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Abstract Exposure to maternal obesity and high-fat diet (HFD) consumption

during perinatal development impacts numerous aspects of offspring physiology

and behavior. Epidemiologic studies indicate that maternal obesity is associated

with increased risk for metabolic, mental health, and neurodevelopmental disor-

ders. As factors such as a shared environment and genetics could contribute to this

association, animal studies are critical. The use of nonhuman primates is particu-

larly important as they have a similar developmental timeline, physiology, and

behavior as humans. Evidence from animal models supports the findings from

human studies and indicates that maternal obesity induced by HFD consumption

impairs the development of many organ systems including the brain, pancreas,

liver, and cardiovascular system. These studies suggest that offspring are

predisposed to obesity due to hyperphagia, increased preference for fat and sugar,

and reductions in energy expenditure. Rodent and nonhuman primate offspring

exposed to maternal HFD consumption exhibit increased anxiety, impairments in

social behavior, and decreased cognitive performance. These observed behavioral

changes are though to be due to alterations in the development of neural circuitry

critical in behavioral regulation such as the serotonin, dopamine, and melanocortin

systems and increased activity of the hypothalamic–pituitary axis. Mechanisms for

these developmental changes include alternations in maternal behavior due to HFD

consumption and the increased levels of inflammatory factors, nutrients and hor-

mones that are associated with maternal obesity. Given the high levels of maternal
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obesity and HFD consumption in developed nations, we postulate that future

generations are at increased risk for obesity and metabolic, neurodevelopmental,

and mental health disorders.

Keywords Maternal obesity • High-fat diet • Pregnancy • Energy balance • Energy

expenditure • Food preference • Programming • Nonhuman primate • Anxiety •

Autism • ADHD

10.1 Introduction to Maternal Obesity

Perinatal exposure to maternal obesity, impaired metabolic state, and high-fat diet

(HFD) consumption is commonplace in developed nations. Currently, a third of

women of childbearing age in the USA are obese and two-thirds are overweight

[1]. Obesity during gestation is associated with adverse outcomes for both the

mother and child such as gestational diabetes [2, 3], preeclampsia [4, 5], high

blood pressure [6], placental dysfunction [7, 8], prematurity [9, 10], and infants

born either large or small for gestational age [11]. Given the high prevalence of

maternal obesity worldwide, it is critical to investigate the long-term effects of

exposure to maternal obesity on the developing offspring. A HFD is commonly

used to induce maternal obesity in animal models, and in humans a HFD typically

accompanies maternal obesity. This chapter will discuss the effects of both mater-

nal obesity and HFD consumption and will assume, except where noted, that

maternal HFD consumption results in obesity. This chapter will also examine the

impact of exposure to maternal obesity and HFD consumption during perinatal

development on the physiology, behavior, neural development, and HPA axis of the

offspring with a special focus on evidence from nonhuman primate (NHP) models.

10.2 Translational Potential of NHP Studies to Human

Health

The development of research models of disease in animals has progressed our

understanding of human diseases tremendously. From the basic biology of organ

function, to the intricate communications between organ systems in endocrinology,

to the study of the pathophysiology of debilitating diseases such as cancer, cardio-

vascular disease, and neurodegenerative diseases, animal models have helped us to

devise methods and treatments to improve human health. In the field of develop-

mental programming, rodent models fed a HFD have predominantly been used to

study the effect of the maternal obesity on fetal development. These studies have

been extensive and in depth, providing us with an understanding of how maternal

diet can affect cardiovascular disease, glucose metabolism, and many other dis-

eases. However, there are several limitations to solely using rodents when compar-

ing the outcomes to human development.
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The use of NHPs is particularly important in the examination of the impact of

maternal obesity and HFD on offspring brain development, behavior, and physiol-

ogy as these animals have a comparable developmental timeline, physiology, and

behavior as humans. Nonhuman primates have a similar developmental ontogeny of

the brain as humans with the majority of brain development occurring prenatally.

This is an area of divergence between rodent and human development as much of

the neural circuitry critical in regulating physiology and behavior occurs postnatally

in rodents. For example, the melanocortinergic system, an important regulator of

energy balance, develops rather late in development, occurring during the third

week after birth in rodents [12, 13] and during the third trimester in humans and

NHPs [14, 15]. The similar gestational and developmental timeline of NHPs and

humans ensures that the developing offspring has similar exposure to the disrupted

hormones, elevated circulating lipids, and nutrients associated with maternal obe-

sity. Nonhuman primates also have similar placental structure and function

allowing for the developing fetus to be similarly impacted by the excess nutrients

and lipids transported through and the inflammatory factors secreted by the pla-

centa. Another example of diverging physiology is the pathophysiology of obesity

and the development of type 2 diabetes mellitus (T2DM). Rodents are often

resistant to diet-induced obesity and generally do not develop diabetes [16], while

NHPs develop the full spectrum of metabolic disease as observed in humans,

including age or diet-induced obesity, hypertension, hyperlipidemia, insulin resis-

tance, and central adiposity [17–20]. Nonhuman primates are also ideal for studies

examining behavior as they have complex social and mental health-related behav-

iors allowing the behavior tests to be similar to those used in clinical assessment of

human behavior. The NHP model of maternal obesity developed by our group also

allows for the investigation of the relative impact of exposure to maternal metabolic

phenotype (obesity and insulin resistance) versus HFD during pregnancy on the

development of offspring physiology and behavior. In this NHP model, two-thirds

of adult females become obese and insulin resistant when consuming the HFD,

while one-third remain lean and insulin sensitive. This is important as human

studies demonstrate a link between maternal obesity and the risk of offspring

obesity [21] and mental health disorders [22–29]; however, these studies do not

have the ability to separate diet effects from maternal metabolic phenotype effects.

Considering the prevalence of obesity and wide consumption of a HFD worldwide,

use of the NHP model to understand the impact of exposure to maternal obesity and

HFD consumption is critical as it allows the direct translation of research findings to

humans.
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10.3 Adult Obese State

10.3.1 The Metabolic State during Maternal Obesity

Pregnancy requires metabolic, physiological, anatomical, and mental exertion from

the mother. From early events like implantation to the increased requirements of

nutrients necessary to feed the developing fetus, all these events are coordinated to

prepare both mother and fetus for the labor, delivery, and feeding of the newborn

child. This metabolically taxing state necessitates changes in maternal metabolism

(glucose, insulin, leptin, lipids). For instance, pregnancy results in resistance to the

action of the hormone insulin resulting in increased circulating glucose and lipids

and therefore making higher levels available to the fetus [30–32]. Maternal hyper-

lipidemia is also present in pregnancy, manifesting as temporary rises in circulating

triglycerides and cholesterol that provide a source of lipids for the developing fetus

[33]. Obesity, a state already accompanied by increased levels of circulating tri-

glycerides and insulin resistance, therefore exacerbates these rises in insulin [34]

and lipids [35] during the pregnancy of an obese mother.

In addition to the dysregulation of hormones such as insulin, maternal leptin

resistance is also affected by maternal obesity. In normal physiology, pregnancy is

associated with a state of leptin resistance [36, 37], where food intake increases

even though circulating leptin levels are also increasing. The mechanisms for the

increased levels of leptin and leptin resistance remain unclear, but it is very well

known that leptin can have effects on brain development [38]. In addition,

dysregulation of leptin has been implicated in the development of mental health

disorders. Since maternal obesity already results in a state of hyperleptinemia,

exposing the fetus in the early stages of development to these higher levels of

circulating leptin could have significant effects for the offspring and obese mother.

In addition to the dysregulation of insulin, triglyceride, and leptin levels, maternal

obesity also predisposes the mother to many other complications, such as gesta-

tional diabetes, preeclampsia, and longer hospital stays [39].

10.3.2 Maternal Obesity in Humans is Associated
with Inflammation

The obese state is associated with low-grade chronic inflammation. Adipocytes

secrete inflammatory factors including c reactive protein, interleukin (IL)-6, IL-1β,
and tumor necrosis factor (TNF)-α [40, 41]. The levels of these circulating inflam-

matory factors are proportional to adipose tissue mass. Inflammatory cytokines are

also elevated in many organs in obese individuals including the brain [40] and

placenta [42, 43]. Elevated levels of these inflammatory factors increase the risk for

many metabolic diseases including cardiovascular disease, heart disease, insulin

resistance, type II diabetes mellitus, and hypertension [40]. The increased
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inflammatory cytokines associated with obesity during gestation are believed to

cause dysfunction in the endothelium [44] and placenta [45]. Maternal obesity

during gestation exposes the developing fetus to an elevated level of inflammatory

factors, which are postulated to impair the development of several organ systems

including the brain.

10.3.3 Maternal Obesity Is Associated with Placental
Dysfunction

Many of the pregnancy complications associated with maternal obesity [46] that

impact the developing fetus are postulated to be associated with placental dysfunc-

tion. Evidence from animal models indicates that maternal obesity induced by

consumption of a HFD causes placental inflammation decreasing functionality of

the placenta. In sheep, maternal obesity impacts the placenta by increasing the

activation of inflammatory cytokines and downstream signaling factors [47], reduc-

ing uterine blood flow, and causing a 33% reduction in the mass [48]. A reduction

in placental mass was also observed in rodents fed a HFD [49]. Similarly, in our

NHP model, we report an increase in inflammatory cytokines in the placenta from

adult female macaques consuming the HFD and an elevation in the levels of

cytokines in the fetal compartment [50]. In macaques, maternal HFD consumption

is also associated with a 35–50% decrease in blood flow through the uterine artery

to the placenta [50]. The obese state further exacerbates the placental dysfunction

resulting in a higher rate of stillbirths, due to increased placental infarctions and

reduced blood flow to the fetus [50]. Thus, evidence from animal models consis-

tently indicates that maternal HFD consumption impairs placental function leading

to pregnancy complications. Moreover, the elevated levels of inflammatory cyto-

kines secreted by the placenta likely initiate the generation of cytokines by the fetus

[51, 52], further increasing the inflammation that the fetus is exposed to during

development. Increased levels of inflammatory cytokines modulate growth factors

critical for fetal development [53] and impact the development of neural pathways

critical in regulating behavior and physiology.

10.3.4 Maternal Metabolic State and Nutrition Impact
Maternal Behavior

Mounting evidence supports an important and persistent role for parental care

particularly during the early postnatal period on offspring behavior and physiology.

A wide body of literature in rodents indicates that naturally occurring individual

differences in maternal care during early development will program the behavior

and response of offspring to stress [54, 55]. For example, rat offspring exposed to
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decreased maternal attention and grooming exhibit increased anxiety-like behavior

as adults [55, 56], and offspring from attentive mothers are less anxious and display

improved regulation of stress [56, 57]. Offspring social behavior is also impacted

by maternal behavior with male rats exposed to higher levels of maternal licking

and grooming displaying less aggression toward their peers [55]. However, the

impact of maternal diet on maternal behavior has been largely unstudied. Three

studies indicate that maternal HFD increases nursing behavior [58–60]. The effects

of increased nursing during the perinatal period on offspring behavior have not been

directly assessed. However, overfeeding via experimental reduction of litter size

results in offspring that are hyperphagic and heavier due to impairments in critical

energy balance regulatory circuitry in the hypothalamus [61]. Two studies demon-

strate an impact of maternal HFD consumption on maternal grooming

[58, 59]. However, one study reports a decrease in grooming behaviors [58],

while the other reports an increase in the grooming of pups [59].

Maternal behavior also plays an important role in programming offspring

behavior in NHPs [62–65]. For example, infant rhesus macaques exposed to

maternal rejection are at increased risk for later developing anxiety [62]. Interest-

ingly, Japanese macaques exposed to early maternal rejection exhibit increased

independence in social situations and decreased stress response as infants [64]. The

offspring’s behavioral outcome appears to be dependent on the developmental age

when it is exposed to the maternal separation or rejection. Rhesus macaques that

experienced maternal separation at 1 week of age demonstrated elevation in self-

comfort behaviors such as thumb sucking, while maternal separation at 1 month of

age resulted in offspring seeking increased social comfort [65]. The impact of

maternal HFD on maternal behavior has not been previously examined in NHPs.

For the past 5 years, we have characterized maternal infant interaction in control

and HFD-consuming adult females. We observed an association between maternal

HFD consumption and an increase in nursing behavior during the early postnatal

period and a decrease in grooming behavior (Sullivan et al., in preparation), which

is consistent with the findings in rodent models.

In humans, mental health disorder such as postpartum depression are well

documented to influence maternal behavior towards her infant and increase the

risk of offspring developing mental health disorders as adults [66]. Perinatal expo-

sure to postpartum depression is associated with violent and internalizing behavior

[66]. Daughters of mothers suffering from major depression are at increased risk of

developing mental health disorders in adolescence [67]. As a HFD has been shown

to increase the symptoms of postpartum depression, maternal diet may impact

offspring behavior by modulating maternal mental health [68]. Preliminary evi-

dence also indicates that mothers classified as obese interact differently with their

infant offspring than mothers classified as normal weight. Obese mothers spent less

time interacting and feeding their infants; however, these infants still had an

increased overall caloric intake due to increased consumption of “complementary”

foods (cereal, fruit pudding, apple sauce, etc.) [69]. Another study confirmed these

findings by reporting that women who entered pregnancy in the obese state intro-

duced complementary foods earlier than women whose pre-pregnancy weight was
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classified as normal [70]. Together these studies provide evidence of the

interdependence of maternal behavior with maternal diet and metabolic state,

which may each impact offspring behavior. Future studies need to parse out the

contributions of maternal behavioral differences versus maternal diet on offspring

behavior. It is critical that future nutritional studies identify the optimal dietary

composition to be consumed during gestation and lactation to benefit both maternal

and infant behavior and decrease the infant’s risk of developing

neurodevelopmental and psychiatric disorders.

10.4 The Impact of Maternal Obesity on Offspring

Physiology

10.4.1 Energy Balance Regulation

Human studies consistently demonstrate that maternal obesity is associated with

increased risk of the child developing obesity and metabolic disorders [21]. The

impact of maternal obesity on offspring risk of obesity appears to be independent of

co-occurring metabolic disorders such as diabetes mellitus, as women with obesity

and normal blood glucose regulation still have children who are heavier and have

increased adipose tissue mass [71]. Even though evidence from human studies

implicates exposure to maternal obesity and HFD in programming offspring obe-

sity, numerous environmental and genetic factors could also contribute to the

association. It is very challenging to accurately measure the diet of pregnant

women and is potentially unethical to manipulate the diet until we gain a further

understanding of the optimal diet during gestation. It is also very difficult to

accurately measure energy expenditure and energy intake in children. Thus, animal

models of maternal obesity and HFD consumption are critically important to

directly examine mechanism, identify critical periods of development, and develop

potential therapeutic interventions.

Using an NHP model of HFD-induced maternal obesity, our group documented

an increase in body weight, adiposity, and leptin levels in juvenile offspring

exposed to maternal obesity and HFD consumption [72]. In this model, we note

that both maternal HFD and obesity play a role in programming an offspring’s body
weight as juvenile offspring from control mothers that spontaneously develop

obesity were heavier than offspring from lean control mothers [73]. Rat pups

exposed to maternal HFD consumption during gestation and lactation are heavier

and have increased adiposity and hyperglycemia as compared to pups exposed to a

control diet [74]. Mouse offspring of diet-induced maternal obesity exhibit

increased food intake and decreased locomotor activity resulting in increased

adipose tissue mass [75]. Together these studies provide consistent evidence that

in animal models, exposure to maternal HFD consumption programs offspring to be

at an increased risk of obesity.
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Rodent studies consistently find that exposure to maternal HFD consumption

during perinatal development programs hyperphagia [75–77]. Exposure to maternal

HFD consumption has been well documented to impact the development of neural

circuitry in the hypothalamus critical in food intake regulation [78, 79] including

the melanocortinergic system (discussed in detail in Sect. 10.6.1). Rat offspring

exposed to maternal HFD consumption during early development exhibit an

increase in the expression of the orexigenic peptides galanin, encephalin, and

dynorphin in the paraventricular nucleus of the hypothalamus (PVH) and

melanin-concentrating hormone and orexin in the lateral hypothalamus [76]. Ges-

tational exposure to maternal HFD also triggers the growth of neuronal and

neuroepithelial cells of the third ventricle and stimulates their migration to the

hypothalamus producing a greater percentage of neurons expressing orexigenic

peptides [76]. Lastly, HFD exposure reduces offspring’s sensitivity to leptin’s
anorectic action [77]. Rodent studies provide evidence that maternal HFD con-

sumption during fetal development disrupts the development of critical neural

circuitry in the hypothalamus resulting in hyperphagia.

In contrast to the numerous studies that have investigated the effect of maternal

HFD and obesity on offspring food intake, very few studies have examined the

impact on energy expenditure. In the NHP model, we note that HFD consumption

results in a compensatory increase in physical activity; however, this increase

appears to be independent of maternal diet [80]. In rodent models, physical activity

has been assessed in a few studies. However, the findings to date are inconsistent

potentially due to the use of different measurement techniques and experimental

designs. Dark cycle locomotor activity measured via telemetry was found to be

reduced in mouse offspring exposed to maternal HFD consumption during gestation

and lactation [75]. In another murine model, male offspring exposed to maternal

HFD consumption during gestation were hyperactive during the open field test

[81]. However, this increase in activity is likely to indicate anxiety as it was

observed in a novel environment. A rat study examined locomotor activity during

the day by placing rats in a box that detected activity via animal’s movement across

electromagnetic fields and found that offspring exposed to a diet high in saturated

fat (coconut oil) during gestation and lactation did not exhibit a difference in

activity as compared to animals exposed to the control diet [82]. However, in the

same study rat offspring exposed to a diet high in unsaturated fat (sunflower oil)

during perinatal development exhibited an increase in locomotor activity

[82]. Thus, the type of fat in the diet impacts the directionality of the change in

physical activity due to perinatal dietary programming. The primary component of

energy expenditure is metabolic rate. However, the effects of maternal HFD

consumption and obesity on metabolic rate have only been examined in one

study. The examination of perinatal programming by maternal HFD and obesity

on offspring metabolic rate is an important future direction of the field. In addition,

future studies should examine the impact of perinatal HFD exposure on metabolic
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adaptation to different states of energy balance such as dieting, fasting, and chronic

consumption of a HFD.

10.4.2 Food Preference

Mounting evidence indicates that perinatal nutrition and maternal metabolic state

impact children’s food preference and feeding behavior. An increased preference

for high-fat food in children aged 3–5 years was related to increased body fat of the

child, as measured by skinfold thickness, and increased parental weight [83]. In

addition, children with parents of normal weight consumed a reduced percentage of

calories from fat than children with parents who were overweight [84]. However,

environmental factors such as familiarity with high-fat foods and genetic factors

can also contribute to difference in food preference; thus, the impact of program-

ming by maternal obesity and HFD consumption remains uncertain. Animal studies

are critical in elucidating the role of programming by HFD and obesity versus

shared environmental factors on offspring food preference.

In NHPs, exposure to maternal obesity and HFD consumption during perinatal

development programmed an increased preference for fat and sugar in offspring

[73]. This finding was confirmed by rodent studies that also document an increased

preference for fat and sugar in offspring exposed to maternal HFD consumption.

For instance, exposure to a junk food diet during gestation or lactation programmed

an increased preference for fat, sugar, and salt in adult rat offspring [77, 85,

86]. Interestingly, the type of fat that the offspring is exposed to during the perinatal

period impacts the offspring’s preference for fat, with offspring exposed to diet high
in saturated fat displaying a preference for fat, whereas offspring exposed to a diet

high in polyunsaturated fatty acids do not [86]. As discussed in Sect. 10.6.3,

evidence from rodent [82] and NHP [73] studies indicates that exposure to maternal

HFD consumption impacts the development of the dopamine system which likely

contributes to the observed differences in food preference. Evidence from human,

NHP, and rodent studies consistently report an increased preference for fat and

sugary food in offspring exposed to maternal obesity and HFD consumption. It will

be important for future studies to determine the role that the type of fat plays in

programming food preference, as this will guide nutritional studies focused on

determining the optimal perinatal diet.

10.4.3 Pancreas

The relationship between glucose homeostasis and maternal diet was originally

discovered in a cohort of men born in Hertfordshire, UK, in whom it was observed

that there was a relationship between birth weight and glucose intolerance at a later

age [87]. This relationship was underscored by findings from studies of people who
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were in gestation during the Dutch Hunger Winter [88, 89], where a severe famine

restricted nutrients during a very sensitive time of development, which ultimately

resulted in the metabolic changes later in life. For instance, by performing glucose

tolerance testing in men and women from the Dutch Famine Birth Cohort, de Rooij

et al. demonstrated that people exposed mid-gestation to severe nutrient restriction

had a dysfunction in insulin secretion [88]. Contrary to famine, the global epidemic

of obesity has been paralleled by a global increase in diabetes. In the USA, the

number of people diagnosed with diabetes has quadrupled in the last 30 years, and

currently almost 10% of the population has this disease [90]. Of people with

diabetes, 90–95% of the cases are T2DM. The pathophysiology of T2DM is a

complex interplay between genetics, epigenetics, and environment. Recent research

in several models, including human, are focusing on the role of maternal obesity in

the development of diabetes and the central role the pancreas plays in this.

There are several important differences in the rodent versus the primate in regard

to the pancreas. For instance, the timing of development occurs during different

windows of gestational age [91], the intra-islet cytostructure is different, as well as

the innervation of the islets [92–94]. To obtain a better understanding of the effect

of maternal obesity on glucose homeostasis, research will need to investigate the

changes in the pancreas of NHPs. Using a NHP model of maternal obesity, our

group has demonstrated that maternal HFD leads to dysfunctional development of

the fetus [50, 72, 95, 96]. Indeed, as was observed in the other tissues such as liver

and placenta, maternal obesity resulted in dysregulation of the islet composition,

demonstrating that a HFD fed during the gestational period results in a decrease in

α-cells, thus increasing the β- to α-cell ratio [97] in 1-year-old animals. This work

postulates that the decrease in the number α-cells is a compensatory response to the

increased production of glucose by the liver in these animals. Although this

question has not been directly addressed, there is a possibility that the paracrine

action of α-cells could affect insulin secretion. Future work should focus on

determining which components of the diet are driving the changes in α-cell
development. Subsequent work in this model investigated the vascularization and

innervation of the islet. Pound et al. demonstrated that offspring from obese NHP

mothers have decreased innervation and vascularization in the third trimester of

development and that this reduction in vascularization persists at least 1 year

postnatally [98].

10.4.4 Cardiovascular System

Cardiovascular disease is particularly affected by the increasing rates of obesity,

hypertension, and diabetes [99, 100]. The original work by Dr. David Barker in

humans clearly demonstrated that birth weight is correlated with subsequent car-

diovascular disease, highlighting the fact that the heart and other players in the

cardiovascular system are affected by the fetal environment [101–103]. The impor-

tance of maternal diet in cardiovascular programming was underscored by rodent
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studies that showed that a maternal low protein diet induced hypertension in

offspring [104]. Further studies in both rodent and human models confirmed and

expanded upon these studies, showing that other maternal insults can have dramatic

effects on the cardiovascular system, including maternal obesity [105–108]. The

breadth of research studying the effects of maternal obesity has used the rodent as

an experimental model because of the short life span, lower cost, and availability of

genetic models. To date, only a handful of studies have utilized the NHP model to

study the impact of maternal obesity and all have focused on the early indicators of

vascular dysfunction.

Recent work using a baboon model demonstrated that feeding newborn baboons

a HFD for the first 16 weeks of life resulted in long-lasting changes in adipose

development independent of body weight, although these preweaning diets did not

necessarily increase atherosclerosis at 5 years of age [109, 110]. New work is now

demonstrating that it is the combination of maternal diet and postweaning diet that

is detrimental to the development of cardiovascular disease. Early changes in gene

expression and the expression of microRNA have been described in a model of

maternal obesity in the baboon [111] where the mothers were fed a high fat/high

fructose diet. In these fetuses, investigated during the third trimester, there was

already evidence of myocardial fibrosis. On the molecular level, there was differ-

ential expression of several of the cardiac microRNAs, perhaps a sign of maternal

programming. Our work using the earlier described model of maternal obesity in

the Japanese macaque demonstrated that both a maternal and postnatal HFD

exacerbate the development of vascular and endothelial function [96], resulting in

increased intimal thickness in the abdominal aorta and a decrease in the vasodila-

tion capacity in offspring of obese mothers. Interestingly, some of the negative

effects of maternal HFD on offspring cardiovascular function were partially ame-

liorated when offspring were weaned onto a healthy diet. This suggests that an early

dietary intervention may be effective in mitigating cardiovascular dysfunction

programmed by maternal obesity and HFD consumption.

10.4.5 Liver

Maternal obesity and/or gestational diabetes is a major contributor to the increase in

nonalcoholic fatty liver disease (NAFLD) in obese children [112, 113] and neonatal

infants [114, 115]. Research in rodent and other animal models are now demon-

strating that this excessive hepatic lipid storage is occurring during fetal develop-

ment [116, 117]. Maternal obesity results in elevated glucose, insulin, and fatty acid

levels during development of the fetus, and this presents an issue early on in

development when the fetus has not developed subcutaneous fat storage. Although

the liver requires lipids for normal functioning during development, excess lipids

can be cytotoxic. Excess levels of intracellular lipids can cause a variety of cellular

damage, including the production of reactive oxygen species. This finding has been

demonstrated in many different animal models, including the NHP. McCurdy
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et al. demonstrated that during fetal development, offspring from obese monkeys

consuming a HFD had threefold higher levels of triglyceride in the liver. This

resulted in early signs of liver toxicity as evident by increased levels of oxidative

stress at the cellular level [72]. Similar results have been observed with studies in

mouse models [118, 119], demonstrating that early exposure of the fetus to mater-

nal HFD consumption can lay the foundation for future NAFLD. Subsequent

studies in the NHP showed that fetal exposure to a HFD resulted in persistent

changes, even if the postnatal diet was switched to low fat [120]. This phenotype

could be the result of extensive epigenetic programming in the liver. Studies in

rodents, humans, and NHPs have identified several epigenetic changes in response

to exposure to a HFD either during adulthood [121] or fetal development

[122, 123], the contribution of these changes to programming of NAFLD is a

topic of future research. In addition, research by Grant et al. showed that hepatic

innervation and hepatocyte apoptosis is different as well, providing evidence that

many pathways in the NHP liver are affected by maternal diet [95, 124]. An

interesting observation from the study by McCurdy et al. was the inclusion of

animals that remained lean on the HFD. When studying offspring from these

non-obese mothers, it appeared that similar dysfunction was noted in the liver,

suggesting that the majority of the liver damage can be contributed to maternal diet,

independent of maternal obesity. More importantly, a reversal of the HFD to regular

chow during the pregnancy of obese mothers partially reversed the liver damage

[72]. Although additional work needs to be done, these findings could support

clinical dietary interventions during pregnancy as a first step in combating early

NAFLD.

10.5 Maternal HFD Consumption Programs Offspring

Behavior

10.5.1 Exposure to Maternal Obesity Increases the Risk
of Mental Health Disorders

Evidence from epidemiologic studies indicates that exposure to an unhealthy diet

and maternal obesity during early development increase the risk of the child

developing mental health and neurodevelopmental disorders including attention

deficit hyperactivity disorder (ADHD) [25, 125] and autism spectrum disorder

(ASD) [23]. Children from mothers who were obese during pregnancy were more

likely to have difficulties in emotional regulation [26] and increased risk of depres-

sion and withdrawal [126]. Importantly the high prevalence of obesity in women of

childbearing years in recent decades is postulated to contribute to the concurrent

increase in the rates of ASD [27] and ADHD [127–129] in the USA. Exposure to

maternal obesity during gestation was reported to double the risk of a child

developing ADHD symptoms [125]. Also, children with ADHD are twice as likely
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to have a mother who was obese [25]. Risk of ASD and developmental delays in

children aged two to five were also shown to be increased by perinatal exposure to

maternal obesity [23].

Metabolic disorders associated with obesity may also be associated with

increased risk of offspring developing neurodevelopmental and mental health

disorders. The number of studies examining the impact of maternal metabolic

disorders on offspring’s risk of neurodevelopmental and mental disorders is limited,

focusing primarily on diabetes. Children exposed to diabetes during gestation

display greater rates of ADHD symptoms [130]. Gestational diabetes is also

associated with increasing the offspring’s risk for anxiety, depression, and social

problems [131]. Exposure to maternal diabetes is associated with greater risk of

ASD and developmental delays in young children [23]. Hypertension and pre-

eclampsia during gestation were also associated with increased ASD risk [132–

134]. Together this evidence suggests an important link between exposure to

maternal obesity and associated metabolic disorders and offspring mental health

and risk for behavioral disorders. However, the relative contribution of the prenatal

versus shared postnatal environment remains unclear, as does the contribution of

each metabolic disorder. Also, common genetic factors could underlie both obesity

and mental health disorders. To more fully examine these questions, well-

controlled animal experiments are needed. Substantial evidence from animal

models demonstrates that maternal consumption of a HFD during the perinatal

period impacts various aspects of offspring behavior.

10.5.2 Maternal HFD Impacts Offspring Anxiety

Exposure to maternal HFD during gestation is associated with heightened anxiety

in both NHP [135] and rodent offspring [136]. Male rodent offspring whose

mothers consumed a diet with a high content of saturated or trans fat during the

perinatal period displayed increased anxiety in adulthood. Interestingly, a differ-

ence in anxiety behavior was not evident in female offspring indicating gender

differences in maternal diet programming of offspring behavior [136]. However,

female offspring from both diet groups had a higher level of anxiety than male

offspring; thus, it is possible that a ceiling effect prevented the increase anxiety in

HFD female offspring to be detected. In this model, the investigators postulate that

maternal intake of a HFD increases offspring exposure to inflammatory factors that

directly impact brain development [136]. In an NHP model of HFD-induced

maternal obesity, our group has demonstrated an increase in anxiety in female,

but not male Japanese macaque offspring [135, 137]. The increase in anxiety in

female offspring was associated with a suppression of central serotonin synthesis in

offspring from HFD mothers [135, 137]. Importantly, this increase in anxiety in

female macaque’s offspring is consistent with the evidence in humans that reports a

marked gender dimorphism in anxiety prevalence. In humans, females reported to

have an increase in anxiety susceptibility and a more profound link between anxiety
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and obesity [138]. There is evidence in rodent models that the developmental time

period in which offspring are exposed to the HFD impacts the outcome on off-

spring’s behavior. With offspring exposed to a HFD during gestation exhibiting

increased anxiety [136], while those exposed to the diet solely during lactation do

not. In the NHP model of maternal HFD consumption, the developmental timing of

HFD exposure has not yet been examined as mothers consume the HFD during both

gestation and lactation.

Human studies support the findings from animal studies and contribute to the

evidence that maternal obesity increases the risk of offspring anxiety. Children

from mothers who were obese during pregnancy were more likely to have difficul-

ties regulating emotions such as sadness and fear [26] and were reported to have an

increased risk for internalizing problems including depression and withdrawal

[126]. Maternal obesity is associated with pregnancy complications such as infants

being born small or large for gestational age [11, 139, 140], which increases the

likelihood of offspring developing anxiety and depression as adolescents

[141]. Also, as noted above offspring exposed to maternal obesity are at a much

greater risk of becoming obese themselves as children and adults. Childhood

obesity is associated with higher rates of internalizing behaviors such as anxiety

and depression and social problems [131]. Measures of obesity during infancy (high

birth weight and top 10% ponderal index) were found to be positively associated

with adult depression [142]. Moreover, obesity in adulthood is well documented to

be associated with anxiety and depression [143].

10.5.3 Maternal HFD Programming of Social Behaviors

Social interaction and the development and maintenance of social networks are

critical for the survival of most species as they allow for procreation, procurement

of food and resources, and protection from predators. Recent evidence indicates

that maternal diet and metabolic state during the perinatal period may impact

offspring social behavior. The first evidence that maternal diet impacted offspring

social behavior came from a study by Raygada et al. in which investigators found

that maternal consumption of diet high in polyunsaturated fatty acids led to

increased aggression in female offspring in three different strains of mice

[144]. This increase in aggression was postulated to be due to an upregulation of

protein kinase C (PKC) activity in the hypothalamus. To date, very few studies have

examined the impact of maternal HFD on offspring social behavior. Kang

et al. found that female offspring from HFD mothers exhibited social impairments

using a social interaction test [81]. Interestingly, the deficits in social behavior were

not found in male offspring and a dietary intervention during the lactation period

was found to reduce the social deficits in HFD female offspring. In this study,

increased inflammatory cytokines and microglial activity were also observed in

female HFD offspring and were postulated to underlie the deficits in social behav-

ior. These findings from rodent studies are consistent with the results in our NHP
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model in which we observe a decrease in social interactions in HFD offspring when

exposed to a novel peer and in their normal social housing (Sullivan et al. in

preparation). These findings from animal models support evidence in human studies

that indicate that disorders such as ASD, which are characterized by impairments in

social behavior, occur at higher rates in offspring from obese mothers [23].

10.5.4 The Impact of Maternal HFD Consumption
on Learning and Memory

Epidemiologic studies have recently linked obesity and consumption of a HFD in

adulthood with cognitive impairment [145], Alzheimer’s disease [146], and demen-

tia [146]. A high intake of saturated fat during midlife was associated with

decreased cognitive function and memory and an increased risk of cognitive

impairments [145], while a high intake of polyunsaturated fats and fish was

associated with improved memory and cognitive function [145]. Rodent studies

support these findings by providing consistent evidence that consumption of a HFD

accompanied by obesity impairs spatial learning and memory [147–155]. To date,

the impact of consumption of a HFD and obesity during adulthood on cognition

have not been examined in NHPs. It will be important for future studies to pursue

this as NHPs provide an important link between the mechanistic studies possible in

rodents and epidemiologic evidence from human populations.

A limited number of studies have examined the effects of exposure to maternal

HFD and obesity during perinatal development on offspring cognition. However,

the existing data come primarily from rodent studies and indicate that exposure to

maternal HFD consumption and obesity is associated with cognitive impairments.

A deficit in spatial memory measured using a Morris water maze was recently

documented in adult male rats that were exposed to a diet high in saturated or trans

fats during perinatal development [136]. This memory deficit was associated with

inflammation in brain regions critical for cognitive function such as the hippocam-

pus as evidenced by increased peripheral and hippocampal cytokine expression in

response to a bacterial challenge and hippocampal microglial activation [136]. A

second study confirmed these findings as impairments in spatial learning and

memory were observed in adult rats [156]. The cognitive impairments observed

in this model were associated with impairments in hippocampal development

including decreased brain-derived neurotrophic factor (BDNF) and activity-

regulated cytoskeletal-associated protein levels. A mouse study also observed that

exposure to a diet with high lard content during perinatal development reduced both

spatial memory and cognition in adult offspring [157]. A second mouse study found

that diet-induced obese females had offspring with decreased BDNF synthesis in

the hippocampus, which was associated with impaired dendritic arborization of

hippocampal neurons [158]. These offspring were also identified to have delays in

spatial learning when they were young. However, in this study cognitive
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impairments were not evident in adult animals [158]. Male rat offspring exposed to

maternal HFD consumption during gestation and lactation that continued consum-

ing the HFD exhibited a decline in memory retention, but not acquisition in the

Morris Water maze [159]. Maternal HFD consumption has also been associated

with increased markers of oxidative stress and inflammation in the brain

[159]. Overall, preliminary evidence from rodent studies indicates that exposure

to maternal obesity and HFD consumption during early development may decrease

offspring cognition. It is important that the impact of maternal diet and obesity is

examined in larger animal models, such as NHPs, which share a similar trajectory

of brain development and in which higher levels cognitive function can be assessed.

Moreover, it will be important for future studies to parse out the contribution of pre-

versus postnatal HFD to programming cognition. Lastly, though preliminary mech-

anistic targets have been identified such as reduced BDNF, increased oxidative

stress, and inflammation, it is critical that mechanistic studies are expanded to

enable the development of therapeutic interventions.

10.6 Maternal HFD Consumption Programs Brain

Development

10.6.1 Melanocortinergic System

The hypothalamic melanocortinergic system is collection of neural circuits that are

critical regulators of energy homeostasis [160], blood pressure regulation

[161, 162], and sexual behavior [163]. The melanocortin system is comprised of

a set of transmembrane receptors (MC1R–MC5R) [164] that are responsive to

cleavage products of the precursor proopiomelanocortin. For our purposes, we

will focus on alpha-melanocyte-stimulating hormones (alpha-MSH), which inhibit

food intake, and agouti-related peptide (AGRP), which promotes hunger. These two

peptides regulate food intake by acting on melanocortin receptor subtype 3 (MC3R)

and melanocortin receptor subtype 4 (MC4R). As the melanocortin system is one of

the primary regulators of energy balance, a number of studies have examined the

impact of maternal obesity and HFD consumption on this system as a potential

mechanism to explain the increased risk of obesity in offspring from obese mothers.

In NHPs, we observe a reduction in the expression of AgRP mRNA and protein and

an increased expression of POMC and MC4R in the arcuate nucleus of the hypo-

thalamus (ARC) of fetal offspring [165]. Recent data from the model indicate that

in juvenile NHP offspring, both maternal and postweaning HFD consumption

suppress the density of AgRP staining in the paraventricular nucleus of the hypo-

thalamus (PVH) and postweaning HFD consumption suppressed AgRP density in

the ARC [80]. Many rodent studies also observe a programming effect of maternal

HFD consumption during early development. However, these studies are inconsis-

tent and report either an increase or a decrease in AgRP expression. In a rat model,
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maternal HFD consumption-induced obesity was found to increase the mRNA

expression of AgRP, POMC, and MC4R in the whole hypothalamus of fetal

offspring [166]. However, another rat model examined the impact of exposure to

maternal HFD consumption during the last 2 weeks of pregnancy and noted a

decrease in the expression of AgRP and NPY in offspring at weaning [76]. A

third rat study also noted that maternal HFD consumption decreased NPY and

AgRP mRNA expression [167]. These differences between studies are likely due to

differences in the composition of the experimental and reference diets and the

length of exposure to the diets and thus the degree of maternal obesity and

metabolic dysfunction. It is important to note that the melanocortinergic system

develops rather late in development, occurring during the third week after birth in

rodents [12, 13], and during the third trimester in humans and NHPs [14, 15]. These

species difference in brain ontogeny makes the NHP model particularly important

in the translation of findings to humans. The central melanocortin system appears to

be impacted by inflammatory factors. Exposure of rodent hypothalamic explants to

the inflammatory cytokine IL-1B results in a suppression of AgRP release and an

increase in POMC release [168, 169]. Thus, we postulate that maternal obesity-

induced inflammation impairs the development of the central melanocortin system

impacting offspring physiology and behavior.

10.6.2 Maternal HFD Consumption Suppresses
the Development of the Serotonin System

The serotoninergic system plays an essential role regulating numerous aspects of

behavior and physiology including energy balance regulation and digestion. Sero-

tonin (5-HT) is involved in neural development impacting neuronal growth, syn-

apse formation, and migration of neurons [170, 171]. Decreased central serotonin

levels are associated with mental health disorders including anxiety [172] and

depression [173]. Reductions in brain serotonin are also reported in

neurodevelopmental disorders such as ADHD [174] and ASD [42, 175]. Moreover,

selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed to treat

these mental health and neurodevelopmental disorders. During pregnancy, the

serotonin system also plays a key role in regulating the maternal immune system

to prevent allogeneic rejection of the fetus [176] and placental blood flow. Thus,

changes in the development of the serotonin system due to exposure to maternal

obesity and HFD consumption may underlie behavioral disorders.

Evidence from animal models of HFD-induced maternal obesity supports human

evidence that impairments in the development of serotonin neural pathways are a

potential mechanism for the changes in offspring behavior. In NHPs, we observe

impairments in the development of the serotonin system in fetal offspring and

increased anxiety in infant female offspring [135]. Recent data indicate that the

female offspring exhibit an increase in anxiety behaviors into the juvenile time
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period and that this is associated with a persistent suppression of serotonin synthesis

in the dorsal raphe [137]. These findings are supported by similar findings in a

rodent model. Murine offspring exposed to maternal HFD consumption were

documented to have an increase in 5-HT1AR, the inhibitory autoreceptor, in the

ventral hippocampus and increased anxiety behaviors [177]. Increased exposure to

inflammation is documented in pregnancies complicated by obesity and HFD

consumption [44, 178, 179], and the development of serotoninergic neural path-

ways is sensitive to inflammation [180]. Thus, we postulate that the increased

inflammation induced by maternal obesity/HFD consumption impairs the develop-

ment of the serotonin system leading to behavioral abnormalities in offspring. In

our NHP model, we document that maternal HFD consumption increases inflam-

mation in the placenta [50] and in the hypothalamus of the fetal offspring

[165]. Given the similarities in the timing of brain developmental and physiology

between NHPs and humans, a similar mechanism may contribute to the increased

risk of psychiatric and neurodevelopmental disorders in offspring exposed to

maternal obesity during perinatal development.

10.6.3 Programming of the Dopaminergic System by
Maternal HFD

The dopaminergic system is another neural system that is critical in the regulation

of behavior and physiology and appears to be impacted by exposure to maternal

obesity and HFD consumption. Alterations in the dopamine (DA) system are

postulated to underlie a number of neurodevelopmental (ASD [181–183], ADHD

[184–186]) and mental health (schizophrenia [187–189], anxiety [190, 191], and

depression [192, 193]) disorders. In NHPs, exposure to maternal HFD consumption

was recently found to suppress offspring dopamine signaling in the prefrontal

cortex as evidenced by a decrease in DA fiber projections and levels of the

dopamine receptors 1 and 2 protein [73]. Evidence from rodent studies provides

additional evidence that exposure to maternal HFD during gestation and lactation

impairs the development of the DA system. In a rat model, perinatal exposure to

maternal HFD consumption resulted in increased DA in the nucleus accumbens and

reduced sensitivity to DA, as evidenced by reduced locomotor response to a

psychostimulant [82]. Rat offspring from HFD mothers were also found to display

an elevated DA response to acute stress and did not display the normal desensiti-

zation to repeated exposure to the stressor [194]. In a mouse model, maternal HFD

consumption altered methylation and expression of DA genes [195]. Similar to the

5-HT system, the DA system is sensitive to exposure to maternal inflammation

[196]. Thus, elevated perinatal exposure to inflammation associated with maternal

obesity is thought to impact development of the DA system and increase offspring

risk of developing psychopathology.
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10.7 Maternal HFD Consumption Programming

of the HPA Axis

Cortisol release from the hypothalamic–pituitary adrenal (HPA) axis plays a critical

role in regulating psychological and physiologic stress. Stress triggers the hypotha-

lamic paraventricular nucleus to release corticotropin-releasing hormone (CRH)

and antidiuretic hormone (ADH) into the hypothamo-hypohyseal portal system

triggering the release of adrenocorticotropic hormone (ACTH) from the anterior

pituitary into systemic circulation. Circulating ACTH stimulates the release of

glucocorticoids (primarily cortisol in humans and NHP and corticosterone in

rodents). In addition to being stimulated by CRH, ACTH levels are also regulated

by the hypothalamic suprachiasmatic nucleus (SCN) resulting in a circadian rhythm

of ACTH and cortisol release, with levels of both hormones being lowest at night

[197]. Interestingly, a number of studies find that the response of the HPA axis to

stress also exhibits diurnal variation [197]. CRH is also expressed in areas of the

brain important in behavioral regulation such as the amygdala and lateral bed of the

nucleus stria terminalis [198] where it is postulated to regulate anxiety and fear.

Given, the important role of the HPA axis in the regulation of behavior and

physiology, it is important to examine the impact of maternal obesity and diet on

the function of the HPA axis.

Human studies note an association between heightened activity of the HPA axis

and mental health disorders including anxiety and depression [199]; thus, program-

ming of the HPA axis by maternal HFD and obesity is a potential mechanism for the

increase in anxiety observed in offspring exposed to maternal obesity and HFD. In

NHPs, we note that maternal HFD consumption and obesity result in an increase in

both acute stress response (plasma cortisol) and chronic stress response (hair

cortisol) in infant and juvenile offspring [137]. This evidence is supported by rodent

studies that also indicate an increase in corticosterone in offspring exposed to

maternal HFD consumption. Male rat offspring exposed to a HFD during the last

week of gestation and lactation exhibited elevated basal levels of corticosterone on

postnatal day 10 [200]. Another study which examined the impact of HFD exposure

during gestation and lactation noted that adult rat offspring had reduced basal

corticosterone but an elevated and longer lasting corticosterone response to stress

which was accompanied by an increase in anxiety behaviors [201]. This study also

noted an elevated number of receptors for glucocorticoids in the amygdala

[201]. As glucocorticoid action in the amygdala regulates CRH expression and

anxiety-like behavior [198], this could be a mechanism by which exposure to

maternal HFD increases anxiety in offspring. Glucocorticoid levels in the amygdala

have not yet been examined in NHP exposed to maternal HFD. It will be important

for future studies in NHPs to fully characterize the HPA axis and extrahypothalamic

CRH expression and glucocorticoid receptors.
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10.8 Mechanisms by Which Maternal HFD Consumption

and Obesity Influence Offspring Physiology

and Behavior

10.8.1 Inflammation-Induced Programming

As discussed above maternal obesity is associated with elevated levels of inflam-

matory factors such as c reactive protein, IL-6, IL-1β, and TNF-α [40]. Recent

evidence indicates that many of these inflammatory factors can cross the blood

placental barrier, triggering the release of additional inflammatory cytokines from

the placenta that subsequently impact the developing fetus. Evidence from animal

models extend these studies by documenting that maternal HFD consumption

increases inflammatory markers, microglial activation, and changes the behavior

of offspring. In NHPs, exposure to maternal HFD consumption causes elevated

levels of circulating inflammatory markers in the fetus and increased microglial

activation in the brain, which likely contribute to observed impairments in the

development of the dopaminergic [73], melanocortinergic [165], and serotonergic

systems [135] and a long-term impact on behavior and physiology

[135, 165]. These findings are supported by evidence from a rat model that found

that maternal HFD consumption results in increased microglial activation in the

hippocampus and increased anxiety and impairments in spatial learning in adult

male offspring [136]. A mouse study which examined both male and female

offspring noted increased proinflammatory cytokines and microglial activation

associated with increased anxiety behavior and impaired social behavior in female

offspring exposed to HFD during gestation [81]. In this murine model, male

offspring exposed to maternal HFD during gestation were noted to display hyper-

activity. Placement of the dams onto a control diet during the lactation period was

found to reduce the neural inflammation, social impairments, and anxiety observed

in female offspring, but did not affect the hyperactivity observed in the male

offspring [81], highlighting that the timing of the dietary exposure dramatically

impacts the behavioral outcome and that various behaviors have different sensitive

periods to maternal HFD developmental programming. In humans, exposure to

elevated proinflammatory cytokines during perinatal development has been shown

to impact brain development and increase risk for behavioral and metabolic disor-

ders. Exposure of the developing fetus to an inflammatory environment is associ-

ated with prematurity, low birth weight [202], and increased risk of ADHD [203],

ASD [204], and schizophrenia [205]. Also, exposure to increased levels of inflam-

matory markers during the neonatal period has been shown to increase risk for

several serious metabolic diseases including heart disease, cardiovascular disease,

type II diabetes mellitus, and hypertension [40]. Data from both human and animal

studies demonstrate that exposure to elevated inflammatory factors during the

perinatal period impairs the development of several neurotransmitter systems that

regulate physiology and behavior such as the serotonin, dopamine, and

melanocortin systems [40, 180, 206]. Exposure to inflammation is nonspecific
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and is thus likely to impact many neural pathways. It is important that future

research fully characterizes the impact of inflammation induced by maternal obe-

sity and HFD consumption on the developing brain. Also, given the dramatic

impact that exposure to inflammation has on offspring risk of metabolic and

behavior disorders, it is critical that therapeutic interventions using anti-

inflammatory agents are examined. A recent rodent study has examined one such

possible therapeutic intervention, ursolic acid, which was observed to ameliorate

the impairments in cognitive function observed with HFD consumption [157].

10.8.2 Programming by Excess Hormones and Nutrients

Maternal obesity or maternal overnutrition disrupts the normal development of

many different organ systems in almost all mammalian species, as has been

described in previous sections. Although obesity is an incredibly complex and

multifactorial disease, there are several obvious changes in nutrients and hormones

that have been demonstrated to direct or at least play a significant part in the

maternal programming of the fetus. Often, these altered levels of hormones and

nutrients act in concert to prepare the fetus for postnatal life. However, questions

remain about the contribution of individual nutrients or hormones to maternal

programming.

In maternal obesity, hyperglycemia is a hallmark of metabolic syndrome. To

investigate whether high glucose intake during pregnancy in the absence of obesity

can lead to programming changes, D’Alessandro et al. fed rats a high sucrose diet

during pregnancy and lactation [207]. Despite not seeing any changes in body

weights in the offspring, animals that were exposed to a high sucrose diet anytime

during development demonstrated increases in blood glucose levels, as well as

dyslipidemia with high circulating levels of very-low-density lipoproteins and

triglycerides. This suggests that high sucrose exposure can program both glucose

metabolism and hepatic lipid metabolism [207, 208]. Other studies in rodents have

demonstrated that a similar model of sucrose consumption during pregnancy can

program changes in the cardiovascular system [209]. There are currently no human

situations where the contribution of just hyperglycemia during development can be

studied to determine the effect on the developing fetus. Epidemiological studies in

humans looking at the contribution of hyperglycemia in cases of nonobese gesta-

tional diabetes argue that just having hyperglycemia can alter the physiology of the

offspring [210–212]. A large population study that underscored this finding was the

HAPO study (Hyperglycemia and Adverse Pregnancy Outcome) in which the

consortium confirmed that neonatal adiposity was correlated with maternal glucose

levels [213], although this programming in neonates did not translate into an

association with childhood obesity when the offspring reached the age of 5–7

years [214].

In the NHP, no current studies have investigated the direct role of glucose or

fructose on the development of the offspring in the absence of a HFD. One study did

10 The Implications of Maternal Obesity on Offspring Physiology and Behavior. . . 221



attempt to develop a model of type 1 diabetes in NHPs and determine the effect of

hyperglycemia on offspring. The authors determined that the hyperglycemia, as a

result of β-cell destruction with streptozotocin, results in large for gestational age

offspring as well as hyperglycemia and hyperinsulinemia in the fetuses [215].

The experimental models for studying maternal obesity almost always utilize a

diet that is high in saturated fat with simple sugars as the source of carbohydrate.

Although some studies have addressed the contribution of simple sugars in devel-

opmental programming (see section above), there is little known on the direct and

isolated effect of dyslipidemia on programming in the NHP. Research in our NHP

model of gestational obesity has demonstrated that exposure to a diet high in

saturated fats and sucrose resulted in significant elevated levels of triglycerides in

the liver of the fetus [72]. This in utero exposure to high levels of lipids resulted not

only in oxidative stress in the liver but also increases acetylation of histone H3, a

hallmark of epigenetic programming [123]. Further, this study highlighted some of

the molecular mechanisms involved in epigenetic programming by maternal obe-

sity in NHPs. The importance of decreases in NAD-dependent protein deacetylase

sirtuin 1 (SIRT1), an important player in epigenetic modifications, was underscored

by the changes in known targets of SIRT1 like peroxisome proliferator-activated

receptors gamma and alpha. Taken together, this study very elegantly showed that a

maternal HFD, resulting in liver triglyceride levels threefold of normal, can result

in epigenetic alterations that can have a deleterious effect on the future develop-

ment of liver disease. It is also important to note that these changes were driven by

the consumption of a HFD and were unrelated to maternal obesity.

Interestingly, when animals from a subsequent study were studied at 1 year of

age, only offspring from mothers that demonstrated sensitivity to the maternal diet

(insulin resistance) retained the increased levels of triglycerides in the liver [120]. It

will be interesting to determine whether the epigenetic changes that were observed

in the fetus persist in the animals after 1 year of age. Regardless, it is apparent that

although consumption of a maternal HFD can result in epigenetic programming of

the fetus, it requires insulin resistance in the mother to have dysfunctional lipid

handling at 1 years of age. This observation clearly suggests that programming is a

combinatorial process, which includes many different aspects of maternal obesity

including nutrient excess, insulin resistance, and inflammatory processes.

10.9 Conclusions

Evidence from epidemiological studies and animal models indicates that perinatal

exposure to maternal obesity and HFD consumption has a considerable impact on

the physiology and behavior of the developing offspring. A number of mechanisms

have been identified to contribute to maternal obesity and HFD consumption

programming of offspring development including placental dysfunction and expo-

sure to elevated levels of inflammatory factors, nutrients (glucose, triglycerides),

and metabolic hormones (leptin, insulin) that impact the developing brain, liver,
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pancreas, and cardiovascular system. Changes in these organ systems result in

sustained alternations in the offspring physiology leading to susceptibility to

obesity. Furthermore, impairments in the development of neurotransmitters sys-

tems important in behavioral regulation such as the serotoninergic, dopaminergic,

and melanocortinergic systems lead to persistent changes in behavior including

increased anxiety, impaired social behavior, and decreased cognitive function. The

alarmingly high rate of maternal obesity and HFD consumption in Western nations

places future generations not only at increased risk for obesity and metabolic

disorders but also at heightened risk of developing neurodevelopmental disorders

such as ASD and ADHD and mental health disorders such as anxiety. Given the

substantial healthcare costs associated with each of these disorders, it is critical that

future studies identify interventions that are efficacious in preventing and reducing

the impact of maternal obesity and HFD consumption on offspring development.
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