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    Chapter 26   

 Pharmacological Applications of fMRI                     

     Paul     M.     Matthews       

  Abstract 

   Increasing societal expectations for new drugs, lack of confi dence in short-term endpoints related to long- term 
outcomes for chronic neurological and psychiatric diseases and rising costs of development in an increasing 
cost-constrained market all have created a sense of crisis in CNS drug development. New approaches are 
needed. For some time, the potential of clinical functional imaging for more confi dent progression from pre-
clinical to clinical development stages has been recognized. Pharmacological functional MRI (fMRI), which 
refers specifi cally to applications of fMRI to questions in drug development, provides one set of these tools. 
With related structural MRI measures, relatively high resolution data concerning target, disease-relevant 
pathophysiology and effects of therapeutic interventions can be related to brain functional anatomy. In this 
chapter, current and potential applications of pharmacological fMRI for target validation, patient stratifi cation 
and characterization of therapeutic molecule pharmacokinetics and pharmacodynamics are reviewed. 
Challenges to better realizing the promise of pharmacological fMRI will be discussed. The review concludes 
that there is a strong rationale for greater use of pharmacological fMRI particularly for early phase studies, but 
also outlines the need for preclinical and early clinical development to be more seamlessly integrated, for 
greater harmonization of clinical imaging methodologies and for sharing of data to facilitate these goals.  

  Key words     Pharmacological fMRI  ,   Target validation  ,   Patient stratifi cation  ,   Pharmacokinetics  , 
  Pharmacodynamics  

1       Introduction 

 Both the pharmaceutical industry and regulators are searching for 
better models and for new drug development, particularly for CNS 
drugs [ 1 ]. Public confi dence in the industry has declined in the 
face of what is viewed as a lack of commitment to addressing major 
diseases with innovative drugs, while new drug costs continue to 
escalate. Industry sees the risks of drug development to be high 
particularly for chronic CNS diseases, for which there is a notable 
lack of consensus regarding underlying causes and mechanisms in 
the scientifi c community.  CNS drug   development appears uncer-
tain, slow, and expensive. 

 Pharmacological fMRI provides a relatively direct measure of 
CNS functions. Noninvasive imaging methods also allow the same 
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endpoint  measures to be used in preclinical as in clinical develop-
ment. This facilitates interpretation of clinical imaging outcomes in 
terms of molecular and cellular changes found with invasive meth-
ods preclinically [ 2 ]. These and related considerations have embed-
ded imaging in drug development already. Almost 30 % of new 
molecular entities approved for neuropsychiatric indications by the 
Food and Drug Administration between 1995 and 2004 were 
developed with contributions from imaging [ 3 ]. A 2013 review 
identifi ed 70 CNS drug trials registered on the registry website 
clinicaltrials.gov, that incorporated imaging endpoints [ 4 ]. In 
selected areas, such as multiple sclerosis drug development or 
recent trials of molecules for Alzheimer’s disease, clinical imaging 
measures are used routinely for patient selection, for trials, or for 
response and safety monitoring. While most of these applications 
have relied on serial structural MRI, they have demonstrated the 
feasibility of implementing large scale, regulatory compliant clini-
cal trials with imaging endpoints. They make the case for future use 
of pharmacological fMRI plausible. 

 Another factor that contributes to the plausibility of greater 
use of pharmacological fMRI in clinical drug development is the 
increasing premium being placed on integration of preclinical 
studies and early- phase development in an “experimental medi-
cine” (sitting fl uidly on the Phase I/IIa boundary) stage as part of 
confi dence building and risk mitigation.  Experimental medicine   
uses human experimentation to address mechanistic questions in 
ways that traditionally were reserved for preclinical studies. It is 
part of a biologically driven therapeutics development strategy 
involving hypothesis-led research that often is performed widely 
across levels of biological complexity (e.g., cells to the whole 
organism). A fundamental premise is that animals can be used to 
model biology, but cannot be expected to model human disease, 
which must be studied in the human. With this thinking, the clas-
sically unidirectional “critical path” from drug development 
(Fig.  1 ) is enabled by tools (e.g., from omics and imaging) to 
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  Fig. 1    The “critical path” for drug development. Pharmacological MRI has the potential to enhance the effi -
ciency of early clinical development with better translation of biological concepts from preclinical to clinical 
studies, providing a new pharmacodynamic measure and enhancing potential in proof-of-mechanism studies 
( FTIH  fi rst time in human study,  PoC  proof of concept study)       
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become more powerfully bidirectional (e.g., from preclinical to 
clinical data and “back again”).

2        Principles of Functional MRI (fMRI) 

 FMRI is based on indirect measures of neuronal response mediated 
through associated changes in blood fl ow. Increased neuronal activ-
ity is associated with a local hemodynamic response involving both 
increased blood fl ow and blood volume. This neurovascular cou-
pling is related to the increased local energy consumption associ-
ated with neuronal activity, which generally is believed to refl ect 
predominantly presynaptic activity [ 5 – 7 ]. The  hemodynamic 
response   has a magnitude and time course that depends on contri-
butions from both inhibitory and excitatory inputs to the local fi eld 
potential [ 8 ]. It therefore can be considered as a measure of local 
information input. While this may be correlated with local multi-
unit activity (neuronal spiking activity) under some conditions, 
such a relationship is not necessarily generalizable. 

 The neurovascular response is regulated by  neuronal–glial 
interactions   mediated by multiple signaling mechanisms. 
Pharmacological fMRI applications therefore need to take into 
account any potential impact of experimental molecules (or the 
disease of interest) on these coupling mechanisms. For example, 
the cerebrovascular effects of multiple neurotransmitter systems 
that may be the target for therapeutic molecules (e.g., gluta-
mate, dopamine, norepinephrine, serotonin, acetylcholine, and 
prostaglandins) are well described [ 9 ]. Disorders of  cerebrovas-
cular regulation   also are recognized in a number of disease states 
including not only primary cerebrovascular diseases such as 
stroke, but also, e.g., Alzheimer’s disease [ 10 – 12 ]. 

 The most commonly used fMRI methods rely on blood oxy-
gen level-dependent ( BOLD  ) imaging contrast [ 13 ,  14 ]. This 
contrast arises because the concentrations of deoxyhemoglobin, 
which is paramagnetic and thus locally modulates an applied 
static magnetic fi eld, vary with local blood fl ow and oxygen con-
sumption. In the MRI magnet, where a highly  homogeneous  (i.e., 
spatially invariant) magnetic fi eld is generated, the paramagnetic 
deoxyhemoglobin generates small magnetic fi eld  inhomogeneities  
around blood vessels. Their magnitude increases with the amount 
of paramagnetic deoxyhemoglobin. These  inhomogeneities   
reduce the MRI signal acquired with a gradient echo MRI acqui-
sition sequence (echo planar imaging or EPI). Transient decreases 
in BOLD contrast associated with brain activity refl ect neuronal 
activation because blood fl ow increases with greater neuronal 
activity to an extent that is larger than is needed simply for 
increased oxygen delivery with greater tissue demands. This 
reduces the local ratio of deoxy- to oxyhemoglobin in the blood 
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enough to be associated with an increase in the local EPI MRI 
signal. While this effect is small (0.5–5 % typically at 3 T), it can 
be measured reliably with signal averaging. 

 Alternative approaches to brain functional imaging rely on 
measures of brain blood fl ow. The advent of fMRI was heralded by 
changes in blood fl ow measured by tracking a bolus of intravenously 
injected exogenous contrast material [ 15 ]. Arterial spin labeling 
MRI ( ASL     ) has been developed more recently as an alternative, 
noninvasive pharmacological fMRI approach that is based on mea-
suring brain activity associated changes in blood fl ow by means of 
 noninvasive magnetic “tagging”   (with a radiofrequency pulse) of 
blood fl owing into the brain. Methods have become increasingly 
standardized in recent years, are widely available on commercial 
clinical imaging systems and can have considerable precision [ 16 ]. 

 Both approaches to pharmacological fMRI can be applied in 
two general ways. In “task based” pharmacological fMRI, con-
strained shifts in cognitive state are induced to explore the way in 
which physiological differences between the states are modulated 
by an associated intervention. A typical experiment would involve 
acquisition of a series of images over the course of a controlled, 
periodic variation in cognitive state (e.g., performing a working 
memory task relative to resting) with and without the putative 
modulatory intervention of interest. Regions of signifi cant change 
in the difference in BOLD signal between the two cognitive states 
then are defi ned by statistical analysis of the time series data. 

 An alternative design relies on the modulation of brain sponta-
neous activity in the absence of specifi c stimuli, i.e., in the “resting 
state”. This approach is based on the observation that correlated, 
local and long-distance temporally varying signals are found with 
fMRI just as was previously found in the EEG [ 17 ]. This oscilla-
tory activity appears fundamental to brain functional organization. 
Far fi eld activity in the gamma range (~30–80 Hz) may be particu-
larly relevant for the BOLD signal responses found in resting-state 
fMRI [ 7 ,  18 ]. There are multiple ways of defi ning the long-dis-
tance oscillatory coupling in fMRI [ 19 ], as yet without great stan-
dardization. For both task- and resting-state fMRI applications, 
assessment of responses to interventions involves statistical con-
trasts of time-courses before and after the intervention [ 20 ]. 

 Both BOLD and  ASL     -based fMRI signals are low and can be 
confounded by other contributions to the temporally varying brain 
signal from subject movement (even on the order of mm), cardio-
respiratory variations, image acquisition artifacts, and even differ-
ence in imaging system performance over time [ 21 ]. Some artifacts 
(e.g., movement) are easier to recognize and can be “edited out” 
 post hoc  [ 22 ]. Controlling for potential systematic variation in the 
parameters (e.g., increased respiratory rate in anxious subjects with 
a brain disease relative to healthy control subjects) as best as is pos-
sible is particularly important [ 21 ]. The potential for these factors 
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to have an impact on outcomes emphasizes the importance of rep-
lications of results across laboratories and study populations, 
although this has rarely been achieved to date.  

3     Target Validation 

 The traditional progression of drug development through target 
validation in preclinical models that express phenotypes plausibly 
related to the human disease is hugely challenged by most of the 
major diseases of the brain. Concepts for preclinical analogues of 
neuropsychiatric disorders with complex behavioral phenotypes 
(e.g., schizophrenia) and the validity of models for other major 
diseases including the chronic diseases of late life and those involv-
ing slow, progressive neurodegeneration are limited by differences 
in biological context and environment. New strategies for drug 
development are needed. 

 Preclinical models still provide powerful tools for detailed 
study of specifi c biological mechanisms believed to contribute to 
disease. With these models, pharmacological fMRI endpoints can 
be related to the underlying molecular changes in ways that both 
validate interpretation of the imaging endpoints and establish a 
framework in which they can be used to infer the dynamics of 
molecular pathogenic events. For example, the acute effects of 
NMDA receptor antagonism with ketamine were mapped in the 
rodent, demonstrating a pattern of cortico-limbic-thalamic activa-
tion and establishing a relationship between specifi c cognitive sys-
tems and the pharmacology [ 23 ]. Similar functional effects also 
were seen with other antagonists against the same target [ 24 ,  25 ], 
further confi rming the specifi city of the systems modulated. A 
framework for interpretation of these results was able to be pro-
vided by convergent studies using 2-deoxyglucose autoradiogra-
phy [ 26 ] as an index of presynaptic activity, along with single unit 
electrophysiological recording and immediate early gene expres-
sion [ 27 ]. Analogous pharmacological fMRI experiments con-
ducted in human studies provided mapped homologous systems in 
humans and to relate the pharmacology to the associated thought 
disorder and disturbance of consciousness in turn [ 28 ]. While indi-
rect and insuffi cient alone, these clinical studies together provided 
important information supporting target validation of NMDA 
receptors for psychotic disorders; the “bi-directional” translational 
approach also supported the potential relevance of this preclinical 
pharmacology for understanding a form of human psychosis. 

 An exciting, emerging extension of this approach applies struc-
tural MRI and pharmacological fMRI measures together as   endophe-
notypes    in testing for heritable quantitative traits [ 29 ]. Consider, for 
example, a complex genetic disease such as schizophrenia, which 
shows a  heritable phenotype with variable expression. Both structural 
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and functional differences can be defi ned relative to the healthy brain. 
The concept of the endophenotype is that their  forme fruste  are heri-
table and can be identifi ed in people even without clinical expression 
of the disease or trait. To the extent that this is true, the imaging 
endpoints themselves can be used as outcome measures in searches 
for genetic or other factors that may contribute to the disease. An 
endophenotype-based target validation approach also may bias detec-
tion towards causative rather than simply (possibly incidental or non-
specifi c) associated features. Candidate genes  DISC1 ,  GRM3 , and 
 COMT , which are associated with altered hippocampal structure and 
function [ 30 ], glutamatergic fronto- hippocampal function [ 31 ], and 
prefrontal dopamine responsiveness [ 32 ], respectively, all have been 
related to imaging endophenotypes for schizophrenia in this way. 

 The concept of fMRI endophenotypes strengthens the rationale 
nosological reclassifi cation of disease in terms of shared neurobio-
logical system dysfunction. Applications of fMRI approaches that 
defi ne neurobiological bases for general cognitive processes (such as, 
in the context of psychiatric disease, motivation, or reward) facilitate 
more holistic views of targets that may be relevant to more than one 
disease. For example, fMRI approaches have contributed to the cur-
rent appreciation for neural mechanisms common to addictive 
behaviors across a wide range of substances abuse states. Studies of 
cue-elicited craving have defi ned similar activities of the mesolimbic 
reward circuit in addictions to nicotine [ 33 ], alcohol [ 34 ], gambling 
[ 35 ], amphetamine [ 36 ], cocaine [ 37 ] and opiates [ 38 ]. 

 Combination of pharmacological fMRI with positron emission 
tomography ( PET  ) receptor mapping can be used to relate systems-
level dysfunction directly with the molecular targets of drug thera-
pies in ways that enhance target validation for new pharmacological 
treatments faster and more cheaply than conventional clinical 
designs allow (see, e.g., [ 39 ]). In another example, a combined 
PET  D3 receptor   availability and resting-state pharmacological 
fMRI study provides a paradigmatic example of the way in which 
modulation of both target and system contributes to better defi ning 
fundamental mechanistic relationships between different symptoms 
[ 40 ]. First,  D3 receptor   availability was assessed in the ventral teg-
mentum/substantia nigra in healthy subjects using PET with the 
D3/D2 selective radioligand, [ 11 C](+)-4-propyl-9- 
hydroxynaphthoxazine ([ 11 C]PHNO). Differences in receptor 
expression and basal dopamine release determine binding of the 
[ 11 C]PHNO, which varied across subjects. A resting-state pharma-
cological fMRI study was conducted simultaneously. Parametric 
variation of the resting-state pharmacological fMRI functional con-
nectivities with D3 receptor availability measured by PET showed 
that low midbrain D3 receptor availability (refl ecting dopamine 
release) was associated with increased connectivity between orbito-
frontal cortex ( OFC     ) and brain networks implicated in cognitive 
control and salience processing. The results together further vali-
dated dopamine D3 receptor signaling as an important modulator 
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of systems underpinning human goal- directed behavior, while 
highlighting differentially modulated interactions between  OFC   
and networks implicated in cognitive control and reward. 

 With confi dence in the relationship between a pattern of brain 
functional network activation and behaviors of interest, the former 
can be used as a clinically relevant biomarker for target validation. 
One of the fi rst demonstrations of this was with the modulation of 
hippocampal activation with a working memory fMRI task based on 
allelic differences in a   BDNF  gene polymorphism   [ 41 ]. This provided 
early evidence in humans supporting target validation of the TrkB 
receptor agonism for the treatment of cognitive symptoms associated 
with synaptic plasticity [ 42 ]. A different example illustrating how 
such studies can be used for decision making in drug development 
was provided by an imaging experimental medicine study linking to a 
PET receptor occupancy of a highly specifi c μ-opioid antagonist, 
GSK1521498, to pharmacological fMRI modulation of brain activa-
tion associated with palatable taste stimuli [ 43 ]. This allowed a fi rst 
demonstration that salience and reward systems relevant to food 
intake were modulated by the target, suggesting the potential of 
antagonists as appetite suppressants, an inference supported by a 
later, larger Phase IIa study with a direct behavioral endpoint [ 44 ].  

4     Patient Stratifi cation 

 A critical issue in early drug development is to establish an appro-
priate level of confi dence in the potential of a new molecule to 
become a therapy. One way in which this can be done is by better 
controlling for the substantial variations in therapeutic responses 
between individuals in early-phase studies. As well demonstrated in 
oncology [ 45 ], stratifi cation of patients based on specifi c disease 
characteristics can enable more powerful trial designs [ 46 ]. 
Consider, hypothetically, the difference in outcome of trials for a 
population in which a new molecule has a 50 % treatment effect in 
20 % of patients (giving a 10 %  net  treatment effect, i.e., unlikely to 
be detected) relative to that in a stratifi ed population enriched so 
that 70 % are responders (a net 35 % treatment effect). By predict-
ing potential responders, imaging also can suggest ways of best 
selecting optimal indications for new molecules. To the extent that 
the enrichment is successful and any new pharmacological activity 
being evaluated is detectable, clinical trials may demonstrate 
 molecule effects with fewer subjects exposed. This can be of special 
value in early Phase II trials when safety data is limited and the 
focus is on internal decision making. 

 An early application of imaging based stratifi cation is expected to 
be for enrichment of populations for clinical trials in diseases such as 
Alzheimer’s disease for which there is considerable phenotypic over-
lap between different disorders manifesting in the same population 
(e.g., dementia and late-life depression). The posterior cingulate and 

Pharmacological Applications of fMRI



824

hippocampus show high functional connectivity in resting-state fMRI 
[ 47 ] and form the core of a so-called “default mode” network [ 48 ]. 
Decreases in default mode resting-state fMRI connectivity distin-
guish Alzheimer’s patients from healthy subjects and can distinguish 
patients with mild cognitive impairment who undergo cognitive 
decline and conversion to Alzheimer’s disease from those who remain 
stable over a medium term follow-up period [ 49 ,  50 ]. Distinct pat-
terns of  resting-state fMRI   may distinguish patients with Parkinson’s 
disease, for whom reduced resting state functional connectivity from 
the basal ganglia was reported [ 51 ]. Together, these fi ndings suggest 
that resting-state fMRI (conducted in conjunction with other struc-
tural imaging measures), could be used to enrich trials for early dis-
ease modifi cation of Alzheimer’s disease. 

 Establishing fMRI measures for stratifi cation of patients [ 52 ] 
also ultimately could aid in establishing prognosis and in patient 
management. Where alternative treatment approaches are available 
that have potentially signifi cant individual variation in response 
across a population, selection of the optimal treatment for an indi-
vidual patient could be assisted by fMRI ( personalized medicine ). 
For example, with depression, treatment responses are highly vari-
able, e.g., only about 70 % of patients respond well to a given anti-
depressant [ 53 ]. Higher BOLD signal in the amygdala with a 
simple task fMRI may be predictive of subsequent treatment 
response [ 54 ]. Multivariate fMRI responses that change with treat-
ment in depression also have been proposed as candidate pharma-
cological fMRI markers, e.g., signal change in the ventromedial 
prefrontal and anterior cingulate cortices [ 55 ] or modulation of 
 cortico-limbic functional connectivity   [ 56 ]. 

 In similar ways, there is a potential for integrated structural MRI 
and verbal task fMRI to distinguish people with  prodromal schizo-
phrenia   from phenotypic mimics [ 57 ]. Network based analyses pro-
vide evidence for a continuous spectrum of psychosis from healthy 
variants to disabling expressions of schizophrenia [ 58 ]. Brain func-
tional measures distinguishing abnormal network functions ulti-
mately may provide more meaningful approaches to the classifi cation 
of neuropsychiatric diseases for improved prognosis and for target-
ing of treatment [ 59 – 62 ], although establishing the robustness of 
classifi ers in terms of longer term clinical outcome will demand stan-
dardization of methods and long-term, prospective studies. 

 Arguably fundamental changes in the understanding of  chronic 
pain   as a disease with individual differences in susceptibility have 
developed in recent years in part as a consequence of fMRI studies 
[ 63 ,  64 ]. Activity in the posterior insula with nociception provides 
a link between the subjectively “painful” experiences of pain empa-
thy [ 65 ], hypnotically induced pain [ 66 ], and recalled pain experi-
ences [ 67 ]. Inspired by studies showing a dopaminergic response 
with anticipation of benefi t in Parkinson’s disease, nigro-striatal 
pathways (as well as those associated with endogenous opioid 
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release) have been implicated in the placebo response in pain and 
depression [ 68 ]. Individual variation in pain vulnerability thus is 
associated with alterations in wide range brain networks concerned 
with reward, motivation/learning, and descending modulatory 
control [ 69 ]. Greater functional connectivity between the PFC 
and nucleus accumbens explains pain persistence, suggesting that 
the frontal-striatal connectivity mediates the transition from acute 
to chronic pain; cortical-striatal connectivity explains longer term 
outcomes of patients with sub-acute back pain [ 70 ]. 

 Nonetheless, despite this promise, validation and development 
of these concepts as clinical tools or for confi dent use as an enrich-
ment strategy or as a secondary outcome measure in later-phase 
clinical trials appears stalled by lack of standardization of evalua-
tions and methods for quality control and analysis [ 4 ]. A focus on 
longer term, well powered clinical studies is needed to validate 
relationships between fMRI measures and disease pathology or 
long-term clinical outcomes. Confi dent demonstrations are needed 
to establish that fMRI or pharmacological fMRI reliably distin-
guish clinically meaningfully changes.  

5     Pharmacodynamics 

 As the previous section highlighted, applications of pharmacologi-
cal fMRI to the direct assessment of drug action are expanding. 
  Pharmacodynamic  data   (e.g., testing whether a drug at the chosen 
dose has an effect on brain function) can be obtained from analysis 
of brain imaging changes induced by the administration of a drug. 
The similar intrinsic brain architecture across species can support 
translational proof of mechanism studies with comparisons of end-
points from preclinical and imaging-supported Phase I studies using 
similar methodologies [ 71 ]. Additional information can come from 
correlation of brain activity with behavioral effects of drug adminis-
tration [ 72 ] (Fig.  2 ) or with characterization of the way in brain 
 activity   associated with a probe-task is modulated by a drug [ 73 –
 75 ]. This information can inform clinical dose-ranging studies. As 
noted earlier, correlations between fMRI measures of brain func-
tional system response and drug receptor or receptor occupancy 
measurements by  PET   are possible [ 39 ,  43 ,  76 ]. The last, more 
recent study [ 43 ], demonstrated additionally how integration of 
time-receptor occupancy data from PET with fMRI measures can 
differentiate the distinct pharmacologies of different antagonists.

   In some situations, by providing a measure of  endophenotype  
responses, pharmacological fMRI can defi ne effects of treatment in 
populations too small for behavioral effects to be discerned or 
where usual clinical measures are simply insensitive to drug effects 
[ 77 – 79 ]. In the simplest application, modulation of brain activa-
tion in functional anatomically plausible regions after dosing with 

Pharmacological Applications of fMRI



826

candidate molecule simply to provide supportive evidence for rel-
evant direct CNS activity. A retrospective case study of NK-1 
receptor antagonists for chronic pain proposed that early decisions 
based on fMRI measures could have anticipated the later failure of 
clinical trials [ 80 ]. However, a potential risk of such entirely phar-
macological fMRI-derived pharmacodynamics markers is that they 
may not be specifi c for (or predictive of) clinically relevant changes. 

 One way of minimizing this risk is to frame the measures in 
terms of important disease symptoms based on the relationship 
between fMRI measures and individual symptoms. Mechanistic 
plausibility is suggested by the extent to which changes in the asso-
ciated networks have been independently related to clinically 
meaningful symptoms. An illustration of this is provided by the 
way fMRI has been used to dissect the  subjective experience  of pain 
into anatomically distinct activities of different functional systems 
(including arousal and the  somatosensory and limbic systems  ), the 
precise pattern for which may vary for an individual depending on 
context, mood, and cognitive state [ 64 ,  81 ]. 

 As highlighted in the introduction to this review, imaging has 
the potential to bridge directly between preclinical and clinical 
studies [ 2 ]. While many behaviors cannot be translated across spe-
cies, functional-anatomical correlations allow direct drug responses 

  Fig. 2    Pharmacological fMRI can be performed in both animals and humans to assess correspondences in 
tests of  mechanisms  . ( a ) Pharmacological fMRI results with metamphetamine challenge of a rodent, identify-
ing major regions in the monamine network as sites of direct or indirect action ( Mctx  motor cortex,  PrL  pre-
limbic medial prefrontal cortex,  thal  thalamus,  SSctx  somatosensory cortex,  AcbSh  shell of the nucleus 
accumbens,  VTA  ventral tegmental area) (Images courtesy of Dr. A. Bifone, GSK, Verona). ( b ) A similar pharma-
cological fMRI experiment with acute amphetamine infusion in human subjects performed using “mind racing” 
as a behavioral index of drug effects identifi ed comparable elements of the core response network ( OFC  
orbitofrontal cortex,  ACC  anterior cingulate cortex,  NAC  nucleus accumbens)       
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elicited in the brain for translation of underlying neurobiology. For 
example, pharmacological fMRI experiments in which unstimu-
lated brain responses to acute compound challenges can be used to 
defi ne brain regions in which activity is modulated by the same 
compound in animals (Fig.  2 ). Preclinically, these observations can 
be linked to results from more invasive studies, e.g., direct measure-
ments of neurotransmitter release that distinguish direct and indi-
rect effects of the compound [ 82 ]. Similar observations of drug 
modulation of brain activity can be made in human volunteers, pro-
viding a way of confi rming mechanism (Fig.  2 ) [ 72 ]. State- 
dependent modulation of these regions can further contribute to 
this [ 83 ]. By relating plasma concentrations to brain responses, 
similar approaches could be used to defi ne dose, for example. fMRI 
can address the need for evaluation of receptor agonists, partial 
agonists, and inverse agonists, as well as antagonists. Even when a 
receptor targeted radioligand is available, PET methods generally 
will not be informative with the former classes of agents [ 84 ]. 

 However, caution is needed in the confi dence with which 
fMRI endpoints are interpreted. There are two distinct validation 
issues that must be addressed. First is the “proof of biology” based 
on demonstration that the biological change being measured is 
related to the relevant target engagement. Second is the “proof of 
concept” that the biological change has relevance for clinical out-
come [ 9 ]. Relationships seen with the natural history of the disease 
should not be assumed to hold after therapeutic modulations [ 85 ]. 
Testing for any changes in this relationship with  pharmacological 
modulation   is important to ensure that the biomarker remains 
plausibly related to a clinically meaningful outcome. 

 In general, validation of a candidate biomarker’s surrogacy 
involves the demonstration that it possesses the properties required 
for its use as a substitute for a true endpoint. A surrogate can be 
used at the individual subject level when there is a perfect associa-
tion between the surrogate and the fi nal endpoint after adjustment 
for treatment. This criterion essentially requires the surrogate 
 variable to ‘capture’ any relationship between the treatment and the 
true endpoint, a notion that can be operationalized by requiring the 
true endpoint rate at any follow-up time to be independent of treat-
ment, given the preceding history of the surrogate variable [ 86 ].  

6     Current  Limitations   and Some Future Extensions of Pharmacological fMRI 

 Although there is real promise for pharmacological fMRI, there are 
major general challenges to meaningful, quantitative interpretations 
of measures that need to be considered in planning applications. A 
fi rst challenge is to distinguish disease or pharmacodynamic effects 
on hemodynamic coupling from those on neuronal activity and 
metabolism [ 11 ]. Some limitations to interpretation of the BOLD 
response can be addressed with use of complementary forms of MRI 
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contrast. For example, direct measures of brain blood fl ow can be 
made using noninvasive “arterial spin labeling” MRI methods and 
the BOLD signal can be calibrated as a measure of local oxygen 
extraction for quantitative MRI [ 87 ]. However, even without this 
uncertainty, the relationship of blood fl ow changes to modulation of 
presynaptic activity can change with physiological (and, potentially, 
pharmacological) context. Even the relative direction of relative acti-
vation in disease states may be diffi cult to interpret precisely. For 
example, reduced activation may refl ect brain functional impairment 
[ 88 ] or improved  effi ciency   [ 89 ] in different contexts. Experimental 
designs need to recognize this uncertainty and incorporate elements 
that allow meaningfully specifi c interpretations, e.g., by studying 
dose–response relations, parametric activity relationships and behav-
ioral correlates [ 90 ]. A more direct approach is to link pharmaco-
logical fMRI with electrophysiological measures [ 91 ]. 

 General validation of methods to enable their wider use will 
depend on standardization across sites, reliability and repeatability, 
and the development of validated quantifi cation methods, ideally 
largely automated to minimize needs for harmonization of user 
training. Practical considerations also need to be address to enable 
integrated use of the most accurate and effi cient combination of 
markers and optimization of costs for the clinical trial environment 
[ 92 ]. Greater openness and sharing of data would be an important 
enabler of this. These steps, while still not yet part of routine prac-
tice in the academic laboratories in which advanced clinical imag-
ing is most often performed, need not stifl e innovation, which can 
progress in parallel, but is essential of translation of this promising 
method as a major tool for drug development is to be achieved.     
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