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    Chapter 18   

 Network Pharmacology and Epilepsy                     

     Alan     Talevi      

  Abstract 

   In contrast with the reductionist “one gene, one target, one drug” approach, network pharmacology pro-
poses the use of multi-target therapies, a strategy that seems particularly suitable to treat disorders of 
complex etiology, among them epilepsy. As a matter of fact, most of the existing antiepileptic drugs are 
indeed multi-target unintended agents. Whereas a number of authors have recently advocated the use of 
network-based approximations in the antiepileptic drug discovery fi eld, such strategy has so far not pro-
duced deliverables. Here, we review some practical considerations which could be used to assist in silico 
and wet screening for novel antiepileptic agents.  

  Key words     Epilepsy  ,   Network pharmacology  ,   Systems biology  ,   Multi-target drug  ,   Tailored multi- 
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1      Introduction 

 Some decades back, the pharmaceutical sector adopted a target- 
driven, reductionist approach to drug discovery. The idea was 
appealing: highly selective agents interacting with (and only with) 
a validated target would avoid off-target interactions, representing 
safer therapeutic solutions. Furthermore,  the   target-driven 
approach allowed the implementation of rational drug design cam-
paigns and the bioethical (and cost-effi cient) replacement of low- 
throughput animal models by high-throughput in vitro models as 
primary screening platform. Whereas such clean drugs seem well 
suited to fi nd therapeutic agents to treat  Mendelian disorders   
where a single gene is associated to the disease, they have generally 
shown limited effi cacy for the treatment of complex disorders (e.g., 
cancer, psychiatric and neurological disorders). The  former   reduc-
tionist approach has once again been proposed as one of the pos-
sible explanations for the decline in productivity in the 
pharmaceutical sector [ 1 – 3 ], a reality that particularly hits the fi eld 
of central nervous system (CNS) pharmacology [ 4 ,  5 ]. Curiously, 
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the number of fi rst-in-class small molecule drugs emerging from 
phenotypic screening seems to outnumber those from target-cen-
tered discovery [ 6 ]. 

 From a systems biology viewpoint, living organisms are under-
stood as robust entities, and disease  can   also be considered a robust 
state emerging from multiple and simultaneous perturbations of a 
resilient system [ 2 ]. Recently, a number of authors have discussed 
that epilepsy, being a multifactorial, polygenic, and dynamic disor-
der, could be particularly suited to be approached through network 
pharmacology [ 7 – 12 ]. Such belief is supported by the fact that, 
while it is currently thought that highly selective agents could be 
useful to treat specifi c syndromes [ 9 ], most of the existing antiepi-
leptic drugs (AEDs) are actually fortuitous multi-target drugs which 
have emerged from phenotypic screening [ 8 ,  11 ]. On the other 
hand, a number of studies in animal models of seizure and epilepsy 
suggest that the combination of drugs associated with different 
mechanisms of action tends to enhance the effi cacy of the treatment 
[ 9 ,  13 – 16 ]. At least, contrary to the general bioethical trend, in vivo 
models remain the primary screening assay to identify AEDs, which 
underlines the complex nature of the disorder. Whereas the majority 
of primary assays used within the pharmaceutical industry for the 
early drug discovery rely upon the creation of stable mammalian cell 
lines or upon the overexpression and purifi cation of recombinant 
proteins to establish biochemical assays [ 17 ], the absence of immor-
talized cell lines mimicking the epileptic condition precludes this 
possibility. And while in vitro AED screening using animal or human 
ex vivo tissue (brain slice preparations) is also possible [ 18 – 21 ], such 
approach is limited by tissue availability, the rarity of spontaneous 
epileptiform activity in the tissue, and the viability of the tissue (a 
limitation that has lately been partially overcome thanks to the 
advances of organotypic culture techniques) [ 22 ]. 

 Having said so, it is very surprising that the network pharma-
cology approach has yet not been fully embraced within the AED 
discovery fi eld, which seems to have fallen a little behind in com-
parison with other complex disorders such as cancer or Alzheimer’s 
disease. Stressing the previous statement, Fig.  1  displays the evolu-
tion over time (according to Scopus) of the number  of   scientifi c 
articles in periodicals that present the terms “multi-target” and 
“epilepsy” within their title, abstract, or keywords, in comparison 
with the coappearance of “multi-target” and “cancer” and “multi- 
target” and “Alzheimer.” The previous observations are in agree-
ment with the opinions of leading experts in the epilepsy fi eld, who 
have stressed the urgent need of innovative approaches for AED 
discovery [ 9 ,  23 ]. While some recent articles have beautifully 
reviewed the experimental and theoretical basis that support adopt-
ing systemic, integrative approaches for AED discovery, here we 
will discuss some practical considerations for the implementation 
of this paradigm shift.
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2       Tailored Multi-target Agents 

   Before   target-focused drug discovery, new lead compounds 
emerged from serendipitous discovery, traditional medicine, and 
phenotypic/physiologic screening in cellular or animal models of 
disease. Though it was possible to fi nd multi-target agents through 
such approaches, those targets were, hopefully, defi ned a posteri-
ori, and the combination of targets attacked was unplanned and 
sometimes not fully known. 

 In the discussion on target- versus phenotypic-based strategies 
(or reductionist versus integrative approaches), tailored multi- 
target agents can be regarded as the dialectical synthesis that pick 
the best out of each paradigm. Multi-target therapies are an exten-
sion of the target-centered approach that incorporates the view-
point of network pharmacology. Tailored (or designed) 
multifunctional agents are deliberately devised to selectively mod-
ulate a number of chosen targets, usually relying on computer- 
aided design and data analysis applications and simplifying the 
expensive target deconvolution. Theoretically, multi-target agents 
are equivalent to combined therapies with different single-target 
agents, but they are advantageous in terms of diminished chances 
of drug interactions, simpler pharmacokinetics, and improved 
patient compliance [ 24 ]. 

 Multi-target agents could be a viable solution to deal with 
drug-resistant epilepsy linked to acquired or constitutive target 
modifi cations [ 25 ]. They could also be specifi cally designed to 
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  Fig. 1    Frequency of co-occurrence of the terms “multi-target” and “Alzheimer,” 
“cancer,” or “epilepsy” in scientifi c publications (2005–2015, Scopus). Whereas 
the relative frequencies could also refl ect the comparative interest shown for 
each condition by the drug discovery sector, the epilepsy community seems to 
have embraced the  network pharmacology   paradigm more slowly       
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address, in a simultaneous manner, the signs and symptoms and 
underlying causes of the disease. For example, it is suspected that 
seizures and infl ammation take part in a complex interplay that 
results in a vicious circle [ 26 ,  27 ] where infl ammation would be 
both cause and consequence of seizures. Clinical evidence shows 
that steroids and other anti-infl ammatory treatments display anti-
convulsant activity in some drug-resistant epilepsy syndromes, and 
some of the most widely used AEDs (e.g., valproate) have proven 
anti-infl ammatory effects [ 28 ]. It could be guessed that a combi-
nation of anti-infl ammatory and anticonvulsant properties in a 
single molecule could have a positive impact on epilepsy manage-
ment. The preclinical evidence on the effects of anti-infl ammatory 
agents in epilepsy is reviewed in a separate chapter of this same 
volume. Similarly, due to the high prevalence of comorbid mood 
disorders (mainly, anxiety and depression) in epileptic patients [ 29 , 
 30 ], the simultaneous treatment of core and comorbid manifesta-
tions of epilepsy constitutes an additional potential application of 
multi-target agents in epilepsy management. Remarkably, many 
widely used antiepileptic drugs have shown effi cacy against differ-
ent psychiatric conditions, as clearly reviewed in Chap.   17     by 
Kubova . 

   Etymologically, the word  pharmacophore  comes from the Greek 
and means “cure carrier” or “medicine carrier.” Presently, it alludes 
to an abstract (geometrical) description of molecular features 
which are necessary for molecular recognition of a ligand by its 
molecular target. In other words, the  pharmacophore   is the molec-
ular framework which is essential to elicit a biological response. A 
multi-target drug must either combine  different   pharmacophores 
in a single molecule (one for each specifi c recognition event 
intended) or present a common pharmacophore for different tar-
gets (which implies that the different targets display shared deter-
minants of specifi city). That is, different degrees of pharmacophore 
overlapping can be found in multi-target drugs [ 31 ] (Fig.  2 ).

   Those multi-target drugs that use different sets of atoms 
(anchors) to interact with each target protein tend to violate drug- 
like criteria, presenting oral bioavailability issues [ 7 ,  32 ,  33 ]; 
understandably, the chance of violating drug-likeness rules and 
endangering bioavailability increases with the number of separate 
anchors. Thus, if designing multi-target drugs, watch carefully for 
violations of more than one of  Lipinski’s rules   (no more than fi ve 
H-bond donors, no more than ten H-bond acceptors, molecular 
mass below 500 g/Mol, and calculated Log P  below 5) [ 34 ], and 
check if  Veber’s rules   are accomplished (ten or fewer rotatable 
bonds and a polar surface area below 140 square Ångström) [ 35 ]. 
Note that, owing to the more challenging diffusion barrier posed 
by the blood–brain barrier, the physicochemical properties required 
to achieve brain bioavailability are even more stringent than those 
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of Antiepileptic 
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needed to attain oral bioavailability. Accordingly, the biopharma-
ceutical properties of multi-anchor ligands intended for the treat-
ment of epilepsy or other central nervous system conditions must 
be specially watched. As discussed elsewhere in this volume, the 
very interesting work from Wager and coworkers presents a central 
nervous system multiparameter optimization approach that deliv-
ers a desirability score that can be especially useful to assist the 
design of multi-anchor multi-target AEDs on the basis of readily 
computable physicochemical properties [ 36 ]. The score is easily 
computed by calculating six  theoretical   properties, most of which 
are available in almost every modern  chemoinformatics software 
package   and also frequently provided by public chemical databases 
as  PubChem   or  ZINC  : calculated partition coeffi cient (clog P ), cal-
culated distribution coeffi cient at pH = 7.4 (clog D ), molecular 
mass, number of H-bond donors, topological polar surface area, 
and the pKa of the most basic center. A direct relationship between 
 Wager’s desirability score   and key in vitro attributes (absence of 
permeability issues, P-glycoprotein effl ux, safety, metabolic stabil-
ity) has been observed in marketed central nervous system drugs as 
well as Pfi zer’s candidate set. Remarkably, almost all the approved 
AEDs present high desirability scores (around 5). 

  Ligand effi ciency metrics are   another aspect that should not be 
disregarded during the design of multi-target agents [ 7 ,  33 ]. The 
empirical analysis by Juntz et al. revealed that, across a wide variety 
of ligand-macromolecule complexes, maximal contributions to 
binding free energy per ligand non-hydrogen atom are similar to 
−1.5 kcal/mol; the authors also observed a trend to a smaller free 
energy contribution per atom as the molecular mass of the ligand 
increases [ 37 ]. Ligand effi ciency metrics have gained increasing 
acceptance within the drug discovery community, with retrospec-
tive analysis of recently marketed oral drugs showing that they usu-
ally have highly optimized ligand effi ciency values [ 38 ]. In the case 
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  Fig. 2    Multi-target agents can display different degrees of merged pharmacophores       
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of the bianchor agents, it might be speculated that effi ciency met-
rics will tend to be low since only a fraction of the molecule partici-
pates in each independent binding event between ligand and each 
molecular target. Consequently, the density of effi cient contacts 
between the drug and the targets is expected to be low. Merged 
pharmacophores may serve to solve the binding effi ciency and bio-
availability issues that  characterize   fragment-based approximations 
to multi- target drugs. 

 A number of physicochemical molecular properties could be 
tuned to promote promiscuity. Several reports suggest that ligand 
promiscuity is inversely related to molecular weight [ 39 – 41 ], but 
others have failed to fi nd a correlation or have even shown an 
opposite trend [ 42 ,  43 ] suggesting that the relationship between 
molecular mass and promiscuity might be context dependent [ 44 ]. 
Sturn et al. observed a class of multi-target compounds that they 
called “ superpromiscuous  ,” which  could   bind to nonhomologous 
targets and shared some of the atoms involved in direct interac-
tions with each target [ 39 ]. Curiously, these superpromiscuous 
ligands tend to present either low or high complexity. Direct cor-
relations have also been found between promiscuity and calculated 
log P  [ 43 ,  44 ]. Bases and quaternary bases are markedly more pro-
miscuous than acids, neutral compounds, or zwitterions [ 43 ]. The 
molecular topology can also infl uence promiscuity: the number of 
rings and the fraction of molecular framework ( f  MF ) have also 
shown to be directly correlated with promiscuity at least for large 
(above 0.65) molecular framework values [ 43 ,  44 ]. The  f  MF  is 
defi ned as the atom of heavy atoms in the  molecular framework 
(MF)   divided by the total number of heavy atoms in the molecule. 
   In other words, a smaller molecular framework and more side- 
chain atoms will improve selectivity. A clear (and graphical) defi ni-
tion of the molecular framework can be found in the original work 
by Bernis and Murcko [ 45 ]. 

 In the particular case of AEDs, our group, while looking for 
quantitative structure-activity relationships (QSAR) to identify 
anticonvulsants with activity in the  maximal   electroshock seizure 
(MES)  model  , observed that compounds with anti-MES effects 
tend to be small and display low complexity [ 46 ]. Figure  3  shows 
the distribution of molecular mass for AEDs approved between 
1912 and 2012. Observe that the average molecular mass is 243.5, 
with a standard deviation of 70. If we compare these data with the 
average values of molecular mass for the compounds patented by 
18 big pharmaceutical companies between 2000 and 2010, across 
the major drug-target classes [ 47 ], we will observe that the aver-
age molecular mass for approved AEDs is considerably lower 
(note that a defi nite trend toward higher molecular mass and 
clog P  values, within Lipinski’s rule limits, has been observed 
between 2000 and 2010, when the target-centered approaches 
still prevailed). Interestingly, Yang et al. [ 44 ] have studied the 
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interplay between promiscuity, log P , and molecular topology. 
They defi ned four different topological classes according to the 
number of terminal ring systems and the presence of a molecular 
bridge. The “one terminal ring system” (1TR)  class    includes   mol-
ecules  with   only one ring system. The “two terminal ring systems” 
(2TR)    contain molecules with two ring systems directly connected 
to each other. The 2TR + B class comprehends molecules with two 
terminal ring systems and a molecular bridge. Finally, the 3TR + B 
class contains molecules with three terminal ring systems and a 
molecular bridge. While, in general, promiscuity showed an 
uptrend from simpler (1TR) to more complex (2TR + B) motifs, 
the topology class did not infl uence promiscuity for compounds 
with clog P  values ranging from 1 to 3. In the case of approved 
AEDs, Fig.  3  also shows that, for most AEDs, the  f  MF  tends to be 
high (with some exceptions, e.g., aliphatic compounds such as 
valproic acid or pregabalin). About 80 % of the approved AEDs 
belong to the simpler topological classes (TR or 2TR), which a 
priori suggests a reduced tendency to promiscuity, but they also 
show, in most cases, clog P  values in the range of 1–3 (Fig.  3 ), 
which is optimal for passive diffusion through the blood–brain 
barrier and where the degree of promiscuity seems to be indiffer-
ent to the topological class (with some remarkable exceptions like 
vigabatrin, tiagabine, or perampanel, which emerged in the con-
text of the target-centered paradigm).

  Fig. 3    Molecular mass, fraction of molecular framework and clogP distribution for AEDs approved between 
1912 and 2012. The analyzed drugs have been extracted from ref [ 9 ]       
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   The previous analysis confi rms our observations and provides 
some keys to the proven promiscuity of most AEDs: low molecular 
mass and low complexity, high  f  MF , and an adequate interplay 
between clog P  and molecular topology. The analysis also suggests 
that novel scaffolds should simultaneously explore the 3TR + B 
topology and higher lipophilicity, while keeping high  f  MF  values 
(i.e., few side chains), which represents an unexplored and promis-
ing region of the chemical space for AEDs. 

 Regarding virtual screening campaigns focused on multi- 
target agents, one should remember that application of indepen-
dent models to identify multi-target agents is expected to yield 
lower  positive predictive values  than virtual screening campaigns 
focused on single- target   drugs [ 4 ,  32 ,  33 ,  48 ]. If it is assumed 
that being a ligand for one of the intended targets does not 
enhance or reduce the probability of being a ligand for another 
one (a situation that corresponds to nonoverlapping pharmaco-
phores), each model applied in the virtual screening process 
works as a structural restriction that fi lters out all the molecules 
that do not accomplish the model requirements; subsequently, 
fi nding chemical compounds accomplishing all the model struc-
tural constraints becomes increasingly diffi cult as the number of 
target increases. Having this in mind, when optimizing the score 
thresholds, it is advised to gain sensitivity at the expense of speci-
fi city (be thus prepared to observe higher false-positive rates: 
such strategy results in an increment of experiment-related costs 
due to reduced active enrichment). 

 Also keep in mind that the pharmacophores correspondent to 
two targets could be mutually exclusive. Some pharmacophoric 
features are irreconcilable (they cannot coexist in the same point 
of the molecule, e.g., a charged moiety and a lipophilic one), while 
others are not (e.g., negative charge and H-bond acceptor). 
Choosing the pursued targets on the basis of empirical or theo-
retical evidence on common determinants of specifi city (resulting 
in overlapping ligand specifi city due to common pharmacophores) 
could be a good advice to expand the likelihood of success 
(remember that multi-target ligands with merged pharmacoph-
ores are preferred from the ligand effi ciency and bioavailability 
perspectives).    Bioinformatics tools capable of detecting protein 
coevolution [ 49 ] can be useful for detecting molecular targets 
with similar binding sites.  

   From a network pharmacology standpoint, attacking hubs (highly 
connected nodes in a biochemical network) may not be the best 
strategy, particularly if we are targeting sensitive organs like the 
brain. Designing low-affi nity multi-target drugs to modulate mul-
tiple nonessential nodes nearby key nodes seems a more rational 
approach to restore the network to its normal functioning with-
out serious toxic effects that could otherwise be expected when 

2.2  The Most Potent, 
the Better?
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blocking a key node [ 50 ]. As openly voiced by Bianchi and 
coworkers, “the complexity of neural processes underlying seizure 
activity may be more amenable to multiple small perturbations 
than a single dominant mechanism” [ 11 ]. At this point it may be 
worth highlighting the difference between potency and effi cacy. 
Potency is related  to   the amount of drug that is needed to pro-
duce a given effect and is related to the affi nity of the drug for its 
molecular target(s) and the number of units of the molecular 
target(s) available. In contrast, effi cacy is linked to the maximum 
effect that a drug  can   produce, regardless of dose. From these 
defi nitions, it follows that  a drug could be more effi cacious than oth-
ers without being more potent . 

  Memantine   represents an outstanding example of the potential 
benefi ts of low-affi nity multi-target ligands on CNS disorders [ 51 , 
 52 ]. This drug is presently prescribed  for   the treatment of moder-
ate to severe Alzheimer’s disease and other dementias when acetyl-
cholinesterase inhibitors are not well tolerated. In contrast, 
high-affi nity uncompetitive inhibitor of the   N -methyl- d -aspartate 
receptors (NMDARs)   dizocilpine has not reached the market due 
to serious adverse reactions including Olney’s lesions, cognitive 
disruption, and psychotic reactions. Memantine possesses low- 
affi nity binding to NMDARs (in the high nM to low μM range), 
fast on/off kinetics, and almost no selectivity among subtypes 
[ 51 ], being consequently much better tolerated. Memantine also 
shows uncompetitive antagonism on other receptors, e.g., sero-
tonin 5-HT3 [ 53 ] and dopamine D2 receptors [ 54 ], with similar 
affi nity than for the NMDA receptors. 

 The old paradigm (the more potent, the better) still prevails 
in the primary screening for novel AEDs. The  NIH’s 
Anticonvulsant Screening Program   considers the potency of 
drug candidates in acute seizure models as one of the criteria to 
select which drug candidates will advance to further testing 
[ 55 ]; this decision- making scheme may underestimate the effi -
cacy of the drugs in on a long-term basis [ 56 ]. An equivalent 
principle is often applied in the context of some computer-aided 
screening campaigns (e.g., those based on docking and regres-
sion models), where the hits with higher predicted affi nities are 
more likely to be selected for experimental validation. In the 
light of this paradigm shift, it could be appropriate to discard 
mere potency as selection criteria of AED candidates, preferring 
drugs with multiple (small) actions on different  targets.  Protein 
network analysis   could prove useful to reveal weakly and mod-
erately connected nodes as potential new targets for epilepsy 
therapies. In this line, it has been stressed that  levetiracetam   (a 
new generation AED that enjoys increasing attention within the 
epilepsy community and perhaps the third generation AED with 
the most innovative pharmacologic profi le) exerts various mild 
modulatory actions on neurons [ 8 ].  
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   In the background of classical  QSAR theory   and more reasonably 
 in   the case of 3D QSAR, the compound dataset used to build and 
validate the model should present a common mode of action and 
even the same binding mode [ 57 – 59 ]. Alignment-dependent 3D 
QSAR methods have been conceived to describe one specifi c inter-
action step in the lifetime of ligands [ 57 ]. Obviously, the same 
principle applies for molecular docking and other structure-based 
approaches that explicitly predict the ligand-target interaction. 
Consequently, in vitro affi nity data could be considered the gold 
standard for traditional QSAR modeling. However, considering 
the possible benefi ts of network pharmacology in the fi eld of epi-
lepsy and as an alternative to tailored multi-target agents, it is pos-
sible to detect novel antiepileptic drugs by modeling “dirty” 
responses obtained in phenotypic/physiologic models, instead of 
“clean” affi nity data. Molecular descriptors refl ecting more general 
structural patterns than those required for the specifi c ligand- 
recognition event by a certain target could be probably more suit-
able for this job.    Many of the successful QSAR models and virtual 
screening applications for the discovery of AEDs have relied on 
in vivo biological data for modeling purposes [ 46 ,  60 – 70 ], and 
they include work by leading experts in the QSAR fi eld [ 60 ]. 

 Since most of the previously cited articles report models to pre-
dict the effect of a drug in seizure models (prominently, MES test), 
the current challenge is probably to face modeling campaigns based 
on biological data obtained from actual models of epilepsy (e.g., pilo-
carpine and kindling models), refractory epilepsy, and acute models 
so far understudied through the QSAR theory (e.g., 6 Hz test).   

3    Comparing Gene-Wide Profi les 

  It is now known that drugs, particularly those administered in a 
repeated manner (e.g., AEDs), do not only provoke a given bio-
logical response in a direct way; they also indirectly elicit regula-
tory effects on gene expression profi les which could be even more 
relevant than the direct drug-target interaction. 

  Gene expression   profi les offer a snapshot of globally measured 
transcript levels in a given cell, tissue, or organism at a specifi c 
point of time [ 71 ]; gene signatures are representative of specifi c 
conditions, i.e., exposure to a given xenobiotic or a disease state. 
Gene signatures are particularly relevant to characterize the pheno-
typic response to long-term exposure, shed light about the modes 
of action of a drug, and identify potential treatments for a certain 
disorder. The Broad Institute has pioneered such applications 
through its Connectivity Map, a publicly available resource 
designed to link disease and drugs through gene profi les [ 72 ]. This 
resource collects gene signatures derived from the exposure of 
human cells to a huge number of xenobiotics, including 1300 

2.3  What Response 
Should Be Modeled 
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to Detect Novel AEDs
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FDA-approved drugs. Query signatures can be compared to the 
stored ones through similarity matching algorithms: those at the 
top and bottom of the resulting ranking are thought to be related 
to the query state by shared or opposite expression changes. 
Compounds eliciting similar expression changes would exacerbate 
such condition; compounds displaying inverse signatures would 
function as therapeutic agents. 

 A diversity of microarray-based gene expression profi ling stud-
ies have been conducted to elucidate the molecular changes under-
lying epilepsy and epileptogenesis [ 73 – 77 ]. They and other similar 
works could be a fair starting point to fi nd novel drugs with disease- 
modifying properties by application of the inverse similarity idea 
proposed by the Connectivity Map .  

4    Final Remarks 

 In spite of recent authoritative opinions on the potential contribu-
tion of network pharmacology to the development of more effi ca-
cious AEDs, such considerations have so far not been translated 
into new drug candidates, contrasting advances in other complex 
diseases such as neurodegenerative conditions or cancer. 

 We have presented four strategies to incorporate a network phar-
macology perspective in the fi eld of AED discovery: tailored multi-
target agents, reexamining the validity of “the more potent, the better” 
paradigm, building QSAR models based on biological responses 
emerging from phenotypic models, and gene signature comparison.     
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