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    Chapter 13   

 Virtual Screening Applications in the Search of Novel 
Antiepileptic Drug Candidates                     

     Alan     Talevi      and     Luis     E.     Bruno-Blanch     

  Abstract 

   Virtual screening (VS) encompasses a wide spectrum of computational approaches oriented to prioritize 
which compounds from chemical libraries or repositories will be subjected to experimental in vitro and 
in vivo testing. VS can be broadly classifi ed into structure- and ligand-based approaches. Which VS meth-
odology is preferable is highly dependent on the targeted system and the availability of experimental data 
and also on background considerations such as existing technical and economic resources. To the moment, 
VS has been underexplored for the discovery of new antiepileptic agents. In this chapter we discuss details 
on the general ligand-based procedures to undertake VS campaigns, with emphasis on some particular 
considerations for the case of antiepileptic drug development.  
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1      Introduction 

 The universe of accessible chemical compounds has been growing 
exponentially during the last 50 years: in 2015, the  Chemical 
Abstract Service  , which roughly refl ects the chemical entities 
known by mankind, achieved its 100 millionth entry. Judging from 
the number of entries in PubChem, around half of those substances 
are small drug-like molecules. This vast and expanding population 
of available chemicals makes it probable to fi nd novel therapeutic 
agents with virtually any desired pharmacological profi le. 
Nevertheless, the systematic, massive screening of such molecular 
diversity remains challenging. Even automated and miniaturized 
approaches like high-throughput screening are technologically 
demanding and prohibitive for small academic centers or pharma-
ceutical companies. 

 The term  virtual screening (VS)   or  in silico screening   refers to 
the application of a diversity of computational approaches to rank 
digital chemical repositories or libraries in order to establish which 
drug candidates are more likely to obtain favorable results when 
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experimentally tested through in vitro and/or in vivo models. 
Since they are meant to reduce the volume of experimental testing 
and optimize the results, VS techniques possess several  advantages 
in terms   of cost-effi ciency, bioethics, and environmental impact. 
We may also mention that, since many computational applications 
and chemical databases are publicly available online and several of 
them run smoothly in any current personal computer, the technol-
ogy gap between developed and emerging countries is consider-
ably low for VS technologies compared with other screening 
approaches. 

 VS approaches can be  essentially   classifi ed within two catego-
ries: structure-based (or direct) and ligand-based (or indirect) 
approximations.    A persistent and major obstacle for the implemen-
tation of structure-based VS approaches comes from the fact that 
most validated targets for antiepileptic drugs are ligand- or voltage- 
operated ion channels whose structure has not been solved experi-
mentally yet. In order to predict protein folding for unsolved 
structures, a drug designer can turn to  homology modeling  , which 
uses a known protein similar to the protein of interest (e.g., a 
homolog from other species or another member of the same pro-
tein family from the same species) as a template to predict the sec-
ondary and tertiary structure of the target protein [ 1 ]. These 
models can be in turn be used for design or VS campaigns. For 
instance, some attempts of homology models of epilepsy-relevant 
targets such as GABA transporters, GABA transaminase, and SV2A 
have recently been reported [ 2 – 4 ]. A remarkable exception is car-
bonic anhydrase, a putative AED target whose human isoforms 
have already been solved and are being actively used in the fi eld of 
drug discovery [ 5 – 7 ]. 

 Alternatively,    ligand-based approaches can be applied when-
ever a model of the target structure is not available or to comple-
ment structure-based approximations. Concisely, ligand-based 
approaches can be classifi ed into similarity searches, machine learn-
ing approaches, and superposition approximations [ 1 ,  8 ]. These 
techniques differ in a number of factors, from their requisites to 
 their   enrichment metrics or  scaffold hopping  . Similarity search uses 
 molecular fi ngerprints   derived from 2D or 3D molecular represen-
tations, comparing database compounds with one or more refer-
ence molecules in a pairwise manner. Notably, only one reference 
molecule (e.g., the physiologic ligand of a target protein) is 
required to implement similarity-based VS campaigns. Usually, 
similarity searches are the only alternative to explore the chemical 
universe for active compounds in the absence of experimental 
knowledge of the target protein or related proteins and when the 
number of known ligands is scarce. Machine  learning   approaches 
operate by building models from example inputs to make data- 
driven predictions on the database compounds. Machine learning 
approximations require several learning or calibration examples. 
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Finally, superimposition techniques are conformation-dependent 
methods that analyze  how   well a compound superposes onto a 
reference compound or fi t a geometrical, fuzzy model (pharmaco-
phore) in which functional groups are stripped off their exact 
chemical nature to become generic chemical properties (e.g., 
hydrophobic point, H-bond donor, etc.); such process is facilitated 
if the modeler counts on an active rigid analog with limited confor-
mational freedom. As a general rule, the more complex approxima-
tions take the lead in terms  of   scaffold hopping, whereas simpler 
approaches are computationally less demanding while achieving 
good active enrichment metrics [ 9 ]; the effi cacy of a given tech-
nique is, however, highly dependent on the chosen molecular tar-
get, and frequently different techniques are complementary in 
nature [ 10 ]. 

 Since, as it has been mentioned, most of the human proteins 
validated as molecular targets for antiepileptic drugs have not been 
solved experimentally, this chapter will focus on  ligand-based   VS 
protocols. Similarity search protocols are basically simple: their sole 
complexity lies in a number of decisions that the user has to make 
regarding what similarity metric will be used, what fi ngerprint sys-
tem, and the size of the molecular features (molecular substruc-
tures) considered. Thus, we will aim our attention at more complex 
ligand-based approaches that rely on inferring a model from a set 
of instances or examples, in particular, machine learning approaches.  

2    Building a Model 

      Naturally,    the fi rst step when one tries to infer a model (a general-
ization on some structure–property relationship with a variable 
degree of abstraction) from a number of examples is to compile 
such training or calibration instances. We will refer this as dataset 
compilation. It is often heard that models are as good as the bio-
logical and chemical data from which they are derived [ 11 ,  12 ]. 
Therefore, the  dataset compilation   is one of the most important 
steps when developing a model for VS purposes. When intending 
to build a model for VS applications, some specifi c considerations 
must be taken into account: (a) compile a dataset as diverse as pos-
sible; (b) ideally, the dependent variable (the modeled property, 
i.e., the biological activity) should span at least two or three orders 
of magnitude [ 13 – 16 ], from the least to the most active compound 
in the series; (c) the available biological data on the training set 
compounds should, preferably, be uniformly distributed across the 
range of activity or at least follow some defi ned statistical 
 distribution, usually normal distribution – the same principle 
applies to the model’s independent variables [ 13 ]; and (d) the bio-
logical activities of all the training instances should be of compa-
rable quality – ideally, they should have been determined in the 

2.1  Dataset 
Compilation
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same laboratory using the same conditions [ 14 ,  15 ], so that vari-
ability in the measured biological activity only refl ects treatment 
variability (this is rarely the case, though). 

 Let us discuss point by point. Regarding the chemical diversity 
of the training set, while for computer-aided drug design the use of 
homologous series of chemicals might be advantageous, in the case 
of VS, we are expecting to apply the model for the screening of vast 
collections of chemicals (typically, thousands to millions). As we will 
comment later, the predictions of the models will only be reliable 
within the chemical space covered by the training set: thus, if we 
want to cover a wide chemical space, the training set should ensure 
the most possible chemical diversity. On the other hand, guarantee-
ing a wide coverage of the activity space allows the model to capture 
not only essential molecular features needed to elicit the desired 
activity, but features that diminish activity as well. Data distribution 
should be studied in order to avoid poorly populated regions within 
the studied chemical space as well as highly populated narrow inter-
vals [ 13 ]. It is often heard that modelers should avoid data extrapo-
lation; however, interpolation could also be dangerous if too sparse 
regions exist within the data. Histograms can be of great help to 
visualize the distribution of both the model dependent and the inde-
pendent variables; still, analysis of the multivariate space can reveal 
empty or scarcely populated data regions that separate analysis of the 
independent variables may not [ 17 ]. The second issue related to 
inadequate data distribution is the existence of  leverage points  (outli-
ers) among the data points. We will resort to the terminology 
adopted by Cruz-Monteagudo and collaborators to discuss the sub-
ject of exceptional data points [ 18 ], though their nomenclature is 
not universal. An outlier is a type of data exception represented by 
extreme values in the descriptor or property (response) space that 
cannot be attributed to mislabeling due to annotation or measure-
ment errors (Fig.  1 ). Outliers exert great infl uence on the model 
calibration (hence they are called  leverage points  ) especially when a 
quantitative model with a continuous response/output (regression 
model) is used. It is likely that some degree of overfi tting will appear 
when outliers are present among the training examples. Even if no 

leverage
point

  Fig. 1    Example of  a   leverage point. Note how much the isolated point on the 
extreme right infl uences the fi t of the regression line       
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systematic error in the experimental measurement of the modeled 
property exists, random error will have greater impact on the model 
in the case of outliers. There are a huge number of methods to 
detect outlier behavior (and, consequently, remove atypical points 
from the calibration samples) [ 19 ]. The very simple approach by 
Roy et al. [ 20 ] can be used to detect outliers provided that the data 
is normally distributed, which is relatively frequent in our fi eld (and 
the stand- alone application is publicly available online!). However, 
as always when using parametric methods (which assume that the 
dataset fi ts a known distribution or probability model), it may be a 
good idea to run statistical discordance tests to check if the assumed 
distribution is optimal or close to optimal. Finally, since most of the 
machine learning applications are based on datasets that have been 
directly or indirectly compiled from literature, the last requisite on 
the dataset (homogeneous data quality) is seldom accomplished. 
Compiling the dataset from literature could also give raise to another 
type of data exceptions: noise. Noisy data points emerge from large 
experimental errors or from wrong annotations. To mitigate this 
issue, conscientiously curate your dataset: read your data sources 
carefully and dispose of those training examples extracted from inad-
equate or dubious experimental protocols. At present, there are sev-
eral databases that compile experimental data for small molecules 
(e.g., ChEMBL); though such resources are manually curated from 
primary scientifi c literature, it will not hurt to review the experimen-
tal procedures from which biological data is extracted. When possi-
ble,  ChEMBL   tries to normalize bioactivities into a uniform set of 
endpoints and units. Remarkably, they currently fl ag activity values 
that are outside a range typical for that activity type, potentially miss-
ing data and suspected or confi rmed author errors. Finally, classifi ca-
tion models can be used to alleviate the infl uence of data heterogeneity, 
as will be discussed later. See  Note number 1  for an extensive addi-
tional discussion on the topic of dataset compilation in relation to 
antiepileptic drug discovery  .

      Once the  dataset   has been compiled,    it is typically split into a train-
ing (or calibration) set (from which the model will be inferred) and 
an independent test set which will be used to assess the predictive 
power of the model. Partitioning the dataset is not a trivial task. 
The general objective of this procedure is to attain representative 
subsets of the whole dataset. Often, such subsets are obtained 
through random sampling (a randomly chosen subset of the dataset 
is tagged as test set) or activity range algorithms (the dataset is 
divided in groups according to activity values, and test set com-
pounds are chosen from each group to cover the activity range uni-
formly). While these approaches are appropriate when training and 
test sets are comparable in size [ 21 ,  22 ], better results are obtained 
with more rational partitioning procedures such as sphere exclusion 
algorithms when test sets are small (but larger than fi ve compounds) 

2.2  Partitioning 
the Dataset 
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in comparison with the corresponding training sets [ 21 ]. Note that 
typically only 10–20 % of the dataset is selected for external valida-
tion [ 12 ]. It should also be considered that ideally, the number of 
active and inactive compounds in the training set should be bal-
anced in order to avoid potential bias toward the prediction of  the 
  overrepresented category  of   training examples [ 12 ].  

   Briefl y,    molecular descriptors are numerical variables that refl ect 
chemical information encoded within a symbolic representation of 
a chemical compound, e.g., a molecular formula, a chemical graph, 
and a geometric molecular model. There is a wide diversity of 
molecular descriptors available to characterize relevant aspects of a 
molecule, from simple functional group counts to time- demanding 
quantum descriptors. Once the dataset has been compiled and 
divided into appropriate training and test sets, the nature of the 
molecular descriptors that will be allowed into the model should 
be decided. Some studies suggest that the choice of descriptors 
plays a more important role than the choice of a modeling tech-
nique [ 23 ,  24 ]. Two fundamental aspects are considered at this 
stage of the modeling process: fi rst, the throughput speed associ-
ated with different types of descriptors and, second, the interpret-
ability of each type of descriptor. We should keep in mind that this 
chapter is focused in models which will eventually be used to screen 
large collections of chemicals. Thus, the selected molecular descrip-
tors should ideally be easy to compute and readily interpretable. 
Unfortunately, these two aspects are usually inversely related: in 
general, the more interpretable a model is, the more it is computa-
tionally demanding.  3D QSAR models   often provide a graphical 
output which is easy to interpret in familiar chemical terms. Most 
3D QSAR methods, however, implement the pharmacophore con-
cept and are  conformation   and sometimes alignment dependent. 
What conformation should be used to compute the correspondent 
3D descriptors? An ideal solution to account for the conformation 
dependency would be to determine the  bound   (also called  bioac-
tive  ) conformation [ 25 ,  26 ]. Defi ning the bound conformation is 
often an enormously diffi cult and time-consuming task. Remember 
that the focus of this chapter is VS applications; consistently, any 
conformational analysis should eventually be applied not only to 
the training and test set compounds but also to the screened  data-
base   molecules, which could well include millions of compounds. 
Bound conformations of ligands can be obtained experimentally 
by NMR or X-ray crystallography. However, as has been pointed 
out in the introduction of the chapter, most of the targets for anti-
epileptic drugs have not been solved yet. Furthermore, crystal 
structures also have limitations, from data acquisition and data 
refi nement errors to the potential inadequacy of crystal structures 
to represent the conformational ensemble in solution [ 26 ]. 
Valuable hints on the active conformation might be obtained when 

2.3  Choosing 
and Calculating 
Molecular Descriptors
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rigid ligands with restricted conformational freedom are available. 
For instance, some antiepileptic agents like phenytoin and carbam-
azepine have very few rotatable bonds and have been used to pro-
pose pharmacophore models [ 27 ]. When no hints on the  bioactive 
conformation   can be inferred from experimental data or rigid 
ligands,  the   modeler has no alternative, but to sample the potential 
energy surface of the ligands. A number of methods (all of them 
computationally demanding) are available for such purpose, includ-
ing systematic search, stochastic approaches, and molecular dynam-
ics. Note that very frequently very rough approximations are 
performed in this stage, from using the presumed global energy 
minimum or a local energy minimum (which is not representative 
of the bioactive conformation) to energy minimization procedures 
in vacuum, which ignore solvent effects. If bound conformations 
can be defi ned, eventually the conformational energy (energy dif-
ference between the bound and unbound conformation, some-
times called  strain energy  ) should be calculated for each of the 
chemicals in the database subjected to VS, retaining those mole-
cules with calculated strain energy below a user-defi ned threshold, 
which is typically below 10 kcal/mol. On the other hand, when 
alignment-dependent methods are used, defi ning alignment crite-
ria for structurally diverse compounds can be tough (if not impos-
sible). On the basis of all the previous limitations of 3D QSAR 
methods, we believe that conformation-independent  QSAR meth-
ods   (2D QSAR) are more easily automated and adapted to the task 
of VS since they neither require conformational search nor struc-
tural analysis [ 28 ]. Judging from the success of such approaches, 
simple representations of the molecular descriptors such as chemi-
cal graphs seem to  implicitly   contain a large amount of biologically 
relevant molecular information. They are naturally inappropriate, 
though, to differentiate geometrical isomers. Moreover, they are 
usually less transparent to interpretation; many 2D models behave 
like a black box: effective but inscrutable. In any case, 2D 
approaches could be used as a fi rst screening approach to reduce 
the number of potential drug candidates, which can be later com-
plemented with more computationally demanding techniques. 

 Once  the   molecular descriptors that will be used have been 
chosen, it is time to curate chemical structures. The required 
degree of  curation   depends on the descriptors that are to be used. 
Do not underestimate the importance of this step: it has been 
shown that, in average, there are two structural errors per medici-
nal chemistry publication [ 12 ] and a variable rate of errors in com-
pounds indexed in chemical databases which may be as high as 8 % 
[ 29 ]. Even slight errors in chemical structures may lead to signifi -
cant loss of prediction accuracy in the subsequent model [ 29 ]. The 
fi rst step for cleaning chemical records is to remove those data 
points that are usually not handled by conventional  cheminformat-
ics techniques  : inorganic and some organometallic compounds, 
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counterions, salts, and mixtures [ 12 ]. Some additional details on 
this subject are provided in  Note number 2 . Duplicates should also 
be removed; otherwise the incidence of a single compound on the 
model would be exaggerated. Note that different compounds 
might act as duplicates depending on the chosen molecular descrip-
tors: e.g., stereoisomers are distinct but act as duplicates if 2D 
descriptors are used. Some chemical functions and moieties that 
can be represented in multiple ways should be standardized, e.g., 
aromatic rings, nitro groups, etc. [ 30 ]. Finally, tautomeric groups 
should also be curated. In order to decide which tautomer should 
be kept, the mechanism of action of the compounds could be con-
sidered [ 29 ] or, alternatively, the dominant tautomer at physiolog-
ically relevant conditions should be used. Many of the previous 
steps can be performed in an automated manner by specialized 
software applications (e.g., ChemAxon’s Standardizer); still, it is 
advisable to manually verify a randomly picked subset of the com-
pounds to ensure everything has  gone   well. Also note that many 
software tools for molecular descriptor calculation impose restric-
tions to the molecular representations (e.g., explicit or implicit 
hydrogens, aromatic rings, etc.).  

   So far we have explained the cautions needed to compile an ade-
quate training set, curate the correspondent molecular structures, 
and compute a set of molecular descriptors. At this point, the sub-
set of descriptors that best correlates with the property of interest 
should be selected (variable or feature selection step), and the 
dependent variable should be mapped with those preselected 
descriptors (i.e., the incidence of each descriptor on the dependent 
variable should be weighted). There is a plethora of techniques to 
execute these tasks [ 31 – 33 ], and their analysis is out of the scope 
of this chapter. However, we would like to discuss two particular 
aspects of model building that are generally pertinent no matter 
which modeling technique is considered. The fi rst relates to the 
principle of parsimony and the problem of overfi tting. The second 
relates to the convenience of choosing between regression and 
classifi cation approaches. 

  Overfi tting    means   gaining explanatory power on the training 
examples at the expense of generalizability (predictive power). As 
in any learning task, memorizing is discouraged since the goal is to 
extract a generalization from learning examples that can be later 
applied to other cases/situations. The principle of parsimony 
affi rms that we should use the simplest method that provides the 
desired performance level. This includes avoiding the use of exces-
sively fl exible approaches if they are not required (e.g., avoid using 
nonlinear methods if linear methods can provide an appropriate 
solution) and also avoiding the inclusion of more parameters/fea-
tures than needed [ 34 ]. In our personal experience, the models 
that explain too well the training data fail at predicting external 

2.4  Building a Model
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data, while models with moderately good performance on the 
training examples tend to behave similarly on external instances.    
Overfi tting can be avoided retrospectively (once a model has 
already been built, using adequate validation procedures as dis-
cussed in the next subsection) or prospectively (during the model- 
building stage). Prospective avoidance  of   overffi ting usually 
involves a rule of thumb regarding the ratio of learning examples 
to predictors (molecular descriptors) included in the model. 
Though a ratio equal or greater than fi ve is often suggested for 
multivariate regression approaches [ 13 ,  35 – 37 ], in our opinion at 
least ten training compounds per independent variable are safer. 
Some methods such as partial least squares allow a higher number 
of descriptors. A fi nal point that should be regarded is the infl u-
ence of the total number of variables screened for possible correla-
tion with the modeled activity (i.e., the size of the descriptor pool) 
on the statistical signifi cance of the obtained correlation [ 38 ]:  the 
  larger the descriptor pool, the greater the probability of arriving to 
spurious, chance correlations. Software for molecular descriptor 
calculation can typically compute hundreds to thousands of 
descriptors. In our experience, we have found that the use of small 
random subsets of descriptors is a useful strategy to mitigate the 
chance of spurious correlations (note that this issue is intimately 
related to the problem of overfi tting, since the general idea still is 
avoiding inclusion of independent variables that refl ect meaning-
less particularities of the training examples; thus, the strategies that 
have been already discussed to minimize the risk of overfi tting are 
also suitable to reduce the probability of chance correlations). 
Fisher’s randomization test, which is discussed in the next section, 
is also a valuable  tool   to assess the probability of random correla-
tions. Some additional hints on the matter of  variable   selection are 
presented in  Note number 3 . 

 With regard to the selection of a classifi cation or regression 
model, classifi cation  models   might be more adequate when 
 biological data has been obtained in different labs and it is sub-
jected to large interlaboratory variability, possibly introducing 
noise to the model [ 39 ]; this approach might be valuable to miti-
gate the infl uence of leverage data points. Note that, typically, bio-
logical data from cellular and animal models is prone to present 
high variability; as we discuss in the  Notes , many modeling efforts 
directed to predict anticonvulsant activity are based on in vivo data 
obtained from seizure models; even when models of seizure are 
naturally more controlled than models of epilepsy, which often 
require sub- chronic administration of pro-convulsant stimuli, high 
interlab variability is to be expected. Classifi cation models are 
quantitative models based on relationships between independent 
variables (in this case molecular descriptors) and a categorical 
response variable of integer numerical values that represents the 
class of the corresponding sample. Here, the term “quantitative” is 
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referred to the numerical value of the independent variables needed 
to classify the chemicals in the qualitative classes (a categorical 
response); such variables specify the quantitative meaning of a 
QSAR-based classifi cation process [ 36 ]. As clearly stated by 
Polanski et al. [ 40 ], extensive data independence implies qualita-
tive and not quantitative solutions; classifi cation models might be 
considered somehow in the middle, because they provide a qualita-
tive response (yes or no, active or inactive, etc.) while retaining 
quantitative analysis through the numerical independent variables. 
 Those   same authors point out that the combination of different 
data handling schemes seems particularly effective to provide 
robust solutions. When using classifi cation models, the sources of 
noise are majorly restricted to those points that lie in the frontier 
between the categories of objects under consideration (e.g., those 
whose activity value is near the activity threshold that has been 
defi ned to differentiate active from inactive compounds). Also 
note that scientifi c literature is generally biased toward the report 
of highly active compounds, resulting in a general relative abun-
dance of active compounds in comparison to inactive ones. 
   Classifi cation methods can ameliorate this issue since the modeler 
might include putative inactive compounds within the inactive 
class: though this is a potential source of error (the inactive nature 
of such presumed inactive examples has not been verifi ed), it can 
be assumed that this error will not be signifi cant if the dataset is 
suffi ciently large.  

   Model validation implies the  quantitative  assessment of the model 
robustness and predictive power [ 41 ,  42 ], which serves to detect 
the occurrence of overfi tting and chance correlations. In the con-
text of signal processing applications (within which we can enclose 
QSAR modeling),  robustness   refers to  approaches that are not 
degraded signifi cantly when the assumptions that were invoked in 
defi ning the processing algorithm are no longer valid  [ 40 ]. Validation 
techniques can be divided in  internal   and external validation. In 
the internal validation approaches, the training set itself is used to 
assess the model stability and predictive power; in external valida-
tion, a holdout sample absolutely independent from the training 
set is used to test the predictive ability of the model. Though there 
is a diversity of techniques that can be used for internal validation 
purposes, the most frequent are cross validation and 
Y-randomization. 

 In  cross validation  ,    groups of training examples are iteratively 
held out from the training set used for model development; the 
model is thus regenerated without the removed chemicals, and the 
regenerated model is used to predict the dependent variable for the 
held-out compounds [ 43 ]. The process is typically repeated until 
every training compound has been removed from the training set 
at least once (Fig.  2 ). When only one compound is held out in each 

2.5  Model Validation
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cross validation cycle, we will speak of leave-one-out cross valida-
tion. If larger subsets of training examples are removed in each 
round, we will speak of multifold, leave-some-out,  leave- group- out, 
or leave-many-out cross validation. Naturally, the more com-
pounds removed per cycle, the more challenging the cross valida-
tion test. Cross validation in general and leave-one-out cross 
validation in particular tend to be overoptimistic [ 41 ,  43 ,  44 ]: 
good cross validation metrics are a necessary but not suffi cient con-
dition to prove the predictive power of a model. When leave-many- 
out cross validation is used, the results for each (held-out) fold or 
subsample  can   be averaged or otherwise combined to produce a 
single estimation. See  Note number 4   for   some additional discus-
sion on this subject.

    Y-randomization   (Fig.  3 ) involves scrambling the value of the 
experimental/observed dependent  variable   across the training 
instances, thus abolishing the relationship between the response 
and the molecular structure. Naturally, since the response is now 
randomly assigned to the training examples, no correlation is 
expected to be found if the model is regenerated from the scram-
bled data.

complete training set real model 

Response = C1 . X1 + C2 . X2 + … + Cn . Xn

Response = C1’ . X1 + C2’. X2 + … + Cn’ . Xn

training 

training 

prediction 

Response = C1’’. X1 + C2’’ . X2 + … + Cn’’ . Xn
training 

prediction 

Response = C1’’’. X1 + C2’’’ . X2 + … + Cn’’’ . Xn
training 

prediction 

Response = C1’’’’. X1 + C2’’’’ . X2 + … + Cn’’’’ . Xn
training 

prediction 

  Fig. 2    A fourfold  cross validation   is schematized as an example.    In each cross validation round, 25 % of the 
training compounds (shown in  red ) are randomly removed from the training set and used as internal test 
sample, while the remaining compounds (in  blue ) are used for training purposes. Note that in the example the 
same model parameters that are included in the original model are present in the new models, but the regres-
sion coeffi cients change refl ecting the variability introduced to the training sample. Here, the process has been 
repeated until every instance in the original training data has been removed once       
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   External validation, i.e., using an independent test set to estab-
lish the model predictive power,  has   been regarded as the most 
signifi cant validation step [ 41 ,  43 ], though one condition should 
be observed for the results to be reliable: the test sample should be 
representative of the training sample; at least 20 holdout examples 
are advised when the test set is randomly chosen from the dataset 
and, if possible, at least 50. Some authors have pointed out, how-
ever, that dividing the dataset into training and test sets may result 
in loss of valuable chemical information which otherwise could have 
been used for model building [ 34 ,  42 ,  45 ], suggesting that only 
internal validation is advised for small (<50 instances)  datasets. In 
that situation, leave-group-out using folds comprising 30 % of the 
training set gives robust results across several small datasets [ 43 ].   

3    Virtual Screening 

    Once the model has been built and properly validated and before 
it is applied in a real VS campaign, it is convenient to assess the 
model performance in a  pilot VS campaign  . Note that the active 
and inactive compounds are generally balanced in the dataset that 
was used to build the model, but in real VS applications, the inac-
tive compounds greatly outnumber the active ones. This consti-
tutes an intrinsic limitation of the VS approach, determining that 
even models with very good performance will tend to have low 
positive predictive value (PPV, i.e., activity probability of a given 
predicted hit) in VS, since, as follows, such probability is infl u-
enced not only by intrinsic features of the model (specifi city, Sp, 

3.1  Pilot VS 
Campaign

Molecule 1 Y1
Y2
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Molecule 2
Molecule 3
Molecule 4
Molecule 5
Molecule 6
Molecule 7
Molecule 8
Molecule 9

Molecule 10

Molecule 1 Y5
Y10
Y1
Y2
Y6
Y3
Y7
Y9
Y8
Y4

Molecule 2
Molecule 3
Molecule 4
Molecule 5
Molecule 6
Molecule 7
Molecule 8
Molecule 9

Molecule 10

dependent variable 
scrambling

Y = C1 . X1 + C2 . X2 Y = C1’ . X1’ + C2’ . X2’

  Fig. 3    In randomization test, the Y-response is scrambled among the training sam-
ples, and the  relationship   between the molecular structure and the response is thus 
abolished, hopefully leading to poorly performing randomized models. Note that 
process  randomization   has been illustrated here, as can be deducted from the dif-
ferent parameters included in the randomization models and the real one       
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and sensitivity; Se) but also by the yield of active Ya of the screened 
database [ 46 ]:

  
PPV Se Ya Se Ya Sp Ya= ×( ) × + −( ) −( )⎡⎣ ⎤⎦/ 1 1

  
 ( 1 ) 

   

While Ya is uncertain in real VS applications, it is unequivocally 
low. Thus, it is desirable to perform a pilot VS campaign in the fi rst 
place, seeding a relatively low number (below 5 %) of known actives 
among a large number of observed and presumed inactive com-
pounds. As mentioned previously, fi nding reported inactive com-
pounds in the literature is hard due to the bias to report positive 
results, which makes it diffi cult to accomplish the precedent condi-
tion. Therefore, one will often resort to putative inactive com-
pounds as decoys. A good decoy should share certain 
physicochemical features with the active compounds in order to 
pose a more rigorous challenge to the model [ 47 ]. The enhanced 
directory of useful decoys ( DUD-E  ) is an online public resource 
that automatically generates valuable matched decoys for user- 
supplied ligands (such decoys are matched by a number of physico-
chemical properties but are topologically dissimilar to the actual 
active compounds) [ 48 ]. Receiver operating characteristic (ROC)    
curves in which the model Se (true positive rate) is plotted versus 
1 minus Sp (true negative rate) for a diversity of score thresholds 
are a valuable tool to test the performance of a given VS model/
method and also for benchmarking purposes [ 46 ]. They are also 
used to optimize the score threshold that will defi ne if a given 
compound from the screened database will be considered a 
 predicted active or inactive, allowing selecting an adequate Se/Sp 
balance and thus optimizing the PPV. A scheme describing how 
ROC curves are built is presented in Fig.  4 . With the help of ROC 
curves, different VS approaches can be statistically compared 
between themselves and to random behavior; the area under the 
ROC curves is usually used for those purposes. Though owing to 
the saturation effect, the total area under the ROC curve is not a 
suitable metric to assess the VS approaches in relation to the early 
recognition (i.e., the ability of a VS method to rank actives early in 
the ordered list) [ 49 ], the partial area under the ROC curve is well 
suited for this purpose. pROC is an excellent free open-source 
package for R which can be used for partial and total ROC curve 
com parison [ 50 ]. Some additional remarks on this subject are 
included in  Note number 5 .

      After making sure that the model is suitable for real VS applications 
and selecting an appropriate  cutoff   score value, one can proceed to 
the real VS campaign. There exist numerous publicly available 
databases containing drug-like molecules, such as  ZINC   [ 51 ], 
DrugBank [ 52 ], Sweetlead [ 53 ], or the Universal Natural Product 
Database [ 54 ]. The election of the screened database depends on 

3.2  Virtual Screening 
and Applicability 
Domain Estimation
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which compounds the researcher is focused on. For instance, 
 DrugBank   and  Sweetlead   are the collections of choice when the 
VS is oriented to drug repurposing, since they compile approved 
and investigational drugs from the FDA and other regulatory 
agencies. The  Universal Natural Product Database  , as its name 
implies, compiles (more than 200,000) compounds from natural 
sources. It must be checked if every screened compound belongs 
to the applicability domain of  the   model (in order to determine 
whether a given prediction is or is not reliable); for this, there are 
a number of methods available, including distance-based, paramet-
ric, and nonparametric approaches, among others [ 17 ]. Most of 
these approximations can be easily implemented with most statisti-
cal software packages; if the molecular descriptors included in the 
training set follow a normal distribution, the parametric approach 
discussed by Roy et al. might be applied [ 20 ], and it is readily avail-
able online. Note, however, that it has been observed that applica-
bility domain assessment often limits the chemical space coverage 
of the resulting (reliable) predictions [ 23 ]; the same authors have 
observed that consensus scoring (combining the scores or ranks 
from different VS approximations) might reduce the necessity of 
 applicability domain estimation   while retaining a wider coverage. 
Remarkably, consensus scoring could also mitigate the infl uence of 
noisy data achieving robust solutions [ 40 ].  

   The  pharmaceutically   relevant processes of absorption, distribu-
tion, metabolism, and excretion (ADME) determine the pharma-
cokinetics of a given drug and therefore the extent of drug action. 
   Including ADME fi lters as secondary criteria to select drug candi-
dates is particularly important when implementing VS applications 

3.3  ADME Filters
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  Fig. 4    Schematic representation of ROC curve construction       
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to discover novel AEDs, whose pharmacology is often critically 
infl uenced by biodistribution and  metabolism   issues. Besides the 
frequently used  Lipinski rules   (or other similar rules, e.g.,  Veber’s 
rules  ) to fi lter out compounds with likely unfavorable oral absorp-
tion, having in mind the role of the blood–brain barrier regulating 
the infl ux of chemicals into the brain, specifi c rules or algorithms 
to predict central nervous system bioavailability should be consid-
ered. For example, the  “rule of 2”   states that a log octanol–water 
partition (log  P ) coeffi cient of 2 is optimal to assure brain bioavail-
ability for those compounds that enter the brain through passive 
diffusion [ 55 ]. Other more complex (yet simple) fi lters such as the 
central nervous system desirability score proposed by Wager et al. 
could also be included [ 56 ]. If the VS campaign is focused on 
novel treatments for refractory epilepsy, it could be a good idea to 
include in silico fi lters to predict affi nity for ABC transporters 
(some models on these antitargets are discussed in other chapters 
of this volume). Whenever using a model built by other develop-
ers, ensure that such model’s predictions include applicability 
domain assessment. At last, many known AEDs are involved in 
CYP induction  or   suffer extensive CYP metabolism; accordingly, 
fi lters to predict affi nity for the main CYP isoforms (e.g., CYP3A4, 
CYP2D6, CYP2C9) or nuclear receptors might  also   result useful.   

4    Notes 

     1.     Dataset compilation . Traditionally,  the   requirements on the 
training set examples were even more stringent than the ones 
listed in Sect.  2.1 . For instance, it is usually affi rmed that, espe-
cially in the case of 3D QSAR, all the training examples should 
share the same mechanism of action (and the same binding 
mode) and all the inactive compounds in the training set should 
be truly (and not putative) inactive [ 14 – 16 ,  57 ]. It is argued 
that all  3D QSAR methods   were conceived to describe only one 
interaction step in the lifetime of ligands [ 14 ], a statement 
which is partially supported by the fact that many 3D QSAR 
methods are highly alignment dependent (the results depend 
on the position and orientation of the molecular representation 
in space). Furthermore, it is also said that only in vitro biologi-
cal data should be considered, since in vivo data refl ects a num-
ber of parallel processes (e.g., transport, metabolism, binding 
to multiple targets), while by defi nition it is not possible to 
reach equilibrium in an in vivo system [ 14 ,  15 ]. It is true that 
in vitro data is cleaner than in vivo data, in the sense that inter-
pretation of the test results is more straightforward and less 
affected by confounding factors; all the other systems undergo 
signifi cant time-dependent changes. Personally, however, we 
believe that such excessive reductionist approach could be 
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dangerous when dealing with complex disorders such as epi-
lepsy. There are many good reasons to take dogmatic principles 
with caution. First, very frequently biological data emerging 
from phenotypic models (e.g., in vivo or cellular models) are 
used to obtain QSAR models, and in spite of this, the models 
achieve considerable explicatory and predictive ability (see, 
e.g., [ 58 – 62 ]). A common mechanism could be presumed 
when compounds of the same chemical series are being consid-
ered, but the modeler cannot be truly sure regarding the spe-
cifi c action mechanism explaining the phenotypic observation 
or the number or identity of the pharmacologically active 
chemical species. The complex nature of the biological response 
makes it impossible to describe, a priori, a well-defi ned action 
mechanism or to discriminate the infl uence of other processes 
on the modeled activity (transport processes, bioactivation, 
etc.). And yet, the so obtained models work. Sometimes one 
will not have a satisfactory explanation to an observation, but 
facts should not be ignored in favor of a preestablished princi-
ple. Second, it is now understood that multifactor, complex dis-
orders (e.g., mood disorders, neurodegenerative disorders, or 
epilepsy) are usually better addressed with drugs with complex 
pharmacology (i.e., multi-target drugs) [ 63 – 65 ]; in fact, once 
and again it is mentioned that the “one target, one drug” para-
digm has been  disappointing in terms of innovative treatments 
[ 66 – 68 ]. Most  currently   approved antiepileptic drugs are in 
fact multi-target agents [ 64 ]. Therefore, it is possible that we 
should resort to tailored multi-target drug discovery and/or 
return to phenotypic- based drug discovery to identify new 
pharmacological solutions to epilepsy. Under this perspective, 
going against the doctrine and using biological data obtained 
from animal models might be in fact a better approach toward 
VS for novel antiepileptic agents. Note that many successful 
QSAR and VS applications focused on antiepileptic drugs have 
indeed used in vivo biological data for modeling purposes [ 27 , 
 28 ,  69 – 72 ], including reports by leading experts in the QSAR 
fi eld [ 28 ]. Third, not all available molecular descriptors are 
conformation and/or alignment dependent, and some of them 
are capable of describing more general properties than those 
relevant for a single binding event. For instance, molecular 
complexity and molecular size have been directly and inversely 
correlated with drug promiscuity [ 73 ]; these  molecular   features 
can be captured by descriptors such as information indices or 
molecular weight, respectively. Fourth, QSAR theory has 
greatly evolved in the last years; multitasking QSAR models are 
suitable to predict multiple features and complex behaviors, 
exploiting latent commonalities across tasks [ 74 ,  75 ]. Finally, as 
it has already been discussed, classifi catory models might be 
able to mitigate potential noise linked to experimental error or 
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simultaneous incidence of multiple parallel processes on the 
bioactivity data. All in all, there is no reason to exclude a model 
where the mechanism is not known or if there are multiple 
mechanisms [ 35 ]. A fi nal remark must be done in relation to 
activity cliffs: while continuous structure–activity relationships 
where gradual change in the molecular structure results in 
moderate changes in the biological response are benign to 
modeling efforts, sometimes small modifi cations in the mole-
cules introduce huge changes in biological activity [ 17 ]. 
Whereas highly informative (they provide valuable information 
on molecular features essential to the activity) activity cliffs can 
be  really   problematic for modeling purposes; some algorithms 
have been developed to identify these “instances that should be 
misclassifi ed” [ 76 ].   

   2.      Curation     of chemical structures . While the properties of salts 
can be very different from those of the corresponding neutral 
molecules, before excluding salts from the QSAR analysis, 
some questions should be (if possible) answered. The fi rst 
question would be if the descriptors that will be used are sensi-
tive to charge. If they are insensitive to charge, just neutralize 
the cations or anions that are left when removing counterions. 
If at least some of the descriptors that you will use are sensitive 
to charge, it might be a good idea to go through the original 
 publications from which biological data of your dataset have 
been extracted and see if the pH of the tested solutions and the 
test system are known or can be fi gured out from the media 
composition. In  any   case, the (experimental or at least theo-
retical) pKa/s of the dataset compounds will be needed to 
assign their protonation states. The pH of the drug solution is 
more likely to affect in vivo than in vitro data. In vitro assays 
usually require buffered systems, thus limiting the infl uence of 
the drug solution pH; in general, the protonation state in 
in vitro models would be thus determined by the test media 
pH. In contrast, in vivo absorption and thus pharmacokinetics 
can be greatly infl uenced by the pH of the drug solution. If the 
administered dose is known and assumed to be bioavailable, 
one might choose to assign the protonation state depending 
on the pH of the target organ; e.g., in the case of antiepileptic 
drugs, the pH of the brain is around 7 [ 77 ]. Always remember 
to analyze your set of chemicals at those physiologically rele-
vant conditions for the administration route and therapeutic 
goal; also keep in mind that some pharmaceutically/pharma-
cologically relevant conditions may vary due to a physiopatho-
logical process.    If data to afford the previous analysis is not 
available, neutralizing ions is acceptable [ 30 ].   

   3.     Excluding redundant variables . When building the model, it is 
often advised that simultaneous inclusion of highly correlated 
(redundant)  independent   variables should be avoided. 
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Correlated independent variables lead to multicollinearity, 
which can increase the standard errors associated with the 
regression coeffi cients and cause problems in interpreting the 
results of a regression equation. Orthogonalization procedures 
can be applied to obtain orthogonal descriptors [ 78 ]. 
 Redundant variables   can be avoided prospectively by setting a 
high tolerance value (or by defi ning a threshold value for its 
inverse, the variance infl ation factor,  VIF  ).  Descriptor calcula-
tion software   usually includes some  option   to exclude descrip-
tors correlated above a programmer- or user-defi ned threshold. 
However, it must be taken into account that even highly cor-
related descriptor pairs might be included in the model with-
out losing statistical signifi cance ([ 79 ]  and references therein ): 
it has been suggested that the VIF should be compared to the 
 model infl ation factor (MIF)   and only if VIF > MIF, one of the 
seemingly redundant descriptors should be excluded.   

   4.     Validation . In our opinion, averaging the predictive perfor-
mance on the folds used for the multifold cross validation is 
more useful, since it allows computing a confi dence interval (or 
an estimate of the standard deviation) to evaluate, for instance, 
   if the statistical behavior of the original model (the one built 
using the entire training set) signifi cantly differs from the 
 behavior of the cross validation models on the held-out samples. 
It is advisable to perform stratifi ed multifold cross validation, in 
which the folds are selected so that the mean response value is 
approximately equal in all the folds. For instance, if you are vali-
dating a classifi cation model, the folds might comprise an equal 
number of examples from each class. In the case of 
 Y-randomization  , the confi dence interval of the metric used to 
characterize the performance of the randomized model should 
not contain the value of the performance metric for the original, 
nonrandomized model (although other ways of analyzing the 
randomization results have been proposed [ 13 ]). 

 Finally, note that internal validation procedures can be per-
formed at varying confi dence levels. One can study the whole 
process from the variable selection step, or, alternatively, one 
can validate the infl uence of the experimental design on the 
weighting scheme used to measure the contribution of an 
independent variable to the response. The former is, of course, 
a more strict challenge to the model robustness, since one is 
leaving aside any infl uence of the original training data on the 
variable selection. The importance of applying cross-validation 
at the variable selection step has been signaled in the special-
ized literature [ 42 ,  43 ].  It   has also been highlighted that the 
randomization technique can be of two types:   process random-
ization   , in which the values of the dependent variable are 
scrambled and variable selection is done freshly using the 
whole descriptor pool, and   model randomization   , in which 
case the response is scrambled but the new QSAR models so 
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obtained include the same set of independent variables as pres-
ent in the nonrandom model [ 80 ] which is of course a less 
strict validation approach. In conclusion, use validation tech-
niques to validate the whole modeling procedure, including 
variable selection, for more reliable results.   

   5.     ROC curve analysis . The adequate balance between the  true 
  positive rate and the true negative rate is context dependent 
and not a statistical matter. Sp and Se evolve in an opposite way 
and therefore they cannot be optimized simultaneously. If the 
budget for experimental testing is limited, Sp can be priori-
tized to reduce the false positive rate (predicted hits that will 
yield negative results) at the expense of sacrifying some true 
positives; if, in contrast, chemical novelty of the hits is the pri-
ority and funding abounds, Sp may be relaxed in favor of Se.      

5    Final Remarks 

 We have presented an overview of the most relevant considerations 
that must be made in order to develop QSAR models and apply 
them in VS campaigns. Regarding particular considerations for the 
case of antiepileptic drug discovery, the complex nature of the dis-
ease and the multi-target nature of most of the existing antiepilep-
tic drugs suggest that modeling in vivo data (i.e., phenotypic-based 
drug discovery) might lead to more effi cacious drug candidates. As 
discussed in separate chapters, the classical “the more potent the 
better” paradigm might not apply to the particular task of antiepi-
leptic drug discovery. Finally, considering the critical role of phar-
macokinetics in antiepileptic drug pharmacology, it is advised to 
include in silico ADME fi lters during the screening process to pre-
dict the brain bioavailability and potential biodistribution and 
metabolism issues of the selected drug candidates, along with 
potential drug interactions.     
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