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Abstract We investigate numerically a triquadratic C0 interior penalty method for
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1 Introduction

We consider a class of optimal control problems with pointwise state constraints over
a bounded convex polyhedral domain Ω ⊂ R

3. We first recall the standard notation
and introduce the functional setting for both the optimal control problems and their
characterizations as fourth order variational inequalities. The space L2(Ω) denotes
the space of square integrable functions onΩ , and L2

0(Ω) is the space of functions in
L2(Ω)with zero mean.We useHs(Ω) to denote the set of all L2(Ω) functions whose
distributional derivatives up to order s are in L2(Ω), and Hs

0(Ω) to denote the set of
functions inHs(Ω)whose traces vanish up to order s − 1 on ∂Ω . The corresponding
inner product and norm defined on these Hilbert spaces will be denoted by (·, ·) and
‖·‖, respectively, with the function space as a subscript, i.e., (·, ·)H1 and ‖·‖H1 , etc.,
and similarly for the seminorm | · |. We will sometimes omit the subscript in the case
of the inner product and norm of L2(Ω).

For ψ ∈ C2(Ω̄), yd ∈ L2(Ω), and γ a positive constant, we define the sets KD ⊂
H1

0 (Ω) × L2(Ω) and KN ⊂ H1(Ω) × L2
0(Ω) by

KD = {(y, u) ∈ H1
0 (Ω) × L2(Ω) :∫

Ω

∇y · ∇z dx =
∫

Ω

uz dx for all z ∈ H1
0 (Ω) and y ≤ ψ a.e. in Ω},

KN = {(y, u) ∈ H1(Ω) × L2
0(Ω) :∫

Ω

∇y · ∇z dx =
∫

Ω

uz dx for all z ∈ H1(Ω) and y ≤ ψ a.e. in Ω}.

We will consider the following elliptic distributed optimal control problem:

Find (ȳ, ū) = argmin
(y,u)∈K

[
1

2
‖y − yd‖2 + γ

2
‖u‖2

]
, (1)

where K = KD (Dirichlet problem) or K = KN (Neumann problem).
Let the spaces VD and VN be defined by

VD = H2(Ω) ∩ H1
0 (Ω) and VN =

{
v ∈ H2(Ω) : ∂v

∂n
= 0 on ∂Ω

}
.

Since (y, u) ∈ K implies y ∈ H2(Ω) and u = −Δy by elliptic regularity [15], the
optimal control problem (1) is equivalent to the following problem:

Find ȳ = argmin
y∈K

[
1

2
‖y − yd‖2 + γ

2
‖Δy‖2

]
(2)

= argmin
y∈K

[
γ

2
‖Δy‖2 + 1

2
‖y‖2 − (yd, y)

]
,
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where
K = KD = {y ∈ VD : y ≤ ψ in Ω} (Dirichlet problem),

or
K = KN = {y ∈ VN : y ≤ ψ in Ω} (Neumann problem).

Let D2y : D2z denote the (Frobenius) inner product of the Hessian matrices of y
and z:

D2y : D2z =
∑

1≤i,j≤3

(
∂2y

∂xi∂xj

) (
∂2z

∂xi∂xj

)
.

It follows from integration by parts that (2) can be rewritten as

Find ȳ = argmin
y∈K

[
1

2
A(y, y) − (yd, y)

]
, (3)

where

A(y, z) = γ

∫
Ω

D2y : D2z dx +
∫

Ω

yz dx. (4)

Note that in the Neumann case the closed convex subset KN of VN is always non-
empty since it contains all constant functions that are bounded above byminx∈Ω ψ(x).
On the other hand, in the Dirichlet case we assume that ψ > 0 on ∂Ω so that KD

is a nonempty subset of VD and the contact set where y = ψ is disjoint from ∂Ω .
Since A(·, ·) is symmetric, bounded, and coercive on H2(Ω), the standard theory
[13, 22, 23, 26] implies that (3) has a unique solution characterized by the variational
inequality

A(ȳ, y − ȳ) ≥ (f , y − ȳ) for all y ∈ K,

where K = KD or K = KN .
The goal of this paper is to demonstrate thatC0 interior penalty methods [3–9, 11,

16] are effective for the numerical solution of (3). We note that in the literature, the
Dirichlet problem defined by (1) is solved as a fourth order variational inequality by
a Morley finite element method in [24], a mixed finite element method in [14], and a
quadratic C0 interior penalty method in [8, 9]. However, the numerical examples in
these references only involve two-dimensional domains. To the best of our knowl-
edge, this is the first paper that provides numerical results for elliptic distributed
optimal control problems in three dimensions formulated as fourth order variational
inequalities.

The rest of the paper is organized as follows. In Section 2, we introduce the
discrete problems for (3) that are based on the C0 interior penalty approach. We
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further discuss three procedures that generate approximations of the optimal control
ū by post-processing the discrete optimal state. In Section 3, we will provide some
details concerning the implementation of a primal-dual active set method using the
deal.II library. In Section 4, which is the main section, we present numerical results
for both the Dirichlet problem and the Neumann problem. Finally, we end with some
concluding remarks in Section 5.

2 Discrete Problems

Let Th be a uniform triangulation of Ω by cubic elements, Vh ⊂ H1(Ω) be the
(continuous)Q2 finite element space associated withTh, and let V̊h ⊂ H1

0 (Ω) be the
subspace of Vh whose members vanish on ∂Ω . We will use the following notation
throughout the paper:

• h is a mesh parameter proportional to maxT∈Th diam T .
• hF is the diameter of the face F.
• Vh is the set of vertices of Th.
• Fh is the set of faces of Th.
• F i

h is the set of interior faces of Ω .

Let F ∈ F i
h be the common face of T± ∈ Th and nF be the unit normal of F

pointing from T− to T+. The jump [[·]] and average {{·}} of the normal derivatives
over F for functions in the piecewise Sobolev spaces

Hs(Ω,Th) = {
v ∈ L2(Ω) : vT = v|T ∈ Hs(T) for all T ∈ Th

}

are defined as follows:

{{
∂2v

∂n2

}}
= 1

2

(∂2v+
∂n2F

∣∣∣
F

+ ∂2v−
∂n2F

∣∣∣
F

)
for all v ∈ Hs(Ω,Th), s >

5

2
,

[[
∂v

∂n

]]
= ∂v+

∂nF

∣∣∣
F

− ∂v−
∂nF

∣∣∣
F

for all v ∈ Hs(Ω,Th), s >
3

2
,

where v± = v|T± .
For F ∈ Fh that is a subset of ∂Ω , the jump and average are defined by

[[
∂v

∂n

]]
= − ∂v

∂nF
and

{{
∂2v

∂n2

}}
= ∂2v

∂n2F
,

where nF is the unit normal of F pointing towards the outside of Ω .
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2.1 Dirichlet Problem

Let the closed convex subset KD,h ⊂ V̊h be defined by

KD,h = {y ∈ V̊h : y(p) ≤ ψ(p) for all p ∈ Vh}.

The discrete problem for (3) when K = KD then reads:

Find ȳh = argmin
yh∈KD,h

[1
2
AD,h(yh, yh) − (f , yh)

]
, (5)

where
AD,h(v,w) = γ aD,h(v,w) + (v,w)

and

aD,h(v,w) =
∑
T∈Th

∫
T
D2v : D2w dx +

∑
F∈F i

h

∫
F

{{
∂2v/∂n2

}} [[∂w/∂n]]dS

+
∑
F∈F i

h

∫
F

{{
∂2w/∂n2

}} [[∂v/∂n]]dS

+ σ
∑
F∈F i

h

h−1
F

∫
F
[[∂v/∂n]][[∂w/∂n]]dS.

(6)

Here, σ > 0 is a penalty parameter chosen large enough (cf. [20]) so that aD,h( · , · )
is positive definite on Vh. Note that the sums in (6) involving the jumps and the
averages run only over the interior faces.

Remark 1 Thefinite element space V̊h and the bilinear form aD,h appear inC0 interior
penalty methods for the biharmonic equation with the boundary conditions of simply
supported plates [3, 5, 11].

2.2 Neumann Problem

Let the closed convex subset KN,h ⊂ Vh be defined by

KN,h = {y ∈ Vh : y(p) ≤ ψ(p) for all p ∈ Vh}.

The discrete problem for (3) when K = KN is defined as follows.

Find ȳh = argmin
yh∈KN,h

[
1

2
AN,h(yh, yh) − (f , yh)

]
, (7)
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where
AN,h(v,w) = γ aN,h(v,w) + (v,w)

and

aN,h(v,w) =
∑
T∈Th

∫
T
D2v : D2w dx +

∑
F∈Fh

∫
F

{{
∂2v/∂n2

}} [[∂w/∂n]] dS

+
∑
F∈Fh

∫
F

{{
∂2w/∂n2

}} [[∂v/∂n]] dS

+ σ
∑
F∈Fh

h−1
F

∫
F
[[∂v/∂n]][[∂w/∂n]] dS.

(8)

In contrast to (6), the sums in (8) involving the jumps and the averages run over all
faces.

Remark 2 The finite element space Vh and the bilinear form aN,h appear in C0

interior penalty methods for the biharmonic equation with boundary conditions of
the Cahn–Hilliard type [3, 4].

2.3 Post-processing

We now describe three post-processing procedures from [9] that generate approxi-
mations ūh for the optimal control ū from the discrete optimal state ȳh.

2.3.1 Procedure 1

Since ū = −Δȳ, we simply take ūh to be −Δhȳh, where Δh is the piecewise Laplace
operator with respect to Th.

2.3.2 Procedure 2

The optimal state ȳ and the optimal control ū are connected by

∫
Ω

∇ ȳ · ∇z dx =
∫

Ω

ūz dx ∀ z ∈ H1
0 (Ω)

for the Dirichlet problem and by

∫
Ω

∇ ȳ · ∇z dx =
∫

Ω

ūz dx ∀ z ∈ H1(Ω)
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for the Neumann problem. Therefore, we can compute an approximation ūh of ū by
solving ∫

Ω

∇ ȳh · ∇zh dx =
∫

Ω

ūhzh dx ∀ zh ∈ V̊h (9)

for the Dirichlet problem and by solving

∫
Ω

∇ ȳh · ∇zh dx =
∫

Ω

ūhzh dx ∀ zh ∈ Vh (10)

for the Neumann problem.

2.3.3 Procedure 3

Here, we exploit the following relations between ȳ and ū:

∫
Ω

∇ū · ∇z dx = −
∫

Ω

∇(Δȳ) · ∇z dx

=
∫

Ω

(Δȳ)(Δz) dx

=
∫

Ω

D2ȳ : D2z dx ∀ z ∈ VD

for the Dirichlet problem and

∫
Ω

∇ū · ∇z dx = −
∫

Ω

∇(Δȳ) · ∇z dx

=
∫

Ω

(Δȳ)(Δz) dx

=
∫

Ω

D2ȳ : D2z dx ∀ z ∈ VN

for the Neumann problem. Therefore, we can compute an approximation ūh ∈ V̊h of
ū by solving ∫

Ω

∇ūh · ∇ z̄h dx = aD,h(ȳh, zh) ∀ zh ∈ V̊h (11)

for the Dirichlet problem and compute ūh ∈ Vh ∩ L2
0(Ω) by solving

∫
Ω

∇ūh · ∇ z̄h dx = aN,h(ȳh, zh) ∀ zh ∈ Vh (12)
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for the Neumann problem. Note that the solvability of (12) follows from the com-
patibility condition

aN,h(ȳh, 1) = 0.

Remark 3 The computational cost increases from Procedure 1 to Procedure 3. How-
ever, these computational costs are negligible in comparison with the cost of solving
the variational inequality.

3 Implementation

The discrete problems in the numerical experiments are solved by a primal-dual
active set algorithm (cf. [18, 21] and the references therein).

Let y� ∈ R
N be the vector representing ȳh in (5) (or (7)) with respect to a nodal

basis of theQ2 finite element space, whereN is the dimension of V̊h (or Vh). Similarly,
K ⊂ R

N is the subset corresponding to KD,h (or KN,h), and A ∈ R
N×N denotes the

matrix representing the bilinear form AD,h(·, ·) (or AN,h(·, ·)) with respect to the
nodal basis of the Q2 finite element space. Then, (5) or (7) can be written as the
following variational inequality: Find y∗ ∈ K such that

(Ay∗, y − y∗) ≥ (f, y − y∗) ∀ y ∈ K. (13)

Here, (·, ·) is the Euclidean inner product on RN and the vector f is defined by

(f, y) =
∫

Ω

ydyh dx,

where the vector y represents the finite element function yh in V̊h (or Vh).
Letλ∗ = f − Ay∗. The primal-dual problemof (13) is to find (y∗,λ∗) ∈ R

N × R
N

such that

Ay∗ + λ∗ = f,

ψ − y∗ ≥ 0,

λ∗ ≥ 0,

(λ∗,ψ − y∗) = 0,

where ψ is a vector in (R ∪ {+∞})N that represents the discrete constraint. In other
words, the component of ψ corresponding to a node p ∈ Vh is given by ψ(p), while
all other components of ψ equal +∞.

Equivalently, we can write

Ay∗ + λ∗ = f,

y∗ = ψ on A∗,
λ∗ = 0 on I∗,

(14)
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where A∗ and I∗ are the active set and inactive set defined, respectively, by

A∗ = {
j ∈ N : λ∗(j) = (f − Ay∗)(j) > 0 and y∗(j) = ψ(j)

}
,

I∗ = {
j ∈ N : λ∗(j) = (f − Ay∗)(j) = 0 and y∗(j) ≤ ψ(j)

}
.

Here, N = {1, 2, . . . ,N} and λ∗(j) is the jth component of λ∗.
The primal-dual active set method solves (14) by generating a sequence of sets

Ak and Ik that approximate A∗ and I∗ and then obtain the approximation (yk,λk) by
solving a reduced system.

Given an initial guess (y0,λ0) ∈ R
N × R

N where λ0 ≥ 0, we define

A0 = {
j ∈ N : λ0(j) + c(y0(j) − ψ(j)) > 0

}
,

I0 = {
j ∈ N : λ0(j) + c(y0(j) − ψ(j)) ≤ 0

} = N \ A0,

where c is a positive number.
For k ≥ 1, we solve the reduced system

Akyk + λk = fk,

yk = ψ on Ak−1,

λk = 0 on Ik−1,

(15)

and update the active set and inactive set by

Ak = {
j ∈ N : λk(j) + c(yk(j) − ψ(j)) > 0

}
, (16)

Ik = {
j ∈ N : λk(j) + c(yk(j) − ψ(j)) ≤ 0

} = N \ Ak . (17)

(Choosing c > 0 large, e.g., c = 107, can improve the performance of the computa-
tion.)

Let the diagonal matrices PAk ,PIk ∈ R
N×N be defined by

[PAkv](j) =
{
v(j) if j ∈ Ak,

0 if j ∈ Ik,

[PIkv](j) =
{
v(j) if j ∈ Ik,

0 if j ∈ Ak .

Then solving (15) is equivalent to solving

PIk−1AkPIk−1(PIk−1yk) = PIk−1fk − PIk−1AkPAk−1ψ (18)

together with

PAk−1yk = PAk−1ψ, PIk−1λk = 0 and PAk−1λk = PAk−1fk − PAk−1Akyk .
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The iteration is terminatedwhen twoconsecutive active sets determinedby (16) are
identical. The linear system (18) is solved by the preconditioned conjugate gradient
method with an algebraic multigrid preconditioner, implemented within the Trilinos
library [17].

For the problemon the coarsestmeshT0, all degrees of freedom are initially placed
in the inactive set. For subsequent refinements at level k ≥ 1, we first compute ỹk and
λ̃k from yk−1 and λk−1 through interpolation, and then, we initialize the active and
inactive set using (16) and (17), with yk and λk replaced by ỹk and λ̃k , respectively.

To speed up the solution of the linear system, an inexact method is implemented
in which the inner iteration runs to a tolerance determined by the maximum of an
absolute tolerance and a relative tolerance based on the norm of the initial residual
from (15). This approach was observed to yield a solution in fewer iterations than
either solving to a uniform absolute tolerance alone or to a relative tolerance based
on the residual of the inner iteration alone. With this approach, the solver required
less than 8 iterations of the primal-dual active set method for the examples presented
in Section 4.

The numerical implementation has been realized by using the C++ software
library deal.II [1, 2]. The skeleton of the code is based on the deal.II tutor-
ial step-41, while the assembling of the local cell and face matrices relies on
the LocalIntegrators classes within the MeshWorker framework (formally
introduced in tutorial step-39).

Since the assembled matrices correspond to the C0 interior penalty formulation of
the biharmonic operator, which are different from the one implemented in deal.II, we
rely on the LocalIntegrators for the weak form of this problem. Furthermore,
the calculation of higher order derivatives is performed by using the contract
family of deal.II functions.

4 Numerical Results

In this section, we present numerical examples for (3). The discrete optimal state ȳh
is obtained from (5) for the Dirichlet problem and (7) for the Neumann problem,
and we use the post-processing procedures in Section 2.3 to generate the discrete
optimal control ūh. For each example, we report the state error in a H2-like mesh-
dependent norm (cf. (19) and (20)) and in theH1,L2, and L∞-norms. We also report
the L2 control errors for all post-processing procedures, and the H1 control errors of
Procedures 2 and 3. Finally, we present a figure of the contact set for each example.
We will comment on the numerical results in Section 5.

Examples 1–3 correspond to the optimal control problemwith theDirichlet bound-
ary condition, and Examples 4–6 are concerned with the Neumann boundary condi-
tion. The domain is the unit cube Ω = (−0.5, 0.5)3 for all the examples.
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We will use ‖·‖∞ to denote the 	∞ norm defined by

‖v‖∞ = max
p∈Nh

|v(p)|,

where Nh is the set of the nodes of the Q2 finite element space associated with Th,
and we define the mesh-dependent norms ‖ · ‖h,D and ‖ · ‖h,N by

‖v‖2h,D =
∑
T∈Th

‖D2v‖2L2(T) +
∑
F∈F i

h

1

hT

∥∥∥
[[

∂v

∂n

]] ∥∥∥2

L2(F)
, (19)

‖v‖2h,N =
∑
T∈Th

‖D2v‖2L2(T) +
∑
F∈Fh

1

hT

∥∥∥
[[

∂v

∂n

]] ∥∥∥2

L2(F)
. (20)

We solve the discrete problems on a sequence of triangulations generated by
uniform refinements, where the coarsest mesh consists of a single element. The
number of degrees of freedom at the kth level is (2k + 3)3. The discrete optimal
state associated with Tk is denoted by ȳk , the discrete optimal control obtained by
the post-processing procedure i (1 ≤ i ≤ 3) is denoted by ūk,i, and Nk stands for the
number of degrees of freedom at mesh level k. The word “order” denotes the order
of convergence computed by ln(‖ek−1‖ / ‖ek‖)/ ln 2, where ek = ȳ − ȳk (or ek =
ū − ūk,j) if the exact optimal state ȳ (or the exact optimal control ū) is available. If
the exact solution is not available, thenwe take ek = ȳk − ȳk−1 (or ek = ūk,i − ūk−1,i).

The CPU time for the 3D computations shown was observed to increase linearly
with the number of degrees of freedom. For each example, the numerical results on
the finest-level mesh took approximately 18 hours to complete. All the results below
were generated on the SuperMIC at Louisiana State University without using parallel
processing.

Example 1 (Dirichlet problem with a known solution)

We begin by considering (3) on the ball of radius two centered at the origin. We take
γ to be 1 and the exact solution to be

ȳ =
{
r2 − 1 if r ≤ r0
1

120
r4 + C1 + C2r + C3r2 + C4/r if r > r0

,

where r =
√
x21 + x22 + x23, r0 = 0.32151559, C1 = −1.4090715, C2 = 1.2737074,

C3 = −0.32339567, and C4 = 0.043812326. The upper bound for the state is given
by ψ = r2 − 1, and the desired state yd is 1 + ȳ.

The restriction of ȳ to the unit cube Ω = (−0.5, 0.5)3 is the exact solution of (3)
with the same yd and ψ , but the nonhomogeneous boundary conditions determined
by ȳ.

Remark 4 The exact solution (3) on the ball is obtained by reducing the problem to
a one-dimensional problem through the rotational symmetry.
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Table 1 State errors for Example 1.
k Nk ‖ȳ − ȳk‖h,D order |ȳ − ȳk |H1(Ω)

order ‖ȳ − ȳk‖ order ‖ȳ − ȳk‖∞ order

1 27 2.557e+00 – 3.148e−01 – 4.770e−02 – 2.433e−01 –

2 125 2.667e+00 −0.062 1.692e−01 0.896 2.897e−02 0.720 6.565e−02 1.890

3 729 1.061e+00 1.330 2.571e−02 2.718 2.980e−03 3.281 6.867e−03 3.257

4 4913 4.337e−01 1.290 7.466e−03 1.784 5.068e−04 2.556 2.155e−03 1.672

5 35940 1.800e−01 1.268 1.526e−03 2.290 7.446e−05 2.767 4.309e−04 2.322

6 274625 7.988e−02 1.172 3.722e−04 2.036 1.915e−05 1.959 8.420e−05 2.355

7 2146689 3.610e−02 1.146 8.528e−05 2.126 3.033e−06 2.658 1.250e−05 2.752

Table 2 L2 control errors for the three procedures, Example 1.

k Nk ‖ū − ūk,1‖ order ‖ū − ūk,2‖ order ‖ū − ūk,3‖ order

1 27 1.290e+00 – 1.240e+00 – 1.260e+00 –

2 125 1.078e+00 0.259 1.249e+00 −0.109 1.354e+00 −0.104

3 729 4.958e−01 1.120 3.974e−01 1.652 4.473e−01 1.598

4 4913 2.512e−01 0.981 1.600e−01 1.313 1.726e−01 1.374

5 35940 1.227e−01 1.033 5.435e−02 1.558 5.717e−02 1.594

6 274625 6.139e−02 0.999 2.020e−02 1.428 2.112e−02 1.437

7 2146689 3.065e−02 1.002 7.617e−03 1.407 7.480e−03 1.498

In view of the nonhomogeneous boundary conditions, we change the definition
of KD,h to

KD,h = {y ∈ Vh : y − 
hȳ ∈ H1
0 (Ω) and y(p) ≤ ψ(p) for all p ∈ Vh},

where
h is the Lagrange nodal interpolation operator. The discrete problem (5) then
becomes

Find ȳh = argmin
yh∈KD,h

[
1

2
AN,h(yh, yh) −

∫
∂Ω

∂2ȳ

∂n2
∂yh
∂n

dS − (f , yh)

]
.

In Table 1, we report the error of the state in ‖ · ‖h,D and in the H1, L2, and L∞-
norms. In Table 2, we report L2 control errors for all post-processing procedures
described in Section 2.3, and we report the H1 control errors of Procedures 2 and 3
in Table 3. The discrete contact set after 4 uniform refinements is shown in Figure 1.

Example 2 (Dirichlet problem with an unknown solution)

We take γ to be 10−3,ψ to be the constant 0.2, and yd to be the function sin(2π(x1 +
0.5)(x2 + 0.5)(x3 + 0.5)). The errors for the state and the control are reported in
Tables 4–6. The discrete contact set after 4 uniform refinements is displayed in
Figure 2.
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Table 3 H1 control errors for Procedures 2 and 3, Example 1.

k Nk |ū − ūk,2|H1(Ω) order |ū − ūk,3|H1(Ω) order

1 27 8.961e+00 – 9.055e+00 –

2 125 1.573e+01 −0.812 1.852e+01 −0.103

3 729 1.444e+01 0.123 1.601e+01 0.210

4 4913 1.043e+01 0.469 1.129e+01 0.504

5 35940 7.438e+00 0.488 8.021e+00 0.493

6 274625 5.501e+00 0.435 5.774e+00 0.474

7 2146689 4.212e+00 0.385 4.039e+00 0.516

Fig. 1 The discrete contact
set for Example 1 after 4
uniform refinements.

Example 3 (Dirichlet problem with an unknown solution)

As in Example 2, we take γ to be 10−3 and the upper bound ψ to be a constant 0.15.
But we choose yd to be a piecewise constant function:

yd =
{
0 if x < 0,

1 otherwise.

The errors for the state and the control are reported in Tables 7–9. The discrete
contact set after 4 levels of uniform refinement is shown in Figure 3.

Example 4 (Neumann problem with an exact solution)

As in Example 1, we begin with (3) on the ball of radius 2 centered at the origin. We
take γ to be 1 and the exact solution to be

ȳ =
{
C1r + C2r2 + C3/r + C4 if r > r0
r2 − r4/8 if r ≤ r0

,
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Table 4 State errors for Example 2.
k Nk ‖yk−1 − yk‖h,D order |yk−1 − yk |H1(Ω) order ‖yk−1 − yk‖ order |yk−1 − yk |∞ order

2 125 6.033e+00 – 4.442e−01 – 6.535e−02 – 3.405e−01 –

3 729 4.798e+00 0.330 2.948e−01 0.591 4.473e−02 0.547 1.654e−01 1.041

4 4913 4.044e+00 0.247 1.237e−01 1.253 1.684e−02 1.410 7.936e−02 1.060

5 35940 1.640e+00 1.302 2.556e−02 2.275 1.527e−03 3.463 1.015e−02 2.967

6 274625 7.264e−01 1.175 5.580e−03 2.196 2.549e−04 2.583 1.645e−03 2.625

7 2146689 3.004e−01 1.274 1.521e−03 1.876 7.2393e−05 1.816 2.521e−04 2.706

Table 5 L2 control errors for the three procedures, Example 2.

k Nk ‖ūk−1,1 − ūk,1‖ order ‖ūk−1,2 − ūk,2‖ order ‖ūk−1,3 − ūk,3‖ order

2 125 1.993e+00 – 4.080e+00 – 4.657e+00 –

3 729 1.531e+00 0.380 3.080e+00 0.406 3.418e+00 0.446

4 4913 1.285e+00 0.253 2.086e+00 0.563 2.341e+00 0.546

5 35940 7.869e−01 0.707 7.617e−01 1.453 8.240e−01 1.506

6 274625 4.135e−01 0.928 2.501e−01 1.607 2.752e−01 1.582

7 2146689 2.108e−01 0.972 7.933e−02 1.657 8.105e−02 1.763

Table 6 H1 control errors for Procedures 2 and 3, Example 2.

k Nk |ūk−1,2 − ūk,2|H1(Ω) order |ūk−1,3 − ūk,3|H1(Ω) order

2 125 4.763e+01 – 5.486e+01 –

3 729 6.914e+01 −0.538 7.485e+01 −0.448

4 4913 7.972e+01 −0.205 8.584e+01 −0.198

5 35940 5.986e+01 0.413 6.342e+01 0.437

6 274625 3.941e+01 0.603 4.107e+01 0.627

7 2146689 2.537e+01 0.635 2.610e+01 0.654

where r0 = 0.33563105,C1 = 1.2785390,C2 = −0.31672296,C3 = 0.046588697,
and C4 = −0.42118638. The upper bound for the state is given by ψ = r2 − r4/8,
and the desired state yd equals ȳ.

The restriction of ȳ to the unit cube Ω = (−0.5, 0.5)3 is the exact solution of (3)
with the same ψ and yd , and the nonhomogeneous boundary conditions determined
by ȳ.

In view of the nonhomogeneous conditions, the discrete problem (7) becomes

Find ȳh = argmin
yh∈KN,h

[1
2
AN,h(yh, yh) +

∫
∂Ω

∂Δȳ

∂n
yh dS

−
∫

∂Ω

( ∂

∂n
∇∂Ω ȳ

)
· ∇∂Ωyh dS − (f , yh)

]
.
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Fig. 2 The discrete contact
set for Example 2 after 4
uniform refinements.

Table 7 State errors for Example 3.
k Nk ‖yk−1 − yk‖h,D order |yk−1 − yk |H1(Ω) order ‖yk−1 − yk‖ order |yk−1 − yk |∞ order

2 125 9.992e+00 – 1.145e+00 – 1.937e−01 – 6.804e−01 –

3 729 6.583e+00 0.602 4.788e−01 1.257 7.286e−02 1.410 2.999e−01 1.182

4 4913 4.393e+00 0.583 1.358e−01 1.819 1.732e−02 2.072 7.681e−02 1.965

5 35937 1.934e+00 1.184 3.130e−02 2.117 1.777e−03 3.285 1.049e−02 2.872

6 274625 8.585e−01 1.171 8.125e−03 1.946 4.845e−04 1.875 1.455e−03 2.850

7 2146689 3.735e−01 1.201 1.892e−03 2.102 1.030e−04 2.234 3.053e−04 2.252

Table 8 L2 control errors for the three procedures, Example 3.

k Nk ‖ūk−1,1 − ūk,1‖ order ‖ūk−1,2 − ūk,2‖ order ‖ūk−1,3 − ūk,3‖ order

2 125 4.425e+00 – 7.644e+00 – 8.513e+00 –

3 729 2.382e+00 0.893 4.359e+00 0.810 4.823e+00 0.820

4 4913 1.280e+00 0.896 2.417e+00 0.851 2.663e+00 0.857

5 35940 9.293e−01 0.462 9.022e−01 1.422 8.879e−01 1.585

6 274625 5.111e−01 0.863 3.045e−01 1.567 3.013e−01 1.560

7 2146689 2.630e−01 0.958 1.006e−01 1.597 9.998e−02 1.591

Table 9 H1 control errors for Procedures 2 and 3, Example 3.

k Nk |ūk−1,2 − ūk,2|H1(Ω) order |ūk−1,3 − ūk,3|H1(Ω) order

2 125 6.299e+01 – 7.138e+01 –

3 729 8.628e+01 −0.454 9.310e+01 −0.383

4 4913 9.490e+01 −0.137 1.006e+02 −0.112

5 35940 7.016e+01 0.436 7.221e+01 0.479

6 274625 4.786e+01 0.552 4.919e+01 0.554

7 2146689 3.171e+01 0.594 3.223e+01 0.610
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Fig. 3 The discrete contact
set for Example 3 after 4
uniform refinements.

Table 10 State errors for Example 4.
k Nk ‖ȳ − ȳk‖h,N order |ȳ − ȳk |H1(Ω)

order ‖ȳ − ȳk‖ order ‖ȳ − ȳk‖∞ order

1 27 8.161e+00 – 4.445e−01 – 6.470e−01 – 7.204e−01 –

2 125 3.439e+00 1.247 9.993e−02 2.153 5.137e−02 3.655 7.112e−02 3.341

3 729 1.208e+00 1.509 2.954e−02 1.758 3.582e−03 3.842 7.202e−03 3.304

4 4913 4.315e−01 1.485 8.196e−03 1.850 9.221e−04 1.958 2.786e−03 1.370

5 35940 1.780e−01 1.278 1.774e−03 2.208 2.323e−04 1.989 7.165e−04 1.959

6 274625 7.654e−02 1.217 4.465e−04 1.990 6.995e−05 1.732 2.030e−04 1.819

7 2146689 3.480e−02 1.137 1.084e−04 2.043 1.790e−05 1.967 5.138e−05 1.982

Table 11 L2 control errors for the three procedures, Example 4.

k Nk ‖ū − ūk,1‖ order ‖ū − ūk,2‖ order ‖ū − ūk,3‖ order

1 27 1.548e+00 – 4.019e+00 – 5.234e+01 –

2 125 9.684e−01 0.676 1.389e+00 1.533 2.418e+00 4.436

3 729 4.933e−01 0.973 4.373e−01 1.667 4.476e−01 2.433

4 4913 2.411e−01 1.033 1.582e−01 1.467 1.613e−01 1.473

5 35940 1.194e−01 1.014 5.288e−02 1.581 5.512e−02 1.549

6 274625 5.938e−02 1.008 1.864e−02 1.504 1.927e−02 1.516

7 2146689 2.967e−02 1.001 7.141e−03 1.384 6.755e−03 1.512

The errors for the state are summarized in Table 10, while Tables 11 and 12
contain the L2 and H1 errors for the control for the post-processing procedures
from Section 2.3. The discrete contact set after 4 uniform refinements is depicted in
Figure 4.



A C0 Interior Penalty Method for Elliptic Distributed Optimal Control Problems … 17

Table 12 H1 control errors for Procedures 2 and 3, Example 4.

k Nk |ū − ūk,2|H1(Ω) order |ū − ūk,3|H1(Ω) order

1 27 4.143e+01 – 4.203e+01 –

2 125 2.708e+01 0.614 2.743e+01 0.615

3 729 1.560e+01 0.795 1.628e+01 0.753

4 4913 1.025e+01 0.607 1.078e+01 0.595

5 35940 7.160e+00 0.517 7.601e+00 0.504

6 274625 4.944e+00 0.534 5.222e+00 0.542

7 2146689 4.034e+00 0.294 3.671e+00 0.509

Fig. 4 The discrete contact
set for Example 4 after 4
levels of uniform refinement.

Example 5 (Neumann problem with an unknown solution)

We take γ to be 10−3, the upper boundψ to be the constant 0.2, and yd to be the func-
tion sin(2π(x1 + 0.5)(x2 + 0.5)(x3 + 0.5)). The errors for the state and the control
are reported in Tables 13–15. The discrete contact set after 4 uniform refinements is
shown in Figure 5. Note that the contact set is not disjoint from ∂Ω for this example.

Table 13 State errors for Example 5.
k Nk ‖yk−1 − yk‖h,N order |yk−1 − yk |H1(Ω) order |yk−1 − yk | order |yk−1 − yk |∞ order

2 125 1.346e+01 – 5.244e−01 – 1.327e−01 – 3.772e−01 –

3 729 1.137e+01 0.244 3.885e−01 0.433 1.231e−01 0.109 2.634e−01 0.518

4 4913 4.886e+00 1.218 1.157e−01 1.747 1.807e−02 2.768 4.535e−02 2.538

5 35940 1.469e+00 1.734 1.557e−02 2.894 1.403e−03 3.687 4.255e−03 3.414

6 274625 4.959e−01 1.566 2.890e−03 2.430 2.106e−04 2.736 1.610e−03 1.402

7 2146689 1.801e−01 1.461 6.627e−04 2.125 5.012e−05 2.071 4.322e−04 1.897
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Table 14 L2 control errors for the three procedures, Example 5.

k Nk ‖ūk−1,1 − ūk,1‖ order ‖ūk−1,2 − ūk,2‖ order ‖ūk−1,3 − ūk,3‖ order

2 125 2.427e+00 – 5.291e+00 – 5.448e+00 –

3 729 2.496e+00 −0.046 5.194e+00 0.027 8.394e+00 −0.624

4 4913 1.341e+00 0.897 2.671e+00 0.960 3.297e+00 1.348

5 35940 4.637e−01 1.532 7.730e−01 1.789 9.107e−01 1.856

6 274625 2.102e−01 1.141 2.165e−01 1.836 2.593e−01 1.812

7 2146689 1.027e−01 1.034 6.253e−02 1.792 7.846e−02 1.724

Table 15 H1 control errors for Procedures 2 and 3, Example 5.

k Nk |ūk−1,2 − ūk,2|H1(Ω) order |ūk−1,3 − ūk,3|H1(Ω) order

2 125 9.239e+01 – 9.350e+01 –

3 729 1.291e+02 −0.483 1.327e+02 −0.505

4 4913 1.127e+02 0.197 1.155e+02 0.201

5 35940 6.735e+01 0.743 6.879e+01 0.747

6 274625 3.771e+01 0.837 3.870e+01 0.830

7 2146689 2.177e+01 0.793 2.224e+01 0.799

Fig. 5 The discrete contact
set for Example 5 after 4
uniform refinements.

Example 6 (Neumann problem with an unknown solution)

For the last example, we take γ to be 10−1 and the upper bound ψ to be the constant
0.5. Unlike Example 5, we choose yd to be the piecewise constant function defined
by

yd =
{
20 if (x, y, z) ∈ (−0.375, 0.125)3,

0 otherwise.
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Table 16 State errors for Example 6.
k Nk ‖yk−1 − yk‖h,N order |yk−1 − yk |H1(Ω) order ‖yk−1 − yk‖ order |yk−1 − yk |∞ order

2 125 3.833e+00 – 1.735e−01 – 1.574e−01 – 2.048e−01 –

3 729 1.959e+00 0.968 5.836e−02 1.572 3.642e−02 2.112 6.586e−02 1.637

4 4913 5.081e−01 1.947 3.812e−02 0.615 1.584e−02 1.201 2.659e−02 1.309

5 35940 2.122e−01 1.260 2.669e−03 3.836 6.442e−04 4.620 1.035e−03 4.684

6 274625 7.672e−02 1.468 5.823e−04 2.196 1.401e−04 2.201 3.610e−04 1.519

7 2146689 2.961e−02 1.374 1.329e−04 2.131 3.205e−05 2.128 7.000e−05 2.367

Table 17 L2 control errors for the three procedures, Example 6.

k Nk ‖ūk−1,1 − ūk,1‖ order ‖ūk−1,2 − ūk,2‖ order ‖ūk−1,3 − ūk,3‖ order

2 125 6.761e−01 – 1.638e+00 – 3.688e+00 –

3 729 4.424e−01 0.612 8.761e−01 0.903 1.508e+00 1.290

4 4913 2.646e−01 0.741 3.320e−01 1.400 3.789e−01 1.993

5 35940 6.588e−02 2.006 1.157e−01 1.521 1.245e−01 1.605

6 274625 2.980e−02 1.144 3.538e−02 1.709 3.951e−02 1.656

7 2146689 1.490e−02 1.000 1.071e−02 1.724 1.217e−02 1.699

Table 18 H1 control errors for Procedures 2 and 3, Example 6.

k Nk |ūk−1,2 − ūk,2|H1(Ω) order |ūk−1,3 − ūk,3|H1(Ω) order

2 125 2.132e+01 – 2.145e+01 –

3 729 1.809e+01 0.237 1.879e+01 0.191

4 4913 1.052e+01 0.783 1.102e+01 0.770

5 35940 9.810e+00 0.100 1.005e+01 0.133

6 274625 5.928e+00 0.727 6.165e+00 0.705

7 2146689 3.620e+00 0.712 3.687e+00 0.742

We report the errors for the state and the control in Tables 16–18. The discrete
contact set after 4 uniform refinements is displayed in Figure 6. Note that the contact
set is not disjoint from ∂Ω for this example.
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Fig. 6 The discrete contact
set for Example 6 after 4
uniform refinements.

5 Concluding Remarks

We have obtained the first numerical results for solving elliptic distributed optimal
control problems in three-dimensional domains as fourth order variational inequali-
ties.

In all the examples, we have observedO(h) convergence for the state in the mesh-
dependent norm ‖ · ‖h,D or ‖ · ‖h,N . This ismost evident for Example 1 andExample 4
where we know the exact solutions. The convergence in the other examples appears
to be slightly better than O(h), probably because the errors in these examples are
only estimated by comparing the solutions on consecutive levels.

Note that the exact solution ȳ belongs to H3
loc(Ω) by the result in [12] for fourth

order variational inequalities. When the contact set is disjoint from the boundary of
the unit cube (Examples 1–4), ȳ belongs globally toH3(Ω) by the result in [10, 25] for
elliptic boundary value problems on nonsmooth domains. Therefore, an O(h) error
in the H2-like mesh-dependent norm for a method based on the Q2 element is not
surprising. On the other hand, when the contact set is not disjoint from the boundary
of the domain, the global regularity of the exact solution ȳ is very much problem
dependent. The observed convergence behavior for Examples 5 and 6 indicates that
the exact solution of the two optimal control problems in these examples may also
belong to H3(Ω).

The convergence for the state in the lower order norms is of higher order in all the
examples. In particular, the H1 error of the state is O(h2) in all the examples, which
compares favorably to the O(h) error in standard finite element methods for optimal
control problems where the state y is eliminated (cf. [19] and the references therein).

For the approximate control generated by post-processing, the convergence in the
L2 norm is O(h) for Procedure 1 and O(h3/2) for Procedure 2 and Procedure 3. We
also observe that up to two hundred thousand degrees of freedom, the magnitudes of
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the L2 errors for the approximate control generated by Procedure 1 in Experiment 5
and Experiment 6 are smaller than those for the other two procedures.

As in the two dimensional case, we also observe that the approximate optimal
controls generated by Procedure 2 and Procedure 3 converge in the H1 norm. This
phenomenon has not been observed in the standard approach.

Finally, we remark that a direct extension of the methodology developed in [9]
only leads to O(h

1
2 ) convergence in the mesh-dependent energy norms when the

exact solution ȳ belongs to H3(Ω). New techniques are required for the analysis of
three-dimensional problems.
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