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Preface

We fat all creatures else to fat us, and we fat ourselves for maggots. Your fat king and your
lean beggar is but variable service, two dishes, but to one table; that’s the end.

Hamlet. A tragedy by William Shakespeare (1599/1601).

There is more to our state of adiposity than simply what quality of meal we are

offering the maggots upon our demise. Obesity brings with it greater risk of

non-communicable diseases such as cardiovascular disease, diabetes, musculoskel-

etal disorders and cancer. It no longer seems likely that the escalating incidence of

obesity and these related diseases can be mitigated by just changing adult lifestyle

and diet. Now the concept of a developmental origin of health and disease

(DOHaD) is firmly part of scientific, clinical and health policy activities aimed at

understanding and reducing the risk of non-communicable diseases. But the focus

of the field has moved from small babies and maternal undernutrition to the other

end of the nutritional spectrum, maternal obesity and the future life of the larger

baby. It seems that obesity begets obesity, and so the cycle continues, as is evident

from the more than doubling of the worldwide prevalence of obesity since 1980 [1].

The time is ripe for this book.

The chapters are authored by undisputed leading scientists, clinicians and

policy makers in this field. In these chapters, the authors set out their ideas and

provide an up-to-date synthesis of the current thinking about the problem of

parental obesity, the ideas of intergenerational programming, and the physiology

behind it. We hope that this book will therefore appeal to a broad readership of

students, clinicians, researchers and health policy makers who either seek an

introduction to the area of DOHaD or have a specific interest in the pathogenesis

of obesity.

In this book, the spotlight is on critical periods in development when

obesity might affect offspring physiology, sometimes even before a mother

conceives or is aware that she is pregnant. These effects appear to have a

legacy across several generations. In Chap. 2, Gaillard and Jaddoe draw

upon their considerable experience and data from the observational Generation

R study, and in Chap. 3 Patel and Poston write from the perspective of their
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recent randomized control trial (RCT) of a diet and physical activity intervention

(UPBEAT). In both chapters, the authors call for more RCTs to understand

intergenerational programming. The impact of maternal obesity on offspring

physiology is multifaceted and linked to disease of the cardiovascular system

and metabolism, to allergic diseases (see Chap. 15) and to cancer (Chap. 13).

The importance of early critical windows is emphasized by research (Chap. 5)

showing the potential for the environment around time of fertilization

(pre-implantation) to have a lasting impact on offspring physiology. Indeed

many contributors to this book recommend that in order to break the

‘intergenerational cycle’ of obesity, interventions should target obesity in the

preconception period as well as throughout pregnancy. Nevertheless, others

argue for a better evidence base, since there may be negative implications of

dietary restriction/weight loss or exercise before or around time of conception

(Chap. 7). Part of this evidence base is likely to concern the 16 million

women 15–19 years old who give birth each year, about 11% of all births

worldwide [2]. The way in which weight gain and obesity during pregnancy in

the young, still-growing mother affects offspring is more complex (Chap. 4) and

the use of the sheep as a model for this has produced important mechanistic

insights.

“Women are responsible not only for the health of their own offspring but also

for the cost to the community of an unhealthy future population. . . . Women are

caught in a pincer movement between those seeking to protect the fetus and those

concerned with the social and economic cost or burden of ill health” wrote Ray

Noble (2006) [3]. Therefore, it is timely that research into the influence of paternal

obesity on offspring physiology has burgeoned (Chap. 6). Obese fathers are more

likely to father an obese child with impaired glucose metabolism, an effect which

may then extend into the next generation. These observations have the potential to

shift at least some of the burden of responsibility for lifestyle intervention

pre-pregnancy from the mother to the father.

To understand causality in human observational studies of maternal obesity

and impact on offspring, more sophisticated study designs and detailed maternal-

offspring outcome measurements are now needed (Chaps. 2 and 3). However,

over the course of this book the reader will discover that substantial advances

in understanding the mechanisms and pathways linking parental obesity to

offspring physiology are being made using animal models. As with drugs,

overeating may involve a chronic cycle of intoxication (‘positive reinforcement’)
and the emergence of withdrawal anxiety over time that perpetuates disordered

eating. The physiological evidence described in Chaps. 9 and 10 that pregnancy

high fat diet/obesity alters both maternal behaviour towards her offspring and

leads to altered food preferences in them, along with heightened risk of mental

ill-health, increased anxiety, social behavioural deficits and impaired memory

and learning is of real concern.
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Current knowledge is expanding on the mechanistic basis of the imbalance

between appetite and satiety, and of adipogenesis-lipogenesis in the offspring of

mothers with high fat intake during pregnancy (Chap. 11). Leptin, an adipokine

peptide hormone produced by fat cells, can cross the blood-brain barrier and

in offspring of maternal obesity/high fat pregnancies its action in the hypothalamus

is implicated not only in the dysfunction in appetite/satiety pathways (Chap. 11),

but also in cardiovascular dysregulation and hypertension (Chap. 14). Furthermore,

the mechanisms underlying insulin resistance in offspring of high fat fed and

obese mothers are likely to involve changes in insulin sensitivity in skeletal

muscle and liver (Chaps. 7 and 8). Nonalcoholic fatty liver disease (NAFLD),

whereby fat accumulates in the liver, is the hepatic manifestation of the

metabolic syndrome. There is now considerable evidence to suggest that

NAFLD in offspring is primed by high fat diet and obesity during pregnancy

(Chap. 12). The disease can progress in severity and lead to the development

of fibrosis and cirrhosis, and may be linked to hepatocellular carcinoma. The

increased risk of malignancy in offspring of obese pregnancies is an emerging

field of research and the most persuasive evidence to date is from rodent studies

in which the incidence of mammary tumours in female offspring is heightened

(Chap. 13).

Throughout the book, and summarized in Chap. 16, contributors highlight

epigenetic mechanisms that may help to explain the intergenerational cycle of

obesity and physiological dysregulation. It is clear that the advances in the knowl-

edge of epigenetic mechanisms have brought ‘environmental sense’ to the world of
genomics. In addition, the microbiome has provided a new mechanistic perspective

on the intergenerational programming of obesity and physiology. Evidence of the

susceptibility of the early life microbiome to programming by maternal diet,

antibiotic exposure, mode of delivery and breastmilk offers an exciting avenue

for understanding how the changes in the early life environment (such as maternal

obesity and weight gain) influence the health of the next generation and possible

future interventions (Chap. 17).

The importance of parental obesity as a major risk factor for non-communicable

diseases is apparent from the outset of this book. The reader gets a sense of the

urgency for action if adolescents and young adults are to have a better future, the

cost associated with non-communicable diseases is to be reduced, and if the

intergenerational programming of obesity is to be halted (Chap. 1). Many of the

contributors to this book have synthesized the current state of research into the

mechanisms linking parental obesity to altered offspring physiology, and suggest

targets for future interventions. Realizing the potential of such interventions is

important but enormously challenging and, as the reader will appreciate from

Chap. 1, this must be done within a coordinated policy scheme at international,

national and local government level.

Southampton, UK Lucy R. Green

Jackson, MS Robert L. Hester
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Chapter 1

Why Obesity in Parents Matters

Mark Hanson

Abstract Promoting the best possible environment for early human development

offers one of the greatest missed opportunities today for improving global health,

human productivity and longevity. Overweight and obesity in parents and parents-

to-be are not only associated with poorer health prospects for this section of the

population in the future, but also pass the risk of overweight and obesity to their

children. This calls for a new initiative to improve the health of current and

prospective parents, commencing with adolescent girls and women of reproductive

age, but also their partners.

Keywords Obesity • Parents • Generations • Public health • Education •

Childhood • Diabetes • Cardiovascular

1.1 The Challenge

Non-communicable diseases (NCDs), including diabetes, cardiovascular and lung

disease, some forms of cancer, mental illness, musculoskeletal disorders and some

atopic and allergic conditions now account for almost two-thirds of deaths world-

wide and a substantial burden of morbidity. WHO figures show that 38 million

people die from NCDs each year, 28 million of these deaths occurring in

low-middle income countries [1]. NCDs incur enormous costs in health care,

which are challenging even in high-income countries. For example, the McKinsey

Global Institute estimates that reversing the rising prevalence of the major NCD

risk factor obesity in the UK could save the NHS $1.2 billion/year [2]. The scale of

the economic costs is unsustainable, especially in low-middle income countries.

NCDs not only cause deaths and shorten lifespan but they can also impair

neurocognitive development [3, 4] reducing productivity and well-being. Hence,
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apart from direct health-care costs, there will be significant economic benefits from

reducing the burden of NCDs in all countries.

Until recently, it was widely believed that risk of NCDs in individuals was a

combination of fixed inherited genetic risk factors and an unhealthy lifestyle in

adulthood. However, genome-wide association studies have not found genetic

variants which account for a substantial fraction of risk at the population level

(e.g. [5]), and whilst overweight and obesity were estimated to produce 3.8 m

deaths globally in 2010, there are as yet no successful national campaigns for

tackling the problem [6]. The challenge is to find a new approach.

Overweight and obesity are important and very widely known risk factors for

NCDs [1] and so emphasis on preventing them makes much sense. The problem is

often thought to commence in childhood, as obesity in children has long-term

effects on a wide range of organ systems [7]. The problem of childhood obesity

in both high and low-middle income countries led to the establishment in 2014 of a

Commission on Ending Childhood Obesity by Dr Margaret Chan, the Director-

General of the World Health Organization [8], which will report in early 2016.

Obese children have long been known to be more likely to become obese adults [9],

and globally, 1.9 billion adults aged 18 years and older were overweight or obese in

2014 [10].

Turning to parental effects, in England in 2013 for example, 48% of women of

reproductive age were overweight or obese [11]. Being overweight or obese will

affect their health and increase the risk of complications during pregnancy and

delivery [12]. Even more important is the fact that obese women tend to have obese

children and maternal obesity is a major factor in the preconceptional and fetal or

infant origins of later risk of NCDs in the offspring [13]. This volume attests to the

considerable concern about the effects of obesity in parents on their children,

especially in mothers, but there is increasing evidence for an increased risk of

obesity in children with two obese parents [14, 15] and there is accumulating

experimental evidence for a role of paternal effects in transmission across

generations [16].

Meeting the challenge posed by obesity in parents also has important social and

equity implications, because it is particularly of concern in women with low

educational attainment or socio-economic status [17], and in some ethnic and

migrant groups [17, 18]. Obesity and the resulting increased risk of NCDs can

perpetuate or even widen social inequalities in health [19] adding another level of

urgency to finding a new solution to the problem.

The major focus of this chapter is on the biological rather than the social

processes by which parental obesity affects the next generation. The distinction

between the two is somewhat artificial and should not be taken to imply that aspects

of parental behaviour, the family environment, etc., do not play a role in inducing

obesity in children and adolescents, or are not areas where potential interventions

could have major effects (see for example [20]). There have been some very

hopeful initiatives in this respect such as the Family–Nurse Partnership [21] and

the Abecedarian project [22] in which wider social considerations about family life

and child education have been shown to improve long-term health outcomes

including obesity.

2 M. Hanson



1.2 New Insights into the Importance of Healthy Early

Development

New research in the field of developmental origins of health and disease (DOHaD)

has focused attention on the processes of developmental plasticity, operating during

critical periods of early human life to affect growth and development of tissues,

organs and physiological control systems [13, 23]. The critical periods of develop-

ment commence in the early embryo [24], sometimes before the woman knows that

she has conceived, and continue through pregnancy [25, 26], infancy and childhood

and into adolescence [27]. During these periods the developing individual responds

to aspects of their environment, via the mother and placenta before birth, and via

breast milk and parental behaviours after birth. Signals relating to maternal nutri-

tion, body composition, physical activity, stress, behaviour and exposure to

chemicals and toxins can set the level of the developing individual’s responses to
later challenges such as living in today’s highly obesogenic, increasingly urban,

environment [28]. In this way, the effects of unhealthy lifestyle are passed from one

generation to the next and can be amplified. This amplification is greater when there

is a mismatch between the developmental and adult environments, as happens for

example with nutritional and other lifestyle transitions in countries undergoing

socio-economic transitions and in migrant groups [29]. These new concepts are

fundamental to understanding the growing challenge of NCDs worldwide. They

also offer opportunities for promoting future health for the current and future

generations at several points in the human reproductive cycle (Fig. 1.1). However,

once a critical period has passed intervention is much more difficult, becoming less

effective and potentially more expensive. This is one of the reasons why current

approaches to reducing the incidence of NCDs in adults may not be achieving the

results needed. One of the most important phases in which to prevent and reduce

overweight and obesity is during adolescence and the reproductive years, as this

will not only promote the health of the woman but also that of her child(ren).

1.3 Obesity in Adolescents and Young People

Apart from the longer-term effects of obesity in increasing the risk of NCDs

referred to above, there are a range of short- to medium-term implications which

apply specifically to women of reproductive age and to a lesser extent to their

partners. These are perhaps not sufficiently emphasised as they could help increase

motivation to adopt healthier behaviours. Obesity in women is associated with

reduced fertility rates and greater risk of early miscarriage [30] and to reduced

sperm counts and morphological abnormalities [31]. The early embryos of obese

mothers already show signs of abnormal development and metabolism [32]. Obesity

in pregnancy is associated with increased risk of gestational diabetes [33]

which, if poorly controlled, can result in the perinatal complications of fetal

1 Why Obesity in Parents Matters 3



macrosomia, shoulder dystocia, obstructed labour and neonatal hyperinsulinaemic

hypoglyceamia [34]. The specific role of pre-pregnancy weight and weight gain in

pregnancy in these conditions [35], related to ethnicity [36], may offer new avenues

for intervention. Maternal hyperglycaemia is also associated with higher incidence

of a range of congenital abnormalities in the baby [37].

It is estimated that there are 1.8 billion people aged 10–24 years in the world

today, comprising about one-quarter of the total global population. In some coun-

tries, especially in sub-Saharan Africa, they represent an even higher proportion of

the population. Adolescence is a time in life when many behaviour patterns become

established and is a time when interventions might reverse the effects of earlier

poor development [38]. Many adolescent people are overweight or obese (e.g. for

England see [39]) and have markers of cardiovascular risk, including elevated

blood pressure and lipid or insulin/glucose levels [40]. A high proportion of

adolescents and young women and men have an unhealthy lifestyle, with poor

diet, low levels of physical activity, smoking, excessive alcohol consumption and

use of recreational drugs [41–43]. These lifestyles will have adverse later health

implications for the individuals, but will also have repercussions on the develop-

ment and health of their future unborn children, giving the next generation a poor

start to life. Access to health care is fragmentary in this section of the population,

NCD risk Human lifecycle

Infancy/childhood

Adolescence

Adulthood

Mother -
preconception &

pregnancy

High risk trajectory

Low risk trajectory

Time – across generations

birth

Fig. 1.1 Life-course view of NCD risk. Risk of NCDs increases in a non-linear way throughout

life, starting before birth. The trajectory of risk can be affected by interventions at various times,

although establishment of a low-risk trajectory must be early in the life course, especially

preconception and in pregnancy (broad blue arrow on left). Risk reduction in adolescents or

young adults can not only affect their later health but, as they are future parents, reduce inherited

risk in their children (human life cycle arrow)
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even in high-income countries. Adolescents frequently defer, or discount, any

action to improve their health until the future [44, 45] and for those adults with

lower educational attainment and socio-economic status poor health can become

self-fulfilling prophecy [46].

For those women who become pregnant, contact with health-care services often

does not occur until late in the first trimester, by which time the pregnancy is well

established and it is too late for modification of risk factors which affect embryonic

development. In most high-income countries, prospective parents do not prepare for

pregnancy [47]; this is even more true of many low-middle income countries. In the

UK, however, it is suggested that more than two-thirds of pregnancies are in fact

planned to some degree, at least in the sense that contraception has not been

routinely used [48].

1.4 Meeting the Challenge

Most societies do not have in place coordinated schemes to promote the health of

adolescents and young people, in particular before conception [49], as this is

assumed to be part of routine public health primary care, which is not always the

case [50]. This is an important missed opportunity to prepare for pregnancy, to

promote healthy pregnancy and to ensure healthy outcomes [51, 52].

Formal educational programmes delivered through schools have only had small

effects on, for example, levels of obesity and risky behaviours, and it appears that

integration of such programmes more widely into the community and involving

parents will improve success [53–55]. New integrated pedagogical approaches are

necessary to promote health literacy, for example through linking schools and

health researchers through out-of-classroom activities which incorporate continu-

ing professional development for science teachers, hands-on exposure to research

methods and ‘meet the scientist’ encounters for school age students [56].
There are three interrelated policy implications in addressing the challenge of

parental obesity, which need to be considered simultaneously, both in terms of their

implementation and their assessment (Fig. 1.2). While concern about the impact of

parental obesity is a global issue, these components will have to be implemented at

the level of national and local governments, in order to make them culturally

specific. They are:

(a) Profile and priority. Make the health of adolescents and young women and

their partners a national priority, on a par with events and movements which

promote an image of vital, active collective life, e.g. the Olympic Games. This

requires establishment of national organisations with professional representa-

tion from health, education, communities and local governments, media, sport

and the private sector.

(b) Create demand by investing in health literacy promotion through education

programmes in schools linked to community-based initiatives involving a range

1 Why Obesity in Parents Matters 5



of organisations and sponsors. This investment is predicated on the projected

return through reduced health care and other costs of reducing parental and

childhood obesity, adverse pregnancy outcomes and early markers of NCD risk.

(c) Supply. Establish integrated systems for the provision of health care to adoles-

cents and women before conception, throughout pregnancy and delivery and

after birth, linked to family planning and sexual health services, primary care

and wider community organisations.

1.5 Conclusion

The challenge posed by parental obesity, and obesity in parents-to-be, requires

urgent action, because such obesity does not augur well for the health of these

adolescents and young adults in the future. As this section of the population have a

substantial proportion of their lives ahead of them, the costs of NCDs in terms of

their well-being, productivity and longevity as well as the direct health-care costs

will be very hard to meet, even in high-income countries. Worse, such ill health

passes the risk of overweight and obesity to their children by a range of mecha-

nisms. There is a need to establish a new approach to meeting this challenge, in

terms of raising the profile and priority accorded to the issue at the level of national

and local governments and in conjunction with organisations such as WHO;

creating awareness of the problem and a desire to address it among young people,

especially adolescents; and providing an integrated health-care delivery system

Achieving a New Balance for Health of
Adolescents, Young Women and Their

Children

Demand: aspirations of
adolescents and young
women for health and

economic productivity for
themselves and their future

families

Profile and Priority:
WHO, NGO and

government support for
new global initiative to

support adolescent and
young women’s health

Supply: integrated health,
education and social systems for

adolescent, reproductive,
contraception, pregnancy
preparedness, ante-and

postnatal care 

Fig. 1.2 Achieving a new balance for health of adolescents, young women and their children.

Promoting health at this time in the life course requires a balance between the supply of health,

education and social care services and the demand for such provision based on appreciation of

their importance for health and prosperity. This balance needs to be supported through the profile

and priority given to it by a range of government and other organisations
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linked to education and wider community initiatives to ensure that parents do not

miss the opportunity for health promotion at a time in their lives which is critical for

them and their children.

MAH is supported by The British Heart Foundation
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Chapter 2

Maternal Obesity During Pregnancy

and Cardiometabolic Development

in the Offspring

Romy Gaillard and Vincent W. Jaddoe

Abstract Maternal obesity during pregnancy is a major public health problem

worldwide. In Western countries, obesity prevalence rates in pregnant women are

estimated to be as high as 30%. In addition, it is estimated that in these countries

approximately 40% of women gain an excessive amount of gestational weight. An

accumulating body of evidence strongly suggests a long-term impact of maternal

obesity and excessive weight gain during pregnancy on adiposity and

cardiometabolic related health outcomes in the offspring throughout the life course.

Maternal obesity during pregnancy may lead to developmental adaptations in the

offspring, predisposing to an increased risk of adverse cardiometabolic outcomes in

later life. Thus far, it remains unclear whether these associations are explained by

causal underlying mechanisms or reflect confounding by various family-based

socio-demographic, nutritional, lifestyle-related and genetic characteristics. Further

research to explore the causality, underlying mechanisms, and potential for pre-

vention of cardiometabolic disease in future generations by reducing maternal

obesity and excessive weight gain during pregnancy is needed.
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2.1 Introduction

Overweight, defined as a body mass index of 25.0–29.9 kg/m2, and obesity, defined

as a body mass index of 30.0 kg/m2 or higher, are major public health problems

worldwide. Over the past decades, the obesity prevalence has strongly increased in

both high- and low-income countries. In 2014, the Word Health Organization

estimated that more than 1.9 billion adults were overweight, of which over 600 mil-

lion were obese [1]. The strong increase in obesity prevalence is also present among

women of reproductive age. A large study combining data from nine states in the

USA showed that from 1993 to 2003 there was a rise of 70% in the rate of maternal

obesity at the start of pregnancy [2]. Currently, obesity prevalence rates among

women of reproductive age and at the start of pregnancy are estimated to be as high

as 30% in Western countries [3–5]. Next to prepregnancy obesity, it is estimated

that in these countries approximately 40% of women gain an excessive amount of

gestational weight, based on the US Institute of Medicine (IOM) guidelines [6]. The

IOM guidelines define optimal ranges of maternal weight gain during pregnancy

according to a mother’s prepregnancy body mass index and have been established

based on evidence from observational studies that relate gestational weight gain to

various maternal and offspring outcomes [6] (Table 2.1).

Both maternal prepregnancy obesity and excessive gestational weight gain may

adversely affect fetal development through an excessive nutritional in utero envi-

ronment. An accumulating body of evidence suggests that maternal obesity during

pregnancy has persistent effects on various offspring outcomes [7, 8]. This chapter

is focused on the associations of maternal obesity and excessive weight gain during

pregnancy with cardiometabolic development in the offspring throughout the life

course. Results from recent observational studies, with a specific focus on the

Generation R Study, the causality, potential underlying mechanisms of the

observed associations and challenges for future studies are discussed. This chapter

is largely based on our previous reviews on this topic [7, 8].

Table 2.1 Institute of medicine criteria for gestational weight gaina

Prepregnancy body mass index

Recommended amount of total gestational weight

gain in kg

Underweight (Body mass index< 18.5 kg/

m2)

12.5–18

Normal weight (Body mass

index� 18.5–24.9 kg/m2)

11.5–16

Overweight (Body mass

index� 25.0–29.9 kg/m2)

7–11.5

Obesity (Body mass index� 30.0 kg/m2) 5–9
aRecommended gestational weight gain guidelines according to women’s prepregnancy body mass

index. Adapted from the IOM criteria [6]
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2.2 The Generation R Study

The Generation R Study is a multi-ethnic population-based prospective cohort

study from fetal life until young adulthood in Rotterdam, The Netherlands

[9]. The Generation R Study is designed to identify early environmental and genetic

determinants of growth, development, and health in fetal life and childhood. All

pregnant women living in the study area with a delivery date between April 2002

and January 2006 were eligible for enrolment in this study. Enrolment was aimed at

early pregnancy, but was possible until the birth of the child. In total, 9778 mothers

were enrolled in the study, of whom 8879 were included during pregnancy. During

pregnancy, multiple assessments were planned in early pregnancy (<18 weeks of

gestation), mid-pregnancy (18–25 weeks of gestation), and late pregnancy (�25

weeks of gestation) and included parental physical examinations, fetal ultrasound

examinations, and self-administered questionnaires. In the preschool period, from

birth to 4 years of age, data collection was performed in all children by question-

naires and visits to the routine child health-care centers. All children were invited to

a dedicated research center in the Erasmus MC—Sophia Children’s Hospital to

participate in detailed body composition and cardiovascular follow-up measure-

ments at the age of 6 years. Measurements during this visit included anthropomet-

rics, body composition by Dual Energy X-ray Absorptiometry and ultrasound, and

measurements focused on cardiovascular development.

In the Generation R Study, the overall prevalence of maternal prepregnancy

overweight and obesity is approximately 28% [10]. There are large ethnic differ-

ences in maternal prepregnancy overweight and obesity prevalence. Among Dutch-

origin women, the overweight and obesity prevalence is approximately 23%.

Higher prevalences of prepregnancy overweight and obesity are present among

Cape Verdean-origin, Dutch Antillean-origin, Moroccan-origin, Surinamese-Cre-

ole-origin, and Turkish-origin women [4] (Fig. 2.1). The overall prevalence of

excessive maternal gestational weight gain according to the IOM criteria within

the Generation R Study is approximately 44% [10]. As compared to Dutch-origin

women, Moroccan-origin women and Surinamese-Hindustani-origin women tend

to have a lower risk of excessive gestational weight gain [4].

2.3 Maternal Prepregnancy Body Mass Index

Many observational studies have shown that maternal prepregnancy obesity is an

important risk factor for a variety of adverse fetal outcomes (Fig. 2.2). Based on

these observational studies, multiple large meta-analysis have been performed. A

meta-analysis focused on stillbirth among nine observational studies showed that

the odds ratio of stillbirth was 2.07 [95% Confidence Interval (CI): 1.59, 2.74]

among obese pregnant women, as compared to normal-weight pregnant women

[11]. In line with this meta-analysis, a large meta-analysis among 38 cohort studies
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in total with over 10,147 fetal deaths, 16,274 stillbirths, and 11,294 neonatal deaths

showed that the risk of fetal death was 1.21 (95% CI: 1.09, 1.35), the risk of

stillbirth was 1.24 (95% CI: 1.18, 1.30), and the risk of neonatal death was 1.15

(95% CI: 1.07, 1.23) per 5-unit increase in maternal prepregnancy or early-

pregnancy body mass index [12]. Maternal obesity was associated with an

increased risk of a number of congenital anomalies in a meta-analysis among

18 observational studies, including neural tube defects, cardiovascular anomalies,

cleft palate, hydrocephaly, and limb reduction anomalies [13]. A recent meta-

analysis among 13 studies showed that, as compared to a normal maternal

prepregnancy weight, maternal prepregnancy obesity was associated with a twofold

higher risk of delivering a large size for gestational age infant [14].
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Prepregnancy overweight and obesity  Excessive gestational weight gain

Fig. 2.1 Maternal obesity during pregnancy in the Generation R Study. Percentages of maternal

prepregnancy overweight and obesity and excessive gestational weight gain among the largest

ethnic groups within the Generation R Study [4]

Adverse offspring outcomes of maternal obesity during
pregnancy

Fetal outcomes Childhood outcomes Adult outcomes
Stillbirth
Fetal and neonatal death
Congenital anomalies
Macrosomia

Obesity
Adverse body fat distribution
High blood pressure
Adverse lipid profile
Increased inflammatory markers
Impaired insulin/glucose homoeostasis

Obesity
High blood pressure
Adverse lipid profile
Impaired insulin/glucose homoeostasis
Premature mortality

Fig. 2.2 Maternal obesity during pregnancy and adverse cardiometabolic outcomes in the

offspring
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Within the Generation R Study, we assessed the associations of maternal

prepregnancy body mass index with fetal growth characteristics in each trimester

of pregnancy. Maternal prepregnancy body mass index was not associated with

first-trimester fetal crown-to-rump length [15]. Higher maternal prepregnancy body

mass index was associated with a higher estimated fetal weight from

mid-pregnancy onward, with stronger associations with advancing gestation

[16]. Maternal prepregnancy obesity was also associated with an increased risk of

cesarean delivery, preterm delivery, delivering a large size for gestational age

infant, and a low APGAR score [10].

Maternal prepregnancy obesity is strongly associated with the risk of obesity in

the offspring [7, 8]. A meta-analysis among four studies showed that maternal

prepregnancy obesity was associated with a threefold higher risk of childhood

obesity [17]. Also, multiple studies have shown that a higher maternal

prepregnancy body mass index is associated with a higher body mass index in

adolescent and adult offspring, independent from socio-demographic and lifestyle-

related confounding factors [18–20]. A study among 1400 mothers and their adult

offspring showed that offspring of mothers within the highest maternal

prepregnancy body mass index quartile had a 5 kg/m2 higher mean body mass

index at the age of 32 years, as compared to offspring of mothers within the lowest

maternal prepregnancy body mass index quartile [18].

The associations of maternal prepregnancy obesity with other cardiometabolic

outcomes in the offspring have been studied less extensively [7, 8]. Within the

Generation R Study, we showed that a higher maternal prepregnancy body mass

index was associated with a higher offspring total body fat mass and android/gynoid

fat mass ratio measured by Dual Energy X-ray Absorptiometry, and a higher

abdominal subcutaneous and preperitoneal fat mass, a measure of visceral fat

mass, at the age of 6 years [21]. Also, a higher maternal prepregnancy body mass

index was associated with a higher childhood systolic blood pressure and insulin

levels and lower HDL cholesterol levels. As compared to children from normal-

weight mothers, children from obese mothers had an increased risk of clustering of

cardiometabolic risk factors [OR 3.00 (95% CI: 2.09, 4.34)], a measure of a

metabolic syndrome like phenotype. The associations of maternal prepregnancy

body mass index with childhood cardiometabolic risk factors were largely mediated

by childhood concurrent body mass index [21]. A study among 1090 mother–child

pairs participating in a pre-birth cohort in the USA showed that a higher maternal

prepregnancy body mass index was also associated with higher mid-childhood

leptin, high sensitivity C-reactive protein and interleukin-6 levels, and lower

adiponectin levels [22].

Similar associations have been reported in adolescence and adulthood [7, 8]. A

study among 4452 mothers and their adolescent offspring in Brazil showed that a

higher maternal prepregnancy body mass index was associated with a higher

adolescent systolic and diastolic blood pressure in boys and girls [23]. Among

1392 Australian mothers and their adolescent offspring, it was shown that a higher

maternal prepregnancy body mass index was associated with a higher adolescent

waist circumference, waist to hip ratio, systolic blood pressure, insulin, glucose,
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and HOMA-IR levels at the age of 17 years [24]. A study among 1400 mother–

offspring pairs in Jerusalem showed that maternal prepregnancy body mass index

was positively associated with waist circumference, systolic and diastolic blood

pressure, insulin, and triglycerides and negatively with HDL cholesterol in the

offspring at the age of 32 years [18]. In line with findings from studies focused

on childhood outcomes, these studies focused on adolescent and adult outcomes

showed that additional adjustment for offspring concurrent body mass index atten-

uated the associations of maternal prepregnancy body mass index with offspring

cardiometabolic risk factors. A study using birth records from 37,709 participants

showed that a higher maternal body mass index at the first antenatal visit was

associated with a higher risk of premature all-cause mortality and hospital admis-

sions for cardiovascular events in adult offspring, with a hazard of all-cause

mortality in offspring of obese mothers of 1.35 (95% CI: 1.17, 1.55), as compared

to offspring from mothers with a normal body mass index at the first antenatal visit

[25]. These associations were not explained by adjustment for maternal age at

delivery, socioeconomic status, sex of offspring, current age, birth weight, gesta-

tional age at delivery, and gestational age at measurement of maternal body mass

index, but no information on concurrent body mass index of adult offspring was

available [25].

Thus, maternal prepregnancy obesity is associated with increased risks of

adverse fetal outcomes, adiposity, and adverse cardiometabolic development in

childhood, adolescence, and adulthood and premature death in adulthood. The

associations of maternal prepregnancy body mass index with offspring

cardiometabolic risk factors seem to be largely explained by offspring body mass

index.

2.4 Maternal Gestational Weight Gain

Next to maternal prepregnancy body mass index, excessive maternal weight gain

during pregnancy may be an independent risk factor of adverse fetal development

and cardiometabolic development from childhood onwards (Fig. 2.2) [7, 8]. Differ-

ent measures of maternal weight gain during pregnancy have been studied. Most

studies have focused on the associations of excessive maternal weight gain during

pregnancy defined according to the IOM criteria. However, from a research per-

spective, the IOM criteria for excessive gestational weight gain have important

limitations [26]. As the IOM criteria for excessive gestational weight gain combine

prepregnancy body mass index and gestational weight gain, it is not possible to

study the distinct effects of maternal prepregnancy body mass index and gestational

weight gain on offspring outcomes [26]. In addition, it is not possible to identify

critical periods of maternal weight gain for offspring outcomes. Recently, more

studies have therefore also focused on more detailed measures of maternal weight

gain during pregnancy.
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Excessive maternal gestational weight gain is associated with several adverse

fetal outcomes, but associations seem to be weaker and less consistent as compared

to the associations of maternal prepregnancy body mass index [7, 8]. Excessive

gestational weight gain is most consistently associated with an increased risk of

delivering a large size for gestational age infant. A meta-analysis among 15 cohort

and case–control studies showed that excessive gestational weight gain based on

the IOM criteria was associated with a 2.35 (95% CI: 1.95, 2.85) higher risk of

macrosomia [27]. Thus far, excessive gestational weight gain seems not to be

associated with fetal death or stillbirth [28, 29]. A meta-analysis among 24 cohort

studies and 14 case–control studies showed that not a high total gestational weight

gain but a high weekly gestational weight gain was associated with an increased

risk of preterm birth [30]. A study among 20,465 nondiabetic, term, singleton-born

infants showed that excessive gestational weight gain according to the IOM criteria

was associated with adverse neonatal outcomes, such as a low 5-min APGAR score

and neonatal hypoglycemia [31]. Within the Generation R Study, we observed that

excessive maternal weight gain during pregnancy according to the IOM criteria was

associated with a higher risk of cesarean delivery and large size for gestational age

at birth, but a lower risk of preterm birth and small size for gestational age at birth

[10]. When we assessed the trimester-specific effects of maternal weight gain

during pregnancy, we observed that especially higher second- and third-trimester

maternal weight gain was associated with an increased risk of delivering a large size

for gestational age infant [10].

A meta-analysis among 12 studies showed that as compared to a recommended

amount of gestational weight gain according to the IOM criteria, excessive gesta-

tional weight gain was associated with a 33% increased risk of childhood obesity

[32]. A systematic review among seven studies also assessed the associations of

total gestational weight gain with the risk of childhood obesity and showed that an

additional kilogram increase in total gestational weight gain was associated with a

higher child’s BMI z-score of 0.006–0.06 units and increased the risk of childhood

overweight or obesity by 1–23% after adjustment for potential confounding factors

[33]. The associations of excessive gestational weight gain or total gestational

weight gain with more detailed childhood fat mass measures, blood pressure,

lipid levels, insulin resistance, and inflammatory markers are less consistent and,

if present, seem to be largely mediated by childhood body mass index [22, 34–40].

Similarly, increased maternal weight gain during pregnancy has been associated

with higher offspring adiposity levels and cardiovascular risk factors in adulthood

[18, 20, 41–43]. A study among 1540 Danish mothers and their offspring showed

that per kilogram increase in maternal gestational weight gain the odds ratio for

obesity at the age of 42 years was 1.08 (95% CI: 1.03–1.14) [20]. This association

was only partly explained by offspring birth weight and body mass index up to

14 years of age [20]. A study among 2432 Australians showed that higher maternal

gestational weight gain was independent from maternal prepregnancy body mass

index, associated with a higher body mass index, and tended to be associated with a

higher systolic blood pressure in the offspring at the age of 21 years [43]. A study

among 1400 mother–offspring pairs in Jerusalem showed higher maternal
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gestational weight gain was only associated with increased adiposity levels in the

offspring aged 32 years, but not with other cardiovascular risk factor [18]. Another

study among 308 Danish mother– offspring pairs, which assessed the associations

of maternal weight gain among normal-weight women, showed that a higher

maternal weight gain was associated with higher insulin levels and leptin levels

among male offspring only [41].

Several studies aimed to identify critical periods of maternal weight gain during

pregnancy for childhood and adolescent outcomes [7, 8]. Within the Generation R

Study, we showed among 5908 mother–offspring pairs that independent from

maternal prepregnancy weight and weight gain in later pregnancy, early-pregnancy

weight gain was associated with higher adiposity levels and an adverse

cardiometabolic profile at the age of 6 years [39]. In line with our findings, a

study performed among 5154 UK mother–offspring pairs showed that gestational

weight gain in the first 14 weeks of pregnancy was positively associated with

offspring body mass index, waist circumference, and fat mass at the age of

9 years [35]. A study among 977 mother–child pairs from Greece showed that

maternal first-trimester weight gain was associated with an increased risk of

childhood obesity and a higher childhood diastolic blood pressure from 2 to

4 years [44]. A Finnish study among 6637 mothers and their adolescent offspring

showed that maternal weight gain of >7 kg in the first 20 weeks of gestation was

associated with the risk of offspring overweight and abdominal adiposity at the age

of 16 years [45]. A study among 1392 Australian mothers and their adolescent

offspring showed that higher maternal weight gain rate in early but not in

mid-pregnancy was associated with greater adiposity levels and an increased risk

of being in the high-metabolic risk cluster, a proxy measure of the metabolic

syndrome at 17 years [24]. These studies suggest that especially maternal weight

gain during early pregnancy, when maternal fat accumulation forms a relatively

large component of gestational weight gain, may be a critical period for an adverse

cardiovascular risk profile in the offspring.

Thus, next to maternal prepregnancy obesity, excessive maternal weight gain

during pregnancy may also lead to increased risks of adverse fetal outcomes,

adiposity, and adverse cardiovascular risk factors in childhood, adolescence, and

adulthood. The adverse effects of maternal weight gain during pregnancy may

depend upon the timing of gestational weight gain. Overall, maternal prepregnancy

obesity appears to be more strongly associated with adverse offspring outcomes

than excessive gestational weight gain. Importantly, both the associations of mater-

nal body mass index and gestational weight gain with offspring outcomes seem not

to be only restricted to maternal obesity or excessive gestational weight gain, but

are present across the full-range of maternal body mass index and gestational

weight gain [7, 8].
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2.5 Causality of the Observed Associations

Despite the large number of observational studies reporting these associations,

limitations in these studies need to be considered. The most important limitation

of these observational studies is confounding of the observed associations

[7, 8]. Various family-based socio-demographic, nutritional, lifestyle-related, and

genetic characteristics may explain the observed associations of maternal

prepregnancy body mass index and gestational weight gain with adverse offspring

health outcomes [7, 8]. Multiple more sophisticated study designs can be used to

obtain further insight into the role of confounding in the observed associations,

including sibling comparison studies, maternal and paternal offspring comparison

analyses, Mendelian randomization studies, and randomized controlled trial ana-

lyses, as we described previously [7, 8].

2.5.1 Sibling Comparison Studies

The main advantage of sibling comparison studies is their ability to better control

for potential confounding factors, such as environmental characteristics as well as

maternal genotype, shared within families [46]. A sibling comparison study focused

on severe maternal prepregnancy obesity showed among children from mothers

who had high levels of prepregnancy weight loss due to biliopancreatic bypass

surgery that the risk of overweight and obesity and adverse cardiometabolic risk

factors was higher in children born to mothers before surgery than those born to

mothers after surgery [47, 48]. A sibling comparison study among 513,501 mothers

and their 1,164,750 children showed that children born to mothers who gained more

than 24 kg during pregnancy were approximately 148 g (95% CI: 141.7, 156.0)

heavier at birth than were children born to mothers who gained 8–10 kg [49]. A

sibling comparison study among 42,133 women who had more than one singleton

pregnancy and their 91,045 offspring showed that higher maternal total gestational

weight gain was associated with a higher body mass index in childhood, where

every additional kilogram of gestational weight gain increased childhood BMI by

0.0220 kg/m2 (95% CI 0.0134–0.0306) [50]. This association was only partly

mediated by offspring birth weight. A study using a sibling comparison design

among 280,866 singleton-born Swedish men showed that a higher maternal body

mass index in early pregnancy was not associated with higher offspring body mass

index at the age of 18 years within siblings, but only in the whole cohort and

between non-siblings [51]. This suggests that the association may be explained by

confounding environmental characteristics [51]. However, among the same study

population it was also shown that among overweight and obese mothers, higher

total gestational weight gain was associated with higher offspring body mass index

at the age of 18 years among siblings, which suggests a possible intrauterine effect

for gestational weight gain [52]. Findings from these sibling comparison studies
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suggest that especially gestational weight gain may affect offspring outcomes

through direct intrauterine mechanisms. An important limitation of sibling com-

parison studies is that next to the major exposures of interest, maternal

prepregnancy body mass index and gestational weight gain, also other lifestyle-

related characteristics may differ between pregnancies [7, 8].

2.5.2 Parent–Offspring Comparison Studies

As an aid to further disentangle underlying mechanisms, the strength of associa-

tions of maternal and paternal body mass index with offspring outcomes can be

assessed [53]. Stronger associations for maternal body mass index suggest direct

intrauterine mechanisms, whereas similar or stronger associations for paternal body

mass index suggest a role for shared family-based, lifestyle-related characteristics

or genetic factors [54]. Multiple studies compared the associations of maternal and

paternal body mass index with childhood body mass index and have shown

conflicting results [55]. However, studies examining these associations with more

detailed childhood fat mass measures have shown that maternal prepregnancy body

mass index tends to be more strongly associated with childhood total fat mass than

paternal body mass index [21, 56, 57]. Within the Generation R Study, we observed

that maternal prepregnancy body mass index was more strongly associated with

childhood body mass index, total body fat mass, android–gynoid fat mass ratio, and

clustering of cardiometabolic risk factors than paternal prepregnancy body mass

index [21]. These findings suggest that some of the effects of maternal

prepregnancy obesity on offspring outcomes may be through direct intrauterine

mechanisms [7, 8].

2.5.3 Mendelian Randomization Studies

Mendelian randomization studies are studies in which genetic variants, known to be

robustly associated with the exposure of interest and not affected by confounding,

are used as an instrumental variable for a specific exposure [58]. Associations of

these genetic variants with the outcomes of interest support causality for these

associations. A study among 4091 mother–offspring pairs showed no association of

maternal FTO with childhood fat mass at the age of 9 years [57]. Thus far, no other

Mendelian randomization studies on these specific associations have been

performed.
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2.5.4 Randomized Controlled Trials

Randomized controlled trials are considered as the golden standard to assess

causality. Previous randomized controlled trials have focused on influencing deter-

minants of maternal obesity and excessive weight gain during pregnancy, such as

dietary factors and physical activity levels, since directly randomized studies are

difficult to perform with maternal prepregnancy obesity and excessive gestational

weight gain as major exposures of interest [59]. A meta-analysis of multiple

randomized controlled trials showed that dietary and physical activity interventions

aimed at reducing maternal weight gain during pregnancy may lead to small

reductions in the amount of gestational weight gain and to a slightly lower risk of

adverse pregnancy outcomes [59]. In this meta-analysis, dietary interventions

appeared to be more effective than physical activity-related interventions [59]. A

recent Cochrane review also suggested that interventions during pregnancy focused

on diet or exercise, or combined, can reduce the risk of excessive gestational weight

gain [60]. However, whether these interventions also have a beneficial effect on

long-term offspring health outcomes remains unclear. A small randomized con-

trolled trial among 254 mothers and their children, which provided both dietary

advice and exercise during pregnancy to obese women, observed no difference in

body mass index or metabolic risk factors in infant offspring, when compared to the

control group and an external reference group of normal-weight women [61].

Taken together, results from these studies specifically designed to explore the

causality for the associations of maternal prepregnancy body mass index and

gestational weight gain with offspring outcomes remain inconclusive [7, 8].

2.6 Underlying Mechanisms

The mechanisms underlying the associations of maternal prepregnancy obesity or

excessive gestational weight gain with cardiometabolic disease in the offspring

remain unclear. The fetal overnutrition hypothesis suggests that in obese mothers

and mothers with high levels of gestational weight gain an increased placental

transfer of nutrients to the developing fetus may subsequently affect fetal develop-

ment, fetal fat deposition, and the development of the hypothalamic–endocrine

system that controls appetite and energy metabolism [26, 62, 63]. These adaptations

may predispose individuals to a greater risk of adverse cardiometabolic outcomes in

later life. Figure 2.3 shows potential mechanisms that might be involved in the

associations of higher maternal prepregnancy body mass index and gestational

weight gain with adverse cardiometabolic development in the offspring [8]. As

described previously, the following maternal exposures and underlying mecha-

nisms may have an important role [8].
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Maternal prepregnancy obesity
and excessive gestational weight
gain

Suboptimal diet

Fat accumulation

Insulin resistance

Hyperlipidemia

Increased free fatty acids/ glucose/amino-acids

Inflammation

 Epigenetic mechanisms

Placental adaptations:

Increased placental transfer

Fetal adaptations:

Increased fetal insulin and leptin synthesis

Increased fetal growth and fat deposition

Altered fetal hypothalamic development

High birth weight

Increased neonatal fat mass

Metabolic adaptations:

Adverse lipid profile

Impaired glucose/insulin homoeostasis

Body composition adaptations:

Adverse body composition

Increased leptin levels

Altered satiety mechanisms

Cardiovascular adaptations:

Endothelial dysfunction

Increased sympathetic tone

High blood pressure

Cardiac adaptations

Birth outcomes

Cardio-metabolic disease in
adulthood

Cardiovascular disease
Obesity
Type 2 diabetes

Fig. 2.3 Maternal obesity during pregnancy and offspring developmental adaptations. Conceptual

model for potential underlying mechanisms for the associations of maternal obesity during

pregnancy with adverse cardio-metabolic health outcomes in offspring. Adapted from [8]
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2.6.1 Maternal Exposures

Both maternal prepregnancy obesity and excessive gestational weight gain are

complex traits [8]. Maternal prepregnancy obesity not only reflects maternal fat

accumulation, but also other maternal characteristics, such as maternal nutritional

status, insulin and glucose metabolism, and low-grade systemic inflammation.

Similarly, maternal weight gain during pregnancy reflects maternal fat accumula-

tion, but also maternal and amniotic fluid expansion and growth of the fetus,

placenta, and uterus [6]. Multiple studies aimed to study the associations of more

detailed exposures related to maternal prepregnancy obesity and excessive gesta-

tional weight gain with various offspring outcomes [8].

Maternal fat accumulation during pregnancy is important for fetal nutrient

supply and fetal development [64]. However, during pregnancy, fat accumulation

predominantly occurs centrally [64]. Central fat accumulation is well known to be

associated with adverse cardiometabolic outcomes and appears to have similar

adverse consequences in pregnant women [65]. These metabolic disturbances

may involve insulin resistance and dyslipidemia, which leads to higher maternal

circulating levels of free fatty acids, amino acids, and glucose, which affect

placental and fetal development [64]. Multiple observational studies, including

studies using a sibling comparison design, have shown that gestational diabetes,

glycosuria, and higher maternal fasting glucose levels during pregnancy are asso-

ciated with higher weight and c-peptide levels at birth and higher body mass index,

fat mass level, fasting glucose and insulin levels, and the risk of type 2 diabetes in

later life [51, 66–71]. Small observational studies have also shown that higher

maternal triglyceride and amino acid levels are associated with a higher birth

weight and neonatal fat mass [72–75]. Thus, maternal fat accumulation and meta-

bolic factors during pregnancy may have persistent effects on offspring

cardiometabolic development [8].

Maternal obesity during pregnancy may be an indicator of a poor quality

maternal diet [8]. A Western dietary pattern and macronutrients and micronutrients

intake related to a Western diet have been suggested to influence offspring fat

deposition, adipocyte function, pancreatic function, and food preference [62, 76]. A

maternal diet during pregnancy which is high in saturated fat and sugar intake is

associated with an increased risk of obesity in the offspring [77]. Also, a maternal

diet with low Omega-3 and high Omega-6 fatty acids intake seems to be associated

with an increased risk of childhood obesity [78–80]. A study among 906 UK

mother–child pairs showed that higher maternal dietary glycemic index and glyce-

mic load in early pregnancy, but not later in pregnancy, were associated with higher

fat mass in children at the age of 4 and 6 years [81]. A study among approximately

3000 parents and their children showed that maternal protein, fat, and carbohydrate

dietary intake during pregnancy, but not paternal dietary intake, was associated

with child’s dietary intake of the same macronutrients [82]. The associations of

maternal dietary intake during pregnancy with child’s dietary intake were also

stronger than the associations of maternal postnatal dietary intake, which suggest
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that in utero mechanisms may play a role in the programming of offspring appetite

[82]. Altogether, these studies suggest that various measures reflecting a suboptimal

dietary status in pregnant women are associated with adverse cardiovascular and

metabolic outcomes in offspring [8].

Obesity is associated with low-grade systemic inflammation and oxidative

stress, also during pregnancy [83–85]. Additionally, pregnancy itself leads to a

state of mild maternal systemic inflammation, which may interact with obesity-

mediated inflammatory mechanisms [86–89]. Thus far, it has been shown that

maternal inflammatory markers during pregnancy correlate with fetal growth and

neonatal fat mass [90, 91], but the effects at older ages are less clear and remain to

be further explored [92].

2.6.2 Programming Mechanisms

Both maternal prepregnancy obesity and excessive gestational weight gain as well

as the correlated maternal exposures may lead to programming effects in the

offspring through several pathways [8].

Epigenetic mechanisms, which involve modifications due to early environmen-

tal influences to DNA and its associated proteins that regulate gene activity, are

likely to play a key role in developmental programming of adverse cardiometabolic

outcomes [93, 94]. Thus far, animal studies provide support for epigenetic modifi-

cations due to maternal obesity or a high-fat diet, but this has not been explored in

large human studies [93]. Small studies among pregnant women showed that

maternal obesity and impaired maternal glucose tolerance induced epigenetic

changes of placental genes [88, 95–97]. A human study among 88 mother–child

pairs suggested that only maternal weight gain in early pregnancy might be

associated with epigenetic modifications in offspring cord blood [98]. Epigenetic

modifications together with other mechanisms may thus be involved in adiposity

and cardiovascular and metabolic developmental adaptations [8].

Offspring from mothers with prepregnancy obesity or excessive gestational

weight gain are at increased risk of being born large for their gestational age,

which itself is associated with an increased risk of obesity in later life [99]. The

associations of maternal obesity during pregnancy with the risk of obesity in

childhood and adulthood may thus be explained by tracking of body size and

fatness throughout the life course [8]. However, many observational studies have

shown that additional adjustment for birth weight does not explain the observed

associations [7, 8]. The lack of effect of adjustment for birth weight may partly be

explained by birth weight not accurately reflecting neonatal fat mass, but might also

suggest that other mechanisms are involved in these associations [62]. Animal

studies have suggested that maternal obesity during pregnancy may affect both

offspring adipocyte morphology and metabolism, which may influence the devel-

opment of obesity and insulin resistance in the offspring [8, 63]. Next to altered

growth and adipocyte function, altered appetite control may be a key factor in
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developmental programming of obesity [8]. A maternal hypercaloric diet during

pregnancy and overfeeding in the fetal and early postnatal period may lead to

hyperphagia and altered satiety mechanisms through adverse programming of the

hypothalamus by high fetal and infant leptin and insulin levels [62, 100].

The associations of maternal prepregnancy body mass index and gestational

weight gain with adverse cardiovascular and metabolic outcomes in the offspring

appear to be largely mediated through offspring adiposity [8]. However, direct

cardiovascular and metabolic programming effects of maternal obesity during

pregnancy may also be present [63]. Thus far, mainly animal studies have shown

that maternal obesity, a maternal high-fat diet, and increased maternal glucose

transport during pregnancy are associated with offspring high blood pressure,

endothelial dysfunction, increased aortic stiffness, cardiac hypertrophy, impaired

glucose and insulin homeostasis, and measures related to non-alcoholic fatty liver

disease [8, 63, 100, 101].

Thus, multiple mechanisms may be involved in the intrauterine pathways lead-

ing from maternal obesity and excessive weight gain during pregnancy to long-term

adverse offspring health outcomes [8]. These underlying mechanisms have mainly

been studied in animal models and remain to be further explored in large human

studies.

2.7 Challenges for Future Epidemiological Research

Current evidence from epidemiological studies suggests that maternal obesity and

excessive weight gain during pregnancy have important adverse consequences on

cardiometabolic development from fetal life onwards, leading to disease in later life

[7, 8]. However, there remain important issues to be addressed [7, 8]. These include

examining the extent of causality of the observed associations, the underlying

exposures and their critical periods, the developmental adaptations, and the poten-

tial for development of preventive strategies (Table 2.2) [7, 8].

First, despite extensive adjustment for potential confounding factors in these

observational studies, residual confounding may still be an issue [7, 8]. The cau-

sality of the observed associations needs to be further addressed. For this purpose,

Table 2.2 Key points for future researcha

Observational studies using sophisticated study designs to obtain further insight into the cau-

sality of the observed associations

Detailed maternal exposures and offspring outcomes measurements to obtain further insight into

the specific exposures and their critical periods, and the underlying mechanisms of the observed

associations

Long-term follow-up of participants in trials focused on reducing maternal weight throughout

pregnancy to assess causality of the observed associations and the effectiveness of maternal

lifestyle interventions during pregnancy for improving long-term health outcomes of offspring
aAdapted from [8]
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large observational studies that are able to conduct sophisticated analyses, such as

sibling comparison analyses, parent–offspring comparison analyses, and Mendelian

randomization analyses, are needed. In addition, meta-analyses among large num-

bers of observational studies will provide further insight into the strength, consis-

tency, and independency of these associations. Long-term follow-up of mothers and

their children participating in randomized controlled trials focused on reducing

maternal weight throughout pregnancy will also provide further insight into the

causality of the associations [7, 8].

Second, the mechanisms underlying the observed associations of maternal

prepregnancy obesity and excessive gestational weight gain with offspring health

outcomes remain to be further explored [7, 8]. Animal studies have identified a

number of pathways that may be involved in these associations, but these pathways

remain largely unexplored in humans. Maternal prepregnancy obesity and exces-

sive gestational weight gain are complex traits, which reflect multiple biological

and lifestyle-related components, which complicates identification of potential

underlying pathways [7, 8]. Future studies with more detailed assessments of the

maternal exposures and offspring outcomes throughout the life course could pro-

vide further insight into potential underlying mechanisms. To obtain further insight

into the different maternal components associated with offspring outcomes and

their critical periods, detailed repeated measurements of maternal weight and body

composition, nutritional status, metabolic measures, inflammatory measures, and

pregnancy-related hemodynamic adaptations are needed. Since early pregnancy

appears to be a critical period for offspring outcomes, studies are needed with

detailed maternal measurements from early pregnancy onward to already assess

their influence on placental and embryonic growth and development. For the

offspring outcomes, more detailed measurements of fetal and postnatal growth,

body composition, and cardiometabolic factors, such as cardiac structures, endo-

thelial function, lipid spectrums, and glucose responses, might also lead to further

insight into the underlying growth, vascular, and metabolic mechanisms present in

the observed associations. Long-term follow-up of the offspring in observational

studies is needed to assess the influence of maternal prepregnancy obesity and

excessive gestational weight gain on cardiovascular and metabolic development

throughout the life course [7, 8].

Third, further research is needed focused on prevention of adverse health out-

comes in offspring through optimizing maternal prepregnancy body mass index,

gestational weight gain, and dietary intake during pregnancy [7, 8]. The optimal

amounts of maternal weight gain for short-term and long-term maternal and

offspring health outcomes need to be examined to improve the IOM recommenda-

tions for gestational weight gain [7, 8]. Identification of specific maternal dietary

components associated with offspring health outcomes will aid in the improvement

of maternal dietary recommendations during pregnancy [7, 8]. Long-term follow-

up of mothers and their children participating in randomized controlled trials

focused on improving maternal diet and reducing maternal weight throughout

pregnancy will provide insight into the effectiveness of these maternal lifestyle

interventions during pregnancy for improving long-term health of offspring [7, 8].
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2.8 Conclusions

Based on current evidence from observational studies, maternal prepregnancy

obesity and excessive gestational weight gain seem to be risk factors for an adverse

in utero environment and long-term adverse cardiometabolic outcomes in the

offspring. Well-designed studies are needed to identify the extent of causality of

the observed associations, the underlying exposures and their critical periods, the

developmental adaptations, and the potential for development of preventive strat-

egies to improve long-term health outcomes of offspring.
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Chapter 3

Maternal Obesity and Gestational Weight

Gain as Determinants of Long-Term Health

Nashita Patel and Lucilla Poston

Abstract This chapter addresses the prospect that obesity may begin at the earliest

stages of life and that one of the determinants may be exposure to maternal obesity

in utero or to extremes of maternal gestational weight gain.

Keywords Pregnancy • Obesity • Developmental programming • Gestational

weight gain • Offspring

3.1 The Global Prevalence of Maternal Obesity

Obesity is defined as a BodyMass Index (BMI)�30 kg/m2. The increase in obesity is a

major health concern, having reached epidemic proportions with the prevalence having

doubled globally in the last 20 years. TheWorldHealth Organization has estimated that

300million adults of the 1.5 billion adults defined as having aBMI>25 kg/m2 are obese

[1] with this trend continuing to increase. In 2013, an estimated one in fivewomen in the

world aged 20 years or above were obese [2]. The rates are greatest in high-income

countries, including 33.9% of women in the United States of America (USA) and

25.4% from the United Kingdom (UK) [2]. It is forecasted that the prevalence of

obesity in theUKwill increase by 33% and of severe obesity by 130% [3]. The number

of obese pregnant women delivering in the UK doubled between 1989 and 2007

[4]. This increasing prevalence of maternal obesity is a significant challenge to preg-

nancy management, placing a burden on health-care resources.

Despite heightened awareness and public health efforts to address this increasing

epidemic, a large and younger population remains affected. Childhood obesity is

strongly associated with later obesity and cardiometabolic disease [5, 6]. Globally,
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23.2% of children under the age of 18 years are estimated to be overweight or obese

[2]. Obesity is occurring at an increasingly younger age, affecting more than

43 million children aged 0–5 years worldwide [7]. Recent estimates in the UK

suggest that 24.4% of children aged between 2 and 5 years are overweight (>85th

centile) [7, 8].

The global increase in obesity over the last one/two generations from 15 to

33.9% globally suggests that genetic variants are unlikely to play a major role,

placing an emphasis on environmental factors on the subsequent influence of the

epigenome on the phenotype. While there is little doubt that a high-fat, Western-

style diet combined with a reduction in physical activity are strong contributors,

other factors including early-life exposures may play a causative role. Maternal

antenatal including pre-pregnancy obesity and excessive gestational weight gain

(GWG) and early postnatal exposures have been associated with the development

of childhood obesity.

Observational data and animal studies have highlighted the associations between

alterations in the in utero environment and increased susceptibility to obesity and

adverse cardiometabolic profiles in adulthood. Studies have suggested that maternal

BMI and excessive GWG independently correlate with offspring adiposity from an

early age [9]. This has led to numerous studies exploring these associations and

potential mechanisms, with the ultimate objective being the development of inter-

ventions in early life, with the aim of reducing the risk of obesity in the offspring.

3.2 Implications of Maternal Obesity on Conception

and Pregnancy Outcomes

A full understanding of the implications of maternal obesity on the health of the

child in later life requires appreciation of the associated short-term complications

for both mother and child.

3.2.1 Preconception and Embryogenesis

Obesity can affect fertility, implying an influence on development of the early

embryo or indeed the oocyte. There is an association between obesity and time to

spontaneous pregnancy in women with both anovulation and regular menstrual

cycles [10, 11]. Increasing BMI is associated with decreased serum adiponectin,

increased circulation of leptin, insulin resistance and an unbalanced cytokine

profile, critical for central and peripheral regulation of maternal metabolism and

subsequent fertility. Diets with high glycaemic index, trans fatty acids and animal

proteins are associated with increased risk of ovulatory fertility [12] through

resulting hyperglycaemia and lipotoxocity [13].
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3.2.2 The Antenatal Period

Maternal obesity is an independent risk factor for several adverse outcomes in

pregnancy, including pre-eclampsia, gestational diabetes (GDM) and delivery of a

large for gestational age (LGA) infant [14, 15] all of which have been associated

with adverse long-term health. A dose–response relationship exists between

increasing pre-pregnancy BMI and the risk of these antenatal complications

[16, 17]. A high maternal BMI is also an important risk factor for intrauterine

growth restriction (IUGR) [18] which is associated with the development of

cardiovascular and metabolic disease in the offspring. More obviously, children

born to obese or overweight mothers are at increased risk of congenital abnormal-

ities, birth injury, stillbirth and prematurity [19].

3.2.3 Gestational Weight Gain

3.2.3.1 What Is Gestational Weight Gain?

Understanding the different components of GWG in an uncomplicated pregnancy is

necessary before we can address the potential of long-term effects on the offspring

secondary to suboptimal weight gain.

The fetus, placenta, adipose tissue, amniotic fluid, mammary glands and uterus

all contribute to GWG. However, the fetus, placenta and amniotic fluid account for

only 35% of total GWG. Maternal fluid volume expansion also makes a major

contribution. Fat accrual is another but very variable component of GWG. How-

ever, only 5% of maternal weight gain at 40 weeks’ gestation constitutes fat

[20]. During pregnancy, fat accumulation is promoted in response to increased

vascular and metabolic demands to sustain maternal stores during lactation and to

support fetal growth and development. The deposition of adipose tissue occurs

within two distinct anatomic locations: subcutaneous and visceral compartments.

Visceral adipose tissue is primarily located within the abdominal viscera and differs

in its endocrine and lipolytic function in comparison to subcutaneous tissue. In the

non-pregnant population, increased visceral adiposity has been shown to increase

the risk of type 2 diabetes, dyslipidaemia and accelerated atherosclerosis

[21]. Despite its importance, few studies have investigated how the distribution of

adipose tissue changes during pregnancy and its relationship with GWG and

pregnancy outcomes, including GDM. One recent study has, for example, related

differences in maternal fat depots to the risk of GDM [22]. The Rhea Pregnancy

Cohort, Greece, assessed 977 mother–child pairs and found that an increased rate of

GWG (per 200 g/week) was associated with offspring overweight and obesity at

2 years and significantly increased waist circumference, sum of skinfolds and

diastolic blood pressure at 4 years [23]. These findings suggest that not only the
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absolute gestational weight gain but also the timing and composition of GWG is a

determinant for the development of cardiometabolic risk in the offspring.

Describing the pattern of adipose tissue deposition, rather than measurement of

GWG, would provide a more faithful reflection of metabolic exposures encountered

by the developing child and provide greater insight into the risk to later health.

Surrogate measures of fat mass and distribution such as skinfold thicknesses may

provide a simple tool to assess gain in adipose tissue in pregnancy.

Despite these limitations in the measurement of GWG, the Institute of Medicine

(IOM) recently published new recommendations for GWG [20]. The recommen-

dations differ depending on the pre-pregnancy BMI (Table 3.1).

The wide range of weight gain for each BMI category reflects the imprecision of

the given estimates. The current IOM guidelines were derived from limited data on

six main outcomes: SGA, LGA, preterm birth, caesarean birth, maternal postpartum

weight retention and early childhood obesity. These criteria were not further

stratified on the different classes of obesity during pregnancy as they are for

published hypertension and ischaemic heart disease risk stratification guidelines

[24]. The clinical usefulness of these criteria continues to be debated, especially in

relation to additional patient outcomes including GDM [25]. There is also recog-

nition by the IOM of the lack of evidence among socio-economic and ethnic

minority groups, potentially limiting translation to other populations [20].

3.2.3.2 Excessive Gestational Weight Gain

Maternal and perinatal complications have been shown to increase with excessive

GWG regardless of whether the mother is obese or not. These include GDM,

pre-eclampsia, and for the infant, macrosomia and delivery of an LGA infant.

Furthermore, an association between rate of GWG and the incidence of GDM has

also been reported [26]. These outcomes are all implicated in the long-term health

of the infant. Excessive gestational weight gain is also strongly associated with

maternal postpartum weight retention and obesity-related complications in subse-

quent pregnancies [27].

Table 3.1 Institute of Medicine guidelines for maternal weight gain [20]

Pre-

pregnancy

BMI

BMI (kg/m2)

(WHO)

Total weight

gain range (kg)

Rates of weight gain second and third

trimester (mean range in kg/week)

Underweight <18.5 12.5–18.0 0.51 (0.44–0.58)

Normal 18.5–24.9 11.5–16.0 0.42 (0.35–0.50)

Overweight 25.0–29.9 7.0–11.5 0.28 (0.23–0.33)

Obese �30.0 5.0–9.0 0.22 (0.17–0.27)
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3.2.3.3 Below Recommended Gestational Weight Gain

The IOM first published in 1990 recommended obese women to gain at least 6.8 kg,

in aim to prevent adverse fetal and maternal outcomes [20]. A recent systematic

review and meta-analyses utilising 18 cohort studies determined that GWG below

recommended guidelines in obese women increased the odds of preterm birth (<37

weeks) (Adjusted Odds Ratio (AOR) 1.46; 95% CI 1.07–2.00) and delivery of a

SGA infant (AOR 1.24; 95% CI 1.13–1.36) [24], both of which have shown in

observational studies to influence long-term health of the child [28, 29]. However,

the same study showed that GWG below the recommended guidelines was associ-

ated with a reduction in the odds of delivery of an LGA infant (AOR 0.77; 95% CI

0.75–0.8) in comparison to those who gained weight within the guidelines

[24]. This study exemplifies some of the controversies related to these guidelines

and the difficulties in assessment of optimal GWG. GDM is one of most important

confounders in the association between gestational weight gain and delivery of an

LGA or macrosomia infant since treatment for mild GDM has been shown to

decrease the delivery of a macrosomic and LGA infant as assessed by population

centiles [30].

3.2.3.4 Assessment of Gestational Weight Gain

Several measures of GWG have been used to determine the association with long-

term offspring health, for example total, rate and weekly rate of GWG. However,

none of these methods have been universally adopted, leading to results which are

not comparable due to different assumptions and adjustments made for each

[31]. The IOM categories combine pre-pregnancy BMI and GWG. Therefore, it is

difficult to distinguish the associations with offspring health within the IOM

categories and whether outcomes are contributed to either pre-pregnancy BMI or

GWG [32]. A novel approach developed by Fraser et al. utilises repeated measures

of weight change during pregnancy by developing a linear spline multilevel model,

relating gestational weight to gestational age; thus providing an accurate tool to

model GWG on outcomes [32].

The advantage of using repeated measures of weight gain in relation to long-

term offspring outcomes enables the detection of subtle changes in maternal GWG

in relation to outcomes.
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3.3 Effect of Maternal Obesity and Gestational Weight

Gain on Long-Term Health of the Child

3.3.1 Developmental Programming Hypothesis

The hypothesis that the early environment could be implicated in the develop-

ment of adverse health was initially proposed by Barker et al. [33, 34]. Their studies

in historical population cohorts identified that low birthweight, implicated in

inadequate nutrition in utero, ‘programmes’ the fetus for future cardiovascular

and metabolic disease [34]. Whilst a reduction in birthweight is evident at birth,

it is apparent that the influence of an in utero environment can have latent effects of

the offspring phenotype. A series of observational studies derived from the Dutch

‘Hunger Winter’ determined the underlying effects of in utero programming

including the observation that famine exposure in utero was associated with a

twofold increase in the incidence of obesity at 18 years of age in offspring without

a change in birthweight [35].

Intrauterine insults during the critical phases of growth and development have

been associated with permanent functional changes in certain tissues, including

adipocytes, myocytes, neurons and pancreatic beta cells.

3.3.2 The Influence of the In Utero Environment
on Offspring Outcomes

Pre-pregnancy obesity, excessive GWG and GDM have all independently been

associated with increased adiposity and adverse cardiometabolic health in the

child’s later life [36]. These three maternal factors, each associated with fetal

overnutrition, are thought to be the most important modifiable in utero risk factors

in relation to development of childhood cardiometabolic traits. Undernutrition,

overnutrition and hormonal imbalance are thought to be pivotal factors implicated

in these processes. During obese pregnancies, the fetal pancreas is often exposed to

excessive glucose and amino acids from increased transplacental transport from the

mother, which stimulate growth primarily through the resulting overproduction of

insulin by the fetal pancreas. Observational studies have demonstrated that off-

spring of obese mothers are set on a trajectory of increased adiposity and risk of

cardiometabolic disorders [37–39].

3.3.3 Pre-pregnancy Obesity

Multiple observational studies have demonstrated that a higher pre-pregnancy BMI

is associated with an increased BMI in the adult offspring, independent of socio-
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economic and dietary confounding [15]. Examples include a report from a subgroup

of The Southampton Women’s Survey, a detailed prospective cohort of 216 women

with data on maternal weight and skin fold measurements at pre-pregnancy to

34 weeks’ gestation. Adiposity was assessed in 9-year-old offspring using the Fat

Mass Index (FMI) measured by Dual energy X-Ray absorptiometry (DXA). The

study demonstrated that for each standard deviation increase in maternal

pre-pregnancy BMI there was an increase in offspring FMI by 0.26 (0.04–0.48)

in males and 0.42 (0.29–0.56) in females [40]. Similar findings were reported in the

Avon Longitudinal Study of Parents (ALSPAC) in a study of 8234 women using

self-reported pre-pregnancy weight. Offspring were followed up to 7 years where

obesity was defined as BMI greater than the 95th percentile (equivalent to a

standard deviation of �1.96) adjusted for age and gender. Utilising a large sample

size, longitudinal design, advanced multivariate analysis and adjustment for poten-

tial confounders (including maternal education, offspring energy intake at 3 years

and offspring sex), pre-pregnancy obesity was associated with a significant increase

risk of childhood obesity at 7 years (AOR4.25; 95% CI 2.86–6.32) [41]. The effects

of maternal obesity are not just limited to childhood. A compilation of the Nurses

Health Study II and the Nurses’ Mother cohort, a total of 26,506 mothers with a

pre-pregnancy BMI >29 kg/m2 and their offspring at 18 years was assessed.

Increased maternal pre-pregnancy BMI was associated with 6.1-fold increased

risk of obesity in the offspring [42].

To date, few studies have investigated the association between maternal

pre-pregnancy obesity and offspring cardiovascular outcomes in offspring, which

we have recently reviewed [43]. A study (n¼ 4871) in the Generation R cohort

from the Netherlands assessing the individual and combined association of mater-

nal and paternal associations has enabled clarification of a potential causal rela-

tionship. Offspring at 6 years from obese mothers had an increased risk of both

childhood overweight (OR 3.84; 95% CI 3.01–4.90) and clustering of

cardiometabolic markers (defined as android fat mass percentage �75th percentile;

systolic or diastolic blood pressure �75th percentile; high-density lipoprotein

cholesterol �25th percentile or triglycerides �75th percentile; and insulin �75th

percentile) (OR 3.00; 95% CI 2.09–4.34) in comparison to those of normal weight

women [44]. Furthermore, this association was stronger for maternal pre-pregnancy

BMI than paternal BMI, providing further support for the intrauterine origins of

adverse health in later life. In another study Lemas et al. showed in 753 maternal–

infant pairs from a large multi-ethnic observational cohort that maternal weight

prior to pregnancy was associated with increased umbilical cord leptin glucose and

reduced HDL-c at delivery, independent of neonatal adiposity. This metabolic

profile was associated with the development of hypercholesteraemia and subse-

quent cardiovascular disease in adulthood [45]. Whilst neonatal adiposity was not

related to these maternal variables in this study, it provides a measure of in utero

nutritional status that cannot be influenced by known causative postnatal exposures

and may therefore be a useful index of an adverse in utero environment associated

with later disease.
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The ABCD study of 3074 maternal–offspring pairs from the Nether-

lands reported that pre-pregnancy BMI was positively linearly associated with

offspring systolic and diastolic blood pressure at 5–6 years. Although this study

demonstrated proof of principle of the association of increasing BMI and childhood

blood pressure, only 5% of the total population studied were clinically obese

[46]. In a case–control study from Norway, with a small sample size, maternal

obesity was related to adverse structural and functional cardiac changes during the

first trimester as assessed by ultrasound. These included reduced left and right

ventricle global strain at 14 weeks’ gestation and increased inter-ventricular thick-

ness (�1.74� 0.50/s; p< 0.001) at 32 weeks’ gestation (n¼ 27) in comparison to

lean pregnant women (n¼ 24) [47]. Similar changes in myocardial structure and

function have been associated with the development of cardiovascular disease in

adults [48].

There is also evidence at the population level for associations between maternal

obesity and offspring adulthood cardiovascular function. In a large hospital cohort

from Scotland (n¼ 37,709), maternal obesity measured in early pregnancy was

associated with an increased risk of premature all-cause mortality [Hazard ratio

(HR) 1.35; 95% CI 1.17–1.55] and hospital admissions secondary to cardiovascular

events (HR 1.29; 95% CI 1.06–1.57), following adjustment for maternal age at

delivery, socio-economic status, sex of offspring, current age, birthweight, gesta-

tion at delivery and gestation at measurement of BMI [49]. Whilst observational

studies have demonstrated the association of pre-pregnancy BMI and

cardiometabolic health, randomised controlled trials are now required to determine

causality of these associations.

3.3.4 Gestational Weight Gain

While elevated pre-pregnancy BMI has been associated with increased risk of

adverse long-term offspring health, relationships between excess GWG and off-

spring outcomes are less readly interpretable, perhaps because of differences in

methods of measurement and the variable components of weight which contribute

to GWG [50].

Those studies which have assessed relationships between GWG and offspring

indicate that excessive GWG is associated with an increased risk of obesity and

adverse cardiometabolic health [51–53]. For example, using the Danish Birth

cohort, Nohr et al. found that a combination of maternal overweight/obesity and

excessive GWG was associated with a significant increase in LGA infants

[54]. Utilising a population-based birth cohort (n¼ 2432), Mamun et al. found

that greater GWG was associated with an increase of 0.2 mmHg per 0.1 kg of

gestational weight gain (95% CI 0.1–0.4 kg/m2) and increased BMI in offspring at

21 years of age [55].

A recent systematic review and bias-adjusted meta-analysis (n¼ 12 cohort

studies) demonstrated that the offspring of women who gained above the
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prescribed IOM weight gain criteria had a 40% increased risk of obesity over the

life course [37]. It is hypothesised that women who gained excess weight during

pregnancy are more than likely to have a poor diet quality comprised of high-fat

foods, and low levels of physical activity, which have both been independently

associated with offspring obesity in animal models and human observational

studies [56, 57]. This most recent meta-analysis highlights the independent effects

of maternal GWG on the development of offspring obesity over the life course.

However, none of the studies included within this analysis assessed women with a

pre-pregnancy BMI >30 kg/m2, but rather grouped the three BMI categories

(normal, overweight and obese) together. In other meta-analyses, GWG, defined

using the IOM criteria [20], has also been associated with an increase in

pre-schooloverweight and obesity (defined as overweight �85th percentile and

obesity BMI �95th percentile) and with the magnitude of effect increasing from

1.5-fold to 4.4-fold, as recently shown by two meta-analyses in offspring after

adjustment for sex [37, 58].

An important element often under-recognised is the timing of weight gain.

Observational studies have suggested that the first 24 weeks of pregnancy is a

crucial time period during which excessive weight gain is a key risk factor for the

development of GDM [59] which has also been implicated in offspring obesity.

Early weight gain has been shown to be a strong predictor of excessive total

pregnancy weight gain [60], rendering it a potential target for future interventions.

3.4 Drawbacks of Birth Cohorts In Interpreting Matenal/

Offspring Associations

Birth cohorts provide detailed data on biological, familial, environmental and

socio-demographic characteristics during pregnancy as well as detailed offspring

outcome data, and therefore allow assessment of the influence of environmental

characteristics on offspring outcomes. The fundamentals of the ‘developmental

origins of adult disease’ hypothesis were derived from these observational data,

but with focus on exposure of risk factors during early-life periods of developmen-

tal plasticity on a given offspring outcome. The longitudinal follow-up of the

infants enables prospective time ordering of exposures including exploration of

the role of environmental factors on outcomes of interest [61].

Although evidence has accumulated from birth cohorts in support of the ‘devel-
opmental origins’ hypothesis, some critics have argued for alternative explanations

for the observed associations. These include confounding by genetic factors and

socio-demographic characteristics. It has been suggested, for example, that variants

of the IRS-2 (Insulin Receptor Substrate-2) gene might account for the observed

association between low birthweight and vascular disease, as this is a pleiotropic

gene which theoretically could result in two phenotypes, one in the fetus (low

birthweight) and the other in the adult (type 2 diabetes and cardiovascular disease)
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[62]. Similarly, two others, an ACY5 allele and ADRB1, have been implicated in

both infant birthweight and adult-onset hypertension and type 2 diabetes [63]. The

social environment may also play a causal role. Socio-economic deprivation has

been associated with birthweight, as infants with a lower birthweight are more

likely to experience deprivation over the life course in comparison to those born

with a higher birthweight [64]. Some but not all studies have adjusted for baseline

maternal socio-economic deprivation as assessed by the Index of Multiple Depri-

vation, at best a crude proxy of socio-economic status, which together with a

number of other offspring lifestyle and environmental factors such as diet compo-

sition and physical activity are often not reliably measured or absent (residual

confounding). Furthermore in observational epidemiology causal inference is lim-

ited due to selection bias and reverse causation [65].

A limited number of observational studies have used more sophisticated study

design to enable further insight into the role of confounding factors in relation to

maternal exposures and offspring outcomes. Lawlor et al. reported that increased

maternal weight gain in both overweight and obese mothers was independently

associated with higher offspring BMI at 18 years in siblings (n¼ 146, 894 individ-

uals from 136,050 families); by avoiding genetic confounding this approach

improves estimation of causal relationships between maternal exposures and off-

spring outcomes. The association of normal pre-pregnancy BMI on childhood

obesity was associated with familial genetic and environmental influences

[66]. By using a within and between-non-sibling association study design, the

environmental and social confounders are effectively controlled for, thereby pro-

viding convincing evidence of a causal relationship of the intrauterine mechanisms

of weight gain and later obesity. However, this methodology is not without its

limitations. In common with most causal inference studies, sibling comparison

studies are formulated on the assumption that the effect of each participant’s
exposure to a risk factor does not influence other unexposed outcomes [67]. For

example, the changing weight status of the mother between pregnancies of one

sibling compared to the other is not accounted for, nor the increased risk of

offspring obesity with recurring maternal gestational diabetes.

Distinguishing causality from association is essential to identify key early-life

modifiable causes of non-communicable disease and for the determination of

mechanistic pathways for therapeutic interventions. Few publications state the

ordering of exposure variables, and their inter-relationships, both directly or medi-

ated through intermediary variables in association with the outcome measure and

therefore unable to distinguish potential ‘windows of opportunity’ or maternal

exposures for targeted interventions [68].

Numerous methods have been developed, taking into account the limitations of

observational epidemiology and to further strengthen causal inference. These

include maternal- and paternal–offspring comparisons, Mendelian randomisation

(MR) and the use of instrumental variables robustly associated with the exposure,

thereby controlling for confounding and measurement error [61]. Each method
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has recently been employed to good effect; for example the use of MR has

supported the notion, with sophisticated statistical methodology, that the maternal

genotype [defined as the presence of a variant in the fat mass and obesity

associated (FTO) gene] predicted offspring fat mass at 9–11 years, whilst con-

trolling for offspring FTO, providing support for the developmental overnutrition

hypothesis as the association may not be present in the preconception period

[69]. Although MR enables establishment of causality with a certain degree of

certainty, it requires a large sample size and the methodology is not suitable for

genetic variants having a direct pleiotropic effect on both exposure and outcome

of interest [70].

Another of the limitation of observational studies is the use of categorical

definitions, for example GWG within IOM guidelines, which may be more usefully

employed as continuous variables. This method has been used previously to

determine the association of life course growth trajectories on later health out-

comes. Whilst requiring complex statistical modelling, the conclusions have proven

valuable in determining the influence of the intrauterine environment on later

outcomes [71]. For example, direct measures of fat mass which would allow for

longitudinal modelling of weight gain are far preferable to GWG, which as

addressed above has multiple components. However, very few studies have under-

taken measures of body composition, for example skin fold thicknesses in the

mother and offspring.

Despite these limitations, it is of paramount importance to public health that

similar studies are undertaken in contemporary cohorts, preferably in the setting of

a randomised controlled trial, to determine causal inference.

Observational cohorts have provided a strong association between a suboptimal

in utero environment and the development of adverse offspring outcomes. Verifi-

cation in rodent models, where diet can be tightly controlled can provide further

confidence in these associations and also enable the examination of the underlying

physiological and biochemical mechanisms behind the nutritional programming of

offspring disease, further aiding identification of the mechanisms and critical

windows of intervention [72, 73]. However it is critical to appreciate the differences

in the stages of development between animals and man to infer generalisability to

the human condition. For example, rodents are altricial species, born with an

underdeveloped endocrine system and brain and undergo significant maturation

of their organs during the weaning period, reflecting the third trimester in human

pregnancies. Sheep have a similar rate of pre- and postnatal growth to humans and

produce fewer offspring than rodents, comparable to humans. Animal models

nonetheless provide many advantages in examining the principles of the DoHaD

hypothesis, including independent assessment of the influence of maternal nutrition

from potential confounders, including genetic and social factors. Although fully

appreciated that there are many biological and species differences, response to

interventions in animals can provide valuable insight into the human condition

[72]. For example increased physical activity during obese pregnancy has been used
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to determine the potential benefits on offspring adiposity. A variety of animal

models have been used to assess the effect of maternal nutrition on developmental

programming including rodents, sheep, pig and non-human primates. Non-human

primates are the most appropriate model, but are limited to due to their long

lifespan, resulting cost and ethical considerations. Many researchers choose rodents

because of the shorter lifespan and lower costs.

3.5 Dietary Determinants of Associations Between

Maternal Exposures and Offspring Outcomes

Optimal maternal nutrition is the primary determinant of normal growth and

development of the fetus. Maternal pre-pregnancy obesity is an indicator of a

poor quality diet, including consumption of a high-fat or ‘Western’ diet. Both

have been implicated in the programming of adverse cardiometabolic health in

the offspring.

The Generation R study (n¼ 2695), a population-based prospective birth cohort,

observed that adherence to a ‘healthier’ dietary pattern in pregnancy was associated
with lower offspring body mass index, fat mass index and a reduced risk of being

overweight at 6 years of age [74]. However, when the results were adjusted for

socio-demographic and lifestyle covariates, none of these measurements remained

significant. Using a data-driven approach (for example, principal component anal-

ysis or factor analysis) to derive dietary patterns reflects the dietary habits of the

mothers. It also allows determination of whether a specific nutrient, independent of

the overall dietary pattern is associated with the outcome of interest [75]. The

Generation R study highlights that rich data sets which enable adjustment for

multiple confounders may provide more precise estimates of associations.

Findings from the Southampton’s Women survey have recently demonstrated

that the timing of the maternal nutrition determines the magnitude of the outcome in

the offspring [57]. Early, but not later pregnancy dietary glycaemic load and index,

following adjustment for potential confounders, were positively associated with

offspring fat mass at 4 and 6 years (n¼ 906; at mass SDs per 10-unit GI increase:

p¼ 0.02 at 4 years; p¼ 0.01 at 6 years, fat mass SDs per 50-unit GL increase:

p< 0.001 at 4 years, p¼ 0.007 at 6 years). Whilst observational studies such as

these have provided some credence to the hypothesist that dietary manipulation

could influence childhood adiposity, evidence from randomised controlled trials in

pregnancy is needed to establish causality.

Experimental animal studies have been extensively used to determine the mech-

anistic pathways underlying the association between maternal diet, obesity and

offspring outcomes. Whilst there are differences between the studies, most clearly

show an influence of maternal diet or obesity on the development of offspring

adiposity. Obese pregnant mice consuming a westernised diet, rich in fats, sugar
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and salt during gestation and lactation, delivered offspring which later devel-

oped increased adipose tissue deposition in comparison to offspring born to

chow-fed controls [76]. Furthermore, offspring of obese mice have been shown to

have early indications of metabolic syndrome, including increased glucose,

triacylglycerols and cholesterol [76]. Other reports have shown that maternal

consumption of a Western-style diet is associated with increased weight gain,

hepatic hyperlipidaemia, increased liver injury and hepatic expression of inflam-

matory markers in the offspring [77]. Similar results have also been seen in the

offspring of ewes fed a high-fat diet, a model which is more comparable to human

gestation [78]. Consumption of a westernised diet during gestation and lactation in

the absence of pre-pregnancy maternal obesity has also been associated with

increased body weight and peri-renal adipose tissue in the offspring implying an

independent role for dietary factors [79]. Furthermore, challenge of the offspring

with a westernised diet amplified adiposity in rodents [80]. A westernised diet

during gestation and lactation has also been found to increase food intake and high-

fat food preference in mice offspring, the pups having a higher daily energy intake,

hyperphagia and change in food preference [81, 82]. Further research is warranted

in children of obese mothers to determine whether these changes in satiety and food

preference are also present and could contribute to childhood obesity.

3.6 Summary

Modification of maternal obesity, GWG and maternal diet offers potential for a

reduction in childhood obesity by improvement of the maternal and fetal metabolic

environment.

3.7 Putative Mechanisms Relating Maternal Obesity

to Offspring Outcomes

Growing evidence suggests that environmental factors including modifications of

diet within early life can alter the epigenome (See Chap. 16). A recent and several

independent reports review highlight in different animal models of varying nutri-

tional status how changes in maternal diet are associated with persistent metabolic

dysfunction in the offspring, accompanied with epigenetic changes in key genes

involved in appetite control and metabolism [73, 83–85]. Relatively few studies of

epigenetic marks have been undertaken in offspring from animal models of mater-

nal obesity. These include a study by Godfrey et al. who have shown that alterations

in epigenetic biomarkers can be predictive for later disease risk; for example

methylation of a single CpG site in the promoter region of the nuclear receptor

Retinoid X Receptor-α (RXRA) in cord leucocytes was associated with the devel-

opment of childhood adiposity in two independent cohorts [86]. Higher methylation
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of RXRA, previously lined to increase offspring adiposity, was associated with

reduced maternal carbohydrate consumption [86]. A recent report using an

epigenome-wide approach (Illumina Infinium® HumanMethylation 450 K

BeadChip) in the ALSPAC cohort (1018 maternal–offspring pairs) has provided

some of the strongest evidence to date in support of a change in cord blood

leucocyte methylation status associated with relationships betweeen maternal obe-

sity and underweight and increased offspring adiposity at a mean age of 9.9 and

15.5 years, in comparison to offspring from normal weight women [87]. On the

contrary, GWG during pregnancy had little effect.

Persistent changes in the epigenome offer a final pathway linking early-life

exposures such as obesity with offspring health outcomes. Other interactions

between environment and genes in fetal development may transiently influence

gene expression causing lasting perturbation in organ growth and development.

The following discussion reviews the many different biological pathways which

have been implicated in the relationship between maternal obesity and offspring

cardiometabolic health which may transiently or permanently alter offspring gene

expression, potentially through epigenetic pathways. Multiple mechanisms have

been hypothesised, including adverse influences of maternal overnutrition on the

developing embryo, overproduction of fetal insulin and maternal inflammatory and

metabolic imbalance leading to adaptive responses in the fetal hypothalamus and

adipose tissue [37, 88].

3.7.1 Maternal Obesity, Oocyte Quality and Embryogenesis

Obesity may have biological influences in the gamete and at the earliest stages of

life. As mentioned above in relation to infertility, obesity influences ovarian

function and oocyte quality. Recent data from 218 oocytes from 29 women attend-

ing an in vitro fertilisation clinic showed that increasing maternal BMI at concep-

tion was associated with phenotypic changes in the early embryo [89]. In another

report, obese women (n¼ 32) attending an infertility clinic had higher than normal

follicular fluid insulin and lipids, associated with poor quality of the oocytes

[90]. Others have shown reduced glucose consumption, increased endogenous

triglycerides and abnormalities in amino acid metabolism in oocytes and maternal

blastocysts from obese women, again suggesting metabolic impairment associated

with obesity before conception [89]. Experimental studies in diabetic and high fat

fed mice models have demonstrated oocyte spindle defects, increased rates of

follicular apoptosis and mitochondrial abnormalities [91] as well as increased

oocyte lipotoxicity, with mitochondrial dysfunction [13, 92]. Our laboratory has

also reported mitochondrial abnormalities in oocytes and early blastocysts from

obese mice in comparison to lean dams which were associated with increased

oxidative stress [93].

Although not as yet established, these influences of maternal obesity on the

oocyte and early embryo may have lasting consequences for the health of the
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offspring, as has been demonstrated for maternal undernutritional states in the rat

[94], emphasising the potential importance of the periconceptional period in life-

long health.

3.7.2 Metabolic Stress and the HPA Axis

Obesity is associated with the development of chronic systemic low-grade inflam-

mation in adipose tissue, hypothalamus, liver and muscle [95], and there is sugges-

tion that inflammation in utero predisposes the offspring to metabolic compromise

from birth [96] (Fig. 3.1). Low-grade maternal inflammation has been shown to lead

to both short- and long-term epigenetic modification of fetal genes involved in

regulation of the central HPA pathway [97]. Glucocorticoids readily cross the

placenta and enter the fetal brain [98] and it is proposed that downregulation of

the fetal HPA axis permanently influences myelination and neurogenesis of the

fetal brain and may effect hypersensitivity in the peripheral organ HPA pathway

[97]. Sheep models have demonstrated that excess maternal glucocorticoid exert a

persisting influence on adult offspring outcomes including increased blood pres-

sure, glucose and insulin levels [99].

A growing body of evidence suggests that early changes in the maternal inflam-

matory profile are predictive of later cardiometabolic disease [100]. Whether or not

this pathway may be of relevance to maternal obesity is not known [101]. Whilst

there are reports of raised maternal glucocorticoids in obese rodents [102], there is

no evidence of which we are aware of increased glucocorticoids in obese pregnant

women.

3.7.3 Adipokines

The principal adipokines implicated in maternal obesity, GWG and offspring

obesity and cardiovascular outcomes are leptin and adiponectin (Fig. 3.1). In animal

models, there is a well-characterised leptin ‘surge’ in early postnatal life which has

been shown to play a critical role in normal neuronal development of the hypothal-

amus [103]. Maternal obesity is associated with increased magnitude of the leptin

surge in rodent offspring [104]. The origin is uncertain, but there is no evidence of

an association between maternal milk leptin and offspring serum leptin in rodents

[104, 105], whereas neonatal leptin is coincident with increase in Ob gene mRNA

expression (the leptin gene) in offspring adipose tissue [104]. Samuelsson

et al. have also reported that exogenous leptin administration to normal pups

leads to obesity and cardiovascular dysfunction in adult life [106], indicating a

casual role in long-term adverse cardiovascular health and hyperphagia. Cord blood

leptin is raised in association with obesity in pregnant women, and several mother–

3 Maternal Obesity and Gestational Weight Gain as Determinants of Long-Term Health 47



child cohorts are now addressing whether similar associations are present in obese

mothers and their children.

3.7.4 The Metabolome

Metabolomics has emerged as tool to examine the human metabolome to detect

metabolites, metabolic pathways and their impairments and is recognised as a novel

methodological approach likely to provide further insight into the mechanistic

pathways associated with DoHaD [107]. Metabolomic profiles signify the cellular

response and represent a key link between the genotype and phenotype. This

technique has become widely used to identify metabolite pathways modified by

disease or adverse exposures.

Few studies have to date addressed whether the neonate metabolome (cord

blood) at birth could provide insight into mechanisms of programming by early

life maternal exposures. One report examined the metabolome in low birthweight

(n¼ 20) and normal birthweight (n¼ 30) neonates, demonstrating differences in the

clustering of amino acids and lipids. The metabolic profile associated with low

birthweight demonstrated similar patterns to type 2 diabetic adults [108]. A recent

study assessed the association of the maternal urinary metabolome with that of the

offspring’s cord blood, stratified by pre-pregnancy BMI (normal, overweight and

obese) in 321 maternal–offspring pairs. Analysis using partial least squares

regression-discriminant analysis and logistic regression did not reveal significant

Fig. 3.1 Common biological mechanisms implicated with maternal obesity and excessive gesta-

tional weight gain on the developmental origins of health and disease in the offspring
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differences in the cord blood metabolic profiles of offspring stratified by maternal

BMI group, although infants born to obese mothers had a higher birthweight and

lower Apgar Scores [109]. This area of research, which has proved invaluable in

understanding the metabolic profile in type 2 diabetes and cardiovascular, is open to

investigation in contemporary cohorts of obese mothers and their children.

3.8 Role of Interventions Studies

Studies in obese animals have shown that manipulation of maternal metabolism

using diet, physical activity and/or metformin within the antenatal period can

potentially alter offspring body composition and adiposity. These provide useful

tools to interrogate potential mechanistic pathways.

Randomised controlled trials in obese pregnant women are the ‘gold standard’
for determining causality and for overcoming the problem of residual confounding.

Intervention studies to date in obese women have focused on the prevention of

excessive GWG or dysglycaemia and insulin resistance. The primary strategies

have included advice to change dietary and physical activity through modification

of lifestyle behaviours, and more recently the use of metformin.

In 2014, the LIMIT randomised controlled trial in 2212 overweight and obese

pregnant women published its findings. This was one of the first studies, of adequate

sample size and study design which randomised overweight or obese women to

lifestyle advice or standard antenatal care, with the primary aim to reduce LGA

[110]. Although the trial’s primary outcome was not reached, the study found fewer

infants who were born >4 kg in the intervention arm (15% vs. 19%; p¼ 0.04) in

comparison to standard care. Despite recent efforts, a Cochrane review of the

available evidence from randomised trials (49 RCTs; n¼ 11,444 women) suggests

that although modification of maternal dietary intake can occur, it has limited

success in reducing GWG or GDM. Furthermore, the intervention studies included

have not been successful in improving neonatal outcomes, including excessive fetal

growth and caesarean sections [111, 112].

We have recently undertaken and published a randomised controlled trial of a

dietary and physical activity intervention, the UBEAT trial in 1555 obese pregnant

women, the largest study powered for clinical outcomes [113]. Women were

randomised to standard antenatal care or an intervention delivered by health trainers

over 8 weeks (weekly sessions). The intervention focused on improving glycemic

control through a low glycaemic index diet and increased physical activity. This

intervention differed from previous studies, in the development and delivery of the

intervention. The intervention focused on approaches to achieve Specific, Measur-

able, Achievable, Relevant, Time-Specific (SMART) goals as well as advice on

self-monitoring, social support and problem solving to barriers of behaviours

change [114]. Women were advised on reducing saturated fat intake and glycaemic

load as well as increase time spent doing low/moderate physical activity. This study

did not meet its primary endpoints of reducing maternal GDM or delivery of an

3 Maternal Obesity and Gestational Weight Gain as Determinants of Long-Term Health 49



LGA infant. However, significant changes were observed in maternal antenatal diet,

physical activity and measures of maternal body composition. These include

significant reductions in total energy intake (Mj/day) [�0.70 (95% CI �0.96 to

�0.45); p< 0.0001], saturated fat (% energy) [�0.85 (�1.2 to �0.51); p< 0.0001]

and glycaemic load per day [�21 (�26 to 16); p< 0.0001] and increase in physical

activity as assessed by the metabolic equivalent of task (min/week) [295 (105–485);

p¼ 0.0015] from 15þ0–18þ6 to 26þ0–28þ6 weeks’ gestation, in comparison to the

control arm. This was associated with changes in maternal body composition in the

intervention arm, including a reduction of total GWG (kg) [mean difference �0.55

(1.08 to �0.02); p¼ 0.041] and sum of skin folds throughout pregnancy [mean

difference �3.2 (�5.6 to �0.8); p¼ 0.0081] [113]. However, it remains to be

determined whether this degree of change observed in the mother has an influence

on determining adiposity in later life, and follow-up of the children is ongoing.

The EMPOWaR Study, a randomised double-blinded placebo trial, recruited

obese pregnant women at 12–16 weeks’ gestation with a normal glucose tolerance

test, to receive metformin throughout pregnancy [115]. There were no differences

in birthweight or in neonatal or maternal anthropometry. The study interestingly

achieved its pharmacodynamic effects of metformin including reduction in fasting

glucose, insulin and reduction in inflammatory markers (CRP and IL-6), all which

have been implicated in the developmental origins of adverse health and disease.

Better pregnancy outcomes for the offspring have been reported in GDM-diagnosed

mothers with reduced central or visceral adiposity, due to metformin treatment

[116], as well as improved fetal outcomes compared to those treated with insulin.

The long-term follow of these pharmacological studies is required to determine the

effects of metformin and whether this may be beneficial or not for offspring health.

3.9 Conclusion

Animal studies and observational data have provided robust evidence for the

association of maternal obesity and gestational weight gain on offspring risk of

obesity. Only recently have randomised controlled trials, with adequate statistical

power been attempted in order determine whether strategies for healthy living in

pregnancy could influence the obesity epidemic in children. Whilst these studies

have not achieved the desired improvement in maternal clinical outcomes, follow-

up of the offspring may enrich our understanding on the role and timing of an

adverse in utero exposure. Evidence has suggested that preconceptional obesity

plays an important role in later cardiometabolic disease for the offspring. However,

targeting the preconception period remains problematical requiring a public health

approach. A ‘two-pronged intervention’ during the preconception and antenatal

period may ultimately provide an effective strategy to ameliorate the increasing

burden of cardiometabolic health and obesity in the next generation.
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Chapter 4

Young Maternal Age, Body Composition

and Gestational Intake Impact Pregnancy

Outcome: Translational Perspectives

Jacqueline Wallace

Abstract Birth weight is a robust predictor of health and well-being immediately

after delivery and throughout the life course. Maternal body composition at con-

ception and gestational intake thereafter impacts prenatal growth velocity and birth

weight irrespective of maternal age, but the most pronounced risk of poor outcome

is when pregnancy coincides with adolescence and continued or incomplete growth

of the mother. Experimental ovine paradigms have helped define the impact of

nutrition in mediating pregnancy outcome in young adolescents. Low maternal

nutrient status at conception has a modestly negative influence on placental growth

and birth weight, but it is gestational intake after conception, particularly during the

first third of pregnancy, which has the most profound influence on fetal develop-

ment. Relative to optimally nourished controls, age-matched adolescents

overnourished throughout pregnancy exhibit rapid maternal growth and increasing

adiposity at the expense of the conceptus. Placental growth and vascular develop-

ment, uteroplacental blood flows and fetal nutrient supply are compromised, and

premature delivery of low birthweight lambs with a 45% incidence of marked

intrauterine growth restriction (IUGR) ensues. A more modest effect on fetal

growth is evident in undernourished mothers (17% incidence of IUGR). Here

preventing maternal growth gradually depletes maternal body reserves and directly

lowers nutrient availability in the maternal circulation independent of any change in

placental size or gestation length. The maternal and placental adaptations to these

diverse gestational intakes and the consequences for the fetus are presented together

with the translational implications for detecting and avoiding birthweight extremes

in human pregnancy.
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4.1 Introduction

Birth weight is a valuable summation of prenatal fetal nutrient supply and a robust

predictor of health and well-being immediately after delivery and throughout the

life course. Of the infants born globally in 2013, and weighed at birth, an estimated

16% were of low weight (<2500 g [1]), and even in relatively affluent countries

such as the UK and USA, 8% of infants were of low birthweight, including 0.9%

and 1.4%, respectively, with very low birthweight (<1500 g [2–4]). The majority

of very low birthweight infants are born prematurely, while those with modestly

low birthweight (>1500 to <2500 g) are a mixture of early delivery and fetal

growth restriction. Irrespective, relative to normal birthweight individuals, low

birthweight infants born in wealthy countries are 25 times more likely to die within

the first year of life [2, 4]. Infants that survive, irrespective of their country of birth,

experience a range of physical and development issues that can limit their life

chances. These include visual and aural impairment, autism, cerebral palsy, stunted

growth, immune dysfunction, cognitive delay, behavioural problems and low

educational attainment [5, 6]. Furthermore, low birthweight is a risk factor for

diabetes, obesity, stroke, cardiovascular disease, immune dysfunction and osteopo-

rosis in later life and several of these effects are exacerbated if the postnatal

environment is nutrient rich such as occurs in populations undergoing economic

transition and throughout the developed world [7–10]. At the other end of the

weight spectrum, high birthweight (>4000 g) currently accounts for 7.4% and

13.8% of births in the USA and UK, respectively [3, 11]. Fetal macrosomia is a

major risk factor for stillbirth, neonatal mortality (especially due to asphyxia),

emergency delivery by caesarean section and infant mortality within the first year

of life (especially due to sudden infant death syndrome) and is the predominant

cause of birth injuries such as shoulder dysplasia: risks are most pronounced when

weight exceeds 4500 or 5000 g [12–16]. High birthweight is strongly linked with

the occurrence of an array of cancers throughout childhood, most notably leukae-

mia [17, 18]. Although less strong and more closely related to other biological

factors such as birth length or adult height, positive associations between high

birthweight and the incidence of breast, prostate, lymphatic, lung and colon cancer

are evident in adult life [19–24]. Moreover, high birthweight is a risk factor for

diabetes and obesity in later life and this relationship is variously influenced by

maternal and paternal anthropometry and family history of diabetes [25–27].

Accordingly, avoiding birthweight extremes by increasing the proportion of

babies born at a healthy weight is a pressing public health objective at individual

government and world health organisation levels. The age, body composition and

nutritional status of the mother at conception and her gestational intake thereafter

plays an important and theoretically modifiable role in determining prenatal growth

velocity and hence birth weight and is the focus herein.
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4.2 Adverse Pregnancy Outcome: Who Is at Risk?

Across the world, the categories of women most readily identified as being vulner-

able to poor pregnancy outcome are young adolescent mothers (<19 years old) and

those of all ages who are either underweight or obese at the time of conception. For

example, in Scotland these groups of women currently account for 10%, 3% and

18% of all births, respectively [3]. In Sub-Saharan Africa, ~50% of births are in

adolescent mothers [28]. In this region, maternal underweight (17%) rather than

obesity (5%) dominates in the general obstetric population, although obesity rates

are rising [29].

4.2.1 Maternal Body Composition at Conception

Irrespective of the relative proportions in specific geographical locations, women

who are underweight at conception are at greater risk of premature delivery, low

birthweight and small for gestational age (SGA, birth weight <10th centile after

adjustment for gender and gestational age) delivery [30–32]. At the opposite end of

the body composition spectrum, maternal obesity is typically associated with a

number of risks that generally increase stepwise with degree of overweight, namely

hypertensive disorders (including pre-eclampsia), gestational diabetes, thrombo-

embolism, fetal death, stillbirth, premature delivery, high birthweight and large for

gestational age (LGA, birth weight >90th adjusted centile: [30, 33–36]). Obese

women are also more likely to have an induced labour and to deliver their babies by

either elective or emergency caesarean section. More rarely and somewhat para-

doxically, obese women are also found to be at greater risk of both actual [37] or

relative fetal growth restriction [38] which largely becomes apparent when

customised birthweight centiles based on maternal weight, height, ethnicity and

parity are used to define SGA [39]. Further, there are known associations between

maternal obesity (independent of diabetes) and fetal malformations including spina

bifida, anencephaly, congenital heart defects and orofacial clefts: these defects are

often challenging to detect prenatally due to poor sonographic visualisation owing

to the density of maternal body fat depots [40]. It is unsurprising that this myriad of

pregnancy complications associated with a mother’s BMI at conception results in a

greater number and duration of maternal and neonatal admissions with associated

health-care costs [41, 42].

Dietary intake and hence gestational weight change during pregnancy have the

potential to ameliorate or exacerbate the risks associated with being under- or

overweight at conception and recommended gestational weight gains (GWG) by

pre-pregnancy BMI and for each period of pregnancy are available [43]. Although

women who are underweight at conception commonly also display inadequate

GWG, the converse is not always true. Thus, while ~70% of obese women exceed

current weight gain recommendations, there is also evidence that gestational weight
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loss is more common in this group and increasingly prevalent as obesity severity

increases [44, 45]. Irrespective, weight gain during pregnancy is an important

independent predictor of birth weight [46], and in women with all categories of

pre-conception obesity, the incidence of LGA robustly rises with increasing GWG

and falls when GWG is inadequate. The converse is also broadly true with a

decreased risk of SGA as GWG increased in obese women but with less potential

benefit in the morbidly obese [46]. This summary data suggests that it may be safe

to advocate GWG below current recommendations in obese women but when

systematically examined obese women with GWG below the guidelines had a

higher risk of both preterm delivery and SGA negating the benefits associated

with a lower risk of LGA, hypertensive disease and caesarean delivery [47].

4.2.2 Young Maternal Age

Above all, the most consistent risk of poor outcome is when pregnancy coincides

with adolescence. Relative to adult women, contemporary population-wide and

single-centre cohort studies consistently report a higher risk of spontaneous mis-

carriage, premature delivery, low birthweight and neonatal mortality in adolescent

pregnancies. These negative gestational outcomes are observed in low-, middle-

and high-income countries and are particularly acute in very young girls who are

gynaecologically and biologically immature [48–53]. Indeed, in low resource

countries, biological immaturity also predisposes adolescent mothers to serious

complications such as obstetric fistula [54], is associated with a plethora of maternal

near miss events [55] and is a major factor contributing to the fourfold higher

maternal death rate in very young mothers (�15 years) relative to both older

adolescent (16–19 years) and adult (20–24 years) women [56].

Suboptimal dietary intakes are commonplace in the general adolescent popula-

tion, and therefore many adolescent girls are in danger of becoming pregnant with

poor nutrient stores and/or subsequently experiencing inadequate gestational

weight gains. For example, relative to adolescents with a normal body mass index

(BMI) at pregnancy booking, those classified as underweight (BMI< 19) had a

threefold higher risk of SGA birth [57]. In addition, low pregnancy weight gains in

adolescent mothers have long been associated with a greater incidence of premature

delivery, low birthweight and SGA that is variously dependent on the pattern of

weight gain (early versus late versus all gestation) and age (<16 years versus 16–19

years) of the mother at conception [58–60].

Obesity has now overtaken underweight prevalence in most adolescent

populations throughout the developed world [61] and hence the relationship

between periconception obesity, gestational weight gain and pregnancy outcome

in adolescent mothers is increasingly relevant. In single-centre and population-wide

retrospective cohort studies involving ~700, 4822 and 34,648 adolescents deliver-

ing in three contrasting areas of the USA, being overweight or obese was typically

associated with an increased risk of pregnancy hypertension, gestational diabetes
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and impaired glucose tolerance, labour induction and caesarean section and was

protective against premature delivery. Neonatal findings included higher average

birthweight, greater incidence of macrosomia and more morbidity, while the

prevalence of low birthweight and SGA was less common relative to normal BMI

adolescents [62–66]. Some of the negative pregnancy outcomes were exacerbated

by high gestational weight gains and influenced by race but on balance the effect of

BMI, albeit based on self-reported pre-pregnancy height and weight, dominated. In

direct contrast in a prospective observational study of adolescents based in the UK

(n¼ 368), having a high BMI was linked to a threefold higher risk of SGA [57].

While the characteristics of adverse pregnancy outcome in adolescent mothers

who are either underweight or overweight at conception are broadly similar to those

described for adult women, the young adolescent mother is distinguished by the fact

that she may still be growing or have the potential to grow at the time of conception.

Although skeletal growth peaks before menarche, it can continue albeit at a slower

rate into late adolescence. Accordingly, data from the Camden Adolescent Preg-

nancy and Nutrition Project (based in New Jersey, USA) indicated that continued

maternal growth occurs in approximately 50% of the pregnant adolescent popula-

tion. This continued maternal growth as measured by sequential changes in knee

height was associated with larger pregnancy weight gains and increased fat stores,

but in spite of this the babies were 150–200 g smaller than those born to non-

growing adolescents and mature women [67]. These effects attributed to a compe-

tition for nutrients between the maternal body and her gravid uterus [68] are

supported by a large retrospective analysis of subjects (n¼ 9694) with similar

pre-pregnancy weight range and term delivery, in which young adolescents (14–

17 years) were shown to transfer a smaller proportion of their pregnancy weight

gain to their fetuses than older adolescents (17–19 years) and adult (20–25 years)

women [69]. A similar maternal–fetal growth competition for nutrients has been

observed within a group of Peruvian adolescents (13–15 years). When adolescent

growth status at delivery was defined on the basis of achieving parental height, the

adolescent mothers who had not achieved their predicted adult height and therefore

categorised as ‘still-growing’ had smaller babies than those who had achieved their

expected growth [70]. In a more contemporary multicentre study in two socially

deprived areas of the UK, a third of adolescent girls (average age 17.8 years)

continued to grow during pregnancy and had higher gestational weight gains and

fat accrual than non-growers [57]. Nevertheless and in contrast to earlier studies of

younger adolescents, this was not associated with fetal growth restriction but rather

an increase in LGA births. Alternatively, comparisons between non-pregnant and

pregnant adolescents suggest that normal fetal growth can be maintained if preg-

nant mothers diminish their resting energy expenditure and cease growing to

conserve nutrient supply for the fetus [71].

The relationship between nutritional status at conception, gestational dietary

intake and pregnancy outcome is clearly appreciably more complex when preg-

nancy coincides with the continued or incomplete growth of the mother. It was

against this background that a highly controlled sheep paradigm was originally
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developed to examine the role of maternal nutrition in mediating pregnancy out-

come in the young but still growing adolescent.

4.3 Nutrition, Growth and Pregnancy Outcome in Young

Adolescent Sheep

4.3.1 Basic Adolescent Sheep Paradigm

The basic adolescent paradigm as developed in my laboratory involves assisted

conception procedures to establish singleton pregnancies in peripubertal adolescent

ewes of equivalent age, live weight and adiposity at conception. Adult ewes of

known reproductive history and in prime breeding condition are superovulated and

intrauterine inseminated by a single sire and act as embryo donors. Within individ-

ual studies the resulting grade 1 embryos for any given embryo donor are then

distributed evenly across the study groups: this controlled approach minimises the

impact of the main peri-conceptual factors known to influence feto-placental

growth and maximises the genetic homogeneity of the resulting fetuses [72]. Adults

are preferentially used as embryo donors as prior reciprocal embryo transfer studies

revealed that embryos derived from adolescent ewes have inherently low viability

following transfer into either an adolescent or adult uterus [73, 74]. Nutritional

treatments typically commence immediately after embryo transfer and involve

offering the young still-growing adolescent recipient varying quantities of the

same complete diet to manipulate gestational weight gain and thereby growth and

adiposity. In the overnourished model, this involves offering the adolescent

mothers a high dietary intake throughout gestation (~2�maintenance require-

ments) to promote rapid maternal growth and is designed to mimic pregnancy in

adolescent girls who continue to grow significantly while pregnant. In contrast in

the second and to date less well-studied undernourished model, the adolescent dams

are prevented from growing while pregnant (low intake, ~0.7�maintenance). The

control group for both models involves a moderate dietary intake designed to

facilitate a small amount of maternal growth (maintenance) and calculated to

maintain maternal adiposity at a consistent level throughout gestation: this allows

the estimated nutrient requirements for optimum conceptus growth to be met and is

achieved by modest step-wise increases in maternal intake of control dams during

the final third of gestation.

4.3.2 Pregnancy Outcome in Overnourished Adolescents

The overnourished model has proved extremely robust over many years and a

summary analysis of pregnancy outcome in relation to maternal nutrition during
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gestation was published a decade ago [75]. This revealed that high dietary intakes to

promote rapid maternal growth were associated with an increased incidence of

miscarriage and stillbirth in late gestation, and while mean placental and fetal

growth were significantly reduced relative to controls, the degree of compromise

was variable with 52% of pregnancies classified as intrauterine growth restricted

(IUGR). A summary analysis for the new trials carried out in the intervening period

is presented in Table 4.1 together with indices of maternal anthropometry. A live

born fetus spontaneously delivered at term was categorised as markedly growth

restricted if its birth weight was two standard deviations below the mean birth

weight of fetuses in the control group. As control group male fetuses were on

average 287 g heavier than females, the categorisation used sex-specific cut-offs

(IUGR birth weight, <4108 g for males and <3798 g for females) and on this basis

98 of 218 high intake pregnancies (45%) were classified as growth restricted. Using

this approach to subdivide the high intake (overnourished) pregnancies reveals that

in the growth restricted category, placental weight and fetal cotyledon weight were

reduced by 46% and 58%, respectively, relative to the control group, and associ-

ated with a 45% reduction in birth weight. In contrast in the non-growth-restricted

group, placental weight and fetal cotyledon weight were reduced by 17% and 31%,

respectively, and lambs were on average 12% smaller: although much less

perturbed, feto-placental weights were still statistically lower than in the control

group. The positive relationship between placental mass and birth weight is

emphasised in Fig. 4.1a and is appreciably stronger in the IUGR pregnancies

suggesting less of a functional reserve when the placental growth trajectory has

been severely compromised. Another consistent feature of the overnourished preg-

nancies is a major reduction in gestation length with viable lambs being born as

early as day 135 of gestation (term¼ 145 days, Fig. 4.1b). Although the average

reduction in gestation length is slightly greater in the growth restricted compared

with the non-IUGR pregnancies (~4.5 and 3.7 days, respectively, Table 4.1), it is

the dam’s nutritional intake and associated reduction in placental hormone concen-

trations (progesterone and oestradiol-17ß) which dominates and most likely under-

lies early delivery relative to the control group [76, 77]. Importantly, when birth

weight is adjusted to a standard gestational age, the large differences in birth weight

between groups remain. As sheep tolerate prematurity poorly, even small reduc-

tions in gestation length can have profound consequences for the smallest lambs.

These are exacerbated by a major reduction in the initial yield (Table 4.1), nutrient

composition and IgG content of colostrum in overnourished dams [78–80] and by

the delayed formation of an adequate ewe–lamb bond. The colostrum yield at

parturition is positively related to placental mass and thereby reflective of previ-

ously documented reductions in lactogenic hormones including those secreted by

the placenta predominantly during the second half of gestation (placental lactogen,

progesterone, oestradiol-17ß [76, 77, 81]). Lambs which fail to ingest sufficient

quantities of quality colostrum in the early neonatal period are vulnerable to

hypothermia and infection and more than 65% of overnourished pregnancies

detailed (Table 4.1) were deemed potentially at risk. Initially neonatal mortality

rates were unacceptably high [72] and thus a proactive regimen of intensive
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neonatal care including supplementary feeding and prophylactic antibiotics is

required to ensure that the most premature and growth-restricted individuals

survive.

Retrospective analysis of maternal anthropometry in adolescent dams fed ad

libitum to promote rapid growth was used to identify the antecedents of fetal growth

Table 4.1 Maternal anthropometry and pregnancy outcome in singleton-bearing adolescent sheep

offered a moderate (control) or high nutrient intake (overnourished) throughout gestation and

categorised according to fetal growth status after spontaneous delivery¥

Maternal nutrient intake and fetal growth

status¥

Significanceß
Control—

normal High—IUGR

High—non-

IUGR

No. of pregnancies 97 98 120

Weight at conception (kg) 44.2� 0.39 43.0� 0.63 45.1� 0.63 P¼ 0.042

GWG, d4 to d50 (g/day) 48� 3.2a 286� 6.5b 255� 6.0c P< 0.001

GWG, d50 to d95 (g/day) 109� 2.9a 319� 6.3b 316� 5.2b P< 0.001

Weight after delivery (kg) 56.9� 0.4a 77.3� 0.70b 77.7� 0.64b P< 0.001

*Adiposity at conception 2.3� 0.02a 2.3� 0.02b 2.4� 0.02b P¼ 0.031

Delta adiposity, d4 to d50 0.0� 0.0a 0.3� 0.03b 0.2� 0.01b P< 0.001

Delta adiposity, d50 to d95 0.0� 0.0a 0.6� 0.02b 0.6� 0.02b P< 0.001

Adiposity pre-delivery 2.3� 0.02a 3.1� 0.03b 3.2� 0.03b P< 0.001

Gestation length (days) 145.2� 0.18a 140.7� 0.23b 141.5� 0.17c P< 0.001

Birthweight (g) 5427� 76a 3007� 69b 4769� 55c P< 0.001

Male:Female 46:51 55:43 60:60 NS
þAdjusted birthweight (g) 5405� 72a 3166� 70b 4989� 54c P< 0.001

Placental weight (g) 442� 12a 238� 6b 365� 9c P< 0.001

Fetal cotyledon weight (g) 146� 4.4a 61� 2.1b 101� 2.6c P< 0.001

Birth wt : cotyledon wt 39.6� 1.00a 52.1� 1.16b 49.9� 1.13b P< 0.001

Birth wt : Maternal wt. gain d4

to d95

859� 39.9a 109� 3.4b 182� 4.3c P< 0.001

Colostrum yield (ml) 497� 40a 113� 10b 202� 13c P< 0.001
ɤNo. with inadequate colos-

trum/kg fetus

24 of 91a 63 of 91b 77 of 117b P< 0.001

Values are mean� sem. Data from seven studies ([80, 82, 86, 107, 116] plus unpublished)
¥Lambs from overnourished pregnancies were classified as intrauterine growth restricted (IUGR)

if birthweight was< two standard deviations below the mean sex-specific birthweight of the

optimally nourished control group, i.e. <3798 g for females and <4108 g for males
ßFrom Anova followed by Tukey comparison. Within rows where superscript letters (a,b,c) differ,

P< 0.01. Sex distribution and number of ewes with inadequate colostrum compared by binary

logistic regression

*Based on external body condition score (5 point scale where 1¼ emaciated and 5¼morbidly

obese) and assessed by a single experienced operator across all studies
þIndividually adjusted to a standard gestation of 145 days on the basis of the formula; adjusted

birthweight¼weight at birth/1.01305 per day of gestation
ɤDefined on the basis of requirement of 50 ml per kg fetal weight

GWG gestational weight gain
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Fig. 4.1 Relationship between lamb birthweight and (a) placental weight and (b) gestation length

in singleton bearing adolescent dams offered a control dietary intake to maintain maternal

adiposity (blue circles) or a high dietary intake to promote maternal growth and adiposity

throughout gestation. The latter pregnancies were categorised as intrauterine growth restricted

(IUGR, red squares) or non-IUGR (green diamonds) using sex-specific birthweight cut-offs

derived from the control group birthweight data as defined in the text
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restriction. From an equivalent weight and adiposity at the time of conception, the

dams allocated to the high intake group and subsequently delivering a growth-

restricted fetus were very slightly lighter and leaner at conception than dams

delivering a non-IUGR fetus (Table 4.1). However, the most striking difference

between these groups was in the rate of weight gain during the first third of

pregnancy (High-IUGR>High-Non-IUGR>Control). This is consistent with an

early impact of maternal dietary intake on the development of the placenta (see

below). Furthermore, the birth weight to maternal weight gain ratio serves to

illustrate that the adolescent dams that grow fastest during the first two-thirds of

gestation transfer a lower proportion of that gain to their fetus (Table 4.1). This

alteration in the hierarchy of nutrient partitioning between the maternal body and

her gravid uterus is independent of the protein content of the diet [82] and is unique

to the adolescent growth period as it does not occur in identically treated primip-

arous adult ewes [83].

4.3.3 Pregnancy Outcome in Undernourished Adolescents

When adolescents are prevented from growing while pregnant the impact on

pregnancy outcome is less pronounced. Accordingly in undernourished adoles-

cents, placental weight and gestation length are equivalent to control pregnancies

and no incidences of miscarriage, stillbirth or neonatal death have been recorded.

By maintaining maternal body weight at conception levels, maternal nutrient

reserves (mainly fat) are progressively depleted as gestation proceeds. This directly

limits nutrient availability in the maternal and hence fetal circulation and leads to a

slowing of fetal soft tissue growth. By late gestation and at term, the fetus is mildly

growth restricted (10–17% smaller than controls [84–86]), and using the same

definition as above, only 14% of these undernourished lambs were classified as

IUGR. Furthermore, although the quantity of colostrum produced immediately after

parturition was reduced it largely met the minimum requirement for IgG content

and nutrient composition [86]. Thus, while both high and low dietary intakes during

pregnancy negatively influence fetal growth in young adolescents, it is the

overnourished model which most closely replicates the human with respect to the

greater risk of miscarriage, preterm delivery, low birth weight and neonatal

mortality.

4.3.4 BMI at Conception Versus Gestational Intake

The basic adolescent paradigms originally focused on manipulating dietary intake

and maternal growth status immediately after pregnancy had been established and

great care was taken to ensure that the adolescents were of equivalent age, weight

and adiposity at conception. However, in the real world, adolescent girls have
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diverse nutritional histories and enter pregnancy with varying nutrient reserves

which may interact with subsequent gestational intake and growth status to influ-

ence pregnancy outcome. To partly model this scenario, two groups of adolescent

ewes of the same age but with different weight and adiposity were selected 4 weeks

before the application of assisted conception procedures and nutritionally managed

to maintain their initial weight. In reality, this represented a 10 kg (20%) differen-

tial in weight, and a 5% differential in estimated body fat between groups and

adolescent ewes were hence classified as having a relatively good or poor BMI at

conception. Thereafter ewes were overnourished, undernourished or fed a control

intake throughout gestation to drive maternal growth and gestational weight gain in

contrasting directions as described previously. BMI at conception did not influence

gestation length but did influence placental size and lamb birth weight

(good> poor, P< 0.001 and P¼ 0.031, respectively). Indeed, although the initial

differences in maternal weight and adiposity between groups were relatively small,

ewes with a poor BMI at conception gave birth to lambs that were on average 500 g

lighter than those with a good BMI. In spite of this, gestational intake still had the

most marked effect on lamb birth weight

(control> undernourished> overnourished, P< 0.001) and the percentage of

lambs classified as IUGR, irrespective of baseline BMI was greatest in the

overnourished group (55% versus 4% in control and 12.5% in undernourished

groups, P< 0.001 [80]).

4.3.5 Donor Ewe Adiposity Versus BMI at Conception

Pregnancy outcome may also be influenced by nutrition before conception and

studies in adult sheep and rodent models report effects of varying nutrition during

the pre and peri-conception periods on fetal growth and physiology [87–89].

Interpretation of these data is complex in that nutritional treatments may have

carry-over effects which influence the metabolism of the dam and her early uterine

environment. The assisted conception procedures used to derive the adolescent

pregnancies described herein potentially offer a cleaner approach and hence the

impact of maternal obesity during oocyte development and its putative interaction

with nutrient reserves at conception on pregnancy outcome have been assessed.

Adult donor ewes were nutritionally managed to achieve a control and obese

phenotype corresponding to a 12% differential in body fat, and these adiposity

levels were maintained for 6 weeks prior to superovulation and embryo recovery.

Embryos were then transferred into adolescent recipients with either a relatively

good or poor BMI at conception and all were subsequently overnourished through-

out gestation (2� 2 factorial). A fifth group of recipients with standard BMI at

conception received embryos from control donors and were fed a control intake

throughout and studied in parallel: these acted as the reference point for optimal

adolescent pregnancy outcome (Table 4.2). Embryo donor adiposity did not influ-

ence ovulation or embryo recovery rates, and somewhat contrary to expectation, we
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found no evidence that embryo donor obesity (equivalent to ~33% body fat)

negatively influenced conception rate or prenatal conceptus growth following

embryo transfer. The caveat is that by selecting only those oocytes that had been

fertilised and developed appropriately to day 4 of the cycle, the study design

avoided transferring embryos that were potentially nutritionally perturbed.

Irrespective, the previously reported impact of low nutrient reserves at conception

(poor BMI) on average birth weight and the incidence of IUGR was replicated here,

but once again comparison with the optimally nourished control group demon-

strates that high gestational intakes to promote rapid maternal growth remain the

main determinant of fetal growth in young still-growing sheep.

4.3.6 Maternal Adaptations to Diverse Gestational Intakes

The endocrine responses to diverse levels of dietary intake and their putative role in

nutrient partitioning during adolescent pregnancy have been extensively studied.

Briefly, relative to the control group, high gestational intakes are associated with

increased insulin and insulin-like growth factor 1 (IGF-1) concentrations from early

in pregnancy providing a sustained anabolic stimulus to maternal tissue deposition.

Metabolic challenges demonstrate that overnourished dams are insulin resistant

[80] and circulating glucose levels are raised throughout gestation [90, 91]. High

maternal leptin concentrations reflect that internal fat depots are elevated as early as

day 50 of gestation and that maternal carcass fat content progressively increases

from mid to late pregnancy [75, 92, 93]. This rapid maternal growth and increased

adiposity is linked with early depletion of maternal liver iron stores during the first

two-thirds of gestation and with a failure of the normal blood volume expansion of

pregnancy between mid and late gestation [94]. The associated increase in maternal

haematocrit, haemoglobin and plasma protein concentrations may in turn impact

blood viscosity and thereby uteroplacental blood flow and fetal nutrient supply.

Indeed the blood from overnourished dams at day 130 of gestation is more viscous

than that of controls (1.471� 0.0111 units versus 1.406� 0.0139 units, respec-

tively, P< 0.001; unpublished data).

In contrast, undernourished adolescent dams are characterised by low circulating

insulin, IGF-1 and leptin concentrations: by late gestation maternal glucose con-

centrations are reduced and high non-esterified fatty acid concentrations reflect

depleted maternal fat stores [84]. Relative blood volume expansion is unperturbed

and low availability of nutrients in the maternal circulation is the main cause of the

modest reduction in fetal growth velocity. This differs markedly from the situation

in overnourished adolescents where in spite of excess nutrients in the maternal

circulation, fetal growth restriction is mediated by major alterations in placental

growth and function.
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4.3.7 Placental Adaptations to Diverse Gestational Intakes

While cross-sectional studies at key stages of development demonstrate that pla-

cental mass is not significantly perturbed until the beginning of the final third of

gestation [95], the adaptations that underlie the placental programming of fetal

growth restriction in overnourished adolescents can be detected from early in

pregnancy. Accordingly, reduced proliferative activity was measured in both pla-

cental compartments at day 50 of pregnancy [96], and, in a separate study at the

same stage, vascular development (i.e. vessel size) within the fetal cotyledon was

already impaired [93]. In addition, there was a delay in the onset and magnitude of

placental lactogen and pregnancy-specific protein-B concentrations indicative of

reduced trophoblast cell migration [76, 81] and by the beginning of the second third

of gestation placental steroid secretion was lower than in control-fed dams [76, 77,

97]. At mid-pregnancy and the apex of placental growth, angiogenic growth factor

ligand and receptor mRNA expression was attenuated and indices of proliferation

and apoptosis perturbed [98, 99]. These adaptations preceded the change in pla-

cental mass and together indicate that the placentae were already on a different

developmental and haemodynamic trajectory. In support, uterine blood flow was

reduced and umbilical artery Doppler indices increased in overnourished pregnan-

cies at mid-gestation and both predicted the reduced fetal growth velocity observed

during the final third of gestation [100, 101]. By late gestation (~day 133) placental

weight was ~45% lower, and similarly uterine and umbilical blood flows,

uteroplacental glucose and oxygen consumption and lactate production, and pla-

cental glucose transport were all reduced by 35–40% relative to control pregnan-

cies. However, all the aforementioned parameters were equivalent between groups

when expressed on a placental and or fetal weight-specific basis [102, 103],

indicating that it is the small size of the placenta rather than altered nutrient uptake,

metabolism and transport which mediates reduced fetal growth velocity in the final

third of gestation in these rapidly growing adolescents.

Initial nutritional switch-over studies indicated that the placental growth trajec-

tory could be rescued by reducing maternal intakes from a high to a control level at

day 50 of gestation, thereby restoring birth weight to the same level as in dams fed

control rations throughout. In contrast an abrupt increase in dietary intake at this

time inhibited placental and fetal growth to the same degree as in continuously

overnourished dams [91]. In a more recent study when the dietary intake of

overnourished dams was radically reduced sufficient to induce major maternal

catabolism during the final third of pregnancy (high to low intake from day 90–

130, HL), placental expression of five angiogenic genes including vascular endo-

thelial growth factor (VEGF) was upregulated in the fetal cotyledon. This is

commensurate with blood vessel remodelling, but in spite of this presumed adap-

tation, placental mass and fetal weight could not be rescued and were equivalent in

high versus HL groups [104]. Thus, unsurprisingly the placenta is most sensitive to

abrupt changes in maternal nutrition during its main proliferative growth phase.

70 J. Wallace



The precise mechanisms underlying the nutritionally induced suppression of

placental growth have however remained elusive. Attempts to reverse the negative

effects of overfeeding by restoring circulating maternal oestrogen or progesterone

concentrations to control levels during early-mid gestation have failed to influence

placental vascularity or rescue placental weight as assessed at late gestation or at

term, respectively [97, 105]. In contrast overnourished pregnancies are also

characterised by attenuated growth hormone (GH) secretion and when dams were

treated with exogenous GH during the period of rapid placental proliferation (day

35–80) an initial study indicated nutrient partitioning was altered in favour of

uteroplacental and fetal growth as assessed at day 81 of gestation [106]. In a

subsequent study, maternal GH treatment either targeted the period of rapid pla-

cental growth or the period after placental growth was complete and fetal nutrient

demand was high. These early (day 35–65) and late (day 95–125) pregnancy GH

treatments both had a major influence on maternal metabolism, resulting in insulin

resistance, decreased lipogenesis and a threefold increase in maternal glucose

concentrations. For the late pregnancy group this resulted in a modest stimulation

of fetal growth and a major increase in fetal adiposity at day 130 of gestation which

was independent of any change in placenta size, suggesting that while GH has a

major impact on nutrient partitioning within the still-maturing somatotrophic axis

of the pregnant adolescent it does not act directly on the placenta [107].

In undernourished adolescents neither placental proliferation nor mass differed

from control pregnancies at mid-late gestation or following spontaneous delivery at

term [85, 86]. Irrespective, vascular changes within the placenta may play a role in

mediating the reduction in nutrient supply between the dam and her fetus in these

pregnancies. A robust 20% decrease in capillary area density within the maternal

caruncular component of the placenta was measured at both day 90 and 130 of

gestation and could not be reversed by re-alimentation to control intakes between

these two stages [85]. Contemporaneous assessments of uterine blood flow (UtBF)

in vivo in undernourished compared with control dams suggest that the reduction in

capillary development is mirrored by a decrease in average flow of similar magni-

tude [average daily UtBF between day 88 and 135 of gestation¼ 418� 43 and

326� 23 ml/min in control (n¼ 9) and undernourished (n¼ 11) pregnancies,

respectively, P¼ 0.08]. This modest reduction in uterine blood flow may in part

be secondary to mild maternal anaemia as low intakes are associated with a

decrease in maternal haematocrit and haemoglobin content relative to control

dams by late gestation (30� 0.4% versus 35� 0.6% and 9.6� 0.13 g/dl versus

10.6� 0.17 g/dl, n¼ 21 and 16 per group respectively, P< 0.001; unpublished).

There is a paucity of placental data in relation to growth and nutrition in human

adolescents. Path analysis in a large cohort of Peruvian women suggests that the

contribution of placental weight to birth weight was less in girls who were still

growing [70], and similarly umbilical artery Doppler indices were elevated indi-

cating reduced flow in growers versus non-growers in the Camden Study [67]. In

contrast, in more contemporary studies, placental weight and morphometry were

independent of adolescent growth status, but adolescents per se had inherently

reduced placental transport of amino acids compared with adults [108, 109]. Unlike
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in our sheep paradigms, it is important to emphasise that non-growers may com-

prise girls who are skeletally mature and those whose growth is constrained by poor

nutrient intakes making the data complex to interpret.

4.3.8 Fetal Consequences of Diverse Gestational Intakes

Regular ultrasound examination allows fetal growth velocity to be monitored non-

invasively throughout gestation and accordingly in the overnourished adolescents

various indices of fetal size including abdominal circumference (AC), renal volume

(RV) and femur and tibia lengths were reduced from around day 100 of gestation

onwards compared with normally growing control fetuses [101]. This relatively

late-onset fetal growth restriction is asymmetric in that growth of the brain and

adrenal glands were preserved at the expense of the visceral organs [102, 110, 111].

The access to the placental and fetal circulation offered in sheep models addition-

ally allows interrogation of fetal endocrine and nutrient status, nutrient uptakes and

metabolism. So in late gestation the growth-restricted fetuses are characterised by

absolute reductions in umbilical (fetal) uptakes of glucose, oxygen and amino acids

which are equivalent to normally growing control fetuses when expressed on a fetal

weight-specific basis [75, 102, 103, 111]. Moreover, even though the growth-

restricted fetus increases glucose extraction in an attempt to offset diminished

glucose supply, the concentrations of glucose, insulin and IGF-1 in the fetal

circulation remain low. The fetal sensitivity to insulin and glucose has been

examined during fetal hyperinsulinaemic–euglycaemic and hyperglycaemic–

euinsulinaemic clamps and reveals normal body weight-specific responses to

short-term experimental increases in plasma insulin and/or glucose [112]. This is

indicative of maintained mechanisms of insulin action and glucose uptake/

utilisation capacity allowing the fetus to preserve essential metabolic functions at

the expense of body growth. If such adaptations persist, these IUGR offspring may

be vulnerable to increased fat deposition postnatally when nutrient supply is no

longer limiting. Indeed, there are indications that the growth-restricted fetuses of

overnourished dams may already have a relatively fat phenotype prior to birth.

Thus, while absolute perirenal adipose tissue (PAT) mass is reduced, fetal weight-

specific PAT mass and carcass fat content are greater [113] and plasma cholesterol

and LDL levels at birth are elevated [86]. This increase in relative adiposity may

have its origins earlier in gestation prior to placental limitation of absolute fetal

glucose supply. Thus, greater glucose concentrations in the amniotic fluid at day 50

and in the fetal plasma at both day 77 and 90 of gestation [93] may drive an increase

in adipocyte proliferation in early-mid pregnancy and thereby increased potential

for fat accumulation in late pregnancy and beyond. While definitive evidence to

support such a hypothesis is lacking, it is noteworthy that appetite regulatory

genes in the fetal hypothalamus (primarily anorexigenic neuropeptides) are respon-

sive to fetal hyperglycaemia at mid and late gestation [114, 115]. Furthermore,

relative to normal birthweight controls, both male and female IUGR offspring
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of overnourished dams display rapid fractional growth rates particularly during

the neonatal period, have more body fat at weaning at 3 months of age and show

altered metabolic responses to exogenous glucose from juvenile through to adult

life [116].

In direct contrast, fetuses of undernourished adolescent dams have a thin phe-

notype. Key genes that regulate fetal adipocyte proliferation and function are active

at mid-gestation when they are sensitive to maternal undernutrition: this leads to

reduced fetal adiposity by late pregnancy while skeletal growth is preserved [117].

In this instance, the fetal hypothalamus is sensitive to presumed fetal

hypoglycaemia and orexigenic neuropeptides are upregulated in the fetuses of

undernourished dams. Crucially the expression of these genes can be normalised

by realimenting undernourished dams to a control intake between mid and late

pregnancy [118]. At birth, plasma lipids in the modestly growth-restricted offspring

are equivalent to normally growing controls and thereafter there is little evidence of

altered growth, perturbed metabolism or body composition [86].

4.3.9 Translational Perspectives

Essential differences between these ruminant-based experimental studies and

human pregnancies are fully appreciated. Nevertheless, the information obtained

from these highly controlled paradigms has implications for both young adolescents

and for women at risk of adverse pregnancy outcome irrespective of maternal age.

For young adolescent girls, it is clear that both nutrient reserves at conception and

gestational dietary intake thereafter are likely to be a powerful determinant of fetal

growth particularly if maternal growth per se is ongoing or incomplete. In cultures

where early marriage soon after menarche and hence pregnancy during young

adolescent life is normal, girls with a low BMI should be encouraged to gain weight

and achieve a normal BMI before conception. Thereafter, dietary intakes should be

sufficient to maintain maternal nutrient reserves throughout gestation and meet fetal

nutrient requirements particularly during the rapid growth phase in the final third of

gestation. Measuring changes in skinfold thickness in addition to monitoring weight

gain may be a simple and beneficial tool in this respect. Determining the growth

status of individual adolescents at pregnancy outset is likely to be challenging, and

while measuring, biomarkers of growth and nutrient status may be helpful in

predicting the risk of poor outcomes, studies verifying such an approach are

currently lacking. Where adolescent pregnancies are unplanned and calorie intakes

likely to be high, the mother should be advised of the dangers of overeating and

excessive weight gain during pregnancy, particularly during the period spanning

placental proliferation. Indeed, as the placenta is central to mediating poor preg-

nancy outcome in young adolescents, early diagnosis of deficiencies in

uteroplacental growth and/or blood flow is likely to be beneficial for identifying

those at risk of fetal growth restriction.
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Similarly for pregnant women irrespective of age, placental size plays a pivotal

role in determining the fetal growth trajectory and birthweight extremes. Recent

analysis of pregnancy complication risk reveals that placental weight in the lower

tertile for a given population is a risk factor for pre-eclampsia, spontaneous preterm

delivery, stillbirth and low birthweight while a placental weight in the upper tertile

is associated with a higher risk of caesarean section and high birthweight [119].

Placental weight increases with increasing maternal BMI at conception through

underweight to morbidly obese categories (4 g per BMI unit), and relative to

women with a normal BMI, underweight women are more likely to experience

placental growth restriction, while obese women have a twofold higher risk of

having a large placenta: thus, the growth and final size of the placenta offers an

explanation for the aforementioned relationship between the extremes of maternal

BMI and pregnancy outcome. In addition, the placenta is sensitive to changes in

maternal weight between consecutive pregnancies and appears to lie on the causal

pathway between both inter-pregnancy BMI loss and BMI gain leading to a greater

risk of SGA and LGA, respectively, at the second delivery [120]. The implication is

that weight change between pregnancies impacts maternal nutrient reserves at the

start of the second pregnancy and hence the placental growth trajectory as shown in

the aforesaid sheep studies. Again placental screening in the first trimester may help

early identification and appropriate management of those at risk [121].

Finally, as uteroplacental insufficiency and low uterine blood flow are the main

underlying cause of most severe fetal growth restriction, there is a requirement to

develop therapies to improve fetal nutrient supply, maintain growth and extend

gestation until the baby can be delivered safely and survive without handicap. A

potential therapy involving local uterine artery adenovirus (Ad.)-mediated

overexpression of vascular endothelial growth factor (VEGF) in the putatively

growth-restricted pregnancies of overnourished adolescent dams has been evalu-

ated. Ad.VEGF administration in mid-pregnancy robustly increased fetal growth

velocity as measured at 3 and 4 weeks after treatment, reduced the incidence of

IUGR and increased birth weight by 20% [122]. Proof of concept that this gene

therapy is safe and efficacious in sheep now paves the way for clinical trials.
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Chapter 5

Maternal Obesity and Programming

of the Early Embryo

J.J. Eckert, M.A. Velazquez, and T.P. Fleming

Abstract Obesity is on the increase and becoming one of the biggest health

concerns worldwide due to associated non-communicable diseases such as type

2 diabetes and cardiometabolic dysfunction. Epidemiological and experimental

evidence shows that obesity does not only impact on the individual but also on

progeny across generations, implying contributing causal factors other than post-

natal lifestyle. A wealth of studies have confirmed that maternal obesity is linked to

offspring BMI and non-communicable diseases in later life through developmental

programming in utero. This is mediated by developmental plasticity whereby the

developing organism adapts to prevailing conditions. Developmental plasticity and

its consequences are detectable as early as preimplantation, before the mother is

aware of her pregnancy. Significantly, embryo transfer and developmental studies

indicate the adult non-communicable disease phenotype can be traced back to the

periconception period with poorer quality oocytes and embryos. Here, we give an

overview of our current understanding of mechanisms involved linking preimplan-

tation embryo morphogenesis and metabolism through to gene expression and

epigenetic regulation in response to adverse environments such as obesity. Potential

upstream mediators such as embryonic environmental sensors and maternal

inducers are considered, including the impact of the reproductive tract at the

maternal–embryonic interphase at a time preceding the formation of a functional

placenta.
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Abbreviations

AMPK Adenosine monophosphate-activated protein kinase

ART Assisted reproductive technologies

CVD Cardiovascular disease

DOHaD Developmental origins of health and disease

EGA Embryonic genome activation

Epi Epiblast

ER Endoplasmic reticulum

ET Embryo transfer

ICM Inner cell mass

mTORC1 Mammalian target of rapamycin complex 1

NEFA Non-esterified fatty acids

NCD Non-communicable diseases

PE Primary endoderm

PPAR Peroxisome proliferator-activated receptor

TE Trophectoderm

5.1 Introduction

Obesity is a global threat of increasing public health concern worldwide, contrib-

uting to non-communicable disease (NCD), notably cardiovascular disease (CVD),

type 2 diabetes and hypercholesterolaemia [1]. In the UK, 25% of the population

are obese which poses a huge economic burden, ~£16 billion per annum from health

costs, lost production and premature morbidity [2]. Besides being associated with

NCDs, obesity and overweight are also detrimental to reproductive function,

including anovulation and delayed spontaneous conception [3] and reduced success

in assisted reproductive treatment (ART) with lower clinical pregnancy and higher

miscarriage rates [4]. Perhaps even more importantly, maternal obesity can lead to

poor offspring health. Children of obese mothers tend to become obese themselves

and develop hyperinsulinaemia and glucose intolerance leading to increased NCD

risk in later life [5]. Animal models substantiate this. For example, in the mouse,

maternal high-fat diet leads to heavier offspring with increased adiposity, fatty liver

disease and metabolic and CV dysfunction [6–8]. This fits within the broader

Developmental Origins of Health and Disease (DOHaD) concept originating from

human epidemiological studies linking experiences during prenatal life to postnatal

disease risk and constitution, including body weight and fat mass. Such prenatal

programming of postnatal events is widespread across the animal kingdom and is
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believed to be a natural mechanism to permit adaptations to prevailing conditions,

or developmental plasticity [9, 10]. Human observational studies cannot separate

genetic, pre- and postnatal contributions to programming of the offspring. Exper-

imental animal models have furthered our understanding of the underlying mech-

anisms, including transgenerational inheritance through epigenetic modifications

[11]. Such insight can now, in turn, inform human cohort studies [10].

5.2 Periconception Period, Long-Term Programming

and Maternal Obesity

Most women with a high body mass index (BMI) before conception will continue to

gain more weight throughout pregnancy than women of normal pre-pregnancy BMI

and will also impact on the postnatal lifestyle of their children. Thus, it is difficult to

distinguish between mechanisms involving maternal BMI, gestational weight gain

and maternal metabolic control and to elucidate critical developmental windows

sensitive to programming. Animal models have been instrumental in identification

of vulnerable prenatal periods. Thus, it is now clear that developmental program-

ming becomes detectable very early on, within hours or days after fertilisation,

before the embryo implants into the uterus and the mother is aware of her pregnancy

[10, 12, 13]. This suggests the periconception period as a time suitable to identify

potential biomarkers for programming but also as a critical window of sensitivity.

In support of the latter, a large body of literature has demonstrated that manipula-

tions and challenges experienced exclusively during the first few days after

fertilisation, the preimplantation period, can have profound long-term conse-

quences for offspring health. Best characterised and shown across mammalian

species are the adverse postnatal phenotypes induced by brief removal of the

preimplantation embryo from its natural environment, the reproductive tract, and

in vitro culture as used in ART. Changes in offspring growth, body composition,

physiology, metabolic and cardiovascular health as well as behaviour and cognitive

function have all been linked to in vitro environments in rodents, livestock or

human [14–20]. Similarly, brief exposure in vivo to acute maternal sickness around

fertilisation [21] or low protein diet preimplantation [12, 22] is sufficient to increase

postnatal disease risk in mice. With regard to maternal obesity, embryo transfer

(ET) and developmental studies indicate the adult NCD phenotype can be traced

back to retarded fetal growth and ultimately the periconception period with poorer

quality oocytes/embryos [23–25]; similar outcomes come from rat [26] and sheep

[27] models. Collectively, this suggests that the preimplantation embryo itself is

highly susceptible to its environment but also highly plastic in adapting its physi-

ology and developmental trajectory in an attempt to compensate for adverse

experiences and ensure survival [12, 22, 28, 29].

A wealth of evidence connects maternal obesity with long-term programming

and postnatal health (discussed elsewhere in the book). However, the impact of
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maternal obesity on the preimplantation embryo is less well characterised, perhaps

due to technical challenges [30]. Even scarcer is our understanding of the relative

vulnerability to maternal obesity of oocyte/early embryo compared to

postimplantation/fetal development. Here, we will (i) summarise some key events

during preimplantation embryo development, (ii) give examples of the range of

early embryonic phenotypes associated with maternal obesity at morphological,

physiological and molecular level, (iii) discuss how the reproductive tract may be

affected in maternal obesity, (iv) consider the relative contribution of the oocyte,

preimplantation embryo and reproductive tract to programming through maternal

obesity, (v) discuss some current intervention strategies and (vi) suggest future

areas of scientific interest.

5.3 Key Processes in Early Preimplantation Development

Early embryo development consists of dynamic, well-orchestrated processes driv-

ing developmental progression. Intricate intrinsic and extrinsic signalling networks

cooperate to coordinate this developmental progression sensitive to environmental

conditions which have been detailed recently [31, 32]. Here, we will briefly

summarise some of the key features with focus on rodent models (Fig. 5.1).

Fig. 5.1 Schematic summary of key processes involved in regulating preimplantation embryo

development. Morphogenesis, metabolism, gene expression, epigenetic regulation and differenti-

ation events are interconnected and dynamic, collectively coordinating blastocyst biogenesis. TE
trophectoderm, ICM inner cell mass, EPI epiblast, PE primitive endoderm
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5.3.1 Morphogenesis

At fertilisation, meiotic progression of the oocyte is activated and a diploid biallelic

genome is re-established, essential for developmental success. Upon entry into the

oocyte, the sperm releases phospholipase C-zeta (PLCϚ) into the egg cytoplasm

responsible for regulating Ca2+ oscillations via the phosphoinositide signalling

pathway. Cortical granule exocytosis alters zona pellucida chemistry establishing

a block to polyspermy. Ca2+ oscillations contribute to extrusion of the second polar

body, pronuclear formation and syngamy culminating in resumption of cell cycling

and embryonic genome activation (EGA). Cleavage is characterised by asynchro-

nously dividing blastomeres. These blastomeres consistently communicate with

each other to regulate embryo morphogenesis and cell lineage differentiation. This

process is initiated during compaction when blastomeres not only tightly adhere to

each other but also polarise into apical and basolateral domains, permissive of cell

asymmetry, differentiative divisions and epithelial phenotype. These events are

regulated by a complex network involving a variety of structural and signalling

proteins and enzymes amongst others. Lineage diversification culminates at the

blastocyst stage when an outer trophectoderm epithelium (TE; progenitor of extra-

embryonic chorio-allantoic placenta) separates from an eccentric inner cell mass

(ICM). The TE generates the blastocoelic cavity through sodium/potassium-

transporting ATPase (Na+-K+-ATPase)-driven transport processes across the epi-

thelium with gradually establishing tight junctions. The ICM segregates into epi-

blast (Epi; adjacent to TE; progenitor of the embryo proper and all fetal lineages)

and primitive endoderm (PE; adjacent to blastocoel; progenitor of extraembryonic

parietal and visceral endoderm and yolk sac placenta) during blastocyst expansion.

After hatching from the zona pellucida, the late blastocyst implants into the uterine

wall through TE signal interaction with the uterine endometrium [31, 33].

5.3.2 Gene Expression and Epigenetics

Both maternal and embryonic control mechanisms are involved in regulating

development of the blastocyst. Maternal factors encoded by the maternal genome

are accumulated during oogenesis and facilitate EGA critical for developmental

progression. Maternal factors play key roles during processing of the male genome,

degradation of maternally inherited RNAs and proteins, early cell divisions and

initiation of cell lineage diversification [34]. EGA occurs at species-specific time

points, for example at the two-cell stage in the mouse. Mechanisms that regulate

EGA are debated, but it is likely to be a combination of maternally inherited

messages and chromatin structure. These maternally inherited compounds are

gradually degraded whilst embryonic de novo synthesis takes over. Studies have

shown consistently high numbers of genes changing expression levels at EGA

demonstrating a major regulatory switch towards embryonic control of develop-

mental progression [34–36].
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Gene expression patterns and epigenetic remodelling are closely linked. Reliable

analysis of the epigenetic landscape in early embryos is technically challenging due

to the limited material available. However, recent advances in technology are

beginning to give new insights into the substantial chromatin remodelling taking

place when a new diploid biallelic organism is formed. At fertilisation, maternal

and paternal genomes display an asymmetrical chromatin organisation. This

includes DNA methylation patterns and posttranslational histone modifications,

two major epigenetic players. During cleavage, methylation marks on both parental

genomes are largely erased before gradually re-establishing at the blastocyst stage,

most likely in a lineage-specific manner. Similar dynamics and parental

asymmetries are observed with regard to histone variants and their posttranslational

modifications, also establishing a lineage-specific pattern at the blastocyst stage. In

short, the main characteristics of the epigenetic landscape unique to the early

embryo are extensive re-organisation and a relatively open chromatin structure

accessible for transcription factors and permissive for gene expression, at least

around EGA [34, 37]. Coinciding with first lineage differentiation into TE and ICM,

both epigenetic marks and gene expression patterns become more restrictive and

lineage specific [14, 36, 38–41]. HIPPO signalling is critical for TE and ICM

segregation whilst further differentiation of the ICM into Epi and PE involves the

FGF4/MAPK signalling cascade influencing gene expression. Some key transcrip-

tion factors involved in initiating and stabilising cell lineage diversification include

Tead4/Yap/Cdx2/Eomes (TE), Oct4/Nanog/Sox2 (ICM), Nanog (Epi) and Gata6/

Sox17/Gata4 (PE). Their mutually exclusive, lineage-specific expression pattern is

gradually established through reciprocal suppression and feedback loops

[33, 40]. Epigenetic mechanisms also contribute to maintenance of pluripotent

ICM identity. Several specific epigenetic regulators important in chromatin

remodelling and histone modifications are involved by suppressing

differentiation [41].

5.3.3 Metabolism

The developing preimplantation embryo is gradually establishing its metabolic

capacity and ability to control utilisation of nutrients [14, 42]. Mechanisms include

gradual expression and functionality of the nutrient transporter machinery [43–

47]. Therefore, the first few days of development are not only dynamic in demand

and highly metabolically adaptable to prevailing conditions but also potentially

vulnerable to adverse nutrient environments. For example, due to its inability to

utilise glucose as energy substrate, the early embryo utilises pyruvate before

switching to glucose preference after compaction [32]. Nevertheless, glucose can

be used through the pentose-phosphate pathway in early cleavage for nucleic acid

synthesis and NADPH production and its presence is required for activation of

stress responses [32]. Protein and total amino acid turnover and uptake of specific

amino acids is dependent upon developmental stage as well as nutrient environment
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[42, 48]. A similar scenario has been suggested for fatty acid profiles across species

where embryos display lipid signatures indicative of membrane synthesis during

cleavage and membrane specialisation by the blastocyst stage [47, 49, 50]. Thus,

uptake and metabolism of specific fatty acids in the preimplantation period are

dynamic processes [51]. Furthermore, chemical inhibition has proven β-oxidation
as essential for oocyte maturation and early embryo development [51–53].

Although discussed separately, it is important to consider that the above pro-

cesses interact in an orchestrated effort to optimise the early stages of development

in life which, collectively, signifies developmental plasticity [14, 42]. Thus, it is not

surprising that environmental challenges experienced during this short time of

development can have profound and widespread impact on many cellular, physio-

logical and molecular systems. Given that almost all cells present at this stage will

give rise to an entire body including the gametes strengthens the implications

adverse experiences may have on developmental trajectory and health of the new

organism and its progeny.

5.4 Maternal Obesity and the Preimplantation Embryo

Across mammalian species, maternal obesity can impair reproductive function due

to anovulation, delay in spontaneous conception and reduced pregnancy rates and

more miscarriages after ART. Reduced or delayed blastocyst formation, altered

developmental kinetics, compromised morphology and changes in gene expression

patterns, metabolic activity and blastocyst cell lineage allocation/differentiation

have all been reported in the human [54] and in animals from rodent to livestock

[24, 30]. Below we discuss some examples (Fig. 5.2).

5.4.1 Morphogenesis and Morphokinetics

Cell lineage allocation in the blastocyst is a dynamic process with considerable

plasticity. Alterations in cell numbers and relative allocation to either TE or ICM

are common consequences of a wide variety of environmental influences during

early development including short maternal diets, sickness and in vitro culture

conditions. Thus, adjusting the relative number of cells populating ICM and TE

seems critical in ensuring embryo survival, even if at a cost for later health.

Maternal obesity is often seen to reduce blastocyst cell numbers, implying less

proliferation and/or increased apoptosis [55–58]. Dysregulated maternal glucose/

insulin homeostasis often linked to obesity may be critical in inducing such

embryonic adaptations. Treatment of obese mothers with insulin sensitisers such

as rosiglitazone could restore developmental capacity and normalise blastocyst cell

lineage allocation [58]. It is also worth noting that the ICM lineage may be better

protected from adverse environments since, for example, maternal obesity impacts
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preferably on the TE lineage [57, 58]. This may, at least in part, explain reduced

implantation rates and an increase in pregnancy complications in obese pregnancies

as it is the TE that will mediate implantation and give rise to the placenta.

Interestingly, some studies show two populations of embryos derived from obese

mice: those that do develop to blastocysts comparable to controls and those that do

not [55, 59]. Whether this could be due to sex differences has not been explored in

detail to date, but sexual dimorphism in embryonic responses to maternal program-

ming has been suggested as early as preimplantation [13, 60]. The duration of

specific cell cycles early in development is another key process affected by embry-

onic environment. Detailed time-lapse studies have suggested a longer duration of

the cell cycle during early cleavage in embryos derived from obese mice whilst

timing of blastocyst formation was similar to controls (unless both parents were

obese) [61]. In the human, the effect of maternal obesity on morphokinetics is less

clear. Whilst one study did not find altered morphokinetics in embryos derived from

mothers with high BMI [62], another reported accelerated compaction [57]. It is

worth noting though that the former [62] detected retarded development up to at

least the five-cell stage in embryos from all infertility patients irrespective of

maternal BMI compared to embryos from healthy oocyte donors with normal

body weight. In the human, the only ethically accessible material are embryos

generated by ART in connection with infertility treatment. The impact of infertility

may mask more subtle influences of maternal BMI. The fact that in the second study

only early development (up to morula) was accelerated, and only within the

developmentally competent cohort, may support this idea [57]. This demonstrates

the difficulty in drawing general conclusions from human embryo studies and

makes animal models invaluable.

Fig. 5.2 Schematic summary of the impact of maternal status such as obesity on preimplantation

embryo phenotype and postnatal consequences. Obesity-related alterations within the maternal

systemic circulation and the reproductive tract environment induce adaptive responses at multiple

levels in the preimplantation embryo through developmental plasticity. Exposure to an adverse

environment such as maternal obesity around conception is sufficient to increase the risk of

impaired postnatal health and organ function in the offspring
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5.4.2 Physiology and Metabolism

Embryonic metabolic activity has been related to sex and developmental compe-

tence across species [42, 48, 60]. For example, developmental arrest prior to

blastocyst formation can be predicted by increased amino acid turnover during

early cleavage, and reduced blastocyst glucose consumption relates to the male

gender and reduced pregnancy rates [48, 63, 64]. In cattle, intermediate levels of

pyruvate consumption in early cleavage predict the highest chance of blastocyst

development [65]. Preimplantation carbohydrate and fatty acid metabolism (gly-

colysis, β-oxidation) and amino acid turnover (often featuring branched-chain

amino acids such as leucine) have been shown environmentally sensitive in differ-

ent species [25, 31, 47, 51–53, 57, 61, 66–68]. Mechanisms involve altered trans-

port [46] and downstream effectors such as adenosine monophosphate-activated

protein kinase (AMPK; energy homeostasis) and mammalian target of rapamycin

complex 1 (mTORC1; biosynthesis regulation) signalling [31, 69].

In obese mothers, disturbed glucose/insulin homeostasis and elevated levels of

blood glucose, lipids and their metabolites are commonly found either alone or in

combination [70]. This can upregulate specific energy-sensing and stress signalling

pathways affecting embryo physiology and coincides with reduced developmental

competence. A number of adaptations in embryo physiology have been linked with

maternal obesity. For example, evidence from diet-induced obesity mouse models

implies increased O-linked glycosylation of proteins as a result of an upregulated

hexosamine biosynthetic pathway together with increased endoplasmic reticulum

(ER) stress, possibly mediated by elevated glucose levels [32, 71]. ER stress is one

mechanism affecting developmental competence derived from exposure of the

developing oocyte to obesity [71, 72]. In ER stress, protein misfolding and reactive

oxygen species (ROS) production initiate downstream signalling cascades

impacting on a number of physiological mechanisms including gene expression,

autophagy or apoptosis which have been implicated in embryo demise [73]. Altered

expression of genes involved in fatty acid metabolism and mitochondrial structure

and function has also been linked to maternal obesity and fat feeding affecting

embryonic developmental capacity, their lipid stores and metabolism via

β-oxidation across species [46, 51, 67, 74–76]. Both diet-induced and genetic

rodent models of obesity indicate embryonic AMPK activity, lipid handling and

fatty acid oxidation as key mediators of adaptive responses to maternal obesity,

possibly in a sex-specific manner [77, 78]. In view of the current obesity epidemic,

the role of lipid handling including the role of specific fatty acids in preimplantation

has gained more scientific interest recently. A recent small study employing

metabolomics on spent culture media from human day 3 embryos revealed distinct

fatty acid profiles generated by embryos from obese compared to normoweight

women implying maternal BMI as one factor impacting on fatty acid turnover

[68]. Moreover, new highly sensitive technologies allowing single embryo analysis

have shown that lipid composition and metabolism of the embryo itself are stage

specific and environmentally sensitive, e.g., in in vitro culture across different
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species [47, 49, 79]. In vitro culture models where specific fatty acids either alone

or in combination were supplemented have improved our mechanistic understand-

ing. For example, exposure of the oocyte to suboptimal fatty acid levels either alone

or in combination reduces developmental competence of the resulting embryo

[23, 51, 66, 67, 80].

5.4.3 Gene Expression and Epigenetics

Gene expression patterns in early embryos are dynamic, stage specific and highly

susceptible to environmental challenges. For example, maternal obesity can impact

on expression of genes involved in glucose/insulin homeostasis and signalling and

lipid droplet markers in mouse and rabbit models [23, 30, 81, 82]. In the rat,

blastocysts derived from obese mothers show gene expression patterns mirroring

a pro-inflammatory phenotype in which nuclear factor-kB-regulated

pro-inflammatory genes (CCL4 and CCL5) are increased and expression of anti-

oxidant (GPx3) and mitochondrial (TFAM and NRF1) genes is decreased [83]. In

total, over 350 genes were up- or downregulated in male periimplantation blasto-

cysts from obese mothers including developmental and epigenetic regulators.

Moreover, maternal high-fat diet-induced obesity can affect DNA methylation

patterns in oocytes, a pattern that was still visible in offspring livers displaying

corresponding responses in gene expression, and was partially transmitted to the

gametes of the next generation [84]. Epigenetic analysis in preimplantation

embryos is technically challenging. Thus, it is not surprising that very few data

are available investigating the effects of environmental experiences on preimplan-

tation embryo phenotype with a link to adult phenotype postnatally. A recent study

in mice using an in vitro fertilisation model has shown persistent aberrant histone

modifications in blastocysts and in offspring adipose tissue. Aberrant H4 acetyla-

tion in the promoter region of thioredoxin-interacting protein, a gene involved in

integrating cellular nutritional and oxidative states with metabolic response, trans-

lated into dysregulated mRNA expression [85]. Similarly, a maternal weight loss

strategy can induce gene-specific changes in DNA methylation patterns in oocytes

which persist into blastocysts and offspring livers [86].

5.4.4 Concerted Adaptations: Morphokinetics, Physiology
and Gene Expression

Metabolic activity, for example amino acid turnover, glucose uptake or oxygen

consumption, has long been linked to embryo viability, but reliably defining criteria

has been challenging. This may not be surprising considering the number of

confounding factors that can influence metabolic activity. For example, in the
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human, developmental stage, ploidy, gender and mitochondrial activity can influ-

ence amino acid balance [87]. Recently, morphokinetics using time-lapse micros-

copy have become another focus of attention to determine embryo developmental

capacity, at least up to the blastocyst stage. However, developmental speed is also

linked to sex [60] and metabolic activity, albeit with some ambiguity. For example,

developmental speed has been linked to glucose consumption, glycolytic rate and

amino acid turnover [56, 57, 88] across species. Collectively, such non-invasive

measurements continue to be hotly debated in the quest to find biomarkers for

embryo quality to improve selection criteria of the most viable embryos for transfer

in ART [89–91]. To date, published data do not yet allow consensus to define such

criteria or understand underlying mechanisms linking developmental speed, meta-

bolic activity and embryo competence. A better understanding of how parental

body status can influence embryonic characteristics may help to reach consensus

[89, 91]. For example, in the mouse, maternal obesity is linked to reduced devel-

opmental speed pre-compaction and increased glucose consumption in blastocysts

[56], possibly through upregulated glucose transporter 1 (GLUT1 or SLC2A1)

expression [61]. This suggests that increased glucose consumption indicates met-

abolic stress within the embryo as a consequence of maternal BMI compromising

fertility. However, another study by the same laboratory has linked increased

glucose consumption to embryos whose first cleavage occurred earlier in a

non-obese environment. Such faster developing embryos resulted in higher fetal

survival after transfer to foster mothers compared to their slower developing

counterparts [88]. Such apparently contradictory findings indicate that the ability

to succeed developmentally may depend on matching the different embryo char-

acteristics such as gender, developmental speed and metabolic activity to the

maternal environment experienced. It may, therefore, be most informative to assess

embryo characteristics in context to each other rather than individually. It is worth

noting these two studies used different time points for defining developmental

speed (compaction versus first cleavage) which could contribute to the opposing

conclusions. Similarly, extrinsic factors such as maternal body composition may

have a specific ‘best match’ adaptation of developmental processes for develop-

mental progression. For example, in the human, blastocysts from high BMI mothers

take up less glucose compared to their counterparts from non-obese mothers.

However, such blastocysts reach the morula stage faster and have less cells

suggesting a compensatory earlier differentiation [57]. Blastocysts from obese

mothers also displayed altered amino acid metabolism and increased triglyceride

content compared to non-obese counterparts, confirming metabolic, morphokinetic

and differentiation adaptations of the conceptus to maternal BMI as early as

preimplantation [57]. In cattle, short exposure to elevated non-esterified fatty

acids (NEFA) as observed during disorders linked to lipolysis exclusively during

oocyte maturation not only reduced subsequent embryo viability but also reduced

blastocyst cell numbers. Expression of developmentally important genes such as

DNA (Cytosine-5-)-Methyltransferase 3 α (DNMT3A), Insulin-Like Growth Factor

2 Receptor (IGFR2), GLUT1 (SLC2A1) and genes related to lipid and carbohydrate

metabolism was disrupted and metabolic regulation altered profoundly akin to a
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glucose-intolerant state [51, 67, 80, 92]. Elevated oocyte β-oxidation was suggested
key for these alterations seen by the blastocyst stage since inhibition of β-oxidation
during oocyte maturation exposed to elevated NEFA restored developmental com-

petence [66]. Recent studies in the mouse have revealed DNA methylation changes

in oocytes in maternal obesity [84]. Once again, metabolic regulation was a major

target. Both genes investigated with a critical role in metabolic control were

affected, leptin and peroxisome proliferator-activated receptor (Ppar) α, whilst all
five imprinted genes analysed remained unaltered suggesting better protection from

an adverse environment such as maternal obesity [84].

5.5 Maternal Obesity and the Reproductive Tract

Whilst there is a wealth of literature showing that the composition of follicular fluid

surrounding the oocyte before ovulation is sensitive to maternal status such as BMI

across different species [93, 94], very few studies have considered how the repro-

ductive tract adapts to maternal nutrition, especially early on during preimplanta-

tion. Whilst it is clear that cycle stage and pregnancy status influence reproductive

tract fluid composition (summarised in [43]), to date more emphasis has been

placed on whether the uterine lining is receptive to implantation or not [95, 96]. Lit-

tle is known how maternal nutritional status impacts on reproductive tract fluid

composition (or histotrophe) which constitutes the environment in which the

preimplantation embryo develops [32, 43, 51, 97]. This is an important piece in

the puzzle to understand mechanisms underlying the induction of developmental

programming, especially when considering the overwhelming evidence derived

from ART that in vitro culture conditions can profoundly impact not only on

developmental potential but also on offspring health. Reproductive tract fluid

composition is regulated via nutrient transporters which, in turn, respond to mater-

nal dietary supplementation and hormonal status [43, 51, 98]. Recent evidence from

pregnant mice suggests that uterine fluid amino acid composition quickly responds

to maternal diet, but that it does not mirror the changes detected within the maternal

circulation [99]. In the human, BMI of women does influence fluid amino acid

composition in the non-pregnant uterus, again not reflecting systemic levels in

parallel serum samples [100]. This suggests that the reproductive tract may function

with a self-regulatory mechanism in controlling or ‘buffering’ fluid composition

permissive for sustained preimplantation embryo development. Less is known

about lipid content in reproductive tract fluid and its regulation [51]. Best

characterised is follicular fluid lipid composition which displays fatty acid profiles

similar to those found systemically in obesity. This, in turn, impacts on fatty acid

content of the follicular oocyte and is linked to developmental potential

(summarised in [51, 53]).

Expression patterns in the reproductive tract of genes involved in, for example,

metabolic and maternal–embryonic communication can be sensitive to maternal

obesity. For instance, in the rat uterus, maternal obesity can induce lipid
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accumulation and gene expression profiles akin to a pro-inflammatory systemic

status, including abnormal expression of genes involved in lipid metabolism

[83]. In women, endometrial expression of genes involved in glucose/insulin

homeostasis such as Insulin Receptor Substrate 1 (IRS1) and GLUT1 (SLC2A1)

is sensitive to BMI and hormonal status [101]. Little detail is known how maternal–

embryonic signalling may be affected by obesity, but the involvement of cytokines

and growth factors seems plausible [102]. Indeed, in obese cattle, reproductive tract

expression of the embryotrophic cytokine Colony Stimulating Factor 2 (CSF2) is

reduced whilst Insulin-Like Growth Factor 1 (IGF1) uterine fluid levels are elevated

[103, 104].

5.6 Relative Contribution of the Oocyte, Preimplantation

Embryo and Reproductive Tract to Programming

Through Maternal Obesity

Most of our knowledge of the impact of maternal obesity on developmental

programming and offspring health is derived from exposure to maternal obesity

from before conception and throughout gestation and lactation. This includes

oocyte development and makes it difficult to further narrow down the relative

vulnerability to programming at specific developmental stages. Thus, sequence of

events and detailed underlying mechanisms remain sketchy. The only way to limit

exposure to an obese environment is by restricting it to specific time periods,

e.g. periconception only. This usually requires manipulations before implantation

takes place, for example: maternal hormone treatment to time ovulation, maximise

oocyte recovery and synchronise embryo recipients; in vitro fertilisation; embryo

culture; and ET to continue development in a non-obese environment. Although

such manipulations can lead to programming in themselves (discussed above), they

are invaluable tools to improve our mechanistic understanding and elucidate spe-

cific susceptibilities [30]. However, very few studies are available to date, perhaps

due to the technical challenges of these manipulations and their practicability. One

example shows that exposure to obesity in vivo during oocyte development,

fertilisation and either up to blastocyst or two-cell stage before transfer to a

non-obese environment is sufficient to lead to fetal growth restriction, develop-

mental abnormalities and altered placental physiology but did not result in

compromised offspring metabolic state [24, 105]. Another example demonstrates

that when fertilised oocytes from obese mice that had undergone a weight loss

strategy were transferred into normal foster mothers the adverse postnatal pheno-

type observed in offspring from non-weight loss controls was partially alleviated.

This suggests the oocyte as one key developmental stage linking maternal status

with offspring phenotype [86].

In the next developmental window, the preimplantation embryo is also sensitive

to environmental conditions (see above). This is well documented as a consequence
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of exposure to compounds found elevated in maternal obesity during in vitro culture

and follow-up after ET. For example, short-term culture of murine morulae/blas-

tocysts in the presence of palmitic acid was sufficient to reduce blastocyst cell

numbers and alter blastocyst insulin signalling. After transfer, fetal growth restric-

tion and postnatal catch-up growth ensued [106]. Exposure of murine blastocysts to

high levels of insulin or IGF1 in vitro increases apoptosis, reduces glucose uptake

and implantation and results in fetal growth restriction after transfer. Such detri-

mental impact could be alleviated by metformin, likely to operate via activation of

AMPK involving AKT/mTORC pathways as a rescue mechanism to restore glu-

cose uptake [69, 107]. In a genetic model of maternal obesity in vivo, exposure to

metformin during in vitro culture was indeed able to partially reverse adverse

blastocyst phenotype [77]. Whilst this sounds promising the long-term effects of

such treatment will require some more investigation.

5.7 Current Intervention Strategies

Due to the chronic condition of maternal obesity impacting on oocyte health even

before conception, one focus has been on alleviating the impact of exposure of the

follicle and oocyte to an obese environment. A number of oocyte defects have been

described as a consequence of maternal obesity including spindle abnormalities and

meiotic defects, organelle dysfunction (mitochondria and ER), lipid accumulation,

reactive oxygen species, epigenetic defects and overall metabolic disturbances

[74, 94]. Thus, it is not surprising that maternal diet reversal and weight loss

programmes through, for example, bariatric surgery, caloric restriction and/or

exercise before conception have become one popular strategy to prevent adverse

programming across species and possible transgenerational inheritance [27, 108–

111]. However, it remains unknown how intense and over what period of time such

strategies need to be continued in order for them to take full effect and remain safe

in humans [109]. Various weight loss strategies have had some success in improv-

ing ovulation, embryo development and pregnancy rates in subfertile patients as

well as alleviating offspring disease risks associated with maternal obesity in rodent

models [86, 108, 109, 112]. However, underlying mechanisms and long-term

effects on offspring health into later life are less well defined. In addition, timing,

duration and intensity of weight loss in relation to conception still remain a subject

of debate as there have also been some negative reports [27, 113, 114]. Perhaps the

human observational data from the Dutch famine showing that exposure to under-

nutrition during early gestation increases cardiovascular disease some 60 years later

best underpins the call for caution in devising weight loss programmes, especially

around conception before the mother is aware of her pregnancy [27, 115]. A better

evidence base is needed to improve our mechanistic understanding and animal

models where early embryo, fetal and postnatal material is accessible are irreplace-

able for this task.
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Very few animal models are available to date where reversal of maternal

obesity-induced programming has been analysed in relation to early embryonic

phenotype and have had mixed success. For example, in mice, normalisation of

compromised maternal physiology induced by high-fat diet exposure through a

switch onto a non-obesogenic diet for 8 weeks (corresponding to 10–11 menstrual

cycles in the human) was insufficient to reverse impaired oocyte quality

[116]. However, using a strategy to encourage activity levels voluntarily in mice

through environmental enrichment for only 4 weeks has shown more promise in

reverting not only impaired maternal physiology but also DNA methylation

changes in the oocyte back to normal, improving adverse offspring health conse-

quences. These changes were inherited across at least two generations [86]. Insulin

sensitisers such as rosiglitazone which targets PPAR can revert blastocyst pheno-

type back to that of control embryos [58] similar to the AMPK activator metformin

(discussed above) which can alleviate postnatal metabolic phenotype induced by

maternal obesity when given throughout pregnancy [117], but long-term conse-

quences into later life have not been followed up. Targeting AMPK activation

through manipulating intracellular pathways may also prove a promising strategy to

avoid programming by maternal obesity [118]. Compounds such as polyunsaturated

fatty acids, resveratrol, curcumin or taurine targeting various signalling pathways

(cytokines, transcription factors, enzymes) and metabolic processes (nutrient trans-

porters, metabolic enzymes, glucose/lipid metabolism) associated with mild sys-

temic inflammation or insulin insensitivity as seen in obesity have shown some

success in restoring offspring health (reviewed in [119]). However, their safe use

during pregnancy requires more investigation. For example, using a non-human

primate model of maternal obesity, beneficial as well as cautionary effects on fetal

organ development have recently been reported using the insulin sensitiser resver-

atrol which targets the deacetylase Sirtuin 1 (SIRT1) [120].

5.8 Where to Go Next?

Currently, we have a growing understanding of the consequences of developmental

plasticity and the machinery involved in mediating adaptation to prevailing condi-

tions even before implantation, including transgenerational inheritance via epige-

netic mechanisms. However, there is a critical gap in knowledge of the upstream

mechanisms mediating maternal programming preimplantation. For example, how

does the early embryo sense its environment in the first place and how are

epigenetic alterations induced? How does the reproductive tract respond to mater-

nal obesity and is it able to give some protection? It is now very clear that metabolic

versatility and epigenetic regulation are intricately linked in health and disease

states, and even in the preimplantation embryo [14, 94, 121, 122]. Metabolic master

regulators and sensing systems functional in early embryos include AMPK (energy

levels) and mTORC1 (amino acids, insulin/Pi3k/Akt) signalling pathways

[31, 32]. Both have been implicated in embryonic adaptive responses to
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environmental cues including maternal obesity (see above) [31]. The role of fatty

acids and lipid metabolism, however, has not been examined in much detail in the

embryo. Remarkably, the contribution to nutrient sensing of the hexosamine bio-

synthesis pathway integrating carbohydrate, amino acid, fatty acid and nucleotide

metabolism through uridine diphosphate N-acetylglucosamine (UDP-GlcNAc)

synthesis has not been well characterised. UDP-GlcNAc is involved in biosynthe-

sis, signalling, and potentially insulin sensitivity through O-linked glycosylation.

Since O-linked glycosylation is also critical in histone modifications, this pathway

may be another link between environmental stress response and epigenetic changes.

The hexosamine pathway is active in early development. Inhibition and knockout

studies have shown that this pathway is critical for oocyte maturation and early

embryo development and their ability to respond to stress [32]. Moreover, in a

perturbed nutrient environment such as hyperglycaemia, this pathway has been

implicated in insulin/growth factor resistance in concert with Pi3k/Akt signalling,

but a direct link to epigenetic effects in early embryos is still lacking [32].

Other unresolved questions include the quest for critical components inducing

developmental plasticity before implantation, their prime targets and the sequence

of events. Finding answers will require investigation further upstream of the

preimplantation embryo, including the reproductive tract and its relation to the

circulation. Whilst we start to understand how development and health of the

oocyte are associated with follicular composition in relation to maternal circulation

[51, 53, 93, 94, 123], we know very little about the mechanisms regulating oviduct

and uterine fluid formation and composition, let alone in relation to maternal

nutrition [97, 98]. The latter can only be studied in animal models due to ethical

constraints in the human on collecting reproductive tract material whilst an embryo

is present. A better understanding of these upstream events will help devising

strategies that will ensure the early embryo can be protected safely from maternal

malnutrition at a time when the mother is still unaware of her pregnancy.
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Chapter 6

Paternal Obesity and Programming

of Offspring Health

Tod Fullston, Helana S. Shehadeh, John E. Schjenken, Nicole O. McPherson,

Sarah A. Robertson, Deirdre Zander-Fox, and Michelle Lane

Abstract The physical and nutritional environment experienced by the mother

prior to and during conception is imperative to the outcome of pregnancy and

offspring health. In addition, there is now mounting evidence that paternal expo-

sures and conditions at the time of conception are also an important determinant of

pregnancy outcome and offspring health. Specifically, male obesity is now demon-

strated to have detrimental impacts on fertility and fetal development during

subsequent pregnancy and can exert programming effects on the phenotype of

offspring lasting up to two generations. We summarise the evidence of the effect

of environmental exposures on seminal plasma and sperm, focusing on the effects

of obesity, and what bearing this has for offspring both in humans and animal

models. The current knowledge of what might form the molecular basis of the

phenomena of paternal programming of offspring health is also reviewed with

consideration given to signals from both seminal plasma and sperm.
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Abbreviations

ROS Reactive oxygen species

8-OHdG 8-hydroxy-20-deoxyguanosine (oxidatively damaged Guanosine base)

5mC 5-methyl-Cytosine

5hmC Hydroxymethyl-Cytosine (oxidised form of 5mC)

NOX NAPDH oxidase

OGG1 8-Oxoguanine glycosylase (enzyme)

BMI Body mass index

SVX Seminal vesicle deficient (mouse model)

sncRNA Small non-coding RNA

6.1 Introduction

For the first time, the current generation of children may have a reduced life

expectancy compared to their parents, due largely to an elevated incidence of

non-communicable chronic disease. The increase in diseases such as obesity may

in part originate in early-life exposures. Overwhelming evidence now demonstrates

that peri-conceptional parental exposures to diet, environmental conditions and

lifestyle choices alter the integrity of gametes which in turn can have a lifelong

impact on the health and disease susceptibility of the offspring. Whilst this evidence

initially focused on the mother, often with paternal factors being overlooked, it is

now apparent that alterations to sperm that occur as a result of paternal exposures to

environmental conditions can also influence embryo and offspring health. In

humans, whilst associations exist between male health at conception and offspring

health and disease, data demonstrating causality are currently lacking. However,

studies in animal models are providing some clues to how paternal health affects

offspring, providing evidence that both the molecular structure of the sperm and the

composition of seminal plasma are key determinants in the transmission of expo-

sures of the father to his offspring. This chapter will explore how environmental

exposures impact the male reproductive tract and how this impacts offspring health.

6.2 Spermatogenesis

The production of a functional spermatozoa capable of successfully fertilising an

embryo is a complex process requiring the coordinated activity of thousands of

genes, significant remodelling of genetic material and epigenetic marks as well as
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substantive modifications to proteins [1]. The production of mature sperm from

primordial germ cells is regulated by sex hormones from the hypothalamus, pitu-

itary gland and locally from the testes. The germ cells are enclosed by Sertoli cells

(nurse cells) that are bound to each other through tight junctions that form the

blood–testis barrier. The blood–testis barrier is selectively permeable, resulting in a

specialised environment within the inner compartment of the seminiferous tubules

with respect to concentrations of hormones, electrolytes, sugars and amino acids.

Testosterone acts on Sertoli cells to regulate sperm differentiation; its concentration

within the body is relatively consistent, due to the negative feedback loop that acts

on the hypothalamus and pituitary gland to decrease LH production that inhibits the

further release of testosterone [2].

Spermatogenesis is comprised of three main stages where type A spermatogonia

transition into primary and secondary spermatocytes and then into early round

spermatids before being converted to elongated spermatids and eventually sperma-

tozoa. The volume of cytoplasm is vastly reduced during spermiogenesis, whereby

excess cytoplasm and organelles are removed from the spermatids by Sertoli cell

phagocytosis [3]. Cytoplasmic reduction is vital for the structural conversion of a

spermatid into a functional sperm cell and leaves only a small amount of residual

cytoplasm. Any residual cytoplasm containing high levels of reactive oxygen

species (ROS) may lead to oxidative stress and reduced sperm motility

[4, 5]. The remainder of cytoplasmic residue, the cytoplasmic droplet, remains in

the elongated spermatid. During epididymal transit, the cytoplasmic droplet

migrates from the neck of the sperm to the end of the midpiece; however, the

physiological significance of this remains to be fully elucidated [6]. During these

final stages of development into the elongated sperm (spermiogenesis), these cells

are transcriptionally silent. Consequentially multiple processes that include nuclear

condensation, acrosome formation, flagellum formation, cytoplasmic reduction and

functional changes that occur in the epididymis must all occur in the absence of

transcription/translation [7].

Nuclear remodelling is a key process of spermatogenesis involving the compac-

tion of the sperm nucleus. This nuclear condensation process involves the gradual

removal of the chromatin’s original histone-based structure and substitution with

smaller protamines [8–11]. Histones, which are proteins that DNA is wrapped

around [12], are modified via acetylation, methylation and ubiquitination leading

to an open and loose chromatin structure [13–15]. Transition proteins then bind

strongly to the DNA and are incorporated into the chromatin resulting in the

removal of histones. However, it must be noted that a small proportion of histones

are retained and not replaced, with up to 15% retained in human sperm

[16, 17]. Finally, transition proteins are replaced by protamines that generate a

tightly packaged nucleus [18]. It has been proposed that the specialised protamine-

based chromatin structure may be necessary for multiple functions including the

generation of a compact and dynamic shape to aid in swimming capacity, the

protection of the paternal genome from chemical and physical damage and an

involvement in epigenetic signalling [10, 19]. The epigenetic make-up of sperm
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is crucial, as it acts to modulate post-fertilisation transcription during embryogen-

esis [20, 21].

The release of the spermatozoa from the seminiferous tubules occurs via a

process of spermiation. It is important to note that whilst structurally intact, the

released spermatozoa is not functionally competent. Functionality of the sperm is

attained during its transit through several metres of epididymal tubule, which

includes the acquisition of motility and the ability for capacitation and oocyte

binding/fusion [22, 23]. Remarkably, this acquisition of sperm function occurs in

the absence of gene transcription and protein translation. The substantial numbers

of proteins that are transferred to sperm by epididymal specific exosomes

(‘epididymosomes’) during this transit are, at least in part, responsible for this

acquisition of functionality. Interestingly, both sperm DNA methylation [24] and

sperm microRNA content [25, 26] are also modulated throughout epididymal

transit. Sperm are then stored in the cauda epididymis for approximately 1 month

in humans, or until ejaculation. The entire developmental process that generates

mature sperm in men occurs over approximately 72 days, thus allowing for expo-

sure of maturing sperm to environmental influences over an extended period of

time [27].

6.3 Seminal Plasma

As well as spermatozoa the seminal fluid contains a plasma fraction, originating

from secretions of the male accessory sex glands [28]. The seminal plasma accounts

for the vast majority of the ejaculate (~85% in humans) and contains a complex

mixture of bioactive proteins and other agents [28, 29]. In addition to soluble

factors, seminal plasma also contains nanovesicles derived from the prostate, called

prostasomes [30]. While all accessory sex glands contribute to the composition of

seminal plasma, studies in humans have identified that seminal plasma is predom-

inantly made up of fluids from the seminal vesicles and prostate gland [28].

Seminal plasma was traditionally seen as a transport medium to provide sperm to

the oocyte at conception. However, we now know that seminal plasma plays a far

more complex role. Soluble factors within seminal plasma have been identified to

promote the survival of sperm and provide factors to protect sperm from oxidative

stress, provide metabolic support, enhance sperm motility and induce capacitation

[28, 31]. For example, prostasomes play an important role in the above functions

with studies demonstrating that prostasome interactions with sperm influence sperm

motility, capacitation as well as acrosome reactions [32–34].

Emerging research in both humans and animal models has provided evidence

that seminal plasma has novel roles in exerting influence on the physiology of the

female reproductive tract due to the presence of a range of soluble signalling factors

including hormones and cytokines, which may act independently of sperm [35–

37]. In these studies, seminal plasma has been identified to promote conception,

prepare the female reproductive tract for pregnancy and critically promote the

108 T. Fullston et al.



development of a tolerogenic immune environment that is required for the maternal

immune system to accommodate the embryo [38–40]. Recent studies in animal

models have identified that components of seminal plasma may have an impact on

the future phenotype and metabolic health of offspring [41].

6.4 How the Molecular Composition of Sperm Influences

the Developmental Program of the Embryo

The chromatin structure of sperm is very different to a somatic cell with a tenfold

compaction of DNA being achieved via replacement of histones with smaller

cysteine- and arginine-rich basic protamines during the final postmeiotic phase of

spermatogenesis [10, 11]. However, several species including the human and

mouse retain a small portion of the original histones (H2A, H2B, H3 and H4),

which are associated with uncondensed nucleosomal structures. It has been spec-

ulated that histone retention in sperm DNA provides a ‘histone code’ capable of

transferring additional epigenetic information to the embryo. This information

controls gene expression within the developing embryo, via differential methyla-

tion of imprinting control regions, which either up- or downregulate gene transcrip-

tion [42]. The potential for histone-related epigenetic marks in sperm to carry

epigenetic information into the zygote is supported by the non-random location

of the retained histone nucleosomes (i.e. at genes of developmental importance)

[43] and that post-translational modification of histones and protamines [44] have

recently been recognised as paternally derived epigenetic signatures which may

contribute to non-genetic transgenerational inheritance.

Noblanc and colleagues found that the regions that retain histones in the sperm

DNA were the most prone to oxidative attack, as a result of their relaxed and

decondensed chromatin state, with histone-rich and nuclear matrix-attached

domains located in the peripheral and basal regions of the sperm nucleus particu-

larly sensitive to this type of damage [45]. Furthermore, although sperm protamines

are replaced with maternal histones at fertilisation [46], regions that retained

histones in sperm DNA are not replaced by the oocyte post-fertilisation and,

therefore, any paternal histone modifications (H3K27me3—repressive;

H3K4Me2—active), hold the potential to be inherited into the embryo [43, 47]

and alter the transcriptome of the early embryo.
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6.5 Impact of Paternal Environmental Exposures

on Sperm Function and Molecular Composition

There is substantial evidence that lifestyle and environment can influence both

sperm function and molecular make-up. However, traditionally the assessment of

sperm has focused on relatively crude measures of spermatogenesis such as count,

motility and morphology, with little to no assessment of the molecular composition

of the sperm.

6.5.1 Obesity

The most well-characterised lifestyle factor that impacts on sperm function is

obesity. The World Health Organisation defines obesity as a body mass index

(BMI) of >30 kg/m2 (weight as a ratio of height). Human and rodent models

have demonstrated a correlation between increased BMI/body weight (respec-

tively) and impaired male fertility. Initially human studies focused on the effects

that increased BMI had on hormone levels, with obese men reported to have

reduced testosterone, increased oestrogen and reduced sex hormone binding glob-

ulin (SHBG) concentrations [48–51]. Additional studies have examined the effects

of male BMI on conventional sperm parameters (sperm count, motility and mor-

phology) with conflicting conclusions. Some studies support a link between obesity

and subfertility including reduced sperm count [52–55], reduced sperm motility

[54–56] and increased sperm DNA damage [56, 57], while other studies do not

support this link between male obesity and impaired semen parameters [58–60].

A meta-analysis of 21 studies (total of 13,077 men) indicated a negative rela-

tionship between BMI and sperm count [61]. A recent systematic review and meta-

analysis of 115,158 men concluded that obese men were more likely to experience

infertility. Furthermore, these men had a reduced chance of a live birth per cycle of

assisted reproduction technology with a 10% absolute risk increase of pregnancy

non-viability and had an increased percentage of sperm with DNA fragmentation

and abnormal morphology [62]. There have been some reports on the impact of

obesity on sperm DNA integrity with several studies reporting an increase in sperm

DNA damage with obesity [56, 57, 60]. Furthermore, increased sperm ROS con-

centrations have been reported for both human and animal models of obesity,

concomitant with increased sperm DNA damage [56, 57, 60].

6.5.2 Smoking

Overall cigarette smoking is known to reduce male fertility, with reductions to

count, motility and morphology [63, 64]. But it must be noted that although

110 T. Fullston et al.



reductions in these measures of fertility are consistently reported for smokers, they

usually still fall within the normal range, and effects on fertility are instead caused

by an increased mutational load and other DNA damage-based mechanisms.

When a male smokes heavily, their seminal plasma shows high levels of oxygen

free radicals and their sperm show significantly elevated levels of DNA fragmen-

tation and increased oxidative damage to DNA, as measured by 8-hydroxy-20-
deoxyguanosine (8-OHdG) lesions, compared to the sperm of non-smokers

[65]. This DNA fragmentation and damage observed in sperm is presumed to

form the basis for increased risks of childhood cancers observed in children born

to male smokers [66]. Non-specific oxidative damage to DNA in male germ cells

such as deletions, abasic sites and oxidative base change is proposed to increase the

mutational load in the embryo [67]. The mutational load then becomes fixed in the

fertilised oocyte as a result of abnormal DNA repair at the first cleavage division,

demonstrating that genetic damage can be transmitted through the male germ line

and this damage may have a major impact on offspring health [67]. Indeed, paternal

smoking has been demonstrated to increase the mutation load in children, compared

to non-smoking fathers [68].

6.5.3 Age

A recent meta-analysis of 90 studies with a total of 93,839 participants concluded

that advanced male age is associated with a decline in semen volume, sperm

motility and morphology, but not sperm concentration [69]. In addition, increasing

male age has been associated with increased sperm DNA fragmentation, abnormal

chromatin packaging and protamine deficiency in both sperm donors and infertile

couples [70–72]. It has been demonstrated in a relatively closed Icelandic popula-

tion that mutations in sperm/offspring increase by approximately two extra muta-

tions per year of paternal age, which estimates a doubling with every 16.5 years of

increased age [73]. Furthermore, it was concluded that a father’s age is estimated to

explain nearly all of the non-random variation in de novo mutation events. More-

over, advanced paternal age alters methylation patterns at imprinted genes and this

has been suggested to also increase the risk of neurological disorders found in

offspring [74, 75].

This increased DNA damage and epigenetic changes in sperm due to increasing

paternal age are implicated as the cause for diminished reproductive outcomes. For

example, men>45 years of age are associated with increased miscarriage [76], fetal

death [77], pre-eclampsia [78] and low birthweight of live born infants

[79]. Advanced paternal age is also associated with an increased susceptibility to

complex neurological disorders such as schizophrenia (>55 years old), bipolar

disorder (>55 years old) and autism (>50 years old) in their children [74, 80–

83]. Advanced paternal age clearly damages the genetic/epigenetic content of

sperm and offspring, perhaps reflecting a man’s lifetime of acquired environmen-

tal/lifestyle exposures that are then transmitted to his offspring.
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6.6 Sperm and Seminal Plasma Impact on Pregnancy

Progression and Offspring Health

A number of paternal health factors including smoking, advanced age and exposure

to industrial chemicals have been associated with increased rates of cancer, mental

disorders including autism and congenital abnormalities in subsequent offspring

[84–86], which suggests transmission of paternal exposures at or around

conception.

Historically parental BMI studies have focused on maternal BMI

pre-conception, peri-conception and during pregnancy and lactation and indeed

these parameters are imperative to the outcome for the pregnancy and the offspring.

There is now mounting evidence that paternal obesity also affects pregnancy out-

comes in addition to the reported maternal contributors. Males classified as over-

weight (BMI 25–30 kg/m2) or obese (BMI> 30 kg/m2) currently equates to nearly

75% of the population of Westernised societies (i.e. the USA, Australia), with

co-morbid diseases attributed to obesity becoming increasingly problematic

[87, 88]. The rate of obesity alone is ~30% in these populations and developing

nations have some of the most rapid increases in obesity currently [87].

6.6.1 Pregnancy and Embryo Health

Male obesity is associated with decreased pregnancy rates and an increase in

pregnancy loss in couples undergoing assisted reproductive technologies [55, 89–

93]. Male obesity decreases clinical pregnancy rates, partly explained by perturbed

embryo development resulting from poor sperm quality (reduced motility, capac-

itation, fertilisation, oocyte binding as well as increased intracellular ROS and

DNA damage) [55]. These findings were confirmed and extended in rodent models

of male obesity which demonstrated delayed zygote cleavage, reduced blastocyst

cell numbers, impaired embryo metabolism and reduced implantation as contrib-

uting to poorer fertility and pregnancy outcomes [94, 95]. Adverse outcomes have

also been replicated by pharmacologically increasing sperm ROS [96, 97]. Zorn

and colleagues reported that seminal ROS is a predictor of fertilisation, embryo

quality and pregnancy outcomes in conventional IVF patients [98] implicating ROS

as a causative agent.

6.6.2 Offspring Health

A case–control study in humans investigated paternal exposures to environmental

toxins during the peri-conceptional period and found that there was an increased

chance of congenital malformation in children when fathers were exposed to
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pesticides, solvents or welding fumes [84]. However, the specific environmental

exposures responsible could not be identified due to the diverse range of chemicals

potentially involved [84].

Obesity in males is not only associated with subfertility but is also a mediator for

paternal programming. Epidemiological studies demonstrate that obese fathers are

more likely to father an obese child [99, 100]. However, the extent of the individual

contributions of genetic, epigenetic and environment cannot be separated due to the

common raising environment shared by both father and child—therefore rodent

models have been devised to circumvent this issue. The first rodent model to

demonstrate a link between paternal obesity and offspring health was that of Ng

and colleagues [101], who fed a HFD to male rats that induced obesity and diabetes.

When these males were mated to normal-weight females, their offspring were

smaller at birth and female offspring displaying impaired glucose tolerance caused

by aberrant insulin secretion and a β-cell defect. The changes to insulin secretion

were in part attributed to hypomethylation and downregulation of gene expression

in pancreas tissue, suggesting shared responses to programmed systemic factors, or

crosstalk between tissues [101]. Subsequent studies have demonstrated that diet-

induced paternal obesity in mice resulted in the transgenerational impairment of the

metabolic and reproductive health of two resultant generations [102, 103]. In one of

these studies, glucose and insulin metabolic defects were not limited to the first-

generation offspring, but extended into second-generation offspring, with the most

detrimental phenotype in the F2 generation evident through the F1 female linage.

Interestingly, the molecular composition of the founder sperm was altered, evident

as global hypomethylation, altered microRNA content and increased ROS. There-

fore, oxidative stress, methylation and microRNA content are possible mechanisms

for paternal signals that program offspring health and may initiate the transmission

of metabolic syndrome to future generations. The precise mechanism underlying

the transmission of paternal programming remains speculative, but it is known that

male obesity increases sperm ROS and associated damage, reducing fertilising

ability and blastocyst quality as well as compromising offspring health. Further-

more, in other cell types oxidative stress is directly associated with changes to DNA

methylation [97, 104, 105], and, although the association in sperm has only been

correlative, the significant impact of oxidative stress to sperm, exemplified through

rodent models of obesity, implicates ROS as a potential mediator for the observed

transgenerational phenotypical changes in the above studies.

6.7 Possible Mechanisms of Paternal Transmission

As evidence mounts that the paternal peri-conception environment can lead to

programming of offspring health, investigations have now become directed at

finding what changes to the molecular composition of sperm or seminal fluid

might enact this programming.
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6.7.1 Sperm ROS and Oxidative Damage

Paternal obesity, similarly to paternal smoking, can lead to increased levels of

oxidative stress in sperm. The oxidative stress resulting from obesity has been

shown to induce DNA damage to sperm [106], leading to delayed embryo devel-

opment [94, 107]. These studies show that oxidative attack is initiated by ROS and

that associations exist between DNA modifications and damage in sperm and

impaired offspring health [108]. The classic double-edged sword of redox biology

is exemplified by the observation that ROS-dependent signalling has vital roles in

normal cellular function at normo-physiological concentrations, but increased

amounts can also result in damage to cells, either directly by ROS or by activation

of downstream pathways.

There are several different forms of ROS species, namely hydroxyl radical

(OH-), superoxide (O2-), singlet oxygen (O-) and hydrogen peroxide (H2O2),

each with different biological targets with its own spectrum of reactivity. The

physiological generation of ROS can occur as a by-product of biological reactions

such as those produced by mitochondria, or as a primary function of enzymatic

systems such as NADPH oxidase (NOX) [109]. Sperm are highly susceptible to

oxidative damage due to the lack of cytoplasmic scavenging enzymes and high

levels of polyunsaturated fatty acids found in their plasma membranes [110]. While

physiological levels of ROS are necessary for spermatogenesis and post-ejaculation

maturation including capacitation and hyperactivation [111], these processes

quickly become impaired if the cells enter a state of oxidative stress. Indeed,

knockout models of antioxidants exhibit disrupted spermatogenesis [112]. An

imbalance in ROS towards oxidative stress in sperm occurs in many male pathol-

ogies (male obesity, smoking, ageing, chemical exposure and subfertility), all of

which have been shown to increase offspring susceptibility to disease in both

animal models and humans [7].

ROS is not limited to within the sperm cells themselves but is increased in the

seminal fluid of infertile men as well as with obesity. Seminal fluid ROS concen-

trations in infertile men correlate positively with sperm DNA damage levels and

negatively with pregnancy outcomes [113–115]. Therefore, oxidative stress

appears to be a common underlying mechanism for many of the functional defects

seen in subfertile sperm including reduced sperm motility, a reduced capacity for

fertilisation and substantial losses of DNA integrity (Fig. 6.1) [116–118].

6.7.2 Oxidative Stress and Chromatin Damage

Elevated ROS concentrations impair sperm quality and function [119] and most

DNA damage in sperm is oxidatively induced [120, 121]. Sperm chromatin forms a

quasi-crystalline structure, i.e. a tight structure that fills every available space, and

has very little capacity to respond to DNA damage induced by oxidative attack
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[117]. When oxidative stress occurs, there are two factors that protect DNA from

oxidative damage: tight chromatin packaging, facilitated by protamination of DNA,

and antioxidants present in the cytoplasm of sperm cells that neutralise free radicals

[110, 122, 123]. However, these factors are not effective or sufficient under high

oxidative stress load [124]. Although tight chromatin packaging of sperm DNA

limits its vulnerability to oxidative attack, not all histones are replaced with

protamines. Since approximately 10–15% of histones are retained in human

sperm [11], which is further increased in subfertile men, this suggests that the

nuclear condensation process during spermatogenesis may not be in an ideal state,

leading to loose and exposed chromatin that is more prone to DNA damage

[125]. DNA damage of human sperm appears to be induced oxidatively initially

[120], resulting in the formation of oxidative base adducts (e.g. 8-OHdG) that may

cause the loss of the affected base leaving an abasic site, which has a strong

destabilising effect on the DNA backbone lading to DNA strand breaks

[126]. This process establishes a link between oxidative stress and DNA strand

breaks [127] and may explain the increase of ROS/oxidative damage and single/

double-stranded DNA breaks observed in infertile patients [65, 128–130].

The relationship between oxidative stress and DNA damage in sperm is further

consolidated by the demonstration that when sperm were exposed to artificial

oxidative stress in vitro (to produce ROS), it induced significant increases in

sperm DNA damage, evidenced by modifying constituents of DNA leading to

changes in genetic information [131, 132]. This has been reported in the form of

deletions, frame shifts, DNA cross-links, DNA strand breaks and chromosomal

rearrangements [108, 122, 131, 133, 134]. Increased sperm DNA damage is

Fig. 6.1 The central

oxidative stress hypothesis.

A number of paternal

environmental exposures

that are known to cause

defects in both embryo

development/quality and

offspring health increase

oxidative stress in sperm

and seminal fluid. Increased

sperm DNA damage can

result from oxidative attack

by free radical species (such

as reactive oxygen species;

ROS), which impairs

embryo development/

quality and offspring health
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associated with reduced fertilisation rates [129, 135], embryo cleavage rates [135–

137], impaired blastocyst development rates [138] and reduced clinical pregnancy

rates [136, 137, 139, 140]. Furthermore, DNA damage caused by oxidative stress

has consequential paternal effects on embryonic growth and development which

implicates diminished offspring health [141]. In mice, chemically induced (H2O2)

sperm DNA damage prior to fertilisation did indeed cause metabolic disturbances

in offspring [96]. DNA damage in sperm has been correlated with various offspring

pathologies such as miscarriage [142], cancer [66, 86] and neurological defects

including autism, spontaneous schizophrenia, bipolar disease and childhood epi-

lepsy [74, 81, 143].

Interestingly, the production of 8-hydroxy-20-deoxyguanosine (8-OHdG) as a

result of ROS-induced oxidative DNA damage can also alter methylation patterns

of adjacent cytosines. This occurs as a function of increased 8-OHdG abundance

that reduces the ability of DNA methyltransferases to bind and add methyl groups

to DNA, thus suppressing cytosine methylation by increasing conversion to

hydroxymethylation. It could therefore be posited that ROS itself is active in the

oxidisation of 5-methyl-Cytosine (5mC) and thereby reinstating a relationship

between ROS and epigenetic marks resulting in transgenerational effects [144–

146]. Several studies observed that increased ROS impaired spermatogenesis,

through cellular and DNA damage that resulted in permanent alterations to DNA

methylation, thereby causing epigenetic changes in chromatin organisation associ-

ated with an increased risk of disease in offspring [147, 148]. This is supported by

an epidemiological study that observed alterations in DNA methylation patterns of

newborns born to obese men [149] (Figs. 6.2 and 6.3).

Sperm have a limited capacity to repair oxidative DNA damage since they only

possess the first enzyme in the base excision repair pathway, 8-oxoguanine

glycosylase (OGG1), and rely on the oocyte to complete this process at fertilisation

[150]. It remains a distinct possibility that oxidative damage to sperm at histone-

bound DNA regions can be inherited and persist in the embryo. This could act to

inhibit paternal pronucleus remodelling and alter the transcriptome of the early

embryo.

6.7.3 Seminal Fluid

Recent studies in animal models have raised the prospect that events at conception

mediated through seminal plasma contact with female tissues can not only influence

the capacity to maintain pregnancy but also may impact the future life course and

health of offspring. In mice, in vivo studies utilising mice rendered seminal vesicle

deficient by surgical excision of the seminal vesicles (SVX mice) have demon-

strated that conception in the absence of seminal plasma not only reduces fecundity

but also alters fetal and neonatal outcomes [41]. Evidence for an effect on fetal

programming was observed prior to birth, with abnormal blastocyst development

and placental hypertrophy seen in pregnant females mated with SVX males
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Fig. 6.2 The abundance of oxidative DNA damage (detected by the 8-hydroxy-20-
deoxyguanosine adduct; 8-OHdG) is increased in both a mouse model of obesity (high-fat diet

fed) and human obesity, as per the representative images. (A) The Guanosine nucleobase is

depicted within DNA (attached to the DNA backbone via the deoxyribose sugar) alongside

8-OHdG that is formed following oxidative damage. Immunohistochemical detection using an

8-OHdG antibody (red) contrasted against a DNA stain (DAPI—blue) in (B) a cross section of an

individual seminiferous tubule from a mouse testes from mice fed either a control diet or a high-fat

diet and (white arrows indicate strong positive staining from the heads of spermatids within the

6 Paternal Obesity and Programming of Offspring Health 117



[41]. This placental aberration is commonly observed where placental transport

function is compromised and/or where disturbances in fetal growth occur

[151]. Further evidence for programming mediated by seminal plasma was evident

in the offspring sired by SVX males, where moderate growth impairment could be

seen postnatally, followed by growth acceleration and evidence of obesity follow-

ing puberty, independent of sex [41]. This phenotype was more pronounced in male

offspring where a 72% increase in absolute mass of central adipose tissue was

observed. Furthermore, evidence for altered metabolic programming could be seen

in adult male offspring with increased metabolic hormones, delayed glucose clear-

ance and increased blood pressure [41]. Development of the altered phenotype was

associated with changes observed from the early cleavage stages in embryos sired

from SVX males, thus providing a link between altered embryo development and

an alteration to the balance of embryotrophic/embryotoxic cytokines in the female

tract, demonstrating the importance of seminal plasma’s ability to regulate cytokine
synthesis in female tissues after conception [41].

A similar phenotype can be observed in the Golden Hamster, where coitus in the

absence of seminal plasma leads to abnormal embryo development and transit

[152–154] and a reduction in implantation rates and increased embryo death

[155] as well as growth impairment during the neonatal period associated with

elevated anxiety in offspring [156]. The phenotype in the Golden Hamster offspring

has been postulated to result from epigenetic mechanisms, based on the finding that

cleavage stage embryos from females not exposed to seminal plasma show reduced

acetylation and altered methylation kinetics [155].

In the human, there is no direct evidence linking seminal plasma exposure with

the long-term health of offspring. However, similar distorted growth patterns in

utero and post-partum in humans have been linked with obesity and metabolic

disorder later in life [157]. Additionally, clinical observations in assisted reproduc-

tion are consistent with the phenotypes observed in mice and hamsters, raising the

question of whether, to some extent, altered outcomes after IVF may result from the

absence of exposure to seminal fluid at conception. Exposure to semen around the

period of embryo transfer during in vitro fertilisation has been shown to improve

embryo viability and clinical pregnancy rates [158, 159]. The absence of seminal

plasma in the in vitro setting may potentially contribute to the higher rates of

implantation failure and reduction in embryo quality which may lead to reduced

birth weights and impaired metabolic outcomes, all of which have been observed

Fig. 6.2 (continued) tubule amongst a background of low-intensity basal staining in all other cells;

blue arrows highlight anatomical features of the seminiferous tubule: (a) the outer lamina layer/

basement membrane and (b) the lumen. (C) Mouse sperm from mice fed either a control diet or a

high-fat diet (white arrows indicate strong positive staining in the heads of extracted epididymal

sperm) and (D) human sperm from donors that were either of normal weight or obese (white
arrows indicate strong positive staining in the heads of ejaculated sperm). Note: the difference in
background colour between mouse (C) and human (D) sperm staining is due to different slides

used, images captured on different microscopes with distinct gain settings

118 T. Fullston et al.



for children born through the early use of IVF [160]. However, these observations

require formal investigation to determine the contribution of seminal plasma on

perinatal and offspring health outcomes.

6.7.4 Epigenetics

The cardinal example of paternally derived epigenetic influences on offspring

phenotype is imprinting. Imprinting disorders can be paternally derived, whereby

the paternally inherited imprinted allele is expressed at the expense of the silencing

of the maternal allele [161] by mechanisms controlled by methylation and histone

modifications [162, 163]. Methyltransferase enzymes transfer methyl groups to

DNA bases, reducing transcription and ultimately inhibiting/silencing gene expres-

sion, contributing to the regulation of embryonic development, X chromosome

inactivation and genomic imprinting [164–166]. Hypomethylation of genes can

alter the reprogramming of the male pronucleus in response to environmental

exposures such as DNA damaging agents (e.g. chemotherapeutic agents), ulti-

mately leading to the onset of disease in offspring [167–169]. How obesity alters

the methylation status of sperm DNA is not understood, but obesity has been

demonstrated to modify DNA methylation in somatic cells and lead to

hypomethylation of DNA from testes and late elongated spermatids [103, 170].

Acetylation of histones and the incomplete replacement with protamines is an

essential process during spermatogenesis. A male mice model of diet-induced

obesity demonstrated alterations in acetylation in spermatids and increased DNA

damage in sperm, suggesting a protamination impairment [171]. The histones

retained in sperm (~10–15% in human; ~1–5% in mouse) are capable of carrying

epigenetic marks (e.g. acetylation, methylation) that can be transmitted to the

oocyte at fertilisation [11] and may modulate embryonic gene expression, which

may for part of the programming of embryos generated from obese fathers

[172, 173]. Recent reports indicate that spermatogenesis occurs without significant

Fig. 6.3 The Cytosine nucleobase is depicted within DNA (attached to the DNA backbone via the

deoxyribose sugar) alongside both its methylated form (5mC) and its hydroxymethylated form

(5hmC; which is produced as a result of oxidation either by TET enzymes or potentially as a result

of direct oxidative damage of the methyl group)
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changes in DNA methylation but rather occurs via atypical chromatin structure that

is ‘poised’ ready for transcription processes from 5mC DNA methylated

promoters [174].

The sperm nucleus also contains large populations of RNA, mRNA and small

non-coding RNAs (sncRNAs; which includes microRNAs) that contribute to nor-

mal fertilisation and subsequent embryo development by active transcriptional and

translational regulation [175, 176]. Paternal conditions and exposures have been

demonstrated to alter sperm microRNA, which are small endogenous non-coding

RNA segments involved in post-transcriptional regulation by binding mRNA

targets, usually leading to their degradation or inhibiting translation, consequen-

tially modulating gene expression [177]. Sperm microRNA is essential to the

embryo as knockout mice (Dgcr8�/�) that lack mature microRNAs produced

embryos that arrest during development [178]. Cigarette smoking in men has

been found to initiate differential microRNA abundance of 28 sperm microRNAs

compared to non-smokers. The differentially abundant microRNAs are involved in

pathways vital for normal embryo development including cell proliferation, differ-

entiation and death; however, this study assessed sperm microRNA from only five

smokers and five non-smokers making the results inconclusive based on small

sample sizes [179]. MicroRNA has also been shown to impact offspring health;

e.g. microRNA-124 was injected and artificially overexpressed in fertilised eggs

and resulted in frequent twin pregnancies (due to duplication of the inner cell mass

in blastocysts) and mouse pups displayed a 30% increase in size and growth

[180]. Further microinjection studies that used a single microRNA into the recently

fertilised mouse oocyte also result in altered offspring phenotypes, including loss of

pigmentation (microRNA-221/222) [181] and cardiac hypertrophy (microRNA-1)

[182]. Interestingly, the sperm sncRNA (including microRNAs) fraction is changed

in rodent models by paternal stress, which induces altered behavioural and meta-

bolic phenotype in offspring, and when this sncRNA fraction is extracted from

sperm and microinjected into the very early mouse embryo, it was sufficient to

recapitulate the offspring phenotype [183]. Diet-induced obese mice have altered

expression of 11 testes microRNAs, 4 of which were also altered in sperm [103],

although the direct impact of these changes on embryo development is yet to be

determined. Overall, these studies demonstrate that sperm microRNA content is

sensitive to environmental exposures and can potentially result in altered embryo

development, induce multiple pregnancies and ultimately impact offspring health.

Sperm RNAs have been shown to be localised to histone retained regions and

potentiated genes, implicating sperm RNA in chromatin packaging and genomic

imprinting [175]. The role of sperm-borne RNAs in embryogenesis is unclear, but

the delivery of sperm RNAs to the oocyte at fertilisation has been reported

necessary in early zygotic and embryonic development [184, 185]. Although

sperm contain a vast array of RNA, the mRNA fraction comprises a small fraction

of this, and as such very few studies have investigated the impact of obesity on

mRNA in sperm. Despite this, mouse models of diet-induced obesity and diabetes

have shown differences in mRNA levels of several genes within testes compared

with lean controls [103, 186]. Overall, these studies indicate that RNA is delivered
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to the oocyte and is necessary for embryo development and may modulate offspring

phenotype.

6.8 Summary

Paternal conditions and environmental exposures appear to influence sperm and

seminal fluid by creating genetic alterations, epigenetic marks and extracellular

signals, in turn affecting offspring phenotype. The culmination of these signals

must persist through—or be applied during—two rounds of epigenetic

reprogramming within the embryo. Epigenetic reprogramming is a vital process

that ensures embryo totipotency and the removal of epigenetic mutations to prevent

the transmission of disease to offspring [187, 188]. During embryo development,

the epigenome of the pre-implantation embryo is incompletely reprogrammed and

DNAmethylation is re-established, with the exception of imprinted genes, whereby

one of the parental alleles is methylated and becomes silenced in the embryo

[189]. The fetus’ own primordial germ cells undergo a second round of epigenetic

reprogramming and epigenetic marks are reacquired in a sex-, cell- and tissue-

specific manner, which potentially leads to epigenetic inheritance in offspring

[188, 189]. There are many suggested mechanisms involved in paternal transmis-

sion and the most widely recognised (but are not limited to) include methylation

changes of imprinted genes maintained into the embryo, oxidative damage to DNA,

modifications of retained histones in sperm (acetylation and methylation) transmit-

ted from sperm to embryo [67, 173], alterations to sperm sncRNA (including

microRNAs) content that modifies embryonic gene expression [103, 180, 190]

and seminal fluid composition influencing the expression of genes in the female

reproductive tract before implantation [41]. All of these mechanisms are posited to

ultimately impact on the molecular constitution of the developing embryo and

induce pathologies in subsequent offspring. Although these candidate mechanisms

shed light on the potential pathways involved in the paternal transmission of disease

to offspring, more investigations are required to examine the consequences of the

molecular alterations during spermatogenesis and how this impacts reprogramming

during embryo development and leads to the onset of disease in offspring. Further-

more, relatively simple lifestyle interventions aimed at improving dietary intake

and/or physical activity have demonstrated promising results for both improve-

ments to sperm quality and offspring health [95, 191]. These interventions represent

a potential circuit breaker for the transgenerational transmission of obesity and

promise to improve overall health and fertility.
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Chapter 7

The Impact of Maternal Obesity and Weight

Loss During the Periconceptional Period

on Offspring Metabolism

L.M. Nicholas and I.C. McMillen

Abstract The current global obesity epidemic has resulted in more women entering

pregnancy with a body mass index in the overweight and obese range. It has been

shown that offspring of obesewomen are at increased risk of obesity and type 2 diabetes

in childhood and adult life, thus giving rise to an ‘intergenerational cycle’ of metabolic

dysfunction. Importantly, studies in recent years have highlighted that the oocyte

and/or early pre-implantation embryo is particularly vulnerable to the effects of

maternal obesity resulting in long-lasting endocrine and metabolic effects for the

offspring. Investigations into the molecular mechanisms underlying the programming

of obesity and insulin resistance in liver, muscle and adipose tissue have highlighted the

role of epigenetic changes within these tissues, which are recruited within the devel-

oping embryo and/or fetus. The periconceptional period is also an important period for

intervention where dietary intervention in overweight/obese women is relatively more

feasible.While dieting before pregnancymay havemetabolic benefits for the offspring,

there are however also metabolic and endocrine costs for the offspring. Thus, we need a

better evidence base for the development of dietary interventions in obese women

before pregnancy and around the time of conception tomaximise themetabolic benefits

and minimise the metabolic costs for the next generation.

Keywords Maternal obesity • Periconceptional period • Metabolism

Overweight and obesity affect 39% and 13%, respectively, of adults worldwide

[1]. Consequently, more women in the developed world are entering pregnancy
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either overweight or obese [2–4]. Obese women are more insulin resistant than their

normal-weight counterparts, both before and during pregnancy [5], and this is

associated with an increased risk of developing gestational diabetes mellitus

(GDM) and of giving birth to a large baby with increased fat mass [5–8]. Indeed,

as of 2013, 17% of all live births were associated with hyperglycaemia in preg-

nancy [9]. Importantly, exposure to either maternal obesity or to impaired glucose

tolerance during pregnancy is also associated with an increased risk of obesity and

features of insulin resistance in childhood, adolescence and adult life [10–12]. Glob-

ally, 42 million preschool children were overweight in 2013 [13]. This suggests that

exposure to maternal obesity may result in an ‘intergenerational cycle’ of obesity
and insulin resistance [3, 14, 15]. There has, therefore, been significant interest in

understanding the type of dietary and lifestyle interventions such as increased

physical activity both before and during pregnancy, which may lead to optimal

outcomes for the mother and her offspring [15, 16]. This chapter will summarise the

epidemiological, clinical as well as experimental studies that have highlighted the

relationship between maternal obesity with or without pre-existing GDM and type

2 diabetes mellitus (T2DM) and the later onset of obesity and insulin resistance in

the offspring in childhood and adult life. Furthermore, some of the potential benefits

and risks of maternal dietary restriction and weight loss will also be highlighted.

This chapter will also highlight some of the molecular mechanisms underpin-

ning the programming of obesity, insulin resistance and T2DM specifically in

insulin-sensitive tissues and what is known about the epigenetic mechanisms that

are recruited within the developing embryo in the face of maternal obesity or

dietary restriction and weight loss, which result in the programming of these

metabolic pathways.

7.1 Maternal Obesity and Its Association with Short-

and Longer-Term Pregnancy Outcomes

Maternal overnutrition and overweight or obese status has a significant impact on

the health of the offspring in later life. Data from more than 200 countries between

1980 and 2008 highlight that there is a steady increase in the prevalence of obesity

in every region of the world, including most countries of low and middle incomes,

with the steepest rises in higher-income countries [17]. Not surprisingly, this global

obesity ‘epidemic’ includes women of reproductive age with more women entering

pregnancy with a BMI in the overweight (i.e. a BMI � 25 kg/m2) or obese (i.e. a

BMI � 30 kg/m2) range [3]. The prevalence of obesity in women aged between

20 and 39 years is now around 15–28% in women in the USA, UK and Australia

[2–4, 18, 19]. In the USA, La Coursiere and colleagues found an increase in the

proportion of women entering pregnancy both overweight and obese between 1991

and 2001 [20]. At present, more than 60% of all pregnancies in the USA are in

women who are either overweight or obese at conception [21, 22]. Similarly, in

134 L.M. Nicholas and I.C. McMillen



Australia, the prevalence of maternal overweight and obesity was 34% in a

population giving birth between 1998 and 2002 and 43% in a population measured

at their first antenatal visit between 2001 and 2005 [23, 24]. Furthermore, the

incidence of childhood obesity, which strongly predicts adult obesity [25], is also

increasing; an estimated 22 million children aged under 5 years are estimated to be

overweight or at risk of becoming overweight worldwide [26] and 1 in 10 children

(155 million) aged between 5 and 17 years are overweight [27].

Obesity imposes a number of serious risks during pregnancy including increased

rates of twinning and miscarriage in early pregnancy, and maternal obesity has also

led to increased rates of hypertension, pre-eclampsia and venous

thromboembolism [28].

7.1.1 Maternal Obesity and the Developmental Programming
of Obesity and Insulin Resistance: Evidence from
Human Studies

In addition to the clinical risks conferred by obesity to the pregnant mother,

maternal obesity also has longer-term consequences for the offspring including

increased adiposity [5–8]. The underlying mechanisms that result in obesity in the

offspring of overweight or obese women most likely are a result of a dysregulation

of glucose, insulin and lipid metabolism in these offspring [29, 30]. Women who

enter into pregnancy obese are more insulin resistant than their lean and overweight

counterparts, particularly before pregnancy and in early gestation [5], resulting in

an increased risk of developing insulin resistance and GDM [31]. Exposure of the

developing fetus to maternal hyperglycaemia results in excess fetal growth; while

maternal glucose freely crosses the placental barrier, there is no trans-placental

transfer of maternal insulin [32]. The fetal pancreas responds to the increased

glucose supply from the mother by synthesising and secreting insulin to maintain

its own glucose homeostasis. Insulin acts as a fetal growth hormone promoting

growth and adiposity [32]. Obese women are, therefore, at a greater risk of giving

birth to a larger, heavier and fatter baby [5–8]. This has been demonstrated in

various epidemiological and clinical studies, which have shown that overweight/

obese women tended to have infants with an increased risk of macrosomia; defined

as birth weight �4 kg [33–36].

Furthermore, these offspring of obese and/or diabetic mothers are not only

heavier at birth but remain so throughout childhood and adult life. According to a

recent systematic review, an increase in pre-pregnancy overweight/obesity in

women increases the risk of having a large for gestational age (LGA) baby and

these babies are subsequently at an increased risk of being overweight/obese in later

life [37]. It has also been shown that the offspring of Pima Indian women with

pre-existing GDM and T2DM were larger for gestational age at birth and, at every

age, were heavier than the offspring of prediabetic or non-diabetic women [7, 38,
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39] and that children of women with diabetes during pregnancy were on average

30% heavier than expected for their height at 8 years of age [40]. Boney and

colleagues also reported that obesity in children at 11 years of age was a strong

predictor of insulin resistance [10]. Furthermore, children of obese mothers that

were born LGA were at twice the risk of developing the metabolic syndrome

accompanying childhood obesity at this age [10]. The impact of maternal obesity

is still present in her offspring in adult life. Parsons and colleagues carried out a

longitudinal study of the 1958 British birth cohort to determine the influence of

birth weight on BMI at different stages of later life. BMI of the participants was

measured at ages 7, 11, 16, 23 and 33 years, and they concluded that maternal

weight or her BMI largely explained the association between a high birth weight

and a high adult BMI of the offspring [41].

A recent longitudinal study of 421 mother–daughter pairs [42] has highlighted

the concern that the increase in obesity in women entering pregnancy will, in turn,

lead to propagation of an ‘intergenerational’ cycle of obesity and insulin resistance

[3, 15]. Kubo et al. found that girls who were exposed to maternal GDM and

hyperglycaemia in utero were at a higher risk of increased adiposity and that this

risk increases if the mother was overweight/obese [42]. Moreover, they found that

the risk of obesity was highest among offspring of mothers with GDM and

pregravid obesity [42].

7.1.2 Maternal Obesity and the Developmental Programming
of Obesity and Insulin Resistance: Evidence from
Animal Studies

As most women who are obese at conception remain obese through their pregnancy,

it is difficult to determine the separate or interdependent contributions of maternal

pre-pregnancy BMI, gestational weight gain and glycaemic control on the meta-

bolic outcomes for the offspring in human studies. Experimental studies in animals

are, therefore, key to address these questions. Indeed, studies in both small and

large animals have also provided evidence for the association between maternal

obesity and subsequent programming of obesity and insulin resistance in the

offspring. Studies in rodents have involved maternal consumption of either a

high-fat only [43–45] or high-fat, high-sugar junk food diet, which is reflective of

an obesogenic Western diet in humans [46, 47] from before pregnancy and during

gestation. In some studies, the period of overnutrition was also extended to encom-

pass lactation [45–47]. Despite the differences in diet composition, length of

exposure to maternal overnutrition and whether offspring were weaned onto a

standard chow or high-fat diet, these studies all found that a common outcome

was increased adiposity in the offspring [43–48]. Furthermore, it has also been

shown that exposure of the offspring to a high-fat diet resulted in increased

adiposity specifically in the visceral fat depot [49, 50]. Visceral fat accumulation
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has been shown to be associated with the development of insulin resistance

[51, 52]. Studies have also documented that maternal overnutrition in rodents is

associated with insulin resistance in the offspring [46, 47, 49] due to altered

expression of key components of the insulin signalling pathway [53] as well as

poor glucose tolerance [43, 46, 47, 49], associated with a combination of β-cell
dysfunction and insulin resistance [44, 49] in the offspring. Furthermore, in some

cases, maternal obesity during pregnancy and lactation also resulted in obesity-

induced non-alcoholic fatty liver disease (NAFLD) in the offspring, which is

characterised by evidence of steatosis, liver injury, raised inflammatory cytokines

and the beginning of fibrogenesis [54].

Similar observations linking maternal obesity and the development of increased

adiposity and insulin resistance in the offspring have also been made in a primate

model of maternal overnutrition [55]. One of the earliest studies conducted in the

baboon showed that overnutrition in the pre-weaning period permanently increased

offspring adiposity as a consequence of fat cell hypertrophy [56]. Sheep have also

been used as a large animal model to study the impact of maternal overnutrition/

obesity on the developmental programming of obesity and insulin resistance in the

fetus and in the offspring. The sheep fetus is similar to the human fetus in its

dependence on glucose as a major source of energy [57–59]. Moreover, both sheep

and humans are precocial species, exhibit the same newborn-to-maternal weight

ratios and have the same temporal pattern of fetal organ development throughout

pregnancy [58, 60]. Importantly, in both sheep and humans, the appetite regulatory

network develops in the hypothalamus before birth, in contrast to rodents, in which

this neural network develops after birth [61]. There have been a series of studies on

the effects of maternal overnutrition/obesity in the sheep from 60 days before

conception and throughout pregnancy on the fetal and postnatal lamb. Similar to

findings in rodent studies, maternal obesity in sheep leads to increased adiposity in

the offspring in late gestation [62], which persists after birth [63]. These changes

were attributed to increased gene expression and protein abundance of fatty acid

(FA) and glucose transporters (GLUTs) as well as increased expression of enzymes

mediating FA biosynthesis in fat depots of the offspring [62]. Maternal obesity also

resulted in decreased pancreatic weight and β-cell number in the fetus in late

gestation as well as in a reduction in circulating plasma insulin concentration at

term [64]. Moreover, these offspring displayed upregulation of inflammatory sig-

nalling pathways in skeletal muscle, which promotes adipogenesis and

downregulates myogenesis [65, 66]. This along with the increased adiposity

would result in an increased risk of developing insulin resistance and T2DM in

the postnatal animal. Indeed, when the offspring of obese ewes were subjected to ad

libitum feeding at maturity, they showed increased appetite, growth rates and

adiposity and decreased glucose tolerance and insulin sensitivity [67].

Late gestation has also been identified as a period during which exposure to

maternal obesity can result in programming of obesity in the offspring. Exposure to

maternal overnutrition during the last month of pregnancy resulted in an increase in

fetal glucose and insulin concentrations and an upregulation of key adipogenic,

lipogenic and adipokine genes, including peroxisome proliferator-activated
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receptor (PPAR) γ, leptin and adiponectin in perirenal adipose tissue of the sheep

fetus in late gestation [68] as well as increased fasting plasma glucose concentra-

tions and a higher relative subcutaneous fat mass in the first month of life in the

postnatal lamb [69]. Furthermore, leptin expression was higher in both the perirenal

and subcutaneous fat depots in the postnatal lamb of the overnourished ewe [70]. It

is clear, therefore, that maternal overnutrition in late gestation results in an initial

upregulation of adipogenic and lipogenic genes in the perirenal fat in fetal life

followed by an upregulation in leptin expression in the perirenal and subcutaneous

fat depots and the emergence of leptin resistance in the hypothalamic network

which regulates appetite in postnatal life. In contrast to its effects on programming

of the fat–brain axis, exposure to maternal obesity in late gestation had less impact

on hepatic glucose metabolism in the offspring. Maternal overnutrition during the

last month of gestation resulted in decreased hepatic expression of the mitochon-

drial (PEPCK-M) isoform of phosphoenolpyruvate carboxykinase both before birth
and in postnatal life. There was, however, no impact on the cytosolic isoform of

PEPCK (PEPCK-C), glucose-6-phosphatase, PPARγ co-activator (PGC)-1, PPARα
and 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) in the postnatal

lamb [71].

7.2 The ‘Intergenerational Cycle’ of Obesity and Insulin

Resistance

Although there is variation between studies in the length of the feeding regimes and

types of dietary challenges, studies in both small and large animals show that

exposure to maternal overnutrition/obesity consistently results in a similar pheno-

type in the offspring including a high body fat mass and in most cases impaired

insulin signalling in the liver, muscle and adipose tissue [15, 72]. Together, these

findings implicate a possible ‘intergenerational cycle’ of obesity and insulin resis-

tance (Fig. 7.1). In a recent study by Graus-Nunes et al., a maternal high-fat diet

consumed before and throughout pregnancy and lactation resulted in impaired

whole-body metabolism as well as altered development of the pancreas in the F1

and F2 offspring [73]. The maternal contribution to the intergenerational transmis-

sion of obesity and insulin resistance appears to be mediated, at least in part, by the

transgenerational accumulation of epigenetic modifications [74]. This has led to a

significant interest in the type of dietary and lifestyle interventions that could be

imposed before and during pregnancy that could lead to optimal metabolic out-

comes for the mother and the offspring [15, 75] (Fig. 7.1).
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7.3 Molecular Mechanisms Underlying the Programming

of Insulin Resistance and T2DM in Insulin-Sensitive

Tissues

Defects in insulin signalling itself are among the earliest indications that an

individual is predisposed to the development of insulin resistance and subsequently

T2DM [76, 77]. To date, however, the underlying molecular mechanisms which

result in resistance to the actions of insulin including transcriptional and post-

transcriptional dysregulation of genes involved in insulin signalling as well as

post-translational modification(s) and degradation of their corresponding protein

(s) are poorly understood [78, 79]. Furthermore, although it has been shown that

maternal obesity is associated with an increased risk of obesity and insulin resis-

tance in the offspring, the genetic and/or epigenetic modifications within insulin-

sensitive tissues such as liver and skeletal muscle which contribute to the insulin-

resistant phenotype remain unknown.

7.3.1 Metabolic Role of the Liver

In postnatal life, both in human and in sheep, the liver plays an essential role in

carbohydrate metabolism by maintaining plasma glucose concentrations within a

very narrow range over both short and long periods of time. This is partly achieved

by the actions of insulin, which regulates hepatic glucose output by suppressing

gluconeogenesis and glycogenolysis [80–82]. Insulin acts through a complex,

highly integrated network that controls several processes downstream of the insulin

receptor (IR) [77, 83]. The IR itself is found enriched in caveolae, which are flask-

shaped invaginations of the plasma membrane. Structural components of caveolae

are made up by the caveolin (Cav) gene family, namely Cav-1 and Cav-2, which are

usually co-expressed in adipose tissue and the liver, and Cav-3, which is expressed

Fig. 7.1 The

intergenerational cycle of

obesity and insulin

resistance. Is there a role for

pre-pregnancy weight loss

to break this cycle?
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in skeletal, cardiac and smooth muscle [84]. Localisation of the IR within caveolae

serves to ensure metabolic signalling specificity downstream of it and Cav-1 also

stabilises the receptor against proteasomal degradation [84].

In the presence of insulin, IR phosphorylates IRS proteins that are linked to the

activation of the PI3K–Akt pathway, which is responsible for most of the metabolic

actions of insulin [77]. PI3K acts to catalyse the formation of the lipid second

messenger PIP3, which allows the localisation and activation of PDK1 and the

subsequent activation of Akt. PDK1 is also critical for activating aPKCζ, which in

the liver leads to an increase in lipid synthesis [77]. In contrast, activation of Akt

results in a reduction in phosphorylation of the transcription factor FoxO1, which

together with the transcriptional co-activator PGC1α plays an important role in

regulating the expression of both PEPCK-C and G6Pase [80–82, 85]. PEPCK-C is

mainly considered to be the rate-limiting enzyme in gluconeogenesis whereas

hydrolysis of glucose-6-phosphate by G6Pase is the ‘final common pathway’ and
is rate determining for the release of glucose into the circulation by gluconeogen-

esis and glycogenolysis [86].

The liver is also the most important site for the removal of FFA from circulating

blood plasma [87, 88]. It coordinates the synthesis of FAs and the esterification of

FAs to produce TGs and their subsequent packaging into VLDLs for export to

adipose tissue [81, 87, 89]. The liver also regulates the rate of FA oxidation and

ketogensis [81, 87, 89] and is therefore able to handle large amounts of fat without

accumulating triacylglycerol and causing peripheral lipotoxicity [89].

7.3.2 Maternal Obesity Programs Molecular Changes
in Hepatic Metabolic Processes in the Offspring

Shankar and colleagues found that at 21 days after birth, the offspring of rats that

were overnourished from 3 weeks before until conception had increased phosphor-

ylation of the IR and Akt, two key molecules of the insulin signalling network

[90]. Furthermore, in another rodent model of metabolic programming by maternal

obesity, female mice were fed a highly palatable diet high in sugar and fats for

6 weeks prior to pregnancy and throughout gestation and lactation [91]. Offspring

of obese dams, which were weaned onto a control chow diet, had decreased hepatic

IRS-1 abundance at 3 months of age. Moreover, hepatic phosphorylation of

IRS-1 at Ser 307, which results in inhibition of insulin signalling, was also

increased in these offspring [91].

In addition to defects in the insulin signalling network, increased hepatic fat

deposition is also a very common feature of obesity and insulin resistance [92, 93]

and NAFLD has been shown to be initiated by insulin resistance [94]. Most studies

investigating the effects of maternal obesity on hepatic metabolism have examined

perturbations in lipid metabolism. For example, studies investigating the impact of

either a high-fat, high-sugar or high-fat only diet from before and during pregnancy
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and lactation on the offspring found that these mice developed a condition with

marked similarity to NAFLD including increased liver TGs and hepatic

fibrogenesis [54]. These offspring also had changes in gene expression, which

indicated upregulation of lipogenesis, oxidative stress and inflammation [95]. Fur-

thermore, rodent offspring exposed to maternal obesity also show impaired FA

oxidation possibly due to a decrease in hepatic mitochondrial function [96]. Finally,

a study by McCurdy and colleagues investigating the effect of a chronic high-fat

diet on the development of fetal metabolic systems reported that maternal high-fat

feeding triggered development of fatty liver and hepatic oxidative stress in the

fetus, which persisted in postnatal life [97].

7.3.3 Metabolic Role of Skeletal Muscle

Skeletal muscle is the major site of postprandial glucose clearance from the

circulation and accounts for up to 75% of insulin-dependent glucose uptake

[98]. The rate-limiting step for glucose clearance is the transport of glucose across

the plasma membrane by facilitated diffusion of glucose through a family of

specific GLUTs. GLUT-4 is the predominant glucose transporter in postnatal life,

and in the postprandial state, binding of insulin to its receptor on myocytes leads to

translocation of GLUT-4 to the plasma membrane, thereby permitting glucose entry

into the cell [99, 100]. In the presence of insulin, IR phosphorylates IRS proteins,

which then act as docking proteins for the activation of PI3K. PI3K acts to catalyse

the formation of the lipid second messenger PIP3, which allows the localisation and

activation of PDK1 and the subsequent activation of Akt and aPKC through

phosphorylation of the Thr 308 and Thr 410 sites, respectively [100]. The positive

actions of PI3K can be negatively regulated by phospholipid phosphatases,

e.g. PTEN, which dephosphorylate and inactivate PIP3 [77].

Activation of Akt acts to phosphorylate and inhibit AS160, which is involved in

the regulation of glucose uptake through the redistribution of GLUT-4 from intra-

cellular vesicles to the plasma membrane [101, 102]. This ultimately leads to an

increase in glucose transport into the cell [101, 102]. Similarly, aPKCs have also

been shown to play a role in insulin-stimulated glucose uptake and GLUT-4

translocation in adipocytes and muscle [99]. In skeletal muscle, glucose is utilised

to generate energy via glycolysis and is also converted to glycogen for storage

[103]. Akt is also involved in the regulation of glycogen synthesis through the

actions of the serine/threonine kinase GSK3 [77, 104, 105]. GSK3 consists of two

highly homologous isoforms, GSK3α and GSK3β, and acts to phosphorylate and

inactivate GS [104, 105]. In resting cells, GSK3 activity is high, but on stimulation,

GSK3 is inactivated through phosphorylation; GSK3α is phosphorylated at Ser

21 and GSK3β at the equivalent residue, Ser 9 [104, 105]. There is evidence from

both human and animal studies that defects in these downstream components of the

insulin signalling pathway are present in the insulin-resistant state [100, 104].
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7.3.4 Maternal Obesity Programs Molecular Changes
in Metabolic Processes in Skeletal Muscle
of the Offspring

Although there is a wealth of evidence showing the association between maternal

obesity and the subsequent insulin-resistant phenotype in the offspring, there is a

paucity of studies that have been carried out to try and determine the molecular

basis of this relationship. One study by Shelley and colleagues observed that

3-month-old mice that were exposed to maternal obesity before and during gesta-

tion and lactation had decreased abundance of IRS-1. IRS-1 is required for the

activation of PI3K, which is needed for the phosphorylation and activation of Akt

and subsequent glucose uptake. These mice also had decreased abundance of the

catalytic subunit of PI3K, p110β, as well as decreased phosphorylated Akt [53].

Studies in sheep have produced similar results although different molecules in

the insulin signalling cascade appear to be affected. A study by Yan and colleagues

where ewes were overnourished from 60 days before conception and throughout

pregnancy reported that there were defects in insulin signalling in skeletal muscle

of the adult offspring at the receptor level, which is in contrast to rodent studies that

showed impaired post-receptor signalling [53, 106]. Similar to rodents, however,

these lambs also had increased phosphorylated IRS-1 abundance and decreased

phosphorylated Akt abundance at 22 months of age [106].

7.3.5 Metabolic Role of Adipose Tissue

Most energy reserves are stored in adipocytes as triacylglycerol (TAG), which

arises from two major processes: uptake of free fatty acids (FFA) from plasma or

de novo lipogenesis from non-lipid precursors such as glucose [107]. Insulin plays a

key role in the latter as it stimulates glucose uptake into adipose tissue. Glucose is

transported into adipocytes by facilitated diffusion through a family of specific

GLUTs. GLUT-4 is redistributed from intracellular vesicles to the plasma mem-

brane in response to insulin as it is in skeletal muscle via activation of the IR

[99, 100]. Furthermore, insulin also plays an important role in uptake, esterification

and storage of FFA in adipocytes [108]. Insulin stimulates the activity of lipopro-

tein lipase LPL, which generates FFA for TAG synthesis by enabling the release of

FFA from lipoproteins and is the important first step in TAG synthesis [107]. Insulin

also suppresses the activity of hormone-sensitive lipase (HSL), which is expressed

in white and brown adipose tissue and is a principal regulator of FFA release from

adipose tissue [107].

Adipose tissue also secretes a number of adipokines, e.g. leptin and adiponectin,

which play a key role in the development of insulin resistance associated with

increased adiposity [109]. For example, obese patients with insulin resistance/T2D

have reduced adiponectin [110]. Adiponectin also regulates hepatic glucose
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production through its actions on gluconeogenic genes [111]. Another adipokine,

leptin, acts as a circulating signal of fat mass [112]. Indeed, there is a direct

relationship between cord blood concentrations of leptin at delivery and birth

weight or neonatal adiposity both in normal pregnancies [113, 114] and in preg-

nancies complicated by maternal diabetes [115].

7.3.6 Maternal Obesity Programs Molecular Changes
in Metabolic Processes in Adipose Tissue
of the Offspring

Borengasser and colleagues have investigated the early effects of programming that

occur prior to the emergence of adiposity and weight gain in 21-day-old offspring

of dams that were overfed from before pregnancy [21, 96]. They found that these

offspring had increased expression of adipogenic, lipogenic and adipokine (leptin

and adiponectin) genes in white adipose tissue (WAT) [21]. Furthermore, the

increased abundance of adipogenic proteins PPARγ, CCAAT-enhancer-binding
protein (C/EBP)-α and C/EBP-β resulted ultimately in increased adipocyte differ-

entiation, which was present in the offspring of obese dams at 21 days of age and

persisted at 100 days of age [21]. In addition to these changes, insulin signalling

was also upregulated in WAT of the offspring. This was characterised by increased

protein abundance of the IR, GSK3α/β and increased GLUT-4 gene expression

[21]. Phosphorylation of Akt following acute insulin stimulation was also approx-

imately 1.9-fold greater in these offspring [21].

Interestingly, these findings associated with insulin signalling are in contrast to

those of Fernandez-Twinn et al. in their study to dissect out the effects of maternal

diet-induced obesity on offspring insulin resistance that were independent of the

increased adiposity [72]. Using a mouse model of maternal diet-induced obesity

with a diet rich in fat and simple sugars representative of a Western human diet,

they found that the young mice of the obese dams displayed impaired adipose tissue

insulin signalling [72]. These mice had reduced IR, IRS-1, the regulatory and

catalytic subunit of PI3K, Akt1 and Akt2 protein abundance in WAT [72]. These

findings suggest that although exposure to maternal obesity contributes to an obese

phenotype, the adipose tissue of these offspring develops resistance to the actions of

insulin even before the appearance of increased adiposity. What is also interesting

is that, taken together, both these studies highlight the fact that adipose tissue is

exquisitely sensitive to programming by maternal obesity and that the differences in

timing, duration and type of maternal over-feeding can produce contrasting changes

prior to the onset of obesity in the offspring. Exposure to pre-pregnancy obesity

appears to program increased insulin signalling in WAT of the offspring, whereas

when the period of exposure to maternal obesity is extended to encompass both

gestation and lactation, there appears to be a switch to decreased insulin signalling.
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7.4 Exposure to Maternal Obesity During Gestation

and the Epigenetic Origins of Obesity

A number of recent studies in rodents have investigated the impact of a maternal

high-fat diet throughout gestation on epigenetic changes in the adipose tissue and

liver of the offspring [74, 116, 117]. Transcriptomic changes in the study by

Borengasser et al. outlined in the previous section have been shown to be associated

with alterations in DNAmethylation of CpG sites and CpG island shores, which are

proximal to developmentally important genes including C/EBP-β [21]. Changes in

adiponectin and leptin expression in adipose tissue of offspring exposed to maternal

high-fat diet were found to be due to alterations in both acetylation and methylation

of histone H3K9 within the adiponectin promoter and changes in methylation of

histone H4K20 within the leptin promoter [116]. The offspring of high-fat fed dams

also showed increased hepatic expression of the cytosolic isoform of the

gluconeogenic gene, phosphoenolpyruvate carboxykinase, which was attributed

to histone modifications associated with transcriptional activation [117]. Impor-

tantly, the effects of maternal high-fat feeding appear to be transgenerational. The

F2 offspring derived from both grand-maternal and maternal obesity appeared to be

extremely susceptible to developing obesity due to the transgenerational accumu-

lation of epigenetic modifications including histone methylation, which then con-

tribute to an increase in lipogenesis [74].

Recent evidence has also identified microRNAs (miRNAs), a class of small

(~22 nt), non-coding RNAs, as important regulators of insulin signalling through its

role in post-transcriptional gene regulation either by cleavage or translational

repression of their specific target mRNAs [79, 118–120]. In their study described

above, Fernandez-Twinn and colleagues showed that the decreased IRS-1 protein

abundance in WAT of offspring exposed to maternal diet-induced obesity before

and during pregnancy and lactation was linked to increased expression of miR-126

[72]. He and colleagues have also shown in a rat model of T2DM that expression of

all members of the miR-29 family (miR-29a, miR-29b and miR-29c) was

upregulated in liver, adipose tissue and skeletal muscle of Goto-Kakizaki rats

[118]. The authors then mimicked insulin resistance in 3 T3-L1 adipocytes in

order to determine the molecular mechanisms involved in the regulation of insulin

signalling by the mir-29 family. They found that there was an increase in expression

of miR-29a and miR-29b as well as a parallel decrease in the abundance of insulin

signalling molecules, in particular, Ser 473 phospho-Akt, which resulted in a

subsequent decrease in glucose uptake [118]. The mir-103/mir-107 family have

also emerged as regulators of hepatic insulin signalling in two models of insulin-

resistant, obese mice. Specifically, Trajkovski and colleagues have shown that

miR-103/miR-107 were among the five most upregulated miRNAs in the livers of

insulin-resistant obese mice [120]. Cav-1 carries a seed match to miR-103/miR-107

in its 3’UTR and is, therefore, its direct target. Consequently, Cav-1 expression was

decreased after overexpression of miR-107 in the liver of mice.
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Finally, Jordan and colleagues have shown that expression of hepatic miR-143

was increased in db/db mice as well as mice exposed to a high-fat diet. They also

showed in a transgenic mouse model of miR-143 overexpression that these mice

had impaired glucose metabolism through the induction of insulin resistance as

shown by a decreased in phosphorylation of Akt [79].

7.5 The Periconceptional Period Is a Critical Window

for the Development of Postnatal Obesity

Currently, it appears that for obese women, pre-pregnancy BMI rather than gesta-

tional weight gain is associated with an increased risk of pre-eclampsia, GDM and

the delivery of a macrosomic infant [121]. It has also been reported that siblings

born to women who had undergone bariatric surgery for the treatment of severe

obesity had a lower BMI and obesity risk than their siblings who were born prior to

maternal surgery and weight loss [122]. Moreover, previous studies have shown

that even in women who are ovulating regularly, increased BMI correlates with

reduced conception rates [34, 123], suggesting that obesity affects critical

periconceptional events [124]. The very earliest stages of embryo growth are

primarily controlled by the quality of the oocyte, also known as oocyte develop-

mental competence. Clinically, oocyte quality has been directly assessed in only

three studies with the most recent and larger study finding that although there was

no difference in the number of follicles aspirated, the number of mature oocytes was

significantly reduced in morbidly obese women [125].

An experimental study in mice by Minge and colleagues, which investigated the

impact of maternal obesity on oocyte and early embryo development, showed that

when cultured in vitro oocytes from obese mice exhibited slower development to

the four- to eight-cell stage and through to the blastocyst stage. These blastocysts

also have reduced level of mitochondrial DNA and these changes were still present

in the fetus at 14.5 days even though the blastocysts were transferred to normal-

weight surrogates [126]. Furthermore, they also showed that these negative effects

of maternal obesity can be improved by treatment with insulin sensitisers admin-

istered around the time of conception. These results indicate that maternal obesity

as well as her peripheral insulin sensitivity during the periconceptional period is an

important determinant of the developmental outcomes of the offspring [127]. This

indicates that the periconceptional period, which includes some or all of the

following early developmental stages: oocyte maturation and follicular develop-

ment, i.e. pre-pregnancy events, conception and embryo/blastocyst growth up until

implantation [15], is therefore a critical window for the development of postnatal

obesity in the offspring.
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7.5.1 An ovine Model of Maternal Obesity
in the Periconceptional Period and Programming
of Later Obesity In the Offspring

In order to determine whether exposure to maternal obesity in the periconceptional

period alone has any specific impact on adiposity and metabolic function in the

offspring, we have developed an embryo transfer model in sheep [128–132]. In this

model, non-pregnant donor ewes were either overnourished or normally nourished

for at least 4 months before conception. One week after conception, single embryos

were transferred from obese or normal weight ‘donor’ ewes to non-obese ‘recipient’
ewes, which were maintained on a control diet for the remainder of pregnancy

[128–132]. Thus, exposure to a high nutrient environment encompassed oocyte

maturation, follicular development, conception and growth of the early

pre-implantation embryo. This model is unique in that exposure of the offspring

to maternal obesity is confined strictly to the periconceptional period.

Donor ewes that were overnourished during the periconceptional period were

heavier than ewes on the control level of nutrition at 4 weeks before conception

[131], and these ewes also had an obese phenotype at conception [131] as deter-

mined by their body condition score [133]. Furthermore, similar to obese humans

[134], donor ewes that were overnourished also had increased plasma insulin but

not plasma glucose concentrations [131].

7.5.2 Impact of Exposure to Obesity in the Periconceptional
Period on Fat Mass in the Offspring

There is a sex-specific effect of exposure to maternal obesity during the

periconceptional period on the body fat mass of lambs at 4 months of age

[131]. Female but not male lambs, conceived in obese ewes, had an increased

total fat mass. Specifically, the greatest impact of maternal periconceptional obesity

appeared to be on the visceral fat depots, i.e. the perirenal and omental fat depots, in

these female lambs [131]. Interestingly, the weights of these depots were also

higher in female compared to male lambs [131]. There was also a significant

relationship between total fat mass of female lambs at 4 months of age and the

weight of donor ewes at conception [131].

Furthermore, an investigation of the expression of genes that regulate the

differentiation and the development of adipose tissue as well as the storage of lipids

in the perirenal, omental and subcutaneous fat depots of these lambs found that the

increased adiposity in female lambs was not due to changes in expression of the

adipogenic, lipogenic and adipokine genes PPARγ, glyceraldehyde 3-phosphate

dehydrogenase, lipoprotein lipase, leptin and adiponectin [131]. Further studies on

the role of the insulin signalling and other key metabolic pathways which regulate

lipogenesis within these fat depots are required.
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7.5.3 Impact of Exposure to Obesity in the Periconceptional
Period on Insulin Signalling in the Liver and Muscle
in the Offspring

Follow-up studies have also been carried out to determine whether exposure to

maternal obesity during the periconceptional period may result in the molecular

features of insulin resistance in the offspring either as a consequence of the impact

of increased adiposity on insulin-sensitive tissues such as the liver and muscle

[135, 136] or as a consequence of the programming of specific changes in the

abundance of insulin signalling molecules in these tissues of metabolic importance

[137–139].

While exposure to maternal obesity around the time of conception resulted in an

increase in body fat mass in female lambs, we found that there were programmed

changes in gene expression and protein abundance of key insulin signalling mole-

cules in the liver and to a more limited extent in skeletal muscle of both male and

female lambs conceived in obese ewes [128, 129]. There was a decreased hepatic

abundance of the insulin receptor as well as phosphorylated Akt (Ser 473) and

FoxO1 (Thr 24) in the young offspring of obese ewes. Interestingly, however, there

was a paradoxical effect on the expression of key factors which regulate hepatic

gluconeogenesis; expression of 11βHSD1, PEPCK-C and PEPCK-M was

decreased in lambs exposed to maternal obesity [129]. These contrasting changes

suggest that there are distinct mechanisms involved, which are programmed by

maternal obesity during the periconceptional period and which impact hepatic

insulin signalling and gluconeogenic factors separately. Findings in skeletal muscle

of the offspring, however, showed that exposure to maternal obesity during the

periconceptional period did not appear to impact directly on the early components

of the insulin signalling pathway. Instead, this exposure resulted in specific changes

in the abundance of molecules downstream of Akt [128]. Taken together, these

results suggest that exposure to maternal obesity during the periconceptional period

acts directly, independently of increased adiposity, to program changes within the

insulin signalling pathway in the liver and skeletal muscle.

7.5.4 Impact of Exposure to Obesity in the Periconceptional
Period on Hepatic Fatty Acid Metabolism
in the Offspring

In addition to defects in the insulin signalling network, increased hepatic fat

deposition is also a common feature of obesity and insulin resistance

[92, 93]. Indeed, maternal obesity both before and throughout pregnancy has

been shown to result in alterations in hepatic FA oxidation and lipogenesis in the

offspring [54, 97]. In addition to changes in the abundance of hepatic insulin
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signalling molecules, we also found that exposure to maternal obesity during the

periconceptional period resulted in downregulation of hepatic PGC1-α and PPARα
and also resulted in a compensatory increase in the abundance of AMP-activated

protein kinase (AMPK) α1 and α2, which may initially limit the impact of these

changes on intra-hepatic FA oxidation in the young offspring [130]. Furthermore,

hepatic expression of sterol regulatory element-binding protein 1, a key lipogenic

gene, was also increased in these lambs. It is possible that with ageing and/or

exposure to a high-caloric diet, these offspring may be susceptible to hepatic lipid

accumulation and steatosis [130].

7.5.5 Exposure to Maternal Obesity During
the Periconceptional Period and the Epigenetic Origins
of Obesity

During the early stages of development, the differentiation and development of

different cell types is regulated by epigenetic mechanisms, which play a role in

modulating chromatin architecture [140]. Furthermore, epigenetic regulation plays

a key role in conferring phenotype plasticity, which allows organisms to adapt their

gene expression and function in response to the environment [141]. Each cell type,

therefore, has its own epigenetic signature which reflects genotype, developmental

history and environmental influences. This is ultimately reflected in the phenotype

of the cell and organism [142]. Early embryogenesis in mammals is a critical period

for the establishment of the epigenome [143]; during the period between conception

and implantation, there is de-methylation of the genome followed by a wave of

re-methylation shortly after implantation [142]. This period, therefore, represents a

critical window in development during which the embryo is vulnerable to environ-

mental and/or nutritional cues that disrupt the establishment of epigenetic marks

such as DNA methylation, histone modification and miRNAs [144]. Importantly,

although the genome of an individual is largely stable, the epigenome has the

potential to be reversibly modified by exposure to a range of nutritional and

environmental factors [145]. Parental nutrition has been shown to permanently

influence metabolism of the offspring through epigenetic mechanisms and these

changes also appear to be stable and transgenerational [146].

Using the embryo transfer model described above [128–132], we found that

exposure of the oocyte/early embryo to maternal obesity resulted in upregulation of

hepatic expression of miR-29b, miR-103 and miR-107 [129]. Expression of these

miRNAs has been shown to be related to decreased insulin signalling in adipocytes

[118] and liver [120] and is increased in murine models of obesity and T2DM

[79, 118, 120].

Since defects in insulin signalling are among the earliest indicators that an

individual is predisposed to the development of insulin resistance and T2DM

[77], our results suggest that miRNAs may be potential epigenetic regulators that
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are sensitive to programming by the metabolic and nutritional environment associ-

ated with maternal obesity specifically during the periconceptional period.

MiRNAs could, therefore, play a key role in the transduction of the metabolic

consequences of maternal obesity from the mother to the offspring.

7.6 Weighing Up the Benefits and Costs of Maternal

Dietary and Lifestyle Interventions in Obese Mothers

for Their Offspring

Clinical and experimental studies have provided clear evidence that exposure to a

maternal obesogenic environment from before pregnancy and around the time of

conception has long-lasting metabolic consequences for the offspring. There has

been a growing focus, therefore, on nutritional health of women in the

periconceptional period and on what weight loss interventions can be safely

introduced in overweight/obese women seeking to become pregnant [15]. There

is, however, now more than ever a need for a better understanding of both the

benefits and the possible negative effects of maternal dietary and lifestyle inter-

ventions in obese mothers for their offspring.

7.6.1 The Benefits of Maternal Dietary Restriction
and Weight Loss: Breaking the ‘Intergenerational
Cycle’ of Obesity and Insulin Resistance

Previous studies have suggested that childhood obesity may be prevented by

normalising body composition and nutrition and improving the general health of

young women of childbearing age before becoming pregnant, thereby preventing

the prevalence of the ‘intergenerational cycle of obesity’ and the serious

co-morbidities associated with obesity [147]. Other studies have focused on limit-

ing gestational weight gain through both physical activity and the reduction of

dietary intake [148–150] on the premise that a healthy, active pregnancy may help

to minimise the cycle [151]. Although most studies showed favourable weight-

related outcomes indicating that interventions can help pregnant and postpartum

women manage their weight, knowledge gaps still remain regarding the benefits

and potential harm associated with dietary and lifestyle interventions for over-

weight and obese pregnant women and their offspring [148–151].

Furthermore, as traditional ‘diet and exercise’ approaches do not often achieve

robust and sustained weight loss [152], surgical approaches have also emerged as an

effective albeit complex strategy to promote durable weight loss, improve insulin

resistance and improve or reverse T2DM especially in morbidly obese women

[152, 153]. A number of studies have found a decreased prevalence of obesity in
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the offspring of mothers who underwent maternal surgical weight loss prior to

pregnancy [154, 155]. Furthermore, a recent study by Guénard and colleagues

found that the improved cardiometabolic risk profiles of offspring born after

maternal weight loss surgery were associated with epigenetic changes including

differential methylation patterns of glucoregulatory genes [156].

In contrast to human studies, there have been relatively few experimental animal

studies, which have investigated whether maternal dietary restriction and/or exer-

cise are able to reverse the outcomes associated with maternal obesity. We have

shown in the sheep that dietary restriction and weight loss experienced by the

mother in the periconceptional period alone is able to ablate the effects of a high

maternal pre-pregnancy weight on offspring adiposity [131]. Furthermore, in a

study where the nutritional intake of female rats that were previously on a high-

fat diet was ‘restricted’ to normal chow from 1 month prior to conception and

throughout pregnancy and lactation, dietary ‘restriction’ was able to normalise fat

mass, serum triglycerides, leptin and insulin levels in 3-week-old male offspring

[157]. Interestingly, these changes occurred even though these dams that were

exposed to dietary ‘restriction’ remained heavier than their control counterparts at

conception [157], indicating that in this instance, it is the metabolic response to

dietary restriction rather than a lower maternal body weight, which confers meta-

bolic benefits in the offspring. Studies investigating the impact of exercise from

before and/or throughout pregnancy in rodents have found that exercise is able to

ablate the increase in plasma leptin and triglycerides caused by exposure to

maternal obesity [158]. Expression of key genes involved in glucose and lipid

metabolism as well as markers of inflammation was also reduced to control levels

in skeletal muscle and adipose tissue of offspring from dams that underwent

voluntary exercise during pregnancy [159].

7.6.2 The Metabolic and Endocrine Costs of Maternal
Dietary Restriction and Weight Loss

While maternal dieting before pregnancy has metabolic benefits, there are also

potential metabolic and endocrine costs for the offspring. Studies of people born at

the time of the Dutch famine in 1944–1945 have shown that exposure to undernu-

trition during both early and mid-pregnancy in a population that was previously

well nourished was associated with a reduction in glucose tolerance and increased

insulin concentration at age 50 and 58 [160]. Furthermore, experimental evidence

in sheep has shown that nutritional restriction imposed in ewes with a normal body

across both the periconceptional and early gestation periods (from 60 days before

until 30 days after conception) has an adverse impact on the glucose–insulin axis of

the offspring in postnatal life [161]. This impaired glucose tolerance also persists in

the adult offspring [162]. It is not known, however, whether a similar period of
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dietary restriction and weight loss imposed on obese ewes will also have conse-

quences for the metabolic health of the offspring.

We have also shown that in most instances dietary restriction and weight loss in

the periconceptional period were unable to ablate the effects of maternal obesity on

the abundance of insulin signalling proteins in both the liver [129] and skeletal

muscle [128] or on signalling molecules involved in hepatic lipid metabolism in the

postnatal lamb [130]. Instead, exposure to dietary restriction in either normal-

weight or obese ewes resulted in a downregulation of a different subset of insulin

signalling proteins within both liver and skeletal muscle compared to offspring

exposed to maternal obesity. Furthermore, the reduced abundance of some insulin

signalling molecules were conserved both in liver and skeletal muscle of offspring

exposed to maternal dietary restriction during the periconceptional period

[128, 129]. This suggests that the mechanism involved is one that is able to impact

tissues that arise from different cell lineages as the liver and skeletal muscle arise

from the endoderm and mesoderm, respectively [163]. This leads us to ask the

question of whether the oocyte/early embryo is most sensitive to perturbations

during the period encompassing 1 month before and 1 week after conception.

Moreover, since the specification of different cell types is regulated by epigenetic

mechanisms such as histone or DNA modification, which can modulate chromatin

architecture [140], it is possible that changes in the abundance of insulin signalling

molecules in liver and skeletal muscle of the offspring are due to the recruitment of

epigenetic mechanisms within the developing embryo. Indeed, studies which have

investigated the impact of maternal undernutrition during the periconceptional

period in sheep have found that changes in the abundance of insulin signalling

molecules in liver and skeletal muscle were inversely associated with changes in

expression of specific miRNAs in these metabolic organs [164, 165].

It has also been shown in sheep that moderate dietary restriction imposed during

the periconceptional period results in an increase in fetal arterial blood pressure and

in an earlier activation of the fetal pre-partum cortisol surge [166, 167]. Furthermore,

dietary restriction in both normal weight and obese ewes during the

periconceptional period has also been shown to result in an enhanced cortisol

response to stress in female lambs at 3–4 months of age [132]. Investigation into

the possible mechanism(s) underlying this observation found that both male and

female lambs from normal-weight ewes that were exposed to dietary restriction

during the periconceptional period had a loss of DNA methylation within the

differentially methylated region (DMR) of H19/IGF2 in the adrenal gland

[132]. Moreover, these lambs had increased activation of the downstream compo-

nents of the intra-adrenal renin–angiotensin system through an increase in the

abundance of angiotensin-converting enzyme and angiotensin type 1 receptor in

the adrenal cortex [168]. Interestingly, Heijmans and colleagues have shown that

individuals whose mother was exposed to the Dutch Hunger Winter famine during

the periconceptional period had lower methylation of the IGF2 DMR measured in

their blood six decades later [169].
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7.7 Summary and Conclusions

There is, therefore, solid evidence that exposure to maternal obesity or to impaired

glucose tolerance in utero programs an increased risk of obesity and features of

insulin resistance in the offspring, thus potentially fuelling an ‘intergenerational
cycle’ of obesity and insulin resistance. Importantly, it appears that the oocyte

and/or early pre-implantation embryo is particularly vulnerable to the effects of

maternal obesity, resulting in long-lasting endocrine and metabolic effects for the

offspring. Furthermore, the impact of maternal obesity on different insulin-sensitive

tissues may be programmed independently rather than as a result of the indirect

effects of increased adiposity. Investigations into the molecular mechanisms under-

lying the programming of obesity and insulin resistance in liver, muscle and

adipose tissue have highlighted the role of epigenetic changes within these tissues,

which are recruited within the developing embryo and/or fetus (Fig. 7.2).

Fig. 7.2 The impact of maternal obesity during the periconceptional on different insulin-sensitive

tissues in the offspring may be programmed independently rather than as a result of the indirect

effects of increased adiposity. Epigenetic changes within these tissues may be the conduit through

which a life of metabolic vulnerability is programmed in tissues of metabolic importance
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Finally, it is clear that weight loss achieved through dietary restriction in

overweight/obese women prior to and around the time of conception may not be

the optimal intervention to break the ‘intergenerational cycle’ of obesity and insulin
resistance. Furthermore, the longer-term effects of maternal exercise in overweight/

obese mothers during the pre-conception period on the offspring remain to be

determined. These findings highlight the need for a better evidence base for the

development of dietary interventions in obese women before pregnancy which

maximise the metabolic benefits and minimise the metabolic costs for the offspring.
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Dietary intervention prior to pregnancy reverses metabolic programming in male offspring

of obese rats. J Physiol 588(10):1791–1799

158. Vega CC, Reyes-Castro LA, Bautista CJ, Larrea F, Nathanielsz PW, Zambrano E (2013)

Exercise in obese female rats has beneficial effects on maternal and male and female

offspring metabolism. Int J Obes 39(4):712–719

159. Raipuria M, Bahari H, Morris MJ (2015) Effects of maternal diet and exercise during

pregnancy on glucose metabolism in skeletal muscle and fat of weanling rats. PLoS One

10(4):e0120980

160. De Rooij SR, Painter RC, Phillips DIW, Osmond C, Michels RPJ, Godsland IF et al (2006)

Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care 29

(8):1897–1901

161. Smith NA, McAuliffe FM, Quinn K, Lonergan P, Evans ACO (2010) The negative effects of

a short period of maternal undernutrition at conception on the glucose-insulin system of

offspring in sheep. Anim Reprod Sci 121(1–2):94–100

162. Todd SE, Oliver MH, Jaquiery AL, Bloomfield FH, Harding JE (2009) Periconceptional

undernutrition of ewes impairs glucose tolerance in their adult offspring. Pediatr Res 65

(4):409–413

163. Lee RSF, Depree KM, Davey HW (2002) The sheep (Ovis aries) H19 gene: genomic

structure and expression patterns, from the preimplantation embryo to adulthood. Gene 301

(1–2):67–77

164. Lie S, Morrison JL, Williams-Wyss O, Suter CM, Humphreys DT, Ozanne SE et al (2014)

Impact of embryo number and maternal undernutrition around the time of conception on

insulin signaling and gluconeogenic factors and microRNAs in the liver of fetal sheep. Am J

Physiol Endocrinol Metab 306(9):E1013–E1024

165. Lie S, Morrison JL, Williams-Wyss O, Suter CM, Humphreys DT, Ozanne SE et al (2014)

Periconceptional undernutrition programs changes in insulin-signaling molecules and

microRNAs in skeletal muscle in singleton and twin fetal sheep. Biol Reprod 90(1):5

166. Edwards LJ, McMillen IC (2002) Periconceptional nutrition programs development of the

cardiovascular system in the fetal sheep. Am J Physiol Regul Integr Comp Physiol 283(3):

R669–R679

167. Edwards LJ, McMillen IC (2002) Impact of maternal undernutrition during the

periconceptional period, fetal number, and fetal sex on the development of the

hypothalamo-pituitary adrenal axis in sheep during late gestation. Biol Reprod 66

(5):1562–1569

168. Zhang S, Morrison JL, Gill A, Rattanatray L, MacLaughlin SM, Kleemann D et al (2013)

Dietary restriction in the periconceptional period in normal-weight or obese ewes results in

increased abundance of angiotensin-converting enzyme (ACE) and angiotensin type 1 recep-

tor (AT1R) in the absence of changes in ACE or AT1R methylation in the adrenal of the

offspring. Reproduction 146(5):443–454

169. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES et al (2008) Persistent

epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl

Acad Sci USA 105(44):17046–17049

7 The Impact of Maternal Obesity and Weight Loss During the Periconceptional. . . 161



Chapter 8

Mechanisms Linking Maternal Obesity
to Offspring Metabolic Health

Laura Dearden and Susan E. Ozanne

Abstract A wealth of animal and human studies demonstrate that perinatal expo-

sure to maternal obesity results in predisposition of offspring to develop metabolic

diseases later in life. This process is a contributing factor to the exponential rise in

obesity rates. Metabolic disease in offspring exposed to maternal obesity is associ-

ated with disruption of a number of organ systems including the heart, liver, and

endocrine pancreas as well as the central nervous system (CNS). These disruptions

are mediated through structural and gene regulatory changes, and although the

precise molecular mechanisms underpinning these modifications remain

uncharacterized, they are likely to involve alterations to offspring epigenetic

marks. This chapter summarizes our current knowledge of how maternal obesity

programs offspring metabolic health and explores the mechanisms that could

mediate these effects.

Keywords Maternal obesity • Developmental programming • Glucose

homeostasis • Central nervous system • Cardiovascular system • Aging •

Epigenetics • Metabolic hormone

8.1 Introduction

In recent decades, worldwide obesity levels have increased exponentially. Obesity

is no longer just a health problem but represents an astronomical financial burden

for society. It has been estimated that over the next 20 years, obesity-related costs

will account for around 16% of health spending in developed countries [1], and it

was revealed recently that the cost of treating diabetes in England already accounts

for 10% of all prescribing costs [2]. While several genetic polymorphisms linked to

obesity have been discovered [3], these are few, only account for small increases in

body weight, and explain less than 5% of the heritability of the condition. In recent
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years, the importance of the early-life environment in shaping later life disease

risk—including susceptibility to develop obesity—has been established.

An interaction between the early-life environment and later life metabolic

disease risk was first proposed in the seminal papers by Hales and Barker, who

reported an association with low birth weight (as a proxy for restricted fetal growth)

and cardiometabolic disease in adulthood [4, 5]. Further studies examining indi-

viduals who were in utero during the Dutch Hunger Winter, a famine in the

Netherlands during the Second World War, confirmed the association between in

utero undernutrition and the development of metabolic disease [6]. As well as the

detrimental effects of exposure to undernutrition in utero, there is now a wealth of

evidence that demonstrates early-life exposure to overnutrition—for instance, in

cases of maternal obesity—is also associated with increased metabolic disease.

Comparative studies of siblings born before and after the mother underwent gastric

bypass surgery have revealed that the children born after the mother had lost weight

had great improvements in insulin sensitivity, reduced adiposity, and reduced blood

pressure compared to their siblings [7].

8.1.1 Birth Weight and Overnutrition During the First Weeks
of Postnatal Life

Since the initial observations by Hales and Barker, it has been confirmed by

numerous other studies that individuals born small for gestation age (SGA) show

an increased incidence of metabolic disease later in life. Interestingly, recent studies

have demonstrated a U-shaped relationship between birth weight and adolescent

adiposity [8], showing that being born large for gestational age (LGA) is also

associated with metabolic disease. Rapid postnatal catch-up growth after SGA

birth appears to exaggerate the effect of suboptimal growth in utero on risk of

metabolic and cardiovascular diseases later in life [9]. In addition, there is evidence

that accelerated early postnatal growth, independent of growth in utero, is associ-

ated with increased obesity [10]. However, these associations are dependent on the

socioeconomic environment that the child grows up in [11], and so results from

cohorts in different countries must be interpreted independently.

8.1.2 The Use of Animal Models in the Field
of Developmental Programming

While it is primarily desirable to examine results from human cohorts in relation to

any health issue, for ethical and practical reasons this is often not possible. The

early age of sexual maturity and shorter gestation periods of rodents have made

mouse and rat models extremely popular within the developmental field.
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Furthermore, important and highly translatable research has been conducted in

nonhuman primate (NHP) models as well as other large animal models such as

sheep. Within the developmental programming field, NHP, ovine, and rodent

models of maternal obesity have produced phenotypes in offspring remarkably

similar to human observations.

The use of animal models has enabled researchers to address questions that it

simply wouldn’t be possible to investigate in human subjects. For example, the

question of whether maternal diet or maternal adiposity is more important in

determining offspring outcomes cannot be conclusively answered in human studies

due to the inaccuracy of food intake questionnaires and shared dietary habits within

a family household. In contrast, animal models allow researchers to strictly control

both maternal and offspring diet, as well as the genotype of the mother and

offspring. Furthermore, animal models give the option to examine at a molecular

level organs such as the brain that require a terminal end point and for obvious

reasons are not possible in humans. Some recent progress has been made in

identifying biomarkers in human blood that could be indicative of exposure to an

adverse early-life event (see Sect. 8.3.1.4). However, we are a long way from these

biomarkers being effectively used in human health care and diagnostics, and

therefore extensive research in this field is still required.

Genetically modified rodents are invaluable in elucidating the molecular mech-

anisms underpinning phenotypes in offspring that have been exposed to an adverse

perinatal environment. For example, Vogt et al. have recently utilized genetically

modified mice which lack the insulin receptor specifically in pro-opiomelanocortin

(POMC) neurons in the hypothalamus, to demonstrate that insulin signaling medi-

ates the disruption in these neuronal projections in offspring exposed to maternal

overnutrition [12]. The use of other genetically modified rodent models allowing

cell-specific deletion or overexpression of specific proteins will undoubtedly further

our understanding of the cellular events mediating the detrimental effects of

exposure to maternal obesity.

8.2 Alterations to Organ Structure and Function

8.2.1 Cardiovascular System

Cardiovascular dysfunction and metabolic disease are intrinsically linked. Cardio-

vascular disease is one of the most serious comorbidities associated with obesity

and causes a significant social and financial burden. Evidence from the Helsinki

birth cohort has demonstrated significant associations between both gestational

weight gain (GWG) and offspring birth weight with enlarged ventricular mass, as

well as an association between maternal obesity and offspring cardiovascular

disease [13, 14]. Causative associations between maternal nutrition and offspring

cardiovascular function have been demonstrated in animal models showing striking
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evidence of cardiac structural and functional changes independent of offspring

body weight.

8.2.1.1 Cardiac and Renal Structure

In rodent models, maternal obesity is associated with cardiac hypertrophy and

increased left ventricular thickness in offspring [15–17]. Furthermore, sheep fetal

offspring exposed to maternal obesity and/or overnutrition display increased left

ventricular thickness, cardiac hypertrophy, and increased heart weight, all of which

are indicative of reduced cardiac function [18–20].

In humans, there is a U-shaped relationship between birth weight and chronic

kidney disease [21, 22], suggesting an interaction between the early-life nutritional

environment and kidney function. Supporting this theory, recent studies have also

demonstrated a positive association between formula feeding of babies and kidney

mass in individuals as adults [23, 24]. Similarly, it has been shown in a rodent

model of neonatal overnutrition that offspring display morphological changes in the

kidney indicative of reduced renal function [25, 26].

8.2.1.2 Hypertension

It has recently been demonstrated that hyperleptinemia is instrumental in mediating

the development of obesity-associated hypertension [27]. This is of particular

concern as leptin is elevated in mothers in obese pregnancies, and maternal and

fetal leptin levels are directly correlated [28, 29]. A shared phenotype in experi-

mental models of both maternal hyperleptinemia and maternal obesity is offspring

hypertension [30, 31]. Furthermore, offspring hyperleptinemia during the perinatal

period (induced by exogenous administration of leptin) results in the development

of hypertension [32, 33]. There is emerging evidence that the development of

hypertension in offspring is due to increased sympathetic tone [16, 34, 35]. Recent

results from Samuelsson et al. suggest that increased sympathetic tone is due to

altered melanocortin signaling in the central nervous system (CNS) of offspring

[36]; given the other reports of developmental programming of the hypothalamus

(see Sect. 8.2.4.1), this is certainly an important avenue for further investigation.

8.2.2 Liver and Endocrine Pancreas

The liver is essential to maintaining energy homeostasis due to its vital roles in

maintaining both glucose and lipid homeostasis. A common offspring phenotype

reported in rodent, sheep, and NHP models of maternal obesity is ectopic fat storage

in the liver, resulting in nonalcoholic fatty liver disease [37–39]. This negatively
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impacts on hepatic function, and therefore glucose homeostasis, resulting in insulin

resistance in offspring [40].

Another vital organ in maintaining glucose homeostasis is the endocrine pan-

creas. Situated within the endocrine pancreas, β-cells are the only cells in the body

that can produce insulin. These highly important β-cells can be damaged by chronic

hyperglycemia, resulting in less endogenous insulin production and the need for

exogenous insulin (as in cases of poorly controlled T2DM). In NHP, both maternal

obesity and overnutrition result in impaired vascularization of offspring pancreas

and increased markers of pancreatic inflammation and insulin resistance in periph-

eral tissues [41, 42]. Rodent and sheep models of offspring exposure to maternal

obesity have also reported signs of altered pancreatic structure such as altered β-cell
number and volume [43, 44]. Recent evidence from a rodent model of maternal

obesity showed that impaired pancreatic development and function is stably trans-

mitted to later generations [45].

There is also evidence that in addition to altered structure of the pancreas and

liver, exposure to maternal obesity can alter the innervation of these organs by the

CNS. In both NHP and rodents, it has been shown that in offspring exposed to

maternal overnutrition, there is decreased central innervation of the liver and

pancreas, respectively [12, 46].

8.2.3 Adipose Tissue

The amount, type, and distribution of adipose tissue has a substantial impact on

metabolic and long-term health independent of body weight [47]. It is now accepted

that adipose tissue plays a pivotal role in maintaining whole-body insulin sensitivity

by engaging in insulin-dependent glucose uptake and influencing the sensitivity of

other tissues to insulin by releasing free fatty acids and adipokines such as leptin

and adiponectin.

Fetal sheep exposed to maternal obesity have increased peri-renal brown adipose

tissue mass [48]. Adult offspring from the same model display increased adiposity

and altered expression of adipose nutrient transporters [49]. Rodent models have

consistently reported increased adiposity in the offspring of obese mothers, often

due to adipocyte hypertrophy [31]. Exposure to maternal overnutrition during the

perinatal period can also alter the distribution of fat between the various peripheral

depots. Volpato et al. have reported an increase in epididymal and inguinal fat

stores at the expense of subcutaneous adipose depots [50]. This is significant as the

distribution of fat depots has an influence on metabolic health independent of total

adiposity levels.
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8.2.4 CNS

Increased weight gain in offspring exposed to maternal obesity is often preceded by

hyperphagia, implicating altered central regulation of energy homeostasis as an

underlying cause of metabolic phenotypes. Central control of energy homeostasis

can be broadly divided into two areas: homeostatic control of energy homeostasis

originating in the hypothalamus and reward-related feeding and behavior orches-

trated through the mesolimbic pathways.

8.2.4.1 Homeostatic Feeding Pathways

Over the past two decades, the importance of the hypothalamus within the brain in

regulating whole-body energy homeostasis has become increasingly clear. Neurons

expressing the orexigenic Neuropeptide Y (NPY) and anorexigenic POMC situated

within the arcuate nucleus (ARC) of the hypothalamus are instrumental in sensing

changing nutrient status in the rest of the body. These NPY and POMC neurons

project to other regions of the hypothalamus including the paraventricular nucleus

(PVH) and the brain stem in order to mediate downstream physiological effects to

maintain energy homeostasis.

Pioneering work by the Bouret laboratory and others has shown that develop-

ment of the hypothalamus is plastic and sensitive to metabolic signals in the

perinatal period [51]. Evolutionarily, the requirement for metabolic hormones in

hypothalamic development enables the hypothalamus to develop in line with the

nutritional state of the ex utero environment. However, it also leaves hypothalamic

development extremely vulnerable to disruption in instances where metabolic and

fetal hormone levels are altered, for example, as a consequence of maternal obesity.

Rodent studies have demonstrated that the offspring of obese mothers display a

reduced number of axonal projections between the ARC and PVH [52], as well as a

reduction of projections between the ARC and dorso-medial and lateral hypothal-

amus [12]. This programming of ARC projections occurs even when offspring

exposure to maternal obesity is limited to the suckling period, which corresponds

with the reported timing of development of these projections. This suggests that the

disrupted circuitry reflects a disruption of axonal projections, rather than a cellular

defect. These changes are thought to be mediated through altered neuronal insulin

and leptin signaling, highlighting the importance of both maternal and fetal meta-

bolic hormone levels during the perinatal period (see Sect. 8.5.1).

8.2.4.2 Reward-Related Feeding

Maternal obesity can also influence offspring feeding behavior and alter dietary

preferences. In rodents, maternal obesity has been reported to increase the prefer-

ence for fatty and sugary food in offspring, leading to obesity [53–55]. This is
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particularly relevant when considering the increased availability of highly palatable

fat and sugar-rich foods in modern society. The offspring of obese mothers also

display increased frequency of feeding episodes and a longer duration of feeding

during a given episode [56]. Interestingly, it has also been reported that the

offspring of obese mothers display alterations to reward systems in the brain that

could explain the frequently reported hyperphagia. Several studies have reported

programming of the mesolimbic reward system in offspring, resulting in altered

activation in response to diverse stimuli including feeding, and reduced anticipatory

responses for food rewards [54, 57, 58].

8.3 Changes to Gene Expression

Changes in the transcriptome and/or proteome of all major organ systems have been

reported in the offspring of obese mothers, across a range of species. These include

alterations in peripheral organs including heart [59], adipose tissue [60], kidneys

[61], and the liver [62]. In the CNS, changes in the expression of genes involved in

both energy homeostasis and reward-related feeding have been demonstrated in the

hypothalamus and mesolimbic pathways, respectively [63–65].

8.3.1 Epigenetics

The stable nature of phenotypes throughout the lifetime of the exposed offspring,

and the recently reported intergenerational transmission of programming effects,

suggests permanent changes in gene expression in the exposed individuals. Epige-

netic regulation represents a stable but modifiable level of genomic regulation; the

term epigenetics literally means “on top of genetics” and refers to a system of

processes that induce heritable changes in gene expression without altering the

genomic sequence. In utero regulation of epigenetic machinery has recently

received a lot of interest as a potential mechanism for causing permanent, heritable

changes to gene expression.

There is emerging evidence from human cohorts of the importance of changes to

the epigenome. In a recent study of siblings born before and after maternal gastric

bypass surgery, significant differences in the methylation of glucoregulatory genes

were observed in blood samples [7]. In a different study, maternal glycemic level

was shown to contribute to the methylation state of a specific site near the leptin

gene, which was in turn associated with cord blood leptin levels [66]. A recent

report from the ALSPAC team identified four loci at which offspring methylation

state is correlated with maternal GWG [67]; however, this association failed to

validate in larger cohorts leading to doubt over the strength of the association [68].

It is worth noting that the (in)heritability of the epigenome can be context

dependent (i.e., altered epigenetic markers that are permanent and inheritable) or

8 Mechanisms Linking Maternal Obesity to Offspring Metabolic Health 169



germ line dependent (i.e., altered epigenetic markers in offspring gametes that will

produce the next generation). Therefore, epigenetic markers must be identified in

the F2 and subsequent generations in order to identify truly heritable changes to the

epigenome. Additionally, changes to epigenetic marks of functionally relevant

genes must be present prior to the development of a phenotype in order to prove

causality. This is why animal models of maternal programming are particularly

important, as they allow access to vital organs during early life and before the

development of metabolic phenotypes.

8.3.1.1 Histone Modifications

The DNA in cells is stored as chromatin. The basic unit of chromatin is a nucleo-

some, which consists of roughly 147 bp of DNA wrapped around a core histone

octamer made up of two copies each of the H2A, H2B, H3, and H4 proteins. This

organization leaves the N-terminal tails of histones accessible to modifications

including methylation, acetylation, and phosphorylation [69]. Histone acetylation

is associated with an active euchromatin state, whereas histone methylation can

confer activation or inactivation of associated chromatin, depending on which

component of the histone octamer and which particular lysine of that protein is

modified [69].

The Histone Acetyl Transferase (HAT) family performs histone acetylation,

associated with transcription, whereas the Histone De-acetylase (HDAC) family

of proteins performs histone de-acetylation that is inhibitory to transcription. In an

NHP model, fetal offspring exposed to maternal overnutrition display reduced

HDAC activity, which is associated with hyperacetylation at H3K14 in the liver

[70]. Unfortunately, due to the difficulty of analyzing the histone code (which is

more technically challenging compared to analyzing for example DNAmethylation

state), data on histone modifications resulting from exposure to maternal obesity are

sparse. However, sheep offspring exposed to IUGR display increased H3K9Ac and

decreased H3K27Me3 modifications associated with the POMC promoter. These

changes are observed specifically in the hypothalamus, although they are not

associated with a corresponding change in Pomc mRNA [71]. Although these

histone modifications occur in response to offspring exposure to maternal under-

nutrition—rather than obesity—they demonstrate the dynamic nature of the histone

code in relation to the early-life environment.

8.3.1.2 DNA Methylation

DNA methylation is an essential component of normal genomic regulation. Meth-

ylation at the 50 position of a Cytosine base within a CpG dinucleotide is a stable

epigenetic mark that can be transferred between generations during mitosis. CpG

dinucleotides are randomly distributed throughout the genome, but are particularly

frequent near the 50 promoter regions of genes. Areas with a high frequency of CpG

170 L. Dearden and S.E. Ozanne



dinucleotides are termed CpG islands. Whereas CpG dinucleotides are usually

methylated, Cytosine residues within CpG dinucleotides in CpG islands are usually

un-methylated. A high percentage of CpG methylation is associated with transcrip-

tional silencing of nearby genes, whereas CpG island hypomethylation is associated

with transcriptional activation. This is in part due to the fact that the attachment of

methyl groups can directly inhibit the interaction between DNA and transcriptional

machinery, for example, by attaching to cytosine residues within a transcriptional

response element and thus repressing transcription [72, 73]. Furthermore, promoter

methylation can also cause recruitment of other proteins (for example, Methyl

Binding Domain proteins), which facilitate binding of histone-modifying com-

plexes that subsequently alter chromatin activation state as discussed above [74].

Within normal genomic regulation, DNA methylation is particularly important

for the silencing of imprinted genes and the X chromosome during development.

The regulation of imprinted genes is also subject to programming by the early-life

environment, as demonstrated in a rodent model of hyperglycemia in which

reduced expression of the imprinted genes Igf1 and H19 in pancreatic islets is

attributed to hypermethylation of the promoter regions [75].

DNA methylation patterns are established during the early stages of develop-

ment, and this time is therefore a critical period during which methylation patterns

are vulnerable to change. During the preimplantation stage, the embryonic genome

is subjected to widespread demethylation, and then de novo methylation occurs at

specific regions to generate a pattern of methylation that is inherited by daughter

cells [76]. As the DNA methylation pattern is essentially maintained throughout

life, changes to the activity of methyl transferases during these critical periods of

development can cause lasting changes to gene regulation.

Tissue-specific expression and relative levels of several hormones—including

insulin, leptin, and adiponectin—are regulated by the methylation state of promoter

regions, making these genes susceptible to altered expression and abundance.

Furthermore, Masuyama et al. have recently demonstrated that the methylation

state of the leptin and adiponectin genes can be inherited [77]. Neonatal

overnutrition causes hypermethylation of the POMC promoter in the hypothalamus

specifically at CpG dinucleotides within a transcription factor binding site, resulting

in a lack of Pomc mRNA regulation in response to leptin or insulin [78]. Similarly,

offspring exposed to maternal obesity in utero display hypermethylation of a region

upstream of the POMC gene, which corresponds with decreased Pomc expression
and increased body weight [79].

8.3.1.3 MicroRNAs

MicroRNAs (miRNAs) are small noncoding RNAs (between 22 and 25 nucleotides

in length) that are able to post-transcriptionally modify gene expression. miRNAs

bind to the 30 untranslated region of mRNA transcripts and therein either interact

with the DICER complex to target the bound transcript for degradation or inhibit

translation of the transcript by physically inhibiting the binding of translational
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machinery. Interestingly, miRNA expression can be regulated both dependently

and independently of the host gene in which they reside, making their expression

highly dynamic.

To date, only a few observations of altered miRNA expression in tissues of

offspring exposed to maternal obesity have been published. For example, mir133 is

increased in the heart of offspring in a murine model [16], and NHP exposure to

maternal obesity results in increased expression of miRNAs associated with car-

diovascular disease [80]. Furthermore, in a sheep model of maternal obesity the

fetuses displayed altered levels of mir-29b, -103, and -107 in the liver [62]. The

only current evidence for miRNA activity mediating maternal obesity-induced

changes in gene expression comes from a mouse model in which the levels of

mir126 are elevated in the epididymal fat of offspring [81]. As mir126 is a regulator

of Irs1, this increased mir126 activity could explain the decreased expression of

Irs1 that is also observed in these offspring. Importantly, the effects of maternal

obesity on mir126 and Irs1 expression are cell autonomous and are maintained

in vitro when pre-adipocytes are differentiated in culture [81].

8.3.1.4 Epigenetic Markers in Blood for Human Diagnostics

A current challenge for studies of human epigenetic marks is that they are limited to

easily accessible biological samples, most commonly blood. Researchers therefore

need to identify epigenetic marks that are uniform throughout the whole organism,

despite the fact that they may only confer a functional role in specific (inaccessible)

tissues. Metastable epialleles are regions of the genome at which DNA methylation

is established stochastically in the early embryo and then maintained in differenti-

ated tissues. Focusing on metastable epialleles allows researchers to work around

limitations in sample collection from human subjects. Recently, Dominguez-Salas

and colleagues have shown persistent changes in DNA methylation in offspring

born to mothers either during the rainy season or the dry season in the Gambia

[82]. Pregnancies during these two seasons vary greatly in maternal nutrient intake,

making this an interesting model of changes to maternal diet. Candidate methyla-

tion analysis of blood and hair samples (selected as mesodermal and ectodermal

tissues, respectively) from the children of these mothers demonstrated increased

methylation of six metastable alleles in individuals who were born in the rainy

season.

A recent study by Sharp et al. of the ALSPAC cohort has provided the first

evidence that the influence of maternal obesity on offspring metabolic health may

be mediated via altered DNA methylation. This study is the first to examine DNA

methylation levels at three time points: in neonatal cord blood and later in periph-

eral blood at 7.5 and 17 years of age. The authors identified several CpG sites that

were differentially methylated in blood of offspring exposed to maternal obesity

and associated with offspring adiposity. Replication of these results in larger

cohorts will identify molecular pathways underpinning maternal programming of
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offspring health and potentially lead to the identification of novel epigenetic

markers that can be used as a stable indicator of exposure to an early-life insult.

8.4 Aging

As humans undergo the natural aging process, they display increased body weight,

a shift in adipose distribution, and deteriorating function of organs such as the heart,

kidney, and reproductive system. Many of these natural aging processes recapitu-

late phenotypes observed in offspring exposed to adverse perinatal nutritional

environments. Indeed, a study by Reynolds et al. has shown that the children of

obese mothers have a decreased life expectancy due primarily to cardiac dysfunc-

tion [83]. This has led researchers to consider whether accelerated aging is one of

the primary molecular mechanisms underpinning the changes in health after expo-

sure to an adverse early-life environment. Indeed, macronutrient restriction and

undernutrition causes accelerated cellular aging in offspring pancreatic islets, and

markers of accelerated aging in the liver [84, 85].

Telomeres are guanine-rich nucleotide sequences present at the ends of chro-

mosomes that prevent chromosomal deterioration. An essential part of the aging

process in telomerase-negative somatic cells is telomere shortening that occurs after

each cell division. More recently, telomeres have also been shown to shorten in

response to oxidative stress [86, 87]. When telomeres become critically short in

length, they undergo a conformational change which results in them representing

double-stranded breaks, causing the cell to enter growth arrest and senesce or

become apoptotic [88]. Differences in telomere length have been implicated in

developmental programming in response to maternal nutritional state. Low birth

weight offspring of protein-restricted mothers cross-fostered to control dams to

enable rapid recuperation during the postnatal period have reduced longevity

accompanied by accelerated telomere shortening in several tissues [85, 89,

90]. While there is no evidence yet of accelerated telomere shortening in response

to maternal overnutrition, the shared commonality in cellular responses to both ends

of the nutritional spectrum predicts that this process is also likely to occur with

exposure to maternal obesity.

8.5 Maternal Factors

In order to develop effective intervention strategies and healthcare guidelines, it is

necessary to elucidate the mechanisms by which the maternal nutritional and

endocrine state is transmitted to and/or sensed by offspring during early life. Put

simply, what is the “programming factor” that we need to target in order to prevent

the early-life programming of metabolic disease risk? Traditionally, research has

focused on maternal hormone and nutrient levels, particularly those that are able to
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cross or modulate function of the placenta. However, emerging evidence highlights

a role for novel mechanisms by which the maternal environment influences off-

spring early development. For example, recent research has shown that maternal

stress during pregnancy alters the vaginal microbiome, and exposure to this altered

microbiome programs development of offspring brain and gut [91].

8.5.1 Metabolic Hormones

A host of metabolic hormones are altered in the obese mother during pregnancy and

consequently in the developing fetus. Elevated levels of many of these hormones

have been implicated in mediating the effects of the perinatal environment on

offspring development (Fig. 8.1).

Maternal leptin levels are elevated in obese pregnancies, and although there is

some debate, it is generally accepted that leptin can cross the placenta. As discussed

earlier, high leptin levels are implicated in the development of hypertension in both

obese individuals and offspring exposed to maternal obesity [27, 34]. Furthermore,

the correct regulation of leptin levels in the perinatal period is essential for correct

Fig. 8.1 Maternal obesity and/or overnutrition is associated with altered levels of metabolic

hormones. These hormones are able to modulate placental function and nutrient transfer, and

some can also act on the fetus directly to modulate epigenetic machinery and cause structural

changes in organs. These processes ultimately result in a change in organ function and the

development of obesity later in life. Lifestyle interventions that increase the mother’s metabolic

fitness are a promising intervention to inhibit the effects of maternal obesity on offspring metabolic

health
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development of the hypothalamus, and thus altered leptin levels during this period

can have long-term detrimental effects on the ability to maintain energy homeo-

stasis [51]. It is of note, however, that in a rodent model of leptin deficiency,

maternal protein restriction is still associated with adverse metabolic outcomes in

offspring [92], and therefore leptin cannot be solely responsible for all offspring

phenotypes observed in response to an adverse nutritional environment.

Hyperglycemia and insulin resistance, leading also to elevated circulating insu-

lin levels, usually accompany maternal obesity. While insulin can only cross the

placenta in limited amounts, maternal hyperinsulinemia is usually accompanied by

hyperglycemia, which in turn can induce elevated levels of both fetal insulin and

glucose. Increased fetal glucose levels cause increased insulin and IGF signaling

and subsequently fetal growth [93, 94]. Furthermore, the activity of members of the

DNMT family has been shown to be altered by changing glucose concentrations

[95]. As demethylation followed by de novo methylation is an essential process

during early embryogenesis, changes to the activity of the epigenetic machinery

caused by the in utero nutritional state would cause significant long-term effects on

offspring epigenetic regulation. Like leptin, insulin also has a significant role in

hypothalamic development [12, 96], and fetal hyperinsulinemia as a response to

maternal hyperglycemia will therefore have significant effects on the development

of hypothalamic energy homeostasis pathways.

Maternal obesity can alter the macronutrient and hormonal composition of milk,

and this is therefore a likely contributing factor to changes in offspring development

during the early postnatal period. In particular, elevated leptin content in milk has

been reported in both obese human and rodent mothers [38, 97]. Furthermore,

cross‐fostering of control offspring to a GDM dam during the lactation period has

been shown to cause perturbations to the development of hypothalamic energy

balance circuitry, suggesting consumption of milk from a diabetic mother can cause

long-term changes to body weight and food intake in offspring [98].

8.5.2 The Placenta

An obvious place to look for maternal influence on offspring development is at the

maternal–fetal interface, or more specifically at the placenta and at the hormones

and nutrients that are able to act on or pass through the placental barrier to the

developing fetus. The placenta acts as an important nutrient sensor during preg-

nancy and can respond to external stimuli to dynamically regulate the transfer of

nutrients, including glucose, to the developing fetus [99]. As glucose is the primary

fuel source for the developing fetus, the placenta plays an important role in ensuring

that fetal circulating glucose levels are maintained within a physiological window

to avoid excess or impaired fetal growth.

It is becoming increasingly apparent that nutrient transfer across the placenta can

be altered as a consequence of the metabolic state of the mother during pregnancy.
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Fetal glucose uptake via the placenta is dependent on the metabolic status of the

mother [100]. Numerous murine models of maternal obesity and gestational hyper-

glycemia have demonstrated increased placental nutrient transfer to the fetus in

utero, resulting in increased birth weight [101, 102]. There is also considerable

evidence from human studies that maternal hyperglycemia and GDM can alter

placental function [103]. NHP models of obesity have shown significant damage to

the placenta caused by maternal overnutrition [104]. These changes are indepen-

dent of maternal obesity but are exacerbated in pregnancies complicated by mater-

nal obesity and insulin resistance. The general clinical accessibility of the placenta

as a whole tissue after birth makes it possible to investigate structural and functional

changes that occur during obese human pregnancies, and this active area of future

research will undoubtedly increase our understanding of the placental origins of

developmental programming.

8.6 Interaction Between Genes and the Environment

It is now largely accepted that the polygenic nature of obesity means that suscep-

tibility to develop cardiometabolic diseases is due to a complex interaction between

genetic susceptibility and environmental exposures during early life. Perhaps most

convincing is a recent study by Rosenquist et al., which demonstrates that the well-

studied Fat mass and Obesity-associated (FTO) polymorphism only has a signifi-

cant association with BMI in individuals born after 1942 [105]. Furthermore, in the

Dutch Hunger Winter cohort, there is a significant interaction between a polymor-

phism in the Peroxisome Proliferator-Activated Receptor γ2 (PPARγ2) gene and

famine exposure on glucose and insulin metabolism; the mutant allele is associated

with impaired glucose tolerance and T2DM as an adult only if offspring were also

exposed to the famine specifically during mid-gestation [106].

The Avon Longitudinal Study of Parents and Children study has also revealed

complex gene and environment interactions. The insulin gene variable number of

tandem repeats (INS VNTR) is associated with adult obesity and T2DM, and the

ALSPAC study revealed that there is an interaction between INS VNTR genotype

and postnatal weight gain in relation to adolescent BMI [107]. Other studies have

revealed interactions between genetic risk alleles and diet [108, 109] in determining

childhood adiposity. However, these studies have focused on offspring diet, rather

than maternal diet. Therefore, although there is evidence that the environment and

genetic factors interact, this needs to be further explored in both human and animal

models where the maternal nutritional state is taken into account.
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8.7 Paternal Influences

The predominantly maternal influence that has been noted in most studies of

metabolic disease transmission suggests the in utero environment has an effect

independent of genetic heritability. However, although the maternal environment

undoubtedly exerts a strong influence on fetal development, the paternal environ-

ment can in theory exert an independent effect on fetal development through

gamete transmission.

There are conflicting reports on the influence of the father’s metabolic state

during early life and at conception on offspring metabolic disease. Offspring of two

overweight parents have an increased risk of childhood obesity compared to

offspring with just one obese parent [110, 111]. However, when examining the

individual influence of maternal and paternal obesity, the mother–child association

is consistently stronger than father–child in relation to offspring BMI [111]. It is

therefore important to remember that sex-specific inheritance of X chromosome

linked genes and mitochondrial DNA from the mother must also be considered as

these confer increased maternal influence in heritability. Interestingly, a recent

study in China has suggested that the effects of paternal BMI on fetal growth are

sex specific; a positive association between paternal BMI and intrauterine growth

was reported in male but not female offspring [112]. A transgenerational link has

also been proposed between the paternal grandfathers nutrition during adolescence

and incidence of obesity and cardiovascular disease in later generations [113, 114].

Although these few studies suggest that paternal metabolic state around concep-

tion may be associated with offspring metabolic disease risk, there is a lack of

compelling evidence in humans that this is due to true programming of offspring

metabolic regulation, rather than a shared family lifestyle and genetic inheritance.

In animal models, however, there is evidence that combined parental obesity has a

greater detrimental effect on oocyte implantation and early fetal development than

maternal obesity alone [115]. In drosophila, paternal consumption of a high sucrose

diet is sufficient to program alterations to fat storage in subsequent generations of

offspring [116]. Furthermore, the daughters of obese male mice display disrupted

pancreatic function and transcriptional changes in adipose tissue [117, 118]. Given

the exponentially increased incidence of obesity in both men and women of

reproductive age, it is imperative that the precise influence of paternal metabolic

state on offspring metabolic health is defined in order to inform health guidelines.

8.8 Intervention Studies

The use of intervention studies (particularly in animal models) gives us an unrivaled

insight into the mechanisms mediating changes in the nutritional environment on

offspring health. In the first instance, simple lifestyle or behavioral changes are of

primary preference as they are more likely to be adopted by mothers than
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pharmaceutical regimes that may have side effects (Fig. 8.1). Also, historic cases

such as the devastating effects of thalidomide use during pregnancy have made

many people wary of taking medications during pregnancy.

A behavioral intervention model that is being trialed simultaneously in both

humans and animal models is the encouragement of maternal exercise during obese

pregnancies. Exercise is extremely effective at improving insulin sensitivity and

therefore glucose homeostasis, even independently of decreased adiposity

[119, 120], and is therefore a viable option for improving the mothers “metabolic

fitness” (i.e., glucose and insulin sensitivity) independent of her weight. The UK

Pregnancies Better Eating and Activity Trial (UBPEAT) recruited a large cohort of

obese pregnant women and encouraged them to partake in a mild exercise regimen

alongside weekly meetings with health trainers. The initial results from the

UPBEAT trial have shown that although the behavioral intervention was not

adequate to reduce the incidence of LGA births, mothers in the intervention

group had decreased GWG and skin fold thickness [121]. As both GWG and

maternal adiposity have been associated with metabolic parameters in adolescent

offspring, close follow-up of this cohort will establish whether the improvement of

these maternal parameters is also beneficial to offspring. Indeed, in rodent models

both maternal exercise during pregnancy and offspring exercise during the early

postnatal period are sufficient to augment the detrimental effects of maternal

obesity on offspring metabolic health [122, 123].

Studies conducted in NHPs have suggested that control of maternal diet during

pregnancy (even if the mother remains obese) is extremely effective in ameliorating

offspring phenotypes. These studies have utilized naturally occurring diet-resistant

females who remain lean despite consumption of a HFD to demonstrate that

exposure to maternal overnutrition alone (without maternal obesity) causes changes

in offspring liver function [37, 63]. Furthermore, switching the diet of NHP obese

females immediately prior to pregnancy reverses the alterations observed in off-

spring hypothalamic feeding pathways—despite the mothers remaining obese—

suggesting that this phenotype is mediated by maternal diet alone [63]. These

studies therefore suggest that changing the maternal diet to a healthier diet before

pregnancy is sufficient to ameliorate the transmission of detrimental phenotypes to

offspring. In a human study of dietary intervention, gestational diabetic mothers

following a strict calorie-controlled diet have a reduced incidence of LGA births

and less birth complications compared to those on a diet of their own choice

[124]. Unfortunately, however, it is not clear from this study whether the beneficial

effects on offspring are as a result of the mother’s dietary change alone, or from the

beneficial effect of a healthier maternal diet on diabetes management.
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8.9 Conclusions

Extensive evidence from animal models and human studies demonstrates that early-

life exposure to maternal obesity increases offspring susceptibility to develop

metabolic disease later in life. While the molecular mechanisms remain largely

uncharacterized, evidence suggests that altered levels of metabolic hormones in

both the mother and fetus cause significant changes to organ development, which

may be caused by changes in gene regulation due to altered activity of epigenetic

machinery. Disrupted organ development can cause decreased function later in life,

resulting in the inability to maintain metabolic homeostasis and the development of

obesity. The mother’s metabolic health can be improved by lifestyle interventions

such as dietary changes and exercise, and therefore represents a tractable target for

intervention. Future research using intervention studies conducted in parallel in

human and animal models will help elucidate the precise molecular mechanisms

mediating the detrimental effects of maternal obesity on offspring metabolic health.

References

1. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M (2011) Health and economic

burden of the projected obesity trends in the USA and the UK. Lancet 378(9793):815–825

2. Centre HaSCI (2015) Prescribing for diabetes: England 2005/06 to 2014/15

3. Warrington NM, Howe LD, Paternoster L, Kaakinen M, Herrala S, Huikari V et al (2015) A

genome-wide association study of body mass index across early life and childhood. Int J

Epidemiol 44(2):700–712

4. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C et al (1991) Fetal and infant

growth and impaired glucose tolerance at age 64. BMJ 303(6809):1019–1022

5. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM (1993) Type 2 (non-insulin-

dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to

reduced fetal growth. Diabetologia 36(1):62–67

6. Schulz LC (2010) The Dutch Hunger Winter and the developmental origins of health and

disease. Proc Natl Acad Sci USA 107(39):16757–16758

7. Guenard F, Deshaies Y, Cianflone K, Kral JG, Marceau P, Vohl MC (2013) Differential

methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointes-

tinal bypass surgery. Proc Natl Acad Sci USA 110(28):11439–11444

8. Biosca M, Rodrı́guez G, Ventura P, Samper MP, Labayen I, Collado MP et al (2011) Central

adiposity in children born small and large for gestational age. Nutr Hosp 26(5):971–976
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Chapter 9

The Effect of Maternal Overnutrition

on Reward and Anxiety in Offspring

Aya Sasaki, Suzanne Erb, and Patrick O. McGowan

Abstract Obesity has reached epidemic levels in developed countries. Maternal

overnutrition has been linked to a number of poor health outcomes in offspring,

including metabolic, cardiovascular and mental disorders, some of which do not

become apparent until later in life. In particular, maternal overnutrition is linked to

increased risk for hedonic and stress dysfunctions. Previous studies in animal

models indicate that maternal overnutrition, typically using a diet high in fat,

impacts the function of the mesolimbic pathway, leading to attenuated function of

the reward system and decreased dopamine-related behaviour. Also maternal

overnutrition affects the function of the hypothalamic–pituitary–adrenal axis, lead-

ing to activated stress system and increased anxiety-like behaviour. This chapter

focuses on what is known about the effects of maternal intake of high-fat diet on the

reward and stress systems in offspring brain and behaviour. We discuss the likely

role of epigenetic regulation of these pathways in the long-term changes in brain

function associated with the perinatal environment.
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Abbreviations

D1R Dopamine receptor D1

D2R Dopamine receptor D2

DAT Dopamine transporter

GR Glucocorticoid receptor

HPA Hypothalamic–pituitary–adrenal

MR Mineralocorticoid receptor

NAC Nucleus accumbens

PFC Prefrontal cortex

TH Tyrosine hydroxylase

VTA Ventral tegmental area

9.1 Introduction

Disorders associated with lifestyle choices, such as the overconsumption of energy-

rich foods, have reached epidemic levels in developed countries. Type 2 diabetes

was once a disease primarily in adults. Increasingly, however, it is presenting in

adolescents and even in children, as the incidence of obesity increases in these

populations. In fact, childhood obesity has doubled in children and tripled in

adolescents in the past 30 years [1], and, accordingly, one in every three American

children born in 2000 is likely to be diagnosed with diabetes in their lifetime. In

addition to being at higher risk for developing diabetes, obese youth are at greater

risk for cardiovascular disease [2] and many other diseases, including psychiatric

disorders later in life [3].

Globally, consumption of energy-dense foods high in fat has increased dramat-

ically in the past 30 years, as has the average serving size. Compounding the

problem, the higher caloric intake is tending to be accompanied by generally

lower rather than higher levels of physical activity, corresponding to generally

more sedentary lifestyles. In fact, the USA is ranked 1st in the world for percent of

overweight individuals, with more than half of the American population being

overweight. Worldwide, 2.3 billion people were overweight in 2010, and this

number is predicted to increase.

Overnutrition is common among pregnant women [4], and it is clear that obesity

propagates across generations. Thus, maternal obesity may have health conse-

quences not only for the mother but also for her offspring. Postnatal lifestyle is

the most immediate cause of obesity. However, in humans, evidence of the influ-

ence of maternal diet is found in the association between birth weight and adult

obesity and metabolic disease. Likewise, animal studies have shown that maternal

nutrition history predicts obesity in adult offspring, independent of postnatal

diet [5].

It has been suggested that the transgenerational impact of maternal obesity

occurs via metabolic programming [6]. During early critical periods in
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development, the organism has the ability to adapt to the environment, and these

adaptations are reflected in permanent changes in metabolic processes. The critical

developmental time window for this programming is during gestation and lactation,

a time when offspring are fed by their mothers and when offspring metabolism and

risk for future obesity is particularly sensitive to maternal diet. Indeed, shifts in

metabolic programming as a consequence of maternal diet during this period are

considered to have at least contributed to the epidemic rise in obesity. Although it is

likely that the long-term effects of changes in metabolic programming involve

interactions with multiple neural systems (e.g. those related to the rewarding

properties of food), the biological mechanisms mediating these long-term effects

are largely unknown.

Eating behaviours are regulated by peripheral and central processes that directly

or indirectly affect the brain’s reward pathways. Palatable or high-fat diet activates

dopaminergic pathways within the mesolimbic reward system, implicated in natural

reward processes and drug addiction [7, 8]. As we discuss below, maternal high-fat

diet alters dopaminergic gene regulation, dopaminergic transmission in the reward

pathway and the locomotor-activating effects of amphetamine [9–11]. Moreover,

activation of dopaminergic systems interferes with hormones such as leptin that

regulate satiety, thereby promoting consumption of palatable food. Maternal

overnutrition also affects anxiety behaviour and stress physiology in offspring

[12, 13]. These effects of maternal diet are significant in that the motivational

processes mediating responses to rewards and stressors are intimately related. For

example, drug addiction is considered as a chronic cycle of reward-directed behav-

iour followed by withdrawal-induced negative affect [14]. It is possible that similar

such cycle may operate in the context of natural reward-related behaviours, such as

high consumption of palatable food [15].

In this chapter, we will discuss how maternal diet during and after gestation

affects behaviour in offspring; furthermore, we will link behavioural outcome to

neural mechanism and to the presentation of altered reward- and stress-related

phenotype. To date, the hypothalamus, which regulates the homeostasis of energy

intake, has provided the main focus for studies aimed at examining the influence of

maternal overnutrition on brain function in offspring (see [16, 17]). More recently,

however, this work has extended to include a consideration of the

extrahypothalamic systems, including midbrain and cortical dopamine systems,

and stress-related systems of the hypothalamus and limbic forebrain. It is these

systems that will provide the focus in this chapter.
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9.2 Studies of the Effects of Maternal Diet on Offspring:

Caveats to Consider

Before proceeding with a discussion of the effects of maternal diet on behavioural

and neural phenotype in offspring, caveats pertaining to work in the area more

generally should be briefly addressed. First, it should be cautioned that studies of

maternal overnutrition tend to be variable on a number of critical parameters. The

majority of work in the area involves a maternal diet manipulation given during

and/or after pregnancy, and most studies use diets that are high in fat. However,

studies differ in the proportion and quality of fat (saturated, unsaturated or transfats)

in the diet, the carbohydrate content, the use of ‘cafeteria’ diets in some cases and

the timing of exposure to the diet manipulation (e.g., before, during and/or after

pregnancy). Here, the focus will be on diets high in saturated fat, the most common

fat used to drive overnutrition. Thus, we use the term ‘overnutrition’ interchange-
ably with ‘high-fat diet’, unless otherwise specified.

Second, it is worth noting that although the focus here is parental obesity and

offspring behavioural phenotype, the majority of studies examining the behavioural

effects of overnutrition are performed using diet-induced obesity models, where the

diet is fed continuously in adulthood only. In these diet-induced obesity studies,

therefore, it is not always clear whether the effects of the diet result from current

diet, diet history or a combination. In the context of this chapter, the diet-induced

obesity studies will serve to illustrate instances where the effects of high-fat diet in

development diverge from those of chronic high-fat diet in adulthood, as well as

where common brain mechanisms appear to be altered by high-fat diet exposure.

9.3 Effects of Maternal Overnutrition on the Offspring

Dopamine System

Dopamine circuitry is associated with neural reward mechanisms that can serve to

alter animals’ preference for energy-dense palatable foods. The regulation of food

intake by the central nervous system involves homeostatic mechanisms in the

hypothalamus and interactions with the mesolimbic dopamine pathway mediating

reward and motivation [18]. Both natural reinforcers (e.g. palatable food such as

high-fat diet) and drug reinforcers act on the mesolimbic pathway, which originates

in the ventral tegmental area (VTA) and provides dense dopamine innervation of

the nucleus accumbens (NAC) and prefrontal cortex (PFC). Activation of this

pathway by both natural rewards and drugs of abuse results in increased dopami-

nergic transmission within the NAC.

In rodents, the development of dopaminergic neurons is not fully established

until the second and third weeks of postnatal life, a time period that overlaps with

maternal lactation [19]. Thus, it has been considered that the maternal nutritional
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environment may alter the function of the mesolimbic pathway to alter behavioural

and neural responses in offspring, including overconsumption of a high-fat diet.

9.3.1 Reward-Directed Feeding Behaviour
and Psychostimulant-Induced Locomotor Activity

In rodent models, maternal overnutrition increases the preference for palatable

foods in offspring. For example, maternal consumption of a palatable high-fat

diet 3 months prior to conception, and during gestation and lactation, increases

preference for fat and sugar intake in the offspring [9]. Human studies are in support

of these findings, indicating that maternal dietary content predicts adiposity in

childhood [20] and that child fat intake is associated with prenatal rather than

postnatal maternal fat intake [21].

Appetite regulation is largely mediated by hypothalamic regions involved in

appetite control and by peripheral factors such as leptin, insulin and ghrelin that

regulate energy balance [22]. Offspring exposed to maternal high-fat diet appear to

have an increased hunger for fat-rich food that overrides satiety signals that usually

maintain the balance between energy intake and expenditure in the body. Clearly,

however, feeding is about more than the regulation of energy intake and expendi-

ture; it produces a pleasure state that involves the activation of reward pathways in

the brain.

Recent studies have suggested that pre- and postnatal (perinatal) exposure to a

diet high in fat increases the preference for high-fat diet and the drive to consume

palatable foods in adulthood. Likewise, maternal consumption of a palatable diet

increases the preference and consumption of food that is high in fat and sugar, when

compared to a micronutrient-balanced control diet [9, 23] or food rich in proteins

[10, 24]. Importantly, the increased preference for palatable food by maternal

overnutrition appears not to be due to increased appetite per se. When animals

are given a control diet instead, they do not show increased appetite (i.e. increased

consumption) for the control food [12, 24, 25]. These studies suggest that maternal

effects on offspring dietary preferences involve changes in the salience of particular

food-related stimuli (i.e. palatable diet), rather than merely an increase in energy

intake. As was mentioned above, studies in humans likewise show that specific

dietary preferences for fats are associated with maternal food intake during preg-

nancy [20, 21].

9.3.2 Dopamine-Related Neural Gene Expression

Although little work has been done to explore the neurobiological basis of the

effects of maternal diet on food preferences in offspring, there are data consistent
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with the idea that dopamine is involved. Indeed, maternal overnutrition has been

shown to alter the expression of multiple dopamine-related genes in the mesolimbic

pathway of adult offspring, including tyrosine hydroxylase (TH), dopamine recep-

tors D1 and D2 (D1R, D2R) and dopamine transporter (DAT) [10, 11, 26]. How-

ever, the direction of expression of these changes and the specific dopaminergic

genes exhibiting changes is variable between studies, possibly owing to differences

related to the specific diet administered. Of note, increased DAT expression in the

NAC is associated with DNA hypomethylation, suggesting that the change in gene

expression is transmitted via an epigenetic modification [9].

As discussed, both natural and drug reinforcers alter the function of the dopa-

minergic system. Thus, an interesting question is whether maternal overnutrition

alters the sensitivity of offspring to the locomotor-activating effects of

psychostimulants. Indeed, the activational effects of drugs such as amphetamine,

cocaine and morphine are mediated via dopamine transmission in the NAC [27]. In

one study that addressed this question, it was found that maternal overnutrition was

associated with attenuated amphetamine-induced locomotion and attenuated

expression of amphetamine-induced sensitization [11]. Moreover, the attenuated

effect of amphetamine on locomotor activity corresponded to blunted dopamine

transmission in the NAC [26].

9.3.3 Models of Diet-Induced Obesity

As mentioned, models of diet-induced obesity involve exposing rodents to a high-

fat diet for a long period of time in adulthood. Overall, the results of these studies

are in agreement with observations relating to the effect of maternal overnutrition in

offspring. Thus, rodents consuming a high-fat diet exhibit increased motivation to

work for sucrose pellets [28], attenuated amphetamine-induced locomotor sensiti-

zation [29] and decreased dopamine turnover in the mesolimbic system (NAC)

[30]. Also similar to the effects of maternal overnutrition, diet-induced obesity

leads to changes in dopamine-related gene expression in the mesolimbic pathway,

including reduced expression of TH, D1R and DAT in the NAC [29, 31]. Altogether,

these studies consistently point to associations between consumption of high-fat

diet and blunted reward function at both behavioural and neural levels.

One neurochemical of relevance to this discussion is leptin. Leptin is an adipose-

derived hormone that acts on hypothalamic leptin receptors to regulate energy

balance. Specifically, leptin regulates appetite by signalling when an individual

has had enough to eat [32]. However, whereas increased leptin levels generally

suppress feeding behaviour, a failure to do so is commonly found in cases of

obesity, including obesity in pregnancy [33]. This so-called leptin resistance is

also reflected in the results of studies utilizing maternal high-fat diet and diet-

induced models of obesity [34–36].

Of note, leptin is known to regulate dopaminergic state, via actions at leptin

receptors in the VTA. For example, infusion of leptin into the VTA reduces the
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firing rate of dopamine neurons, while blocking the leptin receptors reverses this

effect [37]. Additionally, conditional leptin receptor knockdown by siRNA in the

VTA leads to an overall increase in feeding, as well as a preference for high-fat diet,

as measured by the amount of food consumed after switching from standard to high-

fat diet [37].

In accordance with its effects on dopaminergic transmission in VTA, leptin

modulates the induction of locomotor sensitization to amphetamine. In one study,

the sensitizing effect of amphetamine on locomotor activity was prevented in ob/ob

mice lacking the genes coding for leptin [38]. Conversely, systemic treatment with

leptin for 2 weeks resulted in the induction of amphetamine sensitization in the

knockouts and an enhancement of this effect in wild-type mice [38].

Although maternal overnutrition is known to result in the expression of chron-

ically high levels of leptin in offspring, these offspring exhibit reduced sensitization

to the locomotor-activating effects of amphetamine [11]. This result would seem at

odds with what might be expected based on the outcome of the work with ob/ob

mice. It is possible, however, that differences in the developmental context of leptin

exposure in these two models may induce changes in leptin levels within specific

neural circuitries. Also, in the context of developmental exposure to high-fat diet,

the mechanism for high leptin levels in offspring appears partly due to the increased

number of new neurons expressing a number of orexigenic peptides, galanin,

encephalin and dynorphin, in the hypothalamus that are known to interact with

anorexigenic peptides such as leptin [23]. These data suggest changes in brain

structure with exposure of offspring to maternal high-fat diet that are not observed

with genetic deletion of leptin.

9.4 Effects of Maternal Overnutrition on the Offspring

Stress Response System

In humans, exposure to maternal overnutrition and high-fat diet during develop-

ment increases the risk in offspring of developing anxiety disorders and depression

[39]. A number of lines of evidence suggest that the increased in risk may be driven,

at least in part, by disruption in the development of neural pathways regulating

responses to stress [40, 41].

9.4.1 Anxiety Behaviour and Stress Physiology

Animal studies have shown that exposure to maternal overnutrition impacts the

expression of anxiety-like behaviour across the lifespan. For example, in a rat

model, maternal overnutrition increased anxiety-like behaviour in adult offspring,

as measured in the Open Field and Elevated Plus Maze tasks [12, 42, 43]. These
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results are similar to primate studies showing that developmental exposure to

maternal overnutrition increases novelty-induced anxiety in adult offspring

[40, 44]. Finally, in human studies, results generally point to a positive association

between the co-occurrence of childhood obesity and anxiety disorders [45].

The expression of anxiety-like behaviours is known to be sensitive to changes in

the function of the hypothalamic–pituitary–adrenal (HPA) axis, which mediates the

endocrine response to stress in part through negative feedback inhibition of corti-

costerone release. Likewise, maternal overnutrition influences the function of the

HPA axis of offspring in a long-term manner. For example, maternal overnutrition

is associated with lower levels of circulating corticosterone in male and female rats

[12] and mice [46], and female rats exposed to maternal overnutrition exhibit

prolonged elevation in corticosterone after physical restraint stress [12]. Likewise,

neonatal rats exposed to maternal overnutrition exhibit an elevated corticosterone

response to ether stress, suggesting that the programming of the HPA axis by

maternal high-fat diet occurs in early postnatal life [47].

9.4.2 Stress-Related Neural Gene Expression

HPA function can be altered by changes in the expression of mineralocorticoid

(MR) and glucocorticoid receptors (GR) within limbic brain areas, including the

amygdala and hippocampus; these receptor populations differentially regulate basal

and stress-activated levels of corticosterone in circulation [48, 49]. Of note, we

recently reported that MR and GR transcripts are elevated in the amygdala of

offspring whose mothers were fed a high-fat diet during pregnancy and lactation

[12]. These data are in agreement with other studies of maternal stress manipula-

tions, showing that increased GR in the amygdala enhances the corticosterone-

mediated response to stress [50]. They are also in agreement with a study showing

that the offspring of nonhuman primates fed with high-fat diet exhibit increased

hypothalamic expression of proopiomelanocortin transcript, a gene that affects

HPA function by altering levels of adrenocorticotropin-releasing hormone and, in

turn, cortisol release [51].

9.4.3 Stress-Related Responses in Models of Diet-Induced
Obesity

The behavioural effects of chronic exposure to high-fat diet in adult rats are similar

to those of the offspring of mothers fed a high-fat diet. For example, after 10–12

weeks of consuming a high-fat diet, adult rats exhibited a relative increase in

behavioural anxiety on the elevated plus maze, open field and light dark task

[52, 53]. Moreover, these elevated anxiety-like behaviours are associated with an
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altered HPA axis response, consisting of elevated corticosterone levels after

restraint stress. These results agree with several other studies showing that chronic

consumption of a high-fat diet in adulthood generally leads to elevated circulating

levels of glucocorticoids and an enhanced corticosterone response to stress [54–56],

but see [57]. Finally, chronic consumption of a high-fat diet exacerbates the effects

of stress by impairing the negative feedback inhibition of the corticosterone

response to psychosocial stress [53, 58].

Chronic exposure to high-fat diet in adulthood also leads to alterations in stress-

related gene expression within stress-related neural circuitry that is similar, but not

identical, to those of offspring exposed to maternal overnutrition. For example,

animals consuming high-fat diet show reduced transcript in the hippocampus of

both MR and GR, when compared to animals consuming standard house chow

[52]. The offspring of animals exposed to maternal overnutrition, on the other hand,

exhibit increased expression of the GR transcript within the amygdala. Given the

opposing roles of the hippocampus and amygdala in the regulation of the HPA axis,

however, both findings are consistent with the idea that the stress system is

heightened in response to both dietary manipulations and that both manipulations

lead to enhanced behavioural anxiety.

9.5 Relationship Between Food and Drug Addiction

Based on the relationship between maternal overnutrition and responses to

psychostimulants in offspring, it is of interest that drug addiction, like disorders

involving food consumption, has been linked to dysregulation within the primary

brain pathways regulating reward and stress. Characterized by compulsion to seek

drugs, drug addiction consists of a chronic cycle of drug intoxication followed by

withdrawal and relapse [14]. This cycle corresponds to powerful positive reinforce-

ment (drug intoxication) and, over time, the emergence of a negative emotional

state (anxiety) after withdrawal. It has been argued that this negative emotional

state may, at least in the short term, perpetuate drug seeking [14]. It has also been

argued that drug addiction is characterized by a shift in the motivational processes

mediating ongoing consumption from positive reinforcement induced by the drug

to negative reinforcement resulting from the relief of negative affect upon resuming

drug taking [14]. And it has recently been proposed that a similar transition may

occur in the case of disordered eating leading to obesity [15]. Although the

motivational and corresponding neural mechanisms involved in drug addiction

are perhaps better understood than those involved in obesity, it has been suggested

that compulsive drug and food consumption may be regulated by common neural

and molecular mechanisms, including those related to dysregulated dopaminergic

and stress-related function [59].
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9.6 Conclusion and Prospective: The Potential Role

of Epigenetic Mechanisms

In this chapter, we have highlighted research concerning reward- and stress-related

effects that may help explain the rapid rise in metabolic dysfunction in offspring as

a result of maternal diet. This question is particularly relevant since up to 30% of

human pregnancies in developed countries are now complicated by factors owing to

maternal obesity [60]. Identifying the mechanisms through which maternal

overnutrition results in altered reward and stress pathways later in life will enable

the understanding of risk factors for disorders characterized by dysregulated

hedonic and negative emotional states.

Epigenetic mechanisms, which modify gene function in the absence of a change

in gene sequence, have been proposed to program gene expression as a function of

early-life experience [12]. Long-term changes in gene regulation can occur via

epigenetic modifications of DNA and chromatin structure. In contrast to chromatin

modifications, which may be transient and are tightly coupled to gene expression,

DNA methylation is a relatively stable modification that, in regulatory elements,

typically leads to persistent repression of gene expression [61]. For example, levels

of maternal behaviour received within the first week of life are associated with

offspring HPA function and levels of DNA methylation in stress-related genes

[62, 63]. Recently, a number of studies of candidate genes have indicated that

maternal overnutrition alters levels of DNA methylation in gene promoters in

offspring [9, 64–68].

With the support of technological advances in high-throughput DNA sequenc-

ing, it is now possible to extend this work from a consideration of candidate genes

to candidate pathways. Many of the ways in which environmental exposures alter

epigenetic mechanisms in offspring remain unknown. Improved methods for

genome-wide detection of epigenetic alterations, however, have greatly advanced

complex disease research by providing the means to identify mechanisms leading to

stable changes in cellular function [69]. How these changes might distribute across

dopaminergic and HPA-related gene networks is one related topic of active

research.

In future research, it will be of interest to identify how epigenetic marks

indicating enhanced or repressed transcriptional potential may relate to dysfunction

in reward and stress pathways across a variety of conditions. Because epigenetic

marks are potentially reversible, identifying the manner in which they are altered in

the dopaminergic and HPA-related pathways of offspring whose mothers who were

fed a high-fat diet will offer insight into mechanisms leading to stable disease

states; this work may also inform novel routes to pharmacological intervention.

Altogether, such studies will illuminate our understanding of risk factors for

disorders characterized by dysregulated emotional processing.
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Chapter 10

The Implications of Maternal Obesity

on Offspring Physiology and Behavior

in the Nonhuman Primate

Elinor L. Sullivan and Paul Kievit

Abstract Exposure to maternal obesity and high-fat diet (HFD) consumption

during perinatal development impacts numerous aspects of offspring physiology

and behavior. Epidemiologic studies indicate that maternal obesity is associated

with increased risk for metabolic, mental health, and neurodevelopmental disor-

ders. As factors such as a shared environment and genetics could contribute to this

association, animal studies are critical. The use of nonhuman primates is particu-

larly important as they have a similar developmental timeline, physiology, and

behavior as humans. Evidence from animal models supports the findings from

human studies and indicates that maternal obesity induced by HFD consumption

impairs the development of many organ systems including the brain, pancreas,

liver, and cardiovascular system. These studies suggest that offspring are

predisposed to obesity due to hyperphagia, increased preference for fat and sugar,

and reductions in energy expenditure. Rodent and nonhuman primate offspring

exposed to maternal HFD consumption exhibit increased anxiety, impairments in

social behavior, and decreased cognitive performance. These observed behavioral

changes are though to be due to alterations in the development of neural circuitry

critical in behavioral regulation such as the serotonin, dopamine, and melanocortin

systems and increased activity of the hypothalamic–pituitary axis. Mechanisms for

these developmental changes include alternations in maternal behavior due to HFD

consumption and the increased levels of inflammatory factors, nutrients and hor-

mones that are associated with maternal obesity. Given the high levels of maternal
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obesity and HFD consumption in developed nations, we postulate that future

generations are at increased risk for obesity and metabolic, neurodevelopmental,

and mental health disorders.

Keywords Maternal obesity • High-fat diet • Pregnancy • Energy balance • Energy

expenditure • Food preference • Programming • Nonhuman primate • Anxiety •

Autism • ADHD

10.1 Introduction to Maternal Obesity

Perinatal exposure to maternal obesity, impaired metabolic state, and high-fat diet

(HFD) consumption is commonplace in developed nations. Currently, a third of

women of childbearing age in the USA are obese and two-thirds are overweight

[1]. Obesity during gestation is associated with adverse outcomes for both the

mother and child such as gestational diabetes [2, 3], preeclampsia [4, 5], high

blood pressure [6], placental dysfunction [7, 8], prematurity [9, 10], and infants

born either large or small for gestational age [11]. Given the high prevalence of

maternal obesity worldwide, it is critical to investigate the long-term effects of

exposure to maternal obesity on the developing offspring. A HFD is commonly

used to induce maternal obesity in animal models, and in humans a HFD typically

accompanies maternal obesity. This chapter will discuss the effects of both mater-

nal obesity and HFD consumption and will assume, except where noted, that

maternal HFD consumption results in obesity. This chapter will also examine the

impact of exposure to maternal obesity and HFD consumption during perinatal

development on the physiology, behavior, neural development, and HPA axis of the

offspring with a special focus on evidence from nonhuman primate (NHP) models.

10.2 Translational Potential of NHP Studies to Human

Health

The development of research models of disease in animals has progressed our

understanding of human diseases tremendously. From the basic biology of organ

function, to the intricate communications between organ systems in endocrinology,

to the study of the pathophysiology of debilitating diseases such as cancer, cardio-

vascular disease, and neurodegenerative diseases, animal models have helped us to

devise methods and treatments to improve human health. In the field of develop-

mental programming, rodent models fed a HFD have predominantly been used to

study the effect of the maternal obesity on fetal development. These studies have

been extensive and in depth, providing us with an understanding of how maternal

diet can affect cardiovascular disease, glucose metabolism, and many other dis-

eases. However, there are several limitations to solely using rodents when compar-

ing the outcomes to human development.
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The use of NHPs is particularly important in the examination of the impact of

maternal obesity and HFD on offspring brain development, behavior, and physiol-

ogy as these animals have a comparable developmental timeline, physiology, and

behavior as humans. Nonhuman primates have a similar developmental ontogeny of

the brain as humans with the majority of brain development occurring prenatally.

This is an area of divergence between rodent and human development as much of

the neural circuitry critical in regulating physiology and behavior occurs postnatally

in rodents. For example, the melanocortinergic system, an important regulator of

energy balance, develops rather late in development, occurring during the third

week after birth in rodents [12, 13] and during the third trimester in humans and

NHPs [14, 15]. The similar gestational and developmental timeline of NHPs and

humans ensures that the developing offspring has similar exposure to the disrupted

hormones, elevated circulating lipids, and nutrients associated with maternal obe-

sity. Nonhuman primates also have similar placental structure and function

allowing for the developing fetus to be similarly impacted by the excess nutrients

and lipids transported through and the inflammatory factors secreted by the pla-

centa. Another example of diverging physiology is the pathophysiology of obesity

and the development of type 2 diabetes mellitus (T2DM). Rodents are often

resistant to diet-induced obesity and generally do not develop diabetes [16], while

NHPs develop the full spectrum of metabolic disease as observed in humans,

including age or diet-induced obesity, hypertension, hyperlipidemia, insulin resis-

tance, and central adiposity [17–20]. Nonhuman primates are also ideal for studies

examining behavior as they have complex social and mental health-related behav-

iors allowing the behavior tests to be similar to those used in clinical assessment of

human behavior. The NHP model of maternal obesity developed by our group also

allows for the investigation of the relative impact of exposure to maternal metabolic

phenotype (obesity and insulin resistance) versus HFD during pregnancy on the

development of offspring physiology and behavior. In this NHP model, two-thirds

of adult females become obese and insulin resistant when consuming the HFD,

while one-third remain lean and insulin sensitive. This is important as human

studies demonstrate a link between maternal obesity and the risk of offspring

obesity [21] and mental health disorders [22–29]; however, these studies do not

have the ability to separate diet effects from maternal metabolic phenotype effects.

Considering the prevalence of obesity and wide consumption of a HFD worldwide,

use of the NHP model to understand the impact of exposure to maternal obesity and

HFD consumption is critical as it allows the direct translation of research findings to

humans.

10 The Implications of Maternal Obesity on Offspring Physiology and Behavior. . . 203



10.3 Adult Obese State

10.3.1 The Metabolic State during Maternal Obesity

Pregnancy requires metabolic, physiological, anatomical, and mental exertion from

the mother. From early events like implantation to the increased requirements of

nutrients necessary to feed the developing fetus, all these events are coordinated to

prepare both mother and fetus for the labor, delivery, and feeding of the newborn

child. This metabolically taxing state necessitates changes in maternal metabolism

(glucose, insulin, leptin, lipids). For instance, pregnancy results in resistance to the

action of the hormone insulin resulting in increased circulating glucose and lipids

and therefore making higher levels available to the fetus [30–32]. Maternal hyper-

lipidemia is also present in pregnancy, manifesting as temporary rises in circulating

triglycerides and cholesterol that provide a source of lipids for the developing fetus

[33]. Obesity, a state already accompanied by increased levels of circulating tri-

glycerides and insulin resistance, therefore exacerbates these rises in insulin [34]

and lipids [35] during the pregnancy of an obese mother.

In addition to the dysregulation of hormones such as insulin, maternal leptin

resistance is also affected by maternal obesity. In normal physiology, pregnancy is

associated with a state of leptin resistance [36, 37], where food intake increases

even though circulating leptin levels are also increasing. The mechanisms for the

increased levels of leptin and leptin resistance remain unclear, but it is very well

known that leptin can have effects on brain development [38]. In addition,

dysregulation of leptin has been implicated in the development of mental health

disorders. Since maternal obesity already results in a state of hyperleptinemia,

exposing the fetus in the early stages of development to these higher levels of

circulating leptin could have significant effects for the offspring and obese mother.

In addition to the dysregulation of insulin, triglyceride, and leptin levels, maternal

obesity also predisposes the mother to many other complications, such as gesta-

tional diabetes, preeclampsia, and longer hospital stays [39].

10.3.2 Maternal Obesity in Humans is Associated
with Inflammation

The obese state is associated with low-grade chronic inflammation. Adipocytes

secrete inflammatory factors including c reactive protein, interleukin (IL)-6, IL-1β,
and tumor necrosis factor (TNF)-α [40, 41]. The levels of these circulating inflam-

matory factors are proportional to adipose tissue mass. Inflammatory cytokines are

also elevated in many organs in obese individuals including the brain [40] and

placenta [42, 43]. Elevated levels of these inflammatory factors increase the risk for

many metabolic diseases including cardiovascular disease, heart disease, insulin

resistance, type II diabetes mellitus, and hypertension [40]. The increased
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inflammatory cytokines associated with obesity during gestation are believed to

cause dysfunction in the endothelium [44] and placenta [45]. Maternal obesity

during gestation exposes the developing fetus to an elevated level of inflammatory

factors, which are postulated to impair the development of several organ systems

including the brain.

10.3.3 Maternal Obesity Is Associated with Placental
Dysfunction

Many of the pregnancy complications associated with maternal obesity [46] that

impact the developing fetus are postulated to be associated with placental dysfunc-

tion. Evidence from animal models indicates that maternal obesity induced by

consumption of a HFD causes placental inflammation decreasing functionality of

the placenta. In sheep, maternal obesity impacts the placenta by increasing the

activation of inflammatory cytokines and downstream signaling factors [47], reduc-

ing uterine blood flow, and causing a 33% reduction in the mass [48]. A reduction

in placental mass was also observed in rodents fed a HFD [49]. Similarly, in our

NHP model, we report an increase in inflammatory cytokines in the placenta from

adult female macaques consuming the HFD and an elevation in the levels of

cytokines in the fetal compartment [50]. In macaques, maternal HFD consumption

is also associated with a 35–50% decrease in blood flow through the uterine artery

to the placenta [50]. The obese state further exacerbates the placental dysfunction

resulting in a higher rate of stillbirths, due to increased placental infarctions and

reduced blood flow to the fetus [50]. Thus, evidence from animal models consis-

tently indicates that maternal HFD consumption impairs placental function leading

to pregnancy complications. Moreover, the elevated levels of inflammatory cyto-

kines secreted by the placenta likely initiate the generation of cytokines by the fetus

[51, 52], further increasing the inflammation that the fetus is exposed to during

development. Increased levels of inflammatory cytokines modulate growth factors

critical for fetal development [53] and impact the development of neural pathways

critical in regulating behavior and physiology.

10.3.4 Maternal Metabolic State and Nutrition Impact
Maternal Behavior

Mounting evidence supports an important and persistent role for parental care

particularly during the early postnatal period on offspring behavior and physiology.

A wide body of literature in rodents indicates that naturally occurring individual

differences in maternal care during early development will program the behavior

and response of offspring to stress [54, 55]. For example, rat offspring exposed to
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decreased maternal attention and grooming exhibit increased anxiety-like behavior

as adults [55, 56], and offspring from attentive mothers are less anxious and display

improved regulation of stress [56, 57]. Offspring social behavior is also impacted

by maternal behavior with male rats exposed to higher levels of maternal licking

and grooming displaying less aggression toward their peers [55]. However, the

impact of maternal diet on maternal behavior has been largely unstudied. Three

studies indicate that maternal HFD increases nursing behavior [58–60]. The effects

of increased nursing during the perinatal period on offspring behavior have not been

directly assessed. However, overfeeding via experimental reduction of litter size

results in offspring that are hyperphagic and heavier due to impairments in critical

energy balance regulatory circuitry in the hypothalamus [61]. Two studies demon-

strate an impact of maternal HFD consumption on maternal grooming

[58, 59]. However, one study reports a decrease in grooming behaviors [58],

while the other reports an increase in the grooming of pups [59].

Maternal behavior also plays an important role in programming offspring

behavior in NHPs [62–65]. For example, infant rhesus macaques exposed to

maternal rejection are at increased risk for later developing anxiety [62]. Interest-

ingly, Japanese macaques exposed to early maternal rejection exhibit increased

independence in social situations and decreased stress response as infants [64]. The

offspring’s behavioral outcome appears to be dependent on the developmental age

when it is exposed to the maternal separation or rejection. Rhesus macaques that

experienced maternal separation at 1 week of age demonstrated elevation in self-

comfort behaviors such as thumb sucking, while maternal separation at 1 month of

age resulted in offspring seeking increased social comfort [65]. The impact of

maternal HFD on maternal behavior has not been previously examined in NHPs.

For the past 5 years, we have characterized maternal infant interaction in control

and HFD-consuming adult females. We observed an association between maternal

HFD consumption and an increase in nursing behavior during the early postnatal

period and a decrease in grooming behavior (Sullivan et al., in preparation), which

is consistent with the findings in rodent models.

In humans, mental health disorder such as postpartum depression are well

documented to influence maternal behavior towards her infant and increase the

risk of offspring developing mental health disorders as adults [66]. Perinatal expo-

sure to postpartum depression is associated with violent and internalizing behavior

[66]. Daughters of mothers suffering from major depression are at increased risk of

developing mental health disorders in adolescence [67]. As a HFD has been shown

to increase the symptoms of postpartum depression, maternal diet may impact

offspring behavior by modulating maternal mental health [68]. Preliminary evi-

dence also indicates that mothers classified as obese interact differently with their

infant offspring than mothers classified as normal weight. Obese mothers spent less

time interacting and feeding their infants; however, these infants still had an

increased overall caloric intake due to increased consumption of “complementary”

foods (cereal, fruit pudding, apple sauce, etc.) [69]. Another study confirmed these

findings by reporting that women who entered pregnancy in the obese state intro-

duced complementary foods earlier than women whose pre-pregnancy weight was
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classified as normal [70]. Together these studies provide evidence of the

interdependence of maternal behavior with maternal diet and metabolic state,

which may each impact offspring behavior. Future studies need to parse out the

contributions of maternal behavioral differences versus maternal diet on offspring

behavior. It is critical that future nutritional studies identify the optimal dietary

composition to be consumed during gestation and lactation to benefit both maternal

and infant behavior and decrease the infant’s risk of developing

neurodevelopmental and psychiatric disorders.

10.4 The Impact of Maternal Obesity on Offspring

Physiology

10.4.1 Energy Balance Regulation

Human studies consistently demonstrate that maternal obesity is associated with

increased risk of the child developing obesity and metabolic disorders [21]. The

impact of maternal obesity on offspring risk of obesity appears to be independent of

co-occurring metabolic disorders such as diabetes mellitus, as women with obesity

and normal blood glucose regulation still have children who are heavier and have

increased adipose tissue mass [71]. Even though evidence from human studies

implicates exposure to maternal obesity and HFD in programming offspring obe-

sity, numerous environmental and genetic factors could also contribute to the

association. It is very challenging to accurately measure the diet of pregnant

women and is potentially unethical to manipulate the diet until we gain a further

understanding of the optimal diet during gestation. It is also very difficult to

accurately measure energy expenditure and energy intake in children. Thus, animal

models of maternal obesity and HFD consumption are critically important to

directly examine mechanism, identify critical periods of development, and develop

potential therapeutic interventions.

Using an NHP model of HFD-induced maternal obesity, our group documented

an increase in body weight, adiposity, and leptin levels in juvenile offspring

exposed to maternal obesity and HFD consumption [72]. In this model, we note

that both maternal HFD and obesity play a role in programming an offspring’s body
weight as juvenile offspring from control mothers that spontaneously develop

obesity were heavier than offspring from lean control mothers [73]. Rat pups

exposed to maternal HFD consumption during gestation and lactation are heavier

and have increased adiposity and hyperglycemia as compared to pups exposed to a

control diet [74]. Mouse offspring of diet-induced maternal obesity exhibit

increased food intake and decreased locomotor activity resulting in increased

adipose tissue mass [75]. Together these studies provide consistent evidence that

in animal models, exposure to maternal HFD consumption programs offspring to be

at an increased risk of obesity.
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Rodent studies consistently find that exposure to maternal HFD consumption

during perinatal development programs hyperphagia [75–77]. Exposure to maternal

HFD consumption has been well documented to impact the development of neural

circuitry in the hypothalamus critical in food intake regulation [78, 79] including

the melanocortinergic system (discussed in detail in Sect. 10.6.1). Rat offspring

exposed to maternal HFD consumption during early development exhibit an

increase in the expression of the orexigenic peptides galanin, encephalin, and

dynorphin in the paraventricular nucleus of the hypothalamus (PVH) and

melanin-concentrating hormone and orexin in the lateral hypothalamus [76]. Ges-

tational exposure to maternal HFD also triggers the growth of neuronal and

neuroepithelial cells of the third ventricle and stimulates their migration to the

hypothalamus producing a greater percentage of neurons expressing orexigenic

peptides [76]. Lastly, HFD exposure reduces offspring’s sensitivity to leptin’s
anorectic action [77]. Rodent studies provide evidence that maternal HFD con-

sumption during fetal development disrupts the development of critical neural

circuitry in the hypothalamus resulting in hyperphagia.

In contrast to the numerous studies that have investigated the effect of maternal

HFD and obesity on offspring food intake, very few studies have examined the

impact on energy expenditure. In the NHP model, we note that HFD consumption

results in a compensatory increase in physical activity; however, this increase

appears to be independent of maternal diet [80]. In rodent models, physical activity

has been assessed in a few studies. However, the findings to date are inconsistent

potentially due to the use of different measurement techniques and experimental

designs. Dark cycle locomotor activity measured via telemetry was found to be

reduced in mouse offspring exposed to maternal HFD consumption during gestation

and lactation [75]. In another murine model, male offspring exposed to maternal

HFD consumption during gestation were hyperactive during the open field test

[81]. However, this increase in activity is likely to indicate anxiety as it was

observed in a novel environment. A rat study examined locomotor activity during

the day by placing rats in a box that detected activity via animal’s movement across

electromagnetic fields and found that offspring exposed to a diet high in saturated

fat (coconut oil) during gestation and lactation did not exhibit a difference in

activity as compared to animals exposed to the control diet [82]. However, in the

same study rat offspring exposed to a diet high in unsaturated fat (sunflower oil)

during perinatal development exhibited an increase in locomotor activity

[82]. Thus, the type of fat in the diet impacts the directionality of the change in

physical activity due to perinatal dietary programming. The primary component of

energy expenditure is metabolic rate. However, the effects of maternal HFD

consumption and obesity on metabolic rate have only been examined in one

study. The examination of perinatal programming by maternal HFD and obesity

on offspring metabolic rate is an important future direction of the field. In addition,

future studies should examine the impact of perinatal HFD exposure on metabolic
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adaptation to different states of energy balance such as dieting, fasting, and chronic

consumption of a HFD.

10.4.2 Food Preference

Mounting evidence indicates that perinatal nutrition and maternal metabolic state

impact children’s food preference and feeding behavior. An increased preference

for high-fat food in children aged 3–5 years was related to increased body fat of the

child, as measured by skinfold thickness, and increased parental weight [83]. In

addition, children with parents of normal weight consumed a reduced percentage of

calories from fat than children with parents who were overweight [84]. However,

environmental factors such as familiarity with high-fat foods and genetic factors

can also contribute to difference in food preference; thus, the impact of program-

ming by maternal obesity and HFD consumption remains uncertain. Animal studies

are critical in elucidating the role of programming by HFD and obesity versus

shared environmental factors on offspring food preference.

In NHPs, exposure to maternal obesity and HFD consumption during perinatal

development programmed an increased preference for fat and sugar in offspring

[73]. This finding was confirmed by rodent studies that also document an increased

preference for fat and sugar in offspring exposed to maternal HFD consumption.

For instance, exposure to a junk food diet during gestation or lactation programmed

an increased preference for fat, sugar, and salt in adult rat offspring [77, 85,

86]. Interestingly, the type of fat that the offspring is exposed to during the perinatal

period impacts the offspring’s preference for fat, with offspring exposed to diet high
in saturated fat displaying a preference for fat, whereas offspring exposed to a diet

high in polyunsaturated fatty acids do not [86]. As discussed in Sect. 10.6.3,

evidence from rodent [82] and NHP [73] studies indicates that exposure to maternal

HFD consumption impacts the development of the dopamine system which likely

contributes to the observed differences in food preference. Evidence from human,

NHP, and rodent studies consistently report an increased preference for fat and

sugary food in offspring exposed to maternal obesity and HFD consumption. It will

be important for future studies to determine the role that the type of fat plays in

programming food preference, as this will guide nutritional studies focused on

determining the optimal perinatal diet.

10.4.3 Pancreas

The relationship between glucose homeostasis and maternal diet was originally

discovered in a cohort of men born in Hertfordshire, UK, in whom it was observed

that there was a relationship between birth weight and glucose intolerance at a later

age [87]. This relationship was underscored by findings from studies of people who
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were in gestation during the Dutch Hunger Winter [88, 89], where a severe famine

restricted nutrients during a very sensitive time of development, which ultimately

resulted in the metabolic changes later in life. For instance, by performing glucose

tolerance testing in men and women from the Dutch Famine Birth Cohort, de Rooij

et al. demonstrated that people exposed mid-gestation to severe nutrient restriction

had a dysfunction in insulin secretion [88]. Contrary to famine, the global epidemic

of obesity has been paralleled by a global increase in diabetes. In the USA, the

number of people diagnosed with diabetes has quadrupled in the last 30 years, and

currently almost 10% of the population has this disease [90]. Of people with

diabetes, 90–95% of the cases are T2DM. The pathophysiology of T2DM is a

complex interplay between genetics, epigenetics, and environment. Recent research

in several models, including human, are focusing on the role of maternal obesity in

the development of diabetes and the central role the pancreas plays in this.

There are several important differences in the rodent versus the primate in regard

to the pancreas. For instance, the timing of development occurs during different

windows of gestational age [91], the intra-islet cytostructure is different, as well as

the innervation of the islets [92–94]. To obtain a better understanding of the effect

of maternal obesity on glucose homeostasis, research will need to investigate the

changes in the pancreas of NHPs. Using a NHP model of maternal obesity, our

group has demonstrated that maternal HFD leads to dysfunctional development of

the fetus [50, 72, 95, 96]. Indeed, as was observed in the other tissues such as liver

and placenta, maternal obesity resulted in dysregulation of the islet composition,

demonstrating that a HFD fed during the gestational period results in a decrease in

α-cells, thus increasing the β- to α-cell ratio [97] in 1-year-old animals. This work

postulates that the decrease in the number α-cells is a compensatory response to the

increased production of glucose by the liver in these animals. Although this

question has not been directly addressed, there is a possibility that the paracrine

action of α-cells could affect insulin secretion. Future work should focus on

determining which components of the diet are driving the changes in α-cell
development. Subsequent work in this model investigated the vascularization and

innervation of the islet. Pound et al. demonstrated that offspring from obese NHP

mothers have decreased innervation and vascularization in the third trimester of

development and that this reduction in vascularization persists at least 1 year

postnatally [98].

10.4.4 Cardiovascular System

Cardiovascular disease is particularly affected by the increasing rates of obesity,

hypertension, and diabetes [99, 100]. The original work by Dr. David Barker in

humans clearly demonstrated that birth weight is correlated with subsequent car-

diovascular disease, highlighting the fact that the heart and other players in the

cardiovascular system are affected by the fetal environment [101–103]. The impor-

tance of maternal diet in cardiovascular programming was underscored by rodent
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studies that showed that a maternal low protein diet induced hypertension in

offspring [104]. Further studies in both rodent and human models confirmed and

expanded upon these studies, showing that other maternal insults can have dramatic

effects on the cardiovascular system, including maternal obesity [105–108]. The

breadth of research studying the effects of maternal obesity has used the rodent as

an experimental model because of the short life span, lower cost, and availability of

genetic models. To date, only a handful of studies have utilized the NHP model to

study the impact of maternal obesity and all have focused on the early indicators of

vascular dysfunction.

Recent work using a baboon model demonstrated that feeding newborn baboons

a HFD for the first 16 weeks of life resulted in long-lasting changes in adipose

development independent of body weight, although these preweaning diets did not

necessarily increase atherosclerosis at 5 years of age [109, 110]. New work is now

demonstrating that it is the combination of maternal diet and postweaning diet that

is detrimental to the development of cardiovascular disease. Early changes in gene

expression and the expression of microRNA have been described in a model of

maternal obesity in the baboon [111] where the mothers were fed a high fat/high

fructose diet. In these fetuses, investigated during the third trimester, there was

already evidence of myocardial fibrosis. On the molecular level, there was differ-

ential expression of several of the cardiac microRNAs, perhaps a sign of maternal

programming. Our work using the earlier described model of maternal obesity in

the Japanese macaque demonstrated that both a maternal and postnatal HFD

exacerbate the development of vascular and endothelial function [96], resulting in

increased intimal thickness in the abdominal aorta and a decrease in the vasodila-

tion capacity in offspring of obese mothers. Interestingly, some of the negative

effects of maternal HFD on offspring cardiovascular function were partially ame-

liorated when offspring were weaned onto a healthy diet. This suggests that an early

dietary intervention may be effective in mitigating cardiovascular dysfunction

programmed by maternal obesity and HFD consumption.

10.4.5 Liver

Maternal obesity and/or gestational diabetes is a major contributor to the increase in

nonalcoholic fatty liver disease (NAFLD) in obese children [112, 113] and neonatal

infants [114, 115]. Research in rodent and other animal models are now demon-

strating that this excessive hepatic lipid storage is occurring during fetal develop-

ment [116, 117]. Maternal obesity results in elevated glucose, insulin, and fatty acid

levels during development of the fetus, and this presents an issue early on in

development when the fetus has not developed subcutaneous fat storage. Although

the liver requires lipids for normal functioning during development, excess lipids

can be cytotoxic. Excess levels of intracellular lipids can cause a variety of cellular

damage, including the production of reactive oxygen species. This finding has been

demonstrated in many different animal models, including the NHP. McCurdy
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et al. demonstrated that during fetal development, offspring from obese monkeys

consuming a HFD had threefold higher levels of triglyceride in the liver. This

resulted in early signs of liver toxicity as evident by increased levels of oxidative

stress at the cellular level [72]. Similar results have been observed with studies in

mouse models [118, 119], demonstrating that early exposure of the fetus to mater-

nal HFD consumption can lay the foundation for future NAFLD. Subsequent

studies in the NHP showed that fetal exposure to a HFD resulted in persistent

changes, even if the postnatal diet was switched to low fat [120]. This phenotype

could be the result of extensive epigenetic programming in the liver. Studies in

rodents, humans, and NHPs have identified several epigenetic changes in response

to exposure to a HFD either during adulthood [121] or fetal development

[122, 123], the contribution of these changes to programming of NAFLD is a

topic of future research. In addition, research by Grant et al. showed that hepatic

innervation and hepatocyte apoptosis is different as well, providing evidence that

many pathways in the NHP liver are affected by maternal diet [95, 124]. An

interesting observation from the study by McCurdy et al. was the inclusion of

animals that remained lean on the HFD. When studying offspring from these

non-obese mothers, it appeared that similar dysfunction was noted in the liver,

suggesting that the majority of the liver damage can be contributed to maternal diet,

independent of maternal obesity. More importantly, a reversal of the HFD to regular

chow during the pregnancy of obese mothers partially reversed the liver damage

[72]. Although additional work needs to be done, these findings could support

clinical dietary interventions during pregnancy as a first step in combating early

NAFLD.

10.5 Maternal HFD Consumption Programs Offspring

Behavior

10.5.1 Exposure to Maternal Obesity Increases the Risk
of Mental Health Disorders

Evidence from epidemiologic studies indicates that exposure to an unhealthy diet

and maternal obesity during early development increase the risk of the child

developing mental health and neurodevelopmental disorders including attention

deficit hyperactivity disorder (ADHD) [25, 125] and autism spectrum disorder

(ASD) [23]. Children from mothers who were obese during pregnancy were more

likely to have difficulties in emotional regulation [26] and increased risk of depres-

sion and withdrawal [126]. Importantly the high prevalence of obesity in women of

childbearing years in recent decades is postulated to contribute to the concurrent

increase in the rates of ASD [27] and ADHD [127–129] in the USA. Exposure to

maternal obesity during gestation was reported to double the risk of a child

developing ADHD symptoms [125]. Also, children with ADHD are twice as likely
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to have a mother who was obese [25]. Risk of ASD and developmental delays in

children aged two to five were also shown to be increased by perinatal exposure to

maternal obesity [23].

Metabolic disorders associated with obesity may also be associated with

increased risk of offspring developing neurodevelopmental and mental health

disorders. The number of studies examining the impact of maternal metabolic

disorders on offspring’s risk of neurodevelopmental and mental disorders is limited,

focusing primarily on diabetes. Children exposed to diabetes during gestation

display greater rates of ADHD symptoms [130]. Gestational diabetes is also

associated with increasing the offspring’s risk for anxiety, depression, and social

problems [131]. Exposure to maternal diabetes is associated with greater risk of

ASD and developmental delays in young children [23]. Hypertension and pre-

eclampsia during gestation were also associated with increased ASD risk [132–

134]. Together this evidence suggests an important link between exposure to

maternal obesity and associated metabolic disorders and offspring mental health

and risk for behavioral disorders. However, the relative contribution of the prenatal

versus shared postnatal environment remains unclear, as does the contribution of

each metabolic disorder. Also, common genetic factors could underlie both obesity

and mental health disorders. To more fully examine these questions, well-

controlled animal experiments are needed. Substantial evidence from animal

models demonstrates that maternal consumption of a HFD during the perinatal

period impacts various aspects of offspring behavior.

10.5.2 Maternal HFD Impacts Offspring Anxiety

Exposure to maternal HFD during gestation is associated with heightened anxiety

in both NHP [135] and rodent offspring [136]. Male rodent offspring whose

mothers consumed a diet with a high content of saturated or trans fat during the

perinatal period displayed increased anxiety in adulthood. Interestingly, a differ-

ence in anxiety behavior was not evident in female offspring indicating gender

differences in maternal diet programming of offspring behavior [136]. However,

female offspring from both diet groups had a higher level of anxiety than male

offspring; thus, it is possible that a ceiling effect prevented the increase anxiety in

HFD female offspring to be detected. In this model, the investigators postulate that

maternal intake of a HFD increases offspring exposure to inflammatory factors that

directly impact brain development [136]. In an NHP model of HFD-induced

maternal obesity, our group has demonstrated an increase in anxiety in female,

but not male Japanese macaque offspring [135, 137]. The increase in anxiety in

female offspring was associated with a suppression of central serotonin synthesis in

offspring from HFD mothers [135, 137]. Importantly, this increase in anxiety in

female macaque’s offspring is consistent with the evidence in humans that reports a

marked gender dimorphism in anxiety prevalence. In humans, females reported to

have an increase in anxiety susceptibility and a more profound link between anxiety
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and obesity [138]. There is evidence in rodent models that the developmental time

period in which offspring are exposed to the HFD impacts the outcome on off-

spring’s behavior. With offspring exposed to a HFD during gestation exhibiting

increased anxiety [136], while those exposed to the diet solely during lactation do

not. In the NHP model of maternal HFD consumption, the developmental timing of

HFD exposure has not yet been examined as mothers consume the HFD during both

gestation and lactation.

Human studies support the findings from animal studies and contribute to the

evidence that maternal obesity increases the risk of offspring anxiety. Children

from mothers who were obese during pregnancy were more likely to have difficul-

ties regulating emotions such as sadness and fear [26] and were reported to have an

increased risk for internalizing problems including depression and withdrawal

[126]. Maternal obesity is associated with pregnancy complications such as infants

being born small or large for gestational age [11, 139, 140], which increases the

likelihood of offspring developing anxiety and depression as adolescents

[141]. Also, as noted above offspring exposed to maternal obesity are at a much

greater risk of becoming obese themselves as children and adults. Childhood

obesity is associated with higher rates of internalizing behaviors such as anxiety

and depression and social problems [131]. Measures of obesity during infancy (high

birth weight and top 10% ponderal index) were found to be positively associated

with adult depression [142]. Moreover, obesity in adulthood is well documented to

be associated with anxiety and depression [143].

10.5.3 Maternal HFD Programming of Social Behaviors

Social interaction and the development and maintenance of social networks are

critical for the survival of most species as they allow for procreation, procurement

of food and resources, and protection from predators. Recent evidence indicates

that maternal diet and metabolic state during the perinatal period may impact

offspring social behavior. The first evidence that maternal diet impacted offspring

social behavior came from a study by Raygada et al. in which investigators found

that maternal consumption of diet high in polyunsaturated fatty acids led to

increased aggression in female offspring in three different strains of mice

[144]. This increase in aggression was postulated to be due to an upregulation of

protein kinase C (PKC) activity in the hypothalamus. To date, very few studies have

examined the impact of maternal HFD on offspring social behavior. Kang

et al. found that female offspring from HFD mothers exhibited social impairments

using a social interaction test [81]. Interestingly, the deficits in social behavior were

not found in male offspring and a dietary intervention during the lactation period

was found to reduce the social deficits in HFD female offspring. In this study,

increased inflammatory cytokines and microglial activity were also observed in

female HFD offspring and were postulated to underlie the deficits in social behav-

ior. These findings from rodent studies are consistent with the results in our NHP
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model in which we observe a decrease in social interactions in HFD offspring when

exposed to a novel peer and in their normal social housing (Sullivan et al. in

preparation). These findings from animal models support evidence in human studies

that indicate that disorders such as ASD, which are characterized by impairments in

social behavior, occur at higher rates in offspring from obese mothers [23].

10.5.4 The Impact of Maternal HFD Consumption
on Learning and Memory

Epidemiologic studies have recently linked obesity and consumption of a HFD in

adulthood with cognitive impairment [145], Alzheimer’s disease [146], and demen-

tia [146]. A high intake of saturated fat during midlife was associated with

decreased cognitive function and memory and an increased risk of cognitive

impairments [145], while a high intake of polyunsaturated fats and fish was

associated with improved memory and cognitive function [145]. Rodent studies

support these findings by providing consistent evidence that consumption of a HFD

accompanied by obesity impairs spatial learning and memory [147–155]. To date,

the impact of consumption of a HFD and obesity during adulthood on cognition

have not been examined in NHPs. It will be important for future studies to pursue

this as NHPs provide an important link between the mechanistic studies possible in

rodents and epidemiologic evidence from human populations.

A limited number of studies have examined the effects of exposure to maternal

HFD and obesity during perinatal development on offspring cognition. However,

the existing data come primarily from rodent studies and indicate that exposure to

maternal HFD consumption and obesity is associated with cognitive impairments.

A deficit in spatial memory measured using a Morris water maze was recently

documented in adult male rats that were exposed to a diet high in saturated or trans

fats during perinatal development [136]. This memory deficit was associated with

inflammation in brain regions critical for cognitive function such as the hippocam-

pus as evidenced by increased peripheral and hippocampal cytokine expression in

response to a bacterial challenge and hippocampal microglial activation [136]. A

second study confirmed these findings as impairments in spatial learning and

memory were observed in adult rats [156]. The cognitive impairments observed

in this model were associated with impairments in hippocampal development

including decreased brain-derived neurotrophic factor (BDNF) and activity-

regulated cytoskeletal-associated protein levels. A mouse study also observed that

exposure to a diet with high lard content during perinatal development reduced both

spatial memory and cognition in adult offspring [157]. A second mouse study found

that diet-induced obese females had offspring with decreased BDNF synthesis in

the hippocampus, which was associated with impaired dendritic arborization of

hippocampal neurons [158]. These offspring were also identified to have delays in

spatial learning when they were young. However, in this study cognitive
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impairments were not evident in adult animals [158]. Male rat offspring exposed to

maternal HFD consumption during gestation and lactation that continued consum-

ing the HFD exhibited a decline in memory retention, but not acquisition in the

Morris Water maze [159]. Maternal HFD consumption has also been associated

with increased markers of oxidative stress and inflammation in the brain

[159]. Overall, preliminary evidence from rodent studies indicates that exposure

to maternal obesity and HFD consumption during early development may decrease

offspring cognition. It is important that the impact of maternal diet and obesity is

examined in larger animal models, such as NHPs, which share a similar trajectory

of brain development and in which higher levels cognitive function can be assessed.

Moreover, it will be important for future studies to parse out the contribution of pre-

versus postnatal HFD to programming cognition. Lastly, though preliminary mech-

anistic targets have been identified such as reduced BDNF, increased oxidative

stress, and inflammation, it is critical that mechanistic studies are expanded to

enable the development of therapeutic interventions.

10.6 Maternal HFD Consumption Programs Brain

Development

10.6.1 Melanocortinergic System

The hypothalamic melanocortinergic system is collection of neural circuits that are

critical regulators of energy homeostasis [160], blood pressure regulation

[161, 162], and sexual behavior [163]. The melanocortin system is comprised of

a set of transmembrane receptors (MC1R–MC5R) [164] that are responsive to

cleavage products of the precursor proopiomelanocortin. For our purposes, we

will focus on alpha-melanocyte-stimulating hormones (alpha-MSH), which inhibit

food intake, and agouti-related peptide (AGRP), which promotes hunger. These two

peptides regulate food intake by acting on melanocortin receptor subtype 3 (MC3R)

and melanocortin receptor subtype 4 (MC4R). As the melanocortin system is one of

the primary regulators of energy balance, a number of studies have examined the

impact of maternal obesity and HFD consumption on this system as a potential

mechanism to explain the increased risk of obesity in offspring from obese mothers.

In NHPs, we observe a reduction in the expression of AgRP mRNA and protein and

an increased expression of POMC and MC4R in the arcuate nucleus of the hypo-

thalamus (ARC) of fetal offspring [165]. Recent data from the model indicate that

in juvenile NHP offspring, both maternal and postweaning HFD consumption

suppress the density of AgRP staining in the paraventricular nucleus of the hypo-

thalamus (PVH) and postweaning HFD consumption suppressed AgRP density in

the ARC [80]. Many rodent studies also observe a programming effect of maternal

HFD consumption during early development. However, these studies are inconsis-

tent and report either an increase or a decrease in AgRP expression. In a rat model,
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maternal HFD consumption-induced obesity was found to increase the mRNA

expression of AgRP, POMC, and MC4R in the whole hypothalamus of fetal

offspring [166]. However, another rat model examined the impact of exposure to

maternal HFD consumption during the last 2 weeks of pregnancy and noted a

decrease in the expression of AgRP and NPY in offspring at weaning [76]. A

third rat study also noted that maternal HFD consumption decreased NPY and

AgRP mRNA expression [167]. These differences between studies are likely due to

differences in the composition of the experimental and reference diets and the

length of exposure to the diets and thus the degree of maternal obesity and

metabolic dysfunction. It is important to note that the melanocortinergic system

develops rather late in development, occurring during the third week after birth in

rodents [12, 13], and during the third trimester in humans and NHPs [14, 15]. These

species difference in brain ontogeny makes the NHP model particularly important

in the translation of findings to humans. The central melanocortin system appears to

be impacted by inflammatory factors. Exposure of rodent hypothalamic explants to

the inflammatory cytokine IL-1B results in a suppression of AgRP release and an

increase in POMC release [168, 169]. Thus, we postulate that maternal obesity-

induced inflammation impairs the development of the central melanocortin system

impacting offspring physiology and behavior.

10.6.2 Maternal HFD Consumption Suppresses
the Development of the Serotonin System

The serotoninergic system plays an essential role regulating numerous aspects of

behavior and physiology including energy balance regulation and digestion. Sero-

tonin (5-HT) is involved in neural development impacting neuronal growth, syn-

apse formation, and migration of neurons [170, 171]. Decreased central serotonin

levels are associated with mental health disorders including anxiety [172] and

depression [173]. Reductions in brain serotonin are also reported in

neurodevelopmental disorders such as ADHD [174] and ASD [42, 175]. Moreover,

selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed to treat

these mental health and neurodevelopmental disorders. During pregnancy, the

serotonin system also plays a key role in regulating the maternal immune system

to prevent allogeneic rejection of the fetus [176] and placental blood flow. Thus,

changes in the development of the serotonin system due to exposure to maternal

obesity and HFD consumption may underlie behavioral disorders.

Evidence from animal models of HFD-induced maternal obesity supports human

evidence that impairments in the development of serotonin neural pathways are a

potential mechanism for the changes in offspring behavior. In NHPs, we observe

impairments in the development of the serotonin system in fetal offspring and

increased anxiety in infant female offspring [135]. Recent data indicate that the

female offspring exhibit an increase in anxiety behaviors into the juvenile time
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period and that this is associated with a persistent suppression of serotonin synthesis

in the dorsal raphe [137]. These findings are supported by similar findings in a

rodent model. Murine offspring exposed to maternal HFD consumption were

documented to have an increase in 5-HT1AR, the inhibitory autoreceptor, in the

ventral hippocampus and increased anxiety behaviors [177]. Increased exposure to

inflammation is documented in pregnancies complicated by obesity and HFD

consumption [44, 178, 179], and the development of serotoninergic neural path-

ways is sensitive to inflammation [180]. Thus, we postulate that the increased

inflammation induced by maternal obesity/HFD consumption impairs the develop-

ment of the serotonin system leading to behavioral abnormalities in offspring. In

our NHP model, we document that maternal HFD consumption increases inflam-

mation in the placenta [50] and in the hypothalamus of the fetal offspring

[165]. Given the similarities in the timing of brain developmental and physiology

between NHPs and humans, a similar mechanism may contribute to the increased

risk of psychiatric and neurodevelopmental disorders in offspring exposed to

maternal obesity during perinatal development.

10.6.3 Programming of the Dopaminergic System by
Maternal HFD

The dopaminergic system is another neural system that is critical in the regulation

of behavior and physiology and appears to be impacted by exposure to maternal

obesity and HFD consumption. Alterations in the dopamine (DA) system are

postulated to underlie a number of neurodevelopmental (ASD [181–183], ADHD

[184–186]) and mental health (schizophrenia [187–189], anxiety [190, 191], and

depression [192, 193]) disorders. In NHPs, exposure to maternal HFD consumption

was recently found to suppress offspring dopamine signaling in the prefrontal

cortex as evidenced by a decrease in DA fiber projections and levels of the

dopamine receptors 1 and 2 protein [73]. Evidence from rodent studies provides

additional evidence that exposure to maternal HFD during gestation and lactation

impairs the development of the DA system. In a rat model, perinatal exposure to

maternal HFD consumption resulted in increased DA in the nucleus accumbens and

reduced sensitivity to DA, as evidenced by reduced locomotor response to a

psychostimulant [82]. Rat offspring from HFD mothers were also found to display

an elevated DA response to acute stress and did not display the normal desensiti-

zation to repeated exposure to the stressor [194]. In a mouse model, maternal HFD

consumption altered methylation and expression of DA genes [195]. Similar to the

5-HT system, the DA system is sensitive to exposure to maternal inflammation

[196]. Thus, elevated perinatal exposure to inflammation associated with maternal

obesity is thought to impact development of the DA system and increase offspring

risk of developing psychopathology.
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10.7 Maternal HFD Consumption Programming

of the HPA Axis

Cortisol release from the hypothalamic–pituitary adrenal (HPA) axis plays a critical

role in regulating psychological and physiologic stress. Stress triggers the hypotha-

lamic paraventricular nucleus to release corticotropin-releasing hormone (CRH)

and antidiuretic hormone (ADH) into the hypothamo-hypohyseal portal system

triggering the release of adrenocorticotropic hormone (ACTH) from the anterior

pituitary into systemic circulation. Circulating ACTH stimulates the release of

glucocorticoids (primarily cortisol in humans and NHP and corticosterone in

rodents). In addition to being stimulated by CRH, ACTH levels are also regulated

by the hypothalamic suprachiasmatic nucleus (SCN) resulting in a circadian rhythm

of ACTH and cortisol release, with levels of both hormones being lowest at night

[197]. Interestingly, a number of studies find that the response of the HPA axis to

stress also exhibits diurnal variation [197]. CRH is also expressed in areas of the

brain important in behavioral regulation such as the amygdala and lateral bed of the

nucleus stria terminalis [198] where it is postulated to regulate anxiety and fear.

Given, the important role of the HPA axis in the regulation of behavior and

physiology, it is important to examine the impact of maternal obesity and diet on

the function of the HPA axis.

Human studies note an association between heightened activity of the HPA axis

and mental health disorders including anxiety and depression [199]; thus, program-

ming of the HPA axis by maternal HFD and obesity is a potential mechanism for the

increase in anxiety observed in offspring exposed to maternal obesity and HFD. In

NHPs, we note that maternal HFD consumption and obesity result in an increase in

both acute stress response (plasma cortisol) and chronic stress response (hair

cortisol) in infant and juvenile offspring [137]. This evidence is supported by rodent

studies that also indicate an increase in corticosterone in offspring exposed to

maternal HFD consumption. Male rat offspring exposed to a HFD during the last

week of gestation and lactation exhibited elevated basal levels of corticosterone on

postnatal day 10 [200]. Another study which examined the impact of HFD exposure

during gestation and lactation noted that adult rat offspring had reduced basal

corticosterone but an elevated and longer lasting corticosterone response to stress

which was accompanied by an increase in anxiety behaviors [201]. This study also

noted an elevated number of receptors for glucocorticoids in the amygdala

[201]. As glucocorticoid action in the amygdala regulates CRH expression and

anxiety-like behavior [198], this could be a mechanism by which exposure to

maternal HFD increases anxiety in offspring. Glucocorticoid levels in the amygdala

have not yet been examined in NHP exposed to maternal HFD. It will be important

for future studies in NHPs to fully characterize the HPA axis and extrahypothalamic

CRH expression and glucocorticoid receptors.
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10.8 Mechanisms by Which Maternal HFD Consumption

and Obesity Influence Offspring Physiology

and Behavior

10.8.1 Inflammation-Induced Programming

As discussed above maternal obesity is associated with elevated levels of inflam-

matory factors such as c reactive protein, IL-6, IL-1β, and TNF-α [40]. Recent

evidence indicates that many of these inflammatory factors can cross the blood

placental barrier, triggering the release of additional inflammatory cytokines from

the placenta that subsequently impact the developing fetus. Evidence from animal

models extend these studies by documenting that maternal HFD consumption

increases inflammatory markers, microglial activation, and changes the behavior

of offspring. In NHPs, exposure to maternal HFD consumption causes elevated

levels of circulating inflammatory markers in the fetus and increased microglial

activation in the brain, which likely contribute to observed impairments in the

development of the dopaminergic [73], melanocortinergic [165], and serotonergic

systems [135] and a long-term impact on behavior and physiology

[135, 165]. These findings are supported by evidence from a rat model that found

that maternal HFD consumption results in increased microglial activation in the

hippocampus and increased anxiety and impairments in spatial learning in adult

male offspring [136]. A mouse study which examined both male and female

offspring noted increased proinflammatory cytokines and microglial activation

associated with increased anxiety behavior and impaired social behavior in female

offspring exposed to HFD during gestation [81]. In this murine model, male

offspring exposed to maternal HFD during gestation were noted to display hyper-

activity. Placement of the dams onto a control diet during the lactation period was

found to reduce the neural inflammation, social impairments, and anxiety observed

in female offspring, but did not affect the hyperactivity observed in the male

offspring [81], highlighting that the timing of the dietary exposure dramatically

impacts the behavioral outcome and that various behaviors have different sensitive

periods to maternal HFD developmental programming. In humans, exposure to

elevated proinflammatory cytokines during perinatal development has been shown

to impact brain development and increase risk for behavioral and metabolic disor-

ders. Exposure of the developing fetus to an inflammatory environment is associ-

ated with prematurity, low birth weight [202], and increased risk of ADHD [203],

ASD [204], and schizophrenia [205]. Also, exposure to increased levels of inflam-

matory markers during the neonatal period has been shown to increase risk for

several serious metabolic diseases including heart disease, cardiovascular disease,

type II diabetes mellitus, and hypertension [40]. Data from both human and animal

studies demonstrate that exposure to elevated inflammatory factors during the

perinatal period impairs the development of several neurotransmitter systems that

regulate physiology and behavior such as the serotonin, dopamine, and

melanocortin systems [40, 180, 206]. Exposure to inflammation is nonspecific
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and is thus likely to impact many neural pathways. It is important that future

research fully characterizes the impact of inflammation induced by maternal obe-

sity and HFD consumption on the developing brain. Also, given the dramatic

impact that exposure to inflammation has on offspring risk of metabolic and

behavior disorders, it is critical that therapeutic interventions using anti-

inflammatory agents are examined. A recent rodent study has examined one such

possible therapeutic intervention, ursolic acid, which was observed to ameliorate

the impairments in cognitive function observed with HFD consumption [157].

10.8.2 Programming by Excess Hormones and Nutrients

Maternal obesity or maternal overnutrition disrupts the normal development of

many different organ systems in almost all mammalian species, as has been

described in previous sections. Although obesity is an incredibly complex and

multifactorial disease, there are several obvious changes in nutrients and hormones

that have been demonstrated to direct or at least play a significant part in the

maternal programming of the fetus. Often, these altered levels of hormones and

nutrients act in concert to prepare the fetus for postnatal life. However, questions

remain about the contribution of individual nutrients or hormones to maternal

programming.

In maternal obesity, hyperglycemia is a hallmark of metabolic syndrome. To

investigate whether high glucose intake during pregnancy in the absence of obesity

can lead to programming changes, D’Alessandro et al. fed rats a high sucrose diet

during pregnancy and lactation [207]. Despite not seeing any changes in body

weights in the offspring, animals that were exposed to a high sucrose diet anytime

during development demonstrated increases in blood glucose levels, as well as

dyslipidemia with high circulating levels of very-low-density lipoproteins and

triglycerides. This suggests that high sucrose exposure can program both glucose

metabolism and hepatic lipid metabolism [207, 208]. Other studies in rodents have

demonstrated that a similar model of sucrose consumption during pregnancy can

program changes in the cardiovascular system [209]. There are currently no human

situations where the contribution of just hyperglycemia during development can be

studied to determine the effect on the developing fetus. Epidemiological studies in

humans looking at the contribution of hyperglycemia in cases of nonobese gesta-

tional diabetes argue that just having hyperglycemia can alter the physiology of the

offspring [210–212]. A large population study that underscored this finding was the

HAPO study (Hyperglycemia and Adverse Pregnancy Outcome) in which the

consortium confirmed that neonatal adiposity was correlated with maternal glucose

levels [213], although this programming in neonates did not translate into an

association with childhood obesity when the offspring reached the age of 5–7

years [214].

In the NHP, no current studies have investigated the direct role of glucose or

fructose on the development of the offspring in the absence of a HFD. One study did
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attempt to develop a model of type 1 diabetes in NHPs and determine the effect of

hyperglycemia on offspring. The authors determined that the hyperglycemia, as a

result of β-cell destruction with streptozotocin, results in large for gestational age

offspring as well as hyperglycemia and hyperinsulinemia in the fetuses [215].

The experimental models for studying maternal obesity almost always utilize a

diet that is high in saturated fat with simple sugars as the source of carbohydrate.

Although some studies have addressed the contribution of simple sugars in devel-

opmental programming (see section above), there is little known on the direct and

isolated effect of dyslipidemia on programming in the NHP. Research in our NHP

model of gestational obesity has demonstrated that exposure to a diet high in

saturated fats and sucrose resulted in significant elevated levels of triglycerides in

the liver of the fetus [72]. This in utero exposure to high levels of lipids resulted not

only in oxidative stress in the liver but also increases acetylation of histone H3, a

hallmark of epigenetic programming [123]. Further, this study highlighted some of

the molecular mechanisms involved in epigenetic programming by maternal obe-

sity in NHPs. The importance of decreases in NAD-dependent protein deacetylase

sirtuin 1 (SIRT1), an important player in epigenetic modifications, was underscored

by the changes in known targets of SIRT1 like peroxisome proliferator-activated

receptors gamma and alpha. Taken together, this study very elegantly showed that a

maternal HFD, resulting in liver triglyceride levels threefold of normal, can result

in epigenetic alterations that can have a deleterious effect on the future develop-

ment of liver disease. It is also important to note that these changes were driven by

the consumption of a HFD and were unrelated to maternal obesity.

Interestingly, when animals from a subsequent study were studied at 1 year of

age, only offspring from mothers that demonstrated sensitivity to the maternal diet

(insulin resistance) retained the increased levels of triglycerides in the liver [120]. It

will be interesting to determine whether the epigenetic changes that were observed

in the fetus persist in the animals after 1 year of age. Regardless, it is apparent that

although consumption of a maternal HFD can result in epigenetic programming of

the fetus, it requires insulin resistance in the mother to have dysfunctional lipid

handling at 1 years of age. This observation clearly suggests that programming is a

combinatorial process, which includes many different aspects of maternal obesity

including nutrient excess, insulin resistance, and inflammatory processes.

10.9 Conclusions

Evidence from epidemiological studies and animal models indicates that perinatal

exposure to maternal obesity and HFD consumption has a considerable impact on

the physiology and behavior of the developing offspring. A number of mechanisms

have been identified to contribute to maternal obesity and HFD consumption

programming of offspring development including placental dysfunction and expo-

sure to elevated levels of inflammatory factors, nutrients (glucose, triglycerides),

and metabolic hormones (leptin, insulin) that impact the developing brain, liver,
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pancreas, and cardiovascular system. Changes in these organ systems result in

sustained alternations in the offspring physiology leading to susceptibility to

obesity. Furthermore, impairments in the development of neurotransmitters sys-

tems important in behavioral regulation such as the serotoninergic, dopaminergic,

and melanocortinergic systems lead to persistent changes in behavior including

increased anxiety, impaired social behavior, and decreased cognitive function. The

alarmingly high rate of maternal obesity and HFD consumption in Western nations

places future generations not only at increased risk for obesity and metabolic

disorders but also at heightened risk of developing neurodevelopmental disorders

such as ASD and ADHD and mental health disorders such as anxiety. Given the

substantial healthcare costs associated with each of these disorders, it is critical that

future studies identify interventions that are efficacious in preventing and reducing

the impact of maternal obesity and HFD consumption on offspring development.
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Chapter 11

The Impact of Maternal Obesity on Offspring

Obesity via Programmed Adipogenesis

and Appetite

Michael G. Ross and Mina Desai

Abstract Obesity and its related diseases are the leading causes of death in

Western society. In concert with the epidemic of obesity among children and adults,

there has been a marked and continuing increase in the prevalence of obesity and

accompanying gestational diabetes among women presenting for prenatal care.

Results from both human and animal studies indicate that in utero environment

may contribute importantly to the developmental programming of adult obesity.

Remarkably, considering cellular divisions necessary for organ and body growth

(not including cell turnover), over 90% of lifetime cell divisions occur by the time

of birth. Thus, it should not be surprising that the maternal/fetal environment may

alter cell signaling, epigenetic regulation, and organ development. As energy and

nutrition balance are the ultimate endpoints of organ systems regulating energy

balance, it would be further expected that the fetal nutrient environment may

impact systems regulating food intake and energy storage. In this chapter, we

present evidence of the effects of maternal obesity, gestational diabetes, and

high-fat Western diets on the development of the hypothalamic appetite network

and adipose tissue. Through the interplay of extracellular signaling factors, intra-

cellular transcription responses, and nutrient-induced epigenetic alterations, the

maternal environment can program fetal/newborn energy pathways resulting in a

predisposition toward obesity. This predisposition is especially paramount within a

postnatal environment that facilitates neonatal growth as well as access to energy-

intense childhood and adult diets. These findings have great significance for

prenatal, neonatal, and childhood care.
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Among US adults, 69% are overweight (BMI 25 to<30 kg/m2) and 36% are obese

(BMI� 30 kg/m2) [1]. Worldwide, nearly 1.5 billion people are overweight or

obese. Obesity and its related diseases are the leading causes of death in Western

society, with associated risks of hypertension, cardiovascular disease, stroke, and

diabetes. Of concern to obstetricians, there is a marked and continuing increase in

the prevalence of obesity and gestational diabetes among pregnant women (~30%)

[2, 3], a factor associated with both high birth weight newborns and a known risk

factor for childhood obesity [4, 5]. Among women presenting for prenatal care, the

incidence of obesity has doubled since 1980 [6]. Not only do women begin

pregnancy at a higher body mass index, but, increasingly, women also gain excess

gestational weight. Thus, clinicians caring for pregnant women are commonly

caring for women who are overweight or obese.

As childhood obesity is a major risk factor for adult obesity [7], the 20%

incidence of childhood obesity [8] portends a further increase in the prevalence

of adult obesity and diabetes mellitus [7]. Globally, the obesity observed in both

developed and developing countries has been attributed to reflect societal, eco-

nomic, and cultural problems. Accordingly, much attention has been focused on the

role of environmental factors, including the availability of calorie-dense foods and

lifestyles involving less physical work. However, these factors are unlikely to

account for the dramatic increase in obesity during the past 60 years. This chapter

presents evidence that the predisposition to obesity may be programmed or

predetermined in utero.

The concept that the in utero environment programs obesity and obesity-

associated disorders is supported by phenotype results of both human and animal

studies and mechanistic insights from both in vivo and in vitro experiments. Based

upon calculations of average cell weight, cell size, and organ growth, the newborn

and adult body contain approximately 2.1� 1012 and 3.7� 1013 human cells [9],

respectively. Beginning with a fertilized ovum, it requires over 41 cell division

cycles to form a newborn and a total of 45 cycles for an adult. Thus, over 90% of all

cell divisions in a lifetime occur by the time of birth. It should, therefore, not be

surprising that the maternal/fetal environment may alter cell signaling, epigenetic

regulation, and organ development, with nutrient environment alterations specifi-

cally impacting energy regulating organs.

Initial experimental studies of fetal programming demonstrated that offspring

exposed to maternal undernutrition during pregnancy were predisposed to devel-

oping adult obesity and metabolic syndrome, despite being born small-for-gesta-

tional age [10–13]. Maternal overnutrition, however, is perhaps more clinically

relevant in today’s Western society. The programming effects of maternal

overnutrition may be associated with increased birth weight or newborn adiposity.

Offspring of women with gestational diabetes are consistently larger than normal

controls, with birth weight proportional to the mean maternal glucose levels
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[14]. However, maternal overnutrition, resulting from increased pre- or early

pregnancy body mass index or excessive gestational weight gain, has variable

effects on birth weight [15–17]. Recent human studies have demonstrated that

among these factors, maternal pre-pregnancy weight may be the most predictive

of offspring obesity [18]. Whether the programming effects of gestational diabetes-

associated macrosomia differ from that of maternal obesity alone is unknown at

present. The Northern Finland Birth Cohort of 1986 demonstrated that the preva-

lence of overweight and abdominal obesity at age 16 years were highest in those

exposed to both maternal prepregnancy overweight and gestational diabetes [over-

weight prevalence 40% (odds ratio; OR 4.05), abdominal obesity prevalence

25.7% (OR 3.82)]. Among mothers who were overweight prepregnancy, though

not gestational diabetic, there remained an increased risk for offspring overweight

and abdominal obesity (overweight OR 2.56, abdominal obesity OR 2.60). Surpris-

ingly, in offspring of women with prepregnancy normal weight, the prevalence or

risks of the outcomes were not increased by prenatal exposure to gestational

diabetes [19]. Among a Jerusalem birth cohort of 1400 young adults (32 years of

age), greater maternal prepregnancy BMI, independently of gestational weight

gain, was significantly associated with higher offspring BMI, waist circumference,

systolic and diastolic blood pressures, insulin, and triglycerides and with lower

high-density lipoprotein cholesterol. Specifically, the offspring of mothers within

the upper prepregnancy BMI quartile (>26.4 kg/m) have nearly a 5 kg/m higher

BMI compared with the offspring of mothers with lower BMI quartile [20]. The

development of metabolic syndrome among large-for-gestational-age (LGA) and

appropriate-for-gestational age (AGA) children was examined in a longitudinal

cohort study of Rhode Island (USA) children (age 6, 7, 9, and 11 years) born to

mothers with or without gestational diabetes mellitus. Obesity (BMI >85th per-

centile) at 11 years was present in 25–35% of the children, but rates were not

different between LGA and AGA offspring. However, LGA status and maternal

obesity increased the risk of metabolic syndrome approximately twofold [14]. In

addition, exposure to maternal diabetes [OR 5.7 (95% CI 2.4–13.4)] and exposure

to maternal obesity [2.8 (1.5–5.2)] are independently associated with type 2 diabe-

tes. These authors assessed that nearly 20% of type 2 diabetes in youth could be

attributed to intrauterine exposure to maternal obesity [21]. In addition to maternal

obesity and maternal gestational diabetes, excessive gestational weight gain is

associated with increased adiposity in offspring [22–24]. Regardless of the basis

for overnutrition and whether birth weight is normal or increased, adult offspring of

“overnourished” mothers consistently exhibit an increased risk of adult obesity and

metabolic abnormalities [25–27], evidence of in utero programming.

Animal studies have begun to examine the mechanisms of fetal programming,

with evidence that maternal obesity and a Western high-fat diet program fetal

adipose tissue to promote increased adipogenesis, and hypothalamic neural path-

ways to promote appetite as compared to satiety [28]. Animal models of maternal

overnutrition, including maternal obesity, replicate the human experience in that

offspring are predisposed to adult obesity [28–30]. Several studies have confirmed

that exposure to maternal high-fat diet during pregnancy may program adult
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offspring obesity, hypertriglyceridemia and insulin resistance [28, 31, 32]. Further-

more, neonatal overnutrition (induced by nursing a smaller litter) also leads to rapid

postnatal growth followed by hyperphagia and adult obesity [33]. This finding

highlights the fact that interactions with the postnatal environment and neonatal

growth rates may further modulate susceptibility to obesity, suggesting opportuni-

ties for prevention or mitigation.

Although a multitude of organ systems may be impacted by the maternal nutrient

environment, this chapter focuses on the programming of appetite/satiety regulation

and adipogenesis.

11.1 Appetite

Appetite regulation develops perinatally, and hence an altered environment during

critical periods of development may program appetite and satiety mechanisms,

thereby altering infant, childhood, and adult ingestive behavior. Numerous epide-

miological and animal studies have demonstrated that in utero perturbations of the

nutritional, hormonal, and/or metabolic environment as well as exposure to envi-

ronmental toxins (e.g., endocrine disrupters) may alter the development of the

appetite regulatory system, resulting in an increased risk of adult obesity.

Hypothalamic Sites of Appetite Regulation A complex circuit of hypothalamic

nuclei regulate appetite and hunger, integrating actions of systemic and central

appetite/satiety signals within several central regulatory sites. The predominant

appetite regulatory site, the arcuate nucleus (ARC), receives input from peripheral

(brain, pancreas, and adipocytes) and central sources [34]. The ARC contains two

primary neuronal populations which regulate appetite: medial ARC orexigenic

[NPY (neuropeptide Y) and AgRP (agouti-related protein)] and lateral ARC

anorexigenic neurons [POMC (proopiomelanocortin) and CART (cocaine- and

amphetamine-regulated transcript)]. Many of the ARC NPY/AgRP and POMC/

CART neurons project to downstream neurons in the periventricular nucleus

(PVN).

POMC neurons mediate anorexigenic responses by the release of alpha-

melanocyte-stimulating hormone (α-MSH) which binds to PVN neurons expressing

melanocortin-3 and -4 receptors (MC3/MC4-Rs). The orexigenic property of AgRP

results from its competition with α-MSH at MC3/MC4-Rs. Among the five sub-

types of NPY receptors, NPY-1R, which is expressed on PVN neurons, is primarily

responsible for NPY-induced increases in food intake. In addition to the PVN, the

ARC interacts with additional hypothalamic nuclei including the ventromedial

nucleus, the lateral hypothalamus, the dorsomedial nucleus, and brainstem sites

(e.g., locus coeruleus, nucleus of the solitary tract) [35, 36].

ARC neurons respond to blood-borne signals (e.g., leptin, insulin, and ghrelin) in

addition to central neurotransmitters. Leptin is an adipose tissue peptide that is

transported across the blood–brain barrier into the cerebrospinal fluid via a
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saturable transporter system in the choroid plexus, a process that is mediated by a

short form of the leptin receptor (ObRa) [37]. Insulin, which is secreted by the

pancreas, gains access to the hypothalamus also by means of a saturable receptor-

mediated process and diffusion from the median eminence [38]. Leptin serves as a

long-term regulator of appetite/satiety and energy balance, whereas insulin acts

more acutely as a satiety factor in response to meals. Both these anorexigenic

factors stimulate the POMC/CART neurons and inhibit the NPY/AgRP neurons.

Accordingly, ARC neurons exhibit high leptin and insulin receptor expression.

Genetic mutations in the obese (ob) gene, which codes for leptin, or the diabetes

(db) gene, which codes for the leptin receptor, lead to hyperphagia and obesity.

Notably, central insulin deficiency also may result in hyperphagia.

ARC Neurogenesis ARC development is a relatively late process in rodents, rhesus

monkeys, and humans, with final maturation not achieved until later stages of

postnatal development [39]. However, the development of hypothalamic nuclei is

initiated during fetal life, with continued neural development during the neonatal

period [40, 41]. In rat hypothalamus, POMC neurons become detectable from

gestational day E12.5, and NPY neurons first appear in the ARC at E14.5 [40]. A

subpopulation of POMC neurons transition to NPY neurons; thus, the terminal

peptidergic phenotype is not fully established until the postnatal period. Coinciding

with ARC neuronal maturation, ARC projections in rodents are formed beginning

in the second week of postnatal life [42].

The ARC neurons arise from neurogenic regions surrounding the third ventricle

during fetal/neonatal life. During development, neuroprogenitor cells (NPCs)

undergo extensive proliferation (two daughter NPCs), self-renewal (one NPC and

one differentiated cell), and ultimate terminal division into cells destined for

neuron, astrocyte, or oligodendrocyte fate [43]. NPCs migrate and populate the

hypothalamic nuclei. The process of NPC differentiation, first to neurons, and

secondly to the phenotype of appetite or satiety neurons, is regulated by a complex

spatial/temporal interplay of pathways, including cell communication factors (e.g.,

Notch/Hes1), energy/nutrient sensors (e.g., SIRT1, AMPK), and a series of

neuroregulatory basic helix-loop-helix (bHLH) transcription factors, such as

Mash1 and Neurogenin-3 (Ngn3) [44], among others.

Following the differentiation of NPCs to neurons, those cells destined for the

ARC further differentiate to express orexigenic (NPY, AgRP) or anorexigenic

(POMC, CART) peptides. The transcription factor Mash1 is required for the normal

development of POMC neurons [45]. Downstream from Mash1, Ngn3 also pro-

motes the development of POMC neurons, while inhibiting NPY expression.

Consistent with the critical role in ARC development, Mash1(�/�) mice demon-

strate ARC hypoplasia with minimal expression of POMC neurons, while Mash1

(+/�) mice overexpress NPY neurons. Similarly, Ngn3(�/�) mice express

markedly reduced POMC but increased NPY ARC neurons [46]. Thus, reductions

in Mash1 and Ngn3 expression appear to shift ARC development toward a decrease

in the POMC/NPY neuronal ratio [46]. Hes1, an upstream regulator which
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promotes NPC proliferation while inhibiting differentiation, also acts as a tran-

scriptional regulator (together with corepressors) of both Mash1 and Ngn3.

Mechanisms of Perinatal Appetite Programming Programmed appetite/satiety

development resulting from maternal overnutrition may involve multiple

interacting factors/pathways that influence offspring hyperphagia. Maternal and

fetal hypothalamic energy/nutrient sensors may impact neuroendocrine signaling

via inhibition/stimulation of transcription factors or epigenetic mechanisms. Sub-

sequent effects on neurotrophic factors ultimately influence the final expression of

hypothalamic ARC neuropeptides. Altered maternal nutritional alterations may

bias the offspring regulatory network toward hyperphagia by increasing the pro-

duction of and the sensitivity to the appetite peptide NPY and/or decreasing those of

the satiety peptide POMC. Studies of programmed appetite in rodents demonstrate

increased levels of hypothalamic NPY mRNA in fetuses [47] and adult offspring as

well as in other regions (PVN and lateral hypothalamic area) [48]. Other studies

demonstrate decreased ARC POMCMrna [49]. In addition, exposure to gestational

and lactational maternal diabetes also increases offspring NPY and AgRP as well as

decreases POMC and α-MSH [50]. Overall, in response to maternal overnutrition,

offspring exhibit an increased ratio of appetite to satiety gene expression, similar to

that observed in response to Mash1 or Ngn3 knockouts (discussed above).

Both maternal and postweaning diets independently influence ARC formation,

as hypothalamic development spans these periods. For example, maternal obesity

combined with a postweaning high-fat diet increases ARC NPY signaling (PVN

NPY1R), reduces POMC expression [51], and decreases sensitivity to leptin

[26]. In response to a maternal high-carbohydrate diet, offspring demonstrate

increased NPY release in the PVN [52]. Additionally, adult rats that are obese

due to neonatal overfeeding demonstrate a reduced ARC neuronal response to

leptin and insulin [53, 54]. Interestingly, rats that have a genetic predisposition to

develop diet-induced obesity also have a preexisting reduction in central insulin

sensitivity, and high-fat diets further reduce the sensitivity to insulin [55]. Notably,

maternal undernutrition during gestation also causes offspring to have an impaired

hypophagic response to insulin as adults [56].

Although insulin and leptin are important adult satiety factors, these peptides

also have important roles during fetal life in the regulation of ARC neurogenesis.

Both leptin and insulin induce NPC proliferation and promote NPC differentiation

(dependent upon ex vivo NPC culture conditions). Exogenous insulin promotes cell

growth and serves as a trophic factor in fetal neuronal cell culture [57]. Insulin

potentiates greater NPC proliferation than does leptin and biases the differentiation

of NPCs toward astrocyte lineage. Gestational diabetes may alter central insulin

action either via central insulin resistance or potentially increased central insulin

paralleling systemic levels. Either result may interfere with the ability of insulin to

act as a neurotrophic factor, causing offspring to have impaired neuronal develop-

ment specifically in the hypothalamic nuclei responsible for the regulation of

appetite. These animals exhibit decreased neuronal cytoplasm in the ARC, the

ventromedial nucleus, and the parvocellular division of the PVN, as well as an
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increase in the glia-to-neuron ratio in the periventricular region of the hypothala-

mus [58]. In rat fetal brain cell culture, axonal growth is stimulated in response to

insulin medium.

Following the observations that animals which are leptin-deficient or leptin-

insensitive have decreased brain size and development [59], leptin has been recog-

nized as a major neurotrophic factor during the development. In contrast to insulin,

leptin promotes neuronal lineage [60], ob/ob mice have been shown to have

significantly higher levels of oligodendrocyte precursor cells than wild-type mice

[61], confirming the role of leptin as a regulator of neural progenitor fate. Leptin is

well recognized to impact the postnatal development of ARC projection pathways

[62]. Leptin preferentially increases AgRP/NPY inputs to the PVN, while POMC

inputs are largely leptin independent [63]. In rodents, the leptin surge during the

second postnatal week correlates with ARC to PVN axonal projections [64, 65] and

influences ARC neuronal development [49]. Leptin-deficient (ob/ob) mice exhibit

anorexigenic pathway axonal densities markedly less than controls [62]. Leptin

treatment of newborn may rescue ARC projections [62]; however, offspring hyper-

phagia is not normalized, indicating that neural projections alone are not fully

responsible for dysregulated energy intake.

Due to temporal specificity of neurodevelopment, critical neurotrophic or

neurodifferentiation factor alterations may have varying effects dependent upon

the gestational or newborn age. Thus, treatment of ob/ob leptin-deficient mice with

leptin only restores ARC projections to the PVN if administered during postnatal

days 4–12 [62]. In contrast, in control pups, leptin given between postnatal days

1 and 10 actually results in adult hyperleptinemia, leptin resistance, increased food

intake, and excess body weight [66]. Thus, neonatal leptin excess can actually

induce obesity. As macrosomic human infants have disproportionately elevated

leptin levels [67, 68] in proportion to body weight and adiposity [69], it is feasible

that neurogenesis is perturbed during both fetal and neonatal life. These findings

point to the critical role of maternal nutrition preconception and during pregnancy/

lactation as well as the longer term consequences of fetal macrosomia.

11.2 Adipose Tissue

In parallel to programming of appetite, maternal obesity/overnutrition may program

fetal adipogenesis and lipogenesis. Adipogenesis, the process of cell differentiation

by which preadipocytes become adipocytes, requires highly organized and pre-

cisely controlled expression of a cascade of transcription factors [70, 71] which,

similar to neural development, may be influenced by the nutrient environment.

Increase in adipose tissue mass or adipogenesis occurs primarily during the prenatal

and postnatal development, though some adipogenesis continues throughout

adulthood [72].
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Adipogenesis The cellular development associated with adipose tissue growth

involves both cellular hyperplasia (increase in cell number) and hypertrophy

(increase in cell size) [72]. Hyperplasia (adipogenesis) involves the proliferation

and differentiation of preadipocytes, whereas hypertrophy is the result of excess

triglyceride accumulation in existing adipocytes due to a positive energy balance

[73–75].

Adipogenesis occurs when committed preadipocytes (adipocyte precursor)

undergo processes of differentiation, lipogenesis, and lipid accumulation to form

mature adipocytes [76, 77]. Preadipocyte factor (Pref-1) maintains the stem pool

and suppresses adipocyte differentiation by induction of its downstream target

SOX9 (sex determining region Y-box 9) [78–80]. SOX9 in turn directly binds to

the promoter regions of adipogenic transcription factors (CCAAT/enhancer binding

family of proteins C/EBPβ and C/EBPδ) to inhibit their promoter activity,

preventing adipocyte differentiation [80]. In contrast, upon suppression of SOX9,

preadipocytes differentiate to adipocytes [81] with coordinated interaction of sev-

eral adipogenic transcription factors (C/EBPβ, C/EBPδ, C/EBPα) [82, 83] which
activate the peroxisome proliferator-activated receptors (PPARs), especially

PPARγ2 [84]. The principal adipogenic transcription factor, PPARγ2, induces

lipogenic transcription factor SREBP1 (sterol regulatory element-binding protein),

thereby initiating both adipocyte differentiation and lipogenesis [85–87]. SREBP1

can also activate PPARγ, by both stimulating the production of an endogenous

ligand [88] and by inducing PPARγ promoter activity [85, 88].

Lipogenesis The downstream targets of PPARγ and SREBP1 include lipogenic

and lipolytic enzymes. The induction of lipoprotein lipase [89, 90] promotes fatty

acid delivery to adipocytes, while induction of fatty acid transport protein [91] and

acyl-CoA synthetase [92] results in enhanced fatty acid uptake by the adipocyte.

These actions contribute to enhanced triglyceride synthesis and accumulation in

adipose tissue [93]. The release of free fatty acid from adipocytes is facilitated by an

intracellular lipolytic enzyme, hormone-sensitive lipase [94].

In addition to fatty acid uptake and storage, synthesis of fatty acids (via de novo

lipogenesis) and triglycerides are equally important factors in fat accumulation.

Triglycerides destined for fat storage in adipose tissue are composed of fatty acids

from dietary sources and from de novo synthesis. De novo synthesized fatty acids

can undergo modification through creation of double bonds via desaturation and/or

further lengthening via chain elongation. While de novo synthesis and chain

elongation promote energy storage, breakdown of fatty acids by chain shortening

and β-oxidation promotes energy release. Since triglycerides become incorporated

into adipose tissue for storage, an increase in the monounsaturated to saturated fatty

acid ratio, therefore, increases propensity for fat storage [95]. Specifically, mono-

unsaturated fatty acids which are the preferred substrate for triglyceride synthesis

are a product of endogenous (de novo) synthesis from saturated fatty acid pre-

cursors [96]. The conversion of precursor (saturated) to product (monosaturated)

fatty acids is catalyzed by the lipogenic enzyme, stearoyl-CoA desaturase enzyme-

1 (SCD-1), which introduces a double bond at the Δ9 position. The product-to-
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precursor ratio represents the desaturation index and which directly reflects SCD-1

expression/activity [97]. Notably, both the desaturation index and SCD-1 activity

correlate with measures of adiposity [98].

Mechanisms of Perinatal Adipose Programming Mechanisms of perinatally

programmed adipose tissue resulting from maternal overnutrition may involve

multiple interacting factors/pathways that influence offspring adiposity and meta-

bolic abnormalities. These include altered adipogenic and lipogenic signaling

pathways, cellular growth and differentiation, regulatory hormones, energy sensors,

and/or epigenetics. Altered maternal nutritional alterations may bias the offspring

regulatory network toward increased triglyceride storage by promoting adipocyte

number, adipocyte size, and/or availability of substrate for triglyceride synthesis.

Various animal models of maternal overfeeding and obesity (i.e., high-fat, high

calorie, or cafeteria diet) before and/or during gestation and/or lactation have been

utilized. Adipogenesis programming may occur in the presence or absence of

increased newborn birth weight. In most cases, offspring of obese dams are

predisposed to postnatal obesity. In rodent and sheep models of maternal obesity,

enhanced offspring adipogenesis has been demonstrated in fetal life [99, 100] and

in adults [101]. Programmed adipogenesis has primarily been attributed to

upregulated PPARγ [27, 99, 102, 103]. Additional changes that facilitate triglycer-
ide storage include adipocyte hypertrophy [27, 99, 100] enhanced lipogenic path-

way as demonstrated by increased expression of lipogenic factors and enzymes

(SREBP1, fatty acid synthase) [104], and reduced lipolytic capacity as evident by

decreased expression of adrenoreceptors (β2, β3) [27], and hormone-sensitive

lipase [105].

Metabolic Consequences of Programmed Adipose Tissue Adipokines secreted by

adipose tissue regulate multiple metabolic pathways. For example, leptin regulates

appetite, adiponectin and resistin impact on insulin sensitivity, TNFα and IL-6 are

associated with inflammation, and angiotensinogen contributes to hypertension

[106, 107]. Hence, increased adiposity causes aberrant adipokine secretion and

subsequently a metabolic syndrome-like phenotype.

Maternal obesity/high-fat diet causes hypertensive phenotype in the high-fat

offspring [28, 108], which may, in part, be mediated by the adipose renin-

angiotensin system. Studies indicate that all components of the renin-angiotensin

system are expressed in white adipose tissue from rodents [109, 110] and humans

[111, 112], suggesting that the adipogenic RAS may be involved in the pathogen-

esis of obesity-related hypertension. Accordingly, studies have shown that adipose-

derived angiotensinogen (precursor of vasoactive angiotensin II) can contribute to

approximately 20% of plasma angiotensinogen concentrations and can modulate

blood pressure [112]. Overexpression of adipose angiotensinogen in mice induces

hypertension with increased body fat and plasma angiotensinogen levels, indicating

that an increased adipose tissue mass may result in higher circulating

angiotensinogen levels, a finding confirmed in obese individuals [113].

Maternal obesity/high-fat diet is also associated with insulin resistance [28] and

inflammation [101] which may in part be attributed to inflammatory adipokines
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resulting from infiltration and expansion of macrophage [114]. Specific gene

analysis of adipose tissue showed that the offspring exposed to maternal high-fat

diet had increased mRNA expression of pro-inflammatory cytokine (TNFα), mac-

rophage (CD68, MCP-1), and decreased glucose transporter (GLUT4) expression,

suggesting that maternal obesity may affect fetal insulin sensitivity by altering

inflammatory processes [25, 115].

11.3 Studies in Our Laboratory

We have examined both the phenotype and mechanisms of programming of

maternal obesity/high-fat diet in rodent studies. Young female rats were weaned

to a high-fat diet (60% kcal) and continued on this diet throughout pregnancy and

lactation [28]. Our results indicate a marked impact of maternal obesity/high-fat

diet on offspring body composition and the risk of metabolic syndrome. Despite

normal birth weight, all adult offspring mothers fed a high-fat diet exhibited

increased body fat even those that received normal nursing by control mothers

(i.e., exposure restricted only during pregnancy). This was accompanied by reduced

lean body mass in all offspring of mothers fed a high-fat diet, particularly in those

offspring that were exposed to maternal obesity/high-fat diet during pregnancy

alone. Thus, in these offspring, increased body fat with a marked decreased in lean

body mass resulted in normal body weight. These findings are similar to that

described in humans, particularly in the Indian subcontinent, of the “thin-fat”

phenotype in which individuals have a normal body weight, but markedly increased

body fat and reduced lean body mass. Importantly, it was subscapular rather than

abdominal visceral fat that was the preserved, suggesting increased subcutaneous

adipose tissue. Similarly, Zambrano et al. [116] showed increased subcutaneous fat

in offspring exposed to maternal obesity during fetal and nursing period.

Programming of Appetite Our studies show that increased offspring food intake

appears to be a major contributor to excess body weight in males, though not in the

females [28]. It is likely that in the female offspring either metabolic efficiency

and/or energy expenditure may be programmed by maternal dietary changes in

pregnancy and/or lactation. Consistent with this conclusion, studies on rodents and

sheep offspring suggest a programming effect of maternal diet on energy expendi-

ture in adult offspring [117].

In our studies, the hyperphagia exhibited by male offspring of mothers fed a

high-fat diet is a result of programmed changes in appetite regulatory signal factors.

At birth, the high-fat newborn males already have increased protein expression of

hypothalamic appetite neuropeptide AgRP. Importantly, with continued exposure

to maternal high-fat diet during nursing period, these offspring exhibit persistent

increased AgRP with now decreased expression of satiety neuropeptide POMC,

indicating impairment of both appetite and satiety pathways. To further examine

mechanisms of nutritional programming, we determined hypothalamic protein
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expression of NPC proliferative/neurogenic factors implicated in production of

AgRP/POMC neurons. Newborn males of mothers fed a high-fat diet had signifi-

cantly decreased Hes1 and Mash1 though unchanged Ngn3. As adults, high-fat

males showed decreased Hes1, Mash1, and Ngn3. These findings indicate an

alteration in bHLH factors which regulate ARC neurogenesis in response to mater-

nal high fat (Fig. 11.1).

As discussed above, leptin, which serves as a hypothalamic modulator of

appetite/satiety in the adult, also has critical neurotrophic role during fetal life in

the development of ARC pathways [118]. Our studies and others demonstrate that

despite normal birth weight, high fat pups had lower plasma leptin levels [28, 119],

which may play a role in developmentally programmed dysfunction of appetite/

satiety pathways.

Programming of Adipogeneis and Lipogenesis Our studies show that enhanced

adipogenesis also contributes to increased adiposity in the offspring of maternal

obesity/high-fat diet pregnancies. The programmed changes include increased

expression of adipogenic (PPARγ) and lipogenic transcription factors (SREBP1)

in newborn and adult adipose tissue [120, 121] as well as increased expression of

enzymes mediating fatty acid biosynthesis (fatty acid synthase, SCD-1) [104]

(Fig. 11.2). The regulation of PPARγ transcription is not only dependent upon the

energy status [122] and the availability of PPARγ ligands [123] but also by the

presence of co-regulators [93, 124]. Our studies indicate that co-regulators of

PPARγ are impacted by maternal obesity/high-fat diet. In the high-fat offspring,

Fig. 11.1 Neural Progenitor Cell (NPC). (a) Hes1: Decreased Hes1 inhibits proliferation and

reduces NPC pool. (b)Mash1 and Ngn3: Decreased Mash1 and Ngn3 promote NPY versus POMC

neurons
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the downregulation of co-repressor proteins and upregulation of co-activator are

consistent with increased expression of PPARγ and their obese phenotype [125].

Contributing to adipogenesis/lipogenesis, maternal obesity/high-fat diet may

markedly alter plasma fatty acids. We have shown that high-fat adult offspring

demonstrate elevated plasma triglyceride levels, irrespective of period of exposure

[28]. We have further explored mechanisms for programmed adiposity resulting

from perturbations in fatty acid metabolism that promote fatty acid availability and

triglyceride synthesis for fat storage. Our results demonstrate that exposure to

maternal obesity/high-fat diet programs offspring fatty acid metabolism, providing

another pathway leading to obesity. The adult offspring from maternal obesity/

high-fat diet had increased plasma and liver desaturation index with upregulated

liver SCD-1 protein expression, consistent with their obese phenotype [126].

We have further demonstrated that a high-fat diet during pregnancy and/or

lactation is sufficient to induce upregulation of the rat adipose tissue

angiotensinogen, likely contributing to the hypertensive phenotype [127]. Given

the current global obesity epidemic and the increasing prevalence of obese women

of reproductive age, obesity-mediated hypertension may present additional

complication.

Fig. 11.2 Adipose Tissue. (a) Adipocyte Differentiation: Increased PPARγ promotes adipocyte

differentiation and induces lipogenesis. (b) Lipogenesis: Increased lipogenic transcription factor

(SREBP1), and enzymes (fatty acid synthase, SCD-1), and increased monounsaturated fatty acids

(MUFA) facilitate triglyceride storage
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11.4 Conclusions: Clinical Implications and Conclusions

A major public health challenge in the twenty-first century is to devise an effective

policy and practice to combat the epidemic of obesity across all spectrums of age

groups. Prevention of childhood obesity remains a high priority for many health

professionals. There is irrefutable evidence that departures from optimal growth in

utero, whether from limited or excess nutrition, increase the relative risk of adult

obesity and metabolic syndrome, in part a result of programming of both appetite

and adiposity. Although food intake is a critical survival function, appetite and

satiety demonstrate a remarkable heterogeneity among humans, with a spectrum

contributing to both anorexia and hyperphagia. Whereas obesity was often viewed

as dietary indiscretion combined with reduced energy expenditure, it is now

recognized that enhanced appetite and adipogenesis may predispose to obesity.

The maternal and thus fetal nutritional environment may respond to altered energy/

nutrient levels during critical embryological and developmental periods so as to

alter neurogenesis and adipogenesis. Through the interplay of extracellular signal-

ing factors, intracellular transcription responses, and nutrient-induced epigenetic

alterations, the maternal environment can program fetal/newborn energy pathways

resulting in a predisposition toward obesity. This predisposition is especially

paramount within a postnatal environment that facilitates catch-up or even excess

neonatal growth as well as access to energy-intense childhood and adult diets.

Collectively, these findings have great significance for prenatal, neonatal, and

childhood care.
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Chapter 12

Developmental Programming

of Nonalcoholic Fatty Liver Disease (NAFLD)

Kimberley D. Bruce and Felino R. Cagampang

Abstract Nonalcoholic fatty liver disease (NAFLD) is currently the most common

cause of chronic liver disease worldwide and is present in a third of the general

population and the majority of individuals with obesity and type 2 diabetes. The less

severe form of the disease is relatively common and can be somewhat benign.

However, in certain individuals, the disease can progress to the more severe

nonalcoholic steatohepatitis (NASH), resulting in a poor health, a poor prognosis,

and a significant healthcare burden. In recent years, there has been a major research

effort focused on identifying the factors that promote NALFD disease progression,

and as a result there has been a significant advancement in our understanding of the

interaction between nutrition and the molecular mechanisms that regulate hepatic

lipid homeostasis. Nonetheless, the capacity of the maternal diet to alter these

fundamental metabolic pathways and thus prime the development of severe fatty

liver disease in the adult liver has proved to be one of the most striking findings

from this body of research. Since the prudence of the maternal diet has wavered in

recent years, this may explain why NAFLD—once commonly associated with older

individuals—is now increasingly common in young adults, children, and adoles-

cents. In the following chapter, we aim to review the current hypothesis surround-

ing the mechanisms that underlie the developmental priming of NAFLD. We will

also explore how these novel insights have facilitated the emergence of promising

new pharmacological and nutritional intervention strategies.
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12.1 The NALFD Spectrum

Nonalcoholic fatty liver disease (NAFLD), which was once thought of as a passive

metabolic condition, describes a spectrum of disorders characterized by the accu-

mulation of ectopic fat accumulation in the liver without significant alcohol use. At

one end of the spectrum is simple steatosis, often termed NAFLD. Although many

individuals with NAFLD remain stable, 25% of these patients can progress to

steatosis with inflammation, termed nonalcoholic steatohepatitis (NASH) [1]. This

more severe form of the disease (NASH) can progress further still, with a significant

proportion of individuals developing fibrosis (26–37%) and cirrhosis [2]. NASH

cirrhosis can eventually result in portal hypertension, liver failure, and ultimately

death. Interestingly, a number of recent studies have shown that NASH cirrhosis is

linked to hepatocellular carcinoma (HCC) [3]. Although the precise link between

NAFLD and HCC is currently under investigation, early findings suggest that it

involves alterations in major pathways that regulate hepatic metabolism, such as

insulin resistance and cellular lipid metabolism. Since the development of NAFLD

and HCC involves perturbations in the same molecular pathways, they are likely

influenced by the same metabolic disorders such as obesity and type 2 diabetes

(T2D). The rising prevalence of obesity-related disorders in many industrialized

countries raises huge concerns regarding the concurrent rising incidence of NAFLD

and HCC.

12.2 3-Hit Hypothesis

The precise interplay between factors that promote disease progression is still under

investigation. Nonetheless, it is hypothesized that a 3-hit mechanism is involved in

the pathogenesis and progression of NAFLD. The “1st hit” consists of hepatic

triglyceride accumulation that may result simply from dietary or lifestyle factors.

The “2nd hit” may include factors that promote disease progression such as

pro-inflammatory cytokines, which in turn lead to steatohepatitis and/or fibrosis

[4]. Recent work suggests that there are in fact a multitude of factors that may act as

the 2nd hit to promote liver disease progression, including diets rich in saturated fat

and cholesterol, diets low in polyunsaturated fat and fiber, diets during develop-

ment, epigenetics, circadian rhythms, and disturbances in intestinal microbiota.
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12.3 NAFLD Is the Hepatic Manifestation of the Metabolic

Syndrome

The metabolic syndrome is a cluster of cardiometabolic conditions, which include

obesity, insulin resistance, high blood pressure, and atherogenic dyslipidemia

[5]. The present definition of metabolic syndrome does not include hepatic steatosis

despite growing evidence suggesting that NAFLD is the hepatic manifestation of

the metabolic syndrome [6]. While the existence of the metabolic syndrome

remains controversial, features of the metabolic syndrome tend to aggregate in

the same individuals, and over time the presence of multiple factors anticipates the

onset of additional components [7]. Thus, the metabolic syndrome, and recognition

of NAFLD as a primary feature, may serve an important utility in clinical practice

as a predictor of progressive NASH and cardiometabolic disease.

12.4 The Incidence and Prevalence of NAFLD and NASH

The prevalence of NAFLD in the general population is variable and ranges from

9 to 37% [8–10]. Current estimates state that NAFLD is the most common etiology

of chronic liver disease in the USA and other developed countries [11, 12]. Specif-

ically, in the USA recent estimates suggest that NAFLD affects 30% of the general

population, 58% of overweight people, and 90% of individuals who are considered

morbidly obese [13]. As suggested by the natural history of NAFLD, the proportion

of individuals with NASH is much lower and has been estimated to affect 5–7% of

the general population and as much as 34–40% of patients who have elevated liver

enzymes [14]. With the global rise of obesity, it is predicted that there will be

greater rates of NAFLD progression and that NAFLD will be the most common

etiology for liver transplantation in the twenty-first century [15].

12.5 Pediatric NAFLD

An increasing number of younger individuals are being diagnosed with NAFLD

[16]. Recent estimates suggest that in Western societies, the number of children

with NAFLD ranges from 3 to 10% in the general population, and up to 70% in

children who are considered obese [17]. Alarmingly, the number of adolescents

diagnosed with NAFLD has more than doubled in the last two decades [18], and

like adults, pediatric NAFLD can also follow a severe disease progression to

cirrhosis and end-stage liver disease [19], which is also predictive of features of

the metabolic syndrome and intramyocellular lipid deposition [20]. Also similar to

adults, both sex and race can be a risk factor for NAFLD onset, and its development

appears to be more common in boys than girls [21]. However, unlike adults, in
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pediatric NAFLD there is a unique deposition of fat in the periportal region

[22]. While this difference is not well understood, it is clinically significant since

periportal inflammation is often associated with more severe liver disease [23].

There is now a significant body of research which suggests that features of the

metabolic syndrome including NALFD may have their origins very early in life. In

humans, the liver itself begins to develop in the fetus at 4 weeks of gestation with

the formation of the hepatic bud from the ventral endoderm, and gross morphogen-

esis is completed by the end of the first trimester with refined cellular development

continuing throughout gestation [24, 25]. A plethora of genes and their transcription

factors are involved in the development of metabolic processes, including gluco-

neogenesis, glycogenolysis, lipid oxidation, and de novo lipogenesis, and are

already expressed in the fetal liver although not highly expressed until after birth

[26]. The liver is also primary location of hematopoietic development from week

6 to 21 of gestation, with hematopoietic stem cells accounting for 60% of total liver

mass during peak hematopoiesis followed by regression to the fetal bone marrow by

term [27]. The developing liver is therefore in a constant flux throughout gestation

and is susceptible to adverse environment during this critical period of development

such that the growing organism may undergo changes in its fundamental metabolic

pathways in an attempt to adapt to its environment. Many of these changes persist

into adult life and can increase the susceptibility of developing metabolic disease in

later life stages. Thus, the metabolic health of the mother, whether inherent or

acquired through imbalanced diet, may lead to a transgenerational amplification of

metabolic disease, including NAFLD.

12.6 Conundrum of NAFLD Susceptibility

in the Offspring: Is the “1st Hit” Down to Maternal

BMI or Maternal Diet During Pregnancy?

Studies conducted in various animal models, including rodents, sheep, and

nonhuman primates, have reported that consumption of aWestern-style diet, mostly

high-fat diet (HFD) during pregnancy, significantly increase NAFLD susceptibility

in the adult offspring [28]. This is of particular relevance to humans in today’s
society, where abundance of food high in fat and calories coincides with increasing

obesity epidemic that is occurring at a younger age. It is no coincidence that this

epidemic is correlated with increasing number of obese women becoming pregnant

and the onset of obesity-associated morbidities [29–31]. Although there is clearly

an association between maternal obesity and subsequent childhood adiposity [32–

35], it remains uncertain whether it is the consumption of HFD or the resulting

obesity that leads to the development of NAFLD in the offspring.

On one hand, chronic consumption of a HFD, independent of maternal obesity

and gestational diabetes, has been suggested to significantly increase the risk of

NAFLD in the offspring. In a study conducted in a nonhuman primate, the Japanese
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macaque, fetal offspring from both lean and obese mothers chronically consuming a

HFD had significantly elevated liver triglycerides (TGs), suggesting an increased

maternal lipid transfer to the fetus regardless of maternal obesity [36]. This was

further substantiated by their findings of no change in mRNA or protein expression

of lipogenic enzymes involved in de novo lipogenesis. These results therefore

suggest that a developing fetus is highly vulnerable to excess lipids, independent

of maternal obesity, increasing offspring risk to NAFLD. It was suggested that the

increased lipid buildup in the fetal liver can cause lipotoxicity leading to increased

macrophage infiltration and inflammatory cytokine production, the result of which

causes premature gluconeogenic gene expression, steatosis, elevated triglyceride

content, and oxidative stress that could persist into the postnatal period [37]. In

another study, it was also suggested that maternal HFD feeding could increase

apoptosis in the developing fetal liver contributing to the priming of the liver to

NAFLD in later life [38]. However, others have countered that it is maternal

obesity, and not the consumption of the HFD per se, which is the primary mech-

anism driving NAFLD susceptibility in the offspring. In a study conducted in rats,

females were subjected to total enteral nutrition-based overfeeding to bypass the

satiety response that limits ad libitum food intake, causing them to become obese

prior to mating and this resulted in their offspring to be more prone to becoming

obese when fed postnatally with a HFD [39]. In another study, rats dams fed a HFD

but restricted to the caloric intake of pair-fed low-fat diet (LFD) mothers failed to

become obese, and this prevention of maternal obesity resulted in normal body

weight in the adult offspring [40]. Conversely, ad libitum maternal HFD feeding

resulted in obese dams whose offspring were heavier in adulthood than offspring of

non-obese dams. Although these studies show that maternal obesity rather than the

HFD itself increased offspring body weight, it remains to be determined how this

may lead to increased lipid accumulation in the offspring liver.

It is difficult to investigate NAFLD in neonatal studies due to the invasive nature

of its definitive diagnosis. Thus, these kinds of studies have mainly been conducted

in animal models, where maternal obesity is associated with NAFLD even before

birth [28, 41, 42]. Evidence for a direct association between maternal obesity and

offspring hepatic lipid accumulation in humans only recently came to light with the

use of imaging technologies as a noninvasive means to screen for steatosis in

newborn infants [43–45]. Maternal obesity is not only associated with greater

morbidities in the mother but may also be responsible for accelerated hepatic fat

accumulation in the offspring during early-life development. Interestingly, the

aforementioned studies in the newborns found that neonatal hepatic fat did not

correlate with newborn adiposity, suggesting that the drivers for hepatic fat storage

and subcutaneous fat may be different and that factors associated with maternal

obesity, such as excess serum lipids, could be associated with newborn hepatic fat

accumulation [44, 45].

Pregnancies complicated by maternal obesity are often associated with gesta-

tional diabetes, which could serve as the catabolic switch that increases serum lipid

levels and enhances placental lipid transport [46–48]. This excess lipid exposure

may therefore utilize the fetal liver as ectopic sites of fat deposition and could
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promote metabolic and cellular stress and inflammation in an organ not yet com-

petent in handling such substrate overload.

12.7 The Role of Mitochondrial Dysfunction

in Developmentally Primed NAFLD

Mitochondria are essential organelles that process glycolysis and lipolysis products

to generate the cellular energy carrier ATP. They are the main energy source in

hepatocytes and play a major role in oxidative metabolism and normal function of

the liver. Mitochondria regulate cellular lipid metabolism, amino acid metabolism,

cell proliferation, ion homeostasis, and even cell death pathways via reactive

oxygen species (ROS) production. Therefore, it is no surprise that suboptimal

mitochondrial function has been implicated in the development of chronic liver

diseases including HCC and the NAFLD spectra. The mechanisms leading to

altered mitochondrial energy metabolism and characterization of the transcriptional

pathways that regulate mitochondrial biogenesis and function have been the subject

of intense research focus. Recent findings have advanced our understanding and

may offer important insights into possible therapeutic interventions aimed at

improving hepatic pathophysiology.

In the fed state, food-derived NADH or flavin adenine dinucleotide (FADH2)

acts as a hydrogen or electron donor and transfers the hydrogen/electron to an O2

molecule, via redox components in the electron transport chain (ETC) complexes.

This “oxidative phosphorylation” occurs in the inner mitochondrial membrane,

where the majority of electron donors and acceptors are found, including cyto-

chrome b, cytochrome b562 and b566, in ETC complex III [49]. In times of

increased energy intake and metabolic demands, increased mitochondrial

β-oxidation enhances the formation of NADH and FADH2 and increases the

delivery of electrons to the ETC. Such an increase in electron flow through the

ETC causes the buildup and leakage of electrons and ROS production

[50]. Overproduction of ROS is considered as a major pathogenic agent of many

metabolic diseases, including NAFLD.

The current hypothesis regarding the pathogenesis of NASH suggests that

multiple “hits” are required for the disease to progress. While the “1st hit” may

involve accumulation of fat in the liver, a growing body of evidence suggests that

the second hit involves oxidative stress, lipid peroxidation, the production of

malondialdehyde, 4-hydroxynonenal, pro-inflammatory cytokines, stellate cell

activation, and fibrogenesis [51]. It is now fairly well established that mitochondrial

dysfunction may be involved in at least one of these hits, due to their central role in

the β-oxidation of free fatty acids (FFAs), ROS production, and lipid peroxidation

[52]. In fact, a number of studies have reported defects in mitochondrial ETC

enzymes in individuals diagnosed with NASH. Specifically, in patients with

NASH, the activity of the ETC enzymes is markedly reduced and correlates
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significantly with pro-inflammatory markers [53]. In addition, NAFLD is associ-

ated with ultrastructural mitochondrial abnormalities and depletion of mitochon-

drial DNA. Such changes in mitochondrial DNA have been shown to further

suppress the expression of mitochondrial respiratory complexes I, III, IV, and V

and exacerbate mitochondrial dysfunction [54]. While there are clear associations

between mitochondrial dysfunction and NALFD pathogenesis, the mechanisms

leading to improperly functioning mitochondria are not fully understood. It is

plausible to suggest that nutrient excess may lead to increased ROS-mediated

lipid peroxidation and mitochondrial dysfunction. In support of this hypothesis,

NAFLD has been observed in the liver of obese sedentary and hyperphagic rats,

characterized by reduced fatty acid oxidation, decreased cytochrome c protein

content, and decreased carnitine palmitoyl-CoA transferase (CPT-1) activity

[55]. Thus, it is thought that positive energy balance and nutrient excess may

play a key role in NAFLD onset and progression.

Curiously, mitochondrial respiratory chain disorders are an established cause of

liver failure in early childhood but have been underdiagnosed, partly due to

underrecognition and partly due to the invasive nature of the investigations

[56]. Since hepatic mitochondria are of maternal origin, they are a likely candidate

vector for maternally inherited metabolic stress. Thus, mitochondria may be con-

sidered an important conduit for metabolic disease and a target for investigations

into metabolic perturbations in offspring of obese mothers. Indeed, in recent years

there has been a plethora of studies highlighting the role of mitochondrial dysfunc-

tional in the molecular pathogenesis of developmentally primed NAFLD. Studies in

rats have shown that adult offspring of mothers exposed to a HFD prior to

conception, and throughout gestation and lactation, develop insulin resistance and

features of NAFLD [57]. Similarly in mice, offspring of mothers fed a HFD, who

are also fed a HFD in postnatal life, develop a more severe liver phenotype akin to

human NASH [28]. In these studies, maternal HFDs have been linked to reduced

ETC activity, which when coupled with further HFD challenge exceeds the liver’s
oxidative capacity, resulting in excessive fat accumulation and increased de novo

lipogenesis, reduced β-oxidation, and inflammation [28].

These initial studies initiated an intensive research effort aiming to understand

how maternal diets interact with mitochondrial function to reduce oxidative capac-

ity. A number of studies have highlighted the role of mitochondrial Sirtuins and the

acetylation of mitochondrial proteins in metabolic disease and aging. Mitochondrial

protein acetylation regulates a number of enzymes involved in the TCA cycle,

gluconeogenesis, and β-oxidation and is regulated (at least in part) by the mito-

chondrial class III NAD+-dependent deacetylate Sirtuin 3 (SIRT3) [58]. Since no

significant changes in mitochondrial acetylation are observed in mice lacking both

SIRT4 and SIRT5, SIRT3 is thought to be the primary mediator of mitochondrial

protein acetylation [59]. Since mitochondrial acetylation is sensitive to nutrient

status, and can be modulated in times of caloric restriction [60], SIRT3 seems a

likely mediator of nutrient-derived mitochondrial stress. In fact, chronic (up to

16 weeks) feeding of a HFD has been reported to reduce SIRT3 activity and cause a

threefold decrease in hepatic NAD+ levels. Chronic HFD feeding results in
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hyperacetylation of mitochondrial proteins, which is associated with reduced pro-

tein activity and mitochondrial function. Interestingly, mice lacking SIRT3 dem-

onstrate even greater hyperacetylation of mitochondrial proteins under HFD

conditions and show a marked disruption in mitochondrial oxidative phosphoryla-

tion and ETC complex activity [60]. Importantly, this reduction in SIRT3 activity

and abundance can be passed to the subsequent generation. For example, offspring

of obese mothers have significantly reduced SIRT3 gene and protein expression

[61]. One of the major consequences of reduced SIRT3 expression is reduced

mitochondrial β-oxidation [61]. It is possible that impaired mitochondrial oxidative

capacity creates a shunt of intermediary metabolites toward lipid storage and/or de

novo lipogenesis, thus contributing toward the development of NASH in the

offspring of obese mothers.

While the mechanisms leading to reduced SIRT3 activity are currently under

investigation, a plausible explanation involves an altered availability of the essen-

tial cofactor NAD+, which in turn is able to directly affect SIRT3 function and

abundance. This has implications not only for SIRT3 but for other NAD+-

dependent Sirtuins, such as SIRT1, a protein long associated with metabolic health

and longevity. During fasting, there is an increase in pyruvate and NAD+ levels that

is able to facilitate SIRT1 activity and increase protein levels and (PMID:

15744310). Although it plays a number of intracellular roles, SIRT1 is also asso-

ciated with mitochondrial function. When NAD+ levels are favorable, SIRT1

deacetylates and activates peroxisome proliferator-activated receptor alpha

(PPAR-α), which in turn transcriptionally activates a number of genes associated

with mitochondrial biogenesis, such as peroxisome proliferator-activated receptor

gamma coactivator 1-alpha (PCG1α) [62], and mitochondrial oxidative metabolism

[63]. Although the mechanism is not fully understood, it appears that PPAR-α and

SIRT1 act upstream of a number of factors that are heavily associated with the onset

of hepatic steatosis. Interestingly, mice that lack PPAR-α develop severe hepatic

steatosis during fasting, an observation which is consistent with reduced mitochon-

drial capacity [64]. On the other hand, viral-mediated overexpression of SIRT1 is

able to induce a gene cassette associated with a healthy, non-fatty liver. This

included downregulated expression in a number of “lipogenic” genes associated

with increased lipid accumulation, such as sterol regulatory element-binding pro-

tein 1c (SREBP-1c), fatty acid synthase (FASN), and the elongation of very long

chain fatty acids protein 6 (ELOLV-6) [65].

Several studies have shown that a maternal HFD feeding and maternal obesity

are both able to downregulate SIRT1, thus preventing the antagonism of lipogenic

transcription factors and contributing to the developmental priming of fatty liver. In

a recent study, in utero exposure to a maternal HFD, but not obesity per se, was

linked to a decrease in SIRT1 gene expression and in vitro protein deacetylase

activity in the offspring liver [66]. Moreover, a maternal HFD was associated with

altered expression of SIRT1-regulated downstream lipogenic effectors, such

PPAR-α, PPAR-γ, sterol regulatory element-binding protein F1 (SREBF1), choles-

terol 7alpha-hydroxylase (CYP7A1), FASN, and stearoyl-CoA desaturase (SCD) in

the offspring liver [66]. On the other hand, recent studies using models of maternal
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obesity have reported that SIRT1 mRNA is unchanged in the livers of offspring of

obese dams compared to offspring of normal weight dams. However, the down-

stream PPAR-α and SIRT1 gene cassette still becomes dysregulated, including

blunted PCG-1α expression, which may prevent the mitochondrial biogenesis that

necessitates HF catabolism, resulting in increased hepatic accumulation suscepti-

bility to develop NAFLD [61].

12.8 Epigenetic Modifications Underlying NAFLD

Development

Epigenetics refers to the heritable changes in gene expression that do not involve

changes to the underlying genome, i.e., a change in the observable physical traits or

biochemical characteristics of an individual (phenotype) without a change in its

genetic makeup or genotype [67]. Conrad Hal Waddington first coined the term

epigenetics in 1942, which was derived from the Greek word “epigenesis” to mean

the influence of genetic processes on development [68]. Since then, research efforts

have focused on unraveling epigenetic mechanisms involved in the regulation of

gene expression. Although epigenetic change can occur naturally, it can also be

influenced by several factors including age and environment factors including diet

[69, 70]. Epigenetic aberrations are generally transient and non-heritable, but some

are transmitted from one generation to the next (transgenerational), thus affecting

the traits of the offspring without altering their DNA structure [71].

The process of regulating the expression of genes involves modification of

chromatin structure, initiation and processing of transcription to generate messen-

ger RNA (mRNA), and the translation of the mRNA into sequences of amino acids,

which defines the protein [72]. Epigenetic mechanisms thus regulate the modifica-

tion of the chromatin structure and the initiation of transcription to alter availability

of genes to transcription factors required for their expression [73]. These epigenetic

mechanisms include DNA methylation, posttranslational modification of histones,

chromatin remodeling, and RNA-based mechanisms such as microRNA

[74]. Recent studies have demonstrated that metabolic pathways perturbed by

diets rich in saturated fat and cholesterol can trigger epigenetic changes, thereby

modifying gene expression [75–77]. These epigenetic effects are increasingly

recognized as crucial factors in the pathophysiology of NAFLD, and there are

now a plethora of epigenetic changes associated with genes involved in NAFLD,

in both animals and humans (Tables 12.1 and 12.2). Earlier studies in animal

models have investigated the effects of maternal undernutrition on the epigenotype

and metabolically perturbed phenotype of the offspring. The focus has now shifted

to maternal obesity and its consequential effect on the offspring epigenome. One of

the very early studies using an obese Agouti mouse have shown that genetic

tendency towards obesity was progressively exacerbated when the Agouti allele

was passed along successive generations [78].
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Table 12.1 DNA methylation and histone modification in genes linked to development of

NAFLD

Epigenetic

mechanisms Species Target genes References

DNA

methylation

Mouse MMTP, PPAR-α, INSIG, FASN [79, 80]

Rat SREBPF2, AGPAT3, ESR1, FASN, CDKN1α, lep-
tin, PPAR-α

[81–85]

Humans PGC1α, TFAM, MT-ND6, PC, ACLY, PGCG1,

IGF1, IGFBP1, PRKCE, GALNTL4, GRID1, IP6K3

[86–88]

Histone

modification

Mouse ChREBP, CYP8B1, TNFα, CCL2, PPAR-α, ERO1α,
LXRα, SIRT1, SIRT3, RORα

[89–96]

Macaques GPT2, DNAJA2, RDH12, NPAS2 [97, 98]

Human NER [99]

ACLY ATP citrate lyase, AGPAT3 1-acylglycerol-3-phosphate O-acyltransferase 3, CCL2 chemo-

kine C–C motif ligand 2, CDKN1a cyclin-dependent kinase inhibitor 1a, ChREBP carbohydrate-

responsive element-binding protein, CYP8B1 sterol 12α-hydroxylase, DNAJA2 DnaJ (Hsp40)

homolog, subfamily A, member 2, ERO1α oxireductase endoplasmic reticulum oxidoreductin1α,
ESR1 estrogen receptor 1, FASN fatty acid synthase, GALNTL4 putative polypeptide N-

acetylgalactosaminyltransferase-like protein 4, GPT2 glutamic pyruvate transaminase 2, GRID1
glutamate receptor δ-1 IP6K3 Inositol hexaphosphate kinase 3, IGF1 insulin-like growth factor

1, IGFBP2 insulin-like growth factor binding protein 2, INSIG insulin-induced gene, LXRα liver X

receptor α, MT-ND6 mitochondrially encoded NADH dehydrogenase 6, MTTP microsomal

triglyceride transfer protein, NER nucleotide excision repair, NPAS2 neuronal PAS domain-

containing protein 2, SREBPF2 sterol regulatory element-binding transcription factor 2, PC
pyruvate carboxylase, PGC1α peroxisome proliferator-activated receptor gamma coactivator

1-alpha, PLCG1 phospholipase C-gamma-1, PPARα peroxisome proliferator-activated receptors

α, PRKCE protein kinase C, epsilon, RDH12 retinol dehydrogenase 12, RORα retinoic acid-related
orphan receptor α, SIRT1 sirtuin 1, SIRT3 sirtuin 3, TFAM mitochondrial transcription factor A,

TNFα tumor necrosis factor α

Table 12.2 MiRNA changes in NAFLD

Species Upregulated MiR Downregulated MiR References

Mouse miRNA-24, miRNA-33a,

miRNA-34a, miRNA-122,

miRNA-155, miRNA-181a,

miRNA-182, miRNA-183,

miRNA-192, miRNA-199a-3p/5p,

miRNA-200b, miRNA-705,

miRNA-1224

miRNA-92b-3p, miRNA-216,

miRNA-302a, miRNA-328-3p,

miRNA-467b, miRNA-484,

miRNA-574-5p, miRNA-615-3p

[128–137]

Rat miRNA-15b, miR-155, miRNA-

200a/b, miRNA-429

miRNA-27, miRNA-122,

miRNA-451

[124, 138–

140]

Humans miRNA-10b, miRNA-16,

miRNA19a/b, miRNA-21,

miRNA-27b-3p, miRNA-34a,

miRNA-122, miRNA125b,

miRNA-192-5p, miRNA-451,

miRNA-1290

miRNA-28-3p, miRNA-99a,

miRNA-132, miRNA-146b,

miRNA-150, miRNA-181d,

miRNA-197, miRNA-296-5p,

miRNA-433, miRNA-511,

miRNA-517a, miRNA-671

[118, 121,

141–149]
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12.8.1 DNA Methylation in NAFLD

Epigenetic changes through DNA methylation refers to the addition of methyl

groups to cytosine residues of DNA. In mammals, DNA methylation mainly occurs

in regions of DNA where a cytosine nucleotide occurs next to a guanine nucleotide,

or so-called CpG sites. These CpG sites tend to cluster together to form CpG

islands. When a CpG island in the promoter region of a particular gene is methyl-

ated, expression of the gene is repressed or is turned off (Table 12.1). In livers of

patients with NAFLD, there is evidence for increased methylation of the CpG

island in the promoter region of PGC1α, a key transcription factor involved in

mitochondrial biogenesis, fatty acid oxidation, gluconeogenesis, and lipogenesis

[87]. Moreover, it has been shown that there is an inverse correlation between

mitochondrial DNA (mtDNA) content and the methylation levels of the PGC1α
promoter. Thus, the finding of a reduction in mtDNA content in livers of these

NAFLD patients suggests that mitochondrial dysfunction associated with hepatic

steatosis is due to liver DNA methylation of PGC1α. The mitochondria are also a

major source and target of reactive oxygen species (ROS). The mtDNA-encoded

NADH dehydrogenase 6 (MT-ND6) gene is a target of methylation in NAFLD

[86]. In patients with NASH, it has been reported that MT-ND6 is highly methyl-

ated and the MT-ND6 gene is considerably reduced in their livers. Thus, DNA

methylation of the mitochondrial gene may play an important role in the develop-

ment and pathogenesis of NAFLD.

Differential methylation has also been identified in genes involved in metabo-

lism and in insulin signaling when liver samples from NAFLD patients were

analyzed by array-based DNA methylation and mRNA expression profiling

[88]. The former includes pyruvate carboxylase (PC), ATP citrate lyase (ACLY),

and Phospholipase C-gamma-1 (PLCG1), while the latter includes Insulin-like

growth factor 1 (IGF1), Insulin-like growth factor binding protein 2 (IGFBP1),

and Protein kinase C, epsilon (PRKCE). On the other hand, global hepatic DNA

methylation can become progressively demethylated in mice that develop a fatty

liver phenotype similar to human NASH induced by feeding a lipogenic methyl-

deficient diet [100]. Thus, DNA methylation is particularly affected by the avail-

ability of S-Adenosyl-L-methionine (SAMe) and the dietary methyl donors includ-

ing folate, betaine, and choline, which are associated with SAMe synthesis

[101, 102]. SAMe influences the pathogenesis of NAFLD as a methyl donor in

the synthesis of phosphatidylcholine, which is required for very-low-density lipo-

protein (VLDL) assembly and hepatic triglyceride export. Evidence of a role for

SAMe in NAFLD development has largely been based on animal studies. Methyl-

deficient diets have been reported to result in the development of NAFLD in mice

[103, 104]. These mice were found to have reduced concentration of hepatic SAMe

and CpG island methylation of genes involved in DNA damage and repair, lipid and

glucose metabolism, and the progression of fibrosis in their livers [105]. Inducing

hepatic fat accumulation by feeding a HFD can be reversed by supplementation

with methyl donors containing folic acid, choline, betaine, and vitamin B12. These
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methyl donors reduced hepatic global DNA methylation and changed the methyl-

ation levels of CpG sites in the sterol regulatory element-binding transcription

factor 2 (SREBF2), 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3),

and estrogen receptor 1 (ESR1) promoter regions [81]. Furthermore, methyl donor

supplementation resulted in fatty acid synthase (FASN) DNA hypermethylation,

leading to improvement of HFD-induced NAFLD [82]. Betaine supplementation

was also found to restore methylation capacity by increasing SAMe concentration

and genomic methylation level and the reduction in the methylation of the micro-

somal triglyceride transfer protein (MTTP) promoter [79]. This promotes hepatic

triglyceride export and attenuates fat accumulation.

Feeding pregnant mothers a HFD can result in increased NAFLD susceptibility

in the offspring in mice [28, 41], and DNA methylation plays an important role in

this process. DNA methylation can be inherited from parents and passed to the next

generation [106]. In rat offspring of HFD-fed mothers that develop NAFLD, it was

suggested that hypomethylation of cyclin-dependent kinase inhibitor 1A

(CDKN1a), an inhibitor of the hepatic cell cycle, and increased hepatic expression

of the CDKN1a gene in early postnatal life contribute to predisposition to NAFLD

in later life [83]. Interestingly, the hormone melatonin, which regulates the body’s
24-h “clock,” has been reported to reverse the methylation of leptin and prevent

glucocorticoid-induced hepatic steatosis [84].

12.8.2 Histone Modifications in NAFLD

Evidence is now accumulating that histone modifications are also involved in

transmitting an epigenotype with increased NAFLD risk (Table 12.1). Histone

modifications mainly consist of acetylation, methylation, phosphorylation, and

ubiquitylation. Histones are proteins that organize DNA strands into nucleosomes

by forming molecular complexes around which the DNA winds, and modification

of histone proteins can impact gene regulation by altering chromatin structure or

recruiting histone modifiers. Most of the current evidence points to changes in

histone acetylation in the development of NAFLD [97]. The modifying enzymes

involved in histone acetylation are called histone acetyltransferases (HATs) and

histone deacetylases (HDACs), and they play an important role in controlling

histone H3 and H4 acetylation [107]. Histone H3 is primarily acetylated at lysines

9, 14, 18, 23, and 56 (denoted at H3K9, H3K14, H3K18, H3K23, and H3K56),

while HDACs catalyze the hydrolytic removal of acetyl groups from histone lysine

residues. There are four classes of HDACs, with. for example. HDAC1, HDAC2,

HDAC3, and HDAC8 grouped as class I HDACs. In primates, hyperacetylation of

H3K14 has been reported in the fetal hepatic tissue and this was accompanied by

upregulated acetylation at H3K9 and H3K18 [97]. The same study also showed that

the feeding the pregnant mother with a HFD can result in the depletion of HDAC1

protein in the fetal liver. These findings indicate that maternal obesity due to HFD

feeding can already change fetal chromatin structure via histone modifications.
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NAFLD development is also regulated by carbohydrate-responsive element-bind-

ing protein (ChREBP) by acting as transcriptional activator of lipogenic and

glycolytic genes. A reduction in the activity of the HAT activator p300 was

found to attenuate ChREBP-mediated hepatic steatosis in mice [89]. Furthermore,

histone modification of genes that regulate bile acid synthesis and dietary choles-

terol absorption was found to be linked to NAFLD development. Sterol 12-

α-hydroxylase (CYP8B1) regulates bile acid synthesis and intestinal cholesterol

absorption, and that histone acetylation of the gene promoter CYP8B1 was found to

be induced following recruitment of cAMP response element-binding protein-

binding protein (CBP) by the cholesterol-activated nuclear receptor and clock-

controlled gene retinoic acid-related orphan receptor α (RORα) [90]. Thus, modi-

fying RORα activity could potentially attenuate NALFD progression by histone

modification. The link between histone modification and 24 h or circadian rhythms

will be discussed further in the proceeding section of this chapter.

In mice, hepatic lipid accumulation due to a HFD was also reported to alter

histone H3K4 and H3K9 trimethylation in PPARα and lipid catabolism-related

genes increasing their expression levels and thus perpetuating further lipid buildup

leading to hepatic steatosis and NAFLD progression [92]. The modifying effect of a

HFD on histone has been reported to occur over generations. Offspring from

pregnant mice with a HFD was found to have altered expression of genes involved

in the upregulation of lipogenesis and ER stress due to reduced accumulation of

methylated histones in liver X receptor α (LXRα) and oxireductase endoplasmic

reticulum oxidoreductin1α (ERO1α) gene promoters [93]. In another study, mater-

nal HFD feeding resulted in increased fetal hepatic acetylation of histone H3K14

and decreased SIRT1 expression [66]. Deacetylation by SIRT1 is responsible for

the regulation of various proteins that are involved in the pathophysiology of

NAFLD [108]. In the liver, SIRT1 is also reported to interact with the protein

MENIN, and a reduction in MENIN gene expression particularly in aging acceler-

ated hepatic steatosis following HFD feeding by recruiting SIRT1 to regulate CD36

expression and triglyceride accumulation via histone deacetylation [94]. Feeding a

HFD in mice also induces hepatic mitochondrial protein hyperacetylation and

downregulation of the major mitochondrial protein deacetylase of another sirtuin

SIRT3, which resides at the mitochondria and modulates fatty acid oxidation

[95, 109]. Hence feeding a HFD alters both SIRT1 and SIRT 3 expression via

histone modification, and this impacts on lipid metabolism that is associated with

NAFLD development.

12.8.3 MicroRNA Changes in NAFLD

Another epigenetic modification that is linked to NAFLD development is the

alteration of microRNAs (miRNAs) (Table 12.2). MiRNAs are short, single-

stranded RNA molecules approximately 22 nucleotides in length that can nega-

tively modulate post-transcriptionally around 30% of all mammalian protein-
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encoding genes [110]. They induce gene silencing by binding to target sites found

within the 30UTR of the targeted mRNA, thus preventing protein production by

suppressing protein synthesis and/or by initiating mRNA degradation

[111]. MiRNAs play a key role in many important physiological processes such

as cell proliferation, differentiation, apoptosis, and embryonic development, and

that altered miRNA expression has been implicated in obesity, insulin resistance,

T2D, and fatty liver disease [112, 113]. In patients with NASH, about 100 miRNAs

that are involved in the pathogenesis of steatohepatitis, including the regulation of

lipid and glucose metabolisms, oxidative stress, cellular differentiation, inflamma-

tion, and cell survival pathways, are differentially expressed [114, 115]. The most

abundant miRNA in the liver is miRNA-122, which is a key regulator of glucose

and lipid metabolism in adult livers [116, 117]. Serum miRNA-22 levels, which

mainly circulate in argonaute 2-free forms, are significantly higher in mice with

NASH [118]. In NAFLD patients, early studies found this miRNA to be signifi-

cantly underexpressed in their livers [119, 120]. Further studies have shown that

reduction in hepatic miRNA-122 was much lower in NAFLD patients with mild

steatosis compared to those with severe steatosis, while patients with mild fibrosis

showed higher serum and hepatic miRNA-122 levels than those with severe fibrosis

[121]. Genetic deletions of miRNA-122 in mice also resulted in hepatic steatosis

and inflammation [122, 123]. Besides miRNA-122, other miRNAs are reported to

be involved in NAFLD development, including miRNA-21, miRNA-23a, miRNA-

34a, miRNA-143, and miRNA-146b, which were found to be overexpressed in

human NAFLD and NASH [120].

Diet fed to rats can cause considerable dysregulation of miRNAs and their target

genes. In a study done in rats, HFD feeding was found to cause marked reduction in

hepatic miRNA-122, miRNA-451, and miRNA-27 expression and increased

expression of miRNA-200a, miRNA-200b, and miRNA-429 [124]. This study

also showed changes in expression levels of proteins involved in regulating lipid

and carbohydrate metabolism and signal transduction that are being regulated by

these miRNAs in livers from the HFD-fed rats. These finding demonstrate that a

HFD can alter the expression levels of miRNAs and some of their targets, contrib-

uting to the development of fatty liver and progression of nutritional steatohepatitis.

Nevertheless, there is a paucity of information on whether maternal nutrition during

pregnancy impacts on the hepatic miRNA status in their offspring. Our own study

in mice shows that in livers of offspring mothers fed a HFD during pregnancy had

markedly increased hepatic expression of key genes including those regulating fetal

growth, such as insulin-like growth factor-2, and fat metabolism, including perox-

isome proliferator-activated receptor-alpha and carnitine palmitoyl transferase-1a

[125]. These changes were accompanied by reduced expression of miRNAs

involved in developmental timing (let-7c) and fat oxidation (miRNA-122). More

recently, it has been reported that in livers of weaned offspring of mouse dams fed a

HFD during pregnancy and lactation, the expression of miRNA-122 was reduced

but that of miRNA-370 was increased [126]. Moreover, miRNA-370 is involved in

metabolism by activating lipogenic genes indirectly through miRNA-122

[127]. Thus, changes in key metabolic genes and miRNAs in the liver of offspring
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from dams fed a HFD may alter early fetal growth and fat metabolism increasing

offspring NAFLD susceptibility in later life.

12.9 Disruption of the Circadian Clock and NAFLD

Development

A wide array of physiological processes is expressed in a rhythmic pattern with

duration of about 24 h, coinciding with the day–night cycle. These 24 h rhythms are

termed “circadian” and are regulated by an endogenous circadian clock network

composed of key “clock” genes. Circadian rhythms are entrained by the light–dark

cycle but can also be influenced by environmental temperature and food availabil-

ity. The central circadian clock network is found in the hypothalamic region of the

brain called the suprachiasmatic nuclei (SCN). It is now well established that clock

genes are found and rhythmically expressed in most organs and tissues, including

those involved in metabolism such as the liver, muscle, and adipose tissues. The

generation of circadian rhythms is through a series of autoregulatory transcriptional

and translational interactions [150, 151]. The key clock genes are circadian loco-

motor output cycle kaput (CLOCK) and brain and muscle aryl 1-hydrocarbon

receptor nuclear translocator-like 1 (BMAL1), which form a heterodimer complex

that activates transcription of other clock genes, including Period (PER1, PER2,

PER3) and Cryptochrome (CRY1 and CRY2). The translated PER and CRY pro-

teins form complexes and translocate back to the nucleus where they then nega-

tively regulate CLOCK and BMAL1 activity. Though the central circadian clock

network regulates circadian processes such as the sleep/wake cycle, body temper-

ature, blood pressure, and hormone secretion, at the whole body level, it is the

intrinsic clock gene network in the liver that determines hepatic clock function.

Nevertheless, the systemic cues, such as light–dark cycles, fine-tune hepatic

rhythms.

The circadian clock network in the liver regulates a plethora of genes and

nuclear receptors that are important in several metabolic pathways, such as the

metabolism of glucose, fatty acids, cholesterol, and amino acids [152–156], and in

the detoxification of xenobiotics [157]. Thus, an intact circadian clock is essential

for the maintenance of body homeostasis, and disruption of the clock network at the

central and organ level leads to desynchronization of metabolism and consequently

the development of obesity and fatty liver disease. In healthy individuals, there is a

nycthemeral rhythm in de novo lipogenesis associated with the sleep–wake cycle

and the feeding–fasting cycle [158]. At night when individuals are normally asleep

and are therefore in the fasted state, de novo lipogenesis supplies less than 5% of

fatty acids to the hepatocyte. During the day when individuals are normally in the

feeding state, characterized by high insulin levels, insulin stimulates de novo

lipogenesis, supplying approximately a quarter of the free fatty acids to
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hepatocytes. This nycthemeral rhythm in de novo lipogenesis is absent in NAFLD

patients [158].

Early studies have suggested mutations in the core clock genes are linked to

NAFLD development. Mice with mutations in clock genes have provided key

insights into the interdependence between the circadian clock and metabolism.

Altering key components of the clock network, for example, in the CLOCK mutant

mice, give rise to the development of metabolic pathologies including obesity and

hepatic steatosis [159]. Moreover, mice deficient in CLOCK and BMAL1 exhibit

suppressed diurnal variations in glucose and triglyceride levels, which were ampli-

fied by feeding a HFD [153]. This observation has been extended to findings in

humans, where common genetic variations of the CLOCK gene are reported to be

linked to susceptibility to NAFLD [160, 161]. These studies show that CLOCK

variant haplotype frequencies significantly differ between NAFLD patients and

controls.

The epigenetic modifications associated with NAFLD development involve the

circadian clock network. CLOCK itself possesses histone acetyltransferase (HAT)

activity, and this HAT activity is necessary for CLOCK-BMAL1-dependent

transactivation of clock-controlled genes and, therefore, downstream circadian

clock function [162, 163]. In addition, it has been shown that activation of several

CLOCK-BMAL1 target genes involves changes in histone H3 acetylation in the

PER1, PER2, and CRY1 promoter regions [164]. Thus, clock-mediated epigenetic

processing is upstream of several cellular metabolic cascades associated with

hepatic liver accumulation. PPAR-α, for example, is a nuclear receptor that regu-

lates the transcription of genes involved in lipid and glucose metabolism following

binding of endogenous nonesterified free fatty acids (NEFAs). The CLOCK-

BMAL1 heterodimer mediates transcription of the PPAR-α gene and an increase

in PPAR-α protein, which subsequently binds to the PPAR response element

(PPRE) and activates the transcription and translation of BMAL1, demonstrating

the reciprocal link between circadian and lipid metabolic processes [165, 166]. Stud-

ies have also shown that there is a daily whole-genome cycling of the activating

chromatin mark H3K4me3 (histone H3 trimethylated at lysine 4) and the inhibitory

chromatin mark H3K9me3 (histone H3 trimethylated at lysine 9) in the mouse liver

[167], suggesting that these activation marks are regulated in a circadian manner at

thousands of gene loci. In the same study, the histone-remodeling enzyme mixed

lineage leukemia 3 (MLL3) was also found to modulate hundreds of epigenetically

targeted liver circadian output genes, especially those in the one-carbon metabolism

pathway [167]. This suggests that MLL3 is a clock-controlled factor that could

potentially regulate circadian epigenomic profiles and is thus a good candidate

linking the circadian clock and liver diseases.

HDAC3 occupancy on genes involved in lipid metabolism in the mouse liver

was also shown to have a pronounced circadian pattern, which peaks during the day

and is at its nadir at night [168]. This circadian pattern was found to be inversely

associated with the genome-wide histone acetylation and RNA polymerase II

recruitment at the same sites, suggesting that HDAC3 is involved in circadian

epigenomic remodeling that leads to transcriptional repression of hepatic lipogenic
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genes during the day but allows transcriptional activation of these genes at night.

The genomic binding sites of REV-ERBα were also found to significantly overlap

with those of HDAC3 and its binding partner, the nuclear receptor corepressor

(NCoR), especially on genes involved in fatty acid synthesis, and that there is a

close correlation between signal intensities of REV-ERBα binding and those of

HDAC3-NCoR at the same sites. In the HDAC3 liver-specific knockout mice,

depletion of HDAC3 in the liver switches metabolic precursors for lipid synthesis

and storage within lipid droplets and away from hepatic glucose production by

sequestration of lipids in perilipin 2-coated droplets and this contributes to the

development of steatosis [169]. Thus, a loss in the circadian rhythm of REV-ERBα
binding should result in de novo lipogenesis and development of hepatic steatosis in

a similar manner as was found in the HDAC3 liver-specific knockout mice. This

was indeed the case [168] and implies that circadian epigenomic remodeling

controlled by HDAC3 is largely directed by REV-ERBα.
Disruption of circadian clock function caused by chronic lifestyle disturbances,

such as professional jet lag (night workers) or long-term shift work, is also

suggested to contribute to the manifestations of fatty liver disease [170, 171]. A

mouse model of shift work appears to share the same mechanism in humans where

timed sleep restriction resulted in disruption of circadian rhythms of genes in the

liver that are involved in glucose and lipid metabolism, including BMAL1, PER1,

REV-ERBα, and the D site of albumin promoter binding protein (DBP) [172]. It is

interesting to note that timed food access was able to restore molecular rhythms in

the liver and metabolic function under sleep restriction conditions, suggesting that

hepatic circadian desynchrony marks an early event in the metabolic disruption

associated with chronic shift work. Thus, strengthening circadian clock network in

the liver by minimizing food intake during night shifts may counteract the adverse

physiological consequences frequently observed in human shift workers. In another

mouse study, increased lipogenesis brought about by timed sleep restriction was

found to be blunted in PER1/2 double mutant animals [173]. Although this was

examined at the adipose tissue, it suggests that the absence of a functional clock in

these double mutants may also protect these mice from sleep restriction-induced

metabolic reprogramming that may include the development of NAFLD.

Altered nutrition during critical developmental periods could lead to disruption

of the circadian clock network modulations in the rhythm of expression and

increased NAFLD susceptibility in later life. This notion is now being supported

by results of recent investigations. In utero exposure to maternal HFD has been

shown to upregulate the expression of fetal hepatic circadian-associated neuronal

PAS domain-containing protein 2 (NPAS2), at least in part, through

hyperacetylation of histone H3 at lysine 14 [98]. In another study in mice, offspring

exposed to HFD both in utero and in postnatal life develop NAFLD, and this was

accompanied by the disruption of rhythmic pattern in expression of the key clock

genes BMAL1, CLOCK, PER1, PER2, CRY1, and CRY2 in the offspring liver

[174]. Hypermethylation of the promoter regions for BMAL1 and PER2 and altered

24-h rhythmicity of hepatic pro-inflammatory and fibrogenic mediators were also

observed in these offspring. Thus, exposure to HFD in utero may alter the hepatic
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circadian clock network during development, resulting in the disruption of rhyth-

mic patterns in metabolic processes leading to NAFLD development. It will be of

interest to examine whether the REV-ERBα/NCoR/HDAC3-mediated epigenomic

remodeling is involved in the HFD-induced modulation of the activity of other

transcription factors involved in lipogenesis such as the SREBPs and PPAR-γ.

12.10 Developmental Priming of NAFLD as a Marker

of Premature Metabolic Decline

As previously described throughout this book, there is a wealth of data from both

human and animal studies to suggest that poor nutritional exposures during early

life increase the risk of developing features of the metabolic syndrome in later life.

Collectively, these findings demonstrate that early dietary exposures can accelerate

the onset of conditions traditionally associated with aging such as insulin resistance,

type 2 diabetes, obesity, hypertension, CVD, and NAFLD [175]. This suggests that

nutritional challenges that are imposed during critical periods of development and

plasticity are able to set the trajectory of “metabolic aging” throughout the life

course. While the mechanisms that link early nutrition to longevity are currently

under investigation, preliminary findings highlight changes in cellular processes

with established roles in aging, such as reduced longevity-associated Sirtuin pro-

teins, altered epigenetic regulation of key metabolic genes, and maternally inherited

mitochondrial dysfunction [175].

SIRT1 is a longevity-associated lysine deacetylase, a crucial sensor of cellular

metabolism, and a central molecule connecting various metabolic processes in the

liver. As the nexus of metabolism and aging, SIRT1 protects cells against oxidative

stress, regulates glucose/lipid metabolism, and promotes DNA stability by binding

to and deacetylating several substrates [176]. During aging and the onset of

age-related disorders, including metabolic diseases, cancer, and neurodegenerative

conditions, Sirtuin abundance and activity is reduced [177]. Thus, it has long been

hypothesized that SIRT1 may play a role in the developmental priming of fatty

liver. Indeed, in utero exposure to a maternal HFD has been shown to increase fetal

histone acetylation with a concomitant decrease in SIRT1 expression and activity,

implying that SIRT1 is a likely molecular mediator of the fetal epigenome and

metabolome, and with additional implications for hepatic SIRT1 in premature

aging of the liver [66].

There is also a strong association between SIRT3 and longevity [178]. As

previously described, several studies have also shown that the mitochondrial Sirtuin

SIRT3 may be also perturbed by maternal obesity, with detrimental consequences

for offspring liver function. Recent human studies have shown that obese pregnant

women display decreased skeletal muscle mitochondrial ETC activity and reduced

mitochondrial antioxidant defense, concomitant with reduced SIRT3 activity,

suggesting that reduced SIRT3 plays a role in the increased oxidative stress often
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observed in pregnancies complicated by obesity and gestational diabetes

[179]. Such a decrease in this antioxidant capacity is likely to impair the defense

system in the offspring liver. A recent rodent model has also demonstrated that

maternally derived SIRT3 aberrations in the liver may be a conduit for suboptimal

liver function in the offspring. Specifically, offspring of HFD dams show reduced

SIRT3 expression, which leads to impaired hepatic fatty acid oxidation [61]. These

observations suggest that SIRT3-mediated mitochondrial dysfunction may be key

underlying mechanism that reduces hepatic fatty acid oxidation and antioxidant

defense system, contributing to the metabolic aging of the liver and the premature

onset of severe fatty liver disease.

While further studies are needed to ascertain the effect of early diet exposure on

liver function and ultimately life span, reduced Sirtuin abundance is a likely

candidate that mediates detrimental effects on both metabolism and longevity.

Much of the research aiming to understand the mechanisms by which the maternal

diet can prime the development of fatty liver disease has focused on SIRT1 and

SIRT3. However, recent data suggest that other longevity-associated Sirtuins such

as SIRT6 and its cofactor FOXO3 are also involved in the pathophysiology of

NAFLD. For example, SIRT6 and FOXO3 may transcriptionally and epigenetically

regulate proprotein convertase subtilisin kexin type 9 (PCSK9) expression and

LDL-cholesterol homeostasis [180]. In particular, hepatic SIRT6 deficiency leads

to elevated PCSK9 gene expression and LDL cholesterol. Since the ability of

monoclonal antibodies that inhibit PCSK9 and dramatically lower LDL cholesterol

has received much attention of late, the role of SIRT6 in this process is an exciting

research avenue. Thus, Sirtuin proteins present a promising target for pharmaco-

logical intervention to prevent the developmental priming of NAFLD, and further

investigation is needed to determine the role of other Sirtuin proteins and their

transcriptional cofactors.

12.11 Potential Strategies to Delay and Reverse

the Developmental Priming of NAFLD

Current efforts to ameliorate NAFLD or T2D with pharmacologic agents have been

met with limited success. It is likely due to the fact that many treatments have

focused on treating the end-stage disease and not the mechanisms that are central to

the disease pathogenesis itself. While interest in the “developmental priming”

phenomena has led to important nutritional and education guideline reforms during

pregnancy and early life, arguably some of the most important outcomes have been

due to scientific findings using preclinical disease that have provided unrivaled

insight into the molecular pathogenesis of disease. Research into the developmental

priming of NAFLD has been a particularly intensive and has highlighted a number

of key mechanisms that are critical in the molecular pathogenesis of the disease,

namely mitochondrial dysfunction, oxidative stress, lipid peroxidation, and de novo
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lipogenesis and epigenetics. We are now seeing a new wave of innovative inter-

ventions that target these key pathways to prevent, delay, and reserve the onset of

NAFLD.

12.11.1 Enhancing Mitochondrial Metabolism

As previously described, a number of studies have highlighted the role of

suboptimal mitochondria in developmentally primed NASH. It is therefore inter-

esting that a number of proof-of-concept studies have explicitly shown that

increased mitochondrial efficiency can promote NAFLD reversal. In a recent

study, a liver-targeted derivative of mitochondrial protonophore 2,4-dinitrophenol

(DNP) was shown to enhance hepatic mitochondrial uncoupling and ameliorate

NAFLD and T2D in the rat [181]. The thermogenic effect of this drug has long been

known, and DNP has been investigated since the early twentieth century for its

ability to promote weight loss. However, production of the drug ceased in the USA

in the late 1930s following numerous reports of deaths in individuals taking DNP.

In the aforementioned studies, the molecule used was targeted specifically to the

liver, significantly reducing its toxicity, while retaining its potent mitochondrial

uncoupling effects in the liver [181]. Subsequently, Perry et al. further improved the

safety and efficacy of DNP by developing a version of the drug with lower peak

plasma concentrations and sustained-release pharmacokinetics called CRMP

(controlled-release mitochondrial protonophore) [181]. In rat models, CRMP pro-

duces mild hepatic mitochondrial uncoupling and reduced hypertriglyceridemia,

insulin resistance, hepatic steatosis, and diabetes [182]. These data support the

notion that mild hepatic mitochondrial uncoupling may be a safe and effective

therapy for the related epidemics of metabolic syndrome, T2D and NASH.Whether

this strategy could be employed in models of maternally inherited stress remains to

be seen. One problem may lie within the already damaged mitochondrial pool in the

livers of offspring from obese mothers. While mitochondrial uncoupling may

increase oxidative metabolism in a healthy mitochondrial pool, CRMP may not

have the desired effect in the dysfunctional mitochondrial pool in the developmen-

tally primed liver and may in fact exacerbate oxidative stress. Needless to say,

further research is needed to ascertain the effect of mitochondrial uncouplers on

already suboptimal mitochondria.

12.11.2 PUFA Supplementation

The presence of inflammation within the liver is a key marker of NAFLD progres-

sion and NASH onset. In light of this, interventions that promote an anti-

inflammatory state would be a suitable strategy to limit disease severity. Although

a number of studies have shown that maternal obesity can cause inflammation in the
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offspring, our understanding of the effectiveness of anti-inflammatory agents

administered during pregnancy is limited. Nonetheless, preliminary studies have

shown that dietary supplementation with polyunsaturated fatty acids (PUFAs) may

have an anti-inflammatory effect. PUFAs exist as either omega 6 [n-6; linoleic acid

(LA)] or omega 3 [n-3; alpha linolenic acid (ALA), eicosapentanoic acid (EPA),

and docosahexanoic acid (DHA)] fatty acids [183]. It is generally accepted that

eicosanoid signaling molecules derived from n-6 PUFAs are more immune-reactive

than eicosanoids derived from n-3 PUFAs, considered to be anti-inflammatory

[184]. Importantly, HFDs are predominantly n-6 PUFA rich and are relatively

deficient in n-3 PUFAs, thus being a potential contributing factor to the

pro-inflammatory state of obesity. Studies have shown that both EPA and DHA

may have anti-obesogenic effects and may be able to prevent diet-induced obesity

(DIO) [185]. Moreover, in a rat model of HFD feeding, dietary supplementation

with krill-derived oils (KO) rich in EPA and DHA was able to increase fatty acid

oxidation and inhibit lipogenesis in the liver, preventing hepatic steatosis. It is

noteworthy that these effects may have mitochondrial origins since KO supple-

mentation was associated with a significant increase in the activity of CPT-I,

suggesting that the flux of fatty acids entering the mitochondria for oxidation

may be enhanced by EPA and DHA [186]. Interestingly, CPT-I is known to be

transcriptionally regulated by the member of the PPAR nuclear receptor family

[187], of which n-3 PUFAs are a known agonist. It is therefore likely that PPAR

signaling is an important mechanism in the insulin-sensitizing effects of n-3

PUFAs. In support of this notion, the hepatic insulin-sensitizing effects of n-3

PUFA supplementation were absent in PPAR-alpha knockout mice compared to

wild-type controls [188].

The evidence from animal models regarding the potential of PUFAs as thera-

peutic agent to treat NAFLD is quite convincing; however, there is less data to

support the notion that PUFA supplementation during pregnancy may have positive

outcome on liver function in the resulting offspring. However, studies using Fat-1

transgenic mice, which are able to covert endogenous n-6 PUFA to n-3 PUFA, have

shown that offspring of HFD-fed mothers who possessed the Fat-1 transgene were

protected against hepatic fat accumulation, suggesting that increased relative n-3

fatty acids can ameliorate the developmental priming of fatty liver disease

[189]. This lack in our understanding strongly suggests that further studies are

warranted that specifically determine the effect of n-3 PUFA supplementation

during development on hepatic fat accumulation and disease progression in

offspring.

12.11.3 Sirtuin Activators

There has been considerable attention focused on the Sirtuin proteins that have been

repeatedly implicated in the benefits to health and longevity associated with fasting

and caloric restriction. It is therefore unsurprising that in models of maternal
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obesity, a state of nutritional excess, reduced Sirtuin abundance and activity has

been repeatedly observed in the developmental priming of NAFLD. In response, a

number of studies have assessed the role of Sirtuin activators, such as resveratrol, in

animal models of maternal obesity and maternal HFD feeding. For example, in a

nonhuman primate model, resveratrol supplementation was able to improve both

maternal and fetal hepatic fat accumulation [190]. While these proof-of-concept

studies are promising, further studies in humans that better determine safety and

efficacy are much needed.

12.11.4 Metformin

Metformin is a commonly used as an insulin-sensitizing agent that is able to

suppress hepatic gluconeogenesis. Although still subject of intense investigation,

current thinking suggests that the molecular mechanism of metformin involves

inhibition of the mitochondrial respiratory chain (complex I), inhibition of

glucagon-induced elevation of cyclic adenosine monophosphate (cAMP), activa-

tion of protein kinase A (PKA), inhibition of mitochondrial glycerophosphate

dehydrogenase, and activation of AMP-activated protein kinase (AMPK)

[191]. Probably one of the best-studied effects is AMPK activation, which is

thought to stimulate ATP-producing catabolic pathways and to inhibit

ATP-consuming anabolic processes such as gluconeogenesis. Indeed in the liver,

activated AMPK reduces hepatic gluconeogenesis via the phosphorylation of

CREB-binding protein (CBP) and the dissociation of the gluconeogenic transcrip-

tional complex CREB–CBP–TORC2 [192]. Metformin-induced activation of

AMPK decreases fatty acid and cholesterol synthesis at least in part by reducing

acetyl-CoA carboxylase (ACC), 3-hydroxy-3-methylglutaryl (HMG)-CoA reduc-

tase, fatty acid synthase (FASN), and inhibiting SREBP-1c [193]. In support, in the

obese leptin-deficient Ob/Ob mice, a proxy model for hepatic steatosis, metformin

treatment was able to reverse hepatomegaly, hepatic fat accumulation, and ALT

abnormalities [194]. Clearly, metformin administration may be a suitable interven-

tion to ameliorate the increased fat accumulation and gluconeogenesis that occurs

during the developmental priming of NAFLD.

Metformin has been given to pregnant women since the 1970s [195] and is

increasingly used as an alternative treatment of infertility and gestational diabetes

[196–198]. However, its effect on offspring metabolic health is the current focus of

research. In a study conducted in rats, diet-induced obesity during pregnancy

enhanced fetal and placental cytokine production, which was reduced by maternal

metformin treatment [199]. It remains to be determined whether this reduction in

maternal and fetal inflammation impacts on NAFLD susceptibility of the adult

offspring. In another study in mice, maternal metformin treatment was found to

significantly improve glucose tolerance in HFD-fed offspring [200]. Nevertheless,

it still remains to be determined if the improved metabolic profile in the metformin-

exposed offspring also protects them from developing NAFLD. Several clinical
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trials are currently under way to examine the effect of maternal metformin treat-

ment during gestational diabetes in the offspring. In an earlier trial conducted in

women with gestational diabetes, Rowan et al. have shown that children exposed to

metformin had more subcutaneous fat at 2 years of age without the expense of the

total amount of fat compared to those exposed only to insulin [201]. These changes

in the fat distribution were suggested to provide a protection against later accumu-

lation of ectopic fat, but can only be validated when these children have become

adults. Findings from the recent Efficacy of Metformin in Pregnant Obese Women,

a Randomised controlled (EMPOWaR) clinical trial, however, were discouraging

and showed that metformin did not affect birth weight percentile in obese pregnant

women and suggested that metformin should not be used to improve pregnancy

outcomes in obese women without diabetes [202]. However, it is important to

remember that birth weight is not the only important marker for long-term health

in the offspring, but liver fat accumulation and function should also be considered.

In summary, while there are a number of strategies showing promising clinical

outcomes, the capacity to reverse the developmental priming of NAFLD has not

been demonstrated. Several studies have shown that proof-of-concept interventions

during critical periods of development or plasticity may be able to ameliorate or

reverse the effects of maternal obesity. However, their specific effect on liver

function requires further investigation. It is important to note that while many of

the interventions described target common metabolic pathways, the exact mecha-

nisms are distinct (i.e., promotion of mitochondrial uncoupling via DNP, versus

mitochondrial complex inhibition via metformin). A therapy that is beneficial for

one individual may exacerbate the condition in another. Thus, the patient should be

metabolically assessed as thoroughly as is reasonably possible before a pharmaco-

logical intervention during pregnancy is recommended.

As a group, pregnant women are extremely compliant to healthcare recommen-

dations in order to do the very best for their developing baby and thus are likely to

strongly adhere to suggested lifestyle and nutritional regimes during pregnancy.

Therefore, identification of suitable intervention, or indeed preventative, strategies

during pregnancy has huge clinical potential for both the current and the future

generations.

12.12 Conclusion

The prevalence of maternal obesity is rapidly increasing worldwide, and as a

consequence of developmental priming, the features of the NAFLD are also

increasing in the next generation. The exact pathogenesis of NAFLD is likely

multifactorial and adverse in utero events very likely play a role. Exposure to

excess maternal lipids during pregnancy can already promote fetal mitochondrial

dysfunction, oxidative stress, a disrupted circadian clock network, and premature

gluconeogenesis, glycogenolysis, lipid oxidation, and de novo lipogenesis, thus

priming the offspring liver to increase susceptibility to postnatal nutritional insults
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resulting in NAFLD development. Thus, reduced oxidative capacity of the liver not

only contributes to liver disease progression but also to whole-body hyperlipidemia,

insulin resistance, and consequent metabolic syndrome and T2D.

Although further studies are still needed in both human and animal models to

better understand the role of prenatal events in the pathogenesis of NAFLD,

potential treatments are already emerging that benefit not only the obese pregnant

mothers but also the future metabolic health of the offspring.
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Chapter 13

Maternal Metabolic State and Cancer Risk:

An Evolving Manifestation of Generational

Impact

Frank A. Simmen, Melissa E. Heard, John Mark P. Pabona,

Lorenzo M. Fernandes, Charles P. Mercado, and Rosalia C.M. Simmen

Abstract Metabolic stress in the early-life environment as a consequence of

maternal overnutrition and obesity leads to an increased risk of adult metabolic

syndrome in offspring. Given the greater risk for cancer development at a number

of tissue sites for obese individuals, exposure of the highly developmentally

“plastic” fetus and neonate to a dysregulated maternal endocrine milieu may

similarly result in increased cancer susceptibility as adults. In rodent models,

from which this concept has gained the most direct experimental support, the

feedforward circuitry for cancer propensity appears to be generationally transmit-

ted, in part, via epigenetic biochemical marks. Here, we review the current state of

this nascent field with attention given to tissues that are likely impacted by the
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recent epidemic of maternal obesity. We highlight current thinking on underlying

molecular mechanisms and discuss how such knowledge may be used to design

interventional strategies for obese pregnant women to counter increased risk for

malignancy in their offspring.

Keywords Maternal • Obesity • Overweight • Dietary fat • Fetus • Placenta •

Lactation • Cancer • Programming • Epigenetics • Breast • Liver • Colon • Rectum •

Soy • Blueberry

13.1 Introduction

Metabolic stress in the early-life environment that is imposed by maternal

overnutrition and obesity is known to lead to an increased risk of adult metabolic

syndrome in human, primate, and rodent offspring [1–3]. Given the increased risk

for oncogenesis at a number of tissue sites for obese or overweight individuals

[3, 4], it follows that exposure of the highly developmentally “plastic” fetus and

neonate to a dysregulated maternal endocrine milieu may similarly result in

increased cancer susceptibility. The latter is in accord with growing evidence and

hence acceptance for the concept of the early origins of chronic diseases, initially

forwarded by Prof. Barker and colleagues [5]. In rodent models, from which this

concept has gained the most direct support due to the ease of experimental manip-

ulation, the feedforward circuitry for cancer propensity appears to be generationally

transmitted, in part, via a spectrum of epigenetic biochemical pathways. In this

chapter, we review the existing state of this field with attention given to tissue sites

that are likely to be impacted by the recent epidemic of maternal obesity. We

further highlight current thinking in the field on underlying molecular mechanisms

and discuss how such knowledge may be exploited to design interventional strat-

egies for obese pregnant women to counter increased risk for malignancy in their

offspring.

13.2 Oncogenic Risks Promoted by Maternal Metabolic

Dysfunction due to Obesity

13.2.1 Breast Cancer

In rats, consumption of a maternal high-fat (HF) diet during pregnancy and lacta-

tion consistently increased the incidence of experimentally induced mammary

tumors in female offspring [6–9]. A surprising exception to the latter is a recent

report of reduced mammary cancer incidence in offspring of rat dams consuming

lard-based diet (60% fat-derived) during pregnancy or lactation and which

occurred despite the offspring’s elevated serum levels of the obesity-associated

adipocytokine leptin [10]. Leptin is considered to be an oncogene by virtue of its
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ability to enhance the proliferation and metastasis of estrogen receptor-positive

breast cancer cells [11] and to mediate obesity-mediated breast cancer progression,

the latter via effects on breast cancer stem-like cells [12]. Using MMTV-Wnt-1-Tg

mice, an estrogen receptor-positive breast cancer model, our laboratories have

recently reported the increased mammary tumor incidence and decreased mammary

tumor latency (time to tumor appearance) in female progeny of dams consuming

HF diet during pregnancy and lactation [13]. While consumption of HF diet did not

induce obesity in dams, it significantly elevated several systemic metabolic indices

including blood glucose and serum biomarkers of oxidative stress. To the best of

our knowledge, this is the first and only report to date demonstrating that in utero

plus lactational HF diet exposure leads to increased mammary tumor risk in a

mouse model. Epidemiologic data linking maternal obesity and obesogenic diet

with breast cancer risk of daughters are not currently available. However, several

studies, albeit indirect, suggest the possibility of an association. Poor maternal

nutrition (i.e., malnutrition) during pregnancy (the Dutch Famine paradigm) has

been implicated as a positive risk factor for breast cancer in female offspring

[14]. While counterintuitive to the idea of HF-diet promotion of breast cancer

risk, these results support the notion that maternal dietary intake can program breast

cancer susceptibility. In another study, maternal BMI favored increased obesity in

children [15], and childhood obesity increases risk for subsequent adult obesity and

breast cancer [3]. Finally, a prospective 54-year follow-up of 9300 daughters

exposed in utero to the endocrine-disrupting chemical DDT provided evidence

for maternal endocrine perturbation as a predictor and marker of breast cancer

risk [16]. While endocrine disruption caused by environmental carcinogen(s) and

HF-diet exposure are likely to disrupt genetic programs in fetal and postnatal breast

epithelium by distinct mechanisms, these findings provide compelling evidence for

the concept of aberrant targeting of the developing fetal mammary gland and its

functional maturation as being important to later breast cancer susceptibility.

13.2.2 Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is a prevalent cancer with an increasing global

incidence. HCC is caused by hepatitis viruses B and C, chronic alcohol abuse, and

nonalcoholic fatty liver disease (NAFLD), the latter a frequent comorbidity to

obesity. Nonalcoholic steatohepatitis (NASH) is an advanced progressive form of

NAFLD that is considered to be an immediate precursor condition to cirrhosis and

HCC in an increasing number of individuals [17]. Obesity and diabetes are risk

factors for NASH and HCC. Consistently, maternal HF diet during rodent preg-

nancy leads to a NAFLD-like syndrome in offspring [18–21]. This syndrome is

associated with altered expression of hepatic fatty acid metabolic genes [22], whole

body and liver insulin resistance [19], an induced senescence pathway [23], and

disrupted circadian rhythms and associated gene expression [20] in hepatocytes.

Collectively, these data raise potential concerns for trans-generational deleterious
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effects of maternal obesity and HF diets on offspring liver health as reflected by the

fatty liver phenotype. The effects of maternal obesity or maternal HF diet on risk of

HCC in adult children or in primate offspring have yet to be explored. However, the

latter goal is worth undertaking given the emerging literature with rodent models

coupled with the dramatic rise in the USA and worldwide of reproductive-aged

obese/overweight women with potential to become pregnant.

13.2.3 Colorectal Cancer

Obesity and metabolic syndrome are well-established risk factors for colorectal

cancer (CRC) in humans and in rodent models [3]. To the best of our knowledge,

there are no publications that have directly evaluated the effects of maternal HF diet

or maternal obesity on CRC risk in offspring. However, several published studies

provide support for a significant impact of maternal and postnatal nutritional status

on predisposition to CRC in adult progeny [24–27]. Work from our laboratories

showed that maternal dietary protein type, casein versus soy protein (with all other

diet constituents kept constant), could influence colon cancer initiation in adult rat

progeny [24, 25]. Further, analyses of individuals in the Netherlands who experi-

enced starvation during the Dutch Famine of World War Two found reduced risk

for CRC as adults; this was associated with an altered global DNAmethylation state

[26]. These data imply that CRC risk can be influenced by gestational and neonatal

metabolic environments, may have epigenetic underpinnings, and is likely

established during cancer initiation and progression, raising the potential of a

shift in disease occurrence to a younger age in obese patients or patients born of

obese mothers, relative to those with normal, healthy bodyweights.

13.3 Molecular Mediators and Mechanisms

13.3.1 Insulin and the IGF–IGFBP System

Insulin as well as the IGF/IGFBP system has been functionally associated with the

increased incidence of breast, liver, and CRCs in obese individuals [3, 4]. Given

that diet/nutrition can elicit long-lasting changes in the insulin and IGF–IGFBP

systems [3, 25], it is not surprising that these pathways are considered as prime

mediators of maternally transmitted generational effects. In humans and rodents, in

utero exposure to maternal obesogenic diet often leads to a state of insulin resis-

tance and hyper-insulinemia in adult offspring [1, 28]. In a study from our labora-

tories, female offspring of mouse dams consuming HF diet throughout pregnancy

and lactation exhibited increased insulin resistance [13]. Gestational exposure is an

important developmental stage for eliciting this effect based on a study showing
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that mice born from HF-fed dams and immediately cross-fostered to dams fed

control diet continued to manifest insulin resistance as adults [29]. In another study,

dams exposed to HF diet prior to mating through pregnancy and lactation transmit-

ted propensities for hyperinsulinemia to F1 and F2 generations, invoking epige-

netics as contributory to the observed trans-generational effects [30]. The latter

findings are remarkable (and disturbing) given that they portend future generations

with dysregulated insulin signaling consequent to the current trend of obese/over-

weight females of reproductive age. In rats and mice, maternal obesity induced by

HF diet during pregnancy led to gender-specific alterations in circulating levels and

hepatic expression of components of the IGF–IGFBP system in the offspring

[31, 32]. The latter if found to be true for humans may provide a rationale for

gender-selective susceptibilities in certain cancer types and further support the

adverse outcomes of maternal metabolic perturbations due to overnutrition.

13.3.2 Programming of Adipose Tissue and Adipocytokine
Genes

The elevated risks for cancers such as those of the breast, liver, and colorectum with

overweight/obesity are correlated with altered serum leptin and adiponectin levels

(i.e., increased leptin/adiponectin ratio) and attendant increased pro-inflammatory

state [3, 11, 12, 33–35]. In rats, an obesogenic diet that was initiated prior to mating

and continued through pregnancy and lactation led to greater white adipose tissue

mass in both male and female adult offspring [1, 36]. Similarly, in a recent study

from our laboratories, C57BL/6J mouse dams fed HF diet (CHF) during

pre-pregnancy, pregnancy, and lactation, despite showing comparable blood glu-

cose and insulin levels as those of control diet (CAS)-fed dams (Fig. 13.1), elicited

increased measures of poor metabolic status and adiposity in their young adult

offspring (Fig. 13.2). These data indicate that subtle metabolic perturbations in

mothers can translate to dramatic outcomes in progeny. Indeed, offspring of

CHF-fed dams showed higher body weight at weaning, increased blood glucose

levels, and more retroperitoneal tissue mass (normalized to body weight) and,

conversely, lower ovarian weight (normalized to body weight) than same-aged

progeny of CAS-fed dams (Fig. 13.2). The lack of comparable effects of exposure

to CHF-fed dams on gonadal fat tissue mass by contrast to retroperitoneal fat mass

implies that anatomically distinct fat depots may respond differently to metabolic

perturbations induced by maternal HF diet. This observation has physiological

importance since different adipose tissue depots are not the same with respect to

their profile of secreted cytokines and growth factors and, therefore, may have

distinct contributions to cancer risk. A significant finding from this study is that

early exposure to maternal HF diet selectively elicited early negative effects on the

progeny [e.g., greater retroperitoneal fat mass, lower ovarian weight at weaning

(PND21)] that were not further modified by additional HF-diet exposure during

13 Maternal Metabolic State and Cancer Risk: An Evolving Manifestation of. . . 293



postnatal life (CHF, weaning to PND50; Fig. 13.2). The maternal HF-diet effect of

lowering ovarian tissue weight in the female offspring is an interesting and novel

finding that warrants follow-up for ramifications to offspring’s hormonal profile,

fertility, cancer predisposition, and epigenetic events during oogenesis. These

collective findings indicate that maternal HF diet can establish a fairly rigid

program that may not be easily readjusted (or reversed), thereby supporting the

importance of intervention and/or prevention in the mother to positively affect

progeny’s health predisposition.

A number of studies in rodent models have specifically linked maternal HF-diet

effects to perturbations in adiponectin and leptin expression in adipocytes. For

example, C57BL/6 mice born from HF-diet fed dams and subsequently cross-

fostered to dams that were fed control diet displayed reduced serum adiponectin

levels and larger adipocyte cell sizes as adults [29]. HF-diet exposed offspring mice

were also reported to display greater serum leptin levels [30, 37, 38]. In our own

studies, we observed that female offspring exposed to maternal HF diet had

Fig. 13.1 C57BL/6 J mouse model of maternal high-fat diet and dietary consequence on maternal

serum parameters. Animal procedures were approved by the University of Arkansas for Medical

Sciences Animal Care and Use Committee. (a) Female mice were fed AIN-93G diet with casein as

the sole protein source. Diets provided 17% kcal from fat (CAS) or 45% kcal from fat

(HF) [13]. PND: postnatal day. (b) Random blood sugar (RBS; glucose) of mouse dams

(n¼ 4–5 animals per diet group) measured at the time of weaning of their pups (a). RBS indicates

that glucose concentrations were evaluated in sera without mice being subjected to fasting.

Glucose concentrations did not differ as a function of diet ( p> 0.05). (c) Serum insulin levels

of mouse dams (n¼ 4–5 per diet group) measured as in (b) did not also differ with diet ( p> 0.05).

For (b) and (c), bars are means� SEM. CAS/HF refers to the shift in diet from CAS to HF as

indicated in Fig. 13.1. Sac sacrifice, SEM standard error of the mean
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accelerated mammary gland development and greater mammary gland adiposity

(i.e., higher percentage of larger adipocytes in the mammary fat pads) [13]. Larger

adipocytes synthesize and secrete (locally and systemically) more leptin and less

adiponectin than smaller adipocytes and have been linked to an increased state of

insulin resistance [39]. Maternal HF diet also was associated with lower serum

adiponectin and lower skeletal muscle adiponectin receptor 1 gene expression in

offspring [36]. Whether maternal HF diet similarly affects adiponectin receptor

expression (and, hence, adiponectin resistance) in mammary, liver, and colon

tissues has not been evaluated; however, since these tissues may be direct targets

of maternal metabolic perturbations, cancer risk in adult human offspring may stem

in part from these tissues’ dysfunctional adiponectin signaling.

13.3.3 Balance of PTEN/Akt Signaling

As mentioned above, there is convincing evidence for maternal dietary program-

ming of insulinemia and hyperglycemia in offspring [3, 13]. Insulin signaling via

Akt is opposed by the expression and actions of the protein Phosphatase and Tensin
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Fig. 13.2 Maternal high-fat diet (paradigm in Fig. 13.1) elicited significant effects in mouse

offspring. (a) Maternal HF diet increased pup weaning weights; combined data for males and

females are presented. CAS-D and HF-D denote PND 21 pups from CAS- and HF-fed dams;

n¼ 26 and n¼ 25 pups, respectively. (b) Maternal HF diet increased blood glucose (RBS) of PND

21 pups; combined data for males and females are presented. CAS-D and HF-D, n¼ 26 and n¼ 25

pups, respectively. *, p< 0.05). Maternal HF diet increased retroperitoneal (c) but not gonadal

adipose tissue depot weight (d) and decreased ovarian tissue weight (e) in offspring at PND 50. All

tissue weights were normalized to body weight. Postweaning HF diet further increased the weight

of the gonadal fat depot but only in the offspring of control diet-fed dams (d). Bars (means� SEM)

with different superscripts differ ( p< 0.05). CAS/HF refers to the shift in diet from CAS to HF as

indicated in Fig. 13.1
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Homolog deleted in chromosome ten (PTEN), an essential tumor suppressor in

multiple tissues, including breast, liver, and colon. Work from our laboratories has

linked increased mammary gland expression of PTEN with exposure to mammary

cancer-preventive diets in rodents and to dietary bioactive components added to

breast cancer cells in vitro [40–42]. Of note, female offspring of mouse dams

consuming HF diet during pregnancy and lactation had lower PTEN expression

in mammary glands [13]. In a study from another laboratory [43], maternal HF diet

caused an increase in prostate epithelial cell proliferation in adult male mouse

offspring, partly as a consequence of activated Akt and deactivated PTEN. Signif-

icantly, these programmed effects were greatest in aged offspring, leading the

authors to speculate on these finding’s relevance to increased risk for prostate

cancer in older men. Endometrial cancer and obesity are also highly associated

[44]; the linkage has been attributed partly to a lack of PTEN’s opposing action on

Akt signaling in endometrial epithelial cells. Thus, it is of great interest to relate the

current epidemiology of endometrial and prostate cancers to maternal metabolic

status and relative PTEN expression in cancer-susceptible tissues of progeny.

13.3.4 Oxidative Stress

It is conventionally assumed that increased levels of oxidative stress promote

cancer development. In a study from our laboratories, we found that mouse dams

consuming HF diet during pregnancy showed increased serum oxidative stress

biomarkers when these parameters were measured immediately after their pups

are weaned [13]. Maternal HF diet also elicits an increase in levels of oxidative

stress biomarkers in offspring’s sera [45, 46] and in mammary tumors [13]. These

effects may be due, in part, to a repression of hepatic antioxidant defense gene

expression with corresponding resultant decreases in systemic antioxidant capacity

in progeny [23]. In this regard, it is tempting to speculate that increased tissue

oxidative stress may underlie, in part, incidence of NAFLD in offspring from

HF-diet fed dams.

13.4 Trans-generational and Epigenetic Aspects of Dietary

Programming

In rodent models, the adverse physiological and endocrine effects of maternal

obesity and maternal HF-diet consumption can be transmitted to subsequent gen-

erations, even in the absence of additional chronic dietary insult to the progeny and

with obvious ramifications for cancer risk [30, 31, 47]. While not the topic of this

review, paternal obesity (by itself and in combination with maternal obesity) and

paternal HF diet may also contribute to an adverse physiological state with
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increased cancer predisposition in offspring [48, 49]. In the specific case of the rat

and maternal HF diet, increased mammary cancer risk transmitted across several

generations has been linked to an altered mammary gland DNA methylation state

[50]. Other studies have linked epigenetic changes to trans-generational effects of

maternal HF diet on somatic growth, insulin resistance (increased), circulating

IGF-I (increased), and mammary gland cell cycle-related gene expression of prog-

eny [31, 51]. Of particular note, HF-diet consumption by pregnant Sprague–Dawley

rats during pregnancy and lactation programmed the long-lasting repression of the

mammary gland-expressed p16 (INK4a) gene in offspring; this was associated with

reduced acetylation of histone H4 at this gene’s promoter to maintain a gene-

repressive chromatin conformation [51].

In the study of Zhou et al. [21], the authors demonstrated that offspring’s
phenotype of fatty liver was mediated in part by the stable induction of hepatic

PEPCK gene expression, via epigenetic histone modifications at its promoter. Two

other papers revealed the involvement of DNA methylation and histone acetylation

and methylation in the programming of liver phenotypes in rat and mouse progeny

as a consequence of maternal high-fat consumption [52, 53]. Maternal HF diet

effects on leptin and adiponectin gene expression in the white adipose tissue of F1

and F2 offspring are associated with decreased acetylation and increased methyl-

ation of H3K9 at the adiponectin gene promoter and increased methylation of

H4K20 at the leptin gene promoter [37]. These studies provide mechanistic insights

into the long-lasting, multigenerational effects of maternal diet and obesity on

groups of genes whose selective changes in expression may become cancer pro-

moting and which, if occurring in humans, may lead to devastating consequences

on generational health.

13.5 Potential Interventional Strategies

There is a lack of understanding as to how many generations the increased cancer

risks (due to obesity and HF diet) are transmitted. However, in an insightful paper, a

normal gestational diet for three generations was required to completely abolish the

effects of a maternal HF diet on the altered leptin and adiponectin gene expression

in white adipose tissue of mouse progeny [47]. The antidiabetes drug metformin

was previously suggested [3] as a candidate interventional agent for administration

to pregnant obese/overweight mothers to counter the predicted elevated cancer risk

in offspring, the latter based on studies with rodent models. Specifically, metformin

when given only during gestation was found to negate the increased adiposity and

glucose intolerance typically observed for adult offspring mice born from HF-fed

mothers and who were later provided high-fat diet as young adults [54]. However,

this same group reported that metformin provision to pregnant mothers on regular

(non-high fat) diet did not elicit the same effects on progeny; indeed, offspring

gained more body weight and showed higher mesenteric fat weight when they were

provided high-fat diet as young adults [55]. The potential widespread clinical use of
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metformin has been recently evaluated in two randomized, double-blinded, pla-

cebo-controlled studies of obese pregnant women without diabetes [56, 57]. Metfor-

min was found to have no significant effects on mean birthweight at delivery in both

studies, while reducing maternal gestational weight gain [56, 57]. The incidence of

side effects varied in the two studies, however, with one reporting no significant

difference [56], while the other indicating these to be higher in the metformin group

than in the placebo group [57]. Thus, metformin’s use for improving progeny

outcomes in obese women without diabetes requires more extensive clinical

evaluation.

HF diets induce a state of oxidative stress in both the maternal and fetal

compartments and in the blood circulation of adult progeny. Thus, conceptually,

consumption of diets enriched in antioxidants may help counter long-lasting effects

of maternal diet and obesity on adiposity, hyperinsulinemia, hyperleptinemia,

insulin resistance, and oxidative stress in offspring. Proof of principle for this

concept has been achieved with two such factors, namely quercetin and grape

skin extract [45, 46]. Moreover, the highly bioactive phenolic compound resvera-

trol, when given to adult progeny of HF-fed rat dams, successfully reversed their

hyperleptinemia [58]. Supplementation of the mother’s diet with soy protein or

whole blueberry powder inhibited mammary tumorigenesis in rat and mouse

progeny [59–61]. Since these diet additives possess significant antioxidant capacity,

they may similarly prove useful as dietary supplements in paradigms of maternal

(and paternal) HF diet and obesity to mitigate cancer risk in offspring. Interestingly,

supplementation of maternal diet with blueberry at amounts comparable to two

cups of blueberry/day (5% blueberry powder added to casein-based diet) lowered

progeny’s body weights, serum insulin, and serum leptin/adiponectin ratio [61];

thus, the beneficial effects of maternal blueberry consumption are supported by

induction of anticarcinogenic adiponectin and, conversely, repression of

pro-carcinogenic leptin in offspring. Also, maternal consumption of soy protein

isolate or blueberry powder led to elevations in expression of the tumor suppressor

PTEN in mammary glands of offspring [59, 61]. Future studies should address the

promising protective effects of soy protein isolate and blueberry powder in the

context of maternal HF-diet consumption or obesogenic conditions to provide

strategies that can be easily incorporated in dietary programs of pregnant obese/

overweight mothers.

Provision of soy protein isolate to pregnant mothers with metabolic dysfunctions

may also prove efficacious for offspring’s liver heath. In work from our laborato-

ries, intervention with soy protein during pregnancy only or throughout pregnancy

and lactation led to reduced liver steatosis in 3-month-old rat offspring (Fig. 13.3).

These data localized the effect of dietary soy protein to gestation, since the

magnitude of hepatosteatosis observed in offspring exposed only during this devel-

opmental period did not differ from that of pregnancy plus lactation-exposed

progeny. This diet-switching paradigm is highly applicable for assessing effects

of dams fed soy protein isolate in the context of HF diets on progeny and, by

extension, other preventative dietary strategies for suppressing NAFLD and the

associated HCC in offspring born of HF-fed mothers.
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Lastly, we note the potential for dietary supplementation of pregnant mothers

with methyl nutrients and folic acid to counter cancer risk in offspring [27, 62].

While these supplements have not been examined with respect to maternal and/or

Fig. 13.3 Effects of maternal dietary intervention on hepatosteatosis in offspring. Animal pro-

cedures were approved by the University of Arkansas for Medical Sciences Animal Care and Use

Committee. Diets contained either casein (CAS; 20% w/w) or soy protein isolate (SPI; 20% w/w)

as sole protein source and were formulated according to the AIN-93G diet formula, except that

corn oil replaced soybean oil [25, 57]. (a) Pregnant Sprague–Dawley rat dams at gestation day

4 were placed on CAS or SPI diets. Rats were provided food and water ad libitum. At birth, litters

were culled to an average of five males and five females per lactating dam (CAS: 22 dams; SPI/B:

22 dams; SPI/W: 14 dams). (b) Lipid bodies in the left lateral lobe of livers of postnatal (PND) day

90 rat offspring were assessed by staining of OCT-embedded tissue sections with Oil Red O

(ORO) followed by counterstaining with Phoenix Blue. Representative ORO-stained liver section

from an animal (PND90) of each of the three dietary groups is shown. (c) Quantification, by image

analysis, demonstrated lower lipid droplet area (reflecting less droplet size and/or number) in livers

of SPI/B and SPI/W, compared to CAS animals at PND 90 (n¼ 6–8 animals/diet group/age). Bar

graphs (expressed as mean� SEM) represent the proportion of area stained with Oil-Red-O.

Different superscripts indicate significant differences between diet groups ( p< 0.05)
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offspring obesity, they have been shown to oppose experimentally induced tumor

genesis in offspring of rat dams fed laboratory chow diets.

13.6 Conclusions

Much has been learned from using rat and mouse models on whether and, to a

limited extent, how maternal diet and maternal obesity can influence progeny’s
cancer risk. Such studies have also indicated that these early maternal effects can be

amplified by postnatal exposure to HF diet [63, 64]. These data in total imply a

feedforward circuitry of generational influence with potentially devastating conse-

quences. Figure 13.4 provides our working model that incorporates potential

contributing factors acting on the maternal side and in the fetal/neonatal offspring

that may predispose the latter to cancer susceptibility. Emerging data implicate

epigenetic signals acting at multiple levels in the transmission of phenotype from

mother to offspring, but the complexity of the signaling process prevents complete

understanding on whether the epidemiology of human cancers is governed by

similar mechanisms. We wish to emphasize two other points in Fig. 13.4. First,

the nature of the placentation process and, hence, the feto-placental-maternal

interface is to some degree, species-specific. This means that results from rat and

Fig. 13.4 Postulated model for maternal HFD/obesity effects in adult offspring to increase cancer

risk at multiple tissue sites
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mouse models may not be entirely applicable to humans, although all manifest a

hemochorial placenta, when examining trans-generational aspects of cancer risk.

Second, it seems a good possibility that placenta-elicited exosomes containing

miRNAs and other noncoding RNAs may constitute a treasure trove of biomarkers

for offspring cancer risk. The contributions of lactation and of colostrum/milk

constituents to cancer risk in offspring are relatively unexplored. Evolving studies

on the use of cord blood and resident stem cells and placenta from obese and

normo-weight women and their daughters at delivery for biomarker evaluation

provide promising avenues for dissecting linkages and mechanisms. In the short

term, however, it is important that public health recommendations about lifestyle

modifications that can be easily and widely implemented be put in place for

pregnant mothers. Only then can we exploit and augment the benefits of scientific

inquiry to mitigate the alarming trend of adverse effects of poor maternal metabolic

history in cancer etiology.
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Chapter 14

The Influence of Maternal Obesity

on Offspring Cardiovascular Control

and Insights from Rodent Models

Paul D. Taylor

Abstract Human cohort studies of mother–child associations around pregnancy

suggest that pre-pregnancy body mass index (BMI) is causally associated with

cardiometabolic risk factors in young adult offspring. Corroborative evidence in

mammals for the influence of maternal obesity on offspring cardiovascular function

is provided by obese pregnancy models in sheep and non-human primates, whilst

more mechanistic studies in rodents suggest that perinatal exposure to the metabolic

and hormonal milieu of maternal obesity may permanently change the central

regulatory pathways involved in cardiovascular development and control. Shared

central pathways of leptin and insulin signalling play an important role in the

hypothalamic control of appetite and energy expenditure via sympathetic innerva-

tion of metabolically and thermogenically active tissues such as brown adipose

tissue (BAT), but are also involved in sympathetic activation of non-thermogenic

tissues, including the kidney, and central selective leptin sensitivity is implicated in

obesity-related hypertension. In rodent studies, maternal obesity confers persistent

sympathoexcitatory hyper-responsiveness and hypertension to the exposed off-

spring which appears to be mediated by neonatal hyperleptinaemia associated

with permanently altered hypothalamic structure and function. Indeed, the

neurotrophic role of leptin in hypothalamic development and aberrant cardiovas-

cular control is evidenced by a rat model of experimental neonatal

hyperleptinaemia in which leptin administration in naive pups during the critical

period of postnatal hypothalamic plasticity leads directly to permanent cardiovas-

cular dysregulation and hypertension. This chapter will discuss the epidemiological

evidence and mechanistic insight from rodent studies on the influence of maternal

obesity on offspring cardiovascular control.
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14.1 Introduction: Prevalence and Relevance of Maternal

Obesity in Pregnancy

The Health Survey for England (2013) currently estimates the rate for obesity is

26% for men and 24% for women. More recent projections suggest that by 2030,

41–48% of men and 35–43% of women could be obese if current trends continue

(Statistics on Obesity, Physical Activity and Diet: England 2015) [1]. The preva-

lence of maternal obesity is rising in line with the general population trends, and has

more than doubled in the past 20 years, with an estimated 20% of pregnant women

classified as obese in the UK [2, 3]. Recent evidence addressing longevity and

morbidity associated with maternal obesity indicates an increase in all-cause

mortality in adult offspring and increased mortality from cardiovascular events in

particular [4]. It is, therefore, critical that we understand the consequences of the

obesity epidemic not least in terms of the impact on the cardiovascular and

metabolic health of the future generations. Whilst human mother and child cohort

studies indicate associations between maternal factors in obese pregnancy with

childhood cardiovascular outcomes, they are by their nature limited in their poten-

tial to assign cause and effect due to residual confounding factors around shared

genetic, environmental and social influences in childhood. Animal models have

proved invaluable in dissecting out the various developmental influences and

mechanistic pathways that conspire to affect changes in offspring phenotype and

predispose to cardiovascular morbidity and mortality. This chapter will discuss the

evidence from animal studies that maternal obesity predisposes offspring to car-

diovascular dysfunction in later life. It will illustrate the potential mechanisms

involved in the developmental programming of hypertension in particular, which

is arguably the single best predictor of premature death from cardiovascular

disease.

14.2 Clinical and Epidemiological Evidence

for the Influence of Maternal Obesity on Offspring

Cardiovascular Function

Maternal obesity in pregnancy, whether characterised by pre-pregnancy BMI

>30 kg2 or excessive gestational weight gain (GWG), is now considered the single

biggest obstetric risk factors and is associated with an increased incidence of all

common complications of pregnancy affecting maternal morbidity and mortality

outcomes [3, 5, 6]. Increased rates of Caesarean section (CS) in obese pregnancy,
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now the most common surgical procedure performed in women of reproductive age

[7] and longer stays in neonatal intensive care units, also have healthcare and health

economics implications [3, 8]. Caesarean section may carry its own inherent risk of

long-term cardiometabolic risk centred around mode of delivery and suboptimal

microbial colonisation of the neonatal intestinal tract by the maternal microbiome

[9]. However, there is increasing evidence that maternal obesity per se is a risk

factor for obesity and related disorders in the next generation [10–12]. Some

commentators have referred to the ‘transgenerational acceleration’ of obesity, an
independent relationship between maternal body mass index (BMI) and adiposity in

children. There is now widespread concern that exposure to the metabolic milieu of

maternal obesity and associated gestational diabetes mellitus (GDM) may initiate

developmental changes which set metabolic and cardiovascular development on a

trajectory for both childhood obesity and hypertension [13–15].

14.2.1 Maternal BMI GWG and Blood Pressure in Offspring

Whilst the underlying mechanisms are not yet understood, numerous studies have

demonstrated the association between maternal BMI and offspring adiposity or

BMI, supporting the observation that ‘maternal obesity begets offspring obesity’
[16–18]. Recent meta-analyses estimated that maternal pre-pregnancy obesity

confers a threefold increased risk of obesity in the child [19], whereas GWG

(above Institute of Medicine Guidelines, in the USA) is associated with a more

modest 33% increased risk. Moreover, both maternal pre-pregnancy obesity and

GWG (especially in first trimester) are also associated with other cardiovascular

risk factors in children including adverse lipid profiles, insulin resistance and

inflammatory markers [20–23]. Together with increased risk of obesity in children

born to obese pregnant women, these cardiovascular risk factors will contribute to

the elevation of blood pressure in childhood, and for the most part, the reported

association between maternal pre-pregnancy BMI and GWG with offspring blood

pressure appears to be largely mediated by these cardiovascular risk factors espe-

cially child’s current BMI [24], suggesting perhaps not surprisingly that maternal

obesity begets obesity-related hypertension in the child. However, there is emerg-

ing evidence from both human and animal data for an independent relationship

between maternal BMI and offspring blood pressure.

Wen et al. (2011) studied over 30,000 mother–child pairs in the Collaborative

Perinatal Project and investigated the influence of childhood BMI status in the

association between childhood systolic blood pressure (SBP) and pre-pregnancy

BMI [25]. Higher offspring SBP was significantly associated with pre-pregnancy

overweight and obesity (vs. normal weight); however, the relationship attenuated to

null after adjustment for childhood BMI. Hence, a child’s current BMI may largely

mediate the associations of maternal pre-pregnancy BMI with offspring blood

pressure. Similarly, the Jerusalem Perinatal Family Follow-up Study, a birth cohort

of 1400 young adults born in Jerusalem who had extensive archival data and

14 The Influence of Maternal Obesity on Offspring Cardiovascular Control and. . . 309



clinical information, reported that both pre-pregnancy BMI and GWG were inde-

pendently associated with cardiometabolic risk factors in adulthood, including

systolic and diastolic blood pressure [26]. Again, after adjustment for offspring

adiposity the observed association was lost, indicating that the relationship between

maternal obesity and offspring blood pressure appears to be driven mainly by

current offspring adiposity. Of course that is not to say that both obesity and

hypertension could not be programmed concurrently through shared causal path-

ways, e.g. in the hypothalamus, which regulates both blood pressure regulation and

body weight through energy balance.

In support of an independent association, between maternal obesity and off-

spring blood pressure, the Amsterdam Born Children and their Development

(ABCD) Study recently reported that pre-pregnancy BMI, in over 3000 women,

was positively linearly associated with offspring diastolic (DBP) and SBP age 5–6

years [24]. After adding birth weight and child BMI to the model, the independent

effect size of pre-pregnancy BMI on SBP and diastolic blood pressure decreased by

approximately 50%, indicating that child’s current BMI partly mediated the asso-

ciation. However, the relationship still held, indicating for the first time an inde-

pendent relationship between maternal BMI and childhood blood pressure.

Respiratory sinus arrhythmia (RSA, a derivate of parasympathetic activity) was

positively associated with pre-pregnancy BMI but disappeared after adjusting for

possible confounders.

So what are the potential mechanisms? Clearly, there is something about the

obese and diabetic milieu in pregnancy which is influencing the development of the

fetal/neonatal heart and cardiovascular system to increase blood pressure and

cardiovascular disease risk. Candidate ‘vectors’ in the transmission of obesogenic

and cardiovascular risk to the developing fetus or neonate include those hormonal

and metabolic elements that can cross or signal via the placenta or be mediated as

milk-borne factors. Such factors may include, but are not limited to, macronutrients

such as glucose and lipids (fetal overnutrition hypothesis), which via increased

placental transfer can trigger a reactive hormonal response in the developing fetus

to activate insulin, leptin and glucocorticoid signalling pathways. Similarly,

immune and inflammatory mediators may also interfere with developmental pro-

cesses during periods of developmental plasticity. In humans, the first trimester

seems particularly susceptible to the effects of excessive GWG on childhood

cardiometabolic outcomes. The Generation R study, from Rotterdam, The Nether-

lands, recently reported that increased weight gain in the first trimester of preg-

nancy was associated with increased risks of childhood overweight and clustering

of cardiometabolic risk factors, largely mediated by childhood adiposity

[21]. Childhood diastolic blood pressure at 4 years of age, and increased adiposity

from 2 years of age, has also been associated with rapid weight gain in the first

trimester [27]. Interestingly, the first trimester is associated with accumulation of

maternal fat depots and may provide insight into the kind of developmental signals

that might arise for excessive weight gain during this critical period for placental

development. Indeed, leptin may play an important role in early placentation by

stimulating several genes involved in angiogenic signalling pathways and fatty acid
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metabolism [28]. Moreover, elevated serum leptin levels in the first trimester have

been associated with placental disease and pre-eclampsia in lean women [29]. In the

rodent, trans-placental passage of I125 leptin from the maternal to the fetal circula-

tion increases tenfold in late gestation, consistent with leptin’s putative role as a

fetal growth factor [30]. A similar elevation in fetal cord blood leptin concentration

occurs in human pregnancies towards term [31].

14.2.2 Insight from Intervention Studies Designed
to Improve Maternal Metabolic Profiles in Obese
Pregnancy

Most studies examining the consequences of maternal obesity for offspring

cardiometabolic outcomes have been observational in nature and therefore are

subject to the influence of confounding variables which can affect the outcome

e.g. maternal education, socioeconomic factors, lifestyle factors, ethnicity and

genetics. Intervention studies, especially randomised control trials (RCTs), have

greater validity to establish cause and effect, in that putative mediators can be

modulated to influence a given outcome. Interventions, therefore, designed to

improve GWG, glucose homeostasis and/or metabolic profiles in obese pregnancy

would be hypothesised to improve fetal and childhood cardiometabolic outcomes.

However, to date, very few relevant studies in obese pregnancy have been reported

which might provide mechanistic insight and potentially inform policy for effective

intervention strategies [32, 33]. RCTs that have attempted to address the conse-

quences of maternal obesity and weight gain in pregnancy are logistically quite

difficult and have tended to focus on determinants of energy balance such as diet

and exercise as lifestyle interventions. Studies have been of varying quality with

little consensus on the core outcomes affecting maternal and fetal health. A recent

systematic review and meta-analysis identified 44 relevant randomised controlled

trials, involving 7278 women, that had diet or lifestyle interventions in pregnancy

and reported obstetric outcomes [34, 35]. Overall, there was 1.42 kg reduction

(95% confidence interval 0.95–1.89 kg) in GWG with any intervention compared

with control. Combining interventions, there were no apparent effects on birth

weight or the incidence of large for gestational age (LGA) or small for gestational

age (SGA) babies between the groups, although physical activity intervention alone

was associated with reduced birth weight (mean difference�60 g,�120 to �10 g).

Dietary intervention resulted in the largest reduction in maternal GWG (3.84 kg,

2.45–5.22 kg), with improved pregnancy outcomes compared with other interven-

tions, although the overall evidence rating was low to very low.

Certainly, diet and lifestyle interventions in pregnancy can reduce GWG and

influence fetal outcomes; however, there is some controversy around intervention

targeting weight gain in pregnancy due to potential adverse fetal outcomes. Current

UK guidelines, contrary to IOM (USA) guidelines which provide ranges of
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recommended weight gain based on pre-pregnancy BMI, do not advocate targeted

weight management during pregnancy. A consensus statement from the ILSI

Europe Workshop Obesity in pregnancy concluded that the evidence available on

short- and long-term health impact for mother and child currently favours actions

directed at controlling pre-pregnancy BMI women of reproductive ages. The

consensus called for more randomised controlled trials to evaluate the effects of

nutritional and behavioural interventions on pregnancy outcomes [6]. Those RCTs

which have reported to date suggest that diet and exercise interventions in obese

and overweight pregnancy can be effective in changing maternal behaviour, but

that diet and exercise alone may not be sufficient to prevent pregnancy outcomes

such as gestational diabetes and pre-eclampsia; improvement in metabolic profiles

may still be beneficial to longer-term offspring cardiovascular health [36–38].

A recent ‘diet and exercise’ lifestyle intervention in 157 obese and 97 lean

pregnant women, conducted in Odense and Aarhus University Hospitals in Den-

mark, reported on offspring metabolic risk factors at 2.8 years of age [39, 40]. The

outcome measures were BMI Z-score, abdominal circumference, blood pressure

and fasting plasma glucose, insulin, high-density lipoprotein and triglycerides. No

differences were observed between the intervention and control obese groups, or

between the obese and lean groups. The authors concluded that early childhood

metabolic risk factors were largely unaffected by lifestyle interventions in obese

pregnant women. This relatively small negative study is the first of its kind and the

results of larger ongoing RCTs are eagerly awaited. It should also be noted, despite

strong evidence from meta-analyses [19, 41], that not all mother–child observa-

tional cohort studies have supported an association between maternal obesity or

GWG and increased cardiovascular risk [14, 42]. However, many of the mother–

child cohort studies were cross-sectional and reported a relatively low prevalence of

obesity in their pregnant populations, which may have masked associations with

childhood outcomes.

There are two large RCTs currently evaluating the efficacy of dietary and

lifestyle interventions in obese pregnancy: the UK Pregnancies: Better Eating and

Activity Trial (UPBEAT, NIHR programme; ISRCTN89971375) and the LIMIT

trial in Adelaide, Australia (ACTRN12607000161426). As well as reporting on

pregnancy outcomes [36–38], both studies now have the invaluable opportunity to

follow up the children to investigate long-term cardiovascular and metabolic

development. The wealth of data from these highly characterised pregnancies will

allow detailed investigation of the potential benefits of intervention and the rela-

tionship between maternal metabolic profile and offspring cardiometabolic health.

A subsidiarity study, UPBEAT Tempo Heart, funded by the British Heart Founda-

tion is currently ongoing and is specifically investigating cardiovascular structure

and function in neonates and 3-year-old children born to the UPBEAT participants.

Various state of the art neonatal magnetic resonance imaging modalities and

cardiac and vascular ultrasound techniques will, for the first time, investigate the

consequences of maternal obesity for infant cardiovascular development related to

targeted modulation of the maternal metabolic profile.

312 P.D. Taylor



In addition to the very valuable RCTs conducted, some rather elegant ‘sibling
pair’ studies, performed in children born to mothers before and after bariatric

surgery for extreme obesity, have provided strong evidence for an association

between maternal and offspring cardiometabolic risk factors [43, 44]. The preva-

lence of overweight and obesity was higher in the children born before, compared to

those born after maternal biliopancreatic diversion bariatric surgery. At the time of

follow-up, children born after maternal surgery (AMS) exhibited threefold lower

prevalence of severe obesity, greater insulin sensitivity (homeostasis model assess-

ment of insulin resistance index), improved lipid profile (cholesterol/high-density

lipoprotein cholesterol and high-density lipoprotein cholesterol) and lower

C-reactive protein and leptin, than children born before maternal surgery. These

studies, therefore, powerfully demonstrate the benefits of weight reduction in obese

pregnancy for offspring cardiometabolic risk sustained into adolescence and most

likely attributable to an improved intrauterine environment. More recent mecha-

nistic studies from the Canadian Institutes of Health Research suggest that

improved maternal gestational metabolic profile (lipid and carbohydrate metabo-

lism) interacts with offspring gene variations to modulate gene expression levels

and ameliorate cardiometabolic risk profiles in those siblings born AMS [45–

47]. Specifically, improvements in cardiometabolic risk markers in siblings born

after as compared to those born before maternal weight loss surgery may be

mediated through differential methylation of genes involved in immune and inflam-

matory pathways. Although sibling studies such as these help to minimise residual

confounding through shared genetic background and social environment, one

caveat is the potential influence of an altered postnatal ‘maternal’ nutritional

environment pre- versus post-maternal surgery. Although impressive, these inter-

vention studies are still essentially observational and do not carry the same weight

of evidence as randomised controlled trials in establishing causality.

Animal models can, to a large degree, avoid confounding variables associated

with human epidemiological studies. Rodent studies in particular provide mecha-

nistic insight into the effects of obesity in pregnancy and have generated testable

hypotheses that can be back-translated to human studies.

14.3 Insight from Animal Models into the Effects

of Maternal Obesity on Offspring Cardiovascular

Development and Control

Numerous animal models have been developed to recreate the conditions described

in the early epidemiological association studies that generated the DOHaD hypoth-

esis and allow investigation nutritional and hormonal factors that can shape off-

spring phenotype [48, 49]. Animal studies have certain advantages over the human

mother–child cohort studies, which as we have seen are limited in terms of

establishing cause and effect. Rodents are mammals and share all but 1% of our
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genes and have highly conserved physiological systems and similar placentation

which, despite altricial versus precocial species differences in the developmental

stage at birth, make them an excellent model for human pregnancy. Rodent models

are particularly amenable to developmental programming and life-course studies

due to the relatively short life cycles. Rats and mice reach sexual maturity in a little

over 1 month of age, which means that the consequences of environmental influ-

ences in development on the adult phenotype can be studied within a reasonable

timeframe. Rodent models can avoid many of the residual confounding observed in

human population studies by reducing genetic variability in subjects (through the

use of inbred strains and genetically identical animals) and tightly controlling

environmental conditions, e.g. standardising animal husbandry. Experimental

diets can be tested that could not ethically be tested in human cohorts. Moreover,

rodent models facilitate the investigation of underlying physiological, cellular and

molecular mechanisms during critical periods of development not easily available

to clinical researchers.

14.3.1 Animal Models of Maternal Overnutrition and Obesity
in Pregnancy

As with the early epidemiological studies which focused on the developmental

programming effects of famine and low birthweight, much of the basic science

research in developmental programming of cardiovascular function has focused on

maternal undernutrition (for reviews, see [50, 51]). Relatively few studies have

examined the effects of maternal obesity or overnutrition on blood pressure and by

far the majority have been in rats and mice. Maternal overnutrition in rodents has

been found to result in increased SBP in the offspring with some gender differences

depending on the model employed (for reviews, see [52–54]. There are many routes

to obesity; however, diet-induced obesity is normally preconditioned in female rats

and mice by the ad libitum introduction of a highly palatable semi-synthetic high-

fat diet or ‘chow’ in which carbohydrates are replaced with dietary fats and simple

sugars to promote weight gain. Alternatively a highly palatable ‘cafeteria’ diet or
‘junk food’ diet has been employed, high in saturated fat, simple starches and sugars

often reported to mimic the Western diet [55, 56]. The addition of simple sugars in

particular appears to stimulate appetite and increase calorific intake, which is

normally under tight homeostatic control in rodents. Sugar, either in the chow or

presented as sugar water [57], appears to affect a more rapid shift towards a positive

energy balance and development of obesity. Obesity in pregnancy is a risk factor for

gestational diabetes in human pregnancy and in obese rodent dams also there is a

degree of gestational diabetes apparent with maternal hyperinsulinaemia and glu-

cose intolerance in pregnancy and/or lactation [58–63].
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14.3.2 Cardiovascular Dysfunction in Animal Models
of Maternal Overnutrition and Obesity

The early rodent models of overnutrition involving a high-fat diet in pregnancy

[60, 61, 64–70] showed deleterious consequences for cardiometabolic function in

the progeny of fat-fed animals, exhibiting many facets of the metabolic syndrome

including hypertension. Similar corroborative findings were subsequently reported

by different groups all over the World employing subtly different rodent models

[53, 54, 71, 72]. Offspring of diet-induced obese mice (OffOb) develop systolic and

mean arterial hypertension which deteriorates with age as measured by 24 h

ambulatory blood pressure radio-telemetry. Hypertension at 3 months of age was

associated with resistance artery endothelial dysfunction, a criteria for metabolic

syndrome and another risk factor for cardiovascular disease [60]. The attendant

complications of metabolic syndrome may play a significant part in the aetiology of

the hypertension in this model. Visceral adiposity and insulin resistance develop

with age; hence, there is a likely component of obesity-related hypertension in

mature adult mice (for review, see [73]). However, it is technically possible to

measure ambulatory blood pressure in very young offspring of obese rat dams

employing mouse radio-telemetry technology in neonatal rats, and blood pressure is

already elevated in juvenile offspring of obese dams prior to the development of

offspring obesity [74]. Basal night-time (active phase) mean arterial pressure

(MAP) was elevated in the offspring of obese dams (OffOb) relative to offspring

of controls (OffCon; MAP, males: OffOb, 121.8� 0.6 mmHg vs. OffCon,

115.0� 0.5 mmHg, n¼ 6, p< 0.01; females: OffOb, 125.4� 0.4 mmHg

vs. OffCon, 114.4� 0.5 mmHg, n¼ 6, p< 0.001). Blood pressure response to a

brief restraint stress is also exaggerated in OffOb mice which implicates hypersen-

sitivity of the cardiovascular stress response and the sympathetic nervous system

(SNS).

14.3.3 Autonomic Nervous System Dysfunction in Offspring
of Obese Rodents

Early-onset juvenile hypertension in offspring of the obese dams is associated with

marked perturbations in the autonomic control of blood pressure. Power spectral

analysis of the heart rate variability (HRV) derived from continuous waveform

analysis of the blood pressure telemetry record revealed a significant increase in the

sympathetic component of the autonomic control of blood pressure, as indicated by

the ratio of low-frequency (LF) to high-frequency (HF) oscillations at 30 and

90 days of age. The parasympathetic component of ANS control of blood pressure

was also significantly reduced at 90 days whereby high-frequency heart rate

oscillators were strongly attenuated in offspring of obese rats versus offspring of

control. This could contribute to a further increase in blood pressure. In the time-
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domain parasympathetic indexes, the standard deviation of normal to normal

intervals and root mean square of successive differences were also reduced,

confirming the parasympathetic dysfunction shown by power spectral analysis.

Consistent with the observed increase in basal sympathetic tone and the increased

cardiovascular reactivity to stress, renal tissue norepinephrine content and renin

expression were markedly raised in OffOb compared with OffCon. Similarly, the

pressor response to a leptin challenge was enhanced in OffOb rats (Delta MAP:

OffOb, 9.7� 0.8 mmHg vs. OffCon, 5.3� 1.3 mmHg; n¼ 8; p< 0.05). Leptin

increases blood pressure through an increase in hypothalamic and nucleus of the

solitary tract (NTS) efferent sympathetic tone via the brainstem and renal nerve

[75], and both systemic and central administrations of leptin increase renal nerve

activity and MAP in the rat [76] (Fig. 14.1).

The observed hypertension, which persisted into adulthood, was abolished by

alpha- and beta-adrenergic blockade indicating sympathetic involvement. More-

over, OffOb rats demonstrate reduced baroreflex sensitivity, with attenuation of the

tachycardia and bradycardia responses to sodium nitroprusside and phenylephrine,

respectively, resulting in a decreased slope of the curve of HR against MAP.

Taken together these observations suggest the developmental programming of a

primary hypertension of sympathetic origin in the offspring of obese dams arising

from persistent sympathoexcitatory hyper-responsiveness acquired in the perinatal

period. Leptin also triggers sympathetic hyperactivity, but intriguingly, the juvenile

offspring of obese rats display very specific and highly divergent responses to a

leptin challenge in terms of appetitive behaviour, suggestive of selective leptin

responsiveness in pathways originating at the level of the hypothalamic nuclei.

14.3.4 Selective Leptin Responsiveness in Offspring of Obese
Rodents

Leptin is an adipokine peptide hormone released from fat cells in proportion to their

size, as they become enlarged with stored triglyceride. Leptin is critical to the

regulation of energy balance and feeds back to the appetite regulatory centres in the

brain to report a positive energy balance. Activation of leptin receptors (LepR) at

the arcuate nucleus (ARC) of the hypothalamus activates satiety pathways to inhibit

further food intake, but also promotes energy expenditure via sympathetic stimu-

lation of the metabolically active tissues such as brown adipose tissue (BAT)

involved in thermoregulation [77]. SNS stimulation by leptin also appears to have

an important role in cardiovascular control [77]. Leptin infusion or leptin

overexpression in genetically modified mice increases renal sympathetic nerve

activity (RSNA) and elevates blood pressure and heart rate [73, 78–80]. In the

ARC, leptin stimulates the expression of pro-opiomelanocortin (POMC) and acti-

vates POMC neurons to release melanocyte-stimulating hormones (MSH) that act

on secondary neurons expressing melanocortin receptors (MC4R) in the

316 P.D. Taylor



ARC

VMN

DMN

LHA

PVN

POMC
CART

Leptin 
Insulin

NTS

Ghrelin

PYY

POMC

Cerebral Cortex

MCH

NPY
AgRP Parasympathetic

Sympathetic
Preganglionic

Neurons

αMSH

MC4R

Satiety signals: 
CCK, GLP-1, PYY
Vagal afferent

NPY
AGRP

αMSH
CART

MCH
ORX

OXY

ORX

αMSH
CART

GLP-1

SH

E
ME

POMC
CART

POMC
CART

SCn

Brain 
Stem

BBB

SOCS-3

CRH
TRH

P-STAT3

MCH
ORX

Ob-R

MC4R

Ob-Rb

Fig. 14.1 The hypothalamic nuclei and related brain regions. The arcuate nucleus (ARC) is

located in the hypothalamus, close to the median eminence (ME) where the blood–brain barrier

(BBB) is incomplete allowing blood-borne signals to reach ARC neurons. Leptin, insulin and

ghrelin are the most important hormonal satiety signals and are also actively transported across the

BBB where they activate anorexigenic neurons coexpressing alpha melanocyte-stimulating hor-

mone (αMSH) and cocaine- and amphetamine-regulated transcript (CART) and inhibit orexigenic

neurons coexpressing agouti-related protein and neuropeptide Y (AgRP and NPY). Both

populations of neurones project widely throughout the brain. CART is also expressed in the

paraventricular hypothalamic nucleus (PVN) and LHA. αMSH is cleaved from the precusor

polypeptide proopiomelanocortin (POMC) along with other peptides such as β-endorphin and

ACTH. The ARC integrates this information together with inputs from brainstem areas and signals

other hypothalamic nuclei such as the ventromedial hypothalamic nucleus (VMN), dorsomedial

hypothalamic nucleus (DMH) and PVN, to reduce food intake. Signals from the ARC to the PVN

and the lateral hypothalamic area (LHA) also increase feeding. Divergent projections from the

orexin containing neurons (ORX) and melanin-concentrating hormone (MCH) neurons in the

LHA ascend to the cerebral cortex and descend to the brainstem and spinal cord. Oxytocin

containing neurons (OXY) of the PVN innervate vagal preganglionic parasympathetic neurons

involved in gastrointestinal control (OXY). Hormones from the gastrointestinal tract including

cholecystokinin (CCK) and glucagon-like peptide (GLP-1) modulate these processes through

shorter-term changes in satiety and hunger. Inputs from the suprachiasmatic nucleus (SCn) to

the PVN and DMN also regulate diurnal feeding patterns. The three possible outputs from the

hypothalamus that regulate food intake and energy expenditure are activation of motor neurons via

the brain stem; activation of neuroendocrine neurons in the PVN that secrete corticotropin-

releasing hormone (CRH) and thyrotropin-releasing hormone (TRH) to activate the pituitary

axes (e.g. hypothalamic–pituitary–adrenal and hypothalamic–pituitary–thyroid axis activation

result in secretion of glucocorticoids and thyroid hormone); autonomic nervous system both

sympathetic and parasympathetic e.g. influencing heart rate and blood pressure and thermogenesis

in metabolically active tissues
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paraventricular nucleus of the hypothalamus and related brain regions (NTS) to

increase sympathetic activity.

Leptin deficiency, on the other hand, in both humans and animals, causes obesity

in the absence of hypertension [81, 82]. In established obesity, chronic

hyperleptinaemia can lead POMC neurons to become unresponsive to leptin with

the loss of the anorectic actions of leptin, yet with preservation of the pressor effects

on blood pressure, effectively a state of acquired selective leptin resistance, which
has been hypothesised to underlie obesity-related hypertension [43, 73, 83]. Off-

spring of obese rats also appear to exhibit a developmentally programmed early

leptin resistance as juvenile animals which precedes the onset of obesity and

hyperleptinaemia. Administration of exogenous leptin at a dose (10 mg/kg i.p.)

which inhibits 24 h food intake and promotes weight loss in control animals had no

apparent effect in 30-day-old offspring of obese rat dams [70, 84, 85]. Following

similar administration of leptin in young OffOb rats, phosphorylated-STAT3, a

marker of leptin signalling, was selectively reduced in the ARC, but not in other

hypothalamic nuclei [70]. The dorsomedial hypothalamus (DMH) and ventrome-

dial hypothalamus (VNH) in addition to the PVN also express LepR and have been

implicated in leptin’s ability to stimulate BAT and cardiovascular control indepen-

dently of MC4R signalling (Fig. 14.1). This provides a possible explanation for

selective leptin resistance in chronic obesity and also potentially the selective leptin

responsiveness observed in young offspring of obese rats which was not obesity

related, but a direct consequence of early-life ‘exposure’ to maternal obesity.

14.3.5 Neuronal Development of the Neonatal Brain: A Role
for Leptin

This then begs the question, what is it about the immediate maternal environment

that gives rise to the primary programming of sympathetic hypertension in off-

spring of obese rodents? Hypertension appears to arise as a direct consequence of in

utero or postnatal exposure to maternal obesity and is not the result of increased

adiposity in the offspring, which only becomes evident in older animals. Intrigu-

ingly, the observed alteration in central leptin sensitivity in offspring of obese

rodents may provide a clue, especially when we consider the critical role that leptin

plays in development of the CNS and the neonatal hyperleptinaemia associated

with maternal obesity in rodents.

The apparent primary programming of a sympathetically mediated hypertension

secondary to maternal obesity in young offspring of obese rodents may arise not

only from perturbation of central leptin sensitivity, but also through dysregulation

of the normal neurotrophic action of leptin resulting in both structural and func-

tional deficits in leptin signalling during neuronal development [70].

Maternal obesity in rodents is associated with marked hyperleptinaemia in the

neonate during a critical period in brain development when leptin is thought to play
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a permissive neurotrophic role in establishing the neural circuitry of the hypotha-

lamic nuclei [86]. Leptin, possibly in concert with other neurotrophic factors

including insulin and corticosterone, appears to be critical during this period of

developmental plasticity for promoting neural growth of the hypothalamic nuclei

involved in both appetite and blood pressure regulation.

A physiological postnatal surge in the plasma leptin concentration was first

described in neonatal rats by Ahima and colleagues in 1998 and has since been

described by others in both rats and mice [87–92]. The leptin surge peaks during the

second postnatal week in rodents (postnatal day 10) before returning to normal

levels at weaning. Leptin signalling pathways are incomplete at this stage of

development and pups are able to maintain a high level of food intake despite

higher plasma leptin levels. The physiological role of the leptin surge appears to be

in orchestrating hypothalamic neuronal outgrowth and connectivity between hypo-

thalamic nuclei [92, 93].

In a landmark paper, Sebastian Bouret and colleagues (2004) first described the

neurotrophic action of leptin in leptin-deficient (ob/ob) mice. Bouret initially

observed incomplete formation of the neural projections between the arcuate

nucleus (ARC) to the paraventricular hypothalamic nucleus (PVH) of the hypo-

thalamus in the hyperphagic and obese ob/ob mice [86]. Bouret and colleagues
were able to restore normal hypothalamic development by giving neonatal mice

replacement leptin treatment critically during the second postnatal week. Leptin

treatment in adult (ob/ob) mice had no apparent effect again highlighting the early

postnatal period as being critical to hypothalamic development in rodents. Similar

attenuation of hypothalamic neural projections from the ARC is also observed in

DIO rats genetically predisposed to develop diet-induced obesity [94]. These two

genetic models of hyperphagia and obesity [94, 95] also show reduced immunore-

activity for agouti-related peptide (AgRP) containing neurons in the PVH which

originate in the ARC [94, 95]. Reduced density of arcuate projections and AgRP-

containing neurons in the hypothalamus may permanently influence the structure

and function of neural circuits involved in both energy balance and autonomic

regulation of cardiovascular control (Fig. 14.1). Moreover, AgRP is the endogenous

antagonist of MC4R, and reduced antagonism would increase melanocortin signal-

ling at sites relevant to blood pressure regulation to promote hypertension [96].

It seems likely that the exaggerated and prolonged neonatal leptin surge reported

in offspring of obese rat dams may have precipitated the attenuated AgRP immu-

noreactivity reported in the PVH at postnatal day 30. It is tempting to speculate that

similarity in neonatal AgRP neural development between this model and Bouret’s
study in ob/ob mice which lack leptin [86] is a consequence of leptin resistance in

the former and leptin deficiency in the latter. These studies, and others since

Bouret’s pivotal study, which have focused on the neurotrophic action of leptin

and the influence of early nutrition, seem to indicate a permissive role for leptin and

leptin signalling in the normal development of the neonatal hypothalamus and may

provide the strongest mechanistic link between maternal obesity and permanent

programming of cardiovascular control [63, 72, 94, 97–106].
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14.3.6 Nutritional Impact on Leptin Signalling
in Development

Little has been reported on the origins or determinants of the leptin surge in rodents.

In neonatal OffOb rats, the plasma leptin surge is matched by a similar profile of

adipocyte leptin mRNA expression, suggesting that neonatal adipose tissue is the

source of the plasma leptin surge, as has been suggested by others [87, 89,

91]. Maternal nutritional status has been shown to affect the timing of the neonatal

plasma leptin profile [91, 107], which is thought to reflect the differentiation of

pre-adipocytes into mature adipocytes which can then produce leptin [108]. Factors

such as insulin which affect maturation of the pre-adipocytes may therefore influ-

ence the timing of the leptin surge [109]. Indeed, in offspring of obese rats there is a

peak in the neonatal plasma insulin profiles in response to elevated glucose concen-

trations in the milk, which appears to precede the neonatal plasma leptin surge [110].

Whilst several models of developmental programming report maternal nutri-

tional modulation of neonatal leptin profiles associated with changes in offspring

cardiometabolic phenotype [91, 105] pharmacological manipulation of the leptin

surge in rodents provides further support for the role of leptin in shaping

cardiometabolic outcomes [91, 107, 111, 112]. A greater understanding of the

determinants of the neonatal leptin surge and the comparative physiology in

humans, which is poorly understood, might inform interventions to reduce the

risk of obesity and hypertension.

14.3.7 Experimental Neonatal Hyperleptinaemia in Rodents

To investigate the cardiovascular consequences of the exaggerated and prolonged

leptin surge observed in offspring of obese rat dams, we treated naive rat pups with

exogenous leptin to mimic leptin concentrations over the same time course

[113]. Neonatal rats born to control dams were treated twice daily either with

recombinant rat leptin (10 mg/kg i.p.) or saline vehicle control from postnatal day

(PD) 9–15. Cardiovascular function was assessed remotely by radio-telemetry. In

juvenile leptin-treated animals SBP was raised by 13 mmHg compared to controls.

The cardiovascular response to a brief restraint stress and a pharmacological

challenge to a bolus dose of leptin was enhanced in the leptin-treated animals.

Power spectral analysis of HRV derived from the blood pressure waveform of the

telemetry record confirmed heightened sympathetic drive contributing to hyperten-

sion in the leptin-treated animals. Analysis of tissue catecholamine levels at 30 days

of age showed a twofold elevation in renal noradrenaline concentrations in the

leptin-treated animals. Hypertension in the leptin-treated animals was normalised

following mixed alpha and beta blockade (terazosin and propranolol). Hypertension

and heightened sympathetic tone were observed independent of changes in adipos-

ity and/or hyperleptinaemia suggesting a direct influence of neonatal leptin expo-

sure on the developing pathways of blood pressure control [113].
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Leptin-treated animals were ‘leptin resistant’ at 30 and 90 days of age, with no

response in feeding behaviour or weight loss following a leptin challenge. Similar

studies have reported hypothalamic leptin resistance following leptin administra-

tion in neonatal rats [107, 114] and mice [91]. However, the studies by Samuelsson

et al. provide the first direct evidence that exposure to hyperleptinaemia in early

development causes adulthood hypertension of sympathetic origin and supports a

role for leptin in the cardiovascular phenotype of acquired ‘selective leptin respon-

siveness’ secondary to maternal obesity in the OffOb model (Fig. 14.2). Comparing

the two phenotypes, however, the offspring of the obese rat dams appear to have a

more pronounced hypertension and more robust cardiovascular phenotype than the

leptin-treated rats [84]. This suggests that other factors relating to maternal obesity

contribute the OffOb phenotype in addition to neonatal leptin exposure [113]. Neo-

natal hyperinsulinaemia may also have a part in aberrant hypothalamic develop-

ment [115] and may influence offspring cardiovascular control secondary to

maternal obesity and glucose intolerance [60, 61]. Indeed, maternal high-fat feeding

during lactation in mice causes offspring obesity associated with severely impaired

POMC and AgRP projections to PVH, which is prevented by specifically knocking

out insulin signalling in POMC-specific insulin receptor-deficient mice [116].

14.4 Identifying the Site of the Hypothalamic Lesion

in Offspring of Obese Rodents

14.4.1 A Role for Hypothalamic Melanocortin Signalling

Rodent studies of maternal obesity and experimental hyperleptinaemia indicate that

increased sympathetic nerve activity (SNA) is an important mediator of

Selective leptin responsiveness

↓ satiety ↑ SNS 
activity

Hyperphagia
& Obesity Hypertension

Excessive Adiposity
(overnutrition)

Pregnancy 
& Lactation

Offspring
Phenotype

Altered Leptin 
Signalling in

Hypothalamus
in adulthood

Fetal/neonatal
Hyperleptinaemia

Leptin 
Resistance and 

Impaired neurotrophic 
action

in the Hypothalamus

Fig. 14.2 Developmental programming of obesity and hypertension secondary to maternal

obesity and/or neonatal hyperleptineamia. The schematic shows the proposed developmental

origins of ‘selective leptin responsiveness’ in which the anorexic actions of leptin are lost whilst

the pressor effect of leptin is enhanced
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hypertension since alpha- and beta-adrenergic receptor blockade and renal dener-

vation ameliorate the elevation of blood pressure in these models [60, 74, 84]. How-

ever, the molecular mechanisms and neuronal pathways are yet to be fully

elucidated. We can hypothesise that the ‘selective leptin responsiveness’ observed
and the exaggerated pressor response to leptin identifies the hypertensive lesion in

the hypothalamic leptin signalling pathways that regulate sympathetic efferent

activity. Leptin activates POMC neurons in the arcuate nucleus, which release

peptide melanocyte-stimulating hormones (MSH) that act on MC4R expressing

neurons in the PVH and other brain regions to increase SNA [117, 118]. Humans

with loss-of-function mutations of MC4R are obese but have normal blood pressure

[119]. Moreover, the SNA responses to acute leptin are abolished in MC4R-

deficient mice [120] and by central administration of the MC4R antagonist

SHU9119 [119]. We have reported that hypothalamic MC4 mRNA expression is

increased in adult offspring of obese rats compared to controls and that central

administration of the MC3/4R antagonist SHU9119 decreases MAP to a greater

degree in offspring of obese rats compared to controls [121]. Maternal obesity

appears to result in increased MC4R signalling which contributes to hypertension in

this rodent model. It is tempting to speculate, therefore, that increased signalling via

MC4R in the PVN or possibly in the brainstem mediates the primary sympathetic

hypertension in offspring of obese pregnant rats. Indeed, recent unpublished obser-

vations by Samuelsson and colleagues on the effects of maternal obesity imposed

on the genetic background of MC4R null mice mouse model indicate that hyper-

tension in offspring of diet-induced obese is dependent on the presence of func-

tional MC4R in the PVH [122]. Heterozygote loxTB Mc4r mice were mated with

Sim1-Cre genetically modified heterozygote loxTB Mc4r littermates [123] to

generate WT, homozygous loxTB MC4R (MC4R null mice) and Sim1-Cre,

loxTB MC4R (MC4R–PVH) offspring in which MC4R is re-expressed specifically

in the PVN. These studies identify MC4R signalling in the paraventricular hypo-

thalamus as the primary lesion in the development of sympathetic hypertension

secondary to both maternal obesity and experimental neonatal hyperleptinaemia

(Fig. 14.3).

14.4.2 Leptin Receptor Signalling Beyond the Arcuate
Nucleus

As evidenced in chronic obesity and potentially in offspring of obese rodents,

POMC neurons in the arcuate nucleus may become leptin resistant; however, leptin

can act independently of MC4R signalling to affect changes in cardiovascular

control. The DMH is intimately involved in the activation of BAT and regulation

of the cardiovascular system and both humans and animals with loss-of-function

mutations in leptin and LepR are obese but not hypertensive. Selectively blocking

the action of leptin in diet-induced obese mice using specific antibodies, antagonists
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or inhibiting activity of LepR expressing neurons originating in the DMH prevents

the elevation in HR and BP in diet-induced obese mice [124, 125] although the

effects on RSNA were not reported. Re-instating LepR in the DMH of obese LepR-

deficient mice elevates BP. Hence, the DMH, independent of MC4R signalling,

represents another potential candidate site for the hypertensive lesion and leptin

hyper-responsiveness in offspring of obese mice.

14.4.3 The Gut Microbiome and Epigenetic Modifications
Arising from Obesity in Pregnancy

Whilst the aforementioned alterations in hypothalamic structure and function

secondary to maternal obesity may be mediated through classical processes of

developmental neuroendocrinology, they do not exclude a potential role for novel

molecular mechanisms which may shape gene expression during critical periods of

developmental plasticity. The gut microbiome is emerging as a key player in

obesity research and presents yet another very immediate environmental stimulus

to developmental programming through epigenetic modification of gene environ-

ment and expression and shaping offspring phenotype in development and beyond.

Moreover, the transfer of gut microbiota from mother to baby that occurs during

normal vaginal delivery presents another vector for inheritance of epigenetic traits

that may influence obesity and cardiometabolic risk. From the obstetric perspective,

there has been much recent interest around mode of delivery establishing

Leptin + Insulin Satiety

Paraventricular Nucleus 
of the hypothalamus

Arcuate Nucleus of the 
hypothalamus

Release of 
AgRP

KidneyBAT

SNA

Release of 
α-MSH

POMC neurons
(Activated)

AgRP neurons
(inhibited)

MC4R neurons

Fig. 14.3 Leptin signalling, blood pressure and MC4-R pathway. Leptin and insulin act syner-

gistically to activate shared central sympathoexcitatory pathways which are mediated by the

melanocortin 4 receptor (MC4R) and the PI3 kinase pathway. AgRP is the endogenous antagonist

of MC4R, and reduced antagonism would increase melanocortin signalling at sites relevant to

blood pressure regulation to promote hypertension
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phenotypic traits in the offspring. Obesity is a major risk factor for Caesarean

section, and babies born particularly by pre-labour caesarean section (CS) can

develop acute and chronic physiological changes which are hypothesised to reflect

aberrant microbial colonisation of the infant intestinal tract [126, 127]. Associated

phenotypic changes range from altered feeding behaviour, metabolism and blood

pressure to type II diabetes, immune-related conditions and neurological and stress-

related problems [128]. Mode of delivery and antibiotic use in late pregnancy are

potential confounders in studying the effect of obesity in mother/child cohorts,

associated with as much as 46% increased risk of childhood obesity [129].

The gut microbiota with an estimated biomass of 2–3 kg in humans contains a

unique group of symbiotic micro-organisms both bacteria and viruses with a

combined gene pool or ‘microbiome’ far in excess of the human genome. Besides

the more mundane yet essential biological functions such as the digestion of

complex carbohydrates, these microbial genes influence innate and adaptive immu-

nity and may have key regulatory functions in metabolic pathways in health and in

disease [130–132].

Some elegant inoculation studies in animals demonstrate the power of the gut

microbiota to affect metabolic and cardiovascular phenotype. Toll-like receptors of

the innate immune system are critical for both colonisation and homeostasis of the

human microbiota. Genetically altered mice specifically lacking TLR 5 exhibit

hyperphagia, obesity and hypertension associated with a dysbiotic gut microbiota.

Remarkably, transfer of faecal material from affected mice to germ-free wild-type

mice (treated with antibiotics) confers similar features of the metabolic syndrome in

recipient mice [133]. Diet also has an important role in shaping the composition of

the gut microbiome, with high-fat Western diets favouring a more ‘Bacteroides’
enterotype associated with obesity [134–136]. These studies therefore highlight the

importance of the healthy colonisation and maintenance of the microbiota and

imply that diet and/or obesity in pregnancy could set up a dysbiosis in the offspring

through the inherited microbiome.

14.4.4 The Gut Microbiota and Cardiovascular Control

Emerging evidence suggests that gut microbiota influence blood pressure regulation

and salt sensitivity through interactions with genetics, epigenetics diet and lifestyle

factors and the widespread use of antibiotics [137]. Human essential hypertension

along with several models of hypertension in rodents [the spontaneously hyperten-

sive (SHR) and Dahl salt-sensitive rat] is associated with altered microbiota and the

relative ratio of gut species Firmicutes and Bacteroidetes [138, 139]. Fermentation

products derived from gut bacteria can influence blood pressure control via mod-

ulation of sympathetic pathways of energy expenditure and catecholamine metab-

olism in the gut, together with intestinal and renal ion transport which can influence

salt sensitivity.
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Short-chain fatty acids (SCFA) derived from gut bacteria can also modulate

renal sensory nerves to affect renin release and blood pressure via the gastro-renal

axis [140]. SCFA can increase energy expenditure via the gut–brain axis stimulat-

ing the SNA via G protein-coupled receptor—GPR41 and elevating blood

pressure [141].

Hypertension is affected by low-grade inflammation which can arise from

compromised microbiome diversity. Pre-eclampsia is characterised by hyperten-

sion and inflammation in pregnancy and is improved by long-term probiotic use

[142]. Probiotics may therefore find prophylactic use in blood pressure control via

epigenetic modification of the complex regulatory pathways involved in

hypertension.

Animal studies addressing the probiotic modulation of the microbiome in obese

pregnancy and epigenetic effects on the offspring are ongoing in our laboratory, and

it remains to be seen whether the colonisation and the diversity of intestinal

microbes is a modifiable risk factor for offspring cardiovascular outcomes second-

ary to obese pregnancy.

14.5 Translation from Animal Models Back to Human

Obesity in Pregnancy

The rodent models of obesity in pregnancy share many similarities with the

metabolic profiles in obese pregnant women including insulin resistance and

maternal hyperglycaemia leading to a reactive fetal hyperinsulinaemia

[143]. Obese pregnant women, like their obese rodent counterparts, also demon-

strate hyperleptinaemia, and cord blood leptin is raised in babies born to obese

women [143]. Thus, in common with the neonatal rodent, the fetus of an obese

woman is exposed to both hyperinsulinaemia and hyperleptinaemia [144]. It is

important, however, in extrapolating to humans from rodents, to acknowledge that

as an altricial species, rodents give birth to young at a less advanced stage of

development compared to human infants (precocial) and that the period of hypo-

thalamic plasticity that occurs in rat pups postnatally probably equates to the third

trimester in human pregnancy. However, there is evidence from non-human pri-

mates that this developmental window may extend into the suckling period

[99, 145]. Studies of human fetal brain development are understandably limited,

but there is evidence that neural projections begin to develop between hypothalamic

nuclei from 21 weeks of gestation [146]. It seem likely, therefore, that the critical

window for hypothalamic developmental in humans is quite broad and that there is

potential for exposure to the adverse neurotrophic effects of pathological levels of

leptin in obese pregnancy both antenatally and potentially post-partum via

mother’s milk.

In comparison with rodents, a leptin surge has not been described in human

development as such; a developmental role for leptin might be suggested by the
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unexplained high concentration of leptin in fetal cord blood, which falls rapidly

post-partum [31], and is related to birth weight [147, 148]. Recent studies provide

strong evidence for a positive correlation between maternal and fetal plasma leptin

concentrations (and a negative correlation between fetal leptin and insulin sensi-

tivity), evidence of the maternal–fetal transmission of this potentially critical

neurotrophic factor [149].

The hyper-reactivity of the SNS in offspring of obese rodents has not been

established in human studies. Whilst the ANS has not been extensively studied in

the children of obese women, a correlation has been observed between fetal cardiac

sympatho-vagal activation during labour and maternal BMI [150]. The ABCD

study of 3074 women reported that pre-pregnancy BMI was positively linearly

associated with offspring blood pressure, but not with sympathetic or parasympa-

thetic drive in 5–6 year olds. However, only a small proportion (5%) of the women

studied were clinically obese [24]. Ongoing studies will characterise ANS as part of

a follow-up study of neonates and 3-year-old children born to obese pregnant

women participating in the UPBEAT RCT (UK pregnancy and better eating trial)

compared with offspring born to lean control mothers.

14.6 Conclusions

The prevalence of maternal obesity in the UK has more than doubled in the past

20 years and is predicted to rise with in line current secular trends. Not only is

maternal obesity the single biggest obstetric risk factor for adverse pregnancy

outcome, but it carries with it reduced life expectancy in adult offspring through

increased cardiovascular mortality. Maternal obesity, in particular pre-pregnancy

BMI, is associated with childhood and adult hypertension; however, the extent to

which elevated blood pressure and other cardiovascular risk factors are dependent

on the offspring BMI requires further studies in younger children. Ongoing RCTs of

diet and lifestyle interventions aimed at modulating the determinants of obesity in

pregnancy have the greatest potential to establish cause and effect and inform

intervention strategies to improve offspring cardiovascular outcomes. Animal stud-

ies, which to a large extent avoid confounding variables, support a strong associ-

ation between maternal obesity and offspring blood pressure. This involves early

activation of the SNS and suppression of parasympathetic drive, which is indepen-

dent of offspring adiposity and, therefore, secondary effects of obesity-related

hypertension. Evidence suggests the developmental programming of a primary

hypertension secondary to maternal obesity and neonatal hyperleptinaemia which

is of autonomic nervous system origin and associated with selective leptin respon-

siveness at the level of the hypothalamic nuclei. Altered leptin signalling in the

hypothalamus may arise through neonatal hyperleptinaemia during the critical

developmental window of neuronal development and hypothalamic plasticity

when leptin appears to have a permissive neurotrophic role in normal physiological

development. Leptin resistance arising from downregulation of LepR during this
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period may produce suboptimal neural outgrowth and connectivity between the

hypothalamic nuclei resulting in altered structure and function of pathways

involved in energy expenditure and blood pressure control. In situ hybridisation

experiments that can map LepR expression within the highly heterogeneous neu-

ronal populations and cell types with the ARC will identify the aetiology involved.

Meanwhile, preliminary studies not yet published from our laboratory, employing

Cre-lox technology, identify a role for the hypothalamic melanocortin system in the

origins of the hypertension secondary to maternal obesity and experimental neona-

tal hyperleptinaemia. These studies pinpoint MC4R in the PVH as the primary

lesion in the autonomic hypertension in these models. The intestinal microbiota

sometimes referred to as the ‘second brain’ presents some exciting new pathways in

the gut–brain axis which can influence physiology through innate immune and

metabolic systems to potentially influence developmental programming of the

central nervous system. The colonising gut flora present a plausible vector in the

transmission of maternal epigenetic traits to offspring and it remains to be seen

whether the microbiota colonisation and the diversity of intestinal microbes might

be a target for intervention in maternal obesity.

Finally, whether increased fetal exposure to leptin secondary to maternal obesity

influences human hypothalamic development to a similar degree remains to be

seen, but evidence from non-human primates supports translation of similar under-

lying cellular and molecular mechanisms. In fact, it would be surprising if the

neurotrophic effects of leptin and the consequences of leptin overexposure on

hypothalamic development were not conserved across mammalian species. How-

ever, at present, the prospect of pharmacological interventions in leptin signalling

during pregnancy seems unlikely. Therefore, diet and lifestyle interventions that

modulate adiposity levels and reduce possible fetal leptin overexposure remain the

best option for intervention.
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Chapter 15

Maternal Obesity Effects on the Risk
of Allergic Diseases in Offspring

Katharine C. Pike and Liesbeth Duijts

Abstract Parallel increases in prevalence of both obesity and allergic disease have

occurred in recent decades, suggesting that these conditions may be causally linked.

Allergic diseases are often established in childhood. Factors acting in early life,

including the prenatal period, might influence the risk of developing these condi-

tions. Epidemiological data partially support associations between maternal obesity

and allergic disease. These associations appear largely restricted to asthma, not all

of which is allergic. Maternal obesity could directly influence respiratory or

immune development predisposing to asthma and, potentially, other allergic dis-

eases via immune modifying effects of adipokines, epigenetic effects, or effects

upon the maternal and fetal microbiomes. Indirect effects of maternal obesity which

might, in turn, influence the risk of developing allergic disease include pregnancy

complications and obesity in offspring. Finally, associations between maternal

obesity and allergic diseases in offspring might reflect shared genetics, gene–

environment interactions or confounding by shared diet or habitual activity.

Given the considerable impact of allergic asthma and other allergic diseases upon

individuals and health-care systems, identifying a causal pathway between maternal

weight and allergic diseases would be of great importance for public health. Further

research is needed to identify the underlying mechanisms, effect modifiers and

long-term consequences into adulthood.
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15.1 Introduction

Allergic diseases, including allergic asthma, allergic rhinoconjunctivitis and atopic

eczema have increased in prevalence in many Westernised countries over the last

half century [1]. More recently, similar increases have occurred in developing

countries, particularly those undergoing socio-economic change and urbanisation

[2, 3]. From the 1990s onwards, much interest has focused upon the concept of

‘developmental programming’, whereby environmental exposures acting in early

fetal life, or even around conception, might lead to developmental adaptations

which influence disease risk throughout life. Increased obesity might be one factor

underlying the increase in allergic disease that appears to accompany urbanisation

and attainment of a Westernised lifestyle. Maternal pre-pregnancy obesity has been

demonstrated to be associated with adverse pregnancy outcomes, including

pregnancy-induced hypertension, pre-eclampsia, gestational diabetes and need for

assisted delivery or caesarean section [4]. There is also evidence that maternal

pre-pregnancy obesity or greater gestational weight gain is associated with an

increased risk of preterm birth and, compared to offspring of mothers of normal

weight, a greater risk of being born either low birthweight or large for gestational

age [4–6]. Maternal pre-pregnancy obesity might adversely affect the pulmonary

development of the fetus, leading to relatively smaller airways, and impaired lung

function. Alternatively, maternal pre-pregnancy obesity might affect the develop-

ment of the fetal immune system. These developmental effects could subsequently

lead to an increased risk of allergic diseases.

15.2 Ecological Observations

In the late 1990s, the International Study of Asthma and Allergies in Childhood

(ISAAC) reported prevalences for asthma approaching 40% in young teenagers in

regions of the UK, New Zealand and Australia [7]. Similarly, these and other

Westernised countries have also reported high prevalences of allergic asthma,

allergic rhinoconjunctivitis and atopic eczema in children [8] and in adults

[9]. While these increases appear to have plateaued in the developed world,

increases are now occurring in developing nations where living conditions and

lifestyle are becoming more like those in developed countries [2, 3]. A number of

European studies have shown significant variation in the burden of allergic diseases

within populations relatively similar in terms of genetic make-up, but living under

very different economic and environmental circumstances. For example, the inci-

dence of asthma, rhinitis and atopic sensitisation amongst East German children

was found to be substantially lower compared to those growing up in the more

affluent West Germany [10]. Similar findings have been reported comparing chil-

dren living in Eastern Europe to those living in Scandinavia [11]. The results of

longitudinal studies in developing countries also suggest an increase of allergic
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diseases as countries become more affluent. Urban and richer middle class Ghana-

ian children have been found to be more likely to develop atopy or exercise-induced

asthma than poorer children or those living in a rural environment, for

example [12].

Changes in employment, diet and activity levels, which together contribute to

increased prevalence of obesity, are potentially important contributors to the

association between assuming a Westernised lifestyle and acquiring an increased

predisposition to allergic disease. This is exemplified by data collected from the

Inuit population of Greenland at the end of the last century, during a period of rapid

urbanisation. Parallel increases occurred in obesity and sensitisation to

aeroallergens during this period [13–15]. Moreover, in England during a period

of rapidly increasing asthma prevalence, the prevalence of adult obesity increased

from 15% in the early 1990s to almost 25% in 2001 [16]. Similar increases in

prevalence occurred in the USA, where between 1960 and 1994 the prevalence of

obesity rose from 12.8 to 22.5% [17]. Whilst this ecological data cannot be used to

infer causality, these findings suggest that obesity and allergic diseases, mostly

asthma, have increased in parallel in developed and, more recently, in developing

countries. Since many allergic diseases such as allergic asthma, allergic

rhinoconjunctivitis or atopic eczema have their inception in childhood, the factors

most likely to influence the likelihood of an individual developing these diseases

are those acting early in life. Recent data demonstrate that over half of women of

childbearing age in England are obese or overweight [18]. Moreover 20–40% of

women in Europe and the USA gain more than the recommended weight during

pregnancy [19]. Together these epidemiological observations support the hypoth-

esis that temporal changes in obesity amongst mothers might contribute to the

increasing rates of allergic diseases experienced by their children.

15.3 Cohort Association Studies

Since 1996, many prospective cohort studies conducted in Europe, and the USA,

have sought to examine the relationships between maternal obesity and childhood

allergic diseases. Given the difficulties associated with interpreting body mass

index (BMI) during pregnancy, cohort studies have most frequently measured

pre-pregnancy BMI. Studies that focused upon wheezing outcomes observed that

increased pre-pregnancy maternal BMI (i.e. obesity, mostly defined as �30 kg/m2)

compared with normal weight was associated with a 1.52–3.52-fold increased odds

of wheezing before 3 years of age [20–28]. A meta-analysis of 85,509 subjects

participating in European birth cohorts observed that maternal overweight (BMI

25–29.9 kg/m2) and pre-pregnancy obesity (BMI �30 kg/m2) were equally associ-

ated with any wheezing and with recurrent wheezing of at least four episodes before

age 2 years [odds ratios (OR) (95% CI): 1.08 (1.05, 1.11) and 1.19 (1.12, 1.16),

respectively) and (OR (95% CI): 1.12 (1.08, 1.17) and 1.16 (0.97, 1.39), respec-

tively] [29]. Multiple socio-economic and lifestyle factors were taken into account
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as well as maternal hypertensive disorders, pre-eclampsia and gestational diabetes.

Mediators such as birthweight, gestational age, mode of delivery and breastfeeding

moderately changed the results.

For asthma, maternal pre-pregnancy obesity, compared with normal maternal

weight, was associated with a 1.52–3.40-fold increased odds of asthma between age

6 years and adolescence [26, 30–34]. Results of these previous studies were

confirmed by a meta-analysis of 108,321 subjects participating in observational

studies within Europe and the USA. Maternal pre-pregnancy overweight/obesity

was associated with an increased risk of ever asthma or wheeze [OR (95% CI): 1.31

(1.16, 1.49)] and recurrent asthma or wheeze [OR (95% CI): 1.21 (1.07, 1.37)] in

children aged 14 months to 16 years [35]. Within this meta-analysis, a distinction

between allergic and non-allergic asthma phenotypes was not made. However, it is

important to note that many individuals clinically diagnosed with asthma are

non-atopic and cannot be said to have an allergic disease.

15.3.1 Intermediate and Modifying Factors in Observational
Studies

Studies that examined whether or not impaired lung function underlies the associ-

ation of maternal pre-pregnancy obesity with childhood wheezing and asthma are

scarce [26, 28, 30]. In early life, associations of a higher maternal BMI with an

increased risk of wheezing illnesses attenuated when lung function was taken into

account, but not at an older age [28]. Maternal pre-pregnancy obesity was not

associated with changes in spirometry parameters, measures of airway obstruction

or levels of fractional exhaled nitric oxide (a measure of eosinophilic airway

inflammation), at age 6 years, or bronchial hyperresponsiveness at age 8 years

[26, 30]. Further studies are needed before any conclusions can be made about the

relevance of impaired lung function with respect to the association found between

maternal pre-pregnancy obesity and childhood asthma.

In addition to absolute measures of weight or adiposity, the influence of maternal

gestational weight gain on childhood wheezing and asthma has also been explored

[24, 32, 36, 37]. A meta-analysis of five individual studies observed that a 1 kg

increase in gestational weight gain was associated with current asthma or wheezing

[OR (95% CI): 1.01 (1.01, 1.02)]. Women categorised as having high gestational

weight gain, compared with normal gestational weight gain, had an increased risk

of ever asthma or wheezing [OR (95% CI): 1.16 (1.00, 1.34)] [35]. Where the

effects of both gestational weight gain and pre-pregnancy BMI upon childhood

wheezing have been investigated together, the two appear to be independent [24].
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15.3.2 Influence of Obstetric Complications

Maternal obesity increases the risk of a number of complications in the pre- and

perinatal periods [38–40]. A path analysis approach allows separate estimation of

the indirect effects of BMI, mediated via pregnancy outcomes, and of the direct

adjusted effect of BMI. Using this approach and data from the Norwegian Mother

and Baby cohort (MoBa), it has been shown that the positive association between

wheeze and maternal BMI is attenuated after adjusting for preterm birth, low

birthweight, pre-eclampsia, hypertension, maternal diabetes, gestational diabetes,

and caesarean section. However, the risk of wheeze is highest for children with

mothers in the highest BMI category, even after adjustment for these

complications [21].

It appears that at least part of the association between maternal pre-pregnancy

obesity and allergic diseases in the offspring can be explained in terms of a higher

incidence of obstetric complications. Certainly with respect to asthma, associations

have been found with younger gestational age at birth and lower birthweight [41],

pre-eclampsia, maternal diabetes [29] and caesarian delivery [42, 43]. Pre- and

perinatal complications might also be associated with allergic diseases other than

asthma. Gestational diabetes, for example, was positively associated with atopic

dermatitis and allergen sensitisation in children aged 3 years in the Boston birth

cohort, even after accounting for maternal pre-pregnancy BMI [44]. Moreover,

meta-analysis has found caesarian delivery to be associated with increased risk of

allergic rhinitis [45], and a recent study of over 4500 school children reported

positive associations between caesarean delivery and atopic sensitisation in addi-

tion to those with ever wheeze and ever asthma diagnoses [42].

Other potential mechanisms underlying the association between maternal

pre-pregnancy obesity and childhood asthma symptoms might include child’s
growth, current BMI and immune response to infections. Except for child’s current
BMI, effect estimates did not largely change when previous studies took such

factors into account [21, 22, 24, 26, 28, 34]. Whether or not associations between

pre-pregnancy obesity and wheezing or asthma tend to be stronger in children

without [31, 35] than with [24, 30], a familial predisposition for asthma remains

unclear.

For other allergic diseases, it has been reported that maternal pre-pregnancy

obesity is not associated with allergic rhinitis, hay fever or atopic dermatitis from

age 3 to 16 years [22, 26, 30, 32, 34]. Inconsistent results were observed for

maternal pre-pregnancy obesity and inhalant and food allergen sensitisation mea-

sured by skin prick tests or IgE levels. This might partly be explained by the age,

and related immune development, at which measurements were performed. Further

studies with longitudinal measurements are therefore needed.

Although many potential confounders of the relationship between pre-pregnancy

obesity and allergic diseases have been taken into account, residual confounding

factors could still be present. Residual confounding may occur as a consequence of

factors such as dietary patterns, supplement or vitamin use or maternal nutritional
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status, for example free fatty acid blood levels [46]. Furthermore, the roles of

genetics and epigenetics need to be further explored in observational and other

studies [46, 47].

15.3.3 Observational Studies Supportive of an Intrauterine
Effect of Maternal Obesity Upon Offspring Allergic
Disease

Prospective cohort data demonstrate that maternal pre-pregnancy obesity is asso-

ciated with an increased risk of some childhood allergic diseases. However, it is

difficult to determine if these associations are explained by direct intrauterine

effects or unknown socio-economic or lifestyle-related factors. To disentangle

this, information on paternal obesity before or during the mother’s pregnancy can

be used [48]. If stronger associations of maternal pre-pregnancy obesity with

childhood allergic diseases are observed than for paternal obesity, taking childhood

obesity into account, this would support the hypothesis that intrauterine adaptive

mechanisms underlie the observed associations. Similar associations for maternal

and paternal obesity with allergic diseases would suggest either that paternal

lifestyle influences are transmitted via epigenetic effects or that common and shared

socio-economic or lifestyle-related factors within families might explain these

associations. Such studies have not yet been conducted.

Mendelian randomisation studies could be used to examine the causal effects of

maternal pre-pregnancy obesity and childhood allergic diseases [49]. The Mende-

lian randomisation approach examines associations of genetic variants with mater-

nal pre-pregnancy obesity and asthma. This approach is considered to be unaffected

by confounding or reverse causation because genetic variants are generally

unrelated to confounding factors and do not change after conception. To date, the

only Mendelian randomisation study that has assessed the relationship between

obesity and asthma investigated the association between asthma and childhood
rather than maternal obesity [50]. An increased BMI in childhood was associated

with an increased risk of asthma [Relative Risk (RR) with 95% Confidence Interval

(95% CI): 1.55 (1.16, 2.07) per kg/m2]. A weighted allele score of 32 independent

BMI-related single nucleotide polymorphisms (SNPs) was strongly associated with

childhood asthma [RR (95% CI): 2.56 (1.38, 4.76) per unit score], showing strong

evidence that the association between childhood BMI and asthma was due to a

causal effect. Mendelian randomisation studies for maternal pre-pregnancy obesity

and childhood allergic diseases are still needed.

In summary, observational studies suggest that children born to mothers with

pre-pregnancy obesity or a higher gestational weight gain are at greater risk of

wheezing and asthma, but not of allergic rhinitis and atopic dermatitis, and incon-

sistently of inhalant and food allergy throughout childhood. There is no clear

evidence that these associations are explained by children’s lung function, growth
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and mechanisms related to vulnerability to respiratory infection. Maternal obstetric

complications or childhood obesity may mediate some of the effects of maternal

obesity and familial asthma predisposition might, in turn, modify these effects.

15.4 Intervention Studies

Whilst the potential importance of maternal weight management during pregnancy

is well recognised and a number of intervention studies have been conducted with

the aim of avoiding excessive weight gain during pregnancy, no study to date has

presented data assessing any pregnancy weight management intervention with

respect to allergic diseases in children. A meta-analysis of 44 randomised con-

trolled trials using any combination of dietary or lifestyle intervention found a

1.42 kg reduction in weight gain when compared to no intervention [51]. Interven-

tions aimed at reducing weight gain were associated with a small reduction in the

risk of pre-eclampsia. Maternal obstetric complications might have adverse devel-

opmental effects for the fetus. In addition, the risk of obesity faced by children of

obese mothers is increased [52]. Whilst either of these consequences of maternal

obesity might, in turn, influence the risk of allergic diseases in the offspring, no firm

recommendations for maternal weight management can be made based upon the

findings of intervention studies at present.

15.5 Mechanisms

There are a number of biologically plausible mechanisms which might explain the

findings of observational studies concerning obesity in mothers and allergic disease

in their children. Whilst inflammatory or immune consequences of obesity might

adversely affect respiratory or immune development directly (Fig. 15.1), these

associations might be mediated by obstetric complications during pregnancy or

delivery, which occur with increased frequency in the context of maternal obesity

(Fig. 15.2). Similarly, indirect effects may arise as a consequence of the influence of

dietary behaviours leading to obesity upon the microbiome or epigenome

(Fig. 15.2). It is also possible that these associations reflect common genetics or

residual confounding by dietary patterns, or other behaviours, closely associated

with obesity and strongly shared between parents and their children (Fig. 15.3).

15.5.1 Direct Consequences of Maternal Obesity

Adipocytes are the most abundant cells in white adipose tissue, whilst macrophages

present in the stromavascular fraction constitute 10% of all cells [53]. Together

15 Maternal Obesity Effects on the Risk of Allergic Diseases in Offspring 341



these cell types secrete a range of cytokines and chemokines, including tumour

necrosis factor alpha (TNFa), interleukin 1b (IL1b), interleukin 6 (IL6) and inter-

leukin 10 (IL10). Proteins secreted predominantly by adipocytes are termed

adipokines, the principal two adipokines being leptin and adiponectin. Obese

pregnant women are at risk of obstructive sleep apnoea, and this condition too is

associated with a pro-inflammatory state, potentially attributable to intermittent

hypoxia and frequent sleep arousals [54]. The serum concentration of leptin is

markedly increased in obese compared to lean individuals [55, 56], whilst that of

adiponectin is decreased. Elevated levels of leptin and IL-6 are associated with

stimulation of a range of pro-inflammatory cytokines and downregulation of regu-

latory T-lymphocyte (Tregs) activity [57]. Low adiponectin levels, in contrast, are

Fig. 15.1 Direct effects of maternal obesity mediated via adipokines. Factors such as adipokines

which are increased in the context of maternal obesity might directly affect either the developing

respiratory or immune system, thereby increasing the risk of allergic disease, for example allergic

asthma
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associated with reduced mRNA expression of the anti-inflammatory cytokine

IL-10 [58].

In obese pregnant women, not only are serum levels of proinflammatory cyto-

kines known to be higher than those in pregnant women of normal weight [59], but

levels of pro-inflammatory cytokines are also increased in the amniotic fluid, which

surrounds and is breathed by the developing fetus [60]. If the immune and inflam-

matory changes associated with obesity are transferred to the fetus, this might

programme an immune predisposition to allergic disease (Fig. 15.1). Increased

IL-6, for example, is associated with IL-1, IL-4, TNFα and histamine release and

Immunoglobulin E (IgE) modulation [61], whilst TNFa is an important mediator of

IL-4 in allergen-induced T cells and of IL-5 from bronchial epithelial cells

Fig. 15.2 Indirect effects of maternal obesity and effects mediated by diet. Allergic diseases

including allergic asthma might occur with increased frequency in the context of maternal obesity

as a consequence of indirect effects mediated by the microbiome or epigenome. These mecha-

nisms may reflect either the consequences of an obesogenic diet or those of pregnancy complica-

tions associated with obesity
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[62]. Moreover, it has been hypothesised that the immunological changes associ-

ated with obesity result in decreased immunological tolerance to antigens and

skewing of the immune system towards a Th2 cytokine profile [63]. This hypothesis

has been proposed as a unifying explanation for the observations that older siblings

appear to confer protection against allergic diseases, potentially because tolerance

to fetal antigens has been induced.

Compared to infants born to non-obese mothers, those born to obese mothers

have been shown to have fewer eosinophils and CD4 T helper cells, reduced

Obesity

Fig. 15.3 Confounding factors of shared genetics and environment acting via childhood obesity

or direct effects upon lung or immune development. Residual confounding either by shared

genetics or environment, including diet and activity, might explain the perceived relationship

between mother’s body composition and allergic diseases in their children. The role of genetic

influences is potentially complex; pleitrophic genetic effects might cause both obesity in the

maternal generation and allergic disease in the child (solid lines), whilst obesity and associated

direct consequences of increased adiposity upon immune and/or lung development might be also

be inherited (broken lines)
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monocyte and dendritic cell responses to Toll-like receptor ligands and increased

plasma levels of IFN-α2 and IL-6 in cord blood [64]. Moreover, data from the

Tucson Infant Immune Study suggest not only that excess pregnancy weight gain

appears to change the immune response of the fetus but that an immune marker,

specifically persistently elevated LPS-induced TNF-α production, acts as a predic-

tive biomarker for childhood asthma. Pregnancy weight gain was measured in over

250 mothers, and TNF-α, IL-6, IL-10 and IL-12 were measured in supernatants of

LPS-stimulated peripheral blood mononuclear cells of their children at birth and

3 months alongside plasma TNF-α. Children of mothers in the highest tertile for

pregnancy weight gain were at increased risk of developing asthma (OR, 3.4; CI,

1.7–6.9) and had persistently elevated TNF-α in early life (OR, 2.9; CI,

1.4–8.2) [33].

In addition to the immune and inflammatory properties of adipokines which

potentially predispose to an allergic predisposition, adipokine effects upon the

developing lung may predispose specifically to asthma (Fig. 15.1). Leptin and

adiponectin receptors are expressed in the lung [65, 66], and leptin regulates the

maturation of fetal lung cells [67]. In mice, administration of leptin enhances

ozone-induced airway inflammation and responsiveness [68], whilst adiponectin

administration attenuates allergen-induced airway hyperreactivity and inflamma-

tion [69]. Finally, leptin levels have been shown to be inversely related to spirom-

etry measures of forced expiratory volume in children both with and without asthma

[70, 71].

15.5.2 Mechanisms Mediating Effects of Obstetric
Complications

Developmental mechanisms might explain the associations between the increased

risk of obstetric complications faced by obese mothers and subsequent asthma or

other allergic disease in their children (Fig. 15.2). Histologic studies suggest that

preterm birth is associated with structural changes in the lung, including increased

bronchial muscle, collagen and elastin [72], whilst animal studies suggest that

structural and functional changes in the lung follow restricted prenatal growth

[73, 74]. In pre-eclampsia disturbed regulation of vascular growth in the feto-

maternal unit leads to overproduction of antiangiogenic factors in amniotic fluid

[75, 76]; this too might adversely affect lung development [76]. In addition to

effects upon lung development which might predispose to asthma, obstetric com-

plications might be associated with allergic disease as a consequence of altered

immune development. For example, altered cytokine profiles have been measured

in mothers with gestational diabetes [77]; similarly, differences in the exposure to

maternal vaginal or intestinal flora might mediate the effect of caesarian delivery

upon neonatal cytokine response patterns [78], Th1/Th2 helper cells balance and

the risk of developing atopy and allergic disease [79, 80].
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15.5.3 Effects Mediated via Maternal and Offspring
Microbiome

Maternal intestinal flora may be an important environmental influence upon early

immune system development. Development of a diverse gut microbiota early in life

has been demonstrated to be associated with a decreased risk of allergy [81–

83]. Higher counts of maternal total aerobes and enterococci in third trimester

stool samples were associated with increased risk of infant wheeze [OR 2.32 for

1 log increase in CFU/g stool (95% CI 1.22, 4.42); OR 1.57 (95% CI 1.06, 2.31),

respectively). No organisms were associated with either eczema or allergic wheeze.

Animal models have shown that maternal treatment with specific apathogenic

bacteria during pregnancy can protect against allergic sensitisation in the offspring

[84, 85]. The maternal gut microbiome has been shown to differ between over-

weight pregnant women and those of normal weight [86]. Moreover, distinctive

changes to the maternal microbiome have been reported to be found in association

with greater pregnancy weight gain [87]. Differences have been reported to exist in

the gut microbiome of infants born to obese (BMI �30) versus non-obese mothers.

During the first 6 months of life, fecal Bacteroides and Staphylococcus concentra-
tions were significantly higher in infants of overweight mothers during the first

6 months. Prevalences of Akkermansia muciniphila, Staphylococcus and Clostrid-
ium difficile groups were lower in infants of normal-weight mothers and of mothers

with normal weight gains during pregnancy [88]. Given the importance of the gut

microbiota in shaping the developing immune system, perturbation of maternal

flora in obese women, perhaps reflecting diet, might in turn affect the offspring’s
microbiota and risk of allergy (Fig. 15.2).

15.5.4 Epigenetic Effects

Epigenetic mechanisms present a further means by which maternal diet or adiposity

during pregnancy might influence the in utero environment and impact upon fetal

development (Fig. 15.2). Animal models have demonstrated that nutritional factors

can invoke changes in the offspring epigenome which predispose to allergic

asthma. Hypermethylation of the Runt-related transcription factor 3 (Runx3)

under conditions of a high folate diet, for example, is associated with decreased

expression of this gene. Runx3 negatively regulates airway inflammation;

hypermethylation and decreased expression therefore increases inflammation and

likely risk of allergic airway disease [89]. One study of the potential epigenetic

consequences of maternal obesity has shown obesity in mothers to be associated

with changes in methylation at differentially methylated regions (DMRs) of genes

associated with early growth regulation. Moreover, this study found evidence that

preconceptional exposures through the father might induce epigenetic shifts at

DMRs of imprinted genes in the offspring. Newborns from obese fathers were
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found to be hypomethylated at the mesoderm-specific transcript (MEST), pater-

nally expressed gene 3 (PEG3) and neuronatin (NNAT) DMRs, independent of

maternal obesity and other potential confounders [90]. Studies in mouse models

suggest that demethylation of the MEST promoter may lead to overexpression of

the gene, causing enhanced expression of genes related to metabolic conditions,

such as diabetes [91]. Similar epigenetic mechanisms, potentially, could mediate

transmission of obesity from either parent to effects upon immune development in

the offspring, hence influencing allergic predisposition.

15.5.5 Genetic Links

Association between obesity and asthma might arise as a consequence of genetic

pleiotropy, meaning shared genetic determinants might exist for these conditions.

Data from same-sex twin pairs within the University of Washington Twin Registry

indicate that obesity and asthma do appear to share genetic determinants

[92, 93]. This study estimated that 8% of the genetic risk for obesity is shared

with asthma [92]. Genome-wide association scans for asthma have indicated

linkage regions at 5q, 6p, 11q and 12q which contain candidate genes for obesity

[94, 95]. Genes associated with obesity might be independently associated with

asthma or these overlaps might occur by chance, merely mimicking pleiotropy, if

obesity candidate genes co-segregate with closely linked genes which influence the

risk of asthma. Either situation would lead to heritability of both conditions within

families (solid lines Fig. 15.3). Alternatively, however, genes linked to obesity

might encode protein products which directly increase the risk of asthma symp-

toms, offering opportunity for maternal (Fig. 15.1) or heritable childhood obesity

to directly influence the risk of asthma in the next generation (broken lines

Fig. 15.3).

A number of genes have been identified through association studies for which

biologically plausible mechanisms can be proposed which explain shared inheri-

tance of both obesity and asthma. For example, polymorphisms in the tumour

necrosis factor-a (TNFa) gene have been found in association with obesity [96]

and asthma and airway responsiveness [97, 98]. In a recent systematic genome-

wide association study, an association was found between BMI and genetic variants

in the Denn domain coding protein 1B (DENND1B) [99]. DENND1B is believed to

exert pro-inflammatory effects through the TNF pathway and has also been found to

associate with childhood asthma. The associations with BMI in asthmatic children

were heterogeneous, however, and did not consistently replicate [100]. These

heterogeneous genetic effects may arise as a consequence of gene–environment

interactions.
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15.5.6 Residual Confounding

Finally, factors which are independently associated with both maternal obesity and

allergic diseases might be responsible for the apparent associations between these

conditions in the absence of a true causal relationship (Fig. 15.3). Possible

confounding factors include those shared by mothers and their children such as

diet [101, 102] and activity levels [103] which might predispose to both maternal

and childhood obesity. Allergy status might then reflect childhood rather than

maternal body composition or diet. Given that the risk of allergy, particularly that

of asthma, has been shown to be associated with childhood activity level [104, 105]

and diet [106, 107]; ‘in utero transmission’ of any effect of a mother’s body

composition need not be invoked to explain the increased risk for her child.

Equally, various environmental consequences of social class might confound the

relationship if not appropriately recognised or accounted for [108].

15.6 Implications and Conclusions

Temporal and geographical gradients exist in obesity and allergic diseases which

suggest a causal link explains the increases in prevalence of both these conditions

observed over time as populations acquire a Westernised lifestyle. Previous obser-

vational studies have highlighted the importance of the early-life period for pro-

gramming development, and plausible mechanisms exist whereby maternal obesity

might be an important determinant of the in utero environment, thereby

predisposing to allergic diseases. Whilst clinical and animal model data provide

supporting evidence for intermediate steps linking maternal body composition with

changes in adipokines and the maternal microbiome, or linking the neonatal

microbiome to the risk of asthma, there are fewer examples linking maternal

body composition or diet via a plausible intermediary mechanism to an allergic

outcome in the offspring. An important exception to this is the association between

increased pregnancy weight gain and elevated LPS-induced TNF-α production

early in life, and between this elevation and childhood asthma in the offspring.

Moreover, the epidemiological evidence, whilst supporting an association between

maternal obesity and higher pregnancy weight gain and wheeze or asthma, provides

little evidence of an association with specifically allergic asthma or indeed any

other allergic disease.

Given the high prevalence and considerable impact of childhood allergic dis-

eases upon morbidity and health-care costs, identifying causal pathways between

maternal obesity and allergic diseases would be of great importance for public

health. Further research is needed to identify the underlying mechanisms, effect

modifiers and long-term consequences into adulthood. Further work to clarify

whether risk varies most according to pre-pregnancy weight, pregnancy weight

gain or aspects of maternal diet which promote weight gain is necessary to identify
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at risk groups and to target interventions. Similarly, better understanding of the

interaction with childhood obesity is needed. Potential interventions could include

those targeting key mechanistic features such as altered maternal or infant

microbiome in addition to those based upon dietary or other lifestyle change.
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Chapter 16

Epigenetic Mechanisms of Maternal Obesity

Effects on the Descendants

Paul Cordero, Jiawei Li, Jonathan L. Temple, Vi Nguyen, and Jude A. Oben

Abstract Obesity has been described as a pandemic of the twenty-first century. Its

prevalence among women of childbearing age continues to rise, increasing the risk

of complications during pregnancy and the likelihood of their offspring developing

obesity and its comorbidities in adult life. As our understanding of the develop-

mental origins of health and disease has grown, the influence of maternal perinatal

physiology has become more clear. Maternal programming appears to be shaped by

epigenetic means. Diverse communities of epigenetic modifications determine the

phenotypic characteristics of different cell types and are themselves adaptable to

changes in cellular physiology and environment. It is now thought that such

epigenetic programs are potentially heritable. Maternal body mass and other

obesogenic cues have been widely associated with epigenetic alterations of off-

spring in human observational studies. Similarly, interventional studies in rodents

demonstrate that obesogenic maternal diet, as well as maternal diabetes and obesity,

manifests epigenetic and phenotypic alterations in different organs, often in asso-

ciation with genes related to appetite, glycaemic control and lipid biosynthesis.

Whilst the dangers posed by obesity to the health of our society are undeniable,

the impact of obesity upon the health of our children is only just beginning to

emerge. Recent evidence suggests that, in addition to the effects of epigenetic

programming upon first generation offspring, subsequent generations may also be

affected. A greater understanding of the molecular phenomenology underlying
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maternal epigenetic programming in obesity may well lead to the development of

effective therapeutic interventions to combat this disease and its comorbidities.

Keywords Epigenetics • Obesity • DNA methylation • Histone • Developmental

programming • Maternal obesity • Transgenerational • DOHaD • Epigenotype

List of Abbreviations

BMI Body mass index

C/EBP-β CCAAT/enhancer binding protein, beta

DOHaD Developmental origins of health and disease

H19 H19, imprinted maternally expressed transcript

LINE-1 Long interspersed nuclear element 1

Mest Mesoderm-specific transcript

NAFLD Non-alcoholic fatty liver disease

NAFPD Non-alcoholic fatty pancreas disease

NPY Neuropeptide Y

Nr3c1 Nuclear receptor subfamily 3, group C, member 1

Peg3 Paternally expressed 3

POMC Proopiomelanocortin

Ppargc1a Peroxisome proliferator-activated receptor-gamma Co-activator 1-α
Ppar-α Peroxisome proliferator activated receptor alpha

RXRA Retinoid X receptor-α
TLR1 Toll-like receptor 1

TLR2 Toll-like receptor 2

Zfp423 Zinc finger protein 423

16.1 Introduction

Obesity is a chronic metabolic disease that arises from the complex interplay of

numerous environmental, behavioural and genetic influences. It is characterised by

an abnormally high proportion of adipose tissue constitutive of total body mass, and

is strongly associated with an increased risk of cardiovascular disease, type 2 dia-

betes, various psychiatric disorders and cancers [1, 2]. As the global prevalence of

obesity continues to rise at an alarming rate [3], there has yet to be any successful

national or international effort to combat this disease, and its increasing economic

burden upon health-care systems with limited resources [4].

Of particular concern is the rising prevalence of obesity among women of child-

bearing age, which has previously been demonstrated to increase the risk of compli-

cations during pregnancy and the likelihood that these children will, in turn, suffer

fromobesity and its associated comorbidities in adult life [5]. Prospective studies have

repeatedly demonstrated strong links betweenmaternal bodymass index (BMI) in and

around pregnancy and the incidence of obesity in adolescence and adulthood.
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Barisione et al. reported that 22% of children born to mothers suffering from obesity

were, themselves, obese at 12 years of age [6]. However, the prevalence of obesity

among their siblings, who were born following substantial surgically induced mater-

nal weight loss, was just 3% at the same age. This discrepancy extended even into

adult life, where themeanweight andBMI for each groupwere 79.5 kg and 27.5 kg/m2

and 66.7 kg and 23.4 kg/m2, respectively [6]. Furthermore, animal models of

maternal obesity induced by obesogenic perinatal diet have also described increased

body mass and adiposity, hepatic steatosis, adverse metabolic lipid profiles and a

greater response to obesogenic diet among the offspring [7–10].

The Developmental Origins of Health and Disease (DOHaD) theory suggests

that maternal physiology and metabolism during the perinatal, fetal and even

preconceptional phases of development are capable of modifying the metabolic

profiles of their offspring by altering how different cell types express specific genes

across different tissues and time [11–14]. Consequently, epigenetics has been

proposed as the main molecular mechanism implicated in this perinatal

programming [15].

16.2 Epigenetic Mechanisms

Epigenetics describes the translation and adaptation of genotype to phenotype,

which is regulated by a complex and interacting network of covalent modifications

of chromatin structure (Fig. 16.1). These epigenetic modifications determine the

cellular state and the metabolism affecting gene expression patterns in a cell-

specific manner whilst preserving the nucleotide sequence [16].

The cellular state is intrinsically related to the chromatin state, which describes

the association of DNA molecules with specialised proteins, including histones,

which package and configure the genetic code three-dimensionally within the

confines of the nucleus. These histones, and in particular their N-terminal tails,

are susceptible to a variety of post-translational modifications, including phosphor-

ylation, ubiquitinylation, acetylation and methylation [17]. Commonly referred to

as histone modification marks, each is believed to contribute to the regulation of

gene expression by controlling the degree of condensation of the surrounding

chromatin and hence the ease of access for the transcriptional machinery. The

other main class of epigenetic modification is DNA methylation. This modification

is mainly found at a cytosine with a guanine as next nucleotide (CpG site) and is

commonly associated with transcriptional repression. These CpG sites are abundant

within and around gene promoter regions, where specific transcription factors bind

to DNA in order to recruit the transcriptional machinery and orchestrate the gene

expression [18]. Thus, methylation of the promoter region at these sites represses

transcription by means of steric impedance of transcription factor binding or via

intermediary proteins that bind methylated DNA [19]. Finally, whilst not directly

interacting with DNA and thus not strictly a class of epigenetic modification, short-

chain RNA molecules, referred to as microRNAs, which are not themselves trans-

lated, appear to interact with mRNA sequences and regulate protein synthesis [20].
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There exist key time frames, during which a cell’s epigenetic profile is more

susceptible to change and adaptation, and hence more vulnerable to environmental

insults, especially during pregnancy and breastfeeding. In this way, the maternal

metabolism can affect or ‘program’ the epigenetic profile of their offspring and

thereby alter that child’s risk of developing obesity in adult life [21]. At such times,

the rate of cellular division is dramatically increased and DNA more exposed to the

chemical modification within the nucleus, which may represent an enticing oppor-

tunity for future clinical interventions [21].

Our growing understanding of the mechanisms of maternal programming in

obesity may go on to explain how the features of this disease can be modified by

lifestyle and nutrition, uncovering how the genetic information and environmental

exposure interact at the molecular level [22, 23]. Differences in DNA methylation

patterns between those who suffer from obesity and controls have been widely

reported in the literature [24] and successfully used as a biomarker of dietary

response in kilocalorie-restricted diets [25].

It is now apparent that epigenetic information can be passed on to the next

generation. This has led some to observe that we are not only what we eat but also

what our progenitors ate [26, 27]. Recent evidence suggesting that maternal pro-

gramming can endure across successive generations is startling and hints at an

epigenetic landscape in obesity of previously unimagined complexity and

importance.

Fig. 16.1 External environment interacts with genotype altering epigenetic profile. Changes in

DNA methylation at CpG sites and post-translational modifications on histone tails promote

alterations in chromatin condensation profile, which regulates the join of the transcriptional

machinery of the genes. Furthermore, the microRNAs interfere with post-transcriptional regula-

tion of gene expression. The combination of these epigenetic changes defines phenotypic

characteristics
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16.3 Epigenetic Programming in Maternal Obesity

Obesity induces an aggressive and degenerative physiological environment, increas-

ing the levels of triglycerides, cholesterol, glucose and other metabolites in the

plasma, raising blood pressure and causing systemic angio-dysgenesis and

hypoxaemia [1, 2]. Ultimately, this can lead to multiple organ damage, including

non-alcoholic fatty liver disease (NAFLD), non-alcoholic fatty pancreas disease

(NAFPD) and various cancers [1, 2]. Maternal obesity at conception, during preg-

nancy and while breastfeeding exposes the offspring to this adverse environment,

programming their physiology with a heightened susceptibility to developing met-

abolic diseases in their own lifetime (Fig. 16.2). These children are more likely to be

born prematurely and often with abnormally high or low birthweight. This was

demonstrated in a study of 319 such mother–child pairs, where global DNA meth-

ylation (quantified by Long Interspersed Nuclear Element 1, LINE-1) in samples of

cord blood was found to be greater in premature and extreme birthweight newborns

compared with controls, and associated with increased adiposity in later life [28].

In addition to affecting the development of obesity in their offspring, maternal

obesity can also trigger the physiological dysregulation of other systems in offspring.

For example, different patterns ofDNAmethylation were found in 57 genes related to

the development of the central nervous system in samples of umbilical cord blood in

infants from obese mothers versus normal-weight mothers, and may well indicate the

onset of abnormal nervous system development in these children [29].

As technology has evolved, genome-related massive omic tools have arisen as

the most useful initial approach in the search for biomarkers of maternal program-

ming. Genome-wide interrogation of cord blood samples from more than a

thousand mother–child pairs has also identified multiple CpG sites that are concor-

dantly methylated in mother and child, and associated with high maternal weight

and offspring adiposity [30]. Genome-wide methylation analyses have also found

links between maternal BMI and patterns of cord blood DNA methylation in genes

related to cardiovascular disease and several malignancies [31]. However, in order

to identify the specific genetic loci affected by maternal obesogenic programming,

a larger pool of data encompassing more diverse populations is still required. That

said, numerous plausible candidates have already been identified. For example, in

Fig. 16.2 Maternal obesity and other perinatal influences program offspring development

(NAFPD non-alcoholic fatty pancreas disease, NAFLD non-alcoholic fatty liver disease, Hyper
TG hypertriglyceridaemia, Hyper Chol hypercholesterolaemia)
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cord blood, high levels of DNA methylation at the gene encoding Retinoid X

Receptor-α (RXRA), a transcriptional regulator, have been associated with

increased adiposity in children at 9 years of age [32]. Gemma et al. also describe

a positive correlation between maternal BMI and methylation levels of the Perox-

isome Proliferator-activated Receptor-gamma Co-activator 1-α (Ppargc1a) gene in

cord blood, which encodes a transcriptional activator involved in regulating various

metabolic processes, including energy homeostasis, hepatic gluconeogenesis and

cholesterol levels [33]. Additionally, Lesseur and colleagues observed that levels of

DNA methylation of the Leptin gene promoter were comparably lower in blood

samples taken from obese mothers than normoweight mothers just before preg-

nancy, as well as cord blood samples from their children at birth, when compared to

mothers of normal weight and their offspring. These neonatal methylation levels

were shown to correlate with leptin concentration in maternal plasma [14]. Further-

more, differences in ambion microRNA expression profile between obese and

normoweight women were associated with a downregulation of insulin and

adipocytokines signalling pathways, among others [34].

The paternal epigenetic profile, carried by the sperm, may also have a role in

predisposing subsequent generations to obesity. Paternal obesity prior to concep-

tion has recently been associated with higher levels of DNA methylation of several

genes (MEST, PEG3, NNAT and Igf2) known to be affected by paternal imprinting

in leukocytes extracted from cord blood [35, 36].

This same study found that methylation levels of different genes (PLAG1,

MEG3, H19) were associated with maternal obesity prior to conception, which

implies that paternal and maternal influences may affect their child’s physiology
differently [35, 36].

Besides the intrauterine environment, breastfeeding also represents a critical period

of epigenetic reconfiguration for the neonate in response to maternal chemical influ-

ences. A study of 120mother–child pairs, undertaken byObermann-Borst et al., found

a negative correlation between the duration of breastfeeding and leptin methylation in

whole blood samples taken from offspring at 17 months post-partum [37].

Existing, as well as novel, interventions may be targeted during key develop-

mental windows to ameliorate the risk of maternal obesity to the unborn [38]. For

example, Guenard et al. describe a significant reduction in the cardiovascular risk

profile of children born after substantial maternal weight loss induced by bariatric

surgery when compared to their older siblings. Subsequent, transcriptomic and

epigenetic analysis of whole blood samples identified 5698 genes that were differ-

entially methylated between these sibling pairs, many of which were related to

glycaemic control, inflammation and vascular disease [39]. The transcriptional

patterns of five such genes linked to the innate immune system and inflammatory

response were also shown to differ significantly between these two groups [40]. The

critical importance of innate immunity and its regulation in the context of maternal

obesity has received further support from animal studies of maternal obesogenic

feeding that demonstrate innate immune dysfunction in offspring with develop-

mentally programmed NAFLD [41].

However, it could also be argued that any of the comorbidities associated with

maternal obesity may adversely condition the epigenetic profile and affect the
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development of these children. Indeed, maternal diabetes mellitus and gestational

diabetes have previously been described as ‘conditioning factors’ affecting devel-

opment in utero. Global methylation levels of placental DNA appear to be

decreased in gestational diabetes and pre-eclampsia but increased in maternal

obesity [42]. This phenomenon has been associated with specific phenotypic

characteristics, such as head circumference at birth and height in infancy. Reduced

methylation at specific CpG sites within the leptin gene has also been demonstrated

in cells derived from cord blood in the context of maternal hyperglycaemia [43]. El

Hajj et al. further noted that the offspring of mothers with gestational diabetes

display reduced DNA methylation of the genes Mest (mesodermic-specific tran-

script), Nr3c1 (nuclear receptor subfamily 3, group C, member 1) and Alu

sequences in cord blood and placenta, when compared to mothers with adequate

glycaemic control [44]. These results accord with prior evidence that Mest meth-

ylation is similarly reduced in blood samples taken from adults who were morbidly

obese [44].

To date, research in this field is largely based upon observational studies in

humans, but rodent experimental models of maternal obesity have now become the

first choice for interventional studies seeking to elucidate the epigenetic mecha-

nisms of maternal developmental programming in obesity [45]. Usually such

interventions involve perinatal obesogenic feeding, enriched in simple sugars and

fats, similar to the Western diet [46]. Expectant mothers are fed in this way during

pregnancy and whilst breastfeeding. The simplicity and economy of rodent main-

tenance, their significant genetic, physiological and metabolic similarities with

humans and their relatively short lifespans make them ideal for studying these

phenomena over successive generations [45, 46].

The offspring of such high-Fat fed obese mice, for example, display decreased

levels of methylation at the promoter of the gene encoding the zinc finger protein

423 (Zfp423), a transcription factor committing cells to the adipose lineage, in

association with downregulation of histone marks H3K27me3, and higher levels of

expression in fetal adipose tissue [47]. Maternal obesity during pregnancy has also

been associated in rats with similarly reduced levels of DNA methylation at the

genes encoding Zfp423 and C/EBP-β (CCAAT/enhancer binding protein, beta),

another proadipogenic transcription factor, as well as increased levels of their

respective mRNA transcripts in offspring adipose tissue [48]. Concordantly, the

extent of hypothalamic DNA methylation of the genes encoding

proopiomelanocortin (POMC) and neuropeptide Y (NPY), both involved in the

regulation of appetite, was positively correlated with calorific intake [49, 50].

Obesogenic maternal diet prior to and after conception has also been shown to

induce altered levels of microRNAs associated with cardiovascular disease within

the myocardium of baboons [51]. Also, in the livers of similarly exposed neonatal

rats, the expression of Cdkn1a, a gene associated with hepatocyte growth following

liver damage and several cancers, was upregulated in tandem with lower levels of

promoter methylation [52]. Maternal obesity appears to program a greater propen-

sity for NAFLD in their offspring, exacerbated further by exposing them in turn to

an obesogenic diet. In such circumstances, changes in the DNA methylation profile
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of genes related to circadian rhythmicity in liver, Bmal1 and Per2, have since been

reported [53].

The key question then becomes how we might effectively intervene and atten-

uate the risk of maternal obesity to the next generation. Animal studies of maternal

physical exercise have, for example, demonstrated successful prevention of

Pparg1a hypermethylation in the offspring of mothers fed an obesogenic diet,

normalising its expression and that of its target genes in skeletal muscle [54]. Mater-

nal weight loss in sheep prior to conception has also been shown to affect hepatic

insulin signalling and microRNA expression profiles in their offspring [55]. It is

perhaps not surprising, then, that physical maternal exercise appears to protect the

offspring from the physiological changes mediated by maternal obesity. Maternal

micronutrient supplementation in rats while breastfeeding has also been found to

prevent maternal obesity-induced homocysteinaemia in offspring, in association

with changes in the activity of DNA methyltransferases and global levels of hepatic

DNA methylation [56].

Given that the epigenetic profile of each cell defines its identity and its role

within the organism, it is conceivable that the maternal nutritional condition affects

different cell types in different ways [11]. When occurring in germ cells, these

alterations gain the potential to endure through successive generations, extending

the implications of maternal programming in obesity.

16.4 Transgenerational Epigenetic Programming

in Maternal Obesity

Whilst the majority of research has sought to elucidate the mechanisms and mani-

festations of maternal epigenetic programming in obesity by focusing on the first

generation of offspring, recent evidence suggests that these maternal programs can

endure across successive generations [57]. The implications of transgenerational

programming in maternal obesity are startling, hinting at an extremely complex and

multidimensional epigenetic landscape that is yet to be fully understood.

The time constraints implicit in such experimental models of transgenerational

obesity inevitably render rodents preferable subjects to humans. High-fat perinatal

maternal feeding in mice has recently been demonstrated to increase the

birthweight, adiposity and macrophage infiltration of adipose tissue across three

generations of their descendants. This immunomodulation was accompanied by a

decrease in the levels of promoter methylation and increased expression of Toll-like

receptor 1 and 2 (TLR1 and TLR2), both involved in the activation of T cells

[58]. A similar study of maternal obesogenic diet in mice prior to conception

induced traits of the metabolic syndrome in five subsequent generations of their

offspring, as well as altering patterns of histone marks at the genes encoding leptin

and adiponectin and their expression in white adipose tissue [59]. When offspring

of these animals returned to a control diet, these alterations were completely
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abolished after three generations, implying that effective intervention of this kind is

possible.

When epigenetic modifications are induced in germ cells by the perinatal

maternal environment, they gain potential transmissibility across subsequent gen-

erations [57] (Fig. 16.3). Ge et al. described significant alteration of Peg3 (pater-

nally expressed 3) and H19 (H19, imprinted maternally expressed transcript)

promoter methylation in the spermatozoa of offspring in a mouse model of maternal

obesity and diabetes mellitus [12]. Oocytes harvested from obese females displayed

increased methylation of the leptin promoter and reduced peroxisome proliferator-

activated receptor alpha (Ppar-α) promoter methylation. Whilst similar transcrip-

tional and epigenetic profiles were observed for Ppara-α in the livers of their female

offspring, oocytes harvested from these same offspring displayed increased levels

of Ppar-α promoter methylation [13]. Hence, different cell types appear to be

differentially affected by maternal programming in obesity, perhaps even at differ-

ent stages of development. Interestingly, maternal weight loss prior to conception

appeared to reprogram patterns of DNA methylation in the liver and normalise the

expression of genes related to lipid metabolism in their offspring [60]. This empha-

sises how changes in maternal physiology, even prior to conception, hold the

potential to influence the metabolism of their offspring by affecting the epigenetic

processes that regulate gene expression.

Fig. 16.3 Transgenerational transmission by maternal environment during pregnancy
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Whilst most of the transgenerational animal models were originally designed for

the study of potentially teratogenic agents [61] and may require further adaptation,

they have already shed considerable light upon the nature of transgenerational

epigenetic programming in maternal obesity. However, it must also be acknowl-

edged that our mechanistic comprehension of this phenomenon remains, itself, in

its infancy.

16.5 Conclusion

Maternal obesity during pregnancy, through breastfeeding and mechanisms pre-

ceding conception, can program their offspring with a physiological predisposition

towards developing obesity and its associated comorbidities in adult life. Maternal

programming in obesity engenders changes in the epigenetic profiles of diverse cell

types, affecting how certain genes associated with obesity are expressed at different

stages of a child’s development. The epigenetic programs that mediate the pheno-

typic characteristics of this disease appear to be transmissible and can endure across

successive generations. However, they remain amenable to appropriately targeted

intervention. A deeper understanding of the molecular phenomenology underlying

maternal epigenetic programming in obesity is desperately needed in order to

develop more effective therapeutic approaches in the management of this

burgeoning global epidemic.
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Chapter 17

Early Microbe Contact in Defining Child
Metabolic Health and Obesity Risk

Erika Isolauri, Samuli Rautava, Maria Carmen Collado,
and Seppo Salminen

Abstract The background to the increase in nutrition-related chronic conditions

such as overweight and obesity is more complex than is generally anticipated.

Recent scientific data suggest that metabolic disturbances can arise from aberrant

gut microbiota, with or without alterations in dietary composition. In particular,

early-life dysbiosis induces lasting alterations in the immune and metabolic phe-

notype. The compositional development of the indigenous intestinal microbiota,

co-evolving with the key regulatory systems of the body, is highly sensitive to the

mode of delivery and early feeding, antibiotic use and maternal immune and

nutritional state during pregnancy. All these elements interact with the microbiota.

Consequently, considerable research interest is currently focusing on the microbial

inoculum provided by the feto-maternal interface, along with microbe contact

during delivery and through lactation. The early colonisers provide a framework

conceptualising the way early-life (pre-, peri- and postnatal) exposures are linked to

disease processes and even the pathogenesis of disease. To quote Hippocrates: “All

disease begins in the gut”. This holds especially true for nutrition-related diseases,

polarised in the detrimental consequences of undernutrition or overnutrition. The

impact of the gut microbiota culminates in early infancy, when the immune

responsiveness and metabolic phenotype are consolidated. The gut microbiota

contributes to nutrition, immunity and metabolism by processing nutrients and

regulating their access to and storage in the body, producing chemicals of hormonal

nature and controlling the secretion of pro-inflammatory mediators locally and
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systemically. Another quotation from Hippocrates states that “Natural forces within

us are the true healers of disease”. Recent experimental and clinical studies have

attracted scientific interest in reprogramming deviations in the gut microbiota.

Promoting the predominance of specific non-pathogenic microbes and thereby

modifying the intestinal milieu may be taken as an alternative means of attaining

prophylactic or therapeutic effects in metabolic and inflammatory conditions. As

the critical time window for these to exert their programming effects falls around

birth, early initiation of preventive measures is of the essence; influencing the feto-

maternal microbe contact may promote the health of the next generation.

Keywords Allergic disease • Atopy • Child • Growth • Gut microbiota •

Microbiome • Mode of delivery • Obesity • Overweight • Pregnancy • Probiotics

17.1 One Child in Four Is Overweight or Obese: Research
on the Gut Microbiota Has Opened Up New Angles
on Regulation of the Host Metabolism

Overweight and obesity currently constitute a global threat to human well-being,

not limited to the heightened risk of morbidity from cardiovascular diseases,

diabetes and asthma. Devising preventive measures is challenged by the increasing

incidence of obesity in children, as it is likely to persist into adulthood [1]. In

affected females, gestational diabetes is one sequela, carrying a risk of complica-

tions during pregnancy and delivery and hampering breastfeeding [2]. A vicious

circle ensues: maternal obesity is associated with neonatal adiposity and high

birthweight and an increased risk of childhood obesity. An escalation of the obesity

problem and comorbidities may thus be envisioned in the future, since the velocity

of propagation is high in the population at reproductive age. Indeed, according to

the current understanding, pregnancy and the perinatal period constitute the most

critical stage and by the same token an optimal target for interventions aiming to

reduce the risk of non-communicable diseases.

One review of systematic reviews [3] has sought to detect early-life determinants

of obesity. Altogether 22 eligible reviews from a database of 12021 publications

were evaluated. The studies in question showed later overweight and obesity to be

associated with maternal diabetes and smoking, rapid infant growth, no or short

breastfeeding, obesity in infancy, short sleep duration, less than 30 min daily

physical activity and consumption of sugar-sweetened beverages. However, the

authors [3] called for intervention studies into the problem, concealed as it is by a

complex web of associations and reciprocal influences.

The theory of obesity development appears simple: more calories are consumed

than expended. In the past decades, each of the energy nutrients has been taken

individually as the source of the problem, in terms of either quantity or quality.

Replacing energy nutrients, however, for example caloric sugars by non-caloric

artificial sweeteners with an eye to reducing energy intake may in fact have

contributed to the obesity epidemic instead of fighting the problem [4]. Moreover,

370 E. Isolauri et al.



energy nutrients and their metabolites have been the focus of research aiming to

identify bioactive compounds regulating our digestive, metabolic and immune

systems. To take one example, whey proteins may exert anti-obesity effects [5].

Importantly, metabolites, nutrient components and nutrients contributing to or

potentially ameliorating the development of obesity have been studied separately

for decades, implementing the traditional reductionist approach in nutrition

research. The recognition, however, that the whole may be more than the sum of

its parts also in respect of the diet [6], without ignoring the individual host per se,

would seem to imply that the development of the obese state depends on more than

host genes and diet.

A myriad of experimental studies demonstrate that the ensuing immune and

metabolic changes are caused not by direct effects of dietary intake but rather by

consequent changes in the gut microbiota (reviewed in: [7, 8]). In fact, the impact of

energy nutrients such as a high-fat diet on weight gain depends notably on the gut

microbiota and the immunological status of the host. To take one example of host–

microbe interaction, gut barrier dysfunction, activation of immune genes and

pro-inflammatory cytokines in response to a high-energy diet precede the develop-

ment of obesity (reviewed in: [9]). In human studies, aberrant compositional

development of the gut microbiota is documented during breastfeeding in infants

in whom overweight development ensued [10]. Equally, aberrancies in the gut

microbiota tend to define the obese state. Adiposity, insulin resistance and

dyslipidaemia are reportedly associated with low bacterial richness and higher

abundance of faecal Bacteroidetes and Proteobacteria accompanied with limited

production of organic acids, such as lactate, propionate and butyrate, and an

inflammatory immune state [11]. Within the group of subjects with low bacterial

richness, obese individuals also gained more weight over time [11]. The signifi-

cance of the richness of Bacteroides species, however, may be difficult to verify due

to different continuously developing methods and their varying accuracy. Different

studies may therefore not be easily comparable and the significance of these

differences awaits further studies to uncover the role of both Bacteroidetes and

organic acids on energy extraction from food and energy storage in fat [12]. Organic

acids such as butyric acid are additionally thought to be involved in glucose

regulation and insulin resistance by controlling energy homeostasis and modulating

adipose tissue, sustaining the propensity to excessive weight gain [13].

According to the hypothesis of Developmental Origins of Health and Disease

[14], our health is particularly endangered if the environment after birth differs

from the situation during pregnancy, for example restricted in utero nutrition

followed by the abundant nutrition characteristic of the Western lifestyle increases

susceptibility to metabolic disorders [15–17]. Adaptation processes during the

critical stages of fetal development might permanently affect the activity of

human genes by epigenetic mechanisms to the anticipated extrauterine environ-

ment, while the experienced postnatal environment would necessitate regulation to

the opposite direction. Clinical evidence of early programming in obesity has been

provided for both maternal undernutrition and overnutrition (reviewed in: [18]).

The Western lifestyle, again, is a relatively recent development consequent upon
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the introduction of agriculture, and one explanation for immune and metabolic

morbidity would indicate that our genome has not had time to adapt to such an

environmental change. Viewed through this lens, the process of adaptation of the

complex collection of genes in the gut microbiota (the microbiome), exceeding

150-fold the number of our genome [19], to our modern nutrition is far from

complete. Indeed, food is the major determinant of the gut microbiota composition

and activity. In view of the fundamental direct impact of the gut microbiota on the

processing of nutrients and the regulation of their access to and storage in the body

[20] and the inflammatory responses causally related to insulin sensitivity [21] and

indirect effects on the hypothalamic–pituitary–adrenal axis [22], it would clearly be

simplistic to assume that the complex collection of the microbiome is a bystander in

the process of metabolic programming.

17.2 Origins of Healthy Microbiota and Early
Developmental Impacts on the Gut Microbiota

17.2.1 Prenatal Microbe Exposure

Recent findings that the placenta has been shown to be colonised with bacteria

provide the basis for a counterargument against the paradigm of sterile fetal life

[23]. Consequently, the colonisation of the fetus is initiated already in utero

(Fig. 17.1) and further reinforced by the exposure of the newborn to the mother’s
microbiota during delivery and subsequently through breastfeeding (reviewed in:

Fig. 17.1 Critical stages in gut microbiota development
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[24]). In fact, the foundation of the step-wise compositional development of the

offspring gut microbiota may be laid at conception, when the male seminal

microbiota is in contact with the vaginal microbiome. In an Estonian study [25],

the bacterial diversity of vaginal and semen samples was determined by sequencing

the V6 region of 16S rRNA genes. Seminal and vaginal bacterial communities

shared a high number of phylotypes, the most common being Lactobacillus,
Veillonella, Streptococcus and Atopobium. Vaginal samples harboured more spe-

cies from the genera Lactobacillus, Streptococcus and Gardnerella compared to

semen samples, and in most vaginal samples lactobacilli were the dominant micro-

organisms with Lactobacillus crispatus, Lb jensenii and Lb gasseri as the most

abundant [25].

The microbial environment encountered by the fetus in both the placenta and

amniotic fluid is much more extensive than was formerly understood [26–29]. Spe-

cific genera reported to be present in the amniotic fluid and placenta include

Propionibacterium, Enterococcus, Staphylococcus, Citrobacter and Lactobacillus,
some of which, e.g. Propionibacterium, Staphylococcus and Lactobacillus, are also
often present among skin microbiota [30]. Genera shared between amniotic fluid

and meconium, the first faecal specimen passed by the neonate, include

Bacteroides, Lactobacillus, Prevotella and Peptostreptococcus as assessed by

DNA-based methods. Culture of specimens from amniotic fluid and placenta

resulted in the identification of mainly lactobacilli, Streptococcus agalactiae and

Fusobacteria [28–30]. Possibly the fact that the fetus constantly ingests amniotic

fluid explains the likeness of amniotic fluid and placenta microbiota to that of

meconium [28, 31, 32]. Some studies in vaginally delivered neonates report only

2–5 genera present in the meconium, these comprising Bifidobacterium,
Enterobacteriacease, Enterococcaceae and Bacteroides-Prevotella, confirming

microbial exposure in utero [33].

17.2.2 Impact of Delivery

The initial microbe contact is complemented perinatally by implantation of the

mother’s intestinal and vaginal microbes during vaginal delivery, and such microbe

transfer will obviously vary from one mother to another, fluctuating between the

main genera Lactobacillus, Streptococcus and Gardnerella. Bäckhed and associ-

ates [34] reported that 72% of early colonisers of vaginally delivered newborns

matched the species in their faecal samples with those observed in their mother.

Thus, the gut colonisation of the neonate originates specifically from microbes in

the amniotic fluid and placenta, and these are complemented by the first bacteria

from environmental contact depending on the mode of delivery.
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17.2.3 Role of Breast Milk in Microbial Colonisation

Several reports suggest that mother–infant transfer of microbes is mediated partly

by the microbiota of human milk (Fig. 17.1). The breast milk microbiota consists of

a large number of organisms, some of which appear to originate from the mother’s
gastrointestinal tract and some from her skin [35, 36]. Furthermore, the biodiversity

of the microbiota in breast milk includes a wide spectrum of bacteria, including

Staphylococcus, Streptococcus and some lactic acid bacteria as the most common

groups [36–39]. There are reports that skin microbes may also be present in human

milk and these include specifically Staphylococcus and Propionibacterium of skin

origin. These may be partly contaminants from the skin area but also natural

inhabitants of the breast tissue.

It is important to recognise that the breast tissue itself also contains bacteria

even in cases without any signs of pathogenic processes. A Canadian–Irish

study analysed breast tissue samples from 81 women with and without cancer

[40]. A wide range of bacteria was identified within all sites around the breast

tissue in women, none of whom had a history of lactation. The principal phylum

was Proteobacteria. The most abundant taxa in the Canadian samples were

Bacillus, Acinetobacter, Enterobacteriaceae, Pseudomonas, Staphylococcus,
Propionibacterium, Comamonadaceae, Gammaproteobacteria and Prevotella. In
the samples from Irish women, more than 30% contained Enterobacteriaceae and
additionally Staphylococcus, Listeria, Propionibacterium, and Pseudomonas. No
symptoms of infection were observed, and the viability of some of the detected

bacteria was verified by culturing [40].

It is important to note that breast milk composition, including the microbiota, is

associated with the mother’s diet and nutritional state, the environment and the use

of pharmaceuticals [37–42]. Furthermore, Hunt and co-workers demonstrated that

human milk bacterial communities are complex, with several genera representing

more than 5% of the relative community abundance, for example Streptococcus,
Staphylococcus, Propionibacterium and Actinomyces [38].

The Bifidobacterium longum group bacteria are the most common amongst the

bifidobacterial species in human breast milk samples [36] and continuously

reflected in faecal samples of breast-fed infants after a few days of breastfeeding.

Bifidobacterium longum-type bacteria continue to be present later, while other

species of bifidobacteria also appear and the species composition changes gradually

following weaning. Reports from Northern Europe, Malawi and Brazil [41, 42]

demonstrate that all breast-fed infants are generally colonised by bifidobacteria and

specifically Bifidobacterium longum-type bacteria, most likely of breast milk

origin.
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17.2.4 Weaning Period and Beyond

Gradual weaning induces an increase in Bacteroides, Clostridium and

Ruminococcus in the infant gut microbiota, while at the same time Bifidobacterium
and Enterobacteriaceae decrease, rendering the Bifidobacterium and Lactobacillus
dominant environment more diverse. Bäckhed and co-workers [34] report that

during the first year of life the microbiota of an infant evolves from a relatively

simple composition towards a complexity resembling the adult-type microbiota

(Fig. 17.1); α-diversity is increased while β-diversity is decreased, suggesting a

more complex and less heterogeneous microbial community. By the end of the first

year of life, infants possess an individually distinct microbial profile, converging

towards the characteristic microbiota of an adult (Fig. 17.1), such that by 2–5 years

of age, the microbiota fully resembles that of an adult in terms of composition and

diversity [43–45].

Few reports have been published on longer term monitoring studies, but one

study from Finland monitoring microbiota during the first 13 years of life demon-

strates that bifidobacteria continue to form a significant part of the infant and child

microbiota composition. It has also been reported that the gut microbiota compo-

sition alters considerably between 6 months and 12 months of life, and at the age of

12 months is already slowly being converted towards a profile characteristic of an

adult microbiota in healthy Finnish breast-fed children, who also remained healthy

in a long-term follow-up study [46]. In the same manner, a recent study following

the microbiota composition in children with a healthy growth pattern residing in

Dhaka, Bangladesh [47], revealed that the gut microbiota composition is defined by

age more strongly than by individual variation.

The adult type gut microbiota is reported to be relatively stable (Fig. 17.1).

However, it may also be influenced by diet and bacteria in our food supply. Recent

studies from the USA have suggested that a diet recommended by the United States

Department of Agriculture provided the largest number of live food microbes to the

gastrointestinal tract (1.3� 109 CFU/day), while the typical American diet based on

more processed convenience foods (such as TV meals and fast foods) provided the

least exposure to microbes, i.e. 6� 106 CFU/day, on a daily basis [48]. The

exposure ensured by the recommended diet would provide more stimuli to impact

the gut microbiota composition profile compared to processed convenience foods.

17.3 Gut Microbiota and Metabolic Health

Microbiota disruption during the step-wise developmental process described above

may manifest as the emergence of non-communicable diseases, including obesity.

The early colonisers coevolving during the immunological and metabolic matura-

tion process during the critical stages of pregnancy, delivery and breastfeeding

(Fig. 17.2) confer propensity for health and disease. There is a growing awareness

17 Early Microbe Contact in Defining Child Metabolic Health and Obesity Risk 375



that dietary and other environmental exposures impact on gut microbiota develop-

ment. Moreover, the age-appropriate composition appears to be fundamental to

health. Undernourished Bangladeshi children exhibited a younger gut microbiota

profile than expected for their chronological age (reviewed in: [47]), indicating

immaturity. In contrast, precocious maturation of the microbiota during early

infancy has been linked to overweight development in a Singaporean birth cohort

Fig. 17.2 Perturbing factors for microbiota composition patterns during critical stages of devel-

opment. (I) Pregnant state. Gut microbiota becomes more pro-inflammatory and less diverse

during the third trimester of pregnancy. Placenta microbes colonise and influence the feto-

maternal interphase during pregnancy. Amniotic fluid microbiota provides the first ingested

microbes to the fetus. (II) Mode of delivery. Normal microbiota from mothers’ birth canal in

vaginally delivered infants. Deviated microbiota, derived from oral and skin microbiota and the

immediate environment, typifies the gut microbiota composition of caesarean section-delivered

neonates and persists beyond infancy. (III) Breastfeeding. Deviations in breast milk microbiota

composition in overweight mothers and those with excessive weight gain during pregnancy.

(IV) Infant microbiota composition. Step-wise compositional development of microbiota in

healthy infants who remain healthy long term. Impact of weaning and the type of weaning

foods; deviations in gut microbiota development due to formula feeding, if not supplemented

with specific probiotics. Microbiota of weaning foods and other foods. (V) Stable healthy adult

microbiota. Environmental disturbances (toxins, microbes, food, living environment) cause devi-

ations. Use of pharmaceutical products and impact of specific diseases or conditions may perma-

nently alter gut microbiota composition
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[49], supporting reports from Finland of lower numbers of bifidobacteria, but higher

numbers of Staphylococcus in breast-fed children with overweight development

later in life [10].

The involvement of the microbiota in metabolic programming has been corrob-

orated in subsequent studies. A recent birth cohort study linked early Bacteroides
fragilis group colonisation at 1 month of age with an elevated body mass index

(BMI) z-score and excessive weight gain by the age of 10 years [50]. In the same

vein, a birth cohort study of vaginally delivered full-term infants reported that

higher B. fragilis group numbers at 3 and 26 weeks of age were related to higher

body mass indices (BMI) during follow-up from 12 to 36 months of age, while

higher levels of Staphylococcus ssp. at 3 and 52 weeks of age were related to lower
BMI z-scores in preschool children [51]. A lower Staphylococcus to Bacteroides
ratio was associated with a higher BMI standard deviation score during the first

three years of life [51]. On the other hand, it has been reported that higher

Lactobacillus spp. and lower Bacteroides spp. in the infant gut during the first

3 months of life may be linked to the risk of childhood overweight [52], underlining

the difficulty to directly compare studies applying different methods of varying

accuracy. Moreover, the rate of acquisition of a certain microbiota pattern, with for

example lower abundances of Bifidobacterium and Collinsella spp., may predict

increased adiposity at 18 months of age [49].

Maternal obesity is associated with differences in the infant gut microbiome

during the first 18–27 months of life, particularly amongst those of higher family

socio-economic status [53]. The study in question showed significant differences

among Faecalibacterium spp., Eubacterium spp., Oscillibacter spp. and Blautia
spp. numbers in infants born to obese compared to non-obese mothers. Obesity has

been reported to be associated with changes in the gut microbiota already at 4–5

years of life [54]. In particular, obese children tend to harbour a higher abundance

of Enterobacteriaceae and a lower abundance of Desulfovibrio and Akkermansia-
like bacteria as compared to normal-weight infants.

17.4 Perturbations of Early Microbial Contact
and the Development of Obesity

The microbiota appears to be particularly susceptible to perturbations during early

life, and this is of great significance for later health and disease risk, due to its

fundamental role in the induction, education and function of the host immune

system and metabolic programming [55]. Indeed, a more profound understanding

of the complex nature of host–microbe interaction is called for: by eating, we

modify the gut microbiota composition, and reciprocally, the gut microbiota mod-

ulates appetite and satiety as well as host metabolism and immunity. Consequently,

the microbiota may control the nutritional value of food and the fate of the nutrients
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in our body [20, 21, 56]. Importantly, the increase in fat mass in response to

high-energy intake necessitates the presence of gut microbiota [57] and the impor-

tance of its composition culminates in critical stages of development when the

colonisation process is differently exposed to nutritional and environmental chal-

lenges [58]. The problem appears to culminate in the perinatal period due to

intergenerational programming: aberrancies in the mother’s microbiota composi-

tion and activity are transferred to the offspring by different routes: during preg-

nancy, at delivery via microbes in the mother’s birth canal, and close contact

between the mother and the newborn after delivery and through breast milk.

17.4.1 During Pregnancy and Breastfeeding

Gut-specific immune and metabolic changes typify the progress of pregnancy

(Fig. 17.2), and these in turn may affect the microbiota composition and activity,

or vice versa. Pregnancy induces a shift in gut microbiota composition by increas-

ing the number of pro-inflammatory bacteria, including Proteobacteria [59]. In

addition, changes in the vaginal [60] and subgingival oral microbiota have been

documented [61, 62]. The net result at the end of pregnancy is a gut microbiota

profile of elevated Proteobacteria and Actinobacteria and reduced bacterial rich-

ness [59]. Lower Bifidobacterium and Bacteroides numbers may be paralleled by

increased numbers of Staphylococcus, Enterobacteriaceae and Escherichia coli in
overweight compared with lean pregnant women [63].

Excessive weight gain during pregnancy exaggerates the microbiota deviation

associated with pregnancy, including alterations in the placenta microbiota and its

metabolic profile [63–65]. Maternal weight, BMI and weight gain during pregnancy

extend their effects to the composition of breast milk microbiota (Fig. 17.2) and

other bioactive compounds therein, for example anti-inflammatory transforming

growth factor-β and CD14 mediating host–microbe communication [66]. The

accompanying alterations are reflected in a lower presence of Bifidobacterium
spp. in breast milk as compared to that in metabolically healthy mothers.

17.4.2 Mode of Delivery

Delivery involves the most massive exposure to the microbial environment of the

individual; the neonate receives a decisive inoculum for the step-wise colonisation

from the mother during vaginal delivery. In the immediate neonatal period, vagi-

nally delivered neonates are colonised by microbes from the maternal birth canal,

including Lactobacillus, Prevotella and Sneathia species, while the gut microbiota

of neonates born by caesarean section (CS) is characterised by species belonging to

the genera Staphylococcus, Propionibacterium and Corynebacterium, which
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originate from the maternal skin [67]. The transmission of microbiota in

CS-delivered neonates has been reported to be compromised, and only 41% of

the species found in their gut match those found in the stool of their mother—a

significant difference from vaginally born infants [44]. Thus, bacteria in the CS

neonate originate from oral or skin microbiota or the microbiota present in the

delivery room and environment as first colonisers. The deviant gut colonisation

pattern in infants born by CS (Fig. 17.2) has been reported to extend beyond the

neonatal period, underlining the instrumental impact of early microbe contact.

According to a prospective follow-up study of 24 neonates from Sweden [68],

infants born by CS displayed lower gut microbiota diversity during the first 2 years

of life as assessed by pyrosequencing of the 16S RNA gene. In particular, CS

infants harboured a lower abundance and lower diversity of bacteria belonging to

the phylum Bacteroidetes. In a report based on analyses by fluorescent in situ

hybridisation of faecal samples of 60 children from Finland, in contrast, subjects

born by CS harboured more clostridia as compared to vaginally born children at the

age of 7 years [69].

The mode of birth also affects infant immune and metabolic development [70–

72]. While this may in part be explained by the lack in CS of stress signals which

are induced by vaginal delivery or which induce the delivery, it is likely that

disturbances in gut colonisation are also an issue, particularly as intestinal perme-

ability increases concomitantly. Augmented humoral immune responses have been

observed in CS infants throughout the first year of life when compared to vaginally

born infants, and these differences coincide with differences in gut colonisation

patterns [71], furnishing one explanation for the heightened risk of allergic and

inflammatory conditions in those delivered by CS [72]. Furthermore, a systematic

review and meta-analysis of 28 studies on this question estimated the risk of obesity

as 1.34-fold (CI 1.18–1.51) in children born by CS as compared to those delivered

vaginally [73]. These data demonstrate that the effects of CS on host metabolism

extend into childhood. It is important to note, however, that obesity is markedly

heritable through both genetic and lifestyle-associated mechanisms and that over-

weight or obese mothers exhibit an increased risk of CS as a mode of delivery, also

delaying breastfeeding. However, when only studies in which the results were

adjusted for maternal pre-pregnancy weight as a potentially confounding factor

were included in the meta-analysis, the risk of obesity in children born by CS as

compared to vaginally born children remained 1.29-fold (95% CI 1.16–1.44)

[73]. In addition to maternal weight, the association between CS, aberrant gut

colonisation patterns and obesity risk may be confounded by prenatal exposure to

antibiotics, which are often prophylactically administered to mothers undergoing

CS [74]. Using a mixed multivariable model adjusted for birth weight, gender,

parental body mass, family socio-demographics, gestational factors and infant

feeding patterns, CS was linked to high adiposity in infants from 6 weeks to

15 years of age [75], and affected children had 1.83 times the odds of becoming

overweight or obese by the age of 11 years (95% CI 1.24–2.70; p¼ 0.002).
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17.4.3 Antibiotic Exposure in Early Life

Exposure to antibiotics is known to cause drastic disturbances in gut microbiota

composition and may lead to the antibiotic-associated diarrhoea caused by organ-

isms such as Clostridium difficile. The intestinal perturbations after antibiotic use

are usually temporary in adults and the gut microbiota is relatively rapidly restored

to its steady state [76]. In contrast, infants exposed to ampicillin and gentamicin

during the first days of life have been reported to harbour reduced proportions of

bifidobacteria and lactobacilli and significantly higher proportions of

Proteobacteria as compared to non-exposed infants at the age of 4 weeks, and

even at the age of 8 weeks the gut microbiota in exposed infants had not yet fully

recovered [77]. In line with these observations, neonatal antibiotic exposure has

been associated with increased numbers of faecal Enterobacteriaceae up to the age
of 2 months [78], but longer-term data on the impact of neonatal antibiotic exposure

on gut microbiota development are not currently available. Single-dose maternal

intra partum ampicillin prophylaxis, on the other hand, has been reported to cause

drastic changes in the infant microbiota at least up to the age of 3 months in a cohort

comprising 13 infants [79].

The critical stage of development may be important in determining the conse-

quences of antibiotics long term. While elimination of the microbiota by antibiotics

or its modification by specific prebiotics or probiotics in experimental models

improves insulin sensitivity and weight control [80], perinatal antibiotic exposure

amplifies the obesogenic effect of a high-fat diet [55]. Cox and colleagues demon-

strated the importance of age in a sophisticated series of experiments in a murine

model [55]. Mice exposed to penicillin prenatally and in the neonatal period

displayed aberrant gut microbiota composition and gained significantly more

weight and fat mass compared to non-exposed mice. The weight gain was partic-

ularly prominent in males. It is also of note that perinatal antibiotic exposure

particularly potentiated the fat mass accumulation induced by the introduction of

a high-fat diet after weaning. In another series of experiments, gut microbiota

adaptation to a high-fat diet was shown to be delayed which resulted in increased

weight gain in mice subjected to pulsed antibiotic treatment [81]. Interestingly, the

gut microbiota disturbances were transient and recovered after antibiotic exposure

was discontinued, but the obesity-prone phenotype persisted. This observation is

consistent with the notion of metabolic programming by microbial contact during a

susceptible period in very early life. The role of gut microbes in mediating the

development of obesity was further demonstrated in the study by transferring the

obese phenotype to non-antibiotic-exposed mouse pups by colonising them with the

gut microbiota from exposed mice.

It is alarming that, according to one recent report, more than 40% of neonates in

North America are exposed to antibiotics either directly or through the mother

[82]. Little is currently known as to the long-term health impact of perinatal

antibiotic exposure in term neonates, but accumulating evidence suggests a link

between antibiotic use later in infancy and the development of overweight and
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obesity. The risk of childhood overweight was recently reported in an epidemio-

logical study of 12,000 children from Finland to be significantly increased in infants

exposed to antibiotics during the first 6 months of life as compared to non-exposed

infants [83]. The risk of overweight associated with early-life antibiotic exposure

was more pronounced in boys (adjusted OR 1.34 with 95% CI 1.06–1.66) than in

girls (adjusted OR 1.16 with 95% CI 0.87–1.56). The risk of childhood obesity, on

the other hand, has been associated with repeated antibiotic exposure during the

first 2 years of life in a cohort of more than 64,000 children from the USA [84]. It is

further of note that a dose–response pattern between the number of antibiotic

courses and obesity risk is evident in the study.

17.5 Breast Milk: Source of Natural Forces

Among breast-fed infants, transmission of specific intestinal Bifidobacterium
strains from mothers to infants has recently been reported [85, 86], supporting

the maternal microbial transfer hypothesis and suggesting that each mother–infant

pair has unique family-specific strains. Additionally, human milk glycans such as

oligosaccharides, glycoproteins and glycolipids have also been recognised as

modulators and drivers of infant microbiota development which promote the

growth and activity of specific bacterial populations, in particular Bifidobacterium
and Bacteroides spp. [39, 87]. An exceptional composition is reflected in the step-

wise compositional development of the infant gut microbiota and regulation of the

inflammatory environment in the infant gut. Indeed, accumulating evidence sug-

gests that breastfeeding may aid in reprogramming the non-communicable disease

risk, including protection against overweight and obesity in childhood. Several

differences have been observed in the gut and also upper respiratory tract

microbiota between breast-fed and formula-fed infants [88–91], and the distinction

is associated with more frequent Bifidobacterium-dominated microbiota in breast-

fed than in formula-fed infants. Furthermore, experimental findings have demon-

strated that high numbers of bifidobacteria correlate positively with normalisation

of the inflammatory status and improved glucose tolerance and glucose-induced

insulin secretion [92]. Clinically, it is of note that lower bifidobacteria numbers in

early infancy distinguish children who develop allergic disease or excessive

weight gain later in life (reviewed in: [7]) and that current formulas have been

supplemented with specific probiotics or prebiotics in order to alleviate this

limitation.
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17.6 Reprogramming Early Gut Microbiota

An attractive prospect arising from recent experimental studies on microbial

manipulation is to target disease risk by bringing the gut microbiota into balance.

Reprogramming the regulatory biological features in at-risk populations by pro-

moting healthy microbe contact may aid in reducing the risk of disease in mother

and child. The few intervention studies available corroborate these findings; most

evidence thus far of an association between clinical conditions and increased

intestinal permeability, inflammatory response and aberrant gut microbiota com-

position is indirect. In the relevant studies, specific probiotics have been shown to

control gut barrier functions and systemic and local inflammation and to avert

deviant properties in the gut and breast milk microbiota (reviewed in: [7, 24]).

The definition of probiotic has developed and the widely accepted FAO/WHO

(2001) working group report has recently been grammatically corrected to the

present form as follows: “Probiotics are live microorganisms that, when adminis-

tered in adequate amounts, confer a health benefit to the host” [93]. Probiotics have

to be assessed for efficacy in strain-specific studies, and extrapolation of data from

one strain to another is virtually impossible even if a detailed knowledge of the

strain genomes and a practical knowledge of efficacy obtained in human interven-

tion studies are available.

Novel tools to halt the vicious circle of microbiota disruption around birth are

indeed called for. The probiotics approach necessitates, firstly, a more profound

understanding of the complex interaction between nutrition and the gut

microbiome, the total genetic pool of the microbiota, and, secondly, clinical

intervention studies in humans as proof of causality.

17.7 Gut Microbiota and the Development of Obesity:
Establishing Causality and Uncovering Mechanisms

The link between intestinal microbes and obesity has been demonstrated by studies

reporting aberrant gut microbiota composition in obese compared to lean individ-

uals [94, 95]. In these classical studies, obesity is associated with reduced microbial

diversity and a shift in the relative abundance of Bacteroidetes and Firmicutes, as
well as altered bacterial gene expression patterns. Although no direct evidence on

specific phyla or species responsible can be argued, due to different and continu-

ously developing methods and their varying accuracy, a causal relationship

between gut microbiota composition and obesity risk may be hypothesised. This

conception is based, firstly, on observations suggesting a chronological sequence of

gut microbiota perturbations in infancy preceding the development of obesity in

later life [10, 49–51] and, secondly, on recently discovered potential mechanisms

underlying the observed associations. Thirdly, the epidemiological data linking

early gut microbiota composition, or factors known to disrupt the gut microbiota
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in early life, including CS and antibiotic exposure, to the subsequent development

of overweight and obesity have been discussed in detail above. Finally, sophisti-

cated experimental studies have provided more reductionist but direct evidence of

causality and mechanisms.

The presence of the microbiota appears to be mandatory for the development of

obesity even in the context of excessive dietary intake. Animals devoid of intestinal

microbiota (‘germ-free’ mice) did not develop the obese phenotype observed in

conventional animals when fed a Western-type high-fat and sugar-rich diet

[58]. The energy-rich diet not only resulted in obesity development in conventional

mice but also induced significant changes in gut microbiota composition, with a

particular increase in Mollicutes within the phylum Firmicutes [96]. Notably, the
gut microbiota perturbations were reversible after a change to a less energy-rich

diet. In a similar fashion, the unbalanced microbiota composition reported in the gut

microbiota of obese humans gradually normalises to resemble that observed in lean

individuals during a low-energy diet [97].

Interestingly, it has become evident that an aberrant microbiota may also induce

the development of obesity. Colonising germ-free mice with gut microbiota from

mice suffering from diet-induced obesity reportedly leads to greater weight gain as

compared to mice colonised with microbiota from lean mice fed a conventional diet

[96]. The potential of obesity-related microbiota to trigger weight accumulation has

been corroborated by a report demonstrating that mice colonised with gut

microbiota obtained from obese human individuals display significantly greater

weight gain and adiposity as compared to mice whose gut microbiota originated

from a lean person [98]. The fact that the trait is transmissible points strongly to a

causative role of specific microbe contact in non-communicable diseases. Further-

more, the mechanisms of the obesity-inducing potential of aberrant gut microbiota

are gradually being uncovered.

Intestinal microbes have been reported to affect the efficiency of energy harvest

from the diet and to directly modulate host physiology. Germ-free mice colonised

with gut microbiota from obese mice display significantly greater weight gain than

mice colonised with microbiota from lean mice despite similar dietary energy

content. This may be explained by altered fermentation of dietary complex carbo-

hydrates, since germ-free rats excrete considerably more calories in their faeces and

exhibit decreased intestinal short-chain fatty acid (SCFA) concentrations compared

to conventional rats (reviewed in: [99]). SCFAs have recently been suggested to

increase intestinal energy harvest, but the role of SCFAs in the development of

obesity is not clear since there are data indicating that SCFAs may exert beneficial

metabolic effects in adipose tissue and the liver and improve insulin sensitivity

(reviewed in: [13]). The reduced adiposity in germ-free rats is rapidly restored after

colonising them with conventional microbiota [99]. The increase in body weight

and adiposity in germ-free mice colonised with gut microbiota from obese humans,

on the other hand, is accompanied by enhanced metabolism of branch-chain amino

acids and increased microbial transformation of bile acids but decreased fermenta-

tion of SCFAs. It is also well established that obesity and metabolic disease are

associated with a moderate systemic inflammatory response [57, 100], which may
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in part be induced by intestinal microbes or microbe-associated molecular patterns

(reviewed in: [99]).

Taken together, these data suggests a vicious circle in obesity development. An

inappropriate high-energy diet may lead to aberrant gut microbiota composition,

which in turn further increases energy harvest from the diet already abundant in

energy. The altered microbiota may also contribute to the inflammatory immune

milieu, which perpetuates the detrimental effects of weight gain. However, there

are encouraging data which suggest that the vicious circle may be broken by

interventions such as gastric bypass surgery, which are capable of restoring healthy

gut microbiota composition and normalising energy metabolism [101]. Whether

such reprogramming is possible by using less invasive means at an early age

remains to be established.
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71. Huurre A, Kalliomäki M, Rautava S, Rinne M, Salminen S, Isolauri E (2008) Mode of

delivery—effects on gut microbiota and humoral immunity. Neonatology 93:236–240

72. Miettinen R, Hermansson H, Merkikukka M, Gissler M, Isolauri E (2015) Mode of deliv-

ery—impact on risk of non-communicable diseases. J Allergy Clin Immunol pii: S0091–6749

(15):00782-4. doi:10.1016/j.jaci.2015.05.032

73. Kuhle S, Tong OS, Woolcott CG (2015) Association between caesarean section and child-

hood obesity: a systematic review and meta-analysis. Obes Rev 16:295–303

74. Mueller NT, Whyatt R, Hoepner L, Oberfield S, Dominguez-Bello MG, Widen EM

et al (2015) Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity.

Int J Obes (Lond) 39:665–670

75. Blustein J, Attina T, Liu M, Ryan AM, Cox LM, Blaser MJ et al (2013) Association of

caesarean delivery with child adiposity from age 6 weeks to 15 years. Int J Obes (Lond)

37:900–906

76. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on

the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280

77. Fouhy F, Guinane CM, Hussey S, Wall R, Ryan CA, Dempsey EM et al (2012) High-

throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota

17 Early Microbe Contact in Defining Child Metabolic Health and Obesity Risk 387

http://dx.doi.org/10.1016/j.jaci.2015.05.032


following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents

Chemother 56:5811–5820

78. Tanaka S, Kobayashi T, Songjinda P, Tateyama A, Tsubouchi M, Kiyohara T et al (2009)

Influence of antibiotic exposure in the early postnatal period on the development of intestinal

microbiota. FEMS Immunol Med Microbiol 56:80–87

79. Arboleya S, Sánchez B, Milani C, Duranti S, Solı́s G, Fernández N et al (2015) Intestinal

microbiota development in preterm neonates and effect of perinatal antibiotics. J Pediatr

166:538–544

80. Cani PC, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and

metabolic disease. Curr Pharm Des 15:1546–1558

81. Nobel YR, Cox LM, Kirigin FF, Bokulich NA, Yamanishi S, Teitler I et al (2015) Metabolic

and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun 6:7486.

doi:10.1038/ncomms8486

82. Persaud RR, Azad MB, Chari RS, Sears MR, Becker AB, Kozyrskyj AL et al (2014) Perinatal

antibiotic exposure of neonates in Canada and associated risk factors: a population-based

study. Matern Fetal Neonatal Med 14:1–6

83. Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxén H (2015) Antibiotic exposure in infancy

and risk of being overweight in the first 24 months of life. Pediatrics 135:617–626

84. Bailey LC, Forrest CB, Zhang P, Richards TM, Livshits A, DeRusso PA (2014) Association

of antibiotics in infancy with early childhood obesity. JAMA Pediatr 168:1063–1069

85. Makino H, Kushiro A, Ishikawa E, Kubota H, Gawad A, Sakai T et al (2013) Mother-to-

infant transmission of intestinal bifidobacterial strains has an impact on the early develop-

ment of vaginally delivered infant’s microbiota. PLoS One 8:e78331

86. Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C (2014) Vertical mother-neonate

transfer of maternal gut bacteria via breastfeeding. Environ Microbiol 16:2891–2904

87. Pacheco AR, Barile D, Underwood MA, Mills DA (2015) The impact of the milk glycobiome

on the neonate gut microbiota. Annu Rev Anim Biosci 3:419–445

88. Jost T, Lacroix C, Braegger C, Chassard C (2013) Assessment of bacterial diversity in breast

milk using culture-dependent and culture-independent approaches. Br J Nutr 110:1253–1262

89. Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS et al (2013) Gut

microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at

4 months. CMAJ 185:385–394

90. Biesbroek G, Bosch AA, Wang X, Keijser BJ, Veenhoven RH, Sanders EA et al (2014)

The impact of breastfeeding on nasopharyngeal microbial communities in infants. Am J

Respir Crit Care Med 190:298–308

91. Albenberg LG, Wu GD (2014) Diet and the intestinal microbiome: associations, functions,

and implications for health and disease. Gastroenterology 146:1564–1572

92. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM et al (2007) Selective

increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice

through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383

93. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B et al (2014) Expert consensus

document. The International Scientific Association for Probiotics and Prebiotics consensus

statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol

Hepatol 11:506–514

94. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis EL, Gordon JI (2006) An obesity-

associated gut microbiome with increased capacity for energy harvest. Nature

444:1027–1031

95. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE et al (2009) A

core gut microbiome in obese and lean twins. Nature 457:480–484
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