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Chapter 6

Microemulsion Electrokinetic Chromatography

Wolfgang Buchberger

Abstract

Microemulsion electrokinetic chromatography (MEEKC) is a special mode of capillary electrophoresis 
employing a microemulsion as carrier electrolyte. Analytes may partition between the aqueous phase of the 
microemulsion and its oil droplets which act as a pseudostationary phase. The technique is well suited for the 
separation of neutral species, in which case charged oil droplets (obtained by addition of an anionic or cat-
ionic surfactant) are present. A single set of separation parameters may be sufficient for separation of a wide 
range of analytes belonging to quite different chemical classes. Fine-tuning of resolution and analysis time 
may be achieved by addition of organic solvents, by changes in the nature of the surfactants (and cosurfac-
tants) used to stabilize the microemulsion, or by various additives that may undergo some additional interac-
tions with the analytes. Besides the separation of neutral analytes (which may be the most important 
application area of MEEKC), it can also be employed for cationic and/or anionic species. In this chapter, 
MEEKC conditions are summarized that have proven their reliability for routine analysis. Furthermore, the 
mechanisms encountered in MEEKC allow an efficient on-capillary preconcentration of analytes, so that the 
problem of poor concentration sensitivity of ultraviolet absorbance detection is circumvented.

Key words Microemulsion, Electrokinetic chromatography, Capillary electrophoresis, 
Pseudostationary phase, Hydrophobic interaction

1  Introduction

Microemulsion electrokinetic chromatography (MEEKC) covers 
variants of capillary electrophoresis (CE) employing a microemul-
sion as carrier electrolyte. Contrary to other CE techniques, 
MEEKC allows the separation of neutral analytes. In addition, this 
technique is also suited for separation of charged species, whereby 
separation selectivities may be achieved which are significantly dif-
ferent from those obtained by commonly used CE techniques for 
separation of ionic analytes. Microemulsions have been discovered 
more than 70 years ago by Hoar and Schulman [1] and have been 
introduced for CE separation techniques in 1991 by Watarai [2]. 
Since then the numbers of applications of MEEKC have increased 
steadily, which has been documented in review papers that have 
been published regularly within the last few years [3–8].
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Microemulsions are dispersions of two immiscible liquids and may 
consist either of oil droplets suspended in water (oil-in-water [o/w] 
microemulsions) or of water droplets suspended in an oil phase 
(water-in-oil [w/o] microemulsions). MEEKC separations are 
mostly carried out in oil-in-water microemulsions. Typically, they 
consist of octane droplets dispersed in an aqueous buffer containing 
surfactants to coat the octane droplets and lower the surface tension 
between the two liquids. Furthermore, a short-chain alcohol like 
n-butanol (called a cosurfactant) is added which also lowers the 
surface tension. Under such conditions, a stable microemulsion is 
generated with droplet sizes below 10 nm. It is optically transparent 
and looks like a single-phase solvent although it is a two-phase sys-
tem. As mentioned earlier, o/w microemulsions are the most com-
mon form of microemulsions used in MEEKC.  Therefore, the 
following discussions will mostly focus on this type, and w/o micro-
emulsions will be treated only shortly in part 1.4.

Sodium dodecyl sulfate (SDS) is commonly used as surfactant 
for stabilization of the microemulsion droplets. At the interface 
between the aqueous phase and the oil phase, the dodecyl chain is 
oriented toward the inner of the oil droplet, whereas the negatively 
charged sulfate group is oriented toward the aqueous phase. The 
cosurfactant such as n-butanol will also attach to the surface of the 
oil droplet with the butyl group toward the oil phase and the alco-
hol group toward the aqueous phase. As a result of the presence of 
the anionic surfactant, the oil droplets will acquire a negative 
charge and will exhibit an electrophoretic mobility in the direction 
of the anode. The aqueous phase is generally buffered at an alka-
line pH. In fused-silica capillaries, alkaline buffers generate an elec-
troosmotic flow (EOF) toward the cathode. Provided that the pH 
is high enough, the magnitude of the EOF exceeds the electropho-
retic mobility of the oil droplets (which is directed against the 
EOF). Therefore, the EOF will sweep the oil droplets to the cath-
ode. The apparent mobility of the oil droplets is directed to the 
cathode and has a magnitude that is lower than that of the EOF.

Highly hydrophilic neutral analytes injected at the anodic side 
of the capillary will reside predominantly in the aqueous phase so 
that they will be transported to a detector positioned at the cathodic 
side of the separation capillary by the EOF according to the elec-
troosmotic mobility. The time at which they reach the detector 
after injection may be called tEOF. Conversely, highly hydrophobic 
analytes will reside predominantly in the oil droplets, will be trans-
ported to the cathodic detection side according to the apparent 
mobility of the droplets, and will reach the detector after the time 
tME. Analytes of medium polarity will undergo partitioning equilib-
ria between the aqueous phase and the oil phase, and will reach the 
detector at a time t, which is between tEOF and tME. Obviously, 
MEEKC separates neutral analytes according to their hydropho-
bicities. The technique offers a limited separation time window 

1.1  Fundamentals
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governed by tEOF and tME. These two parameters may be deter-
mined by injection of methanol as EOF marker (tEOF) and octano-
phenone or dodecyl benzene as microemulsion marker (tME).

The partitioning equilibria of analytes established between the 
aqueous phase and the oil droplets indicate that chromatographic 
principles are involved in the separation (justifying the word “chro-
matography” in MEEKC). Therefore, the oil droplets may be 
called a pseudostationary phase. In analogy to chromatography, 
one can define retention factors k for the analytes:
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In case of a true stationary phase as encountered in liquid chroma-
tography, tME would become infinite and tEOF would be the dead 
time. The equation given earlier would turn into the well-known 
definition of k being the ratio of net retention time to dead time.

A schematic presentation of the MEEKC separation process is 
given in Fig. 1. Additional details can be found in recently pub-
lished review papers (see for example [9]). It should be pointed 
out that the separation mechanisms encountered in MEEKC are 
similar to those in micellar electrokinetic chromatography (MEKC), 
which uses micelles (aggregates of surfactant molecules) as pseu-
dostationary phase. Advantages of MEEKC over MEKC may 
include the fact that oil droplets exhibit a reduced rigidity com-
pared to micelles so that hydrophobic analytes can more easily pen-
etrate the surface and enter the core of the pseudostationary phase. 
Furthermore, MEEKC may offer a somewhat larger separation 
time window, because the total charge of the droplets (and thereby 
tME) can be manipulated by employing mixed surfactants com-
posed of charged and neutral species in different compositions.

Fig. 1 Principle of the separation process in microemulsion electrokinetic chromatography for a neutral analyte 
in an alkaline microemulsion stabilized by an anionic surfactant like sodium dodecyl sulfate

Microemulsion Electrokinetic Chromatography
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Instead of alkaline buffers, acidic buffers are used occasionally. 
In such a case the EOF is very low and is no longer able to transport 
an anionic pseudostationary phase (droplets stabilized by SDS) to 
the cathodic detection side. Therefore, one has to switch the polar-
ity and the detection must be at the anodic side of the capillary.

Besides anionic surfactants like SDS, also cationic surfactants 
like cetyltrimethylammonium bromide (CTAB) may be employed 
for stabilization of the oil droplets. Such surfactants will not only 
lead to positively charged droplets, but they also act as EOF modi-
fiers due to the generation of a positively charged inner surface of 
the fused-silica capillary, resulting in a reversed direction of the 
EOF. Therefore, the detector must be positioned at the anodic end 
of the capillary when working with such cationic surfactants.

MEEKC separations of ionic analytes involve somewhat 
more complex mechanisms, because the apparent mobility of the 
analytes is governed by both their electrophoretic mobilities and 
their interactions with the pseudostationary phase. Generally, 
nonionic surfactants can be used leading to a neutral pseudosta-
tionary phase, but cationic or anionic pseudostationary phases 
may be suited as well. In the latter case, one has to take into 
account a possible repulsion of the charged analyte from the 
charged pseudostationary phase if both are anionic (or if both 
are cationic). In case of analytes with a charge opposite to the 
pseudostationary phase, additional ion-pairing equilibria at the 
surface of the droplets may have an impact on the separation. In 
addition, ion pairing between the charged analyte and excess of 
surfactant may occur in the aqueous phase, which may favor the 
partitioning reaction into the oil droplet.

Last, but not least, one should keep in mind that depending 
on the pH of the microemulsion the analytes may be in a neutral 
form or in a protonated/deprotonated form. Therefore, differ-
ent types of microemulsions (neutral or charged) may be recom-
mendable, and different separation selectivities can be expected. 
This is demonstrated in Fig. 2, which shows the separation of 
closely related methyl derivatives of quinoline that are used as 
raw materials for industrial production of agrochemicals and 
pharmaceuticals [10]. Chromatogram A presents the separation 
of methylquinolines at pH 9.4 (neutral analytes) using a nega-
tively charged oil phase, and B presents the separation of the 
same set of analytes at pH 4.0 (protonated analytes) using a neu-
tral oil phase [10]. In case A, the separation selectivity is solely 
governed by the partitioning between the aqueous phase and the 
oil droplets, whereas in case B separation selectivity is signifi-
cantly different because it is affected by both partitioning and 
electrophoretic behavior of the analytes. It is worth mentioning 
that a buffer of pH 4 without oil droplets (corresponding to a 
pure capillary zone electrophoretic mode) would not lead to any 
satisfactory separation.

Wolfgang Buchberger
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Variables to be optimized with respect to manipulation of migration 
order and optimization of separation selectivity of neutral analytes 
include the kind of oil phase, the kind of surfactant and cosurfac-
tant, the addition of water-miscible solvents, and the use of specific 
additives such as cyclodextrins, carbon nanotubes, and others, that 
introduce extra effects for the separation of certain analytes.

The concentration of the oil phase in the carrier electrolyte is typi-
cally around 1 % or less. Frequently, n-alkanes like hexane, heptane, 
or octane are employed as oil phase, with octane often being 

1.2  Optimization 
of the Separation 
of Neutral Analytes

1.2.1  Oil Phase

Fig. 2 MEEKC separation of methylquinolines at pH 9.4 using a negatively 
charged oil-in-water microemulsion consisting of SDS, n-butanol, n-octane, and 
borate buffer (a), and at pH 4 using a neutral oil-in-water microemulsion consist-
ing of Brij35, n-butanol, n-heptane, and acetate buffer (b). Peaks: 1 = quinoline, 
2 = isoquinoline, 3 = 2-methylquinoline, 4 = 4-methylquinoline, 5 = 3-methyl-
quinoline, 6 = 6-methylquinoline, 7 = 8-methylquinoline, 8 = 4,8-dimethylquino-
line, 9 = 2,8-dimethylquinoline, 10 = 2,4,8-trimethylquinoline. UV detection at 
214 nm. Adapted from ref. [10]

Microemulsion Electrokinetic Chromatography
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preferred. As an alternative, ethyl acetate has been selected because 
of its lower surface tension which allows lower concentrations of 
surfactant for stabilization. Other compounds occasionally 
reported for preparation of microemulsions include cyclohexane, 
toluene, 1-chloropentane, alcohols of medium chain length like 
1-hexanol or 1-octanol, and propylene glycol monomethylester 
acetate. More recently, ionic liquids have been investigated as oil 
phase, whereby 1-butyl-3-methylimidazolium hexafluorophos-
phate may be promising [11–13]. Even vegetable oils and artificial 
oils made of alkane and alcohol may have some potential [14]. 
Different partitioning coefficients provided by the different oil 
phases may lead to somewhat different separations, but major 
changes in migration order are not likely. Unfortunately, it is often 
still a matter of trial and error to find the best oil phase. In any case, 
octane may be a good start.

For separation of enantiomers, a chiral oil phase may be used. 
Chiral alkyl tartrates have been investigated for this purpose [15, 
16]. Resolution between enantiomers was obtained if borate buf-
fers were employed, whereas phosphate or Tris buffers did not lead 
to any enantioseparation. The authors attributed this phenomenon to 
the formation of a complex between borate and the alkyltartrate.

Surfactants are a key component in the microemulsion. They have 
a direct impact on stability of the oil droplets by lowering the sur-
face tension, and they affect size and charge of the droplets, magni-
tude, and direction of the EOF. Anionic or cationic surfactants as 
well as mixtures of them with nonionic surfactants have been 
employed for separation of neutral analytes. One should keep in 
mind that the addition of ionic surfactants can lead to a significant 
increase of electric conductivity of the carrier electrolyte, which may 
limit the applied voltage in order to avoid excessive Joule heating.

The most common surfactant for MEEKC is sodium dodecyl 
sulfate (SDS), which is typically used at concentrations around 3 %. 
Alternative anionic surfactants include lithium dodecyl sulfate (which 
leads to somewhat lower electric currents), bile salts like sodium cho-
late, or sulfosuccinates like sodium bis(2-ethylhexyl) sulfosuccinate.

Cationic surfactants reported for use in MEEKC are based on 
quaternary ammonium salts like dodecyltrimethyl ammonium 
chloride, tetradecyltrimethyl ammonium bromide, or cetyltri-
methyl ammonium chloride/bromide. As mentioned in the part 
on fundamentals, the behavior of these salts as EOF modifiers must 
be taken into account.

The use of mixtures of surfactants may provide various bene-
fits. The combination of SDS and Brij-35 (a nonionic surfactant) 
allows the manipulation of the charge of the droplets and thereby 
manipulation of the separation time window.

Chiral surfactants have been introduced for MEEKC separa-
tions of enantiomers, such as R- and S-dodecoxycarbonylvaline 

1.2.2  Surfactants
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(DDCV) [17–19]. This approach can also be combined with the 
use of a chiral oil phase (see previous part) which has been demon-
strated for the use of DDCV together with dibutyltartrate or dieth-
yltartrate [20, 21].

The variations of nature and concentration of the cosurfactant may 
be exploited for fine-tuning of the separation (see for example 
[22]). Short chain alcohols are frequently used as cosurfactants, 
with 1-butanol at a concentration of around 6 % being the most 
common one. It has been suggested that such solvents do not only 
act as cosurfactants, but that a significant portion of it can partition 
into the oil droplet, especially as the amount of cosurfactant pres-
ent in the microemulsion exceeds that of the actual oil phase [23]. 
Thereby, the chromatographic properties of the pseudostationary 
phase are modified and with it the k values of the analytes affected. 
General rules for selection of appropriate cosurfactants are still dif-
ficult to establish.

Chiral separations may benefit from the use of chiral 2-alkanols 
like R(−)-2-pentanol, R(−)-2-hexanol or R(−)-2-heptanol as cosurfac-
tants [24]. A synergistic effect has been observed when (S)-2-hexanol 
was employed together with a chiral surfactant [25]. In addition, even 
three-chiral-component microemulsions (R- or S-DDCV, S-2-
hexanol, and R- or S-diethyltartate) have been investigated and com-
pared with one- and two-chiral-component microemulsions [26].

Interestingly, it has also been claimed that a stable microemul-
sion prepared by hexane and SDS in an ammonium acetate solution 
can be generated without the use of any cosurfactant [27], but such 
an approach has not made its way to a wider range of applications.

For certain applications, water-miscible organic solvents may be 
added to the microemulsion [23]. In this way, the partitioning equi-
libria of the analytes between the aqueous phase and the oil phase 
may be manipulated. This aspect is of major significance when ana-
lytes with very poor solubility in water are separated. Such analytes 
would not partition at all into a purely aqueous phase and would 
therefore reach the detector after the time tME. A typical example for 
the benefits of water-miscible solvents is the analysis of highly hydro-
phobic polymer stabilizers [28]. Depending on the type of water-
miscible solvent, there are upper limits for its use in MEEKC. Exceeding 
these limits will result in a disintegration of the microemulsion. It has 
been reported that methanol may be used up to 8 % (v/v), acetoni-
trile up to 12 %, whereas 2-propanol may be used at considerably 
higher concentrations [29]. One should not forget the well-known 
side effect of organic solvents on the magnitude of the EOF which 
depends on the dielectric constant of the liquid phase, on the viscos-
ity, and on the zeta potential of the capillary wall (all these parameters 
are directly affected by amount and type of an organic solvent in the 
aqueous phase of the microemulsion).

1.2.3  Cosurfactant

1.2.4  Water-Miscible 
Solvents

Microemulsion Electrokinetic Chromatography
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The addition of cyclodextrins to the carrier electrolyte is a 
well-established approach for chiral separations in capillary zone 
electrophoresis. The formation of transient diasteromeric complexes 
with cyclodextrins can also be exploited in MEEKC as an interaction 
in addition to the partition equilibrium between aqueous and oil 
phase, whereby either neutral cyclodextrins or cyclodextrins modified 
by charged groups (sulfated cyclodextrin) may be suited [30–32].

More recently, carbon nanotubes dispersed in the micro-
emulsion have been investigated in order to establish additional 
interactions that might improve the separation selectivity in 
MEEKC [33–35].

Some experiments have been done with water-soluble ionic 
liquids as additives. In case of an anionic surfactant, the cation of 
the ionic liquid may interact and may partly neutralize the nega-
tive charge, thereby changing the properties of the pseudosta-
tionary phase [36].

In the simplest case, ionic analytes are separated by using an oil 
phase stabilized by nonionic surfactants. In this case, the principles 
for optimization of the separation are similar to those mentioned 
earlier for separation of neutral analytes in a charged microemul-
sion. Nonionic surfactants most often employed are Brij-35, Tween-
20, or Triton X-100. In addition, a less common nonionic surfactant, 
Pluronic F-127 has seen suggested [37] (which is an amphiphilic 
block copolymer consisting of ethylene oxide and propylene oxide), 
although so far only in combination with SDS for separation of 
neutral analytes. Most recently, zwitterionic surfactants like 
N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate 
(DAPS) have been studied [38].

As mentioned in the Introduction, the use of charged micro-
emulsions may lead to additional attraction or repulsion of ionic 
analytes to/from the droplets. This attraction/repulsion may be 
manipulated by using a mixture of a cationic and an anionic sur-
factant (see for example [39]). Oppositely charged analytes/
droplets or analytes/excess surfactant in aqueous phase may also 
undergo interactions by ion-pair formation. A systematic treat-
ment of such complex additional interactions is somewhat diffi-
cult so that generally valid strategies for optimization of 
separation selectivity are still limited.

Although MEEKC is almost exclusively done in oil-in-water micro-
emulsions, a few attempts have been made to apply water-in-oil 
microemulsions. Altria et al.[40, 41] introduced w/o microemul-
sions typically composed of 10 % SDS, 80 % butanol (or 78 % buta-
nol and 2 % octane), and 10 % aqueous buffer (or slight modifications 
of this composition). Similar compositions have been used later by 
other groups [42–45], but up to now the number of applications 
of w/o microemulsions in MEEKC is quite limited.

1.2.5  Other Additives

1.3  Optimization 
of the Separation 
of Ionic Analytes

1.4  Water-in-Oil 
Microemulsions

Wolfgang Buchberger
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Spectroscopic detection techniques generally suffer from poor 
detection limits due to the short detection path length provided by 
the inner diameter of the separation capillary. Preconcentration 
effects occurring under proper injection conditions may help to 
improve detection limits. CE separation techniques based on pseu-
dostationary phases may allow a preconcentration step called sweep-
ing. It is generally defined as the picking and accumulating of 
analytes by a charged pseudostationary phase that penetrates the 
sample zone during application of a voltage. Most work on sweep-
ing was done using micelles as pseudostationary phase (see, for 
example, the review in [46]), and the same principles work for 
microemulsions as well. Therefore, this chapter will not go into 
details regarding the theory of sweeping. In the simplest case, effi-
cient preconcentration can be achieved with an microemulsion con-
sisting of an oil phase stabilized by a negatively charged surfactant 
and an aqueous phase of low pH. The sample solution that does not 
contain the pseudostationary phase is injected hydrodynamically at 
the cathodic end of the capillary. After injection, the anionic pseu-
dostationary phase will migrate from the cathodic carrier electrolyte 
vial into the capillary and through the sample zone (because of the 
low pH, the EOF can be neglected). In the sample zone, neutral 
analytes undergo partitioning and are focused into a narrow zone. 
As a result of the focusing effect, quite high volumes of sample may 
be injected without peak broadening (making possible a more than 
1000-fold increase in sensitivity). Nevertheless, too long injection 
zones (without pseudostationary phases) may lead to instabilities of 
the system after applying voltage. Therefore, electrokinetic injec-
tion techniques have been used instead of hydrodynamic injection 
(which allows the selective injection of anions or cations without 
generating an excessively long zone of sample) followed by the 
sweeping step. Details of quite sophisticated combinations of injec-
tion techniques and sweeping would go beyond the scope of this 
chapter but can be found in recent review papers [3, 4, 7].

In common with other CE modes, the most widely used detection 
technique for MEEKC is UV–visible absorbance detection. 
Besides, fluorescence detection (with a xenon lamp or a laser as 
light source) may be the alternative for analytes that show native 
fluorescence or can be transformed into fluorescent derivatives 
prior to injection. A typical example for the latter approach is the 
separation of amino acids after derivatization with fluorescein iso-
thiocyanate (FITC) [47].

Mass spectrometric (MS) detection may be most attractive 
as it provides the confirmation of peaks for target analytes or the 
structure elucidation of unknown peaks. Capillary zone electro-
phoresis can be hyphenated with MS via an electrospray ioniza-
tion (ESI) source using a sheath–liquid interface which allows 
the realization of a makeup flow of a few μL/min to make flow 

1.5  Sample 
Preconcentration 
by Sweeping

1.6  Detection
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rates better compatible with commercial ESI sources and at the 
same time allows the application of the high voltage of the CE 
separation [48]. Unfortunately, the high concentrations of sur-
factants used in MEEKC make the technique hardly suited for 
coupling with ESI which would suffer from severe ionization 
suppression. Instead of ESI, atmospheric pressure photoioniza-
tion (APPI) was found to tolerate components of a microemul-
sion much better [49–51]. A microemulsion consisting of 0.8 % 
octane, 2 % SDS, 6.6 % butanol, and 90.6 % of 20 mM ammo-
nium hydrogencarbonate buffer (pH 9.5) allowed the quantita-
tive analysis by APPI-MS of various pharmaceuticals down to 
the sub-μg/ml range without dedicated sample preconcentra-
tion during injection [49].

More recently, MEEKC has also been hyphenated with MS 
detection by an inductively coupled plasma interface, thereby 
allowing element-selective detection. This approach has been used 
for the analysis of anticancer platinum complexes [52].

The following discussion cannot give an exhaustive compilation 
of applications reported so far, but intends to give an idea of the 
broad variety of classes than can be separated. In Table  1 the 
focus is put on those applications that demonstrate a separation 
of a larger number of analytes, whereas applications dealing with 
just a single analyte are not included. The separations done by 
MEEKC range from pharmaceutical drugs to vitamins, agro-
chemicals, polycyclic hydrocarbons, natural products, derivatized 
sugars, derivatized amino acids, proteins, fatty acids, nucleosides, 
and chiral compounds. Actually, it is possible to use a single set of 
operating conditions for different applications. A microemulsion 
consisting of 0.8 % (w/w) octane, 6.6 % (w/w) 1-butanol, 3.3 % 
SDS, and 89.3 % (w/w) 10 mM sodium tetraborate buffer may 
be successful for a large number of different analytes and is often 
a quite successful starting point. In cases where this composition 
does not lead to satisfactory results, fine-tuning is possible by 
variation of the components of the microemulsion according to 
the principles discussed earlier.

Besides its benefits for analytical chemistry, MEEKC has fre-
quently been employed as a simple tool for assessment of hydro-
phobicity (expressed as octanol–water partition coefficient Po/w) 
[75–77]. The following linear relationship exists between Po/w and 
log k (k being the retention factor as mentioned earlier):

	 log log/P a k bo w = + 	

Slope and intercept of this line can be obtained from experiments 
with solutes of known octanol–water partition coefficients.

1.7  Applications

Wolfgang Buchberger
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Table 1  
Selected applications of microemulsion electrokinetic chromatography

Analytes Carrier electrolyte Ref.

Fat-soluble vitamins 0.8 % n-octane/6.6 % 1-butanol/6.0 % SDS/20.0 % 
2-propanol/66.6 % 25 mM phosphate buffer pH 2.5

[53, 
54]

Water- and fat-soluble 
vitamins

20 mM borate buffer pH 8.7 containing 1.2 % SDS, 21 % 
n-butanol, 18 % acetonitrile, 0.8 % hexane

[55]

Water- and fat-soluble 
vitamins

0.81 % n-octane/6.61 % 1-butanol/3.31 % SDS/89.27 % 
10 mM sodium tetraborate

[56]

Derivatized amino acids 87.24 % 30 mM phosphate buffer pH 6,
2.16 % SDS, 6 % 1-butanol, 0.6 % cyclohexane, 4 % acetonitrile

[47]

Derivatized sugars 0.81 % n-octanol/6.61 % 1-butanol/3.31 % SDS/89.27 % 5 mM 
borate buffer pH 8

[57]

Derivatized fatty acids 0.66 % n-heptane/6.55 % 1-butanol/4.87 % cholate/87.93 % 
10 mM borate buffer pH 10.2

[58]

5-Lipoxygenase metabolites 20 mM borate buffer pH 9 containing 3 % SDS, 0.5 % octane, 
5 % 1-butanol and 15 mM α-cyclodextrin

[59]

Green tea catechins 1.13 % n-heptane/7.66 % cyclohexanol/2.89 % SDS/88.09 % 
50 mM sodium phosphate pH 2.5

[22]

Rhubarb anthraquinones 
and bianthrones

0.5 % di-n-butyl tartrate/1.2 % n-butanol/0.6 % SDS/97.7 % 
10 mM borate buffer pH 9.2

[60]

Plant hormones 97.2 % 10 mM borate buffer pH 9.2, 1.0 % ethyl acetate, 0.6 % 
SDS, 1.2 % n-butanol

[61]

Food-grade antioxidants 0.6 g octane, 6.6 g 1-butanol, 3.3 g SDS, 69.3 g 25 mM 
phosphate buffer pH 3, 20 g 2-propanol

[62]

Preservatives in food 0.8 % n-octane/6.6 % 1-butanol/3.3 % SDS/89.3 % borate 
buffer pH 9.5

[63]

Food colorants 0.81 % n-octane/6.61 % 1-butanol/3.31 % SDS/10 % 
acetonitrile/79.27 % 50 mM phosphate buffer pH 2.0

[64]

Lignin degradation products 0.91 % n-heptane/6.61 % n-butanol/1.66 % SDS/90.92 % 
20 mM sodium tetraborate

[65]

Sun protection agents 0.8 % n-octane/6.6 % 1-butanol/2.25 % SDS/ 0.75 %/
Brij35/17.5 % 2-propanol/72.1 % 10 mM borate buffer pH 
9.2

[66]

Anticancer platinum 
complexes

0.82 % heptane/6.48 % 1-butanol/1.44 % SDS, 91.26 % 20 mM 
phosphate buffer pH 7.4

[52]

Nitrofuran antibiotics 10 mM borate buffer pH 9.7 containing 0.82 % octane, 3.48 % 
SDS, 6.48 % n-butanol

[67]

Fluoroquinolone antibiotics 8 mM phosphate/borate buffer pH 7.3 containing 1 % heptane, 
100 mM SDS, 10 % n-butanol

[68]

(continued)
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2  Materials

	 1.	Microemulsion for general applications using a negatively 
charged oil phase: mix 3.3 g SDS and 6.6 g 1-butanol, and then 
add 0.8 g n-octane and 89.3 g 10 mM borate buffer pH 9.4 
(prepared from a 10 mM boric acid adjusted to pH 9.4 with 
NaOH). The mixture is placed in an ultrasonic bath for 30 min 
to obtain a clear solution. Afterward, the microemulsion is fil-
tered through a 0.45 μm membrane filter.

	 2.	Microemulsion for highly hydrophobic analytes using a negatively 
charged oil phase: mix 2.25 g SDS, 0.75 g Brij 35 (see Note 1), 
and 6.6  g 1-butanol, and then add 0.8  g n-octane, 25  g 
2-propanol, and 64.6 g 10 mM borate buffer pH 9.4 (pre-
pared from a 10  mM boric acid adjusted to pH 9.4 with 
NaOH). The mixture is placed in an ultrasonic bath for 30 min 
to obtain a clear solution. Afterward, the microemulsion is fil-
tered through a 0.45 μm membrane filter.

	 3.	Microemulsion for general applications using a neutral oil phase: 
mix 3.32 g Brij 35 and 6.62 g 1-butanol, and then add 0.82 g 
n-heptane and 89.2 g 25 mM acetate buffer pH 4.0 (prepared 
from a 25 mM acetic acid adjusted to pH 4.0 with NaOH). 
The mixture is placed in an ultrasonic bath for 30 min to obtain 
a clear solution. Afterward, the microemulsion is filtered 
through a 0.45 μm membrane filter (see Note 2).

	 4.	Microemulsion for on-capillary preconcentration by sweeping 
using a negatively charged oil phase: mix 3.3 g SDS and 6.6 g 

Table 1
(continued)

Analytes Carrier electrolyte Ref.

Nonsteroidal anti-
inflammatory drugs

0.8 % ethyl acetate, 6.6 % n-butanol, 6 % acetonitrile, 1.0 % SDS, 
85.6 % 10 mM borate buffer pH 9,2

[69]

Endocrine disrupting 
compounds

25 mM phosphate buffer pH 2, 80 mM octane, 900 mM 
butanol, 200 mM SDS, and 20 % propanol

[70]

Phthalate esters 60 mM borate buffer pH 9 containing 0.5 % n-octane, 100 mM 
sodium cholate, 5 % 1-butanol

[71]

Triazine herbicides 10 mM borate buffer pH 9.5 containing 2.5 % SDS, 0.8 % ethyl 
acetate, 6 % n-butanol

[72]

Aromatic carboxylic acids 50 mM phosphate buffer pH 2 containing 3.7 % SDS, 0.975 % 
octane, 5 % cyclohexanol

[73]

Polycyclic aromatic 
hydrocarbons

90 % of 0.81 % n-octane/6.61 % n-butanol/3.31 % SDS/89.27 % 
10 mM sodium tetraborate; 10 % ethanol

[74]
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1-butanol, and then add 0.8 g n-octane and 89.3 g 50 mM 
phosphoric acid pH 2.0. The mixture is placed in an ultrasonic 
bath for 30  min to obtain a clear solution. Afterward, the 
microemulsion is filtered through a 0.45 μm membrane filter.

	 5.	CE instrument “7100 CE System” (Agilent, Waldbronn, 
Germany), or equivalent, equipped with an ultraviolet (UV) 
absorbance detector, high voltage supply up to +/−30 kV, and 
autosampler for both hydrodynamic and electrokinetic injection.

	 6.	Fused-silica capillaries (Polymicro Technologies, Phoenic, AZ) 
with inner diameter and outer diameter of 50 and 360 μm, 
respectively, a length from inlet to detector of 51.5 cm, and a 
length from inlet to outlet of 60 cm (see Note 3).

	 7.	Sample vials for autosampler of CE instrument.

3  Methods

	 1.	Four vials are filled with 1 M NaOH, water, 0.1 M NaOH, and 
0.2 M HCl, respectively.

	 2.	The vials are placed into appropriate positions of the autosam-
pler for rinsing the capillary.

	 3.	The capillary is rinsed with 1 M NaOH for 10 min, with water 
for 5 min, with 0.2 M HCl for 10 min, with water for 1 min, 
with 0.1 M NaOH for 10 min, and with water for 10 min.

	 1.	Two vials are filled with 0.1 M NaOH and microemulsion, respec-
tively, for rinsing the capillary (the microemulsion is prepared 
according to the procedure given in Subheading 2, item 1.).

	 2.	Two carrier electrolyte vials (for inlet and outlet side) are filled 
with the microemulsion.

	 3.	Sample solutions and calibration solutions are filled into vials 
(see Note 4).

	 4.	All vials are put into appropriate positions of the autosampler.
	 5.	The capillary is rinsed with 0.1 M NaOH for 5 min and with 

microemulsion for 5 min.
	 6.	The first sample or calibration solution is injected using hydro-

dynamic injection at a pressure of 50 mbar for 5 s (see Note 5), 
and the separation is started by applying a voltage of +25 kV 
(see Note 6).

	 7.	The capillary is rinsed with 0.1 M NaOH for 1 min and with 
microemulsion for 1 min.

	 8.	Steps 6 and 7 are repeated for the next sample or calibration 
solution.

3.1  General 
Procedure 
for Conditioning New 
Fused-Silica 
Capillaries

3.2  Separation 
of Neutral Analytes 
Using a Negatively 
Charged Oil Phase
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	 1.	Two vials are filled with 0.1 M NaOH and microemulsion, 
respectively, for rinsing the capillary (the microemulsion is 
prepared according to the procedure given under 
Subheading 2, item 2).

	 2.	Two carrier electrolyte vials (for inlet and outlet side) are filled 
with the microemulsion.

	 3.	Fill vials with sample solutions and calibration solutions, pre-
pared in the microemulsion as solvent.

	 4.	All vials are put into appropriate positions of the autosampler.
	 5.	The capillary is rinsed with 0.1 M NaOH for 5 min and with 

microemulsion for 5 min.
	 6.	The first sample or calibration solution is injected using hydro-

dynamic injection at a pressure of 50 mbar for 3  s, and the 
separation is started by applying a voltage of +30 kV.

	 7.	The capillary is rinsed with 0.1 M NaOH for 1 min and with 
microemulsion for 1 min.

	 8.	Steps 6 and 7 are repeated for the next sample or calibration 
solution.

	 1.	Two vials are filled with 0.1 M NaOH and microemulsion, 
respectively, for rinsing the capillary (the microemulsion is 
prepared according to the procedure given under 
Subheading 2, item 3).

	 2.	Two carrier electrolyte vials (for inlet and outlet side) are filled 
with the microemulsion.

	 3.	Vials are filled with sample solutions and calibration solutions.
	 4.	All vials are put into appropriate positions of the autosampler.
	 5.	The capillary is rinsed with 0.1 M NaOH for 5 min and with 

microemulsion for 5 min.
	 6.	The first sample or calibration solution is injected using hydro-

dynamic injection at a pressure of 50 mbar for 5 s (see Note 5), 
and the separation is started by applying a voltage of +25 kV 
(see Notes 6 and 7).

	 7.	The capillary is rinsed with 0.1 M NaOH for 1 min and with 
microemulsion for 1 min.

	 8.	Steps 6 and 7 are repeated for the next sample or calibration 
solution.

	 1.	Two vials are filled with 0.1 M NaOH and microemulsion, respec-
tively, for rinsing the capillary (the microemulsion is prepared 
according to the procedure given in Subheading 2, item 4).

	 2.	Two carrier electrolyte vials (for inlet and outlet side) are filled 
with the microemulsion.

3.3  Separation of 
Highly Hydrophobic 
Analytes Using a 
Negatively Charged Oil 
Phase

3.4  Separation 
of Positively Charged 
Analytes Using 
a Neutral Oil Phase

3.5  Separation 
of Neutral Analytes 
with On-Capillary 
Preconcentration 
by Sweeping
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	 3.	Vials are filled with sample solutions and spiked sample 
solutions.

	 4.	All vials are put into appropriate positions of the autosampler.
	 5.	The capillary is rinsed with 0.1 M NaOH for 5 min and with 

microemulsion for 5 min.
	 6.	The first sample solution is injected using hydrodynamic injec-

tion at a pressure of 100 mbar for 150 s (see Note 8), and the 
separation is started by applying a voltage of −20 kV (see Note 6).

	 7.	The capillary is rinsed with 0.1 M NaOH for 1 min and with 
microemulsion for 1 min.

	 8.	Steps 6 and 7 are repeated for the next sample or spiked sam-
ple solution (see Note 9).

4  Notes

	 1.	The partial substitution of SDS by Brij 35 results in lower 
charge of the oil droplet and thereby in a lower velocity. This 
leads to a decrease of the analysis time. For a specific separa-
tion, one can try to vary the ratio of SDS/Brij 35 to achieve 
optimal analysis time.

	 2.	This microemulsion prepared in a buffer of pH 4.0 is suited for 
the separation of analytes that undergo protonation or depro-
tonation reactions at this pH, so that positively or negatively 
charged compounds are formed to some extent. The pH can 
be changed if necessary.

	 3.	Shorter or longer capillaries can be used if necessary to opti-
mize resolution and analysis time.

	 4.	If the analytes are not easily soluble in water, the sample and 
calibration solutions can be prepared in the microemulsion as 
solvent. One should avoid pure organic solvents for the sam-
ples and the calibration solutions because these can disrupt the 
microemulsion adjacent to the zone of injected sample, lead-
ing to distorted peak shapes. It is recommended that an inter-
nal standard be added to both the sample and the calibration 
solutions.

	 5.	Somewhat longer injection times can be used to achieve lower 
detection limits. Peak distortion will occur at too long injec-
tion times.

	 6.	It may be advantageous to use somewhat lower or higher sepa-
ration voltages depending on the length of the capillary.

	 7.	The positive voltage applied is suited for cationic analytes. In 
the case of anionic analytes, it may be necessary to use a nega-
tive voltage (depending on the electrophoretic mobility of the 
analyte in relation to the electroosmotic mobility).
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