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    Chapter 3   

 Carbonic Anhydrase and Epilepsy                     

     Luciana     Gavernet      

  Abstract 

   The defi ciencies of current antiepileptic drugs (AEDs) demand the search of new active compounds 
through novel strategies of drug discovery. Particularly, the design of AEDs based on molecular targets 
constitutes a promising alternative to empirical screening, the traditional method to detect anticonvulsant 
action in new structures. In this chapter we described the advances in the dynamic fi eld of carbonic anhy-
drases, with emphasis in the development of selective inhibitors as anticonvulsants. We fi rst detailed the 3D 
architecture of carbonic anhydrases and the mechanism of action of classical inhibitors. Then we reviewed 
the known anticonvulsant drugs that present carbonic anhydrase inhibition and the progress made in the 
design of selective inhibitors of CAVII, the isoform implicated in the generation of febrile seizures.  
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1      New Targets for Antiepileptic Drugs 

 Epilepsy is a complex chronic brain disorder. The  International 
League Against Epilepsy (ILAE)   defi nes and quantifi es over 15 dif-
ferent seizure types and more than 30 epilepsy syndromes that can be 
originated by a variety of pathological conditions [ 1 ]. Pharmacological 
experiments carried out over the last decades have increased our 
knowledge about the physiopathology of epilepsy, and they proved 
that mechanisms of generation of seizures are related with the imbal-
ance between inhibitory and excitatory conductance in brain tissues 
[ 2 ]. Antiepileptic drugs (AEDs) work to reconstruct this balance and 
avoid the seizures, but they are effi cient in about 70 % of the patients. 
The remaining 30 % of the people (who cannot completely control 
the seizures though drug therapy) suffer from refractory or intracta-
ble epilepsy [ 3 ,  4 ]. On the other hand, responsive patients experience 
medication-related side effects, which become more evident and 
dangerous when lifelong medication is necessary [ 3 ]. 

 After four decades of research, numerous compounds have been 
introduced to the market with notable improvements in their 
absorption, distribution, metabolism, excretion, and toxicity 
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(ADME/Tox) properties, relative to the fi rst generation of AEDs. 
However, no signifi cant progresses have been achieved in terms of 
the effi cacy in resistant patients [ 3 ]. This fact demanded a conscien-
tious analysis about the strategies employed to the design of anticon-
vulsant compounds. 

 Without a doubt, the approach more extensively addressed for 
the discovery of new AEDs has been the phenotypic screening in 
acute models of seizures [ 5 ]. The US National Institute of Health, 
through its  Anticonvulsant Screening Project  , proposes an initial 
protocol that includes in vivo/in vitro models to identify new 
active molecules [ 5 ]. Among them, the most employed assays are 
the  maximal electroshock seizure test (MES test)   and the  pentyl-
enetetrazol test (scMES test)   in mice and rats [ 6 ]. The MES test is 
associated with the electrical induction of the seizure, whereas 
scMES test involves a chemical stimulus to generate the convul-
sion. Most of the marketed AEDs are capable of suppressing the 
seizures induced with at least one of these two tests. 

 The screening methodology does not detect AEDs with a spe-
cifi c mechanism of action. In fact, the molecular targets of the new 
compounds are elucidated after the identifi cation of the activity. 
Accordingly, screening methods might ignore compounds with 
novel mechanisms of anticonvulsant effect, if they cannot avoid the 
seizures caused by classical test [ 7 ]. To partially solve this limitation, 
other assays have been recently included in the program, which 
detected drugs that are ineffective into the classical models [ 5 ]. 

 The restrictions of the empirical screening, the progress in the 
knowledge of the mechanisms involved in ictogenesis (or epilepto-
genesis), and the lack of effi ciency of known AEDs in refractory 
patients have supported the search of alternative methods of drug 
discovery, like the design of anticonvulsants based on molecular tar-
gets [ 3 ,  8 ]. Successful examples of this rational methodology are 
vigabatrin, tiagabine, and perampanel [ 9 ]. Vigabatrin and tiagabine 
potentiate the GABA-ergic neurotransmission, whereas perampanel 
impedes the glutamatergic excitation [ 9 ]. However other less 
explored molecular targets that affect in some way over the GABA-
ergic neurotransmission or glutamatergic excitation have been 
pointed out as new alternatives for target-based drug design [ 8 ,  10 ]. 
In this context, carbonic anhydrase has emerged as an attractive 
enzyme for designing new active anticonvulsant compounds [ 11 ].  

2    Carbonic Anhydrases 

 Carbonic anhydrases (CAs) belong to a family of metalloenzymes 
that are responsible for the reversible hydration of carbon dioxide 
and bicarbonate. They have been  classifi ed   into fi ve classes (named 
as α, β, γ, δ, and ε CAs). The α class is the most studied and it is 
found mainly in vertebrates. In fact, α-CAs is the only class found 
in mammals [ 12 ]. 
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 Up to now, 16 isoforms of α-CAs have been identifi ed with 
different catalytic activities, cell/tissue distributions,  and   response 
to inhibitors [ 12 ,  13 ]. There are eight cytosolic proteins (CA I, CA 
II, CA III, CA VII, CA VIII, CA X, CA XI, CA XIII), two mito-
chondrial matrix proteins (CA VA, CA VB), one secreted protein 
(CA VI), two glycosylphosphatidylinositol (GPI)-anchored pro-
teins (CA IV and CA XV), and three transmembrane proteins (CA 
IX, CA XII, CA XIV). Isoform CA XV is not expressed in primates, 
and isoforms CAVIII, CAX, and CAXI have no catalytic activity 
since they lack of histidine residues of the active sites [ 11 ]. They 
are also defi ned as  CA-related proteins (CARPs)  . 

 Extensive experimental data showed the architecture of the 
catalytic forms of α-CAs, especially for CAII.    The active site is well 
conserved in all the active isoforms, and it comprises a Zn 2+  ion 
located at the bottom of a half hydrophilic and half hydrophobic 
conical cleft. The cavity is approximately 15 Å deep and the active 
site is accessible to water [ 13 ]. The metal ion then is coordinated 
by the imidazole rings of three histidine residues with the fourth 
position occupied by a water molecule at acidic pH (<8) and by a 
hydroxide ion at higher pH (Fig.  1 ).

      CAs  are   responsible for maintaining the intra- and extracellular bal-
ance between CO 2 , H + , and HCO 3  −  ions [ 12 ]. They play important 
functions in crucial physiological processes for both normal and 
pathological conditions, such as the acid-base equilibrium, CO 2  
and HCO 3  −  transport across membranes, electrolyte secretion, cal-
cifi cation, biosynthetic reactions (gluconeogenesis, lipogenesis, 
and ureagenesis), signal transduction, and tumorigenicity [ 13 ]. 

 Regarding their role in the control of pH, CAs represent a 
versatile system to balance the acid-base concentrations at the level 
of the blood–brain barrier, neurons, glia, and interstitial fl uid in 
the brain, as well at levels of the whole organism (respiratory func-
tions, energy metabolic functions, and renal functions) [ 14 ]. Of 
course, the modulation of pH is attached to the movements of 
many other ions, so this enzyme is indirectly involved in the fl ux 
control of other solutes [ 11 ,  14 ]. 

 As mentioned at the beginning of this chapter, seizures are 
related with the imbalance between inhibitory and excitatory 
conductance in brain tissues, which may be related with fast 
alterations in the extracellular ionic compositions [ 15 ]. For 
example, epileptiform activity is caused by a rise in the extracel-
lular potassium concentration [ 16 ], and neuronal excitability is 
affected by changes in pH [ 14 ]. Generally, the excitability of 
most central neurons and neuronal network is increased by alka-
losis while it was suppressed by acidosis [ 11 ,  14 ,  17 – 20 ]. 
Hyperventilation is a standard practice employed in the clinic to 
generate respiratory alkalosis, causing precipitation of petit mal 
seizures [ 21 ]. It is also employed in children to trigger febrile 

2.1  Carbonic 
Anhydrase 
and Seizures

Carbonic Anhydrase and Epilepsy



40

seizures (as well in animal models of convulsions) [ 22 ,  23 ]. On 
the other hand, respiratory acidosis induced exogenously sup-
presses the neuronal excitability [ 14 ]. 

 The pH is mainly balanced by the buffer CO 2 /HCO 3  −  (in the 
intracellular and extracellular space), so several links between CAs 
and the generation of seizures have been proposed [ 11 ]. 
Furthermore, the relation of CA and seizures is supported by the 
fact that CA inhibitors are (or were) employed to treat epilepsy. 
For example, in 1963, Esplin and Rosertain studied the inhibitor 
acetazolamide and they found that it decreased excitability in cat 
spinal cord [ 24 ]. After that, other authors proposed that the glial 
cells are more alkaline than neurons (due to higher concentrations 
of HCO 3  − ), and the anticonvulsant action of the CA inhibitors 
could be related with extracellular acidosis [ 25 ]. A revision of the 
AEDs with inhibitory action against CA is given in the next section 
of this chapter .   

  Fig. 1    Active site of catalytic α-CAs. The metal ion coordinates 3 histidine resi-
dues and a  water   molecule that generates the nucleophilic hydroxide anion nec-
essary to trigger the catalytic cycle       
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3    CA Inhibitors as Anticonvulsant Drugs 

  CAs inhibitors   have been the object of study in many fi elds of 
medicinal chemistry, as candidates to treat glaucoma, altitude sick-
ness, obesity, pain, cancer, and epilepsy [ 12 ,  26 – 28 ]. 

 Classical inhibitors of α-CAs exert their action by blocking the 
four position originally destined for water in the catalytic center 
(Fig.  1 ). They usually bind to the Zn 2+  as anions, forming  two   dif-
ferent complexes depending on the presence/absence of water 
(Fig.  2 ). The most important functional group that serves as Zn 2+  
anchoring group of CA inhibitors is the  sulfonamide   function (and 
their bioisosteric partners, Fig.  2 ). However, it is worth pointing out 
that other inhibition mechanisms have been discovered for other 
families of compounds, such as polyamines and coumarins [ 12 ].

   Some commercial AEDs are CA inhibitors [ 29 ]. However, 
their anticonvulsant action has not been totally attributed to the 
CA inhibition process in most of the compounds. In fact, the CA 
interactions represent a drug weakness in some cases, because it 
generates tolerance and/or important side effects. 

  Acetazolamide (Diamox ® )   was introduced to the market as a 
diuretic in 1953 (Fig.  3 ). Simultaneously,    its anticonvulsant prop-
erties were discovered by Bergstrom et al. [ 30 ] and then other 
researchers probed their effect in animals and humans [ 31 – 34 ]. It 
has been employed in partial and generalized seizures, as well as in 
catamenial epilepsy [ 35 ,  36 ]. Regarding its safety, acetazolamide 
induces side effects as paresthesias, tinnitus, loss of appetite, and 
alterations of taste [ 37 ,  38 ]. Nowadays it is rarely indicated to treat 
convulsions, mainly due to the development of tolerance [ 39 ,  40 ]. 
 Methazolamide   is a structurally related  compound   that has been 

  Fig. 2    Schematic representation of the interactions found for classical inhibitors and the active site [ 16 ]. ( a ) 
The Zn(II) ion is coordinated with a water  molecule   in addition to the inhibitor (IN − ). ( b ) The inhibitor (IN − ) sub-
stitutes the fourth position in the tetrahedral complex (originally available for water). ( c ) Sulfonamides (X = C 
atom), sulfamates (X = O atom) and  sulfamides   (X = N atom) bind to the zinc ion in their deprotonated form       
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tested as anticonvulsant (Fig.  3 ), but it has gained more attention 
as antiglaucoma drug [ 29 ,  41 ,  42 ].  Sulthiame   is another sulfon-
amide  derivative   employed as AED (Fig.  3 ).  It   is prescribed to treat 
partial epilepsy in children in Europe and Australia [ 43 ], but seri-
ous side effects related with deterioration in cognitive functions 
have been reported [ 44 ].

    Topiramate (Topamax ® )   is a broad spectrum AED employed 
for the treatment of partial  and   generalized seizures, including 
 Lennox–Gastaut syndrome   and prophylactic treatment of migraine 
[ 45 ,  46 ]. It is also indicated in patients with bipolar and mood 
instability disorders, post-traumatic stress, eating disorders, addic-
tions, and other pathologies [ 29 ,  47 – 50 ]. From a structural point 
of view, it is a substituted monosaccharide that contains sulfamate 
function (Fig.  3 ). The sulfamate group is a bioisosteric partner  of 
  sulfonamide moiety, and it serves as anchoring group to interact 
with CA active site [ 51 ]. 

 The  anticonvulsant   action of topiramate is attributed to mul-
tiple mechanisms of action. It inhibits several CA isoforms [ 52 ], 
but it also blocks Na +  and Ca 2+  channels and AMPA/kainate 
receptors; and it enhances the GABA-ergic neurotransmission 
[ 29 ,  53 – 59 ]. On the other hand, CA inhibition contributes to the 
generation of several side effects like metabolic acidosis, hypoci-
traturia, hypercalciuria, and elevated urine pH, leading to an 
increased risk of kidney stone formation [ 10 ,  29 ,  60 ,  61 ]. 

  Zonisamide   is  an   AED effective for simple and complex partial 
seizures, generalized tonic–clonic seizures, myoclonic epilepsies, 
 Lennox–Gastaut syndrome  , and infantile spasms [ 29 ,  62 – 64 ]. Like 
acetazolamide, it has  a   sulfonamide function in its chemical structure 

  Fig. 3    Structures of anticonvulsant drugs with proved CA inhibition.  1 :       Acetazolamide;     2 : Methazolamide;  3 : 
Sulthiame;  4 : Topiramate and  5 : Zonizamide       
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(Fig.  3 ), but a weaker inhibition profi le: its CA-inhibiting activity 
in vivo is 100–1000 times weaker than acetazolamide [ 65 ]. Studies 
showed that its main mechanisms of anticonvulsant action are the 
blockade of voltage-sensitive sodium channels and the reduction of 
voltage-sensitive T-type calcium currents [ 29 ]. Zonisamide presents 
acceptable side effects like somnolence, dizziness, and weight loss 
but it develops tolerance very quickly [ 29 ,  65 ]. 

 Regarding drugs in development, the search of new CA inhibitors 
as anticonvulsants is an active area of research [ 52 ,  66 – 70 ]. However, 
the limitations found in marketed and experimental CA inhibitors 
originated doubts about the potential of this target for designing effi -
cient AEDs. Experts in the fi eld have concluded that future inhibitors 
might overcome  the   diffi culties of tolerance and toxicity by selective 
targeting specifi c isoforms involved in the pathological process [ 10 ]. 
Following this idea, in the last years, the drug design campaigns have 
focused on obtaining isoform- selective inhibitors of CAs. It represents 
a challenging objective because there are 13 active CAs in humans 
with similar architecture [ 12 ]. They share the active site characteristics 
(three residues of His bound to the zinc ion) and two residues highly 
conserved near the active site (identifi ed as Thr 199 and Glu 106 in 
CAII), since they help with the coordination between water/hydrox-
ide ion and zinc. Other common features are the physicochemical 
characteristics of the residues in the conical cleft, which presents a 
hydrophobic region opposite to one hydrophilic region [ 12 ]. 

 However, there are environmental differences for the isozymes 
that provide the opportunity of designing selective inhibitors. For 
example, transmembrane isoforms CAIX and CAXII  are   targets for 
anticancer drugs, particularly in diseases associated with hypoxic 
tumors [ 12 ,  71 ]. Hydrophilic glycosyl  sulfonamide   inhibitors of 
CA IX and CA XII have been designed to minimize the diffusion 
through lipid membranes and to promote the selective inhibition 
of transmembrane CAs [ 12 ,  72 ]. Similarly, positively charged 
 sulfonamide inhibitors were designed to minimize their transport 
through the lipophilic membranes [ 73 ]. 

 There are also divergences in the identity of some amino acids 
in each isoform, mainly for those located  at   the middle and toward 
the exit of the active site cavity. It generates differences on the size 
and shape of the cleft, which fi nally affect the inhibition patterns of 
the ligands. For example, the inhibition constant (Ki) of the anti-
convulsant topiramate is 210 times lower than its sulfamide ana-
logue in CAII isoform [ 74 ]. However, this sulfamide effectively 
inhibits in the nanomolar range isozymes CA VA, VB, VII, XIII, 
and XIV [ 74 ]. The weak inhibitory properties of the sulfamide 
against CAII has been attributed to the unfavorable Van der Waals 
contacts between this ligand and one distinctive residue of CA II 
(Ala65) [ 74 ]. Additionally, the access to other protonation states 
of the sulfamide function relative to the sulfamate group has also 
been hypothesized as an extra source of selectivity [ 75 ]. 
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 On the other hand, the divergences in the identity of the amino 
acids at the entrance of the cavity provide the opportunity of 
designing elongated molecules that interact with the active site but 
also with the distinctive residues to be isoform selective [ 12 ]. This 
strategy is known as  the    tail approach    and numerous successful 
examples are given in literature mainly for antiglaucoma and anti-
cancer drugs [ 12 ]. Regarding epilepsy, there is a growing interest 
about the design of selective inhibitors for the isoform CAVII, 
which has gained attention as a promising target for AEDs. 

     As detailed previously in  this   chapter, CAs  are   responsible of preserv-
ing the intra- and extracellular balance between CO 2 , H + , and HCO 3  −  
ions, and these species infl uence the neuronal signaling in many 
different ways. Regarding neuronal excitability, numerous studies sus-
tain the hypothesis that CA activity promotes depolarizing and excit-
atory GABA-ergic transmission through HCO 3  −  currents [ 14 ,  76 ]. 
Moreover, important advancements have been recently reported 
about the infl uence of the isoform CAVII in the generation of febrile 
seizures via the activation of GABAA receptors [ 77 ]. 

 Human CAVII is a cytosolic isoform composed of 263 amino 
acids that shares 56 % of identity with the CAII isoform [ 78 ]. In 
contrast to ubiquitous CAII, CAVII is the unique isoform present 
mostly in the central nervous system. It is highly expressed in the 
cortex, hippocampus, and thalamus regions of humans’ and rats’ 
brain tissues and in the stomach, duodenum, colon, liver, and skel-
etal muscle of mice [ 79 ,  80 ]. 

 In relation to CAVII inhibition, Gitto and coworkers rationally 
designed, synthesized, and evaluated ten isoquinoline-derived  sul-
fonamides   and other four substituted aryl sulfonamides as selective 
inhibitors [ 81 ]. They showed inhibitory effi cacy at low nanomolar 
concentrations in some examples and selectivity against CAVII over 
CAII. The authors proposed that small substituents in the C1 posi-
tion of the isoquinoline ring improve the inhibition in 
CAVII. Figure  4  shows the two more representative compounds 
(structures 1 and 2). After that, the authors tested other structurally 
related aryl  sulfonamides,   but the new compounds showed lower 
selectivity when compared to the previously reported ones [ 82 ].

   Recently, De Luca and coworkers performed a virtual screen-
ing campaign in order to fi nd new CAVII inhibitors [ 83 ]. They 
constructed two 3D pharmacophore models based on two experi-
mentally available complexes of inhibitors with CAVII (protein 
data bank codes: 3ML5 and 3MDZ [ 84 ]). Later, a fi nal pharmaco-
phore model was made by superimposing the two structure-based 
hypotheses and taking out the overlapped chemical features. This 
pattern was employed as template for virtual screening into a 
focused library of  6313   sulfonamides available in the zinc database 
[ 85 ]. The 34 hits found were submitted to a docking simulation 
and fi nally two compounds were selected for experimental assays 
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(Fig.  4 , structures 3 and 4). Both molecules showed nanomolar 
inhibition against CAVII isoform but not selectivity against CAII. 

 We and other authors have also explored the applications of 
rational design for the discovery of new AEDs via CAVII inhibi-
tion [ 70 ,  86 ]. Particularly, we studied the inhibition pattern of 
 sulfamides   (–NH–SO 2 –NH–), which are bioisosteres of the  classic 
  sulfonamide group [ 75 ]. Initially, we found that the  N , N ′-
disubstitution of the sulfamide function causes a negative effect in 
the activity for the off-target CAII, but it provokes inhibitory 
action against CAVII in some cases. For example, we found that 
 N , N ′-dicyclopropylsulfamide (Fig.  4 , structure 5) has a Ki value 
of 160 nM and it is inactive against CAII [ 70 ]. To explain the 
origin of the effects that may contribute to the different binding 
affi nity, we simulated the interaction of this compound (among 
others) with CAII and CAVII using docking and molecular 
dynamics simulations. 

 The docking simulations for  N , N -dicyclopropylsulfamide were 
performed using AutoDockTools 1.5.0 and AutoDock 4.0 dock-
ing softwares [ 87 ]. The starting CAII protein was prepared from 
the 0.99 Å resolution crystal structure of the CAII-sulfonamide 
complex deposited by Jude et al. (protein data bank code 2FOU) 
[ 88 ]. CA VII isoform was obtained from the complex provided by 
Opperman et al. (protein data bank 3MDZ) [ 89 ]. In both cases, 
the crystallographic water molecules, the ligand, and any cocrystal-
lized molecule/ion were stripped. Hydrogen atoms were added 
using the LEaP module of AMBER11 [ 90 ]. 

 We retained the default AutoDock parameters for all the vari-
ables but the charges of the ligands, for which AM1-BCC charges 
were calculated using Quacpac software [ 91 ]. We found this per-
forms better in the docking for this particular system than the 
default Gasteiger charges [ 75 ]. The sulfamide was docked using 

  Fig. 4    Representative structures of  CAVII inhibitors    collected   from literature [ 70 ,  81 ,  83 ,  86 ]       
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the Lamarckian genetic algorithm (LGA) in the “docking active 
site,” defi ned through a grid centered on the ND2 atom of Asn67 
residue for CA II and the ND2 atom of Asn64 for CA VII. In both 
isozymes, we employed 60, 50, and 60 grid points in  X ,  Y , and  Z  
dimensions respectively, with the default grid spacing (0.375 Å), 
and performed 50 docking runs. 

 The  N , N ′-dicyclopropylsulfamide was docked as anion, by 
removing the H atom of one NH group, since it is believed that clas-
sical inhibitors coordinate to the active site as negative species [ 75 ]. 

 The conformations predicted by AutoDock for the complexes 
with CAII and CAVII were used as starting points for MD simula-
tions with AMBER11 software [ 90 ]. The initial geometries were min-
imized (1000 cycles for the water molecules followed by 2500 cycles 
for the entire systems). After a 20 ps NTV equilibration period with a 
weak restraint (10 kcal/mol Å 2 ) for the complex and a NTP 200 ps 
without restraint, production runs larger than 12 ns were computed 
for each complex, for the coordinates saved every 1000 time steps. 
The ionizable residues were set to their normal ionization states at 
pH 7, except for the His residues coordinating the Zn metallocenter, 
which were modeled as Hid94, Hid96, and Hie119 (numbers relative 
to CA II). The protein atoms were surrounded by a periodic box of 
TIP3P32 water molecules that extended 10 Å from the protein. 
Counter ions were placed by the LEaP module of AMBER11 to neu-
tralize the system [ 90 ]. The ff03 version of the all-atom AMBER 
force fi eld was used to model the protein, and the GAFF force fi eld 
was employed for the organic ligands [ 90 ,  92 ]. 

 We derived our own nonstandard force fi elds for the Zn active 
site by means of geometry minimization (B3LYP/6-31G**, 
Gaussian03 software [ 93 ]), followed by calculation of the second 
derivatives and RESP charges for the active site supermolecule defi ned 
by three His residues, the Zn ion, and the sulfamide ligand [ 75 ]. 

 Our molecular modeling studies suggested that the active site is 
more elongated in CAVII than in CAII, particularly in the hydro-
philic region delimited by ASN64, HIS66, GLN69, LYS93, and 
GLN94 (GLN69 and LYS93 are distinctive residues for CAVII, and 
they are replaced by ASN67 and ILE91 in CAII). The larger space 
in the CAVII active site entrance allows it to accommodate bulkier 
 sulfamides  , like  N , N ′-disubstituted compounds. After that we design 
new amino acid-derived  sulfamides   with different alkyl/aryl chains 
with the purpose of improving the interactions with CAVII [ 86 ]. 
The idea was to construct a sulfamide with both polar and nonpolar 
chains, to promote the interactions with the elongated hydrophilic 
region close to the active site in CAVII as well with the other lipo-
philic half of the cavity. Snapshots of the molecular dynamic simula-
tions previously described allowed us to access to elongated 
conformation of CAVII, and docking studies were also performed 
to analyze these new designed  sulfamides  . We employed the docking 
conditions described before for  N , N ′-dicyclopropylsulfamide. 
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However, in the simulations with the amino acid-derived  sulfamides  , 
two deprotonated forms can be constructed, since the substituents 
of the sulfamide function are different. Both anions were consid-
ered, and the most stable complex predicted by docking (lower 
binding energy) was conserved [ 86 ]. 

 We found very interesting results in terms of CAVII activity and 
selectivity against CAII. Figure  4  shows one of the most promising 
structures (compound 6). It was also active against MES test in mice 
confi rming the anticonvulsant activity in this classical model [ 94 ]. 
Compound 6 showed all animals protected in MES assay (3/3) at 
the lower dose tested (30 mg/kg), 4 h after administration [ 94 ]. 

 We also studied the CA inhibition of the artifi cial sweetener 
sodium cyclamate (Fig.  4 , structure 7). It showed important 
potency and selectivity against the off-target CAII [ 70 ]. This struc-
ture presents a sulfamate salt and it was previously tested by us in 
animal models of convulsion with positive results [ 95 ]. The selec-
tion of this compound was based on the results found for another 
sweetener, saccharine, which showed anticonvulsant action and 
high inhibitory potency and selectivity against CAVII   [ 96 ].   

4    Conclusions 

 Carbonic anhydrase is inhibited by drugs employed to treat several 
diseases, such as cancer, glaucoma, and also epilepsy. Nowadays, 
the main challenge in the design of CA inhibitors is to fi nd com-
pounds that act selectively and with high potency against specifi c 
isoforms. In this chapter, we have focused on successful examples 
of CAVII inhibitors, which prove its potentiality as anticonvulsant 
target. We are aware that more studies are needed to complete the 
anticonvulsant profi le of the new compounds; but we consider that 
this isoform has much future in the treatment of febrile seizures 
and, perhaps, in other epileptic syndromes.     
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