
451

Massimo Filippi (ed.), fMRI Techniques and Protocols, Neuromethods, vol. 119,
DOI 10.1007/978-1-4939-5611-1_15, © Springer Science+Business Media New York 2016

Chapter 15

fMRI of Emotion

Simon Robinson, Ewald Moser, and Martin Peper

Abstract

Recent brain imaging work has expanded our understanding of the mechanisms of perceptual, cognitive, and 
motor functions in human subjects, but research into the cerebral control of emotional and motivational 
function is at a much earlier stage. Important concepts and theories of emotion are briefly introduced, as are 
research designs and multimodal approaches to answering the central questions in the field. We provide a 
detailed inspection of the methodological and technical challenges in assessing the cerebral correlates of 
emotional activation, perception, learning, memory, and emotional regulation behavior in healthy humans. 
fMRI is particularly challenging in structures such as the amygdala as it is affected by susceptibility-related 
signal loss, image distortion, physiological and motion artifacts, and colocalized Resting State Networks 
(RSNs). We review how these problems can be mitigated by using optimized echo-planar imaging (EPI) 
parameters, alternative MR sequences, and correction schemes. High-quality data can be acquired rapidly in 
these problematic regions with gradient-compensated multiecho EPI or high-resolution EPI with parallel 
imaging and optimum gradient directions, combined with distortion correction. Although neuroimaging 
studies of emotion encounter many difficulties regarding the limitations of measurement precision, research 
design, and strategies of validating neuropsychological emotion constructs, considerable improvement in 
data quality and sensitivity to subtle effects can be achieved. The methods outlined offer the prospect for 
fMRI studies of emotion to provide more sensitive, reliable, and representative models of measurement that 
systematically relate the dynamics of emotional regulation behavior with topographically distinct patterns of 
activity in the brain. This will provide additional information as an aid to assessment, categorization, and 
treatment of patients with emotional and personality disorders.

Key words Emotion, fMRI, Research design, Reliability, Validity, Amygdala, Signal loss, Distortion, 
Resting state networks

1  Introduction

While recent brain imaging work has expanded our understanding 
of the mechanisms of perceptual, cognitive, and motor functions in 
human subjects, research into the cerebral control of emotional 
and motivational functions has been less intense. For several years, 
however, a growing body of fMRI and positron emission tomogra-
phy (PET) work has been assessing the cerebral correlates of emo-
tional activation, perception, learning and memory, and emotional 
regulation behavior in healthy humans [1–6].
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Current brain imaging work is based on the concepts and 
hypotheses of the multidisciplinary field of “affective neurosci-
ence” [7–9]. The endeavors of the subdisciplines of affective neu-
roscience have not only complemented but also promoted each 
other, stimulating a rapid growth of knowledge in the functional 
neuroanatomy of emotions. It is increasingly recognized that these 
areas also share similar methodological problems.

The expanding area of emotion neuroimaging has provided 
new methods for validating neurocognitive models of emotion 
processing that are crucial for many areas of research and clinical 
application. Progress is being made in disentangling the cerebral 
correlates of interindividual differences, personality, as well as of 
abnormal conditions such as, for example, anxiety, depression, psy-
choses, and personality disorders [10–12]. It has been recognized 
that psychological assessment, categorization procedures, and psy-
chotherapy treatment may profit from models that integrate func-
tional connectivity information. The relevance and usefulness of 
valid neurocognitive models of emotion processing have recently 
been recognized by many fields of applied research such as, for 
example, psychotherapy research [13], criminology [14], as well as 
areas such as “neuroeconomics” [15] and “neuromarketing” [16].

Several human lesion studies have pointed to the deficits of 
neurological patients in recognizing emotions in faces, particularly 
often for the decoding of fearful faces especially after bilateral 
amygdala damage [17–20]. Other studies have reported impair-
ments not only for fear but also for other negative emotions such 
as anger, disgust, and sadness [21, 22]. Recent functional imaging 
studies have confirmed the importance of the amygdala in emotion 
processing. Due to the multiple connections between the amyg-
dala and various cortical and subcortical areas, and the fact that the 
amygdala receives processed input from all the sensory systems, its 
participation is essential during the initial phase of stimulus evalu-
ation [23]. The appraisal function of the amygdala, combining 
external cues with an internal reaction, reflects the starting point 
for a differential emotional response and is hence the basis for 
emotional learning. Involvement of the amygdala during classical 
conditioning especially during the initial stages of learning [24, 
25] as well as during processing signals of strong emotions has 
been documented repeatedly with fMRI. However, a problem in 
verifying amygdala activation with neuroimaging tools may be the 
rapid habituation of its responses [10, 26].

Although the need for brain imaging data is not unequivocally 
acknowledged by all researchers in their specialties, the increasing 
body of neuroimaging data has value in challenging and constraining 
existing theories. Followers of cognitive emotion theory must face the 
fact that their results need to be compatible with or at least not con-
tradict with established neuroscience (neuroimaging) findings [27]. 
However, to appropriately evaluate and integrate this knowledge, it is 
necessary to deal with the basic methodological problems of the field.

Simon Robinson et al.
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Therefore, this chapter is organized around the two major issues 
of the neuroimaging of emotional function. First, it addresses under-
lying conceptual issues and difficulties associated with operational-
izing and measuring emotion (for more detailed reviews, see Refs. 
[28–31]). The problems and limitations of brain imaging work that 
are associated with measurement precision, response scaling, repro-
ducibility, as well as validity and generalizability are discussed corre-
sponding to general principles of behavioral research [32].

Second, the complexities of neuroimaging methods are exam-
ined to supplement recent quantitative meta-analyses (for a sum-
mary of findings of the emotional neuroimaging literature, see 
Refs. [2, 4, 5]). We raise here some grounds for reflection about 
current measurement in neuroimaging of emotions, and to encour-
age the adoption of recent methodological advances of fMRI tech-
nology. In summary, it is suggested that additional interdisciplinary 
efforts are needed to advance measurement quality and validity, 
and to accomplish an integration of brain imaging technology and 
neuropsychological assessment theory.

2  Psychological Methods

Emotions have been defined as episodes of temporarily coupled, 
coordinated changes in component functions as a response of the 
organism to external or internal events of major significance. These 
component functions entail subjective feelings, physiological acti-
vation processes, cognitive processes, motivational changes, motor 
expression, and action tendencies [33, 34]. Emotions represent 
functions of fast and flexible systems that provide basic response 
tendencies for adaptive action [35].

Emotions can be differentiated from mood changes (extended 
change in subjective feeling with low intensity), interpersonal 
stances (affective positions during interpersonal exchange), atti-
tudes (enduring, affectively colored beliefs, preferences, and pre-
dispositions toward objects or persons), and personality traits 
(stable dispositions and behavior tendencies) [29, 34].

The frequently used concept of “emotional activation” charac-
terizes a relatively broad class of physiological or mental phenom-
ena (e.g., strain, stress, physiological activation, arousal, etc.). It 
can be specified with respect to a variety of dimensions such as 
valence (quality of emotional experience), intensity or arousal 
(global organismic change), directedness (motivational and orien-
tating functions), and selectivity (specific patterns of change) [36]. 
In contrast, the terms emotional reactivity or arousability, and psy-
chophysical reactivity refer to the dispositional variability of the 
above activation processes under defined test conditions [37, 38].

Environmental objects possess a latent meaning structure of 
emotional information, which is represented by a hierarchy of 

2.1  Emotion Theories 
and Constructs

2.1.1  Definitions

fMRI of Emotion
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constructs with relatively fixed intra- and interclass relations [29, 
39, 40]. Accordingly, physical stimulus properties or surface cues 
serve as a basis for “universal” emotion categories such as happi-
ness, surprise, fear, anger, sadness, and disgust that originate at a 
primary level [41]. On a secondary level, dimensions such as valence 
and arousal arise from the preceding levels [42]. Table 1 suggests a 
potential structure of emotional concepts or domains that inte-
grates both discrete (primary) and secondary emotions [29].

Emotional activation has also been characterized as a process 
with a sequence of stages [29, 35]: following an initial evaluation 
of novelty, familiarity, and self-relevance, a stimulus object or con-
text is fully encoded. This involves detection of physical stimulus 
features, recognition of object identity, and identification of higher-
order emotional dimensions such as pleasantness or need signifi-
cance. During the subsequent stages, cognitive appraisal processes 
are initiated to evaluate the significance of the event. These evalu-
ation checks include an appraisal of whether the stimulus is relevant 
for personal needs or achieving certain goals. Finally, the potential 
to overcome or cope with the event and the compatibility of behav-
ior with the self or social norms is evaluated [35].

The measurement of emotions crucially depends on an appropriate 
operationalization of the construct of interest and definition of 
response parameters. Such considerations have typically been elab-
orated in the context of psychological assessment theory [30, 38, 

2.1.2  Operationalization

Table 1  
Hierarchical organization of emotion concepts (modified from [29])

Emotion concepts or 
domains Example constructs Basis for higher-order grouping

Dimensional concepts Valence (positive/negative 
emotions), approach/withdrawal, 
activity (active/passive), control, 
etc.

Conceptual or meaning space for 
subjective experience and verbal 
labels

Basic, fundamental, 
discrete, modal emotions 
or emotion families

Anger, fear, sadness, joy, etc. Similarity of appraisal, motivational 
consequences, and response 
patterns; convenient label for 
appropriate description and 
communication

Specific appraisal/response 
configurations for 
recurring events/
situations

Righteous anger, jealousy, mirth, 
fright, etc.

Temporal coordination of different 
response systems for a limited 
period of time as produced by a 
specific appraisal pattern

Continuous adaptational 
changes

Orienting reflex, defense reflex, 
startle, sympathetic arousal, etc.

Automatic activations and 
coordination of basic 
biobehavioral units

Simon Robinson et al.
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43]. The latter explains how psychological and physiological mea-
sures can be empirically assessed, decomposed, and used as indica-
tors of the psychological constructs of interest. It organizes the 
assumptions concerning measurement, segmentation, and aggre-
gation of activation measures, and evaluates the distribution char-
acteristics and reliability of the data. It also determines the range of 
the construct of interest by localizing it according to variables, sub-
jects or settings/situations, or combinations of these sources of 
variation. Since most current operationalizations are confined to 
one of these aspects, the range of conclusions to be drawn from the 
findings is also limited.

A particular problem associated with measuring emotional 
reactions is a certain lack of covariation of response measures. A 
frequent finding is that the expected synchronization of verbal, 
motor, and physiological response systems during an emotional 
episode is the exception rather than the rule. Although emotional 
episodes supposedly give rise to a synchronization of central, auto-
nomic, motor, and behavioral variables [44], most emotional 
response measures only show imperfect coupling [45]. This 
response incoherence may be attributed to a temporary decoupling 
or dissociation of function [46]. This has led authors to suggest a 
triple response measurement strategy that suggests a multimodal 
assessment of emotion including responses in the verbal, gross 
motor, and physiological (autonomic, cortical, neuromuscular) 
response systems [47].

Research on human emotion has illustrated how the broad 
concept of emotion is subdivided into several component func-
tions that dynamically interact during an emotional episode. 
Diverse operationalizations have been suggested to assess these 
subconstructs, many of which are highly correlated and form clus-
ters or families of similar functions. Emotional activation processes 
are embedded in a multicomponential system of situational and 
personal determinants. Factors that shape the level and pattern of 
the emotional activation process are the following [29, 48]: the 
functional context of the task (e.g., cognitive processing, motor 
responses, autonomic functions, etc.); the direction and extension 
of effects (e.g., global versus selective activation); the intensity and 
the degree of emotional strain (e.g., low, middle, or traumatic 
intensity; degree of threat; intensity of physical/mental load; stim-
ulus intensities below or above threshold); the time characteristics 
(e.g., duration, structure, and variability of a stimulus; effects of 
stimulus repetition or pre-exposure); the informational content 
(e.g., the degree of information and dimensions inherent in the 
experimental stimuli such as emotional valence or arousal, pre-
paredness, novelty, safety, predictability, contingency information, 
etc.); the implications for action (conduciveness, implications for 
instrumental reactions; artificial vs. realistic nature of the proce-
dure); the coping potential (e.g., active coping vs. passive 
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enduring, degree of controllability, helplessness, social support, 
specific coping strategies); and, compatibility with self or social 
norms (e.g., personal relevance).

These different aspects have led to a large number of opera-
tionalizations. These include procedures to elicit orienting or star-
tle reactions, basic emotions or “stress,” as well as stimulus-response 
paradigms and conditioning procedures. For example, one such 
standard procedure is to elicit orienting reactions (OR) by emo-
tionally meaningful stimuli. The OR is a nonassociative process 
being modulated by excitatory (sensitization) and inhibitory 
(habituation) mechanisms. Pavlovian (classical) or instrumental 
conditioning of excitatory or inhibitory reactions has traditionally 
been investigated in autonomic reactions (cardiovascular, vasomo-
tor, and electrodermal conditioning), motor responses (eye blink), 
and endocrine or immune system reactions [1].

Emotional experience is strongly influenced by cognitive activities 
which modulate attention and alertness (avoidance and escape), vigi-
lance processes (information search and problem solving), person–
situation interactions (denial, distancing, cognitive restructuring, 
positive reappraisal, etc.), and actions, which change the person–envi-
ronment relationship [49]. Coping research has identified typical cog-
nitive strategies to regulate arousal during an emotional episode such 
as rejection (venting, disengagement) and accommodation strategies 
(relaxation, cognitive work) [50]. Cognitive activities subsume 
engagement (reconceptualization, reevaluation strategies such as 
rationalization or reappraisal) and distraction techniques.

These behavioral and cognitive regulation processes have been 
studied for many decades [51]. This research has shown that the 
outcome of coping processes crucially depends upon the valence, 
ambiguity, controllability, and changeability of a stressor. Input-
related regulation (denial, distraction, defense, or cognitive restruc-
turing; [52]) or antecedent-focused regulation (selection, 
modification, or cognitive restructuring of situational antecedents; 
[53]) have been differentiated from response-focused processes 
(suppression of expressive behavior and physiological arousal; [53]).

While the behavioral procedures mentioned above are mostly 
unstandardized, a vast number of standardized psychometric instru-
ments are available to assess the higher-order emotional processes (for 
a review see Ref. [31]). Questionnaires are the most frequently used 
method, being followed by behavior ratings by experts or significant 
others. However, these data assess subjective representations, that is, 
personal constructs and may be obscured by biased responding

The requirements for experimental research [32] are not always 
fulfilled by many early research designs of emotional neuroimaging 
work. This is typical for the pilot stage of scientific progress. In 
many cases, only preliminary or correlational interpretations are 
possible due to incomplete or missing control conditions (e.g., 
with respect to the “awareness” of emotional stimuli; [54]). In 

2.2  Research Design 
and Validity

2.2.1  Research Design

Simon Robinson et al.
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contrast, more recent work increasingly makes use of full factorial 
designs or applies parametric variations of the independent variable 
[55]. Moreover, new techniques of covariance analysis are available 
to explore the causal predictive value of structural data on emo-
tional brain activation. The relationship of structural and func-
tional connectivity data has been explored by means of Structural 
Equation Modeling [56–58] and Dynamic Causal Modeling [59]. 
Moreover, functional brain imaging has been successfully com-
bined with the lesion approach to elucidate the modulating influ-
ences of interconnected brain regions [60]. Thus, by means of 
appropriate research plans and advanced techniques of analysis, an 
“effective connectivity” can be identified that elucidates the causal 
relations of one neural system to another [61]. For example, the 
functional connectivity of the prefrontal cortex (PFC) that is 
supposed to modulate amygdala activity [62] might thus be better 
evaluated in terms of causality.

To avoid operationalization errors, the quality of the emotion 
induction procedure needs to be scrutinized, that is, it must be 
evaluated whether the intended emotion has actually been elicited. 
For example, since a variety of emotional and nonemotional stimu-
lus situations may trigger amygdala activations [5], it is necessary 
to evaluate whether the intended emotion (such as fear) has actu-
ally been elicited. Since subjective report is not always an appropri-
ate manipulation check, additional psychophysiological criteria are 
needed to validate the intended emotion. Sympathetic activity as 
indexed by electrodermal activity (EDA) has been assessed during 
imaging procedures for this purpose. Nevertheless, this does not 
validate fear since skin conductance responses represent the end-
point of many different processes [63].

Brain imaging work implements specific neuropsychological con-
struct validation strategies by associating behavioral measurement 
of emotion with functional brain activation data for different 
localizations [31]. Here, functional (physiological) data are 
related to but still remain categorically distinct from the psycho-
logical data that emerge from a particular behavioral paradigm. 
During the process of construct validation, indicators of connec-
tional or neurophysiological constructs are related to the indica-
tors of psychological constructs. Thus, different operationalizations 
of a certain psychological construct (procedures or task) are 
expected to be correlated with activations of a certain area or 
cluster of areas. A different construct is expected to correlate with 
another but not the previous area and vice versa. This corre-
sponds to the double dissociation approach, which inspects task 
by localization interactions. This process of neuropsychological 
concept formation typically starts at a relatively broad level and 
proceeds downward in the above hierarchy finally specifying 
within-systems localization constructs [64].

2.2.2  Construct 
Validation

fMRI of Emotion
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However, depending on limitations of the measurement device 
described below, the reliability of psychological or activation data 
declines at lower levels of structural constructs complicating this 
validation process. The diverse validation attempts typically draw 
upon convergent or divergent associations of constructs that are 
located at quite different levels of generality. However, successful 
construct validation very much depends upon whether brain activa-
tion and psychological measures are analyzed on the same level of 
generality. In cases of asymmetry, low relationships may result that 
provoke misinterpretations and confuse the validation process. Thus, 
successful construct validation in the affective neurosciences requires 
emotional constructs and brain activation data to be measured on 
the same (symmetrical) level of generality or aggregation [31].

Emotional neuroimaging is typically guided by neuropsychologi-
cal construct validation strategies. Here, the constructs are opera-
tionally defined by the complementary methods of emotion 
psychology and of neurophysiology. Both construct types are embed-
ded in hierarchically organized networks with lower- and higher-
order levels of generality. Both types of data are associated with each 
other during validation. However, it is necessary to define neural and 
emotional constructs on the same level of generality. For example, 
when a relatively broad behavioral category or set of functions (“emo-
tion regulation”) is being associated with isolated cerebral substruc-
tures, the relationship is likely to be asymmetrical and disappointing 
low correlations might result confusing the validation process.

FMRI is known to be a highly reactive measure because the scanner 
setting (gradient noise and the supine position) causes the subject to 
respond to the experimental situation as a stressor. Unless habitua-
tion sessions are included in the procedure, tonic stress and arousal 
effects may be induced that modulate responding as discussed above. 
For example, a decreasing rate of response of the amygdala to a con-
ditioned stimulus during the late phase of acquisition [10, 24, 26, 
65] may also be attributable to testing effects (sensitization to the 
setting, acquaintance with the procedure, and type of unconditioned 
stimulation) rather than fast amygdala habituation per se (other fac-
tors might also explain reduced amygdala perfusion measures such 
as potential ceiling effects, baseline dependencies, and regression to 
the mean). In general, familiarity with emotionally activating proce-
dures in the scanner induces states of expectation, sensitizing or 
desensitizing effects that may confound follow-up measurement. In 
addition to these testing effects, history, that is, occurrences other 
than the treatment and individual experiences between a first and a 
second measurement are likely to endanger the assessment of emo-
tion (e.g., when assessing psychotherapy effects).

Changes in the observational technique, the measurement 
device or sequence and other instrumentation effects may also 
obscure emotion-related treatment variance during an fMRI 

2.2.3  Internal Validity
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session or across sessions. From the discussion of MR methods it is 
clear that longitudinal changes of measurement precision are also 
to be expected from inconsistent acquisition geometry and shim, 
as well as system instabilities and hardware changes.

It is well known from psychophysiological research that the 
interpretation of repeated measurement factors is complicated by 
initial value dependencies [66]. When the hemodynamic response is 
fitted relative to the prestimulus baseline, a physiological or statistical 
dependency of tonic perfusion levels and the phasic reaction may 
prevail [67]. While the first experimental blocks may show extreme 
effects, subsequent measurements are likely to be closer to the 
mean. Moreover, it has been pointed out above that the reliability 
of blood oxygen level-dependent (BOLD) measurements may be 
compromised by distortions or signal loss. When emotional para-
digms with inconsistent effects are used or when subjects with an 
extreme variability of emotional responsivity are investigated, 
experimental effects are likely to show “regression to the mean.”

Subjects change as a function of time and these maturation 
effects may occur during the time range of the experiment (psy-
chophysiological changes of organismic state or psychological 
stance, in particular during aversive paradigms). State-dependent 
influences or maturation effects may hamper within-subject repli-
cation or evaluations of long-term psychotherapy effects.

Subject groups with an elevated emotionality are more likely to 
show greater dropout rates in stressful experiments, that is, subjects 
of one group drop out as a consequence of their specific reactivity 
to the emotionally strain of the challenge paradigm. If exit from an 
emotionally activating study is not random, this effect of “experi-
mental mortality” may confound comparison between groups.

Selection effects, that is, group differences from the outset of 
the study, are likely in functional imaging studies with very small 
numbers of participants. Selective recruitment of volunteers or drop 
out of participants may lead to decreased reactivity and lower emo-
tionality in the remaining study group. Poor recruitment techniques 
(e.g., drafting subjects from the social circle of the lab partially 
acquainted with the procedures) or lack of random assignment to 
groups may further limit the validity of emotional fMRI studies.

Interactions of selection with maturation may occur when 
groups that differ with respect to maturation processes are com-
pared (e.g., administering a social stress test for cortisol stimula-
tion at different times of the day). Gender, personality traits, or 
psychopathology are all associated with specific individual differ-
ences of emotional regulation behavior. When these behaviors 
change over time as a function of personal development, follow-up 
measurements may be confounded by this type of effect. Thus, 
poor randomization or lack of control of personality-specific vari-
ance may jeopardize brain activation studies of emotional behavior. 
Finally, an interaction of selection with instrumentation occurs 
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when experimental subjects and controls show pre-experimental 
differences with respect to the shape of their responses such as 
floor or ceiling effects.

In general, emotional responses show an intraindividual insta-
bility due to measurement artifacts (see Sect. 3), state-dependent 
influences, or characteristics of the subject (age, gender, experience, 
temperament) all impose additional effects on functional neuroim-
aging results [5]. A considerable degree of within- and between-
subject variation in the time course of emotional responding 
depends on habitual, subject-specific mechanisms. First, the phasic 
activation pattern reflects the short-term modulation in response to 
the emotional stimulus. Due to the temporal within-trial variability 
of BOLD responses in different brain regions, averaging across sub-
jects may obscure the detection of activation in a specific region and 
reduce effect sizes specifically for higher-level reactions. Second, 
activation also varies across the time course of the experiment. Most 
subjects show a constant increase in autonomic arousal depending 
on the degree of emotional stimulation. This is not only accompa-
nied by a systemic response (tonic increase of sympathetic activation 
including blood pressure, cardiac contractility, and variability), but 
also by variations of tonic perfusion. These changes may show 
divergent trends for cortical and limbic regions imposing an 
unknown error on the measurement of the phasic BOLD reaction. 
These tonic and phasic variations appear to reflect the subject-spe-
cific mechanisms of emotional regulation behavior.

The majority of current paradigms have focused on lower-level 
perceptual or learning processes pertaining to basic or secondary 
emotional categories. Since the results depend on the selected task 
parameters (degree of induced arousal, hedonic strength, and 
motivational value; degree of involvement of memory processes; 
reinforcement schedule; conditioning to cues or contexts; etc.), a 
comparison with and generalization to other operationalizations 
remains difficult. Systematic neuroimaging approaches to higher-
level appraisal processes are still sparse. These involve evaluations 
of the motivational conditions and coping potential, that is, the 
ability to overcome obstructions or to adapt to unavoidable con-
sequences [29]. An expanded range of constructs would involve 
an assessment of social communication processes, beliefs, prefer-
ences, predispositions, high-level evaluation checks, as well as 
modulating sociocultural influences. Higher-order appraisal pro-
cesses involve the evaluation of whether stimulus events are com-
patible with social standards and values or with the self-concept. 
Another function to be explored concerns the degree to which a 
stimulus event may increase, decrease, or even block goal attain-
ment or need satisfaction, and activate a reorientation of the indi-
vidual’s goal/need hierarchy and behavioral planning (goal/need 
priority setting) [29].

2.2.4  External Validity 
and Generalizability

Generalization to Other 
Procedures and Paradigms
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Whereas frontostriatal mechanisms of motor control have been 
increasingly investigated, recent work has made efforts toward devel-
oping an understanding of how emotion and motivation are linked 
to the frontal mechanisms controlling the preparation and execution 
of behavior [68, 69]. Behavior preparation and execution represent 
closely integrated components within an emotional episode. 
Mobilization of energy is required to prepare for a certain class of 
behavior. Action planning and motor preparation requires sequenc-
ing of actions and generation of movements. However, an emotion 
preceding behavior is only one of a number of factors, including 
situational pressures, strategic concerns, or instrumentality, involved 
in eliciting the concrete action. Additional research is needed to 
trace the information flow from motivational to motor systems.

Another component is the verbal or nonverbal communication of 
emotions such as facial expression or vocal prosody [70]. The ability 
to verbally conceptualize emotions and to communicate emotional 
experiences plays an important role in the regulation of an ongoing 
emotional episode. For example, explicit emotion-labeling tasks have 
been shown to decrease the activation level of the amygdala [71, 72].

Finally, sociocultural factors may shape attitudes (relatively 
enduring, affectively colored beliefs, preferences, and predisposi-
tions toward objects or persons) as well as interpersonal stances 
(affective stance taken toward another person in a specific interac-
tion). The ability of the individual to form representations of 
beliefs, intentions, and affective states of others has a considerable 
importance for affective and interpersonal interaction. However, 
the effects of beliefs, preferences, and predispositions on lower lev-
els of emotional responding have attracted little attention. Top-
down processes may induce considerable variations of task and 
stimulus parameters by modulating lower-level automatic processes 
and by controlling the late behavior preparation stages during the 
emotional process. Thus, generalization to other paradigms and 
constructs has limitations because higher-level behavioral and cog-
nitive strategies that are part of the individual emotion regulation 
system ([50]; see later) modulate the emotion process.

The study groups of many fMRI studies have been relatively small 
and poorly described with respect to personality dimensions. Since 
several studies provide evidence for trait-dependent differences in 
responding [73–76], it remains unclear to what extent the results 
may have been influenced by interindividual differences of the par-
ticipating subjects. The representativeness of results is particularly 
poor if members of the social circle of the lab serve as participants 
instead of independently recruited participants. Thus, when the 
effects of an emotional paradigm interact with characteristics of the 
study groups (such as a low level of emotionality in subjects willing to 
participate in an activating scanning condition), this selection × treat-
ment effect may endanger generalizations to other populations.

Generalization to Other 
Subjects and Populations
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The prediction of future emotional or psychopathological disor-
ders on the basis of emotional behavior assessed in the scanner 
remains difficult [77]. Eliciting emotions in the imaging scanner is 
a highly artificial situation. It remains unclear to what extent these 
results can be generalized to other settings and, in particular, to 
real life settings. Small and Nusbaum [78] have criticized the 
unnatural MRI scanner setting and suggested an “ecological func-
tional brain imaging approach” that includes monitoring of natural 
behaviors using a multimodal assessment and environmental con-
text of presentation or behavior. Nevertheless, in contrast to the 
scanner, emotion in real settings is not restricted to simple reac-
tions but includes the full range of regulatory actions. By correlat-
ing fMRI and field data, such as, for example, generated by emotion 
monitoring during everyday life [79], the “ecological validity,” 
that is, the predictive value of cerebral perfusion patterns for real-
life emotions could be better evaluated.

3  fMRI Methods

A host of fMRI studies have identified the amygdalae as central 
structures in emotion processing (see Sect. 1 and Zald et al. [5], for 
example, for a review). The amygdalae lie in the anterior medial 
temporal lobe (MTL), bounded ventrolaterally by the lateral ven-
tricles and medially by the sphenoid sinuses (Fig. 1). The differing 
magnetic susceptibilities of these tissues cause large deviations in 
the static magnetic field, B0. There is also a strong gradient in B0 in 
the MTL, and differing precession frequencies lead to dephasing of 

Generalization to Other 
Times and Settings

3.1  Methodological 
Challenges

3.1.1  Introduction

Fig. 1 The amygdalae, central brain structures in emotion processing, lie in a region of moderate deviation 
from the static magnetic field (left) and very high static magnetic field gradients (right). The planes intersect in 
the amygdala at MNI coordinate (18, −2, −18), marked by arrows. Single subject measurement at 4.0 T
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the bulk magnetization and loss of signal in images. This problem 
is not restricted to the amygdala, however. Inferior frontal and 
orbitofrontal regions, likewise involved in emotion processing 
[80], are also zones of high static magnetic field gradient. In addi-
tion to signal loss, static magnetic field gradients also lead to echo 
times (TE) becoming shifted, so that BOLD sensitivity may be 
reduced, or signal may not be acquired at all (termed “Type 2” loss 
[81]). These problems are examined in Sect. 3.1.2.

Local variations in the static magnetic field strength confound 
spatial encoding of the MR signal, leading to image distortion. 
Particular considerations for the MTL in this regard are discussed 
in Sect. 3.1.3. Even at high field, deviations from B0 immediately 
in the amygdala are relatively moderate (Fig. 1 left; 10 Hz mea-
sured at the arrow position, for data acquired at 4.0 T) but the 
field gradient is high (2 Hz/mm at the same position), leading to 
very large distortions in neighboring structures, which can cause 
signal to encroach into the amygdalae.

The ventral brain is also prone to physiological artifacts of car-
diac and respiratory origin, as described in Sect. 3.1.4, which may 
be mitigated to some extent by simultaneous measurement of car-
diac and respiratory processes and the application of postprocess-
ing corrections. In addition to the measurement challenges of 
ventral brain imaging, the presence of large magnetic field gradi-
ents makes the ventral brain susceptible to stimulus-correlated 
motion (SCM) artifacts, as discussed in Sect. 3.1.5. These can lead 
to the appearance of neuronal activation (Fig. 2) arising from sub-
tle head movements which are time locked to stimuli.
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Fig. 2 Large static magnetic field gradients make the amygdala region prone to the artifactual appearance of 
neuronal activation when stimulus-correlated motion (SCM) is present. Left : Observed patterns of SCM of 
schizophrenic patients and controls in a 3.0-T experiment with three stimulus blocks (facial emotion and age 
discrimination “EMO” and “AGE”). Right : a baseline (no stimulus) study in which a subject executed submil-
limeter SCM similar to that of Patient 1. The contrast corresponds to the “EMO” periods (uncorrected p < 0.0001; 
t threshold = 5, Montreal Neurological Institute coordinates 22, −6, −16)
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A further potential confound is the presence of RSNs which 
colocalize with regions under study. These show slow fluctuations 
in the absence of stimuli and constitute sources of unmodeled 
noise and intertrial variation. The existence of a RSN in the amyg-
dalae (Fig.  3) offers a possible explanation of why small signal 
changes are generally recorded in these structures, despite the high 
neurovascular reactivity of deep gray matter nuclei. This and other 
RSNs which may involve the amygdala are described in Sect. 3.1.6.

In Sect. 3.1 we expand on the problems outlined here, and go 
on in Sect.  3.2 to detail approaches to optimizing conventional 
single-shot 2D gradient-recalled echo-planar imaging (EPI) to 
mitigate their effects, alternative sequences which are less sensitive 
to static magnetic field gradients and, in Sect. 3.3, methods to cor-
rect for image distortion, physiological noise, and SCM artifacts.

It is worthwhile to briefly review the problem of signal loss from an 
empirical perspective. A temporal resolution of 1–3  s is usually 
desirable in fMRI. The whole brain may be covered in this time by 
acquiring images with voxels of typically 3-mm size (or 27  μl). 

3.1.2  Signal Loss 
and BOLD Sensitivity Loss

Fig. 3 Signal changes in the amygdala in emotion experiments have to be measured against a background of 
resting state fluctuations. A resting state network recently been reported, covering the amygdala and basal 
ganglia (3.0 T, group independent component analysis of 26 young healthy adults). Adapted from [106] with 
permission from the ISMRM
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Relatively long TEs are employed, partly also as a technical neces-
sity—to allow time for gradient switching and echo sampling—but 
also to confer T2

* weighting. As well as providing sensitivity to 
BOLD effects, however, this allows time for dephasing from mac-
roscopic inhomogeneities to develop. The severe signal loss seen in 
EPI in the anterior MTL with typical parameters is illustrated 
Fig. 4 in the lower left two images.

In gradient-echo imaging, the MR signal decays with a time 
constant T2

*, comprising the transverse relaxation time, T2 (reflect-
ing irreversible decay arising from time-varying microscopic spin-
spin processes), and T2

′
, the reversible contribution to the transverse 

decay rate and the major source of BOLD contrast. T2,
′ itself can be 

separated into “mesoscopic” contributions (which operate on a 
scale smaller than the voxel, e.g., dephasing in the capillary bed), 
and “macroscopic” contributions (meaning larger than the voxel) 
which stem from bulk field inhomogeneities and which are depen-
dent on the tissues present, on the quality of shim, and on the 
scanning parameters such as voxel size and slice orientation. 
Separating these effects, the MR signal S in a gradient-echo experi-
ment decays such that at the TE it can be expressed [82] as:

Fig. 4 Effects of voxel size and acceleration factor on T2
* and echo-planar imag-

ing (EPI) image quality at high field (4.0 T). Top: T2
* in coronal and axial slices 

through the amygdala at two voxel sizes. Bottom: corresponding EPI in slices 
through the amygdala with acquisition voxel sizes of 4 × 4 × 4 mm, 3 × 3 × 3 mm, 
2 × 2 × 2 mm, and 2 × 2 × 2 with GRAPPA acceleration of factor 2, all with echo 
time (TE) = 32 ms
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This illustrates that the signal decay rate may be reduced by decreas-
ing the voxel size—to reduce the gradients across voxels, ΔBi—or 
by reducing the TE.

The aim of any attempt to optimize an EPI sequence is not just 
to maximize signal, described above, but also BOLD sensitivity (BS), 
which is equal to the product of image intensity and TE; for magneti-
cally homogeneous regions is a maximum when the EPI effective TE 
is equal to the T2

* of the target region [83]. In homogeneous regions, 
however, the presence of field gradients shifts the location of signal in 
k-space, mainly in the phase-encode direction (because of the low 
bandwidth), changing the local TE [81]. Through-plane field gradi-
ents lead to signal loss and reduce BS. If the component of the in-
plane susceptibility gradient in the phase-encode direction is 
antiparallel to the phase-encode gradient “blip” direction, then the 
TE is also reduced, reducing BS further. Conversely, if it is parallel to 
the phase-encode “blips” then TE increases. While this increases BS, 
to some extent compensating for signal loss, if the shift of TE is too 
large the echo will fall outside the acquisition window, leading to 
complete signal dropout. This is commonly observed in the anterior 
MTL for a negative-going phase-encode scheme.

This description motivates the optimization approaches to EPI 
in susceptibility-affected regions which will be outlined later in this 
section; compensating through-plane gradients, selecting image 
orientation and gradient direction to minimize echo shifts, and 
reducing voxel sizes to reduce field gradients. These techniques 
will be shown to increase both signal and BS.

Accurate spatial encoding in MRI is founded upon a homogeneous 
static magnetic field in the object. The location of signal is deduced 
from the local field strength under the application of small orthog-
onal, linear magnetic fields in directions usually referred to as slice 
select, readout, and phase-encode. The method is confounded if 
there are regional variations in the static magnetic field, which lead 
to signal mislocalization (distortion). Typical field offsets are illus-
trated in Fig.  1 (left) and lead to EPI distortions of the image 
shown in Fig. 4.

The extent of distortion, expressed as the number of pixels by 
which signal is mislocalized, is equal to the local magnetic field 

3.1.3  Image Distortion
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deviation divided by the bandwidth per pixel (the reciprocal of the 
time between measuring adjacent points in k-space), expressed in the 
same units. The bandwidth per pixel in the readout direction 
(rBWread/pix) is equal to the total imaging bandwidth (the signal 
sampling rate) divided by the image matrix size in the readout direc-
tion. In EPI, the pixel bandwidth in the phase-encode direction is 
smaller than this again by a factor of the image matrix size in the 
phase-encode direction. The fact that total bandwidth is often 
increased in proportion with the readout matrix dimension in order 
to keep rBWread/pix constant means that distortion (in distance 
rather than number of pixels) is approximately constant as a function 
of matrix size (and thereby resolution, at constant matrix size). To 
illustrate the size of expected distortions, in a 64 × 64 matrix acquisi-
tion, a typical rBWread might be 1500 Hz/pixel, giving (as 1500/64) 
a rBWphase of 23 Hz/pixel. A value of ΔB0 of 50 Hz (common at 
high fields, see Fig. 1) would lead to a shift of 0.03 voxels in the read-
out direction, but 2 voxels in the phase-encode direction, or 7 mm 
for a typical field of view for brain imaging. In a higher resolution 
acquisition with a 128 × 128 matrix and the same rBWread, rBW-
phase would be 12 Hz/pixels and the distortion 4 voxels, but also 
7 mm because of the proportionately smaller voxel size.

The relationship between EPI distortion and field strength is 
not simple, depending both on hardware and usage. Susceptibility-
induced field changes increase linearly with static magnetic field 
strength while gradient amplitude (the factor which limits sam-
pling rate) is approximately constant in the standard to high field 
regimes. While theoretically this leads to an approximate propor-
tionality between distortion and field strength, in practice higher 
acquisition bandwidths are often used at high field to the achieve 
shorter effective TEs, to match reduced T2

* times.
Image distortion frustrates attempts to coregister data from 

many subjects to a common probabilistic atlas [84], which can 
reduce significance in fMRI even in relatively homogeneous areas 
[85]. Established methods for correcting image distortion are 
compared for their performance in the amygdala in Sect. 3.3.1.

A number of physiological processes give rise to fluctuations in the 
MR signal which are unrelated to neuronal activation, and should 
therefore be corrected for or modeled in a statistical analysis. The 
amygdala area is particularly prone to cardiac artifacts due to the 
proximity of the arteries in the Circle of Willis, and to respiratory 
artifacts because of the susceptibility gradients.

Respiration leads to head motion, changes in the magnetic field 
distribution in the head due to changes of gas volume or oxygen 
concentration in the chest [86], and variation in the local oxyhemo-
globin concentration, probably due to flow changes in draining 
veins [87]. Subtle changes in respiration rate and depth are thought 
to be the origin of spontaneous changes in arterial carbon dioxide 

3.1.4  Physiological 
Artifacts
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level at about 0.03 Hz which have been shown to lead to significant 
low-frequency variations in BOLD signal [88]. The lag of 6 s in this 
process corresponds to the time taken for blood to transit from the 
lungs to the brain, and for cerebral blood flow volume to respond 
to CO2, a cerebral vasodilator. Magnetic field changes in the head 
particularly affect ventral brain imaging due high field gradients. 
Respiration-related artifacts typically affect the image periphery, 
making them problematic for the amygdala, which is usually at the 
anterior boundary of the signal-providing region.

Cardiac pulsatility causes expansion of the arteries, bulk motion 
of the brain, and cerebrospinal fluid flow and leads to the influx of 
fully relaxed spins into an imaging slice. As a consequence, the 
signal may increase in many of the arteries that lie close to the 
amygdala, such as the middle cerebral artery and other elements of 
the Circle of Willis [89]. Cardiac artifacts are particularly complex 
with regard to emotion studies as the amygdala innervates the 
autonomic nervous system via the hypothalamus and brainstem, 
increasing heart rate, as has been shown in fMRI [90], and human 
depth electrode studies [91]. Recently, fluctuations in cardiac rate 
have been shown to explain almost as much variation in the BOLD 
signal as the oscillations related to each cardiac cycle, as revealed by 
shifted cardiac rate regressors [92].

Cardiac and respiratory cycles are connected by a number of 
processes [93], leading to many regions showing BOLD fluctua-
tions of cardiac origin [92] being also observed in studies of respi-
ratory effects [94].

Cardiac and respiratory artifacts may be corrected for by a 
number of approaches, some of which require additional measure-
ments at the time of imaging. The effectiveness of these techniques 
in the ventral brain is outlined in Sect. 3.3.2.

Motion artifacts affect all regions of the brain, but are particularly 
problematic in emotion studies because the nature of the task 
material is prone to induce SCM as a startle, attention, or repulse 
response. Patients with disorders with emotional components 
(such as schizophrenia and posttraumatic stress disorder) are less 
likely to remain still throughout the experiment and the interac-
tion between motion and distortion in regions of high susceptibil-
ity gradient produces nonlinear pixel shifts that are not well 
corrected with rigid-body methods. Partial brain coverage proto-
cols, such as those that may be used to allow z-shimming or high 
spatial and temporal resolution fMRI in the amygdala, are also 
more prone to partial voluming in the outermost slices and spin 
history effects, in which motion between the acquisition of adja-
cent slices leads to some spins being excited twice within one rep-
etition time (TR) while others are not excited at all.

Head motion can be minimized using bite bars, vacuum cush-
ions, thermoplastic masks, or plaster head casts. As well as effective 

3.1.5  Motion Artifacts
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immobilization, casts allow for repositioning in longitudinal studies 
[95]. Such devices are not appropriate for emotion studies, however, 
due to the added degree of discomfort and distraction they provide.

SCM was originally investigated by Hajnal et al. [96] in hybrid 
simulations with quite large (3 mm) introduced pixel shifts, which 
led to peripheral correlations. A study by Field et al. [97] found 
that small-amplitude motion can lead to false positive results, par-
ticularly in regions of high field gradient. Likewise, larger motions 
can reduce significance and lead to false negative results. Two dis-
tinct patterns of SCM are often observed in fMRI experiments. As 
in the example of identified motion with sample schizophrenic 
patients and controls (Fig.  2, left), patients may execute large 
motions at the first presentation of a stimulus, and many patients 
and controls show very small displacements which endure for 
entire blocks. Reproducing the submillimeter head motions 
observed in that experiment in a separate session (without stimuli), 
these have been shown to lead to highly significant correlations in 
the amygdala which are difficult to distinguish from genuine acti-
vation (Fig. 2, right), a problem not mitigated by standard motion 
correction methods [98].

An additional methodological confound comes in the form of 
RSNs, which constitute additional sources of signal fluctuations 
unrelated to experimental task. In the absence of tasks or stimuli, 
the brain undergoes slow (0.01–0.1 Hz) fluctuations in function-
ally related networks of brain regions [99, 100]. These endure dur-
ing task execution, and have been shown to account not only for 
much of the intertrial variation in the BOLD response in evoked 
brain response [101], but also to the intertrial variability in behav-
ior [102]. Approximately ten such RSNs have been discovered 
over the past decade [99, 100, 103–105] in networks relating to 
sensory or cognitive function. A network with similar low-
frequency characteristics has recently been identified in the amyg-
dala and basal ganglia [106].

The network illustrated in Fig. 3 shows the results from a group 
of independent component analysis (ICA), performed with 
MELODIC [107], of resting state data acquired from 26 subjects. It 
is continuous, fully incorporating symmetrically the striate nuclei 
(pallidum, puitamen, and caudate nuclei), extending inferiorly to the 
amygdaloid complexes. The network is weaker than those previously 
reported (measured by the amount of variance it explains in the data), 
but is reproducible across subgroups of subjects, runs, and resting 
state conditions (fixation and eyes closed) and offers a tantalizing 
explanation as to why, despite the fact that neurovascular reactivity is 
high in deep gray nuclei, BOLD signal changes are weaker and less 
consistent in the amygdalae and basal ganglia than in the cortex.

This may not be the only RSN in which the amygdala is 
involved. Correlations were observed between the amygdalae, and 

3.1.6  Colocalized Resting 
State Networks
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between the amygdalae and hippocampi and anterior temporal 
lobes in one of the earliest resting state analyses, using functional 
connectivity [100]. The amygdala was also listed as an element in 
the “default mode” network [108], when originally reported as 
regions showing deactivations across a number of tasks in PET 
[109]. The fact that the amygdala has not been observed as part of 
this network in this context may relate to the technical challenges 
of measurement discussed in this chapter.

While the signal to noise ratio (SNR), the magnitude of BOLD 
signal changes, and the specificity of the BOLD response to micro-
vascular contributions all increase with field strength, so do physi-
ological noise, field inhomogeneities, and physiological artifacts 
which specifically affect the anterior MTL. The advantages of high 
field for emotion studies are therefore restricted to particular 
regimes and methods in which these problems are minimized. 
Human emotion fMRI studies have been carried out at field 
strengths from 1.0 to 7.0  T.  In line with the development of 
sequences and approaches to EPI in susceptibility-affected area 
which are discussed in Sect.  3.2.2–3.2.8 (high-resolution single 
and multishot EPI, multiecho and spiral acquisitions, gradient 
compensation, and parallel imaging), emotion fMRI in the high 
field regime (3.0–4.0  T) has become commonplace, although 
applied studies have generally used standard sequences and param-
eters despite the problems which have received attention in the 
MR literature [110] and a number of promising remedies (see the 
following sections). Ultra-high field strength studies of emotion 
are still sparse, however, and it is likely that they will be restricted 
to highly specific questions during the next 5–10 years of hardware 
and sequence development.

Theoretical gains in SNR at high field are limited by physio-
logical noise, which increases both with field strength and voxel 
size, and causes time-series SNR (tSNR) to reach as asymptotic 
limit with voxel volume [111]. This limit was found to increase 
only modestly with field strength, being 65 at 1.5 T, 75 at 3 T, 
and 90 at 7 T, so that for large (5 × 5 × 3 mm) voxels, tSNR was 
only 11 % higher at 3 T than at 1.5 T, and only 25 % higher at 7 T 
than 1.5 T. The tendency toward asymptotic behavior began at 
relatively small volume volumes, with 80 % of the asymptotic 
maximum being reached at 28.6, 15.0, and 11.7 mm3 at 1.5, 3, 
and 7 T, respectively. For small voxels, however, where thermal 
noise dominates, tSNR gains were almost linear with field 
strength. In the same study, the authors found that with 
1.5 × 1.5 × 3 mm3 voxels, tSNR increased by 110 % at 3 T com-
pared to 1.5 T, and by 245 % at 7 T compared to 1.5 T [111]. 
This study clearly shows that tSNR gains are to be made at high 
field in the small voxel volume regime.

3.2  MR Methods, 
Sequences, 
and Protocols

3.2.1  Field Strength
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These tSNR results also explain the often modest gains achieved 
in fMRI studies at higher field, particularly in regions affected by 
signal dropout. Krasnow et  al. [112] compared activation in 
response to perceptual, cognitive, and affective tasks at 1.5 and 3 T 
with a relatively large voxel protocol (3 × 3 × 4 mm) and observed 
only moderate increases in activated volume at 3 T for the percep-
tual and cognitive tasks (23 and 36 %, respectively), but no signifi-
cant improvement in the activated amygdala volume due to 
increased susceptibility-related signal loss. A high-resolution, high-
field approach has been exemplified in the only human study of 
amygdala function at 7 T to date of which we are aware, which was 
carried out at submillimeter resolution [113].

These studies define the regime in which field strength gains 
are to be made, but it is fair to ask why one should move to high-
resolution measurements if the neuroscience question does not 
require, for instance, subnuclei of the amygdala to be resolved, 
but—as is more commonly the case—the study of interactions 
between the amygdalae and the cortex, for which whole brain cov-
erage is essential. The use of high resolution here is not principally 
to distinguish activation in small structures, but to reduce both 
physiological noise and susceptibility artifacts. A number of works 
have shown the value of averaging thin slices, downsampling, and 
smoothing data acquired at high resolution [114–116] and using 
multichannel coils [115] to regain losses in SNR inherent to small 
voxels generally and yielding net gains in susceptibility affected 
areas [115, 117].

The effect of signal dephasing arising from through-plane gradi-
ents may be reduced by creating a composite image from a number 
of acquisitions in which different slice-select gradients are applied 
[118], a process known as z-shimming. In each image the applied 
gradient pulse is appropriate to counteract susceptibility gradients 
in particular regions. The method is effective in regaining signal in 
the anterior MTL, but clearly reduces temporal resolution by a fac-
tor equal to the number of images acquired, usually a minimum of 
3. Alternatively, a single, moderate preparation pulse may be used. 
This reduces through-plane dephasing in affected areas at limited 
cost to BS and signal in homogeneous areas, and allows slices to be 
orientated so that TE shifts are small, reducing signal loss due to 
in-plane gradients [119]. z-Shimming and other compensation 
schemes have been applied in a number of other sequences 
described in this section.

Spins may also be refocused using tailored radio frequency 
pulses which create uniform in-plane phase but quadratic phase 
variation through the slice, allowing dephasing to be “precompen-
sated” [120]. Analogous to z-shimming, in the original implemen-
tation a number of acquisitions with different precompensations 
were required, suited to different regions. More recently 3D 

3.2.2  z-Shimming, 
Gradient Compensation, 
Tailored RF Pulses
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versions have been developed, and while these are promising the 
pulse lengths are long, and the distribution of susceptibilities must 
be known [121], or calculated iteratively online [122]. These are, 
however, important steps toward single-shot compensation of sus-
ceptibility dropout.

Divergent findings and recommendations for the optimum slice 
orientation for amygdala fMRI are due to the absence, until rela-
tively recently, of an adequate description of signal loss and BS in 
the presence of field gradients [81, 119, 123].

In many early studies, quite nonisotropic voxels were used to 
achieve short TR while minimizing demands on scanner hardware, 
with slice thickness being substantially larger than the in-plane 
voxel size. Gradients across voxels were highest then, and signal 
loss most severe, if the direction of strongest field gradient was 
along the slice (through-plane) direction [124]. With many studies 
finding that the direction of the field vector across the amygdala 
was principally superior-inferior [125], this prescription precluded 
an axial orientation. As bilateral structures, the amygdala could be 
imaged in the same slice in the coronal but not the sagittal planes, 
leading to the coronal orientation being preferred by many [110].

The optimum imaging plane is also dependent on whether 
gradient compensation is used [81]. If so, through-plane gradients 
may be compensated for with a moderate gradient in the slice 
direction, although this will lead to a small decrease in BS in unaf-
fected areas. The slice can then be orientated so that in-plane 
gradients are below the critical threshold for Type 2 signal loss. 
The value of this has been demonstrated in the orbitofrontal cortex 
[119] but the approach yields lower rewards in the amygdala 
region [126] as gradients are higher (making it more difficult to 
find a suitable value for compensation), and are more variable 
between subjects.

The simulations of Chen et  al. [125] for the amygdala sug-
gested that the maximum BS was to be achieved by orienting the 
slice direction perpendicular to the maximum gradient vector and 
the readout direction parallel to it, indicating an (oblique) coronal 
orientation with superior–inferior readout. The angle between the 
gradient vector and the superior–inferior direction was shown to 
vary widely between subjects (from −7° to +26° at 1.5 T, from −5° 
to +34° at 3 T), meaning that field gradients need to be mapped 
for each subject before measurement. This scheme also invokes 
distortions which are asymmetric about the midline (left–right). If 
erroneous conclusions about lateralization are to be avoided, resid-
ual distortions in the amygdala should be symmetric, requiring the 
phase–encode direction to be superior–inferior for coronal slices or 
anterior–posterior for axial slices.

As well as the direction of imaging gradients, the sign of phase-
encode blips is important for signal loss and BS [123]. Encoding in 

3.2.3  Slice Orientation 
and Gradient Directions
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EPI can be either with a large positive phase-encode “prewinder” 
followed by a succession of small negative “blips,” or a negative 
prewinder followed by positive blips. In homogeneous fields these 
schemes are equivalent, but we have seen that in the presence of 
susceptibility gradients echo positions are shifted away from the cen-
ter of k-space, along the phase-encode axis. Positive and negative 
blip schemes have quite different properties, therefore, depending 
on whether the component of susceptibility gradient in the phase-
encode direction is itself positive or negative [123]. The phase-
encode direction (PE), slice angle, and z-shimming prepulse gradient 
moments (PP) that lead to maximum BS for EPI with otherwise 
standard EPI parameters (TE = 50/30  ms at 1.5  T/3  T, 
3 × 3 × 2 mm3 voxels) have been measured throughout the brain by 
Weiskopf et al. at 1.5 and 3 T [126]. They define positive slice angles 
as being those in which, beginning from the axial plane, the anterior 
edge is tilted toward the feet, and a positive PE as being that in 
which the prewinder gradient points from the posterior to the ante-
rior of the brain. In the amygdala they find that the highest BS is 
achieved with positive PE, a −45° slice tilt and a PP = +0.6 mT/m ms 
at 3 T, and positive PE, −45° slice tilt and PP = 0.0 mT/m ms at 
1.5 T. These values led to a 14 % increase in BS at 3 T over a standard 
acquisition (with positive PE, a −0° slice tilt and a PP = −0.4 mT/m ms) 
but only 5 % at 1.5 T. This indicates that BS can be increased by 
selecting optimum geometry parameters and compensations gradi-
ents, although improvement is more modest than that which has 
been demonstrated with the more technically challenging or time-
consuming strategies described in this chapter. The gradient and 
geometry values suggested in Weiskopf et  al. [126] should be 
adopted for EPI with standard parameters at these field strengths. At 
other field strengths their analysis could be followed, or interpolated 
values adopted from the trends evident in that study.

Among many solutions to the problem of signal loss in the anterior 
MTL, reduced voxel size was established very early as an effective 
means of mitigating susceptibility-related signal loss [127, 128]. 
Equation (2) describes how the rate of signal decay is reduced with 
voxel size by lowering field gradients across voxels. The effective-
ness of this can be seen in the 4-T images of Fig. 4 over a range of 
resolutions, with T2

* in the amygdala (measured with a multiple 
gradient-echo sequence with the same geometry as the EPI) 
increasing from 22 to 38 ms when the voxel size is reduced from 
64 to 8 mm3, with corresponding EPI signal increase apparent in 
the anterior MTL.

Reducing voxel size comes at the expense of temporal resolu-
tion (or brain coverage) and SNR. The relationship between image 
SNR and voxel volume, ΔV, is

3.2.4  Voxel Size
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where Ni is the number of samples in direction i and rBW the 
receiver bandwidth [129]. The commonly held view that voxel 
volume is simply proportional to SNR is premised on changing 
the volume via the field of view [130], or that, in addition to 
increasing Nx and Ny by a factor f, (considering only in-plane 
resolution) receiver bandwidth is also increased by the same fac-
tor. If receiver bandwidth and field of view are held constant, 
however, then we see from Eq. (3) (because N N N k Vx y z = / | ,FOV  
where k is the total imaged volume) that SNR is proportional to 
the square root of the voxel volume, and SNR may be restored by 
downsampling high-resolution images. In this time-consuming 
scheme, partial k-space acquisition may be used to achieve the 
desired TE, SNR can be increased with multichannel coils, as has 
been validated for the MTL [115] and parallel imaging used to 
reduce an otherwise long TR.

While this analysis provides the basis for the dependence of 
image signal on imaging parameters, it neglects the effects of phys-
iological noise. The most important measure of signal in this con-
text is tSNR, which translates into the feasibility of detecting a 
specified signal change in fMRI [131] and has been shown to be 
useful in assessing the viability of amygdala fMRI in individual 
subjects [132]. In a study of optimum parameters for GE-EPI for 
3-T amygdala EPI with a volume coil, a protocol with approxi-
mately 2-mm isotropic voxels was found to yield 60 % higher tSNR 
than a protocol with standard parameters (with approximately 
4-mm isotropic voxels) [117], despite having been measured at 
twice the receiver bandwidth. Additional gains with smaller voxels 
(thinner slices) were not large, because T2

* had already increased to 
a value close to that in homogeneous regions. This is in concor-
dance with models calculations which suggest that 2 mm repre-
sents the smallest voxel size that should be used for amygdala 
imaging providing the activated size is itself at least 2 mm [125].

There are many differences between the conditions and met-
rics of the methodological work cited and typical fMRI studies. It 
is encouraging, therefore, that these findings have been confirmed 
in the significance and extent of amygdala activation in fMRI 
experiments [133, 134].

In summary, small voxels should be used in high field strength 
studies in order to operate in a regime dominated by technical, 
rather than physiological noise. In inhomogeneous regions this 
results in reduced field gradients, reducing signal loss and echo 
shifts, making BS more uniform in the volume. Time-series SNR 
may be increased by using multichannel coils and downsampling 
small voxels.
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Taking the simplest approach of matching effective echo time 
(TEeff) to the T2

* of the structures of interest in GE-EPI might be 
seen as being problematic in large voxel size acquisitions, with T2

* 
s varying quite widely (e.g., between the amygdala and the fusi-
form face area). One solution is to use a multiecho sequence, in 
which the each time of each image is appropriate for regions with 
particular field gradients, as will be described in more detail in 
Sect. 3.2.8. A novel solution to matching TEeff to T2

* in the amyg-
dala without sacrificing BS in more dorsal slices is to use an axial 
acquisition with slice-specific TE, demonstrated at 1.5  T with 
TEeff = 60 ms in dorsal slices, TEeff = 40 ms in ventral slices, and a 
transition zone with intermediate effective TE [135].

It should be remembered, though, that the maximum of BS is 
quite flat as a function of TE, and TE is itself not well defined in 
EPI. In the previous sections, we also saw that in-plane susceptibil-
ity gradients change local TE [81]. This exposes the limitation of 
the approach of simply reducing the TEeff of the sequence. In the 
common, negative blip scheme, signal in the anterior MTL will in 
fact be shifted to a longer TE.  Using a short TEeff makes the 
sequence more prone to complete (type 2) signal loss.

This explains the experimental findings of Gorno-Tempini 
et al. [136] and Morawetz et al. [134]. In 2-T dual-echo EPI with 
large voxels, Gorno-Tempini et al. found that although signal loss 
was reduced at the short TE (26 ms) BOLD activation was signifi-
cantly greater in the hippocampus at the longer TE (40  ms). 
Morawetz et al. [134] studied four EPI protocols in their efficacy 
at mapping amygdala activation, using variants with two different 
TE (27 and 36 ms) and slices thicknesses (2 and 4 mm), all with 
high in-plane resolution (2 mm). Activation results were poor in 
the 4-mm protocols, even at the shorter TE.

A more effective approach than reducing TEeff is to reduce 
susceptibility gradients, and thereby signal dephasing and echo 
shifts, using the techniques described earlier; gradient compensa-
tion, selection of appropriate gradient direction and slice orienta-
tion, and the use of smaller voxels. This increases T2

* in 
susceptibility-affected regions and, by reducing echo shifts, makes 
BS more homogeneous throughout the imaging volume. 
Conditions then approach those with a homogeneous static field, 
where BS is maximized by using TEeff = T2

* .
The increase in T2

* in the amygdala with reduced voxel size is 
illustrated at 4 T in Fig. 4; from 22 ms in a 4 × 4 × 4-mm acquisition 
to 38 ms in 2 × 2 × 2-mm data, consistent with previous results at 
3 T [117]. Likewise, increase in BS was illustrated in the Morawetz 
et al. study [134], in which robust amygdala activation was only 
detectable in the high-resolution acquisition.

The previous sections have shown that many of the techniques 
which mitigate susceptibility-related signal loss in the amygdala, 

3.2.5  Echo Time

3.2.6  Parallel Imaging
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hypothalamus, and MTL are also time consuming, limiting either 
temporal resolution or brain coverage. This is undesirable where 
brain coverage cannot be reduced to the amygdala. Parallel imaging 
allows acceleration by undersampling k-space and using the sensi-
tivity profiles of a number of receiver channel to reconstruct data 
without image fold-over [137, 138]. By this means it is possible to 
reduce TEeff, which reduces susceptibility loss, and to reduce TR by 
the acceleration factor. Image distortions and echo shifts are like-
wise reduced by the acceleration factor so that even at the same 
effective TE as in a conventional acquisition, signal loss in the 
amygdala region is lower (Fig. 4, bottom right). The noise proper-
ties of images reconstructed from parallel acquisition lead to BS 
reductions of the order of 15–20 % in other regions, however [139].

The effectiveness of parallel imaging and suitable acceleration fac-
tors for the MTL have been studied by Schmidt et al. [140]. Statistical 
power in the study of MTL activation was higher in the parallel-acqui-
sition data with an acceleration factor of 2 than in the acquisition with-
out acceleration, but neither image quality nor statistical power 
improved with higher acceleration factors, as noise and reconstruction 
artifacts reduced tSNR prohibitively. Particular gains in BS can be 
made in the MTL using parallel imaging with a modest acceleration 
factor combined with high-resolution imaging [115]. Combining 
parallel imaging, high-resolution and high field has even allowed dif-
ferential response of the hypothalamus to be recorded in response to 
funny as opposed to neutral stimuli at 3 T [141, 142], which could 
potentially be used to diagnose narcolepsy and cataplexy.

The following is a consideration which is common to fMRI studies in 
all brain regions. The flip angle that should be used in a sequence is 
that which maximizes the signal with a particular experimental TR. In 
a spoiled gradient-echo sequence this is the Ernst angle, θE, given by
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T1 values can be taken from the literature, if available, or mapped in a 
single study of a representative group of subjects, mostly simply using 
an inversion recovery sequence and a range of inversion times. At 
high (3.0–4.0 T) and very high field (7.0 T or higher), dielectric 
effects lead to B1 inhomogeneity, and flip angles achieved deviate 
from nominal values. Particularly at 7.0 T it is worthwhile to map the 
RF field [e.g., using the 180° signal null point using a simple spoiled 
gradient-echo sequence [143] to calibrate nominal flip angles].

If multiple echo images are acquired following a single excitation, the 
range of TEeff in these provides near-optimum BS for a number of 
regions [144, 145]. Images acquired at different TEs may be analyzed 
separately, or combined to maximize BOLD contrast-to-noise ratio 
[145]. Acquiring multiple images in a single shot also allows 

3.2.7  Flip Angle

3.2.8  Alternatives to 2D, 
Single-Shot, Gradient-Echo 
EPI
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additional features to be built into the sequence, such as 3D gradient 
compensation, in which different combinations of compensation gra-
dients are applied to each echo [146], leading to excellent signal 
recovery in the amygdala in the combined image [147]. Alternatively, 
the phase-encoding gradient polarity may be reversed to yield images 
with distortions in opposite directions, allowing for their correction 
[148].

Similar multiecho and compensation techniques have been 
applied to spiral acquisitions. A spiral-in trajectory has been shown 
to reduce signal loss compared to a conventional spiral–out scheme 
with the same TE, and SNR and BS could be increased with a spiral 
in–out scheme by combining images optimally from the two acqui-
sitions [149]. A number of variants of this have been developed to 
further reduce susceptibility artifacts, including applying a z-shim 
gradient to the second echo [150] or subject-dependent slice-
specific z-shims to both echoes [151].

A number of segmented methods are being developed to over-
come the temporal constraints of multiecho and high-resolution 
acquisitions. In conventional segmented EPI, subsets of inter-
leaved k-space lines are acquired after successive excitations. The 
higher phase-encode bandwidth leads to reduced distortions and 
smaller echo shifts, but the method is inherently slow and prone to 
motion and physiological fluctuations, as each image is built up 
over a number of TRs. In the MESBAC sequence, navigator echoes 
are acquired in both the readout and phase-encode directions 
between each segment. Multiple echoes are acquired with different 
amounts of compensation for each echo [152], and combined to 
give impressive signal in inferior frontal areas.

In the subsections of Sect. 3.2 we have looked at the influence of 
field strength, gradient compensation, slice orientation, voxel size, 
TE, and acquisition acceleration factor on susceptibility-related 
signal and BS reduction in the anterior MTL, as well as discussing 
some variants of multiecho and spiral schemes which have been 
tailored for this region. While the interdependent nature of EPI 
parameters and changing considerations at different field strength 
necessarily make some considerations complex, we would like to 
pick out two lines of approach presented here as being particularly 
effective, and clarify recommendations.

The first approach is high-field, high-resolution single-shot 
EPI with gradient compensation and acceleration. BOLD signal 
changes are greater at high field (3.0–4.0 T), and the tSNR advan-
tages of high field strength are capitalized upon by measuring with 
small (circa 8-μl voxels), where thermal noise rather than physio-
logical noise dominates. Measuring with small voxels reduces sig-
nal dephasing, making T2

* more homogeneous. Shifts in local TE 
are also less, reducing Type 2 signal loss and increasing BOLD 
sensitivity. Moderate slice select gradient compensation and an 
oblique axial acquisition with a tilt between 20 and 45° (anterior 

3.2.9  Summary
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slice edge toward the head) reduces in-plane gradients and echo 
shifts further. With susceptibility gradients reduced—evidenced by 
T2

* values close to those in magnetically homogeneous regions—
BS can be maximized by setting the TEeff = T2

* . The TEeff can be 
reached using parallel imaging acceleration (e.g., factor 2), which 
further reduces both TE shifts and image distortion. Images 
acquired with these parameters have high signal in the anterior 
MTL, low distortion, and quite homogenous BS. Time-series SNR 
can be increased before statistical analysis by downsampling or 
smoothing images. This approach is attractive in that it may be 
achieved on most modern high field systems.

Not only the value of gradient compensation was discussed in 
Sect. 3.2.2, but also the high cost in temporal resolution, if images 
with a number of compensation gradients are acquired. The second 
approach we wish to highlight involves the application of a range 
of compensation gradients to each of a number of echoes acquired 
after a single excitation, so reducing the time penalty. Both the 
multiecho echo-planar [146] and multiecho spiral acquisitions 
[151] described in Sect. 3.2.8 have been shown to be effective in 
reducing susceptibility-related signal loss in the anterior MTL.

The field map (FM) method was first described by Weisskoff and 
Davis [153] and developed by Jezzard and Balaban [154]. In 
Sect. 3.1.2 we saw that distortion in EPI is only significant in the 
phase-encode direction and that the number of pixels by which 
signal is mislocated is equal to the local field offset divided by the 
bandwidth per pixel in the phase-encode direction. In the fieldmap 
method, static magnetic field deviations, ΔB, are calculated from 
the phase difference, Δϕ, between two scans with TE separated by 
ΔTE (or a dual-echo scan), using the relation D DB = 2pg jTE . 
This map is distorted (forward-warped) to provide a map of the 
voxel shifts required to reverse the distortion at each EPI location. 
Gaps in the corrected image are filled by interpolation.

While undemanding from the sequence perspective, considerable 
postprocessing is required to produce FMs that do not contain errors. 
Phase imaging is only capable of encoding phase values in a 2π range, 
with values outside this range being aliased, causing “wraps” in the 
image. These can be removed in the spatial domain using a number of 
freely available algorithms (e.g., PRELUDE [155] or ΠUN [156]), 
or by examining voxel-wise phase evolution in time if three or more 
echoes are acquired [157]. If imaging is being carried out with a mul-
tichannel radiofrequency receive coil, phase images created via the 
sum-of-squares reconstruction [158] will show nonphysical disconti-
nuities from arbitrary phase offsets between the coil channels (incon-
gruent wraps) unless these offsets are removed [159, 160]. 
Alternatively, images from channels may be processed separately and 
individual FMs, weighted by coil sensitivities, combined. In 2D spatial 
unwrapping, additional global, erroneous 2π phase changes are occa-
sionally inferred between TE when the algorithm begins to unwrap 

3.3  Correction 
Methods
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from different sides of a phase wrap at the two TE. In multichannel 
imaging, these slice phase shifts may be identified by examining the 
consistency between coil channels [161], as may unreliable voxels at 
the image edge and in regions of high-field gradient. The FM may 
finally need to be smoothed to remove high frequency features and 
dilated to ensure that it extends to the periphery of the brain.

In the point spread function (PSF) approach [162] applied to 
distortion correction [163], the imaging sequence is similar to 
EPI, but with the initial phase prewinder gradient replaced by a 
phase gradient table, the values are applied in a loop. The PSF of 
each voxel is the Fourier transform of the acquired data, and the 
displacement of the voxel is the shift of the center of the PSF (e.g., 
if the center of this is at zero additional phase, this corresponds to 
no local field offset). For one major scanner manufacturer, this 
method has been robustly implemented with the flexibility to be 
used for parallel imaging with high acceleration factors [164].

The FM and PSF methods have been compared at 1.5 T [163]. 
The PSF was found to be generally superior, although some con-
clusions were based on deficiencies in FMs in regions of high field 
gradient which may be improved upon.

The effectiveness of the two methods in correcting larger 
distortions at 4.0  T is shown in Fig.  5, focusing on a section 

Fig. 5 Distortion correction of echo-planar imaging (EPI) at high field (4.0 T). A comparison of field-map (col-
umn 3) and point-spread function (column 4) correction of distortion in EPI (column 2) at the level of the 
amygdala (top row) compared to a more dorsal section (bottom row). Salient features have been copied from 
a gradient-echo geometric reference scan (column 1)
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through the amygdala (top row), and comparing this with the 
situation in a more dorsal slice (bottom row). Raw and corrected 
EPIs are compared to a gradient-echo reference which has the 
same (subvoxel) distortion in the readout direction, but no dis-
tortion in the phase-encode direction. The distortion at the 
anterior boundary of the amygdala (A) is circa 3 mm—moderate 
compared to the displacement of the ventricles (9 mm at B) and 
the frontal gray-white matter border indicated at C (12 mm). If 
the multiplicity of phase information available from multichan-
nel coils is used in the FM method [161], both FM and PSF 
methods perform very well in all areas, with only minor errors at 
the periphery of the FM-corrected images due to residual field 
map inaccuracies at those locations (at D, not present in the 
PSF-corrected images).

The choice of correction method is often a pragmatic one 
based on which is more robustly and conveniently implemented.

Physiological fluctuation in a sequence of gradient-echo images can 
be corrected using a navigator echo technique [165]. A single echo 
is acquired before the encoding scheme is begun and used to amend 
the phase changes in the image data which arise from susceptibility 
effects. This “global” correction approach, using the central k-space 
point only, can be extended to 1D [166] and 2D [167]. These 
methods are effective, but have as drawbacks an increase in TR.

To avoid them being aliased in EPI time series, respiratory 
fluctuations (circa 0.2–0.3  Hz) and cardiac fluctuations (circa 
1 Hz) would need to be sampled at least at 2 Hz. That is, the TR 
of the sequence would need to be 500 ms or less. Typical TRs in 
whole-brain fMRI are 1–4 s, and the previous sections have indi-
cated that many of the strategies that should be implemented to 
improve data quality in fMRI for emotion studies lead to longer 
repetition times. Respiratory and cardiac fluctuations will nor-
mally be aliased, then, and not generally into a particular fre-
quency band [168]. Simple band-pass filtering is therefore not 
generally possible; although a range of alternative correction 
methods have been developed.

A class of correction methods requires additional physiological 
measurement to be made concurrent with the fMRI time-series, 
using a respiration belt to monitor breathing and an electrocardio-
gram or pulse oximeter to monitor heart rate. Applied in image 
space, the RETROICOR correction method involves plotting pix-
els according to their acquisition time within the respiratory cycle 
(classified also by respiration depth) and subtracting a fit to fluctua-
tions over the cycle [169]. Despite the many reasons why physio-
logical artifacts are expected to particularly affect amygdala fMRI, 
their correction with RETROICOR was found to bring only mod-
est improvements in group fMRI results in an emotion processing 
task; up to 13 % in t statistic values depending on the degree of 

3.3.2  Correction 
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smoothing [170]. Those improvements were mostly due to cor-
rection of cardiac effects. Recent findings that cardiac rate changes 
lead to signal changes of similar size to the effect due to cardiac 
action itself [88], which are not modeled in the RETROICOR 
approach, suggest that further gains are possible.

Modeling physiological fluctuations [171] by including mea-
sured signal as “Nuisance Variable Regressors (NVRs)” is a conve-
nient alternative to fitting and removing them. A detailed 
examination of these and other sources of noise showed respiratory-
induced noise particularly at the edge of the brain, larger veins and 
ventricles, and cardiac-induced noise focused on the middle cere-
bral artery and Circle of Willis, close to the amygdala [168], which 
could be well modeled.

A number of image-based methods for physiological artifact 
correction have been developed, which do not require physio-
logical monitoring data. Physiological fluctuations can be mod-
eled with NVRs based on ventricular and white matter ROI 
values [172]. Alternatively, the data can be decomposed using 
ICA (e.g., MELODIC [173] or GIFT [174]) and components 
relating to physiological processes identified with automated or 
semiautomated methods. These can be based on experimental 
thresholds [175], statistical testing [176], automatic threshold-
ing [177], or supervised classifiers [178]. Once identified, these 
components can be removed from the data. While in their 
infancy, these methods are very promising, particularly for the 
ventral brain. Tohka et al., for instance, demonstrated marked 
Z-score increases in frontal ventral regions and other areas close 
to susceptibility artifacts.

In patient group studies, Bullmore et  al. [179] have shown the 
need to compare the extent to which SCM explains variance 
between the groups, and suggest that this be identified using an 
analysis of covariance (ANCOVA). Without this approach, differ-
ences between the groups arising from higher SCM in the 
schizophrenic group in their study would have been attributed to 
differential activation in response to the task.

In the example of Fig. 2 (left), realignment of the time series 
in the motion-only replication did not substantially reduce the 
amygdala SCM artifact (right), but including identified motion 
parameters in the model as NVRs was effective [168, 180]. 
Alternatively, a boxcar NVR corresponding to presentation and 
response periods can be included in the model [181]. This and a 
number of other studies [182] have shown that the temporal 
shift in response introduced by the hemodynamic response func-
tion (HRF) makes it possible to separate motion from activation 
for short presentation periods, making event-related designs less 
sensitive to motion than block designs.

3.3.3  Correction 
of Stimulus-Correlated 
Motion Artifacts

fMRI of Emotion



482

4  Summary and Discussion

Emotional neuroimaging is a rapidly expanding area that provides 
an interface between neurobiological work and psychophysiologi-
cal emotion research. One important view that has emerged from 
the area of behavioral neuroscience is that emotional processes play 
a central role in the adaptive modulation of perceptual encoding, 
learning and memory, attention, decision-making, and control of 
action [9]. Many of neuroimaging studies have demonstrated that 
amygdala activation, for example, modulates attention and mem-
ory storage in other brain regions such as the hippocampus, stria-
tum, and neocortex. Such interactions may occur as facilitations or 
modulations of neurocognitive function at several levels of process-
ing. Conversely, recent work has shown that the organism is pre-
vented from excessive emotional activation not only by low-level 
habituation or negative feedback mechanisms but also as a result of 
protective inhibition processes. Diverse behavioral and cognitive 
strategies have been identified that modulate and downregulate 
the ongoing emotion process [6]. The modulating effects on emo-
tional arousal during an emotional episode such as rejection (vent-
ing and disengagement) or accommodation (relaxation, distraction, 
reconceptualization, rationalization, or reappraisal) deserve further 
inspection with respect to the involved neural mechanisms.

Although important advances have been made in the area of 
human emotion perception, learning, and autonomic conditioning, 
research has typically been limited to a small number of primary and 
mostly negative emotions such as fear, anger, or disgust. Limiting 
the range of investigated categories (neglecting shame, guilt, inter-
est, etc.), dimensions (neglecting positive emotions such as care, 
support, etc.) and behavioral procedures does not do justice to the 
complexity of the multistage emotional appraisal process described 
above [29]. It is equally important but more difficult to identify the 
correlates of complex emotions such as those resulting from beliefs, 
preferences, predispositions, or interpersonal exchange. Not only 
the social dimensions such as untrustworthiness or dishonesty [183, 
184], but also positive aspects such as social fairness [185], trust, 
and supportiveness play a role. Moreover, an understanding of 
modulating sociocultural influences is essential for a comprehensive 
conceptualization of human emotion [29].

Current neuroimaging research on emotion can be described as 
an ongoing construct validation process [186], which draws upon 
convergent and divergent associations of local activation variables and 
psychological constructs. The experimental measures (operational-
izations of psychological constructs) are expected to be correlated 
with regional brain activations. It is evaluated whether topographi-
cally distinct patterns of activation in a certain region consistently 
predict engagement of different processes (for an example in the area 
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of cognitive processing, see Ref. [187]). Indicators of a different con-
struct are expected to correlate with activations of different areas. 
This corresponds to the well-known double dissociation strategy that 
inspects task by localization interactions in neuropsychology [64].

This validation process typically starts at a relatively broad con-
struct level and proceeds downward in the hierarchy of constructs 
to finally specify within-systems constructs. Previous studies have 
demonstrated a relatively high cross-laboratory repeatability of 
emotional brain activation patterns at a higher systems level. At 
lower levels, however, the reliability of psychological or activation 
data may decline depending on limitations of the instruments.

Nonetheless, high-field fMRI scanners permit an improved dis-
crimination of activations, for example, within the different subnuclei 
of the amygdala [5]. It is evident that increased discrimination on the 
neural side must be accompanied by a refined technology to assess 
more fine-grained emotional constructs on the behavioral side.

Neuropsychological construct validation requires additional 
physiological data to obtain some kind of convergent information 
about the indicator variable. At the neurophysiological level, the 
perfusion mechanisms has been elucidated by combining the greater 
spatial resolution of fMRI with the real-time resolution of intracorti-
cal local field ERP (LFP) recordings. The neurophysiological cou-
pling mechanisms of neural activity and the BOLD response can 
thus be assessed [188]. An application of both fMRI methods and 
electrophysiological approaches (e.g., surface and deep electrode 
recordings from limbic brain structures) is useful [189]. The combi-
nation of brain perfusion changes and electrophysiological correlates 
of oscillatory coupling will foster the understanding of the neural 
interaction processes within frontal and temporal networks [190].

On the level of the autonomic nervous system, multivariate 
coregistrations of psychophysiological response patterns including 
emotion modulated startle, heart rate variability, or cortisol secre-
tion alleviate the validation of experimentally induced emotions or 
presence of specific emotional disorders.

Emotional neuroimaging has continuously profited from 
improvement in scanning techniques and the adaptation and stan-
dardization of signal processing strategies. However, this area has 
not only benefited from the diverse contributions of its subdisci-
plines but also inherited their methodological problems. An inspec-
tion of brain imaging studies of emotion showed that measurement 
quality may be influenced by many factors: by a rapid and differen-
tial habituation of responses to emotional stimuli in some regions; 
by artifacts of certain signal scaling techniques that are applied by 
default; by situational or state-dependent influences; and by insuf-
ficient validation of the emotion to be elicited (manipulation 
check). Interindividual differences of emotional regulation behav-
ior appear to modulate event-related reactions during the time 
course of the experiment.
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Some of the many approaches to reducing signal loss in EPI in 
the anterior MTL have been outlined here, as well as some of the 
methods for identifying and correcting artifacts arising from SCM, 
distortion, and physiological artifacts. Despite the gravity of the 
problem and the effectiveness of some of these strategies, the over-
whelming majority of fMRI studies of the emotions use the same 
measurement protocols and analysis methods as have been applied 
to study cognitive function over the last decade.

Combining many of the simpler strategies described here—high 
field strength, small voxel volumes, partial k-space acquisition with the 
correction of physiological and SCM artifacts—allows reliable results 
to be achieved in the anterior MTL [191]. Figure 6 demonstrates 
such an example; the detection of subtle differences in amygdala acti-
vation between explicit and implicit emotion processing [192].

Moreover, new research designs and analysis methods such as 
Structural Equation Modeling or Dynamic Causal Modeling are 
now available to inspect the effective or causal connectivity that, 
for example, permits the PFC to modulate amygdala activity [62]. 
The influences of individual brain regions on each another can also 
been studied by combining functional brain imaging with the 
lesion approach or transcranial magnetic stimulation [193].

We have raised a number of caveats that highlight some of the 
limitations of emotion assessment in a scanner environment. As has 
been argued above, a lack of representativeness must be noted, that 
is, emotion includes a much broader conceptual network than 

Fig. 6 High-resolution imaging detailed in this chapter allows the acquisition of low-artifact echo-planar imag-
ing (EPI) and allows subtle processing effects to be distinguished. Group results from 29 subjects for the condi-
tions (a) emotion recognition (b) implicit emotion processing (age discrimination) and (c) the difference 
between the two conditions (3.0 T). Results, showing activation in the amygdala and fusiform gyrus (as well as 
cerebellum and brainstem) are overlaid on mean EPI and thresholded at p = 0.05, family-wise error corrected. 
Reprinted from [192], with permission
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currently covered by neuroimaging research. Thus, generalizations 
to other areas of functioning remain difficult. Representative 
designs are needed that pay greater attention to high-level strate-
gies that depend on sociocultural factors and initiate, modulate, or 
regulate emotions. Moreover, the representativeness of results is 
limited due to small, selected, and poorly described study groups. 
Finally, since emotion elicitation in the scanner has been highly 
artificial, the power to predict emotions outside the neuroimaging 
context remains questionable. An ecological functional brain imag-
ing approach that includes natural behaviors and environmental 
contexts of presentation may help to obtain a more representative 
view of real-life emotions.

Subject-specific mechanisms regulating the strength and tem-
poral pattern of response to emotional stimuli and the balance of 
excitatory and inhibitory processes are of particular interest. The 
variability of the BOLD response between trials and across the 
time course of the experiment needs to be explained. Future 
research may therefore examine individual and group differences 
with a view to resolving inconsistencies in the literature [5, 12, 
77]. Investigations into personality disorders or psychiatric diseases 
will provide further insight into the dispositional factors modifying 
the response to situational stressors. Paradigms specifically adapted 
to the investigated disorder may help to identify prefrontal dys-
function and associated failure to tonically inhibit amygdala output 
or to recognize safety signals eventually inducing sympathetic 
overactivity [194]. It may be that—as is the case in motor tasks—a 
large proportion of the intertrial variation not only in the behav-
ioral response [102], but also in the BOLD signal [101] is explained 
by fluctuations in underlying RSNs.

Eliciting emotions in the environment of an imaging scanner 
remains a highly artificial process. This raises the question as to the 
predictive value of current neuroimaging data for explaining the emo-
tional modulations in real-life contexts. This is particularly important 
for applied areas such as psychotherapy and coping research. Thus, in 
addition to identifying the neurobiological basis of emotional regula-
tion behavior, the generalizability or predictive validity of imaging 
data for real-life emotions should be systematically evaluated.

5  Conclusions

Neuroimaging has replicated and extended earlier findings of neu-
ropsychological studies in brain damaged subjects. It has signifi-
cantly contributed to unraveling the organization of neural systems 
subserving the different components of emotional stimulus-
response mediation along the neuraxis in healthy human subjects. 
Improved operational definitions and paradigms have contributed 
to differentiating subcomponents of emotional functions such as, 
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for example, perceptual decoding, anticipation, associative learn-
ing, awareness, and response mediation. However, despite obvious 
advances, a comprehensive model integrating the diverse emo-
tional behaviors on the basis of involved cerebral mechanisms is 
still unavailable. Moreover, the interpretation of findings is compli-
cated by technical and methodological difficulties.

Research advances not only depend upon the technical 
refinement of imaging methodology but also on the improve-
ment of behavioral procedures and measurement models. 
Neuropsychological construct validation procedures imply that 
an increase of localization precision of the imaging technology 
would also require an enhanced precision on the side of behav-
ioral operationalizations. However, this seems not to be case as 
many studies still use unsophisticated stimulus materials or 
global instructions involving multiple or undefined subfunc-
tions. As much as relatively global operationalizations are applied, 
however, the obtained neuropsychological correlations (for 
example, regarding activations of the PFC) will remain 
incomprehensible.

We have suggested here the framework of a lense-type assess-
ment model, wherein activations in well-characterized neural 
structures may be used as predictors of particular emotional pro-
cesses. According to this, a hierarchy of latent constructs consti-
tutes the behavioral level, an idea, which is largely accepted in 
psychology. On the level of brain activity, patterns or families of 
topographically distinct activity can be identified in a similar way 
and used as a predictor of behavioral function. Following the 
assumptions of a methodological parallelism, neuropsychologi-
cal construct validation procedures make uses of this framework 
of activity–behavior associations on different levels of the hierar-
chy. It can be extrapolated from multivariate personality theory, 
that the prediction of behavior will only be successful if activa-
tion measures and psychological data are analyzed on a similar 
level of generality or aggregation.

In view of the complexities of emotional regulation behavior in 
human subjects, it is equally important to advance assessment the-
ory, psychological conceptualization, and behavioral methodology 
[29]. Future work should therefore more closely inspect issues 
related to model construction, symmetry of neural and behavioral 
variables, and their aggregation levels. Multidisciplinary approaches 
that combine improvement in brain activation measurement with 
enhanced psychological data theory may thus foster construct valid-
ity, reliability, and predictive power of emotional neuroimaging.

Knowledge pertaining to the localization of brain activations 
and its functional connectivity is also an important input to inform 
and constrain cognitive theories of emotion psychology. Thus, 
insights from the brain will thus help to explain the incoherences 
of psychophysiological, behavioral, and subjective indicators of 
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emotion that are so frequently observed in psychophysiological 
studies. Activation data may also help to establish models that pos-
sess a better “breakdown compatibility,” that is, power to predict 
behavioral change as a consequence of brain damage.

The introduction of structural/connectional and functional 
data has considerably bolstered scientific construct validation 
processes in the affective neurosciences and emotion psychol-
ogy. Topographically distinct activity patterns are increasingly 
identified that possess a certain incremental validity, that is, an 
increasing power to predict the individual dynamics of emo-
tional regulation behavior. Establishing a representative and 
valid model of emotional functioning is a necessary precondi-
tion for many areas of application such as the categorization of 
patients with emotional disorders and the assessment of 
psychotherapy.

Greater attention to methodological issues may help to 
bring more rigors to experimentation in the field of emotional 
neuroimaging, promote interdisciplinary research, and alleviate 
cross-laboratory replication. A wealth of approaches have been 
presented to countering BS loss in the amygdala, many of which 
are available as standard on commercial scanners or simply 
require the adoption of suitable imaging parameters [117, 125, 
134]. Also, in the absence of a measurement theory that 
describes validated procedures or instruments for assessing 
emotional constructs, single findings cannot be trusted. 
Although absence of validation is acceptable for early stages of 
the research cycle, current emotional neuroimaging work has 
only just begun to approach the confirmatory stage. To estab-
lish confidence in the suggested models, additional efforts are 
required to empirically validate assessment strategies and 
instrumentation.
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