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    Chapter 11   

 Functional MRI: Applications in Cognitive Neuroscience                     

     Mark     D’Esposito      ,     Andrew     Kayser    , and     Anthony     Chen     

  Abstract 

   Neuroimaging, in many respects, revolutionized the study of cognitive neuroscience, the discipline that 
attempts to determine the neural mechanisms underlying cognitive processes. Early studies of brain–
behavior relationships relied on a precise neurological exam as the basis for hypothesizing the site of brain 
damage that was responsible for a given behavioral syndrome. The advent of structural brain imaging, fi rst 
with computerized tomography and later with magnetic resonance imaging, paved the way for more pre-
cise anatomical localization of the cognitive defi cits that manifest after brain injury. Functional neuroimag-
ing, broadly defi ned as techniques that provide measures of brain activity, further increased our ability to 
study the neural basis of behavior. Functional MRI (fMRI), in particular, is an extremely powerful tech-
nique that affords excellent spatial and temporal resolution. This chapter focuses on the principles underly-
ing fMRI as a cognitive neuroscience tool for exploring brain–behavior relationships.  
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1      Introduction 

 Cognitive neuroscience is a discipline that attempts to determine 
the neural mechanisms underlying cognitive processes. Specifi cally, 
cognitive neuroscientists test hypotheses about brain–behavior 
relationships that can be organized along two conceptual domains: 
 functional    specialization   —the idea that functional modules exist 
within the brain, that is, areas of the cerebral cortex that are spe-
cialized for a specifi c cognitive process, and  functional    integra-
tion   —the idea that a cognitive process can be an emergent property 
of interactions among a network of brain regions, which suggests 
that a brain region can play a different role across many functions. 

 Early investigations of brain–behavior relationships consisted 
of careful observation of individuals with neurological injury 
resulting in focal brain  damage  . The idea of functional specializa-
tion evolved from hypotheses that damage to a particular brain 
region was responsible for a given behavioral syndrome that was 
characterized by a precise neurological examination. For instance, 
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the association of aphasia with right-sided limb weakness  implicated 
the left hemisphere as the site of language abilities. Moreover, 
upon the death of a patient with a neurological disorder, clinico-
pathological correlations provided confi rmatory information about 
the site of damage causing a specifi c neurobehavioral syndrome 
such as aphasia. For example, in 1861 Paul Broca’s observations of 
nonfl uent  aphasia   in the setting of a damaged left inferior frontal 
gyrus (IFG) cemented the belief that this brain region was critical 
for speech output [ 1 ]. The introduction of structural brain imag-
ing more than 100 years after Broca’s observations, fi rst with com-
puterized tomography (CT) and later with magnetic resonance 
imaging (MRI), paved the way for more precise anatomical local-
ization in the living patient of the cognitive defi cits that develop 
after brain injury. The superb spatial resolution of structural neu-
roimaging has reduced the reliance on the infrequently obtained 
autopsy for making brain–behavior correlations. 

 Functional neuroimaging, broadly defi ned as techniques that 
measure brain activity, expanded our ability to study the neural 
basis of cognitive processes. One such method, fMRI is as an 
extremely powerful technique that affords excellent spatial and 
temporal  resolution  . Measuring regional brain activity in healthy 
subjects while they perform cognitive tasks links localized brain 
activity with specifi c behaviors. For example, functional neuroim-
aging studies have demonstrated that the left IFG is consistently 
activated during the performance of speech production tasks in 
healthy individuals [ 2 ]. Such fi ndings from functional neuroimag-
ing are complementary to fi ndings derived from observations of 
patients with focal brain damage. This chapter focuses on the prin-
ciples underlying fMRI as a cognitive neuroscience tool for explor-
ing brain–behavior relationships.  

2    Inference in Functional Neuroimaging Studies of Cognitive Processes 

 Insight regarding the link between brain and behavior can be gained 
through a variety of approaches. It is unlikely that any single neuro-
science method is suffi cient to fully investigate any particular ques-
tion regarding the mechanisms underlying cognitive function. 
From a methodological point of view, each method will offer differ-
ent temporal and spatial resolution. From a conceptual point of 
view, each method will provide data that will support different types 
of inferences that can be drawn from it. Thus, data obtained address-
ing a single question but derived from multiple methods can pro-
vide more comprehensive and inferentially sound conclusions. 

 Functional neuroimaging studies support inferences about the 
association of a particular brain system with a cognitive  process  . 
However, it is diffi cult to prove in such a study that the observed 
activity is necessary for an isolated cognitive process because perfect 
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control over a subject’s cognitive processes during a functional 
neuroimaging experiment is never possible. Even if the task per-
formed by a subject is well designed, it is diffi cult to demonstrate 
conclusively that he or she is differentially engaging a single, identi-
fi ed cognitive process. The subject may engage in unwanted cogni-
tive processes that either have no overt, measurable effects or are 
perfectly confounded with the process of interest. Consequently, the 
neural activity measured by the functional neuroimaging technique 
may result from some confounding neural computation that is itself 
not necessary for executing the cognitive process seemingly under 
study. In other words, functional neuroimaging is an observational, 
correlative method [ 3 ]. It is important to note that the inferences 
that can be drawn from  functional   neuroimaging studies such as 
fMRI apply to all methods of physiological measurement (e.g., elec-
troencephalography, EEG, or magnetoencephalography, MEG). 

 The inference of necessity cannot be made without showing 
that a focal brain lesion disrupts the cognitive process in question. 
However, unlike precise surgical or neurotoxic lesions in animal 
models, lesions in patients are often extensive, damaging local neu-
rons and “fi bers of passage.” For example, damage to prominent 
white matter tracts can cause cognitive defi cits similar to those pro-
duced by cortical lesions, such as the amnesia resulting from lesions 
of the fornix, the main white matter pathway projecting from the 
hippocampus [ 4 ]. In addition, connections from region “A” may 
support the continued metabolic function of region “B,” but region 
A may not be computationally involved in certain processes under-
taken by region B. Thus, damage to region A could impair the 
function of region B via two possible mechanisms: (1) diaschisis [ 5 , 
 6 ] and (2) retrograde trans-synaptic degeneration. Consequently, 
studies of patients with focal lesions cannot conclusively demon-
strate that the neurons within a specifi c region are themselves criti-
cal to the computational support of an impaired cognitive process. 

 Empirical  studies   using  lesion and electrophysiological meth-
ods   demonstrate these issues regarding the types of inferences that 
can be logically drawn from them. For example, in monkeys, 
single- unit recording reveals neurons in the lateral prefrontal cor-
tex (PFC) that increase their fi ring during the delay between the 
presentation of information to be remembered and a few seconds 
later when that information must be recalled [ 7 ,  8 ]. These studies 
are taken as evidence that persistent neural activity in the PFC is 
involved in temporary storage of information, a cognitive process 
known as working memory. The necessity of PFC for working 
memory was demonstrated in other monkey studies showing that 
PFC lesions impair performance on working memory tasks, but 
not on tasks that do not require temporarily holding information 
in memory [ 9 ]. Persistent neural activity during working memory 
tasks is also found in the hippocampus [ 10 ,  11 ]. Hippocampal 
lesions, however, do not impair performance on most working 
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memory tasks [ 12 ], which suggests that the hippocampus is 
 involved  in maintaining  information   over short periods of time, but 
is not  necessary  for this cognitive operation. Observations in 
humans support this notion. For example, the well-studied patient 
H.M., with complete bilateral hippocampal damage and the severe 
inability to learn new information, could nevertheless perform 
normally on working memory tasks such as digit span [ 13 ]. The 
hippocampus is implicated in long-term memory especially when 
relations between multiple items and multiple features of a com-
plex, novel item must be retained. Thus, the hippocampus may 
only be engaged during working memory tasks that require some-
one to subsequently remember novel information [ 14 ]. 

 When the results from lesion and functional neuroimaging 
studies are combined, a stronger level of inference emerges [ 15 ]. 
As in the examples of Broca’s aphasia or working memory, a lesion 
of a specifi c brain region causes impairment of a given cognitive 
process and when engaged by an intact individual, that cognitive 
process evokes neural activity in the same brain region. Given these 
fi ndings, the inference that this brain region is computationally 
necessary for the cognitive process is stronger than the data derived 
from each study performed in isolation. Thus, lesion and func-
tional neuroimaging studies are complementary, each providing 
inferential support that the other lacks. 

 Other types of inferential failure can occur in the interpretation 
of functional neuroimaging studies when other common assump-
tions do not hold true. First, it is assumed that if a cognitive pro-
cess activates a particular brain region (evoked by a particular task), 
the neural activity in that brain region must depend on engaging 
that particular cognitive process. For example, a brain region show-
ing greater activation during the presentation of faces than to other 
types of stimuli, such as photographs of cars or buildings, is consid-
ered to engage face perception processes. However, this region 
may also support other higher-level cognitive processes such as 
memory processes, in addition to lower level perceptual processes 
[ 16 ]. See ref. [ 17 ] for a further discussion of this issue. 

 The opposite type of  inference   is made when it is assumed 
that if a particular brain region is activated during the perfor-
mance of a cognitive task, the subject must have engaged the 
cognitive process supported by that region during the task 
(referred to as a “reverse inference”). For example, when activa-
tion of the frontal lobes was observed during a mental rotation 
task, it was proposed that subjects engaged working memory 
processes to recall the identity of the rotated target [ 18 ]. (They 
derived this assumption from other imaging studies showing acti-
vation of the frontal lobes during working memory tasks.) 
However, in this example, because some other cognitive process 
supported by the frontal lobes could have activated this region 
[ 19 ], one cannot be sure that working memory was engaged 
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leading to the activation of the frontal lobes. Unfortunately, this 
potentially faulty logic is a fairly common practice in fMRI stud-
ies. See ref. [ 20 ] for a further discussion of this issue. 

 In summary, interpretation of the results of functional neuro-
imaging studies attempting to link brain and behavior rests on 
numerous assumptions. Familiarity with the types of inferences 
that can and cannot be drawn from these studies is helpful for 
assessing the validity of the fi ndings reported by such studies.  

3    Functional MRI as a Cognitive Neuroscience  Too  l 

 Functional MRI has become the predominant functional neuroim-
aging method for studying the neural basis of cognitive processes 
in humans. Compared to its predecessor, positron emission tomog-
raphy (PET) scanning, fMRI offers many advantages. For example, 
MRI scanners are much more widely available, and imaging costs 
are less expensive since MRI does not require a cyclotron to pro-
duce radioisotopes. MRI is also a noninvasive procedure since 
there is no requirement for injection of a radioisotope into the 
bloodstream. Also, given the half-life of available radioisotopes, 
PET scanning is unable to provide comparable temporal resolution 
to that of fMRI which can provide images of behavioral events 
occurring on the order of seconds rather than the summation of 
many behavioral events over tens of seconds. 

 In selected circumstances, however,  PET   scanning can provide 
an advantage over fMRI for studying certain questions concerning 
the neural basis of cognition. For example, a particular advantage 
of PET scanning in the study of cognition that can nicely comple-
ment fMRI studies is its ability to assess neurochemical (neu-
rotransmitter and neuromodulator) systems. Radioactively labeled 
ligands may be used to directly measure density and distribution of 
particular receptors and even receptor subtypes, distribution of 
presynaptic terminals or enzymes involved in the production or 
breakdown of particular neurochemicals [ 21 ]. For example, one 
study measured dopamine synthesis capacity in the striatum with 
PET and used fMRI to measure brain activity during a working 
memory task. It was found that activity in frontal cortex during the 
working memory task was related to caudate dopamine levels as 
well as task accuracy. Thus, combining PET and fMRI data in this 
unique way allowed the investigators to test a question regarding 
the neurochemical basis of cognition [ 22 ]. 

 The MRI scanner, compared to a behavioral testing room, is 
less than ideal for performing most cognitive neuroscience experi-
ments. Experiments are performed in the awkward position of lying 
on one’s back, often requiring subjects to visualize the presentation 
of stimuli through a mirror, in an acoustically noisy environment. 
Moreover, most individuals develop some degree of claustrophobia 
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due to the small bore of the MRI scanner and fi nd it diffi cult to 
remain completely motionless for a long duration of time that is 
required for most experiments (e.g., usually 60–90 min). These 
constraints of the MRI scanner make it especially diffi cult to scan 
children or certain patient populations (e.g., Parkinson’s disease 
patients), which has resulted in many fewer fMRI studies involving 
children than adults and neurological patients in general. However, 
mock scanners have been built in many imaging centers, with 
motion devices that acclimate children to the scanner environment 
before they participate in an fMRI study. This approach has led to 
an increasing number of fMRI studies of children being reported in 
the literature that are providing tremendous insight regarding the 
mechanisms underlying the developing brain ( for review ,  see  [ 23 ]). 

 All sensory systems have been investigated with fMRI includ-
ing the visual, auditory, somatosensory, olfactory, and gustatory 
systems. Each system requires different technologies for successful 
presentation of relevant stimuli within an MRI environment. At 
the time of this writing,    there are now many off-the-shelf commer-
cial products that exist that are MRI-compatible. Acquiring ancil-
lary electrophysiological data such as electromyographic recordings 
to measure muscle contraction or electrodermal responses to mea-
sure autonomic activity enhances many cognitive neuroscience 
experiments. Devices have been developed that are MR compatible 
for these types of measurements as well as other physiological mea-
sures such as heart rate, electrocardiography, oxygen saturation, 
and respiratory rate. The recording of eye movements is common-
place in MRI scanners predominantly with the use of infrared video 
cameras equipped with long range optics. Video images of the 
pupil–corneal refl ection can be sampled at 500–1000 Hz allowing 
for the accurate (<0.5°) localization of gaze within 50 horizontal 
and 40 vertical degrees of visual angle. 

 EEG recordings have also been successfully performed during 
MRI scanning [ 24 ,  25 ]. Both measures of event-related potentials 
(ERPs) and spectral EEG power in specifi c frequency bands and 
have been successfully recorded and related to variations in under-
lying BOLD activity and behavior [ 26 – 29 ]. However, the record-
ing of low amplitude EEG events, such as ERPs and transient 
changes in spectral EEG power, can be more diffi cult in a magnetic 
fi eld due to large artifacts induced by gradient switching and head 
movement and voltage changes from cardiac pulsation. The 
 optimization of data acquisition methods and post-processing 
algorithms to remove artifacts have allowed for reliable measure-
ments of ERPs and transient EEG events during fMRI scanning 
[ 30 – 33 ]. In summary, most challenges facing cognitive experi-
ments and the study of spontaneous activity within the MRI envi-
ronment have been overcome, creating an environment that is 
comparable to standard psychophysical testing labs outside of a 
scanner. Recent work has focused on minimizing exacerbated EEG 

Mark D’Esposito et al.



323

artifacts present during high-fi eld MRI scanning [ 34 ]. Although 
individual laboratories have achieved most of these advancements, 
MRI scanners originally designed for clinical use by manufacturers 
are now being designed with consideration of many of these 
research-related issues. 

 Another promising technique is the delivery of transcranial 
magnetic stimulation (TMS) during MRI scanning [ 35 ,  36 ]. TMS 
induces depolarization of neurons under the coil and, when com-
bined with functional MRI, can be used to reveal patterns of remote 
connectivity, such as between the frontal eye fi eld (FEF) and early 
visual cortex [ 36 ], the  lateral   prefrontal cortex and face- and house-
selective regions in temporal cortex [ 35 ], and within and between 
large-scale brain networks [ 37 ]. There are many challenges in com-
bining TMS and MRI such as the need for a large MRI head coil to 
accommodate the presence of the TMS coil, the diffi culty of precise 
localization [ 38 ], and the increased subject discomfort. However, 
perhaps the largest challenge of delivering TMS in a manner that 
does not lead to artifacts in the MRI signal has been largely over-
come by new commercially available TMS coils 

   Two types of  temporal resolution   need to be considered for cogni-
tive neuroscience experiments. First, what is the briefest neural 
event that can be detected as an fMRI signal? Second, how close 
together can two neural events occur and be resolved as separable 
fMRI signals? 

 The time scale on which neural changes occur is quite rapid. For 
example, neural activity in the lateral intraparietal area of monkeys 
increases within 100 ms of the visual presentation of a saccade target 
[ 39 ]. In contrast, the fMRI signal gradually increases to its peak 
magnitude within 4–6 s after an experimentally induced brief (<1 s) 
change in neural activity, and then decays back to baseline after sev-
eral more seconds [ 40 – 42 ]. This slow time course of fMRI signal 
change in response to such a brief increase in neural activity is infor-
mally referred to as the blood oxygen level-dependent (BOLD) 
fMRI hemodynamic response or simply, the hemodynamic response 
(Fig.  1 ). Thus, neural dynamics and neurally evoked hemodynamics, 
as measured with fMRI, are on quite different time scales.

   The sluggishness of the hemodynamic response limits the tem-
poral resolution of the fMRI signal to hundreds of milliseconds to 
seconds as opposed to the millisecond temporal resolution of elec-
trophysiological recordings of neural activity, such as from single- 
unit recording in monkeys and EEG or MEG in humans. However, 
it has been clearly demonstrated that brief changes in neural activ-
ity can be detected with reasonable statistical power using 
fMRI. For example, appreciable fMRI  signal   can be observed in 
sensorimotor cortex in association with single fi nger movements 
[ 43 ] and in visual cortex during very briefl y presented (34 ms) 
visual stimuli [ 44 ]. In contrast, the temporal resolution of fMRI 

3.1  Temporal 
Resolution
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limits the detection of sequential changes in neural activity that 
occur rapidly with respect to the hemodynamic response. That is, 
the ability to resolve the changes in the fMRI signal associated with 
two neural events often requires the separation of those events by 
a relatively long period of time compared with the width of the 
hemodynamic response. This is because two neural events closely 
spaced in time will produce a hemodynamic response that refl ects 
the accumulation from both neural events, making it diffi cult to 
estimate the contribution of each individual neural event. In gen-
eral, evoked fMRI responses to discrete neural events separated by 
at least 4 s appear to be within the range of resolution [ 45 ]. 
However, provided that the stimuli are presented randomly, sig-
nifi cant differential functional responses between two events (e.g., 
fl ashing visual stimuli) spaced as closely as 500 ms apart can be 
detected [ 46 – 48 ]. The effect of fi xed and randomized intertrial 
intervals on the BOLD signal is illustrated in Fig.  2 .

   In some tasks, the order of individual trial events cannot be 
randomized. For example, in certain types of working memory 
tasks, the presentation of the information to be remembered dur-
ing the delay period, and the period when the subject must recall 
the information, are individual trial events whose order cannot be 
randomized. In these types of tasks, short time scales (<4 s) cannot 
be temporally resolved. These temporal resolution issues in fMRI 
have been extensively considered regarding their impact on experi-
mental design [ 49 ,  50 ].  
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  Fig. 1    A typical  hemodynamic response   (i.e., fMRI signal change in response to a 
brief increase of neural activity) from the primary sensorimotor cortex. The fMRI 
signal peaked approximately 5 s after the onset of the motor response (at time 
zero)       
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   As approaches are sought that maximize both BOLD signal 
strength and in-plane resolution, fMRI studies in humans have 
recently been extended to higher magnetic fi eld strengths (7.0 T 
and 9.4 T) [ 51 – 53 ]. Such studies have the power to potentially 
evaluate much fi ner cortical details, such as the representation of 
individual fi ngertips  within   primary somatosensory cortex [ 51 ]. 
However, as the fi eld strength increases, factors that are less conse-
quential at 3.0 T—including magnetic fi eld inhomogeneities [ 52 ] 
and the contribution of macrovascular structures to the typical 
gradient-echo signal [ 53 ]—become signifi cantly more  problematic, 
requiring further innovations in pulse sequence development. 
Single-echo gradient-echo sequences using echo times (TE) that 
exceed the repetition time (TR), for example, take advantage of 
reduced distortion relative to single-shot gradient-echo sequences, 
while also avoiding the prolonged acquisition times of typical 
single- echo sequences. During functional MRI of a simple fi nger 
tapping task at 9.4 T using such a sequence, researchers were able 
to obtain 0.4 × 0.4 mm in-plane resolution within presumptive pri-
mary motor cortex [ 53 ]. Similarly, spin-echo sequences, which 
have a reduced signal-to-noise ratio relative to gradient-echo 
sequences but greater spatial specifi city, become feasible for use at 
9.4 T. Within a fi nger-tapping paradigm, a study taking this 
approach reduced the infl uence of macrovascular contributions to 

3.2  Spatial 
Resolution

  Fig. 2    Effect of  fi xed vs. randomized intertrial intervals   on the blood oxygen level-
dependent (BOLD) fMRI signal [ 46 ]       
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the BOLD signal relative to a gradient-echo sequence, while 
obtaining 1 mm isotropic resolution. As such techniques are vali-
dated and extended, they may someday allow for imaging of thou-
sands of neurons per voxel, as opposed to the hundreds of 
thousands of neurons per voxel currently more typical for a human 
cognitive neuroscience fMRI experiment. 

 Virtually all fMRI studies model the large BOLD signal 
increase, which is due to a local low-deoxyhemoglobin state, in 
order to detect changes correlating with a behavioral task. However, 
optical imaging studies have demonstrated that preceding this 
large positive response there is an initial negative response refl ect-
ing a localized increase in oxygen consumption causing a high- 
deoxyhemoglobin state [ 54 ]. This early hemodynamic response is 
called the “initial dip” and is thought to be more tightly coupled 
to the actual site of neural activity evoking the BOLD signal as 
compared to the later positive portion of the BOLD response. For 
example, Kim et al., scanning cats in a high fi eld scanner, demon-
strated that the early negative BOLD response (e.g., initial dip) 
produced activation maps that were consistent with orientation 
columns within visual cortex. This fi nding is quite remarkable 
given that the average spacing between two adjacent orientation 
columns in cortex is approximately 1 mm. In contrast, the activa-
tion maps produced by the delayed positive BOLD response 
appeared more diffuse and cortical  columnar   organization could 
not be identifi ed [ 55 ]. Thus, empirical evidence suggests that 
deriving activation maps by correlating behavioral responses with 
the initial dip may markedly improve spatial resolution. 

 Another unique method for improving spatial resolution has 
been called functional magnetic resonance-adaptation (fMR-A), 
which could provide a means for identifying and assessing the func-
tional attributes of sharply defi ned neuronal populations within a 
given region of the brain [ 56 ]. Even if the spatial resolution of fMRI 
evolves to the point of being able to resolve a population of a few 
hundred neurons within a voxel, it is still likely that this small popu-
lation will contain neurons with very different functional properties 
that will be averaged together. The adaptation method is based on 
several basic principles. First, repeated presentation of the same type 
of stimuli (i.e., a picture of the one object) causes neurons to adapt 
to those stimuli (i.e., neuronal fi ring is reduced). Second, if these 
neurons are then exposed to a different type of stimulus (i.e., a pic-
ture of another object) or a change in some property of the stimulus 
(i.e., the same object in a different orientation), then recovery from 
adaptation can be assessed (i.e., whether or not the BOLD signal 
returns to its original state). If the signal remains adapted it implies 
that the neurons are invariant to the attribute that was changed or if 
the signal recovers from the adapted state it would imply that the 
neurons are sensitive to that attribute. For example, Grill-Spector 
et al. demonstrated that an area of lateral occipital cortex thought to 
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be important for object recognition was less sensitive to changes in 
object size and position as compared to changes in illumination and 
viewpoint [ 57 ]. Thus, with this method it is possible to investigate 
the functional properties of neuronal populations with a level of spa-
tial resolution that is beyond that obtained from conventional fMRI 
data analysis methods. 

 Considering all the neuroscientifi c methods available today for 
studying human brain–behavior relationships, fMRI provides an 
excellent balance of temporal and spatial resolution. Improvements 
on both fronts will clearly add to type of basic and clinical neuro-
scientifi c questions that can be addressed with this method.   

4    Issues in Functional MRI Experimental Design 

 Numerous options  exist   for designing experiments using fMRI. The 
prototypical fMRI experimental design consists of two behavioral 
tasks presented in blocks of trials alternating over the course of a 
scanning session, and the fMRI signal between the two tasks is 
compared. This is known as a blocked design. For example, a given 
block might present a series of faces to be viewed passively, which 
evokes a particular cognitive process, such as face perception. The 
“experimental” block alternates with a “control” block that is 
designed to evoke all of the cognitive processes present in the 
experimental block except for the cognitive process of interest. In 
this experiment the control block may comprise a series of objects. 
In this way, the stimuli used in experimental and control tasks have 
similar visual attributes, but differ in the attribute of interest (i.e., 
faces). The inferential framework of “cognitive subtraction” [ 58 ] 
attributes differences in neural activity between the two tasks to 
the specifi c cognitive process (i.e., face perception). Cognitive sub-
traction was originally conceived by Donders in the late 1800s for 
studying the chronometric substrates of cognitive processes [ 59 ] 
and was a major innovation in imaging [ 58 ,  60 ]. 

 The assumptions required for cognitive subtraction may not 
always hold and could produce erroneous interpretation of func-
tional neuroimaging data [ 45 ]. Cognitive subtraction relies on two 
assumptions: “pure insertion” and linearity. Pure insertion implies 
that a cognitive process can be added to a preexisting set of cogni-
tive processes without affecting them. This assumption is diffi cult 
to prove because one needs an independent measure of the preex-
isting processes in the absence and presence of the new process 
[ 59 ]. If pure insertion fails as an assumption, a difference in the 
neuroimaging signal between the two tasks might be observed, not 
because a specifi c cognitive process was engaged in one task and 
not the other, but because the added cognitive process and the 
preexisting cognitive processes interact. 
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 An example of this point is illustrated in working memory 
studies using delayed-response tasks [ 61 ]. These tasks [ 62 ] typi-
cally present information that the subject must remember (engag-
ing an  encoding  process), followed by a delay period during which 
the subject must hold the information in memory over a short 
period of time (engaging a  memory  process), followed by a probe 
that requires the subject to make a decision based on the stored 
 information   (engaging a  retrieval  process). The brain regions 
engaged by evoking the  memory  process theoretically are revealed 
by subtracting the BOLD signal measured by fMRI during a block 
of trials that the subject performs that do not have a delay period 
(only engaging the  encoding  and  retrieval  processes) from a block 
of trials with a delay period (engaging the  encoding ,  memory , and 
 retrieval  processes). In this example, if the addition or “insertion” 
of a delay period between the  encoding  and  retrieval  processes 
affects these other behavioral processes in the task, the result is 
failure to meet the assumptions of cognitive subtraction. That is, 
these “nonmemory” processes may differ in delay trials and no- 
delay trials, resulting in a failure to cancel each other out in the two 
types of trials that are being compared. 

 Empirical evidence of such failure exists [ 63 ]. For example, 
Figure  3  demonstrates BOLD signal derived from the PFC from a 
subject performing a delayed-response task similar to the tasks 

  Fig. 3    Data derived from the performance of a normal subject on a spatial delayed-response  tas  k [ 64 ]. This 
task comprised both delay trials ( circles ) as well as trials without a delay period (no-delay trials;  diamonds ). ( a ) 
Trial averaged fMRI signal from prefrontal cortex that displayed delay-correlated activity. The gray bar along 
the  x -axis denotes the 12 s delay period during delay trials. The delay trials display a level of fMRI signal 
greater than baseline throughout the period of time corresponding to the retention delay (taking into account 
the delay and dispersion of the fMRI signal). The peaks seen in the signal correspond to the encoding and 
retrieval periods. ( b ) Trial averaged fMRI signal from a region in prefrontal cortex that did not  display   the char-
acteristics of delay-correlated activity. This region displays a signifi cant functional change associated with the 
no-delay trials, and a signifi cant functional change associated with the encoding and retrieval periods of the 
delay trials, but not one associated with the retention delay of delay trials       
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described above. The left side of the fi gure illustrates BOLD signal 
consistent with delay period activity whereas the right side of the 
fi gure illustrates BOLD signal from another region of PFC that did 
not display sustained activity during the delay yet showed greater 
activity in the delay trials as compared to the trials without a delay. 
In any blocked functional neuroimaging study that compares delay 
vs. no-delay trials with subtraction, such a region would be detected 
and likely assumed to be a “memory” region. Thus, this result 
provides empirical grounds for adopting a healthy doubt regarding 
the inferences drawn from imaging studies that rely exclusively on 
cognitive subtraction.

   In functional neuroimaging, the transform between the neural 
signal and the hemodynamic response (measured by fMRI) must 
also be linear for the cognitive subtractive method to yield valid 
results. In other words, it is assumed that the BOLD signal being 
measured is approximately proportional to the local neural activity 
that evokes it. Surprisingly, although thousands of empirical stud-
ies using fMRI to study brain–behavior relationships have been 
published, only a handful exist that have explored the neurophysi-
ological basis of the BOLD signal (for reviews  see  refs. [ 64 ,  65 ]). 
In several studies it has been demonstrated that linearity does not 
strictly hold for the BOLD fMRI system but a linear transform 
model is reasonably consistent with the data. For example, Boynton 
et al. tested whether the BOLD signal in response to long duration 
stimuli can be predicted by summing the responses to shorter 
duration stimuli [ 42 ]. Using pulses of fl ickering checkerboard pat-
terns and measuring within human primary visual cortex, these 
investigators found that the BOLD signal response to various 
durations of stimulus presentation (6, 12, or 24 s) could be pre-
dicted from the responses they obtained from shorter stimulus pre-
sentations. For example, the BOLD signal response to a 6 s pulse 
could be predicted from the summation of  the   BOLD signal 
response to the 3 s pulse with a copy of the same response delayed 
by 3 s. However, temporal summation did not always hold, and 
there are clearly nonlinear effects in the transform of neural activity 
to a hemodynamic response that must be considered [ 66 – 69 ]. If 
these nonlinearities lead to saturation of the BOLD effect at a cer-
tain stimulus intensity, erroneous interpretation of particular results 
of fMRI experiments may occur. 

 Another class of experimental designs, called event-related 
fMRI, attempts to detect changes associated with individual trials, 
as opposed to the larger unit of time comprising a block of trials 
[ 70 ,  71 ]. Each individual trial may be composed of one behavioral 
“event,” such as the presentation of a single stimulus (e.g., a face 
or object to be perceived) or several behavioral events such as in 
the delayed-response task described above (e.g., an item to be 
remembered, a delay period, and a motor response in a delayed- 
response task). For example, with an event-related design, activity 
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within the PFC has consistently been shown to correlate with the 
delay period, supporting the role of the PFC in temporarily main-
taining information [ 63 ]. This fi nding is consistent with single- 
neuron recording studies in the PFC of monkeys [ 7 ]. An 
event-related design offers numerous advantages. For example, it 
allows for stimulus or trial randomization avoiding the behavioral 
confounds of blocked trials. It also permits the separate analysis of 
functional responses that are identifi ed only in retrospect (i.e., tri-
als on which the subject made a correct or incorrect response). Of 
course, an experiment does not have to be limited to either a block 
or event-related designs—a mixed-type (both event-related and 
blocked) design where particular trial types are randomized within 
a block is perfectly feasible. In this type of design, both item-related 
processes (e.g., transient responses to stimuli) as well as state- 
related processes (processes sustained throughout a block of trials 
or a task) are perfectly feasible [ 72 ,  73 ]. 

 Overall, much fl exibility exists in the type of  experimental   
design that can be utilized in fMRI experiments and continued 
innovation in this area will greatly expand the types of neuroscien-
tifi c questions that can be addressed.  

5    Issues in Interpretation of fMRI Data 

   Many  statistical techniques   are used for analyzing fMRI data, but 
no single method has emerged as the ideal or “gold standard.” The 
analysis of any fMRI experiment designed to contradict the null 
hypothesis (i.e., there is no difference between experimental con-
ditions) requires inferential statistics. If the difference between two 
experimental conditions is too large to be reasonably due to chance, 
then the null hypothesis is rejected in favor of the alternative 
hypothesis, which typically is the experimenter’s hypothesis (e.g., 
the fusiform gyrus is activated to a greater extent by viewing faces 
than objects). Unfortunately, since errors can occur in any statisti-
cal test, experimenters will never know when an error is committed 
and can only try to minimize them [ 74 ]. Knowledge of several 
basic statistical issues provides a solid foundation for the correct 
interpretation of the data derived from fMRI studies. 

 Two types of statistical errors can occur. A type I error is commit-
ted when the null hypothesis is falsely rejected, that is, a difference 
between experimental conditions is found but a difference does not 
truly exist. This type of error is also called a false-positive error. In an 
fMRI study, a false-positive error would be fi nding a brain region 
activated during a cognitive task, when actually it is not. A type II 
error is committed when the null hypothesis is accepted when it is 
false, that is, no difference between experimental conditions exists 
when a difference does exist. This type of error is also called a false-
negative error. A false-negative error in an fMRI study would be 
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failing to fi nd a brain region activated during the performance of a 
cognitive task when actually it is. The concept of type II error is 
closely related to the idea of statistical power. If the false-negative rate 
for a given study design is 20 %, for instance, then the “power” of that 
design to detect an activation is 100 − 20 % or 80 %. 

 In cognitive neuroscience studies, much emphasis has been 
placed on avoiding type I errors. The negative effects of incorrectly 
identifying a brain region as task-active include the expenditures of 
time, money, and effort spent in replicating and/or expanding 
upon a false positive result. Type II error, on the other hand, is seen 
as less damning; failure to detect brain  activity   in a research study 
has fewer implications for future research, provided that one is care-
ful to interpret so-called null results correctly. For example, cogni-
tive neuroscience studies (due to factors such as the expense and the 
diffi culty of fi nding research participants, for example) tend to 
employ a small number of subjects—15 would typical—and there-
fore frequently lack power to detect signifi cant brain activations. 
One must consequently be careful to avoid interpreting a lack of 
activation in one part of the brain as true inactivity during the task. 

 In a clinical research study, on the contrary, the emphasis may 
be different, especially when fMRI studies are being used diagnos-
tically in individual patients. A type II error—failing to detect 
active brain regions related to movement or language in the vicin-
ity of a brain tumor, for example—may lead to a larger surgical 
resection that leaves the patient with avoidable residual defi cits. On 
the contrary, a type I error—for example, identifying motor  activity 
adjacent to a tumor when in fact none exists—may erroneously 
lead to a more cautious surgical resection, or to use of a different 
treatment modality. Which error is deemed more tolerable may 
depend on the clinical situation. 

 In fMRI experiments, like all experiments, a tolerable probabil-
ity for type I error, typically less than 5 %, is chosen for adequate 
control of specifi city, that is, control of false-positive rates. Two fea-
tures of fMRI data can cause unacceptable false-positive rates, even 
with traditional parametric statistical tests. First, there is the problem 
of multiple comparisons. For the typical resolution of images 
acquired during fMRI scans, the full extent of the human brain 
could comprise as many as 15,000 voxels. Thus, with any given sta-
tistical comparison of two experimental conditions, there are actu-
ally 15,000 statistical comparisons being performed. With such a 
large number of statistical tests, the probability of fi nding a false-
positive activation, that is, committing a type I error, somewhere in 
the brain increases. Several methods exist to deal with this problem. 
One method, a Bonferroni correction, assumes that each statistical 
test is independent and calculates the probability of type I error by 
dividing the chosen probability ( p  = 0.05) by the number of statisti-
cal tests performed. Another method is based on Gaussian fi eld the-
ory [ 75 ], and calculates the probability of type I error when imaging 
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data are spatially smoothed. Many other methods for determining 
thresholds of statistical maps are proposed and utilized [ 76 ,  77 ] but 
unfortunately,    no single method has been universally accepted. 
Nevertheless, all fMRI studies must apply some type of correction 
for multiple comparisons to control the false- positive rate. 

 The second feature that might increase the false-positive rate is 
the “noise” in fMRI data. Data from BOLD fMRI are temporally 
autocorrelated, with more noise at some frequencies than at oth-
ers. The shape of this noise distribution is characterized by a 1/
frequency function with increasing noise at lower frequencies [ 78 ]. 
Traditional parametric and nonparametric statistical tests assume 
that the noise is not temporally autocorrelated, that is, each obser-
vation is independent. Therefore, any statistical test used in fMRI 
studies must account for the noise structure of fMRI data. If not, 
the false-positive rates will infl ate [ 78 ,  79 ]. 

 Type II error is rarely considered in functional neuroimaging 
studies. When a brain map from an fMRI experiment is presented, 
several areas of activation are typically attributed to some experimen-
tal manipulation. The focus of most fMRI studies is on brain activa-
tion whereas it is often implicitly assumed that all of the other areas 
(typically most of the brain) were not activated during the experi-
ment. Power as a statistical concept refers to the probability of cor-
rectly rejecting the null hypothesis [ 74 ]. As the power of an fMRI 
study to detect changes in brain activity increases, the  false- negative 
rate decreases. Unfortunately, power calculations for particular fMRI 
experiments are rarely performed, although methods exist to address 
this issue [ 80 – 82 ]. Reports that specifi c brain areas were not active 
during an experimental manipulation should provide an estimate of 
the power required for detection of a change in the region. All 
experiments should be designed to maximize power. Relatively sim-
ple strategies can increase power in an fMRI experiment in certain 
circumstances, such as increasing the amount of imaging data col-
lected or increasing the number of subjects studied. It is also impor-
tant to note that task designs can affect sensitivity [ 83 ]. For example, 
since BOLD fMRI data are temporally autocorrelated, experiments 
with fundamental frequencies in the lower range (e.g., a boxcar 
design with 60 s epochs) will have reduced sensitivity, due to the 
presence of greater noise at these lower frequencies. Finally, in a 
study that simultaneously measured neural signal via intracortical 
recording and BOLD signal in a monkey, it was observed that the 
SNR of the neural signal was on average at least one order of mag-
nitude higher than that of the BOLD signal. The investigators of 
this study concluded that “the statistical and thresholding methods 
applied to the hemodynamic responses probably underestimate a 
great deal of actual neural activity related to a stimulus or task” [ 84 ]. 
Thus,    the magnitude of type II error in BOLD fMRI may currently 
be underestimated and warrants further consideration in the inter-
pretation of almost any cognitive neuroscience experiment.  
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   When comparing changes in fMRI BOLD signal levels within  the   
brain of an individual subject across different cognitive tasks and 
making conclusions regarding changes in neural activity and the 
pattern of activity, numerous assumptions are made regarding the 
steps comprising neurovascular coupling (stimulus → neural activ-
ity → hemodynamic response → BOLD signal) and the regional 
variability of the metabolic and vascular parameters infl uencing the 
BOLD signal. It should be obvious that fMRI studies of cognition 
of individuals with local vascular compromise or diffuse vascular 
disease (e.g., patients with strokes or normal elderly) are poten-
tially problematic. For example, many fMRI studies have sought to 
identify age-related changes in the neural substrates of cognitive 
processes. Those studies that directly compare changes in fMRI 
BOLD signal intensity across age groups rely upon the assumption 
of age-equivalent coupling of neural activity to BOLD signal. 
However, there is empirical evidence that suggests that this general 
assumption may not hold true. Extensive research on the aging 
neurovascular system has revealed that it undergoes signifi cant 
changes in multiple domains in a continuum throughout the 
human lifespan, probably as early as the fourth decade (for review 
 see  ref. [ 85 ]). These changes affect the vascular ultrastructure [ 86 ], 
the resting cerebral blood fl ow [ 87 ,  88 ], the vascular responsive-
ness of the vessels [ 89 ], and the cerebral metabolic rate of oxygen 
consumption [ 90 ,  91 ]. Aging is also frequently associated with 
comorbidities such as diabetes, hypertension, and hyperlipidemia, 
all of which may affect the fMRI BOLD signal by affecting cerebral 
blood fl ow and neurovascular coupling [ 92 ]. Any one of these age- 
related differences in the vascular system could conceivably pro-
duce age-related differences in BOLD fMRI signal responsiveness, 
greatly affecting the interpretation of results from such studies. 

 Our  laboratory   compared the hemodynamic response function 
(HRF) characteristics in the sensorimotor cortex of young and 
older subjects in response to a simple motor reaction-time task 
[ 70 ]. The provisional assumption was made that there was identi-
cal neural activity between the two populations based on physio-
logical fi ndings of equivalent movement-related electrical potentials 
in subjects under similar conditions [ 93 ]. Thus, we presumed that 
any changes that we observed in BOLD fMRI signal between 
young and older individuals in motor cortex would be due to vas-
cular, and not neural activity changes in normal aging. Several 
important similarities and differences were observed between age 
groups. Although there was no signifi cant difference in the shape 
of the hemodynamic response curve or peak amplitude of the sig-
nal, we found a signifi cantly decreased SNR in the fMRI BOLD 
signal in older individuals as compared to young individuals. This 
was attributed to a greater level of noise in the older individuals. 
We also observed a decrease in the spatial extent of the BOLD 
signal in older individuals compared to younger individuals in 
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sensorimotor cortex (i.e., the median number of suprathreshold 
voxels). Similar results have been replicated by other laboratories 
( e.g ., [ 94 ,  95 ]). These fi ndings suggest that there is some property 
of the coupling between neural activity and fMRI BOLD signal 
that changes with age. 

 The notion that vascular differences among individuals may 
affect BOLD signal is especially a concern when considering studies 
of patient populations with known vascular changes such as stroke. 
For example, in a fMRI study of patients with an isolated subcortical 
lacunar stroke compared to a group of age-matched controls, a 
decrease in the rate of rise and the maximal fMRI BOLD HRF to a 
fi nger- or hand-tapping task in both the sensorimotor cortex of the 
hemisphere affected by the stroke and the unaffected hemisphere 
was found [ 96 ]. These investigators proposed that given the wide-
spread changes of these fMRI BOLD signal differences, the change 
was unlikely a direct consequence of the subcortical lacunar stroke, 
but rather a manifestation of preexisting diffuse vascular pathology. 

 In summary,  comparing   BOLD signal in two different groups 
of individuals that may differ in their vascular system should be 
done with caution [ 97 ]. For example, in one scenario, a compari-
son of activation of young and elderly individuals during a cogni-
tive task may show less activation by elderly (as compared to young 
subjects) in some brain regions, but greater activation in other 
regions. In this scenario, it is unlikely that regional variations in the 
hemodynamic coupling of neural activity to fMRI signal would 
account for such age-related differences in patterns of activation. 
In another scenario, a comparison of young and elderly subjects 
may show less activation by elderly (as compared to young sub-
jects) in some brain regions, but no evidence of greater activation 
in any other region. In this case, it is possible that the observed 
age-related differences are not due to differences in intensity of 
neural activity, but rather to other nonneuronal contributions to 
the imaging signal, i.e., neurovascular coupling. 

 In summary,  fMRI BOLD contrast methods   yield signal 
changes that result from a complex mix of vascular effects and pro-
vide only relative, rather than absolute, measures. One approach to 
accounting for the infl uence of purely vascular effects is to directly 
measure regional and individual variability in vascular reactivity via 
a breathholding task, which increases carbon dioxide concentration 
in the blood and leads to vascular dilatation [ 98 ]. The task- related 
BOLD signal in each subject can then be corrected for particular 
region- and subject-specifi c vascular effects. One alternative func-
tional neuroimaging approach, based on more direct measurements 
of cerebral blood fl ow to active brain areas, is known as arterial spin 
labeling (ASL). In the various ASL techniques, the MRI scanner 
selectively magnetizes blood fl ow with a particular range of loca-
tions and/or velocities, then waits for the appearance of the mag-
netic “tag” in downstream vessels. It thus becomes possible to 
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obtain absolute measures of cerebral perfusion [ 99 ], thereby open-
ing up the possibility of more quantitatively distinguishing between 
the differential infl uence of a disease on blood fl ow, and its effect on 
brain activity [ 100 ]. Additionally, relative to BOLD contrast these 
absolute measurements appear to be more stable over long experi-
ments because of better signal-to-noise at very low frequencies 
[ 101 ], to show less between-subject and between-session variability 
[ 102 ], and to produce decreased susceptibility artifact in areas such 
as medial temporal lobe [ 103 ]. A signifi cant limitation is temporal 
resolution: one must both wait for the generation of suffi cient mag-
netic label, and also acquire two scans, a reference scan and a post-
labeling scan, to produce a single data point. However, a recently a 
new  MRI acquisition method   has been developed that allows for 
more slices for measuring perfusion in a larger region of the brain 
than  currently   possible with previous methods [ 104 ]. Another 
potential disadvantage somewhat related to the temporal issues is 
the lower SNR of ASL relative to BOLD, but this decline may be 
compensated in group studies by the observation that ASL meth-
ods appear to be less variable across subjects [ 99 ].   

6    Types of Hypotheses Tested Using fMRI 

 Functional neuroimaging experiments test hypotheses regarding 
the anatomical specifi city for cognitive processes (functional spe-
cialization) or direct or indirect interactions among brain regions 
(functional integration). The experimental design and statistical 
analyses chosen will determine the types of questions that can be 
addressed. Ultimately, the most powerful approach for the testing 
of theories on brain–behavior relationships is the analysis of con-
verging data from multiple methods. 

   The major focus of fMRI studies of cognition is testing theories on 
 functional specialization  . The concept of functional specialization 
is based on the premise that functional modules exist within the 
brain, that is, areas of the cerebral cortex are specialized for a spe-
cifi c cognitive process. For example, facial recognition is a critical 
primary function likely served by a functional module. 
Prosopagnosia is the selective inability to recognize faces. Patients 
with prosopagnosia, however, can recognize familiar faces, such as 
those of relatives, by other means, such as the voice, dress, or 
shape. Other types of visual recognition, such as identifying com-
mon objects, are normal. Prosopagnosia arises from lesions of the 
inferomedial temporo-occipital lobe, which are usually due to a 
stroke within the posterior cerebral artery circulation. No lesion 
 studies   have precisely localized the area crucial for facial percep-
tion. However, they provide strong evidence that a brain area is 
specialized for processing faces. Functional imaging studies have 
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provided anatomical specifi city for such a module. For example, 
Kanwisher et al. [ 105 ] used fMRI to test a group of healthy indi-
viduals and found that the fusiform gyrus was signifi cantly more 
active when the subjects viewed faces than when they viewed 
assorted common objects. The specifi city of a “fusiform face area” 
was further demonstrated by the fi nding that this area also 
responded signifi cantly more strongly to passive viewing of faces 
than to scrambled two-tone faces, front-view photographs of 
houses, and photographs of human hands. These elegant experi-
ments allowed the investigators to reject alternative functions of 
the face area, such as visual attention, subordinate-level classifi ca-
tion, or general processing of any animate or human forms, dem-
onstrating that this region selectively perceives faces. 

 Of course, the existence of brain areas specialized for certain 
functions does not exclude the strong possibility that those areas 
show either fi ner, voxel-level structure or are part of larger networks. 
Recent neuroimaging work has focused on pattern classifi cation 
methods—that is, on techniques to explore whether a distributed 
spatial pattern of brain activity, both within a single region and across 
larger brain areas, corresponds to object (or more abstract) represen-
tations. This area of research draws on results from physics, computer 
science, and statistics, among other disciplines, to search for more 
broadly distributed structure in neuroimaging data. As such, the 
techniques themselves differ. For example, to distinguish between 
voxel activity patterns across experimental conditions, various reports 
have used correlations between the set of activations in visual 
responses to faces and other objects [ 106 ]; neural network classifi ers 
to identify particular patterns correlated with particular memories 
[ 107 ]; and variants of a matrix algebra transformation known as sin-
gular value decomposition to look for distributed spatial correlates of 
memory storage and search [ 108 ]. By establishing sophisticated 
models of the relationships between brain activity and visual stimuli 
in visual cortex, representations of natural images may even be suc-
cessfully decoded [ 109 ]. A large number of other techniques—too 
large to be reviewed here—are also continually being developed 
[ 110 ,  111 ]. As such research demonstrates that task-relevant brain 
activity can be detected even in the absence of classic univariate activ-
ity changes. However, it will remain important to control for poten-
tial confounds in brain activity data, with validation via comparison 
with behavioral responses, in order to ensure that these patterns are 
not epiphenomenal or a result of  confounds   such as reaction time 
[ 112 ]. At a higher tier of analysis, information decoding techniques 
are being used to examine mechanisms by which higher order cogni-
tion can modulate information representations. A step beyond simply 
detecting the existence of a particular representational code, one can 
now ask, for example, to what extent goal- direction (attention) might 
change the tuning of neural network codes to better represent infor-
mation related to a goal [ 113 ,  114 ].  
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   Functional neuroimaging  experiments   can also test hypotheses 
about interactions between brain regions by focusing on covari-
ances of activation levels between regions [ 115 ,  116 ]. These 
covariances refl ect “functional connectivity,” a concept that was 
originally developed in reference to temporal interactions among 
individual neurons [ 117 ]. 

 In addition to providing information about the specialization 
of various brain regions, functional neuroimaging can also address 
the interactions between brain regions that underlie cognitive 
 processing. Understanding the various techniques that permit 
these types of analysis comprises a very active area of current 
research [ 118 ]. However, most, if not all, of the techniques used 
to test for regional interactions are ultimately based on the covari-
ance of activation levels in different brain regions across time—in 
other words, on the way in which activity levels in different areas of 
the brain rise or fall in relation to each other. Such statistical tech-
niques are commonly known as “multivariate,” both because they 
rely on interactions between two or more brain areas, and to dis-
tinguish them from the “univariate” methods applied in most tests 
of functional specialization. 

 The universe of multivariate  techniques   is further subdivided 
into two types, determined by whether the method in question is 
designed to assess connectivity in a model-free (“functional con-
nectivity”) or model-based (“effective connectivity”) fashion. The 
former refers simply to methods that measure the temporal covari-
ance in activity between brain areas without a priori notions about 
which brain areas are relevant or how they should interact. Examples 
of model-free techniques would include correlation and its fre-
quency-based analogue, coherence, which can be applied irrespec-
tive of hypotheses about the neural events that produced them. On 
the contrary, model-based, or effective connectivity, approaches 
begin with hypotheses about the interactions between different 
brain regions, and attempt to support/refute them by evaluating 
the presence/absence of specifi c activity covariance patterns. 
Examples of these techniques would include structural equation 
modeling and dynamic causal modeling, both of which start by pos-
tulating the existence of infl uences (potentially complex, potentially 
time-varying) between specifi c brain regions. Both types of statisti-
cal techniques have value, of course; their use is determined by the 
problem at hand. Model-free approaches are more general, and 
more easily deployed in exploratory analyses. However, they are not 
as powerful as model-based methods that address specifi c hypoth-
eses about how regions interact—but which fail if the model is mis-
specifi ed. Model-free methods, for example, may be more useful 
when attempting to determine which networks of brain areas might 
be involved in a task, whereas model-based methods may be most 
appropriate when the nodes of the network are known, and specifi c 
notions about how they interact need to be tested. 

6.2  Functional 
Integration
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 In our own laboratory, we have developed and used functional 
connectivity techniques to understand how brain interactions change 
under different task conditions, and over time [ 119 ,  120 ]. For 
example, we have shown that functional connectivity changes as 
subjects learn a complex fi nger tapping task [ 121 ]. In the early 
phases of learning, the data show that subjects not only activate wide 
areas of primary sensorimotor cortex, premotor cortex, and the sup-
plementary motor area, but also that the coherence between these 
areas is increased relative to later stages. Such changes were not 
observed when subjects performed an already learned motor skill; 
and more importantly, they were not found in the univariate 
responses, whose means were unchanged despite the changes in the 
subjects’ facility at the task. Similarly, in a working memory task for 
faces [ 122 ], we have found an interesting dissociation between their 
univariate and multivariate analyses in the networks that support so-
called delay period activity (see below). In our protocol, subjects 
encoded a cue face, maintained the image across a delay of several 
seconds, and then decided whether a subsequently presented probe 
face matched the initial one. Interestingly, we found that despite a 
general decrease in the univariate activity from the cue to the delay 
period, there was a robust increase in the correlation between activ-
ity in the right fusiform face area (a brain region known to be sensi-
tive to face stimuli) and a diffuse set of brain regions including the 
frontal and  parietal   cortices as well as the basal ganglia. 

 In such known networks, effective connectivity techniques can 
be employed to more specifi cally evaluate the infl uence of the 
nodes of the network on each other. McIntosh et al., for example, 
were able to exploit their own functional neuroimaging research 
on working memory networks to formulate a hypothesis about the 
interactions of the PFC, cingulate cortex, and other brain regions 
during task performance [ 116 ]. Using structural equation model-
ing, the authors found shifting prefrontal and limbic interactions in 
a working memory task for faces as the retention delay increased 
(Fig.  4 ). The different interactions between brain regions at short 
and long delays were interpreted as a functional change. For exam-
ple, strong corticolimbic interactions were found at short delays, 
but at longer delays, when the image of the face was more diffi cult 
to maintain, strong fronto-cingulate-occipital interactions were 
found. The investigators postulated that the former fi nding was 
due to maintaining an iconic facial representation, and the latter 
due to an expanded encoding strategy, resulting in more resilient 
memory. As in our own previous studies, information that was not 
seen in the univariate analysis was captured by an approach sensi-
tive to regional interactions. In addition to structural equation 
modeling, other approaches have been applied to fMRI datasets to 
capture information regarding the relative timing of activation 
across brain regions such as Granger causality, information analysis, 
and coherence ( see  [ 119 ,  120 ,  123 ]).
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   Mathematical tools based on graph  theory   have recently 
emerged as a method to quantify large-scale network properties of 
the brain as well as to identify the role of individual brain regions 
within these large-scale networks. These tools, developed for ana-
lyzing a wide variety of networks (e.g., social networks, the inter-
net, protein associations), allow one to make quantitative 
measurements of brain network structure. Typically, these meth-
ods are used to analyze the spontaneous coherent fl uctuations in 
BOLD signal measured by fMRI at rest, which consistently identi-
fi es stable intrinsic functional networks, that, in a short fMRI 
recording session, recapitulate a number of sub- networks   normally 
engaged by a variety of different tasks (see Fig.  5 ).

      Experiments using fMRI can also test theories of the underlying 
mechanisms  of   cognition. For example, an fMRI study [ 124 ] 
attempted to answer the question, “To what extent does perception 
depend on attention?” One hypothesis is that unattended stimuli in 
the environment receive very little processing [ 125 ], but another 
hypothesis is that the processing load in a relevant task determines 
the extent to which irrelevant stimuli are processed [ 126 ]. These 
alternative hypotheses were tested by asking normal individuals to 
perform linguistic tasks of low or high load while ignoring irrele-
vant visual motion in the periphery of a display. Visual motion was 
used as the distracting stimulus, because it activates a distinct region 
of the brain (cortical area MT or V5, another functional module in 
the visual system). Activation of area MT would indicate that irrel-
evant visual motion was processed. Although task and irrelevant 
stimuli were unrelated, fMRI of motion-related activity in MT 
showed a reduction in motion processing during the high-process-
ing load condition in the linguistic task. These fi ndings supported 
the hypothesis that perception of irrelevant environmental 

6.3  Cognitive Theory

  Fig. 4     Network analysis   of fMRI data using  structural equation modeling   during performance of a working 
memory task across three different delay periods [ 111 ]. Areas of correlated increases in activation ( solid lines ) 
and areas of correlated decreases in activation ( dotted lines ) are shown. Note the different pattern of interac-
tions among brain regions at short and long delays       
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information depends on the information processing load that is 
currently relevant and being attended to. Thus, by the fi nding that 
perception depends on attention, this fMRI experiment provides 
insight regarding underlying cognitive mechanism.   

7    Integration of Multiple Methods 

 The most powerful approach toward understanding brain–behavior 
relationships comes from analyzing converging data from multiple 
methods. There are several ways in which different methods can 
provide complementary data. For example, one method can pro-
vide superior spatial resolution (e.g., fMRI) whereas the other can 
provide superior temporal resolution (e.g., ERP). Also, the data 
from one method may allow for different conclusions to be drawn 
from it such as whether a particular brain region is necessary to 
implement a cognitive process (i.e., lesion methods) or whether it is 
only involved during its implementation (i.e., physiological meth-
ods). The following sections describe examples of such approaches. 

   The combined use of functional neuroimaging and lesions  studies   
can be illustrated with studies of the neural basis of semantic mem-
ory, the cognitive system that represents our knowledge of the 

7.1  Combined fMRI/
Lesion Studies

  Fig. 5    A brain graph derived from resting state fMRI data collected from healthy young subjects illustrating 
identifi ed modules, represented as different  shades of color . There are four distinct modules identifi ed in this 
graph       
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world. Early studies of patients with focal lesions supported the 
notion that the temporal lobes mediate the retrieval of semantic 
knowledge [ 127 ]. For example, patients with temporal lobe lesions 
may show a disproportionate impairment in the knowledge of liv-
ing things (e.g., animals) compared with nonliving things. Other 
patients have a disproportionate defi cit in the knowledge of nonliv-
ing things [ 128 ]. These observations led to the notion that the 
semantic memory system is subdivided into different sensorimotor 
modalities, that is, living things, compared with nonliving things, 
are represented by their visual and other sensory attributes (e.g., a 
banana is yellow), while nonliving things are represented by their 
function (e.g., a hammer is a tool but comes in many different visual 
forms). The small number of patients with these defi cits, and often 
large lesions, limits precise anatomical-behavioral relationships. 
However, functional neuroimaging studies in normal subjects can 
provide spatial resolution that the lesion method lacks [ 129 ]. 

 These original observations regarding the neural basis of seman-
tic memory confl icted with functional neuroimaging studies consis-
tently showing activation of the left IFG during the retrieval of 
semantic knowledge. For example, an early cognitive activation PET 
study revealed IFG activation during a verb generation task com-
pared with a simple word repetition task [ 60 ]. A subsequent fMRI 
study [ 130 ] offered a fundamentally different interpretation of the 
apparent confl ict between lesion and functional neuroimaging stud-
ies of semantic knowledge: left IFG activity is associated with the 
need to select some relevant feature of semantic knowledge from 
competing alternatives, not retrieval of semantic knowledge per se. 
This interpretation was supported by an fMRI experiment in normal 
individuals in which selection, but not retrieval, demands were var-
ied across three semantic tasks.    In a verb generation task, in a high 
selection condition, subjects generated verbs to nouns with many 
appropriate associated responses without any clearly dominant 
response (e.g., “wheel”), but in a low selection condition nouns 
with few associated responses or with a clear dominant response 
(e.g., “scissors”) were used. In this way, all tasks required semantic 
retrieval, and differed only in the amount of selection required. The 
fMRI signal within the left IFG increased as the selection demands 
increased (Fig.  6 ). When the degree of semantic processing varied 
independently of selection demands, there was no difference in left 
IFG activity, suggesting that selection, not retrieval, of semantic 
knowledge drives activity in the left IFG.

   To determine if left IFG activity was correlated with but not 
necessary for selecting information from semantic memory, the 
same task used during the fMRI study was used to examine the 
ability of patients with focal frontal lesions to generate verbs [ 131 ]. 
Supporting the earlier claim regarding left IFG function derived 
from an fMRI study [ 130 ], the overlap of the lesions in patients 
with defi cits on this task corresponded to the site of maximum 
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fMRI activation in healthy young subjects during the verb genera-
tion task (Fig.  6 ). In this example, the approach of using converg-
ing evidence from lesion and fMRI studies differs in a subtle but 
important way from the study described earlier that isolated the 
face processing module. Patients with left IFG lesions do not pres-
ent with an identifi able neurobehavioral syndrome refl ecting the 
nature of the processing in this region. Guided by the fMRI results 
from healthy young subjects, the investigators studied patients 
with left IFG lesions to test a hypothesis regarding the necessity of 
this region in a specifi c cognitive process. Coupled with the well- 
established fi nding that lesions of the left temporal lobe impair 
semantic knowledge, these studies further our understanding of 
the neural network mediating semantic memory.  

    Transcranial magnetic stimulation (TMS)   is a noninvasive method 
that can induce a reversible “virtual” lesion of the cerebral cortex in 
a normal human subject [ 132 ]. Using both fMRI and TMS provides 
another means of combining brain activation data with data derived 
from the lesion method. There are several advantages for using TMS 
as a lesion method. First, brain injury likely results in brain reorgani-
zation after the injury and studies of patients with lesions assume 
that the nonlesioned brain areas have not been affected, whereas 
TMS is performed on the normal brain. Another advantage for using 
TMS is that it has excellent spatial resolution and can target specifi c 
locations in the brain whereas lesions in patients with brain injury are 
markedly variable in location and size across individuals. Such an 
approach can be illustrated in an investigation of the role of the 

7.2  Combined fMRI/
Transcranial Magnetic 
Stimulation Studies

  Fig. 6    Regions of overlap of fMRI activity in healthy human subjects ( left side of 
fi gure ) during the performance of three semantic memory tasks, with the con-
vergence of activity within the left inferior frontal gyrus ( white region ) [ 125 ]. 
Regions of overlap of lesion location in patients with selection-related defi cits on 
a verb generation task ( right side of fi gure ) with maximal overlap within the left 
inferior frontal gyrus [ 126 ]       
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medial frontal cortex in task switching [ 133 ]. In this study, subjects 
fi rst performed an fMRI study that identifi ed the regions that were 
active when they stayed on the current task vs. when they switched 
to a new task. It was found that medial frontal cortex is activated 
when switching between tasks. In order to determine if the medial 
frontal cortex was necessary for the processes involved in task switch-
ing, the same paradigm was utilized during inactivation of the medial 
frontal cortex with TMS. Guided by the locations of activation 
observed in the fMRI study, and using an MRI guided frameless 
stereotaxic procedure, it was found that applying a TMS pulse over 
the medial frontal cortex disrupted performance only during trials 
during which the subject was required to switch between tasks. TMS 
over adjacent brain regions did not show this effect. Also, the excel-
lent temporal resolution of TMS allowed the investigators to stimu-
late during precise periods of the task, determining that the observed 
effect was during the time when the subjects were presented a cue 
indicating they must switch tasks prior to the actual performance of 
the new task. Thus, combining the results from both fMRI and 
TMS, it was concluded that medial PFC was essential for allowing 
individuals to intentionally switch to a new task. 

 It is possible to perform TMS studies not only as an adjunct 
to, but also concurrently with, fMRI. The advantage of this 
approach is clear: applying TMS at various times  during  (rather 
than after) fMRI scans permits it to be causally linked with func-
tional changes in the brain, even independently of behavior. In 
an early study employing this technique, Ruff, Driver and col-
leagues [ 36 ,  134 ] examined the infl uence on early visual cortex 
of a parietal region (the anterior intraparietal sulcus, or aIPS) 
implicated in the generation of both covert spatial attention and 
eye movements. They chose a range of TMS )   stimulus intensi-
ties, all of which were thought to be in an effectively stimulatory 
rather than inhibitory range, and applied them to the aIPS while 
subjects fi xated the center of a viewing screen. On some trials, a 
randomly moving visual stimulus was present; subjects had no 
other task than to maintain fi xation. Using this approach, the 
authors were able to demonstrate a parametric, so-called top-
down effect from aIPS following TMS—an increase in the BOLD 
response in early visual cortex with increasing TMS intensity—
that could be found only when visual stimuli were absent, and 
that did not vary with retinotopic eccentricity. In distinction, 
their previous work (extended here) had shown that TMS of the 
frontal eye fi eld (FEF) led to a decrease in BOLD response in the 
central visual fi eld but to an increase in BOLD response in the 
peripheral visual fi eld, irrespective of the presence or absence of 
a visual stimulus. The authors were  consequently able to con-
clude that the aIPS and the FEF have distinct top-down effects 
on visual cortex, a fi nding that would not have been possible 
without concurrent TMS.  
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   The strength of combining these two methods is  coupling   the 
superb spatial resolution of fMRI with the superb temporal resolu-
tion of ERP recording. An example of such a study was reported 
by Dehaene et al. who asked the question “Does the human capac-
ity for mathematical intuition depend on linguistic competence or 
on visuospatial representations?” [ 135 ]. In this study, subjects per-
formed two addition tasks—one in which they were instructed to 
select the correct sum from two numerically close numbers (exact 
condition) and one in which they were instructed to estimate the 
result and select the closest number (approximate condition). 
During fMRI scanning greater bilateral parietal lobe activation was 
observed in the approximation condition as compared to the exact 
condition. Since this activation was outside the perisylvian lan-
guage zone, it was taken as support that visuospatial processes were 
engaged during the cognitive operations involved in approximate 
calculation. Greater left lateralized frontal lobe activation was 
observed to be greater in the exact condition as compared to the 
approximate condition, which was taken as evidence for language 
dependent coding of exact addition facts. In order to consider an 
alternative explanation of the fMRI fi ndings, the investigators also 
performed an ERP study. The alternative explanation was that in 
both the exact and approximate tasks, subjects would compute the 
exact result using the same representation for numbers but later 
processing, when they had to make a decision as to the correct 
choice, was what led to the differences in brain activation. Since 
fMRI does not offer adequate temporal resolution to resolve these 
two behavioral events on such a brief time scale, ERP was the 
appropriate method to test this hypothesis. In the ERP study it was 
demonstrated that the evoked neural response during exact and 
approximate  trials   already differed signifi cantly during the fi rst 
400 ms of a trial before subjects had to make a decision.  

   Combining pharmacological challenges  during   the performance of 
cognitive tasks during fMRI scanning may yield signifi cantly differ-
ent information than either method alone. In isolation, fMRI cogni-
tive task paradigms provide little information with respect to the 
underlying pharmacologic systems involved in cognition. On the 
contrary, drug administration without a brain measure cannot deter-
mine underlying neural mechanisms of the effects of neuromodula-
tory systems on cognition. Combining the two approaches allows 
the potential of probing the pharmacologic bases of  behavior. One 
may measure the interactive effects of drug (compared to placebo, 
or a range of doses) with cognitive task-related modulation of brain 
activity. It is fair to infer that drug × task interactions refl ect modula-
tion of the underlying anatomical and chemical brain systems, and 
do not simply refl ect nonspecifi c vascular effects. For example, dopa-
minergic agonists have been shown to have task- specifi c effects 
[ 136 – 138 ], and different component processes of working memory 

7.3  Combined fMRI/
Event-Related 
Potential Studies

7.4  Combined fMRI/
Pharmacological 
Studies
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are differentially affected by a dopaminergic drug, with effects that 
may differ between individuals depending on their baseline state 
[ 139 ]. This latter study demonstrated that a dopamine agonist 
improved the fl exible updating (switching) of relevant information 
in working memory. However, the effect only occurred in individu-
als with low working memory capacity, but not in individuals with 
higher working memory capacity. This behavioral effect was accom-
panied by dissociable effects of the dopaminergic agonist on fronto-
striatal activity. The dopamine agonist modulated the striatum 
during switching but not during distraction from relevant informa-
tion in working memory, while the lateral frontal cortex was modu-
lated by the drug during distraction but not during switching.   

8    Application of a Cognitive Neuroscience Approach Toward Clinical Studies 

   Cognitive neuroscience studies using fMRI may provide an impor-
tant foundation for clinical studies. A biomarker is an indicator that 
refl ects a process, event, or condition in a biological system. 
Biomarkers may be useful for providing a measure of exposure, 
effect, or susceptibility. Reliable biomarkers of a neural system could 
reliably quantify how such a neural system is affected by almost any 
input. The input may be the effects of a drug, the effects of cogni-
tive therapy, or the effects of a disease process. For a measurement 
to be useful as a biomarker in clinical studies, it needs to have well-
defi ned signifi cance based on preclinical studies. That is, a change in 
an fMRI measurement would ideally refl ect a change in a well-
understood process, thus providing a clear a priori hypothesis and 
interpretation of the fi ndings. Once the processes are established, 
fMRI biomarkers may then be useful for addressing a number of 
clinical questions. For any neurophysiologic measurement to be a 
 surrogate  marker, a stable, reliable relationship between the fMRI 
measurement and a defi ned clinical outcome needs to be defi ned. 
Only in that scenario would an fMRI measurement provide a suit-
able surrogate for other clinical outcomes. Cognitive neuroscience 
studies provide the foundation for fMRI biomarkers, but the stud-
ies necessary for defi ning fMRI surrogate markers are rarely done. 

 Questions regarding the mechanisms of brain function dis-
rupted by pathologic states, processes affected by treatment inter-
ventions, or the nature of post-injury reorganization of function 
are examples of clinical questions that can be tested with fMRI. For 
example, attentional modulation of information processing-related 
activity in visual cortex is a well-established phenomenon in cogni-
tive neuroscience studies, with effects measurable using fMRI. For 
example, it has been shown that activity in category-selective 
regions of inferior temporal cortex is modulated based on the tar-
get of attention, relatively up-modulated if the target is relevant to 
the region and down-modulated if not relevant [ 140 ,  141 ]. This 

8.1  Use 
of  Biomarkers   Derived 
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fi nding provides a biomarker of attentional control over visual pro-
cessing, and as noted below, could serve as a useful biomarker for 
clinical interventions such as cognitive training in individuals with 
attentional defi cits.  

   Functional MRI may be useful not only in defi ning “static” brain–
behavioral relationships, but also may be applied to defi ning the 
neural mechanisms that underlie learning, experience, or injury. 
Two general categories of questions may be investigated. First, 
fMRI can be used to examine factors that infl uence response to the 
perturbations of training (learning), experience or injury. Second, 
fMRI can be used to examine changes that underlie or are the 
result of these various perturbations. 

 Investigation of baseline factors that may infl uence response to 
training has particular clinical relevance. A better understanding of 
pre-training neural characteristics that infl uence response to reha-
bilitation training could have major clinical value in guiding treat-
ment decisions. fMRI could provide a number of possible 
measurements that could mark an important neural process. For 
example, certain parameters of brain network organization may be 
particularly important in supporting the potential for learning and 
plasticity. For example, parameters of the functional organization 
of whole brain networks have been shown to predict response to 
training of attention regulation after injury [ 142 ]. In another 
example, a simple measurement of the quantity of activation in 
prefrontal cortex has been shown to predict response to training to 
use a verbal memory strategy [ 143 ]. Such approaches may help 
elucidate either personal factors or strategic approaches that under-
lie variations in learning or response to interventions. 

 Investigation of  changes  over time is particularly relevant for 
understanding neural mechanisms of post-injury rehabilitation. In 
order to assess changes with intervention, longitudinal or repeated 
measurements are required. Because fMRI involves no 
 exposure- limiting factors such as radiation, it is suitable for repeated 
measurements. However, multi-session studies are also signifi -
cantly more complicated to design, analyze, and interpret due to a 
number of issues discussed below. 

 There are at least two distinct  approaches   relevant to assessing 
changes within an individual. First, fMRI may be used for deter-
mining the after-effects of a learning intervention. Functional MRI 
measures pre- and post-intervention may be used to address this 
question. For example, after two pieces of information have been 
strongly associated over repetitive exposures, one may fi nd reduced 
activation in response to presentation of that information, but 
increased functional connectivity between regions of the brain that 
process the two types of information [ 115 ]. Second, fMRI may be 
used for determining the processes that occur during an interven-
tion, such as cognitive training. To do this one would need to 

8.2  Functional MRI 
for Measuring 
the Effect of Clinical 
 Intervention  s

Mark D’Esposito et al.



347

acquire fMRI data  during  the process of training. An alternative 
approach is to use a cross-sectional approach to examine differ-
ences across individuals rather than within individuals [ 144 ]. For 
example, brain activation differences between experts in a particu-
lar skill (e.g., long-term meditation practitioners, pianists) and 
novices may be used to infer the neural effects of training to achieve 
expertise. However, other confounding effects of differences 
between cohorts are diffi cult to exclude (e.g., self-selection in per-
severing to achieve expertise), and a stronger inference for causa-
tion requires longitudinal, prospective studies. 

 The use of fMRI to defi ne changes over time requires consider-
ation of certain additional methodological issues. Test–retest reliabil-
ity needs to be considered. Estimates of reliability depend on what is 
being measured. For example, in statistical parametric mapping, the 
question may be whether particular brain regions are stably labeled as 
“active” or not in serial sessions. A handful of studies have addressed 
this question. For example, one group showed that with a classifi ca-
tion learning task, scans 1 year apart resulted in highly concordant 
results with defi ned regions of interest [ 145 ]. Another group showed 
that maps obtained from a working memory task were similar across 
time [ 146 ], but with a motor task, there appeared to be signifi cant 
variation over time in volume and spatial location of activation [ 147 ]. 

 In longitudinal studies, sources of variability may be both phys-
iologic and nonphysiologic (e.g., MRI hardware). In some cases, 
the magnitudes of activation in specifi c brain regions of interest are 
themselves an outcome of interest. In these instances the stability of 
BOLD signal measurements becomes an even more salient issue. It 
may be worthwhile to utilize within-session indices that effectively 
normalize parameters of interest. For example, rather than compar-
ing estimates of the magnitudes of activation, it may be worthwhile 
utilizing an index of activity for one condition compared to a sec-
ond controlled condition with each session. An additional statistical 
approach that could account for potential variability in SNR is to 
combine data sets across sessions and then “whiten” the noise, 
effectively normalizing noise contribution across sessions. Another 
promising future direction is the use of quantitative techniques 
such as arterial spin labeling (ASL), mentioned earlier in this chap-
ter, to help reduce nonphysiologic sources of variability. This type 
of quantitative index may be particularly valuable in studies that 
attempt to  examine   brain functioning longitudinally. 

 Other factors that concurrently change over time can produce 
confounds to the interpretation of longitudinal studies. For exam-
ple, performance may change, resulting in changes in reaction time 
or accuracy. All of these may alter measured responses making 
determination of the neural bases of the process of interest, such as 
a treatment intervention, more diffi cult. These and a number of 
other theoretical issues are discussed by Poldrack in consideration 
of learning-related (though not post-injury) changes [ 144 ]. 
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 Other analytic approaches may be taken that are less sensitive 
to nonphysiologic instabilities. For example, one could test for 
changes in the spatial  pattern  of activation, which is not necessarily 
affected by signal magnitude changes. For example, one could test 
whether the patterns of activity are identical to within a scaling fac-
tor [ 108 ]. Furthermore, one could examine the more fundamental 
measurement of the information coded within brain activity pat-
terns. These measurements may provide more informative indices 
of particular neural process, while also being more robust for lon-
gitudinal studies.   

9    Conclusions 

 Functional MRI is an extremely valuable tool for studying brain–
behavior relationships, as it is widely available, noninvasive, and has 
superb temporal and spatial resolution. New approaches in fMRI 
experimental design and data analysis continue to appear at an 
almost exponential rate, leading to numerous options for testing 
hypotheses on brain–behavior relationships. Combined with infor-
mation from complementary methods, such as the study of patients 
with focal lesions, healthy individuals with TMS, pharmacological 
interventions, or ERP, data from fMRI studies provide new insights 
regarding the organization of the cerebral cortex as well as the 
neural mechanisms underlying cognition. Moreover, cognitive 
neuroscience approaches that have been developed for fMRI pro-
vide an excellent foundation for its use as a clinical tool.     
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