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    Chapter 5   

 Do Cannabinoids Represent a Good Therapeutic Strategy 
for Epilepsy?                     

     Cecilia     Zavala-Tecuapetla      and     Luisa     Rocha      

  Abstract 

   The medical use of cannabinoids has been proposed for the control of epilepsy. At present, several studies 
have focused on investigating how cannabinoids can regulate the expression of epileptic seizures as well as 
the epileptogenesis process. Some of them suggest that cannabinoids may represent a therapeutic approach 
for different types of epilepsy. However, experimental evidence indicates that the effects of cannabinoids 
depend on several experimental and pathological conditions. In this chapter, we provide an overview of 
these preclinical and clinical research.  
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1      Introduction 

 During centuries cannabis plants have been used for both medicinal 
and recreational uses as described in Chinese, Indian, and Arab 
pharmacopeias [ 1 ]. Presently, the medical use of  Cannabis  extracts 
has been approved in some European countries [ 2 ]. 

   Cannabis  plants   present a mixture of chemical constituents, 
the C 21  terpenophenolic compounds also called phytocannabi-
noids. Detailed chemical analysis has allowed the identifi cation of 
about 70 molecular species of these phytocannabinoids [ 3 ] whose 
amounts depend on each plant and environmental conditions [ 4 ,  5 ]. 
The most important phytocannabinoids are the psychoactive 
Δ9-tetrahydrocannabinol (Δ9-THC) and the non-psychoactive 
cannabidiol (CBD). CBD was isolated in 1940, and its structure 
was elucidated in 1963 [ 6 ,  7 ]. The Δ9-THC was isolated by Yechiel 
Gaoni and Raphael Mechoulam [ 8 ] and was shown to account for 
the psychotropic effects of cannabis preparations in rhesus mon-
keys [ 9 ]. During the late 1980s, it was found that Δ9-THC exerts 
its effects through the activation of two G-protein-coupled recep-
tors: cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) 
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receptors [ 10 ,  11 ]. Thereafter, the endocannabinoids (eCBs) 
anandamide and 2-arachidonoylglycerol were identifi ed as the 
endogenous ligands of CB1 and CB2 receptors [ 12 – 14 ]. 

 A growing body of evidence supports that the eCB system is 
involved in several functions of the brain and that  Cannabis  and 
phytocannabinoids represent pharmacological strategies to induce 
neuroprotection and control of disorders such as epilepsy, migraine, 
and pain [ 15 ]. In the case of epilepsy, experimental evidence indi-
cates a key role for eCB system in the modulation of neuronal 
excitability. The present review focuses on providing a better 
understanding of how and when pharmacological interventions 
with cannabinoids or phytocannabinoids may control epilepsy.  

2    The Endocannabinoid System 

 The  eCB   system has a crucial role in different brain functions 
including cerebral development, cognition, learning, memory, 
motor behavior, appetite regulation, temperature regulation, and 
pain [ 16 ]. Experimental evidence indicates that the role of eCB in 
the regulation of physiological responses depends on the gender 
[ 17 ]. The eCB system consists of  cannabinoid receptors  , their 
endogenous lipid ligands (eCBs), and the enzymatic machinery for 
their biosynthesis, cellular uptake, release, and degradation [ 18 ]. 

   The fi rst eCBs identifi ed in the  central nervous system (CNS)   [ 19 , 
 20 ] were the hydrophobic ligands N-arachidonoyl ethanolamide 
(anandamide, AEA) [ 12 ] and 2-arachidonoyl glycerol (2-AG) [ 13 , 
 14 ]. The synthesis of these eCBs depends on specifi c enzymes 
using membrane phospholipids as precursors. The   N -acylphos-
phatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD)   
is the enzyme responsible for the synthesis of AEA and other 
 N -acylethanolamines [ 21 ], whereas different diacylglycerol lipases 
(DAGLs) are involved in the synthesis of 2-AG [ 22 ]. The effects 
mediated by eCBs are limited by their fast catabolism. The enzyme 
fatty acid amide hydrolase (FAAH) catabolizes AEA [ 23 ]. 
Monoacylglycerol lipase (MAGL) and serine hydrolase α/β- -
hydrolase domain 6 (ABHD) induce degradation of 2-AG in the 
brain [ 24 – 26 ].  Carrier-mediated transport systems   are involved in 
clearing eCBs from the extracellular space [ 27 – 29 ], and their sub-
sequent enzymatic degradation can proceed through either hydro-
lysis or oxidation [ 24 ,  30 ,  31 ]. 

 Unlike other neuromodulators and traditional vesicular neu-
rotransmitters, eCBs are believed to be synthesized “on demand” 
by changes in neural activity [ 32 ]. The synthesis of eCBs in  post-
synaptic neurons   can be triggered by the increase in intracellular 
Ca 2+  concentration subsequent to depolarization and activation of 
voltage-gated Ca 2+  channels [ 33 – 37 ] and the activation of certain 
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Gαq/11 protein-coupled receptors [ 38 – 40 ]. Other studies  suggest 
that intracellular storage organelles might accumulate pre- 
synthesized eCBs [ 41 ,  42 ].  

    CB1 and CB2 receptors    belong to the large superfamily of hepta-
helical G-protein-coupled receptors (GPCR) and couple to Gi/Go 
proteins. The CB2 receptor is predominately expressed in 
the immune system [ 43 ] and has very limited expression in the 
CNS. By contrast, the CB1 receptors are highly expressed at pre-
synaptic levels in the brain, and its activation is implicated in inhibi-
tion of the synaptic neurotransmission [ 44 – 47 ]. Concerning this 
notion, it is known that the activation of presynaptic CB1 recep-
tors reduces the release of neurotransmitters like glutamate and 
γ-aminobutyric acid (GABA) [ 48 ] as a consequence of the inhibi-
tion of Ca 2+  channels and activation of K +  channels [ 49 – 54 ], a situ-
ation that may modify the neuronal excitability [ 55 ]. 

 Activation of CB1 receptors promotes its interaction with Go 
proteins, resulting in guanosine diphosphate/guanosine triphos-
phate exchange and subsequent dissociation of α and βγ subunits 
with a consequent reduction of adenylate cyclase and cyclic ade-
nosine monophosphate production [ 56 ]; inhibition N-, P/Q-, 
and L-type voltage-gated Ca 2+  channels [ 20 ,  46 ,  57 ,  58 ]; stimula-
tion of A type K +  channels [ 44 ,  59 ,  60 ], activation of G-protein- 
coupled inwardly rectifying K +  channels [ 61 ,  62 ]; and inhibition of 
the vesicular release machinery [ 63 ]. 

 While the CB1 receptor is responsible for the vast majority of the 
currently known effects of cannabinoids and eCBs in the CNS, it is 
worth noting that additional cannabinoid receptors may exist. The 
cannabinoid-sensitive receptor G-protein-coupled receptor 55 
(GPR55), identifi ed as a novel cannabinoid receptor that couples to 
Gα13 protein [ 64 ], is activated by some phytocannabinoids such as 
Δ9-THC. In the brain, GPR55 is present in the caudate, putamen, 
hippocampus, thalamus, pons, cerebellum, frontal cortex, and thala-
mus [ 64 ]. In human embryonic kidney cells, the activation of GPR55 
triggers the release of intracellular Ca 2+  from endoplasmic reticulum 
stores via a pathway dependent on Ras homolog gene family member 
A (RhoA), phospholipase C, and inositol 1,4.5-trisphosphate recep-
tor [ 65 ]. The increases of intracellular Ca 2+  levels that result from the 
activation of GPR55 by L-α-lysophosphatidylinositol (LPI, an 
endogenous agonist) augment the probability of vesicular release of 
glutamate at excitatory hippocampal synapses [ 66 ,  67 ]. These results  
support a relevant role of GPR55 in cerebral excitability.   

3     Phytocannabinoids   

  CBD    and   Δ9-THC represent the   most important  phytocannabi-
noids   contained in the  Cannabis  plants [ 3 ]. Δ9-THC is a partial 
agonist of CB1 receptors that induces most of the behavioral, 
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 cognitive, and psychotropic effects of  Cannabis . The mechanisms 
by which Δ9-THC induces these effects also involve the activation 
and desensitization of the transient receptor potential (TRP) chan-
nels of ankyrin type 1 (TRPA1) and vanilloids type 1 (TRPV1) and 
type 2 (TRPV2) [ 68 – 70 ]. 

 CBD is considered a “multitarget” drug because of its inter-
action with many other non-eCB signaling systems. It acts as an 
agonist of TRPV1, TRPV2, and TRPA1 [ 68 ,  70 – 72 ], 5-hydroxy-
tryptamine1α receptors [ 73 ], and glycine receptors [ 74 ]. CBD acts 
as an antagonist of TRP melastatin type-8 channels [ 69 ], T-type 
voltage-gated Ca 2+  channels [ 75 ], and GPR55 receptors [ 76 ]. 
Also, it exerts dynamic control over intracellular Ca 2+  stores [ 77 , 
 78 ] and inhibits the uptake and enzymatic degradation of AEA via 
FAAH [ 79 ]. 

 CBD may potentiate some effects induced by  Δ9-THC   such as 
analgesia, antiemesis, and anti-infl ammation, but it also reduces 
Δ9-THC-induced psychoactive effects (impaired working mem-
ory, sedation, tachycardia, and paranoia) [ 80 – 82 ]. Cannabis prod-
ucts with a high content of CBD induce greater tolerability and 
lower incidence of psychosis   when compared with those with high 
content of Δ9-THC [ 83 ].  

4    Effects of Cannabinoids on   Seizure Activity and Epilepsy   

 Several studies indicate that eCBs and cannabinoids play an impor-
tant role in epilepsy. Here, we summarize evidence from preclinical 
and clinical studies focused on clarifying this situation. 

 Concerning experimental models of acute seizure activity, it 
is described that the i.c.v. administration of arachidonyl-2- 
chloroethylamide (ACEA, a CB1 receptor agonist) decreases the 
frequency of penicillin-induced epileptiform activity in rats, an 
effect blocked by AM-251 (a CB1 receptor antagonist) [ 84 ]. 
Compounds like Δ9-THC, WIN55,212-2, CBD, and AEA and 
their analog O-1812 induce anticonvulsant effects in the maximal 
electroshock seizure model [ 85 ,  86 ]. In in vitro models, the activa-
tion of CB1 receptors with agonists (methanandamide, 2-AG, 
AEA, or WIN 55,212-2) reduces the epileptiform activity induced 
by low or omission of Mg 2+  and high K +  [ 87 – 89 ]. The cannabinoid 
agonist HU210 reduces the epileptiform synchronization in hip-
pocampus induced by kainic acid administration, an effect avoided 
with the pretreatment with rimonabant, a CB1 receptor antagonist 
[ 90 ]. This group of evidence reveals that cannabinoids may modify 
both focal and generalized seizures blocking neuronal hypersyn-
chronization associated with epileptic activity. 

 Studies reveal the participation of cannabinoids in the expres-
sion of seizure activity and the epileptogenesis process. Δ9-THC 
and the cannabinoid agonist WIN55,212 abolish spontaneous 
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 epileptic seizures subsequent to pilocarpine-induced SE. Conversely, 
the administration of the CB1 receptor antagonist SR141716A 
increases both seizure duration and frequency [ 91 ]. The adminis-
tration of WIN 55,212-2 during 15 days after pilocarpine-induced 
SE reduces the severity, duration, and frequency of spontaneous 
recurrent seizures, an effect associated with the preservation of 
GABAergic neurons, as well as absence of changes in the oxidative 
stress and expression of NMDA receptor subunits [ 92 ]. In the kin-
dling model, the activation of CB1 receptors has been proposed to 
delay the acquisition of generalized seizures, whereas the inhibi-
tion of the enzymatic degradation of AEA did not affect the epilep-
togenesis process but reduces the neurogenesis associated to it [ 93 ]. 
All these fi ndings support the idea that activation of CB1 receptors 
can suppress recurrent excitation during epileptogenesis. 

 Studies indicate that the activation of CB1 receptors can aug-
ment or reduce the seizure termination and duration, a situation 
that depends on the neuronal subpopulation [ 94 ]. CB1 receptors 
are also expressed in astrocytes [ 95 ,  96 ], and their activation is 
involved in the maintenance of epileptiform discharge [ 97 ]. 

 eCBs may interact with other neurotransmitters and neuro-
modulators. Using the pentylenetetrazol-induced clonic seizure 
model, it was found that opioids are able to modulate the anti-
convulsant effects of cannabinoids [ 98 ,  99 ]. In glutamatergic 
 neurons, activation of CB1 receptors reduces the excitatory neuro-
transmission and the susceptibility to seizure activity [ 94 ,  100 ]. In 
experimental models of temporal lobe epilepsy (TLE), the activa-
tion of CB1 receptors with agonists (WIN 55,212-2, AEA, or 
2-AG) decreases the epileptiform activity, the EPSCs evoked by 
glutamate, and the excitatory events evoked after antidromic elec-
trical stimulation of mossy fi bers in hilus [ 101 ]. 

 Several experiments have focused on determining the role of 
eCB system on seizure activity by enhancing the availability of 
eCBs. Inhibition of AEA hydrolysis with URB-597, a FAAH 
inhibitor, results in anticonvulsive effects in the PTZ-induced sei-
zures [ 102 ]. The inhibition of the 2-AG hydrolysis using WWL123 
(an antagonist of ABHD6) reduces spontaneous seizures in R6/2 
mice (a genetic model of juvenile Huntington’s disease seizures) 
and PTZ-induced tonic-clonic convulsions [ 103 ]. Also, the 
increased levels of 2-AG that result of inhibition of degrading 
enzyme MAGL have been associated with a delay in the develop-
ment of the kindling process [ 104 ]. The reduced metabolism of 
eCBs induced by the combination of AM404 (inhibitor of endo-
cannabinoid reuptake) and URB597 (inhibitor of FAAH) results 
in decreased kainic acid-induced SE in guinea pigs [ 105 ]. These 
studies indicate that the blockage of specifi c enzymes can represent 
a new strategy to augment the anticonvulsant effects of eCBs. 
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 In WAG/Rij rats, a genetic animal model of absence seizures, 
the administration of AEA or WIN55,212-2 (CB1 receptor 
 agonists) reduces the seizure activity, while rimonabant (a CB1 
receptor antagonist) increases it [ 106 ]. These results  suggest that 
attenuated eCB function may contribute to the generation and 
maintenance of absence seizures.  

5    eCBs and CB1 Receptors in Experimental Models of  Seizure Activity 
and Epilepsy   

 Several studies indicate that  seizure activity and epilepsy modify the 
eCB system and CB1 receptors. Concerning this issue, it is known 
that pilocarpine-induced SE increases 2-AG and CB1 receptor 
expression in hippocampus [ 91 ]. Acute seizures induced by kainic 
acid produce a rapid augmentation of AEA synthesis in the hippo-
campus and activation of CB1 receptors [ 107 ]. Studies indicate 
that seizure-induced changes in eCBs are age specifi c. Kainic acid- 
induced seizures in young rats augment the tissue content of AEA 
and their biosynthetic enzyme (NAPE-PLD) in the hippocampus, 
while adult rats present elevated tissue content of 2-AG and 
its biosynthetic enzyme DAGL [ 108 ]. Kindling-induced seizures 
augment CB1 receptor density in the pyramidal cell layer of the 
hippocampus [ 94 ]. Similar fi ndings have been reported for differ-
ent mouse models of epilepsy [ 109 ,  110 ]. In contrast, other stud-
ies indicate a low expression of CB1 receptors in certain neuronal 
subpopulation [ 111 ,  112 ]. These contradictory results can be 
explained by the different epilepsy  models used and the period of 
evaluation after induction of seizures. 

 Upregulation of CB1 receptors in hippocampus is detected in 
mice with TLE subsequent to pilocarpine-induced SE [ 101 ]. 
Using the same experimental model of TLE in rats, it was found 
that spontaneous recurrent seizures are associated with a redistri-
bution of CB1 receptors and changes in expression, binding, and 
G-protein activation in hippocampus [ 113 ]. This situation might 
depend on the time course of the SE-induced epileptogenesis pro-
cess [ 111 ]. This group of evidence leads to suggest that the redis-
tribution of CB1 receptors is associated with the cerebral plasticity 
involved in the epileptogenesis process.  

6    eCBs and CB1 Receptors in  Patients with Epilepsy   

 In dogs with idiopathic  epilepsy, high concentrations of AEA were 
found in the cerebrospinal fl uid, a situation that correlates with the 
severity of seizures and duration of the disease [ 114 ]. This study 
suggests an important activation of the cannabinoid systems as 
result of seizure activity. However, the low levels of AEA detected 
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in the cerebrospinal fl uid of drug-naïve patients with TLE do not 
support this hypothesis [ 115 ]. 

 Positron emission tomography (PET) imaging revealed 
increased availability of CB1 receptors in the ipsilateral temporal 
lobe of patients with TLE, a situation that was more evident in 
those subjects evaluated within short term after the last seizure and 
presenting higher number of seizures. These patients also show a 
decreased availability of CB1 receptors in the ipsilateral superior 
insular cortex, a condition that may restrict the seizure propaga-
tion [ 116 ]. However, it is important to consider that in vivo stud-
ies using PET imaging cannot avoid the presence of endogenous 
ligands and the enhanced availability of CB1 receptors can be asso-
ciated with an increase in their number or affi nity, or it is a conse-
quence of low extracellular levels of eCBs. 

 The evaluation of hippocampal tissue obtained from patients 
with refractory TLE indicates a reduced expression of cannabinoid 
receptor-interacting protein-1a (CRIP1a) mRNA and the meta-
bolic enzymes DGAL-α (enzyme involved in the synthesis of 
2-AG). There is also a decrease in the mRNA and protein expres-
sion of CB1 receptors, mainly at glutamatergic axons, but not in 
GABAergic boutons, in the dentate gyrus [ 117 ]. Considering that 
CB1 receptors reduce the excitatory neurotransmission in gluta-
matergic neurons [ 94 ,  100 ], their lower expression at glutamater-
gic axons can facilitate the excitatory neurotransmission in the 
epileptic hippocampus. In contrast, CB1 receptors are preserved in 
dentate gyrus and CA1 region of patients with TLE, suggesting 
increased expression of these receptors in the GABAergic sprout-
ing axons [ 118 ]. These results indicate that the disruption of the 
inhibitory effects of eCB system on GABAergic transmission 
in hippocampus of patients with TLE may facilitate the seizure 
activity. 

 Concerning TRPV1, studies revealed no signifi cant changes in 
their expression in hippocampus of animals submitted to repetitive 
seizures [ 94 ]. However, patients with pharmacoresistant temporal 
lobe epilepsy show increased TRPV1 expression in the hippocam-
pus [ 119 ]. Considering that cannabinoids may act as agonists of 
TRPV1, TRPV2, and TRPA1 [ 68 ,  70 – 72 ], the activation of these 
receptors by eCBs may contribute to the  modulation of synaptic 
plasticity in human epileptic hippocampus.  

7    The Phytocannabinoids and Epilepsy 

 There are new well-documented cases reporting remarkably strong 
benefi cial effects of cannabinoids on seizure activity. This situation 
has triggered an upsurge in exploiting medical marijuana in patients 
with refractory epilepsy. 
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 CBD is the major constituent of marijuana; it lacks psychoactive 
side effects and does not act as a CB1 receptor agonist. CBD 
induces anticonvulsant effects in the seizure activity induced by 
maximal electroshock test, pentylenetetrazol, pilocarpine-induced 
temporal lobe seizures, and penicillin [ 120 – 123 ]. However, CBD 
does not modify the seizure activity induced by cortical administra-
tion of cobalt [ 124 ]. In kindled rats,  CBD      reduces the seizure sus-
ceptibility and reduces the afterdischarge amplitude, duration, and 
propagation [ 125 ]. Clinical studies also support the anticonvulsant 
effect of CBD [ 126 ]. On the other hand, results obtained from 
in vitro and in vivo models indicate that cannabidivarin and 
Δ9-tetrahydrocannabivarin represent the two most important phy-
tocannabinoids with therapeutic potential as anticonvulsant agents 
[ 127 – 131 ]. At present it is evident that CBD and other phytocan-
nabinoids exert their antiseizure effects at CB1 receptors and other 
pharmacological targets [ 128 ]. 

 In patients with Dravet syndrome, in which epilepsy is usually 
refractory to standard antiepileptic drugs, medical marijuana with 
a high CBD/Δ9-THC ratio has been successful to reduce the sei-
zure activity [ 132 ]. CBD reduces the seizure frequency in patients 
with Lennox–Gastaut syndrome, who experience multiple refrac-
tory seizures everyday in spite of antiepileptic drugs [ 133 ]. 
Epidiolex (GW Pharmaceuticals), a new phytocannabinoid obtai-
ned from  Cannabis  extracts that contains about 98 % of CBD and 
2 % of other cannabinoids, is now approved as a drug to be evalu-
ated in pediatric patients with Dravet and Lennox–Gastaut syn-
dromes [ 134 ]. However, proper controlled clinical trials are 
necessary to establish effi cacy and safety of these phytocannabi-
noids in patients with epilepsy. In addition, future studies have to 
explore the cellular mechanisms and the signaling pathways 
involved in the anticonvulsant effects of CBD and other 
phytocannabinoids.  

8    Is the Administration of Cannabinoids a Good Option to  Control Epilepsy 
in Humans  ? 

 It is clear that epilepsy modifi es the eCB system (e.g., CB1 recep-
tors). However, as many other neuromodulatory systems, the acti-
vation of CB1 receptors can augment or reduce the seizure 
termination and duration, a situation that depends on the neuronal 
subpopulation and the experimental model used. Concerning this 
issue, cannabinoids may induce excitatory effects if CB1  receptors 
  are overexpressed in GABAergic neurons. In contrast, the overex-
pression of these receptors in glutamatergic neurons can produce 
inhibitory effects. Therefore, the fi ndings obtained from the evalu-
ation of CB1 receptors in patients with epilepsy using PET or in 
in vitro conditions have to include a clear identifi cation of the cells 
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in which those changes are produced. In addition, it is relevant to 
demonstrate that CB1 receptors are functionally active. This situa-
tion will help in the clarifi cation of the mechanisms that underlie 
the anticonvulsant effects of cannabis and cannabinoids in different 
types of human epilepsy. It will also facilitate the establishment 
of compounds with therapeutic effi cacy to reduce the seizure 
activity. 

 Although the results obtained from experimental models are 
relevant to understand the role of eCBs in epilepsy, they do not 
reproduce totally the pathological conditions of the human epi-
lepsy. Therefore, the analysis of cerebral tissue obtained from 
patients with pharmacoresistant epilepsy and submitted to epilepsy 
surgery is essential to clarify if cannabinoids represent a good ther-
apeutic strategy for epilepsy.     
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