cortical network, the distinction between the two is mainly heuristic.  

    Cortical Targets 

 One of our best tools for probing both CT cortical targets and networks in the brains 
of human volunteers is neuroimaging, especially MRI (magnetic resonance imag-
ing). This technique can measure both structural and functional properties of the 
brain. Structurally, it can provide contrast images between grey matter and other 
types of brain tissue, such as white matter and  cerebrospinal fl uid  . It can also high-
light white matter tracts. Functionally, it provides measurements of regional changes 
in cerebral blood fl ow, which indirectly refl ect changes in neurovascular regulation 
as a result of localized neuronal metabolic activity. However, it is important to note 
that the low temporal resolution of  functional MRI (fMRI)   makes it impossible to 
distinguish between early and late processing in the brain—though in some cases it 
is possible to infer the likelihood that an activation refl ects a “cortical target” based 
on other considerations, such as the anatomical pathways established by research in 
nonhuman mammals. This section focuses on data obtained by MRI measurements 
relevant to affective touch in general, and CT stimulation in particular. 

 On the way to the brain, unmyelinated C afferents (including CTs) synapse in 
 neural populations   in the dorsal horn of the spinal cord (e.g., Craig  1995 ; Andrew 
 2010 ; this volume). There is little direct evidence about where CTs might go from 
there, especially in humans, but it is likely that the CT pathway ascends to the thala-
mus via the spinothalamic tract (STT; but see Abraira and Ginty  2013 ; Zimmerman 
et al.  2014 ). In contrast, Aβ tactile afferents associated with discriminative function 
follow a pathway up to the brain via the dorsal column of the spinal cord. These two 
pathways terminate in relatively distinct sets of  thalamic nuclei  , which project in 
turn to relatively distinct sets of cortical regions (Dum et al.  2009 ; Friedman and 
Murray  1986 ). Human neuroimaging cannot shed light on the exact course the CT 
pathway takes before the level of its thalamic projections, but CT signaling  properties 
and tactile stimulation of hairy skin can be used to probe hemodynamic responses 
in the brain using functional fMRI. 
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 fMRI gives us a small but growing toolkit for inferences about cortical targets of 
the CT pathway. First, we can use known CT properties as a “probe” to investigate 
related  hemodynamic responses   in the brain. The more we know about CT affer-
ents, the more precisely we can tailor stimulation likely to elicit responses from the 
cortical targets. For example, we can manipulate the speed of stroking, to which 
CTs are sensitive (Löken et al.  2009 ; Björnsdotter, this volume). We can also exploit 
the differential innervation of hairy and glabrous skin: tactile stimulation of hairy 
skin activates both CT and Aβ fi bers, whereas glabrous (e.g., palm) stimulation 
activates Aβs only. We can investigate populations with pathologies or disturbances 
in either their CT or  Aβ innervation  . We can also focus on experimental manipula-
tions that change the participants’ subjective experience or behavior related to affec-
tive touch stimulation. Finally, we can mine the existing published reports and apply 
inferential statistics for the meta-analytical picture across larger data sets. 

 Each of these approaches has yielded evidence pointing to posterior insula as the 
prime candidate for a fi rst cortical target of the  CT pathway   (see also Björnsdotter, 
this volume). First, posterior insula shows preferential activation to “CT-optimal” 
stroking speeds of 1–10 cm/s (peaking at about 3 cm/s), compared to “CT-nonoptimal” 
speeds of 30 cm/s (Morrison et al.  2011a ,  b ) and 0.3 cm/s (Perini et al.  2015 ), con-
sistent with peripheral afferent response profi les (Löken et al.  2009 ; Ackerley et al. 
 2014 ). Second, comparing arm and palm stroking stimulation reveals partly distinct 
activations for each, with arm (hairy skin) responses limited to posterior insula 
(Perini et al.  2015 ). Third, Aβ-denervated patients with preserved CT afferents 
show insula activation when stroked on the hairy skin (Olausson et al.  2002 ,  2010 ; 
Cole, this volume), suggesting that CT signals reach this region of cortex in the 
absence of  Aβ-mediated tactile information  . In patients with a rare mutation result-
ing in a selective reduction in C-afferent density, on the other hand, posterior insula 
shows no modulation by stroking speed (Morrison et al.  2011a ,  b ). 

 In a recent study investigating  stroking preferences and behavior  , posterior insula 
activation increased for stroking speeds that the participants preferred at above- 
chance levels (Perini et al.  2015 ). Finally, a recent meta-analysis created a spatial 
map of brain areas highly likely to be reported as active for pleasant touch in the 
existing fMRI literature, using  activation likelihood estimate (ALE) analysis   
(Morrison,  2016 ). The posterior insula showed the highest probability of selective 
activation by pleasantly rated gentle touch, as opposed to tactile stimulation in the 
context of detection or discrimination tasks. The weight of the above evidence thus 
supports the posterior insula as a cortical target for the CT afferent pathway. This is 
consistent with a proposed pathway for all thin-diameter, unmyelinated C afferents 
in rodents and nonhuman primates (Craig  2004 ; see Andrew, this volume). 

 The posterior insula is activated by a broad range of visceral, somatosensory, and 
nociceptive stimulation in humans (e.g., Kurth et al.  2010 ; Segerdahl et al.  2015 ) 
and is highly interconnected with  parietal sensorimotor cortices   (Deen et al.  2011 ; 
Cauda et al.  2011 ; Cerliani et al.  2012 ). Distinct cytological subdivisions have been 
identifi ed in insular cortex, with posterior granular areas Ig1 and Ig2 implicated in 
somatosensory and nociceptive processing (e.g., Kurth et al.  2010 ; Segerdahl et al. 
 2015 ). Granular insular cortex responses to affective touch fall predominantly 
around the long gyri and within the insular central sulcus (Morrison et al.  2011a ). 
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This region also exhibits distinct  somatotopic responses   for stroking on the arm and 
thigh within the range of CT afferents’ preferred speed (Björnsdotter et al.  2009 , 
 2010 ; this volume). The granular region of posterior insular cortex might therefore 
provide a fundamental, early contribution to such stimulus processing, and may be 
critical for the effi cient integration of affectively relevant somatosensory informa-
tion (Lovero et al.  2009 ; Lucas et al.  2014 ; Perini et al.  2015 ). 

 Apart from the posterior insula, there are also parallel or minor cortical targets 
for affective touch. These may receive a proportionally smaller or less selective 
contribution of input from the CT-spinothalamic pathway than posterior insula, but 
could likewise refl ect early projections to cortex. One such region may be the sec-
ondary  somatosensory (SII) cortices   on the parietal operculum. These can be 
regarded as cortical targets by virtue of major input from the STT via anatomical 
projections from  ventroposterior inferior (VPI) nucleus  , and minor input from the 
posterior-suprageniculate complex (Po-Sg; of which posterior ventromedial 
nucleus, VMpo, is considered a part; but see Willis et al.  2002 , Graziano and Jones 
 2004 ). In the macaque monkey, parietal opercular cortex receives 29 % of STT 
inputs, in second place behind granular posterior insular areas which receive 41 % 
(Dum et al.  2009 ). In contrast, primary somatosensory cortex (SI) receives 4 % of 
the projections from STT. The parietal opercular regions most relevant for affective 
touch are discussed further in following section.  

    Cortical Networks 

 So far, then, granular posterior insula is the region most likely to be selectively acti-
vated by affective touch in  fMRI studies   and is anatomically well-situated to be a 
cortical target for a CT afferent pathway. However, it is improbable that activation 
of posterior insula singlehandedly exhausts any hedonic content of affective touch. 
For example, its selectivity for stroking speed outweighed pleasantness differences 
between  soft- and coarse-haired brushes   (Morrison et al.  2011a ), and its activity 
consistently fails to correlate with subjective ratings (e.g., Morrison et al.  2011a ; 
Ebisch et al.  2011 ; Perini et al.  2015 ). Despite this, posterior insula is doubtless a 
robust participant in a brain-wide network of different areas specializing in various 
aspects of tactile and affective processing. Specifi c relationships among such nodes 
in a wider network have not yet been experimentally tested, but several candidates 
have been identifi ed as consistently implicated in affective touch processing. 

 As mentioned in the foregoing section, parietal opercular somatosensory areas 
may be parallel or minor cortical targets of the  CT-spinothalamic pathway  , along-
side posterior insula (Fig.  12.1 ). Alternatively—or additionally—these regions 
may form part of a wider network that contributes to the processing of gentle, 
dynamic touch by virtue of its direct corticocortical connections (Friedman et al. 
 1986 ; zu Eulenburg et al.  2013 ; Ebisch et al.  2011 ; Morrison et al.  2010 ; Wei and 
Bao  2013 ). In fact, the term “operculo-insular cortex” has been used to capture the 
functional similarity among these areas. Yet although these  insular and opercular 
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areas   are closely adjacent and highly interconnected—as well as being frequently 
interchangeably labeled—their receptive fi elds and cytological characteristics are 
distinct (Evrard et al.  2014 ).

   Like granular insular cortex, primate  opercular somatosensory areas   have cytoar-
chitectonic subregions (Krubitzer and Kaas  1992 ). Within the parietal operculum, 
four relatively distinct somatosensory regions have been probabilistically mapped, 
using evidence from histologically stained postmortem human brains, alongside 
functional imaging evidence (Eickhoff et al.  2006 ; Baumgärtner et al.  2010 ; Kurth 
et al.  2010 ). The subregions OP1 and OP3 are particularly relevant here because they 
are commonly activated across both affective touch paradigms as well as in tasks 
which involve tactile stimulus detection and/or discrimination (Morrison). 

 Region OP1 lies posterior to OP3 and is the likely human homologue of “classi-
cal” secondary somatosensory (SII) cortex in the monkey (Eickhoff et al.  2006 ). 
OP1 responds to noxious tactile stimuli as well as tactile, nociceptive, and vestibular 
stimulation (zu Eulenburg et al.  2013 ). OP3 lies deeper in the  Sylvian fi ssure   and is 

  Fig. 12.1    Cortical targets of the CT-spinothalamic pathway. Schematic coronal section of the 
human brain showing pathway from the dorsal horn of the spinal cord, continuing to thalamic 
nuclei via the  spinothalamic tract (STT)  , and onward to posterior insular and parietal opercular 
cortices.  Green  indicates the predominant STT projections to posterior insula via posterior supra-
geniculate complex (Po-Sg).  Blue  indicates the predominant STT projections to parietal opercular 
areas OP1 and OP3 via ventroposterior inferior nucleus (VPI).  Note :  for simplicity of illustration , 
 OP1 and OP3 are pictured in the same plane ,  though OP1 lies posterior to OP3 on the human 
parietal operculum . For a discussion of the cortical networks in which these targets participate, see 
the section “Cortical networks”       
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the likely homologue of the primate “ventral somatosensory” area VS, which is not 
functionally well-characterized (Eickhoff et al.  2006 ; Krubitzer and Kaas  1992 ). In 
nonhuman primates such as the macaque ( Macaca mulatta ) and the marmoset 
( Callithrix jacchus ), both SII and PV receive major projections from VPI (Qi et al. 
 2002 ), whereas this is not clearly the case for VS. It has been speculated that tha-
lamic inputs to S2 and PV are modulatory rather than relaying strictly sensory 
response properties (Krubitzer and Kaas  1992 ; Qi et al.  2002 ). 

 Primary somatosensory (SI) areas associated with the discriminative aspect of 
touch may also contribute to the processing of affective or social touch stimuli in 
humans. Although the CT pathway may privilege certain information based on spe-
cifi c ranges of speed (Löken et al.  2009 ) and temperature (Ackerley et al.  2014 ) vari-
ables, any tactile stimulation anywhere on the body will also activate the large 
myelinated Aβ afferents that project predominantly to  somatosensory cortices  . The 
potential involvement of SI is suggested by its ability to use visual cues to distinguish 
between videos of male and female strokers during tactile stimulation of the leg 
(Gazzola et al.  2012 ). Similarly,  transcranial magnetic stimulation (TMS)   over right 
SI selectively slowed reaction times on a go−no go task following affective touch 
(Bolognini et al.  2011 ). SI has also been activated alongside SII and posterior insula 
for palm (glabrous skin) stroking, whereas arm (hairy skin) stroking was limited to 
posterior insula (Perini et al.  2015 ; see also McGlone et al.  2012 ). Together with the 
palm-specifi c activation in SI, this incomplete overlap between arm and palm strok-
ing activation suggests a general bias toward hairy skin (CT + Aβ input) in posterior 
insula and a bias toward glabrous skin (Aβ input) in somatosensory cortices. 

 Other areas implicated in affective touch networks include the superior temporal 
gyrus and sulcus (STG and STS; Gordon et al.  2011 ; Bennett et al.  2014 ). 
Neurotypical individuals who nonetheless score high on some measures associated 
with  autism spectrum disorder (ASD)   show reduced activation in STS during skin 
stroking (Voos et al.  2013 ), as do children and adolescents diagnosed with ASD 
(Kaiser et al.  2015 ). The role of superior temporal areas may lie in the integration of 
tactile information with sensory and spatial information from other modalities. A 
role in processing socially relevant stimuli was fi rst revealed by neurons in the 
macaque STS, which responded to the eye gaze direction of other primates, espe-
cially in conjunction with congruent head orientation (Perrett et al.  1985 ). This area 
is also involved in processing convergent auditory and  visual facial information   
(Ghazanfar et al.  2008 ). In addition to an involvement in processing movement- 
direction information and in polymodal integration (Beauchamp et al.  2008 ), STS/
STG plays a role in sensory imagery (Berger and Ehrsson  2014 ). These functional 
properties are consistent with the fact that during a standard fMRI experiment, par-
ticipants can feel but not see the tactile stimulation. STS may thus contribute to 
structuring a coherent representation of the touch by working to “fi ll in” missing 
visual and spatial information via imagery (e.g., Kilintari et al.  2014 ). 

 Since CT-associated touch can be experienced as pleasant, it may have intrinsic 
reward value. That is, people might not only  like  social touch but  want  it for its own 
sake, resulting in active seeking behavior (Berridge and Robinson  2003 ). Perini 
et al. ( 2015 ) used a  feedback-based experimental paradigm   in which the subjects 
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could determine which stroking speed they would receive in a given trial. The 
speeds that subjects preferred and actively sought above chance level were 
CT-optimal speeds, which activated both posterior insula and dorsolateral prefrontal 
cortex. The idea that affective touch networks interact with reward- and decision- 
related networks is consistent with several fi ndings that implicate orbitofrontal cor-
tex in affective touch processing (Francis et al.  1999 ; Disbrow et al.  2000 ; Rolls 
et al.  2003 ; McCabe et al.  2008 ; McGlone et al.  2014 ). The  orbitofrontal cortex   is 
associated with reward-related behavior (Rolls and Grabenhorst  2008 ; Padoa- 
Schioppa and Cai  2011 ) and may work together with posterior insula to evaluate 
affective touch in ways that guide such behavior. Studies involving tactile massage 
have implicated another important limbic region, the perigenual ACC, associated 
with emotional processing (Lindgren et al.  2012 ; Sliz et al.  2012 ).  

    Hypotheses of Role and Origin 

 Presumably, the wider function of CT signaling is not merely to indicate the pres-
ence of a certain stimulus type (for example, “warmish, medium-speed movement”), 
but to enable certain behaviors instigated by that stimulus. Such processes must take 
place at the level of cortical networks simply because this is where integration of 
tactile information with crucial higher-level factors—such as memory, context, and 
intention—occurs.  Integration   at this level underpins the complex affective disposi-
tions which translate into behavior. This section therefore discusses and evaluates 
three hypotheses regarding wider functional roles for the CT pathway. Each revolves 
around the distinct physiological and functional properties of the afferent pathways 
followed by CTs, and each is likely to enlist  cortical-level integration   of various 
types of information. These hypotheses are (1) the “social touch” hypothesis, (2) the 
related “interoceptive” hypothesis, and (3) the “thermoregulatory” hypothesis. 

 These  hypotheses   have arisen because the functional neuroanatomy of 
CT-mediated touch invites conjecture as to its wider evolutionary role, and even its 
origin, in mammalian species. This necessarily involves a degree of speculation, 
and it is worth emphasizing that direct empirical tests of these hypotheses are lack-
ing. However, they do tend to orbit around a distinct cluster of plausible and testable 
ideas. The most salient of these is efferent  regulation , especially brain-level regula-
tion of bodily processes (e.g., cardiac, respiratory, visceral, etc). More specifi cally, 
hypotheses of CT function postulate that CTs are part of a segregated afferent−
efferent  pathway   infl uencing physiological regulation in the face of external 
 perturbation. An implication of this view is that such regulatory mechanisms can 
extend beyond the individual organism to include social interactions. 

 The central pillar of the “ social touch  ” hypothesis is the idea that affective touch 
operates mainly in the domain of social interactions and has an impact on behavior 
(Olausson et al.  2010 ; Morrison et al.  2010 ; McGlone et al.  2014 ). It proposes that 
human touch is a specifi c, distinct category of tactile experience that is inherently 
hedonic and rewarding, with possible functional roles in fostering and maintaining 
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social relationships. Such affective touch may thus constitute a domain of touch that 
draws on a qualitatively different category of information than that coded by Aβ 
afferents. This may even involve specialized functional organization in both the 
periphery and the central nervous system. 

 CT response properties appear to square very nicely with the proposition that they 
are tuned to stimulus features that typically occur in social interactions, such as 
caressing. First, the intermediate, caress-like speeds that give rise to the highest 
mean CT  fi ring frequency   are the most hedonically potent (Löken et al.  2009 ). 
Second, more recent fi ndings suggest that the unique profi le of CT responses to dif-
ferent stroking speeds can interact with temperature (Ackerley et al.  2014 ). Namely, 
their mean fi ring increases most to 3 cm/s stroking by a skin-temperature (32 °C) 
probe, compared to stroking at other speeds and by warmer or colder probes. This 
suggests that CT afferents prefer caress-speed stroking at a “creature” temperature, 
which is also rated as most pleasant. Less directly, the slow conduction velocity of 
CTs (around 1 m/s) and their diffuse perceptual correlates (e.g., Olausson et al.  2002 ) 
point away from a role in fast, high-acuity discriminative processing. On the “social 
touch” view, signaling in the CT afferent pathway fl ags tactile stimulation that is 
likely to signal close, affi liative body contact with others, making it available for 
further affective evaluation in the brain networks discussed in foregoing sections. 

 The “ interoception  ” hypothesis dovetails with the social touch hypothesis, but 
places its emphasis on the physiological effects of affective touch on bodily pro-
cesses. Historically, the classical view of interoception hinged on a distinction 
between “interoceptive” tissues within the body, for example, those involving vis-
ceral innervation, and “exteroceptive” tissues on the body surface, such as those 
involving cutaneous innervation. This view has recently undergone a paradigm shift 
away from a literal “in−out” distinction in favor of one based more on the physio-
logical properties of the relevant nerve pathways. The currently prevailing view of 
interoception involves the coding and perception of physiological state changes in 
body tissues (Craig  2002 ; Migliorini et al.  2013 ). Craig has redefi ned interoceptive 
pathways as those of unmyelinated and thinly myelinated afferents synapsing in 
lamina I of the dorsal horn and ascending via the STT to medial thalamic nuclei 
(Craig  2003 ,  2009 ; see also Andrew, this volume). In this respect, CTs have more in 
common with “interoceptive” pathways, both physiologically and functionally, than 
“exteroceptive” tactile pathways, despite innervating the skin (Björnsdotter et al. 
 2010 , see also Björnsdotter, this volume). 

 Importantly, Craig classed this pathway as an “afferent limb” of the  sympathetic 
nervous system   (Craig  2003 ). This implies a relationship with efferent autonomic 
regulation of bodily states via sympathetic and parasympathetic channels, for exam-
ple, those which infl uence heartbeat, breathing, and muscle readiness (e.g., Seth and 
Critchley  2013 ). However, any such physiological relationships need to be further 
illuminated by experimental fi ndings, especially in the case of CT-mediated touch 
in humans. Nonetheless, the plausible idea that small-diameter afferent traffi c infl u-
ences sympathetic outfl ow can be viewed from the perspective of homeostatic regu-
lation. Homeostasis refers to a set of regulatory processes that defend a system from 
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deviations from a certain set point. The classic analogy for this is a thermostat, 
which turns on only when the ambient temperature falls outside a fi xed limit. 

 But the problem with this is that very few complex regulatory loops are likely to 
involve a thermostat-like set point (Schulkin  2011 ). Moreover, multiple regulatory 
systems must operate together throughout the body to achieve and maintain a stable 
overall dynamic. To complicate matters further, many of these regulatory processes 
act in an anticipatory manner, especially those which rely on cortically mediated 
predictions involving context, memory, conditional learning, and so forth. A more 
 accommodating model  , then, is “allostasis” (e.g., Sterling  2012 ; Schulkin  2011 ). In 
contrast to strictly homeostatic models, allostatic models emphasize the require-
ment for energy effi ciency in the operation of regulatory systems, and supply a role 
for predictive modulation as well as fl exible input–output ranges among multiple 
interacting systems. Here, stable dynamics refl ect optimized balances among ener-
getic costs, not necessarily defense against deviations from a given set point. This 
allostatic view has generated a specifi c model of “interoceptive inference” implicat-
ing anterior insular cortex (Seth  2013 ). 

 A third, “ thermoregulatory  ,” hypothesis is proposed here (see also Morrison, in 
press). Its focal point is the somatosensory correlates of warmth-seeking behavior 
in mammals. The thermoregulatory hypothesis does not assume that affective, 
social touch confers survival benefi ts that have been directly selected for in our 
phylogenetic past. Rather, it postulates that CT coding may be an outcome (or “exa-
ptation,” Gould and Vrba  1982 ) of thermoregulatory-related traits that have them-
selves been more directly shaped by selection pressures. In this scenario, the present 
functions of mechanoreceptive C afferents have been scaffolded in phylogenetic 
history by thermosensitive C-mediated mechanisms of thermoregulatory behavior 
in young mammals, in the context of huddling (e.g., in litters) and counterparts to 
huddling in dyadic interactions (e.g., parent−offspring “snuggling”). 

  Cold-sensitive subtypes   of cutaneous C afferents signal decreases in tempera-
ture. This signaling can ultimately result in shivering or nonshivering thermogene-
sis, or changes in behavior to seek external heat sources. For example, in newborn 
mammals, nonshivering thermogenesis is mediated by sympathetic vagal efferents 
which can instigate the burning of brown adipose fat (BAT; Ryu et al.  2015 ). Though 
the physiology is less well understood, skin temperature decreases can also drive 
huddling behavior, a means of social thermoregulation that allows reduction of heat 
loss as well as lowering energetic metabolic costs of endothermoregulation (Gilbert 
et al.  2012 ; Morrison et al.  2008 ). Huddling in newborn porcupines ( Hystrix afri-
caeaustralis ), for example, lowers the critical temperature at which they can effec-
tively thermoregulate by endogenous means (Haim et al.  1992 ). Importantly, these 
decreases enable gains in energy allocation for other important processes, such as 
growth and repair (vital from an allostatic perspective, as discussed above). 

 Huddling involves active behavior to maximize its effects, which results in con-
tinual movement patterns as individuals nuzzle their way to the center, displacing and 
being displaced by littermates (Gilbert et al.  2012 ). It also generates predictable, 
stable signatures of  somatosensory stimulation   on hairy skin surfaces: gentle, moving 
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touch at skin temperature. This opens up an opportunity for mechanoreceptive 
coding to stand in for thermoreceptive coding in the allostatic regulatory loops, 
perhaps especially those most relevant to the effi cient driving of specifi c, 
proximity- seeking behaviors. This is evolutionarily plausible because cutaneous 
sensory afferents show relatively wide scope for adjusting molecular receptor pro-
fi les according to species-level environmental pressures (Gracheva and Bagriantsev 
 2015 ). Both in development and phylogeny, genetic regulatory mechanisms deter-
mine specifi c response profi les of C afferent subtypes by differential expression of 
receptor channels (Lou et al.  2015 ; Ma  2010 ,  2012 ). Such  genetic regulation   could 
produce tuning shifts in afferent phenotype and function without requiring large 
genetic changes. Thus turning “on” or “off” the expression of certain receptor 
channels (such as MrgprB4; Lou et al.  2015 ) could result in modality-selective 
sensory neurons, or even response properties signaling in a combinatorial fashion 
with other subtypes (Lou et al.  2015 ; Ma  2010 ,  2012 ; Prescott et al.  2014 ). 
Importantly, such shifts could also provide energy effi ciency gains in allostatic 
terms, potentially making tactile input energetically “cheaper” than thermoregula-
tory processing in this context. Via such phylogenetic and developmental mecha-
nisms, the stable temporal coincidence of somatosensory and thermosensory 
processing in young mammals might thus favor a shift from a general thermoregu-
latory function to one more tuned to somatosensory aspects of close social con-
tact. This in turn would create a platform for wider possibilities in the domain of 
social interaction. 

 Whatever the  phylogenetic relationship   between C afferent subtypes, though, 
both thermosensation and somatosensation during close proximity essentially sig-
nals that the organism is in a “safety zone.” On this basis, these sensory processes 
can ultimately serve to signal other benefi ts of social proximity beyond the ther-
moregulatory realm, such as reduced risk for predation exposure. Social touch 
then becomes a parsimonious way to sound the “all clear” to the central nervous 
system with respect to metabolically expensive sympathetic arousal (see also 
Porges  2007 ). Conversely, it provides the neural means by which acute stress or 
 anxiety   can trigger a motivation to seek proximity in order to dampen arousal, just 
as being cold can drive behavior to huddle close to others to restore warmth. There 
is growing evidence that social and C-mechanoreceptor-mediated touch can buffer 
autonomic and behavioral signs of stress and anxiety (Coan et al.  2006 ; Vrontou 
et al.  2013 ; Schirmer et al.  2013 ). In this way, thin-fi ber-mediated systems may 
have expanded into further aspects of social interaction and its multiple benefi ts in 
social animals. 

 The ultimate outcome of the “social touch,” “interoceptive,” and “thermoregula-
tory” scenarios of CT function is that social factors and events become incorporated 
into systems for physiological regulation of individual bodily economy. This is bro-
kered by the brain’s generation of motivated, adaptive behavioral changes. Future 
research will follow these various leads to arrive at more direct tests of CT afferent 
function (Fig.  12.2 ). In the end, these leads are likely to take us from the body to the 
brain, and back again.
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