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    Chapter 17   

 Curating and Preparing High-Throughput Screening Data 
for Quantitative Structure-Activity Relationship Modeling                     

     Marlene     T.     Kim    ,     Wenyi     Wang    ,     Alexander     Sedykh    , and     Hao     Zhu      

  Abstract 

   Publicly available bioassay data often contains errors. Curating massive bioassay data, especially high- 
throughput screening (HTS) data, for Quantitative Structure-Activity Relationship (QSAR) modeling 
requires the assistance of automated data curation tools. Using automated data curation tools are benefi cial 
to users, especially ones without prior computer skills, because many platforms have been developed and 
optimized based on standardized requirements. As a result, the users do not need to extensively confi gure 
the curation tool prior to the application procedure. In this chapter, a freely available automatic tool to 
curate and prepare HTS data for QSAR modeling purposes will be described.  

  Key words     QSAR  ,   Data curation  ,   Chemical structures  ,   Computational modeling  

1       Introduction 

 A typical high-throughput screening (HTS)    data set can contain 
over 10,000 compounds (e.g., Antioxidant Response  Element 
  assay data listed as  PubChem   AID 743219). Although they are 
potential resources for developing  Quantitative Structure-Activity 
Relationship (QSAR)   models, normally these public HTS data sets 
cannot be used directly for modeling purposes due to the presence 
of duplicates, artifacts, and other issues. There are public chemical 
data repositories such as  PubChem  , ChemSpider, and ChEMBL 
that contain lots of HTS data available for download, but the origi-
nal data stored in these resources still need further curation. 
However, HTS data sets are so large that it is very ineffi cient, and 
usually ineffective, to process all the data points manually. The 
assistance of automated tools is highly recommended. 

 Chemical structure curation and standardization is an integral 
step in  QSAR   modeling. This step is essential since it is likely the 
same compounds will be represented differently among different 
sources. For example, organic compounds could be drawn with 
implicit or explicit hydrogens, in aromatized or Kekulé form, as 
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well as in different tautomeric forms. These differences in chemical 
structure representations could infl uence the computed chemical 
descriptor values for the same compound and greatly affect the 
usefulness and quality of the resulting  QSAR   models. Furthermore, 
the existence of inorganic compounds and mixtures, which are not 
suitable for traditional  QSAR   modeling studies, also limits the use 
of public HTS data. 

 Another issue with HTS data is that it is very common for it to 
have an unbalanced distribution of activities, where there are sub-
stantially more inactive than active compounds. This unbalanced 
distribution of activities (i.e., low active ratio) could result in biased 
 QSAR   model predictions. Data sampling, an approach that selects 
and analyzes a subset of the overall data, can resolve this issue. The 
specifi c data sampling method that will be discussed in this chapter 
is  down-sampling  , since it is most relevant to HTS data processing. 
Down-sampling is an approach that ignores most of the data points 
that are in the largest activity category. This will allow you to select 
a sample of the inactive compounds from the data set to balance 
the distribution of activities for modeling. Furthermore, smaller 
data sets are easier to manage and, in most cases, more informative 
since it captures the most important elements of the data. 

 In this chapter, an automatic data curation process that can 
standardize/harmonize chemical structures and down-sample the 
results of a large HTS data set will be described. The approaches to 
construct the modeling and validations sets, including balancing 
the HTS activity via down-sampling, were confi gured using 
Konstanz Information  Min  er (KNIME ver. 2.10.1) (  www.knime.
org    ) workfl ows that utilize the two most common approaches for 
selecting a sample size: random and rational selection methods. 
These processes utilize basic statistical approaches [ 1 ] and will 
transform an original public HTS data set into a curated format 
suitable for QSAR model development and other relevant in silico 
modeling efforts. The  quantitative high-throughput screening 
(qHTS)   Antioxidant Response  Element   assay data obtained from 
 PubChem   (PubChem AID 743219) will be used to illustrate this 
data curation process.  

2    Materials 

 Automated procedures to curate chemical structures and down- 
sample the large data set (i.e., HTS data) will be described in this 
chapter. All of the workfl ows were developed and executed in the 
open-source platform KNIME.    The output fi les of the workfl ows 
are curated data sets with standardized structures that are ready to 
be processed by  QSAR   modeling tools. The workfl ows can be 
downloaded as a zip fi le at   https://github.com/zhu-lab    .  
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3    Methods 

   An input fi le should be a tab delimited multiple column  txt  fi le 
( FileName.txt ) with a header to each column, where one column 
must contain the structure information as a  SMILES   code [ 3 ]. The 
input fi le (a sample fi le was provided within the zip fi le) should 
have at least three columns:  ID ,  SMILES , and  activity . If needed, 
other useful features of compounds (e.g., compound names) could 
also be included as extra columns.  

   Install the  KNIME   software. It can be downloaded from   www.
knime.org    . Download the curation workfl ow (  https://github.
com/zhu-lab/curation-workfl ow    ) and extract the zip fi le into a 
computer directory.  

   In the  File  menu bar of KNIME, select “ Import KNIME work-
fl ow …” to import the structure standardizer workfl ow into 
KNIME.    Now in the pop-up window (Fig.  1 ), click on “ Source : 
 Select root directory ,” fi nd the computer directory that the zip fi le 
was extracted to. Select the destination directory, which will be 
where the output fi les will be saved to. In “ Workfl ows :” select the 
“ Structure Standardizer ” workfl ow and click “ Finish ” (Fig.  2 ).

3.1  Prepare an Input 
File for the Curation 
Workfl ow

3.2  Prepare 
the Curation Workfl ow

3.3  Confi gure 
the Workfl ow

  Fig. 1    The KNIME “   Workfl ow Import Selection” window       
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       To open the workfl ow, double click on the Structure Standardizer 
in the “ KNIME Explorer ”  window   under “ LOCAL  ( Local 
Workspace )” located in the top left side bar. At this time, the work-
fl ow will show up in the main space, which is called the workfl ow 
editor ( see   Note    1  ) Right click the “ File Reader ” node and select 
“ Confi gure .” In the pop-up windows, input the valid fi le location 
of the input fi le that has been prepared in the previous step. Make 
sure the headers of the input fi le are read correctly. Click “ OK ” to 
save the changes and close the confi guration window. Next, right 
click the “ Java Edit Variable ” node in the bottom left and change 
the variable  v _ dir  to the directory of the folder where all the fi les 
are extracted in the second step. Then, confi gure sub-workfl ows 
individually by double clicking on each node. Within each sub- 
workfl ow, confi gure the Java Edit Variable node the same as 
described above. After closing the sub-workfl ow windows, the yel-
low lights on all the nodes should be on, indicating that the work-
fl ow is ready to be used. Click on the green “ double -  arrow button ” 
located in the top menu bar to execute the whole workfl ow and the 
green lights on all nodes should be on. Three output fi les should 
have been generated in the same folder as the input fi le 
( FileName _ fail.txt ,  FileName _ std.txt , and  FileName _ warn.txt ) 
( see   Note    2  ). (Or the fi les will be in a folder directory substituting 
all spaces with % 20 if spaces are in the directory (e.g., if input 
fi le is in F:\Structure Standardizer\output, then output fi le would 
be in F:\Structure%20Standardizer\output).) The standardized 

3.4  Set 
Up Parameters 
and Run the Workfl ow

  Fig. 2    A window of the KNIME    “Structure Standardizer” workfl ow       
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compounds will be in canonical  SMILES   format ( see   Note    3  ). 
The fi le  FileName _ std.txt  is the data set curated for modeling 
purposes.  

   With the chemical structures curated, the chemical descriptors can 
be calculated by using various descriptor generators, such as RDKit 
(  http://www.rdkit.org/    ), Molecular Operating Environment® 
(MOE) (  https://www.chemcomp.com/MOE- Molecular_
Operating_Environment.htm    ), and Dragon ®  (  http://www.talete.
mi.it/products/dragon_description.htm    ) ( see   Note    4  ).  

   To develop a predictive  QSAR   model, the compound classifi ca-
tions in the modeling set need to be balanced ( see   Note    5  ) To this 
end, the inactive compounds of HTS data need to be down- 
sampled to be similar to the number of actives in the modeling set. 
There are two methods that can be applied for this purpose: random 
and rational selection. 

 The random selection approach will randomly select an equal 
number of inactive compounds compared to the actives. Figure  3a  
shows a  KNIME   workfl ow that could be used to randomly select 

3.5  Preparing 
the Chemical 
Descriptor File

3.6  Preparing 
the Modeling 
and Validation Set 
Files

  Fig. 3    Example of KNINE    workfl ow for selecting compounds and partitioning data set into modeling and valida-
tion sets using ( a ) random and ( b ) rational selection approaches       
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compounds and partition the data set into modeling and validation 
sets ( see   Note    6  ). This workfl ow ensures that the relationships between 
each compound selected for the model development and validation 
purposes were not explicitly selected. To run the workfl ow, fi rst input 
the curated fi le (e.g., the fi le  FileName _ std.txt ) from previous step 
with a minimum of two columns for the  ID  and  activity  in the “ File 
Reader ” node. Then, right click on the  activity  column header to 
open the “ Column Properties ” and set the “ Type ” as “ String .” The 
workfl ow has already been confi gured to randomly select 500 active 
and 500 inactive compounds; however, the numbers of active/
inactive compounds can be changed. Click on the green “ double -
 arrow button ” located in the top menu bar to execute the whole 
workfl ow. Two fi les will be generated in the destination directory: 
 ax _ input _ modeling.txt  and  ax _ input _ intValidating.txt . The 
 ax _ input _ modeling.txt  fi le contains the 500 active and 500 inactive 
compounds randomly selected to balance the distribution of activities 
in the modeling set. The  ax _ input _ intValidating.txt  fi le contains the 
remaining compounds (e.g., 458 active and 4026 inactive compounds 
from the sample data set) that could be used for validation purposes.

   Compared to random selection, rational selection is also fre-
quently used in  down-sampling   ( see   Note    7  ). Figure  3b  shows a 
KNIME  w  orkfl ow that could be used to rationally select compounds 
for  QSAR   model development, based on the threshold defi ned using 
principal component analysis ( see   Note    8  ), and partition the data set 
into modeling and validation sets. The rational selection approach 
uses a quantitatively defi ned threshold of similarity to select inactive to 
active compounds. In this case, inactive compounds that share the 
same descriptor space of active compounds will be selected and suc-
cessively defi ne the  applicability domain   in the resulting  QSAR   mod-
els [ 2 ]. The  KNIME   workfl ow described here differs slightly from the 
random selection workfl ow described above in that it allows one to 
quantitatively defi ne the similarity threshold using PCA. To run the 
workfl ow, fi rst input the curated fi le (e.g.,  FileName _ std.txt ) from the 
previous step with columns for the  ID ,  activity , and  descriptors  into 
the “ File Reader ” node. Then right click on the  activity  column 
header to open the “ Column Properties ” and set the “ Type ” to 
“ String .” The workfl ow has already been confi gured to select 500 
active and 500 inactive compounds and the numbers of active/inac-
tive compounds can be changed. Click on the green “ double - arrow 
button ” located in the top menu bar to execute the whole workfl ow. 
Three fi les will be generated in the destination directory: 
 ax _ input _ ratl _ modeling.txt ,  ax _ input _ ratl _ intValidating.txt , and 
 ax _ input _ ratl _ outAD.txt .  

   After the modeling and validation sets are created, the chemical 
space ( see   Note    9  ) can be visualized. The chemical space of a data 
set can be shown in a 3-D plot using the fi rst three principal com-
ponents (of the descriptor space) generated from MOE chemical 
descriptors ( see   Note    10  ). In Fig.  4a , the chemical space using the 
fi rst three principal components of the entire ARE  d  ata set 7034 

3.7   Verifi cation: 
Visualizing 
the  Chemical Space   
Covered by the Data 
Set Using Principal 
Components
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compounds was plotted. Then, 500 active and 500 inactive com-
pounds organized the chemical space for the modeling set, as 
shown in Fig.  4b . The inactive compounds were selected based on 
the chemical similarity to the actives, so the chemical space occu-
pied by the modeling set is clearly different from the whole data 
set. Therefore, the predictions of resulting  QSAR   models should 
be considered reliable within the chemical space (i.e., the  applica-
bility domain  ) of modeling set.

   A principal component analysis was performed in KNIME  o  n 
all the active and inactive compounds in the  ARE   data set of 5484 
compounds (Fig.  5 ). From the scatter plot of principal compo-
nents 1 versus 2, it was noticeable that most of the compounds 
clustered at principal component 1 values between −0.2 and 0.3. 
Therefore, the  applicability domain   of the resulting model can be 
defi ned as any compound that falls within this range. To adjust this 
applicability domain in the  KNIME   workfl ow, adjust both “ Row 

  Fig. 4    3-D plots of ARE data set using ( a ) all 7034 data points, and ( b ) modeling set using principal components 
1–3 generated using 10 MOE descriptors       
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Splitter ” nodes by right clicking the node, under “ use range checking ,” 
adjust the “ lower bound ” and “ upper bound .” Under this condition 
500 active and 500 inactive compounds within the range of −0.2 
and 0.3 will be selected for the modeling set, while the others will 
be placed into the validation set. Compounds that were out of 
domain will be placed into the  ax _ input _ ratl _ outAD.txt  fi le. 

4                  Notes 

     1.    If you cannot fi nd these windows, go to the “ View ” in the 
menu bar and select “ Reset Perspective …”   

   2.    Description of the three output fi les: 

  Fig. 5    Example of KNIME    workfl ow for visualizing the  chemical space   of all active and inactive compounds       
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  FileName _ fail.txt  contains compounds that could neither be 
standardized nor be used in the  QSAR   modeling (e.g., mix-
tures, inorganics, and large molecules like polypeptides). 
  FileName _ std.txt  contains the remaining structurally stan-
dardized compounds in which the  SMILES   are curated as the 
canonical format. 
  FileName _ warn.txt  contains compounds with potential prob-
lems that require further review. For example, compounds 
with positive/negative charges need to be compared to their 
original structures to decide the correct structure information. 
These compounds with warnings will not be removed from 
the data set and are included in the  FileName _ std.txt fi le .   

   3.    Compounds in this fi le are curated, standardized, and repre-
sented in canonical form by removing metals, de-isomerizing 
tautomer, neutralizing salts and charges, de-aromatizing rings, 
and fulfi ll the requirements of  QSAR   modeling. For more 
information please look into the commented . smk  fi les.   

   4.    The descriptor values of the whole data set need to be normal-
ized between 0 and 1 before  QSAR   model development. 
Furthermore, if there are too many descriptors (e.g., the number 
of resulting Dragon descriptors is normally over 1000), it is nec-
essary to reduce the number of descriptors to save computational 
time for model development. Performing a pairwise comparison 
between any two descriptor values is one way to fi nd correlated 
and redundant descriptors. This can be done by constructing a 
scatter plot for every pair of descriptors and determining the 
Pearson’s product-moment coeffi cient for every pair [ 1 ].   

   5.    After the descriptor fi le is generated and optimized, it is needed 
to balance active/inactive classifi cation ratio in the modeling 
set and prepare the activity fi le for modeling purpose. Normally 
the number of inactives is much larger than the number of 
actives in HTS data sets. For example, the  ARE   data set con-
tains 958 active and 4,526 inactive compounds (Fig.  6 ).

       6.     KNIME   also has an “ Equal Size Sampling ” node that auto-
matically down-samples the data set and it can be substituted 
into the workfl ow. However, it does not partition the data set 
into modeling and validation sets.   

   7.    It has been reported that there is little difference in the  QSAR   
model performance resulting from these two methods (Martin 
et al. 2012). This method ensures that the test set will have 
structurally similar analogs in the modeling set, but this cannot 
be guaranteed for external set compounds. However, rational 
selection approach may be advantageous when the  applicability 
domain   of the  QSAR   model needs to be clearly defi ned 
(Golbraikh et al. 2003). 
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 More information on random and rational selection and 
 applicability domain   can be found at: Martin TM, Harten P, 
Young DM, Muratov EN, Golbraikh A, Zhu H, et al. 2012. 
Does rational selection of training and test sets improve the 
outcome of  QSAR   modeling? J. Chem. Inf. Model. 52:2570–
8; doi:  10.1021/ci300338w.     

 Golbraikh A, Shen M, Xiao Z, Xiao Y-D, Lee K-H, Tropsha 
A. 2003. Rational selection of training and test sets for the 
development of validated QSAR models. J. Comput. Aided. 
Mol. Des. 17:241–53; doi:  10.1023/A:1025386326946    .   

   8.    Principal component analysis is a statistical method that reduces 
the dimensions of descriptors in a data set by fi nding groups of 

  Fig. 6    Example of KNIME    histogram plot workfl ow and the resulting histogram plot showing the frequency of 
activity values 0 (inactive,  blue ), 0.25 to 0.50 (marginal,  gray ), and 1 (active,  red )       
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descriptor combinations. It also provides one of the most 
informative statistics about the data. The fi rst principal component 
covers the largest amount of variance in the data set. Each con-
secutive principal component will cover another portion of the 
variance, but less than the previous one. Therefore, the combi-
nation of all principal components represents the total variance 
in the data set. And the total number of principal components 
is less than the number of descriptors. All these calculations can 
be done in software such as  KNIME   and MOE. 

 Typically the fi rst three principal components can be used 
to analyze the diversity of the  chemical space   and the overall 
relationships in the model. For example, in the sample descrip-
tor fi le there are 10 descriptors calculated for the whole data 
set. A principal component analysis was performed to generate 
six principal components. Principal components 1 and 2 are 
plotted in a scatter plot to show the chemical space. Figure  3  
shows the  KNIME   node that can be used to generate the prin-
cipal components and the scatter plot of principal components 
1 and 2 using all active and inactive compounds ( n  = 5484). 
Similar compounds will be clustered together and dissimilar 
compounds will be dispersed. In this case, the modeling set 
shows that the active and inactive compounds share the same 
chemical space. If active and inactive compounds occupy dif-
ferent spaces in the scatter plot,  QSAR   models will not be able 
to be developed. 

 More information on principal components can be found 
at: Izenman AJ. 2008.  Modern Multivariate Statistical 
Techniques :  Regression ,  Classifi cation ,  and Manifold Learning . 
1st ed. Springer Publishing Company, Incorporated.   

   9.    The  chemical space   indicates the  applicability domain   of result-
ing  QSAR   models.   

   10.    The MOE descriptors used in this study were FCharge, PC+, 
PC-, TPSA, Weight, a_acc, a_don, density, logP(o/w), and logS.      

5    Summary 

 Publicly available HTS data contains chemical structure errors and 
unbalanced activity distributions that need to be addressed before 
the data can be modeled. Due to its size, curating the data for 
 QSAR   modeling purpose requires automated computational tools. 
Furthermore, the activity distribution in HTS data is usually heavily 
skewed towards inactive compounds, which leads to biased predic-
tions. To avoid biased predictions in the resulting QSAR models, 
the number of inactive and active compounds selected for modeling 
needs to be balanced.  Down-sampling   using either random or 
rational selection approaches mitigates this issue and results in a 
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sample data set suitable for  QSAR   modeling. The technology 
described in this chapter enables one to use automated approaches 
to curate and prepare the public HTS data for modeling purposes.      
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