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Foreword

This volume is based on the research initiated at the IMA’s WhAM! A Research
Collaboration Workshop for Women in Applied Mathematics that took place in
August 12–15, 2014. This was the second of such workshops and focused on
numerical partial differential equations and scientific computing. The goals of this
workshop series are to foster the formation of new research groups and to create a
supportive network of women researchers working in the area of numerical analysis
and scientific computing.

The IMA owes a lot of gratitude to Susanne C. Brenner for taking a leading role
in organizing this particular workshop. She not only recruited excellent senior
researchers who brought projects to work on, but she was also active in recruiting
graduate students and postdocs to participate. She should be commended for the
mentoring she provided to the younger participants during the entire week. Without
her hard work during and after the workshop, this volume would not have been
possible.

By any measure, the workshop was successful in accomplishing its goals, but the
most tangible result from the workshop is this book. Each article is based on
original research and reports on the findings of the teams.

The IMA thanks Sigal Gottlieb, Chiu-Yen Kao, Hyesuk Lee, Fengyan Li, and
Carol Woodward for coorganizing the workshop and for bringing such interesting
projects. Finally, we thank the National Science Foundation for its support of the
IMA.

Minneapolis, MN, USA Fadil Santosa
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Introduction

The second WhAM! research collaboration workshop for women in applied
mathematics took place at the Institute for Mathematics and its Applications
(IMA) in Minneapolis during August 12–15, 2014. The focus of this workshop was
on numerical partial differential equations and scientific computing. There were
thirty-three participants composed of graduate students, postdocs, and mid-career
and senior researchers. They worked in six teams on projects in numerical algo-
rithms and their applications. The collaborations initiated in this workshop con-
tinued throughout the following year, during which each team held a follow-up
meeting to strengthen and consolidate the research efforts. The final results are
presented in the six peer-reviewed chapters of this volume.

The chapter “A C0 Interior Penalty Method for Elliptic Distributed Optimal
Control Problems in Three Dimensions with Pointwise State Constraints” is the
work of the team led by Susanne C. Brenner and Natasha S. Sharma, with team
members Minah Oh, Sara Pollock, Kamana Porwal, and Mira Schedensack.

The chapter “The Effect of the Sensitivity Parameter in Weighted Essentially
Non-oscillatory Methods” is the work of the team led by Sigal Gottlieb and Bo
Dong, with team members Yulia Hristova, Yan Jiang, and Haijin Wang.

The chapter “Study of a Mixed Dispersal Population Dynamics Model” is the
work of the team led by Chiu-Yen Kao and Marina Chugunova, with team mem-
bers Baasansuren Jadamba, Christine Klymko, Evelyn Thomas, and Bingyu Zhao.

The chapter “Optimization-Based Decoupling Algorithms for a Fluid-Poroelastic
System” is the work of the team led by Hyesuk Lee and Annalisa Quaini, with team
members Aycil Cesmelioglu, Kening Wang, and Son-Young Yi.

The chapter “Study of Discrete Scattering Operators for Some Linear Kinetic
Models” is the work of the team led by Fengyan Li and Yingda Cheng, with team
members Yanping Chen, Zheng Chen, and Adrianna Gillman.

The chapter “On Metrics for Computation of Strength of Coupling in
Multiphysics Simulations” is the work of the team led by Carol S. Woodward
and Yekaterina Epshteyn, with team members Anastasia Wilson, Wei Du,
Guanglian Li, and Azam Moosavi.
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The opportunities for research, mentoring, and networking provided by this
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A C0 Interior Penalty Method for Elliptic
Distributed Optimal Control Problems
in Three Dimensions with Pointwise
State Constraints

Susanne C. Brenner, Minah Oh, Sara Pollock, Kamana Porwal,
Mira Schedensack and Natasha S. Sharma

Abstract We investigate numerically a triquadratic C0 interior penalty method for
elliptic distributed optimal control problems in three dimensions with pointwise
state constraints, which is based on the formulation of these problems as fourth
order variational inequalities. We obtain numerical results that are similar to the
ones reported in [7, 8] for fourth order variational inequalities in two dimensions.
The deal.II library [1, 2] is used for the numerical experiments.
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1 Introduction

We consider a class of optimal control problems with pointwise state constraints over
a bounded convex polyhedral domain Ω ⊂ R

3. We first recall the standard notation
and introduce the functional setting for both the optimal control problems and their
characterizations as fourth order variational inequalities. The space L2(Ω) denotes
the space of square integrable functions onΩ , and L2

0(Ω) is the space of functions in
L2(Ω)with zero mean.We useHs(Ω) to denote the set of all L2(Ω) functions whose
distributional derivatives up to order s are in L2(Ω), and Hs

0(Ω) to denote the set of
functions inHs(Ω)whose traces vanish up to order s − 1 on ∂Ω . The corresponding
inner product and norm defined on these Hilbert spaces will be denoted by (·, ·) and
‖·‖, respectively, with the function space as a subscript, i.e., (·, ·)H1 and ‖·‖H1 , etc.,
and similarly for the seminorm | · |. We will sometimes omit the subscript in the case
of the inner product and norm of L2(Ω).

For ψ ∈ C2(Ω̄), yd ∈ L2(Ω), and γ a positive constant, we define the sets KD ⊂
H1

0 (Ω) × L2(Ω) and KN ⊂ H1(Ω) × L2
0(Ω) by

KD = {(y, u) ∈ H1
0 (Ω) × L2(Ω) :∫

Ω

∇y · ∇z dx =
∫

Ω

uz dx for all z ∈ H1
0 (Ω) and y ≤ ψ a.e. in Ω},

KN = {(y, u) ∈ H1(Ω) × L2
0(Ω) :∫

Ω

∇y · ∇z dx =
∫

Ω

uz dx for all z ∈ H1(Ω) and y ≤ ψ a.e. in Ω}.

We will consider the following elliptic distributed optimal control problem:

Find (ȳ, ū) = argmin
(y,u)∈K

[
1

2
‖y − yd‖2 + γ

2
‖u‖2

]
, (1)

where K = KD (Dirichlet problem) or K = KN (Neumann problem).
Let the spaces VD and VN be defined by

VD = H2(Ω) ∩ H1
0 (Ω) and VN =

{
v ∈ H2(Ω) : ∂v

∂n
= 0 on ∂Ω

}
.

Since (y, u) ∈ K implies y ∈ H2(Ω) and u = −Δy by elliptic regularity [15], the
optimal control problem (1) is equivalent to the following problem:

Find ȳ = argmin
y∈K

[
1

2
‖y − yd‖2 + γ

2
‖Δy‖2

]
(2)

= argmin
y∈K

[
γ

2
‖Δy‖2 + 1

2
‖y‖2 − (yd, y)

]
,
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where
K = KD = {y ∈ VD : y ≤ ψ in Ω} (Dirichlet problem),

or
K = KN = {y ∈ VN : y ≤ ψ in Ω} (Neumann problem).

Let D2y : D2z denote the (Frobenius) inner product of the Hessian matrices of y
and z:

D2y : D2z =
∑

1≤i,j≤3

(
∂2y

∂xi∂xj

) (
∂2z

∂xi∂xj

)
.

It follows from integration by parts that (2) can be rewritten as

Find ȳ = argmin
y∈K

[
1

2
A(y, y) − (yd, y)

]
, (3)

where

A(y, z) = γ

∫
Ω

D2y : D2z dx +
∫

Ω

yz dx. (4)

Note that in the Neumann case the closed convex subset KN of VN is always non-
empty since it contains all constant functions that are bounded above byminx∈Ω ψ(x).
On the other hand, in the Dirichlet case we assume that ψ > 0 on ∂Ω so that KD

is a nonempty subset of VD and the contact set where y = ψ is disjoint from ∂Ω .
Since A(·, ·) is symmetric, bounded, and coercive on H2(Ω), the standard theory
[13, 22, 23, 26] implies that (3) has a unique solution characterized by the variational
inequality

A(ȳ, y − ȳ) ≥ (f , y − ȳ) for all y ∈ K,

where K = KD or K = KN .
The goal of this paper is to demonstrate thatC0 interior penalty methods [3–9, 11,

16] are effective for the numerical solution of (3). We note that in the literature, the
Dirichlet problem defined by (1) is solved as a fourth order variational inequality by
a Morley finite element method in [24], a mixed finite element method in [14], and a
quadratic C0 interior penalty method in [8, 9]. However, the numerical examples in
these references only involve two-dimensional domains. To the best of our knowl-
edge, this is the first paper that provides numerical results for elliptic distributed
optimal control problems in three dimensions formulated as fourth order variational
inequalities.

The rest of the paper is organized as follows. In Section 2, we introduce the
discrete problems for (3) that are based on the C0 interior penalty approach. We
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further discuss three procedures that generate approximations of the optimal control
ū by post-processing the discrete optimal state. In Section 3, we will provide some
details concerning the implementation of a primal-dual active set method using the
deal.II library. In Section 4, which is the main section, we present numerical results
for both the Dirichlet problem and the Neumann problem. Finally, we end with some
concluding remarks in Section 5.

2 Discrete Problems

Let Th be a uniform triangulation of Ω by cubic elements, Vh ⊂ H1(Ω) be the
(continuous)Q2 finite element space associated withTh, and let V̊h ⊂ H1

0 (Ω) be the
subspace of Vh whose members vanish on ∂Ω . We will use the following notation
throughout the paper:

• h is a mesh parameter proportional to maxT∈Th diam T .
• hF is the diameter of the face F.
• Vh is the set of vertices of Th.
• Fh is the set of faces of Th.
• F i

h is the set of interior faces of Ω .

Let F ∈ F i
h be the common face of T± ∈ Th and nF be the unit normal of F

pointing from T− to T+. The jump [[·]] and average {{·}} of the normal derivatives
over F for functions in the piecewise Sobolev spaces

Hs(Ω,Th) = {
v ∈ L2(Ω) : vT = v|T ∈ Hs(T) for all T ∈ Th

}

are defined as follows:

{{
∂2v

∂n2

}}
= 1

2

(∂2v+
∂n2F

∣∣∣
F

+ ∂2v−
∂n2F

∣∣∣
F

)
for all v ∈ Hs(Ω,Th), s >

5

2
,

[[
∂v

∂n

]]
= ∂v+

∂nF

∣∣∣
F

− ∂v−
∂nF

∣∣∣
F

for all v ∈ Hs(Ω,Th), s >
3

2
,

where v± = v|T± .
For F ∈ Fh that is a subset of ∂Ω , the jump and average are defined by

[[
∂v

∂n

]]
= − ∂v

∂nF
and

{{
∂2v

∂n2

}}
= ∂2v

∂n2F
,

where nF is the unit normal of F pointing towards the outside of Ω .
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2.1 Dirichlet Problem

Let the closed convex subset KD,h ⊂ V̊h be defined by

KD,h = {y ∈ V̊h : y(p) ≤ ψ(p) for all p ∈ Vh}.

The discrete problem for (3) when K = KD then reads:

Find ȳh = argmin
yh∈KD,h

[1
2
AD,h(yh, yh) − (f , yh)

]
, (5)

where
AD,h(v,w) = γ aD,h(v,w) + (v,w)

and

aD,h(v,w) =
∑
T∈Th

∫
T
D2v : D2w dx +

∑
F∈F i

h

∫
F

{{
∂2v/∂n2

}} [[∂w/∂n]]dS

+
∑
F∈F i

h

∫
F

{{
∂2w/∂n2

}} [[∂v/∂n]]dS

+ σ
∑
F∈F i

h

h−1
F

∫
F
[[∂v/∂n]][[∂w/∂n]]dS.

(6)

Here, σ > 0 is a penalty parameter chosen large enough (cf. [20]) so that aD,h( · , · )
is positive definite on Vh. Note that the sums in (6) involving the jumps and the
averages run only over the interior faces.

Remark 1 Thefinite element space V̊h and the bilinear form aD,h appear inC0 interior
penalty methods for the biharmonic equation with the boundary conditions of simply
supported plates [3, 5, 11].

2.2 Neumann Problem

Let the closed convex subset KN,h ⊂ Vh be defined by

KN,h = {y ∈ Vh : y(p) ≤ ψ(p) for all p ∈ Vh}.

The discrete problem for (3) when K = KN is defined as follows.

Find ȳh = argmin
yh∈KN,h

[
1

2
AN,h(yh, yh) − (f , yh)

]
, (7)
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where
AN,h(v,w) = γ aN,h(v,w) + (v,w)

and

aN,h(v,w) =
∑
T∈Th

∫
T
D2v : D2w dx +

∑
F∈Fh

∫
F

{{
∂2v/∂n2

}} [[∂w/∂n]] dS

+
∑
F∈Fh

∫
F

{{
∂2w/∂n2

}} [[∂v/∂n]] dS

+ σ
∑
F∈Fh

h−1
F

∫
F
[[∂v/∂n]][[∂w/∂n]] dS.

(8)

In contrast to (6), the sums in (8) involving the jumps and the averages run over all
faces.

Remark 2 The finite element space Vh and the bilinear form aN,h appear in C0

interior penalty methods for the biharmonic equation with boundary conditions of
the Cahn–Hilliard type [3, 4].

2.3 Post-processing

We now describe three post-processing procedures from [9] that generate approxi-
mations ūh for the optimal control ū from the discrete optimal state ȳh.

2.3.1 Procedure 1

Since ū = −Δȳ, we simply take ūh to be −Δhȳh, where Δh is the piecewise Laplace
operator with respect to Th.

2.3.2 Procedure 2

The optimal state ȳ and the optimal control ū are connected by

∫
Ω

∇ ȳ · ∇z dx =
∫

Ω

ūz dx ∀ z ∈ H1
0 (Ω)

for the Dirichlet problem and by

∫
Ω

∇ ȳ · ∇z dx =
∫

Ω

ūz dx ∀ z ∈ H1(Ω)
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for the Neumann problem. Therefore, we can compute an approximation ūh of ū by
solving ∫

Ω

∇ ȳh · ∇zh dx =
∫

Ω

ūhzh dx ∀ zh ∈ V̊h (9)

for the Dirichlet problem and by solving

∫
Ω

∇ ȳh · ∇zh dx =
∫

Ω

ūhzh dx ∀ zh ∈ Vh (10)

for the Neumann problem.

2.3.3 Procedure 3

Here, we exploit the following relations between ȳ and ū:

∫
Ω

∇ū · ∇z dx = −
∫

Ω

∇(Δȳ) · ∇z dx

=
∫

Ω

(Δȳ)(Δz) dx

=
∫

Ω

D2ȳ : D2z dx ∀ z ∈ VD

for the Dirichlet problem and

∫
Ω

∇ū · ∇z dx = −
∫

Ω

∇(Δȳ) · ∇z dx

=
∫

Ω

(Δȳ)(Δz) dx

=
∫

Ω

D2ȳ : D2z dx ∀ z ∈ VN

for the Neumann problem. Therefore, we can compute an approximation ūh ∈ V̊h of
ū by solving ∫

Ω

∇ūh · ∇ z̄h dx = aD,h(ȳh, zh) ∀ zh ∈ V̊h (11)

for the Dirichlet problem and compute ūh ∈ Vh ∩ L2
0(Ω) by solving

∫
Ω

∇ūh · ∇ z̄h dx = aN,h(ȳh, zh) ∀ zh ∈ Vh (12)
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for the Neumann problem. Note that the solvability of (12) follows from the com-
patibility condition

aN,h(ȳh, 1) = 0.

Remark 3 The computational cost increases from Procedure 1 to Procedure 3. How-
ever, these computational costs are negligible in comparison with the cost of solving
the variational inequality.

3 Implementation

The discrete problems in the numerical experiments are solved by a primal-dual
active set algorithm (cf. [18, 21] and the references therein).

Let y� ∈ R
N be the vector representing ȳh in (5) (or (7)) with respect to a nodal

basis of theQ2 finite element space, whereN is the dimension of V̊h (or Vh). Similarly,
K ⊂ R

N is the subset corresponding to KD,h (or KN,h), and A ∈ R
N×N denotes the

matrix representing the bilinear form AD,h(·, ·) (or AN,h(·, ·)) with respect to the
nodal basis of the Q2 finite element space. Then, (5) or (7) can be written as the
following variational inequality: Find y∗ ∈ K such that

(Ay∗, y − y∗) ≥ (f, y − y∗) ∀ y ∈ K. (13)

Here, (·, ·) is the Euclidean inner product on RN and the vector f is defined by

(f, y) =
∫

Ω

ydyh dx,

where the vector y represents the finite element function yh in V̊h (or Vh).
Letλ∗ = f − Ay∗. The primal-dual problemof (13) is to find (y∗,λ∗) ∈ R

N × R
N

such that

Ay∗ + λ∗ = f,

ψ − y∗ ≥ 0,

λ∗ ≥ 0,

(λ∗,ψ − y∗) = 0,

where ψ is a vector in (R ∪ {+∞})N that represents the discrete constraint. In other
words, the component of ψ corresponding to a node p ∈ Vh is given by ψ(p), while
all other components of ψ equal +∞.

Equivalently, we can write

Ay∗ + λ∗ = f,

y∗ = ψ on A∗,
λ∗ = 0 on I∗,

(14)
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where A∗ and I∗ are the active set and inactive set defined, respectively, by

A∗ = {
j ∈ N : λ∗(j) = (f − Ay∗)(j) > 0 and y∗(j) = ψ(j)

}
,

I∗ = {
j ∈ N : λ∗(j) = (f − Ay∗)(j) = 0 and y∗(j) ≤ ψ(j)

}
.

Here, N = {1, 2, . . . ,N} and λ∗(j) is the jth component of λ∗.
The primal-dual active set method solves (14) by generating a sequence of sets

Ak and Ik that approximate A∗ and I∗ and then obtain the approximation (yk,λk) by
solving a reduced system.

Given an initial guess (y0,λ0) ∈ R
N × R

N where λ0 ≥ 0, we define

A0 = {
j ∈ N : λ0(j) + c(y0(j) − ψ(j)) > 0

}
,

I0 = {
j ∈ N : λ0(j) + c(y0(j) − ψ(j)) ≤ 0

} = N \ A0,

where c is a positive number.
For k ≥ 1, we solve the reduced system

Akyk + λk = fk,

yk = ψ on Ak−1,

λk = 0 on Ik−1,

(15)

and update the active set and inactive set by

Ak = {
j ∈ N : λk(j) + c(yk(j) − ψ(j)) > 0

}
, (16)

Ik = {
j ∈ N : λk(j) + c(yk(j) − ψ(j)) ≤ 0

} = N \ Ak . (17)

(Choosing c > 0 large, e.g., c = 107, can improve the performance of the computa-
tion.)

Let the diagonal matrices PAk ,PIk ∈ R
N×N be defined by

[PAkv](j) =
{
v(j) if j ∈ Ak,

0 if j ∈ Ik,

[PIkv](j) =
{
v(j) if j ∈ Ik,

0 if j ∈ Ak .

Then solving (15) is equivalent to solving

PIk−1AkPIk−1(PIk−1yk) = PIk−1fk − PIk−1AkPAk−1ψ (18)

together with

PAk−1yk = PAk−1ψ, PIk−1λk = 0 and PAk−1λk = PAk−1fk − PAk−1Akyk .
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The iteration is terminatedwhen twoconsecutive active sets determinedby (16) are
identical. The linear system (18) is solved by the preconditioned conjugate gradient
method with an algebraic multigrid preconditioner, implemented within the Trilinos
library [17].

For the problemon the coarsestmeshT0, all degrees of freedom are initially placed
in the inactive set. For subsequent refinements at level k ≥ 1, we first compute ỹk and
λ̃k from yk−1 and λk−1 through interpolation, and then, we initialize the active and
inactive set using (16) and (17), with yk and λk replaced by ỹk and λ̃k , respectively.

To speed up the solution of the linear system, an inexact method is implemented
in which the inner iteration runs to a tolerance determined by the maximum of an
absolute tolerance and a relative tolerance based on the norm of the initial residual
from (15). This approach was observed to yield a solution in fewer iterations than
either solving to a uniform absolute tolerance alone or to a relative tolerance based
on the residual of the inner iteration alone. With this approach, the solver required
less than 8 iterations of the primal-dual active set method for the examples presented
in Section 4.

The numerical implementation has been realized by using the C++ software
library deal.II [1, 2]. The skeleton of the code is based on the deal.II tutor-
ial step-41, while the assembling of the local cell and face matrices relies on
the LocalIntegrators classes within the MeshWorker framework (formally
introduced in tutorial step-39).

Since the assembled matrices correspond to the C0 interior penalty formulation of
the biharmonic operator, which are different from the one implemented in deal.II, we
rely on the LocalIntegrators for the weak form of this problem. Furthermore,
the calculation of higher order derivatives is performed by using the contract
family of deal.II functions.

4 Numerical Results

In this section, we present numerical examples for (3). The discrete optimal state ȳh
is obtained from (5) for the Dirichlet problem and (7) for the Neumann problem,
and we use the post-processing procedures in Section 2.3 to generate the discrete
optimal control ūh. For each example, we report the state error in a H2-like mesh-
dependent norm (cf. (19) and (20)) and in theH1,L2, and L∞-norms. We also report
the L2 control errors for all post-processing procedures, and the H1 control errors of
Procedures 2 and 3. Finally, we present a figure of the contact set for each example.
We will comment on the numerical results in Section 5.

Examples 1–3 correspond to the optimal control problemwith theDirichlet bound-
ary condition, and Examples 4–6 are concerned with the Neumann boundary condi-
tion. The domain is the unit cube Ω = (−0.5, 0.5)3 for all the examples.
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We will use ‖·‖∞ to denote the 	∞ norm defined by

‖v‖∞ = max
p∈Nh

|v(p)|,

where Nh is the set of the nodes of the Q2 finite element space associated with Th,
and we define the mesh-dependent norms ‖ · ‖h,D and ‖ · ‖h,N by

‖v‖2h,D =
∑
T∈Th

‖D2v‖2L2(T) +
∑
F∈F i

h

1

hT

∥∥∥
[[

∂v

∂n

]] ∥∥∥2

L2(F)
, (19)

‖v‖2h,N =
∑
T∈Th

‖D2v‖2L2(T) +
∑
F∈Fh

1

hT

∥∥∥
[[

∂v

∂n

]] ∥∥∥2

L2(F)
. (20)

We solve the discrete problems on a sequence of triangulations generated by
uniform refinements, where the coarsest mesh consists of a single element. The
number of degrees of freedom at the kth level is (2k + 3)3. The discrete optimal
state associated with Tk is denoted by ȳk , the discrete optimal control obtained by
the post-processing procedure i (1 ≤ i ≤ 3) is denoted by ūk,i, and Nk stands for the
number of degrees of freedom at mesh level k. The word “order” denotes the order
of convergence computed by ln(‖ek−1‖ / ‖ek‖)/ ln 2, where ek = ȳ − ȳk (or ek =
ū − ūk,j) if the exact optimal state ȳ (or the exact optimal control ū) is available. If
the exact solution is not available, thenwe take ek = ȳk − ȳk−1 (or ek = ūk,i − ūk−1,i).

The CPU time for the 3D computations shown was observed to increase linearly
with the number of degrees of freedom. For each example, the numerical results on
the finest-level mesh took approximately 18 hours to complete. All the results below
were generated on the SuperMIC at Louisiana State University without using parallel
processing.

Example 1 (Dirichlet problem with a known solution)

We begin by considering (3) on the ball of radius two centered at the origin. We take
γ to be 1 and the exact solution to be

ȳ =
{
r2 − 1 if r ≤ r0
1

120
r4 + C1 + C2r + C3r2 + C4/r if r > r0

,

where r =
√
x21 + x22 + x23, r0 = 0.32151559, C1 = −1.4090715, C2 = 1.2737074,

C3 = −0.32339567, and C4 = 0.043812326. The upper bound for the state is given
by ψ = r2 − 1, and the desired state yd is 1 + ȳ.

The restriction of ȳ to the unit cube Ω = (−0.5, 0.5)3 is the exact solution of (3)
with the same yd and ψ , but the nonhomogeneous boundary conditions determined
by ȳ.

Remark 4 The exact solution (3) on the ball is obtained by reducing the problem to
a one-dimensional problem through the rotational symmetry.
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Table 1 State errors for Example 1.
k Nk ‖ȳ − ȳk‖h,D order |ȳ − ȳk |H1(Ω)

order ‖ȳ − ȳk‖ order ‖ȳ − ȳk‖∞ order

1 27 2.557e+00 – 3.148e−01 – 4.770e−02 – 2.433e−01 –

2 125 2.667e+00 −0.062 1.692e−01 0.896 2.897e−02 0.720 6.565e−02 1.890

3 729 1.061e+00 1.330 2.571e−02 2.718 2.980e−03 3.281 6.867e−03 3.257

4 4913 4.337e−01 1.290 7.466e−03 1.784 5.068e−04 2.556 2.155e−03 1.672

5 35940 1.800e−01 1.268 1.526e−03 2.290 7.446e−05 2.767 4.309e−04 2.322

6 274625 7.988e−02 1.172 3.722e−04 2.036 1.915e−05 1.959 8.420e−05 2.355

7 2146689 3.610e−02 1.146 8.528e−05 2.126 3.033e−06 2.658 1.250e−05 2.752

Table 2 L2 control errors for the three procedures, Example 1.

k Nk ‖ū − ūk,1‖ order ‖ū − ūk,2‖ order ‖ū − ūk,3‖ order

1 27 1.290e+00 – 1.240e+00 – 1.260e+00 –

2 125 1.078e+00 0.259 1.249e+00 −0.109 1.354e+00 −0.104

3 729 4.958e−01 1.120 3.974e−01 1.652 4.473e−01 1.598

4 4913 2.512e−01 0.981 1.600e−01 1.313 1.726e−01 1.374

5 35940 1.227e−01 1.033 5.435e−02 1.558 5.717e−02 1.594

6 274625 6.139e−02 0.999 2.020e−02 1.428 2.112e−02 1.437

7 2146689 3.065e−02 1.002 7.617e−03 1.407 7.480e−03 1.498

In view of the nonhomogeneous boundary conditions, we change the definition
of KD,h to

KD,h = {y ∈ Vh : y − 
hȳ ∈ H1
0 (Ω) and y(p) ≤ ψ(p) for all p ∈ Vh},

where
h is the Lagrange nodal interpolation operator. The discrete problem (5) then
becomes

Find ȳh = argmin
yh∈KD,h

[
1

2
AN,h(yh, yh) −

∫
∂Ω

∂2ȳ

∂n2
∂yh
∂n

dS − (f , yh)

]
.

In Table 1, we report the error of the state in ‖ · ‖h,D and in the H1, L2, and L∞-
norms. In Table 2, we report L2 control errors for all post-processing procedures
described in Section 2.3, and we report the H1 control errors of Procedures 2 and 3
in Table 3. The discrete contact set after 4 uniform refinements is shown in Figure 1.

Example 2 (Dirichlet problem with an unknown solution)

We take γ to be 10−3,ψ to be the constant 0.2, and yd to be the function sin(2π(x1 +
0.5)(x2 + 0.5)(x3 + 0.5)). The errors for the state and the control are reported in
Tables 4–6. The discrete contact set after 4 uniform refinements is displayed in
Figure 2.
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Table 3 H1 control errors for Procedures 2 and 3, Example 1.

k Nk |ū − ūk,2|H1(Ω) order |ū − ūk,3|H1(Ω) order

1 27 8.961e+00 – 9.055e+00 –

2 125 1.573e+01 −0.812 1.852e+01 −0.103

3 729 1.444e+01 0.123 1.601e+01 0.210

4 4913 1.043e+01 0.469 1.129e+01 0.504

5 35940 7.438e+00 0.488 8.021e+00 0.493

6 274625 5.501e+00 0.435 5.774e+00 0.474

7 2146689 4.212e+00 0.385 4.039e+00 0.516

Fig. 1 The discrete contact
set for Example 1 after 4
uniform refinements.

Example 3 (Dirichlet problem with an unknown solution)

As in Example 2, we take γ to be 10−3 and the upper bound ψ to be a constant 0.15.
But we choose yd to be a piecewise constant function:

yd =
{
0 if x < 0,

1 otherwise.

The errors for the state and the control are reported in Tables 7–9. The discrete
contact set after 4 levels of uniform refinement is shown in Figure 3.

Example 4 (Neumann problem with an exact solution)

As in Example 1, we begin with (3) on the ball of radius 2 centered at the origin. We
take γ to be 1 and the exact solution to be

ȳ =
{
C1r + C2r2 + C3/r + C4 if r > r0
r2 − r4/8 if r ≤ r0

,
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Table 4 State errors for Example 2.
k Nk ‖yk−1 − yk‖h,D order |yk−1 − yk |H1(Ω) order ‖yk−1 − yk‖ order |yk−1 − yk |∞ order

2 125 6.033e+00 – 4.442e−01 – 6.535e−02 – 3.405e−01 –

3 729 4.798e+00 0.330 2.948e−01 0.591 4.473e−02 0.547 1.654e−01 1.041

4 4913 4.044e+00 0.247 1.237e−01 1.253 1.684e−02 1.410 7.936e−02 1.060

5 35940 1.640e+00 1.302 2.556e−02 2.275 1.527e−03 3.463 1.015e−02 2.967

6 274625 7.264e−01 1.175 5.580e−03 2.196 2.549e−04 2.583 1.645e−03 2.625

7 2146689 3.004e−01 1.274 1.521e−03 1.876 7.2393e−05 1.816 2.521e−04 2.706

Table 5 L2 control errors for the three procedures, Example 2.

k Nk ‖ūk−1,1 − ūk,1‖ order ‖ūk−1,2 − ūk,2‖ order ‖ūk−1,3 − ūk,3‖ order

2 125 1.993e+00 – 4.080e+00 – 4.657e+00 –

3 729 1.531e+00 0.380 3.080e+00 0.406 3.418e+00 0.446

4 4913 1.285e+00 0.253 2.086e+00 0.563 2.341e+00 0.546

5 35940 7.869e−01 0.707 7.617e−01 1.453 8.240e−01 1.506

6 274625 4.135e−01 0.928 2.501e−01 1.607 2.752e−01 1.582

7 2146689 2.108e−01 0.972 7.933e−02 1.657 8.105e−02 1.763

Table 6 H1 control errors for Procedures 2 and 3, Example 2.

k Nk |ūk−1,2 − ūk,2|H1(Ω) order |ūk−1,3 − ūk,3|H1(Ω) order

2 125 4.763e+01 – 5.486e+01 –

3 729 6.914e+01 −0.538 7.485e+01 −0.448

4 4913 7.972e+01 −0.205 8.584e+01 −0.198

5 35940 5.986e+01 0.413 6.342e+01 0.437

6 274625 3.941e+01 0.603 4.107e+01 0.627

7 2146689 2.537e+01 0.635 2.610e+01 0.654

where r0 = 0.33563105,C1 = 1.2785390,C2 = −0.31672296,C3 = 0.046588697,
and C4 = −0.42118638. The upper bound for the state is given by ψ = r2 − r4/8,
and the desired state yd equals ȳ.

The restriction of ȳ to the unit cube Ω = (−0.5, 0.5)3 is the exact solution of (3)
with the same ψ and yd , and the nonhomogeneous boundary conditions determined
by ȳ.

In view of the nonhomogeneous conditions, the discrete problem (7) becomes

Find ȳh = argmin
yh∈KN,h

[1
2
AN,h(yh, yh) +

∫
∂Ω

∂Δȳ

∂n
yh dS

−
∫

∂Ω

( ∂

∂n
∇∂Ω ȳ

)
· ∇∂Ωyh dS − (f , yh)

]
.
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Fig. 2 The discrete contact
set for Example 2 after 4
uniform refinements.

Table 7 State errors for Example 3.
k Nk ‖yk−1 − yk‖h,D order |yk−1 − yk |H1(Ω) order ‖yk−1 − yk‖ order |yk−1 − yk |∞ order

2 125 9.992e+00 – 1.145e+00 – 1.937e−01 – 6.804e−01 –

3 729 6.583e+00 0.602 4.788e−01 1.257 7.286e−02 1.410 2.999e−01 1.182

4 4913 4.393e+00 0.583 1.358e−01 1.819 1.732e−02 2.072 7.681e−02 1.965

5 35937 1.934e+00 1.184 3.130e−02 2.117 1.777e−03 3.285 1.049e−02 2.872

6 274625 8.585e−01 1.171 8.125e−03 1.946 4.845e−04 1.875 1.455e−03 2.850

7 2146689 3.735e−01 1.201 1.892e−03 2.102 1.030e−04 2.234 3.053e−04 2.252

Table 8 L2 control errors for the three procedures, Example 3.

k Nk ‖ūk−1,1 − ūk,1‖ order ‖ūk−1,2 − ūk,2‖ order ‖ūk−1,3 − ūk,3‖ order

2 125 4.425e+00 – 7.644e+00 – 8.513e+00 –

3 729 2.382e+00 0.893 4.359e+00 0.810 4.823e+00 0.820

4 4913 1.280e+00 0.896 2.417e+00 0.851 2.663e+00 0.857

5 35940 9.293e−01 0.462 9.022e−01 1.422 8.879e−01 1.585

6 274625 5.111e−01 0.863 3.045e−01 1.567 3.013e−01 1.560

7 2146689 2.630e−01 0.958 1.006e−01 1.597 9.998e−02 1.591

Table 9 H1 control errors for Procedures 2 and 3, Example 3.

k Nk |ūk−1,2 − ūk,2|H1(Ω) order |ūk−1,3 − ūk,3|H1(Ω) order

2 125 6.299e+01 – 7.138e+01 –

3 729 8.628e+01 −0.454 9.310e+01 −0.383

4 4913 9.490e+01 −0.137 1.006e+02 −0.112

5 35940 7.016e+01 0.436 7.221e+01 0.479

6 274625 4.786e+01 0.552 4.919e+01 0.554

7 2146689 3.171e+01 0.594 3.223e+01 0.610
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Fig. 3 The discrete contact
set for Example 3 after 4
uniform refinements.

Table 10 State errors for Example 4.
k Nk ‖ȳ − ȳk‖h,N order |ȳ − ȳk |H1(Ω)

order ‖ȳ − ȳk‖ order ‖ȳ − ȳk‖∞ order

1 27 8.161e+00 – 4.445e−01 – 6.470e−01 – 7.204e−01 –

2 125 3.439e+00 1.247 9.993e−02 2.153 5.137e−02 3.655 7.112e−02 3.341

3 729 1.208e+00 1.509 2.954e−02 1.758 3.582e−03 3.842 7.202e−03 3.304

4 4913 4.315e−01 1.485 8.196e−03 1.850 9.221e−04 1.958 2.786e−03 1.370

5 35940 1.780e−01 1.278 1.774e−03 2.208 2.323e−04 1.989 7.165e−04 1.959

6 274625 7.654e−02 1.217 4.465e−04 1.990 6.995e−05 1.732 2.030e−04 1.819

7 2146689 3.480e−02 1.137 1.084e−04 2.043 1.790e−05 1.967 5.138e−05 1.982

Table 11 L2 control errors for the three procedures, Example 4.

k Nk ‖ū − ūk,1‖ order ‖ū − ūk,2‖ order ‖ū − ūk,3‖ order

1 27 1.548e+00 – 4.019e+00 – 5.234e+01 –

2 125 9.684e−01 0.676 1.389e+00 1.533 2.418e+00 4.436

3 729 4.933e−01 0.973 4.373e−01 1.667 4.476e−01 2.433

4 4913 2.411e−01 1.033 1.582e−01 1.467 1.613e−01 1.473

5 35940 1.194e−01 1.014 5.288e−02 1.581 5.512e−02 1.549

6 274625 5.938e−02 1.008 1.864e−02 1.504 1.927e−02 1.516

7 2146689 2.967e−02 1.001 7.141e−03 1.384 6.755e−03 1.512

The errors for the state are summarized in Table 10, while Tables 11 and 12
contain the L2 and H1 errors for the control for the post-processing procedures
from Section 2.3. The discrete contact set after 4 uniform refinements is depicted in
Figure 4.



A C0 Interior Penalty Method for Elliptic Distributed Optimal Control Problems … 17

Table 12 H1 control errors for Procedures 2 and 3, Example 4.

k Nk |ū − ūk,2|H1(Ω) order |ū − ūk,3|H1(Ω) order

1 27 4.143e+01 – 4.203e+01 –

2 125 2.708e+01 0.614 2.743e+01 0.615

3 729 1.560e+01 0.795 1.628e+01 0.753

4 4913 1.025e+01 0.607 1.078e+01 0.595

5 35940 7.160e+00 0.517 7.601e+00 0.504

6 274625 4.944e+00 0.534 5.222e+00 0.542

7 2146689 4.034e+00 0.294 3.671e+00 0.509

Fig. 4 The discrete contact
set for Example 4 after 4
levels of uniform refinement.

Example 5 (Neumann problem with an unknown solution)

We take γ to be 10−3, the upper boundψ to be the constant 0.2, and yd to be the func-
tion sin(2π(x1 + 0.5)(x2 + 0.5)(x3 + 0.5)). The errors for the state and the control
are reported in Tables 13–15. The discrete contact set after 4 uniform refinements is
shown in Figure 5. Note that the contact set is not disjoint from ∂Ω for this example.

Table 13 State errors for Example 5.
k Nk ‖yk−1 − yk‖h,N order |yk−1 − yk |H1(Ω) order |yk−1 − yk | order |yk−1 − yk |∞ order

2 125 1.346e+01 – 5.244e−01 – 1.327e−01 – 3.772e−01 –

3 729 1.137e+01 0.244 3.885e−01 0.433 1.231e−01 0.109 2.634e−01 0.518

4 4913 4.886e+00 1.218 1.157e−01 1.747 1.807e−02 2.768 4.535e−02 2.538

5 35940 1.469e+00 1.734 1.557e−02 2.894 1.403e−03 3.687 4.255e−03 3.414

6 274625 4.959e−01 1.566 2.890e−03 2.430 2.106e−04 2.736 1.610e−03 1.402

7 2146689 1.801e−01 1.461 6.627e−04 2.125 5.012e−05 2.071 4.322e−04 1.897
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Table 14 L2 control errors for the three procedures, Example 5.

k Nk ‖ūk−1,1 − ūk,1‖ order ‖ūk−1,2 − ūk,2‖ order ‖ūk−1,3 − ūk,3‖ order

2 125 2.427e+00 – 5.291e+00 – 5.448e+00 –

3 729 2.496e+00 −0.046 5.194e+00 0.027 8.394e+00 −0.624

4 4913 1.341e+00 0.897 2.671e+00 0.960 3.297e+00 1.348

5 35940 4.637e−01 1.532 7.730e−01 1.789 9.107e−01 1.856

6 274625 2.102e−01 1.141 2.165e−01 1.836 2.593e−01 1.812

7 2146689 1.027e−01 1.034 6.253e−02 1.792 7.846e−02 1.724

Table 15 H1 control errors for Procedures 2 and 3, Example 5.

k Nk |ūk−1,2 − ūk,2|H1(Ω) order |ūk−1,3 − ūk,3|H1(Ω) order

2 125 9.239e+01 – 9.350e+01 –

3 729 1.291e+02 −0.483 1.327e+02 −0.505

4 4913 1.127e+02 0.197 1.155e+02 0.201

5 35940 6.735e+01 0.743 6.879e+01 0.747

6 274625 3.771e+01 0.837 3.870e+01 0.830

7 2146689 2.177e+01 0.793 2.224e+01 0.799

Fig. 5 The discrete contact
set for Example 5 after 4
uniform refinements.

Example 6 (Neumann problem with an unknown solution)

For the last example, we take γ to be 10−1 and the upper bound ψ to be the constant
0.5. Unlike Example 5, we choose yd to be the piecewise constant function defined
by

yd =
{
20 if (x, y, z) ∈ (−0.375, 0.125)3,

0 otherwise.
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Table 16 State errors for Example 6.
k Nk ‖yk−1 − yk‖h,N order |yk−1 − yk |H1(Ω) order ‖yk−1 − yk‖ order |yk−1 − yk |∞ order

2 125 3.833e+00 – 1.735e−01 – 1.574e−01 – 2.048e−01 –

3 729 1.959e+00 0.968 5.836e−02 1.572 3.642e−02 2.112 6.586e−02 1.637

4 4913 5.081e−01 1.947 3.812e−02 0.615 1.584e−02 1.201 2.659e−02 1.309

5 35940 2.122e−01 1.260 2.669e−03 3.836 6.442e−04 4.620 1.035e−03 4.684

6 274625 7.672e−02 1.468 5.823e−04 2.196 1.401e−04 2.201 3.610e−04 1.519

7 2146689 2.961e−02 1.374 1.329e−04 2.131 3.205e−05 2.128 7.000e−05 2.367

Table 17 L2 control errors for the three procedures, Example 6.

k Nk ‖ūk−1,1 − ūk,1‖ order ‖ūk−1,2 − ūk,2‖ order ‖ūk−1,3 − ūk,3‖ order

2 125 6.761e−01 – 1.638e+00 – 3.688e+00 –

3 729 4.424e−01 0.612 8.761e−01 0.903 1.508e+00 1.290

4 4913 2.646e−01 0.741 3.320e−01 1.400 3.789e−01 1.993

5 35940 6.588e−02 2.006 1.157e−01 1.521 1.245e−01 1.605

6 274625 2.980e−02 1.144 3.538e−02 1.709 3.951e−02 1.656

7 2146689 1.490e−02 1.000 1.071e−02 1.724 1.217e−02 1.699

Table 18 H1 control errors for Procedures 2 and 3, Example 6.

k Nk |ūk−1,2 − ūk,2|H1(Ω) order |ūk−1,3 − ūk,3|H1(Ω) order

2 125 2.132e+01 – 2.145e+01 –

3 729 1.809e+01 0.237 1.879e+01 0.191

4 4913 1.052e+01 0.783 1.102e+01 0.770

5 35940 9.810e+00 0.100 1.005e+01 0.133

6 274625 5.928e+00 0.727 6.165e+00 0.705

7 2146689 3.620e+00 0.712 3.687e+00 0.742

We report the errors for the state and the control in Tables 16–18. The discrete
contact set after 4 uniform refinements is displayed in Figure 6. Note that the contact
set is not disjoint from ∂Ω for this example.
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Fig. 6 The discrete contact
set for Example 6 after 4
uniform refinements.

5 Concluding Remarks

We have obtained the first numerical results for solving elliptic distributed optimal
control problems in three-dimensional domains as fourth order variational inequali-
ties.

In all the examples, we have observedO(h) convergence for the state in the mesh-
dependent norm ‖ · ‖h,D or ‖ · ‖h,N . This ismost evident for Example 1 andExample 4
where we know the exact solutions. The convergence in the other examples appears
to be slightly better than O(h), probably because the errors in these examples are
only estimated by comparing the solutions on consecutive levels.

Note that the exact solution ȳ belongs to H3
loc(Ω) by the result in [12] for fourth

order variational inequalities. When the contact set is disjoint from the boundary of
the unit cube (Examples 1–4), ȳ belongs globally toH3(Ω) by the result in [10, 25] for
elliptic boundary value problems on nonsmooth domains. Therefore, an O(h) error
in the H2-like mesh-dependent norm for a method based on the Q2 element is not
surprising. On the other hand, when the contact set is not disjoint from the boundary
of the domain, the global regularity of the exact solution ȳ is very much problem
dependent. The observed convergence behavior for Examples 5 and 6 indicates that
the exact solution of the two optimal control problems in these examples may also
belong to H3(Ω).

The convergence for the state in the lower order norms is of higher order in all the
examples. In particular, the H1 error of the state is O(h2) in all the examples, which
compares favorably to the O(h) error in standard finite element methods for optimal
control problems where the state y is eliminated (cf. [19] and the references therein).

For the approximate control generated by post-processing, the convergence in the
L2 norm is O(h) for Procedure 1 and O(h3/2) for Procedure 2 and Procedure 3. We
also observe that up to two hundred thousand degrees of freedom, the magnitudes of
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the L2 errors for the approximate control generated by Procedure 1 in Experiment 5
and Experiment 6 are smaller than those for the other two procedures.

As in the two dimensional case, we also observe that the approximate optimal
controls generated by Procedure 2 and Procedure 3 converge in the H1 norm. This
phenomenon has not been observed in the standard approach.

Finally, we remark that a direct extension of the methodology developed in [9]
only leads to O(h

1
2 ) convergence in the mesh-dependent energy norms when the

exact solution ȳ belongs to H3(Ω). New techniques are required for the analysis of
three-dimensional problems.
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The Effect of the Sensitivity Parameter
in Weighted Essentially Non-oscillatory
Methods

Bo Dong, Sigal Gottlieb, Yulia Hristova, Yan Jiang and Haijin Wang

Abstract Weighted essentially non-oscillatory methods (WENO) were developed
to capture shocks in the solution of hyperbolic conservation laws while maintaining
stability and without smearing the shock profile. WENO methods accomplish this
by assigning weights to a number of candidate stencils, according to the smoothness
of the solution on the stencil. These weights favor smoother stencils when there is
a significant difference while combining all the stencils to attain higher order when
the stencils are all smooth. When WENO methods were initially introduced, a small
parameter ε was defined to avoid division by zero. Over time, it has become apparent
that ε plays the role of the sensitivity parameter in stencil selection. WENOmethods
allow some oscillations, and it is well known that these oscillations depend on the
size of ε. In this work, we show that the value of ε must be below a certain critical
threshold εc and that this threshold depends on the function used and on the size
of the jump discontinuity captured. Next, we analytically and numerically show the
size of the oscillations for one time-step and over long time integration when ε < εc
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and their dependence on the size of ε, the function used, and the size of the jump
discontinuity.

1 Introduction: Weighted Essentially Non-oscillatory
Methods

When approximating the solution to a conservation law of the form

ut + f (u)x = 0,

we use a conservative finite difference scheme

ut = − 1

Δx
(f̂j+ 1

2
− f̂j− 1

2
)

to obtain a physically relevant solution [9]. The term f̂j+ 1
2

= f̂ (uj−k, . . . , uj+l) is the
numerical flux, and the points xj−k, . . . , xj+l constitute the stencil. To be a reasonable
approximation, the numerical flux must be (at least) Lipschitz continuous and con-
sistent with the physical flux f , i.e., f̂ (u, . . . , u) = f (u). Once the spatial derivative is
computed by differencing the numerical fluxes, we obtain a system of ODEs which
is then evolved to the next time-step using some standard time-stepping method.
Different numerical fluxes give rise to different numerical methods. Any differences
between the properties of such methods are a result of differences in the numerical
flux.

A major issue with the use of finite difference methods for computations with
shocks is that oscillations arise when we take points on opposite sides of the shock
to evaluate the derivative at a given point. These oscillations at the shock location
propagate to the smooth regions, destroying the stability of the solution. To avoid
oscillations and instabilities that arise from using a finite-difference stencil that takes
information from both sides of the shock, ENO ([3], [4], [12]) schemes search for the
locally smoothest stencil and use that stencil to calculate the numerical fluxes. The
idea behind ENO schemes is stencil switching in order to eliminate oscillations. The
ENO scheme evaluates the smoothness of several stencils near the point of interest
and picks the smoothest stencil for evaluating the derivative at that point. This means
that the method should avoid picking stencils that cross the shock, so that the stencil
is chosen only from a smooth region (to the left or right of the shock) in which linear
stability is enough to ensure nonlinear stability.

Liu, Osher, and Chan [10] improved upon the ENO method by assigning each
stencil a weight which depends on its smoothness and summing the approximations
from all the candidate stencils, each with its corresponding weight. The weights
are chosen so that in smooth regions, we obtain higher-order accuracy, whereas near
discontinuities, the method imitates the ENO scheme by assigning near-zero weights
to the stencils that contain discontinuities. This approach is called the weighted ENO
(or WENO) method. An rth order ENO scheme considers a total of 2r − 1 points to
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evaluate the flux. The WENO scheme uses all the candidate stencils and therefore
2r−1 points, so that a clever choice of weights [7] results in aWENO scheme which
is of order 2r − 1 in smooth regions [13].

In the following subsections, we describe three variants of the WENO procedure.
We focus on the choice r = 3 which gives fifth-order methods for smooth problems
and third order in non-smooth regions. The threemethodswe consider are theWENO
method described by Jiang and Shu in [7], themappedWENOprocedure given in [5],
and the improved method presented in [1]. We refer to these methods as WENO-JS,
WENO-M, and WENO-Z, respectively. In all of the following, we assume that we
have a flux f (u) such that df

du ≥ 0. If this is not the case, then we split the flux into
the positive and negative parts

f (u) = f +(u) + f −(u),

such that df
+

du ≥ 0 and df −
du ≤ 0. Then,we handle each part separately, using differently

biased stencils for the negative flux. We will not describe this in detail here, but the
interested reader can consult [13].

1.1 WENO-JS

In this section, we present the r = 3 method of Jiang and Shu [7]. To calculate the
numerical flux f̂j+ 1

2
at any given point xj, we begin by calculating the smoothness

measurements to determinewhether a shock lies within the stencil. For the fifth-order
scheme, these are as follows:

IS0 = 13

12

(
fj−2 − 2fj−1 + fj

)2 + 1

4

(
fj−2 − 4fj−1 + 3fj

)2

IS1 = 13

12

(
fj−1 − 2fj + fj+1

)2 + 1

4

(
fj−1 − fj+1

)2

IS2 = 13

12

(
fj − 2fj+1 + fj+2

)2 + 1

4

(
3fj − 4fj+1 + fj+2

)2

(Note that the factor of 1
12 can be ignored due to the normalization later). Next, we

use the smoothness measurements to calculate the stencil weights

α
(JS)
0 = ω0

(
1

ε + IS0

)p

α
(JS)
1 = ω1

(
1

ε + IS1

)p

α
(JS)
2 = ω2

(
1

ε + IS2

)p

where ω0 = 1
10 , ω1 = 6

10 , and ω2 = 3
10 are the centered difference weights, and p is

the power of the weights, typically chosen to be p = 2.
Note that the parameter ε is added to the denominator to prevent division by zero.

To avoid division by machine zero, we must pick ε larger than the square root of the
smallest positive number seen as nonzero by the computer. For single precision, this
is ε > 10−18, while for double precision, we need ε > 10−153.
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These weights are then normalized

ω
(JS)
0 = α

(JS)
0∑3

i=1 α
(JS)
i

ω
(JS)
1 = α

(JS)
1∑3

i=1 α
(JS)
i

ω
(JS)
2 = α

(JS)
2∑3

i=1 α
(JS)
i

,

and the normalized weights are used to compute the numerical fluxes

f̂j+ 1
2

= ω
(JS)
0

(
2

6
fj−2 − 7

6
fj−1 + 11

6
fj

)
+ ω

(JS)
1

(
−1

6
fj−1 + 5

6
fj + 2

6
fj+1

)

+ ω
(JS)
2

(
2

6
fj + 5

6
fj+1 − 1

6
fj+2

)
.

Finally, the derivative is computed by taking a difference of the fluxes

f (u)x ≈ 1

Δx

(
f̂ +
j+ 1

2
− f̂ +

j− 1
2

)
.

This process leads to a system of ordinary differential equations, which can then
be evolved by standard time-stepping methods such as Runge–Kutta schemes.

1.2 Mapped WENO (WENO-M)

The mapped WENO method [5] was developed to overcome the loss of order of
convergence near critical points of f that is experienced by WENO-JS. Rather than
creating a new smoothness measure, the mapped WENO algorithm uses the ideal
weights ωk and the WENO-JS weights ω

(JS)
k to create new mapped weights, ω

(M)

k
given by

ω
(M)

k = α
(M)

k∑2
i=0 α

(M)
i

where

α
(M)

k =
ω

(JS)
k

(
ωk + ω2

k − 3ωkω
(JS)
k + (ω

(JS)
k )2

)

ω2
k + ω

(JS)
k (1 − 2ωk)

.

These weights are then used for the computation of the numerical fluxes

f̂j+ 1
2

= ω
(M)
0

(
2

6
fj−2 − 7

6
fj−1 + 11

6
fj

)
+ ω

(M)
1

(
−1

6
fj−1 + 5

6
fj + 2

6
fj+1

)

+ ω
(M)
2

(
2

6
fj + 5

6
fj+1 − 1

6
fj+2

)
.
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The convergence of this WENO-M method near critical points was studied in [5]
with the value ε = 10−40 and verified that this method converges at design order
even near critical points.

1.3 WENO-Z

The mapped WENO approach above is much slower than the original WENO-JS.
An improvement of both these methods was introduced in [1] where the smoothness
measurements are modified. This method defines a value τ5 = |IS0 − IS2| and
computes the new weights

α
(z)
k = ωk

(
1 +

(
τ5

ISk + ε

)p)
.

These weights are then normalized

ω
(z)
0 = α

(z)
0∑3

i=1 α
(z)
i

ω
(z)
1 = α

(z)
1∑3

i=1 α
(z)
i

ω
(z)
2 = α

(z)
2∑3

i=1 α
(z)
i

,

and the normalized weights are used to compute the numerical fluxes

f̂j+ 1
2

= ω
(z)
0

(
2

6
fj−2 − 7

6
fj−1 + 11

6
fj

)
+ ω

(z)
1

(
−1

6
fj−1 + 5

6
fj + 2

6
fj+1

)

+ ω
(z)
2

(
2

6
fj + 5

6
fj+1 − 1

6
fj+2

)
.

The fifth-order WENO-Z scheme was shown to have less dissipation and higher
resolution than the WENO-JS scheme, generates solutions that are as sharp as those
in WENO-M, and does not suffer as much as WENO-JS from reduced convergence
rates at critical points. In addition, the WENO-Z method has a computational cost
about the same as WENO-JS and significantly smaller than WENO-M.

In [1], the authors consistently use a small value of ε to avoid this parameter
dominating over the smoothness measurements. Later, in [6], the authors consider
the appropriate values of ε and suggest the value ε = Δxr−1 as a compromise
that avoids the loss of stencil sensitivity when ε dominates over the smoothness
measurement, while still serving its original role of preventing division by zero.
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2 The Importance of Choosing a Small Enough
Sensitivity Parameter

When the parameter ε was initially introduced, its sole function was to prevent
division by zero. The parameter value chosen initially was ε = 10−6 [7]. In fact,
the parameter ε serves a role as a sensitivity parameter that determines the differ-
ence in size between smoothness measurements that induce stencil switching. If the
smoothness indicators are all below the level of ε, all the candidate stencils are seen
as equally smooth and the centered difference method is attained. However, if one of
the smoothness indicators is larger than ε, then the weights will no longer be equal
and the chosen stencils will be biased away from the shock.

Over time, users of theWENOmethodhave observed that the value of ε had impor-
tant implications on the presence of oscillations. In studying the order of convergence
of WENO-JS, Henrick et al. [5] noted that the parameter ε plays a critical though
unintended role. They noted that the expansion of the nonnormalized weights yields
αk = ωk

ε+Δx2f ′2+O(Δx4) so that as Δx → 0, the parameter ε will eventually dominate
over the smoothness indicators, and the WENO-JS method approaches the behavior
of the central difference scheme. At the same time, they also note that oscillations
of order ε2 can be seen near discontinuities (an observation that we will study rig-
orously later in this paper). Both these observations suggest that smaller values of ε

are preferable. The first question we ask is what is that value of εc, the critical value
that ε must be below so that its effect is easily controlled. In this section, we perform
a few numerical studies that show the dependence of εc on the power of the function
and the size of the jump.

To understand what is happening, we start with a simple example: consider the
function f (u) = cum where

u =
{
0 if n ≤ j
M if n > j

In this case, m is the order of the function, and M is the size of the jump. The
smoothness measurements for this function are mostly zero, except near the shock.
At that point, we get

IS0 = 13

12

(
fj−2 − 2fj−1 + fj

)2 + 1

4

(
fj−2 − 4fj−1 + 3fj

)2 = 0

IS1 = 13

12

(
fj−1 − 2fj + fj+1

)2 + 1

4

(
fj−1 − fj+1

)2 = 4

3
c2(M)2m

IS2 = 13

12

(
fj − 2fj+1 + fj+2

)2 + 1

4

(
3fj − 4fj+1 + fj+2

)2 = 10

3
c2(M)2m.

The weights then become (with the choice of p = 2)

α0 = 1

10

(
1

ε

)2
, α1 = 6

10

(
1

ε + 4
3 c

2(M)2m

)2

, α2 = 3

10

(
1

ε + 10
3 c2(M)2m

)2

.
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Notice that if ε << c2M2m, the smooth stencil will get the largeweights and the other
stencils get very small weights. However, if ε ≥ εc ≈ c2M2m, the wrong stencils
will be chosen, producing oscillations. The purpose of this section is to explore this
critical value of ε and its effects in a variety of numerical settings.

In the following examples, we demonstrate the effect of choosing a value of ε that
is too large and examine the values of ε that are small enough to prevent unwanted
behavior of the method. First, we examine the size of the overshoot/undershoot in a
simple linear advection equation.
Example 1: Consider linear advection equation

ut + ux = 0 with u(x, 0) =
{−1 if x < 0
1 otherwise

We discretize the spatial grid withN = 100 points between [−1, 1]. We useWENO-
JS to evaluate the derivatives and use the third-order SSP Runge–Kutta method with
Δt = 1

2Δx to advect the solution over fifty time-steps. If |u| > 1, we have an
undershoot or overshoot. The table below lists the maximal over/undershoot for the
first 50 time-steps for each value of ε. We observe that for this example, we require
ε ≤ 10−24 for the under- or overshoot to be within roundoff error and even smaller
ε for the under- or overshoot to be within machine precision.

ε 10−6 10−9 10−13 10−16 10−19 10−24 10−29 10−39

max|u| − 1 5.66e-5 1.62e-6 1.42e-8 4.16e-10 1.18e-11 3.26e-14 2.22e-16 2.22e-16

This simple demonstration indicates that the choice of ε strongly affects the size
of the oscillations. There is a critical value εc below which the oscillations are no
longer significant. In the next section, we explore the dependence of this critical
value of ε on the size of the jump.

2.1 Dependence of the Critical Value of ε on the Size
of the Jump Discontinuity

In this section, we study numerically the behavior of several problems, with several
jump sizes, using the WENO-JS method.
Example 1a We revisit the linear advection equation in Example 1, this time with
step function initial conditions of sizeM

u(x, 0) =
{
M if −1/8 < x < 1/8
0 otherwise

If we use a relatively large ε = M = 10−2, we get very bad looking results after 50
time-steps, as seen in Figure 1.
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Fig. 1 Linear advection with
ε = M = 10−2, WENO-JS.

But even if the results look nice, ε can have a bad effect on the total variation
(TV) of the numerical solution as seen in Figure 2 on the left, withM = 1. Another
observation is that the smallerM is, the smaller we require ε to avoid a significant TV
increase (Figure 2 withM = 10−1 andM = 10−4). Although the TV of this problem
increases generally, whatever the value of ε, an additional rise that is attributable to
the value of ε is concerning. In these simulations, we observe that the critical values
of ε needed to prevent a spurious rise in total variation are εc ≈ 10−8M2.
Example 2We consider Burgers’ equation

ut +
(
1

2
u2

)
x

= 0 x ∈ (−1, 1)

with initial condition
u(x, 0) = M sin(πx).

This problem develops a stationary shock. We discretize this grid with 100 points in
space and set Δt = CFL

M Δx with CFL = 0.5. ChoosingM = 0.01 and ε = 10−5, we
step this forward for 50 time-steps. The results show an oscillatory profile, as seen
in Figure 3. If ε is chosen small enough, there is no rise in TV. The values of εc for
each M, required for TV norm to settle, are seen in the table below.

M 10−1 10−3 10−5 10−6 10−6.5 10−7 10−9

εc 10−5 10−13 10−21 10−25 10−27 10−29 10−37
−→ εc ≈ 10−1M4.

Example 3 To see whether the pattern of dependence on m continues, we test the
problem

ut +
(
1

3
u3

)
x

= 0 with u(x, 0) =
{
M if −1/8 < x < 1/8
0 otherwise
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(a) (b)

(c)

Fig. 2 Linear advection with different values of M. The smaller the M is, the smaller ε needs to
be to avoid a significant TV increase. (a) M = 1. (b) M = 10−1. (c) M = 10−4.

(a) (b)

Fig. 3 Burgers’ example with M = 10−2. Left: numerical solution for ε = 10−5, after 50 time-
steps. Right: TV of the solution over 300 time-steps, for different values of ε. (a) Solution Profile
with ε = 10−5. (b) Total Variation.

The relationship between the value of M and the ε required to avoid a TV ”bump”
is shown in the table below.
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M 10−0 10−1 10−2 10−3 10−4 10−5 10−6

εc 10−3 10−9 10−15 10−21 10−27 10−33 10−39
−→ εc ≈ 10−3M6.

Example 4 Consider the Euler system

⎛
⎝ρ

ρu
E

⎞
⎠ +

⎛
⎝ρu
P + ρu2

u(P + E)

⎞
⎠ = 0

on 0 ≤ x ≤ 9, and t ≥ 0. Here, ρ(x, t) is the density, ρu(x, t) the momentum, E(x, t)
the energy, P(x, t) is the pressure, and c(x, t) is the soundspeed. They are related by

P(x, t) = (γ − 1)
(
E − 1

2ρv
2
)
, and c(x, t) =

√
γP
ρ
.

We impose boundary conditions

ρL = M uL = 0 PL = M ∗ (γ − 1) ∗ 0.1

ρR = 0.001M uR = 0 PR = M ∗ (γ − 1) ∗ 10−7

and step function initial conditions

ρ(x, t) =
{

ρL if x ≤ 3
ρR if x > 3

u(x, t) =
{
uL if x ≤ 3
uR if x > 3

P(x, t) =
{
PL if x ≤ 3
PR if x > 3.

For the Euler system, it is important that the pressure or density does not become
negative, even at intermediate stages. The value of ε has an effect on this, as well. The
table below shows the values of εc such that when ε > εc, we get negative pressure
or density and the code stops working.

M 1 10−2 10−4 10−6 10−8 10−10 10−12

εc 10−5 10−9 10−13 10−17 10−21 10−25 10−29
−→ εc ≈ 10−5M2.

This section provided numerical evidence that we must choose ε ≤ εc ≈ M2m

to avoid a variety of problems is εc ≈ M2m. The important observation here is that
the size of ε varies with the size of the jump. In the next section, we consider the
behavior of the method when ε << εc and observe the size of the oscillations that
occur in that range and their dependence on ε.

3 The Effect of the Sensitivity Parameter for One Time-step

In the previous section, we showed that ε functions as a stencil sensitivity parameter
and that the value of ε needs to be chosen appropriately to avoid or mitigate the
effect of undershoots or overshoots. The presence of an undershoot or overshoot
even in a single time-step can have a profound effect on the computation. In the
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Euler system example above, we saw that case where pressure or density becomes
negative, and the code will no longer work. Setting these quantities to zero when
they become negative resolves this problem, but may introduce significant errors
into the computation. Thus, the aim is to avoid undershoots and overshoots as much
as possible. In this section, we will see that any nonzero ε values may produce
oscillations and discuss the dependence of these oscillations on ε as well as the size
of the jump M. We will also examine the effect of the ratio of the time-step to the
spatial grid size plays a role in the size of the oscillations.

In the following, we consider the prototype problem

ut + f (u)x = 0 (1)

with step-function initial conditions

u(x, 0) =
{
M, x ∈ [− 1

8 ,
1
8 ]

0, otherwise
(2)

where f (u) = 1
mu

m form = 1, 2, 3, 4. This problem is a representative of all Riemann
problems, which are the building blocks of methods for hyperbolic PDEs.

In the previous section, we looked at what happens if ε is too large for a particular
stencil. In this section, we study small ε sizes and determine the effect of the size
of ε on the presence of oscillations. We begin with a mathematical analysis of the
behavior of the undershoot for the example above with WENO-JS for one time-step
using forward Euler (FE) and the two-stage second-order SSP Runge–Kutta method
(RK2) and verify this analysis with numerical simulations. We then proceed to show
numerically the behavior of the oscillations for one time-step of the three-stage
third-order SSP Runge–Kutta method (RK3,3) and for the ten-stage fourth-order
SSP Runge–Kutta method (RK10,4). We repeat these numerical explorations for
WENO-M and for WENO-Z and observe similar behaviors. Our conclusion in this
section is that size of the oscillation after one time-step scales as

oscillations ≈ ε2

M4m−1
,

where this scaling depends on the CFL, the particular WENO method, and the value
ofm. It is important to note that smaller jumpsM result in larger oscillations, all else
being equal.

3.1 One Step of WENO-JS with Forward Euler Timestepping

FE is the first stage of many higher-order Runge–Kutta methods. A thorough study
of WENO-JS with FE will help us have a better understanding of the behavior of
WENO methods with other Runge–Kutta methods. In this section, we first estimate
the undershoot/overshoot error of WENO-JS with FE for the linear case f (u) = u
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and then extend the analysis to the nonlinear case f (u) = 1
mu

m where m = 2, 3, 4.
We also show numerical results, which are consistent with our theoretical estimates.

3.1.1 Linear Case

First, we consider the behavior of WENO-JS on problem (1) above with m = 1
and initial conditions (2). We assume that ε << M and examine the values of the
numerical flux f̂j+1/2 for each possible j in a case-by-case sense. Note that in the
formulas for the smoothness indicators, we ignore the factor of 1

12 multiplying every
term:

Stencil values numerical flux
uj−2, . . . , uj+2 = 0 ⇒ f̂j+1/2 = 0

uj−2, . . . , uj+1 = 0 and uj+2 = M ⇒ f̂j+1/2 =
3

(16M2+ε)2
7
ε2

+ 3
(16M2+ε)2

(− 1
6M)

≈ − 1
3584 ( ε

M2 )2M

uj−2, . . . , uj = 0 and uj+1, uj+2 = M ⇒ f̂j+1/2 =
6

(16M2+ε)2
( 26M)+ 3

(40M2+ε)2
( 46M)

1
ε2

+ 6
(16M2+ε)2

+ 3
(40M2+ε)2

≈ 29
3200 ( ε

M2 )2M

uj−2, uj−1 = 0 and uj, . . . , uj+2 = M ⇒ f̂j+1/2 =
1

(40M2+ε)2
( 116 M)+ 6

(16M2+ε)2
( 76M)+ 3

ε2
M

1
(40M2+ε)2

+ 6
(16M2+ε)2

+ 3
ε2

≈ (1 + 17
11520 ( ε

M2 )2)M

uj−2 = 0 and uj−1, . . . , uj+2 = M ⇒ f̂j+1/2 =
1

(16M2+ε)2
( 4
6M)+ 6

ε2
M+ 3

ε2
M

1
(16M2+ε)2

+ 6
ε2

+ 3
ε2

≈ (1 − 1
6912 (

ε
M2 )

2)M
uj−2, . . . , uj+2 = M ⇒ f̂j+1/2 = M

Now, we consider what happens near the first discontinuity, the jump from 0 to
M, when using the WENO-JS method with one step of the first-order forward Euler
(FE) method in time:

u1j = u0j − λ(f̂j+1/2 − f̂j−1/2),

where λ = Δt
Δx .

1. If u0j−3, . . . , u
0
j+2 = 0, then u1j = 0

2. If u0j−3, . . . , u
0
j+1 = 0 and u0j+2 = M, then u1j ≈ −λ{− 1

3584 (
ε
M2 )

2M}
= 1

3584λ( ε
M2 )

2M
3. If u0j−3, . . . , u

0
j = 0 and u0j+1, u

0
j+2 = M, then u1j ≈ −λ{ 29

3200 (
ε
M2 )

2M

+ 1
3584 (

ε
M2 )

2M} = − 837
89600λ( ε

M2 )
2M and there will be undershoot.

4. If u0j−3, . . . , u
0
j−1 = 0 and u0j , . . . , u

0
j+2 = M, then

u1j ≈ M − λ{(1 + 17
11520 (

ε
M2 )

2)M − 29
3200 (

ε
M2 )

2M} = {1 − λ(1 − 437
57600 (

ε
M2 )

2)}M
5. If u0j−3, u

0
j−2 = 0 and u0j−1, . . . , u

0
j+2 = M, then

u1j ≈ M − λ{(1 − 1
6912 (

ε
M2 )

2)M − (1 + 17
11520 (

ε
M2 )

2)M} = {1 + 7
4320λ( ε

M2 )
2)}M

and there will be overshoot.
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6. If u0j−3 = 0 and u0j−2, . . . , u
0
j+2 = M, then u1j ≈ M−λ{M−(1− 1

6912 (
ε
M2 )

2)M} =
{1 − 1

6912λ( ε
M2 )

2}M
7. If u0j−3, . . . , u

0
j+2 = M, then u1j = M.

In the same way, we can also compute u1j when u0j jump from M to 0:

1. If u0j−3, . . . , u
0
j+1 = M and u0j+2 = 0, then u1j ≈ M−λ{(1+ 1

3584 (
ε
M2 )

2)M−M} =
{1 − 1

3584λ( ε
M2 )

2}M.

2. If u0j−3, . . . , u
0
j = M and u0j+1, u

0
j+2 = 0, then

u1j ≈ M − λ{(1 − 29
3200 (

ε
M2 )

2)M − (1 + 1
3584 (

ε
M2 )

2)M} = {1 + 837
89600λ( ε

M2 )
2}M

and there will be overshoot.
3. If u0j−3, . . . , u

0
j−1 = M and u0j , . . . , u

0
j+2 = 0, then

u1j ≈ −λ{− 17
11520 (

ε
M2 )

2M − (1 − 29
3200 (

ε
M2 )

2)M} = λ{1 − 437
57600 (

ε
M2 )

2}M
4. If u0j−3, u

0
j−2 = M and u0j−1, . . . , u

0
j+2 = 0, then u1j ≈ −λ{ 1

6912 (
ε
M2 )

2M +
17

11520 (
ε
M2 )

2M} = − 7
4320λ( ε

M2 )
2M and there will be undershoot.

5. If u0j−3 = M and u0j−2, . . . , u
0
j+2 = 0, then u1j ≈ −λ{0 − 1

6912 (
ε
M2 )

2M} =
1

6912λ( ε
M2 )

2M.

In summary, after one forward Euler time-step of WENO-JS, the maximum
of overshoot is λ 837

89600 (
ε
M2 )

2M = λ 837
89600

ε2

M3 , and the maximum of undershoot is

−λ 837
89600

ε2

M3 . In Table 1, we show numerically that the actual undershoot error of

WENO-JS after one forward Euler time-step with λ = 0.25 is 2.3354 × 10−3 ε2

M3 ,

Table 1 The undershoot error of WENO-JS after one time-step with FE, using step function initial
conditions, with nx = 200 points in space, and CFL = 0.25.

M = 1 M = 0.1 M = 0.01 M = 0.001 pattern

f (u) = u ε = 1e-10 2.3354e-23 2.3354e-20 2.3354e-17 2.3354e-14 2.3354 × 10−3 ε2

M3

ε = 1e-11 2.3354e-25 2.3354e-22 2.3354e-19 2.3354e-16

ε = 1e-12 2.3354e-27 2.3354e-24 2.3354e-21 2.3354e-18

f (u) = u2/2 ε = 1e-18 2.5761e-38 2.5761e-31 2.5761e-24 2.5761e-17 2.5761 × 10−2 ε2

M7

ε = 1e-19 2.5761e-40 2.5761e-33 2.5761e-26 2.5761e-19

ε = 1e-20 2.5761e-42 2.5761e-35 2.5761e-28 2.5761e-21

f (u) = u3/3 ε = 1e-23 1.0702e-48 1.0702e-37 1.0702e-26 1.0702e-15 1.0702× 10−2 ε2

M11

ε = 1e-24 1.0702e-50 1.0702e-39 1.0702e-28 1.0702e-17

ε = 1e-25 1.0702e-52 1.0702e-41 1.0702e-30 1.0702e-19

f (u) = u4/4 ε = 1e-29 7.3960e-61 7.3960e-46 7.3960e-31 7.3960e-16 7.3960× 10−3 ε2

M15

ε = 1e-30 7.3960e-63 7.3960e-48 7.3960e-33 7.3960e-18

ε = 1e-31 7.3960e-65 7.3960e-50 7.3960e-35 7.3960e-20
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Table 2 The undershoot error of WENO-JS after one time-step with FE using step function initial
conditions, nx = 200,M = 1, ε = 1e − 10. This table shows the linear increase with the CFL
number.

CFL = 0.125 CFL = 0.25 CFL = 0.5

f (u) = u 1.1677e-23 2.3354e-23 4.6708e-23

f (u) = u2/2 1.2880e-22 2.5761e-22 5.1521e-22

f (u) = u3/3 5.3510e-23 1.0702e-22 2.1404e-22

f (u) = u4/4 3.6980e-23 7.3960e-23 1.4792e-22

which is exactly the same as the undershoot/overshoot value

λ
837

89600

ε2

M3
(3)

derived above. This shows that the analysis above and the resulting estimate of the
undershoot error for the case where ε is small enough is sharp. The numerical results
in Table 2 confirm that the undershoot error is proportional to the CFL number, which
is equal to λ in the linear case.

3.1.2 Nonlinear Cases

The analysis of the undershoot and overshoot in the casewhere f is nonlinear (m > 1)
can be estimated in the same way as that for the linear case in the section above.
However, for the nonlinear case, calculations are long and tedious, so we omit the
details and only summarize the results from our analysis. We use the value CFL,
whereΔt = CFL

max |f ′(u)|Δx = CFL
Mm−1 Δx. Clearly, λ = CFL

Mm−1 so in the linear case (m = 1),
the two are identical. However, in the nonlinear case, the two are different, and while
the term λ is more useful for analysis of a given problem, the CFL is useful in
comparing different problems and different values of M. For this reason, in this
section, we will use both.

Assuming that ε 
 M ≤ 1, we can show analytically1 that the maximal over-
shoot/undershoot is of the form

αm × CFL × M ×
( ε

M2m

)2
, (4)

where

α2 = 779

7560
α3 = 6137

143360
α4 = 18871

637875
.

1Details are omitted for space considerations.
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The numerical results in Tables 1 and 2 confirm the formula for the undershoot error
ofWENO-JS (4) and the values of αm. Once again, we stress that the above estimates
of undershoot error are valid only if ε is small compared to M. When ε is not small
enough, we will see different behavior. For this reason, we used the values of ε for
which the constants in the overshoot/undershoot values converged. In the tables in
this section, the values of ε shown are the largest ones that give the undershoot error
accurate up to five digits for listed M.

Remark Note that the exponent 2 outside of the final parentheses in the relation
above comes from the fact that we use the power p = 2 in the WENOmethod. In the
remainder of this section, we assume that p = 2 and we will see this power appears
in the oscillations for all methods. Using a different power p in the WENO method
results in a corresponding exponent in the dependence of the oscillation on ε and
M2m.

3.2 One Step of WENO-JS with Two-Stage Second-Order
Runge–Kutta

In this section, we provide an analysis and numerical confirmation for the behavior
of the overshoot/undershoot when one time-step is taken using the strong stability
preserving two-stage second-order Runge–Kutta (RK2) method [2, 11]

u(1) = un + ΔtF(un)

un+1 = un + 1

2
ΔtF(un) + 1

2
ΔtF(u(1)).

This analysis shows the emerging complexity as higher-order methods are used. As
before, we begin with a complete analysis of the linear case and omit the full details.

3.2.1 Linear Case

As before, we assume that ε 
 M. We can show that the maximal overshoot is
of the form P1(λ) ε2

M3 , where P1 is given by the maximum of two rational functions
P1(λ) = max

(
p1(λ), p2(λ)

)
where

p1 = (14400 − 136800λ + 504900λ2 − 860760λ3 + 598228λ4 − 116306λ5

+328413λ6 − 467600λ7 + 270625λ8)/(1244160λ2(4 − 19λ + 25λ2)2)

p2 = − (λ(2343600 − 19628460λ + 75692628λ2 − 177350059λ3 + 276036659λ4

− 287679978λ5 + 190949760λ6 − 72004875λ7 + 11803125λ8))/(2508800

(−1 + λ)3(10 − 31λ + 25λ2)2).
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Fig. 4 The functions p1(λ) and p2(λ). (a) p1(λ). (b) p2(λ).

cfl

L
o
g
(C

1)

0.2 0.4 0.6 0.8
10-4

106

1016

1026

1036

FE
RK2
RK3,3
RK10,4

cfl

L
o
g
(C

2
)

0.2 0.4 0.6 0.8

102

107

1012

1017

1022

1027

1032

FE
RK2
RK3,3
RK10,4

cfl

L
o
g
(C

3
)

0.2 0.4 0.6 0.8

101

106

1011

1016

1021

1026

1031

1036

FE
RK2
RK3,3
RK10,4

cfl

L
o
g
(C

4
)

0.2 0.4 0.6 0.8

101

106

1011

1016

1021

1026

1031

1036

FE
RK2
RK3,3
RK10,4

(a) (b)

(c) (d)

Fig. 5 The coefficient Cm(CFL) of the undershoot of WENO-JS after one time-step. The CFL is
between [0.01, 0.99] with an increment of 0.01. (a) WENO-JS, f (u) = u. (b) WENO-JS, f (u) =
u2/2. (c) WENO-JS, f (u) = u3/3. (d) WENO-JS, f (u) = u4/4.
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The undershoot is given by Q1(λ) ε2

M3 , where Q(λ) = max
(
q1(λ), q2(λ)

)
. In this

case, p1 = q1 and p2 = q2, so the maximal overshoot and undershoot are the same.
Let C1 = P1 and notice that C1 is a function of λ that depends on the functions

p1(λ) and p2(λ). Using the expressions of P and Q, and the graphs in Figure 4,
we can see that when fixing ε small enough and decreasing λ from 1 to 0, the
overshoot/undershoot will decrease at first and then increase. This is also reflected
in Figure 5(a) in the green line.

3.2.2 Nonlinear Cases

Once again, we must assume that ε is small enough. For our purposes, we require
ε 
 M2m. If we take Δt = CFLΔx/Mm−1, then after one RK2 time-step, we get the
following behavior for the overshoot/undershoot:

Cm(CFL)
ε2

M4m−1
, (5)

where the value Cm(CFL) depends only on the CFL number and m and on whether
we are looking for an overshoot or undershoot. Figure 5 shows the graphs of Cm

as a function of the CFL number for m = 1, 2, 3, 4. The numerical results for the
undershoot error of WENO-JS with RK2 are given in Table 3, for CFL = 1

4 . These

values verify that the undershoot error is proportional to ε2

M4m−1 and give us the values
of Cm( 14 ) in Table 4.

3.3 One Step of WENO-JS with Higher-Order Time-stepping
Schemes

In practice, the explicit strong stability preserving three-stage third-order Runge–
Kutta method of Shu andOsher (RK3,3) [2, 11] (given in the Appendix) is frequently
used to evolve the solution forward. Another excellent alternative is Ketcheson’s
explicit strong stability preserving ten-stage fourth-order Runge–Kutta (RK10,4)
method [2, 8], given in the Appendix. It is interesting to observe the effect of the
higher-order time-stepping method on the overshoots and undershoots produced by
WENO-JS. We experimented with these time-stepping methods, and our numerical
results for the undershoots with different ε and M suggest that the undershoot error
is of the form

Cm(CFL)
ε2

M4m−1
, (6)
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Table 3 The undershoot error ofWENO-JS after one time-stepwith RK2 using step function initial
conditions, nx = 200,CFL = 0.25.

M = 1 M = 0.1 M = 0.01 M = 0.001 pattern

f (u) = u ε = 1e−11 1.1413e−24 1.1413e−21 1.1413e−18 1.1413e−15 1.1413× 10−2 ε2

M3

ε = 1e−12 1.1413e−26 1.1413e−23 1.1413e−20 1.1413e−17

ε = 1e−13 1.1413e−28 1.1413e−25 1.1413e−22 1.1413e−19

f (u) = u2/2 ε = 1e−20 5.4665e−40 5.4665e−33 5.4665e−26 5.4665e−19 5.4665 ε2

M7

ε = 1e−21 5.4665e−42 5.4665e−35 5.4665e−28 5.4665e−21

ε = 1e−22 5.4665e−44 5.4665e−37 5.4665e−30 5.4665e−23

f (u) = u3/3 ε = 1e−26 2.0345e−52 2.0345e−41 2.0345e−30 2.0345e−19 2.0345 ε2

M11

ε = 1e−27 2.0345e−54 2.0345e−43 2.0345e−32 2.0345e−21

ε = 1e−28 2.0345e−56 2.0345e−45 2.0345e−34 2.0345e−23

f (u) = u4/4 ε = 1e−31 1.4155e−62 1.4155e−47 1.4155e−32 1.4155e−17 1.4155 ε2

M15

ε = 1e−32 1.4155e−64 1.4155e−49 1.4155e−34 1.4155e−19

ε = 1e−33 1.4155e−66 1.4155e−51 1.4155e−36 1.4155e−21

Table 4 The undershoot error of the WENO method after one time-step of the time-stepping
method. Initial condition is the using step function initial conditions. The spatial number of points
is nx = 200, with CFL = 0.25.

Time Space C1(0.25) C2(0.25) C3(0.25) C4(0.25)

FE WENO-JS 2.3354× 10−3 2.5761× 10−2 1.0702× 10−2 7.3960× 10−2

WENO-M 6.9447× 10−3 1.1345× 10−1 4.6954× 10−2 3.2318× 10−2

WENO-Z 3.0301× 10−3 3.4021× 10−2 1.4021× 10−2 9.6069× 10−3

RK2 WENO-JS 1.1413× 10−2 5.4665 2.0345 1.4155

WENO-M 3.9962× 10−2 1.7779 × 101 6.4421 4.4725

WENO-Z 1.3381× 10−2 5.0724 1.8059 1.2517

RK3, 3 WENO-JS 2.6639 × 103 6.6192 × 106 2.5725 × 106 1.7984 × 106

WENO-M 2.4487 × 104 2.4851 × 107 9.8591 × 106 6.9289 × 106

WENO-Z 3.2231 × 103 5.9477 × 106 2.3146 × 106 1.6191 × 106

RK10, 4 WENO-JS 2.9481 × 1045 2.0732 × 1055 8.6113 × 1054 6.0468 × 1054

WENO-M 1.0722 × 1046 6.5880 × 1055 2.7364 × 1055 1.9215 × 1055

WENO-Z 3.2443 × 1045 1.8348 × 1055 7.6210 × 1054 5.3515 × 1054

where Cm depends on the CFL number andm. However, the values of the coefficient
Cm increase with the order of the time-stepping method, as shown in Figure 5. The
values of Cm( 14 ) for both RK3,3 and RK10,4 are given in Table 4. Clearly, the
coefficients for the RK10,4 are much larger, indicating larger oscillations. Of course,
higher-order time-stepping methods allow us to use larger time-steps and therefore
larger values of CFL, for both accuracy and stability. Nevertheless, the sensitivity
of the overshoot/undershoot to the order of the time-stepping method exceeds this
benefit.
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Fig. 6 Undershoot of WENO-JS after one time-step. f (u) = u, M = 0.1. Left: RK3,3, right:
RK10,4. (a) WENO-JS with RK3,3, ε=1e-1 to 1e-30. (b) WENO-JS with RK10,4, ε=1e-1 to 1e-30.

Note that we have not determined exactly how εc, the critical value of ε at which
the undershoot error starts the asymptotic behavior, depends onM, CFL number, time
schemes, and the power m in f (u). However, numerical tests show that higher-order
time-stepping methods require smaller ε to reach the asymptotic region. In Figure 6,
we consider the linear case f (u) = u using M = 0.1. We see that RK10,4 requires
much smaller ε than RK3,3 to reach the asymptotic region.

3.4 Other WENO Methods

We ran the same numerical tests using the WENO-M and WENO-Z methods. We
observed that WENO-M and WENO-Z have a similar behavior to WENO-JS, in the
sense that the undershoot error is of the form

Cm(CFL) × M ×
( ε

M2m

)2
.

The difference between methods results in different values of Cm. The values of Cm

as a function of the CFL number for WENO-M and WENO-Z are given in Figure 7.
In these Figures, the CFL number is between [0.01, 0.99] with an increment 0.01.
Again, we see that the higher-order the time scheme we use, the larger the coefficient
Cm we have for the undershoot error, but the different WENO methods have similar
coefficients. A comparison of the values of the Cm(0.25) is given in Table 4, where
we observe that the values are larger for WENO-M, but generally of the same order.

To study this behavior on a smoother function, with only one discontinuity, we
consider the case where the initial condition u0 is not a step-function:
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Fig. 7 The coefficient Cm(CFL) of the undershoot of WENO-M and WENO-Z after one time-
step. (a) WENO-M, f (u) = u. (b) WENO-Z, f (u) = u. (c) WENO-M, f (u) = u2/2. (d) WENO-Z,
f (u) = u2/2. (e) WENO-M, f (u) = u3/3. (f) WENO-Z, f (u) = u3/3. (g) WENO-M, f (u) = u4/4.
(h) WENO-Z, f (u) = u4/4.
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Table 5 The undershoot error of the WENO method after one time-step of the time-stepping
method with the nonstep function initial condition (7). The spatial number of points is nx = 200,
with CFL = 0.25.

Time Space C1(0.25) C2(0.25) C3(0.25) C4(0.25)

FE WENO-JS 4.1831 × 1012 4.8296 × 1012 4.8295 × 1012 4.8295 × 1012

WENO-M 1.1561 × 1013 1.5339 × 1013 1.5338 × 1013 1.5338 × 1013

WENO-Z 4.3273 × 1012 4.2740 × 1012 4.2739 × 1012 4.2739 × 1012

RK2 WENO-JS 1.4404 × 1013 3.3623 × 1016 3.3866 × 1016 3.4110 × 1016

WENO-M 3.9712 × 1013 1.0678 × 1017 2.0755 × 1017 1.0833 × 1017

WENO-Z 1.4864 × 1013 2.9755 × 1016 2.9970 × 1016 3.0186 × 1016

RK3, 3 WENO-JS 7.8146 × 1012 3.9911 × 1022 4.0461 × 1022 4.1034 × 1022

WENO-M 2.1346 × 1013 1.2676 × 1023 1.2850 × 1023 1.3032 × 1023

WENO-Z 7.9869 × 1012 3.5320 × 1022 3.5806 × 1022 3.6313 × 1022

RK10, 4 WENO-JS 2.9505 × 1045 1.0158 × 1071 1.5943 × 1071 1.6888 × 1071

WENO-M 1.0731 × 1046 4.7812 × 1071 5.0610 × 1071 5.3607 × 1071

WENO-Z 3.2469 × 1045 1.3328 × 1071 1.4108 × 1071 1.4945 × 1071

u0(x) =

⎧⎪⎨
⎪⎩
0, x ∈ [−1,−1/8]
Me · e 1

16(x−1/8)2−1 , x ∈ (−1/8, 1/8]
0, x ∈ (1/8, 1]

(7)

We refer to this as the “shark” function due to its appearance which resembles
a shark fin. Our numerical results show that the undershoots of WENO methods
have similar forms to those in the previous subsection where we use step function
initial conditions. The values of Cm shown in Table 5 are much larger than for the
step function initial conditions, and the ε needed for the behavior to settle is much
smaller, but the qualitative behavior is the same.

4 The Effect of the Sensitivity Parameter Over Time
Integration

In the previous section, we studied the effect of the value of ε and the size of the
jumpM on one step. In this section, we discuss how the undershoots and overshoots
propagate over time and their dependence on both ε and M. We observe that the
behavior of oscillations for all three WENO methods, WENO-JS, WENO-M, and
WENO-Z, is similar and that the choice of time integration also does not affect the
long time behavior of the oscillations.

We ran the examples in Section 4 up to time T = 2, for WENO-JS, WENO-M,
and WENO-Z, with time-stepping methods RK3,3 and RK10,4. Figure 8 shows
that for ε = 1.e − 6, the undershoot varies over time integration. In all cases, the
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Fig. 8 Behavior of the undershoots for different WENO methods. (a) WENO with RK3,3, m = 1.
(b) WENO with RK10,4, m = 1. (c) WENO with RK3,3, m = 2. (d) WENO with RK10,4, m = 2.

undershoot is larger for RK3,3 than for RK10,4, and the undershoot for WENO-M
is the largest, followed by WENO-JS, and WENO-Z has the smallest undershoots.
However, we also see that these overshoots are all of the same order of magnitude:
approximately 10−5 for ε = 1.e − 6. Numerous experiments with different values
of ε, shown in Figure 9, confirm that the value of ε is the major determinant of the
size of the oscillation. The major observation from these figures is that the long time
behavior of the oscillations scales with

√
ε. This pattern is confirmed and further

strengthened in our study of the maximal undershoot observed over 800 time-steps.
The clear pattern that emerges from the numerical results in Tables 6 and 7 is that
the undershoot is

O(
√

ε/Mm−1). (8)
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Fig. 9 Undershoot forWENO-JS with unit step initial condition,CFL = 0.25. Figures (a)–(f) have
m = 1, while Figures (g)–(l) have m = 2. (a) WENO-JS with RK3,3. (b) WENO-M with RK3,3.
(c) WENO-Z with RK3,3. (d) WENO-JS with RK10,4. (e) WENO-M with RK10,4. (f) WENO-Z
with RK10,4. (g) WENO-JS with RK3,3. (h) WENO-M with RK3,3. (i) WENO-Z with RK3,3.
(j) WENO-JS with RK10,4. (k) WENO-M with RK10,4. (l) WENO-Z with RK10,4.
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Table 6 Maximum undershoot values for different WENO methods over 800 time-steps with
RK3,3. nx = 200,CFL = 0.25.

WENO-JS with RK3,3

M = 1 M = 0.1 M = 0.01 M = 0.001 pattern

f (u) = u ε = 1e-12 9.3143E-08 9.4454E-08 9.6084E-08 9.5517E-08 0.09
√

ε

ε = 1e-14 9.1005E-09 9.3143E-09 9.4454E-09 9.6084E-09

ε = 1e-16 8.8992E-10 9.1005E-10 9.3143E-10 9.4454E-10

f (u) = u2/2 ε = 1e-22 2.0375E-12 2.1317E-11 1.9802E-10 1.3910E-09 0.2
√

ε/M

ε = 1e-24 2.0936E-13 2.0530E-12 2.0619E-11 1.9183E-10

ε = 1e-26 1.8374E-14 2.0375E-13 2.1317E-12 1.9802E-11

f (u) = u3/3 ε = 1e-32 3.8517E-17 4.3820E-15 4.2972E-13 4.3048E-11 0.4
√

ε/M2

ε = 1e-34 4.0889E-18 4.6507E-16 4.8072E-14 4.3279E-12

ε = 1e-36 4.2655E-19 4.2884E-17 4.2528E-15 4.6742E-13

f (u) = u4/4 ε = 1e-42 7.7903E-22 7.1192E-19 7.1688E-16 8.3674E-13 0.8
√

ε/M3

ε = 1e-44 7.5143E-23 7.3278E-20 8.2754E-17 7.4515E-14

ε=1e-46 7.2119E-24 7.7690E-21 8.6189E-18 8.4379E-15

WENO-JS with RK3,3

M = 1 M = 0.1 M = 0.01 M = 0.001 pattern

f (u) = u ε = 1e-12 1.9108E-07 1.9576E-07 1.9905E-07 2.0141E-07 0.2
√

ε

ε = 1e-14 1.8409E-08 1.9108E-08 1.9576E-08 1.9905E-08

ε = 1e-16 1.8016E-09 1.8409E-09 1.9108E-09 1.9576E-09

f (u) = u2/2 ε = 1e-22 3.4297E-12 3.2013E-11 2.1447E-10 1.2370E-09 0.3
√

ε/M

ε = 1e-24 3.3031E-13 3.4222E-12 2.7275E-11 1.8059E-10

ε = 1e-26 3.1131E-14 3.4297E-13 3.2013E-12 2.1447E-11

f (u) = u3/3 ε = 1e-32 6.2104E-17 5.9566E-15 7.1510E-13 5.0514E-11 0.6
√

ε/M2

ε = 1e-34 6.1962E-18 5.9036E-16 6.8629E-14 6.4428E-12

ε = 1e-36 6.0855E-19 6.1169E-17 6.4301E-15 7.1007E-13

f (u) = u4/4 ε = 1e-42 1.2019E-21 1.1666E-18 1.2908E-15 1.1876E-12 1.2
√

ε/M3

ε = 1e-44 1.2258E-22 1.1601E-19 1.2513E-16 1.2989E-13

ε = 1e-46 1.2459E-23 1.1654E-20 1.2143E-17 1.3348E-14

WENO-Z with RK3,3

M = 1 M = 0.1 M = 0.01 M = 0.001 pattern

f (u) = u ε = 1e-12 9.3141E-08 9.4217E-08 9.6086E-08 9.5518E-08 0.09
√

ε

ε = 1e-14 9.0855E-09 9.3146E-09 9.4450E-09 9.6084E-09

ε = 1e-16 8.8874E-10 9.1067E-10 9.3144E-10 9.4454E-10

f (u) = u2/2 ε = 1e-22 2.0086E-12 2.1317E-11 1.9802E-10 1.3910E-09 0.2
√

ε/M

ε = 1e-24 2.1053E-13 2.0530E-12 2.0619E-11 1.9183E-10

ε=1e-26 1.8560E-14 2.0375E-13 2.1317E-12 1.9802E-11

f (u) = u3/3 ε = 1e-32 3.9087E-17 4.3820E-15 4.2972E-13 4.3048E-11 0.4
√

ε/M2

ε = 1e-34 3.9973E-18 4.6507E-16 4.8072E-14 4.3279E-12

ε = 1e-36 4.2212E-19 4.2884E-17 4.2528E-15 4.6742E-13

f (u) = u4/4 ε = 1e-42 7.7883E-22 7.1192E-19 7.1688E-16 8.3674E-13 0.8
√

ε/M3

ε = 1e-44 7.5875E-23 7.3278E-20 8.2754E-17 7.4515E-14

ε = 1e-46 7.3054E-24 7.7690E-21 8.6189E-18 8.4379E-15
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Table 7 Maximum undershoot values for different WENO methods over 800 time-steps with
RK10,4. nx = 200, cfl = 0.25.

WENO-JS with RK10,4

M = 1 M = 0.1 M = 0.01 M = 0.001 pattern

f (u) = u ε = 1e-12 8.7682E-08 8.9456E-08 9.0061E-08 8.9096E-08 0.09
√

ε

ε = 1e-14 8.5621E-09 8.7682E-09 8.9456E-09 9.0061E-09

ε = 1e-16 8.3900E-10 8.5621E-10 8.7682E-10 8.9456E-10

f (u) = u2/2 ε = 1e-22 2.0375E-12 2.1317E-11 1.9801E-10 1.3908E-09 0.2
√

ε/M

ε = 1e-24 2.0938E-13 2.0533E-12 2.0622E-11 1.9184E-10

ε = 1e-26 1.8376E-14 2.0375E-13 2.1317E-12 1.9801E-11

f (u) = u3/3 ε = 1e-32 3.8523E-17 4.3814E-15 4.2966E-13 4.3052E-11 0.4
√

ε/M2

ε = 1e-34 4.0884E-18 4.6508E-16 4.8073E-14 4.3274E-12

ε = 1e-36 4.2653E-19 4.2891E-17 4.2537E-15 4.6747E-13

f (u) = u4/4 ε = 1e-42 7.7905E-22 7.1203E-19 7.1704E-16 8.3673E-13 0.8
√

ε/M3

ε = 1e-44 7.5150E-23 7.3265E-20 8.2744E-17 7.4536E-14

ε = 1e-46 7.2126E-24 7.7681E-21 8.6190E-18 8.4371E-15

WENO-M with RK10,4

M = 1 M = 0.1 M = 0.01 M = 0.001 pattern

f (u) = u ε = 1e-12 1.7391E-07 1.7691E-07 1.7946E-07 1.7970E-07 0.17
√

ε

ε = 1e-14 1.7005E-08 1.7391E-08 1.7691E-08 1.7946E-08

ε = 1e-16 1.6484E-09 1.7005E-09 1.7391E-09 1.7691E-09

f (u) = u2/2 ε = 1e-22 3.4304E-12 3.2001E-11 2.1465E-10 1.2365E-09 0.3
√

ε/M

ε = 1e-24 3.3045E-13 3.4220E-12 2.7258E-11 1.8063E-10

ε = 1e-26 3.1149E-14 3.4304E-13 3.2001E-12 2.1465E-11

f (u) = u3/3 ε = 1e-32 6.2056E-17 5.9619E-15 7.1537E-13 5.0485E-11 0.6
√

ε/M2

ε = 1e-34 6.1915E-18 5.8986E-16 6.8670E-14 6.4411E-12

ε = 1e-36 6.0807E-19 6.1120E-17 6.4351E-15 7.1012E-13

f (u) = u4/4 ε = 1e-42 1.2024E-21 1.1672E-18 1.2913E-15 1.1874E-12 1.2
√

ε/M3

ε = 1e-44 1.2262E-22 1.1607E-19 1.2518E-16 1.2989E-13

ε = 1e-46 1.2462E-23 1.1660E-20 1.2149E-17 1.3350E-14

WENO-Z with RK10,4

M = 1 M = 0.1 M = 0.01 M = 0.001 pattern

f (u) = u ε = 1e-12 8.7426E-08 8.9384E-08 9.0065E-08 8.9096E-08 0.09
√

ε

ε = 1e-14 8.5971E-09 8.7851E-09 8.9456E-09 9.0061E-09

ε = 1e-16 8.4214E-10 8.5788E-10 8.7687E-10 8.9456E-10

f (u) = u2/2 ε = 1e-22 2.0084E-12 2.1316E-11 1.9801E-10 1.3908E-09 0.2
√

ε/M

ε = 1e-24 2.1055E-13 2.0533E-12 2.0622E-11 1.9184E-10

ε = 1e-26 1.8562E-14 2.0375E-13 2.1317E-12 1.9801E-11

f (u) = u3/3 ε = 1e-32 3.9095E-17 4.3814E-15 4.2966E-13 4.3052E-11 0.4
√

ε/M2

ε = 1e-34 3.9963E-18 4.6508E-16 4.8073E-14 4.3274E-12

ε = 1e-36 4.2208E-19 4.2891E-17 4.2537E-15 4.6747E-13

f (u) = u4/4 ε = 1e-42 7.7883E-22 7.1203E-19 7.1704E-16 8.3673E-13 0.8
√

ε/M3

ε = 1e-44 7.5877E-23 7.3265E-20 8.2744E-17 7.4536E-14

ε = 1e-46 7.3057E-24 7.7681E-21 8.6190E-18 8.4371E-15
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Table 8 Critical CFL stability limits for the linear and nonlinear equations with ε = 1e − 50.

Time-stepping
method

WENO
scheme

Linear Equation Burgers’ Equation

CFLshark CFLstep CFLshark CFLstep

RK3,3 JS 0.82 0.78 1.48 1.44

M 0.79 0.73 1.66 1.48

Z 0.78 0.73 1.58 1.44

RK10,4 JS 3.15 3.20 6.64 5.37

M 2.91 2.94 6.96 5.79

Z 3.07 3.03 6.98 5.82

4.1 Stability Limits

The long time behavior of the solution led us to investigate the stability limits of
the numerical methods used. We find that nonlinear instability occurs at certain CFL
numbers that depend most strongly on the time-stepping algorithm and to some
extent on the WENO method. Small variations depending on the initial condition
are observed as well when we tested the initial functions (2) and (7). When ε is
reasonably small, its precise value does not seem to play a significant role. The
largest stable value of CFL for the different methods is given in Table 8.

In the linear case, with a given reasonably small ε, the differences between the
allowable time-step for the different WENO methods are not significant. However,
the choice of time-stepping method makes a difference. The CFL for the ten-stage
fourth-order RK10,4 is significantly larger than that of three-stage third-order RK3,3.
Even when we take into account that RK10,4 requires ten stages and RK3,3 only
three, we can conclude that RK10,4 has an advantage, because it allows for higher
effective CFL numbers when taking into account the number of stages. For example,
for the shark profile RK3,3 withWENO-Z requires at most 0.78 CFL (0.78/3 = 0.26),
while RK10,4 for the same WENO method has a limitation of 3.07 CFL (3.07/10 =
0.307).

The linear and nonlinear cases exhibit remarkably different behaviors in terms
of the allowable CFL, but the nonlinear cases all behaved similarly for m = 2, 3, 4.
For this reason, the results for Burgers’ equation serve as a representative for the
nonlinear problems. For Burgers’ equation, we observed that WENO-JS had the
smallest allowable time-step, but that all WENO methods behaved generally the
same. The time-stepping methods result in very different stability limits, and once
again, we observe that RK10,4 has a significant advantage over RK3,3 even when
normalizing for the number of function evaluations.



The Effect of the Sensitivity Parameter … 49

Acknowledgments This project is part of an IMA-funded WhAM! workshop and ongoing pro-
gram. We thank the IMA for its support. Our thanks to Daniel Higgs who produced the graphs in
Section 3.

Appendix A

Strong Stability Preserving Runge–Kutta Time Evolution
Methods

To preserve the designed nonlinear stability properties of the WENO methods, it is
advisable to use strong stability preserving Runge–Kutta methods [2]. In this work,
we use
The three-stage third order SSP method by Shu and Osher [11, 12] (RK3,3)

u(1) = un + ΔtF(un)

u(2) = 3

4
un + 1

4
u(1) + 1

4
ΔtF(u(1))

un+1 = 1

3
un + 2

3
u(2) + 2

3
ΔtF(u(2))

The ten-stage fourth order SSP method by Ketcheson [8] (RK10,4)

u(1) = un + 1

6
ΔtF(un)

u(k+1) = u(k) + 1

6
ΔtF(u(k)) for k = 1, 2, 3

u(5) = 3

5
un + 2

5
u(4) + 1

15
ΔtF(u(4))

u(k+1) = u(k) + 1

6
ΔtF(u(k)) for k = 5, 6, 7, 8

un+1 = 1

25
un + 9

25
u(4) + 3

5
u(9) + 3

50
ΔtF(u(4)) + 1

10
ΔtF(u(9)) .
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Study of a Mixed Dispersal Population
Dynamics Model
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Abstract In this paper, we consider a mixed dispersal model with periodic and
Dirichlet boundary conditions and its corresponding linear eigenvalue problem. This
model describes the time evolution of a population which disperses both locally
and nonlocally. We investigate how long time dynamics depend on the parameter
values. Furthermore, we study the minimization of the principal eigenvalue under
the constraints that the resource function is bounded from above and below, and with
a fixed total integral. Biologically, this minimization problem is motivated by the
question of determining the optimal spatial arrangement of favorable and unfavorable
regions for the species to die out more slowly or survive more easily. Our numerical
simulations indicate that the optimal favorable region tends to be a simply connected
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domain. Numerous results are shown to demonstrate various scenarios of optimal
favorable regions for periodic and Dirichlet boundary conditions.

1 Introduction

To describe the dispersal of species, population dynamics models are commonly
used. Random dispersal describes the movement of organisms between adjacent
spatial locations [6, 30]. However, the movement of some organisms such as seeds
of plants can occur between nonadjacent spatial locations and is thus nonlocal. In the
recent years, there have been extensive studies on nonlocal models [1, 2, 7, 10–17,
21, 22, 27–29, 31] and mixed models [18, 24, 32]. Here, we work on a mixed model
which was proposed in [24] and study the time evolution problem and optimization
of its corresponding eigenvalue problem under a heterogeneous environment.

The model which describes the species adopting both local and nonlocal dispersal
is of the form

∂u

∂t
= d [τ�u + (1 − τ)K u] + f (x, u), t > 0, x ∈ R

N (1)

where u(x, t) denotes the density of species at location x and time t , and the expres-
sion � = ΣN

i=1
∂2

∂x2i
is the Laplace operator in RN accounting for random dispersal of

species. The nonlocal operator K is defined by

(K u) (x) :=
∫
RN

k (|x − y|) u(y)dy − u(x) (2)

where k = k(r) is a smooth, monotone decreasing function with compact support
and k(r) satisfies

ωN

∫ ∞

0
k(r)r N−1dr = 1 (3)

whereωN denotes the area of the surface of the N -dimensional unit ball. Additionally,
d is a positive constant which measures the total number of dispersal individuals
per unit time, the constant 0 < τ ≤ 1 measures the fraction of individuals adopting
random dispersal, and, if the logistic model is used, the reaction term is

f (x, u) = u(m(x) − u) (4)

where m(x) represents the resource function. In the biological applications, it is
common to assume that m(x) satisfies

− m1 ≤ m(x) ≤ m2 and
∫

Ω

m(x)dx = M (5)
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where m1 and m2 are positive constants and the constant M could be positive or
negative depending on whether the environment is friendly or hostile. This resource
function m(x) is positive in the favorable part of habitat and negative in unfavorable
one. For the kernel function in (3), we use k(r) = k∗(r/δ)/δN with

k∗(r) =
{
CN exp

(
1

|r |2−1

)
for |r | < 1

0 for |r | ≥ 1
(6)

where CN is chosen so that (3) is satisfied. CN ≈ 2.2523 in one dimension while
CN ≈ 2.1436 in two dimensions.

In this paper, we consider the mixed dispersal model (1) on a bounded domain Ω

with Dirichlet and periodic boundary conditions. The model (1) on Ω with Dirichlet
boundary conditions is given by

{
ut = d [τ�u + (1 − τ)K u] + u(m(x) − u) for x ∈ Ω,

u(x, t) = 0 for x ∈ ∂Ω.
(7)

One can view this model as the model on RN by a zero extension of u(x, t) from Ω

to RN\Ω .
The model (1) with periodic boundary conditions is given by

{
ut = d [τ�u + (1 − τ)K u] + u(m(x) − u) for x ∈ R

N ,

u(x, t) = u(x + p, t) for x ∈ R
N ,

(8)

where p = (p1, p2, . . . , pN ) is a constant vector and the condition u(x) = u(x + p)
for x ∈ R

N is the so-called p−periodic function. One can view this as a periodic
extension from a finite domainΩ = (0, p1) × (0, p2) × · · · × (0, pN ) toRN . When
the periodic conditions are considered, m(x) is assumed to be p-periodic as well.

In early publications, the focus was on the local dispersal corresponding to τ = 1
in the model (7). The long-term dynamics were analyzed in terms of values of the
diffusion parameter d on a bounded domain Ω ⊂ R

N with Dirichlet boundary con-
ditions [4, 5]. It was found that whether u = 0 is a global attractor depends on
the relationship of d and the principal positive eigenvalue Λ1 (the smallest positive
simple eigenvalue with a corresponding eigenfunction with no sign change) of the
indefinite weight eigenvalue problem

−�ψ = Λm(x)ψ

where m(x) satisfies mes{Ω+ : m(x) > 0} 	= 0 (the favorable region), mes{Ω− :
m(x) < 0} 	= 0 (the unfavorable region), and

∫
m(x) = M < 0. Here, mes{X}

denotes the Lebesgue measure of X . It was also shown in [4, 5] that the model
(7) with τ = 1 yields a unique positive steady state which is a global attractor for
nonnegative nontrivial solutions, provided d is sufficiently small, namely d < 1/Λ1.
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On the contrary, the solution u = 0 is a global attractor for nonnegative solutions if
d > 1/Λ1 so that the population tends to extinction.

This motivated studies on the minimization of the principal positive eigenvalue in
terms of spatial heterogeneity of the resourcem(x), which allows species with larger
dispersal rate d to survive. In [20, 25], the minimization of the principal eigenvalue
was studied with Dirichlet, Neumann, and Robin boundary conditions. The optimal
arrangement of m(x) for Dirichlet boundary conditions prefers Ω+ be a simply
connected region away from the boundary on the convex domain. However, for
Neumann boundary conditions, Ω+ remains a simply connected domain and leans
toward to the part of boundaries with high curvature. For Robin boundary conditions
∂u
∂n + βu = 0, there exists a threshold β∗ at which a transition from a Dirichlet-like
scenario to Neumann-like one occurs.

In [7], the model (1) with τ = 0 and without the reaction term f (x, u) was ana-
lyzed for longtime behavior. The authors proved that similar to the heat equation,
the solution exponentially converges to zero for Dirichlet boundary conditions and
exponentially converges to the mean value of the initial condition for Neumann
conditions. In [31], proofs of the existence and uniqueness of positive solutions for
the nonlocal dispersal equation were obtained by the monotone iteration method. A
recent result on the optimal distribution of resources when the total resource was
fixed was obtained in [1]. The authors proved that the optimal m(x) is of bang-bang
type for themodel (1) with τ = 0 and a uniform kernel on a bounded domainΩ ⊂ R.

The stability of the equilibrium solution u = 0 of (7) and (8) depends on the sign
of the principal eigenvalue of the corresponding linear eigenvalue problem

L φ ≡ −d [τ�φ + (1 − τ)K φ] − m(x)φ = λφ. (9)

with the corresponding boundary conditions. It was shown in [24] that a variational
formulation can be used for the principal eigenvalue

λp = inf
0 	=v∈H 1(Ω)

∫
Ω=(0,p1)×(0,p2)×···×(0,pN )

vL vdx∫
Ω=(0,p1)×(0,p2)×···×(0,pN )

v2dx
(10)

for periodic boundary conditions and

λD = inf
0 	=v∈H 1

0 (Ω)

∫
Ω
vL vdx∫

Ω
v2dx

(11)

for Dirichlet boundary conditions.
When the principal eigenvalue is positive, u = 0 is a stable equilibrium and the

species cannot invade from a low initial population. When the principal eigenvalue is
negative, u = 0 is unstable and the species can invade from a low initial population.
The interesting question is how the spatial heterogeneity of the resource which is
represented by m(x) can affect the principal eigenvalue.
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Thus, we will study the optimization problem which looks for the minimal eigen-
value

λ∗
p = min

m(x)
λp and λ∗

D = min
m(x)

λD, (12)

when the resource function m(x) is a bang-bang function subject to

m = −m1 or m2 a.e. and
∫

Ω

m(x)dx = M. (13)

The rest of this paper is organized as follows. Section 2 is devoted to the analytic
study of the mixed model with Dirichlet boundary conditions. In Section 3, we
present numerical approaches to solve time-dependent equations (7) and (8). We
also study the corresponding linearized eigenvalue problem (9) and show how the
eigenvalue varies with respect to diffusion coefficients d and τ . Furthermore, we use
a rearrangement algorithm to find the optimal configuration of m(x) in (12) which
minimizes the principal eigenvalue so that the species will die out more slowly or
survive more easily. Conclusions and future work are discussed in Section 5.

2 Analytical Results

In [24], the time evolution problemwith periodic boundary conditions (8)was studied
and the solution was shown to be nonnegativity preserving (i.e., if the initial data
u(x, 0) is nonnegative, the solution u(x, t) remains nonnegative at all later times
t). For any value of the parameter δ 	= 0, the integral operator K is of Hilbert–
Schmidt type (that implies it is continuous and compact).K is a self-adjoint operator
L2(Ω) → L2(Ω) [24].

In the following, we will focus on the proofs for the properties of mixed dispersal
model with Dirichlet boundary conditions.

Theorem 1 There exists a constant D∗, such that if the diffusion coefficient d > D∗,
no positive stationary states of (1) exist.

Proof Let us first estimate the integration involving K :

∫
Ω

u (K u) dx =
∫

Ω

∫
Ω

u(x)k(|x − y|)u(y)dydx −
∫

Ω

u2(x)dx

=
∫

Ω

∫
Ω

u(x)k(|x − y|)u(y)dydx −
∫

Ω

k(|x − y|)dy
∫

Ω

u2(x)dx

=
∫

Ω

∫
Ω

u(x) [k(|x − y|) (u(y) − u(x))] dydx

= 1

2

∫
Ω

∫
Ω

u(x) [k(|x − y|) (u(y) − u(x))] dydx
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+ 1

2

∫
Ω

∫
Ω

u(y) [k(|y − x |) (u(x) − u(y))] dxdy

= −1

2

∫
Ω

∫
Ω

[
k(|x − y|) (u(y) − u(x))2

]
dydx

≤ 0 . (14)

Let u(x) be a nonnegative stationary solution of (7). Then u(x) satisfies

τ�u = − 1

d
u(m(x) − u) + (τ − 1)K u.

Multiplying the equation by u and integrating over the domain Ω , we obtain

τ

∫
Ω

u�udx = −1

d

∫
Ω

u2(m(x) − u)dx + (τ − 1)
∫

Ω

u (K u) dx.

Integrating by parts and using the Dirichlet boundary conditions, we obtain

τ

∫
Ω

|∇u|2dx = 1

d

∫
Ω

u2(m(x) − u)dx + (1 − τ)

∫
Ω

u (K u) dx

≤ 1

d

∫
Ω

u2m(x)dx ≤ m2

d

∫
Ω

u2dx.

Applying the Poincare inequality on the right-hand-side term, we obtain

τ

∫
Ω

|∇u|2dx ≤ cΩ

m2

d

∫
Ω

|∇u|2dx

where cΩ is a constant that depends on Ω . In one dimension, cΩ = |Ω|2
π2 . Thus

(dτ − cΩm2)

∫
Ω

|∇u|2dx ≤ 0.

If
d ≥ m2cΩ

τ
=: D∗, (15)

it implies that we must have u ≡ 0. �

Theorem 2 If d > D∗, then ||u||1 decays exponentially.
Proof Let us define the energy function E(t) = 1

2

∫
Ω
u2(x, t)dx. The rate of change

of energy is
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E ′(t) =
∫

Ω

uutdx

= d

(
τ

∫
Ω

u�udx + (1 − τ)u (K u) dx

)
+

∫
Ω

mu2dx −
∫

Ω

u3dx.

Dropping the last term due to the positivity preserving of the solution [24, 29],
applying the kernel estimation (14) on the second term, and applying the Poincare
inequality on the third term, we obtain

E ′(t) ≤ [−dτ + m2cΩ ]
∫

Ω

|∇u|2dx.

Denote D := [−dτ + m2cΩ ]. Note that d > D∗ implies that D < 0. Applying
Poincare inequality again, we then have

E ′(t) ≤ D
∫

Ω

|∇u|2 ≤ D

cΩ

∫
Ω

u2dx.

By using Grönwall’s inequality, now we have

E(t) ≤ E0 exp

(
2D

cΩ

t

)
.

As a result, we now have the decay rate estimation of 1-norm of u(x, t):

∫
Ω

|u|dx ≤ |Ω|1/2
(∫

Ω

u2dx

)1/2

= 21/2|Ω|1/2E1/2(t)

≤ (2|Ω|E0)
1/2 exp

(
D

cΩ

t

)
. �

Theorem 3 If d < D∗, ||u||1 is bounded from above.

Proof Multiplying equation (7) by u and integrating over the domain Ω , we obtain

∫
Ω

u3dx = −dτ

∫
Ω

|∇u|2dx + d(1 − τ)

∫
Ω

u (K u) dx +
∫

Ω

m(x)u2dx

which implies that

||u||33 =
∫

Ω

u3dx ≤
(
m2 − dτ

cΩ

) ∫
Ω

u2dx.

By using ||u2||3/2 = ||u||23, we have
∫

Ω

u2dx ≤
(∫

Ω

(
u2

)3/2
dx

)3/2

|Ω|1/3 ≤ ||u||23|Ω|1/3.
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Thus,

||u||3 ≤
(
m2 − dτ

cΩ

)
|Ω|1/3.

We then have

||u||1 =
∫

Ω

udx ≤
(∫

Ω

u3dx

)1/3

|Ω|2/3

≤
(
m2 − dτ

cΩ

)1/3

|Ω|7/9. �

Note that the upper bound derived here is a decreasing function in d.

Theorem 4 If d > D∗, then the principal eigenvalue is positive if exists.

Proof Denote the normalized eigenfunction, i.e.,
∫
Ω

φ2dx = 1, which corresponds
to λD by φ, thus

λD = −
∫

Ω

φ {d [τ�φ + (1 − τ)K φ] + mφ} dx

=
∫

Ω

d
[
τ |∇φ|2 − (1 − τ)φ (K φ)

] − mφ2dx

≥ d

[
τ

cΩ

− m2

d

] ∫
Ω

φ2dx = d

[
τ

cΩ

− m2

d

]
.

Thus if d > D∗ defined in (15), we have λD > 0. �

Theorem 5 Let λD(d1) and λD(d2) be the corresponding principal eigenvalues for
d = d1 and d = d2. If d1 > d2, then λD(d1) > λD(d2).

Proof Denote the normalized eigenfunction which corresponds to λD(d1) by φ, thus

− {d1 [τ�φ + (1 − τ)K φ] + mφ} = λD(d1)φ. (16)

Since φ is not necessarily the eigenfunction which corresponds to λD(d2), we have

−
∫

Ω

{d2 [τ�φ + (1 − τ)K φ] + mφ} φdx ≥ λD(d2). (17)

Multiplying (16) by φ, integrating by parts, and subtracting (17), we have

λD(d1) − λD(d2) ≥ (d1 − d2)

[
τ

∫
|∇φ|2dx − (1 − τ)

∫
φ (K φ) dx

]
> 0.

�
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Theorem 6 Let λD(τ1) and λD(τ2) be the corresponding principal eigenvalues for
τ = τ1 and τ = τ2. For any given Ω with Poincare constant cΩ < 1, if τ1 > τ2, then
λD(τ1) > λD(τ2).

Proof Denote the normalized eigenfunction which corresponds to λD(τ1) by φ, thus

− {d [τ1�φ + (1 − τ1)K φ] + mφ} = λD(τ1)φ. (18)

Since φ is not necessary the eigenfunction which corresponds to λD(τ2), we have

−
∫

Ω

{d [τ2�φ + (1 − τ2)K φ] + mφ} φdx ≥ λD(τ2). (19)

Multiplying (18) by φ, integrating by parts, and subtracting (19), we have

λD(τ1) − λD(τ2) ≥ d(τ1 − τ2)

[∫
|∇φ|2dx +

∫
φ (K φ) dx

]

≥ d(τ1 − τ2)

[
1

cΩ

∫
φ2dx −

∫
φ2dx

]

≥ d(τ1 − τ2)

[
1

cΩ

− 1

] ∫
φ2dx = d(τ1 − τ2)

[
1

cΩ

− 1

]
.

If cΩ < 1, we have λD(τ1) > λD(τ2). �

Theorem 7 Let m(x) be any given function satisfying (5) and m̄(φ) be the bang-
bang function satisfying (13) for the normalized eigenfunction φ(x) of m(x), i.e.,
m̄(φ) = m2χEα

− m1χEΩ\α where Eα(φ) = {
x ∈ Ω : φ2(x) > α

}
and α is chosen

so that |Eα|m2 − |Ω\Eα|m1 = M holds. (In caseφ = 0 on a set of positive measure,
it is also possible to choose such a bang-bang function. See [4]). Then, the principal
eigenvalue satisfies

λD(m) ≥ λD(m̄).

Proof For any given eigenfunction ψ ,

∫
Ω

(m̄(ψ) − m) ψ2dx =
∫
Eα

(m2 − m) ψ2dx +
∫

Ω\Eα

(−m1 − m) ψ2dx

≥ α

∫
Eα

(m2 − m) dx − α

∫
Ω\Eα

(m1 + m) dx

= α

∫
Eα

(m̄ − m) dx = 0,

we obtain

λD(m̄) = inf
0 	=v∈H 1

0 ,||v||2=1

∫
Ω

−d
[−τ |∇v|2 + (1 − τ) v(K v)

] − m̄v2dx
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≤
∫

Ω

−d
[−τ |∇φ|2 + (1 − τ) φ(K φ)

] − m̄φ2dx

≤
∫

Ω

−d
[−τ |∇φ|2 + (1 − τ) φ(K φ)

] − m(x)φ2dx

= λD(m(x))

whereφ is the normalized eigenfunction corresponds tom(x). The proof forλp(m̄) ≤
λp(m) follows the same arguments. �

Here, we prove a theorem which is related to our rearrangement algorithm to
find the optimal configuration of the resource function m(x). Given a function m(x)
defined in Ω and satisfying (5), we say that m0(x) belongs to the class of rearrange-
ments R = R(m(x)) if

mes{x ∈ Ω : m0(x) ≥ β} = mes{x ∈ Ω : m(x) ≥ β}, ∀β ≥ 0.

Theorem 8 Let m0(x) belongs to the class of rearrangementsR(m(x)). Denote the
corresponding normalized eigenfunctions of resource functions m(x) and m0(x) by
φ(x) and φ0(x), respectively. If

∫
Ω

m0φ
2dx ≥

∫
Ω

mφ2dx, (20)

then λD(m0) ≤ λD(m). Similarly, λp(m0) ≤ λp(m).

Proof By the definition of the principal eigenvalue, we have

λD(m0(x)) =
∫

Ω

−d
[−τ |∇φ0|2 + (1 − τ) φ0(K φ0)

] − m0(x)φ
2
0dx

≤
∫

Ω

−d
[−τ |∇φ|2 + (1 − τ) φ(K φ)

] − m0(x)φ
2dx

≤
∫

Ω

−d
[−τ |∇φ|2 + (1 − τ) φ(K φ)

] − m(x)φ2dx

= λD(m(x)).

The proof for λp(m0) ≤ λp(m) follows the same arguments. �

This result allows one to find a new configuration m0(x) satisfying (13) with
a smaller eigenvalue for any given m(x) satisfying (13). It is well known that
supm(x)

∫
Ω
m(x)φ2dx is obtained when m(x) is arranged to be a monotone increas-

ing function in φ2 [19] which means that the optimal choice is m̄(φ) = m2χEα
−

m1χEΩ\α where Eα(φ) = {
x ∈ Ω : φ2(x) > α

}
and α is chosen so that |Eα|m2 −

|Ω\Eα|m1 = M holds.
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3 Numerical Implementation

In this section,wediscuss the numerical approaches to themixeddispersalmodelwith
both Dirichlet and periodic boundary conditions. We solve the linearized eigenvalue
problem (9) and time evolution problems (7) and (8), aswell as the optimization prob-
lem which determines the optimal arrangement of the resources. For simplicity, we
use finite difference approaches on one-dimensional intervals and two-dimensional
rectangular domains and use a finite element approach on general domains such as
dumbbell shapes with Dirichlet boundary conditions.

3.1 Finite Difference Method

For one-dimensional finite difference approach, we use the method proposed in [24].
The model (1) in one-dimensional interval I = [0, L] is described by

ut = d

[
τuxx + (1 − τ)

(
1

δ

∫
I
k∗

(
x − y

δ

)
u(y)dy − u(x)

)]
+ u(m(x) − u),

(21)
with k∗ defined in (6). The corresponding eigenvalue problem is

− d

[
τuxx + (1 − τ)

(
1

δ

∫
I
k∗

(
x − y

δ

)
u(y)dy − u(x)

)]
− m(x)u = λu. (22)

Wediscretize the domain by using a uniformmesh: xi = ih for i = 0, 1, 2, . . . , N ,
with the mesh size h = L/N . Denote by ui the numerical approximation of u(xi ).
For Dirichlet boundary conditions, zero values are assigned to u0 and uN .We seek for
the solution U = (u1, u2, . . . , uN−1)

T . For periodic boundary conditions, we have
u0 = uN and seek for the solution U = (u1, . . . , uN )T . The local dispersal term
uxx is approximated by a second order central difference scheme and the nonlocal
dispersal term involving integration is approximated by the trapezoidal method. The
discretization of (21) leads to a system of ordinary differential equations. With given
initial values ofU, we use forward Euler method to compute the solution at any later
time under the stability restriction on the time stepsize. The discretization of (22)
leads to a discrete eigenvalue problem and the principal eigenvalue can be easily
computed using Arnoldi’s method.

It is very straightforward to extend this method to solve (7) and (8) in two
dimensions on a rectangular domain [0, Lx ] × [0, Ly]. We discretize the domain by
using a mesh: (xi , y j ) = (ihx , jhy) for i = 0, 1, 2, . . . , Nx and j = 0, 1, 2, . . . , Ny ,
with hx = Lx/Nx and hy = Ly/Ny . Denote by ui, j the numerical approximation of
u(xi , y j ). Boundary conditions are enforced in the similar way as the ones in one
dimension. The local dispersal term �u is approximated by the five-point difference
scheme
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�u(xi , y j ) ≈ ui+1, j − 2ui, j + ui−1, j

h2x
+ ui, j+1 − 2ui, j + ui, j−1

h2y

and the nonlocal dispersal term involving integration of the kernel term

∫ Lx

0

∫ Ly

0
k(|(x, y) − (x̃, ỹ)|)u(x̃, ỹ)dx̃d ỹ

is done with a composite trapezoidal rule in two dimensions

∑∑
ki, j,ĩ, j̃wĩ, j̃ uĩ, j̃

where ki, j,ĩ, j̃ is k(|(xi , y j ) − (x̃i , ỹ j )|) andwĩ, j̃ are weights of composite trapezoidal
rule. The discretization of (7) and (8) again leads to a system of ordinary differential
equations while the discretization of (9) leads to a discrete eigenvalue problem.

3.2 Finite Element Method

On irregular domains, we use a finite element method to solve (9) with Dirichlet
boundary conditions. We use bilinear elements on quadrilaterals for the eigenfunc-
tion, and the function m(x) is represented by piecewise constants on the quadrilat-
erals. The discrete eigenvalue problem

PU = λQU (23)

whereU is a solution vector with entriesUj ( j = 1, . . . , n), P is the matrix resulting
from the differential operator, integral operator, and the resource function term, and
Q is the mass matrix, is solved by using Arnoldi’s algorithm.We use the deal.II finite
element library [3] to do our computations.

Algorithm 1 A rearrangement algorithm to minimize the principal eigenvalue
Give an initial guess for m(x) and compute the area of favorable region |Ω+|.
Repeat 1-3 until m(x) does not change any more
1. Solve the eigenvalue problem (9) with Dirichlet or periodic boundary conditions by the finite

difference method described in Section 3.1 or the finite element method described in Section 3.2.
2. Sort the value of φ2 at the discrete points in the descending order and compute the threshold α

such that |{x |φ(x)2 > α}| = |Ω+|.
3. If φ(x)2 >= α, assign m(x) = m2. Otherwise, assign m(x) = −m1.
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3.3 Optimization Approach Based on a Rearrangement
Algorithm

For finding the minimal principal eigenvalue in (12) subjected to (13), we adopt the
rearrangement algorithm proposed in [26]. Given an initial configuration of m(x)
which is bounded from below by −m1 and bounded from above by m2, one can
calculate the area for the favorable region Ω+. In the finite difference calculation,
this is done by counting the number of the mesh points which have the valuem = m2

and multiplying by h in one dimension and by hxhy in two dimensions. In the finite
element approach, this is done by calculating the total area of the elements which
have the value m = m2. Next, using the rearrangement approach, we iterate m(x)
until the optimal configuration is reached. In each iteration, m2 is assigned to the
location where square values of magnitude of the eigenfunction is above the critical
thresholdαwhich is chosenwhen |{x |φ(x)2 > α}| = |Ω+| is satisfied.The algorithm
is summarized in Algorithm 1. The stopping criterion is when two successive m(x)
are identically the same. If the algorithm stops at n−th iteration, it means that the
optimal configuration is achieved at (n − 1)−th iteration.

4 Numerical Results

In this section, we study how the principal eigenvalue changes for different values
of coefficients d and τ , for both Dirichlet and periodic boundary conditions. Results
from computations on square and rectangular domains in one and two dimensions
are presented. We also present results of simulations on a general-shaped domain in
two dimensions.

4.1 One-Dimensional Results

We first study how the principal eigenvalue of Equation (22) in the interval [0, 1]
varies with respect to different values of coefficients, d and τ . In our experiments,
we use mesh size N = 400 for periodic boundary conditions and N = 1600 for
Dirichlet boundary conditions to guarantee at least two significant digits of accuracy
for the principal eigenvalue. Given m(x) = χ[0.4,0.6] − χ[0,0.4)∪(0.6,1], we compute
the principal eigenvalue for d ranging from 0 to 0.1 with τ = 0, 0.5, and 1. In
Figure 1(a) and 1(b), we see that the principal eigenvalue becomes negative when
the total diffusion coefficient d is relatively small in both periodic and Dirichlet
cases. Furthermore, the principal eigenvalue becomes smaller as τ decreases. In
Figure 2(a) and 2(b), the change of λp and λD are shown with respect to τ ranging
from 0 to 1 when d = 0.01, 0.05, 0.1, and 1. In both periodic and Dirichlet cases,
we see that λp and λD become negative when τ is relatively small, which means the
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Fig. 2 (a) λp versus τ (b) λD versus τ for d = 0.01, 0.05, 0.1 and 1 with δ = 0.15.

species adoptedmore nonlocal diffusion. Furthermore, λp and λD are bothmonotone
increasing functions in d with the current choice of parameters.

For time evolution problems (7) and (8), we study the long-term behavior of the
solution. When the diffusion coefficient d is big enough, for example see Figure 3
with d = 2, the whole population dies out as time goes to infinity. In Figure 3(a)
and 3(b), we plot the logarithm of the L1 norm of u for both periodic and Dirichlet
boundary conditions, uponwhich we also perform linear fitting, shown in Figure 3(c)
and 3(d). We can see that ||u||L1 decays exponentially for both boundary conditions,
which is consistent with our analytical result in Theorem 2. On the other hand, for
small total diffusion d, the solution will finally reach a positive steady state for both
periodic and Dirichlet boundary conditions, as illustrated in Figure 4 when d = 0.02,
where we plot the final configuration of u after time long enough to show the positive
steady state.
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Fig. 5 The optimal configuration of m(x) and the corresponding eigenfunction computed by the
rearrangement approach with d = 0.8, τ = 0.5, δ = 0.15 for (a) periodic boundary conditions
(λp = 0.57) and (b) Dirichlet boundary conditions (λD = 4.16).

Finally, we determine the optimal arrangement ofm(x) in an interval by using the
rearrangement approach. It turns out that for both periodic and Dirichlet boundary
conditions, the optimal favorable region is connected, as shown in Figure 5 with
d = 0.8. Here, our initial guess of m(x) is

m(x) =
{
m2 for |x − 0.4| < 0.05, |x − 0.8| < 0.05
m1 for otherwise

which has two positive intervals with a total area to be 0.2. For Dirichlet boundary
conditions in Figure 5(b), the optimal favorable region is found to be in the center
of the domain with area 0.2, after 5 iterations. However, for periodic boundary con-
ditions, the result is slightly different. For this particular initial m, after 3 iterations,
the system reaches the optimization solution and the favorable region is shown in
Figure 5(a), where the positive favorable region is still connected and with area 0.2,
but in a different position. In fact, for periodic boundary conditions, the positive
favorable region does not necessarily stay fixed on one part of the domain in the
one-dimensional case. The connected positive favorable region is transferable to any
part of the domain, as long as it has the same total area. Thus, the numerical opti-
mization solution depends on the initial guess ofm. From the results of our numerical
experiments, we see that the rearrangement algorithm converges in a few iterations.

4.2 Two-Dimensional Results

In twodimensions,we perform similar numerical tests as in one dimensionwithm1 =
m2 = 1. On a square domain [0, 1] × [0, 1], we set the mesh size Nx = Ny = 50
for both periodic and Dirichlet boundary conditions. The initial guess of favorable
region of m(x) is a circle centered at (0.5, 0.5) with radius 0.3. Using exactly the
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dimensional case.

same parameters d and τ as in the one-dimensional case, we plot in Figure 6(a) and
(b) how the principal eigenvalue changes with respect to d for periodic and Dirichlet
boundary conditions. In Figure 7, we show the curves of λp and λD changing with
respect to τ for different d. The results in two dimensions are very similar to those
in one dimension. Both λp and λD get smaller as d or τ decreases with the current
choice of parameters.

In order to find the optimal favorable region in two dimensions, we solve the
optimization problem using a rearrangement approach. First, we study the problem
on a square domain. We set the initial guess ofm(x) (Figure 8) to be a cross centered
at (0.3, 0.3) with the definition below.

m(x, y) =
⎧⎨
⎩
m2 for |x − 0.3| < 0.1 and |y − 0.3| < 0.2,
m2 for |x − 0.3| < 0.2 and |y − 0.3| < 0.1,
m1 for otherwise.

(24)
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m(x) eigenfunction

Fig. 8 (a) Initial configuration of m(x) with a cross-shaped favorable region for the optimiza-
tion problem and (b) its corresponding eigenfunction with periodic boundary conditions in two
dimensions.

The total area of the favorable region of the initial m(x) is 0.12. For periodic
boundary conditions, the optimized solution is reached after 3 iterations. In Figure 9,
we show the configuration of m(x) and its corresponding eigenfunction at each
iteration. As we can see, the optimal shape of the favorable region of m turns into a
circular-like shape during evolution.

For Dirichlet boundary conditions, the optimal result is also obtained after 3
iterations, as shown in Figure 10. The favorable region again turns into a circular-
like shape but goes to the center of the domain, which is different from the periodic
boundary case. As the number of iterations increases, λD decreases before settling
at 10.07 in the end. In Table 1, we show the values of λD for each iteration for both
periodic and Dirichlet boundary conditions.

In Figure 11, we show the optimal results at 4-th iterations with negative eigen-
values when the choices of parameters are d = 0.01, τ = 0.5, δ = 0.15 for both
periodic and boundary conditions. The initial guess for periodic boundary condition
is (24) and the initial guess for Dirichlet boundary condition is (24) with the center
of the cross shifted from (0.3, 0.3) to (0.5, 0.5). This choice of the initial condition
gives the optimal configuration with fewer iterations. We observe that the results are
similar to the optimal configuration with positive eigenvalues.

Next, we explore the results on rectangular domains with the same width, 1, but
with different heights, b. We set the initial guess of favorable region of m to be a
square with width 0.2 centered at (0.3, b/2). We calculate the optimal configurations
of m(x) for b = 0.35, 0.4, 0.5, and 0.8, for both periodic and Dirichlet boundary
conditions, and present the final optimal m and the corresponding eigenfunctions in
Figure 12 for periodic boundary conditions and in Figure 13 for Dirichlet boundary
conditions. Aswe can see, for a periodic boundary, the optimal favorable region tends
to a vertical band and touches the horizontal boundary for small b, and becomes a
circular-like shape when b turns bigger, which does not necessarily stay in themiddle
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Fig. 9 The configuration of m(x) and its corresponding eigenfunction for the first three numerical
iterations. The optimal result λ∗

p = 0.74 is achieved at the third iteration. The choices of parameters
are d = 1, τ = 0.5, δ = 0.15, and Nx = Ny = 100. (a) Iteration 1. (b) Iteration 1. (c) Iteration 2.
(d) Iteration 2. (e) Iteration 3. (f) Iteration 3.
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Fig. 10 The configuration ofm(x) and its corresponding eigenfunction for the first three numerical
iterations. The optimal resultλ∗

D = 10.07 is achieved at the third iteration. The choices of parameters
are d = 1, τ = 0.5, δ = 0.15, and Nx = Ny = 100. (a) Iteration 1. (b) Iteration 1. (c) Iteration 2.
(d) Iteration 2. (e) Iteration 3. (f) Iteration 3.
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Table 1 Values of λp and λD at each iteration during optimization procedure for d = 1, τ = 0.5,
δ = 0.15, Nx = Ny = 100.

Iteration Periodic boundary Dirichlet boundary

1 0.7398 10.499

2 0.7394 10.073

3 0.7394 10.070

4 0.7394 10.070

Fig. 11 Theoptimal configurations ofm(x) and their corresponding eigenfunctions at 4−th numeri-
cal iteration for both periodic (top row) andDirichlet boundary conditions (bottom row). The optimal
eigenvalues are λ∗

p = −0.54 and λ∗
D = −0.54. The choices of parameters are d = 0.01, τ = 0.5,

δ = 0.15, and Nx = Ny = 100. (a) Iteration 4. (b) Iteration 4. (c) Iteration 4. (d) Iteration 4.

of the domain. However, for a Dirichlet boundary, for all choices of b examined, the
positive resource tends to a circular-like shape andmoves to the center of the domain.
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Fig. 12 The optimal favorable region and corresponding eigenfunction for b = 0.35, 0.4, 0.5, 0.8
for periodic boundary conditions. In these experiments, d = 1, τ = 0.5, δ = 0.15, Nx = 100, and
Ny = 100b. (a) b = 0.35. (b) b = 0.35 (c) b = 0.4. (d) b = 0.4. (e) b = 0.5. (f) b = 0.5. (g) b = 0.8.
(h) b = 0.8.

4.3 Dumbbell-Shaped Domain

Here, we present numerical results via a finite element method on a dumbbell-shaped
domain with Dirichlet boundary conditions. The choices of parameters are d = 1,
τ = 0.5, and δ = 0.15. We are looking for an optimal configuration of the resource
functionm(x) that minimizes the principal eigenvalue of (9). In the first experiment,
the domain Ω is dumbbell-shaped and the favorable region (corresponding to Ω+)
consists of two disks with the same radius located on both ends of the dumbbell.
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Fig. 13 The optimal favorable region and corresponding eigenfunction for b = 0.35, 0.4, 0.5, 0.8
for Dirichlet boundary conditions with d = 1, τ = 0.5, δ = 0.15, Nx = 100, and Ny = 100b.
(a) b = 0.35. (b) b = 0.35 (c) b = 0.4. (d) b = 0.4. (e) b = 0.5. (f) b = 0.5. (g) b = 0.8. (h)
b = 0.8.

The initial and optimal (final) configurations of m(x) with the eigenfunctions cor-
responding to the principal eigenvalue are shown in Figure 14. The number of cells
(quadrilaterals) in the domain is 25941. Table 2 shows the principal eigenvalue λD

versus the iteration number.
For the next experiment, the two disks for the initial favorable regions have differ-

ent radii. Results of the computation in this case are shown inFigure 15. Table 3 shows
the principal eigenvalue λD after each iteration. As shown in the figures above, when
the channel connecting the dumbbells is thinner, the optimal configuration of m(x)
is a single favorable region in either side. For cases where the two favorable regions
on either side have different areas, the final configuration ofm(x) is concentrated on
the side that had larger area initially. Next, we take a dumbbell-shaped domain with
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Fig. 14 Resource function m(x) (left) and the eigenfunction φD(x) corresponding to the principal
eigenvalue λD (right). The top row corresponds to the initial configuration and the bottom row
corresponds to the optimal configuration after 9 iterations.

Table 2 The principal eigenvalue λD vs. iterations for a dumbbell-shaped domain (see Figure 14).

Iteration 0 2 4 6 8 10

λD 28.5249 28.4812 28.4797 28.4527 28.3513 28.3266

Fig. 15 Resource function m(x) (left) and the eigenfunction φD(x) corresponding to the principal
eigenvalue λD (right). The top row corresponds to the initial configuration and the bottom row
corresponds to the optimal configuration after 3 iterations.

a thicker channel. Initial favorable regions are again two disks located at both ends.
Results of the case where the two disks have the same radius are shown in Figure 16.
Table 4 shows the principal eigenvalue λD after each iteration. The number of cells
(quadrilaterals) in the domain is 21211. As we observe from the figure, the optimal
favorable region is one large area in the middle of the thick channel away from the
boundary. For the case when two disks that have different radii, we get a very similar
configuration of m(x).
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Table 3 The principal eigenvalue λD vs. iterations for a dumbbell-shaped domain (see Figure 15).

Iteration 0 1 2 3 4

λD 28.5123 28.3965 28.3416 28.3334 28.3334

Fig. 16 Resource function m(x) (left) and the eigenfunction φD(x) corresponding to the principal
eigenvalue λD (right). The top row corresponds to the initial configuration and the bottom row
corresponds to the optimal configuration after 4 iterations.

Table 4 The principal eigenvalue λD vs. iterations for a dumbbell-shaped domain with thick
channel (see Figure 16).

Iteration 0 1 2 3 4 5

λD 20.0444 19.2431 19.2346 19.2346 19.2345 19.2345

5 Discussion

In this paper, we studied a mixed dispersal model with periodic and Dirichlet bound-
ary conditions on different shapes of one-dimensional and two-dimensional domains
both analytically and numerically. In terms of parameter values, we investigated two
possible scenarios of longtime dynamics: the population of species dying off com-
pletely as time goes to infinity or converging to a nontrivial stationary distribution.

To analyze the convergence rate toward trivial and nontrivial stationary solutions,
we estimated the principal eigenvalue of the corresponding linearized problem and
solved the principal eigenvalue minimization problem in terms of the distribution
of favorable and unfavorable regions. Our numerical simulations indicate that the
optimal favorable region tends to be a simply connected domain. Numerous results
are shown to demonstrate various scenarios of optimal favorable regions for periodic
and Dirichlet boundary conditions.
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We would expect similar results for more general Robin-type boundary condi-
tions. It would be interesting to analyze how the longtime dynamics can be affected
by the application of spectral-parameter- dependent boundary conditions (see [8]
for example) or by replacing the linear diffusion term with nonlinear diffusion, tak-
ing into account that the diffusion coefficient depends on population density. For
example, the diffusion coefficient can be taken proportional to some positive or neg-
ative power of density, hence embracing the cases where the diffusion coefficient
grows or decreases with the density which will lead eventually to interesting pattern
formations [9].

As a future work, we would also like to consider competition models when mul-
tiple species use different local and nonlocal dispersal strategies. Some results were
already obtained in [23] on a model of two competing species.
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Optimization-Based Decoupling Algorithms
for a Fluid-Poroelastic System

Aycil Cesmelioglu, Hyesuk Lee, Annalisa Quaini, Kening Wang
and Son-Young Yi

Abstract In this paper, computational algorithms for the Stokes-Biot coupled sys-
tem are proposed to study the interaction of a free fluid with a poroelastic material.
The decoupling strategy we employ is to cast the coupled fluid-poroelastic system
as a constrained optimization problem with a Neumann type control that enforces
continuity of the normal components of the stress on the interface. The optimization
objective is to minimize any violation of the other interface conditions. Two numer-
ical algorithms based on a residual updating technique are presented. One solves a
least squares problem and the other solves a linear problem when the fluid velocity
in the poroelastic structure is smooth enough. Both algorithms yield the minimizer
of the constrained optimization problem. Some numerical results are provided to
validate the accuracy and efficiency of the proposed algorithms.
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1 Introduction

We develop a robust and efficient numerical method to simulate the interaction of
a free fluid with a deformable porous medium. Modeling fluid-poroelastic structure
interaction is of great importance in a wide range of industrial and environmental
applications, including groundwater flow, oil and gas production, blood-vessel inter-
actions, breakwater design, and many more. See, e.g., [1–9] and references therein.

To model the free fluid, we consider the Stokes equations for a single phase,
incompressible viscous fluid.Awell acceptedmodel for the fluid flow in a deformable
porousmedium is theBiot system [10–13]. The stress and flow couplings on the inter-
face between the Biot flow through the deforming porous medium and the Stokes
flow in the open channel must be prescribed by physically-consistent interface con-
ditions. Refer to [14] for the formulation of the interface conditions and analytical
study of the model.

The numerical discretization of the Stokes-Biot system poses great computational
challenges due to the nature of its complexity. A fully-coupled scheme, which solves
the Stokes and Biot subproblems simultaneously, results in a large linear system,
which in turn requires a large amount of memory space and a special solver. The
objective of this work is to develop efficient decoupling schemes that allow us to
independently solve each subproblem using existing Stokes and Biot solvers pos-
sibly with slight modification, while ensuring convergence to an accurate solution.
Recently, Bukač et al. [9] proposed and analyzed a loosely coupled scheme for the
Stokes-Biot system, for which interface conditions are imposed for local problems
by time lagging. In this work, we consider a different approach for decoupling, where
the solution algorithm considered is based on optimization. We present a Neumann
type control that enforces continuity of the normal components of the stress on the
interface while minimizing any violation of the remaining interface conditions. Two
numerical algorithms based on a residual updating technique are presented. One
redefines the constrained optimization problem as a least squares problem whose
solution yields the minimizer of the original constrained optimization problem. The
other algorithm seeks the minimizer by solving a linear problem, assuming the fluid
velocity in the poroelastic structure is smooth enough. Some numerical results are
provided to validate the accuracy and efficiency of the proposed methods.

This paper is organized as follows. In Section 2 we present the governing equa-
tions of the Stokes-Biot problem, complemented by initial, boundary, and interface
conditions. Time discretized weak formulation and its appropriate functional spaces
are introduced in Section 3. Section 4 is devoted to the development of optimization-
based decoupling schemes. Finally, in Section 5, we present some results of our
numerical experiments.
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2 Model Equations

Suppose that the domain under consideration is made up of two regions Ω f (t) ∈ R
2

and Ωp(t) ∈ R
2, t being time, separated by a common moving interface ΓI(t) =

∂Ω f (t) ∩ ∂Ωp(t). SeeFigure 1.Thefirst regionΩ f (t) is occupiedby the freefluid and
has boundaryΓ f such thatΓ f = Γ

f
in ∪ Γ

f
out ∪ Γ

f
t ∪ ΓI(t),whereΓ

f
in andΓ

f
out represent

the inlet and outlet boundary, respectively. The second regionΩp(t) is occupied by a
saturatedporoelastic structurewith the boundaryΓ p such thatΓ p = Γ

p
s ∪ Γ

p
b ∪ ΓI(t),

where Γ
p
s ∪ Γ

p
b represents the outer structure boundary.

For the sake of simplicity, we will consider the problem under the assumption of
fixed domains Ω f (t) and Ωp(t). That is,

Ω f (t) = Ω f , Ωp(t) = Ωp, ΓI(t) = ΓI , ∀t ∈ [0,T ].

This assumption allows for a simple presentation of the algorithms to be proposed in
the subsequent sections. In order to incorporate the full effect of themoving interface,
we can employ the Arbitrary Lagrangian-Eulerian (ALE) formulation. Refer to [15]
for a similar decoupling algorithm for fluid-structure interaction based on the ALE
formulation.

Consider the fluid equations:

ρf
∂uf
∂t

− 2νf ∇ · D(uf ) + ∇pf = ff in Ω f , (2.1a)

∇ · uf = 0 in Ω f , (2.1b)

where uf denotes the velocity vector of the fluid, pf the pressure of the fluid, ρf the
density of the fluid, νf the fluid viscosity, and ff the body force acting on the fluid.
Here, D(uf ) is the strain rate tensor:

D(uf ) = 1

2

(∇uf + (∇uf )T
)
.

Fig. 1 Fluid-poroelastic
domain.



82 A. Cesmelioglu et al.

The Cauchy stress tensor is given by:

σ f = 2νf D(uf ) − pf I.

Equation (2.1a) represents the conservation of linear momentum, while equation
(2.1b) represents the conservation of mass.

The poroelastic system is represented by the Biot model:

ρs
∂2η

∂t2
− 2νs ∇ · D(η) − λ∇(∇ · η) + α∇pp = fs in Ωp , (2.2a)

κ−1up + ∇pp = 0 in Ωp , (2.2b)

∂

∂t
(s0pp + α∇ · η) + ∇ · up = fp in Ωp , (2.2c)

where η is the displacement of the structure, pp is the pore pressure of the fluid, and
up is the fluid velocity. Here, fp is the source/sink term and fs is the body force. The
total stress tensor for the poroelastic structure is given by:

σ p = 2νsD(η) + λ(∇ · η)I − α ppI,

where νs and λ denote the Lamé constants for the skeleton. The density of saturated
medium is denoted byρs, and the hydraulic conductivity is denoted by κ . In general, κ
is a symmetric positive definite tensor, but in this workwe assume an isotropic porous
material so that κ is a scalar quantity. The constrained specific storage coefficient is
denoted by s0 and the Biot-Willis constant by α, which is usually close to unity. In
the subsequent discussion, all the physical parameters are assumed to be constant in
space and time. Note that the Biot system consists of the momentum equation for
the balance of total forces (2.2a) and the mass conservation equation (2.2c), along
with the standard assumption of Darcy’s law (2.2b) for the flux.

We remark that model (2.2) is the same used in, e.g., [9], but it is different from
the model used in other references, such as [3, 5]. References [3, 5] focus on blood-
vessel interaction and assume the artery wall is a saturated poroelasticmedium. Since
here the focus is more general, we preferred to use model (2.2).

In order to complete the Stokes-Biot model, (2.1)–(2.2), we provide the following
boundary, initial and interface conditions:

– Boundary conditions:

σ f nf = −Pin(t) on Γ
f
in , (2.3a)

σ f nf = 0 on Γ
f
out , (2.3b)

uf = 0 on Γ
f
t , (2.3c)

up · np = 0, η = 0 on Γ p
s , (2.3d)

up · np = 0, σ pnp = 0 on Γ
p
b . (2.3e)
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– Initial conditions:

At t = 0 : uf = 0, pp = 0, η = 0, ηt = 0 . (2.4)

– Interface conditions on ΓI :

uf · nf = −(ηt + up) · np , (2.5a)

σ f nf = −σ pnp , (2.5b)

nf · σ f nf = −pp , (2.5c)

nf · σ f t = −β(uf − ηt) · t , (2.5d)

where nf and np denote outward unit normal vectors to Ω f and Ωp, respectively, t
denotes a unit tangent vector on ΓI , and β denotes the resistance parameter in the
tangential direction.

Here, (2.5a) describes the admissibility constraint. The conservation of momen-
tum, expressed by (2.5b), requires that the total stress of the porous medium be
balanced by the total stress of the fluid. For the balance of normal components of
the stress in the fluid phase across the interface, we have (2.5c). Finally, the tan-
gential stress of the fluid is assumed to be proportional to the slip rate according to
the Beavers-Joseph-Saffman condition (2.5d). These interface conditions suffice to
precisely couple the Stokes system (2.1) to the Biot system (2.2).

3 Semi-discrete Weak Formulation

Standard notation for Sobolev spaces and their associated norms and seminorms
will be used to define a weak formulation of the problem. For example, Wm,p(Θ)

is the usual Sobolev space with the norm ‖ · ‖m,p,Θ . In case of p = 2, the Sobolev
space Wm,2(Θ) is denoted by Hm(Θ) with the norm ‖ · ‖m,Θ . When m = 0, Hm(Θ)

coincides with L2(Θ). In this case, the inner product and the norm will be denoted
by (·, ·)Θ and ‖ · ‖Θ , respectively. Moreover, if Θ = Ω f or Ωp, and the context is
clear, Θ will be omitted, i.e., (·, ·) = (·, ·)Ω f or (·, ·)Ωp for functions defined in Ω f

and Ωp. For γ ⊂ ∂Ω f ∪ ∂Ωp, we use 〈·, ·〉γ to denote the duality pairing between
H−1/2(γ ) and H1/2(γ ). Finally, the associated space of vector valued functions will
be denoted by a boldface font.

Now, we are in a position to define the following function spaces for the velocities
uf , up, the pressures pf , pp, and the displacement η, respectively:
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Uf := {v ∈ H1(Ω f ) : v = 0 on Γ
f
t },

Up := Hdiv
0,Γ p

s ∪Γ
p
b
(Ωp) = {v ∈ L2(Ωp) : ∇ · v ∈ L2(Ωp), v · np = 0 on Γ p

s ∪ Γ
p
b },

Qf := L2(Ω f ),

Qp := L2(Ωp),

Σ := {ξ ∈ H1(Ωp) : ξ = 0 on Γ p
s }.

We also define
G := H1/2(ΓI)

for the space of the control function to be introduced later.
Multiplying the governing equations (2.1) and (2.2) by appropriate test functions

and using integration by parts, we obtain a continuous variational formulation for
the fluid problem:

ρf

(
∂uf
∂t

, vf

)
+ 2νf (D(uf ),D(vf )) − (pf ,∇ · vf )

= (ff , vf ) + 〈−Pin, vf 〉Γ f
in

+ 〈σ f nf , vf 〉ΓI , ∀vf ∈ Uf , (3.1a)

(qf ,∇ · uf ) = 0, ∀qf ∈ Qf , (3.1b)

and for the structure problem:

ρs

(
∂2η

∂t2
, ξ

)
+ 2νs(D(η),D(ξ)) + λ(∇ · η,∇ · ξ) − α(pp,∇ · ξ)

= (fs, ξ) + 〈σ pnp, ξ 〉ΓI , ∀ξ ∈ Σ , (3.2a)

κ−1(up, vp) − (pp,∇ · vp) = 〈−pp, vp · np〉ΓI , ∀vp ∈ Up , (3.2b)(
qp,

∂

∂t
(s0pp + α∇ · η) + ∇ · up

)
= (qp, fp), ∀qp ∈ Qp . (3.2c)

Before we discretize the above equations in time, we introduce some notation first.
Let Δt = T/N , where N is a positive integer and let tn = nΔt. For any sufficiently
smooth function v(t, x), both constant and vector-valued, we define vn(x) = v(tn, x).

For the time discretization of the Stokes problem (3.1), we use the Backward
Euler scheme. Then, the discrete-in-time, continuous-in-space problem of the free
fluid reads as follows: For n = 1, 2, · · · ,N , find un

f ∈ Uf and pnf ∈ Qf such that

ρf

(
un
f − un−1

f

Δt
, vf

)
+ 2νf (D(un

f ),D(vf )) − (pnf ,∇ · vf )

= (fnf , vf ) + 〈−Pn
in, vf 〉Γ f

in
+ 〈σ n

f nf , vf 〉ΓI , ∀vf ∈ Uf , (3.3a)

(qf ,∇ · un
f ) = 0, ∀qf ∈ Qf . (3.3b)
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On the other hand, the semi-discrete problem of the Biot model is: For n =
1, 2, · · · ,N , find ηn ∈ Σ , un

p ∈ Up, and pnp ∈ Qp such that

ρs

(
ηn − 2ηn−1 + ηn−2

Δt2
, ξ

)
+ 2νs(D(ηn),D(ξ)) + λ(∇ · ηn,∇ · ξ)

− α(pnp,∇ · ξ) = (fns , ξ) + 〈σ n
pnp, ξ 〉ΓI , ∀ξ ∈ Σ, (3.4a)

κ−1(un
p, vp) − (pnp,∇ · vp) = 〈−pnp, vp · np〉ΓI , ∀vp ∈ Up, (3.4b)(

qp, s0
pnp − pn−1

p

Δt
+ α

∇ · ηn − ∇ · ηn−1

Δt
+ ∇ · un

p

)
= (qp, f

n
p ), ∀qp ∈ Qp.

(3.4c)

The fully-coupled scheme simultaneously solves these two subproblems, (3.3)
and (3.4), coupled through the interface conditions (2.5).

4 Decoupling Schemes

The goal of this section is to develop efficient decoupling schemes that allow us
to independently solve each subproblem while ensuring convergence to an accurate
solution.

Let gn = (gn1, g
n
2)

T := (σ n
f nf )|ΓI . Then, using the interface condition (2.5b), we

can rewrite (3.3a) and (3.4a), respectively, as

ρf

(
un
f − un−1

f

Δt
, vf

)
+ 2νf (D(un

f ),D(vf )) − (pnf ,∇ · vf )

= (fnf , vf ) + 〈−Pin, vf 〉Γ f
in

+ 〈gn, vf 〉ΓI , ∀vf ∈ Uf ,

ρs

(
ηn − 2ηn−1 + ηn−2

Δt2
, ξ

)
+ 2νs(D(ηn),D(ξ)) + λ(∇ · ηn,∇ · ξ)

−α(pnp,∇ · ξ) = (fns , ξ) − 〈gn, ξ 〉ΓI . ∀ξ ∈ Σ.

On the other hand, we can rewrite

gn = (
(nf · σ n

f nf )nf + (t · σ n
f nf )t

) |ΓI , (4.1)

which, together with (2.5c), implies that

−pp|ΓI = (nf · σ n
f nf )|ΓI = gn · nf = −gn · np.
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Then, (3.4b) can be rewritten as

κ−1(un
p, vp) − (pnp,∇ · vp) = −〈gn · np, vp · np〉ΓI , ∀vp ∈ Up .

In summary, the semi-discrete Stokes and Biot problems, (3.3) and (3.4), can be
rewritten in terms of gn:

ρf

(
un
f − un−1

f

Δt
, vf

)
+ 2νf (D(un

f ),D(vf )) − (pnf ,∇ · vf )

= (fnf , vf ) + 〈−Pn
in, vf 〉Γ f

in
+ 〈gn, vf 〉ΓI , ∀vf ∈ Uf , (4.2a)

(qf ,∇ · un
f ) = 0, ∀qf ∈ Qf . (4.2b)

and

ρs

(
ηn − 2ηn−1 + ηn−2

Δt2
, ξ

)
+ 2νs(D(ηn),D(ξ)) + λ(∇ · ηn,∇ · ξ)

− α(pnp,∇ · ξ) = (fns , ξ) − 〈gn, ξ 〉ΓI , ∀ξ ∈ Σ, (4.3a)

κ−1(un
p, vp) − (pnp,∇ · vp) = −〈gn · np, vp · np〉ΓI , ∀vp ∈ Up , (4.3b)(

qp, s0
pnp − pn−1

p

Δt
+ α

∇ · ηn − ∇ · ηn−1

Δt
+ ∇ · un

p

)
= (qp, f

n
p ), ∀qp ∈ Qp.

(4.3c)

Note that these two subproblems are coupled through the function gn only. If gn is
known at each time step n, then the two subproblems can be completely decoupled.
However, gn is unknown as σ n

f is unknown.
Here, we will cast this fully-coupled problem as a constrained optimization prob-

lem using gn as our control function. With an arbitrarily chosen gn, the solutions
of (4.2) and (4.3) are not the same solutions for (3.3) and (3.4). It is because two
interface conditions (2.5b) and (2.5c) are incorporated in the formulation, but the
remaining interface conditions, (2.5a) and (2.5d) are not. Therefore, the objective
of our optimization is to minimize the violation of (2.5a) and (2.5d). In order to do
that, let the interface boundary ΓI be partitioned into non-overlapping segments ΓIi
for i = 1, 2, . . . , k such that ΓI = ∪k

i=1ΓIi . To satisfy the interface condition (2.5a)
and (2.5d) at each time step n, we want to find a function gn ∈ G such that (un

f , p
n
f )

satisfying (4.2) and (un
p, p

n
p, η

n) satisfying (4.3) minimize the functional

Jn(gn) := 1

2

k∑
i=1

(
1√|ΓIi |

∫
ΓIi

un
f · nf +

(
ηn − ηn−1

Δt
+ un

p

)
· np dΓIi

)2

+ 1

2

∥∥∥∥gn · t +
(

β

(
un
f − ηn − ηn−1

Δt

)
· t

) ∣∣∣
ΓI

∥∥∥∥
2

0,ΓI

+ 1

2
δ‖gn‖2G , (4.4)

where |γ | := meas(γ ) for γ ⊂ ∂Ωf ∪ ∂Ωp and δ > 0 is a penalty parameter.
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Minimizing the first term of the function in (4.4) seeks to weakly impose (2.5a)
by forcing flow balance across the interface segments ΓIi . See [16] for details. The
minimization of the second term in (4.4) is for the weak imposition of the Beavers-
Joseph-Saffman condition (2.5d). Finally, the last term in (4.4) is a penalty term.

Remark 1 Thanks to (4.1), we can write gn · t in place of (nf · σ n
f t)|ΓI inJn(gn).

4.1 Least Squares Method

In this section, we are going to redefine the minimization problem as a least squares
problem.

Set F = R
k × L2(ΓI) × G and define the operator Nn : G → F as

Nn(gn) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√|ΓI1 |
∫
ΓI1

un
f · nf +

(
ηn−ηn−1

Δt + un
p

)
· np dΓI1

...
1√|ΓIk |

∫
ΓIk

un
f · nf +

(
ηn−ηn−1

Δt + un
p

)
· np dΓIk

gn · t +
(
β

(
un
f − ηn−ηn−1

Δt

)
· t

) ∣∣∣
ΓI√

δ gn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.5)

where (un
f , p

n
f ) is the solution of (4.2) and (un

p, p
n
p, η

n) is the solution of (4.3).
The minimization of the functional Jn(gn) in (4.4) is then equivalent to the

minimization of the least squares function ‖Nn(gn)‖2F, that is:

min
gn∈G

Jn(gn) = 1

2
min
gn∈G

‖Nn(gn)‖2F . (4.6)

We solve this problem by a residual updating technique. First, an initial guess for
a minimizer, gn(0), is chosen andNn(gn(0)) is computed. Since we expect thatNn(gn) ≈
[0 √

δgn]T for a sufficiently small δ at the minimizer, we takeNn(gn(0)) − [0 √
δgn(0)]T

as a residual and find a correction hn for gn(0) such that

1

2

∥∥∥
(
Nn(gn(0)) − [0 √

δgn(0)]T
)

+ N ′
n(g

n
(0))(h

n)

∥∥∥2

F

= min
y∈G

1

2
‖
(
Nn(gn(0)) − [0 √

δgn(0)]T
)

+ N ′
n(g

n
(0))(y)‖2F . (4.7)
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Here, N ′
n(g

n
(0))(·) : G → F is defined by

N ′
n(g

n
(0))(h

n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√|ΓI1 |
∫
ΓI1

wn
f · nf +

(
ϕn

Δt + wn
p

)
· np dΓI1

...
1√|ΓIk |

∫
ΓIk

wn
f · nf +

(
ϕn

Δt + wn
p

)
· np dΓIk

hn · t +
(
β

(
wn

f − ϕn

Δt

)
· t

) ∣∣∣
ΓI√

δhn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.8)

where (wn
f , φ

n
f ) is the solution of the problem:

ρf

(wn
f

Δt
, vf

)
+ 2νf (D(wn

f ),D(vf )) − (φn
f ,∇ · vf ) = 〈hn, vf 〉ΓI , ∀vf ∈ Uf ,

(4.9a)

(qf ,∇ · wn
f ) = 0, ∀qf ∈ Qf , (4.9b)

and (wn
p, φ

n
p ,ϕ

n) is the solution of the problem:

ρs

(
ϕn

Δt2
, ξ

)
+ 2νs(D(ϕn),D(ξ)) + λ(∇ · ϕn,∇ · ξ)

−α(φn
p ,∇ · ξ) = −〈hn, ξ 〉ΓI , ∀ξ ∈ Σ, (4.10a)

κ−1(wn
p, vp) − (φn

p ,∇ · vp) = −〈hn · np, vp · np〉ΓI , ∀vp ∈ Up, (4.10b)(
qp, s0

φn
p

Δt
+ α

∇ · ϕn

Δt
+ ∇ · wn

p

)
= 0, ∀qp ∈ Qp. (4.10c)

In order to solve the minimization problem (4.7), we solve its normal equation

N ′
n(g

n
(0))

∗N ′
n(g

n
(0))(h

n) = −N ′
n(g

n
(0))

∗
(
Nn(gn(0)) − [0 √

δgn(0)]T
)

, (4.11)

where N ′
n(g

n
(0))

∗ : Rk × L2(ΓI) × G∗ → G∗ is the adjoint operator of N ′
n(g

n
(0)) iden-

tified in the following lemma.

Lemma 1 For (γ, y, z) ∈ R
k × L2(ΓI) × G∗, the adjoint of N ′

n(g
n
(0)) is given by

N ′
n(g

n
(0))

∗
⎛
⎝γ

y
z

⎞
⎠ =

(
w̄n

f − ϕ̄n − (w̄n
p · np)np

) ∣∣∣
ΓI

+ yt + √
δz , (4.12)
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where (w̄n
f , φ̄

n
f ) is the solution of

ρf

( w̄n
f

Δt
, vf

)
+ 2νf (D(w̄n

f ),D(vf )) − (φ̄n
f ,∇ · vf )

= β〈y, vf · t〉ΓI +
k∑

i=1

γi
1√|ΓIi |

∫
ΓIi

vf · nf dΓIi , ∀vf ∈ Uf ,

(4.13a)

(qf ,∇ · w̄n
f ) = 0, ∀qf ∈ Qf , (4.13b)

and (w̄n
p, φ̄

n
p , ϕ̄

n) is the solution of

ρs

(
ϕ̄n

Δt2
, ξ

)
+ 2νs(D(ϕ̄n),D(ξ)) + λ(∇ · ϕ̄n,∇ · ξ) + α

Δt
(φ̄n

p ,∇ · ξ)

= − β

Δt
〈y, ξ · t〉ΓI + 1

Δt

k∑
i=1

γi
1√|ΓIi |

∫
ΓIi

ξ · np dΓIi , ∀ξ ∈ Σ , (4.14a)

κ−1(w̄n
p, vp) + (φ̄n

p ,∇ · vp) =
k∑

i=1

γi
1√|ΓIi |

∫
ΓIi

vp · np dΓIi , ∀vp ∈ Up , (4.14b)

(qp, s0
φ̄n
p

Δt
− α∇ · ϕ̄n − ∇ · w̄n

p) = 0, ∀qp ∈ Qp . (4.14c)

Proof Taking (vf , qf ) = (w̄n
f , φ̄

n
f ), (vp, qp, ξ) = (w̄n

p, φ̄
n
p , ϕ̄

n) in (4.9) and (4.10),
respectively, and (vf , qf ) = (wn

f , φ
n
f ), (vp, qp, ξ) = (wn

p, φ
n
p ,ϕ

n) in (4.13) and (4.14),
respectively, we obtain

〈hn, w̄n
f − ϕ̄n − (w̄n

p · np)np〉ΓI =
k∑

i=1

γi
1√|ΓIi |

∫
ΓIi

wn
f · nf +

(
ϕn

Δt
+ wn

p

)
· np dΓIi

+
〈
y, β

(
wn
f − ϕn

Δt

)
· t

〉
ΓI

. (4.15)

Hence, by (4.8), (4.12), and (4.15), for hn ∈ G we have:

⎛
⎝N ′

n(g
n
(0))(h

n),

⎡
⎣ γ

y
z

⎤
⎦

⎞
⎠ =

k∑
i=1

γi
1√|ΓIi |

∫
ΓIi

wn
f · nf +

(
ϕn

Δt
+ wn

p

)
· np dΓIi

+
〈
y,hn · t + β

(
wn

f − ϕn

Δt

)
· t

〉
ΓI

+ √
δ〈hn, z〉ΓI

= 〈hn, w̄n
f − ϕ̄n − (w̄n

p · np)np + yt + √
δz〉ΓI
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=
⎛
⎝hn,N ′

n(g
n
(0))

∗
⎛
⎝

⎡
⎣γ

y
z

⎤
⎦

⎞
⎠

⎞
⎠ .

For the solution of (4.11), we use the Conjugate Gradient (CG) algorithm; see, e.g.,
[17]. The steps of the CG algorithm applied to the solution of problem A∗Ax = A∗b
are described in Algorithm 1. Here, ε is a prescribed error tolerance. Note that the
normal equation does not need to be formed explicitly for the algorithm.

Algorithm 1 Conjugate Gradient (CG) method for the least squares problem

1. Initialize x(0).

2. Set r(0) = b − Ax(0), p(0) = A∗r(0).

3. For i = 0, 1, 2, · · · ,
a. if ‖A∗r(i)‖ < ε, stop,
b. σ (i) = ‖A∗r(i)‖2/‖Ap(i)‖2,
c. x(i+1) = x(i) + σ (i)p(i),
d. r(i+1) = r(i) − σ (i)Ap(i),
e. τ(i) = ‖A∗r(i+1)‖2/‖A∗r(i)‖2,
f. p(i+1) = A∗r(i+1) + τ(i)p(i).

Once hn has been computed, the least squares problem (4.6) can be solved using
the residual updating algorithm described in Algorithm 2.

Algorithm 2 Residual updating algorithm

1. Initialize gn(0),

2. Solve Stokes/Biot problem defined by (4.2) and (4.3) to get unf , p
n
f , u

n
p, p

n
p, and ηn,

3. Compute N(gn(0)),

4. Find the correction hn using the CG algorithm (Algorithm 1) with A = N ′
n(g

n
(0)),

b = −(Nn(gn(0)) − [0 √
δgn(0)]T ), x = hn,

5. gn ← gn(0) + hn.

4.2 Linear Equation

In this section, we suppose that un
p is regular enough that un

p · np ∈ L2(ΓI). In this
case, the objective functional Jn can be defined as:
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Jn(gn) := 1

2

∥∥∥∥
(
un
f · nf +

(
ηn − ηn−1

Δt
+ un

p

)
· np

) ∣∣∣
ΓI

∥∥∥∥
2

L2(ΓI )

+ 1

2

∥∥∥∥gn · t + β

((
un
f − ηn − ηn−1

Δt

)
· t

) ∣∣∣
ΓI

∥∥∥∥
2

L2(ΓI )

+ 1

2
δ‖gn‖2G. (4.16)

Assuming no penalty term in (4.16) and choosing a control space G := L2(ΓI),
define the linear operator Ln : G → G by

Ln(gn) =
⎛
⎝

(
un
f · nf +

(
ηn−ηn−1

Δt + un
p

)
· np

) ∣∣∣
ΓI

gn · t +
(
β

(
un
f − ηn−ηn−1

Δt

)
· t

) ∣∣∣
ΓI

⎞
⎠ , (4.17)

where (un
f , p

n
f ) satisfies (4.2) and (un

p, p
n
p, η

n) satisfies (4.3). Assuming further that
the unknown stress gn and unknowns un

f , u
n
p, ηn have the same number of degrees

of freedom on the interface when discretized (this is easily achieved by using a
fluid mesh and a structure mesh that match at the interface), we can convert the
minimization problem to the following linear problem:

Find gn ∈ G such that Ln(gn) = 0. (4.18)

We can solve (4.18) using a residual updating technique described in Algorithm 4:
For a given initial guess gn(0), find hn such that

Ln(gn(0)) + L′
n(g

n
(0))(h

n) = 0

and update gn. Here, L′
n : G → G is defined by

L′
n(g

n
(0))(h

n) =
⎛
⎝

(
wn

f · nf +
(

ϕn

Δt + wn
p

)
· np

) ∣∣∣
ΓI

hn · t +
(
β

(
wn

f − ϕn

Δt

)
· t

) ∣∣∣
ΓI

⎞
⎠ , (4.19)

where (wn
f , φ

n
f ) is the solution to (4.9) and (wn

p, φ
n
p ,ϕ

n) is the solution to (4.10).
Note that the operator L′

n is not self-adjoint. Therefore, the residual updating tech-
nique can be used in combination with an iterative solver for a non-self-adjoint prob-
lem such as BiCGSTAB method; see, e.g., [17]. The algorithm for the BiCGSTAB
method is provided in Algorithm 3.
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Algorithm 3 Biconjugate Gradient stabilized (BiCGSTAB) method

1. Initialize x(0),
2. Set r(0) = b − Ax(0),

3. Choose an arbitrary vector r̂(0) such that (r̂(0), r(0)) �= 0, e.g., r̂(0) = r(0),
4. Set ρ(0) = α = ω(0) = 1,
5. Set v(0) = p(0) = 0,
6. For i = 1, 2, · · · ,

a. if ‖r(i−1)‖ < ε stop,
b. ρ(i) = (r̂(0), r(i−1)),
c. β(i) = (ρ(i)/ρ(i−1))(α(i)/ω(i−1)),
d. p(i) = r(i−1) + β(i)(p(i−1) − ω(i−1)v(i−1)),

e. v(i) = Ap(i),
f. α(i) = ρ(i)/(r̂(0), v(i)),
g. s(i) = r(i−1) − α(i)v(i),

h. t(i) = As(i),
i. ω(i) = (t(i), s(i))/(t(i), t(i))
j. x(i) = x(i−1) + α(i)p(i) + ω(i)s(i),
k. r(i) = s(i) − ω(i)t(i).

Algorithm 4 Residual updating algorithm for the linear equation

1. Initialize gn(0).

2. Solve Stokes/Biot problem defined by (4.2) and (4.3) for unf , p
n
f ,u

n
p, p

n
p, η

n.

3. Compute L(gn(0)).

4. Find the correction hn using the BiCGSTAB algorithm (Algorithm 3) with A = L′
n(g

n
(0)),

b = −Ln(gn(0)), and x = hn.

5. gn ← gn(0) + hn.

5 Numerical Experiments

In order to investigate the convergence properties of Algorithms 2 and 4, we per-
formed numerical experiments using a non-physical example.

We take Ωp = (0, 1) × (0, 1) for the poroelastic structure. The fluid domain
Ωf = (0, 1) × (1, 2) is superposed on Ωp, with the fluid-structure interface ΓI =
{(x, y) : 0 < x < 1, y = 1}. Also, the physical parameters are chosen as follows:
νf = νs = 0.5, ρf = ρs = 1, α = β = λ = s0 = κ = 1. The right-hand side func-
tions ff , fs, and fp are chosen so that the exact solution is:



Optimization-Based Decoupling Algorithms for a Fluid-Poroelastic System 93

uf = [(y − 1)2x3(1 + t2) , − cos(y)e(1 + t2)],
pf = (cos (x)ey + y2 − 2y + 1)(1 + t2),

up = [−x(sin(y)e + 2(y − 1))(1 + t2) , (− cos(y)e + (y − 1)2)(1 + t2)],
pp = (− sin(y)e + cos(x)ey + y2 − 2y + 1)(1 + t2),

η = [√2 cos(
√
2x) cos(y)(1 + t2) , sin(

√
2x) sin(y)(1 + t2)].

The boundary and initial conditions are determined using the exact solution.
Figure 2 shows the magnitude of the fluid velocity and the fluid pressure at time

t = 0.0005, while Figure 3 displays the magnitude of the structure displacement, the
magnitude of the Darcy velocity, and the structure pressure at the same time.

Fig. 2 Exact solution for the
fluid problem at time
t = 0.0005: (a) the
magnitude of the fluid
velocity and (b) the fluid
pressure.
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Fig. 3 Exact solution for the
structure problem at time
t = 0.0005: (a) the
magnitude of the structure
displacement, (b) the
magnitude of the Darcy
velocity, and (c) the fluid
pressure.
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Note that the chosen exact solution does not satisfy all the interface conditions.
Instead, it satisfies only (2.5b) and (2.5c), but not (2.5a) and (2.5d). Indeed, the exact
solution satisfies the following variations of (2.5a) and (2.5d):

uf · nf = −up · np , (5.1a)

nf · σ f t = −β(uf · t) . (5.1b)

For our numerical implementation, we still implemented our algorithms as if all the
interface conditions, (2.5a)–(2.5d), are satisfied. Then, to compensate the inexact
interface conditions, we modified the functionals Nn(gn) and Ln(gn). More specifi-
cally, we compute the functional (4.5) with the additional term −ηt · n for the first
k entries and β ηt · t for entry k + 1, where ηt is given by the chosen exact solution.
Similarly, −ηt · n and β ηt · t are added in the first and second entries of (4.17),
respectively.

For the finite element approximations, we used inf-sup stable Taylor-Hood ele-
ments P2 − P1 on structured meshes for both (uf , pf ) and (up, pp), and P2 elements
for η. Because these elements are not stable for the Biot model, we added a stabiliza-
tion term μ(∇ · up,∇ · vp) to the Darcy equation (4.3) with μ = 10 and analogous
terms were added to (4.10b) and (4.14b).

In order to verify the convergence of Algorithms 2 and 4, numerical experiments
were performed with varying mesh sizes. The time step size Δt was set to 0.0001.
The error tolerance for both CG and BiCGSTAB methods used in Algorithm 2 and
Algorithm 4, respectively, was set to ε = 10−5. We started with g1(0) = −(0.1, 0.1)T

and h1
(0) = (0.01, 0.01)T for the first time step. After the first time step, the initial

stress function was chosen as gn(0) = gn−1 for both algorithms.
First, we investigated Algorithm 2 through a mesh refinement study; we halved

the mesh size in each mesh refinement. Table 1 reports the errors of finite ele-
ment solutions with four different meshes at the fifth time step (t = 0.0005), where
(uh

f , p
h
f ,u

h
p, p

h
p, η

h), (uex
f , pexf ,uex

p , pexp , ηex) denote the finite element solution and the

Table 1 Errors and convergence rates using Algorithm 2 at the fifth time step (t = 0.0005) with
Δt = 0.0001.

h ‖uhf − uexf ‖0,Ωf rate |uhf − uexf |1,Ω f rate ‖phf − pexf ‖0,Ω f rate

1/2 1.18 × 10−2 – 1.59 × 10−1 – 1.38 × 10−1 –

1/4 1.26 × 10−3 3.23 3.59 × 10−2 2.15 2.51 × 10−2 2.46

1/8 1.43 × 10−4 3.14 8.69 × 10−3 2.05 5.25 × 10−3 2.26

1/16 1.75 × 10−5 3.03 2.15 × 10−3 2.02 1.21 × 10−3 2.12

h |uhp − uexp |Hdiv(Ωp)
rate ‖php − pexp ‖0,Ωp rate |ηh − ηex|1,Ωp rate

1/2 7.12 × 10−3 – 4.58 × 10−2 – 6.33 × 10−2 –

1/4 1.93 × 10−3 1.88 1.12 × 10−2 2.03 1.58 × 10−2 2.00

1/8 4.72 × 10−4 2.03 2.78 × 10−3 2.01 3.95 × 10−3 2.00

1/16 1.16 × 10−4 2.02 6.95 × 10−4 2.00 9.87 × 10−4 2.00
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Table 2 Number of CG iterations for Algorithm 2, initial and terminal functional values at the first
time step (t = 0.0001) with Δt = 0.0001.

h No. of CG iter. Initial Jn Terminal Jn

1/2 10 1.12 × 103 6.63 × 10−8

1/4 26 7.54 × 102 8.49 × 10−7

1/8 62 2.44 × 102 2.91 × 10−7

1/16 161 7.25 × 101 9.49 × 10−8

Table 3 Number of CG iterations for Algorithm 2, initial and terminal residual values for the fifth
time step (t = 0.0005) with Δt = 0.0001.

h No. of CG iter. Initial Jn Terminal Jn

1/2 9 2.58 × 10−5 1.30 × 10−14

1/4 21 3.64 × 10−5 1.23 × 10−12

1/8 57 5.16 × 10−6 3.31 × 10−14

1/16 94 2.85 × 10−7 1.92 × 10−12

exact solution, respectively. The rates of convergence of all the quantities in the
respective norms are those predicted by the theory.

Table 2 and 3 report the number of CG iterations for Algorithm 2 together with
the initial and final values of the objective functionalJn defined in (4.4) at the first
time step and at the fifth time step, respectively. We remark that while at the first
time step the number of CG iterations more than doubles every time the mesh size
is halved, it is no more the case at the fifth time step when going from the third to
the fourth mesh refinement. Recall that we make a random initial choice for g1(0). At
every successive step, however, we set gn(0) = gn−1. Therefore, the initial value of
Jn is much larger at the first time step than at the fifth. Note that the initial value of
Jn at the fifth time step is already around 10−5.

Next, we investigated Algorithm 4. We observed that Algorithm 4 gave almost
identical errors to the ones reported in Table 1, hence the report is omitted here. The
number of BiCGSTAB iterations for Algorithm 4, and the initial and final values of
Jn at the first time step and at the fifth time step are presented in Tables 4 and 5,
respectively.

We observe that at the first time step, with an arbitrarily chosen g1(0), the number of
CG iterations needed is similar to or a little more than that of BiCGSTAB iterations.
However, at the fifth time step, where the iterations start with a more accurate initial
control g5(0) = g4, significantly less iterations are needed for CG than BiCGSTAB
iterations. This gets more prominent as h gets smaller.
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Table 4 Number of BiCGSTAB iterations for Algorithm 4, initial and terminal functional values
at the first time step (t = 0.0001) with Δt = 0.0001.

h No. of BiCGSTAB iter. Initial Jn Terminal Jn

1/2 8 1.34 × 103 1.05 × 10−7

1/4 23 8.69 × 102 1.16 × 10−6

1/8 68 2.64 × 102 7.17 × 10−7

1/16 132 7.52 × 101 6.77 × 10−7

Table 5 Number of BiCGSTAB iterations for Algorithm 4, initial and terminal residual values for
the fifth time step (t = 0.0005) with Δt = 0.0001.

h No. of BiCGSTAB iter. Initial Jn Terminal Jn

1/2 7 1.20 × 10−3 3.91 × 10−11

1/4 34 1.70 × 10−4 2.69 × 10−11

1/8 121 1.34 × 10−5 2.43 × 10−11

1/16 263 4.94 × 10−7 3.85 × 10−11

As far as computational effort is concerned, the computational cost per iteration is
almost the same for both algorithms. More specifically, in each CG iteration, (4.9)–
(4.10) and (4.13)–(4.14) need to be solved, while in each BiCGSTAB iteration,
(4.9)–(4.10) need to be solved twice with different right-hand sides.

6 Conclusions

Wehave studied the interaction of a free-fluidwith a poroelastic structure,modeled by
the Stokes-Biot system. After discussing the time-discretized variational formulation
of the coupled problem, we developed a minimization problem in which the Stokes-
Biot systemwasdecoupled through a control functionon the interface. Twonumerical
algorithms based on a residual updating technique have been proposed; one solves a
least squares problem and the other solves a linear problem when the solution up is
smooth enough.Weobserved that both algorithmsyielded anoptimal control function
alongwith a solution for the Stokes-Biot system that satisfies the interface conditions.
Also, the optimal rates of convergence for finite element solutions demonstrate that
therewas no spatial degradation of the solution over time steps. On the other hand, the
proposed decoupling schemes enable us to solve the two subproblems in parallel and
they can be easily extended to a nonlinear system, e.g., the coupledNavier-Stokes and
Biot system. Subsequent work will provide an analytical framework for the proposed
methods and include numerical experiments that are designed for moving domains
in a physical setting.
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Study of Discrete Scattering Operators
for Some Linear Kinetic Models

Yanping Chen, Zheng Chen, Yingda Cheng, Adrianna Gillman
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Abstract In this paper, we consider spatially homogeneous linear kinetic models
arising from semiconductor device simulations and investigate how various deter-
ministic numerical methods approximate their scattering operators. In particular,
methods including first and second order discontinuous Galerkin methods, a first
order collocation method, a Fourier-collocation spectral method, and a Nyström
method are examined when they are applied to one-dimensional models with singu-
lar or continuous scattering kernels. Mathematical properties are discussed for the
corresponding discrete scattering operators. We also present numerical experiments
to demonstrate the performance of these methods. Understanding how the scattering
operators are approximated can provide insights into designing efficient algorithms
for simulating kinetic models and for the implicit discretizations of the problems in
the presence of multiple scales.
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1 Introduction

Kinetic models arise in many applications such as rarefied gas dynamics, plasma
physics, nuclear engineering, semiconductor device design, traffic networking, and
swarming. Such models evolve the probability distribution function of one or multi-
ple species of particles, with or without forces from external or self-consistent fields.
They can describe mesoscopic phenomena lying in between the microscopic parti-
cle dynamics governed by fundamental laws such as the Newton’s laws of motion,
and macroscopic dynamics described by continuum models. The numerical chal-
lenges often come from high dimensionality, various collision (or scattering) opera-
tors which can be multifold integrals or singular, and multiple scales in time or phase
space.

In this work, we consider some simple one-dimensional linear kinetic models
with either singular or continuous scattering operators, and investigate mathemati-
cally and/or computationally the properties of several deterministic numerical dis-
cretizations. They include first and second order discontinuous Galerkin methods, a
first order collocation method, a Fourier-collocation spectral method, and a Nyström
method. Lots of efforts have been put in the literature for simulations of semiconduc-
tor Boltzmann equations from algorithm and application points of view, for example,
computations by spectral methods [6], finite difference methods [2, 4], and discon-
tinuous Galerkin method [3]. In this paper, we are particularly concerned with char-
acterizing and examining how various numerical methods capture the equilibriums.
Since only spatially homogeneous models are considered, what we examine here
is essentially on how the scattering operators are approximated numerically. Such
study is important for understanding numerical approximations for scattering oper-
ators which are a key part in any collisional kinetic model and can provide insights
into designing efficient algorithms for numerical simulations and also for implicit
discretizations of the problems in the presence of multiple scales.

Let us start with the models. Consider a one-dimensional electron-phonon scat-
tering model [5, 8, 10]

∂ f (k, t)

∂t
= Ŝ[ f ](k, t) =

∫ ∞

−∞

(
S(k ′, k) f (k ′, t) − S(k, k ′) f (k, t)

)
dk ′, (1)

which arises from semiconductor device design. Here, f (k, t) is the probability
distribution function of electrons with wave number k at time t , Ŝ is the scattering
operator, and S(k, k ′) is the scattering kernel which gives the transfer rate of electrons
scattering from state k to k ′. Note that the space variable x is omitted and the equation
(1) is space homogeneous.
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The first problem we will focus on is the governing equation (1) that models both
the inelastic and elastic scattering, and the scattering kernel is defined as

S(k, k ′) =
∑

v∈{−1,0,1}
sv(E(k), E(k ′))δ

(
E(k) − E(k ′) + vεp

)
. (2)

Here E(k) is the energy of the electron with wave number k, sv
(
E(k), E(k ′)

)
is the

transfer rate from k to k ′ by absorbing (v = 1) or emitting (v = −1) a phonon with
an energy εp > 0, or by keeping the energy unchanged (v = 0). And δ(·) is the Dirac
δ function. It is assumed sv(·, ·) > 0 with v = ±1, and s0(·, ·) ≥ 0. We consider the
Kane energy band, with the energy function E(k) satisfying

E(k)(1 + αE(k)) = k2/2 (3)

and the nonparabolicity factor α ≥ 0 is some constant parameter. We also define

Kα(E) = √
2E(1 + αE).

The energy function E(k) is nonnegative and it is an even function of k. When α = 0,
it corresponds to the quadratic energy band.

With T > 0 being any given lattice temperature, the following distribution func-
tion

f G(k) = exp

(
− E(k)

T

)
(4)

defines an equilibrium of our model, under the assumption

s1(E(k) − εp, E(k)) = s−1(E(k), E(k) − εp)exp
(
−εp

T

)
. (5)

This assumption is made throughout this paper, and it ensures the detailed balance
principle S(k ′, k) f G(k ′) = S(k, k ′) f G(k). For the quadratic energy (3) with α = 0,
the equilibrium (4) after normalization is a Gaussian distribution. Following a similar
analysis as in [9], any equilibrium of our model is given by

f e(k) = f G(k)h(E(k)), (6)

where h(E) is some periodic function of period εp. The inclusion of an εp-periodic
function factor h(E) in an equilibrium is due to the δ-type scattering rule in (2).

The model we have described so far, defined in (1), (2), (3) with the assumption
(5), involves a scattering kernel with δ-type singularity. In this work, we will also
examine a model which is defined by (1) with a continuous scattering kernel

S(k, k ′) = σ(k, k ′)M(k ′) (7)
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where σ(k, k ′) = σ(k ′, k) ≥ 0 and M(k) = 1√
2π

exp(− k2

2T ). For any given tempera-
ture T > 0, thismodel has a uniqueGaussian-type equilibriumM(k) (up to a constant
factor).

In [7], a first order finite volume method was introduced for the linear kinetic
model (1) with (2), (3) and the assumption (5), when the energy band is quadratic
(α = 0) without the elastic collision (s0 = 0). A detailed study of the scattering
matrix which approximates the scattering operator was performed. In particular, the
eigenvalues of the scattering matrix were proven to be nonpositive, showing the
stability of the numerical scheme. The dependence of the geometric multiplicity of
the zero eigenvalue on the choice of the mesh grids was established based on linear
algebra tools. Such theorywas extended in [11] tomore generalmodels, such as those
with general energy band (includingKane energy), with anisotropic scattering, and in
higher dimensions. Our aim in this paper is to perform a thorough numerical study of
the model with either a singular or continuous scattering kernel by considering more
general methods, including higher order Galerkin-type method, collocation methods
of low or high order accuracy. We are particularly concerned with the scattering
matrix resulted from different types of discretization, and the interpretation of the
numerical results when compared with their continuous counterparts in the models.

The rest of the paper is organized as follows. In Section 2, the kinetic model
(1) with a singular scattering kernel (2)-(3) is considered. More specifically, a first
order finite volume method as in [7, 11], which is also a first order discontinuous
Galerkin (DG) method, is formulated in Section 2.2.1. Mathematical properties of
the numerical scheme as well as the scattering matrix are reviewed, followed with
some discussions. More general numerical methods, including a second order DG
method, a first order collocation method, and a Fourier-collocation spectral method
are formulated in Sections2.2.2, 2.2.3 and 2.2.4, respectively. It turns out it is nontriv-
ial to extend the algebraic analysis in [7] to more general numerical discretizations.
Instead, we rely on extensive numerical experiments to understand these methods,
see Section 2.3. In Section 3, the kinetic model (1) with a continuous scattering
kernel (7) is considered, for which a Nyström discretization is introduced and tested
numerically. A detailed summary and concluding remarks are made in Section 4.

2 Numerical Methods for Singular Scattering Kernels

In this section, the kinetic model (1) will be considered with a singular scattering
kernel (2) and (3). We will start with rewriting the equation. We then formulate a
first order discontinuous Galerkin (DG) method, which is also a first order finite
volume method, a second order DG method, a first order collocation method, and
a Fourier-collocation spectral method. For the first order DG method, we will also
discuss the mathematical properties of the discrete scattering operator.
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2.1 Reformulation of the Model

Before introducing numerical methods, we first reformulate the scattering terms in
our model to formally remove the δ-type singularity. Details will be given only for
one term associated with the inelastic scattering, and the remaining terms can be
treated similarly. Recall the definition of the composition of the δ-function with a
differentiable function z(·),

∫ ∞

−∞
δ(z(x))v(x)dx =

∑
x�∈{y:z(y)=0}

v(x�)

|z′(x�)| ,

and using this, one gets

R1[ f ](k, t) =
∫ ∞

−∞
s1(E(k ′), E(k))δ(E(k ′) − E(k) + εp) f (k

′, t)dk ′

=
∑

k�∈{k�:E(k�)=E(k)−εp}

s1(E(k�), E(k)) f (k�, t)

|E ′(k�)| . (8)

Notation wise, one should understand that for any k with E(k) − εp < 0, the corre-
sponding term in (8) is excluded.

With E(k�) = E(k) − εp, one can easily verify

k� = ±√
2E(k�)(1 + αE(k�)) = ±Kα(E(k) − εp), (9)

E ′(k�) = k�

1 + 2αE(k�)
= ±Kα(E(k) − εp)

1 + 2α(E(k) − εp)
. (10)

Combining (8)–(10), we have

R1[ f ](k, t) = s1(E, E + εp)

Kα(E)/(1 + 2αE)

(
f (Kα(E), t) + f (−Kα(E), t)

)
|E=E(k)−εp .

(11)

Following the similar derivation for other terms, our model (1)–(3) with the sin-
gular scattering kernel is reformulated as below,

∂ f (k, t)

∂t
= Ŝ[ f ](k, t) =

4∑
m=1

Rm[ f ](k, t), (12)
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where

R2[ f ](k, t) = s−1(E, E − εp)

Kα(E)/(1 + 2αE)

(
f (Kα(E), t) + f (−Kα(E), t)

)
|E=E(k)+εp

R3[ f ](k, t) = s0(E, E)

Kα(E)/(1 + 2αE)

(
f (Kα(E), t) + f (−Kα(E), t)

)
|E=E(k)

R4[ f ](k, t) = − 2 f (k, t)

(
s1(E − εp, E)

Kα(E)/(1 + 2αE)
|E=E(k)+εp

+ s−1(E + εp, E)

Kα(E)/(1 + 2αE)
|E=E(k)−εp

+ s0(E, E)

Kα(E)/(1 + 2αE)
|E=E(k)

)
.

2.2 Numerical Methods

2.2.1 First Order Discontinuous Galerkin Method

In this subsection, we will describe a discontinuous Galerkin (DG) method using
piecewise constant discrete space to numerically approximate the reformulatedmodel
(12). The method is also the first order finite volume method studied in [7, 11] in the
absence of the elastic scattering term, namely when s0 = 0.

We start with introducing some notation. Let [−Kmax, Kmax] be the computa-
tional domain, with the assumption that the exact solution is zero in the machine
accuracy level outside this domain. Let 0 = k1/2 < k3/2 < · · · < kN+1/2 = Kmax

be a partition of [0, Kmax], and define Ii = [ki−1/2, ki+1/2], Δki = ki+1/2 − ki−1/2,
∀ i ∈ N + = {1, 2, · · · , N }, and Δk = max1≤i≤N Δki . For the left-half domain
[−Kmax, 0], a “symmetric” mesh is introduced with I−i = [k−i−1/2, k−i+1/2], and
k−i−1/2 = −ki+1/2, i ∈ N +. In terms of the energy variable, we define Emax =
E(Kmax), Ei−1/2 = E(ki−1/2), i = 1, · · · , N + 1, 
i = [Ei−1/2, Ei+1/2],
ΔEi = Ei+1/2 − Ei−1/2, i ∈ N +, and ΔE = max1≤i≤N ΔEi . We also use 
i ±
εp = {E ± εp : E ∈ 
i } and N = {−N , · · · ,−2,−1, 1, 2, · · · , N }.

To formulate themethod,we approximate f (k, t) by a piecewise constant function
fh(k, t), namely fh(·, t) ∈ Vh = V 0

h = {g : g|Ii ∈ P0(Ii ),∀i ∈ N }, satisfying
∫
Ii

∂ fh(k, t)

∂t
φ(k)dk =

∫
Ii

Ŝ[ fh](k, t)φ(k)dk =
4∑

m=1

∫
Ii

Rm[ fh](k, t)φ(k)dk (13)

for any φ ∈ Vh and any i ∈ N . Here and below Pr (Ii ) is the set of polynomials
on Ii of degree r . This scheme, in its finite volume form, is also given as (14) with
φ = 1,
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∫
Ii

∂ fh(k, t)

∂t
dk =

∫
Ii

Ŝ[ fh](k, t)dk =
4∑

m=1

∫
Ii

Rm[ fh](k, t)dk. (14)

1.) The scheme in its algebraic form

Next, we will convert the scheme (14) into its algebraic form. To do so, we rep-
resent the numerical solution as fh(k, t)|Ii = fi (t), with fi (t) = 1

Δki

∫
Ii
fh(k, t)dk

which approximates the cell average of the exact solution f (k, t) over Ii , ∀ i ∈ N .
It is straightforward to get,

∫
Ii

∂ fh(k, t)

∂t
dk = d

dt
(Δki fi (t)). (15)

To proceed with the remaining terms related to the scattering operator, we will take
a change of variable from k to E . With the relation between the velocity k and the
energy E in (3), we have dk = (1 + 2αE)/Kα(E) dE and

∫
Ii

z(E(k))dk =
∫


|i |
z(E)

1 + 2αE

Kα(E)
dE

for any given function z(·).
For the first term on the right-hand side of (14), we have

∫
Ii
R1[ fh](k, t)dk =

∫

|i |

R1[ fh](Kα(E), t)
1 + 2αE

Kα(E)
dE

=
∫


|i |−εp

s1(E, E + εp)
1 + 2αE

Kα(E)
· 1 + 2α(E + εp)

Kα(E + εp)

(
fh(Kα(E), t) + fh(−Kα(E), t)

)
dE

=
∫


|i |−εp

s1(E, E + εp)
1 + 2αE

Kα(E)
· 1 + 2α(E + εp)

Kα(E + εp)

∑
j∈N

χ
| j | (E) f j (t)dE

=
∑
j∈N

f j (t)r
(1)
i, j , (16)

with

r (1)
i, j =

∫
(
|i |−εp)∩
| j |

s1(E, E + εp)
1 + 2αE

Kα(E)
· 1 + 2α(E + εp)

Kα(E + εp)
dE . (17)

Following similar derivation, we can further get
∫
Ii
Rm [ fh](k, t)dk = ∑

j∈N f j (t)r
(m)
i, j ,

m = 2, 3 with

r (2)
i, j =

∫
(
|i |+εp)∩
| j |

s−1(E, E − εp)
1 + 2αE

Kα(E)
· 1 + 2α(E − εp)

Kα(E − εp)
dE

r (3)
i, j =

∫

|i |∩
| j |

s0(E, E)

(
1 + 2αE

Kα(E)

)2
dE = δ|i |,| j |

∫

|i |

s0(E, E)

(
1 + 2αE

Kα(E)

)2
dE,
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and
∫
Ii
R4[ fh](k, t)dk = −2 fi (t)λ̂i , with

λ̂i =
∫

|i |

(
s1(E, E + εp)(1 + 2α(E + εp))

Kα(E + εp)
+ s−1(E, E − εp)(1 + 2α(E − εp))

Kα(E − εp)

)

1 + 2αE

Kα(E)
dE +

∫

|i |

s0(E, E)

(
1 + 2αE

Kα(E)

)2
dE . (18)

Here δi j is the Kronecker-δ function.
By combining what we have so far in (14)–(18), the proposed first order DG

scheme for the model (12) with the singular scattering kernel is converted to its
algebraic form,

d

dt
(Δki fi ) = −2λi (Δki fi ) +

∑
j∈N

si, j (Δk j f j ), ∀i ∈ N , (19)

where

si, j = 1

Δk j
(r (1)

i, j + r (2)
i, j + r (3)

i, j ) and λi = 1

Δki
λ̂i . (20)

2.) Properties of the scheme

With sv(·, ·) > 0, v = ±1 and s0(·, ·) ≥ 0, one can easily see that all the coeffi-
cients in the linear algebraic system (19) are nonnegative, more specifically,

si, j ≥ 0, λi > 0, ∀i, j ∈ N . (21)

They also have some symmetry property, namely

λi = λ−i , si, j = s−i, j = si,− j = s−i,− j , ∀i, j ∈ N (22)

due to that the energy E(k) is an even function in k and the mesh is “symmetrically”
defined.

Now we introduce

Λ = diag{λ1, · · · , λN }, S = (si, j )i, j∈N + , (23)

and f− = [Δk1 f−1, · · · ,ΔkN f−N ]T , f+ = [Δk1 f1, · · · ,ΔkN fN ]T ; then, the pro-
posed scheme in (19) can be written as

d

dt

[
f−
f+

]
= S

[
f−
f+

]
=

(
−2

[
Λ 0
0 Λ

]
+

[
S S
S S

])[
f−
f+

]
. (24)
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The matrix S is the discrete matrix corresponding to the discrete scattering
operator. If we further define g = (f− + f+)/2 ∈ R

N , h = (f+ − f−)/2 ∈ R
N , and

M = 2(S − Λ), the linear system (24) can be decoupled into two systems of halved
size,

d

dt
g = Mg,

d

dt
h = −2Λh. (25)

It is easy to see solving the proposed scheme (19) (or (24)) is equivalent to solving
(25). In next lemma, we will summarize more properties of S, M and Λ.

Lemma 2.1 1.) Λ is nonsingular.
2.) The eigenvalues of S consist of all eigenvalues of M and of −2Λ. Hence, the

dimensions of ker(S) and ker(M) are the same.
3.) g ∈ ker(M) ⇔ [g�, g�]� ∈ ker(S).

The proof is straightforward, and it is omitted here. Based on the properties in this
lemma, we can see that to address the types of questions as in [7] for the scattering
matrix S, such as the dimension of the null space of S, the sign of the real part of the
eigenvalues of S, it is equivalent to ask similar questions to the reduced scattering
matrix M . On the other hand, to get numerical solution fh(k, t) at any time t , one
would have to work with both equations in (25) or with equation (24).

Next we will verify directly that the scheme given above has mass conserva-
tion property. An important consequence is that the column sum of M is zero. This
property ensures zero is an eigenvalue of M , and it was also extensively used in ana-
lyzing M in [7]. Such property is usually not possessed by collocation-type methods.
Instead with collocation methods, zero eigenvalue of the scattering operator can be
approximated by nonzero numerical eigenvalues (see numerical results in Section
2.3).

Lemma 2.2 Suppose the numerical solution fh(k, t) has compact support in
[−Kmax, Kmax], then the proposed scheme (14) satisfies mass conservation, namely

d

dt

∫ Kmax

−Kmax

fh(k, t)dk = d

dt

∑
i∈N

Δki fi (t) = 0. (26)

Moreover
∑

i∈N + Mi j = 0, ∀ j ∈ N +.

Proof Based on the formulas for si, j and λ j in (20) as well as the symmetry relation
in (22), one can verify

1

2

∑
i∈N

si, j =
∑
i∈N +

si, j = λ j , ∀ j ∈ N + (27)

and hence
∑

i∈N + Mi j = 2
(∑

i∈N + si, j − λ j
) = 0 for all ∀ j ∈ N +.
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With this and (19), we have

d

dt

∫ Kmax

−Kmax

fh(k, t)dk = d

dt

∑
i∈N

Δki fi (t) = −2
∑
i∈N

λi (Δki fi ) +
∑
i∈N

∑
j∈N

si, j (Δk j f j )

= −2
∑
i∈N

λi (Δki fi ) +
∑
j∈N

(
∑
i∈N

si, j )(Δk j f j )

= −2
∑
i∈N

λi (Δki fi ) +
∑
j∈N

2λ j (Δk j f j ) = 0. (28)

�
In next theorem, we summarize the main results which were proved for the (reduced)
scattering matrix M in [7, 11] when s0 = 0. s0 being nonzero does not pose new
difficulty.

Theorem 2.3 1.) Mi j ≥ 0 for i �= j , Mii < 0, and M� is weakly diagonally dom-
inant. Each nonzero eigenvalue of M has a negative real part.

2.) Mi j > 0 ⇔ Mji > 0. In addition, there exists a unique positive integer s and a
permutation matrix P such that

M = P�

⎡
⎢⎣
M1

. . .

Ms

⎤
⎥⎦ P, (29)

where each Mi ∈ R
ri×ri , i = 1, · · · , s is irreducible.Moreover rank(Mi ) = ri −

1, and this implies rank(M) = N − s and dim(ker(M)) = s. Let gi ∈ null(Mi )

be nonzero for any i , all entries of gi have the same sign.
3.) The fact that dim(ker(M)) = s can be equivalently characterized by the follow-

ing property of the mesh: there exists E�
1, · · · E�

s ∈ [0, εp) with E1 < · · · < E�
s ,

such that

{E�
i + τεp : E�

i + τεp ≤ Emax, τ ∈ N} ⊆ {E j−1/2 : j = 1, 2, · · · N + 1}, i = 1, · · · , s.
(30)

From the theorem, one can see that there is no nonzero eigenvalue of M with real
positive part, and this implies the stability of the scheme and ensures the correct decay
behavior of the numerical solution over long time period. One can always find a set of
basis for the null space of M such that each basis vector in nonnegative. In addition,
the geometric multiplicity of zero eigenvalue being s, hence dim(ker(M)) = s, can
be fully characterized by the choice of themesh grids. To further understand themesh
condition in (30), recall our model admits infinitely many equilibriums (6), and the
presence of an εp-periodic function factor h(E(k)) is due to the δ-type scattering rule
in the model. With this, the behaviors of an equilibrium f e(k) at k and k ′ are related
only when E(k) = E(k ′) + vεp, with v = −1, 0, 1. The statement in 3.) implies that
the dimension s of the null space of M is same as the total number of decoupled
subregions of the energy domain under the scattering rule on the numerical level.
(This is best illustrated byFigure 1 in [7].) Such result is not hard to get intuitively, and



Study of Discrete Scattering Operators for Some Linear Kinetic Models 109

it is mathematically justified by the Theorem above for the first order DG method. It
turns out similar analysis is nontrivial to establish for other numerical discretizations
considered in Section 2.2. Without any analysis available, in order to understand
how the scattering rule determined by each numerical discretization of the model
decouples the energy domain, to what extent the numerical discretization captures
the equilibriums of the scattering operator, we will numerically examine the null
space of M or the steady state of the discretized system, see Section 2.3.

Remark 2.4 In practice, uniformmeshes in the energy variable E are often usedwith
ΔEi = ΔE,∀i ∈ N +. In such situation, if εp/ΔE = n ∈ Z

+, we have
dim(ker(M)) = n; if εp/ΔE is not an integer, then dim(ker(M)) = 1.

Remark 2.5 The mass conservation property is one of the keys for the results in the
above theorem. It is ensured by the relation (27). To implement the proposed scheme,
if si, j and λi ,∀i, j ∈ N + are computed independently using numerical quadrature,
this relation will hold only up to the accuracy of the quadrature formulas. In our
actual implementation, {si, j }i, j∈N + are computed first, then λ j is obtained based on
(27); hence, the mass conservation is enforced.

2.2.2 Second Order Discontinuous Galerkin Method

Following the same notation for the computational domain and themesh as in Section
2.2.1, we introduce the discrete space

Vh = V 1
h = {g : g|Ii ∈ P1(Ii ),∀i ∈ N } (31)

which consists of piecewise linear polynomials with respect to the mesh. We then
approximate the solution f (k, t) by fh(·, t) ∈ Vh , satisfying

∫
Ii

∂ fh(k, t)

∂t
φ(k)dk =

∫
Ii

Ŝ[ fh](k, t)φ(k)dk =
4∑

m=1

∫
Ii

Rm[ fh](k, t)φ(k)dk (32)

for any φ ∈ Vh and i ∈ N . This results in a (formally) second order DG method.
To convert our scheme into its algebraic form, suppose φ0

i (k) and φ1
i (k) are the

basis functions of P1(Ii ), and the numerical solution is represented as fh(k, t)|Ii =
f 0i (t)φ0

i (k) + f 1i (t)φ1
i (k), with f 0i (t) and f 1i (t) to be determined by the scheme

(32). With the test function φ ∈ Vh in (32) taken to be φ|Ii = g0i φ
0
i (k) + g1i φ

1
i (k),

the term on the left-hand side becomes
∫
Ii

∂ fh(k, t)

∂t
φ(k)dk = [g0i , g1i ]Ai

d

dt

[
f 0i
f 1i

]
,



110 Y. Chen et al.

with

Ai =
∫
Ii

[
(φ0

i )
2 φ1

i φ
0
i

φ0
i φ

1
i (φ1

i )
2

]
dk.

For the first term on the right-hand side of (32), we have

∫
Ii
R1[ fh](k, t)φ(k)dk =

∫

|i |

R1[ fh](Kα(E), t)
1 + 2αE

Kα(E)
φ
(
sign(i) Kα(E)

)
dE

=
∫


|i |−εp

R1[ fh](Kα(E + εp), t)
1 + 2α(E + εp)

Kα(E + εp)
φ
(
sign(i) Kα(E + εp)

)
dE

=
∫


|i |−εp

s1(E, E + εp)
1 + 2αE

Kα(E)
· 1 + 2α(E + εp)

Kα(E + εp)

(
fh(Kα(E), t)

+ fh(−Kα(E), t)
)
φ
(
sign(i) Kα(E + εp)

)
dE . (33)

Note that

fh(Kα(E), t) + fh(−Kα(E), t)

=
∑
j∈N

χ
| j |(E)
(
f 0j φ

0
j (k) + f 1j φ

1
j (k)

) |k=sign( j) Kα(E), (34)

then ∫
Ii

R1[ fh](k, t)φ(k)dk =
∑
j∈N

[g0i , g1i ]S1i, j
[
f 0j
f 1j

]
, (35)

with

S1i, j =
∫

(
|i |−εp )∩
| j |
s1(E, E + εp)

(1 + 2αE)

Kα(E)
· (1 + 2α(E + εp))

Kα(E + εp)

[
φ0
j (Δ)φ0

i (Δ1) φ1
j (Δ)φ0

i (Δ1)

φ0
j (Δ)φ1

i (Δ1) φ1
j (Δ)φ1

i (Δ1)

]
dE

and Δ = sign( j) Kα(E), Δ1 = sign(i) Kα(E + εp). Similarly,

∫
Ii

Rm[ fh](k, t)φ(k)dk =
∑
j∈N

[g0i , g1i ]Smi, j
[
f 0j
f 1j

]
(36)

for m = 2, 3, with

S2i, j =
∫

(
|i |+εp )∩
| j |
s−1(E, E − εp)

(1 + 2αE)

Kα(E)
· (1 + 2α(E − εp))

Kα(E − εp)

[
φ0
j (Δ)φ0

i (Δ2) φ1
j (Δ)φ0

i (Δ2)

φ0
j (Δ)φ1

i (Δ2) φ1
j (Δ)φ1

i (Δ2)

]
dE,

S3i, j = δ|i |,| j |
∫


|i |
s0(E, E)

(1 + 2αE

Kα(E)

)2
[

φ0
j (Δ)φ0

i (Δ3) φ1
j (Δ)φ0

i (Δ3)

φ0
j (Δ)φ1

i (Δ3) φ1
j (Δ)φ1

i (Δ3)

]
dE,
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and Δ2 = sign(i) Kα(E − εp), Δ3 = sign(i) Kα(E). Moreover,

∫
Ii

R4[ fh](k, t)φ(k)dk = −2[g0i , g1i ]Λi

[
f 0i
f 1i

]
, (37)

with

Λi =
∫

|i |

Θ(E)

[
(φ0

i (Δ3))
2 φ1

i (Δ3)φ
0
i (Δ3)

φ0
i (Δ3)φ

1
i (Δ3) (φ1

i (Δ3))
2

]
dE .

Here, Θ(E) =
(
s1(E,E+εp )(1+2α(E+εp ))

Kα(E+εp )
+ s−1(E,E−εp )(1+2α(E−εp ))

Kα(E−εp )

)
1+2αE
Kα(E)

+ s0(E, E)
(

1+2αE
Kα(E)

)2
.

Now with Si, j = S1i, j + S2i, j + S3i, j , and the test function φ being arbitrary, the
scheme becomes

Ai
d

dt

[
f 0i
f 1i

]
= −2Λi

[
f 0i
f 1i

]
+

∑
j∈N

Si, j

[
f 0j
f 1j

]
, i ∈ N . (38)

Next we specify the local basis functions {φr
i }i∈N ,r=1,2 as Lagrangian basis, given

as

φ0
i (k) = 1

Δki
(ki+ 1

2
− k), φ1

i (k) = 1

Δki
(k − ki− 1

2
), if i > 0, (39)

φ0
i (k) = 1

Δk|i |
(k − ki− 1

2
), φ1

i (k) = 1

Δk|i |
(ki+ 1

2
− k), if i < 0. (40)

With such choice, the local basis functions have certain symmetry,

φr
i (k) = φr

−i (−k), r = 0, 1, i ∈ N , (41)

and so are the elementwise matrices

Si, j = Si,− j = S−i, j = S−i,− j , Λi = Λ−i , Ai = A−i . (42)

If we introduce f− = [ f 0−1, f 1−1, · · · , f 0−N , f 1−N ]T , f+ = [ f 01 , f 11 , · · · , f 0N , f 1N ]T ,
the scheme (38) can be written more compactly,

[
A 0
0 A

]
d

dt

[
f−
f+

]
= S

[
f−
f+

]
=

(
−2

[
Λ 0
0 Λ

]
+

[
S S
S S

])[
f−
f+

]
. (43)

The matrix A ∈ R
2N×2N (resp. Λ ∈ R

2N×2N ) is a N × N block-diagonal matrix,
with its (i, i)th block being Ai (resp. Λi ). The matrix S ∈ R

2N×2N is a N × N
block-structured matrix, with its (i, j)th block being Si, j . And the scheme (43) can
be further decoupled into two systems of halved size,
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A
d

dt
g = Mg, A

d

dt
h = −2Λh. (44)

Here g = (f− + f+)/2, h = (f+ − f−)/2, and M = 2(S − Λ). We can verify directly
from the definition that both Λ and the mass matrix A are invertible.

Similar as for the first order DGmethod, if we are only concernedwith the discrete
equilibrium such as the dimension of the null space of the scattering matrix S in (43),
it is sufficient to simply consider A d

dt g = Mg for the same question. For the time-
evolving numerical solution fh(k, t), one needs to work with (43), or equivalently
the two equations in (44). On the other hand, it is nontrivial to extend most of the
algebraic analysis in [7, 11] to this second order method, for which the involved
matrices are of block structure.

What we do know is that the column sum of M is zero, and this again is closely
related to the mass conservation of the method, as stated in next lemma.

Lemma 2.6 Suppose the numerical solution fh(k, t) has compact support in
[−Kmax, Kmax], then the proposed scheme (32) satisfies mass conservation, namely

d

dt

∫ Kmax

−Kmax

fh(k, t)dk = 0. (45)

In addition, the sum of each column of M is zero.

Proof Based on the formulas for Λi and Si, j , the symmetry in (42), as well as the
equality φ0

i + φ1
i = 1 on Ii , one can verify

[1, 1]
⎛
⎝−2Λi +

∑
j∈N

Sj,i

⎞
⎠ = 0 (46)

and the sum of M being 0.
Using (46) as well as (32) with φ(k) ≡ 1, we have

d

dt

∫ Kmax

−Kmax

fh(k, t)dk =
∑
i∈N

∫
Ii

∂ fh(k, t)

∂t
dk =

∑
i∈N

∫
Ii

Ŝ[ fh](k, t)dk

=
∑
i∈N

[1, 1]
⎛
⎝−2Λi

[
f 0i
f 1i

]
+

∑
j∈N

Sj,i

[
f 0j
f 1j

]⎞
⎠

=
∑
i∈N

[1, 1]
⎛
⎝−2Λi +

∑
j∈N

Sj,i

⎞
⎠

[
f 0i
f 1i

]
= 0.

�
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2.2.3 First Order Collocation Method

So far, Galerkin-type methods are considered. In next two sections, our attention will
be turned to collocation methods. In this subsection, we will construct a first order
collocation scheme for (12). We start with introducing one collocation point ξi ∈ Ii
from each cell, and the actual choices will be specified later. A collocation method of
the first order is then defined by requiring the piecewise constant numerical solution
fh(k, t) ∈ Vh = V 0

h satisfy

∂ fh(ξi , t)

∂t
= Ŝ[ fh](ξi , t), ∀i ∈ N . (47)

We define fh(ξi , t) = fi (t). Recall from Section 2.2.1,

fh(Kα(E), t) + fh(−Kα(E), t) =
∑
j∈N

χ
| j |(E) f j (t) (48)

then the scheme becomes

d

dt
fi (t) = −2λi fi (t) +

∑
j∈N

si, j f j (t). (49)

Here,

si, j =
(

s1(E, E + εp)

Kα(E)/(1 + 2αE)
χ
| j |(E)

)
|E=E(ξi )−εp

+
(

s−1(E, E − εp)

Kα(E)/(1 + 2αE)
χ
| j |(E)

)
|E=E(ξi )+εp

+
(

s0(E, E)

Kα(E)/(1 + 2αE)
χ
| j |(E)

)
|E=E(ξi ), (50)

and

λi = s1(E − εp, E)

Kα(E)/(1 + 2αE)
|E=E(ξi )+εp + s−1(E + εp, E)

Kα(E)/(1 + 2αE)
|E=E(ξi )−εp

+ s0(E, E)

Kα(E)/(1 + 2αE)
|E=E(ξi ). (51)

Again, the terms involving E = E(ξi ) − εp < 0 are excluded.
Note that all the coefficients in the linear algebraic equation (49) are nonnegative,

more specifically,
si, j ≥ 0, λi > 0, ∀i, j ∈ N . (52)
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If we further require the collocation points are chosen to satisfy

ξi = −ξ−i , i ∈ N +, (53)

then the energy function E(k) being an even function implies E(ξi ) = E(ξ−i ), and
the following symmetries hold

λi = λ−i , si, j = s−i, j = si,− j = s−i,− j , ∀i, j ∈ N .

Now we let
Λ = diag{λ1, · · · , λN }, S = (si, j )i, j∈N + , (54)

and f− = [ f−1, · · · , f−N ]T , f+ = [ f1, · · · , fN ]T , then the proposed scheme in (49)
can be written as

d

dt

[
f−
f+

]
= S

[
f−
f+

]
=

(
−2

[
Λ 0
0 Λ

]
+

[
S S
S S

])[
f−
f+

]
. (55)

Note f+ and f− are defined differently from those in Section 2.2.1 and they do not
contain the mesh parameter {Δki }i .

If we further define g = (f− + f+)/2, h = (f+ − f−)/2, and M = 2(S − Λ), then
the proposed scheme (55) can be decoupled into two systems of halved size

d

dt
g = Mg,

d

dt
h = −2Λh. (56)

Just as for the DG methods in Sections2.2.1 and 2.2.2, if we are only concerned
with the properties of the scattering matrix S regarding the discrete equilibrium, it is
sufficient to simply consider d

dt g = Mg.

Remark 2.7 Compared with Galerkin methods in Sections2.2.1 and 2.2.2, colloca-
tion methods proposed here and in next subsection are much simpler to formulated
and to implement. On the other hand, collocation methods in general do not preserve
mass conservation property.

2.2.4 Fourier-Collocation Spectral Method

In this subsection, we will formulate a Fourier-collocation spectral method for the
linear kinetic model with a singular scattering kernel, which is now reformulated into
(12). It is assumed that the solution f (k, t) is zero outside the interval [−Kmax, Kmax],
thus can be extended periodically. For simplicity, we use K = Kmax throughout this
subsection.

We seek an approximating solution fN (k, t) in the space B̂N [−K , K ] =
span{ei π

K nk}|n|≤N , i.e.,
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fN (k, t) =
N∑

n=−N

f̂n(t)e
i π
K nk, (57)

with the unknown coefficients f̂n(t), n = −N , · · · , N , to be determined. For any
function g ∈ B̂N [−K , K ], one can define its residual associated with the equation
(1)

RN (k, t; g) = ∂g(k, t)

∂t
− Ŝ[g](k, t) = ∂g(k, t)

∂t
−

4∑
m=1

Rm[g](k, t).

In the Fourier-collocation method, we require that the residual of the numerical
solution fN (k, t) vanishes at a set of collocation grid points {k j }−N≤ j≤N , defined as

k j = K
2 j

2N + 1
, −N ≤ j ≤ N .

Having this choice of the collocation points, the Fourier coefficients f̂n(t) of the
numerical solution fN (k, t) can be approximated by the discrete Fourier coefficients
f̃n(t) based on the trapezoidal rule,

f̃n(t) = 1

2N + 1

N∑
j=−N

fN (k j , t)e
−i π

K nk j . (58)

Thus, the numerical solution fN (k, t), as a trigonometric polynomial, can also be
expressed as

fN (k, t) =
N∑

j=−N

fN (k j , t)g j (k), (59)

where g j (k) (−N ≤ j ≤ N ) is the Lagrange interpolation polynomial, given as

g j (k) = sin ( 2N+1
2

π
K (k − k j ))

(2N + 1) sin ( π
2K (k − k j ))

(60)

and satisfying g j (kn) = δ jn . Now the Fourier-collocation method can be stated as
follows. Look for fN (k, t) in the form of (59), such that

RN (k j , t; fN ) = ∂ fN (k j , t)

∂t
− Ŝ[ fN ](k j , t)

= ∂ fN (k j , t)

∂t
−

4∑
m=1

Rm[ fN ](k j , t) = 0, −N ≤ j ≤ N . (61)
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This yields 2N + 1 equations to determine the 2N + 1 point values fN (k j , t), j =
−N , · · · , N , of the numerical solution.

Next we will convert the scheme to its algebraic form. From (12),

R1[ fN ](k j , t) = s1(E, E + εp)

Kα(E)/(1 + 2αE)

(
f (Kα(E), t) + f (−Kα(E), t)

)
|E=E(k j )−εp

= s1(E, E + εp)

Kα(E)/(1 + 2αE)

N∑
j=−N

fN (k j , t)
(
g j (Kα(E)) + g j (−Kα(E))

)
|E=E(k j )−εp .

(62)

The remaining terms in (61) can be treated similarly. We define the solution vector
f by collecting all the unknown coefficients in (59),

f = [ fN (k−N , t), . . . , fN (k−1, t), fN (k0, t), fN (k1, t), . . . , fN (kN , t)]� ∈ R
2N+1,

then the proposed Fourier-collocation method becomes a linear system

df
dt

= Sf, (63)

where S = −2Λ + S ∈ R
(2N+1)×(2N+1), with

Λ = diag{λ−N , · · · , λN }, S = (
sn, j

)
n, j∈{−N ,··· ,N } , (64)

and

λn = s1(E − εp, E)

Kα(E)/(1 + 2αE)
|E=E(kn)+εp + s−1(E + εp, E)

Kα(E)/(1 + 2αE)
|E=E(kn)−εp

+ s0(E, E)

Kα(E)/(1 + 2αE)
|E=E(kn), (65)

sn, j = s1(E, E + εp)

Kα(E)/(1 + 2αE)

(
g j (Kα(E)) + g j (−Kα(E))

)
|E=E(kn)−εp

+ s−1(E, E − εp)

Kα(E)/(1 + 2αE)

(
g j (Kα(E)) + g j (−Kα(E))

)
|E=E(kn)+εp

+ s0(E, E)

Kα(E)/(1 + 2αE)

(
g j (Kα(E)) + g j (−Kα(E))

)
|E=E(kn), (66)

and n, j = −N , · · · , N . Given the notation is self-explained, the negative subindices
are used for the entry of S for simplicity.
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Similar to other collocation methods, our Fourier-collocation scheme does not
satisfy mass conservation property. In terms of approximating the equilibrium of the
scattering operator, this spectral method performs quite differently from the other
methods in previous sections, see numerical examples in Section 2.3.4.

2.3 Numerical Experiments

In this section, we will demonstrate the performance of the numerical schemes when
they are applied to two examples with the following parameter choices.

• Parameter choice 1. We consider the parabolic energy band model with α = 0 in
(3). There is no elastic collision, that is, s0 = 0. In addition, we take the phonon
energy εp = 0.1, lattice temperature T = 0.0883, transfer rate parameter s−1 = 1,
and the maximum energy Emax = 8.

• Parameter choice 2. We use the nondimensionalized parameters for silicon, and
this involves α = 0.01292 in the energy model (3), phonon energy εp = 2.43723,
lattice temperature T = 1, transfer rates s0 = 0.26531 and s−1 = 0.04432, and the
maximum energy Emax = 16.

Throughout, μ j is the eigenvalue of M which has the j th largest real part, j =
1, 2, · · · .

2.3.1 First Order Discontinuous Galerkin Method

In this section, we shall verify the results of the first order DG method. Notice that
this method has also been studied numerically in [7] for the parabolic energy band
model without the elastic term.

We use a uniform grid in the energy space with cell size ΔE . The method (25) is
implemented with backward Euler method applied in time andΔt = ΔE . The initial
data are randomly generated, and it is nonnegative and normalized to have the same
total mass as the exact equilibrium in (3). The criteria for stopping the time evolution
is set to be ||gold − gnew||2, ||hold − hnew||2 ≤ 10−7. The entries of S are computed
using a midpoint rule quadrature, while the entries of Λ are obtained based on the
column sum of M being zero.

Figures1 and 2 contain comparison of one exact equilibrium and the computed
equilibriumbased on parameter choices 1 and 2.Here and in all the figures throughout
Section 2.3, the exact equilibrium is taken as f e(k) = c f G(k), where the normalized
constant c is chosen so as to achieve the same total mass as the numerical solution.
Figure1 agrees well with the theory obtained in [7] (also see Section 2.2.1). When
ΔE = εp/n, and n is not an integer or n = 1, the matrix is irreducible, making
the computed equilibrium closer to f G(k) qualitatively. When n > 1 is an integer,
the scattering matrix M (hence S) is reducible, and the dimension of its null space,
also called kernel space, is bigger than one, specifically, dim(ker(M)) = n. In this
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Fig. 1 The comparison of the exact equilibrium and the computed equilibrium by DG method
with P0 discrete space. The computed equilibrium is obtained by the backward Euler method with
random initial data on uniform mesh in E with the indicated mesh size. Here and in all the figures
throughout Section 2.3, the exact equilibrium is taken as f e(k) = c f G(k) with some normalized
constant c. Parameter choice 1. (a) ΔE = εp . (b) ΔE = εp/2. (c) ΔE = εp/2.5. (d) ΔE = εp/4.

case, the computed equilibrium distribution is no longer monotone in each half of the
domain. Just as observed in Figure 2 of [7], eachmonotone subregion of the computed
equilibrium involves n points on the grid, and this implies that the computed equilib-
rium is approximately in the form of ĥ(E(k)) f̂ G(k), where ĥ(E) is approximating
a εp-periodic grid-based function defined on the mesh grid of the energy domain,
and f̂ G(k) is an approximation for f G(k). In other words, the computed equilibrium
captures the characteristics of the exact equilibriums. Computations based on para-
meter choice 2, which uses the Kane energy band model and has elastic scattering,
as demonstrated in Figure 2 give a similar conclusion, verifying our claim in Section
2.2.1 and the results in [11].
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Fig. 2 The comparison of the exact equilibrium and the computed equilibrium by DG method
with P0 discrete space. The computed equilibrium is obtained by the backward Euler method with
random initial data on uniform mesh in E with the indicated mesh size. Parameter choice 2. (a)
ΔE = εp . (b) ΔE = εp/2. (c) ΔE = εp/2.5. (d) ΔE = εp/4.

2.3.2 Second Order Discontinuous Galerkin Method

In this subsection, we will present numerical experiments with the DGmethod using
the P1 discrete space introduced in Section 2.2.2. Particularly, we will investigate the
importance of sufficiently accurate numerical quadratures, the dimension of ker(M),
and the accuracy of the scheme.

A close examination reveals that the integrals for computing the entries of Λ and
S involve E−1/2-type singularity near E = 0. In our implementation, the following
strategy is adopted to compute Si, j ,Λ j : When j ≤ nsingular, we apply a special sixth
order quadrature, obtained from the trapezoidal rule with Alpert correction to the
left end of the reference element [1]; When j > nsingular, the standard 5-point Gauss
quadrature is applied. To illustrate the effect of numerical quadratures, we consider
the method implemented on a uniform mesh in k and Δk = Kmax/N . The first 3
eigenvalues μ1,2,3 with the largest real part are reported in Table1 for N = 80, and
nsingular = N/8, 2N/8, 3N/8 and 4N/8 with parameter choice 2. One can see that
numerical quadratures with sufficiently large nsingular ensures that μ1 is an accurate
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Table 1 Effect of numerical quadrature by taking different values of nsingular. Uniform mesh in k
with Δk = Kmax/N and N = 80. Parameter choice 2.

nsingular μ1 μ2,3

N/8, 2N/8 1.31e-04 −1.02e-08 ± 9.39e-09i

3N/8 2.27e-12 −1.69e-08 ± 1.30e-08i

4N/8 4.33e-13 −1.69e-08 ± 1.30e-08i

approximation for the zero eigenvalue, instead of contributing to a nontrivial growing
mode. We further march the scheme with the equilibrium in (4) as the initial data
and trapezoidal method in time with Δt = Δk, and plot in Figure 3 the numerical
equilibriums compared with the exact one (again given by (4)) at time t = 7. The
results confirmagain the importance of using accurate enoughnumerical quadratures.
In fact with nsingular being large enough, the numerical eigenvalues, other than those
approximating zero, always have negative real part.

Next we examine how well our scheme approximates the dimension of ker(M).
Motivated by the P0 results, we implement our DG method with the P1 space on
uniform meshes in E and ΔE = εp/n. Both parameter choices are examined, with
nsingular = N/8 for parameter choice 1 and nsingular = 3N/8 for parameter choice 2.

Fig. 3 Effect of numerical
integration. Uniform mesh in
k with Δk = Kmax/N and
N = 80. Trapezoidal method
in time with Δt = Δk. Initial
condition is the exact
equilibrium in (4) with
parameter choice 2.
(a) nsingular = N/4.
(b) nsingular = 3N/8.
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Fig. 4 The comparison of the exact equilibrium and the computed equilibrium by DG method
with P1 discrete space. The computed equilibrium is obtained by the backward Euler method with
random initial data on uniform meshes in E with the indicated mesh size. Parameter choice 1 and
nsingular = N/8. (a) ΔE = εp . (b) ΔE = εp/2. (c) ΔE = εp/2.5.

When n = m is an integer, the dimension of ker(M) is m; and when n = m + 1
2 ,

the numerical dimension of ker(M) is 1 in the sense that μ1 = O(10−12,−13) and
μ2 = O(10−3,−5). This has been tested for m = 1, · · · , 10. In Figure 4, we also
plot the numerical equilibrium computed from marching the scheme in time with
backward Euler method andΔt = ΔE , n = 1, 2, 2.5. (When n = 2.5, the numerical
dimension of ker(M) is 1.) Though there is no mathematical analysis available, our
numerical results seem to imply that the dependence of the (numerical) dimension
of ker(M) on the choice of the mesh grid in E for the DG method with the P1

space is similar to that with the P0 space. The computed equilibrium also shows the
characteristics in (6) of the exact equilibriums. The setup for initialization and the
stopping criteria is taken the same as in Section 2.3.1.

Finally, we turn to the accuracy of the scheme. In Table2, we report the L2 errors
and convergenceorders of themethod at afixed time t = 7 for both parameter choices.
Uniform meshes in k are considered with Δk = Kmax/N , and the initial condition
is taken to be the exact equilibrium in (4). Second order accuracy is confirmed. In
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Table 2 Accuracy of the DG method with P1 discrete space at t = 7. Uniform mesh in k with
Δk = Kmax/N . Trapezoidalmethod in timewithΔt = Δk. Initial condition is the exact equilibrium
in (4). nsingular = N/8 for parameter choice 1 and nsingular = 3N/8 for parameter choice 2.

Parameter choice 1 Parameter choice 2

N L2 error order μ1 L2 error order μ1

40 4.83e-03 – 2.7125e-08 2.67e-03 – 6.0254e-10

80 1.81e-03 1.42 4.4021e-09 7.56e-04 1.82 2.2689e-12

160 4.68e-04 1.95 4.1503e-11 1.91e-04 1.98 −1.3997e-13

320 1.23e-04 1.92 −1.3055e-12 4.73e-05 2.02 −8.9108e-15

640 3.01e-05 2.03 −4.4868e-14 1.22e-05 1.95 –

addition, the leading eigenvalue μ1 of M is also reported. Although this eigenvalue
is not always negative, it converges to the zero eigenvalue as meshes are refined.

2.3.3 First Order Collocation Method

In this subsection, we will perform numerical study of the first order collocation
method as outlined in Section 2.2.3. We compute the equilibrium using the back-
ward Euler method, random initial data and stopping criteria ||gold − gnew||2, ||hold −
hnew||2 ≤ 10−7.We consider both parameter choices 1 and 2 on uniformmeshes in E
or k. Since the collocation method does not achieve mass conservation, all computed
equilibrium has been rescaled so that

∑
i fiΔki agrees with the exact equilibrium.

To investigate the detailed performance of the method, we also obtain the leading
eigenvalues of the scattering matrix M .

Figures5 to 7 contain simulation results with parameter choice 1 on uniform
meshes in E . The collocation points {ξi } are chosen such that they correspond tomid-
points in the computational grid for the energy variable. In particular, Figure 5 plots
the results whenΔE = εp/n, when n is an integer, while Figure 6 plots the solutions
when n is not an integer.When comparedwith the first orderGalerkinmethod,we can
see that the results are similarwhen n is an integer, i.e., any integer n > 1will yield the
dimension of the kernel of the scattering matrix M to be bigger than one, producing
oscillatory numerical equilibriums. However, the main difference occurs when n is a
noninteger. FromFigure 6,we can seewhenn = 1.7, 2.2, 2.7, 3.2, unlikeDGmethod
P0 case, the collocation method still have dim(ker(M)) > 1.When n = 2.5, we can
observe even from Figure 7(d) that the scattering matrix has several positive eigen-
values, which makes the time evolution scheme not converge to a steady state. Pre-
liminary numerical tests show similar conclusions when n = 1.5, 2.5, 3.5 . . . 10.5.
From our numerical tests, it seems that if n ∈ (Nn − 0.5, Nn + 0.5), where Nn is an
integer, then dim(ker(M)) = Nn . We believe the different behavior of the colloca-
tion method when compared with the Galerkin method is because of the point-based
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Fig. 5 The comparison of the exact equilibrium and the computed equilibrium by first order collo-
cation method. The computed equilibrium is obtained by the backward Euler method with random
initial data on uniform mesh in E with the indicated mesh size. Parameter choice 1. (a) ΔE = εp .
(b) ΔE = εp/2. (c) ΔE = εp/4. (d) ΔE = εp/6.

nature of the collocation scheme. However, due to the lack of theoretical studies, we
leave the detailed interpretation of this result to future work.

The next set of numerical tests was performed on uniform meshes in E with
parameter choice 2. Figures8 and 9 plot the equilibrium and the leading eigenval-
ues of the scattering matrix when n = 1, 2, 1.7, 2.2. Those selective results show
dim(ker(M)) = 0 in all cases. However, for n = 1.7, 2, 2.2, there are two eigen-
values that are very close to zero, see Figure 8(e) for details. With the numerical
dimension of ker(M) being considered, the conclusion for parameter choice 2 is
same as the one for parameter choice 1.

Finally, we plot the results for parameter choice 1 on uniform mesh in k when
N = 40, 80, 120, 160 in Figure 10. The collocation points {ξi } are chosen to be the
midpoint in each cell in the k variable. Unlike the results for uniform mesh on E , the
result for uniform mesh in k is not conclusive, i.e., this mesh choice does not imply
the scattering matrix to be reducible/irreducible.
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Fig. 6 The comparison of the exact equilibrium and the computed equilibrium by first order collo-
cation method. The computed equilibrium is obtained by the backward Euler method with random
initial data onuniformmesh in E with the indicatedmesh size. Parameter choice 1. (a)ΔE = εp/1.7.
(b) ΔE = εp/2.2. (c) ΔE = εp/2.7. (d) ΔE = εp/3.2.

In summary, the first order collocation method does not outperform the first order
Galerkin scheme when measuring the qualitative behavior of the computed equi-
librium. The collocation method, though being more computationally efficient, does
not preserve mass conservation, and the results are highly dependent upon the choice
of collocation points.

2.3.4 Fourier-Collocation Method

In this subsection, we will demonstrate the performance of the Fourier-collocation
method defined in Section 2.2.4. This method behaves very differently from those we
have examined so far, and it only captures the one-dimensional equilibrium c f G(k)
(with c > 0 being a constant), given the computational domain is large enough.
We attribute this to the global nature of this spectral method. By looking into the
eigenvalues and corresponding eigenvectors of the scatteringmatrixSwith parameter
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Fig. 7 The distribution of the first 50 eigenvalues of the scattering matrix by first order collocation
method on uniform mesh in E with the indicated mesh size. Parameter choice 1. (a) ΔE = εp . (b)
ΔE = εp/1.7. (c) ΔE = εp/2. (d) ΔE = εp/2.5.

choice 1 (in Table3) and parameter choice 2 (in Table4 and Table5), the following
observations can be made.

• Parameter choice 1

1. With the meshes being refined, the leading eigenvalue μ1 is approaching 0 expo-
nentially and μ2 = O(10−3). When N = 34, this eigenvalue is zero at the round-
off error level. The numerical dimension of the null space is one. In this case, we
take Emax = 8 and, hence, Kmax = Kα(Emax) = 4.

2. The eigenvector corresponding to μ1 approximates the equilibrium f G(k). For
comparison, the eigenvector is scaled such that the sum of its values at collocation
points is the same as that of the exact equilibrium. In Table3, we present errors of
the computed eigenvector in l∞, l1 and l2 vector norms. We also plot the scaled
eigenvector with N = 34 in Figure 11, which captures the equilibrium with an
error at the level of 10−13.

3. The numerical equilibrium is also obtained by computing the steady state of
the ODE system (63). The nonnegative initial data is chosen randomly, with
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Fig. 8 The comparison of the exact equilibrium and the computed equilibrium. The computed
equilibrium is obtained by the backwardEulermethodwith random initial data on uniformmesh in E
with the indicated mesh size. Parameter choice 2. (a)ΔE = εp . (b)ΔE = εp/2. (c)ΔE = εp/1.7.
(d) ΔE = εp/2.2. (e) Leading eigenvalues of M : μ1, μ2, μ3 are the eigenvalues with the three
largest real part.

the stopping criteria as ‖fold − fnew‖∞ ≤ 10−10. In Figure 12, we compare the
computed and the exact equilibrium. Though both the computed equilibriums
before and after normalization well capture the shape of the equilibrium, the
normalized one has a much smaller error at the level of 10−9.

• Parameter choice 2
We start with taking Emax = 16 in the computation.

1. Similar to parameter choice 1, the eigenvalue μ1 of M is approaching 0 when N
increases, with the convergence speed seemingly faster than that for parameter
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Fig. 9 The distribution of the first 11 eigenvalues of the scattering matrix by first order collocation
method on uniform mesh in E with the indicated mesh size. Parameter choice 2. (a) ΔE = εp . (b)
ΔE = εp/2. (c) ΔE = εp/1.7. (d) ΔE = εp/2.2.

choice 1. At the same time, μ2 is O(10−3,−4). The results in Table4 are reported
for N up to 10.

2. The eigenvector corresponding to μ1 approximates the equilibrium f G(k). In
Table4, we report the errors between the scaled eigenvector and the exact equi-
librium. For N = 10, the eigenvector approximates the equilibrium with an error
at the level of 10−6, as in Figure 13.

3. The numerical equilibrium is also obtained by computing the steady state of
the ODE system (63). The nonnegative initial data are chosen randomly, with
the stopping criteria as ‖fold − fnew‖∞ ≤ 10−8. In Figure 14, we compare the
computed and the exact equilibria with parameter choice 2 and N = 10. Again,
the computed equilibrium after normalization has a smaller error at the level of
10−6.
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Fig. 10 The comparison of the exact equilibrium and the computed equilibrium. The computed
equilibrium is obtained by the backward Euler method with random initial data on uniform mesh
in k with the indicated mesh size. Parameter choice 1. (a) N = 40. (b) N = 80. (c) N = 120. (d)
N = 160.

Table 3 Eigenvalues μ1 and μ2, together with the errors between the eigenvectors (normalized)
corresponding to μ1 and the exact equilibrium f G(k). Parameter choice 1.

N Re(μ1) Re(μ2) Errors of the eigenvectors

l∞ l1 l2

16 5.94e-04 −8.07e-03 9.73e-02 1.80e-02 2.79e-02

20 4.94e-05 −3.19e-03 3.16e-03 5.83e-04 9.03e-04

30 1.77e-11 −8.28e-03 1.78e-09 3.30e-10 5.11e-10

32 3.00e-13 −9.07e-03 4.88e-11 9.02e-12 1.40e-11

34 1.04e-15 −6.80e-03 5.55e-13 1.03e-13 1.60e-13

The results we have shown here are for N up to 10. For some larger values of N ,
it is observed that more than one computed eigenvalues of S can approach 0. There
can also be multiple eigenvalues which have positive real parts. This is because
the computational domain is not chosen large enough. To see this, we further test
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Table 4 Eigenvalues μ1 and μ2, together with the errors between the eigenvectors (normalized)
corresponding to μ1 and the exact equilibrium f G(k). Parameter choice 2. Emax = 16.

N Re(μ1) Re(μ2) Errors of the eigenvectors

l∞ l1 l2

6 6.45e-2 −1.24e-03 6.43e-4 1.82e-2 2.38e-2

7 −1.19e-5 −3.36e-03 2.26e-3 8.89e-4 1.18e-3

8 7.12e-6 −3.89e-03 5.22e-4 1.29e-4 1.69e-4

9 −4.13e-7 −8.58e-04 7.73e-5 1.70e-5 2.47e-5

10 1.76e-8 −7.62e-04 1.54e-5 3.15e-6 5.42e-6

Table 5 Eigenvalues μ1 and μ2, together with the errors between the eigenvectors (normalized)
corresponding to μ1 and the exact equilibrium f G(k). Parameter choice 2. Larger domain size
Emax = 32.

N Re(μ1) Re(μ2) Errors of the eigenvectors

l∞ l1 l2

11 −2.45e-05 −8.43e-04 1.37e-02 3.58e-03 4.91e-03

15 1.47e-07 3.60e-04 8.08e-05 2.30e-05 3.00e-05

20 −3.07e-12 1.49e-04 5.62e-08 6.89e-09 1.55e-08

22 9.58e-13 −1.34e-04 6.38e-09 8.58e-10 1.91e-09

27 1.40e-15 1.86e-05 7.73e-10 9.54e-11 2.22e-10

Fig. 11 The normalized
eigenvector corresponding to
μ1 for N = 34 with exact
equilibrium f G(k).
Parameter choice 1.
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the method on a larger computational domain with Emax = 32. Again, the method
captures the equilibrium f G(k) with the eigenvector corresponding to μ1, as in
Table5 and Figure 15. With N = 27, μ1 is O(10−15), and the scaled eigenvector
corresponding to μ1 approximates f G(k) with an error at the level of 10−10.
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Fig. 12 The comparison of the exact equilibrium f G(k) and the computed equilibrium, obtained
by the backward Euler method with random initial data and tolerance being 1.e − 10. N = 34.
Parameter choice 1. (a) Computed equilibrium before normalization. (b) Computed equilibrium
after normalization.
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Fig. 13 Thenormalized eigenvector corresponding toμ1 for N = 10with exact equilibrium f G(k).
Parameter choice 2. Emax = 16.

3 A Numerical Method for Continuous Scattering Kernels

In this section, we consider the kinetic model (1) with a continuous scattering kernel
(7). If one follows the derivation in Section 2.2.1 to define a first order DG method
for this model, it is easy to show that the scattering matrix is always irreducible when
σ(k, k ′) > 0. Instead, we choose a different discretization which is well-suited for
the model with a continuous scattering kernel.

Since the scattering kernel S(k, k ′) has Gaussian decay andwe are concerned with
approximating the equilibrium solution, we assume there exists a constant Kmax such
that
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Fig. 14 The comparison of the exact equilibrium f G(k) and the computed equilibrium, obtained
by the backward Euler method with random initial data and tolerance being 1.e − 8. N = 10.
Parameter choice 2. Emax = 16. (a) Computed equilibrium before normalization. (b) Computed
equilibrium after normalization.

Fig. 15 The normalized
eigenvector corresponding to
μ1 for N = 27 with exact
equilibrium f G(k).
Parameter choice 2. Larger
domain size Emax = 32.
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∫ Kmax

−Kmax

(
S(k′, k) f (k′, t) − S(k, k′) f (k, t)

)
dk′

∣∣∣∣∣ < ε

for a user-prescribed tolerance ε for all k.
Equation (1) can now be discretized by applying numerical quadrature to the

truncated domain. This technique is called Nyström discretization of the integral
differential equation. Specifically, let {ki }Ni=1 denote the set of quadrature nodes in the
interval [−Kmax, Kmax]with correspondingweights {wi }Ni=1, then (1) is approximated
by

∂ f̂ (k, t)

∂t
=

N∑
i=1

(
S(ki , k) f̂ (ki , t) − S(k, ki ) f̂ (k, t)

)
wi (67)
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where the solution f̂ is an approximation to the exact solution f of (1). Thequadrature
points {ki }Ni=1 will be the discretization points.

To arrive at a linear system, the solution f̂ is sought at the quadrature points
k j , j = 1, . . . , N for all t . The result is the following discrete ordinary differential
equation

∂ f̂ (k j , t)

∂t
=

N∑
i=1

(
S(ki , k j ) f̂ (ki , t) − S(k j , ki ) f̂ (k j , t)

)
wi (68)

for each j = 1, . . . , N or in linear algebraic form

∂ f̂
∂t

(t) = (S − Λ) f̂ (t) = M f̂ (t) (69)

where Si, j = S(k j , ki )wj , f̂ denotes the vector of unknowns such that f̂ j =
f̂ (k j , t), Λ = diag{v} and the vector v has entries given by vi = ∑N

j=1 S(ki , k j )wj .

Remark 3.1 Applying the numerical quadrature scheme to (68) (i.e., left multiplying
(69) by wT where w j = wj ) shows that the discretization technique conserves total
mass in time.

3.1 Numerical Experiments

The performance of the numericalmethod is explored in this sectionwith two choices
ofσ(k, k ′). In Section 3.1.1, the choice ofσ results in a problemwith a known solution
while in Section 3.1.2 the choice of σ yields a problem without a reference solution.

For the numerical experiments, a ten-point composite Gaussian quadrature on
equispaced panels is utilized to approximate the solution over the interval
[−Kmax, Kmax] = [−4, 4]. Thus, the number of discretization points N is ten times
the number of panels placed on the interval [−4, 4].

3.1.1 An Example with a Known Solution

In this subsection, we illustrate the performance of the numerical method when
σ(k, k ′) = 1. With this choice of σ , the exact solution is known to be fex(k) =
1√
2π
e−k2/2. Let f ex denote the vector whose entries are fex evaluated at the dis-

cretization points.
Table6 reports the number of discretization points N , the absolute error Eabs =

‖ f̂ − f ex‖2 and the relative error Erel = ‖ f̂− f ex‖2
‖ f ex‖2 when computing the equilibrium

solution, i.e., approximating solutions to (1) with ∂ f
∂t = 0. The numerical approxi-

mation is found by computing the null space of M in equation (69).
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Table 6 The number of discretization points N , absolute error Eabs, and the relative error Erel
when applying the solution technique to equation (1) with σ(k, k′) = 1.

N Eabs Erel

10 9.49e-02 1.94e-01

20 1.32e-03 1.36e-03

40 4.13e-04 3.40e-04

80 1.43e-04 8.51e-05

160 5.05e-05 2.13e-05

320 1.79e-05 5.32e-06

640 6.32e-06 1.33e-06

1280 2.23e-06 3.33e-07

2560 7.90e-07 8.31e-08
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Fig. 16 (a) Approximate solutions after 5 and 10 time stepswith a step size of h = 0.5. (b) Absolute
error Eabs in approximate solution at time t .

Next, the backward Euler method was applied to (67) with a fixed N = 320 num-
ber of discretization points and timestep size h = 0.5. With this choice of N , Table6
indicates that the expected converged accuracy should be approximately 1e-05. Thus,
the iterative process is stopped when the norm of the difference between two iterates
is less than 1e-05. Figure16(a) illustrates the approximate solution at two different
times in addition to the exact solution. Figure16(b) illustrates the absolute error Eabs

at each timestep. At the thirty-third timestep, the scheme has converged to the set
tolerance.
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Table 7 The number of discretization points N , absolute error Eabs, and the relative error Erel
when applying the solution technique to equation (1) with σ(k, k′) = (k − k′)2.
N Eabs Erel

10 2.36e-01 1.92e-01

20 2.47e-03 1.02e-03

40 7.77e-04 2.55e-04

80 2.69e-04 6.38e-05

160 9.50e-05 1.59e-05

320 3.36e-05 3.99e-06

640 1.19e-05 9.97e-07

1280 4.19e-06 2.49e-07

3.1.2 An Example with Unknown Solution

In this subsection, we consider (1) with σ(k, k ′) = (k − k ′)2. For this choice of
σ , the exact solution is unknown. In the first experiment, a convergence study is
performed for the equilibrium problem. Let f̂ N denote the approximate solution
obtained with N discretization points. Table7 reports the number of discretization
points N , the absolute convergence error Eabs = ‖ f̂ N − L f̂ 2N‖2 where L is a matrix
that interpolates f̂ 2N at the 2N discretization points to the N coarse discretization

points and the relative convergence error Erel = ‖ f̂ N−L f̂ 2N ‖2
‖L f̂ 2N ‖2 .

Again backward Euler method is employed with timestep size h = 0.5 and
N = 320 discretization points. We define the solution obtained by solving the equi-
librium problem with N = 320 discretization points to be the reference solution.
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Fig. 17 (a) Approximate solutions after 5 and 10 timesteps with a step size of h = 0.5. (b) Absolute
error Eabs in approximate solution at time t .
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It takes 28 timesteps for the approximate solution to converge to the reference
solution. Figure17(a) illustrates the approximate solution after 5 and 15 timesteps.
Figure17(b) illustrates the absolute approximate error given by Eabs = ‖ f̂ 320 −
f̂ (t)‖2 where f̂ 320 is the approximate equilibrium solution when N = 320 and f̂ (t)
is the approximate solution at time t .

4 Concluding Remarks

In this paper, we consider some one-dimensional space-homogeneous linear kinetic
models arising from semiconductor device simulations. The focus of our efforts is to
study the qualitative behaviors of the discrete scattering operators and the resulted
numerical approximations for steady-state equilibrium. We review and discuss the
mathematical results in [7, 11] for a first order finite volumemethodwhen it is applied
to amodelwith δ-type singularitywith theKane energyband and the additional elastic
scattering. Moreover, we investigate the numerical performance of first and higher
order Galerkin method, a first order collocation method, and a Fourier-collocation
spectral method for this model, as well as a Nyström method for a kinetic model
with a continuous scattering kernel.

It seems to be nontrivial to generalize the analysis developed in [7, 11] to higher
order and collocation-type schemes to solve models with δ-type singularity. For sec-
ond (or higher) order Galerkin methods, the scattering matrix will become block
structured, which requires additional tools in algebraic analysis. For collocation
schemes, the analysis breaks down because the methods are no longer mass conser-
vative. The numerical study in this paper seems to indicate that similar conclusion
as for the discontinuous Galerkin scheme with the P0 discrete space holds for the
discontinuousGalerkin schemewith the P1 space regarding how the properties of the
kernel of the discrete scattering operator depend on the mesh choices. The first order
collocation method computes numerical equilibrium that is highly dependent on the
mesh, while the Fourier-collocation method, with its global nature, only captures
a one-dimensional equilibrium associated with f G(k), and the resulting approxi-
mation is very accurate with the spectral accuracy of the method. These numerical
results motivate our immediate future work on the theoretical analysis of some of
the methods. Another interesting future direction consists of generalization to higher
dimensions. Real-world applications call for attention to models in higher dimen-
sions with transport effect. Such models have different equilibria from the space
homogeneous case and the analysis will be more involved.
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On Metrics for Computation
of Strength of Coupling in Multiphysics
Simulations

Anastasia Wilson, Wei Du, Guanglian Li, Azam Moosavi
and Carol S. Woodward

Abstract Many multiphysics applications arise in the world of mathematical mod-
eling and simulation. Much of the time in scientific computation these multiphysics
applications are solved by decoupling the physics, giving no heed to how this affects
the numerical results. However, a fully coupled approach is often not computationally
cost effective. Consequently, having ametric for determining the strength of coupling
could give insight into whether a simulation should be decoupled in the computa-
tion. If the fully coupled approach is not available, then a metric that measures the
strength of coupling dynamically in time could help determine when smaller time
steps are required to better incorporate coupling into the split solution. In this paper,
we report on an Institute for Mathematics and Its Applications student project where
we explored metrics for dynamically measuring the strength of coupling between
two physical components in a model multiphysics simulation. Four metrics were
considered: two based on measured components of the Jacobian matrix, one on error
estimates, and the last on timescales of the system components. The metrics are
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all developed based on the previous work found in the literature and tested on a
diffusion–reaction problem.

1 Introduction

In recent years, more attention has been paid to multiphysics modeling for better
understanding of integrated processes. Multiphysics systems are often characterized
by coupled systems with multiple time or length scales. Typically, the system con-
sists of different types of partial differential equations, possibly even in different
domains. Common applications include surface and subsurface hydrology, radiation
hydrodynamics, geodynamics, and climate change models. In most cases, the system
is coupled.

A common approach to these coupled systems is to apply an operator splitting
method in order to make use of prior code development in the single physics com-
ponents. In operator splitting techniques, the system of PDEs is decomposed, the
simpler subproblems are solved individually, and the solutions are combined after
each time step in a way to preserve accuracy, assuming the individual components
are sufficiently independent of each other. The subproblems can be discretized inde-
pendently and treated with different time steps. The advantage of splittingmethods is
in computational efficiency when the operators are only weakly coupled. However,
these splitting approaches can shed accuracy and stability if the operators are tightly
coupled [3]. In particular, the solution can diverge even when the problem is well
defined for all time [1, 7]. This method also introduces an error related to the splitting
scheme itself, independent of the methods used in each of the component systems.

The trade-off between using split schemes that are efficient for each component
and a more expensive fully coupled scheme that does not suffer from stability con-
straints and does not have the splitting error can be large. In this paper, we report on a
student project for an Institute forMathematics and its ApplicationsWorkshopwhere
our goal is to develop efficient and computable metrics to help determine when the
physics components in a multiphysics system are tightly or weakly coupled. Since
this strength of coupling can change in time as the simulation progresses, it is impor-
tant that these metrics are cheap to compute as they will need to be evaluated at each
time step. As a test model, we define and test metrics on a coupled diffusion–reaction
system where the strength of coupling between the two physics components changes
over time.

This paper examines four metrics for strength of coupling. The first two use infor-
mation from a Jacobian of the coupled system. The third is based on the timescales
of the system components. Lastly, we look at a metric derived from the error analysis
of a decoupled model.

The paper is organized as follows. Section 2 casts the developed metrics for
determining the strength of coupling. The numerical experiments focus on diffusion–
reaction systems, and the test problems used for this system are defined in Section 3.
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Numerical experiments to illustrate the proposed schemes are carried out in Section 4,
and conclusions are furnished in Section 5.

2 Strength of Coupling Metrics

In generic form, we are interested in the investigation of the coupling strength of the
following nonlinear equations:

{
F1(u, v; x, t) = 0

F2(u, v; x, t) = 0.
(1)

Here, u = u(x, t) and v = v(x, t) denote the unknowns, x ∈ R denotes the space
variable, and t is the time variable. In this paper, the nonlinear equations above are
derived from the discretization of a time-dependent diffusion–reaction problem. The
metrics we consider could be extended to problems with more than two physical
components. For clarity of exposition, however, we consider only two components
in this work.

2.1 Norm of Off-Diagonal Jacobian Blocks

One way to determine how strongly u and v are coupled is by looking at the sensi-
tivities of F1 and F2 to u and v [2], that is, by looking at the Jacobian:

J =
[
J11 J12
J21 J22

]

with

J11 = ∂F1

∂u
, J12 = ∂F1

∂v
, J21 = ∂F2

∂u
, J22 = ∂F2

∂v
.

Recalling the previouswork from [2], oncewe have a converged solution from the nth
time step, (un, vn), then we can take a Newton iteration to get a first approximation
for the solution at the (n + 1)st time step. In doing this, we have

[
J (n)
11 J (n)

12

J (n)
21 J (n)

22

] [
�u(n)

�v(n)

]
=

[−F (n)
1

−F (n)
2

]

⇒ J (n)
11 �u(n) + J (n)

12 �v(n) = −F (n)
1
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⇒ �u(n) = −
(
J (n)
11

)−1
J (n)
12 �v(n) −

(
J (n)
11

)−1
F (n)
1

⇒ J (n)
21

[
−

(
J (n)
11

)−1
J (n)
12 �v(n) −

(
J (n)
11

)−1
F (n)
1

]
+ J (n)

22 �v(n) = −F (n)
2

⇒
[
−J (n)

21

(
J (n)
11

)−1
J (n)
12 + J (n)

22

]
�v(n) = −F (n)

2 + J (n)
21

(
J (n)
11

)−1
F (n)
1 (2)

Notice that if the coupling is one way, specifically if u does not depend on v, then
J (n)
12 �v(n) equals zero and (2) simplifies to

J (n)
22 �v(n) = −F (n)

2 + J (n)
21

(
J (n)
11

)−1
F (n)
1 ,

which has the same left-hand side as if the problem is uncoupled. A similar situation
arises in the case when v does not depend on u as that implies J (n)

21 �u(n) = 0. If we
assume that �u(n) �= 0 and �v(n) �= 0, then we have either J (n)

12 = 0 or J (n)
21 = 0 in

the cases of one-way or no coupling. Consequently, the off-diagonal blocks of the
Jacobian matrix at the nth time step, J (n)

12 and J (n)
21 , or more specifically the norms

of the off-diagonal blocks at the nth time step, ‖J (n)
12 ‖ and ‖J (n)

21 ‖, may be able to be
used as a metric to determine the strength of the coupling between u and v at the nth
time step.

This metric can be extremely insightful in the case of an explicit statement of the
problem, i.e., if F1 and F2 are known, and the partial derivatives can be calculated.
However, this is not necessarily the case in practical applications. In these cases,
numerical approximations, such as finite differences, may be applied to approximate
the derivatives. The accuracy and cost of a finite difference approximation would
depend on the amount of information available about F1 and F2, but the approxi-
mation could potentially be computed using the residuals as described in [2]. Con-
sequently, the main downfall of this metric is the wealth of information required to
compute it exactly.

2.2 Condition Number of Diagonal Jacobian Blocks

We also observe that the condition number of the subproblems has an impact on
convergence. From (2), we find that the term J21 J

−1
11 F1 on the right-hand side may

greatly influence the solution. Let κ11 be the condition number of J11. If κ11 is large,
the inverse, J−1

11 , may not be computed or approximated accurately since

||J−1
11 || = κ11

||J11|| (3)
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Under the assumption κ11 is large, wemay expect large perturbation to the right-hand
side of (2). Therefore, the solution to the v subproblem depends on the condition
number of the first diagonal block of the u-problem Jacobian matrix. In fact, this
condition number is a coefficient on the current residual of the first subproblem. So,
the amount to which the first subproblem is not satisfied factors into the solution of
the second subproblem.

Consequently, if J21 is of sufficient size, the solution to (2) will mainly depend on
κ11. Similarly, the accuracy of the u subproblem will be a function of the condition
number of J22. Therefore, we can look into the condition number of both of the diag-
onal blocks of the Jacobian matrix and use the value in the worst of the subproblems
as another way to determine when the coupling is strong.

This metric works nicely for the cases where J21 or J12 is equal to the identity
matrix. But, for general forms of J21 or J12, the efficiency of this metric is not clear.
The factors of applicability and restrictions are still under exploration. Another thing
that is worth mentioning is the computation of the condition number. Based on the
definition in (3), this metric requires information about the inverse matrix, which
could be expensive to compute for large problems. Thus, if this metric proves to be
useful, approximations will be necessary to estimate the condition number.

2.3 Time Scales

Every physical phenomenon has a timescale at which it develops; consequently,
multiphysics applications can have multiple time scales occurring simultaneously.
Depending on how these scales interact with one another, the overall dynamic scale
of the system can change [4–6]. When the timescales of the physics involved in F1

and F2 have vastly different values (orders of magnitude different), then the dynamic
timescale and long-term behavior are fairly predictable; specifically, the dynamic
timescale is expected to be on the order of the smallest physical timescale involved
in the problem. However, in the case when component timescales approximately
balance, the dynamic timescale and long-term behavior are harder to predict. In
essence, the dynamic timescale (and overall end behavior) in this case is highly
dependent on the interaction of the physics in the system. Therefore, determining
at each time step if the timescales are comparable could be a possible metric to
determine how strongly the physics are coupled.

Developing a metric based on timescales could be very beneficial as it would be
computationally inexpensive. At the most, this metric would require some simple
finite difference evaluations to approximate the timescales above. However, as these
terms are already computed duringmost numerical solution processes, ametric based
on timescales could be evaluated by simply reusing already computed values. The
main downfall of a timescales metric is that there is no theoretical basis to support
the efficacy of such a metric.
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2.4 Error Matrix

In this section, we try to estimate the error between the fully coupled system and the
decoupled system for (1) in the sense of the L2 norm based on [2]. We restate the
weakly coupled algorithm from [2] in Algorithm 1 for the sake of completeness.

Algorithm 1: Weak coupled algorithm to solve the system by breaking the
coupling
Input: (u0, v0) and ε

for i = 1, 2, . . . , until |‖F1(ui−1, vi−1)‖ + ‖F2(ui−1, vi−1)‖| < ε do
Solve for u in F1(u, vi−1) = 0
ui ← u
Solve for v in F2(ui , v) = 0
vi ← v

end

As to the reference solution (i.e., the fully coupled solution) of (1), we solve with
a Newton iteration as stated in Section 2.1. Also, a Newton iteration is applied to
solve the subproblems in Algorithm 1. For clarity of presentation, we assume the
Newton iteration numbers solving for the first unknown and the second unknown are
the same in Algorithm 1.

Take (û0, v̂0) as the initial guess and û(l),v̂(l) as the lth iteration solution for solving
u, v in the decoupling subproblems, respectively. Then, theNewton iteration for those
two unknowns can be written as

[
J (l−1)
11 0
0 J (l−1)

22

] [
û(l) − û(l−1)

v̂(l) − v̂(l−1)

]
= −

[
F1(û(l−1), v̂0)
F2(û1, v̂(l−1))

]
. (4)

Here, û1 denotes the convergent solution for the first unknown u.
Reorganizing the linear system above by constructing the Newton iteration for

the coupled system, we see

[
J (l−1)
11 J (l−1)

12

J (l−1)
21 J (l−1)

22

] [
û(l) − û(l−1)

v̂(l) − v̂(l−1)

]
= −

[
F1(û(l−1), v̂(l−1))

F2(û(l−1), v̂(l−1))

]
+ Err , (5)

where

Err =
[

0 J (l−1)
12

J (l−1)
21 0

] [
û(l) − û(l−1)

v̂(l) − v̂(l−1)

]
+

[
F1(û(l−1), v̂(l−1)) − F1(û(l−1), v̂0)
F2(û(l−1), v̂(l−1)) − F2(û1, v̂(l−1))

]
. (6)

Now, we will estimate Err .
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Using a Taylor expansion, we have

F1(û
(l−1), v̂(l−1)) − F1(û

(l−1), v̂0) = J (l−1)
12 (v̂(l−1) − v̂0) + o(|v̂(l−1) − v̂0|),

and

F2(û
(l−1), v̂(l−1)) − F2(û

1, v̂(l−1)) = −J (l−1)
21 (û1 − ûl−1) + o(|û(l−1) − û1|).

Therefore,

Err =
[

0 J (l−1)
12

J (l−1)
21 0

] [
û(l) − û1

v̂(l) − v̂0

]
+

[
o(|v̂(l−1) − v̂0|)
o(|û(l−1) − û1|)

]
.

Substituting the result above into (5) yields,

[
J (l−1)
11 J (l−1)

12

J (l−1)
21 J (l−1)

22

][
û(l) − û(l−1)

v̂(l) − v̂(l−1)

]
= −

[
F1(û(l−1), v̂(l−1))

F2(û(l−1), v̂(l−1))

]
+

[
0 J (l−1)

12

J (l−1)
21 0

][
û(l) − û1

v̂(l) − v̂0

]

+
[
o(|v̂(l−1) − v̂0|)
o(|û(l−1) − û1|)

]
.

Denote the inverse of J =
[
J (l−1)
11 J (l−1)

12

J (l−1)
21 J (l−1)

22

]
as J−1. Then, we obtain,

[
û(l) − û(l−1)

v̂(l) − v̂(l−1)

]
= − J−1

[
F1(û(l−1), v̂(l−1))

F2(û(l−1), v̂(l−1))

]
+ J−1

[
0 J (l−1)

12

J (l−1)
21 0

] [
û(l) − û1

v̂(l) − v̂0

]

+ ||J−1||
[
o(|v̂(l−1) − v̂0|)
o(|û(l−1) − û1|)

]
.

Let L be the iteration number for both of the subproblems. Repeating the process
above for each iteration, we obtain

[
û(L)

v̂(L)

]
=

[
û0

v̂0

]
−

L−1∑
s=0

J−1
s

[
F1(û(s), v̂(s))

F2(û(s), v̂(s))

]
+

L−1∑
s=0

J−1
s

[
0 J (s)

12

J (s)
21 0

] [
û(s+1) − û1

v̂(s+1) − v̂0

]

+
L−1∑
s=0

||J−1
s ||

[
o(|v̂(s) − v̂0|)
o(|û(s) − û1|)

]
.

Here, J−1
s denotes the inverse of the Jacobian matrix at iteration s.

Note that the Newton iteration for the coupled system is

[
û(L)

v̂(L)

]
=

[
û0

v̂0

]
−

L−1∑
s=0

J−1
s

[
F1(û(s), v̂(s))

F2(û(s), v̂(s))

]
.
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Thus, necessary conditions for the decoupled solution to be close to the coupled

solution are that ||J−1|| is bounded and

∥∥∥∥J−1

[
0 J (l−1)

12

J (l−1)
21 0

]∥∥∥∥ is very small.

Remark 1 This result is consistent with Section 2.1. In that section, the off-diagonal
Jacobian blocks J12 and J21 are used as the indicator for a stronger coupling or a
weaker coupling.

As a result of this remark, we do not show any direct results with this metric.

3 Test System

We evaluate the strength of coupling metrics on a model diffusion–reaction system.
In 1D, the problem is written as

∂u

∂t
− d(t)

∂2u

∂x2
= f (u, t) x ∈ [x0, x1], t ∈ [t0, t1], (7)

u(x0, t) = a, (8)

u(x1, t) = b, (9)

u(x, t0) = u0(x). (10)

For the fully coupled model, we discretize in space with a finite difference method
and in time with Backward Euler. The discrete form is

un+1
j − unj

�t
− d(tn+1)

un+1
j+1 − 2un+1

j + un+1
j−1

�x2
= f (un+1

j , tn+1). (11)

This equation is equivalent to the system

Fj (u
n+1
j , un+1

j−1, u
n+1
j+1) = −d(tn+1)un+1

j−1 + (�x2/�t + 2d(tn+1))un+1
j

− �x2 f (un+1
j ) − d(tn+1)un+1

j+1 − �x2unj/�t = 0. (12)

We use Newton’s method to solve. The Jacobian matrix, J , is represented as {Ji j } ={
∂Fi
∂u j

}
. Using the finite difference spatial discretization with a uniform grid of m

discretization points and a backward Euler temporal discretization with N uniform
temporal discretization points, we obtain the tridiagonal matrix, J, as follows:
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Jj j = ∂Fj

∂u j
= �x2

�t
+ 2d(tn+1) − �x2

∂ f

∂u j
, (13)

Jj, j−1 = ∂Fj

∂u j−1
= −�x2d(tn+1), (14)

Jj−1, j = ∂Fj

∂u j+1
= −�x2d(tn+1), (15)

for 1 < j < m. When j = 1,

J11 = ∂F1

∂u1
= �x2

�t
+ d(tn+1) − �x2

∂ f

∂u1
, (16)

J12 = ∂F1

∂u2
= −d(tn+1), (17)

and when j = m

Jmm = ∂Fm

∂um
= �x2

�t
+ d(tn+1) − �x2

∂ f

∂um
, (18)

Jm,m−1 = ∂Fm

∂um−1
= −d(tn+1). (19)

Newton’s iterative method is then applied to obtain the solution u j at each time step.
Next, we rewrite the reaction–diffusion equation as a system of two equations by

introducing another variable v = f (u, t), that is,

F1(u, v, t) = ut − v − d(t)uxx , (20)

F2(u, v, t) = v − f (u, t). (21)

We obtain the fully discrete equations with similar settings as in the single
unknown case:

F1,1(u, v) = un+1
1 − un1

�t
− d(tn+1)(

un+1
2 − un+1

1

(�x)2
) − vn+1

1 = 0, (22)

F1,i (u, v) = un+1
i − uni

�t
− d(tn+1)(

un+1
i+1 − 2un+1

i + un+1
i−1

(�x)2
) − vn+1

i = 0 (23)

where 2 ≤ i ≤ m − 1,

F1,m(u, v) = un+1
m − unm

�t
− d(tn+1)(

un+1
m − un+1

m−1

(�x)2
) − vn+1

m = 0, (24)

F2, j (u, v) = f (tn+1, u
n+1
j − vn+1

j ) = 0, where 1 ≤ j ≤ m. (25)
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For the discrete system given in Section 2, we can look into the Jacobian blocks.
From the definitions given in Section 2.1, the partial derivatives are given for 1 <
i < m by

∂F1,i
∂ui

= 1

�t
+ 2d(tn+1)

(�x)2
,

∂F1,i
∂ui−1

= ∂F1,i
∂ui+1

= −d(tn+1)

(�x)2
,
∂F1,i
∂u j

= 0 ∀ j �= i, i − 1.

(26)
When i = 1,

∂F1,1

∂u1
= 1

�t
+ d(tn+1)

(�x)2
,

∂F1,1

∂u2
= −d(tn+1)

(�x)2
,

∂F1,1

∂u j
= 0 ∀ 3 ≤ j ≤ m. (27)

When i = m,

∂F1,m

∂um
= 1

�t
− d(tn+1)

(�x)2
,

∂F1,m

∂um−1
= d(tn+1)

(�x)2
,

∂F1,m

∂u j
= 0 ∀ 1 ≤ j ≤ m − 2.

(28)
For 1 ≤ i ≤ m

∂F1,i

∂vi
= −1,

∂F1,i

∂v j
= 0, ∀ i �= j, (29)

and
∂F2,i

∂vi
= −1,

∂F2,i

∂v j
= 0, ∀ i �= j, (30)

and
∂F2,i

∂ui
= ∂ f

∂ui
,

∂F2, j

∂u j
= 0, ∀ i �= j. (31)

Consequently, J12 and J22 are negative identity matrices. J11 is a symmetric tridiago-
nalmatrix. J21 is a diagonalmatrixwith nonzero elements from the partial derivatives
of f with respect to u.

For the split solve, we implement a commonly used splitting scheme to solve a
slightly modified problem:

∂u

∂t
− d(t)

∂2u

∂x2
= 0 (32)

∂u

∂t
= f (u, t). (33)

We again discretize in space with a finite difference method and backward Euler in
time, but this time we introduce a dummy variable v into the time discretization to
split the two equations in (32)-(33). We obtain the following split discrete form
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v j − unj
�t

− d(tn+1)
v j+1 − 2v j + v j−1

�x2
= 0 (34)

un+1
j − v j

�t
− f (un+1

j , tn+1) = 0 (35)

so that at the nth time step, we first solve (34) for v and then use it in (35) to solve
for un+1. Note that (34) is linear so only (35) requires a nonlinear solver. A standard
Newton iteration is utilized for this nonlinear solve. This is the decoupled solution
whose difference with the fully coupled solution is shown in plots below.

In this paper, we test ourmetrics on a series of specific problems comprising a sub-
set of the following options. The spatial and temporal domains are [x0, x1] = [0, 2π ]
and [t0, t1] = [0, 100] or [1, 100] if we use t raised to a negative power. We set
a = 0, b = 0, and u0(x) = sin x .We choose the forcing function as f (u, t) = cu ptr ,
c ∈ [10−9, 10−6, 10−3, 1, 103, 106, 109], p ∈ [−6,−3, 0, 1, 3, 6], r ∈ [−6,−3, 0,
1, 3, 6], and test functions for d, d(t) = 1, d(t) = t , d(t) = 2e−t , or, equivalently,
d(t) = ktnemt with (k, n,m) ∈ [(1, 0, 0), (1, 1, 0), (2, 0,−1)].

The spatial and temporal domains are divided into 62 and 1000 subintervals
respectively, i.e., �x ≈ 0.1 and �t = 0.1. The i th spatial point is x = i�x , and
the j th time step is t = j�t . Figures 1–11 show the solutions and the log of spa-
tially normalized differences between the coupled solutions (U (x, t)) and decoupled
solutions (u(x, t)) for a set of test cases on 1000 discrete time steps. For fixed time
t = tk , the difference diffk of the solutions from two schemes is calculated using the
�2-norm as below:

diffk = 1

2π
√
63

√√√√ 63∑
i=1

(U (xi , tk) − u(xi , tk))2. (36)

As this equation takes into account the difference between the coupled and decoupled
solutions at every spatial discretization point for each t , it is sufficient to capture
the overall behavior of the problem and the dynamic difference between the two
solutions.

We consider both linear and nonlinear cases for the reaction function, f . Cases
(a)–(e) consider reaction functions that are linear in terms of the solution u and are
shown in Figures 1–5. To provide greater complexity in our tests, we also consider
cases in which the reaction function is a nonlinear function of the solution. These
cases are shown in Figures 6–11. The difference between the coupled and decoupled
solutions gives an indication of the coupling strength change over time. The details
of the cases are listed below.
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Fig. 1 Solution and log of spatially normalized difference between coupled and decoupled solutions
for case (a): d(t) = 1 and f (u, t) = 10−6u0t6. (a) Solution at particular t-values for case (a). (b)
Log of spatially normalized difference for case (a).

Fig. 2 Solution and log of spatially normalized difference between coupled and decoupled solutions
for case (b): d(t) = 1 and f (u, t) = 10−6u1t3. (a) Solution at particular t-values for case (b). (b)
Log of spatially normalized difference for case (b).

Fig. 3 Solution and log of spatially normalized difference between coupled and decoupled solutions
for case (c): d(t) = t and f (u, t) = 100u1t3. (a) Solution at particular t-values for case (c). (b) Log
of spatially normalized difference for case (c).
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Fig. 4 Solution and log of spatially normalized difference between coupled and decoupled solutions
for case (d): d(t) = t and f (u, t) = 10−6u1t6. (a) Solution at particular t-values for case (d)Solution
at particular t-values for case (d). (b) Log of spatially normalized difference for case (d).

Fig. 5 Solution and log of spatially normalized difference between coupled and decoupled solutions
for case (e): d(t) = 2 exp(−t) and f (u, t) = 10−9u0t6. (a) Solution at particular t-values for case
(e). (b) Log of spatially normalized difference for case (e).

Fig. 6 Solution and log of spatially normalized difference between coupled and decoupled solutions
for case (f): d(t) = 1 and f (u, t) = 103u−1t−1. (a) Solution at particular t-values for case (f). (b)
Log of spatially normalized difference for case (f).
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Fig. 7 Solution and log of spatially normalized difference between coupled and decoupled solutions
for case (g): d(t) = 1 and f (u, t) = 106u−3t−1. (a) Solution at particular t-values for case (g). (b)
Log of spatially normalized difference for case (g).

Fig. 8 Solution and log of spatially normalized difference between coupled and decoupled solutions
for case (h): d(t) = t and f (u, t) = 10−3u−6t−1. (a) Solution at particular t-values for case (h).
(b) Log of spatially normalized difference for case (h).

Fig. 9 Solution and log of spatially normalized difference between coupled and decoupled solutions
for case (i): d(t) = 2 exp(−t) and f (u, t) = 100u3t6. (a) Solution at particular t-values for case
(i). (b) Log of spatially normalized difference for case (i).
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Fig. 10 Solution and log of spatially normalized difference between coupled and decoupled solu-
tions for case (j): d(t) = 2 exp(−t) and f (u, t) = 106u−6t3. (a) Solution at particular t-values for
case (j). (b) Log of spatially normalized difference for case (j).

Fig. 11 Solution and log of spatially normalized difference between coupled and decoupled solu-
tions for case (k): d(t) = 2 exp(−t) and f (u, t) = 100u3t0.

(a) d(t) = 1, p = 0, r = 6, c = 10−6,
(b) d(t) = 1, p = 1, r = 3, c = 10−6,
(c) d(t) = t , p = 1, r = 3, c = 100,
(d) d(t) = t , p = 1, r = 6, c = 10−6,
(e) d(t) = 2 exp(−t), p = 0, r = 6, c = 10−9,
(f) d(t) = 1, p = −1, r = −1, c = 103,
(g) d(t) = 1, p = −3, r = −1, c = 106,
(h) d(t) = t , p = −6, r = −1, c = 10−3,
(i) d(t) = 2 exp(−t), p = 3, r = 6, c = 100,
(j) d(t) = 2 exp(−t), p = −6, r = 3, c = 106, and
(k) d(t) = 2 exp(−t), p = 3, r = 0, c = 100.

In case (a), we observe that the difference between the solutions is increasing over
time, which shows that the coupling strength is getting stronger. Case (b) indicates
that coupling is becoming stronger when t ≤ 15 and remains relatively unchanged
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after t = 25. In case (b), the peak of log of the difference is 10−3, which means
the difference is sufficiently small. So, the decoupled method is fine to replace the
coupled method. In case (c), we note that between t = 1 and t = 2, a dramatic gap
appears, which means that after t = 2, the processes are tightly coupled. However,
for later times, the difference in solutions is smaller, indicating that the decoupled
method would be sufficient. In case (d), the error increases sharply before t ≤ 8 and
slowly afterward. The decoupled method is acceptable for all time. Case (e) indicates
that the physical processes are more tightly coupled for t ≥ 15, but generally, the
decoupled method could be used to substitute since the maximum difference is less
than 10−5.

The solutions and log of the difference between coupled and decoupled solutions
for the nonlinear cases are shown in Figures 6–11, respectively. In case (f), as shown
in Figure 6, the difference decreases gradually over time which indicates that the
coupling strength decreases with time. As shown in Figure 7(b), the difference in
solutions in case (g) increases drastically for small t-values, then decreases quickly
before increasing slightly, leveling out, and slowly decreasing for the rest of time;
this behavior shows that the coupling increases dramatically initially and thenmostly
decreases at varying speeds as time increases.

In case (h), as shown in Figure 8, the difference in solutions decreases quickly for a
short period of time before increasing slowly as time increases; this indicates that the
coupling decreases initially then increases slowly for the rest of time. In Figure 9(b),
we see for case (i) that although the difference increases for small time, it decreases
gradually as time increases which would indicate that the coupling decreases with
time after increases for a short period when t is small.

In case (j), shown in Figure 10, the difference decreases quickly for small t and
increases for the rest of time; this shows that the coupling decreases for small t before
increasing steadily. In the last case, as shown in Figure 11, the difference increases
for all time which indicates the coupling increases as time increases.

We have shown the solution profiles and the difference between coupled and
decoupled schemes from numerical experiments with both linear and nonlinear cases
for the reaction function.Theplots of logof difference interest us themost. From these
plots, it is easily observed how the coupling strength changes over time. Depending
on the test case, the decoupled scheme is applicable either for all time or for only some
certain ranges of time steps. In other words, the coupling strength highly depends on
the parameter scales and the form of d(t). The plots are important to determine the
effectiveness of each of the metrics and will be explained with more details in the
following sections.

4 Numerical Results

In this section, we detail numerical results on our test cases using the metrics pre-
sented in Section 2.
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4.1 Off-Diagonal Jacobian Blocks

From the partial derivatives of the discrete system for the reaction–diffusion problem
given in (26)–(31), we have

J12 =

⎡
⎢⎢⎢⎣

−1 0 · · · 0
0 −1 · · · 0

0 · · · . . . 0
0 · · · 0 −1

⎤
⎥⎥⎥⎦ = −In (37)

and

J21 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ f
∂u1

∣∣∣
tn ,un

0 · · · 0

0 ∂ f
∂u2

∣∣∣
tn ,un

· · · 0

0 · · · . . . 0

0 · · · 0 ∂ f
∂um

∣∣∣
tn ,un

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(38)

which seem to indicate that the diffusion physics is coupled to the reaction physics
constantly in time since ‖J12‖ = 1, but the coupling of the reaction physics to the
diffusion physics can be weaker or stronger (changing in time) depending on ‖J21‖.
Any matrix norm can be used to compute ‖J21‖ since any norm would show the
same overall behavior. For the results below, the 2-norm of J21 is used to compute
the values shown in the plots. Notice that since J21 is a diagonal matrix, the 2-norm
of J21 is equivalent to taking the largest element in the matrix. Since ‖J12‖ = 1 for
all cases of reaction and diffusion functions, we present only the results for ‖J21‖
below.

4.1.1 Linear Test Cases

The linear cases of f produce two types of results for ‖J21‖: either ‖J21‖ = 0 for all
time or ‖J21‖ depends on t but not on u.

For case (a) when d(t) = 1 and f (u, t) = 10−6t6, the reaction function is not
dependent on u. Consequently, ∂ f

∂ui
= 0 for all i so that ‖J21‖ = 0 for all time (figure

omitted). Using this ‖J21‖ as a strength of coupling metric implies that there is
no coupling of the reaction physics to the diffusion physics. As we always have
‖J12‖ = 1, then there is at least a constant coupling of the diffusion physics to the
reaction physics indicated by this metric. However, in this case, the metric does not
suggest an increase in coupling with time as is indicated by the log difference in
Figure 1. If we take into account the solution behavior in this case shown in Figure
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Fig. 12 Norm of J21 block
over time for case (b):
d(t) = 1 and
f (u, t) = 10−6ut3.

1(a) by considering a relative difference, the relative difference would still increase
with time which is not matched by the off-diagonal Jacobian blocks metric.

In case (b) when d(t) = 1 and f (u, t) = 10−6ut3, we have ∂ f
∂ui

= 10−6t3 for all
i . Then, ‖J21‖ varies with time as given in Figure 12. In this case, ‖J21‖ is not
dependent on u so the results are the same whether the fully coupled or weakly
coupled solution method is used. The behavior shown in Figure 12 would imply
an increase in the coupling over time which is contrary to the constant coupling
following initial changes indicated by the log difference plot in Figure 2. Considering
the solution behavior shown in Figure 2(a) along with the log difference behavior,
the relative difference would be larger than the log difference shown in Figure 2 since
the solution approaches a zero equilibrium. Although the relative difference would
still be constant long term, the larger magnitude matches up somewhat better with
the metric results; however, the metric still implies continually increasing coupling
which does not match up with the log difference or relative difference indications.

For case (c) when d(t) = t and f (u, t) = ut3, then ∂ f
∂ui

= t3 for all i . Again,
the reaction function has changed from the previous two cases by only a constant
factor. The diffusion function d has also changed in this casewhich results in different
solutions. However since the diffusion function does not affect this metric, the metric
behavior in this case is the same as the previous two cases with the only difference
being the magnitude of the values. Consequently, the plot of ‖J21‖ is again omitted.
The results shown in Figure 3 indicate a decrease in coupling for large t which is
contrary to the metric results in this case. If we also consider the solution behavior
shown in Figure 3(a), the relative difference would increase in magnitude, but still
have a large increase for small t followed by a decrease over time. Consequently, the
off-diagonal Jacobian blocks metric does not provide good predictions in this case.

With case (d), d(t) = t and f (u, t) = 10−6ut6 so ∂ f
∂ui

= 10−6t6 for all i , so ‖J21‖
depends on time (see Figure 13). ‖J21‖ does not depend on u so the results are the
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Fig. 13 Norm of J21 block
over time for case (d):
d(t) = t and
f (u, t) = 10−6ut6.

same whether the fully coupled or weakly coupled solution method is used. The
values for ‖J21‖ seem to indicate an increase in coupling over time. Although this
indication matches up somewhat with initial coupling changes implied by Figure 4,
the long-term decrease in coupling is not predicted by this metric. If we take into
consideration the solution behavior shown in Figure 4(a), the relative difference
would indicate somewhat increased coupling overall since the solution approaches
equilibrium at zero. Nonetheless, the long-term behavior would still indicate a slow
decrease in couplingwhich is not indicated by the off-diagonal Newton blocksmetric
in this case.

For the last linear case (e), when d(t) = 2e−t and f (u, t) = 10−9t6, the reaction
function is not dependent on u, so the results are the same as case (a). Consequently,
figures are omitted. Just as in that case, the only coupling indicated by this metric is
the constant coupling of the diffusion physics to the reaction physics. This constant
coupling does match up with the long-term coupling behavior shown in Figure 5, but
it does not capture any of the initial increases in coupling. Ifwe take into consideration
the solution behavior shown in Figure 5(a), the relative difference would increase
with time nearly linearly because of the increase in the solution values. Consequently,
if we consider the relative difference as an indication of the coupling, then the off-
diagonal Jacobian metric does not produce good predictions in this case.

4.1.2 Nonlinear Test Cases

The nonlinear cases for f produce remarkably different results for ‖J21‖ from the
linear cases since ∂ f

∂u is now a function of the solution u. Because of this dependence
on u, these cases produce different results depending on which solution is used, that
is, the solution obtained using the fully coupled discretization scheme or the solution
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obtained using the split scheme. Therefore, results obtained using both the coupled
solution and the split solution are provided for each case.

This dependence on u also produces some instabilities in the metric computation.
Since many of the nonlinear cases have u raised to a negative power, instabilities
in the metric computation arise when u is equal to or close to 0. To resolve this
issue, ∂ f

∂u is computed at each time step only at the spatial values for which u was
larger than some given tolerance. In the results shown below, we use a value of
10−3 for the tolerance to resolve nearly all of the instability arising from a solution
close to zero while still preserving the overall behavior of the metric. Occasionally,
some instability still arises when using the solution obtained from the split scheme;
however, this only appears for small t values when t is also raised to a negative
power. In these cases, in order to see the long-term behavior of the metric, the values
of ‖J21‖ are plotted omitting the first few time steps; the specific number of time
steps omitted varies depending on the case, but the maximum number of time steps
omitted for all the test cases is 17.

For case (f) when d(t) = 1 and f (u, t) = 103u−1t−1, ∂ f
∂u = −103u−2t−1 so

‖J21|| depends on both the solution u and t . The values of ‖J21‖ over time are
given in Figure 14(a) contains the results obtained using the coupled solution, while
Figure 14(b) uses the split solution. The metric values obtained using the coupled
solution appear to increase linearly in time. However, the values obtained from the
split solution increase quickly at first until essentially plateauing at amagnitude of 10.
Although the rates of increase are different, the values of ‖J21‖ from both solutions
indicate an increase in coupling over time, yet the log difference values in Figure 6(b)
indicate the opposite behavior with a decrease in coupling. If we also consider the
solution behavior shown in Figure 6(a), the solution decreases to equilibrium at zero
faster than the log difference decreases which results in a very slow increase in the
relative difference. If we consider the relative difference as an indication of the cou-
pling, then the off-diagonal Jacobian blocks metric produces better predictions in
this case.

Fig. 14 Norm of J21 block over time for case (f): d(t) = 1 and f (u, t) = 103u−1t−1. (a) Using
solution result from coupled scheme. (b) Using solution result from split scheme.
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Fig. 15 Norm of J21 block over time for case (g): d(t) = 1 and f (u, t) = 106u−3t−1 (a) Using
solution result from coupled scheme. (b) Using solution result from split scheme.

With case (g) when d(t)=1 and f (u, t)=106u−3t−1, then ∂ f
∂u = −3 · 106u−4t−1.

The values of ‖J21‖ using both the coupled and split solution are shown in Figure
15. The same overall behavior as the previous case is shown for both the results
using the coupled solution in Figure 15(a) and the results using the split solution
in Figure 15(b), although the magnitudes are larger in both. Again, these metric
results suggest an increase in coupling with time. In this case, these results match up
fairly well for small t with the coupling indicated by Figure 7(b), but the long-term
slow decrease in coupling is not shown by these metric results. If we consider the
relative difference instead by incorporating the solution behavior shown in Figure
7(a), then increased coupling over time is indicated since the solution decreases to 0
over time resulting in an increasing relative difference. Again, this metric produces
more accurate predictions if the solution behavior is incorporated into the evaluation.

With case (h) when d(t) = t and f (u, t) = 10−3u−6t−1, we see that ∂ f
∂u = −6 ·

10−3u−7t−1 which gives values of ‖J21‖ shown in Figure 16. Again, we see the same
overall behavior as the previous two cases with larger magnitudes than the first cases.
Although using the coupled solution (Figure 16(a)) gives the samemagnitudes as the
coupled solution in the previous case (Figure 15(a)), the split solution (Figure 16(b))
gives even large magnitudes than previous cases, and the plateau is more gradual.
The long-term increase in coupling shown in Figure 8(b) correlates fairly well with
the increase in coupling indicated by these metric results in this case; however, none
of the details, such as the initial decrease in coupling or the very slow increase,
are captured by the values of ‖J21‖ here. Even if we take into account the solution
behavior shown in Figure 8(a), the relative difference behaves similarly to the log
difference plot except the magnitudes over all are larger and the increase over time
is faster since the solution decreases to zero. Consequently, the metric results still do
not make the correct predictions.

When we consider case (i) with d(t) = 2 exp(−t) and f (u, t) = u3t6, we obtain
∂ f
∂u = 3u2t6 which produces results shown in Figure 28. Due to oscillations in the
solution obtained from the split scheme for small t , the values of ‖J21‖ obtained using
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Fig. 16 Norm of J21 block over time for case (h): d(t) = t and f (u, t) = 10−3u−6t−1 (a) Using
solution result from coupled scheme. (b) Using solution result from split scheme.

the split solution have large erratic spikes for small t before becoming identically
zero just before t = 20. Although this behavior is caused by oscillations in the split
solution, it matches up better with the long-term coupling behavior indicated by the
log difference plot for this case in Figure 9(b). If we incorporate the solution behavior
shown in Figure 9(a), the decrease in the solution is approximately the same rate as
the decrease in the difference resulting in the relative difference being constant for
large time after a large spike at first. Again, this matches up better with the behavior
indicated by the metric results from the split solution but does not coincide at all
with the results from the coupled solution.

With case (j) when d(t) = 2 exp(−t) and f (u, t) = 106u−6t3, we see the usual
linear increase in ‖J21|| using the coupled solution (Figure 18(a)) and a return to the
usual increase to a plateau in ‖J21|| using the split solution (Figure 18(b)). Themetric
results for this case correspond to the coupling behavior indicated by the log differ-
ence plot in Figure 10(b) better than in any other case, especially when one considers
that the ‖J21‖ values were computed using the split solution. Considering the solu-
tion behavior shown in Figure 10(a), the relative difference behavior is similar to the
log difference behavior although with smaller magnitudes because of the increase in
the solution. Consequently, the off-diagonal Jacobian blocks metric produces good
predictions when considering the relative difference as well (Figure17).

The last nonlinear case (k), when d(t) = 2 exp(−t) and f (u, t) = u3, we have
∂ f
∂u = 3u2. The behavior for ‖J21‖ using the coupled solution is the same as all the
other nonlinear cases, but the behavior using the split solution is drastically different.
The splitting scheme in this case causes the split solution to be drastically different
from the coupled solution which is evidenced by the log difference behavior and
magnitude in Figure 11(b). This drastic difference in turn causes the difference in
the two ‖J21|| behaviors shown in Figure 19. In this case, the ‖J21‖ values exhibited
in Figure 19(a) better match the coupling strength evidenced by the log difference
behavior than the ‖J21‖ values shown in Figure 19(b). If we consider the solution
behavior shown in Figure 11(a), the relative difference is large initially since the
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Fig. 17 Norm of J21 block over time for case (i): d(t) = 2 exp(−t) and f (u, t) = u3t6. (a) Using
solution result from coupled scheme. (b) Using solution result from split scheme.

Fig. 18 Norm of J21 block over time for case (j): d(t) = 2 exp(−t) and f (u, t) = 106u−6t3. (a)
Using solution result from coupled scheme. (b) Using solution result from split scheme.

Fig. 19 Norm of J21 block over time for case (k): d(t) = 2 exp(−t) and f (u, t) = u3. (a) Using
solution result from coupled scheme. (b) Using solution result from split scheme.
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solution starts near zero and then decreases slowly as time increases because the
magnitude of the solution increases as time increases. Consequently, the off-diagonal
Jacobian metric results obtained using the split solution matches up better if we
incorporate the solution behavior into the comparison, although neithermetric results
match up perfectly when comparing to a relative difference.

4.1.3 Summary

In nearly all the cases, linear and nonlinear, the ‖J21‖ metric continuously increases
over time although the rates of the increases change somewhat depending on the
case or whether the split or coupled solution is considered. Sometimes, the behav-
ior exhibited by this metric matches up with the coupling strengths indicated by
corresponding log difference plots, but other times, the behavior is nearly opposite.
Generally, the metric predictions match up better with coupling behavior indicated
by a relative difference obtained by incorporating solution behavior. One case shows
a good match between the metric results and both the log difference and relative
difference results. More often than not, this metric gives poor results for predicting
coupling in the problems considered although the results are somewhat better if a
relative difference is used for comparison.

4.2 Condition Number of Diagonal Jacobian Blocks

Next, we test the metric discussed in Section 2.2. For the reaction diffusion problem,
we mainly focus on the condition number J11 as described in (3). The results shown
are computed using the decoupled solution.

4.2.1 Linear Test Cases

From Section 3, we observe that when d(t) = 1, the condition number of J11 will
be constant. For cases (a)–(b), this metric is constant (figures omitted) and does not
provide sufficient information to determine the coupling strength nor the change of
the coupling strength.

When d(t) = t , in case (c), this metric does provide some evidence that the cou-
pling is stronger over time before t = 2. The condition number of J11 reaches 101.8,
which indicates the split method is acceptable. However, it fails to capture the sharp
change around t = 2. From Figure 3, we see that when t = 2.5, the difference
between the two solutions is larger than 105, but this information is not observed
in Figure 20. In case (d), this metric shows the trend of coupling strength change
between t = 0 and t = 10. Since the condition number increases quickly, this metric
corresponds nicely with the observations from Figure 4. However, since the con-
dition number is approaching 103 after t ≥ 40, the metric indicates the decoupled
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Fig. 20 Condition number
of J11 for case (c): d(t) = t
and f (u, t) = 100u1t3.

method is not working in this case. This conclusion is opposite from what we see
in Figure 4(b), where the split method is acceptable for all time. For case (e), the
condition number is decreasing over time, which is opposite to the trend of the solu-
tion difference change as shown in Figure 5, but due to the relatively small value
of condition number of J11, the split method is still considered to work which also
corresponds to the conclusions of Figure 5.

For the linear tests, we conclude that the condition number of J11 successfully
predicts the coupling strength over time in case (e). For case (c), the results from this
metric show that it fails to predict the sharp change of coupling strength. The result
for case (d) predicts the opposite conclusion to the true solution. Last, when d(t)
is the constant 1, the condition number is a constant which cannot provide enough
information to determine any change of the coupling strength, as in cases (a)–(b)
(Figures21 and 22).

4.2.2 Nonlinear Test Cases

We observe that when d(t) = 1, the condition number of J11 remains unchanged
as seen in the linear test cases (figures for cases (f) and (g) omitted). Again, the
condition number cannot help to determine the coupling strength. When d(t) = t for
test case (h), we see from Figure 8 that the solution differences decrease sharply at
first and then level off. The results of themetric when t < 10 coincidewith these facts
as shown in Figure 23 where the maximum condition number of J11 also increases
sharply at first and then levels off. But it fails to indicate the correct choice when
t > 10. In case (i), thismetric shows the trend of coupling strength decreasing as time
increases which matches the result from Figure 9 after t ≥ 2, but this metric again
fails to predict the sharp change before t = 2. In cases (j) and (k) shown in Figures
25 and 26, the condition numbers fall sharply before t = 5 and remain unchanged
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Fig. 21 Condition number
of J11 for case (d): d(t) = t
and f (u, t) = 10−6u1t6.

Fig. 22 Condition number
of J11 for case (e):
d(t) = 2e−t and
f (u, t) = 10−9u0t6.

to around 1 afterward which may suggest a weaker coupling for t ≥ 5. In these
two cases, the condition number suggests the use of the split method after t = 5.
However, Figures 10–11 show that the coupling is getting stronger for t ≤ 5, and the
solution differences are more than 101.5 for almost all times. The metric gives the
incorrect indication of the choice of decoupling method as well as the opposite trend
of coupling strength change (Figure24).

4.2.3 Summary

From the above tests, we find that the condition number of J11 has successfully
predicted the acceptance of a decoupled solution in case (e). For test cases (c), (d),
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Fig. 23 Condition number
of J11 for case (h): d(t) = t
and f (u, t) = 10−3u−6t−1.

Fig. 24 Condition number
of J11 for case (i):
d(t) = 2e−t and
f (u, t) = 100u3t6.

and (h), it gives partially correct indications for the beginning part and fails to predict
the change of coupling strength for later times. For test case (i), it provides correct
indication for later time steps. For test cases (j) and (k), this metric provides a totally
opposite prediction to the feasibility of split methods as well as the coupling strength
change. When d(t) = 1 as in cases (a)–(b) and (f)–(g), the condition numbers are
constant; thus, this metric cannot provide sufficient information to understand the
coupled processes.

As a summary, thismetric works fine to suggest the feasibility of split method only
in some certain test cases. It may predict the correct choice for part of the simulation.
There are also cases where this metric gives opposite conclusion. For example, when
d(t) is a constant, the condition number stays the same and fails to provide any
information. More often than not, this metric does not give good results to determine
whether to take split scheme or not with consideration to the total simulation time.
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Fig. 25 Condition number
of J11 for case (j):
d(t) = 2e−t and
f (u, t) = 106u−6t3.

Fig. 26 Condition number
of J11 for case (k):
d(t) = 2e−t and
f (u, t) = 100u3t0.

On the other hand, as we can see in the log of difference plots, there may be sharp
changes which will never be seen in the curves of condition number. This means
that the condition number metric is unable to indicate the coupling strength change
either.

4.3 Time scales

The timescales for the diffusion and reaction operators in the diffusion–reaction
equation can be computed using a simple dimensional argument as in [4, 6]. Similar
to [4], we will again define the characteristic timescales as the absolute values of the
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operator timescales. Then, we have the following characteristic timescales for the
reaction–diffusion equation given in (7):

Characteristic Diffusion Timescale:τd =
∣∣∣∣d(t)uxx

u

∣∣∣∣
−1

=
∣∣∣∣ u

d(t)uxx

∣∣∣∣,

Characteristic Reaction Timescale:τ f =
∣∣∣∣ fu

∣∣∣∣
−1

=
∣∣∣∣ uf

∣∣∣∣,

Characteristic Dynamic Timescale:τdyn =
∣∣∣∣1u

∂u

∂t

∣∣∣∣
−1

.

According to Ropp, Shadid, and Ober [6], if the reaction timescale is orders of
magnitude smaller than the diffusion time scale (i.e., τ f << τd ), then the dynamic
timescale is approximately the same as the reaction timescale (i.e., τdyn ≈ τ f ). On
the other hand, if the diffusion timescale is much smaller than the reaction timescale
(i.e., τd << τ f ), then the dynamic timescale is now on the order of the diffusion
timescale (i.e., τdyn ≈ τd ). In other words, if one of the timescales is much smaller
than the other, then the dynamic timescale is expected to be on the order of the smaller
one.

However in the case when the diffusion and reaction timescales are on the same
order (i.e., τd ≈ τ f ), then the dynamic timescale can be drastically different, some-
times even much larger than either τd or τ f (see [6] for details of timescale analysis).
In essence, the dynamic timescale (and overall end behavior) in this case is highly
dependent on the interaction of the diffusion and reaction physics. This may mean
that the timescales being on the samemagnitude indicates a higher coupling between
the two physics.

To compute the diffusion and reaction timescales at a certain time, finite differ-
ence approximations are computed for every spatial discretization point. To find an
approximate timescale at a certain time step, the finite difference approximations
are averaged/normed over all the spatial discretization points. The approximate time
scale values vary sometimes depending on the averaging/normchosen.Consequently,
three different approaches are used to compute the time scales at each time step:

• The maximum value given by the finite difference approximation over all spatial
discretization points.

• The average value over all spatial discretization points.
• The 2-norm value over all spatial discretization points.

To determine whether the reaction and diffusion timescales are on the same mag-
nitude at a certain time t = tn , the base ten logarithm of the quotient of the two

timescales, i.e., log
(

|τd |n
|τ f |n

)
, is computed where the magnitude notation | · | represents

any of the three approaches described in the previous paragraph and the subscript
n denotes the value obtained by using the solution computed at t = tn . If this value
is “close” to 0 (or even simply less than 1 in magnitude), then the two timescales
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are “approximately” the same. Since the dynamic timescale depends much on the
comparison of the two timescales, the logarithm values may give insight into the

coupling of the problem. Plots of log
(

τd
τ f

)
over time for the test cases described in

Section 3 are provided below in the order that the cases are listed in Section 3.
Since this metric involves many divisions, there is great potential for instability

in the computations if the value in the denominator is ever zero or close to zero. We
use two methods to deal with this issue.

The first method simply ignores all the spatial discretization points at which the
denominator is less than a certain tolerance when computing a quotient before the
magnitude of τ f and τd are obtained; that is, the necessary quotient is computed
only at spatial discretization points for which the denominator is greater than a set
tolerance. The final quotient |τd |n

|τ f |n , which no longer involves spatial discretization
points, sets small values in τ f (those less than the tolerance) to be equal to the
tolerance and computes the quotient at all time values; this last quotient does not
simply ignore the values for which the denominator is too small as is done in the
previously computed quotients because we wish to obtain a metric value at every
time step. We refer to this method as the reduction method.

The second method deals with all quotients the same way: It sets small values in
the denominator (those less than a given tolerance) to be equal to the given tolerance
value. We refer to this method as the reset method.

The value for the tolerance in each case is chosen to be large enough to allow the
metric to be computed at more time steps, but small enough to not change the overall
behavior of the metric. Even with these stabilizing techniques, occasional spikes in

the values of log
(

τd
τ f

)
are unavoidable without changing the overall behavior of the

metric.

4.3.1 Linear Test Problems

The results from the linear test cases fall into three general categories. The first and
most common category is an almost asymptotic behavior in which the metric values
increase continuously over time. The second category is similar to the first in that the
values increase over time, but the values plateau muchmore than in the first category.
The third category increases for all time also, but the increase is basically linear in
time.

For case (a) when d(t) = 1 and f (u, t) = 10−6t6, no stabilization is needed to
produce the results shown in Figure 27. The results using the coupled solution and
the split solution are nearly identical except for a few minor instabilities for small
t in the metric using the split solution. Both results have a sharp initial increase
followed by a near plateau around one although the values do continue increasing
very slowly. The results indicate a sharp increase in coupling for a short period of
time and then a very slow decrease in coupling as time progresses. This indication
matches up fairly well with the log difference results in Figure 1 although that plot
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Fig. 27 Plots of log
(

τd
τ f

)
over time for case (a): d(t) = 1 and f (u, t) = 10−6t6. (a) Using coupled

solution. (b) Using split solution.

Fig. 28 Plots of log
(

τd
τ f

)
over time for case (b): d(t) = 1 and f (u, t) = 10−6ut3. (a) Using

coupled solution. (b) Using split solution.

indicates an increase in coupling for all time. If we take into account the solution
behavior in this case shown in Figure 1(a) by considering a relative difference, the
results match up better since the relative difference would increase slower because
the solution increases also as time increases.

When we consider case (b) with d(t) = 1 and f (u, t) = 10−6ut3, stabilization
is required for both cases shown in Figure 28. We use the reduction method for
both the coupled solution and the split solution with the tolerance set to 1e-325.
Essentially, this tolerance omits only values identically 0 which allows for the split
solution to produce metric results for the largest t interval. Ignoring the instabilities
in the results from the split solution, the metric results for both the cases have the
same overall behavior, asymptotically approaching a value slightly larger than zero.
These results indicate a steady increase in coupling for all time approaching a very
strong coupling with larger t ; this prediction initially matches up with the coupling
implications of the log difference plot in Figure 2 but does not coincide with the
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Fig. 29 Plots of log
(

τd
τ f

)
over time for case (c): d(t) = t and f (u, t) = ut3. (a) Using coupled

solution. (b) Using split solution.

constant coupling that occurs shortly after t = 20. Considering the solution behavior
shown in Figure 2(a) along with the log difference behavior, the relative differ-
ence would be larger than the log difference shown in Figure 2 since the solution
approaches a zero equilibrium. Although the relative difference would still be con-
stant long term, the larger magnitude implies a stronger coupling than is illustrated
by the log difference plot. Consequently, the timescales metric results coincide well
with the coupling indicated by the difference and solution behaviors.

With case (c) when d(t) = t and f (u, t) = ut3, we again employ the reduction
method with a tolerance of 1e-325 to produce metric results using both the coupled
solution and the split solution. In this case, there are instabilities still evident in
both the coupled solution and split solution results shown in Figure 29. The overall
behavior shows an asymptotic increase in both cases to a value around four. Since
the metric initially has values with magnitude less than one and increases to values
farther away from zero, it indicates a strong initial coupling followed by a decrease
in coupling with time. This matches fairly well with the log difference results shown
in Figure 3 since the values in that plot initially increase for small t and then decrease
with time. If we also consider the solution behavior shown in Figure 3(a), the relative
difference would increase in magnitude, but still have a large increase for small t
followed by a decrease over time.

For case (d) d(t) = t and f (u, t) = 10−6ut6, stabilization is used for both results
shown in Figure 30. The reduction method with a tolerance of 1e-325 is used
again. Ignoring the instabilities, the behavior shows an asymptotic increase to a
value slightly above four. This behavior suggests an initial increase in coupling
that decreases with time. The prediction in this case matches up somewhat with the
indication of the log difference plot in Figure 4; however, the long-term coupling pre-
diction does not coincide. If we take into consideration the solution behavior shown
in Figure 4(a), the relative difference would indicate somewhat increased coupling
overall since the solution approaches equilibrium at zero. Nonetheless, the long-term
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Fig. 30 Plots of log
(

τd
τ f

)
over time for case (d): d(t) = t and f (u, t) = 10−6ut6. (a)Using coupled

solution. (b) Using split solution.

Fig. 31 Plots of log
(

τd
τ f

)
over time for case (e): d(t) = 2 exp(−t) and f (u, t) = 10−9t6. (a) Using

coupled solution. (b) Using split solution.

behavior would still indicate a nearly constant coupling which is not fully indicated
by the timescales metric in this case.

With case (e) when d(t) = 2 exp(−t) and f (u, t) = 10−9t6, no stabilization is

used to produce the plots shown in Figure 31. In this case, the values of log
(

τd
τ f

)
start closer to 0 and increase linearly as t grows. These results indicate a very strong
initial coupling that decreases linearly with time. Contrary to this, Figure 5 indicates
an initial increase in coupling that levels out to a constant level of coupling long term.
Even if we take into consideration the solution behavior shown in Figure 5(a), the
relative difference would still increase with time, albeit at a slower rate, reinforcing
the indication of increased coupling over time.
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Fig. 32 Plots of log
(

τd
τ f

)
over time for case (f): d(t) = 1 and f (u, t) = 103u−1t−1. (a) Using

solution result from coupled scheme. (b) Using solution result from split scheme.

4.3.2 Nonlinear Test Cases

The nonlinear test cases essentially fall into the same three categories as we see
with the linear test cases. Much of the differences, e.g., the sharp initial decrease in
coupled solution results and the initial spikes in the split solution results, are most
likely due to instabilities in the calculations. The most notable difference is in the
fact that very few of the nonlinear cases require stabilization; more specifically, only
the two cases which use a positive power of u require stabilization to produce the
results.

For case (f) when d(t) = 1 and f (u, t) = 103u−1t−1, the results are obtained
without any stabilization and are shown in Figure 32. Except for the instabilities in
the split solution results, the overall behavior is the same in both, starting near zero
and increasing asymptotically to a value slightly above two in the case using the
coupled solution and around 2.25 in the case using the split solution. This seems
to indicate a strong initial coupling that decreases with time which matches up very
well with the coupling indicated by the log difference plot in Figure 6(b). However, if
we also consider the solution behavior shown in Figure 6(a), the solution decreases
to equilibrium at zero faster than the log difference decreases which results in a
very slow increase in the relative difference. If we consider the relative difference
as an indication of the coupling, then the timescales metric does not produce good
predictions in this case.

Figure 33 shows the results for case (g) when d(t) = 1 and f (u, t) = 106u−3t−1;
no stabilization is used in this case. The overall behavior in both plots is similar
to the previous case with the asymptotic increase now approaching a value slightly
above 2.5 in the case using the split solution. This again indicates a strong initial
coupling decreasing as time progresses. However in this case, the indicated coupling
does not fully match up with the implications from Figure 7(b) which indicates an
initial increase followed by a very slow decrease in coupling. If we consider the rel-
ative difference instead by incorporating the solution behavior shown in Figure 7(a),
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Fig. 33 Plots of log
(

τd
τ f

)
over time for case (g): d(t) = 1 and f (u, t) = 106u−3t−1. (a) Using

solution result from coupled scheme. (b) Using solution result from split scheme.

Fig. 34 Plots of log
(

τd
τ f

)
over time for case (h): d(t) = t and f (u, t) = 10−3u−6t−1. (a) Using

solution result from coupled scheme. (b) Using solution result from split scheme.

then increased coupling over time is indicated since the solution decreases to 0 over
time resulting in an increasing relative difference. Consequently for this case, the
timescales metric indications do coincide with the relative difference results even
though they do not match up with the log difference results.

With case (h) when d(t) = t and f (u, t) = 10−3u−6t−1, no stabilization is used to
produce the results shown in Figure 34. In this case, the long-term behavior plateaus
at zero for the coupled case and just below one for the split case. Both cases indicate
strong coupling long-term. This behavior partially coincides with the corresponding
log difference plot in Figure 8(b) since the values increase as time progresses; how-
ever, the coupling implied by the results in Figure 8(b) initially decreases and does
not grow to be exceptionally strong in the time considered. If we incorporate the
solution behavior shown in Figure 8(a), then the relative difference behaves similar
to the log difference except the magnitudes over all are larger and the increase over
time is faster since the solution decreases to zero. The coupling indications from
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Fig. 35 Plots of log
(

τd
τ f

)
over time for case (i): d(t) = 2 exp(−t) and f (u, t) = u3t6. (a) Using

solution result from coupled scheme. (b) Using solution result from split scheme.

the relative difference correspond to the time scales metric results in this case even
better.

When we consider case (i) with d(t) = 2 exp(−t) and f (u, t) = u3t6, we must
utilize a different stabilization technique for each solution result. When using the
coupled solution, the best results are obtained with the reset method and a tolerance
of 1e-64 (see Figure 35(a)), while the best results when using the split solution are
obtained with the reduction method and a tolerance of 1e-325 (see Figure 35(b)). For
this case, the results using each solution are remarkably different from each other,
but the same long-term coupling behavior is predicted by both. The results using the
coupled solution start near zero (ignoring instabilities) and increase constantly away
from zero, while the results using the split solution stay near zero (again ignoring
instabilities) until almost t = 20 and then decrease almost linearly as time progresses.
Both behaviors indicate strong coupling initially and a decrease in coupling long-
term although the results using the split solution indicate strong coupling for a longer
period of time. A comparison of the log difference results in Figure 9(b) shows
similar end behavior for the coupling which should decrease as time increases. If we
incorporate the solution behavior shown in Figure 9(a), the decrease in the solution is
approximately the same rate as the decrease in the difference resulting in the relative
difference being constant for large time. Consequently for this case, themetric results
do not coincide with the relative difference indications although they do match up
with the log difference indications.

With case (j) when d(t) = 2 exp(−t) and f (u, t) = 106u−6t3, no stabilization is
required for either solution. Both plots in Figure 36 begin near zero and increase
linearly away from zero as time increases indicating strong initial coupling which
decreases with time. However, the opposite behavior is implied by the log difference
results in Figure 10(b) since those values increasewith time. Considering the solution
behavior shown in Figure 10(a), the relative difference behavior is similar to the log
difference behavior although with smaller magnitudes because of the increase in the
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Fig. 36 Plots of log
(

τd
τ f

)
over time for case (j): d(t) = 2 exp(−t) and f (u, t) = 106u−6t3. (a)

Using solution result from coupled scheme. (b) Using solution result from split scheme.

solution. Consequently, the timescales metric does not show good predictions in this
case.

The last nonlinear case (k), when d(t) = 2 exp(−t) and f (u, t) = u3, requires
stabilization for both the coupled and split results shown inFigure 37. Just aswith case
(i), the reset method with a tolerance of 1e-64 produces the best results when using
the coupled solution, and the reduction method with a tolerance of 1e-325 produces
the best results when using the split solution. Again, the different solutions produce
remarkably different results although the samecouplingbehavior is indicatedbyboth:
strong initial coupling that decreases with time. Just as with the previous case, the
predicted coupling behavior does not match up with the corresponding log difference
results (Figure 11(b)) which imply an increase in coupling as time progresses. If we
consider the solution behavior shown in Figure 11(a), the relative difference is large
initially since the solution starts near zero and then decreases slowly as time increases
because the magnitude of the solution increases as time increases. Consequently, the
time scales metric results match up better if we incorporate the solution behavior
into the comparison.

4.3.3 Summary

In summary, it is interesting to note that stabilization is required with this metric
for all cases when the power of u is greater than or equal to zero but not for any
cases when the power of u is less than or equal to zero. This may contribute to the
accuracy of the predictions with this metric since the predictions from those cases not
requiring any form of stabilization generally match up better with the log difference
implications, especially when considering the nonlinear test cases. The stabilization
method does not necessarily decrease the efficacy of the metric although that is a
possibility; it may simply be that this metric is not accurate for cases that produce
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Fig. 37 Plots of log
(

τd
τ f

)
over time for case (k): d(t) = 2 exp(−t) and f (u, t) = u3. (a) Using

solution result from coupled scheme. (b) Using solution result from split scheme.

a solution which requires a stabilization method to be used in conjunction with this
metric.

The timescales metric generally produces good predictions especially when con-
sidering the relative difference by incorporating the solution behavior although there
are a few cases in which this metric fails to predict the correct coupling. Additionally,
it is beneficial to see that the predictions made with coupled and split solutions match
up even when the exact values do not.

5 Conclusions

We have investigated a number of potential metrics to use in determining whether
the two physical components of a reaction–diffusion problem are coupled strongly.
Three metrics were based on information found in the Jacobian matrix one would
have through formulating the problem as a fully coupled system and solving with a
Newton iteration. The first metric was based on the sizes of off-diagonal blocks of
the Jacobian, and the second metric was based on the sizes of the diagonal blocks.
The third metric was based on an error estimate of the solution formed from applying
a Gauss–Seidel solution approach between the two system components. This error
estimate was shown to be related to the first metric. The first two metrics could
not be used for linear cases of the reaction function as they did not provide enough
information to predict any changes in coupling strength. In many instances, these
metrics did capture changes in coupling for more complex problems, although they
were not consistently correct and even on occasion predicted the opposite trend of
what was happening in the problem.

Despite these failings, the derivation of the first metric shows its relation to the
nonlinear residuals of the problem subcomponents, and it is natural to consider this
first metric as a part of a new metric that also uses the residual information. Future
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work will explore this idea in more detail. Overall, the metrics derived from the
Jacobian matrix of the decoupled scheme seem less able to capture the coupling
strengths in comparison with the timescales metric. The smoothness of these metrics
may contribute to their failing to predict sharp coupling changes. For future study,
we suggest investigating metrics derived not only from the Jacobian matrix but also
from different sources.

The last metric considered was based on timescales of the component subprob-
lems. Here, the timescales were each calculated, and the log of the ratio was inves-
tigated as a means to determine when the scales were close or far apart. This metric
generally was better than the first in predicting coupling strength, but it also was not
always correct. Again, there are other natural considerations for a metric like this to
consider in future investigations, such as looking at differences rather than ratios or
formulating a metric in terms of the difference between subproblem timescales and
the dynamic timescale of the full problem.

Themetric results shown in this paper are quitemixed in their couplingpredictions.
The metrics used here were many times approximated because of computational
restrictions or for efficiency. These approximations may be one reason why they
produce inaccurate results in some cases. In addition, the simplicity of the test cases
may have resulted in some of the weak performance of the metrics. Generally as
the complexity and nonlinearity of the test cases considered in this work increase,
we see better performance of the metrics. In the linear cases, many of the metrics
produced erroneous coupling predictions because of the simplicity of the diffusion
function. Hence for future studies, the metrics should be tested with more complex
cases, such as nonlinear diffusion–reaction and nonlinear advection–diffusion and
greater spatial dimensions, to more completely evaluate their effectiveness.

Ultimately, we wish to construct a metric that is cheap to compute and can deter-
minewhether a decoupled scheme can be used in order to decrease computation time.
Overall, the work in this paper reflects a step forward in developing algorithms that
will allow efficient solution of multiphysics problems by adapting to the coupling
strength of the components in the systems and solving individual problems when
coupling is weak and monolithic problems when the coupling is strong. Such algo-
rithms will become essential as computational scientists continue to move toward
more complex, coupled simulations on ever larger computing platforms.
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