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    Chapter 15   

 Discovering New Antiepileptic Drugs Addressing 
the Transporter Hypothesis of Refractory Epilepsy: 
Structure-Based Approximations                     

     Pablo     Palestro     and     Luciana     Gavernet      

  Abstract 

   Drug resistance represents a major obstacle to the success of epilepsy treatments, therefore intense inves-
tigations have been carried out to explain its origins. One of the most experimentally corroborated theories 
is the transporter hypothesis. It proposes that, at least for a subset of patients, the failure of the anticonvul-
sant drugs is caused by their inability to reach the molecular targets due to the regional overexpression or 
activation of effl ux transporters. Among them, P-glycoprotein (P-gp) showed overactivity in drug-resistant 
patients as well as proved interactions with known anticonvulsant drugs. In this chapter we summarized 
the structure-based approximations employed to identify substrates/inhibitors of the glycoprotein, with 
special attention in describing the structural data available of the target- and the docking-based simula-
tions. We also pointed out our results regarding the identifi cation of new anticonvulsant candidates that 
avoid P-gp interactions by means of a sequential ligand-based and target-based screening, along with 
practical details related to this protocol.  

  Key words     Refractory epilepsy  ,   Docking  ,   P-Glycoprotein  ,   Virtual screening  

1      The Transporter Hypothesis of Refractory Epilepsy 

  Despite  the   successful discovery of new antiepileptic drugs (AEDs) 
with better absorption, distribution, metabolism, excretion, and 
toxicity (ADME/TOX) profi les (or, in some examples, with novel 
mechanisms of action), the effi cacy of drug treatment of epilepsy 
has not substantially improved over the years. According to the 
international consensus, refractory epilepsy is described as the fail-
ure to achieve seizure freedom with two or more well-tolerated 
AEDs, given in an appropriate manner [ 1 ]. About 30 % of the 
patients fi t to this defi nition, since they respond inadequately to 
known drug therapies. This fact represents a main concern for the 
experts in the fi eld, who elaborated several hypotheses to explain 
the origins of the drug-resistant epilepsy. 
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 Abundant evidence acquired from epidemiological analysis, stud-
ies in animal models, and human epileptic tissues of patients under-
going surgical resection indicates that the refractory epilepsy is a 
multifactorial phenomenon. It might be associated with the develop-
ment of tolerance during prolonged administration of the AEDs [ 2 ], 
the etiology and severity of the seizures [ 3 ], changes of the drug 
targets [ 3 – 6 ], alterations in neuronal connectivity [ 7 ,  8 ], blood–brain 
barrier dysfunctions [ 9 ], and genetic variants of the proteins involved 
in the biodistribution, metabolism, and mechanism of action of the 
drugs [ 10 ]. In addition to these causes, the  transporter hypothesis  
claims that the failure of AEDs in some refractory patients is origi-
nated by their inability to reach the molecular targets, due to the 
overexpression or activation of effl ux transporters in brain tissues 
[ 11 ]. This mechanism of drug resistance is highly supported by 
experimental data [ 11 – 25 ] and provides a possible explanation about 
one important characteristic of refractory epilepsy: patients that fail to 
control the seizures with one AED have a small chance (lower than 
10 %) to control them by other AEDs, even with drugs that act 
through the interaction with different molecular targets [ 10 ,  11 ,  26 ]. 

 The most-studied effl ux transporter is P-glycoprotein (P-gp). 
It is a member of the  ATP-binding cassette (ABC)   transporter fam-
ily, and it is expressed in brain cells (neural cells, glial cells, and 
capillary endothelium at the blood–brain barrier) as well as in other 
barriers and excretory tissues, with the function of detoxifying 
them by preventing exogenous compounds from entering suscep-
tible organs [ 27 ,  28 ]. In contrast to this benefi cial effect, the 
regional overactivity of P-gp in drug-resistant patients limits the 
access of AEDs into the brain targets, rendering them ineffective 
[ 13 ,  21 ,  22 ,  29 ,  30 ]. Moreover, studies about the interaction 
between P-gp and AEDs confi rmed that phenytoin, phenobarbital, 
topiramate, lamotrigine, levetiracetam, oxcarbazepine, and eslicar-
bazepine acetate (and some of their metabolites) are substrates or 
inhibitors of the P-gp [ 31 – 35 ]. In this context, it became advisable 
to include in the early phases of AED discovery the analysis of the 
interactions of the newly designed anticonvulsants with P-gp. 

 According to the characteristics of the binding, compounds 
can be categorized as substrates, inhibitors, or modulators of P-gp. 
Substrates are actively transported by P-gp, whereas inhibitors 
affect the transporting function. Modulators interact with active 
sites distinct from the substrates, reducing the strength of its inter-
actions by a negative allosteric binding [ 36 ]. Since both inhibitors 
and modulators impair the transport function, they are frequently 
named equally as inhibitors [ 37 ]. Additionally, as modulators, 
inhibitors, and substrates interact with P-gp in one way or another, 
here we will refer them together as  binders . 

 There are several biological assays developed to test the ability 
of compounds to interact with P-gp [ 38 ,  39 ]. Among them, 
in vitro transport experiments are recommended by  the   US Food 
and Drug Administration as the preferred data to decide if a drug 
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is a P-gp binder. They suggested a bidirectional transport assay 
using cultured cells as the initial test, followed by the validation 
that the effl ux is inhibited by the presence of one or more inhibi-
tors [ 40 ]. The in vitro methods with Caco-2 cells are the most 
frequently employed, followed by the MDCKII-MDR1 cells (mul-
tidrug resistance protein-1-transfected Madin–Darby canine kid-
ney cells) [ 41 ]. However, any experimental screening to evaluate 
P-gp interactions with new active compounds is expensive and 
time demanding, so computational models provide a valuable and 
complementary tool for the virtual recognition of P-gp binders .  

2    In Silico Approaches to Predict P-gp Binders 

 The impact of P-gp on the drug resistance to treat not only epilepsy 
but also other diseases (such as cancer, Alzheimer, and HIV [ 42 – 45 ]) 
has promoted the development of in silico studies to identify P-gp 
binders. It is known that P-gp has the capability to interact with unre-
lated structures, and this poli-specifi city makes it diffi cult to fi nd a 
common pattern for the recognition of binders. However, numerous 
ligand-based approaches were developed to fi nd the requirements 
shared by small molecules to be P-gp substrates or inhibitors. The 
initial pharmacophoric patterns proposed the importance of aromatic 
rings and lipophilic centers, basic nitrogen atoms, and hydrogen-
bonding interactions [ 46 – 48 ]. After that, other ligand-based 
approaches were developed to predict P-gp binders, which include 
new pharmacophoric patterns, machine-learning algorithms, and 
 quantitative structure–activity relationship (QSAR)   studies among 
others [ 47 ,  49 – 60 ]. Details of the ligand-based models are widely 
explained in a previous chapter of this book. Some of them present a 
high prediction accuracy for given classes of drugs or drug candi-
dates, with the additional advantage of being less computationally 
demanding than target- based approaches. 

 Structure-based methods deal with the high computational 
cost (particularly for  virtual screening campaigns   with large 
datasets), but they are able to provide atomic details on the 
protein–ligand interactions. Therefore, these approaches allow 
the prediction of the binding modes between new (or known) 
compounds and the biological targets as well as the structural 
optimization of the ligands (to improve/avoid their interactions 
with the macromolecules). Of course, the application of struc-
ture-based approximations implies the knowledge of the target 
at atomic level. 

   The elucidation of the 3D structure of membrane proteins from 
crystallography still represents  a   challenge in structural biology. 
Regarding crystals of transporters in complex with some substrates, 
the experiments get even more problematical because the low 
binding affi nities increase the diffi culty to solve their positions. 

2.1  Tridimensional 
Structure of P-gp
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 In 2009 Aller and coworkers elucidated the fi rst X-ray structure of 
the eukaryotic ( Mus musculus ) P-gp,  improving   enormously the 
knowledge of the protein architecture at atomic level [ 61 ]. Before this 
fi nding, the 3D structure of P-gp was modeled by comparative analy-
sis (homology-modeling techniques) with templates that share low 
sequence identity to the human protein, such as the bacterial ABC 
transporter MsbA [ 62 – 64 ]. Conversely, the sequence of mouse P-gp 
has more than 80 % sequence identity to human P-gp and similar size 
[ 65 ], suggesting a high level of conservation of the 3D structure. 

 Additionally, Aller and coworkers crystallized two protein–ligand 
complexes providing the fi rst structural  details   about how P-gp inter-
acts with their binders [ 61 ]. The reported apo and drug- bound 
structures showed inward-facing conformations of P-gp, which cor-
respond to the initial stage of the transport cycle. Subsequently, other 
experimental models were also elucidated and deposited in the pro-
tein data bank [ 66 ] improving the information about the overall 3D 
structure of P-gp and the architecture of the binding sites (Table  1 ).

   As other ABC proteins,    P-gp employs the hydrolysis of ATP to 
effl ux out of the cell substrates across the biological membrane. It 
comprises two pseudosymmetric halves. Each one has six trans-
membrane helices (TMs) connected with loops and short helices 
to one cytosolic  nucleotide-binding domain (NBD)   (Fig.  1 ).

    Table 1  

  Experimental 3D models of P-gp deposited in the protein data bank after the mouse structures 
elucidated by Aller in 2009 [ 61 ]   

 Date  Authors  Related PDB codes (resolution)  Organism 

 2009  Aller et al. [ 61 ]  3G5U (3.80 Å)   Mus musculus  

 3G60 (4.40 Å) 

 3G61 (4.35 Å) 

 2012  Jin et al. [ 67 ]  4F4C (3.40 Å)     Caenorhabditis elegans      

 2013  Li et al. [ 68 ]  4M1M (3.80 Å)   Mus musculus  

 4M2S (4.40 Å) 

 4M2T (4.35 Å) 

 2013  Ward et al. [ 69 ]  4KSB (3.80 Å)   Mus musculus  

 4KSC (4.00 Å) 

 4KSD (4.10 Å) 

 2015  Szewczyk et al. [ 70 ]  4Q9H (3.40 Å)   Mus musculus  

 4Q9I (3.78 Å) 

 4Q9J (3.60 Å) 

 4Q9K (3.80 Å) 

 4Q9L (3.80 Å) 
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   Regarding the binding sites for substrates and inhibitors, 
previous analyses have proposed up to seven binding regions 
located into the internal cavity of the protein, which is generated 
by the two sets of TMs (TMs 1–3,6,10,11 and TMs 4,5,7–9,12) 
[ 71 ,  72 ]. The existence of multiple binding sites (some of them 
overlapped) in the P-gp internal cavity is consistent with the 
poli- specifi city observed for the protein. Moreover, this cavity 
has a volume around 6000 Å 3 , which is big enough to accom-
modate more than one binder simultaneously in different sub-
sites [ 61 ] (Fig.  2 ). Recently, another potential binding site has 
 been   detected by X-ray crystallography [ 70 ]. It is placed on the 
exterior of the P-gp structure but close to the region proposed 
as a potential intramembranous access of the substrates to the 
cavity [ 73 ,  74 ]. The authors suggested that there is an initial 
weak interaction of the substrates with this site before achieving 
their fi nal position into the internal cavity [ 70 ] (Fig.  2 ).

      The structural information of P-gp provides the starting point for the 
application of target-based methods of drug design. Among them, 
molecular docking protocols were employed to locate P-gp putative 
binding sites and to predict the binding affi nities of small molecules. 
Note that the results of a docking protocol are highly dependent on 
the experimental data available, the predefi ned scoring functions, and 
the conformational search algorithms provided by the software. 
Consistently, it is always convenient to test a diversity of docking 
alternatives and appropriately validate the suitability of the protocol 
to reproduce the experimental conformation of ligand–target com-
plexes, if they are available. In the same line, it  is   opportune to test 
their ability to discriminate known binders from non-binders through 
their  docking score  . It is expected that they predict better affi nities 
(i.e., lower calculated binding energies) for binders. 

2.2  In Silico 
Predictions of P-gp 
Binders 
Through Target- Based 
Methods

  Fig. 1    Overview of  the   crystal structure of mouse P-gp (PDB code 4Q9H). Transmembrane domains are labeled 
(TM).  Horizontal lines  approximate the region of the lipid bilayer       
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 Becker and collaborators constructed a P-gp homology model 
based on the 3D structures of the transporters Sav1866 and MsbA 
to dock the ligands verapamil, rhodamine B, colchicine, and vin-
blastine into the binding cavity [ 64 ]. The results showed good 
correlation with the experimental data available since the docking 
poses interact with residues previously identifi ed in the active site. 
Pajeva et al. employed the structure of mouse P-gp (PDB code: 
3G61) as template to construct a P-gp human 3D model, and they 
docked  a   small set of quinazolinone inhibitors to support the 
results obtained from pharmacophoric patterns about the common 
structural features of P-gp binders [ 75 ]. Later on, other authors 
evaluated the ability of docking programs to discriminate known 
binders from non-binders [ 49 ,  60 ,  76 ,  77 ]. They constructed big-
ger test sets than Becker and Pajeva with different chemical back-
bones to consider the promiscuity of the P-gp binding sites. The 
fi nal proposition was to employ docking algorithms to predict the 
P-gp binding affi nities of untested molecules. 

 Chen et al. evaluated the prediction capability of molecular 
docking by using the two drug-bound P- gp   structures provided by 
Aller et al. (PDB codes: 3G60 and 3G61, Table  1 ). They docked 
157 substrates and 88 non-substrates with  Glide docking software   
(  http://www.schrodinger.com/Glide    ) and scored them by the 
two Glide modes: SP (standard precision) and XP (extra 

  Fig. 2     Overview   of P-gp co-crystallized with valine–cyclopeptide structure (PDB 
code 4Q9J). Two molecules of the ligand are located in the internal cavity (high-
lighted in  blue ), whereas another is placed on the exterior of the structure (high-
lighted in  yellow ). The position of the other two ligands (phenylalanine 
cyclopeptide, co-crystallized in the PDB complex 4Q9L) was also included in  red , 
to show the versatility of the active site       
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precision). The authors concluded that the docking protocols were 
unable to clearly discriminate substrates from no substrates by 
using the best score criterion [ 49 ]. 

 Dolghih and coworkers applied docking protocols to analyze 
their capacity  to   differentiate 30 binders (26 drugs and four metab-
olites) from 98 presumed non-binders (metabolites). They 
employed the target structure provided by Aller (PDB code: 3G60) 
and run rigid and fl exible docking (with induced fi t algorithms). 
The force fi elds were provided by Glide SP, Glide XP, and MM-GB/
SA scoring functions [ 76 ]. Additionally, they tested 13 binders and 
34 non-binders selected from a dataset of FDA-approved drugs. 
The active compounds of the set were positive in two experimental 
assays (monolayer effl ux and calcein-AM inhibition assays) whereas 
the non-binders were negative for both experiments. Finally they 
benchmarked the docking conditions with a blind test on a series of 
peptidic cysteine protease inhibitors. The authors concluded that 
fl exible receptor models have the ability to differentiate known 
binders from non-binders. They proposed that the better results in 
fl exible docking might be associated with the mobility of the bind-
ing site residues but also with the low resolution of the target struc-
ture. They also suggested that P-gp substrates could bind deeper in 
the P-gp cavity than the ligands in the crystallized complex [ 76 ]. 

 Dolghih et al. also docked rhodamine B, a known P-gp substrate 
with experimental binding data available [ 78 ,  79 ], to validate if dock-
ing can predict accurately  the   geometry of experimental complexes. 
In the same line, they strip and docked the ligand (a cyclic peptide) 
back into the crystal structure 3G60 (named QZ59- RRR). Again, 
the fl exible receptor poses reproduced better the experimental bind-
ing interactions. Interestingly, one of the best docking conditions 
found in this investigation was then applied by the authors to esti-
mate the effl ux ratio of the molecules (the ratio of their two transport 
rates in opposite directions: basal to apical and apical to basal across a 
single layer of cells) as a measure of their brain penetration [ 80 ]. 

 On the other hand, Bikardi et al. combined ligand-based and 
target-based methods to fi nd a cost-effective protocol to predict 
potential P-gp substrates and their molecular interactions [ 50 ]. 
The identifi cation of possible P-gp substrates was in charge of a 
support  vector machine method   (with a training dataset of 197 
known P-gp substrates and non-substrates), and the docking cal-
culations were employed only to predict the interactions at atomic 
level of the selected compounds. The authors validated the dock-
ing protocol ( Autodock Vina software  ) by re-docking the 
QZ59RRR ligand to the mouse X-ray P-gp structure. They found 
an acceptable agreement between the experimental and predicted 
ligand conformations (RMSD value of 1.27). However, the bind-
ing predictions were performed on a human P-gp model as the 
target. The authors constructed a 3D homology model (using 
mouse P-gp as template) and tested it by docking  rhodamine B. 

Discovering New Antiepileptic Drugs Addressing the Transporter Hypothesis…



288

  The results of this docking calculation were consistent with experi-
mental data [ 78 ,  79 ]. The algorithms are available in a Web server, 
which enables the users to predict if a compound is a P-gp sub-
strate, as well as its binding conformation into the P-gp active sites. 

 Bikardi et al. did not use docking for classifying P-gp binders 
from non-binders. Conversely, Klepsch and collaborators compiled 
a large set of 1076 inhibitors and 532 non-inhibitors to test the 
capacity of the scoring functions implemented in GOLD package 
to differentiate them [ 60 ]. They employed a model of the human 
P-gp as target, which was constructed from murine P-gp (PDB 
code 3G5U). Initially, the ligands were docked in two protonation 
states with  ChemScore   or  GoldScore functions  . Then, the result-
ing docking poses were rescored with fi ve scoring functions: 
ChemScore, GoldScore,  Astex Statistical Potential (ASP)  ,  Piecewise 
Linear Potential (ChemPLP)  , and  XScore   [ 60 ]. In summary, 20 
fi nal models were obtained and their prediction capabilities were 
investigated. The best one was based on ChemScore, and it was 
able to predict 76 % of P-gp inhibitors and 73 % of non-inhibitors. 
Additionally, the authors combined the results obtained from 
ChemScore-based docking with the log P values of the com-
pounds, which relates to the ability of the compounds to cross the 
membranes by diffusion. It caused a slight improvement in the 
prediction of true inhibitors, with values in the confusion matrix of 
0.81 for sensitivity (i.e., 81 % of the inhibitors predicted), at 
expenses of a decrease in the detection of non-inhibitors (0.69 of 
specifi city) [ 60 ]. Note that this approach is philosophically consis-
tent with the enhanced sensitivity of the CETA assay [ 35 ] to iden-
tify lipophilic weak substrates of P-gp by removing the diffusion 
component from the permeability assay. 

 It is worth mentioning that docking protocols are unable to 
provide a complete explanation about the ligand interactions during 
effl ux cycle in all the models mentioned before. More than a few 
doubts remained unsolved about the binding sites’ specifi c locations 
for substrates and/or inhibitors. Moreover, during the course of the 
effl ux cycle, P-gp undergoes large-scale conformational changes to 
pump the drugs out of the cellular membranes, and the mechanisms 
of these conformational transitions are still unclear. In that direction, 
numerous attempts have been performed by means of molecular 
dynamic simulations to better understand the mechanisms of drug 
uptake and binding in a fl exible protein like P-gp [ 81 – 89 ]. The 
studies confi rm the signifi cant conformational change that facilitates 
the extrusion of the molecules and the importance of the TM12 and 
TM6 regions for the fl exibility of the macrostructure.  

    The early recognition of potent anticonvulsant candidates with 
no interaction with P-gp represents a useful strategy to design 
 anticonvulsant drugs  . On the other hand, the virtual identifi ca-
tion of compounds with strong interactions with P-gp could be 
implemented for developing inhibitors for adjuvant therapies. 

2.3  Structure-Based 
Design of New 
Anticonvulsants to 
Treat Refractory 
Epilepsy
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This last strategy has serious limitations since it implies to cancel 
the physiological role of the glycoprotein (a fi rst line of defense in 
several barriers), and it involves the development of very selective 
and specifi c inhibitors to minimize side effects. 

 To the extent to our knowledge, the docking-based protocols 
mentioned before in this chapter have not been employed to fi nd 
new anticonvulsants that avoid interactions with P-gp. On the con-
trary, we and other authors have run a virtual screening campaign 
to identify anticonvulsants for the treatment of P-gp-mediated 
drug-resistant epilepsy [ 77 ]. Initially we applied four ligand-based 
models on the  ZINC 5   [ 90 ] and  DrugBank   [ 91 – 93 ] databases to 
propose new possible non-substrates of P-gp with anticonvulsant 
properties. Briefl y, a topological discriminant function was 
employed to identify active compounds against the  maximal 
electroshock- induced seizure (MES) test  , and a three-model 
ensemble of 2D classifi ers was used to differentiate P-gp substrates 
from non-substrates. 

 From the ligand-based screening, 380 candidates were selected 
for a second round of analysis by docking simulations. We fi rst 
analyze the capacity of different docking software and conditions 
to discriminate known binders from non-binders of the test set, 
which was constructed after a thorough analysis of the biblio-
graphic data. Special attention was given to the selection of the 
compounds of the test set, since there is some controversy in the 
literature regarding the classifi cation of substrates/inhibitors and 
non-substrates/non-inhibitors. For example, Polli et al. classifi es 
verapamil as non-substrate according to the monolayer effl ux 
experiment in MDCK cells [ 94 ], whereas Feng et al. consider it as 
substrate in the same assay [ 95 ]. Doan et al. [ 96 ] reports fl uoxetin 
as a non-substrate (monolayer effl ux experiment in MDCKII- 
MDR1 cells), but in the assay of calcein-AM (CAM) inhibition 
(same cellular line), it behaves as an inhibitor [ 97 ]. In order to 
construct a representative and diverse set, the biological results 
from multiple publications were considered and priority was given 
to in vitro assays over in vivo tests [ 65 ]. After a thorough analysis, 
we included in the test set those substrates/inhibitors that were 
detected in two or more publications in different assays (if possible 
more than three). Conversely, we considered non-binders those 
compounds found as non-substrates preferably in two or more dif-
ferent assays and not reported as substrate/inhibitors (or reported 
in only one test). The compounds reported with some controversy 
in the results (e.g., one test where the compound was considered 
substrate/inhibitor and another where it behave as non-substrate) 
were discarded. 

 We benchmarked Glide, Autodock, and  Autodock Vina soft-
ware   [ 65 ]. The compounds were docked into a homology model 
of human P-gp based on the mouse P-gp structure as template 
(PDB code: 3G61). The target was considered either rigid or fl ex-
ible. Two different sets of amino acids were allowed to move in the 
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fl exible simulations. In one model (model A) we allowed the move-
ment of the amino acids that interact with the experimental ligands 
in the mouse complexes (Phe-335, Phe-343, Phe-728, Phe-732; 
PDB codes 3G60 and 3G61). For model B, we examined the con-
formation of the fl exible residues in model A after the docking 
simulations. We found that Phe-343 and Phe-978 showed differ-
ent conformations depending on the ligand, whereas Phe335, 
Phe732, and Phe728 adopted practically the same conformation in 
all the tested compounds. Therefore we choose another set of fl ex-
ible residues that includes Phe-343, Phe-978, and other amino 
acids (Tyr-307, Tyr-953) that interact with the compounds of the 
test set according to the docking results with model A. The results 
were analyzed by means of the receiver-operating characteristic 
(ROC)  curves      for each docking system [ 98 ] to decide the most 
favorable docking conditions and to choose the limiting  docking 
score   (best threshold value) that can be used to discern between 
binders and non-binders classes. 

 The ROC  curves   graph the relation between the false positive 
rate (on the  X  axis) and the true positive rate (on the  Y  axis) for all 
possible threshold levels (see as example Fig.  3 ). These two values 
are defi ned as follows:
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  Fig. 3    ROC- type   curves obtained for the best simulation. The confusion matrix 
with threshold −7.4 shows the number of well-categorized binders (22 of 26) 
and non-binders (20 of 26)       
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   False positive rate = FP/(TN + FP) 
 True positive rate = TP/(TP + FN) 
 where TP means true positives, FN false negatives, FP false posi-

tives, and TN true negatives. The true positive rate is also defi ned as 
sensitivity and the false positive rate is also named as 1-specifi city, 
since specifi city is the rate of true negatives: TN/(TN + FP). 

 The ROC  plots   provide an objective picture of the methods’ 
performance through the area under the curve (AUC) [ 98 ]. A ran-
dom classifi cation would give an AUC of 0.5, whereas a perfect 
classifi cation would give an AUC of 1. Therefore, the AUC of the 
“real” models ranges between these two values. The analyses of the 
curves are useful to compare different methods and to have an 
overview of their capacity to discriminate known active from 
known inactive compounds. 

 As mentioned before,    to construct the ROC curve we need to 
determine the selectivity and specifi city values. Continuous data (as 
docking scores) requires a threshold value that divides the pre-
dicted active and inactive compounds. Depending on this cutoff, 
the selectivity and specifi city will vary, and each pair of values rep-
resents a point in the curve. 

 On the other hand, for virtual screening purposes, we need to 
select the best threshold value that allows deciding which new 
compounds are good candidates to experimental analysis. If this 
cutoff is selected so that the sensitivity of the model increases (high 
rate of true positives), the specifi city will decrease and we will 
expect a high rate of false positive compounds. On the contrary, if 
specifi city is favored over sensitivity, more true positives will be 
classifi ed as inactive. 

 There are several criterions to balance both sensitivity and speci-
fi city, and the threshold values are selected according the given sys-
tem. For example, the highest G-mean value (square root of the 
product between selectivity and specifi city) could be used to select the 
best cutoff for virtual screening. Another practical criterion is based on 
the accessibility of the experimental assays. As the resources involved 
in the experimental test are limited, it would be useful to minimize the 
evaluation of false positive candidates. This criterion prioritizes speci-
fi city over sensitivity, at expenses of losing active compounds. 

 In our investigation the best ROC curve was achieved by 
means of Autodock Vina with fl exible receptor (model B) and 
ligands at physiological pH. The resulting simulation is shown in 
Fig.  3 , with an area under the ROC curve of 0.916 (best threshold 
of  docking score  : −7.4). This protocol is able to predict the 85 % of 
the binders (sensitivity value of 0.85) and the 77 % of non-binders 
(specifi city value of 0.77) with a global accuracy value of 0.81 [ 65 ]. 

 Finally we performed the docking simulation to the 380 com-
pounds selected by the ligand-based virtual screening. According to 
the ROC curves, we considered as P-gp binders the structures that 
showed a  docking score   lower than −7.4 kcal/mol. With this 
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threshold, 275 structures passed the docking fi lter as non-binders, 
evidencing a high level of consensus between the ligand-based and 
target-based protocols (more than 72 % of the initial structures were 
recovered by docking). From them, ten diverse molecules were 
selected for acquisition and subsequent pharmacological evaluation 
(Fig.  4 ). All showed anticonvulsant properties in animal models of 
acute seizures (MES test), proving the accuracy of our predictions 
in relation to the protective effects of the candidates  [ 77 ].

3        Conclusions 

 P-glycoprotein is probably one of the most studied antitargets 
(together with hERG channel and CYP3A4 enzyme) due to its 
participation in drug resistance and drug interactions. 

 Particularly, the P-gp awareness for the design of new anticon-
vulsants represents an interesting strategy to treat P-gp-mediated 
refractory epilepsy. In this context, target-based methods offer a 
virtual alternative to ligand-based protocols, since they might dis-
cern possible binders from non-binders using, for example, the val-
ues of the docking scores. 

 Docking on P-gp deals with the intrinsic limitations of the soft-
ware (characterized by specifi c-search algorithms and force fi elds) to 
correctly quantify the binding energies of the complexes. Additionally, 
human P-gp is a very fl exible membrane protein and its experimental 
structure is not currently available. Therefore, the simulations have 
to be run on experimental structures of mouse P-gp (which show 
low resolution in the position of the amino acid side chains) or by 
comparative models of the human target. Despite these diffi culties, 
the docking protocols mentioned in this chapter showed, in general, 
an acceptable performance. Additionally they were able to repro-
duce the binding modes of known binders and could provide atomic 
details on the new protein–ligand complexes. 

  Fig. 4    Compounds selected by sequential virtual screening that showed anticonvulsant activity against MES 
test. I, chrisantemic acid; II, 7,7-dimethyl-1-norbornane carboxylic acid; III, thioctic acid; IV, metformin; V, man-
nitol; VI, sorbitol; VII,  N -( tert -butoxycarbonyl)- l -isoleucine; VIII, 1-hydroxycycloheptanecarboxylic acid; IX, 
 N -(3,3-dimethylbutane-2-yl)-2-methylfuran-3-carboxamide; X, EDTA [ 65 ]       
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 The fi nal step in  the   virtual screening campaigns is to test the 
candidates in adequate experimental models. The implementation 
of models of drug-resistant epilepsy, taking into consideration 
overexpression of P-gp, would optimize the process of selection of 
compounds. They could serve to identify new chemical entities 
that control resistant patients and to better understand the mecha-
nisms of drug resistance. 

 In vitro cell assays include for example the use of isolated brain 
capillaries, primary or immortalized brain endothelial cells, and 
immortalized cells from peripheral tissues (some of them men-
tioned before in this chapter) [ 99 ,  100 ]. On the other hand, in vivo 
models of drug-resistant seizures associated with overexpression of 
P-gp, such as the model of seizure induced by 3- mercaptopropionic 
acid, are available [ 100 ]. 

 We believe that the sequential screening of large databases with 
ligand-based fi lters coupled by target-based protocols represents 
an opportunity for the discovery of new anticonvulsants that evade 
P-gp interactions in a timely and cost-effi cient manner. Moreover, 
the prediction of the P-gp-binding modes might serve to optimize 
the new leaders without losing their anticonvulsant action. These 
investigations, in conjunction with suitable biological models, 
could afford new effective drugs in patients with P-gp-mediated 
refractory epilepsy.     
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