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 Experimental life sciences have two basic foundations: concepts and tools. The  Neuromethods  
series focuses on the tools and techniques unique to the investigation of the nervous system 
and excitable cells. It will not, however, shortchange the concept side of things as care has 
been taken to integrate these tools within the context of the concepts and questions under 
investigation. In this way, the series is unique in that it not only collects protocols but also 
includes theoretical background information and critiques which led to the methods and 
their development. Thus it gives the reader a better understanding of the origin of the 
techniques and their potential future development. The  Neuromethods  publishing program 
strikes a balance between recent and exciting developments like those concerning new ani-
mal models of disease, imaging, in vivo methods, and more established techniques, includ-
ing, for example, immunocytochemistry and electrophysiological technologies. New 
trainees in neurosciences still need a sound footing in these older methods in order to apply 
a critical approach to their results. 

 Under the guidance of its founders, Alan Boulton and Glen Baker, the  Neuromethods  
series has been a success since its fi rst volume published through Humana Press in 1985. The 
series continues to fl ourish through many changes over the years. It is now published under 
the umbrella of Springer Protocols. While methods involving brain research have changed a 
lot since the series started, the publishing environment and technology have changed even 
more radically. Neuromethods has the distinct layout and style of the Springer Protocols 
program, designed specifi cally for readability and ease of reference in a laboratory setting. 

 The careful application of methods is potentially the most important step in the process 
of scientifi c inquiry. In the past, new methodologies led the way in developing new disci-
plines in the biological and medical sciences. For example, Physiology emerged out of 
Anatomy in the nineteenth century by harnessing new methods based on the newly discov-
ered phenomenon of electricity. Nowadays, the relationships between disciplines and meth-
ods are more complex. Methods are now widely shared between disciplines and research 
areas. New developments in electronic publishing make it possible for scientists that 
encounter new methods to quickly fi nd sources of information electronically. The design of 
individual volumes and chapters in this series takes this new access technology into account. 
Springer Protocols makes it possible to download single protocols separately. In addition, 
Springer makes its print-on-demand technology available globally. A print copy can there-
fore be acquired quickly and for a competitive price anywhere in the world.  

  Saskatoon, Canada     Wolfgang     Walz     

  Preface to  the Series   
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 fMRI has gained a remarkable role as a tool for studying brain function due to its capability 
to provide an invaluable insight into the mechanisms through which the human brain 
works in healthy individuals and to explore the mechanisms associated with recovery of 
function or clinical deterioration in patients with different neurological and psychiatric 
conditions. The utility of this technique to monitor the effects of pharmacologic and reha-
bilitative treatments has also been recently demonstrated. 

 The second edition of this book aims at providing an up-to-date review of the main 
methodological aspects of fMRI, as well as a state-of-the-art summary of the achievements 
obtained by its application to the study of central nervous system functioning in the clinical 
arena. Future evolutions of fMRI techniques are also discussed. The contributors of this 
volume are all worldwide renowned scientists and physicians with a broad experience in the 
technical development and clinical use of fMRI. Although the fi eld is ample, based on a 
series of very different disciplines and expanding at a dramatic pace every day, I believe that 
this book provides an adequate background against which to plan and design new studies 
to advance our knowledge on the physiology of the normal human brain and its change 
following tissue injury. 

  Part I  of the volume is aimed at providing the basic knowledge for the understanding 
of the technical aspects of fMRI. It covers the basic principles of MRI and fMRI, the differ-
ent options that can be used to set up an fMRI experiment, and the steps of fMRI analysis, 
from the preparation of data to the achievement of interpretable results. This part is there-
fore essential to introduce the readers to the “fMRI world” and make them able to inter-
pret with enough criticism the results of their own experiments. A chapter is devoted to the 
advantages, caveats, and pitfalls of fMRI data acquired using high-fi eld MR scanners. In 
addition, although still in its infancy, the assessment of brain connectomics with functional 
and structural imaging techniques is considered at length, given its potential for improving 
the understanding of normal and pathological brain function. 

  Part II  provides an overview of the main results derived from the application of fMRI 
to the study of healthy individuals. Given its noninvasiveness, safety, and repeatability, fMRI 
is rapidly replacing, whenever possible, other functional techniques, such as positron emis-
sion tomography, to image the function of the normal brain. In addition, due to its spatial 
resolution, fMRI is commonly preferred to neurophysiological techniques to locate with 
precision the areas activated during the performance of experimental tasks. What has been 
achieved in the analysis of the main human functional systems with fMRI is illustrated, 
including, among many other aspects, behavior, language, memory, emotion, sensation, 
pain, vision, and hearing. 

  Part III  is more clinically oriented and illustrates the main fi ndings obtained by the 
application of fMRI to assess the role of brain plasticity in the major neurological and psy-
chiatric conditions. The fi rst chapter is devoted to fMRI studies of multiple sclerosis, since 
there is a growing body of evidence that brain functional reorganization has an important 
role, at least in same phases of the disease, in limiting the clinical consequences of MS-related 
irreversible tissue damage. Therefore, MS can be viewed as a “model” to understand how 
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pathology can affect the patterns of brain recruitment. The results obtained in other white 
matter conditions, including isolated demyelinating myelitis and vasculitides, are then pre-
sented. The second chapter deals with stroke studies, which have shown consistently that 
reorganization of surviving neuronal networks is one of the key factors underlying recovery 
of function. The experimental caveats to be faced when studying patients with severe clini-
cal impairment are also reviewed. The following chapters cover psychiatric and neurode-
generative diseases, a fi eld where fMRI is providing important pieces of information not 
only for the understanding of the mechanisms underlying disease pathophysiology and 
genesis of symptomatology, but also for planning and monitoring novel treatment strate-
gies. Then, two conditions, i.e., epilepsy and tumors, where fMRI is gaining an important 
role in the presurgical evaluation of patients, are discussed. The last contribution of this 
part describes the potential and some preliminary, but nevertheless promising, results on 
the use of fMRI in the monitoring of pharmacological treatments and motor 
rehabilitation. 

  Part IV  is a glimpse into the future and presents novel approaches for the integration 
of fMRI data with measures of damage assessed using structural MR techniques and the 
application of fMRI to image spinal cord function. Finally, results derived from the applica-
tion of graph analysis to assess network abnormalities in patients with several neurological 
and psychiatric disorders, including dementia, amyotrophic lateral sclerosis, multiple scle-
rosis, and schizophrenia, are presented. 

 The hope that has inspired this book is that it will be of help to clinicians and research-
ers in their daily life activity by providing a “user-friendly” summary of the fi eld and the 
necessary background against which to plan and carry out future and successful studies. 
This is, indeed, an ever-growing and exciting fi eld of research, where we have reached a lot 
in the past few years, but where there is still a long journey ahead of us.  

  Milan, Italy     Massimo     Filippi      

Preface
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    Chapter 1   

 Principles of MRI and Functional MRI                     

     Ralf     Deichmann      

  Abstract 

   This chapter describes the basics of magnetic resonance imaging (MRI) and functional MRI (fMRI). It is 
aimed at beginners in the fi eld and does not require any previous knowledge. Complex technical issues are 
made plausible by presenting plots and fi gures, rather than mathematical equations. 

 The part dealing with the basics of MRI covers spins, spin alignment in external magnetic fi elds, the 
magnetic resonance effect, fi eld gradients, frequency encoding, phase encoding, slice selection,  k -space, 
gradient echoes, and echo-planar imaging. 

 The part dealing with fMRI covers transverse relaxation times, the basics of the blood oxygen level-
dependent (BOLD) contrast, and the hemodynamic response.  

  Key words     Spin  ,   Field gradients  ,   Frequency encoding  ,   Phase encoding  ,   Slice selection  ,    k -Space  , 
  Gradient echo  ,   Echo-planar imaging  ,   Transverse relaxation time  ,   Blood oxygen level-dependent  

1      Basic Physical Principles 

   The fi rst question arising is “What do we actually see in MRI?” 
 In general, we see protons. A proton is the nucleus of the hydro-

gen atom. Hydrogen is the most common element in tissue, so if we 
are able to detect the presence of protons and display them with a 
certain spatial resolution, it is fair to say that we can “see” tissue. 

 The detection of protons is based on a physical property 
called the “ spin  .” A correct description of spins is only possible 
with quantum mechanics and would be beyond the scope of this 
book, so may it suffi ce to say that a spin is quite similar to a com-
pass needle. In particular, a compass needle carries a “magnetiza-
tion” which enables it to align in an  external magnetic fi eld   and 
produce a magnetic fi eld itself (for example, a compass needle 
can be used to attract small iron particles). A spin possesses an 
elementary magnetization (albeit a tiny one), so it behaves in a 
similar way. 

 Let us consider a simple object containing protons, for example a 
container with water (Fig.  1 ). If there is no external magnetic fi eld 

1.1  Spins in an 
External Magnetic 
Field



4

(usually labeled  B ), the spins will point in different directions, the con-
tributions of their respective magnetization vectors will cancel out, so 
there is no net magnetization (usually labeled  M ). If, however, this 
object is placed into an external magnetic fi eld  B  (e.g., into the bore 
of an MR scanner), the spins will align. According to the laws of quan-
tum mechanics, this alignment is either parallel or anti-parallel to the 
external magnetic fi eld, so once again one might assume that the sin-
gle magnetization vectors will cancel each other. However, a slight 
majority of spins prefers the parallel direction. This results in a macro-
scopic net magnetization  M  which is parallel to  B  (Fig.  1 , right). The 
idea is now: any measurement of  M  would correspond to the detec-
tion of the presence of protons in the object. If  M  is measured with a 
spatial resolution, we can display the result as an image. This is exactly 
what is done in MR imaging. The measurement of  M  is based on a 
physical effect which will be described in Subheading  1.2 .

       Let us assume that we disturb the realigned spins in a way that (at 
least for a short time) the magnetization vector  M  is not parallel to 
 B  but tilted by a certain angle (how this can be achieved will be 
discussed in Subheading  1.3 ). In this case, an interesting process 
begins: the tilted magnetization vector rotates around the direction 
of the external magnetic fi eld. This movement, which resembles 
closely the behavior of a spinning top, is called precession (Fig.  2 ). 
The frequency is called   Larmor frequency   . It is important to note 
that the Larmor frequency  f  is proportional to the external fi eld  B. 

   f B= g .   ( 1 )    
In this formula,  γ  is the gyromagnetic ratio with a value of 
42.58 MHz/T for hydrogen. 

1.2  The  Larmor 
Precession  

  Fig. 1    ( Left ) Without an external magnetic fi eld (labeled  B ) the spins point in dif-
ferent directions, the contributions of their respective magnetization vectors can-
cel out, so there is no net magnetization (labeled  M ). ( Right ) Inside an external 
magnetic fi eld  B  the spins align in parallel or anti-parallel direction, with a slight 
majority of spins in parallel direction, giving rise to a net magnetization  M        
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 This effect is of major interest because during the precession, 
the spins send out an electromagnetic wave with the Larmor fre-
quency. For fi eld strengths that are common on clinical MR scan-
ners (1.5 and 3 T), the Larmor frequencies are about 63 MHz and 
127 MHz, respectively. As the reader may know, the tuning on 
standard frequency modulation (FM) radios ranges from 88 to 
108 MHz, so it is fair to say that the signal sent out by the spins is 
similar to an ordinary FM radio broadcasting signal. For this rea-
son, it is also called  radiofrequency  ( RF )  signal . It can be detected 
with an appliance very similar to an FM tuner. This is exactly the 
way how the magnetization  M  and thus the presence of protons are 
detected in MR scanners. In Subheading  1.3 , it will be described 
how the magnetization can be tilted.  

     The next physical effect is more or less the opposite of the one that 
has just been discussed. This time, the object is exposed to an exter-
nal RF signal which has  exactly  the Larmor frequency and is pro-
duced by a kind of “inbuilt FM broadcasting station” (Fig.  3 , part 1). 
This signal will tilt the magnetization which subsequently starts to 
precede (Fig.  3 , part 2). During precession, an RF signal is being sent 
out which can be detected with a kind of “FM tuner” (Fig.  3 , part 3).

   It should be noted that this concept only works if the incoming 
RF signal has  exactly  the spins’ Larmor frequency. Otherwise, the 
magnetization will not be tilted and it is impossible to detect a signal. 
Thus, we are dealing with a resonance effect, and this explains why 
the imaging technique based on this effect is called  magnetic reso-
nance imaging  (MRI). The nuclear magnetic resonance effect was 
fi rst described independently by Bloch and Purcell in 1946 [ 1 ,  2 ]. 

 We have now covered all the basic physical effects that are 
required to understand how MRI works. To summarize it, all MR 
experiments are based on the following  principles  :

 ●    Put the object to be imaged into a strong external magnetic 
fi eld  B . The spins will align and create a net magnetization  M  
which is parallel to  B .  

 ●   Knowing  B , calculate the Larmor frequency  f  = γ B  and send an 
external RF pulse which has exactly this frequency. This will tilt 
the magnetization. After a short time, the external RF has 
served its duty and can be switched off.  

1.3  The Magnetic 
Resonance Effect

  Fig. 2    Behavior of the tilted  magnetization  : Precession with the Larmor frequency       
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 ●   The magnetization vector now precedes. Switch on your FM 
tuner. If you detect a signal, you have detected the presence 
of protons.    

 Subheading  2  will deal with the question how spatial resolu-
tion can be achieved.   

2     A One-Dimensional MR Experiment 

 Let us assume we have a closed box containing two glasses of water, 
one being half full and the other one full (Fig.  4a ).

   We now have to answer the following questions:

    1.    Are there any glasses inside the box or is it empty?   
   2.    How many glasses are inside the box?   
   3.    What is the exact location of the glasses?   
   4.    What are the relative fi lling levels?     

 Of course:  we are not allowed to open the box ! Our investigation 
must rely purely on the physical principles we have discussed so far. 

 The whole  procedure   will be discussed step by step as follows:

    Step 1 . We put the box into the MR scanner, i.e., into a strong 
magnetic fi eld  B . In both glasses, spins will align, resulting in a 
net magnetization  M  in the fi rst glass and, due to the larger 
number of protons, 2  M  in the second glass (Fig.  4b ).  

   Step 2 . We calculate the Larmor frequency  f  = γ B  and send an exter-
nal RF pulse which has exactly this frequency. This will cause a 
tilt of the magnetization vectors in both glasses which conse-
quently start to precede, sending out an RF signal with the 
same frequency  f  (Fig.  4c ). This signal can be detected with a 
kind of FM tuner, so we can answer at least the fi rst question: 
the box is sending out a signal, so it cannot be empty.  However, 
so far we are not able to comment on the number and locations 
of the glasses, because they send out signals with the same fre-
quency and we can only detect the  sum signal  outside the box.  

  Fig. 3    An external radiofrequency (RF) pulse that has exactly the Larmor fre-
quency tilts the magnetization ( 1 ). The tilted magnetization starts to precede ( 2 ) 
and sends out an RF pulse with the Larmor frequency itself ( 3 )       
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   Step 3 . This is the crucial step: we switch on a so-called   gradient fi eld   . 
This simply means that we modify for a certain time the external 
magnetic fi eld  B  in a way that it is no longer constant across the 
box but increases (slightly) from the left-hand to the right-hand 
side (Fig.  4d ). In particular, the fi eld strengths at the positions 
of the fi rst and the second glass are now different, assuming the 
values  B  1  and  B  2 , respectively. Since the Larmor frequency 
depends on the magnetic fi eld strength, the magnetization vec-
tors continue their precession with different frequencies  f  1  and 
 f  2 . Once again, we measure the sum signal outside the  box  .    

  Fig. 4    ( a ) Two glasses of water inside a closed box. ( b ) Magnetization inside both glasses after placing the box 
inside an external magnetic fi eld. ( c ) Reaction to an external radiofrequency (RF) pulse: the magnetization vec-
tors in both glasses start to precede and send out RF signals with the Larmor frequency. ( d ) Effect of an exter-
nal fi eld gradient: the magnetic fi eld strength at the position of both glasses is different, so radiofrequency 
signals with different Larmor frequencies are being sent       
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 As the next step, a   frequency analysi s   of this signal is performed. 
This means that the signal is decomposed into its spectrum of fre-
quency components. In the present case, this analysis yields the 
following results:

 ●    The signal contains two frequency components, so there must 
be two glasses inside the box.  

 ●   We can measure the absolute values of the frequencies  f  1  and  f  2 . 
According to Eq. 1, we can calculate from these frequencies 
the fi eld strengths  B  1  and  B  2  at the positions of the fi rst and the 
second glass, respectively. Since we know how we modifi ed the 
magnetic fi eld  B , we can deduce from this the exact positions 
of the glasses.  

 ●   The amplitude of the frequency component  f  2  is twice the ampli-
tude of the frequency component  f  1 . From this we can deduce 
that there must be twice the number of spins in the second glass, 
so we also obtain information about the relative fi lling levels.    

 In summary, we have answered all the questions above with-
out opening the box, purely by using the concepts of magnetic 
resonance. 

 If you could follow this section, you have understood the 
basics of MR imaging. 

 The use of fi eld gradients for spatial encoding was proposed by 
Lauterbur in 1973 [ 3 ]. 

 In textbooks and publications, MR experiments are usually 
described by special plots, the so-called   pulse diagrams      . For the 
experiment described above, the respective pulse diagram is shown 
in Fig.  5 , comprising an  RF axis  and a  gradient axis . The entries on 
the RF axis correspond to the initial RF pulse which tilts the 
 magnetization and the acquired signal. The entries on the gradient 
axis show that during signal acquisition the gradient  G   x   is switched 
on, i.e., during this time the external magnetic fi eld is modifi ed in 
a way that it increases linearly in a certain spatial direction (the 
 x -direction of an arbitrarily chosen coordinate system). Because 
this gradient is switched on during the readout process, it is also 
referred to as   read gradient      .

  Fig. 5    Schematic plot of a one-dimensional MR experiment, showing a radiofre-
quency (RF) axis and a gradient ( G   x  ) axis       
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3       The  Fourier Transform   

 The frequency analysis of a signal is a mathematical process called 
 Fourier transform . A Fourier transform yields the frequency spec-
trum of the signal, i.e., the amplitudes of the various frequency 
components. The frequency spectrum for the setup described 
above (two glasses in a box) is shown in Fig.  6 .

   As explained above, a spin’s Larmor frequency depends on 
its local magnetic fi eld strength and therefore on its position 
within the box, as long as the linear fi eld gradient is switched 
on. It is therefore fair to say that the frequency spectrum shows 
a one- dimensional image of the scanned object. In the special 
case of Fig.  6 , the two glasses, their respective positions, their 
relative fi lling levels, and even their diameters are clearly 
displayed.  

4    The Gradient Echo 

 The  gradient echo  technique is of major importance in fMRI. 
 Let us consider the three experiments described in Fig.  7 . 

Experiments will be discussed on a purely phenomenological basis 
fi rst, in particular the experimental setup and the respective signal 
behaviors. The explanation will be given afterwards (Fig.  8 )    .

    In the fi rst experiment (Fig.  7 , part 1), an initial RF pulse tilts 
the magnetization. As expected, precession starts and a signal can 
be acquired immediately after sending the RF pulse. This signal has 
a relatively long duration. 

 In the second experiment (Fig.  7 , part 2), the signal is 
acquired while a gradient is switched on. In this case, the signal 
decays much faster. The reason for this will be given below. For 
the time being it is suffi cient to note that obviously inhomogene-
ities of the static magnetic fi eld, as created by a gradient, cause a 
more rapid signal decay. 

  Fig. 6    Frequency spectrum resulting from the Fourier transform. The frequency 
corresponds to the position of the originating  spin         
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 The third experiment (Fig.  7 , part 3) starts off like the second 
one, resulting in the same fast signal decay. However, after a while 
the gradient is  inverted  (a negative gradient  G   x   means that the 
magnetic fi eld strength decreases in  x -direction, rather than 
increasing). This leads to a striking phenomenon: the signal which 
seemed to have disappeared completely, suddenly comes back. 
This effect is called  gradient echo . 

 It is relatively simple to explain these effects. For illustration, 
Fig.  8a  shows the precession of four individual spins at different 
positions in the fi rst experiment after the initial RF pulse (the respec-
tive magnetization vectors are seen “from top”). Although the spins 
are located at different positions, they are exposed to the same mag-
netic fi eld because there are no gradients. Thus, they precede with 
the same Larmor frequency; their magnetization vectors are always 
parallel and add up to a relatively strong net magnetization. 

 In theory, this should go on forever. In practice, the signal decays 
due to transverse relaxation effects which will be discussed later. 

 Figure  8b  shows the respective sketch for the second experi-
ment. Due to the fi eld gradient, the spins are exposed to different 
fi eld strengths and precede with different Larmor frequencies. After 
a relatively short time, they are completely  dephased , i.e., the mag-
netization vectors cancel each other and there is no net magnetiza-
tion. The result is a fast signal decay, as depicted in Fig. 7  (part 2)    . 

  Fig. 7    Schematic sketch of three MR experiments: in the absence of any gradients, a long signal can be 
observed ( 1 ). In the presence of a gradient, the signal decays more rapidly ( 2 ). If the gradient is inverted, a 
 gradient echo occurs   ( 3 )       

Fig. 8 (continued) dephase, reducing the duration of the signal. ( c ) Explanation of the third experiment: the 
gradient inversion leads to a change from anti-clockwise to clockwise rotation, so spins rephase. A strong 
signal, the so-called gradient echo can be observed when the magnetization vectors are parallel  again         
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  Fig. 8    ( a )  Explanation   of the fi rst experiment: spins at different positions still have the same Larmor frequencies 
as the magnetic fi eld is homogeneous. As a consequence, their magnetization vectors remain parallel and sum 
up to a strong net magnetization over a relatively long time. ( b ) Explanation of the second experiment: spins 
at different positions have different Larmor frequencies due to the fi eld gradient. Their magnetization vectors 
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 Figure  8c  shows the respective sketch for the third experi-
ment. Due to the gradient, the spins dephase, as described above. 
However, when the gradient is inverted the spins turn backwards, 
maintaining their frequencies. As a result, they rephase (i.e., they 
return to their original positions), resulting in a realignment which 
corresponds to a reappearance of the signal. This is the origin of 
the gradient echo. 

 The gradient echo helps to overcome a typical problem in 
MR imaging. 

 According to Fig.  5 , a signal has to be acquired while the 
read gradient is switched on. However, due to technical limita-
tions, gradients have a certain  rise time , i.e., a certain time delay 
(typically several hundreds of μs or even several ms) is required 
to ramp up the gradient (Fig.  9 , shaded area). This leads to a 
dilemma: on one hand, one has to wait for the gradient to reach 
its plateau level before signal acquisition can start, because only 
then there is a well-defi ned relationship between the position of 
a spin and its Larmor frequency, as required to deduce spatial 
information from the frequency spectrum. On the other hand, 
during the process of ramping up the gradient spins start to 
dephase, so we will have lost a considerable part of the signal by 
the time the acquisition starts, resulting in a poor image 
quality.

   This problem can be overcome by using the gradient echo 
concept as shown in Fig.  10 : by means of an initial negative 
gradient, spins are dephased deliberately. Rephasing and the 
occurrence of a gradient echo take place during the plateau of 
the read gradient, so we can measure a strong signal at a time 
when the gradient is constant. Gradient echo sequences are 
widely used in MR imaging.

   The experiment described in Fig.  10  is one-dimensional, i.e., 
it allows for spatial resolution in one direction (the  x -direction) 
only. If the gradient axes are chosen as shown in Fig.  11  (left), the 
result is a profi le in anterior/posterior direction (Fig.  11 , right). 
The full extent of the imaged object in  y - and  z -direction is pro-
jected onto the  x - axis  .

  Fig. 9    Signal losses due to the fi nite gradient rise time: by the time the gradient 
has reached its full amplitude, the signal has decayed  considerably         
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5       The  k -Space 

 Before we move on to two-dimensional experiments (which allow 
us to obtain real images), the so-called  k - space  will be introduced. 
The  k -space is a very useful concept when it comes to describing 
and understanding MR  sequences  . 

 Imagine a gradient is turned on for a certain time. During this 
time, a single data point is acquired (Fig.  12 ). The  k - value  of this 
data point is the area under the  preceding  gradient (shaded), i.e., 
the area under the gradient up to the time point of acquisition. 
This is simply a defi nition.

  Fig. 10    Solution of the problem imposed by the fi nite gradient rise times: the 
initial negative gradient creates a gradient echo and thus a strong signal at a 
time when the read gradient has reached its full amplitude. The maximum of the 
echo occurs when the  shaded areas  are  identical         

  Fig. 11    If the gradient axes are chosen as shown on the  left - hand side , the result of the one-dimensional 
experiment with a read gradient in  x -direction is a profi le in anterior/posterior  direction         
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   Let us now analyze our one-dimensional MR experiment as 
depicted in Fig.  10 . The signal acquisition consists basically of the 
acquisition of a series of discrete data points (Fig.  13 ) with differ-
ent  k -values.

   The fi rst data point is preceded by the negative dephasing gra-
dient, so it has a negative  k -value. The next data point “sees” a 
combined preparation: the negative dephasing gradient, followed 
by the fi rst bit of the positive read gradient. Thus, its  k -value (being 
the sum of individual areas under the preceding gradient) is still 
negative, but slightly higher than for the fi rst data point. The sub-
sequent data points have increasing  k -values. The central data point 
is acquired when the shaded areas in Fig.  13  are identical. Thus, its 
 k -value is zero. As described above, this is where the center of the 
gradient echo occurs, i.e., this data point will have the highest signal 
amplitude. The subsequent data points have increasing, positive 
 k -values and the maximal  k -value is attained for the last data point. 

 We learnt above that spatial resolution in one direction is 
achieved by acquiring a signal while a gradient in this direction is 
switched on. We further know that this gradient should be pre-
ceded by a negative dephasing gradient to obtain a gradient echo. 
The  k -value concept allows us now to move on to an alternative 
formulation. However, please note that this formulation is basically 
identical to the previous one: 

 Spatial resolution in one direction is achieved by acquiring a 
series of data points with different  k -values, ranging from a nega-
tive to a positive value. Maximum signal is attained for the data 
point for which the respective  k -value is  zero  . 

 This concept was introduced because it makes it much easier to 
understand how two-dimensional imaging works. Basically, we 
need spatial resolution and thus gradients in two directions (the 
 x - and the  y -direction), so in general we have to attribute a  k   x   and 
a  k   y   value to each data point, corresponding to the areas under the 
respective preceding gradients (Fig.  14 ).

   To visualize these  k -values, we can create a coordinate system 
with the axes  k   x   and  k   y   and insert the data point at the respective 
position (Fig.  15 ). This is the so-called  k - space . In the example of 
Fig.  14 , there is a relatively large positive  k   x   and a relatively small 
 k   y  , so the position of this data point in  k -space would be more or 
less as shown in Fig.  15 .

  Fig. 12    Defi nition of a data point’s  k -value as the area under the gradient before 
the data point is  sampled         
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  Fig. 13    Gradient echo experiment: the data points constituting the gradient echo 
have increasing  k -values, ranging from a negative to a positive value. The  k -value 
is zero for the central data point where the  shaded areas  are identical and the 
echo has maximum  amplitude         

  Fig. 14    Defi nition of a data point’s  k   x  - and  k   y  -values as the areas under the 
respective gradients before the data point is  sampled         

  Fig. 15    Description of a data point’s  k   x  - and  k   y  -values in   k -space         
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6        Two-Dimensional Acquisition   

 It is now easy to extend the one-dimensional concept described 
above to two dimensions: 

 Spatial resolution in two directions ( x ,  y ) is achieved by acquir-
ing a series of data points with different combinations of  k   x   - and 
 k   y   -values, fi lling the two-dimensional  k -space as shown in Fig.  16 . 
Maximum signal is attained for the central data point for which 
both  k -values are zero.

   Let us now consider the experiment depicted in Fig.  17 . It 
closely resembles the experiment discussed in Fig.  13 : the RF axis 
and the  G   x   axis are identical. This means that the data points have 
increasing  k   x  -values, ranging from a negative to a positive value. 
However, there is in addition a  G   y   axis, showing a negative gradi-
ent which is switched on and off before the acquisition starts. Since 
this gradient is off during acquisition, all data points have the same 
(negative)  k   y  -value, corresponding to the area under  G   y  . Thus, the 
 k   y  -value is constant, whereas the  k   x  -value increases. This means 
that the experiment acquires a single horizontal line in  k -space.

   To obtain spatial resolution in two dimensions, we have to 
acquire several horizontal lines in  k -space. This means that we have 
to repeat the experiment from Fig.  17  several times with different 
amplitudes of the gradient  G   y  . In textbooks and publications, this 
is usually depicted as shown in Fig.  18 : the gradient  G   y   appears as 
a “ladder” with an arrow, which means that the acquisition is 
repeated several times with different discrete  G   y   values, stepping 
from a minimum to a maximum value.

   It should be noted that the gradient  G   y   is also referred to as 
 phase gradient  or  phase encoding    gradient   . 

 The experiment described in Fig.  18  is two-dimensional, i.e., it 
allows for spatial resolution in two directions (the  x - and 

  Fig. 16    The basis of two-dimensional imaging: several data points with different 
combinations of  k   x  - and  k   y  -values have to be sampled, fi lling the two- 
dimensional  k - space         
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  Fig. 17    A subset of a two-dimensional MR experiment. The echo covers a  single 
horizontal line  in  k - space         

  Fig. 18    Schematic description of a full two-dimensional MR experiment: the 
experiment shown in the previous fi gure is repeated several times with different 
values of the gradient  G   y  , so several  horizontal lines  in  k -space are  covered         

  y - direction). If the gradient axes are chosen as shown in Fig.  19  
(left), the result is an image in the axial plane (Fig.  19 , right). The 
full extent of the imaged object in  z -direction is projected onto this 
plane, i.e., all axial slices are still added up.

7        Slice-Selective Excitation   

 So far, we have covered spatial resolution in two dimensions. To 
obtain spatial resolution in the third dimension, it would be useful 
to have a kind of “intelligent” excitation pulse which tilts the mag-
netization only inside a slice of interest. This would mean that only 
spins within this slice could contribute to the signal, and we could 
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subsequently employ the experiment described above to obtain 
spatial resolution in the remaining two directions. These  slice - 
 selective excitation pulses   exist  . They are based on the following 
principles. Let us assume we want to excite an axial slice through 
the brain (Fig.  20 ). As a fi rst step, we switch on a gradient in the 
spatial direction perpendicular to this slice ( z -direction). 
Consequently, the Larmor frequency of the spins will depend on 
their position: spins inside the slice of interest have a certain Larmor 
frequency  f  0 , whereas spins in upper/lower parts of the brain have 
higher/lower Larmor frequencies. If we send an RF pulse with the 
frequency  f  0  while the gradient is switched on, it will tilt the mag-
netization only inside the slice of interest (please remember that 
spin excitation is a resonance effect and affects only those spins 
whose Larmor frequency matches the frequency of the incoming 
RF pulse). In summary, we can say that an RF pulse which is trans-
mitted while a fi eld gradient is turned on causes a slice-selective 
excitation. After this special kind of excitation, we can proceed as 
shown in Fig.  18  to achieve spatial resolution in two dimensions 
within the slice of interest.

   The complete imaging experiment with spatial resolution in 
three dimensions is shown in Fig.  21 . Basically, it is similar to 
Fig.  18 , but comprises a slice selective excitation, including the 
 slice gradient G   z  .

   The latter requires some further explanations. As shown in 
Fig.  7  (part 2) and Fig.  8b , gradients cause dephasing of the spins 
and thus signal losses. The second half of the slice gradient (i.e., 
the part of the slice gradient that comes after sending the RF pulse) 
would have a similar effect. To avoid signal losses, a negative 
rephasing gradient has been added after the slice gradient which 

  Fig. 19    If the gradient axes are chosen as shown on the  left-hand side , the result 
of the two-dimensional experiment with a read gradient in  x -direction and a 
phase gradient in  y -direction is an image in the axial plane, showing an overlay 
of all axial  slices         
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  Fig. 20    The basis of slice selective excitation: due to the slice gradient  G   z   spins 
have spatially dependent Larmor frequencies. A radiofrequency pulse with fre-
quency  f  0  can only excite spins whose Larmor frequency corresponds to  f  0 . These 
spins are located in a plane perpendicular to the gradient  direction         

  Fig. 21    Schematic description of a full three-dimensional MR experiment with 
slice selective  excitation         

compensates this effect, as described for the gradient echo. Full 
compensation is approximately achieved if the shaded areas on the 
 G   z   axis in Fig.  21  are identical. 

 The experiment described in Fig.  21  is three-dimensional, i.e., 
it allows for spatial resolution in all directions. If the gradient axes 
are chosen as shown in Fig.  22  (left), the result is an image in the 
axial plane (Fig.  22 , right) with a fi nite slice thickness.

 

 

Principles of MRI and Functional MRI



20

8       Echo-Planar  Imaging   

 The experiment described in Fig.  21  can be relatively time consum-
ing, because it requires an RF pulse for each single echo, i.e., for 
each line in  k -space. Given the duration of RF pulses (typically sev-
eral ms) it would be far more effi cient to acquire all echoes after a 
single excitation pulse. One of these  single shot sequences , dubbed 
echo-planar imaging (EPI), was developed by Mansfi eld [ 4 ] and is 
nowadays widely used in functional imaging experiments. It is based 
on the acquisition of multiple gradient echoes as  described   in Fig.  23 .

   The initial part of this experiment is identical to the one shown 
in Fig.  13 : after the RF pulse, a negative gradient causes dephasing 
of the spins. During the subsequent positive read gradient, a 
 gradient echo is acquired. The  k -values of the data points consti-
tuting this echo increase, ranging from a negative to a positive 
value. Afterwards, the read gradient is  inverted . It is obvious that 
this will result in another gradient echo with  decreasing k -values, 
which means that the second echo covers the same  k -values as the 
fi rst one, only  in reverse order . After a further gradient inversion, a 
third echo can be acquired which covers the  k -values in exactly the 
same way as the fi rst one. Of course, this is only a one-dimensional 
experiment, because no gradients in  y -direction are  used  . 

 A two-dimensional expansion is shown in Fig.  24 . As before, a 
series of gradient echoes is acquired by means of an oscillating read 
gradient. However, a phase gradient with negative amplitude is 
switched before the fi rst echo (shaded), so all data points constituting 
the fi rst echo have the same (negative)  k   y  -value, covering a horizontal 
line in  k -space (Fig.  24 , bottom). Between the acquisition of the fi rst 
and the second echo, a very short phase gradient pulse is switched (a 

  Fig. 22    If the gradient axes are chosen as shown on the  left - hand side , the result 
of the three-dimensional experiment with a read gradient in  x -direction, a phase 
gradient in  y -direction, and a slice gradient in  z -direction is an image in the axial 
plane with a fi nite slice  thickness         
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  Fig. 23    Acquisition of multiple gradient echoes by successive read gradient inversion. All echoes cover the 
same  k -values, but the order is reversed when comparing even and odd echoes       

  Fig. 24    The basis of echo planar imaging: due to intermediate “blips” ( shaded gradient pulses ) the echoes have 
increasing  k   y  -values, thus covering different lines in  k - space         

so-called   blip   , shaded in Fig.  24 ). The  k   y  -value of the second echo is 
determined by the sum of the areas under the initial phase gradient 
and this blip, so  k   y   is increased and the second echo covers another 
horizontal, slightly “higher” line in  k -space in reverse direction. This 
concept of intermediate blips is maintained throughout the remain-
ing acquisition, resulting in a meander-like journey through  k -space.
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   Figure  25  shows the complete EPI experiment, including a slice 
gradient  G   z   (with a subsequent negative rephasing gradient) for 
slice-selective excitation. The echoes have different amplitudes due 
to their different positions in  k -space, with the highest amplitude 
for the echo covering the center of  k -space, as described before.

   The main advantage of the EPI sequence is its speed due to the 
use of a single RF pulse only, with typical acquisition times of 
50–100 ms per slice. Another advantage is its susceptibility to the 
blood oxygen level-dependent (BOLD) effect [ 5 ,  6 ] which is 
exploited in the majority of functional imaging studies and will be 
discussed in a later  section  .  

9    The Transverse Relaxation Times T 2  and T 2  *  

 The fi rst experiment in Fig.  7  (part 1) describes the acquisition of 
an MR signal after sending an excitation pulse, assuming the 
absence of any fi eld gradients. According to Fig.  8a , spins at differ-
ent locations will have the same Larmor frequency, so there are no 
dephasing effects, and in theory there should be no signal loss at 
all. However, the signal will still decay due to an effect called  trans-
verse relaxation . This is caused by the  spin - spin interaction : in the 
classical view, the spins randomly exchange small amounts of 
energy, resulting in minor fl uctuations of their Larmor frequencies 
and thus in gradual signal dephasing, even in otherwise perfectly 
homogeneous fi elds. The signal decays exponentially with a time 
constant called the   transverse relaxation time  T 2   . In white matter 
and gray matter, T 2  has an approximate value of about 100 ms. 

 In reality, the signal would decay with a time constant even 
shorter than T 2 . This is due to the following effect: tissue is not a 

  Fig. 25    A complete echo planar imaging experiment. The central echo which 
covers the center of  k -space has the highest amplitude       
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homogeneous piece of matter, but consists of several, often micro-
scopic components, for example arterioles and venules. In general, 
these components have slightly different magnetic properties, so 
they distort the magnetic fi eld and create microscopic fi eld gradi-
ents of varying amplitude and direction. As shown in Fig.  7  (part 2) 
and Fig.  8b , the presence of fi eld gradients speeds up the signal 
decay due to spin dephasing. Thus, the signal decays with the  effec-
tive transverse relaxation time  T  2  *   which is shorter than T 2 . This 
time constant depends on the scanner fi eld strength. In white and 
gray matter, T  2  *   amounts to about 70 ms at 1.5 T and 45 ms at 3 T. 

 For several applications (including the most common fMRI 
techniques), it is useful to acquire so-called T  2  *    weighted images , 
i.e., images where the local signal intensity depends on the local 
T  2  *   value. The degree of T  2  *   weighting can be infl uenced by modi-
fying a certain acquisition parameter, the  echo time  (TE)    .  

10    The Echo  Time   

 All MR experiments that were discussed so far are based on the 
same concept: an initial excitation pulse tilts the magnetization. 
After a certain time (during which one or more gradients are 
switched on and off) a signal is acquired. The time delay between 
excitation and acquisition is called the echo time (TE) (Fig.  26 ).

   To achieve a certain degree of T  2  *   weighting, TE must be cho-
sen carefully. This is depicted in Fig.  27 , showing a fast (dashed line) 
and a slow (bold line) T  2  *   decay, and three different choices for TE.

   The fi rst choice (TE much shorter than T  2  *  ) would be prob-
lematic, because signal amplitudes are almost identical, so T  2  *   con-
trasts would be poor. 

 The second choice (TE similar to T  2  *  ) would yield a much bet-
ter T  2  *   contrast. 

 The third choice (TE much longer than T  2  *  ) is again problem-
atic: signal has decayed in both compartments, so the image would 
show noise only, but hardly any structures. 

 As an example, Fig.  28  shows T  2  *   weighted brain images 
acquired with TE values of 10 ms, 50 ms, and 200 ms. At 10 ms, 
contrasts are relatively low. At 50 ms, a nice T  2  *   contrast can be 
observed (arrow). This is due to an increased iron content which 

  Fig. 26    Defi nition of the  echo time (TE)          
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gives rise to magnetic fi eld distortions and therefore reduces the 
T  2  *   value. At a TE of 200 ms, signal has mostly decayed and only 
cerebrospinal fl uid is visible due to its  longer   T  2  *   value.

11       The Basis of the BOLD Contrast 

 The majority of fMRI techniques are based on the BOLD contrast 
which will be explained in this section. 

 The BOLD contrast is closely linked to two physical phenom-
ena, called “ diamagnetism     ” and “ paramagnetism     .” A full discus-
sion would be beyond the scope of this book. To understand the 
BOLD effect, it is suffi cient to know the following facts: if a dia-
magnetic substance is brought into an external magnetic fi eld, it 
tends to decrease slightly this fi eld, whereas a paramagnetic sub-
stance tends to increase it. This means that the close vicinity of 
paramagnetic and diamagnetic substances causes a local distortion 
of the magnetic fi eld near the interface. 

  Fig. 27    Signal decay in compartments with a long T  2  *   value ( solid line ) and a short 
T  2  *   value ( dashed line ). If a short echo time (TE) is chosen ( 1 ), there is a high 
signal amplitude, but hardly any contrast between both compartments. For an 
intermediate TE ( 2 ), there is a good contrast and still a suffi cient signal ampli-
tude. For a long TE ( 3 ), the signal in both compartments has decayed       

  Fig. 28    T  2  *   weighted brain images acquired with echo time (TE) values of 10, 50, and 200 ms. At 10 ms, con-
trasts are relatively low. At 50 ms, a nice T  2  *   contrast can be observed ( arrow ). At 200 ms, signal has mostly 
decayed and only cerebrospinal fl uid is visible       
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 Tissue is mainly  diamagnetic . In contrast, blood contains a 
certain level of deoxyhemoglobin (i.e., hemoglobin that does not 
have oxygen attached) which is  paramagnetic . Thus, the presence 
of blood in tissue means a close vicinity of substances with different 
magnetic properties, giving rise to microscopic fi eld distortions. As 
explained above, the resulting fi eld gradients cause spin dephasing 
and lower the T  2  *   value. In summary one may say that due to the 
presence of deoxyhemoglobin, the signal intensity of tissue is 
slightly reduced in T  2  *   weighted images. 

 After neuronal activation, blood is locally hyperoxygenated, 
corresponding to a wash-out of deoxyhemoglobin and an increased 
concentration of oxyhemoglobin. In contrast to deoxyhemoglo-
bin, oxyhemoglobin is diamagnetic, so it has similar magnetic 
properties as tissue, leading to a more homogeneous magnetic 
fi eld and an increased signal intensity in T  2  *   weighted images. 

 Thus, the basic  concept   of the BOLD effect can be summa-
rized as follows: the  hemodynamic response  to brain activation con-
sists in a  decrease in deoxyhemoglobin  and an  increase in oxyhemoglobin , 
resulting in an increased fi eld homogeneity and thus a higher sig-
nal intensity in a series of T  2  *   weighted images. Therefore, quanti-
fi cation of this signal enhancement allows for the detection of 
neuronal activation. 

 In reality, the physiology of the BOLD effect is more complex 
and depends on the following parameters: the  cerebral blood fl ow 
(CBF)     , the  cerebral blood volume (CBV)     , and the  metabolic rate 
of oxygen consumption (CMRO 2 )     . After a stimulus, the CBF goes 
up to deliver more oxygen to the site of neuronal activation, caus-
ing the BOLD effect as explained above. On the other hand, the 
CMRO 2  is increased, so more oxygen is consumed, which reduces 
the BOLD effect. The question arises if the fi rst effect outpaces the 
second one, which is a prerequisite for blood hyperoxygenation 
and thus the detectability of the BOLD signal. 

 The exact physiology of the BOLD response is still controver-
sial and several models have been proposed. For a more detailed 
overview, the reader is referred to the literature [ 7 ]. In the follow-
ing section, one of the most common models will be explained. 

 Figure  29  is a simplifi ed sketch, showing how the physiological 
parameters are affected by neuronal activation and how their interac-
tion infl uences the signal intensity in T  2  *   weighted images. Directly 
after the stimulus, CMRO 2  goes up, causing increased oxygen con-
sumption and thus increased concentration of deoxyhemoglobin. As 
explained above, deoxyhemoglobin lowers the signal intensity in T  2  *   
weighted images, so there is an initial signal  reduction  with a duration 
of about 1 s, the so-called  initial dip . It should be noted that this effect 
is small and not always present. About 1 s after the stimulus, the brain 
reacts by increasing the CBF, transporting oxygen to the site of activa-
tion. Fortunately, this effect outpaces the increase in CMRO 2    , so blood 
becomes in fact hyperoxygenated. At the same time, the CBV    is 
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increased. As this parameter determines the total amount of blood, an 
increased CBV causes an increased quantity of deoxyhemoglobin. 
However, this effect is again outpaced by the increase in CBF   , and for 
a period of 4–6 s blood is hyperoxygenated, giving rise to a  positive 
BOLD response . After this, CMRO 2  and CBF return to their baseline 
values. The relaxation of CBV is somewhat slower, so for a certain time 
there is an increased concentration of deoxyhemoglobin, resulting in a 
 post - stimulus signal undershoot  with a duration of about 30 s.

   In summary, the right-hand side of Fig.  29  shows the complete 
signal behavior following neuronal activation, the so- called    hemo-
dynamic response function  ( HRF     ): after the initial dip, there is a 
strong positive BOLD response, followed by a small negative sig-
nal undershoot.  

12    Choice of TE in fMRI Experiments 

 The question arises, which value of TE should be chosen to maxi-
mize the BOLD  signal  , and how to set up the parameters of the 
EPI sequence described above to achieve this value. 

 Figure  30  shows the theoretical dependence of the BOLD sen-
sitivity on TE (which is given in units of T  2  *  ). The results are not 
surprising and correspond to the previous discussion ( see  Fig.  27 ): 
at short TE, the BOLD sensitivity is low because there is hardly 
any T  2  *   weighting. At long TE, the BOLD sensitivity goes down 
because the signal decays due to transverse relaxation effects. 

  Fig. 29    Change of physiological parameters, the concentration of deoxyhemoglobin, and the T  2  *   weighted 
signal amplitude in response to neuronal activation       
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Maximum BOLD sensitivity is achieved when TE equals T  2  *   (about 
70 ms at 1.5 T and 45 ms at 3 T).

   However, there is a fundamental problem with EPI sequences 
used in fMRI experiments: the magnetic fi eld is usually distorted in 
brain areas that are close to air/tissue interfaces, in particular in the 
orbitofrontal cortex (due to the vicinity of the nasal sinus) and the 
temporal lobes (due to the vicinity of the ear canals). In these areas, 
local macroscopic fi eld gradients lower the T  2  *   value, resulting in sig-
nal losses in EPI sequences with relatively long TE values. This shows 
the basic dilemma with fMRI experiments based on the BOLD effect: 
on one hand, T  2  *   weighting is required to be able to detect the hemo-
dynamic response to neuronal activation. On the other hand, T  2  *   
weighting causes severe signal losses in certain brain areas. Therefore, 
it is advisable to keep TE as short as possible to avoid signal losses in 
these areas, but still as long as necessary to detect a BOLD signal. 
According to Fig.  30 , a decent BOLD sensitivity can still be achieved 
if TE corresponds to about 2/3 of T  2  *  . The general advice is there-
fore to use a TE of about 50 ms at 1.5 T, and 30 ms at 3 T. 

 The next question is how TE can be defi ned for the EPI 
sequence. As shown in Fig.  25 , EPI implies the acquisition of a 
series of gradient echoes after a single excitation pulse, i.e., each 
echo has a different echo time. However, as explained above these 
echoes have different amplitudes, with maximum signal strength 
for the echo that covers the center of  k -space (usually the central 
echo in the series if symmetric sampling is used). Therefore, the TE 
value of an EPI sequence is defi ned as the echo time of this central 
echo (Fig.  31 ). This shows that in EPI sequences TE is not simply 

  Fig. 30    Dependence of the blood oxygen level-dependent (BOLD) sensitivity on 
the chosen echo time (TE)       
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a wasted waiting time (as one might have expected from Fig.  26 ), 
but can be used for the acquisition of the fi rst half of the echo train, 
being another reason why EPI allows for a high temporal resolu-
tion in fMRI  experiments  .
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Chapter 2

Introduction to Functional MRI Hardware

Luis Hernandez-Garcia, Scott Peltier, and William Grissom

Abstract

The chapter gives an overview of peripheral devices commonly used in fMRI experiments, and it addresses 
the principles, performance aspects, and specifications of fMRI hardware. The general guidelines for 
MR-compatible hardware are also discussed. The target audience is quite broad and mathematical descrip-
tions are kept to a minimum and qualitative descriptions are favored whenever possible.

Key words Functional MRI, Hardware, Peripheral devices, MRI, Multimodal acquisition, 
Neuroimaging

1 Introduction

This chapter is concerned with both the MRI hardware compo-
nents and the multitude of peripherals that are necessary for func-
tional MRI. Our primary aim is to describe the different components 
of each subsystem and to identify the important features and 
parameters. We hope this chapter will be of some use to those who 
want to get a deeper understanding of the electronics involved, but 
we mostly want to convey how each of the parts is responsible for 
the quality (or lack thereof) of the images and the experiment in 
general. Thus we will try to give minimum requirements for the 
performance of each component and describe what happens when 
those requisites are not met.

There is a myriad of subsystems to explore and we cannot pos-
sibly do justice to all of them in this chapter, so we will limit our-
selves to the main ones and to those that most commonly affect the 
performance of the system.

While this chapter primarily addresses the principles, perfor-
mance aspects, and specifications of the functional MRI hardware, 
it is important that we keep in mind that the objective is to carry 
out experiments on human subjects performing cognitive tasks. 
Thus we will also keep in mind the ergonomics and safety charac-
teristics of the equipment.
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Our target audience is fairly broad so we will try to keep 
mathematical descriptions to a minimum and give qualitative 
descriptions whenever possible. However, some of the descrip-
tions and the requirements make a lot more sense in the context 
of the mathematical description of image acquisition and recon-
struction. We also hope that this chapter can serve as a good 
introduction to each topic for those interested in the specific sub-
jects. In a way, we approach this chapter as if we were trying to 
give advice to someone who is considering setting up a functional 
MRI facility and/or establishing a set of quality control protocols 
for such a facility. We will be careful to leave our descriptions as 
general as possible and to avoid endorsing specific vendors or 
commercial products.

In this second edition, we have done our best to update the 
contents to reflect the rapid progress in MR technology. In the last 
few years, we have seen considerable advances in the areas of paral-
lel imaging, high-field magnets and gradient performance, and 
widespread adoption of these technologies. There are also exciting 
new developments in the construction of superconducting mag-
nets that are reducing the need for liquid Helium. Complementary 
brain activity monitoring techniques are being used in conjunction 
with MRI, such as fNIRS, and new brain stimulation techniques 
are on the horizon, such as transcranial Direct Current Stimulation.

2 The MRI Scanner Environment

Let us begin by considering the surroundings of the MRI scanner. 
When deciding on the layout and location of an MRI scanner, there 
are several important questions one must ask. The first one is the 
scanner’s purpose. Will it be used for clinical purposes or will it be 
dedicated to research on healthy subjects? In the case of research-
dedicated scanners, one must think about a number of specific fac-
tors when designing the layout of the fMRI laboratory. This includes 
dressing rooms, and testing rooms where the subjects can be trained 
on the experimental paradigm prior to scanning. Whenever possi-
ble, it is important to make sure the control room is large enough 
to accommodate the needs of the researchers using it. It is not 
uncommon for fMRI experiments to require multiple pieces of cus-
tom stimulation/recording equipment in the control room and for 
several investigators to be present during the experiment, so that 
extra bench space and “elbow room” is very advantageous. When 
scanning clinical populations there are additional precautions and 
considerations, like the presence of MR compatible first aid equip-
ment. We will not address that aspect in detail, as it can be an exten-
sive discussion that will vary from case to case.

The first thing one notices about an MRI scanner is how big it 
is (the magnet alone can take up a space of roughly 4 × 4 × 6 m) and 
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one must find a site with sufficient space for the scanner. Access is 
also important, as the main magnet is typically delivered and 
installed in one piece. Furthermore, MRI magnets are filled with 
cryogens, which are delivered in large dewars. Thus there must be 
a wide path to the loading dock that avoids stairs and is clear of 
obstacles. Typically, MRI scanners are housed in basements or 
ground floors near the loading docks of hospitals, although excep-
tions exist, as the one shown in Fig. 1.

Next one must consider how the magnetic field will affect its sur-
roundings. Before the magnet is installed, one must consider how far 
the magnetic field will extend. Most people who work with MRI are 
familiar with the enormous forces that the main magnetic field can 
exert on objects in its proximity (i.e. the magnet room). Modern MRI 
scanners are actively shielded and contain the magnetic field fairly well 
within the magnet room. Even with shielding, sometimes a subtle but 
significant magnetic field can extend beyond the walls of the magnet 
room. Thus it is important to keep in mind two questions: how well 
the magnetic field is contained, and what sort of equipment is in the 
rooms adjacent to the magnet room. The first question is usually 
answered in terms of the location of the “5 Gauss line.”

The United States FDA regulates that the general public (any-
one not working with an MRI scanner or being scanned) not be 
exposed to static magnetic fields over 5 G (5 × 10−4 T), and thus the 
5 G boundary must be contained inside the magnet room. MRI 
scanner vendors will typically provide contour plots of the  magnetic 
field superimposed on the blueprints of the room and provide con-
sultation on the location of the scanner. One must realize, however, 
that smaller magnetic fields will extend beyond the walls of the 

Fig. 1 These photos were taken during the installation of an MRI scanner at Resurgens Orthopaedics in Atlanta, 
GA on the 19th floor of their Crawford facility. Courtesy of Resurgens Orthopaedics, Atlanta, GA
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magnet room, so it is important to note how quickly the field decays 
and what is located on those adjacent rooms. Subtle magnetic fields 
can affect electronic equipment in many ways. For example, a mov-
ing charge in the presence of a magnetic field will experience a force 
perpendicular to the magnetic field. This effect was most obvious in 
CRT monitors (now obsolete), whose images would be skewed by 
the magnetic field, and in the performance of computer hard drives 
and magnetic media. In fact, magnetic media, including the mag-
netic strips on credit cards, floppy disks, …etc. are typically erased 
when taken into the magnet room. Another example is that the life 
span of light bulbs near MRI scanners tends to be quite short because 
of the vibration of the filaments caused by switching the direction of 
the current in the presence of a large magnetic field. Hence, DC 
lights are often used in MRI scanner rooms to avoid this problem. 
Pace makers, neurostimulators, and implants must be kept outside 
the 5 G line, unless they have been tested and classified as MR com-
patible. A number of publications exist [1–3] and are updated regu-
larly with classification of MR compatible devices.

Containment of the magnetic field can be achieved by two 
different kinds of shielding. Passive shields consist of building a 
 symmetric box around the magnet out of thick iron walls (Fig. 2) 
that contain the magnetic field. Alternatively, active shields can 
be built as secondary electromagnets concentrically placed around 
the main magnet. The shield magnets are built such that the field 

Fig. 2 A passively shielded 4.0 T magnet encased in a hexagonal iron cage to partially contain the main mag-
netic field
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they produce points in the opposite direction of the main mag-
netic field. The strength of the shielding field is typically about 
half of the main field. For example, a 3 T actively shielded magnet 
can often be a 4.5 T magnet surrounded by a second, concentric 
and opposing 1.5 T magnet. Such a system would have a 3 T field 
inside of the bore, and because of the inverse square dependence 
of the magnetic field on the distance to the coil, the field outside 
of the magnets bore is dramatically reduced. Figure 3 shows a 
plot of the magnetic fields produced by the main magnet as a 
function of the distance to the center of the bore. The field pro-
duced by the shield and the net sum of both fields are superim-
posed on the same plot.

One must also consider how the environment will affect the 
MRI scanner. In this regard, the most important issue is the pres-
ence of electromagnetic noise sources. MRI scanners construct 
images from radio frequency (RF) electromagnetic signals. Thus, 
radio stations, cell phones, and other wireless communications will 
interfere with the MRI experiment and severely degrade image 
quality unless they are properly isolated. MRI rooms are usually 
encased in a copper shield box that blocks external RF radiation, 
and contains the MRI’s RF radiation as well. The quality of the 
shield is critically important to the performance of the scanner and 
it must be tested carefully before the magnet is ramped up to field. 
Typically attenuations for RF shielding are 100 dB at the operating 
frequency range. A slightly defective soldered seam between cop-
per sheets, or a nail going through the copper sheeting are 
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sufficient to let RF noise into the room that ruins images, so test-
ing of the room shielding must be stressed. Figure 4 shows an 
example of the effects of an RF noise source on an MR image

Good shielding of the room is not enough. MR-related 
electronic equipment produces RF noise and can act as an 
antenna that passively carries RF noise from the outside into the 
room. There are also a number of peripherals that are needed 
for functional MRI in order to provide stimulation and record 
data from the subject (see Sect. 4). It is preferable to keep all 
electronics out of the magnet room, but if the electronic equip-
ment must be inside, it must be tested thoroughly for RF noise. 
If it is indeed noisy, care must be taken to shield the equipment 
to prevent image artifacts (Copper mesh is very useful for build-
ing RF shields).

Consider the case of a button response box. Typically, one 
keeps the bulk of the electronic components out of the magnet 
room, but the buttons themselves must be in the scanner and they 
need to communicate with the response recording electronics. 
Even if fiber-optic technology is used to carry signals into the 
room, RF noise can enter through the same opening as the fiber 
optic cabling. The solution is to build a “penetration panel” into 
the shield. This is a panel on the wall that is outfitted with wave-
guides and filtered connectors. The role of a waveguide is to block 
any electromagnetic radiation that is not parallel with the direction 
of the waveguide, and at the same time, to guide the EM waves 

Fig. 4 The streaks in the image are caused by the presence of electromagnetic 
frequency noise at a single frequency. This is typically introduced by the pres-
ence of badly shielded electronic equipment in the room. The AC power supply 
running at 60 Hz to the device is in this case the culprit of the artifact
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produced inside it. The filtered connectors typically remove high 
frequency radiation that may be carried by the cabling of the 
peripherals. Examples of penetration panels used for scanner 
cabling and for general, user-specific peripherals are shown in 
Fig. 5. Additional precautions against RF contamination is the 
used of twisted-pair and coaxial cabling to contain the fields pro-
duced inside the transmission lines.

MR scanner equipment must be kept in stable temperature 
and humidity conditions, as these can change the performance of 
the electronics and the field strength. All the amplifiers and com-
puter equipment required for MR imaging can generate a signifi-
cant amount of heat, so it is important that the environmental 
temperature-regulating equipment be powerful enough to han-
dle it. Changes in the scanner performance can mask changes in 
brain activity so the scanner’s performance be maintained as con-
stant as possible.

To put things in perspective, the MRI electronics equipment 
produces approximately 50,000 BTU per hour. Typical requisites 
for the temperature and humidity in the room are variability of less 
than 3 °C per hour and 5 % per hour, respectively. Normal operat-
ing ranges are in the 15–32 °C temperature range and 30–70 % 
humidity range. Of particular interest are the gradient coils, since 
they can heat up significantly as a result of the large currents that 
run through them. As gradient coils heat up, their performance is 

Fig. 5 On the left is the penetration panel that connects the MRI scanner electronics to the magnet hardware. 
The image on the right is a second penetration panel used for all the additional stimulus/response equipment 
needed for fMRI
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degraded and thus they require its own cooling system to keep 
them stable. This system is usually a cooling loop involving a water 
chiller that can remove about 14,000 BTU per hour.1

It is also noteworthy that the scanner’s performance can be 
affected by other unexpected environmental factors. Outside mag-
netic fields and vibrations can be an issue. For example, nearby 
construction can produce vibrations that will affect the MR signal’s 
stability if the floor is not adequately mechanically damped. It is 
thus important to carry out vibration tests of the site before instal-
lation proceeds. Large moving objects, such as nearby trains can 
also generate magnetic fields that affect the scanner’s stability [4]

One other issue that can cause a great deal of grief to investiga-
tors is the production of small electromagnetic spikes inside the 
magnet room. These occur when metal objects in the room vibrate 
(typically because of the gradients) and bang against each other or 
when arcing occurs across badly-soldered connections in home-
made equipment. The RF receiver hardware is sensitive enough to 
pick up these spikes. Spikes in the k-space data translate into stripe 
patterns in the images (Fig. 6). It is thus very important to make 
sure that all metal equipment is well secured.

A useful option to consider for a functional MRI lab is a mock 
MRI scanner. This is advantageous since it allows subjects to get 

1
 These numbers are based on the specification of a 3 T scanner by General 

Electric (MR750).

Fig. 6 A T2*-weighted image showing white pixel artifact. Spikes in k-space 
results in sinusoidal patterns in image spike
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used to the fMRI experience prior to their actual scans, in a safe 
environment. This can help alleviate subjects’ apprehension and 
claustrophobia, and lead to reduced head motion and improved 
task performance.

For completeness, replication of the entire MR suite would be 
preferable, but usually this is limited by available space and 
resources. The most important factors to reproduce are the spatial 
dimensions, audio environment, and visual stimulus presentation 
of the MRI scanner.

It is important to have the subject familiarize themselves with 
the restrictive space in the MR scanner. This includes the inner 
diameters of both the bore of the main magnet and the head coil 
being used. These restrictions, combined with the distance the 
subject travels into the magnet from the home position of the 
patient bed, combine to give the overall physical experience. MR 
or CT patient beds and scanner housing may be recycled for this 
use, or the mock MR scanner can be built from scratch as the one 
shown in Figs. 7 and 8.

The audio environment of the scanner is also an important 
consideration. Having an audio recording of the actual scanner to 
play in the mock MR scanner will let the patient adjust to the jar-
ring transition when the scanner starts playing sequences, and the 
to the volume of this noise throughout the scan. Inclusion of audio 
feedback can also demonstrate to the subjects that the scanner 
operator will be able to communicate with them between scans.

A duplication of the fMRI visual stimulus presentation can also 
serve to acclimatize the subjects. The standard forward- or rear- 
projection systems used to present visual stimuli are relatively easy 
to replicate in a non-MR environment, and allow the subject to get 
used to task presentation during the scan.

M1 - Bore Inner diameter
M2 – Head coil Inner diameter
M3 distance from  isocenter to edge of bore

M1

M2

M3

Fig. 7 Diagram of mock scanner showing critical dimensions
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An MR mock scanner can help to increase patient comfort and 
task performance, especially in some target populations (e.g., indi-
viduals with autism, children), and can be used for screening (e.g., 
individuals with claustrophobia, large physical dimensions). It can 
also be useful for the training of fMRI lab personnel or the designing, 
troubleshooting, or rehearsing of complicated fMRI experiments.

3 The MRI Scanner

We can divide the components of an MRI scanner into four cate-
gories. The magnet, the magnetic field gradients, the RF Transmit/
Receive hardware, and the data acquisition electronics.

We will begin by considering the magnet. Typical MRI magnets, 
like the one shown in Fig. 9, are large solenoid coils made of super-
conducting metal (niobium alloys, typically). They are kept cooled 
at approximately 4 K by liquid Helium in order to achieve and 
maintain superconductivity.2 The magnet is “ramped up” to field 
by introducing a current through a pair of leads that produces the 
desired magnetic field. Once the specified current has been built 
up, the circuit is closed such that the current “re-circulates” 
through the coil constantly and there is no need to supply more 
power to it. It is crucial to maintain the low temperature to prevent 
the coil from resisting the current flow.

A new, exciting development is the “dry magnet.” The term 
refers to super-conducting magnets that are cooled without liquid 

2
 For more information on superconductivity, see [5]

3.1 The Magnet

Fig. 8 Example of a mock MRI scanner (University of Michigan)
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helium. This new generation of magnets uses cryo-coolers [6] that 
run constantly in order to maintain the temperature of the magnet 
in the super-conducting range. Cryo-coolers still use helium, 
although in its gaseous state and in much smaller quantities. A 
major advantage of this cooling technology is that it allows ramp-
ing the magnet up and down much more safely, quickly, and inex-
pensively, since no liquid helium fills are required in the process. At 
the time of this writing and to our knowledge, these are only cur-
rently available from one vendor of MRI systems (MR solutions) 
and only for preclinical systems. It is expected that this technology 
will be adopted for clinical MRI systems in the near future, but 
most MRI scanners in the world are still cooled by liquid Helium.

If the windings ever warm up and become resistive (i.e., they 
lose their super-conducting state), they dissipate the electric power 
as heat. This very undesirable event is termed “quenching.” As the 
magnet’s windings become more resistive, the very high current 
circulating through the coil produces heat, such that the liquid 
helium that is responsible for maintaining the superconducting 
temperature boils off. This rapid boiling of the helium quickly 
exacerbates the problem and the superconducting state is quickly 
lost. The very large currents can potentially produce enough heat 
to melt or severely damage the windings. The greatest danger 
however, is that the rapid rate of helium boiling can build up a 
great deal of pressure in the magnet and also flood the room with 
helium gas and suffocate whoever is there. While helium is not 
toxic, it displaces the oxygen in the room. Thus, it is crucial that 
the magnet be outfitted with emergency vents (manufacturers of 
MRI scanners typically include emergency quench ventilation sys-
tems). Additionally, magnet rooms are outfitted with oxygen 

Fig. 9 A 3T magnet during installation at the University of Michigan’s FMRI 
Laboratory
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sensors that sound an alarm when the oxygen level falls below safe 
levels. It must be stressed that all personnel be trained in emer-
gency quench procedures in case the emergency systems fail.

Having considered what can happen when the magnet fails, let us 
now return to the more cheerful subject of what the magnet can do.

The key parameter in the magnet is its field strength (B0), as it 
determines many properties of the images. Primarily, field strength 
determines the amount of spins that align with and against the 
field. The higher the field strength, the larger the population of 
aligned spins that can contribute to the MR signal. More specifi-
cally, the population of spins aligned with the magnetic field (n+) 
and against it (n−) is described by the Boltzmann equation
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where γ is the gyromagnetic constant for the material, h is Plank’s 
constant, k is Boltzmann’s constant, T is the temperature of the 
sample, and B0 is the strength of the magnetic field. Hence, the 
higher the field, the more spins will contribute to the signal and 
thus yield a higher the signal to noise ratio (SNR) .

The field strength also determines the resonance frequency of 
the spins, ω0, in a linear fashion according to the Larmor 
equation.

 v g0 0= B  (2)

Where γ is again the gyromagnetic constant, which is specific for 
the nucleus in question. The resonant frequency will in turn deter-
mine the characteristics of the RF transmit and receiver subsystems 
(see Sect. 3.3). Field strength also affects both the longitudinal and 
transverse relaxation rates of the materials via the resonant fre-
quency as predicted by the equations
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where τc is the correlation time (a measure of the tumbling rate 
and frequency of collisions between molecules) of the species. 
Note that T1 is more heavily dependent on B0 than T2.

While T1 and T2 typically get longer, T2* gets shorter at higher 
fields. Recall that T2* is the rate of transverse signal loss accounting 
for both T2 and macroscopic field inhomogeneity, that is
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where T2′ is the relaxation due purely to the field inhomogeneity. 
This inhomogeneity in the magnetic field is usually produced by 
inhomogeneity in the magnetic susceptibility across the sample, 
e.g., the air in the ear canals has very different susceptibility than 
the water in brain tissue. The distortion of the magnetic field 
caused by magnetic susceptibility is described by

 B B0 0 1¢ = -( )c  (6)

where χ is the magnetic susceptibility of the sample, B0 is the origi-
nal magnetic field and B0′ is the resulting magnetic field after con-
sidering the magnetic susceptibility. Thus the change in the field 
gets worse as the magnetic field increases.

The implications for functional imaging are that most imaging 
and spectroscopy applications benefit in terms of SNR, and that 
the bold oxygen level-dependent (BOLD) effect is more pro-
nounced at higher fields. But, as is common in MR, there is a 
tradeoff. As the field increases, and T2* effects get shorter, suscep-
tibility artifacts get much more pronounced. This is particularly 
significant, as the BOLD effect is observed by T2* weighted imag-
ing, which is very sensitive to susceptibility artifacts.

Arterial Spin Labeling techniques [7] also benefit from higher 
field strength, as the longer T1 means longer duration of the label. 
Another major practical implication of working at a higher field is 
that the resonant frequency of protons is proportionally higher, 
and thus RF pulses deposit more power into the subject. The US 
FDA regulates the amount of RF power that can be used on a 
human subject cannot exceed 1.5 W/Kg.

The higher frequency of the pulses also means a shorter wave-
length and the formation of standing waves in the sample during 
transmission. Hence, it is more challenging to achieve uniform 
excitation patterns across the imaging slice and parts of the imag-
ing slice appear artificially brighter than others. Figure 10 (left) 
shows an example of this phenomenon (usually referred to as 
“dielectric effects”) in brain images at 3 T [8–10]. The right panel 
of the figure shows the corrected image.

To put things in context, at the time of this writing, T2* 
weighted imaging techniques required for BOLD fMRI are fairly 
challenging at 7 T and not many groups are doing human work at 
these high fields, although there is an increasing trend toward 
7 T. Presently there are only two research groups that have 9 T 
human imaging systems. At this time, 7 T magnets are predomi-
nantly used for small animal research systems. The “de facto” stan-
dard field strength for human fMRI systems in the last few years has 
become 3 T, although many sites still use 1.5 T scanners for fMRI.
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Besides the strength, one must consider the spatial homogene-
ity and temporal stability of the magnetic field. The magnetic field’s 
homogeneity is crucial since the lack of it translates into severe 
image distortions. One challenge is that the shape of the magnetic 
field changes when an object (i.e., the subject) is introduced into 
the field. Consequently, MRI systems are usually outfitted with a set 
of small pieces of iron installed around the bore of the magnet, 
referred to as “passive shims.” The location of the passive shims is 
carefully chosen to make the field more homogeneous. In order to 
adjust the field homogeneity for individual subjects, additional elec-
tromagnets whose field can be dynamically changed when the 
patient are used. These are referred to as active shims and the pro-
cess of shaping the field is referred to as “shimming.” There are 
many types of shim coils that are used to superimpose magnetic 
fields for shimming purposes. The shim coils are designed to pro-
duce spatial magnetic field gradients. These fields are typically 
shaped as linear, quadratic, and higher order functions of spatial 
position. While typical clinical scanning procedures require adjust-
ments to the linear shims from patient to patient, it is our experi-
ence that T2* weighted (BOLD) fMRI benefits greatly from higher 
order shimming. Modern scanners are equipped with automatic 
shimming procedures [11] that can typically achieve homogeneities 
over a 1500 cm3 region of less than 20 Hz RMS, approximately.

In addition to being homogeneous, it is quite important that 
the magnetic field be as constant as possible over time. The field 
tends to drift over time due to a number of factors, among them 
temperature of the room and the equipment, as mentioned previ-
ously. These drifts are typically subtle and slow enough that they 
do not affect clinical / structural imaging. FMRI, however, is 

Fig. 10 Illustration of the dielectric effect on a high-resolution, T1 weighted, SPGR image. The center of the 
image appears brighter, because of the formation of standing waves in the RF pattern. As a result, the center 
of the field of view receives a higher flip angle than the periphery of the image. The image on the right has 
been corrected by removing the low frequency spatial oscillation with a 2D FIR filter
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based on subtle signal changes over time and therefore, drifts act as 
significant confounds, especially in slow paradigms. Statistical and 
signal processing tools do exist to reduce these drifts effects, but it 
is much more desirable that they be reduced during acquisition. 
Unfortunately, there are many sources of drift in the MRI hard-
ware, so it is important that the magnet undergo extensive stability 
testing before it becomes operational and that quality control tests 
including stability measurements be performed regularly. The 
scanner’s stability can be measured on a phantom over a small 
region of interest. Figure 11 illustrates a typical stability test.

The physical configuration and shape of the magnet also plays 
an important role in many of these parameters. While “open” MRI 
systems exist and are used for large or claustrophobic subjects, 
their field strength is typically not sufficient for functional MRI 
applications and their use is limited to clinical applications that do 
not demand high-quality imaging. Among the closed bore sys-
tems, one can choose between short and long bore systems. Short 
bore systems are intended for head-only applications and can 
sometimes offer improved performance over smaller regions. Long 

Fig. 11 A typical stability test showing the time course and its frequency content in a phantom (above)
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bore systems, although more cumbersome, achieve greater field 
homogeneity over a larger area, which is beneficial for some appli-
cations, such as arterial spin labeling.

When considering magnets, it is crucial that we also consider 
safety issues. The most obvious issue is the very powerful force that 
magnetic fields of the magnitude required for MRI exert on fer-
romagnetic objects. These forces are inversely proportional to the 
square of the distance between the object and the dipole, and are 
directly proportional to the mass of the metal in question. recall 
that the magnetic field produced by a current is described by the 
Biot-Savart law:
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where I is the current, L is a unit vector in the direction of the cur-
rent, r is another unit vector pointing from the location of the wire 
to the location of interest, and |r| is the distance from the location 
of interest to the current source.

One must obviously be very careful to keep ferromagnetic 
objects out of the magnet room. Typical accidents occur when 
someone forgets about small metallic objects in their pocket and 
they fly out of their pocket and strike someone. Accidents some-
times happen because there may be a very subtle force on the 
object at a specific location in the room leading an unsuspecting 
investigator to believe that the object is not ferromagnetic. 
However, moving the object a very small amount toward the mag-
net can translates into a very rapid increase of the magnetic field, 
since the magnetic field increases with the inverse of the square of 
the distance, as mentioned. A small step in the wrong direction 
while carrying a ferromagnetic object can be the difference between 
a gentle tug on the object and the object being launched into the 
bore of the magnet, to the horror of the investigator and the sub-
ject. It is thus paramount that strict screening procedures be fol-
lowed before allowing people into the magnet room. Sometimes 
small bar magnets and airport security style metal detectors are 
used to verify the absence of ferromagnetic objects on the subject’s 
body or to test allegedly MR compatible equipment.

These forces can also affect metal implants in the subject’s bod-
ies. Pacemakers, neurostimulators, and other implanted electronic 
devices are likely to malfunction putting the subject at great risk. It 
is thus crucial that subjects be thoroughly screened for the presence 
of implants, shrapnel, or other metal sources in their bodies. Having 
said that, many modern implants are built of titanium and nonreac-
tive materials that are not ferromagnetic and are therefore “MR 
compatible.” A number of publications exist cataloging medical 
devices and their MR compatibility according to model and manu-
facturer [1, 2] (and on the web: http://www.mrisafety.com/).
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In order to produce images, an MRI scanner needs a spatially varying 
magnetic field (see image reconstruction chapter) under tight control 
by the user. This is accomplished by using an additional set of coils 
that add extra magnetic fields to the main field. A set of such coils is 
shown in Fig. 12. By supplying customized current waveforms to 
these coils, the user can change the distribution of the magnetic 
field’s shape at will. In broad terms, by varying gradient’s strength 
can be varied over time during the pulse sequence, one can obtain 
MR signals whose phase distribution is a function of the spatial distri-
bution of the sample.

The ideal gradient set is capable of quickly changing the mag-
netic field as a linear function of spatial location along each of the 
Cartesian axes. Typical gradients in clinical and functional MRI are 
between 10 to 40 mT/m, but specialized gradient inserts exist that 
can produce larger gradients (in the range of 100 mT/m). Small 
bore animal systems can be outfitted with more powerful gradients 
(up to approximately 400 mT/m). The main challenges in MRI 
gradient design and construction usually consist of producing lin-
ear gradients in space and time, and the production of eddy cur-
rents. Motivated by the need to achieve finer spatial resolution and 
better axon fiber tracking through diffusion tensor images (DTI) , 
Massachusetts General Hospital has developed a high-performance 
gradient insert that can achieve up to 300 mT/m in a human sys-
tem, whereas standard clinical gradients rarely exceed 50 mT/m. 
This system is utilized at present primarily for experiments con-
cerning the “Human Connectome Project” [12] (www.human-
connectomeproject.org).

The spatial linearity of the gradients must be maintained over 
the volume of the sample to be imaged, or the images will appear 
warped (although these distortions can be corrected during recon-
struction if the true shape of the gradient is known). The spatial 

3.2 Magnetic Field 
Gradients

Fig. 12 Gradient coils from Doty Scientific (reproduced with permission of Doty Scientific)
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linearity of the gradient fields is primarily a function of the shape of 
the gradient coils, and a great deal of effort goes into their design 
and construction (we will not go into those details here). Typical 
MRI scanner head gradients can maintain 95 % linearity over 30 cm.

The gradient coils must also be able to produce magnetic field 
gradients very quickly and accurately. The inductive nature of the 
coils causes their response to the input currents to be severely 
dampened. In order to correct this problem, typical gradient cur-
rents are “pre-compensated” in order to produce the desired wave-
form [13, 14]. An example of precompensation is illustrated in 
Fig. 13. Most maintenance or quality assurance protocols include 
gradient linearity and pre-compensation.

The rate at which a gradient is achieved is referred to as the 
slew rate. Slew rates of about 200 T/m/s can be generally achieved. 
However, there are FDA limitations (these are determined by the 
imaging sequence type and the duration of the stimulation. 
Typically the maximum allowed rate of change in magnetic field is 
approximately 20 T/s), since the sudden changes in the magnetic 
field can induce currents in the peripheral nervous system, causing 
muscle contractions and unpleasant or even painful sensations in 
the patient. This phenomenon is referred to as peripheral nerve 
stimulation (PNS) .

Input Current

Output Gradient

Uncompensated
Compensated

Uncompensated
Compensated

Fig. 13 Simplified illustration of gradient current compensation. The inductive 
effects of the gradient coils are partially corrected by modifying the input cur-
rents to the coil
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Active shielding of gradients is necessary to contain the gradient 
fields and reduce the interactions between gradient coils and other 
conductors in the scanner. The principles are the same as the active 
shielding of the main magnetic field (see Sect. 3.1). In other words, a 
coil producing an opposite gradient field is built around the main gra-
dients in order to cancel the fields outside the area of interest [15, 16].

Gradient vibration and noise are another issue to consider in 
gradient design. As the gradients are rapidly turned on and off, 
especially in echo planar sequences, they experience torques due to 
the presence of the main magnetic field. Thus the coils vibrate vio-
lently thus causing the familiar banging MRI sounds. The sound 
levels are quite loud and require that the subject’s wear ear plugs. 
Active shielding can help reduce the vibrations and acoustic noise 
produced by the gradients [16].

MRI scanners employ RF hardware to generate oscillating mag-
netic fields that cause the magnetization vector to tip into the trans-
verse plane, and for signal reception. To create signal, an MRI 
scanner uses a powerful amplifier (generally 1–25 kW) to drive an 
excitation coil with a large pulse of electric current. In the reception 
stage, the receive coil is used to pick up the MR signal, which is 
then processed to create an image. The components of the RF chain 
that an fMRI user should pay attention to are the transmit and 
receive coils. Historically, the transmit and receive coils used for 
fMRI were the same. Today, given the widespread use of  parallel 
imaging to improve image quality via reduced acquisition time, 
fMRI experiments typically use the scanner’s body RF coil for trans-
mit, and a set of multiple coils contained in a single housing that sit 
close to the head for receive. This approach is referred to as “paral-
lel imaging” [17, 18] and, in FMRI, it’s used to improve image 
quality via reduced acquisition time. Head coils can take many 
shapes and functional forms, however, for the purposes of SNR and 
image homogeneity comparisons, there are two main classes of 
coils: single-channel and multichannel or phased-array coils.

An RF coil is a resonant circuit, and can be modeled as a simple 
loop containing an inductor, a capacitor, and a resistor (Fig. 14). 
The inductor and capacitor represent actual circuit components 
lumped together with the inductance and capacitance of the sam-
ple. When a source of electrical current that oscillates at the cir-
cuit’s resonant frequency is placed across its terminals, the 
impedances of the inductor and capacitor cancel, and the coil 
delivers the maximal amount of energy to the sample. In a recipro-
cal manner, current measured at the coil terminals due to energy 
radiated by the sample will be of maximum amplitude when that 
energy oscillates at the coil’s resonant frequency. Because the fre-
quency at which biological spins oscillate is determined by the 
main magnetic field strength via the Larmor relationship, an RF 
coil must be “tuned” to resonate at this frequency.

3.3 RF Hardware
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Single-channel surface coils are the simplest RF coil design. 
These are typically used to image small areas close to the surface of 
the skin, as their penetration depth drops sharply with distance 
from the coil. They consist of a simple loop that induces an oscil-
lating magnetic field when a current is passed through it.

Although the phase information is routinely discarded in image 
reconstruction, MR signals are inherently vector quantities. RF 
coils are used to generate an oscillating magnetic field, and the sig-
nal emitted back by the sample is a rotating electromagnetic field. 
However, a simple surface coil can only produce and detect only 
one component of that vector: the component that is  perpendicular 
to the plane of the coil. Quadrature coils typically consist of two 
perpendicular coils that transmit at 90° phase from each other. The 
resulting magnetic field is the vector sum of the two perpendicular 
fields. Quadrature reception can also be achieved with the same 
coils by adding phase to one of the channels in the receive chain.

The most popular quadrature-channel head coils generally take 
on a “birdcage” design (Fig. 15a). This classic design provides 
good SNR and image homogeneity characteristics, owing to the 
unique nature of the magnetic field that it creates [19]. Another 
type of single-channel coil commonly used in studies of the occipi-
tal cortex is a quadrature occipital coil (Fig. 15b), which provides 
high SNR in this localized region of the brain, and has a compact 
design compared to full head coils, allowing the experimenter 
greater freedom in stimulus hardware setup.

In contrast, multichannel or phased-array coils (Fig. 15c) are 
composed of a set of discrete and independent “surface” coils, 
arranged around the head. Generally, these coils can be brought 
into a tighter conformation around the head, which improves 
SNR. Taken alone, images obtained with individual surface coils 
will possess lower SNR and poor image homogeneity compared to 
a birdcage coil, however, when images from the coils are combined 
in a sum-of-squares reconstruction, excellent SNR can be achieved 
[20], though image homogeneity will still be worse than for a bird-
cage coil. Furthermore, most phased-array coils can be used only 

Fig. 14 Series Resistor-Inductor-Capacitor (RLC) circuit representing an RF coil 
and a biological sample
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for reception, so a separate coil (usually the scanner’s body coil) 
must be employed for excitation, which can result in degraded 
image homogeneity, as well as increased SAR in areas outside the 
head. The central advantage to phased-array coils is that they allow 
the use of parallel imaging techniques, such as SENSE [17] and 
GRAPPA [21], when paired with RF signal chains capable of 
receiving multiple channels simultaneously, which are now com-
monly available from most MR vendors. Parallel imaging exploits 
the inhomogeneity of images obtained with surface coils to accel-
erate image acquisition, which results in a reduction of artifacts in 
fMRI images, as in Fig. 16. This comes at the cost of reduced 
SNR. Phased-array head coils used for fMRI commonly have 32 
individual coil elements, and can be effectively used to reduce 
image acquisition time by a factor of 2–4. Scanners with up to 128 
receive channels are available from MR vendors.

A birdcage coil generally provides a lot of flexibility in stimulus 
presentation setup, due to the large amount of room within the 
coil. One can use goggles, projector/mirror systems, and a range 
of other solutions in conjunction with a birdcage coil (as we discuss 

Fig. 15 (a) Transmit/receive birdcage head coil. (b)Receive-only quadrature occipital coil (c) 8-channel phased- 
array coil
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later). In comparison, current phased-array coil designs limit pre-
sentation options, since the coils forming it are placed closer to the 
head, which may prevent the use of visors. However, phased-array 
coils are generally compatible with the most commonly used 
projector- based visual stimulus setups. When using visor-based 
stimulus systems, one must ensure that the electronics of the visor 
are properly shielded to prevent image artifacts of the type shown 
in Fig. 4. The “streaking” artifact shown in this image was caused 
by a visor with an electromagnetic “leak,” that coupled to the 
receive coil and manifested as a false MR signal. The form of the 
artifact will depend on the pulse sequence used; in this example the 
streak is localized, while in another pulse sequence the artifact may 
be spread over the entire image.

In the near future, the design of multichannel receive coils is 
likely to be in part driven by simultaneous multislice imaging, a 
recent parallel imaging-based scan acceleration technique in which 
multiple slices in a volume are excited and read out simultaneously, 
leading to a scan acceleration factor equal to the number of 
simultaneously- excited slices [22, 23]. Whereas conventional par-
allel imaging is applied to accelerate the acquisition of each slice’s 
data individually and thus requires a circumferential density of 
receive coils around the head in the plane of the slice, a simultane-
ous multislice acquisition requires a density of coils in the slice 
dimension (typically head-foot in fMRI) to successfully separate 

Fig. 16 Comparison of fMRI images obtained using conventional (a) and parallel imaging (b) in the inferior 
brain. In this example, parallel imaging with an 8-channel phased-array coil was used to reduce data readout 
time by a factor of 2. This reduced signal loss and image distortions due to susceptibility, particularly in the 
region indicated by the arrows. (Courtesy of Yoon Chung Kim, University of Michigan Functional MRI Laboratory)
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the simultaneously-excited slices’ signals. Using appropriate coils 
and sequences, acceleration factors of 2–5 are common in simulta-
neous multislice exams [24].

Finally, it is now a common option for 3 T MRI scanners to be 
equipped with two transmit channels, which are used to indepen-
dently adjust the signals transmitted into the two ports of the scan-
ners’ integrated quadrature body coil in order to produce more 
uniform RF fields, on a subject-to-subject basis. While this capability 
is primarily driven by the need for more uniform RF fields in body 
MRI, it may also provide some benefit in improving field uniformity 
in brain MRI [25]. Furthermore, multichannel transmit methods 
are currently being developed by several researchers to alleviate 
through-plane signal loss artifacts in the lower brain [26, 27].

Functional MRI experiments generate large datasets. The raw data 
alone for a single subject, scanned for one hour, weighs in between 
100 and 200 MB. Combine this with the space needed for image 
reconstructions and analysis, and one should budget a storage and 
scratch space of around 2 GB for every hour of scanning. In this 
section, we will provide some guidelines and suggestions on how 
to set up a computing environment to handle all this data. The two 
major factors influencing the design of your environment will be 
(1) money, and (2) the expertise available, in terms of computer 
systems and MRI data processing.

The data stream in a typical laboratory consists of four main 
stages. The first stage is the MRI scanner, which produces either 
raw, unreconstructed data, or reconstructed images that are ready 
for post-processing and analysis. If a lab has an MR physicist at its 
disposal, then the former case is often true, since an MR physicist 
may develop image reconstruction codes that provide improved 
image quality over vendor-provided software, and that can add in 
improved reconstruction techniques as they are developed. 
Assuming images have been reconstructed, the second stage con-
sists of slice timing correction, realignment, coregistration, warp-
ing, and smoothing, which are all operations that prepare the 
dataset for statistical modeling and analysis. The third stage is sta-
tistical modeling and analysis. The fourth stage is data backup, 
though it is advisable to make backups of data at more than one 
point in the stream.

The majority of fMRI labs maintain one powerful workstation 
or computer cluster to do the bulk of their processing. Users can 
log into this computer from their own machines to initiate process-
ing or view and download the preprocessed data for local analysis. 
The central advantage to this model is that the large and compli-
cated software packages used to process fMRI need only be main-
tained on one machine, which greatly simplifies maintenance. A 
secondary advantage is that this model allows users greater flexibil-
ity in choosing the operating system of the computers they use; the 

3.4 Computing 
Resources
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workstation can be running a Unix derivative, which has benefits in 
terms of networking, stability, and the availability of fMRI software 
packages, while the users can be using Windows PC’s or 
Macintoshes, which are generally more user-friendly systems. All 
computers that will be involved in processing or storing data 
should be connected with the fastest network possible, such as a 
gigabit network.

The central processing workstation should have as much RAM 
as possible. By today’s computing standards, each CPU should 
have at least 2 GB RAM available to it, so that it may store the 
entire dataset and related files. The reason for this is to minimize 
the frequency with which the computer accesses its hard disk pro-
cessing, which costs large amounts of time. The second main con-
sideration is the number of CPU’s the computer should have. This 
will largely depend on the number of simultaneous processing 
streams one expects to have running on the computer. The third 
consideration is storage. The main computer should be connected 
to a large data storage device, so that all current experiments can 
be instantly accessed, without requiring reloading of backed-up 
data. This device should be a set of hard disks configured in a 
redundant manner, such as a RAID array.

One of the central computing dilemmas that an fMRI lab will 
continually deal with is making data backups. There are two main 
questions to answer here: (1) at what points in the processing 
stream should backups be made, and (2) what form should back-
ups take? Backups of the initial MR data are absolutely necessary, 
since an experimenter may be asked to reproduce their results at a 
later date, or bugs may be found in the post-processing stream 
(stage two), which will require re-processing the original data. 
After this stage in the stream, the choice of where to do backups 
will depend on the amount of backup space available and the speed 
with which the second and third stages may be executed, should 
the analyzed data be lost. The more points at which backups are 
made, the more quickly an experimenter could recover after a data 
loss or processing interruption. A laboratory also has many options 
in choosing backup forms, and it may be best to use a combination 
of them. Perhaps the simplest backup form is mirroring the data, 
i.e., storing the data in another set of hard disks whose sole pur-
pose is to store backed-up and archived data. This solution is par-
ticularly simple in that backups can be fully automated, and 
instantly accessed. The other two main options are tape storage 
and optical media (DVD). While automated machines may be pur-
chased to manage tape backups, hard disk capacity is rapidly out-
stripping tape capacity, and the mechanical nature of these machines 
makes them prone to frequent failure. On the other hand, DVD 
backups are more reliable and cheap, but they require human 
interaction to load DVD’s and execute burning software. A backup 
schedule will also have to be worked out by the laboratory.
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Because computer components (i.e., disks, CPU’s, and video 
cards) frequently fail or need replacement, it is advisable to set 
aside part of the lab’s initial capital for yearly computer mainte-
nance. It is also advisable to purchase extended warranties for the 
computers, as they will be heavily used and if they fail, this can save 
the lab a significant amount of money in the long run. Furthermore, 
as technology advances, the lab should build into their operational 
budget the cost for new machines every few years.

4 Stimulus Presentation and Behavioral Data Collection Devices

There is a small but increasing number of manufacturers of stimu-
lus presentation hardware and software. We will not review specific 
products or vendors but limit ourselves to describe the important 
characteristics of these devices.

Some components of the stimulation and response recording 
equipment must go inside and/or near the magnet. These must not 
be susceptible to magnetic forces for obvious safety reasons. 
Additionally, the presence of metals in headphones and head 
mounted displays can generate field distortions that cannot be com-
pensated by shimming, even if they are not ferromagnetic. This 
results in severe image degradation and it is thus important that the 
devices be thoroughly tested on phantoms for image degradation.

As we alluded to before, electronic equipment in the scanner 
room must be adequately shielded to avoid introducing RF noise 
into the system. For example, LCD displays for visual stimulation 
inside the magnet are typically encased in a fine wire mesh that 
acts as a Faraday cage to contain RF leakage. Other audiovisual 
electronic equipment used in the MR environment, such as pro-
jectors and button response units are typically encased in brass or 
aluminum for the same reasons. Regardless of the manufacturers’ 
best intentions, sometimes the shielding is not adequate or 
becomes damaged over time in subtle ways. Just as in the case of 
the room’s RF shielding, an exposed wire or bad shielding con-
nections can produce severe RF contamination of the images. 
Thus, it is paramount that the stimulation devices be checked 
upon purchase and periodically for RF leaks that may develop 
during delivery, installation, or daily use.

There are different technologies commercially available for 
MR compatible visual stimulation. The simplest approach is per-
haps an LCD projector outfitted with narrow focus lenses that 
project the images into a back projection screen placed inside the 
bore of the magnet. The subject then can see the display through 
a set of mirrors that are mounted on the head coil assembly. The 
main advantages of this approach are simplicity and lower cost. 
The disadvantages are related to positioning issues and a reduced 
visual field for the subject.
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Another approach to MR compatible visual stimulation is fiber 
optic display visors. This sort of display system is based on a optical 
signal converter that carries an SVGA quality image through an 
array of micro optic fibers to a head mounted display inside the 
scanner’s head coil. This approach is very attractive in that there 
are no electronic components that need to be installed inside the 
scanner room and the display can be placed very accurately in front 
of the subject’s eyes, maximizing the available visual field. The 
drawbacks are that in additional to being expensive, the fiber optics 
used in the array are very fine and brittle, so that regardless of the 
high quality of fabrication, there will always be a small number of 
broken fibers that result in dead pixels or small streaks in the image.

One of the more popular approaches is to display the images 
on a shielded LCD screen mounted in front of the subject’s head. 
This screen can be either a large one that is mounted outside the 
scanner’s RF coil, or a small one in a visor that the subject wears 
inside the coil. The advantages of this are the large visual field and 
ease of use of the system. The drawbacks are the high cost and the 
interactions between the display electronics and the magnet. 
Some of these devices become dimmer when placed inside the 
magnetic field. Additionally, if any RF leaks develop, they severely 
degrade the images, especially in the visor type systems since they 
sit inside of the RF coil.

Auditory stimulation is typically performed in the MR envi-
ronment through two different kinds of headphones: pressure 
waveguide types, and shielded piezoelectrics. Both of these are 
highly effective devices. The pressure waveguide headphones keep 
the speakers outside of the magnet’s bore and the sound is carried 
through rigid tubing into the headphones. The piezoelectric head-
phones are akin to standard speaker technology but use piezoelec-
trics to produce the vibrations. They require RF shielding of the 
cables and the electronics to prevent artifacts. Perhaps the biggest 
challenge for auditory stimulation is reduction of the MRI scan-
ner’s noise. There is very limited space inside the scanner’s head 
coil for building an effective muffler into the headphones but fairly 
effective noise reduction (typically around 30 dB) can be achieved. 
The headphones’ acoustic insulation is sometimes achieved by gel 
padding that attenuates the sound very effectively by forming a 
tight seal around the ear. Caution must be used as the gel in the 
padding produces an MR signal and is visible in the images so it 
must be taken into consideration during registration and normal-
ization of structural images. The gel’s resonant frequency is typi-
cally not the same as water and produces some off-resonance 
artifacts, but these tend to be mild.

MR compatible microphones for patient communication and 
verbal response recording are typically based on piezoelectric tech-
nology and require both electronic and acoustic shielding to reduce 
the scanner sound. To our knowledge of the present state of the art, 
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the acoustic shielding of the microphone from the scanner sound is 
somewhat effective, but communication with the subject during 
the scan is still challenging. Some systems are equipped with active 
noise cancellation with limited success. Consequently, investigators 
often use pulse sequences with “quiet” (i.e., no gradient pulses) 
periods during the subject response time instead [28, 29].

Other response recording devices are primarily “button response 
units (BRU)” that are built into hand rests and strapped to the sub-
ject’s hands. They typically carry only DC currents through twisted 
pair cables and RF noise is not an issue as the electronics to drive the 
system are kept outside the scanner room. There are a number of 
other response units, such as MR  compatible joysticks and keyboards 
that are manufactured by small companies. While these are typically 
safe and effective, one should test all such equipment immediately 
upon purchase not only for functionality but for RF leakage, and 
ferromagnetic forces. Periodic RF testing of peripherals should be an 
integral of the fMRI facility’s QA procedures.

5 Subject Monitoring

When running an fMRI experiment, it can be desirable to monitor 
and record subjects’ status and peripheral signals during an fMRI 
experiment, to use as correlates of subject behavior or as nuisance 
signals in data correction. Some possibilities include monitoring 
cardiorespiratory rhythms, galvanic skin response, head motion, or 
eye-tracking. As stressed in the previous sections, all these consid-
erations should fit with the comfort and safety of the subject.

In general, when considering recording peripheral signals on 
fMRI subjects, one should pay attention to: synchronization with 
the MR scanner, adequate sampling of the signal in question, and 
avoiding introducing signal noise in both the MR data and the 
recorded peripheral signals.

In order to match the recorded external signals with the fMRI data 
being recorded, synchronization with the start of the scan must be 
achieved. This can be done using a TTL pulse to/from the scanner 
from/to the external device or recording media. For instance, a 
logic pulse from the MR scanner to the computer recording physi-
ological noise can be set to trigger the recording sequence. 
Commercial MR scanners from the main vendors (GE, Siemens, 
Philips) all have the capability to send or receive TTL sync pulses.

A limit to the effectiveness of functional MRI in detecting activa-
tion is the presence of physiological noise, which can equal or 
exceed the desired signal changes in an fMRI experiment [30]. 
These physiological fluctuations that are present during an fMRI 
scan can obscure the BOLD activity that the researcher is trying to 

5.1 Scanner 
Synchronization

5.2 Physiological 
Monitoring
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detect. In addition, monitoring physiological rates can help as sec-
ondary reaction measures (such as monitoring the cardiac rate vari-
ability during a stress experiment).

Monitoring the cardiac waveform can be achieved in several ways. 
The most common solutions are pulse oximeters or ECG patches. 
The primary cardiac harmonic frequency lies in the 0.5–2.0 Hz 
range, with both the first and secondary harmonics shown to affect 
the fMRI signal [31].

Pulse oximetry refers to indirectly monitoring the oxygen lev-
els in the extremities to monitor the cardiac waveform. This is most 
often accomplished in fMRI labs by using an LED and photodiode 
that clips to the subject’s finger, connected to a data acquisition 
board (see Fig. 17). Several MR scanner vendors offer this as part 
of the MR system (GE, Siemens), and stand-alone monitoring 
units from commercial vendors are also available (Invivo, Biopac). 
Normal setup with compliant subjects allows adequate sampling of 
cardiac rhythm, as seen in Fig. 18. Drawbacks include the fact that 

5.3 Cardiac 
Monitoring

Fig. 17 Pulse oximeter for indirect measure of cardiac waveform
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Fig. 18 Cardiac waveform acquired during an fMRI scan. (Data acquired on a 3.0 T GE scanner, using a pulse 
oximeter with a sampling rate of 40 Hz)
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subject motion may corrupt the signal, and motor tasks may be 
impeded with the oximeter placed on the finger (alternative place-
ment on the ear or toe is possible).

ECG patches located over the heart allow high-fidelity monitor-
ing of cardiac electrical activity. This allows identification of features 
beyond the simple cardiac peaks, such the QRS complex during the 
depolarization of the ventricles (Fig. 19). Disadvantages of ECG 
recording include increased setup complexity, and patient comfort.

The respiratory rhythm has a normal frequency range of 0.1–0.5 Hz. 
Motion of the chest during respiration combined with the changes 
in oxygen saturation in the lungs lead to a modulation of the local 
magnetic field that can affect the phase of the MR signal at the posi-
tion of the head during scanning (Fig. 20), which can lead to modu-
lation of the recorded MR signal intensity. Mitigation of respiratory 
effects on the MR signal can include scanning during breath-holds, 
modified pulse sequences to sample and account for the modulation 
in magnetic field [32] and recording of the respiratory signal to use 
as nuisance covariates in post-processing analysis [33].

Monitoring respiratory rhythm can be accomplished by using 
a plethysmograph (pressure belt) around the waist of a subject, like 
the one shown in Fig. 21, or by using a nasal cannula to monitor 
expired CO2 concentration. A sample respiratory waveform is 
shown in Fig. 22.

Galvanic skin response (GSR) is a measure of the electrical resistance 
of the skin, a physical property that has been shown to increase in 
response to subject arousal, mental effort, or stress. It is monitored 

5.4 Respiratory 
Monitoring

5.5 Galvanic Skin 
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Fig. 19 Example of ECG patch (Courtesy of Invivo, www.invivocorp.com). With a schematic of a typical QRS 
waveform
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Fig. 20 Phase difference between inspiration and expiration for a coronal slice

Fig. 21 Plethysmograph belt for measuring respiration
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Fig. 22 Respiratory waveform acquired during an fMRI scan. (Data acquired on a 3.0 T GE scanner, using a 
pulse oximeter with a sampling rate of 40 Hz)
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by measuring a voltage drop across the skin using paired electrodes. 
This can have the same motion sensitivity and motor task complica-
tion as the pulse oximeter if the electrodes are placed on the fingers. 
These problems are usually reduced by placing the electrodes 
between the second and third knuckles, instead of on the fingertip.

Severe head motion during an fMRI scan can severely corrupt the 
data. Besides minimizing patient motion using cushioning and 
restraints, a measure of head motion may also be collected to help 
correct data in post-processing. This may be done using modified 
pulse sequences (PACE), or by using external motion tracking 
[33–35]. Again, patient comfort and visual path should be taken 
into consideration.

Patient gaze and fixation time is important for several types of 
fMRI paradigms and pathological types. In addition, eye motion 
can be a source of variance in fMRI scans [36]. Thus, tracking eye 
position can be desirable. The common method is to monitor the 
position of infrared (IR) light that is reflected off the eye of the 
subject. This involves transmitting IR light to the subject’s eye, 
and then recording it, using MR-compatible equipment. Several 
vendors provide hardware solutions including both long-range and 
short-range cameras. These systems typically have on the order of 
0.1–1° spatial resolution and accuracy, with working ranges of 
10–25° horizontally and vertically, and 60–120 Hz sampling rate.

In acquiring a physical eye-tracking system for an fMRI lab, 
consideration should be given to the optical path for the eye- 
tracking system, taking into account the MR bore, head coil, and 
visual stimulus presentation system; signal integrity of the MR 
data; ease of setup for the MR techs and scanners. This will also 
involve peripheral equipment located in the scanner room or con-
trol room: usually a camera, power supply, video monitor for real- 
time display of the subject’s eye, and a PC.

6 Multimodal fMRI

Acquiring other neurophysiological measures with fMRI data can 
complement the excellent spatial resolution and depth penetration 
of fMRI with modalities that have superior temporal resolution 
and different sensitivities to the underlying neuronal activity. In 
the following sections, we will expand upon complementary 
modalities that allow investigations of response (e.g., EEG, fNIRS) 
and stimulation (e.g., TDCS, TMS).

The simultaneous acquisiton of electroencephalography (EEG) 
data with fMRI data allows the higher temporal sampling rate of 
EEG (~5000 Hz) to be combined with the superior resolution (~ 
mm) and depth penetration of fMRI.

5.6 Head Motion 
Tracking

5.7 Eye Tracking

6.1 FMRI-EEG
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Several factors must be accounted for when setting up a 
simultaneous EEG/fMRI acquisition, chief among them safety 
and  signal quality. In the following, we will try to touch on most of 
the considerations one will make when selecting and setting up 
EEG- fMRI hardware.

Several companies have MR-compatible EEG hardware com-
mercially available (Brain Products, Neuroscan, EGI). A common 
EEG setup includes an electrode cap, connected to a signal ampli-
fier and recording device. Any part of this setup that is inside the 
MR scanner room within the 5 G line must be nonferrous, and the 
amount of metal must be kept to a minimum, with care exercised 
around all metallic components (this includes electrode leads on 
the cap and skin, batteries in amplifiers, etc.). Fiber optics can be 
used for signal transmission after amplification, with recording 
devices located in the scanner control room.

Much planning is required to integrate the EEG with the 
MR. The head coil used for MR acquisition may affect the physical 
setup. For instance, an open birdcage coil may allow placement of the 
EEG cap cord and amplifier above the head of the subject, with no 
obstruction of the subject’s field of view. With an alternative phased-
array coil that is closed at one end, this setup may not be possible.

Also, for time synchronization, it may be necessary to use the 
TTL pulse from the scanner (mentioned in Sect. 5.1) to trigger the 
EEG recording device at each TR.

Finally, for fusion of the fMRI and EEG data, accurate electrode 
locations on the head should be recorded and transferred to the struc-
tural MR images to be used as references for localization. Commercial 
head position recording systems are available (Brainsight). These sys-
tems can record points on the subject’s head using infrared positional 
markers, and coregister these coordinates with the structural MR 
scans of the subject. Subsequent coregistration of the fMRI and struc-
tural MR data allows direct overlay and source localization using both 
between the MR, fMRI, and EEG data.

The EEG equipment should not adversely affect the MR data, 
if proper materials and shielding are used. Images with and with-
out the EEG equipment should be inspected for any introduction 
of AC line noise (~60 Hz) or localized variance in the structural 
and fMRI images.

The MR equipment will affect the EEG recording, due to the 
high-field environment, and the application of gradients during 
the MR acquisition (Fig. 23). However, the MR gradient artifact 
can be corrected for in post-processing, using either available soft-
ware (EEGLAB, http://www.sccn.ucsd.edu/eeglab/) or adapt-
ing techniques such as PCA or ICA.

Functional MRI allows investigation of the hemodynamic response 
to neural activity, thus allowing localization of brain regions involved 
in a cognitive task. However, fMRI is not a naturalistic setting. 

6.2 Functional 
Near-Infrared 
Spectroscopy (fNIRS)
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Functional near-infrared spectroscopy (fNIRS) offers a possible 
solution for portable neuroimaging in the field. It offers subsecond 
temporal sampling, with spatial resolution on the order of centime-
ters. For multimodal work with fMRI, it is attractive as it samples 
the same hemodynamic changes as BOLD fMRI imaging, namely 
the change in relative levels of oxygenated and deoxygenated blood, 
using the differential absorption of infrared laser light. An image of 
a commercially available FNIRS system can be seen in Fig. 24.

Generally, fNIRS operates by using infrared light source and 
detector pairs. While the light used is in the infrared range, and thus 
the majority of the setup may be thought of as fiber-optic and 
largely MR compatible, the internal construction of the probes may 
contain non-MR compatible materials (such as metal coatings in 
reflectors). Careful consideration must thus be used for a fNIRS- 
fMRI combined experiment. Several vendors offer MR-compatible 
probes (EGI, Imagent), or custom setups can be constructed in- 
house [37]. In terms of induced noise, attention must be paid to 
induced MR artifacts due to probe construction. However, due to 

Fig. 23 EEG recorded during fMRI acquisition, before (top) and after (bottom) MR artifact correction
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the optical nature of the fNIRS signal, it is not affected by the MR 
environment, offering one advantage over EEG-fMRI acquisition.

A fundamental strategy used in cognitive neuroscience is to stimu-
late the brain in some way and then observe how it responds. 
Functional MRI provides such observations of the brain’s responses. 
While most studies use sensory (audio, visual, tactile … etc.) cues 
and cognitive tasks as a form of stimulation, one can also stimulate 
human brains directly and noninvasively inside an MR scanner.

One such technique is transcranial magnetic stimulation (TMS), 
which has great potential not only as research tool but also as a ther-
apeutic device [38–40]. The principle behind TMS is that a large 
current waveform is driven through a coil placed adjacent to the 
tissue of interest. The current in turn induces an electromagnetic 
field depending on the rate of change of the current, as predicted by 
classical electrodynamics. The induced electric field penetrates the 
tissue and induces eddy currents on conductors, such as nerve fibers. 
When a nerve fiber is aligned with the direction of the electric field, 
a large current is induced in the axon which causes its membrane to 
depolarize, effectively causing the transmission of an action potential 
[41–43]. After depolarization of the axonal membrane, the sodium–
potassium pumps rebuild the membrane potential and the nerve 
fibers return to their original state within seconds.

The effects of these induced discharges are complex, depend-
ing upon the magnitude and timing of the TMS pulse affecting 
inhibitory and/or excitatory neuronal populations (for recent 
reviews, see [44–46]). If a single TMS pulse is applied in the hand 

6.3 Brain Stimulation 
and fMRI

Fig. 24 Example MRI compatible fNIRS setup (Cortech Solutions, www.cortech-
solutions.com/Products/NI/NI-OM), showing light guides, example subject setup 
configuration, and receiving equipment
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region of the motor cortex, for example, motor neurons depolarize 
and the hand will twitch ('motor evoked potential', or MEP). 
Subthreshold stimulation, followed by supra-threshold stimula-
tion, can inhibit or facilitate the MEP, which varies with the dis-
tance and location of the subthreshold stimulus [47].

By selectively applying a TMS pulse during the performance of 
a task, neural circuits are effectively jammed, and performance 
interruptions can be observed. In effect, one creates a controlled, 
completely reversible “lesion,” enabling the study of brain function 
through perturbation of neuronal activity [44, 48]. Although these 
studies have rapidly become a popular investigative tool for cogni-
tive neuroscientists, one important limitation stems from inade-
quate knowledge about the shape and magnitude of the induced 
current fields that introduce the perturbation. Hence, TMS and 
fMRI can be complementary for the study of brain function. TMS 
can interfere, or modulate the cognitive process under scrutiny by 
locally altering the responsiveness of the tissue, while fMRI can 
allow the investigators to precisely map out these effects. While 
TMS and fMRI experimental data can be coregistered and inte-
grated after each experiment has been carried out separately [49], it 
is desirable to be able to observe the BOLD responses to TMS.

However, there are some clear challenges to carrying out joint 
TMS and fMRI experiments. Such experiments require TMS coils 
that contain no ferromagnetic parts and extra long cabling so that 
the amplifier/capacitor bank can be kept outside of the 5 G line. 
Specialized holders must be constructed to hold the TMS coil in 
the appropriate position during the duration of the scanning ses-
sion (Fig. 25). Like all electronic equipment, the TMS hardware 

Fig. 25 MRI compatible TMS coil and holder apparatus (image courtesy of Dr. 
A. Thielscher of the Max Plank Institute for Biological Cybernetics http://www.
kyb.mpg.de/)
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must be shielded in a faraday cage to prevent RF contamination of 
the MRI signal [50]. Commercial TMS coils currently have these 
characteristics as optional features.

Another important aspect is the synchronization of TMS pulses 
and image acquisition. It is very important that the scanner’s RF 
receiver chain be switched off while the stimulator is pulsing in 
order to protect it from the large signals that may severely damage 
it. At the same time the scanner’s pulses may induce currents in the 
TMS hardware (although these are reportedly not harmful to the 
hardware). Isolation between the two is achieved by synchronizing 
the TMS pulses with the MRI scanner via TTL pulses. The imag-
ing pulse sequence is typically designed with long gaps for the 
TMS pulses. These gaps include about 0.1 s to allow TMS induced 
eddy currents inside the bore to decay. There is also the challenge 
of the large torques that a large, sudden dipole exerts when in the 
presence of a large magnetic field. However, in the case of figure- 
eight coils, those torques cancel since the two “wings” of the coil 
are torqued in opposite directions. Furthermore, rapid bi-phasic 
pulses also cancel those torques and the subject does not perceive 
any such effects. The coil, however, experiences internal stresses 
from the magnetic forces [50–52].

Recently, transcranial direct current stimulation (TDCS) has 
been adopted by neuroscientists as a method to manipulate the 
excitability of neurons [53–56]. The technique is very simple and 
can be easily combined with functional MRI with minor safety 
concerns. In a nutshell, TDCS works by running a small direct cur-
rent (1–2 mA) from an anode to a cathode placed across brain. 
While the mechanism is not entirely understood, the neurons 
beneath the anode experience enhanced excitability because of a 
shift in the transmembrane potential, and the opposite is true at 
the cathode [57]. At the time of writing, TDCS and its mechanism 
are a very exciting and active area of research. Indeed it is often 
combined with BOLD and ASL FMRI to study its effects [58, 59].

The main issues that must be addressed when conducting 
TDCS-FMRI experiments are the heating of the electrodes and 
wires by currents induced by the scanner’s oscillating magnetic 
fields (RF and gradients). A solution to this problem is to increase 
the impedance of the electrodes and wires by placing resistors 
(>5 kOhm) in line. One must also be careful of the presence of the 
ancillary equipment, such as the power supply to the TDCS device, 
in the magnet room. In general it is good to keep that part outside 
the scanner room and feed the cabling through a penetration 
panel. In that case, the wires are likely to act as an antenna and 
bring in RF noise from outside the magnet room, which is detri-
mental for image quality. A solution to this problem is to also place 
a low-pass filter in line (between the power supply and the elec-
trodes) to eliminate the RF noise in the system. One example of 
this approach can be seen in [58], where the investigators placed a 
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5.6 kOhm resistor on MR compatible rubber electrodes, and filters 
in line with the power supply that were rated to attenuate 60 dB 
between 20 and 200 MHz.

7 Conclusions

The hardware used in magnetic resonance imaging is quite extensive 
and we hope to have provided an adequate overview of the subsys-
tems involved in the generation of MRI images. Functional MRI 
requires additional hardware for collection of behavioral data and 
stimulation of the subject while collecting the functional images. 
The greatest challenge is perhaps to coordinate all these devices 
while being mindful of the interactions between the devices and the 
MRI scanner. Failure to do so often results in severe artifacts in the 
desired measurements, or worse, the subject could be severely 
injured. In this chapter we have also explored the hardware require-
ments for multimodal imaging, such as EEG-fMRI or TMS-fMRI.
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Chapter 3

Selection of Optimal Pulse Sequences for fMRI

Mark J. Lowe and Erik B. Beall

Abstract

In this chapter, we discuss technical considerations regarding pulse sequence selection and sequence 
parameter selection that can affect fMRI studies. The major focus is on optimizing MRI data acquisitions 
for blood oxygen level-dependent signal detection. Specific recommendations are made for generic 1.5, 3, 
and 7 T MRI scanners.

Key words MRI, fMRI, Pulse sequences, Blood oxygen level-dependent (BOLD), Echoplanar 
 imaging, Spiral imaging, Multiband imaging, Motion

1 Introduction

NMR or MRI signals are generated by exposing nuclei placed in a 
static magnetic field to radiofrequency (RF) pulses in the presence of 
rapidly switching magnetic field gradients. These patterns of RF pulses 
and magnetic field gradients are referred to as pulse sequences. Pulse 
sequences dictate the contrast that will be present in MR images.

The issue of optimal pulse sequences, or more generally, optimal 
data acquisition strategies, for functional neuroimaging is a complex 
one. One cannot categorically say that a particular approach is supe-
rior to any other in all cases. In this chapter, we will examine the issues 
that affect the detection sensitivity of neuronal activation in MRI and 
discuss relevant data acquisition strategies that can be optimal in each 
situation. For those readers not interested in the technical details 
involved in fMRI pulse sequence optimization and wish to simply 
read a summary of recommended pulse sequence strategies for blood 
oxygen level-dependent (BOLD) fMRI, it is recommended that they 
skip to Sect. 5, which summarizes the issues and presents recommen-
dations and caveats for each relevant sequence parameter.
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This chapter is organized in the following way:

 1. Physics of functional contrast in MRI

(a) Nuclear Magnetic Resonance Relaxometry

(b) Exogenous Contrast

(c) Endogenous Contrast

 2. Ultrafast Spatial encoding

(a) Echoplanar imaging

(b) Spiral imaging

(c) Parallel imaging

(d) Partial Fourier imaging

(e) Multiband echoplanar imaging
 3. Artifacts

(a) Nonphysiologic

(b) Physiologic—head motion and cardiorespiratory noise

 4. Optimization of sequence parameters

(a) Relaxation parameters and functional contrast

Field strength, intravascular, extravascular signal

(b) Experimental design
●● Block design fMRI
●● Event-related fMRI

 5. Summary
Sequence recommendations

Many of these issues are covered in detail in other chapters. We 
introduce them here in the context of pulse sequence selection and 
optimization.

2 Physics of Functional Contrast in MRI

With a few notable exceptions, such as diffusion-weighted MRI, 
MRI contrast stems from taking advantage of the different NMR 
relaxation rates in different tissues and in the presence of pathol-
ogy. Felix Bloch phenomenologically characterized the dynamic 
evolution of spin magnetization with two time constants, referred 
to as T1 and T2. An in-depth discussion of the Bloch equations is 
beyond the scope of this chapter, but for the purposes of under-
standing the interaction of pulse sequence parameters and func-
tional contrast in MRI, it is useful to briefly describe the processes 
associated with these relaxation time constants.

Mark J. Lowe and Erik B. Beall
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T1 relaxation is taken to be the time constant of the return of 
an excited ensemble of nuclei to the equilibrium state of the “lat-
tice” or surroundings. So, before excitation, the ensemble will 
generally be in equilibrium with its surroundings. After excitation, 
T1 governs the time for it to return to the state of equilibrium with 
the lattice. This is sometimes referred to as spin-lattice relaxation.

T2 relaxation, which is technically an enhancement of T1 relax-
ation (i.e., the upper limit of T2 is T1), is the time constant for an 
excited ensemble of nuclei to lose phase coherence through interac-
tions with each other. This is sometimes referred to as spin-spin relax-
ation. T2 relaxation in solids and tissue is typically much faster than T1.

For functional imaging, another important parameter govern-
ing relaxation is T2*. T2* is an enhancement of T2 caused by mag-
netic field gradients inhomogeneities. T2* is defined as:

 

1 1 1

2 2 2T T T*
= + ¢

 
(1)

where T2′ is the additional relaxation contribution from field 
inhomogeneities.

These relaxation processes are sensitive to the chemical environ-
ment of the nuclei. MRI utilizes this fact to produce images whose 
contrast is based on the different relaxation rates in different tissues.

Exposing nuclei in a static magnetic field to RF radiation at the 
Larmor frequency, given by:

 n gL B=  (2)

will result in the absorption of energy by the nuclei. In Eq. (2), γ is 
the gyromagnetic ratio and is a property of the nucleus. Since B is the 
static field strength, we see from Eq. (2) that the Larmor frequency 
will rise linearly with field strength. For protons, γ = 42.58 MHz/T, 
so the Larmor frequency at 1.5 T is approximately 64 MHz.

When the RF radiation is stopped, the nuclei will gradually 
release the energy into the surrounding material until they return 
to the pre-excited state of equilibrium with their surroundings.

An MR pulse sequence is characterized mainly by two param-
eters that control the contrast of the acquired data. The first is 
called the repetition time, or TR, which dictates how frequently 
the nuclei in a particular location are excited. If they are excited 
much more rapidly than the T1 relaxation rate of the tissue, the 
protons will not recover to equilibrium between excitations. After 
a few excitations, the nuclei in a given location will approach a 
steady-state. Figure 1 shows an example of the signal evolution in 
tissue with different T1’s as a function of TR.

The other important parameter that is used to control contrast is 
the echo time, or TE. This is the time after excitation that the observed 

2.1 Nuclear 
Magnetic Resonance 
Relaxometry

Optimal fMRI Pulse Sequences
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signal is spatially encoded. The amount of signal that can be spatially 
encoded is dictated by both TR and TE. Two of the most common 
methods for refocusing MR signal to allow spatial encoding are the 
spin echo (SE) and the gradient recalled echo (GRE) methods.

The time evolution of MR signal immediately after excitation is 
referred to as free induction decay (FID). During the FID, the 
processes governing the loss of signal coherence are a combination 
of T1, T2, and T2′-related processes. In tissue, T2′ will have a large 
effect on the loss of signal. T2′ effects are what is referred to as 
reversible processes. The loss of phase coherence from these effects 
can be reversed by applying a refocusing RF pulse. Figure 2 illus-
trates the sequence timing, using a pulse sequence timing diagram. 
Application of a refocusing RF pulse at a time t after the initial 
excitation pulse, will result in a complete refocusing of the revers-
ible dephasing effects at a time 2 t. This is referred to as a Spin 
Echo. The time 2 t is usually called TE. The MR signal from a 
given pulse sequence can be derived from the Bloch equations. For 
a SE acquisition, the MR signal will be given by:
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As is clear from Eq. (3), the MR signal from a SE acquisition is 
moderated by T1 and T2. From this we can see that the T2 will 
affect the encoded signal if the TE is comparable to, or longer than 
T2. Figure 3 shows an example of the signal evolution for different 
TE’s and T2’s.

2.1.1 The Spin Echo

Fig 1 Steady-state MR signal as a function of repetition time for tissue with three 
different T1 relaxation times

Mark J. Lowe and Erik B. Beall
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It is possible to perform the spatial encoding for MRI during the 
FID. An echo can be created by increasing the dephasing through 
application of a brief field gradient along a particular direction and 
then reversing it while acquiring the signal data. This is called a 
gradient recalled echo (GRE), or a field echo. The sequence 

2.1.2 The Gradient 
Recalled Echo

Fig 2 Pulse sequence diagram of a spin echo acquisition. The envelope of the 
signal indicates the FID, while the peak of the echo is modulated by T2 according 
to Eq. (3)

Fig 3 Steady-state MR signal as a function of echo time for tissue with three 
different T2 relaxation times

Optimal fMRI Pulse Sequences
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diagram for this technique is shown in Fig. 4. The signal obtained 
from a GRE acquisition is given by:
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where α is the flip angle, which is a sequence parameter that is a 
function of the amount of transmitted power1.

It can be shown from Eqs. (3) and (4) that the TE that will 
maximize the difference in signal between two tissues with differ-
ent T2 or T2* is approximately the average of the T2’s or T2* of the 
two tissue types. Table 1 lists the T1 and T2 of gray matter and 
white matter in the human brain at 1.5 T and 3.0 T.

Historically, evidence of regionally specific functional contrast 
using MRI was first observed using an exogenous contrast agent 
[1]. However, this observation was very quickly followed by several 
groups, employing the phenomenon of BOLD contrast observed 
by Ogawa and colleagues [2], utilizing endogenous contrast to 
observe brain activation in several different brain regions [3–6].

It is possible to generate dynamic MR images with functional con-
trast by utilizing the fact that regional blood flow increases proxi-
mal to activated neurons. This is typically done by using methods 
similar to those used to measure regional blood perfusion with 

1
 The flip angle can also affect the contrast of the generated images, but for 

simplicity, we focus here on the more intuitive parameters TE and TR.

2.2 Exogenous 
Functional Contrast

Fig 4 Pulse sequence diagram of a gradient recalled echo acquisition

Mark J. Lowe and Erik B. Beall
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MRI. Gadolinium chelates will not cross the blood brain barrier. 
Thus, a bolus injection of such a paramagnetic material will cause 
a transient change in the T2 relaxation near arterial blood vessels 
that are perfusing brain tissue. If this is done while rapidly acquir-
ing T2*-weighted MR images of the brain region that is active, one 
will observe a decrease in the measured signal intensity that is 
monotonically related to the volume of gadolinium passing 
through. One can infer directly the volume of blood perfusing this 
region from the signal decrease.

Functional contrast can thus be obtained in MRI by comparing 
the regional perfusion, measured with bolus contrast injection, while 
performing a task to that measured while at rest. Figure 5 is an 
example of the difference in the MRI signal evolution from the same 
brain region in visual cortex while undergoing photic stimulation 
and in darkness. One can see that the area under the curve for photic 
stimulation is larger than that for rest, indicating that the volume of 
blood perfusing the tissue was increased during stimulation.

Table 1  
Approximate relaxation times for gray and white matter at 1.5 T and 3 T

1.5 T 3 T

T1(ms) T2(ms) T2*(ms) T1(ms) T2(ms) T2*(ms)

White Matter 600 80 70 800 70 60

Gray Matter 900 100 60 1100 90 50

Fig 5 Changes in MR brain signal intensity during the first-pass transit of intrave-
nously administered paramagnetic contrast agent. Triangle (Δ) symbols represent 
the time course of signal during photic stimulation and circle (o) symbols represent 
the time course during rest (darkness). Reproduced with permission from Ref. [1]

Optimal fMRI Pulse Sequences
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In this manner, one can produce voxel level comparisons of the 
area under the bolus passage curve in the MR time courses and 
determine those whose measured volume change was statistically 
significant.

Due to the invasive nature of the necessary bolus injection, the 
(albeit low level) risk of adverse reaction to contrast agents, the 
lower signal-to-noise ratio (SNR) of perfusion measurement tech-
niques, and to a lesser extent, the limited volume coverage of per-
fusion measuring techniques, exogenous contrast-enhanced fMRI 
is only rarely performed and usually for reasons specific to a par-
ticular experimental design.

There are two principal mechanisms for generating contrast in MR 
images using endogenous features related to neuronal activation. 
Both of these mechanisms are related to the hemodynamic response 
to an increase in neuronal activation. One of these is a regional increase 
in blood flow and the other is a concomitant increase in the oxygen-
ation content of the blood perfusing tissue near activated neurons.

Far and away the most commonly employed fMRI acquisitions 
utilize the fact that regional brain activation results in a local 
increase in blood oxygenation. This is called BOLD contrast. The 
contrast in BOLD stems from the fact that oxygenated hemoglo-
bin is a weakly diamagnetic molecule, while deoxygenated hemo-
globin is a strongly paramagnetic molecule. The relative increase in 
the concentration of oxygenated hemoglobin in the vessels perfus-
ing activated tissue results in an increase in the T2 and T2

* relax-
ation times in the affected brain regions. Thus, methods utilizing 
BOLD contrast for fMRI employ acquisition techniques that are 
sensitive to changes in T2 and T2

*. Because of the flexibility of T2 
and T2* acquisition methods, this has become the contrast of 
choice for the vast majority of fMRI experiments. For this reason, 
the remainder of this chapter will focus on acquisition strategies to 
acquire BOLD-weighted MRI data and we will discuss methods to 
optimize these depending on experimental needs.

3 Ultrafast Spatial Encoding

It is possible to generate MR images that will demonstrate a change 
in signal in brain regions that transition from the inactive to active 
state. These transitions are typically very rapid and the advantage 
of MRI over other imaging techniques is the ability to acquire even 
whole brain images very rapidly. In this section, we introduce the 
concept of spatial encoding in MRI and discuss the most common 
ultrafast imaging pulse sequences used in fMRI. For simplicity, 
throughout this section, we refer to the net magnetization within 
a sample as “spin.”

2.3 Endogenous 
Functional Contrast

Mark J. Lowe and Erik B. Beall
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As stated above, the pulse sequence refers to the specific acquisi-
tion strategy in which spatial encoding and magnetization read-out 
is performed, providing the basic structure of the RF pulses and 
field gradients used. Because conventional MRI is based on Fourier 
spatial encoding, it has become convention within MRI to discuss 
pulse sequences in the context of k-space, another name for the 
Fourier conjugate of coordinate space. K-space is essentially the 
image in the spatial frequency domain, and most pulse sequences 
acquire image data in this domain. There are a variety of advan-
tages to this; most importantly that a coordinate space image can 
be produced simply by performing a 2-dimensional Fourier trans-
form (typically computed using the Fast Fourier Transform, or 
FFT) on sequentially acquired MRI data.

A pulse sequence for reading one arbitrary line of k-space with 
a gradient-recalled echo is shown in Fig. 6.

Starting with stage (1), waveforms are played out on the 
z-direction gradient, GZ, and the RF transmit channel to excite a 
slice of proton spins. During stage (2), the readout gradient (Gx) 
prewind and phase-encode gradient selection (Gy) is performed 
while rephasing spins across the slice/slab with GZ. During stage 
(3), the readout gradient is switched on while the emitted RF sig-
nal from the sample is recorded, denoted by the block of dotted 
lines. The diagrams shown are simplifications, where the timing 
and form of the gradients are changed according to various design 
considerations. The corresponding traversal of k-space for the 
pulse sequence in Fig. 6 is shown in Fig. 7.

Typical conventional (i.e., not single-shot) sequences repeat 
this process, for different lines of kY, or phase-encoding positions. 
This is shown in Fig. 6, step 2 with the GY gradient at multiple 

3.1 The Pulse 
Sequence

Fig 6 Pulse sequence diagram for reading one line of k-space, time increases 
from left to right. The proton echo from the sample is shown here in light gray 
during and under the readout window, which will be sampled by a receive coil

Optimal fMRI Pulse Sequences
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possible values containing the variation in the repeated lines of 
k-space sampling. It should be noted that the distance traveled in 
k-space is proportional to the time integral of the gradient strength 
in space, so it is possible to use a larger amplitude to shorten the 
time taken to traverse k-space2.

The sequence described above pertains to a GRE, but without 
loss of generality, the same sequence applies to a SE sequence. A 
slice selective RF excitation pulse for both GRE and SE is typically 
a sinc function-shaped pulse, with amplitude set to rotate the slice 
magnetization 90° from the longitudinal magnetization direction 
into the plane transverse to the static field. A SE sequence is very 
similar, but with the addition of a refocusing pulse set at 180°, 
timed to play out midway between the centers of the RF excitation 
pulse in step 1 and the readout window in step 3 in Fig. 6. The 
differences between SE and GRE can be seen in Fig. 8. The timing 
of the inversion pulse after the excitation pulse dictates the TE, so 
a short TE can preclude the SE method. SE can be advantageous 

2
 up to the limits of the gradient hardware and not without various drawbacks.

Fig 7 k-space diagram showing 16x16 matrix of data sampling points and trajectory of pulse sequence dia-
grammed in Fig. 6. k-space is first pre-wound in step 2 (GX moves position in kX from 0 to −8, GY moves posi-
tion in kY from 0 down to line −3), then kX is traversed in step 3 while sampling from –8 to +8

Mark J. Lowe and Erik B. Beall
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because it can cancel dephasing due to local field inhomogeneities, 
leading to an improved SNR, but single shot sequences get less of 
this benefit due to an effective spread of TEs which will be dis-
cussed later.

Strategies for what is referred to as “single-shot” imaging are 
critical to the high sampling rates necessary for dynamic imaging 
techniques such as fMRI. Echo-planar imaging (EPI) and spiral 
imaging are the most widely used of these. In addition, in-plane 
and multiband parallel imaging techniques, combined with the 
ubiquitous use of multichannel coil technology, will play an increas-
ing role in fMRI.

Single-shot sequences differ from conventional pulse 
sequences in that the data for an entire slice are acquired in one 
readout window after one excitation. This has been made possi-
ble by fast gradient switching technologies, and single-shot 
sequences are available on all modern MRI scanners. Common 
to all fast imaging sequences are higher demands on the hard-
ware, which increase vibration and heating of the scanner, lead-
ing to increasing inhomogeneity and field drift over time during 
long scans [7, 8]. Parallel imaging is a recent development, 
which reduces the readout time by acquiring data from multiple 
coils. These imaging strategies have various artifacts and trad-
eoffs, which will be discussed below following an introduction to 
the most common strategies.

Fig 8 Generalized diagram for either gradient-echo (GE) or spin-echo (SE) ultrafast pulse sequences specific to 
ultrafast imaging. A fat saturation pulse (described later), followed by excitation, then a refocus pulse (if spin-
echo only), prewind gradients to set position in k-space, then the readout and spatial encoding gradients. Finally 
there may be postwind spoiler/crusher gradients (RF may also be used at the end) to dephase residual signal
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EPI follows the basic strategy of excitation of a slice or slab fol-
lowed by readout of one line (in the read-out direction, or kx) in 
k-space. The GRE sequence was shown in the pulse sequence tim-
ing diagram in Fig. 8 without the SE refocusing pulse, which was 
also shown in parts in Fig. 6. With the fast gradient switching 
speeds available in recent years, it has become possible to spatially 
encode an entire slice in one echo by performing multiple readouts 
and phase-encoding steps after a single excitation. The most com-
mon implementation, known as “Blipped EPI”, involves excitation 
of a slice followed by readout of kx line like the GRE sequence. The 
sequence continues however, after an increment, or “blip”, of the 
position in k-space in the other dimension using a short duration 
gradient pulse (in the phase-encode direction, or ky). Readout con-
tinues when the read-out gradient is reversed to read another kx 
line in k-space immediately adjacent to the first line sampled but in 
the opposite direction. This is shown in Fig. 9.

These reversals and blips are repeated to adequately sample 
k-space and the resulting data can be treated in the same manner as 
multi-shot imaging, with the full readout of the slice or slab cen-
tered on the TE. The trajectory in k-space is shown in Fig. 10.

Three-dimensional acquisitions can be performed using an 
additional increment in the perpendicular dimension, or kz, 
although most blipped-EPI sequences are two dimensional only 
due to the constraint of a shorter TE required. There exist many 
modifications to this basic structure, but all EPI strategies contain 

3.2 Echo-Planar 
Imaging

Fig 9 Blipped-EPI pulse sequence. Readout gradients are reversed following 
readout of each kx line, along with a small increment of k-space in ky direction, 
or a “blip” in Gy. 16 kY lines are read out, corresponding to the k-space diagram 
in Fig 7. Gradient-stimulated echo train is shown in light gray, which becomes 
stronger closer to center of k-space, and at center of each kx-readout

Mark J. Lowe and Erik B. Beall



81

a fast back-and-forth cycling of the gradients to produce a GRE 
train. The blipped-EPI strategy is commonly also referred to as 
Cartesian imaging, due to the rectangular trajectory of read-out in 
k-space. We will not discuss other non-Cartesian strategies that are 
no longer common such as constant-phase encode EPI or square- 
spiral EPI. The signal generation stage before the spatial encoding 
can include a refocusing pulse or not, depending on whether T2 
(SE-EPI) or T2* (GRE-EPI) weighting is desired.

Another common strategy for single shot imaging is spiral imaging 
[9]. In this scheme, k-space is sampled in a spiral or circular man-
ner, such as in Fig. 11, with less asymmetry between the rate of 
sampling in kx- and ky-space.

By applying sinusoidal gradients 90° out of phase to the read- 
and phase-encode gradients, k-space can be traversed in a circular 
manner by increasing the amplitude of the sinusoidal gradients. A 
typical sequence for spiral acquisitions is shown in Fig. 12.

3.3 Spiral Imaging

Fig 10 Cartesian trajectory in k-space for one-shot blipped-EPI sequence shown in Fig. 5. One-shot means full 
coverage of k-space is accomplished during echo of one excitation
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Fig 11 k-space sampling trajectory for a one-shot spiral imaging sequence 
shown over a rectangular grid. Central k-space is sampled first. Prior to FFT 
reconstruction, the data must be resampled from spiral grid to Cartesian grid

Fig 12 Pulse sequence timing diagram for spiral acquisition. Gradients during 
readout window are 90° phase-offset ramped sinusoids

This process continues until k-space is adequately sampled. 
There are many trajectory modifications to this scheme, but all 
have the basic property that the sampling of k-space is not Cartesian, 
but instead approximately radial-symmetric. Reconstruction of 
image space from k-space may be done using a Fourier transform 
after resampling the k-space data to a Cartesian grid, but there are 
implementations that reconstruct the image data using the discrete 
Fourier transform [10, 11].

Mark J. Lowe and Erik B. Beall



83

Spiral imaging has advantages compared with blipped EPI, 
mostly related to the lower overall demand on the gradients. These 
include reduced gradient noise, improved SNR, lower induced 
eddy currents3, and different geometric distortion artifacts [12]. 
Increased SNR is due to the earlier sampling of the center of 
k-space, but the correspondingly later acquisition of the outer 
regions of k-space mean the higher spatial frequencies have lower 
specificity than the readout direction of a blipped-EPI image. The 
typically sinusoidal gradient play-out means the gradients are 
switched at a lower rate of change, which reduces the induced eddy 
currents and gradient noise. Since most of the magnetization sig-
nal naturally lies near the center of k-space, which is sampled early, 
it is preferable to start the readout window at the TE. This modi-
fies the timing from the Cartesian EPI sequence where the readout 
is centered on the TE, although newer spiral sequences (such as 
spiral-in/out) are available which also center the TE in the readout 
window [13]. A spiral-in/out sequence is shown in Fig. 13.

A Spiral-in/out sequence reduces the effects of the echo- shifting 
by centering the readout at the TE as in EPI. Readout begins prior 
to the TE, starting near the edges of k-space and spiraling in to the 
center, which is reached at the TE, before spiraling back out over 
new data points. After resampling the grid, every point in k-space 
now has two samplings symmetrically spaced about the TE, which 
are passed through FFT to give two images. These two images can 
be combined and the result is a reduced sensitivity to susceptibility 
signal loss and image data with an effective TE closer to that speci-
fied [14]. This is more demanding on the gradient hardware than 
spiral imaging and there can be drawbacks in image quality.

Multiple receive coils have become a popular and widely available 
means to increase image SNR by providing multiple samples of a 
k-space trajectory. Because the coils cannot be located in the same 
place, they have varying spatial sensitivities to the tissue, which is 
maximal at the tissue nearest each coil element. This provides an 
alternative spatial encoding mechanism, where one sample of sev-
eral parallel coil elements provides information about the magneti-
zation density over several regions of tissue. Parallel imaging 
combines this spatial encoding with the gradient-mediated spatial 
encoding to skip some gradient-encoded lines in k-space and 
replace those gaps with information derived from the parallel coil 
elements [15]. The skipped lines in k-space reduce the field of view 
(FOV) seen by the coils by a reduction factor. The individual coils, 
if reconstructed with only the data acquired, would see the nearest 
portion of tissue inside that coil’s FOV, but with aliased image 
overlap with other portions of tissue further away from the coil. 

3
 Eddy currents are currents induced in gradient coils and other scanner com-

ponents from the rapidly changing fields generated by the gradient coils.

3.4 Parallel Imaging
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The methods used to un-alias the data can be separated into two 
strategies: image-space unfolding and k-space interpolation. While 
there are many methods, and more than a few hybrids, the most 
common implementations of each (sensitivity encoding, SENSE 
[16] and generalized autocalibrating partially parallel acquisitions, 
GRAPPA [17]) will be discussed, along with benefits/drawbacks.

SENSE performs the reconstruction of parallel images in image 
space in an iterative manner using a seeded coil sensitivity matrix. 
Prior to the parallelized scan, the sensitivity of each coil in the full 
FOV is measured. These sensitivity maps are used as an initial guess 
for the “unfolding” matrix.

The under sampling of k-space shown in Fig. 14 leads to image 
aliasing when reconstructed. However, if the multiple coils are sen-
sitive to spins from different aliased regions, then the portion of 
signal aliased or unaliased in each image can be differentiated using 
the sensitivity of the multiple coils to the different regions. The 
matrix inversion is performed iteratively after pre-processing the 
data to handle the problem of nonideal coil geometry.

GRAPPA is a regenerative k-space method, using measured data to 
calculate missing phase-encoding lines. Outer regions of k-space 
have reduced sampling. The acceleration factor defines the number 
of lines skipped per line acquired. The central k-space lines, or 
autocalibration signal (ACS) lines, are fully sampled, which is 
shown in Fig. 15.

The ACS lines are used to interpolate the nonacquired lines of 
k-space by fitting the acquired lines to the ACS data. This is per-
formed separately for each coil used, leading to weights specific to 

3.4.1 SENSE

3.4.2 GRAPPA

Fig 13 Spiral-in/out sequence acquires full k-space data prior to echo time and 
a second acquisition of k-space after echo time. The data from these echoes are 
combined in reconstruction

Mark J. Lowe and Erik B. Beall



85

each ACS line, for each coil. So for N coils, there will be N2 weights 
resulting from the fitting procedure to use in interpolating the non-
acquired lines. A particular coil’s matrix is based on all coil signals, 
but masks out, or de-weights, signal from other regions outside the 
FOV of that coil, in k-space. The matrix weighting removes the alias-
ing seen in the original, undersampled images. The final, unaliased 
image data for each coil is combined by sum- of- square. The greatest 
advantage of GRAPPA over image-space methods is the determina-
tion of sensitivity from the k-space data itself, which is useful in images 
containing regions with poor homogeneity or low signal, both of 
which are the case with ultrafast imaging [18].

The primary benefit of parallel imaging is a reduction of the time 
spent spatially encoding (the readout window), but at a cost of 
SNR compared to the same sequence with a fully gradient-based 
spatially encoded image using the average signal from the parallel 

3.4.3 Tradeoffs

Fig 14 SENSE k-space traversal for acceleration factor 2. Odd lines of k-space are missed, even lines acquired. 
Acceleration factor equals acquired plus nonacquired number of lines, divided by acquired lines, in this case 
the full k-space matrix would have twice the number of lines as were actually acquired
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coils [19, 20]. The reduction in SNR is due to reduced coverage of 
k-space, or the square root of the acceleration factor. An additional 
cost for any parallel imaging is the coil geometry coverage, or 
g-factor. In SENSE imaging, the g-factor directly relates to the 
invertibility of the sensitivity matrix [21]. Since most ultrafast par-
allel blipped-EPI sequences are acquired in 2D only, the coil cover-
age should be optimized in the phase encoding direction [22]. 
Spiral-EPI with parallel imaging is more complicated than blipped- 
EPI and much more time consuming but recent advances have 
reduced the reconstruction time for parallel spiral-EPI [23–25].

Residual alias in the image is a common artifact seen with parallel 
imaging. The SENSE method requires the full image FOV to be 
greater than the object of interest in any accelerated directions; other-
wise reconstruction will fail resulting in considerably aliased images. 
The only current solution with SENSE is to expand the FOV so there 
is no image wrapping [26]. This is not an issue with GRAPPA, because 

3.4.4 Artifacts

Fig 15 GRAPPA k-space traversal. Central k-space is fully sampled to provide ACS lines. Outer k-space is 
undersampled in phase-encoding direction by acceleration factor. Acceleration factor here is 2, so every other 
line is acquired. Same sampling is acquired for other coils
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the spacing of k-space lines determines the FOV, but not the signal of 
a particular line. Therefore, k-space fitting under GRAPPA is not 
compromised by a smaller FOV, while image space fitting would be 
compromised by the aliasing image. With an ideal sensitivity map, it 
was believed SENSE could theoretically give better results than 
GRAPPA, however the accuracy of the maps are highly dependent on 
local field homogeneity and subject motion can invalidate them. 
There are now several sensitivity map methods, including ones based 
in part on GRAPPA autocalibrating methods that derive the maps 
from the data to get around these problems [27]. Finally, there is the 
issue of fitting the systems of equations in the presence of incomplete 
coil coverage. The SENSE method requires the solution of an inverse 
problem, but if there are regions of tissue that no coil has adequate 
sensitivity to, this is an ill-conditioned problem that cannot be exactly 
solved. All implementations of SENSE regularize or condition the 
data to work around this, but it means that the final reconstructed 
image may have local noise enhancements [28–30]. GRAPPA is also 
sensitive to this problem, but because fitting is done with k-space data, 
the noise enhancement is global rather than local [21].

There is a practical limit to the number of coils and the acceleration 
factor, because adjacent coils will overlap spatially in their sensitivity 
and coverage of magnetized spins, reducing the ability to separate 
aliased signals. In typical applications of ultrafast imaging, the use of 
2D EPI sequences leads to a limit on the acceleration factor of 
between 4 and 5 [19]. While not every scanner has multiple chan-
nels, it is becoming the standard for vendors to offer such capability. 
Many sites do not use parallel imaging for BOLD at 1.5 and 3 T due 
to higher than expected SNR loss at even the lowest acceleration 
factor [31], but at 7 T and higher field strengths parallel imaging is 
necessary in most BOLD acquisitions to reduce echo time and image 
warping. Future implementations of parallel imaging promise higher 
acceleration factors with less loss of SNR using hybrids of k-space 
and image-space methods with dynamically changing undersam-
pling strategies, such as k–t SENSE [32] or k-t GRAPPA [33].

Ideal k-space data has complex conjugate symmetry, which can be 
exploited to reduce the acquisition time. Up to half of k-space can 
be interpolated from symmetry with the other half. This is referred 
to as partial Fourier imaging. The symmetry is only approximately 
true in real data due to scanner and tissue nonidealities, so algo-
rithms to take advantage of this fact must use low-resolution 
approximations to account for nonzero phases in regions breaking 
this symmetry [34, 35]. With the use of partial Fourier acquisition, 
a higher spatial resolution can be acquired with less signal loss and 
blurring, with the result that the SNR does not drop along with 
the reduced acquisition time [36, 37].

3.4.5 Limitations

3.5 Partial Fourier 
Imaging
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Multiband EPI refers to the simultaneous excitation of multiple 
2D slices (multiband excitation), and the reconstruction of indi-
vidual slices using parallel imaging reconstruction in the slice- 
encoding direction (slice-GRAPPA) [38, 39]. Multiband EPI is a 
recent addition to the arsenal of accelerated techniques to increase 
spatial and temporal resolution. Most importantly, multiband is 
not hindered by the SNR reduction associated with reduced sam-
pling in traditional parallel imaging, because there is no reduced 
sampling of the signal with multiband. There is however a g-factor 
penalty from nonoptimal coil sensitivity profile. Similar to in-plane 
parallel imaging, the signal from N simultaneous slices can only be 
resolved if there are N coil measurements with varying sensitivity 
at each slice. This dependence is reduced considerably by using 
balanced blipped phase encoding in the slice direction, termed 
blipped-Controlled Aliasing in Parallel Imaging, or blipped-CAIPI, 
to improve signal separation in the slice direction [39]. Blipped- 
CAIPI consists of applying an alternating “balanced” blip on the 
slice-encoding gradient simultaneously with each phase-encoding 
blip on the phase-encoding gradient. By balanced blip, we mean 
that the sum of blips cancels out over the readout train. Using 
these blips, the signal from simultaneous slices can be shifted in the 
phase-encoding direction by a fraction of the FOV depending on 
where the slice is located and on the balancing of the slice blips, 
while sustaining minimal signal blurring from those slice-direction 
blips. The train of slice blips is designed to cancel out, either with 
alternating positive and negative polarity blips or a series of alter-
nating fractions. This results in improved separation of the signals 
in k-space, leading directly to a reduced effective g-factor penalty 
and improved reconstruction. When using blipped-CAIPI multi-
band, the slice acceleration factor typically ranges from 2 to 8. 
Although higher acceleration factors have been reported [38], the 
reconstruction quality declines and artifacts increase as a nonlinear 
function of the acceleration factor. These methods have been used 
to acquire 2D EPI (BOLD, DTI, and ASL) data with a corre-
sponding increase in the number of slices acquired per unit time. 
This can be used in either direction, e.g., either to obtain a lower 
TR or higher slice count in a given TR than previously possible.

Multiband EPI is becoming more practical and is widely used at 
both 3 and 7 T, but it is critically dependent upon the use of a coil 
with a sensitivity profile that varies across channels in the slice- 
encoding direction. Fortunately, most new coils being designed or 
sold for functional brain imaging are suitable for multiband imaging. 
Furthermore, multiband with blipped-CAIPI has been validated 
and shown to have minimal artifacts in optimized protocols [40, 
41]. Nevertheless, there is one artifact most associated with multi-
band EPI: interslice leakage artifact. Interslice leakage refers to 
incomplete separation of slice signals over time, leading to spatial 
aliasing of BOLD effects from a given location across the other slices 

3.6 Multiband 
Echoplanar Imaging
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that had been excited at the same time as that given location. The 
level of artifact has been assessed [40–42] using simulation or recon-
struction details not usually available to the average investigator. It 
may be possible to determine the level of artifact on time series 
image data alone, such as using seed voxel correlation [43] and com-
puting the difference between correlation patterns to aliased slices 
and non-aliased slices, but there is at present no established method.

The flexibility afforded by these new techniques increases the 
likelihood that investigators will customize the protocol according 
to their specific needs. For example, some investigators are focusing 
efforts on whole brain BOLD acquisitions with short TR, while oth-
ers focus on whole brain with thinner slices and are less concerned 
with TR. At present it is too early to recommend a specific protocol, 
but we will here describe two protocols with different goals that 
have been used for connectivity and fMRI studies. The first protocol 
was designed for a short TR and whole-brain coverage, the second 
protocol designed for high spatial resolution and whole-brain cover-
age. Both protocols use a 32 channel head coil.

3 T Short TR protocol: acceleration factor = 8, 2 mm isotropic 
voxel size, TR = 720 milliseconds. The short TR was intended both 
to directly sample physiologic noise artifacts from the cardiorespi-
ratory cycles and to enhance statistical power using more BOLD 
samples in a given scan time [42]. Figure 16 shows an example 
functional connectivity study with this acquisition.

7 T high-resolution protocol: acceleration factor = 3, FOV/3 
blipped-CAIPI FOV shifting, voxel size = 1.2 × 1.2 × 1.5 mm, 81 
1.5 mm thick slices, TR = 2.8 s. The high resolution protocol was 
intended to reduce slice thickness and increase resolution. 
Figure 17 shows an example functional connectivity study done 
using this protocol.

4 Artifacts

There are several potential artifacts from single-shot imaging tech-
niques due to hardware realities, such as chemical shift (fat) artifact, 
eddy current artifacts induced by the fast gradient switching, imperfec-
tions in gradient ramping waveforms, and both blurring and signal loss 
due to nonuniform TEs combined with static field inhomogeneity.

Water-fat shift image artifact is a consequence of the off-resonance 
frequency of body fat that shifts the fat signal mostly in the phase- 
encode direction, misplacing it across the image. Fat suppression 
with an RF pulse at the resonance frequency of fat, often called 
chemical saturation, followed by a strong dephasing gradient is the 
standard countermeasure on EPI sequences. This RF pulse is done 
immediately before the initial excitation pulse and, due to the fact 
that the longitudinal signal of the fat is saturated, water protons in 
fat will experience no excitation. One immediate consequence of 

4.1 Non Physiologic

4.1.1 Water-Fat Shift
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this approach is an increase in the time taken by the sequence, as 
this off-resonance pulse must be performed once before every exci-
tation pulse. Because the resonance frequency of fat protons is only 
3.35 parts per million (ppm) in frequency away from water pro-
tons, the homogeneity of the static field must be very good to help 
ensure the suppression pulse acts only on fat protons and the exci-
tation pulse acts only on water protons.

An alternative strategy to chemical saturation is the use of spatial- 
spectral RF excitation pulses [44]. These are patterned RF and gra-
dient pulses played out over many milliseconds. Properly designed, 
the aggregate affect of the ensemble of pulses is to create discrete 
regions of excitation in space and frequency. It is possible to design 
these pulses such that the excited regions are separated by more than 

Fig 16 (a) Single-slice correlation map to seed located in left primary motor cortex, data consists of 132 vol-
umes acquired with 2.8 s repetition time, (b) shows power spectrum of seed timeseries in Hz, (c) correlation 
map to same seed location in separate data consisting of 416 volumes acquired with 0.72 s repetition time 
and (d) shows power spectrum of seed timeseries of fast sampled data
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3.35 ppm in frequency, such that water protons in tissue in a given 
slice will be excited and water protons in fat will not. This strategy 
requires less field homogeneity than chemical saturation, but they 
tend to have a poor slice profile and can take up to twice as long as a 
good chemical saturation pulse to achieve the same result.

Time-varying magnetic gradients induce eddy currents in nearby 
electrical conductors, such as the magnet cryostat. These eddy cur-
rents create magnetic fields that partially cancel the effect of the 
applied gradients. Fast gradient ramping is limited in hardware by 
the reactance of the gradient coils, creating effective upper limits 
on gradient switching that perturb the intended ramping wave-
form that the gradient coil is driven with. These waveform pertur-
bations increase as gradient switching time decreases. The induced 
eddy currents and gradient ramping imperfections create phase 
errors in k-space magnetization read-out, which produces different 
artifacts depending on the k-space trajectory.

In blipped-EPI, artifact is magnified in the phase-encode direc-
tion. This creates what is known as a “phase ghost” or “N/2 
ghost”, an identical image at 2–5 % of the original image signal 
level but offset by 90° in the phase-encode direction. The ghost 
can have some overlap with the image of interest. In spiral EPI, the 
artifact is not as simple, but will result in an increase in noise level.

4.1.2 Gradient 
Nonidealities

Fig 17 Correlation map to seed in left primary motor cortex in 7 T data acquired 
with multiband EPI acquisition with 1.2 × 1.2 mm × 1.5 mm voxels

Optimal fMRI Pulse Sequences



92

The corrective methods used vary by scanner manufacturer, 
but there are some commonalities. The first line of defense is in the 
screening of the gradient coils to reduce the field change and con-
comitant eddy currents. A second method employed is calibration 
of the gradient waveforms. To an extent, eddy currents can be 
predicted and compensated for by pre-emphasis of the gradient 
waveforms. This is shown in Fig. 18.

Generally, the effect of coil reactance is to dampen the intended 
gradient waveform by providing a resistance to it, so the waveform 
to be played out on each gradient coil is modified by a predeter-
mined calibration. Changing the configuration of conductive 
objects in the scanner room can make this calibration obsolete, if 
they are near and large enough to be affected by the gradient fields. 
This could show up as a sudden increase in N/2 ghosting in 
blipped-EPI images, requiring a recalibration of the gradient wave-
form perturbation. Further anti-ghost calibrations to account for 
system timing offsets and residual eddy current effects may be per-
formed, such as phase line correction. A calibration is typically 
taken during just prior to the readout window in the blipped-EPI 
sequence by sampling forwards and back across the middle of 
k-space. Eddy current and timing offsets result in a nonideal 
k-space trajectory that can be approximated as a simple shifting of 
each line of k-space forwards and back depending on direction of 
traversal. The calibration lines are used to resample every readout 
kY line to center the received echo [45, 46]. A failure of this online 
phase ghost correction algorithm would show up as a dramatic 
increase in phase ghost signal level, to a level comparable to the 
image of interest. An example of a failure of online phase ghost 
correction is shown in Fig. 19. In this case, signal changes seen as 
a result of phase ghost correction overwhelm the BOLD effect.

Fig 18 Gradient waveform calibration. GT shows the theoretical, intended gradi-
ent, while GR shows the real waveform due to eddy current damping the intended 
waveform. GC shows a calibrated waveform to be played out on the gradient coils 
to produce the intended gradient despite the presence of eddy current
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The effect of eddy current on spiral imaging is smaller since 
dB/dt is lower, but if uncompensated will result in warping, 
because it warps the k-space trajectory in both dimensions. 
Measuring the actual trajectory taken in k-space can be used in the 
resampling portion of reconstruction to correct this image warping 
similar to the blipped-EPI phase line correction [47].

The long readout time employed leaves single-shot images highly 
sensitive to static field homogeneity, leading to image distortion 
artifact in regions of inhomogeneity. The off-resonance frequency 
in these regions causes an accumulation of phase errors in those 
regions over the readout time. Phase errors specific to a region 
result in spatial encoding errors, which manifest as signal misplace-
ment from that region. For blipped-EPI images, this is insignifi-
cant in the read-out, or kx direction because it is sampled so quickly, 
but the phase-encode direction is sampled more slowly, resulting in 
spatial distortion, or blurring in the phase-encode direction in 
those regions. Spiral imaging samples the kx and ky dimensions at 
approximately the same rate, but the radial dimension is sampled 
more slowly, akin to the phase-encode direction in EPI. Spiral 
images are therefore blurred across both dimensions [48]. The 
geometric distortion can be “unwarped” from the images using 
the calculated pixel shifts from an acquired field map for both 
blipped-EPI [7, 49] and spiral imaging [35] (Fig. 20).

Signal loss, or slice dropout, is caused by through-slice dephasing 
after the RF excitation. This signal loss cannot be recovered with-
out modifying the pulse sequence. Strategies for overcoming this 
include: use of SE to refocus the dephasing effects, reducing the 
TE, reducing slice thickness and/or in-plane voxel size, and chang-
ing the scan plane. If hardware permits, the use of high order gra-
dient shims and image-based shimming can help [50–52].

4.1.3 Echo Shifting

4.1.4 Signal Loss

Fig 19 Phase ghost typical level on left. Phase ghost correction algorithm failure on right. All measured signal 
values normalized to first brain tissue measurement on top left
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Another common method is z-shimming to unwrap some of 
the dephasing, but this has the disadvantage of reducing the SNR 
in unaffected regions. Z-shim methods rely on acquiring a field-
map to estimate the gradient across a slice, and then applying an 
opposing (negative) slice gradient that is equal to the fieldmap 
measured gradient in the high susceptibility region [53, 54]. This 
reduces the dephasing in the high susceptibility region, but at the 
cost of increasing dephasing in other less-affected regions. To deal 
with this problem, typically two images are taken; one with the 
z-shim and one without and then these are added together to 
restore all signal loss, but at the cost of nearly doubled imaging 
time. This method is approximately equivalent to an older tech-
nique of tailoring RF pulses to apply a set dephase across the slice 
at time of excitation [55]. Alternatively, several images with a range 
of z-shim gradients linearly spaced between zero and the maxi-
mum measured gradient are taken, and these are averaged, how-
ever, this is more time consuming with little benefit over the more 
common method with two images.

Apart from lower spatial specificity and increased acquisition 
time, problems typically associated with spiral imaging lie in the 
regridding of the spiral trajectory to a Cartesian coordinate sys-
tem prior to Fourier transform. Regridding introduces subtle 
artifacts and reduces SNR, and is computationally intensive com-
pared with the reconstruction methods used in blipped EPI, 
although computational improvements have been made [56, 57]. 

4.1.5 Spiral Regridding

Fig 20 (a) Sagittal, (b) axial views of fieldmap. Other pictures show (c) and (d) blurred blipped-EPI signal and 
(e) and (f) unwarped images of the same using pixelshifts calculated from the fieldmap. Anterior regions 
shifted roughly 1–2 pixels, but signal loss near the frontal sinuses cannot be recovered, leaving a signal void
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Until recently, the reconstruction had to be performed offline on 
a separate image- processing computer after the scan, which made 
it difficult to validate data online or use prospective motion cor-
rection. There are now online versions of spiral reconstruction, 
such that prospective motion implementations for spiral imaging 
have been used to monitor subject motion [58].

There is another class of image artifacts present in functional neuro-
imaging that have physiologic origins. Head motion [59–61] and 
physiologic noise from the heart and breathing cycles [62–64] are 
unavoidable non-neuronal sources of variance, changing underly-
ing statistical distributions and introducing possible systematic 
effects in population studies. Accounting for these artifacts requires 
care in the acquisition of data and several stages of postprocessing 
of data (retrospective correction techniques will not be discussed 
here) after collection is complete. Preventive measures include head 
restraints or navigator echoes to reduce the effects of head motion, 
and routine scanner quality assurance measures to track the stability 
of the scanning hardware [65]. In addition, the collection of paral-
lel measures of state during the image acquisition may be useful for 
artifact removal during postprocessing. These parallel measure-
ments can include online motion detection parameters from naviga-
tor echo or prospective motion correction along with signals 
representing physiologic cardiac and respiratory cycles. Parallel 
measurements in general must be acquired as fast or faster than the 
slice acquisition sampling rate. It should be noted that there are 
post-acquisition methods for obtaining slice-sampling rate motion 
parameters [66] and physiologic cardiac and respiratory cycles [67].

Due to the fact that it is desired to maintain a high temporal resolu-
tion, the sampling rate in most fMRI acquisitions is fast compared 
to the T1 of brain tissue. The consequence of this is that, after equi-
librium is achieved after acquisition of a few volumes, the tissue is in 
a saturated state. This means that the magnetization is not com-
pletely recovered between excitations of a given slice. If a subject 
moves such that tissue from one slice moves into an adjacent slice, 
the tissue will, for the first excitation after the motion, be in a dif-
ferent state of saturation than the rest of the tissue in that slice. This 
leads to a signal change that is correlated with the motion, but will 
not be corrected by the traditional technique of retrospective 
realignment of the images. Prospective motion correction tech-
niques are intended to deal with this problem in real-time.

Navigator-echoes can be used to obtain motion information 
during the acquisition of data [68, 69]. This technique uses the 
fact that the phase of MR data is sensitive to motion. Typically, 
low-power RF pulses are interspersed with the fMRI data acquisi-
tion and the phase information from the readout of the signal from 
these pulses is used to infer motion along a given direction. The 

4.2 Physiologic 
Artifacts

4.2.1 Head Motion
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drawbacks of the navigator echo approach is that, unless the power 
is very low, in which there is a limited ability to determine phase 
changes, the excitation pulses will affect the spin history of the 
fMRI data. Nevertheless, these approaches have been used with 
some success in fMRI.

An alternative approach that has been applied is to use real- 
time co-registration of a reference volume to the current volume to 
determine motion. The motion parameters are determined from 
the co-registration and are applied to the imaging system prior to 
acquiring the next volume [58, 70]. The drawback of this approach 
is that it is more computationally intensive that the navigator echo 
approach and it does not update the slice locations until after the 
motion occurs. Thus, registration-based prospective motion cor-
rection must be coupled with postprocessing motion correction. It 
should be noted that it is now possible to acquire motion param-
eters at the slice level using the image data itself [66], and this 
could be used in the future to further ameliorate head motion arti-
facts at the point of acquisition.

Ongoing physiologic processes in living subjects present an addi-
tional potential artifact. Effects due to the cardiac and respiratory 
cycles have been identified as being significantly coupled to BOLD- 
weighted MR signal in voxels in the brain and spinal cord. The 
primary effect of the respiratory cycle on blipped-EPI fMRI data is 
an apparent shift in image position in the phase-encode direction. 
This is due to shifting of the resonant water frequency as the main 
field drifts due to chest expansion and contraction [71, 72]. The 
primary effect of the cardiac cycle is pulsatility artifact with each 
heartbeat, although the structure and timing of the artifact may 
vary across the brain due to the range of vessel sizes, stage in the 
vessel network, and location in the brain [73, 74]. The cardiac 
effects are more pronounced in certain regions such as the insula 
and brainstem, while respiratory effects are more global (Fig. 21).

4.2.2 Physiologic Noise

Fig 21 Averaged physiologic coupling maps in blipped-EPI with phase-encode direction in Anterior-Posterior 
axis, determined by temporal ICA. Cardiac coupling overlain on anatomy is shown on top row, respiratory 
coupling is shown on bottom row
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Correcting for the effect of respiration can be accomplished 
using navigator echoes or off-resonance detection to follow the 
field shift during the scan, in the same way as described above for 
gross head motion. Gating acquisitions on either cardiac or 
 respiratory rates is another method that has been used to reduce 
the variability in fMRI data [75]. This approach necessitates a cor-
rection for T1 effects introduced by the variable TR.

Use of parallel measures can be used to effectively remove 
physiologic noise sufficient for most purposes in fMRI [76, 77]. 
Therefore, acquiring a pair of signals representing the cardiac cycle 
and respiratory cycle during the scan is desirable, although recent 
methods have been developed to estimate equivalent signals from 
the echo-planar data itself [67].

5 Optimization of Sequence Parameters

In order to generate MRI data with functional contrast, there are 
a number of experimental issues that need to be considered. 
Generally speaking, if the issue were simply rapidly generating 
images with BOLD contrast then the procedure would be to sim-
ply select sequence parameters such that the TR is a short as pos-
sible and the TE such that the expected changes in capillary or 
venous oxygenation result in a maximal signal change between rest 
and active neuronal state. However, the choice of optimal acquisi-
tion encompasses many other experimental issues and these should 
all be considered.

As described above, BOLD contrast in MRI is produced either 
through changes in T2 or T2*. We are interested in optimizing MR 
signal differences between two states, rest and active. In this sec-
tion, we discuss scanner and sequence issues that can affect the 
detection of these two states.

The effect of static field strength on T2 relaxation in brain tissue, as 
evidenced from examination of Table 1, is generally that it is 
reduced. The effect of field strength on the BOLD signal is com-
plex, and depends on the nature of the proton transport mecha-
nism in the presence of the field defects introduced by the 
deoxygenated hemoglobin. Recent studies suggest that this mech-
anism is largely diffusive in nature at clinical field strengths, which 
would suggest a linear dependence of the BOLD signal on field 
strength. Experimental data bear out the linearity of the depen-
dence of BOLD contrast on field strength [78]. Thus, BOLD con-
trast from extravascular protons can be taken to increase 
approximately linearly in the regime used by most commonly avail-
able MRI scanners (i.e., 0.3 T to 3.0 T).

The intravascular contribution to BOLD signal stems from the 
impact of the change in oxygenated hemoglobin concentration 

5.1 Relaxation 
Parameters 
and Functional 
Contrast

5.1.1 Field Strength 
and Relaxation Parameters
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within the vessels and the consequent change in T2 of the blood. 
The effect of this at the voxel level has been more difficult to describe 
than the extravascular effect due to the dependence on many factors 
such as blood volume, vessel size, and volume fraction.

The goal in experimental design of fMRI studies is to take advan-
tage of the fact that regional changes in blood flow and oxygen-
ation result proximal to regions of increased neuronal activation. 
Historically, the basic methodology has been to acquire properly 
weighted MRI data of the brain regions of interest while a subject 
repeatedly performs tasks related to the brain function of interest. 
Initial methodology took advantage of the observation that con-
tinuously repeating a task during short intervals leads to an accu-
mulation of signal from the overlapping of events in a time short 
compared to the hemodynamic response. This is a feature of the 
general linear model (GLM) of functional imaging [79].

Blocking activation in bursts of extended activity over many 
seconds, interleaved with long period of rest, leads to up to a much 
higher increase in hemodynamic response than short, isolated 
events. This fact makes it desirable, when possible, to use what is 
typically referred to as a block design.

In 1997, Josephs and colleagues proposed an alternative 
experimental design, intended to more specifically detect the MRI 
signal associated with neuronal events [80]. This experimental 
design takes advantage of the fact that, through synchronization of 
the time of stimuli and measurement of behavioral responses, func-
tional imaging data can be analyzed for signal fluctuations corre-
lated with brief, temporally separated neuronal events. This type of 
experimental design is referred to as event-related fMRI. Due to its 
suitability to address more complex neuroscience questions regard-
ing brain activation and interactions, this has become a preferred 
experimental design among neuroscience researchers.

Since these two experimental approaches have different analy-
sis strategies, the issues with regard to optimizing pulse sequences 
are different between them. In the sections below, we separately 
discuss these issues.

As stated above, block design fMRI experiments are designed to 
create a large aggregate signal from activated neurons extended in 
time, interspersed with long periods of rest, or alternate task per-
formance. Analysis of this type of data is typically performed with 
what is referred to as a reference function. The simplest method for 
analyzing these data is simply to calculate the cross correlation of 
the experimental reference function with the timeseries at each 
voxel [81]. Although more sophisticated methods have been 
developed that allow more complex analyses, accounting for 
 nuisance effects and systematic effects of no-interest, for purposes 
of pulse sequence optimization, a correlation approach is sufficient 
to illustrate the issues.

5.2 Experimental 
Design

5.2.1 Block Design fMRI
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Figure 22 shows an example of the signal time course from a 
voxel in response to a block design paradigm. The issues with 
regard to pulse sequence optimization are contrast-to-noise ratio 
(CNR), sampling rate, and number of samples. In principle, the 
TE and TR will control the CNR for a given pulse sequence (i.e., 
EPI, spiral, etc.). The sampling rate is the inverse of the TR. The 
detection efficiency of a pulse sequence will be determined by these 
and the number of samples. As an illustration of this, Fig. 23 shows 
the probability of getting a type II error at a false positive rate of 
0.01 as a function of the number of samples.

Event-related fMRI relies on a different analysis strategy than block 
design fMRI. The principal difference as it relates to choice of pulse 
sequence is temporal resolution. A typical method for analyzing 
event-related fMRI is deconvolution. Deconvolution is an analysis 
method where rapidly repeated, although temporally separated, 
events can be extracted if the timing of the onset of the signal and 
either the duration or the hemodynamic response function is 
known. A detailed discussion of deconvolution techniques is beyond 
the scope of this chapter. The reader is referred to the chapter on 
statistical analysis in this volume for a more complete treatment.

Figure 24 shows a typical timing and signal response for a rap-
idly presented event-related fMRI experiment. Studies on the abil-
ity of deconvolution techniques to resolve neuronal timing shifts 
indicate that volume sampling rates (i.e., TR) of up to 3 s permit 
identification of neuronal timing shifts of order 100 ms [82]. 

5.2.2 Event-Related fMRI

Fig 22 Example of fMRI timecourse from a voxel for a block-design experiment
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Fig 23 Probability of rejecting a true event (type II error) as a function of the number of samples at false positive 
rate of 0.01 for a two-cycle block design fMRI experiment. Result is from simulating image SNR = 50 with a 
2 % BOLD signal change
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Fig 24 Example of event-related fMRI experiment. Rapid presented stimuli (a) results in single-voxel time-
series shown in (b). hemodynamic response (c) is deconvolved from signal average over 100 voxels with 
temporal resolution 3 s. is shown in (c)
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Therefore, if a goal of an experiment is to study relative timing of 
events, TR’s of up to 3 s should be sufficient.

Another pulse sequence issue that should be of concern to 
researchers employing event-related experimental designs is 
SNR. As stated above, the CNR of event-related design is much 
lower than block design experiments. Therefore, it is recom-
mended that researchers choose their acquisition strategy with this 
in mind. For instance, if a local cortical region is of interest, a sur-
face coil array could be adopted to significantly increase SNR. Pulse 
sequence choices should be made carefully to avoid loss of SNR 
(shortest TE permissible for BOLD contrast, for example). In the 
next section of this chapter, issues with regard to SNR for the com-
mon pulse sequence parameters will be discussed in detail.

6 Summary Recommendations for Optimal BOLD fMRI

In this section, we will summarize the issues with regard to pulse 
sequence optimization in the performance of fMRI experiments. As 
stated above, currently, BOLD-weighted fMRI is the overwhelming 
method chosen for fMRI. For that reason, the recommendations 
presented in this summary will focus on BOLD-weighted acquisi-
tions. In most cases, the technical discussions will be relevant for 
other types of image weighting.

In the context of the information presented previously in this 
chapter, we will present recommended acquisition strategies for a 
given field strength and we will then expand on the optimization 
issues with regard to each of the sequence parameters.

Table 2 lists basic pulse sequence recommendations for two field 
strengths and two experimental design strategies. The recommenda-
tions in Table 2 should be possible in almost any recently installed 
clinical MR scanner of the indicated field strength. Further recom-
mendations made below may require special modifications to sup-
plied clinical pulse sequences and it is strongly recommended that 
researchers seek the input of an MRI physicist experienced in fMRI.

Various pulse sequences that have been proposed for fMRI acquisi-
tion were outlined in Sect. 2 of this chapter. Issues with regard to 
optimization of fMRI experiments are discussed here.

This is now the most commonly available single shot imaging 
sequence available on MRI scanners. Data can be acquired in GRE 
mode and SE mode4. The issues with regard to optimization are 

4
 In addition, a mixed mode EPI has been used in the literature known as ASE, 

or asymmetric spin echo. This is a SE EPI with the acquisition window shifted to 
be centered on a time point early on in the SE evolution. The result is an acquisi-
tion that has, in a sense, adjustable sensitivity to capillary and venous signal.

6.1 Pulse Sequence

6.1.1 Echoplanar 
Imaging
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that SE EPI employs, by necessity, a longer TE that will result in a 
smaller intravascular contribution, particularly at 3.0 T and higher, 
and refocuses dephasing effects from the static dephasing compo-
nent of the extravascular signal that is specific to larger, distal ves-
sels. The result is that SE EPI can be more spatially specific to the 
localization of neuronal activation. However, the SNR is much 
lower than GRE EPI. SE EPI is not recommended for field 
strengths below 3.0 T because the T2 of blood is not short enough 
to be of benefit with regard to the intravascular BOLD signal and 
the SNR is too low to employ high enough spatial resolution for 
the spatial specificity to have a significant impact.

Spiral imaging is becoming more common and is available as a prod-
uct sequence on some clinical MRI scanners. As outlined above, the 
major advantage of spiral imaging with respect to EPI is that it is less 
demanding on the imaging gradients. Thus, there will be reduced 
image warping from eddy current effects. In addition, the nonuni-
form sampling of the Fourier domain image will lead to a different, 
possibly lower, sensitivity to motion effects and even some types of 
physiologic noise. Variants of the spiral technique have been pro-
posed that are specifically designed to be more sensitive to the char-
acteristics of the BOLD signal. This sequence is recommended for 
researchers employing systems with underpowered gradient systems 
and for situations where motion and/or physiologic noise or other 

6.1.2 Spiral Imaging

Table 2  
Basic sequence parameters for BOLD fMRI acquisition on most clinical 
MRI scanners

Sequence parameter

Field strength

1.5 T 3.0 T

Sequence GRE-EPI GE-EPI

Scan plane Axial Axial

FOV 256 mm × 256 mm 256 × 256

Matrix 64 × 64 128 × 128

TE 50 ms 30 ms

TR 2000 ms 2800 ms

Flip angle 77° 80°

Receiver bandwidth (total) 125 kHz 250 kHz

Slice thickness 7 mm 4 mm

Slices (for whole-brain coverage) 18 32
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types of image artifact, as discussed above, are a concern and alter-
nate methods of addressing these are not available.

MRI scanner manufacturers are increasingly moving to the use of 
head array RF coils in lieu of circularly polarized quadrature head 
RF coils for MRI. The cost, particularly at 1.5 T, is uniformity of 
SNR, and thus fMRI signal detection efficiency across the brain. 
This is less of an issue at high field strength, since dielectric effects 
in this frequency regime reduce the uniformity of the quadrature 
coil anyway. The advantage of head arrays is that parallel imaging 
methods can be used to accelerate spatial encoding of images. The 
result is dramatically increased image quality in regions where sin-
gle shot imaging methods have historically been very poor in qual-
ity (e.g., orbitofrontal regions, mesial temporal lobe, brainstem). 
Some of these brain regions have important and interesting func-
tions. Parallel imaging techniques with the head arrays available to 
most researchers will typically result in lower SNR throughout 
most of the brain, but these can still be effectively employed in 
situations where image artifact severely limits experimental options.

Issues with regard to scan plane are largely esthetic. However, 
there are some technical issues that are worth discussing here.

Perhaps the most important issue is brain tissue coverage. The 
scan plane of choice can affect the coverage of brain tissue. Given 
a TE, receiver bandwidth, and TR, the number of slices available to 
be acquired in one TR is fixed on a given scanner.5 The most effi-
cient scan plane for acquiring most human brains is the sagittal 
plane. The brain in most adults is shortest in the right/left dimen-
sion, and so fewer slices will be required to cover the entire brain.

An axial acquisition plane is recommended in Table 2 due to 
the fact that it is a more intuitive scan plane to work in, both ana-
tomically and from a physics perspective. Eddy current and higher 
order artifacts stemming from gradient and shim coil interactions, 
that are essentially related to coil geometry, are more easily under-
stood in the axial plane. With that said, it is a simple extension to 
understand these effects in other scan planes. Axial imaging has the 
added advantage over sagittal and coronal imaging planes in that 
lateral, frontal, prefrontal, and posterior regions of the brain can be 
imaged entirely within a relatively few slices (i.e., the very top and 
very bottom of the brain are considered by many to be more 
“expendable” than these other regions). The axial plane is a very 
common imaging choice in fMRI and thus is listed in Table 2.

FOV has an impact on fMRI signal optimization in three ways: (1) 
together with image matrix, it determines the in-plane voxel size 
and there are a number of issues with regard to this that will be 

5
 There are, of course, other parameters that can affect this, such as gradient 

slew rate, partial fourier and/or field-of-view acquisition, etc.

6.1.3 Parallel Imaging

6.2 Scan Plane

6.3 Field-of-View
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outlined below, (2) image artifact reduction, particularly in the 
phase direction, with volume RF coils, and (3) brain coverage.

In-plane voxel size affects fMRI acquisition SNR (and thus fMRI 
signal detection efficiency) and image quality. At lower field 
strengths, the SNR issue will dominate and thus it is recommended 
to use a larger voxel size at the expense of spatial resolution in 
order to enhance signal detection efficiency. Further signal 
enhancement can be attained with minimal loss of spatial resolu-
tion at 1.5 T through special spatial filtering techniques [83, 84].

At field strengths of 3.0 T and higher, voxel size has an inter-
action with physiologic noise from cardiac and respiratory sources 
that can be detrimental to fMRI signal detection [64]. It is rec-
ommended that smaller voxels be employed at 3 T and higher to 
limit the impact on BOLD CNR from physiologic noise. If spatial 
resolution is not a concern, it is still recommended that data be 
acquired at a higher spatial resolution (i.e., smaller voxel size) 
and retrospective spatial filtering be employed to further increase 
the CNR [84].

Due to the fact that the spatial encoding in the phase direction 
(i.e., the direction encoded using, for instance, the phase blip-
ping described in Sect. 2.2 above) is not bandwidth limited, tis-
sue outside of the FOV in the phase direction that experiences 
RF excitation, will be appear wrapped into the FOV with a signal 
intensity related to the leakage RF experienced by that tissue. 
For that reason, it is important for most acquisitions that the 
field of view in the phase direction is adequate to contain the 
entire brain volume and is oriented such that other tissue is not 
proximal to the FOV. An example would be a coronal plane 
acquisition with the phase encode direction in the inferior/supe-
rior direction. In this acquisition, even if the entire brain volume 
is within the FOV, tissue from the neck and trunk of the body 
that is within the sensitive volume of the transmit and receive RF 
coils will appear aliased into the top of the FOV. A more com-
mon problem is that the field of view is chosen too small and one 
side of the brain is wrapped into the other side of the brain (see 
Fig. 25). This is avoided most simply by adopting a large enough 
FOV in the phase direction. The recommendation in Table 2 is 
sufficient for most adults.

As stated above, the principal impact of image matrix is on voxel 
size and these issues are outlined above. However, it will also affect 
the duration of the data acquistion for a single slice in single shot 
imaging. This duration, as discussed in Sect. 3.2 above, can have a 
detrimental effect on image quality in ultrafast imaging. Generally, 
the total readout time should be much less than T2 or T2*. Typical 
methods of decreasing the scan duration while maintaining good 

6.3.1 In-Plane Voxel Size

6.3.2 Image Artifact 
Reduction

6.4 Image Matrix
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spatial resolution are partial Fourier and partial field-of-view tech-
niques, discussed briefly in Sect. 3.5. These are very commonly 
employed and can result in acceptable SNR tradeoffs that allow 
good image quality. For the 3.0 T acquisition recommended in 
Table 2, it is typical to use a partial Fourier, or partial echo, 
 acquisition strategy. These are recommended such that reasonable 
SNR is maintained.

The TE is probably the most important consideration in optimiz-
ing a pulse sequence for BOLD contrast (or any T2 or T2* contrast 
for that matter). As discussed in Sect. 3.1, optimal BOLD contrast 
is obtained by selecting a TE that is the average of the T2 or T2* of 
the tissue in the active and inactive states. This will necessarily 
depend on the tissue characteristics and the field strength. The TEs 
recommended in Table 2 are typical echo times for a GRE-EPI 
acquisition that have a reasonable balance between tissue sensitiv-
ity and specificity. Adopting a longer TE can result in less sensitiv-
ity to intravascular signal, especially at 3.0 T and higher, while a 
shorter TE can result in higher SNR. Ranges of TE for T2* BOLD 
imaging at 1.5 T include 40–65 ms, while ranges used experimen-
tally at 3.0 T can range from 25 to 40 ms. One should be careful 
when adopting TEs outside of these ranges as BOLD contrast can 
be severely attenuated.

6.5 Echo Time (TE)

Fig 25 Sagittal EPI image with phase direction too small for the brain dimension 
in the anterior–posterior direction. The anterior portion is phase-wrapped into 
the tissue at the posterior part of the brain
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With regard to BOLD contrast, TR has the fairly simple effect of 
increasing or lowering SNR based on the T1 of the tissue. For a TR 
short with respect to the T1 of the tissue of interest, the MR signal 
will be saturated. This will be discussed in some detail in the sec-
tion regarding the flip angle. Here, we will simply point out that 
very short TRs can result a significant reduction in SNR, and can 
subsequently also result in a significant contribution from flow 
contrast, depending on the saturated state and whether a slice gap 
is included in the prescription.

Increased blood flow results in an apparent shortening of the 
T1 relaxation time due to the effect of infusing blood on the net 
saturated state of the protons in a given voxel. Generally, the effect 
of increased flow on the T1 of a given voxel can be expressed as:
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where T1eff is the observed T1 in the presence of flow. λ is the tissue 
blood volume fraction and f is the rate of flow. Thus, an increase in 
blood flow will result in an apparent shortening of the observed T1 
in the affected brain region.

With regard to fMRI, the TR normally determines the sam-
pling rate. This, combined with experimental design (stimulus pre-
sentation, duration, number of samples, etc.) determines the 
detection efficiency for BOLD signals (see also Sect. 4.2.1 above).

A note with regard to TR and fMRI is that sensitivity to out- 
of- plane motion, discussed above in Sect. 3.2.1, is a consequence 
of spin saturation in 2-dimensional single shot MRI. Longer TRs 
will lead to lower saturation, and thus lower sensitivity to out-of- 
plane motion6.

Technically, the flip angle relates to the amount of RF power applied 
at the excitation stage of a pulse sequence. For a given tissue type 
(i.e., T1) and TE, MR signal is optimized at a flip angle referred to 
as the Ernst angle. The formula for the Ernst angle is given by:
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Since the flip angle controls the amount of RF power 
transmitted to the tissue, reducing the flip angle in acquisitions 
with a short TR can reduce the amount of flow contribution 
observed in a BOLD-weighted acquisition, possibly increasing spa-
tial specificity of detected neuronal activation.

6
 More accurately, retrospective motion correction techniques will be more 

effective.

6.6 Repetition Time 
(TR)

6.7 Flip Angle
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Receiver bandwidth (RBW), in a conventional MRI sequence, 
has an easily interpreted impact on images: since the receiver 
bandwidth is essentially the speed at which the MR signal is digi-
tized, lower bandwidth results in higher SNR, but the resulting 
longer data acquisition can impact image quality. With single shot 
imaging techniques, the effect of receiver bandwidth is not as 
straightforward. At low RBW, the readout window length can be 
long enough such that SNR is reduced. At higher RBW, the 
reduced artifact from shorter readout time lessens or even com-
pletely eliminates the expected reduction in SNR. It is difficult to 
recommend an exact RBW for these types of acquisitions, since 
the optimal operating point will depend on scanner hardware 
characteristics such as slew rate that is highly variable between 
scanners. The parameters indicated in Table 2 should give reason-
able results in most clinical MRI scanners. Increasing RBW can 
help to reduce susceptibility artifacts, such as image warping, in 
orbitofrontal or other regions in much the same way as discussed 
above under parallel imaging.

Choice of slice thickness has generally the same effect as spatial res-
olution mentioned above. Principal effects are brain coverage, SNR, 
and image quality. The recommended slice thickness in Table 2 
should give nearly whole-brain coverage in most adults, with accept-
able SNR and image artifact given field strength limitations.

As a further note, there is no mention of a slice gap in Table 2. 
A slice gap is not recommended in fMRI studies where the entire 
brain is desired. The RF excitation for a given slice will not be 
perfect, so if a small gap (<10 % of slice thickness) between slices 
were permitted, the tissue in this gap would still be sampled, 
although less than if the slices were simply made thicker. 
Historically, slice gaps were included to improve SNR in 2D 
acquisition by reducing RF crosstalk between adjacent slices. The 
longer TR recommended in Table 2, along with an interleaved 
style pattern of slice excitation, should be sufficient to make this a 
negligible effect in most clinical scanners.

The desired number of slices in an fMRI acquisition will affect 
temporal resolution and brain coverage. The recommended num-
ber of slices in Table 2 should permit whole brain coverage in most 
situations. Issues with regard to TR are discussed above.

7 Concluding Remarks

As stated at the beginning, and illustrated throughout this chapter, 
there are many experimental design issues in fMRI that will affect 
the exact pulse sequence prescription adopted for a particular study. 
The intent of this chapter is to give an overview of these issues and 

6.8 Receiver 
Bandwidth

6.9 Slice Thickness

6.10 Number 
of Slices

Optimal fMRI Pulse Sequences



108

 1. Belliveau JW, Kennedy DN Jr, McKinstry RC 
et al (1991) Functional mapping of the human 
visual cortex by magnetic resonance imaging. 
Science 254:716–719

 2. Ogawa S, Lee TM, Nayak AS, Glynn P (1990) 
Oxygenation-sensitive contrast in magnetic 
resonance image of rodent brain at high 
magnetic fields. Magn Reson Med 14:68–78

 3. Bandettini PA, Wong EC, Hinks RS, Tikofsky 
RS, Hyde JS (1992) Time course EPI of 
human brain function during task activation. 
Magn Reson Med 25:390–397

 4. Kwong KK, Belliveau JW, Chesler DA et al (1992) 
Dynamic magnetic resonance imaging of human 
brain activity during primary sensory stimulation. 
Proc Natl Acad Sci U S A 89:5675–5679

 5. Ogawa S, Tank DW, Menon R et al (1992) 
Intrinsic signal changes accompanying sensory 
stimulation: functional brain mapping with 
magnetic resonance imaging. Proc Natl Acad 
Sci U S A 89:5951–5955

 6. Frahm J, Bruhn H, Merboldt KD, Hanicke W 
(1992) Dynamic MR imaging of human brain 
oxygenation during rest and photic stimula-
tion. J Magn Reson Imaging 2:501–505

 7. Weisskoff RM, Davis TL (1992) Correcting 
gross distortion on echo planar images, Society 
of Magnetic Resonance in Medicine 11th 
annual meeting, Berlin

 8. Foerster BU, Tomasi D, Caparelli EC (2005) 
Magnetic field shift due to mechanical vibra-
tion in functional magnetic resonance imag-
ing. Magn Reson Med 54:1261–1267

 9. Ahn CB, Kim JH, Cho ZH (1986) High-
speed spiral-scan echo planar NMR imaging-
I. IEEE Trans Med Imaging 5:2–7

 10. Bruder H, Fischer H, Reinfelder HE, Schmitt 
F (1992) Image reconstruction for echo planar 
imaging with nonequidistant k-space sam-
pling. Magn Reson Med 23:311–323

 11. Pipe JG, Duerk JL (1995) Analytical resolution 
and noise characteristics of linearly reconstructed 
magnetic resonance data with arbitrary k-space 
sampling. Magn Reson Med 34:170–178

 12. Bornert P, Schomberg H, Aldefeld B, Groen 
J (1999) Improvements in spiral MR imaging. 
Magma 9:29–41

 13. Glover GH, Law CS (2001) Spiral-in/out 
BOLD fMRI for increased SNR and reduced 
susceptibility artifacts. Magn Reson Med 
46:515–522

 14. Preston AR, Thomason ME, Ochsner KN, 
Cooper JC, Glover GH (2004) Comparison of 
spiral-in/out and spiral-out BOLD fMRI at 
1.5 and 3 T. Neuroimage 21:291–301

 15. Sodickson DK, Manning WJ (1997) 
Simultaneous acquisition of spatial harmonics 
(SMASH): fast imaging with radiofrequency 
coil arrays. Magn Reson Med 38:591–603

 16. Pruessmann KP, Weiger M, Scheidegger MB, 
Boesiger P (1999) SENSE: sensitivity encoding 
for fast MRI. Magn Reson Med 42:952–962

 17. Griswold MA, Jakob PM, Heidemann RM 
et al (2002) Generalized autocalibrating par-
tially parallel acquisitions (GRAPPA). Magn 
Reson Med 47:1202–1210

 18. Heidemann RM, Griswold MA, Kiefer B 
et al (2003) Resolution enhancement in lung 
1H imaging using parallel imaging methods. 
Magn Reson Med 49:391–394

 19. Ohliger MA, Grant AK, Sodickson DK (2003) 
Ultimate intrinsic signal-to-noise ratio for 
parallel MRI: electromagnetic field consider-
ations. Magn Reson Med 50:1018–1030

 20. Wiesinger F, Boesiger P, Pruessmann KP 
(2004) Electrodynamics and ultimate SNR 
in parallel MR imaging. Magn Reson Med 
52:376–390

 21. Blaimer M, Breuer F, Mueller M, Heidemann 
RM, Griswold MA, Jakob PM (2004) SMASH, 

recommend a starting point for an sequence prescription that will be 
generally feasible on most modern MRI scanners, along with a sense 
of the impact of each of the sequence features. There are two caveats 
with regard to the content of this chapter: (1) it is strongly recom-
mended that fMRI researchers work closely with an MR physicist 
experienced in fMRI when there are specific issues that may affect 
acquisition choices and (2) ideally, pulse sequence prescription and 
paradigm design should both be considered together when design-
ing an fMRI experiment. Informing the data acquisition design 
based on the needs with regard to the experimental hypothesis or 
analysis methods is critical to a successful fMRI experiment.

References

Mark J. Lowe and Erik B. Beall



109

SENSE, PILS, GRAPPA: how to choose the 
optimal method. Top Magn Reson Imaging 
15:223–236

 22. Ohliger MA, Sodickson DK (2006) An 
introduction to coil array design for parallel 
MRI. NMR Biomed 19:300–315

 23. Pruessmann KP, Weiger M, Bornert P, Boesiger 
P (2001) Advances in sensitivity encoding with 
arbitrary k-space trajectories. Magn Reson 
Med 46:638–651

 24. Weiger M, Pruessmann KP, Osterbauer R, 
Bornert P, Boesiger P, Jezzard P (2002) 
Sensitivity-encoded single-shot spiral imaging 
for reduced susceptibility artifacts in BOLD 
fMRI. Magn Reson Med 48:860–866

 25. Heidemann RM, Griswold MA, Seiberlich 
N et al (2006) Direct parallel image recon-
structions for spiral trajectories using 
GRAPPA. Magn Reson Med 56:317–326

 26. Griswold MA, Kannengiesser S, Heidemann 
RM, Wang J, Jakob PM (2004) Field-of-view 
limitations in parallel imaging. Magn Reson 
Med 52:1118–1126

 27. Griswold MA, Breuer F, Blaimer M et al 
(2006) Autocalibrated coil sensitivity esti-
mation for parallel imaging. NMR Biomed 
19:316–324

 28. Sodickson DK (2000) Tailored SMASH image 
reconstructions for robust in vivo parallel MR 
imaging. Magn Reson Med 44:243–251

 29. Sanchez-Gonzalez J, Tsao J, Dydak U, Desco 
M, Boesiger P, Paul PK (2006) Minimum- 
norm reconstruction for sensitivity-encoded 
magnetic resonance spectroscopic imaging. 
Magn Reson Med 55:287–295

 30. Lin FH, Kwong KK, Belliveau JW, Wald LL (2004) 
Parallel imaging reconstruction using automatic 
regularization. Magn Reson Med 51:559–567

 31. Block KT, Frahm J (2005) Spiral imaging: 
a critical appraisal. J Magn Reson Imaging 
21:657–668

 32. Tsao J, Boesiger P, Pruessmann KP (2003) k-t 
BLAST and k-t SENSE: dynamic MRI with 
high frame rate exploiting spatiotemporal cor-
relations. Magn Reson Med 50:1031–1042

 33. Huang F, Akao J, Vijayakumar S, Duensing 
GR, Limkeman M (2005) k-t GRAPPA: a 
k-space implementation for dynamic MRI 
with high reduction factor. Magn Reson Med 
54:1172–1184

 34. Cuppen JJ, Groen JP, Konijn J (1986) 
Magnetic resonance fast Fourier imaging. Med 
Phys 13:248–253

 35. Noll DC, Nishimura DG, Macovski A (1991) 
Homodyne detection in magnetic reso-
nance imaging. IEEE Trans Med Imaging 
10:154–163

 36. Jesmanowicz A, Bandettini PA, Hyde JS (1998) 
Single-shot half k-space high- resolution gradi-
ent-recalled EPI for fMRI at 3 Tesla. Magn 
Reson Med 40:754–762

 37. Hyde JS, Biswal BB, Jesmanowicz A (2001) 
High-resolution fMRI using multislice par-
tial k-space GR-EPI with cubic voxels. Magn 
Reson Med 46:114–125

 38. Moeller S, Yacoub E, Olman CA et al (2010) 
Multiband multislice GE-EPI at 7 tesla, with 
16-fold acceleration using partial parallel 
imaging with application to high spatial and 
temporal whole-brain fMRI. Magn Reson 
Med 63:1144–1153

 39. Setsompop K, Gagoski BA, Polimeni JR, 
Witzel T, Wedeen VJ, Wald LL (2012) 
Blipped- controlled aliasing in parallel imag-
ing for simultaneous multislice echo planar 
imaging with reduced g-factor penalty. Magn 
Reson Med 67:1210–1224

 40. Cauley SF, Polimeni JR, Bhat H, Wald LL, 
(2014) Setsompop K Interslice leakage arti-
fact reduction technique for simultaneous 
multislice acquisitions. Magn Reson Med 
72:93–102

 41. Xu J, Moeller S, Auerbach EJ, et al. (2013) 
Evaluation of slice accelerations using multi-
band echo planar imaging at 3 T. Neuroimage 
83:991–1001

 42. Ugurbil K, Xu J, Auerbach EJ, et al. (2013) 
Pushing spatial and temporal resolution for 
functional and diffusion MRI in the Human 
Connectome Project. Neuroimage 80:80–104

 43. Jo HJ, Saad ZS, Simmons WK, Milbury LA, 
Cox RW (2010) Mapping sources of correla-
tion in resting state FMRI, with artifact detec-
tion and removal. Neuroimage 52: 571–582

 44. Meyer CH, Pauly JM, Macovski A, Nishimura 
DG (1990) Simultaneous spatial and spec-
tral selective excitation. Magn Reson Med 
15:287–304

 45. Zhou XJ, Du YP, Bernstein MA, Reynolds 
HG, Maier JK, Polzin JA (1998) Concomitant 
magnetic-field-induced artifacts in axial 
echo planar imaging. Magn Reson Med 
39:596–605

 46. Reeder SB, Atalar E, Faranesh AZ, McVeigh 
ER (1999) Referenceless interleaved echo- 
planar imaging. Magn Reson Med 41:87–94

 47. Duyn JH, Yang Y, Frank JA, van der Veen JW 
(1998) Simple correction method for k-space 
trajectory deviations in MRI. J Magn Reson 
132:150–153

 48. Yudilevich E, Stark H (1987) Spiral sampling 
in magnetic resonance imaging-the effect of 
inhomogeneities. IEEE Trans Med Imaging 
6:337–345

Optimal fMRI Pulse Sequences



110

 49. Jezzard P, Balaban RS (1995) Correction for 
geometric distortion in echo planar images 
from B0 field variations. Magn Reson Med 
34:65–73

 50. Blamire AM, Rothman DL, Nixon T (1996) 
Dynamic shim updating: a new approach 
towards optimized whole brain shimming. 
Magn Reson Med 36:159–165

 51. Wilson JL, Jenkinson M, de Araujo I, 
Kringelbach ML, Rolls ET, Jezzard P (2002) 
Fast, fully automated global and local mag-
netic field optimization for fMRI of the human 
brain. Neuroimage 17:967–976

 52. Ward HA, Riederer SJ, Jack CR Jr (2002) Real-
time autoshimming for echo planar timecourse 
imaging. Magn Reson Med 48:771–780

 53. Yang QX, Williams GD, Demeure RJ, Mosher 
TJ, Smith MB (1998) Removal of local field 
gradient artifacts in T2*-weighted images 
at high fields by gradient-echo slice exci-
tation profile imaging. Magn Reson Med 
39:402–409

 54. Constable RT, Spencer DD (1999) Composite 
image formation in z-shimmed functional MR 
imaging. Magn Reson Med 42:110–117

 55. Chen N, Wyrwicz AM (1999) Removal of 
intravoxel dephasing artifact in gradient-echo 
images using a field-map based RF refocusing 
technique. Magn Reson Med 42:807–812

 56. Oesterle C, Markl M, Strecker R, Kraemer 
FM, Hennig J (1999) Spiral reconstruction 
by regridding to a large rectilinear matrix: a 
practical solution for routine systems. J Magn 
Reson Imaging 10:84–92

 57. Moriguchi H, Duerk JL (2001) Modified 
block uniform resampling (BURS) algorithm 
using truncated singular value decomposition: 
fast accurate gridding with noise and artifact 
reduction. Magn Reson Med 46:1189–1201

 58. Nehrke K, Bornert P (2005) Prospective 
correction of affine motion for arbitrary MR 
sequences on a clinical scanner. Magn Reson 
Med 54:1130–1138

 59. Hajnal JV, Myers R, Oatridge A, Schwieso 
JE, Young IR, Bydder GM (1994) Artifacts 
due to stimulus correlated motion in func-
tional imaging of the brain. Magn Reson Med 
31:283–291

 60. Friston KJ, Williams S, Howard R, Frackowiak 
RS, Turner R (1996) Movement-related 
effects in fMRI time-series. Magn Reson Med 
35:346–355

 61. Bullmore ET, Brammer MJ, Rabe-Hesketh S 
et al (1999) Methods for diagnosis and treat-
ment of stimulus-correlated motion in generic 
brain activation studies using fMRI. Hum 
Brain Mapp 7:38–48

 62. Jezzard P, LeBihan D, Cuenod D, Pannier L, 
Prinster A, Turner R (1992) An investigation 
of the contribution of physiological noise in 
human functional MRI studies at 1.5 Tesla 
and 4 Tesla, Society of Magnetic Resonance in 
Medicine 12th annual meeting, New York

 63. Lowe MJ, Mock BJ, Sorenson JA (1998) 
Functional connectivity in single and multislice 
echoplanar imaging using resting-state fluctua-
tions. Neuroimage 7:119–132

 64. Triantafyllou C, Hoge RD, Krueger G et al 
(2005) Comparison of physiological noise at 
1.5 T, 3 T and 7 T and optimization of fMRI 
acquisition parameters. Neuroimage 26:243–250

 65. Friedman L, Glover GH (2006) Report on a 
multicenter fMRI quality assurance protocol. 
J Magn Reson Imaging 23:827–839

 66. Beall EB, Lowe MJ (2014) SimPACE: gener-
ating simulated motion corrupted BOLD data 
with synthetic-navigated acquisition for the 
development and evaluation of SLOMOCO: 
a new, highly effective slicewise motion correc-
tion. Neuroimage 101:21–34

 67. Beall EB, Lowe MJ (2007) Isolating physi-
ologic noise sources with independently 
determined spatial measures. Neuroimage 
37:1286–1300

 68. Fu ZW, Wang Y, Grimm RC et al (1995) 
Orbital navigator echoes for motion measure-
ments in magnetic resonance imaging. Magn 
Reson Med 34:746–753

 69. Lee CC, Jack CR Jr, Grimm RC et al (1996) 
Real-time adaptive motion correction in func-
tional MRI. Magn Reson Med 36:436–444

 70. Thesen S, Heid O, Mueller E, Schad LR (2000) 
Prospective acquisition correction for head 
motion with image-based tracking for real-
time fMRI. Magn Reson Med 44:457–465

 71. Zhao X, Bodurka J, Jesmanowicz A, Li SJ 
(2000) B(0)-fluctuation-induced temporal 
variation in EPI image series due to the dis-
turbance of steady-state free precession. Magn 
Reson Med 44:758–765

 72. Raj D, Anderson AW, Gore JC (2001) 
Respiratory effects in human functional mag-
netic resonance imaging due to bulk suscepti-
bility changes. Phys Med Biol 46:3331–3340

 73. Dagli MS, Ingeholm JE, Haxby JV (1999) 
Localization of cardiac-induced signal change 
in fMRI. Neuroimage 9:407–415

 74. Bhattacharyya PK, Lowe MJ (2004) Cardiac- 
induced physiologic noise in tissue is a direct 
observation of cardiac-induced fluctuations. 
Magn Reson Imaging 22:9–13

 75. Guimaraes AR, Melcher JR, Talavage TM et al 
(1998) Imaging subcortical auditory activity 
in humans. Hum Brain Mapp 6:33–41

Mark J. Lowe and Erik B. Beall



111

 76. Hu X, Le TH, Parrish T, Erhard P (1995) 
Retrospective estimation and correction of 
physiological fluctuation in functional 
MRI. Magn Reson Med 34:201–212

 77. Glover GH, Li TQ, Ress D (2000) Image- 
based method for retrospective correction of 
physiological motion effects in fMRI: 
RETROICOR. Magn Reson Med 44:162–167

 78. Stefanovic B, Pike GB (2004) Human whole- 
blood relaxometry at 1.5 T: assessment of dif-
fusion and exchange models. Magn Reson 
Med 52:716–723

 79. Friston KJ, Holmes AP, Worsley KJ, Poline J-B, 
Frith CD, Frackowiak R (1995) Statistical para-
metric mapping in functional imaging: a general 
linear approach. Hum Brain Mapp 2:189–210

 80. Josephs O, Turner R, Friston KJ (1997) Event- 
related fMRI. Hum Brain Mapp 5:243–248

 81. Bandettini PA, Jesmanowicz A, Wong EC, 
Hyde JS (1993) Processing strategies for 
time- course data sets in functional MRI of 
the human brain. Magn Reson Med 
30:161–173

 82. Miezin FM, Maccotta L, Ollinger JM, Petersen 
SE, Buckner RL (2000) Characterizing the 
hemodynamic response: effects of presentation 
rate, sampling procedure, and the possibility of 
ordering brain activity based on relative tim-
ing. Neuroimage 11:735–759

 83. Lowe MJ, Sorenson JA (1997) Spatially filter-
ing functional magnetic resonance imaging 
data. Magn Reson Med 37:723–729

 84. Triantafyllou C, Hoge RD, Wald LL (2006) 
Effect of spatial smoothing on physiological 
noise in high-resolution fMRI. Neuroimage 
32:551–557

Optimal fMRI Pulse Sequences



113

Massimo Filippi (ed.), fMRI Techniques and Protocols, Neuromethods, vol. 119,
DOI 10.1007/978-1-4939-5611-1_4, © Springer Science+Business Media New York 2016

    Chapter 4   

 High-Field fMRI                     

     Alayar     Kangarlu      

  Abstract 

   Magnetic resonance imaging (MRI) allows detection of signal from constituent of biological tissues. 
Hydrogen (1H) is the most widely used element from which spectra and images are detected due to its 
abundance and high sensitivity manifested in its gyromagnetic ratio. The high contrast for soft tissue have 
afforded scientists invaluable information about brain structure and function. Among many parameters 
determining quality of MRI images, fi eld strength is the most decisive one as it determines signal strength 
in fMRI images. Considering the low inherent sensitivity of fMRI, high magnetic fi eld are the only way 
that activation contrast of neurofunctional studies could be increased. This is why there has been a relent-
less drive towards higher fi eld strength in human imaging raising it up to 11.7 T to date. Technology of 
7-T has become more widely available in scanners with fMRI capability. Development of many technolo-
gies such as multichannel RF coils, strong and fast gradients, simultaneous slice excitation, and brain- 
stimulation protocols have contributed to the expansion of fMRI as the method of choice for study of 
whole brain function. In this chapter, challenges of high-fi eld fMRI in human studies are discussed among 
which signal to noise, susceptibility artifacts, multichannel RF coil designs are highlighted.  

  Key words     High fi eld  ,   fMRI  ,   Neuroimaging  ,   Magnetic fi eld  ,   High resolution  

1      Introduction 

 The  high   water content of biological tissues makes acquisition of 
anatomically accurate images of biological tissues possible [ 1 ,  2 ]. 
Imaging of structures are hinged on the contrast based on relax-
ation rates that are sensitive to the composition of tissues. The 
same mechanism is also used to visualize changes in signal as a 
function of physiology [ 3 ]. These facts have made fMRI a power-
ful tool for the  study of neuroscience   as it detects the changes in 
signal during the brain activities in response to specifi c stimulation 
designed to activate specifi c regions of the brain [ 4 – 10 ]. The 
 mechanism   based on which brain function is detected by fMRI 
depends on changes in the brain of magnetization caused by exter-
nal stimulations of neurons. This process is successful only if 
responses to external cue stimulate enough neurons in the same 
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region.  Field strength   of fMRI determines its sensitivity to the 
response of neuronal clusters. This makes differential response to 
the external stimulus a complex entity that can better visualize 
brain function.  MR signal of brain activation   is valid if it stems 
from a change caused by neuronal activity. Simultaneous detection 
of direct neuronal currents in the human brain has not yet been 
reported due to the sheer number of neurons involved and a lack 
of sensitivity to the neuron currents. However,  neuronal activity   
produces a change in magnetic susceptibility of hemodynamics 
that modifi es the magnetic fi eld in the brain that can be detected as 
change in MRI signal [ 3 ]. Although, the mechanism that connects 
neuronal activity to hemodynamic response is still not well under-
stood [ 11 ], the correlation of stimulus pattern with  hemodynamic 
signals   is well established in fMRI. This correlation has been 
observed for sensory, motor, and cognitive paradigms. These fea-
tures have turned fMRI into a reliable tool for neuroscience and 
neurology research and with the improvement in MRI hardware 
and pulse sequences it is rapidly penetrating into psychiatry, neuro-
surgery, and psychology too. 

  Brain function   can be noninvasively detected if the changes 
caused by its activity produce  electromagnetic signals   strong enough 
for high spatial localization and temporal resolution. Unlike  inva-
sive techniques   that operate at the cellular or single neuronal level, 
whole brain access visualization with sensitivity for functional 
response is required to simultaneously detect all activated regions. 
The distinct  advantage   of fMRI is in its ability to acquire functional 
information from regions with vastly different anatomical geometry 
such as cortical regions and skull based brain tissues. Presently, only 
MRI can noninvasively access brain function and can be repeatedly 
applied on the same subject in multiple studies. The  capability   of 
fMRI to access different brain regions responding to a specifi c stim-
ulation while simultaneously imaging the location of the functional 
regions makes it indispensible for the studies of brain normal func-
tion and dysfunction. But, we must keep in mind that fMRI signal 
is not a direct measure of neuronal activity.  Computations   for neu-
ronal currents ( nc) MRI      has predicted a few part per billion 
(2–5 ppb) disturbance in MRI signal that is below noise fl oor. Such 
estimations demonstrate challenges involved in making of ncMRI a 
reality. Sensitivity of MRI to paramagnetic entities, however, brings 
hemodynamic and its coupling to neuronal activity to rescue [ 3 , 
 11 ]. Diamagnetic nature of biological tissues makes blood with its 
rich iron content an ideal medium for the detection of physiological 
changes. The blood oxygen level dependent ( BOLD)   is an effect 
that measures changes in  MR signal   from  deoxygenated hemoglo-
bin (dHb)   to  oxygenated hemoglobin (O 2 Hb)   required by neuro-
nal activation which modifi es the magnetic fi eld around the regions 
of oxygenation to the extent that changes in  MR   signal-to-noise 
ratio (SNR) can be measured in a comparative measurement. In 
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fMRI studies, this change in signal (∆ R / R ) is taken as accurately 
representing neuronal activity. Higher magnetic susceptibility ( χ ) of 
dHb compared to that of  O 2 Hb   is enough at fi elds above 1 Tesla 
(T) to raise ∆ R / R  to about 1 %/T which with modern instrumen-
tation is detectable. Dependence of BOLD strength on the  static 
magnetic fi eld ( B   0  )   is a valuable feature of fMRI, which presently is 
benefi ting from availability of 7.0 T whole body magnets for the 
study on human subjects. 

 The BOLD effect, however, depends on a number of  physiologi-
cal factors  . The primary ones being  cerebral blood fl ow (CBF)  ,  cere-
bral blood volume (CBV)  , and  cerebral metabolic rate of oxygen 
(CMRO2)  . BOLD-based fMRI studies consider CBF, CBV, and 
CMRO2 mechanisms as being induced by changes in neuronal activ-
ities. To more effectively use fMRI  in neuroscience research  , the  neu-
rovascular coupling   that relates neuronal activities to hemodynamics 
(BOLD) must be understood. As high magnetic fi eld enhances 
BOLD signal it will play a vital role in determining the nature of MR 
signature of neuronal activities. The use of BOLD in study of diseases 
such as  multiple sclerosis   will become more widespread as evidence 
for involvement of gray matter in this disease becomes more avail-
able. Assessing the specifi cs of the cortical damage with fMRI depends 
on the ability to establish reliable correlation with specifi c physical 
and cognitive disability that needs high sensitivity and specifi city to 
brain physiology. High-fi eld fMRI could help with establishing an 
association of cortical activity with clinical relapses.  

2       MR Signal      

 Strong magnets exert a torque on small magnets like protons. Such 
torque puts the spinning proton into a precession with a specifi c 
frequency called  Larmor frequency  . If an electromagnetic waves 
with the exact frequency as proton’s Larmor frequency, usually in 
radio frequency (RF)  range  , is aimed at such proton, its energy will 
be absorbed to excite the proton from its ground state to an excited 
state [ 12 ,  13 ]. Magnets used in MRI scanners induce a resonance 
frequency in about 100 MHz range (10 8  Hz). At 3 T, for example, 
where proton Larmor frequency is 128 MHz, an RF  wave   with this 
exact frequency will be able to transfer its energy into the protons 
causing them to defl ect from alignment with  B   0  . Following this 
disturbance, proton magnetic dipole moment ( µ ) will return to its 
equilibrium position emitting an RF wave that will be picked up by 
the RF  coil   [ 14 ,  15 ]. The RF  magnetic fi eld   ( B   1  ) that is induced 
into the coil circuit is mixed with signal from other events in the 
body that produce similar signals. The collective effect at a protons 
of  µ  magnetic moment at a frequency of  ω  is detected by the RF 
 coil  . The RF coil is trusted with the task of detecting the narrow 
frequency bandwidth that is created by the resonance condition. 
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The design of the RF coils, hence, is a rather critical matter and it is 
amply covered in the literature. While RF coils must operate at a 
narrow frequency range, they should be capable of operating in a 
very wide power range since kW RF  power   is required to excite the 
sample while a few milliseconds after excitation the coil should be 
able to detect a signal 1000’s times weaker than the transmitted 
power. This remarkable resilience is constructed into a device that 
provides coverage to the entire head and accurately records the 
response of every cell that will get unraveled into images by com-
puter programs of reconstruction routines. 

 Relaxation values govern the time course of the signal decay. 
So while the population of the protons ( µ ) aligned with  B   0   is a 
function of  B   0  , the signal will only persist within a time course 
comparable to  spin–lattice ( T  1 ) relaxation   and  spin–spin ( T  2 ) relax-
ation   [ 16 ]. Images can be produced where the tissue intensity rep-
resents relative  T  1  values, the  T  1 -weighted ( T  1 W) contrast during 
which the  T  2  relaxation must be kept at minimum.  T  2  relaxation is 
a process of loss of coherence among aligned protons, while  T  1  is 
the time during which excited dipoles return to their original ori-
entation where they are unable to contribute to the signal. 
Considering a typical  T  1  value of 1 s for brain tissues, a whole head 
image with 256 × 256 matrix takes about 5 min to acquire with no 
acceleration factors applied. The relatively long  T  1  values set the 
acquisition time, as realignment of protons occur with that time 
scale. Acceleration of image acquisition is possible by simultaneous 
acquisition of multiple  k -space lines for each excitation. In addition 
to  T  1 , spin–spin relaxation or  T  2  decay, is also a mechanism that 
slows down MR image acquisition. Due to the inherent insensitiv-
ity of MRI, the population of magnetic moment required to pro-
duce detectable signal within a voxel is the difference (ΔN) between 
the parallel protons (N+) and anti-parallel protons (N-) which is 
relatively large. The sum of  µ  ’  s  (ΔN µ ) within a voxel, i.e., magne-
tization vector or  M  determines the size of the signal. High mag-
netic fi eld increases ΔN and through that the MR signal. 
Consequently, high fi elds can produce detectable signal from 
smaller voxels producing higher resolution images. As fMRI uses a 
fast imaging sequence, echo planar imaging (EPI), with  T   2  *   con-
trast it has high sensitivity to magnetic susceptibility.  T   2  *   depends 
on the sum of two mechanisms causing signal decay, i.e., spin–spin 
and local  B   0   inhomogeneities that accelerate the loss of coherent 
precession of  M  over time [ 16 ,  17 ]. The contrast-to-noise ratio 
( CNR  ) of  EPI-based BOLD signal   used in fMRI depends on  T   2  *   
changes caused by the difference in magnetic susceptibility of oxy- 
and deoxyhemoglobin. Since  T   2  *   is much shorter at high fi elds, 
high-fi eld fMRI more accurately represents local magnetic fi eld 
inhomogeneities caused by BOLD. As smaller voxels can be imaged 
with high-fi eld fMRI, faster and stronger gradients are being 
designed and used to also increase temporal resolution to produce 
information more directly related to neuronal   activity [ 8 ,  9 ].  
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3     B 0  Effects      

 Signal strength in MRI depends on  B   0  , RF  coil design  , and relaxation 
values.  B   0  , however, determines excess proton population that sets 
the limit of MR signal detectable by any magnet. In addition, the high 
magnetic susceptibility endows high fi eld with dual  advantages   of high 
SNR and high susceptibility contrast. This fact is best at display with 
images acquired from 7 T scanners (Fig.  1 ). Among the parameters 
affecting image quality,  B   0   is the single parameter whose effect on 
 SNR    and BOLD   will expand the use of fMRI in assessment of physi-
ological signatures of neurological disorders. It should be mentioned 
that dependence of MR  signal on relaxations, susceptibility, CNR, and 
hardware creates both  advantages and disadvantages   at high fi eld. 
Susceptibility artifacts in the regions with large cavities make the 
choice of premium fi eld strength for fMRI studies a nontrivial matter. 
Susceptibility-based contrast can be used to image brain microstruc-
ture and to detect high brain iron as it has been suspected to play a 
role in many neurodegenerative diseases. However, the challenges 

  Fig. 1    A 7 T FLAIR*  image      of an MS patient vs. a vascular patient, in which a 
central vessel running through the MS lesion is clearly visible while absent 
through the vascular lesion. Courtesy of Prof. I.D.. Kilsdonk, VUMC, the Netherlands       
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involved in dealing the susceptibility artifacts of high-fi eld fMRI has 
prevented its widespread use. Clever techniques such as  high-order 
shimming  ,  parallel transmit and receive (PTX)  , and  short TE sequences   
could reduce the magnetic susceptibility artifacts at high fi eld. These 
developments hold the promise to suppress the negative effects of 
high fi eld and turn blights into blessings. Success in this front has far 
reaching implications on fMRI and its application in neurodegenera-
tive diseases.

4         Relaxation Effects   

 In addition to high SNR,  relaxation effects   make 7.0 T an attractive 
fi eld strength compared to 3.0 T and 1.5 T for fMRI studies (Fig.  2 ). 
For anatomical images, typical voxel size at 1.5 T is about 5 mm 3 , 
high SNR at 7.0 T allows image from biological tissues with 1-mm 3  
resolution in less than 10 min. The MR signal, however, is a function 
of the relaxation values, which will reduce the time that the magne-
tization vectors are available for sampling in transverse plane. High-
fi eld effects of susceptibility artifacts and BOLD effect make fMRI 
 resolutions   and its CNR a complex factor for researchers to opti-
mize. While fMRI requires phase encoding an entire volume in one 
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shot as in EPI, the artifacts of phase encoding gradients cannot be 
suffi ciently refocused at high fi eld. The high temporal resolution of 
 single-shot   EPI might have to be forsaken at high fi eld because the 
spatial resolution and image quality suffer in single-shot EPI-at 
high-fi eld fMRI. The geometric distortions caused by the phase 
encoding of single-shot EPI makes accurate coregistration of func-
tional maps with anatomical images more complex than in lower 
fi elds. Furthermore, the point-spread functions (PSF) are broadened 
due to the long acquisition window during which higher signal 
decay occurs. One parameter that plays a critical role in determining 
many of these quantities is TE and its selection is critical in high 
fi eld. But, the optimal TE is not always possible to fi nd when large 
in-plane matrices are chosen to reach higher resolutions in fMRI 
studies. Variations of  T  1  values with fi eld strength are also important. 
 T  1  values reported for gray matter (GM) at 7.0 T are about 2 s and 
for white matter values around 1.3 s [ 17 – 20 ]. Similar measurements 
at 3.0 T, have found  T  1  values of about 1.5 s for GM and about 0.8 s 
for white matter [ 18 – 20 ].  T  1  values at 1.5 T reduce to about 1.2 s 
for GM and about 0.6 s for white matter [ 21 ]. Due to a need for fast 
encoding of the entire images in a time comparable to  T  1  value, its 
absolute value does not have a large effect on fMRI images. However, 
 T   2  *   relaxation has a direct effect on the BOLD activation signal. This 
is especially true due to drastic change in  T   2  *   as a function of fi eld 
strength. A multi- fi eld measurement has reported [ 17 ]  T   2  *   for GM, 
WM, and putamen, respectively, to be 84.0, 66.2, and 55.5 ms at 
1.5 T; 66.0, 53.2, and 31.5 ms at 3.0 T; and 33.2, 26.8., and 
16.1 ms at 7.0 T. This shows that the difference between  T   2  *   of 
GM/WM has reduced from 18 ms at 1.5 T to 7 ms at 7.0 T. These 
results show a drop by a factor of about 2.5 in  T   2  *   of these tissues for 
a fi eld increase from 1.5 to 7.0 T. Such changes have great implica-
tions on the outcomes of fast sequences at high fi eld. For example, 
as  T   2  *   of some tissues of putamen drops to a value close to 10 ms, it 
will reduce the possibility of phase encoding the structure in a single- 
shot image for high-resolution images. This means that role of high 
fi eld in producing high-resolution functional images must be further 
investigated.

   Another challenge for high-fi eld fMRI to exploit its advantages 
is the need for stronger gradients. Higher gradient amplitudes and 
faster switching rates can produce effects that can better be utilized 
at high fi elds. The new strong gradients of 80 mT/m that have 
become available on some 3 T and 7 T scanners will reduce the 
encoding time for a resolution of 1 mm to be 1 ms/line. This makes 
the total encoding time for 192 phase encoding steps to be 192 ms. 
The  T   2  *   of the human brain at 7 T is about 30 ms while  T  2  of GM 
and WM are 93 ms and 76 ms, respectively. Thus, readouts of about 
100 ms might be needed for  SE   EPI or partial  k -space fi lling in  GE   
EPI. Stronger gradients are going to be useful in reading a signal 
that lasts 30 ms. The fast decay induced by high magnetic 
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susceptibility during readout causes strong blurring of images that 
must be suppressed before the    advantages of EPI at high fi eld could 
be exploited. More robust gradients are becoming available that are 
improving sensitivity and specifi city of BOLD fMRI at high fi eld. 
This will enable the high-fi eld BOLD fMRI to more accurately 
localize and coregister with the high-resolution anatomical images 
at 7 T. BOLD sensitivity does increase at higher fi elds, which can 
only be fully utilized when their high-resolution maps are produced 
from the entire brain including tissues in the near proximity of the 
skullbase and brain regions near air/tissue boundaries.   

5    Imaging the  Brain Function   

 The best way to image brain function would be to directly detect neu-
ronal activities. Absence of such a technique has provided an opportu-
nity for indirect observation of brain function through BOLD, which 
can measure changes in  hemodynamics   as a result of controlled neu-
ronal activation. The coupling of neuronal activity and vascular hemo-
dynamics makes BOLD dependents on the details of communication 
between neurons, glia, and blood vessels. Furthermore,  BOLD   is an 
indication of the existence of a tight level of vascular reactivity between 
neuronal network and vascular system. 

 Accurate fMRI representation of the brain function depends 
on the understanding of  mechanism of neurovascular coupling     , 
i.e., how neuronal activity affects hemodynamic response and its 
MR signal. Such relationship will enable us to account for pharma-
cological or disease-induced modulations of neurovascular cou-
pling that could use BOLD signal changes, or perfusion, for the 
assessment of drug effi cacy and pathological modifi cation of physi-
ology. In addition, fMRI has become an important tool in studies 
in psychology, psychiatry research, and basic cognitive neurosci-
ence research [ 11 ]. This is primarily due to the fact that fMRI has 
proven to be able to provide a veritable readout of mental 
contents. 

 Organization of the brain allows the  functional studies   to iden-
tify the neuronal basis of behavior, or at least the hemodynamic 
manifestation of that. The measure of neuronal activity is obtained 
by constructing activity maps from the functional units involved in 
various brain networks [ 4 ,  22 ,  23 ]. The functional units, commonly 
called  cortical columns      are made up of neuronal networks involved 
in the implementation of a specifi c function. They form an orga-
nized structure that interacts with other units of the system that 
repeatedly occur in the cortex. This organized structure and its 
columnar activation contribute to elucidate the function of specifi c 
cortical areas [ 24 ]. Imaging with a resolution allowing to detect the 
simultaneous activation of these units, i.e., the collective response of 
all columns involved in a specifi c external stimulation, would greatly 

Alayar Kangarlu



121

enhance the credibility of fMRI studies. This is due to the fact that 
such resolution can establish the spatial localization of functional 
units. Resting-state fMRI,       which can detect spatially dispersed but 
functionally connected regions that share information with each 
other, offers information on functional connectivity ( FC)      of the 
brain. Such FC maps are best utilized at high fi eld, when they are 
capable of offering the temporal dependency of neuronal activation 
patterns of anatomically separate brain regions with high temporal 
resolution. High-fi eld FC offers a measure of interaction between 
isolated clusters of columns involved in implementation of a func-
tion that will elucidate functional specialization of units and local 
networks at columnar level, as well as new insights in the overall 
organization of functional communication of brain networks. High-
fi eld fMRI is capable of whole brain imaging at both high temporal 
and spatial resolution, which together offer valuable information 
about the core aspects of the human brain, providing an overview of 
these novel imaging techniques and their implication to neurosci-
ence. High-fi eld fMRI offers the opportunity of the (1) use of spon-
taneous resting-state fMRI in determining functional connectivity, 
(2) to investigate the origin of these signals, (3) how functional con-
nections are related to structural connections in the brain network 
and (4) how functional brain communication relate to cognitive 
performance. Analysis of functional connectivity patterns using 
 graph theory  , focusing on the overall organization of the functional 
brain network, is also a promising technique that takes advantage of 
these new functional connectivity tools in examining connectivity 
diseases, like multiple sclerosis, dementia, schizophrenia, and 
Alzheimer’s disease. The potential to further empower  FC    fMRI   
with high-resolution maps based on functional units of the brain 
[ 5 – 8 ,  22 ] is another reason that makes high fi eld an exciting tech-
nology for brain studies. 

 The primary  advantage   of high-fi eld fMRI, however, remains 
the possibility of studying the brain physiology noninvasively with 
a high spatial and temporal resolution at the same time.  FC fMRI   
reveals brain networks in resting state or based on experiments that 
measure brain activation due to the execution of a specifi c task. 
This is a unique capability that avails the entire brain for investiga-
tion at once. As such, it is critical that this capability is not compro-
mised as fi eld strength increases.  Diagnoses   based on functional 
mapping require high spatiotemporal resolution over the whole 
brain as fi eld strength increases. The heterogeneity of the brain 
causes susceptibility-induced signal dropouts that worsen as the 
fi eld strength increases. Unfortunately, this is the same mechanism 
that makes functional measurement of hemodynamics possible. So, 
we must develop reliable techniques to suppress signal dropouts 
while keeping susceptibility based CNR high. These confl icting 
needs may provide new incentives to move fMRI toward direct 
detection of neuronal correlates rather than the present 
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mechanisms of BOLD or perfusion. This is where high fi eld can 
change the paradigm rather than just improving resolution. In the 
meantime, efforts to boost both spatial and temporal resolution of 
functional brain studies are focusing on susceptibility suppression. 

 The potential of 7 T fMRI (Fig.  2 ) has been shown in its ability 
to take  advantage   of the magnetic susceptibility and the BOLD 
effect to obtain [ 25 ] high-resolution images and functional maps. 
Such advantage could increase linearly or even more than linearly 
with  B   0   as more technology in hardware and software is developed 
for high fi eld. For example, the high SNR of  SE BOLD      could 
eliminate contributions to the signal from large draining veins at 
fi elds of 3.0 T and higher. This way, BOLD from microvascular 
networks directly on or near the site of neuronal activity could be 
detected [ 26 ]. Such tool is capable of dealing with more funda-
mental question in quantifi cation of the signal. An fMRI signal 
with resolution high enough to consistently quantify blood fl ow 
and energy consumption provides a valuable insight into the rela-
tionship between neuroenergetics and neuronal activity. Such rela-
tionship has not received attention in fMRI studies. Most of fMRI 
studies, instead, have concentrated on experimentally proving cog-
nitive neuroscience theories. High fi eld can provide more powerful 
tools and quantifi able measures for such endeavors. 

 Besides BOLD, arterial spin labeling ( ASL)      sequences have also 
provided reliable measurements of CBF. This feature makes perfu-
sion-based fMRI a complement to BOLD. A version of ASL called 
continuous, or  CASL     , has shown particular potential to take advan-
tages of high-fi eld strengths to obtain high  SNR    and CNR     . ASL is 
implemented by tagging (normally with inversion RF  pulse  ) the 
blood fl owing to the brain in the neck. After a delay time, the slice 
select RF pulse is followed by an acquisition sequence. The blood 
with its water magnetically labeled fl ows into the brain and has its 
transverse magnetization decaying at the rate of  T  1 . So,  T  1  duration 
is important in detection of tissue perfusion. The signal in perfusion 
imaging is a function of regional blood fl ow and the longitudinal 
relaxation time  T  1 . The  T  1 -dependent part of perfusion signal makes 
perfusion SNR a function of magnetic fi eld. At high fi eld, perfusion 
will benefi t from increase in  T  1  as it provides more transverse mag-
netization in the image slice. At high fi eld, perfusion can provide 
quantitative measures of absolute CBF, a more direct representa-
tion of neuronal activity than the BOLD signal. 

   Image acquisition in MRI is slower than in other techniques such as 
 computed tomography   and  positron emission tomography  . This is 
mostly due to the relaxation phenomenon. Fast imaging techniques 
are not widely popular for structural imaging due to the poor image 
qualities and technical limitations.  Relaxations and dephasing      
requires refocusing of signals in the intervals of the order of TE and 
realignment of spins with the main magnetic fi eld every TR seconds, 

5.1  Fast Imaging

Alayar Kangarlu



123

where  TR      is called the  repetition time        . Refocusing can be achieved 
by gradient reversal or RF  pulses  . Depending on the acceleration 
rate and safety concerns, one or the other method can be used. For 
detection of physiological signals, however, the image acquisition 
rate should match the rate of physiological event. For brain func-
tional imaging, this rate is of the order of a second. So, there is a 
need for imaging the entire brain within that timescale. For resolu-
tions of the order of 5 × 5 × 5 mm, the whole brain coverage requires 
30–40 slices. For an image with 64 phase-encoding steps there is 
only 300 ms for refocusing and readout. These facts leave very few 
sequences for imaging at such rate. EPI is one such sequence. Its 
sequence details and the implications of its execution at high fi elds 
need close scrutiny in order to fully exploit its potentials in high- fi eld 
functional imaging studies. 

   Fast imaging techniques achieve their speed by multiple refocusing 
of the spin ensemble during one TR. EPI as a  GE-based technique   
is the fastest sequence and has a very low RF  power content   [ 27 ]. 
This aspect of  EPI   makes it suitable for high-fi eld applications as 
 RF absorption   increases at high fi elds increasing the RF require-
ments. On the other hand, other aspects of EPI such as geometric 
distortion, blurring artifacts, and  T   2  *   signal loss are aggravated at 
higher fi elds [ 28 ,  29 ]. For instance, the  geometric distortion   that 
is caused by off-resonance effects will be further aggravated by 
long readout train of EPI. A phase offset that increases with TE 
will be created that will establish a linear phase gradient over 
 k -space in the  phase-encoding direction   [ 30 ]. The image signal 
from these spins will get shifted as image is reconstructed. At high 
fi elds, this effect is proportionally stronger resulting in larger 
 frequency shifts. However, the effect of long readouts can be dras-
tically reduced by using parallel imaging. This will reduce  geomet-
rical distortions  , but the  T   2  *   signal decay and blurring on the 
images will still remain. Other techniques have been introduced to 
deal with  T   2  *   relaxation causing distortion in images due to the 
decay in the signal along the  k -space trajectory. Minimization of 
 magnetic fi eld inhomogeneities   and  susceptibility-induced effects   
requires the choice of TE close to  T   2  *  . As  B   0   increases,  T   2  *   decreases 
and hardware and safety considerations often makes the minimum 
TE of single-shot EPI longer compared to  T   2  *  , which causes signal 
loss due to the phase dispersion caused by such choices of 
TE. Higher bandwidth could alleviate this problem but possibility 
of peripheral nerve stimulation will limit the use of much stronger 
gradients to achieve this. Other techniques have been proposed 
that will effectively restore  T   2  *   relaxation-induced signal loss and 
blurring. GE slice excitation profi le imaging ( GESEPI  )    is one such 
method that, combined with multichannel parallel receiver tech-
nology, such as  sensitivity encoding (SENSE)  , will signifi cantly 
enhance high-fi eld EPI image qualities [ 31 ,  32 ]. 

5.1.1    Echo-Planar 
 Imaging  
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 Other EPI artifacts such as  Nyquist ghost      are independent of 
fi eld strength and are inherent to the sequence  k -space trajectory 
with various solutions applicable to their minimization at all fi eld 
strengths [ 33 ]. Nyquist artifact is due to the time-reversal asym-
metry of even and odd echoes and its ghosts overlap with the image 
causing a reduction in  EPI   SNR. 

 Next to its speed, the most important  characteristic   of EPI is 
the high magnetic susceptibility weighting it casts on images (Figs.  2  
and  3 ). In fact, fMRI as the most important application of EPI takes 
 advantage   of EPI sensitivity to susceptibility change due to blood 
oxygenation. Unlike fMRI applications in which susceptibility 
enhances BOLD contrast, susceptibility weighting of EPI is not 
considered an advantage in applications such as  diffusion- weighted 
imaging  . As such, understanding of susceptibility is essential in 
enhancing its role where it helps fMRI and suppressing its undesir-
able aspects where it hurts data quality. A brief account of magnetic 
susceptibility of biological tissues is presented here to help appreci-
ate the role of susceptibility in EPI-based BOLD signal changes     .

       Magnetic susceptibility,  χ , is at the core of BOLD-based fMRI stud-
ies. When matter is exposed to strong magnetic fi eld it will be mag-
netized [ 34 ]. In formation of  χ , magnetic fi eld ( H ), magnetic 
induction ( B ), and magnetization ( M ) play roles.  H  is the entity that 
exists in vacuum and its penetration through space, i.e., free space of 
permeability  μ  0  = 4 π  × 10 –7  H/m, is given by  B  =  μ  0  H . The magneti-
zation,  M , represents the total magnetic moments per unit volume 
 M  = ∑ µ / v .  M  is caused by  H  according to  M  =  χ  H. B  and  H  in SI 
unit system have units of Tesla and Ampere/meter, respectively. 
Inside a body placed in a magnetic fi eld a magnetization  M  is gener-
ated that will produce a magnetic fi eld of  B  =  μ  0 ( M  +  H ). Replacing 
 M  in this expression will yield  B  =  μ  H  where  μ  =  μ  0 (1 +  χ ) will be the 
magnetic permeability of matter. As such, susceptibility of an object 
is a measure of enhancement of the magnetic fi eld within its volume. 
This is important as it will determine how uniform a magnetic fi eld 
( B 0) can be established inside the body in MRI. In  μ , the character-
istics of the free space and how its magnetic properties are modu-
lated by matter through  χ  are hidden.  B  0  in turn, changes locally by 
 χ  causing the so-called  susceptibility artifacts   in MRI particularly in 
the areas of air/tissue interface [ 34 ,  35 ]. This effect causes a change 
in magnetic fi eld as it is sensed inside a tissue and for heterogeneous 
tissues a contrast is generated between tissues, which are  B   0   depen-
dent. Difference in susceptibility, ∆ χ , between adjacent tissues are 
small at low fi elds. If susceptibility- based inhomogeneity is smaller 
than inherent  B   0   inhomogeneity it could be used for generating 
contrast for better visualization of tissues such as GM. High ∆ χ  as 
exists at the air/tissue interfaces causes large variation in  B   0   that is 
responsible for signal dropouts interfering with studies focused on 
these regions [ 29 ]. fMRI studies of regions near the ear canal, nasal 
cavity, and inferior frontal lobe suffer from this phenomenon. 

5.2       Magnetic 
Susceptibility           
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 The most distinct role of susceptibility effect in MRI is in 
fMRI. It is based on the fact that  M  within a voxel is linearly pro-
portional to  B  0  determining the role of high fi eld in  susceptibility- 
based enhancements   of CNR. Specifi cally,  T   2  *   values decrease 
allowing paramagnetic molecules such as dHb to generate more 
dephasing in collective proton precession at high magnetic fi elds. 
Figures  2  and  3  show how high activation induces high functional 
CNR on the images taken at 7.0 T compared to lower fi elds. The 
short  T   2  *   values due to paramagnetic properties of dHb causes the 
veins and structures with high-density vasculatures to have their 
dimensions exaggerated as shown in Fig.  1 . This mechanism affects 
 B  0  through  χ  making a larger variation in susceptibility, ∆ χ , in 
brain tissues around activated neurons at high fi eld subsequent to 
a perturbation. In brain activation studies, the stimulus causes 
change in volume and fl ow of oxygenated blood in the near prox-
imity of activated brain regions. For the same activation, high fi eld 
will use higher ∆ χ  for better visualization of vasculature network 
which is coupled into the neuronal system in the brain. 

 Furthermore,  high-fi eld   SNR allows the use of in vivo vascular 
imaging in establishing a relationship between brain tissue vascular 
density and functional imaging results. Independent information 
from vascular density could be attained from MR angiography to 
help better analysis of the fMRI data. In addition, such vascular 
density information could be used for the study of various topics 
from brain development and brain tumor staging to multiple scle-
rosis (MS). High-fi eld fMRI in MS could better assess the effect of 
any changes in cortical activation during a particular task such as 
attention, memory, motor, etc. As high fi eld enables better spatial-
ized maps of the response to stimuli, fMRI could help assess the 
extent of neuropsychological problems. As fMRI becomes faster, 

  Fig. 3    An axial image  showing   cortical GM MS lesion acquired by 7 T FLAIR vs. 
3 T FLAIR. (Courtesy of I.D. Klisdonk, VUMC, the Netherlands)       
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more detailed brain activation in MS patients could be used to 
assess their normal motor function as is done clinically today. As the 
strength of response signal varies depending on the activated region 
of the brain and the accessibility to the detector, i.e., RF coil, high 
fi eld could allow a wide range of regions and paradigms to be 
designed to compare performance of MS patients with healthy con-
trols. Such quantitative assessment of functional performance of the 
brain will provide a valuable tool in enhancing the disease manage-
ment. Structural MRI, however, has had great success in visualizing 
lesions of demyelination [ 36 – 38 ]. But, lack of specifi city has pre-
vented MRI from being established as a reliable one-shop stop for 
diagnosis of MS. A reliable fMRI technique with resolution to 
reveal accurate cerebral functional response to controlled stimula-
tions will complement the existing structural MRI tools in better 
understanding of MS. Such potential is entirely due to inherent 
sensitivity of fMRI to hemodynamic changes induced by cognitive 
perturbation and will provide information independent of struc-
tural changes of the disease. In this regard, a unique aspect of high 
fi eld, i.e., high  susceptibility   and SNR, offers a tool that, although 
is MR in nature, its attributes are not equally available at lower 
fi elds. The  B   0  -dependent susceptibility contrast,  furthermore, pro-
vides potential for depiction of microvascular structures that will 
further enrich the tool box of high-fi eld magnets [ 39 ]. 

 Magnetic susceptibility of blood is governed by the same 
effects as discussed above. It is high enough to generate the BOLD 
effect just due to the change in its oxygenation state. A dHb mol-
ecule contains four paramagnetic iron ions. During oxygenation, 
dHb combines with four oxygen molecules which results in an 
O 2 Hb molecule, which normally has no net paramagnetic moment. 
O 2 Hb is in fact slightly diamagnetic. This will cause the magnetic 
susceptibility of blood to change by about 10 –6  if the blood is fully 
oxygenated. Taking the susceptibility of O 2 Hb as zero, then change 
in blood magnetic susceptibility with oxygenation constitutes the 
basis of BOLD contrast in fMRI. A detailed account of the effect 
of  B   0   on BOLD through the susceptibility mechanism will further 
elucidate the impact of high fi eld in fMRI    .  

   A change in magnetic susceptibility of ∆ χ  = 10 –6  (SI system) in 
blood as a result of oxygenation is possible and forms the basis of 
fMRI. Through  μ  =  μ  0 (1 +  χ ), magnetic dipole strength of a voxel 
changes by ∆ χ  and results in change in magnetization which con-
stitute the basis of NMR signal. The maximum possible change in 
susceptibility due to blood oxygenation change is about one unit 
in SI. Assuming that ∆ χ  = 10 –6  is achieved during the activation, a 
corresponding 1.0 × 10 –6  or 1 ppm change will result in magnetic 
fi eld inhomogeneity. While at 1.5 T, 1 ppm inhomogeneity corre-
sponds to about 63 Hz, at 7.0 T it could produce frequency shift 
of about 300 Hz. Such  B   0   inhomogeneity will induce dephasing 

5.3    Blood Oxygen 
Level  Dependent     

Alayar Kangarlu



127

of spin coherence which will reduce the signal causing dark regions 
on  T   2  *  -weighted EPI images. Even spin-echo sequence will bear 
reminiscences of such susceptibility-induced signal loss near the 
veins. While for stationary tissues RF does refocus the resulted 
dephasing of spins, for moving water molecules in veins protons 
rephrasing is not complete, making BOLD effective as a  T  2  as well 
as  T   2  *   effect. 

 fMRI signal is believed to largely originate from BOLD effect 
around small vessels, i.e., arterioles, capillaries, and venules [ 25 ]. 
The extravascular areas surrounding the small vessels represent 
loci of neuronal activity. But, there are contributions from large 
vessels to the BOLD signal as well. Such contribution must be 
quantifi ed to ensure an accurate account of the role of small ves-
sels vs. large vessels in fMRI. High magnetic fi elds provide a pow-
erful tool in this regard. A known magnetic fi eld at any position 
puts spins in a well-defi ned precession whose frequency provides 
knowledge of its location to produce a map of proton density. 
Spatial homogeneity and temporal stability of the fi eld are impor-
tant requirements for creating images faithful to the structures 
being studied.  B   0   fi eld homogeneity of high-fi eld magnets is 
around 0.5 ppm that using high-order shimming could improve it 
to about 0.1 ppm over the head. Beyond this, as it was discussed, 
dHb produces high magnetic susceptibilities leading into compa-
rable local inhomogeneities in the static fi eld within the brain. At 
high fi eld, regions in the brain, such as temporal lobes and basal 
ganglia, demonstrate high magnetic susceptibility providing a 
high contrast from the surrounding tissues [ 40 ]. Different sce-
narios for change in  T   2  *   are possible depending on the occupation 
of the voxel by capillaries, large vessels, and extravascular and 
intravascular BOLD [ 8 ]. In general, it can be stated that  T   2  *   signal 
differential between activation and rest period from these regions 
increases as a function of magnetic fi eld. For example, if typical 
acquisition parameters for fMRI studies are receiver bandwidth of 
2 kHz/pixel; TR 4000 ms; TE 40 ms; FOV 190 × 190 mm 2 ; 
30–40 slices; slice thickness, 5 mm; then implications of these 
parameters at 7.0 T can be contrasted to 1.5 T through a simple 
frequency shift. A typical BOLD effect of 0.5 ppm or 150 Hz 
frequency shift at 7.0 T could result in as high as 7 % change in 
signal. Considering that BOLD has typically produced SNR, 
∆ R / R , of the order of 1 % at 1.5 T, this fact indicates that a linear 
increase in ∆ R / R  with  B   0   is possible. 

 BOLD contrast acts as a change in  T   2  *   rate, Δ R   2  *  . What are the 
factors affecting Δ R   2  *  ? First, Δ R   2  *   is directly infl uenced by the 
change in concentration of dHb. In fact, the volume susceptibility 
is directly proportional to volume of dHb and as such on Δ R   2  *   
[ 34 ]. Assuming that dHb is proportional to blood volume, the 
fraction of the blood volume  f   dHb   occupied by dHb will have 
direct effect on the signal. Models have been proposed that assign 
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dependence of magnetic susceptibility difference between blood 
O 2 Hb and dHb, ∆ χ , raised to a power between 1 and 2. For a 
venous oxygen saturation increasing from 60 to 95 %, Davis et al. 
found a power of 1.5 fi tting the simulated Δ R   2  *   vs. ∆ χ  curve best 
[ 41 ]. Such studies measure the oxygen consumption increase vs. 
blood fl ow increase as a result of functional stimulation of the 
brain, visual cortex in this case [ 41 ]. So, while there could be con-
siderable differences between the increase in blood fl ow and oxy-
gen consumption, there is a unanimous consent on the role of 
oxidative metabolism as a signifi cant component of the metabolic 
response of the brain to externally induced neuronal activation. 

 A key role for  oxidative metabolism   during neuronal activation 
makes the role of high fi eld more momentous in both settling such 
issues and enhancing the  fMRI   SNR. One needs to determine with 
certainty where the changes of the blood activation come from. 
They could come from the brain tissue or from the draining veins 
near the activated region. Many fMRI studies do not make any 
distinctions between these two contributions. This is partially due 
to the challenges involved in addressing the issue. As it was 
 mentioned earlier, spin echo and diffusion weighting are used to 
differentiate contributions from different-sized vessels. Considering 
the small BOLD effect at low fi eld, about 1 % change in signal, an 
increase in fMRI signal is essential to enable suppression of BOLD 
signal through SE or diffusion in order to accurately investigate the 
source of activation. This is owing to the fact that SE EPI has more 
 T  2  than  T   2  *   weighting reducing sensitivity to local susceptibility- 
based changes. The GE readout is responsible for the  T   2  *   contrast. 
The extent of  T   2  *   overlay on  T  2  contrast of SE EPI is fi eld depen-
dent and drastic difference between  T  2  and  T   2  *   at high fi eld makes 
EPI readout in BOLD fMRI a good tool to investigate the exact 
location of the activated region. 

 Furthermore, changes in oxygenation induced by neuronal 
activation are complex. In the early stage of response, within the 
fi rst 2–3 s, an increase in dHb is observed, which is called the “ ini-
tial dip  ” [ 42 ]. At the end of this stage a decrease in dHb and an 
increase in O 2 Hb are observed. High fi eld can refi ne this hemody-
namic behavior. The initial dip has not been so conspicuous at 
1.5 T and as such not well documented. The strength of the initial 
dip has been reported to be more than fi ve times stronger at 7.0 T 
compared to 1.5 T. Furthermore, the nature of the initial dip pro-
vides insight into the mechanism of oxygen utilization vs. cerebral 
blood fl ow. In this regard, the initial dip could be used as another 
tool at high fi eld to study the correlation between hemodynamics 
and neuronal activities  .  

   In the absence of physiological noise, fMRI at high fi eld could 
produce functional maps of the brain with even higher resolution 
[ 43 ]. Scanners that already acquire submillimeter images at 7.0 T 

5.4     Physiological 
Noise     
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will approach microscopic resolution in the absence of the limiting 
noise. Unlike thermal noise, which is temperature dependent, fl at 
in frequency, not encoded by gradients, and hence constant at 
room temperature, physiological noise is a function of biological 
activities with relatively strong MR implications. As acquisition 
time of individual slices is around 10 ms, physiological noise dur-
ing that time is not as debilitating as it is in the time series. Intensity 
of this time series noise in fMRI has shown variations which cor-
relate with the respiratory and cardiac cycles, indicating  physiologi-
cal modulation   of BOLD by lung and cardiac function. In fact, 
these signals have variations independent of stimulation paradigm 
and thermal noise. Physiological noises and their correlation with 
various physiological functions are independent of fi eld strength. 
Nevertheless, there are some indications that physiological noise 
might have some components in brain activation as well [ 43 ,  44 ]. 
Nevertheless, physiological noises have BOLD-like signal with 
low-frequency and TE-dependent  variations [ 45 ]. It has also been 
shown that physiological noise could be dependent on the signal 
strength and its brain regional dependence. In this regard, it has 
been shown to have greater magnitude in cortical GM than in 
white matter [ 43 ]. The possibility of physiological noise depen-
dence on the signal strength could not be related to magnetic fi eld 
strength. However, conversion of brain metabolism into MR sig-
nal might produce a “resting-state” signal that will not correlate 
with external stimulations and consequently degrades the  fMRI   
SNR. It has been proposed that relative strength of physiological 
noise could also be due to the choice of imaging resolution. This 
could be caused by a large voxel size which results in an increase in 
physiological noise which in turn degrades the activation signal 
[ 46 ]. These optimum voxels become smaller as fi eld strength 
increases. However, if there is any vascular cause of physiological 
noise the inverse relation between the fi eld strength and optimum 
voxel size will be limited  .   

6     High-Resolution fMRI   

 High spatial resolution ( submillimeter voxels  ) is an expected out-
come of imaging at high magnetic fi elds. The information content 
of fMRI data can best be extracted by using an accurate account of 
the effect of  neural activity   on fMRI signals. In order to make 
fMRI images directly depicting cortical information, it is crucial to 
image at the scale of functional units of  cortical structure  , i.e.,  cor-
tical columns   [ 47 ]. Details of structures of  cortical columns   are the 
most prominent features of the architecture of the cortex. The  cor-
tex   is organized in layers parallel to its outer surface (horizontal 
layers). Layers are specialized in the cell types they contain. Both 
the  cell types   and their connections with other neurons are unique 
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in each layer. Nevertheless, there are distinct units connecting neu-
rons in the vertical direction (perpendicular to the outer surface). 
From the outer surface of the cortex inward, these neuronal units 
are piled up deep into the cortex and participate in producing 
response to the same external stimulations. The fact that these ver-
tical structures penetrate though the entire cortical thickness gives 
them the attribute of cortical columns. The cortex is made up of 
about 20 billion neurons and contains progenitor cells and glial 
cells and their structure is organized in units of minicolumn each 
constituted of about 100 neurons. These minicolumns are tied to 
each other to form cortical columns [ 47 ]. fMRI at high fi eld is 
capable of visualizing these columnar units. 

 To date, high-fi eld fMRI of  columnar organization   has been 
concentrated mostly on the visual systems. Since neurons involved 
in the specifi c functions are incorporated in the same columns with 
average dimension of 0.5 mm along cortex surface, fMRI  resolutions 
comparable to this dimension are essential for their observation. At 
lower fi elds, fMRI has shown to be able to detect site of the BOLD 
signal to within 5 mm at 1.5 T down to <1 mm at 7.0 T. But the 
point spread functions make the relationship between  susceptibil-
ity-based BOLD      and  loci of neuronal activity   a function of correla-
tion between hemodynamics and neuronal response which is not 
known with certainty [ 48 ]. It has been reported that  submillimeter 
in-plane resolution   and the negative bold response ( NBR)      or “ini-
tial dip” can be used to locate the site of neural activation in the 
visual cortex (V2) of anesthetized cats at 7.0 T [ 49 ,  50 ]. Such fi nd-
ings at the columnar level will bestow fMRI a new capability in 
functional mapping of the brain. Also, it is clear that low-fi eld fMRI 
cannot achieve similar results due to lower susceptibility and poor 
 SNR    and CNR   in reduced voxel volumes. The spatial resolutions 
required for positive identifi cation of sites of neuronal activities 
require resolutions in hundreds of microns range which are only 
possible at high magnetic fi eld, i.e., >4.0 T. The  neurophysiology of 
neuronal columns   has to be refl ected in BOLD response in a way to 
increase specifi city and spatial resolution of fMRI. This places the 
spotlight on high magnetic fi elds. One major requirement of an 
imaging technique that is to elucidate the neurophysiology of the 
 central nervous system   using the BOLD dynamics is to reach high 
spatial and temporal resolution at the same time. High-fi eld fMRI 
has shown to have such potential. 

   Gradients and RF coils are the two  components   of MRI scanners at 
the forefronts of signal generation and detection. As such, their less 
than ideal performance is the source of great many nuisances col-
lectively referred to as artifacts [ 51 ]. To eliminate the high-fi eld dis-
tortions of fMRI images, a variety of solutions are available [ 52 ]. 
 Postprocessing techniques   are proposed to correct for some of the 
distortions with known origins. Strong gradients also help reduce 

6.1   RF   and Gradient 
Coil Technology     
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distortions as they increase the receiver bandwidth which in com-
parison, susceptibility induced changes will reduce. High-fi eld works 
have also shown that  multishot EPI   has been able to reduce distor-
tions causing an increase in acquisition time. For those measure-
ments in which temporal resolution and spatial resolution do not 
have to be at maximum multiecho EPI is a viable approach. However, 
due to the low frequency nature of physiological noise, longer acqui-
sition will increase the signal variations of physiological functions. 

 RF coil technology appropriate for high fi eld has many  design   
aspects in common with coils used in lower fi elds [ 15 ]. However, 
due to the nature of  RF distribution   at higher fi eld, RF engineering 
needs many advances for adaptation to high fi eld [ 53 – 55 ]. The 
popular  bird-cage designs   will be unable to take full advantage of 
high fi eld. In particular,  lumped element technology      in which 
capacitors and inductors are used is a design based on circuit analy-
sis using  quasistatic fi eld approximations   [ 15 ]. But this analysis is 
only valid at low fi elds since the  RF wavelength   required for spin 
excitation decreases as the fi eld strength increases. Specifi cally, RF 
wavelength in air at 1.5, 3.0, and 7.0 T are about 5, 2.5, and 1 m 
long. Taking into account the dielectric constant of biological tis-
sues which are around 80, the wavelength inside the body reduces 
by a factor of inverse of square root of dielectric constant to around 
50, 25, and 10 cm, respectively. Comparing the typical  dimension   
of an RF coil, say 20 cm diameter, with these numbers makes it 
clear that quasistatic approximations are only valid for fi elds below 
1.5 T where the RF coil dimension is much smaller than the wave-
length of the RF fi eld. At 7.0 T, the resonance frequency of 
300 MHz makes the in-tissue wavelength to be about 10 cm. Since 
typical dimensions of the human head are comparable to this wave-
length, the wave nature of the RF pulse becomes dominant within 
the head. Consequently, full wave  Maxwell equation      solutions are 
required to estimate the magnetic fi eld ( B   1  ) and electric fi eld ( E  1 ) 
of the RF as it penetrates into the body during the spin excitations 
[ 54 ]. Such solutions are only possible through the use of sophisti-
cated numerical computations, such as fi nite difference time 
domain ( FDTD)     . This approach treats the RF coil interaction with 
the human body as a full wave electromagnetic modeling that not 
only provides an accurate map of distribution of  B   1   fi eld over the 
subject but also offers a precise measure of specifi c absorption rate 
( SAR)     , which is an important indication of RF heating. 

  Inhomogeneous images      acquired at high fi eld (Fig.  1 ) demon-
strate the effectiveness of the techniques developed for alleviation of 
inherent inhomogeneities of high-fi eld images. These images point to 
a need for change in paradigm in the use of RF in high- fi eld MRI. Use 
of computational tools for coil design is one pillar of the new para-
digm. In addition, potential for excessive heat deposition predicted 
early in the history of MRI due to RF power constitutes a major safety 
issue that high fi eld will have for a long time. Another issue that is 
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highlighted at high fi eld is  dielectric effects   that have revealed their 
presence in high-fi eld images due to focusing of RF power at the cen-
tral regions of the imaged body [ 56 ]. In studies at high fi eld which are 
mostly done on the human heads, this effect shows strong inhomoge-
neous spread of RF reducing the power required in the peripheral 
regions for spin excitation. Dielectric effects or  dielectric resonance   
problems at high fi eld is an issue of concern for coil designers and 
must be taken into account in the use of high-fi eld scanners and analy-
sis of the data acquired by these systems. 

 Another pillar of the new paradigm is  parallel imaging  . Recent 
techniques for acceleration of image acquisition based on  parallel 
imaging  ,  SMASH-like methods      and  SENSE-like methods      [ 57 , 
 58 ], have shown promise in alleviating RF inhomogeneities at high 
fi eld. Both methods use surface like coil element which have an RF 
profi le stronger in the proximal regions than in the deep regions of 
the body. While the immediate use of  multichannel coil technology   
(parallel imaging) is in the receiver mode to accelerate signal recep-
tion, parallel transmit will also play an important role by restoring 
RF distribution over the whole head [ 59 ]. Possibility of the use of 
multichannel receive and transmit  technology      will allow high-fi eld 
fMRI to further accelerate and enhance image qualities with poten-
tial to achieve microscopic resolution BOLD  and perfusion-based 
images   with high temporal and spatial resolution. 

 Need for more powerful  gradients   is another necessity of high 
fi eld that has been highlighted recently as the receiver bandwidth 
increases in  high-fi eld scanners  . Although modern scanners are 
equipped with more robust gradients, the increase in gradient 
strength and slew rate continues. During the 1980s, clinical scan-
ners were equipped with gradients of 20 mT/m strength and 
50 T/m/s slew rate. Today, 40-mT/m gradients with 150 T/m/s 
slew rate are available in most clinical scanners. Such hardware has 
helped many fMRI studies at 3.0 T and has helped research in the 
development and use of more powerful gradients. 

  Gradients   also are the source of many image artifacts. At high 
fi eld, artifacts due to EPI are aggravated and research has achieved 
many successes in minimizing image artifacts. Advances have been 
also achieved in gradient coil design and gradient amplifi ers. 
Technologies such as active shielding (AS) of gradient have been 
realized. Considerable reduction in eddy current and its artifacts 
are reported by the use of  AS gradients  . Improved technology in 
pre-emphasis also has contributed in making modern gradients 
capable of higher performance even compared to the recent gen-
erations. Manufacturers of specialty high-fi eld gradients offer 
products with strengths of 50–100 mT/m with capability of 150–
300 μs switch time. Such gradients can clock slew rate up to 200–
500 T/m/s. High-fi eld fMRI is the primary benefi ciary of this 
technology, as strong gradients capable of faster switching rates can 
be used to recover signal losses due to inhomogeneities through 
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suppression of  T   2  *   artifacts. There are, however, disadvantages such 
as d B /d t  which emerge as switching time reduces in gradients. 
Faster switching increases d B /d t , which induces stronger electric 
fi elds in conducting tissues of the body causing nerve stimulation 
in the subject. Both designers and users of MRI scanners are made 
aware of the potential hazards of high gradient-induced electric 
fi elds and their use is governed by software and hardware safety 
supervisors to prevent incidents, such as ventricular fi brillation. 
Fortunately, fMRI uses sequences such as EPI which is very similar 
to the conventional gradient recalled echo sequence and it acquires 
the entire image in a single shot. The artifacts due to susceptibility 
and fast switching have been addressed in solutions, such as inter-
leaved EPI and discontinuity in  k -space, which have been dealt 
with by fl ip angle adjustments. In all, solutions in cleaning up EPI 
and other fast imaging techniques are making strong  gradients   
more useful for application in high-fi eld fMRI studies. 

 Another approach for using strong gradients without their 
undesirable side effects is through  asymmetric designs  , where the 
gradient fi eld is produced only over the intended body part. For 
fMRI of the brain, this is particularly useful as it allows the estab-
lishment of stronger and faster gradients while at the same time 
keeping the heart isolated from induced electric fi elds. As the fi eld 
strength increases, head-only scanners are gaining more attention. 
While high-fi eld advantage of SNR is independent of higher gradi-
ent strength or slew rate, the additional in-plane resolution and 
slice thickness that can be achieved by using powerful gradients 
will help achieve isotropic voxels and ultimately microscopic map 
of brain functio  n.   

7    Conclusion 

 Functional imaging has achieved much success due to the MRI 
inherent soft-tissue contrast and its capability of detecting 
paramagnetic- based brain activation signals. The proportionality 
of SNR  with fi eld strength   is an opportunity that has the potential 
of achieving microscopic brain mapping. High-fi eld fMRI uses the 
SNR currency to enhance sensitivity and specifi city in probing neu-
rophysiology. Many high-fi eld advantages can be utilized through 
realizable improved ancillary technologies such as RF coils, new 
excitation/detection schemes, artifact reduction, gradient technol-
ogy, and parallel imaging. Low-fi eld fMRI has already produced 
data from brain function that allows much insight into cognitive 
neuroscience. High fi eld, in turn, has shown potential of further 
unraveling brain mysteries by detecting activation caused by con-
trolled external stimulations with resolution that is approaching 
dimensions of functioning units of the brain. Such is the true 
potential of high-fi eld fMRI.     
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Chapter 5

Experimental Design

Hugh Garavan and Kevin Murphy

Abstract

This chapter addresses issues particular to the optimal design of fMRI experiments. It describes procedures 
for isolating the psychological process of interest and gives an overview of block, event-related and 
participant- response-dependent designs. An additional focus is placed on data analysis with emphasis on 
optimizing and isolating the neuroimaging signal in activated brain regions. Finally, the chapter addresses 
a number of practical matters including optimal sample sizes and trial durations that confront all research-
ers when designing their experiments.

Key words Task design, Sample size, Scan durations, Analysis, Regression, Efficiency, Frequency

1 Overview

Noninvasive functional neuroimaging techniques enable 
researchers to study the neurobiological substrates of psycho-
logical processes. The large body of neuroimaging research has 
two fundamental purposes. The first is to identify the brain 
regions that underlie a particular psychological process while the 
second seeks to identify differential responses of these regions to 
various stimuli or task challenges. The latter focus yields insights 
into both how the brain accommodates varying task demands 
and how differences between individuals or between clinical and 
healthy comparison groups might be explained by differences in 
neurobiological functioning. To achieve these goals, it is essen-
tial that one be able to isolate the psychological process of inter-
est and how best to do so, with particular regard to experimental 
design, is the focus of this chapter. Part II will describe issues 
particular to psychological experimental design, that is, experi-
mental control over the cognitive or emotional process of inter-
est. Part III focuses on data analysis with emphasis on optimizing 
and isolating the neuroimaging signal in the activated brain 
regions. Part III also addresses a number of practical matters 
that confront all researchers when designing their experiments.
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The distinction between isolating the psychological process of 
interest and isolating the signal associated with that process is made 
for pedagogical purposes. In practice, the two considerations are 
closely intertwined in that the experiment must be designed with a 
view to how the data are to be analyzed. In brief, a typical analysis 
decomposes the time-series data into their contributing sources of 
variance. These sources of variance, which are generally assumed to 
be linearly additive, can include signals of interest such as task- 
induced brain activity as well as nuisance signals such as those cre-
ated by head-movement, scanner signal drift, physiological 
processes, or the intrusion of extraneous psychological processes. 
The most common method for analyzing these data is a linear 
decomposition of the various signal sources using for example, a 
multiple regression in which separate regressors and planned con-
trasts between regressors capture both the unwanted variance and 
the variance of interest. Clearly, the design of the experiment needs 
to take into consideration what regressors and what contrasts of 
interest will be included in the analyses in order to ensure that the 
final brain activation map can be attributed to the psychological 
process of interest.

2 Task Design

As fMRI data are inherently noisy, it is important to induce as 
strong a signal as possible. This serves to maximize the contrast 
between the active task state and a comparison state (e.g., between 
a cognitive task and a visuomotor control task). In addition to 
maximizing contrast within an individual, it is also important to 
maximize contrast between individuals (e.g., between a clinical 
group and healthy controls) or between two times of testing (e.g., 
a pre-post comparison of treatment effects). To maximize the con-
trast between groups, it is advisable to isolate the psychological 
process that best discriminates the two groups. In this regard, neu-
roimaging researchers would be well-served by grounding their 
experimental methods in the relevant psychological literature that 
identifies the key functions that distinguish the clinical and control 
groups and that provides a wealth of research methods detailing 
how to isolate those functions experimentally.

Experimental designs in fMRI can be categorized into block, 
event-related, and a third, broader category, labeled participant- 
response dependent, in which a continuous measure obtained 
from the participant provides a regressor for probing brain activ-
ity. The block design averages brain activation over a sustained 
period of time (20–30 s would be typical durations) and con-
trasts this with similar periods of either a resting state or a com-
parison task which is typically chosen to contain all task demands 
except the  psychological process of interest. Brain regions that 
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differ between these conditions may then be attributed to the 
psychological process. In an effort to exclude signals associated 
with confounding physiological processes (described in detail 
below), aperiodic block durations, in which the alternating ON 
and OFF periods vary in durations, may be advisable.

This standard block design can be supplemented by including 
gradations of task challenge. This type of parametric manipulation 
can be quite advantageous: whereas the standard two-condition 
comparison (e.g., task A vs. task B or task A vs. rest) is open to the 
criticism of pure insertion (i.e., whether it is possible to selectively 
include and exclude a psychological function without affecting 
other task-related processes), the parametric manipulation assumes 
that the process is always present but to varying degrees in accor-
dance with the demands placed on that process. Examples would 
include presenting various intensity levels of a sensory stimulus [1] 
or manipulating the number of memoranda in a working memory 
task [2]. Block designs can also be enhanced by a sort of psycho-
logical triangulation in which the conjunction of distinct block 
design contrasts allows one to isolate a psychological process that 
can be separated from irrelevant surface features of the tasks [3]. 
For example, if one wishes to isolate the neuroanatomy of the 
mental rehearsal component of verbal working memory, one might 
design an experiment using quite distinct classes of stimuli with 
each class accompanied by its own control comparison. One task 
might require participants to store a list of common nouns over a 
rehearsal period and recall the words after that rehearsal period. A 
reasonable control condition for this task might be one in which 
the word list remains on-screen for the duration of the rehearsal 
period and participants read, rather than recall, the words after the 
rehearsal period. The second task might present a list of nonsense 
syllables through earphones. At the end of the rehearsal period a 
single nonsense syllable is presented and participants report, using 
a button box, if the single item was one of the rehearsed items. A 
control condition for this second task might simply prompt the 
participant to make a predetermined button press response at the 
end of a delay period that was of similar duration to the rehearsal 
period. The conjunction between the two activation maps, in 
which activation for each task is first subtracted from its control 
condition, may be argued to represent core regions responsible for 
verbal working memory for which the influence of extraneous task 
features (e.g., linguistic stimulus properties, response modalities, 
recall vs. recognition) are minimized. This strength of the conjunc-
tion approach, however, may often need to be balanced against the 
time costs involved in testing all the required conditions.

In circumstances in which a psychological process can be iso-
lated temporally then event-related designs are particularly useful. 
Here, brain activation time-locked to the events of interest can be 
selectively averaged enabling the researcher to embed trials of 
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interest amidst other control trials and to categorize the trials after 
the participant has completed the experiment. Error trials can be 
excluded (or averaged separately) and events can be coded by 
whether a participant detected a target or not, responded relatively 
fast or not, produced a subsequent behavior or not and so on [4]. 
This affords the researcher increased flexibility in probing the data-
set and has obvious advantages over the block design in circum-
stances in which the psychological process cannot be presented in 
blocks as in, for example, an oddball paradigm in which the nature 
of the phenomenon mandates that events are infrequent and 
unpredictable. The block and event-related designs can also be 
combined such that events of interest during an active task period 
can be isolated while the task period itself can be simultaneously 
contrasted against a control period [5, 6]. This type of mixed 
design provides additional information in that one can determine 
the inter-relationships between tonic activity levels (e.g., sustained 
attention or an induced emotional state) and the processing of a 
discrete trial (e.g., detection of a fearful face).

A final category of experimental design is what we have labeled 
participant-response dependent. Here, the participant provides a 
continuous measure that can, for example, be used to generate a 
regressor to correlate against brain activity measures. Despite a loss 
of experimental control over the participant’s behavior, this cate-
gory of design affords much flexibility when the phenomenon of 
interest is either not strictly task-dependent or is difficult to experi-
mentally induce. Examples include resting state acquisitions (in 
which correlated patterns of brain activity can be detected while 
the participant simply rests) [7], biofeedback (in which, for exam-
ple, a participant learns to control their level of brain activity) [8], 
passive viewing of a movie clip (in which there may be multiple 
sources of stimulation with each varying with a different time- 
course) [9] or in which performance varies in an unpredictable 
manner [10]. Performance modulations for which one could assess 
brain activation changes can be quite wide-ranging including 
response times or response time variability on a continuous perfor-
mance task [11], frequently sampled self-report measures of mood 
[12] and physiological measures such as heart rate or pupil- 
diameter [13]. In these examples the discrete measurements can be 
interpolated to provide a continuous time-series that can be cor-
related with the brain activation time-series data.

A related approach, albeit one that is manipulated to a degree 
by the experimenter, is one in which the researcher derives a com-
putational model of a subject’s performance. Here, a formal model 
of the processes hypothesized to underlie task performance is 
developed by the experimenter. For example, on a forced-choice 
reward task in which the subject attempts to maximize their win-
nings, one might hypothesize that subjects develop expectations of 
reward based on previous trial outcomes, experience prediction 
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errors if those expectations are violated, learn at different rates and 
so on. The parameterization in a formal model of these psychologi-
cal processes allows novel regressors to be created that track those 
processes over time. Importantly, identifying brain regions where 
activity covaries with those regressors serves to validate the theo-
retical computational model and its underlying mechanisms and, in 
this regard, is a valuable advance beyond the more commonplace 
localization of functions [14].

An important consideration permeating all experimental 
designs is the choice of baseline against which activation is con-
trasted. These baselines can be explicit as in the block design in 
which specific blocks are chosen for comparison or implicit as in the 
event-related and participant-response dependent designs in which 
the baseline is all task-related activity that is not accommodated by 
regressors in the data analysis. The choice of baseline determines 
the interpretation of what processes are captured in an activation 
map and requires very careful consideration by the experimenter.

The choice of which design to employ will be dictated by the par-
ticulars of the psychological process to be investigated and how easy 
it is to isolate. Block designs can be employed if the psychological 
function is easy to isolate or if it is of particular interest to compare 
two tasks. A simple example would be a contrast between unilateral 
and bilateral finger movements. Here, blocks of finger movement in 
just one hand could be alternated with blocks of finger movements 
in two hands. Rest periods might also be included in order to pro-
vide a low-level baseline against which any task- related activity 
could be assessed. The inclusion of a resting state baseline is gener-
ally advantageous as contrasts between two task- active periods can 
often be ambiguous in that greater activation in condition A relative 
to condition B could result from either more positive activation in 
A or a greater deactivation in B. A resting state baseline allows one 
to resolve this ambiguity by showing if activation increases or 
decreases in any one condition relative to the resting baseline. 
However, care must be taken when comparing task to rest as in the 
last few years a large body of literature has demonstrated that rest 
itself is not the absence of neural activity. For example, it has been 
shown that the default mode network is more active during “rest” 
than during a task (see further description of resting-state phenom-
ena and analyses in the chapter by Fornito—Chap. 10).

If the psychological function is not easily isolated then a conjunc-
tion analysis may be useful. As can be seen in the verbal working 
memory example given above, the conjunction design enables the 
researcher to identify the core functional neuroanatomy that is com-
mon across different operationalizations of a psychological process. 
In addition, it can also reveal task-specific activations enabling, for 
example, one to determine how verbal working memory rehearsal for 
linguistic information differs to that of nonlinguistic information. An 
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alternative approach may parametrically manipulate verbal working 
memory demands by asking participants to rehearse items of varying 
set sizes. The presumption here is that more items will engage verbal 
working memory rehearsal to a greater extent resulting in changes in 
activation corresponding to the increased memory loads.

Although block designs suffer from an inability to isolate cog-
nitive events that are temporally proximal by virtue of averaging 
over a prolonged duration, and may provide activation measures 
contaminated by extraneous tonic processes or isolated events 
(e.g., errors), they nonetheless have some advantages. For exam-
ple, if the psychological process of interest by its very nature exists 
over a prolonged duration (e.g., sustained attention) or does not 
exist as a temporally discrete event (e.g., an emotional reaction), 
then it may be assayed best by a block design.

Conversely, the event-related design is particularly useful if 
one’s goal is to isolate distinct cognitive events. In between-group 
comparisons (or time 1 vs. time 2 comparisons) the event-related 
design has the added advantage of being able to equate perfor-
mance levels by comparing the groups on correct trials only. That 
is, one can compare correct performance trials of one group against 
the correct performance trials of the second group even if the abso-
lute numbers of correct trials differ between the groups. In this 
regard, contamination from activity specific to error-related pro-
cesses will not confound the between-group comparison [15]. In a 
similar manner, selective averaging of trials may make it possible to 
eliminate other group differences (e.g., response speed) assuming 
that there are sufficient numbers of trials for this type of a matched- 
trial analysis. This is a particularly welcome feature as activation 
differences between groups that one may wish to attribute to a 
psychological difference can be confounded by secondary behav-
ioral or performance differences [16]. Indeed, the relationship 
between performance and activation levels is not straightforward. 
Often, researchers wish to ensure that the task produces perfor-
mance differences between groups (or within a group following 
some experimental manipulation) in order to justify that choice of 
task or the focus on the psychological process engaged by the task; 
why study the neurobiology of attention between healthy controls 
and children with attention deficit hyperactivity disorder (ADHD) 
if the latter are not shown to be worse on the attention task? 
However, this can be a double-edged sword in that performance 
differences and knock-on effects such as differences in frustration 
or anxiety levels can confound interpretation of activation levels. 
One proposed solution is to administer a task that is within the 
level of competence of all participants and which, therefore, may 
not produce group differences in performance. Such a task can be 
considered a probe of the neurocognitive functioning of the groups 
and substantial empirical evidence shows that brain activation dif-
ferences are often observed in the absence of performance 
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differences. The typical interpretation of activation differences 
when there are no performance differences is that reduced activa-
tion reflects better neural efficiency and less “effort.” This interpre-
tation is supported by studies showing greater levels of activity as 
task difficulty increases or those that show reduced activation fol-
lowing practice of a psychological process [17].

Finally, the participant-dependent response design may be a 
sensible choice when one can obtain a continuous measurement 
from the participant but cannot exercise full experimental control 
over behavior. For example, although emotional states are difficult 
to induce (and extinguish) experimentally, a physiological, self- 
report, or task-induced measure can provide a time-course of that 
emotional state which can be used to detect correlated brain regions.

3 Optimizing Experimental Task Designs

The key issue when optimizing experimental task design in fMRI is 
statistical power. There are many important basic variables to be 
chosen which, if selected wisely, will lead to high power and thus 
robust and reliable results. Too often these variables are chosen 
arbitrarily leading to poor experimental designs that fail to yield 
the expected outcomes.

When designing a task one needs to consider practical issues 
such as the number of participants or events required to give reli-
able results along with more analytic issues such as the estimation 
efficiency of the task design. These pragmatics are often dictated by 
feasibility constraints such as the availability of participants (e.g., 
how much access to the clinical population under study does one 
have?), the cost of scan time or the amount of available time in 
which the participant will remain comfortable and compliant. 
Despite the ubiquity of these concerns, surprisingly few studies 
have addressed them and, instead, more emphasis has been placed 
on the analytic issues of presentation rate, duty cycles, sampling 
procedures, detectability of activation and efficiency of response 
estimation. These analytic issues relate the task that will be 
 performed to the analysis methods that will be employed and pro-
vide guidance on the design details of an experiment. It is impor-
tant, however, that analytic considerations are not allowed to 
dictate the design of a task such that it is no longer appropriate for 
measuring/engaging the psychological process under study.

There has been increased concern in recent years about the power 
of many (most?) fMRI studies and a number of cogent critiques 
suggest that low sample sizes have generated a disconcerting num-
ber of false positive results [18, 19]. However, only a handful of 
studies have addressed how many participants are required to yield 
stable activation maps. The first paper addressing this issue showed 
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that conjunction analysis with a fixed-effect model is sufficient to 
make inferences about population characteristics thus reducing the 
number of participants required to infer differences between popu-
lations [20]. Although quite useful, this conclusion does not give 
a clear indication of the number of participants required. By esti-
mating the mean differences and variability between two block 
conditions, Desmond and Glover were able to perform simulation 
experiments generating power curves from which they could calcu-
late the required number of participants [21]. They found that for 
a liberal threshold of p=0.05, 12 participants were required to yield 
80 % power in a single voxel for typical block design activation lev-
els. However, in fMRI the multiple comparisons problem and the 
associated potential for high levels of false positives requires us to 
go to stricter thresholds where they demonstrated that twice the 
number of participants would be needed to maintain the same level 
of statistical power. This recommended number of participants is 
higher than the majority of fMRI studies but is similar to indepen-
dent assessments based on empirical data from a visual/audio/
motor task [22] and from an event-related cognitive task [23].

The Murphy and Garavan study [23] found that statistical 
power is surprisingly low at typical sample sizes (n < 20) but that 
voxels that were significantly active from these smaller sample sizes 
tended to be true positives. Although voxelwise overlap may be 
poor in tests of reproducibility, the locations of activated areas pro-
vide some optimism for studies with typical sample sizes. It was 
found that the similarity between centers-of-mass for activated 
regions does not increase after more than 20 participants are 
included in the statistics. The conclusion can be drawn from this 
paper that a study with fewer numbers of participants than Desmond 
and Glover propose is not necessarily inaccurate but it is incom-
plete: activated areas are likely to be true positives but there will be 
a sizable number of false negatives. Arriving at a similar conclusion, 
Thirion and colleagues argue that the reliability of group analyses is 
strongly affected by inter-subject variability and recommended that 
20 subjects or more should be included in fMRI studies [22]. 
Needless to say, the required number of participants is influenced 
by the effect size which, in turn, is affected by the sensitivity of the 
experiment (e.g., the strength of the experimental manipulation, 
the quality of the data acquisition and the accuracy of the data anal-
yses) and the contrast-to-noise of the signal that scales with field 
strength of the MRI scanner. These considerations may be even 
more important if one’s intention is to detect what is likely to be an 
even smaller effect size of a between- group comparison. However, 
with the push to higher field strengths (e.g., 7 T), smaller effect 
sizes should be detectable with similar numbers of participants.

Little research has addressed the optimal number of scans/
events needed for a successful fMRI study. A simple reason for this 
is that there is no standard metric for determining the required 
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number of scans/events and no gold standard for determining 
when the optimal number of events has been reached. One metric 
that has been utilized is the spatial extent of activation under the 
assumption that as more scans/events are included in the analysis, 
the spatial extent of activation will increase until all activated cortex 
is deemed above significance. When this occurs the spatial extent 
should asymptote providing an estimate of the required number of 
scans/events. Using this approach in a block design experiment, 
Saad and colleagues demonstrated that the spatial extent of activa-
tion increased monotonically with the number of scans included in 
the analysis and failed to asymptote after twenty-two 200 s long 
scans [24]. Similarly, Huettel and McCarthy found that the spatial 
extent of activation failed to asymptote even after 150 events in an 
event-related design [25]. However, this failure to asymptote may 
be a consequence of the analysis method employed [26]. The cor-
relation method does not asymptote because the goodness-of-fit to 
the regressor continues to rise with increasing degrees-of-freedom 
(df), which implies that the correlation measure will never plateau 
by adding more time points. The Huettel and McCarthy result 
[25] was replicated by Murphy and Garavan [26] but they also 
demonstrated that when using a standard general linear modeling 
(GLM) analysis rather than a correlation, the spatial extent of acti-
vation asymptotes after roughly 25 events in a properly jittered 
event-related design. This is certainly a more attainable number of 
events in the available scan time of standard fMRI studies. It can be 
assumed that at least 25 of each type of event are needed if there is 
more than one psychological process under study. Also, these 
results have been derived from primary sensorimotor processes in 
the brain so it is unclear whether they will still hold for more subtle 
cognitive activations. Again, differences in activation have not been 
addressed either: it is quite possible that many more events would 
be required to distinguish two processes with slightly varying acti-
vation levels since these differences could be dominated by noise.

A related concern is the optimal duration of a scan. How long 
a scan should last is obviously dependent on how densely the 
required number of events can be distributed. For example, a GO/
NOGO task must sparsely distribute NOGO events due to the 
need to build up a prepotency to respond while a simple motor 
response task can present the events more frequently. Other issues 
that limit how long a scan can last include participant comfort and 
ability to stay engaged in the task along with technical concerns 
such as throughput of data and image reconstruction times. For 
these reasons and more, it is common to split a scanning session 
into separate scans lasting 5–10 min each after which they can be 
concatenated into one single time-series and treated as a single 
scan in the analyses. However, breaks in scanning reduce the effi-
ciency of any temporal filtering that is used and can also introduce 
unwanted session effects. If the goal is to detect activation then a 
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block design is the most efficient approach (see below). In this 
case, the length of the scan is dependent on the amount of noise in 
the time series (which can be measured by calculating the temporal 
signal-to-noise ratio (TSNR) defined as the mean of the time series 
divided by its standard deviation), the size of the effect to be mea-
sured (eff) and the significance level (P) at which the activation is 
to be detected [27]. These authors derive an equation that deter-
mines how long one needs to scan to detect activation with a block 
design for volumes with high spatial resolution and suggest how 
this can be extended to an event-related design:
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where NG is the number of time points required for activation 
detection. Estimates of the size of the effect can be obtained from 
previous studies and TSNR measurements can be made using a 
short resting scan. Since these variables differ widely across types of 
task, brain regions, and scanners, it is impractical to suggest an 
optimal scan duration here.

The purpose of an experimental design is to alter neural activity, 
and hence the blood oxygen level dependent (BOLD) signal, as 
effectively as possible and in a predicted way thereby enabling the 
researcher to detect the resulting brain changes. Using this predic-
tion, one looks for corresponding patterns in the fMRI time series 
to determine which voxels were engaged in the task. A simple ref-
erence time series can be produced by convolving the stimulus 
 timing function (which is equal to 0 when no stimulus is applied 
and 1 when a stimulus is presented) with a hemodynamic response 
function (HRF) that accurately represents the shape of the BOLD 
response after a single event. The gamma variate function, y(t) = t r 
e−t/b, has been shown to effectively model the hemodynamic 
response to brief stimuli [28], with parameters r = 8.6 and c = 0.51, 
and is a popular choice for modelling the hemodynamic shape. The 
difference between two gamma-variates is also used in order to 
model the post-stimulus undershoot. It is important that the cho-
sen HRF model accurately reflects the true shape of the response. 
If, for some reason, the hemodynamic shape of a participant is 
atypical (e.g., following treatment with a substance that directly 
affects the vasculature or a patient group with vascular damage), 
then the results of the analysis could be confounded by this differ-
ence in shape. (It should be noted that there are more advanced 
approaches to reference time-series formation, such as ones that 
use basis functions rather than a predetermined HRF shape and 
these are addressed in a later chapter).

3.2 Analytic Issues
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The simplest type of analysis is a linear least squares regression 
of the equation:

 y t x t t( ) = × ( ) + + ( )b a e  (2)

where y(t) is the voxel time-series data, x(t) is the reference func-
tion (i.e., the expected BOLD response to the stimulus) with β its 
scaling factor, α is a constant, and ε(t) is a random Gaussian white- 
noise term. Both β and α are unknown parameters that are fit by 
the linear regression method. This equation can be extended to 
include extra regressors to remove unwanted trends in the data, 
such as baseline drift and physiological nuisance regressors, whilst 
simultaneously computing the scaling factor. This scaling factor, β, 
can then be used as an activation measure for each voxel.

Multiple reference waveforms can easily be included in this 
type of analysis, denoted by the term multiple linear regression. In 
an experiment with two active conditions [1, 2] the equation:

 y t x t x t t t( ) = × ( ) + × ( ) + + × + ( )b b a d e1 1 2 2  (3)

is fitted to the data. For this model, four parameters are estimated, 
the two scaling factors β1 and β2 and the baseline α and also a base-
line drift rate δ which accommodates for linear changes in the base-
line over time. It is possible to investigate whether β1 or β2 are 
nonzero and whether β1 is different from β2 with statistical signifi-
cance calculated using F-tests. This method allows one to identify 
active areas in the brain and calculate if an area is more active in one 
condition than another, thereby satisfying the two primary pur-
poses of fMRI. This equation can be further generalized to Y = X 
β + ε, where Y is a column vector of the voxel’s time-series data, X 
is the design matrix, β is a column vector of scaling factors and ε is 
a column vector of Gaussian white noise terms [29, 30]. This equa-
tion is called the General Linear Model (GLM) and is the basis for 
most fMRI analytic techniques. The columns of the design matrix 
X model the effects of interest and also confounding variables and 
are, in essence, the reference waveforms mentioned above.

When designing an experimental task, one is essentially specify-
ing these reference waveforms/regressors. To maximize statistical 
power, these regressors must be chosen wisely. For example, F-tests 
are used to determine if there are significant differences between 
the regressors. To increase statistical power, one can increase the df 
by lengthening the task (for long TRs, each additional timepoint 
adds a new df). It might seem like a good idea to use extremely 
short TRs to increase the number of time points and hence the 
statistical power. However, to gain an extra df for each additional 
timepoint, each timepoint must be statistically independent from 
every other. Unfortunately, due to autocorrelations introduced into 
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the fMRI data by physiological noise and scanner drifts, this is not 
the case. This example demonstrates that knowledge of the under-
lying mechanisms of fMRI along with the analysis methods is 
required when choosing even the simplest variables (such as the 
number of time points and the TR) for experimental design.

Efficiency of a task design is a measure of how accurately the 
GLM can estimate the β weights for each of the regressors, that is, 
how small the predicted variance of the β estimates will be. For 
example, assume a block design task that induces exactly a 2 % signal 
change in hundreds of voxels, all with different noise properties but 
with the same noise variance. If a GLM analysis is performed, the β 
estimate for every voxel will be approximately 2 % for all voxels with 
very little deviation. Since the variance of the estimates does not 
differ widely with noise distributions, this would be considered an 
efficient task. However, matters become more complicated when 
there is more than one regressor. Assume that there are two block 
conditions, A and B, where A and B are identical with the exception 
that B is delayed with respect to A by one TR. These two regressors 
are highly correlated so if a voxel responds only to condition A, it 
will be extremely difficult for the GLM to distinguish this from a 
voxel that responds only to B. For this reason, the β estimates for 
each of the conditions will vary substantially and this would be con-
sidered an inefficient design. If the conditions are designed so that 
they have zero correlation (this is achieved by delaying B by half a 
block length relative to A), it would be very easy to distinguish 
voxels that respond to each of the conditions individually or both of 
the conditions together. Therefore, the variance of the β estimates 
would be quite small and so the design is efficient. These simple 
examples show that efficient task designs come from regressors that 
are not correlated with each other. This can be slightly complicated 
by the contrasts of interest. For example, say we have a jittered 
event-related design where conditions A and B are randomly pre-
sented. If we want to find voxels that respond only to A (i.e., a 
contrast matrix of C = [1 0]), only to B (i.e., C = [0 1]) or differ in 
their response from A to B (i.e., C = [1 −1]), this design is very effi-
cient. However, if we want to determine voxels that respond equally 
to both A and B (i.e., C = [1 1]), then the design is very inefficient 
because such a voxel will always have an elevated activation level 
and therefore will be indistinguishable from a voxel that does not 
respond to either task. The simple idea that regressors must be min-
imally correlated becomes more complicated when multiple condi-
tions, nuisance regressors, and contrasts are placed into a GLM 
analysis. The efficiency of a task is related to the covariance of the 
design matrix X (i.e., all regressors expressed as columns of a matrix) 
and is given the formula:
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where C is the matrix of contrast weights and ' denotes the 
transpose of a matrix. Efficiency calculations should be carried 
out on all experimental designs before scanning to check that 
the regressors are sufficiently independent. A paper by Smith 
and colleagues argues against this efficiency calculation since it 
relates to computational precision rather than image noise [31]. 
This paper formulates the standard efficiency equations in terms 
of the required BOLD effect which takes into account the 
strength and smoothness of the time-series noise.

The question “how do we design a good fMRI task?” is really 
asking “what experimental timing will produce the most efficient 
design?”. There are two variables under our control, the stimulus 
duration (SD: defined as the length of time the stimulus is dis-
played) and the interstimulus interval (ISI: defined as the length of 
time between the offset of one event and the onset of another). 
Another common term is stimulus onset asynchrony (SOA) defined 
as SOA = SD + ISI. (Sometimes, ISI is used to mean SOA so care 
must be taken to understand the true meaning when reading the 
literature.) To maximize efficiency (i.e., minimize correlations 
between regressors by ensuring a clear temporal separation between 
the event types) one can use either a fixed ISI but vary the order of 
events from different conditions or one can fix the order of the 
conditions and vary the ISI. For example, if an event from either 
condition A or condition B is to be presented every TR, it is very 
inefficient to present the events in an alternating fashion A,B,A, … 
However, efficiency is increased if the order is randomized. On the 
other hand, if B must follow A (e.g., A is a picture of an object and 
the participant must respond to B, a word, deciding whether it 
matches the object or not), then randomizing the order is not pos-
sible. Therefore, we must vary the ISI between successive As and 
Bs to increase the efficiency of the design.

The issue of experimental timing is very important in fMRI 
tasks due to the relatively poor temporal resolution of the tech-
nique. Bandettini and Cox have shown that with a 2 s SD the opti-
mal ISI is 12 to 14 s when the ISI is kept constant [32]. At this 
optimal ISI, the experimentally determined functional contrast 
(i.e., the ability to detect activation) of an event-related task is only 
35 % lower than that of a block-design (which, as explained below, 
is the most efficient design). Simulations assuming a linear system 
showed that this should be 65 % lower suggesting the HRF is a 
nonlinear system. Most techniques in event-related fMRI analysis 
assume that the hemodynamic shape of the BOLD signal is linearly 
additive. It has also been shown that when the ISI is allowed to 
vary, the hemodynamic response shows a 17–25 % reduction in 
amplitude when trial onsets are spaced (on average) 5 s apart com-
pared to those spaced 20 s apart [33]. However, power analysis 
indicated that the increased number of trials at fast rates outweighs 
this decrease in amplitude if statistically reliable response detection 
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is the goal. So, despite the HRF being nonlinear at fast presentation 
rates, the mismatch with the regressor is compensated by the 
increase in trial numbers. Dale also demonstrated that if the ISI var-
ies, the statistical efficiency improves monotonically with decreasing 
mean ISI and that the efficiency can be up to ten times greater than 
that of a fixed ISI design [34]. These lessons on stimulus timing 
suggest that even though the HRF is nonlinear at short ISIs, closely 
packed, randomly presented events produce highly efficient designs.

There are two fundamentally different goals when analyzing 
event-related fMRI tasks: detection of signal change (which has 
been the focus thus far) and estimation of the HRF. Detection of the 
signal change involves determining one variable: the amplitude of 
the hemodynamic response. More information can be gleaned by 
estimating the HRF (e.g., time to onset, rise time, fall time, area 
under the curve) which can be used to determine subtle differences 
between groups or conditions that may not show up in an amplitude 
measure. However, this information comes at a cost: the experimen-
tal task can be optimized for either detection or estimation but not 
both. Birn and colleagues showed that the estimation of the HRF is 
optimized when stimuli are frequently alternated between task and 
control states, whereas detection of activated areas is optimized by 
block designs [35]. Liu and colleagues have developed a method 
that can simultaneously achieve the estimation efficiency of random-
ized designs and the detection power of block designs at a cost of 
increasing the length of the experiment by less than a factor of two 
[36]. There are many programs that allow one to randomly (or not 
so randomly) generate thousands of task designs in order to choose 
the most efficient for the task at hand, be it detection or estimation. 
Genetic algorithms (optimization algorithms that code different 
designs like chromosomes and allow them to “crossover” and “point 
mutate” as they “replicate”) that can produce designs that outper-
form random designs on estimation efficiency, detection efficiency, 
and design counterbalancing have also been developed [37]. Further 
work has also shown that using advanced mathematical techniques, 
block designs, rapid event-related designs, m-sequence designs (ref-
erence time series with an autocorrelation of zero) and mixed designs 
can nearly achieve their theoretically predicted efficiency and can be 
used in practice to obtain advantageous trade-offs between efficiency 
and detection power [38]. It is important when using programs to 
design experiments to realize that they may converge on a structure 
that may be problematic for the psychological process under investi-
gation (e.g., the most efficient task for detecting activation is a block 
design, however, as noted above, if we want to design an oddball 
study the oddball events of interest should not occur in a block).

When designing a task, one must also consider the frequencies 
at which the events of interest are presented. Analysis packages 
often perform high pass filtering to remove low-frequency drifts 
from the data. If all frequencies below the limit of, say, 0.01 Hz are 
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removed then the activation to a task with a block lasting greater 
than 100 s will also be removed. Similarly, this would be true for 
event-related tasks if the events were presented at the same low 
frequency. Other frequencies exist in the data that one must con-
sider. It is possible to remove the influence of physiological noise 
from fMRI data using techniques such as RETROICOR [39]. 
These physiological noise sources are known to produce fluctua-
tions in the data at the cardiac frequency ~1.1 Hz, at the respira-
tion frequency ~0.3 Hz and also at the respiration volume variation 
frequency ~0.03 Hz [40]. If these techniques are to be used and 
the task predominantly displays power at one of these frequencies 
(e.g., blocks lasting 33 s have a frequency of 0.03 Hz), then the 
correction techniques may remove the activations of interest and 
not just the fluctuations due to unwanted physiological processes. 
Conversely, if these corrections are not used, then the GLM may 
denote these physiological fluctuations as activations (if the phase 
of the fluctuations matches the phase of the task). Indeed, it has 
been demonstrated that task-related breathing fluctuations cause 
changes in fMRI signals across the whole brain that are time-locked 
to the task but are unrelated to neural activity [41]. One must also 
bear in mind that when using a long TR, all frequencies will be 
aliased into a narrow frequency band (e.g., with a TR of 2 s all 
frequencies above 0.25 Hz will be aliased into the range of 
0–0.25 Hz). This means that although the frequencies may seem 
far apart, the task and the physiological noise may alias to the same 
frequency (e.g., for a TR of 2 s, the respiratory frequency 0.3 Hz 
will be aliased to 0.2 Hz as will a task frequency of 0.7 Hz, that is, 
one event every 1.4 s). To avoid this problem it is best not to have 
the events regularly spaced so they reside at one frequency but to 
have random ISIs thus spreading the power to different frequen-
cies. The most efficient tasks are ones whose power is spread widely 
across the whole available frequency spectrum.

4 Conclusions

Designing fMRI tasks can be difficult with logistical constraints 
(e.g., how many participants and how much time per participant 
can one afford) obliging the experimenter to optimize the study 
design. The emphasis here has been on the experimental and ana-
lytic means of isolating a psychological process and its associated 
fMRI signal. Both considerations are central: optimal efficiency is 
of little comfort if one measures the wrong thing but there is little 
to be gained from an inaccurate measurement of a robust psycho-
logical phenomenon. General recommendations include the 
importance of grounding one’s experiment in the appropriate the-
oretical framework and using appropriate experimental methods, 
generating designs that are tested for their efficiency prior to data 
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    Chapter 6   

 Preparing fMRI Data for Statistical Analysis                     

     John     Ashburner       

  Abstract 

   This chapter describes the procedures applied to fMRI data prior to their statistical analysis. This usually 
begins with converting the data from original MR format to a form that can be used by the analysis soft-
ware. The data are then motion corrected. If an anatomical scan is collected for the subject, then it would 
be coregistered with the fMRI, and may serve to estimate the warps needed to spatially normalize the 
fMRI to some standard space. The fi nal processing step is usually to smooth the data.  

  Key words     Generative model  ,   fMRI  ,   Registration  ,   Artifact correction  ,   Spatial normalization  , 
  Smoothing  

1      Introduction 

 This chapter  provides   a brief overview of the image processing steps 
currently used for transforming fMRI data into a form suitable for 
analysis using some form of statistical parametric mapping.  Processing 
strategies   for fMRI data are not fi xed, and the particular procedures 
used depend on the data and the aims of the analysis.  Pragmatic 
motivations  , such as software availability and ease of use, also play a 
major role in determining how fMRI data are processed. This chap-
ter focuses on the main steps that are usually applied to the data, 
which mostly involve various  forms of image   registration. The fi rst 
step is usually to convert from  DICOM format     , to a fi le format that 
is more manageable. This is followed by  motion correcting   the data, 
which may include a distortion correction procedure. Often, there is 
also an anatomical scan collected for each subject, and this would be 
brought into alignment with the fMRI by a coregistration step. The 
anatomical image is sometimes useful in order to “spatially normal-
ize” the fMRI data. The warps, needed to deform the fMRI to some 
standard space, can be estimated using the  anatomical image  . Once 
these warps have been estimated, they can be applied to the motion 
corrected fMRI data, to spatially normalize them. The fi nal step, 
before statistical analysis, is usually to smooth the data. 
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 There are many variations on this sequence of operations. For 
example, a two-level approach for multi-subject analysis (random 
effects model) may be performed by generating parameter- estimate 
images from fMRI data that have not been spatially normalized. 
These parameter images could then be warped to the standard 
space and the statistical analysis performed on them. The smooth-
ing step would be omitted if the statistical analysis included a 
model of spatial smoothness. This chapter says nothing about 
“slice-time correction”, and assumes that the model used in the 
subsequent statistical analysis accounts for the fact that slices of 
fMRI data are not acquired simultaneously. Surface based 
approaches, in which the fMRI data is projected on to a represen-
tation of the cortical surface, are not covered.  

2      File Format Conversion   

 Most MRI scanners produce image data in a format that conforms 
to the   DICOM Standard      . This stands for “  Digital Imaging and 
Communications in Medicine   ”, and it is the standard used in virtu-
ally all hospitals worldwide. To keep up with technological 
advances, the DICOM Standard is re-published approximately 
every year or two. The standard is also extensible, and scanner 
manufacturers customize fi le formats to suit their own particular 
needs. Several hundred pages of documentation describing the 
basic fi le format are available from   http://dicom.nema.org/    . 

 Most fMRI analysis is currently performed within an academic 
setting, where the complexity of  DICOM   is un-necessary. 
 Neuroimaging analysis tools   are written by scientists and engineers 
who wish to avoid working with complex and diffi cult formats. As 
a result, several different fi le formats for fMRI data arose, many of 
which were variants of the  ANALYZE™ 7.5 format     , which consists 
of an “.img” fi le containing the image data itself, plus a “.hdr” fi le 
containing various pieces of descriptive information. For a number 
of years, various fMRI analysis software developers used the 
ANALYZE format in slightly different ways, or had their own fi le 
formats. This made inter-operability among packages very diffi cult, 
which precluded the use of tools developed at one site with tools 
developed at another. One classic example of such problems was 
the different ways in which the  voxels  1  of an image are ordered, 
which often caused uncertainty about the laterality of the brain. 

 The  NIfTI-1 data format      was developed in order to facilitate 
inter-operability among fMRI data analysis packages 2 , and it was 
recently extended to allow much larger images to be stored using 

1
   A voxel is a three dimensional pixel, and can be thought of as a “volume ele-

ment”, as opposed to a “picture element”. 
2
   See  http://nifti.nimh.nih.gov/ . 
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the  NIfTI-2 format     . Standards have been agreed on how the data 
format should be used, with the aim of making it easier to mix dif-
ferent software packages. Providing that only NIfTI compliant 
software is used, there should no longer be any confusion about 
the orientation of the brains within the images. 

 Images are usually treated as an  array of voxels     . For example, 
an anatomical image is generally treated as a 3D array, and most 
packages require this volume to be stored in a single fi le. DICOM 
usually stores each slice separately (as a series of 2D arrays), but 
most fi le format conversion routines will stack these slices together 
into a 3D volume. A run of fMRI data is usually considered as a 4D 
array, although for many procedures, it is often convenient to treat 
it as a time-series of 3D arrays. Some packages assume that the 
entire run is saved in a single fi le (e.g., FSL), whereas others treat 
the data as a series of fi les containing 3D volumes (e.g., SPM). 

 The  NIfTI format      allows storage on disk to be in either a left- or 
right-handed coordinate system. However, the format includes an 
implicit spatial transformation into a right-handed coordinate system. 
This transform maps from data coordinates (e.g., column i, row j, 
slice k), into some real world (x,y,z) positions in space. These posi-
tions could relate to  Talairach & Tournoux (T&T) space   [ 1 ], 
 Montreal Neurological Institute (MNI) space   [ 2 ,  3 ], or patient-
based scanner coordinates. For  T&T and MNI coordinates  ,  x  
increases from left to right,  y  increases from posterior to anterior, and 
 z  increases in the inferior to superior direction. MRI data are usually 
exported from the scanner as DICOM format, which encodes the 
positions and orientations of the slices. When data are converted 
from DICOM to NIfTI format, the relevant position and orientation 
information can be determined from the “ Pixel Spacing ”, “ Image 
Orientation ” and “ Image Position ” fi elds of the  DICOM fi les  . 

 Terms such as “neurological” and “radiological  convention  ” 
relate only to visualization of axial images. They are unrelated to 
how the data are stored on disk, or even how the real-world coor-
dinates are represented. It is more appropriate to consider whether 
the real-world coordinates system is left- or right-handed. T&T 
use a right-handed system, whereas the storage convention of 
ANALYZE fi les is usually considered as left-handed ( x  increases 
from right to left). These coordinate systems are mirror images of 
each other, so transforming between left- and right-handed sys-
tems involves fl ipping, and cannot be done by rotations alone .  

3    Corrections to fMRI Data 

 Most processing of  fMRI data   involves some form of spatial regis-
tration. The head of a single individual is generally considered to be 
fairly rigid, so the initial aim is to bring all the image volumes of 
each individual subject into alignment ( intra-subject registration  ), 
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prior to registering data from all the subjects together ( inter- subject 
registration  ). Various artifact corrections may be incorporated 
within the intra-subject registration procedures. 

   There are a number of image artifacts that result from the very fast 
acquisition times required for fMRI. Many of these have detrimental 
effects if not properly modelled. Some groups have developed in-
house software to improve on the algorithms supplied by scanner 
manufacturers for reconstructing images from the original K-space 
data. The objectives of these custom reconstruction algorithms 
include reducing Nyquist ghosting artifacts and ensuring that the 
model uses a better trajectory through K-space. Sites that perform 
their own image reconstruction require the original complex K-space 
data, for which there is no clearly defi ned DICOM standard. 

 The introduction of a subject into the scanner causes distortions 
of the magnetic fi eld [ 4 ]. The fi eld may be uniform when there is no 
subject present; but with a subject in the scanner, the fi eld is infl u-
enced (through Maxwell’s equations) by the varying magnetic suscep-
tibilities of different tissues. These effects are especially prominent at 
the interface between tissue and air, resulting in (for example) drop-
out and distortion in the frontal lobe in regions close to the nasal 
sinuses. For echo-planar images (EPI), the main effects of magnetic 
fi eld inhomogeneity are spatial distortions in the phase-encoding 
direction of the images, and dropouts (signal loss) that arise because 
of through-plane de-phasing. Some of the distortions can be reduced 
by active shimming (changing the fi eld of the scanner via the shim 
coils), or by passive shimming (introducing diamagnetic material into 
the orifi ces of the subject), but these measures only reduce the effects 
of distortions and dropouts, and cannot completely counteract them. 

 The models used for  intra-subject registration   of the head 
often assume rigid-body movement. Obtaining accurate alignment 
of a relatively distortion-free anatomical image with highly dis-
torted fMRI data is not possible, unless the geometric distortions 
are corrected. Therefore, one of the fi rst steps is often a correction 
for these distortions. Retrieving signal that is lost in dropouts is 
not possible, but there are a number of possible  post - hoc  approaches 
for correcting geometric distortions in the images.

 ●    It is possible to compute fi eld maps from additional scans that 
are normally collected just prior to the fMRI runs [ 4 ,  5 ] (see 
Fig.  1 ). This involves processing complex data (i.e., real and 
imaginary, or phase and magnitude) from these measurements 
in order to compute an unwrapped version of the phase. Phase 
measurements are in the range of −π to π radians, or are from 
0 to 2π radians. Phase unwrapping [ 6 ,  7 ] involves trying to add 
or subtract multiples of 2π to the values, such that the result is 
as spatially smooth as possible. With appropriate rescaling, this 
unwrapped phase map is converted into a voxel-displacement 
map for correcting the fMRI.

3.1     Artifact 
Correction     
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 ●      If the air, bone and other tissue can be segmented from the ana-
tomical images, then it becomes possible to simulate fi eld maps 
[ 8 ] by solving Maxwell’s equations. Separating air from bone is 
quite diffi cult from MRI scans, as both generally appear dark. 
Air appears dark because of its low proton density, whereas hard 
tissue such as bone has a very short T2 relaxation time, so most 
of the signal has decayed before it is detected. Additional prior 
information generated from computed tomography (CT) scans 
is generally needed in order to attempt such segmentation [ 9 , 
 10 ]. For this reason, the approach has not been widely adopted.  

 ●    Image registration procedures   can also be used to estimate the 
warps that align a distorted fMRI scan with a (relatively) 
distortion- free anatomical image [ 11 ,  12 ]. Contrast differ-
ences between the images mean that some form of 
 information- theoretic objective function is usually required, 
and the effects of signal dropout in the fMRI should also be 
taken into consideration [ 13 ].    

 The fi eld map approach is generally the most accurate way to 
correct geometric distortions, although a correction that combines 
all of the above strategies into a single model is likely to be the 
most accura  te.  

  Fig. 1    Distortions in EPI can be corrected by fi eld maps       
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   The most common application of within-modality registration in 
functional imaging is to reduce motion artifacts by realigning the 
volumes in the image time-series. The  objective of realignment   is to 
determine the rigid-body transformations that best align the series 
of functional image volumes to the same space. Blood oxygenation- 
level-dependent (BOLD) signal  changes   elicited by the haemody-
namic response tend to be small compared to apparent signal 
differences that can result from subject movement [ 14 ].  Subject 
head movement   in the scanner cannot be completely eliminated, so 
retrospective motion correction is usually performed as a processing 
step. This is especially important for experiments where subjects 
may move in a way that is correlated with the different experimental 
conditions. Even tiny systematic differences can result in a signifi -
cant signal accumulating over numerous scans. Without suitable 
corrections, artifacts arising from subject movement, which corre-
late with the experiment, may appear as activations. A second rea-
son why motion correction is important is that it  increases sensitivity  . 
The   t -test   is based on the signal change relative to the residual vari-
ance. The residual variance is computed from the sum of squared 
differences between the data and the linear model to which it is 
fi tted; movement artifacts add to this residual variance, and so 
reduce the sensitivity of the test to true activations. 

 At its simplest,  image registration   involves estimating a mapping 
between a pair of images. One image is assumed to remain stationary 
(the reference image), whereas the other (the moved image) is spa-
tially transformed to match it. In order to transform the moved 
image to match the reference, it is necessary to determine a mapping 
from the location of each voxel in the reference to a corresponding 
location in the moved image. The moved image is then re-sampled 
at the new locations. The mapping can be thought of as a function 
of a set of estimated transformation parameters. The shape of a 
human brain changes very little with head movement, so rigid-body 
transformations can be used to model different head positions and 
orientations of the same subject. Matching of two images is per-
formed by fi nding the spatial transformation (mapping) that opti-
mizes some mutual function of the images. For the case of a 
rigid-body transformation in three dimensions, the mapping is 
defi ned by six parameters: three translations and three rotations. 

 There are two steps involved in  registering   a pair of images 
together. There is the  registration  itself, whereby the set of param-
eters describing the mapping is estimated. Then there is the   trans-
formation   , where one of the images is transformed according to 
the estimated parameters. For  rigid    registration  , this step is often 
referred to as “reslicing”. 

 Registration involves estimating the parameters of a spatial 
 transformation   that “best” match the images. The quality of the 
match is based on an   objective function   , which is maximized or mini-
mized using some   optimization algorithm   . It is not computationally 

3.2    Motion 
Correction  
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feasible to search over all possible parameter settings to fi nd the 
global optimum of the objective function. Instead, registration is 
usually performed as a local optimization, which involves assigning 
an initial guess to the parameters, and then trying to improve the 
estimates in an iterative way. This involves iteratively transforming 
the moved image many times, using different parameter values, until 
the objective function can no longer be improved upon. Whether or 
not the fi nal estimate is globally optimal will depend on how far the 
optimal solution is from the starting estimate. For this reason,  pack-
ages   such as SPM sometimes require images to be manually reposi-
tioned prior to performing any image registration. 

  Alignment of fMRI data   is usually achieved by minimizing the 
mean squared difference between each of the images and a refer-
ence image, where the reference image could be one of the images 
in the series. For slightly better results, this procedure could be 
repeated, but instead of matching to one of the images from the 
series, the images would be registered to their mean (after a fi rst- 
pass alignment). In general, the best objective function to use for 
 image registration   depends on what assumptions can be made 
about the data. In the case of the mean squared difference objec-
tive function, the assumption is that the image noise is approxi-
mately Gaussian, and does not vary over the image. 

 Even after  rigid realignment  , there may still be some motion- 
related artifacts remaining in the data. There are many sources of 
such  residual artifacts  , and the most obvious ones are:

 ●     Interpolation error   from the re-sampling algorithm [ 15 ] used to 
transform the images can be a source of motion-related artifacts. 
For this reason, and also for speed and effi ciency, some registra-
tion  algorithms   use a Fourier interpolation method [ 16 ,  17 ].  

 ●   When  MR images   are reconstructed, the fi nal images are usually 
the modulus of the initially complex data. This results in  voxels   
that should be negative being rendered positive. This has impli-
cations when the images are re-sampled, because it leads to errors 
at the edge of the brain that cannot be corrected, irrespective of 
how accurate the interpolation method is. Possible ways to cir-
cumvent this problem are to work with complex data, or apply a 
low-pass fi lter to the complex data before taking the modulus.  

 ●   The  sensitivity (slice-selection) profi le   of each slice also plays a 
role in introducing artifacts [ 18 ]. Gaps between slices are dif-
fi cult to deal with as it is not possible to recover information 
that was not actually acquired.  

 ●    fMRI images   are spatially distorted, and the amount of distor-
tion depends partly upon the position of the subject’s head 
within the magnetic fi eld. Interactions between image distortion 
and the orientation of a subject’s head in the scanner can also 
cause other problems because purely rigid alignment does not 
take this into account. Relatively large subject movements result 

Processing fMRI Data



162

in the brain images changing shape, and these shape changes 
cannot be corrected by a rigid-body transformation alone. The 
interaction between image distortion and head orientation illus-
trates a limitation of conceptualizing processing as the applica-
tion of a series of tools to the data. These issues are better 
resolved by a  generative model   that combines both a model for 
image distortions, and a model of subject motion [ 19 ].  

 ●   Each volume of a series of  fMRI data   is currently acquired a 
plane at a time over a period of about a second. Subject move-
ment between acquiring the fi rst and last plane of any volume is 
another reason why the image volumes may not strictly obey the 
rules of rigid-body motion [ 20 ]. A better model would allow 
each slice to move separately—but it may lead to technical prob-
lems if there was too much movement. For example, the model 
would allow some points in the brain to be scanned more than 
once during the acquisition of a volume, and some points not to 
be scanned at all. Filling in the appropriate values in the cor-
rected images is diffi cult if there is no actual data to sample.  

 ●   After a slice is  magnetized  , the excited tissue takes time to 
recover to its original state, and the amount of recovery that has 
taken place will infl uence the intensity of the tissue in the image. 
This effect can be seen in the fi rst few scans of an fMRI time 
series, and is the reason why a few “ dummy scans  ” are collected 
at the start of an fMRI run in order for the intensities to stabi-
lize. Out of plane movement will result in a slightly different 
part of the brain being excited during each repeat. This means 
that the  spin-excitation   will vary in a way that is related to head 
motion, and so leads to more movement related artifacts [ 21 ].  

 ●    Nyquist ghost artifacts   in MR images do not obey the same rigid-
body rules as the head, so a rigid rotation to align the head will 
not mean that the ghosts are aligned. The same also applies to 
other image artifacts, such as those arising due to chemical shifts.  

 ●   The accuracy of the estimated  registration parameters   is normally 
in the region of tens of μm. This is dependent upon many factors, 
including the effects just mentioned. Even the signal changes 
elicited by the experiment can have a slight effect (a few μm) on 
the estimated parameters [ 22 ], so this in turn may have conse-
quences in terms of how signifi cant differences are interpreted    

 These problems cannot be corrected by simple  rigid-body 
realignment  , and so may be sources of stimulus correlated motion 
artifacts.  Systematic movement artifacts   resulting in a signal change 
of only one or two percent can lead to highly signifi cant false posi-
tives 3  over an experiment with hundreds of scans. This is especially 

3
   These would actually be Type III errors, rather than Type I, because the null 

hypothesis would be correctly rejected (there is a statistically signifi cant effect 
in the data) but for the wrong reason (the effect is due to motion, rather than 
BOLD signal). 
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important for experiments where some conditions may cause slight 
head movements (such as motor tasks, or speech), because these 
movements are likely to be highly correlated with the experimental 
design. In cases like this, it is diffi cult to separate true activations 
from stimulus correlated motion artifacts. All that can be con-
cluded is whether or not there is a difference among the data. The 
specifi c causes of any difference remain unknown, but it is gener-
ally hoped that they relate to BOLD signal changes. Providing 
there are enough images in the series and the movements are small, 
some of these artifacts can be removed during the subsequent sta-
tistical analysis by regressing out any signal that is correlated with 
functions of the estimated movement parameters [ 21 ]. However, 
when the estimates of the movement are related to the experimen-
tal design, it is likely that much of the interesting BOLD signal will 
also be regressed out of the data. For retrospective motion correc-
tion, these issues remain unresolved, and will remain unresolved 
until interactions among processing steps (including the statistical 
analysis) are properly modeled. 

 Prospective motion correction approaches are now becoming 
more practical, and their application in fMRI studies is increasingly 
widespread. These methods involve  tracking   the motion of the 
subject in the scanner, and adjusting the data acquisition accord-
ingly. A recent review of this subject area can be  found in [ 23 ].   

4        Inter-Modality Registration         

 For studies of a single subject, sites of activation can be localized 
more clearly by superimposing them on a high-resolution anatomi-
cal (structural) image of the subject (typically a T1-weighted MRI). 
This requires registration of the functional images with the ana-
tomical image. A further use for this registration is that a more 
precise spatial normalization can be achieved by estimating the 
requisite warps from a more detailed anatomical image. If the func-
tional and anatomical images are in register, then a warp estimated 
from the anatomical image can also be applied to the functional 
images. In practice, this requires the usual geometric distortions 
found in fMRI to have been corrected. 

 As in the case of movement correction, this registration is nor-
mally performed by optimizing a set of parameters describing a 
rigid-body transformation, but the matching criterion needs to be 
more complex because the anatomical and functional images nor-
mally have very different patterns of intensity. A simple mean- 
squared difference model will no longer be effective, so alternative 
objective functions (similarity measures) are needed. Inter-modal 
registration approaches initially involved the use of landmarks, which 
were manually defi ned on the images. The images were registered by 
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bringing the landmarks into alignment. An early automated approach 
based on a similarity measure between images was the AIR (auto-
mated image registration)  algorithm   [ 24 ]. The objective function 
was obtained by dividing the intensities of one image into a number 
of bins. For the voxels associated with each bin, the idea was to mini-
mize the variance of the corresponding voxel intensities of the other 
image. The algorithm was originally intended for registering posi-
tron emission tomography (PET) and anatomical MRI, and worked 
well—providing the MRI had non- brain tissue removed. 

 Many of the more recent similarity measures used for inter- modal 
(as well as intra-modal [ 25 ]) registration are based on  information 
theory . These measures are based on joint probability distributions of 
intensities in the images, usually discretely represented in the form of 
2D joint histograms, which are normalized to sum to one. The most 
commonly used measure of image alignment is   mutual information  
(MI)   [ 26 ,  27 ] (also known as   Shannon information   ). MI is a measure 
of dependence of one image on the other, and can be considered as a 
distance (  Kullback - Leibler divergence   ) between the joint distribution 
and the equivalent distribution assuming complete independence. 
Another perspective is that  MI   is a measure of the reduction of uncer-
tainty about one image given the other. Registration algorithms work 
under the assumption that the  MI   between the images is maximized 
when they are in register (Fig.  2 ). A number of other information 
theoretic measures have since been devised [ 28 ,  29 ], and a more 
complete review of information theoretic image registration 
approaches is given by [ 30 ]. A number of inter-modality registration 
algorithms have been thoroughly evaluated on the same data [ 31 ], 
and alignment accuracy is generally found not to be as high as that 
obtained by within modality registration.

   Artifacts in MRI can lead to problems when attempting to 
align images using information theoretic approaches. In particular, 
 intensity nonuniformity artifacts   (also known as “bias” or “ inho-
mogeneity  ”) can severely degrade the accuracy of image registra-
tion procedures [ 32 ]. There are a number of intensity inhomogeneity 
correction methods, which are typically based on information the-
oretic measures [ 33 ,  34 ]. It would seem natural to see image 
 registration and inhomogeneity correction combined into a com-
mon information theoretic framework   .  

5     Spatial Normalization   

 Currently, the main application for deformable image registration 
within imaging neuroscience is the procedure known as   spatial nor-
malization   . This involves  warping   the brain images from different 
subjects in a study into roughly the same standard space to allow 
signal averaging across subjects. In functional imaging studies, spatial 
normalization is useful for determining what happens generically 
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over individuals. A further  advantage   is that activation sites can be 
reported according to their Euclidean coordinates within a standard 
coordinate system [ 35 ]. The most commonly adopted coordinate 
system within the  brain imaging community   is that described by 
Talairach and Tournoux [ 1 ], although new standards are emerging, 
which are based on digital atlases [ 2 ,  3 ,  36 ]. 

 This section provides a brief overview of the ideas underlying 
 deformable image registration  . This is a large area of research, but 
a more comprehensive review may be found in [ 37 ,  38 ]. The pre-
vious sections described rigid-body approaches for registering 
brain images of the same subject, where it was assumed that there 
are no differences among the shapes of the brains. This is often a 
reasonable assumption to make for  intra-subject registration  , but 

  Fig. 2    The  top row  shows orthogonal  sections   of two MR images of different contrasts. Below this are joint 
intensity histograms of the image pair, both before and after image registration (note that the pictures show 
log(1 +  N ), where  N  is the count in each histogram bin)       
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is not appropriate for aligning brain images of different subjects. 
In addition to estimating an unknown pose and position, inter-
subject registration approaches also need to model the different 
sizes and shapes of the subjects’ heads and brains. 

 Methods of spatially normalizing images can be divided broadly 
into  label based  and  intensity based .  Label based techniques      involve 
identifying features (labels) in a subject’s image, and then bringing 
these into alignment with the appropriate location in some atlas. 
The original strategy proposed by Talairach and Tournoux involved 
matching discrete points, but other forms of label could also be 
used, such as lines or surfaces. Homologous features are often 
identifi ed manually, but this process is time consuming and subjec-
tive. Another  disadvantage   of using points as landmarks is that 
there are very few readily identifi able discrete points in the brain, 
so the registration  accuracy   in regions away from those points is 
likely to be limited. The required transformation at the defi ned 
features is known, but the deforming behavior in regions distant 
from the features can only be estimated, so it is usually forced to be 
as smooth as possible. There are a number of  interpolation meth-
ods   that ensure smooth spatial transforms, but the most commonly 
used approaches generally involve some form of radially symmetric 
basis functions, which are centered at the landmarks. 

  Intensity based approaches      operate by identifying a spatial 
transformation that optimizes some voxel-similarity measure 
between template data and the subject’s image. The template 
defi nes the standard space to which all the subjects’ data are warped 
during spatial normalization. Typically, the spatial transformation 
that best matches the template to a subject’s anatomical image is 
estimated using an iterative optimization procedure. 

  Image registration   uses a mathematical model to explain the 
data. Such a model will contain a number of unknown parameters 
that describe how an image is deformed, or warped. The objective 
is usually to determine the best possible values for these parameters 
by optimizing some objective function; in other words, to fi nd the 
single most probable deformation, given the data. In such cases, 
the objective function can be considered as a measure of this prob-
ability. A key element of  probability theory      is  Bayes’ theorem     :

  p p p pqq qq qq| | /D D D( ) = ( ) ( ) ( )    

This   posterior probability       of the parameters, given the image data 
(p( θ | D )) is proportional to the probability of the image data given 
the parameters (p( D | θ )—the  likelihood ), times the   prior probability       
of the parameters (p( θ )). The probability of the data (p( D )) is 
treated as a constant because the data are fi xed and known. The 
objective is usually to fi nd the most probable parameter values, and 
not the actual probability density, so this factor can be ignored. 
The most probable set of values for the parameters is known as the 
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 maximum a posteriori  (MAP)  estimate     . In practice, the objective 
function is normally the logarithm of the posterior probability (in 
which case it is maximized) or the negative logarithm (which is 
minimized). The objective function can therefore be considered as 
the sum of two terms: a likelihood term, and a prior term:

  - ( ) = - ( ) - ( )log log | logp , p pqq qq qqD D    

The  likelihood term   is a measure of the probability of observing an 
image given some set of model parameters. A simple example 
would be where an image is modeled as a warped version of a tem-
plate image, but with  Gaussian random noise   added. Such a model 
reduces to minimizing the sum of squared differences between the 
image and warped template. It is possible that parts of the image 
correspond to a region that falls outside the fi eld of view of the 
template, so it is usual to simply use the  mean-squared difference   
in the overlapping region. 

 The  prior term   refl ects the prior probability of a deformation 
occurring—effectively biasing the deformations to be realistic. If 
one considers a model whereby each voxel can move independently 
in three dimensions, then there would be three times as many 
parameters to estimate as there are observations. This would sim-
ply not be achievable without  regularizing  the parameter estima-
tion by modeling a prior probability [ 39 ]. 

  Registration      is usually considered as an optimization proce-
dure, which involves searching for the model parameters that maxi-
mize or minimize the objective function. If the registration is based 
on matching landmarks together, then it is often possible to regis-
ter the images in a single step, because the problem can be solved 
by a single matrix inversion. In contrast, if image registration is 
based on matching intensities, then some form of iterative scheme 
is required. These procedures are usually very susceptible to poor 
starting estimates, so a number of hybrid approaches have emerged 
[ 40 ,  41 ] that combine intensity based methods with feature match-
ing (typically sulci).  Registration    methods   usually attempt to fi nd 
the single most probable realization of all possible transformations. 
Robust methods that almost always fi nd the global optimum would 
take an extremely long time to run with a model that uses millions 
of parameters, so these methods are simply not feasible for prob-
lems of this scale. However, if sulci and gyri can be labeled easily 
from the brain images, then these features can be used to bias the 
registration, therefore increasing the likelihood of obtaining a 
more globally optimal solution. 

 In practice, the  parameters   describing the spatial transforma-
tions, which map between a subject’s images and a standard coor-
dinate system, are usually estimated by matching a template with 
an anatomical (typically T 1 -weighted) image. Providing the fMRI 
data are in accurate alignment with the anatomical image, then 
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the spatial transformation that would warp them to the standard 
coordinate system is also known. Spatially normalized versions of 
the fMRI data can simply be created using the same set of esti-
mated parameters. 

   The matching criterion is often based upon minimizing the 
mean- squared differences or maximizing the correlation between 
the image and template. For this criterion to be successful, it 
requires the individual’s image to have the visual appearance of a 
warped version of the template. In other words, there must be 
correspondence in the gray levels of the different tissue types 
between the images. The mean-squared difference objective 
function makes a number of assumptions. If the image data do 
not meet these assumptions, then the objective function may not 
accurately refl ect the goodness of fi t, and the estimated deforma-
tions will be suboptimal. Under some circumstances, it may be 
better to weight different regions to a greater or lesser extent. 
For example, when spatially normalizing a brain image contain-
ing a lesion, the mean squared difference around the lesion 
should contribute little or nothing to the objective function [ 42 ]. 
This is currently achieved by assigned lower weights for the 
matching criterion in these regions, so that they have much less 
infl uence on the fi nal solution. 

 In addition to modeling geometric deformations of the tem-
plate, there may also be extra parameters within the model that 
describe intensity variability. A very simple example would be the 
inclusion of an additional intensity scaling parameter, but the mod-
els can be much more complicated. There are many possible objec-
tive functions, each making a different assumption about the data 
and requiring different parameterizations of the template intensity 
distribution. For example, matching can be based on feature vec-
tors derived from the images [ 43 ], or can rely on some information 
theoretic model [ 44 ]. There is no single universally best criterion 
to use for all data. 

 Often, it is necessary to process the anatomical images prior to 
any attempt to align them with a template. This may involve strip-
ping off non-brain tissue from the image, which can improve the 
accuracy with which the brains themselves are registered. Because 
the interesting signal predominantly arises in gray matter, another 
strategy for increasing spatial normalization accuracy is to simply 
spatially normalize the data by aligning gray matter with a gray 
matter template image. A slightly better approach would involve 
simultaneously matching gray with gray and white with white. 
There are a number of readily available tissue segmentation algo-
rithms that can be used for identifying gray matter in brain MRI. 

 Another strategy that can be of great benefi t for increasing 
registration accuracy is the correction of  intensity nonunifor-
mity artifact   [ 33 ,  34 ], which would otherwise prevent accurate 

5.1     Matching Criteria     
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alignment. Such correction algorithms may be standalone [ 45 ], 
or they may be incorporated within tissue segmentation proce-
dures [ 46 ,  47 ]. Some deformable registration procedures explic-
itly incorporate bias correction [ 48 ], but recent developments 
combine bias correction, warping and tissue segmentation into 
the same model [ 49 – 53 ]. Within such unifi ed  generative mod-
el  s, the registration and bias correction inform the tissue seg-
mentation, and the tissue segmentation informs the registration 
and bias correction. 

 Currently, most spatial normalization algorithms use only a 
single image from each subject, which is typically  T 1 -weighted  . 
Such images only really delineate different tissue types. Further 
information that may help the registration could be obtained from 
other data such as diffusion weighted images [ 54 ]. These provide 
anatomical information more directly related to connectivity and 
implicitly function, possibly leading to improved registration of 
functionally specialized areas. Matching diffusion images of a pair 
of subjects together is likely to give different deformation estimates 
than would be obtained through matching T 1  weighted images of 
the same subjects. The only way to achieve an internally consistent 
match is through performing the registrations simultaneously, 
within the same model. Similarly, the patterns of bold signal across 
subjects could, in principle, be used to drive the registration—
although a naïve implementation of such an approach may cause 
problems for interpreting group results. We are now beginning to 
see an interest in driving deformable brain registration using 
resting- state data (e.g., [ 55 ]). 

 The choice of template data used for spatial normalization is 
important. It is sometimes tempting to base a template on the 
brain of a single individual, but such a procedure would produce 
different results depending upon the choice of whose brain was 
used. One could consider an optimal template being some form of 
average [ 56 – 58 ]. On average, registering such a template with a 
brain image generally requires smaller (and therefore less error 
prone) deformations. Such averages generally lack some of the 
detail present in the individual subjects. Structures that are more 
diffi cult to match are generally slightly blurred in the average, 
whereas the structures that can be more reliably matched are 
sharper. Such an average generated from a large population of sub-
jects would be ideal for use as a general purpose template. Another 
reason for using a template that better represents the study popula-
tion is that it does not bias the results more towards some brain 
regions than others. During spatial normalization of a brain image, 
some regions need to be expanded and other regions need to con-
tract in order to match. If some brain structure is especially small 
in the template, then this region will be contracted in the brains in 
the study, leading to a systematic reduction in the amount of 
BOLD signal detected from   it.  
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   At its simplest,  deformable image   registration involves estimating a 
smooth, continuous mapping between the points in one image and 
those in another. This mapping allows one image to be re-sampled 
so that it is warped (deformed) to match another (see Fig.  3 ). 
There are many ways of modeling such mappings, but these fi t into 
two broad categories [ 59 ].

5.2    Deformation 
Models  

Horizontal component
of displacement

Vertical component
of displacement

Horizontal component
of deformation

Vertical component
of deformation

Original image
with deformed grid

Warped image
with regular grid

  Fig. 3     2D displacements   generated from two scalar fi elds. The fi rst two panels pf the  top row  show displace-
ments represented as  images . Below these are different representations of these components. The deforma-
tion fi eld resulting from combining the components is overlaid on the top-right image, in order to deform the 
image as shown at the  bottom-right        
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 ●     The   small - deformation  framework   does not necessarily preserve 
topology 4 —although if the deformations are relatively small, 
then there may still be a one-to-one mapping between the 
images. This framework usually models deformations by a 
smooth displacement fi eld.  

 ●   The   diffeomorphic  framework   generates deformations that 
have a number of useful properties, such as enforcing the pres-
ervation of topology [ 60 ]. Within this framework, deforma-
tions are parameterized in terms of smooth velocity fi elds.    

 Images can be treated as continuous functions of space. 
Reading the value at some arbitrary point involves interpolating 
between the original voxels. For many interpolation methods, the 
functions are parameterized by linear combinations of basis func-
tions, such as  B-spline bases  , centered at each original voxel. 
Similarly, the deformations themselves can also be parameterized 
by linear combinations of smooth, continuous basis functions. 

 A potentially enormous number of  parameters   are required to 
describe the deforming transformations that align two images (i.e., 
the problem can be very high-dimensional). However, much of the 
spatial variability can be captured using just a few parameters. 
Sometimes only an affi ne transformation is used to approximately reg-
ister images of different subjects. This accounts for differences in posi-
tion, orientation and overall brain dimensions, and often provides a 
good starting point for  higher-dimensional registration models  . 

 Some of the more primitive deformable registration algorithms 
encode displacements via a  linear combination   of a relatively small 
numbers of basis functions. One such approach is part of the  AIR 
package   [ 61 ,  62 ], which uses polynomials (see Fig.  4 )       to model 
shape variability. Other models parameterize a  displacement fi eld  , 
which is added to an identity transform. Families of basis functions 
for such models include Fourier bases [ 63 ], sine and cosine trans-
form basis functions, which were used by early versions of the 
Statistical Parametric Mapping (SPM)  software      [ 64 ] (see Fig.  4 ). 
These models involve in the order of about 1000 parameters, and 
only permit the global head or brain shape to be modeled.

    Radial basis functions   are another family of parameterizations, 
which are often used in conjunction with an affi ne transformation. 
Each radial basis function is centered at some point and the ampli-
tude is then a function of the distance from that point.  Thin-plate 
splines   are one of the most widely used radial basis functions for 
image warping and are especially suited to manual landmark match-
ing [ 65 ,  66 ]. The landmarks may be known, but interpolation is 

4
   The word “topology” is used in the same sense as in “Topological Properties 

of Smooth Anatomical Maps” [ 15 ]. If spatial transformations are not one-to-
one and continuous, then the topological properties of different structures 
can change. 
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needed in order to defi ne the mapping between these known points. 
By modeling it with thin-plate splines, the mapping function has 
the smallest bending energy. Other choices of basis function reduce 
other energy measures, and these functions relate to the convolu-
tion fi lters that are sometimes used for image matching [ 67 ,  68 ]. 

 B-spline  bases      are also used for parameterizing displacements 
[ 11 ,  69 ,  70 ] (see Fig.  5 ). They are related to the radial basis func-
tions in that they are centered at discrete points, but the amplitude 
is the product of functions of distance in the three orthogonal 
directions (i.e., they are  separable ). The separability and local sup-
port of these functions confers certain advantages in terms of being 
able to rapidly generate displacement fi elds through a convolution- 
like procedure. Very detailed displacement fi elds can be generated 
by modeling an individual displacement at each voxel. This may not 
appear to be a basis function approach, but the assumptions within 
such models are often that the fi elds are tri-linearly interpolated. 
This is the same as a fi rst degree B-spline  basis   function model.

    Regularization   is generally based on some measure of defor-
mation smoothness. Smoother deformations are deemed to be 
more probable—a priori—than deformations containing a great 
deal of detailed information. The regularization  term      (prior term) 
of the objective function is often thought of as an “  energy density   ”. 
Commonly used forms for this are the  membrane energy ,  bending 
energy  or  linear - elastic energy . The form of the prior used by the 
registration will infl uence the estimated deformations (see Fig.  6 ).

   Small deformation approaches do not guarantee that the esti-
mated warps will be one-to-one and invertible. It is easy to 

  Fig. 4     Polynomial basis functions      ( left ) and Cosine transform basis functions ( right ). Horizontal and vertical (and 
through-plane for 3D) displacement fi elds may be modeled by linear combinations of such functions (see Fig.  3 )       
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introduce folding within this simple setting, where a point in one 
image may appear to align with two or more points in the other. For 
more biologically plausible results, it is useful to constrain the warps 
to be one-to-one by working within a  diffeomorphic  5   setting  . The 
key concept of this framework is that the deformations are generated 
by the composition of a series of much smaller deformations (i.e., 
warped warps). For deformations, the composition operation is 

5
   A diffeomorphism is a globally one-to-one (bijective) smooth and continu-

ous mapping with derivatives that are invertible (i.e., non-zero Jacobian 
determinant). 

  Fig. 5     B-spline basis functions   allow more detailed warps to be estimated than polynomial or cosine transform 
basis functions       
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achieved by re-sampling one deformation fi eld by another. Providing 
the constituent deformations are small enough, then they are likely 
to be one-to-one. A composition of a pair of  one-to- one mappings   
will produce a new mapping that is also one-to-one. Multiple nest-
ing can be achieved, so that large one-to-one deformations can be 
obtained from the composition of many very small ones. From a 
mathematical perspective, diffeomorphic deformations are the result 
of integrating differential equations over a unit of time, in which the 
deformations are a function of smooth continuous velocity fi elds. 
The composition of a series of small deformations can be viewed as 
an   Euler integration       of these differential equations. 

 Early  diffeomorphic registration approaches   were based on the 
 greedy  “ viscous fl uid ” registration  method   of Christensen and Miller 
[ 71 ,  72 ], which models one image as it “fl ows” to match the shape 
of the other. These methods can account for large deformations 
while ensuring that the topology of the warped image is preserved. 
Their disadvantage is that they are not formulated to fi nd the 
smoothest deformation. More recent algorithms for large deforma-
tion registration do aim to fi nd the smoothest solution. For exam-
ple, the  LDDMM  (Large Deformation Diffeomorphic Metric 
Mapping)  algorithm      [ 73 ] does not fi x the deformation parameters 

  Fig. 6    This fi gure illustrates the effect of different  types of regularization  . The  top row on the left  shows simu-
lated 2D images of a circle and a square. Below these is the circle after it has been warped to match the 
square, using both membrane and bending energy priors. These warped images are almost visually indistin-
guishable, but the resulting deformation fi elds using these different priors are quite different. These are shown 
on the  right , with the deformation generated with the membrane energy prior shown above the deformation 
that used the bending energy prior       
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once they have been estimated. It continues to update them such 
that the objective function is properly optimized. Such approaches 
essentially parameterize the model by velocities, and compute the 
deformation as the medium warps over unit time. A number of other 
variations on the diffeomorphic framework have emerged in recent 
years. These include the very popular   ANTS / Syn  software      [ 74 ], a 
number of algorithms that compute deformations by applying a 
“scaling and squaring” procedure to a single velocity fi eld [ 75 – 78 ], 
as well as some approaches that try to replicate the deformations of 
LDDMM using a “geodesic shooting”  approach   [ 79 – 81 ]. 

 Optimization problems for complex nonlinear  models  , such as 
those used for image registration, can easily get caught in local 
optima; so there is no guarantee that the estimate determined by 
the algorithm is globally optimal. If the starting estimates are suf-
fi ciently close to the global optimum, then a local optimization 
algorithm is more likely to fi nd the globally optimal solution. 
Therefore, the choice of starting parameters can infl uence the 
accuracy of the fi nal registration result. One method of increasing 
the likelihood of achieving a good solution is to gradually reduce 
the amount of regularization.  Registration   is fi rst performed using 
heavy  regularization  . Once this solution is found, then the proce-
dure is repeated using less regularization, and so on. This has the 
effect of making the registration estimate the more global defor-
mations before estimating more detailed ones. The images could 
also be smoother for the earlier iterations in order to reduce the 
amount of confounding information and the number of local 
optima. A review of such approaches can be found in [ 82 ]. 

 The  accuracy   of a number of deformable registration methods 
has been assessed using T1-weighted brain MRI, using manually 
labelled brain structures as a ground truth with which to compare 
[ 83 ]. The general trend was that those registration methods with 
most fl exibility (i.e., lots of parameters) tended to outperform 
those using relatively few parameters. Figure  7  shows the average 
of 550 T1-weighted MRI scans, which have been spatially normal-
ized using a relatively fl exible registration approach    .

6           Smoothing      

 Usually, the fi nal step of the processing pipeline is to smooth the 
images, which involves convolving the data with a three dimen-
sional Gaussian kernel (see Fig.  8 ). The amount of smoothing is 
defi ned by the   full width at half maximum  ( FWHM )   of the 
smoothing kernel. A broader FWHM produces smoother results, 
and the choice of FWHM is determined by many factors.

   More smoothing is usually used prior to statistical analyses of 
group studies, than would be used for studies of single individuals. 
Inter-subject registration is generally less accurate than the rigid- body 
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  Fig. 7    An average of 550 spatially normalized  T 1 -weighted images         

  Fig. 8    This fi gure shows the effect of convolving the image on the  left  with different kernels. In the  center , the 
 image      has been convolved with a circular kernel. The result is an image in which each pixel is the average of 
the values from the original image within the radius of the kernel. At the  right  is a result from convolving with 
a Gaussian kernel. Pixels in this image are weighted averages, where the weights depend on the distance from 
the center of the kernel       

 

 

John Ashburner



177

registration that is used within subject. If homologous functional 
regions in different subjects are not well aligned, then the activations 
will appear in different places in different subjects. Smoothing is used 
in order to increase the amount of overlap across subjects, and so 
increase the signifi cance of the results. The optimal amount of 
smoothing therefore depends upon the alignment accuracy. 

 Less smoothing would typically be used for single-subject anal-
yses. There are various reasons for smoothing such data, but the 
main one relates to the spatial frequencies of the interesting signal, 
compared to the noise. If the noise contains proportionally more 
high frequency than the signal, then it makes sense to remove some 
of the high frequencies by smoothing. Another reason for smooth-
ing is that it reduces the effective number of independent statistical 
tests that are performed. This can lead to greater sensitivity in 
results that are corrected for multiple comparisons. The disadvan-
tage would be that localization of activations is less precise. 

 Some of the more recent approaches for the analysis of fMRI 
data involve spatiotemporal models of activation. Such analyses do 
not require the data to be smoothed, as the models themselves deal 
with this issue  .  

7    Summary and Conclusions 

 The current fMRI data analysis paradigm involves applying a pipe-
line of tools to the data. One procedure is applied to the images, 
to produce some output. Then another procedure is applied to 
the output of that, and so on. The end result is a version of the 
data that has been massaged into a form suitable for applying sim-
ple statistical tests to. A number of centers have developed pipe-
line environments [ 84 – 86 ] to facilitate such processing streams. 

 An alternative and more principled approach is to consider a full 
model of how the data could have arisen. Such a   generative model    
would involve components for modeling the physics of the scanner, 
the motion of the subjects, the brain-shape variability among the pop-
ulation, and models for how the experiment elicits changes in the data. 
It would then be used to model the raw data, in order to make the 
kinds of inferences in which neuroscientists are interested. A full model 
for everything is a long way off, but scientists are making progress in 
terms of simulating fMRI data in individual subjects [ 87 ]. Once a sim-
ulation model can be made, then it is simply a matter of inverting it, to 
make the necessary inferences. Such models usually include a number 
of parameters that infl uence the data, but are of no interest in them-
selves. Accurate model inversion would require the effects of these 
uninteresting variables to be “integrated out”, which is not a straight-
forward procedure and is an area that occupies much of current meth-
odological research. Choosing an optimal model for a data- set would 
essentially be a form of  model selection , and could be done empirically 
by determining which has the greatest supporting evidence. 
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Chapter 7

Statistical Analysis of fMRI Data

Mark W. Woolrich, Christian F. Beckmann, Thomas E. Nichols, 
and Stephen M. Smith

Abstract

fMRI is a powerful tool used in the study of brain function. It can noninvasively detect signal changes in 
areas of the brain where neuronal activity is varying. This chapter is a comprehensive description of the 
various steps in the statistical analysis of fMRI data. This will cover topics such as the general linear model 
(including orthogonality, hemodynamic variability, noise modeling, and the use of contrasts), multisubject 
statistics, and statistical thresholding (including random field theory and permutation methods).

Key words fMRI, Analysis, Statistics, General linear model, Multisubject statistics, Statistical 
thresholding

1 Introduction

fMRI is a powerful tool used in the study of brain function. It can 
noninvasively detect signal changes in areas of the brain where neu-
ronal activity is varying. fMRI can therefore give high-quality visual-
ization of the location of activity in the brain resulting from sensory 
stimulation or cognitive function. It allows, for example, the study of 
how the healthy brain functions, how different diseases affect the 
brain, or how drugs can modulate activity or post- damage recovery.

After an fMRI experiment has been designed and carried out, 
the resulting data must be passed through various analysis steps 
before the experimenter can get answers to questions about experi-
mentally related activations at the individual or multisubject level. 
This chapter focuses on the statistical aspects of such analysis.

We need a statistical approach for two reasons. First, fMRI data 
is very noisy. The noise is often of the same order of magnitude as 
the fMRI signal changes we are trying to detect, and as such we 
can only approximately estimate the signal changes. Statistics are 
therefore needed to ask if the estimated signal changes are signifi-
cant, given the quality of the approximation. Second, many fMRI 
studies are carried out with the intention of answering some 
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 question about a population of individuals. For example, we might 
want to know what the difference in neural activation is between a 
patient and control group. Such population differences in neural 
activation can only ever be approximated, because not only is the 
fMRI data noisy but also we only ever have a sample of subjects 
from the populations. This issue is somewhat exacerbated in fMRI 
studies as the number of subjects sampled is typically quite small! 
Statistics are needed to see if the approximated population differ-
ences are significant given the quality of those approximations.

Figure 1 shows an illustration of the main analysis steps carried 
out in a typical fMRI study. There are three main components in 
the process. First, the individual subjects’ fMRI data must be pro-
cessed. Second, the information gleaned from this about the effect 
sizes (the size of the fMRI signal change in response to the experi-
mental task) for each subject is then combined in a group analysis. 
Finally, the group effect sizes are statistically thresholded to ask 
questions such as “Where is there significant activity in response to 
the experimental task for the population?” or “Where are there 
significant differences between populations (e.g., controls versus 
patients)?.” This final thresholding is carried out on statistic images 
as it takes into account the spatial characteristics of the data. Note 
that one could also perform thresholding on the effect size statis-
tics from a single-subject’s analysis, allowing one to ask questions 
such as “Where is there significant activity in response to the exper-
imental task for this subject?” The various steps in the analysis will 
be described in detail throughout the chapter.

2 Statistical Analysis of a Single fMRI Dataset

Later in the chapter, we will see how we go about asking statistical 
questions about populations of subjects. However, before this can 
be done, the individual subject fMRI data must be analyzed. The 
most common way of statistically analyzing fMRI data is by using 
a general linear model (GLM). As we shall see, this is a powerful 
framework that allows a wide range of different statistical questions 
to be asked about the data.

In a typical fMRI imaging session, a low-resolution functional vol-
ume is acquired every few seconds (MR volumes are often also 
referred to as “images” or “scans”). Over the course of the experi-
ment, 100 volumes or more are typically recorded. In the simplest 
possible experiment, some images will be taken while stimulation1 is 
applied, and some will be taken with the subject at rest. Because the 
images are taken using an MR sequence which is sensitive to changes 

1
 For the remainder of this chapter, reference to “stimulation” should be taken 

to include also the carrying out of physical or cognitive activity.

2.1 fMRI Data
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Fig. 1 Illustration of the analysis steps carried out in a typical fMRI group study. There are three main compo-
nents in the process. First, the individual subjects’ fMRI data must be processed (top). The information gleaned 
from this about the effect sizes (the size of the fMRI signal change in response to the experimental task) for 
each subject are then combined in a group analysis (middle). The group effect sizes statistic images are then 
statistically thresholded to find significant brain areas (bottom)

Statistical Analysis of fMRI Data
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in local blood oxygenation level, parts of the images taken during 
stimulation should show increased intensity, compared with those 
taken while at rest. The parts of these images that show increased 
intensity should correspond to the brain areas that are activated by 
the stimulation. The goal of fMRI analysis is to detect, in a robust, 
sensitive, and valid way, those parts of the brain that show changes 
in intensity at the points in time that the stimulation was applied.

A single volume is made up of individual cuboid elements 
called voxels (Fig. 2). An fMRI dataset from a single session can be 
thought of either as t volumes, one taken every few seconds, or as 
v voxels, each with an associated time series of t time points. It is 
important to be able to conceptualize both of these representa-
tions, as some analysis step make more sense when thinking of the 
data in one way and others make more sense the other way.

An example time series from a single voxel is shown in Fig. 3. 
Image intensity is shown on the y-axis and time (in scans) on the 
x-axis. As described above, for some of the time points, stimulation 
was applied (the higher intensity periods), and at some time points, 
the subject was at rest. As well as the effect of the stimulation being 
clear, the high-frequency noise is also apparent. The aim of fMRI 
analysis is to identify in which voxels’ time series the signal of inter-
est is significantly greater than the noise level.

Initially, a 4D dataset is pre-processed. This pre-processing is aimed 
at not only removing artifacts and reducing noise but also 
 conditioning the data so that it is more amenable to the statistical 
analysis that is to follow.

The most basic required steps that will be typically carried out 
are as follows. Once data has been acquired by the MR scanner, the 
pre-processing starts by reconstructing the raw “k-space” data into 

2.2 Preparing fMRI 
Data for Statistical 
Analysis

Fig. 2 What are voxels? Shown here are surface renderings of 3D brain images. On the left is a high-resolution 
image, with small (0.5 × 0.5 × 0.5 mm) voxels; the voxels are too small to see. On the right is a low-resolution 
image of the same brain, with large (5 × 5 × 5 mm) voxels, clearly showing the voxels making up the image
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images that actually look like brains. The data is then motion cor-
rected, where each volume is transformed (using rotation and 
translation) so that the image of the brain within each volume is 
aligned with that in every other volume. Spatial smoothing is then 
carried out, principally to reduce noise, hopefully without signifi-
cantly affecting the activation signal. Finally, each voxel’s time 
series is temporally high-pass filtered with a filter designed to remove 
the large amount of low-frequency temporal noise found in FMRI 
data, without removing the signal of interest.

Chapter 6 has already covered fMRI pre-processing in much 
more detail, including other optional steps that have not been 
mentioned here.

The first step in the statistical analysis is to come up with a good 
prediction, or model, of what we think the measured fMRI signal 
response will look like in voxels that are active. In the simplest type 
of fMRI experiment, we alternate periods of stimulation with peri-
ods of rest, in what we will refer to as a square-wave block design, 
as shown in Fig. 4 (left). We expect that a voxel which is active in 
response to the stimulus will contain an fMRI signal that generally 
fluctuates up and down with a time course that is similar to the 
stimulus time course (Fig. 4 left), whereas an inactive voxel will not.

However, can we come up with a better prediction of the fMRI 
signal than Fig. 4 (left)? In particular, we know, from experiment, 
that the response to a very short stimulus looks like the curve 
shown in Fig. 5. We refer to this response to an impulse of stimulus 

2.3 Predicting 
the Response

2.4 Hemodynamic 
Response Function

Fig. 3 An example time series at a strongly activated voxel from a visual stimulation experiment. Here the 
signal is significantly larger than the noise level. Periods of stimulation are alternated with periods of rest—a 
complete stimulation—rest cycle lasts 20 scans

Statistical Analysis of fMRI Data
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as the hemodynamic response function (HRF), and it is basically a 
delayed and blurred version of the short stimulus burst. This is 
because the variations that we can detect in blood oxygen level 
dependent (BOLD) fMRI signal are due to processes taking place 
in the vasculature: things such as the amount of blood oxygen-
ation, blood flow, and blood volume change when neural activa-
tion increases or decreases. Unsurprisingly, these vascular changes 
occur on a slower timescale than the neural activity. Note that there 
are also more subtle characteristics of the HRF. For example, as 

Fig. 4 Predicting the response using the known stimulus timings. This example is a square-wave block design 
where blocks of stimulation are alternated with blocks of rest. The square-waveform (left) describes the input 
stimulus timing; the predicted response (middle) results from convolving the stimulus time course with the 
hemodynamic response function and then sampling it at the temporal resolution of the experiment. This 
experiment has a repetition time (TR) of 2 s. This process produces a model, or predicted response, that looks 
much more like the data measured in voxels that are responding to the stimulus (right)

Fig. 5 The hemodynamic response function. A brief impulse of stimulation at 
t = 0 s causes a blood oxygen level dependent (BOLD) signal that is delayed and 
blurred. Here it is modeled as a double-gamma function

Mark W. Woolrich et al.
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can be seen in Fig. 5, there can be a post-stimulus undershoot as 
the HRF temporarily drops below baseline before rising back to 
zero. The HRF in Fig. 5 is a commonly used HRF, and is a double- 
gamma function of the form:
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where h(t) is the HRF as a function of time, G(μ, σ2) is a Gamma 
distribution parameterized by its mean, μ, and variance, σ2 (note 
that we can convert these to the traditional Gamma distribution 
parameters using α = μ2/σ2 and β = σ2/μ), and ρ is the ratio of the 
height of the positive Gamma to the negative Gamma.2

The most straightforward way of incorporating the HRF into 
our predicted response is to apply its delaying and blurring effect to 
the raw stimulus time course that we have in our fMRI experiment. 
This is achieved by the mathematical operation of convolution:
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This essentially assumes that the effects of the different impulses that 
make up the stimulus time course add together in an additive, linear 
fashion [1–4]. Figure 4 (middle) shows the result of convolving the 
HRF in Fig. 5 with the square-wave stimulus in Fig. 4 (left) to form 
our new improved predicted response. Strictly speaking, making the 
assumption of linearity is incorrect. We will see later how we can 
address this issue, and also discuss how to tell if that is necessary.

For now, using the HRF and convolving it with the stimulus 
time course provides us with a way in which we can come up with a 
reasonable prediction of the response for any general stimulus type. 
For example, Fig. 6 shows the predicted response for a sparse single-
event design and a dense randomized single-event design. Armed 
with our predicted response, we can then look to find those voxels 
that have fMRI time courses that match the predicted response well 
and, if they pass a statistical test, label them as being active voxels.

3 General Linear Modeling

We have so far discussed how to come up with a prediction of the 
fMRI signal in response to an experimental stimulus. However, 
what do we do when we have more than one stimulus switching on 
or off throughout the experiment? The answer is to use a GLM. This 
assumes that each of the stimuli have their own predicted response, 
and that these predicted responses then add together linearly in 

2
 The particular HRF in Fig. 5 has parameter values μ1 = 6 s, σ1 = 2.45 s, 
μ2 = 16 s, σ2 = 4 s, and ρ = 6.
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some combination unique to each voxel, to explain the data mea-
sured in that voxel. For example, consider that we have two experi-
mental stimuli: one auditory and one visual. Both are square-wave 
block designs, but they switch on and off at different times. The 
overall predicted response is given by a linear combination of the 
predicted responses:

 y t x t x t c e t( ) = ( ) + ( ) + + ( )b b1 1 2 2  (3)

where y(t) is the data in one voxel, and is a 1D vector (time course) 
of intensity values with one value for each time point. x1(t) and 
x2(t) are the predicted responses for our auditory and visual experi-
mental stimuli, respectively, and both are also 1D time courses 
with one value for each time point. c is a constant and would cor-
respond to the mean intensity value in the data. The linear combi-
nation of the predicted responses needed to explain the data in a 
particular voxel is described by the parameters β1 and β2. e(t) mod-
els the noise that is present in fMRI data.

Model fitting involves adjusting the mean level, c, and the 
parameters β1 and β2, to best fit the data. For example, if a particu-
lar voxel responds strongly to model x1, the model-fitting will find 
a large value for β1; if the data instead looks more like the second 

Fig. 6 Using the hemodynamic response function (HRF) and convolving it with the stimulus time course pro-
vides a way in which we can predict the response for any general stimulus type. Here we can see the predicted 
response for a sparse single-event design, where short bursts of 0.1 s stimulation are 25 s apart (top), and for 
a randomized single-event design, where short bursts of 0.1 s stimulation are separated with inter-stimulus 
intervals (ISIs) sampled from a Poisson distribution with mean of 7 s (bottom). Randomized single-event 
designs are an excellent way of working with stimuli that by their nature need to be single events, as they 
generally have better sensitivity than sparse single-event designs [5]

Mark W. Woolrich et al.
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model time course, x2, then the model-fitting will give β2 a large 
value. The GLM is used to analyze each voxel’s time series inde-
pendently. This is often referred to as a mass univariate analysis, 
and outputs statistics independently at each voxel.

There are a number of different of names that get used to 
describe the different components of the GLM. The predicted 
responses within a GLM are often referred to as explanatory vari-
ables (EVs), as they explain different processes in the data. They can 
also be referred to as regressors, and the βs as regression parameters, 
as we are performing what is also known as a multiple regression. 
The regression parameters, β, are also sometimes referred to as 
effect sizes, as they describe the size of the response to the corre-
sponding underlying experimental stimuli.3

The GLM is often formulated in matrix notation. All of the param-
eters are grouped together into a P × 1 vector β (where P is the 
number of EVs) and all of the EVs are grouped together into an 
N × P matrix X, often referred to as the design matrix, where N is 
the number of time points in the experiment. This gives us the 
GLM in the following form:

 ¡ = +X eb  (4)

where ϒ is the N × 1 vector of intensity values in the data, and e is the 
N × 1 noise vector. You may wonder what has happened to the mean 
parameter, c, in this new equation. There are two common ways in 
which this is handled. The first is to remove the mean, or de-mean, 
the data ϒ, and to also separately de-mean all of the EVs in the design 
matrix. This is appropriate as there is no information in the mean 
signal intensity of the fMRI data that can aid us in our statistical 
analysis. The second is to leave the mean as part of the GLM by creat-
ing an EV that has the value of 1 at every time point. The β or regres-
sion parameter for this EV will be determined when we fit the GLM 
to the data and will relate to the estimate of the mean parameter.

Figure 7 shows a design matrix for our example experiment 
with two stimuli (auditory and visual). Each column in the design 
matrix is a different part of the model. The left column (x1 or EV1) 
models the auditory stimulation, and the right column (x2 or EV2) 
models the visual stimulation.

The GLM is fit to the data at each voxel separately. This is achieved 
by adjusting the estimates of the regression parameters to find the 
best fit of the model to the data. Typically, it is assumed that the 
fMRI noise, e, is well modeled by a Gaussian distribution with a 

3
 Note that this common usage is slightly different from the definition some-

times used in the statistics literature, where effect size means β divided by the 
noise level.

3.1 Design Matrix

3.2 Fitting the GLM 
to the Data
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standard deviation, σ, unique to each voxel. When this assumption 
is made, the best fit of the model to the data is equivalent to mini-
mizing the sum (over all time points) of the squared difference 
between the data, ϒ, and the signal model, Xβ. That is we choose 
the β values that minimize:

 t
t tXå -( )¡ b 2

 
(5)

Mathematically, it can be shown that this is minimized when we 
estimate the βs as:

 
b = ( )-X X XT T1

¡
 (6)

where b  is our regression parameter estimate. In the example 
visual/auditory experiment in Fig. 7, it can be seen that the particu-
lar voxel data shown, ϒ, is from a voxel that is strongly activating in 
response to the visual stimulus modeled by x2, but not to the audi-
tory stimulus modeled by x1. This would result in a large value for β2 
and a low value for β1 when the GLM is fit to this data, suggesting 
that there is visual activation but no auditory activation in this voxel.

Until now we have considered a rather simple approach to dealing 
with the noise that is present in fMRI, by assuming that it is well 

3.3 Temporal 
Autocorrelation

Fig. 7 Example of the general linear model (GLM) for an experiment containing 
auditory and visual stimuli which have different stimulus timings. The design 
matrix, X, contains two predicted responses (also known as regressors or 
explanatory variables): x1 for the auditory stimulus and x2 for the visual stimu-
lus—see Eq. (4). In this, visualization time is running downwards. It can be seen 
that the particular voxel data shown, Y, is from a voxel that is strongly activating 
in response to the visual stimulus modeled by x2, but not to the auditory stimulus 
modeled by x1

Mark W. Woolrich et al.
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modeled as coming from a Gaussian distribution. Unfortunately, in 
practice, this is not the whole story. This is because fMRI noise, that 
is, the signal we record in the absence of any stimulation, is tempo-
rally autocorrelated. In particular, in the gray matter, this corre-
sponds to the fMRI noise being temporally smooth. This is because 
the nature of the many artifacts that make up fMRI noise, for exam-
ple, thermal noise, cardiac and respiratory rhythms, autoregulatory 
oscillations, and networks of spontaneous neural activity, tend to 
occur more at low frequency than at high frequency. We can see this 
imbalance between low and high frequency if we look at a plot of 
the power spectrum (the absolute value of a Fourier transform) of 
fMRI noise, an example of which is shown in Fig. 8a.

The presence of temporal autocorrelation is a concern because 
it affects the choice of the optimal estimation (model fitting) 
method, and perhaps more important, the accuracy of the 

Fig. 8 A summary of the process of pre-whitening. (a) Plot of the power spectrum of the residuals from an 
initial general linear model (GLM) fit to the data from one voxel. (b) Estimated power spectrum (representing 
the temporal autocorrelation estimate) obtained from fitting an autocorrelation model. (c) This spectrum is 
inverted to create the frequency characteristics of a temporal filter designed to “undo” the autocorrelation. (d) 
The pre- whitening temporal filter is applied to both the data and the explanatory variables (EVs) in the design 
matrix, and then this pre-whitened GLM is refit to the pre-whitened data. The residuals that result from this 
refit of the GLM should now be approximately white, that is have a flat power spectrum
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subsequent statistical tests. For example, if we ignore the fact that 
there is an increased amount of noise at low frequency, then we can 
underestimate the variability in the data and produce under- 
conservative statistical tests.

A number of strategies have been proposed for dealing with the 
problem of temporally autocorrelated noise. Traditionally, the most 
commonly used approach is pre-whitening [6–8]. The process of 
pre-whitening is summarized in Fig. 8. The first step is to estimate 
the temporal autocorrelation on the residuals, r X= -¡ b ,  from an 
initial GLM fit. The temporal autocorrelation estimate is then used 
to construct a pre-whitening temporal filter designed to “undo” 
the autocorrelation. In other words, the filter is designed to re-dress 
the imbalance between high and low frequency in the fMRI noise 
power spectrum, so that the new power spectrum has equal power 
at all frequencies. By analogy, since white light is a result of there 
being equal amounts of light at all frequencies/colors, we refer to 
noise with equal power at all frequencies as white noise—and there-
fore to the whole approach as pre- whitening. The pre-whitening 
temporal filter is applied to both the data and the EVs in the design 
matrix, and then this pre-whitened GLM is refitted.

A crucial step in pre-whitening is the estimation of the tempo-
ral autocorrelation. A wide range of approaches have been pro-
posed, including the use of auto-regressive (AR) models [6, 9], AR 
plus white noise models [10], spectral smoothing [8, 11], and spa-
tial regularization of autocorrelation estimates [8, 12, 13].

The pre-whitening approach described above is one that was 
designed to work in a classical statistical (“frequentist”) frame-
work. It is possible that inferring the autocorrelation on the residu-
als from an initial GLM fit can introduce inaccuracies, since the 
residuals, r, only serve as an approximation to the true error, e. 
More recently, alternative Bayesian strategies have been developed 
to deal with this problem [14, 15]. These have the advantage of 
inferring the autocorrelation characteristics at the same time as the 
GLM regression parameters, and to take into account the uncer-
tainty in the temporal autocorrelation estimation. However, these 
issues aside, they are essentially performing the same pre- whitening 
approach we have already described. Although computationally 
more demanding these techniques are being increasingly used.

When we fit a particular GLM to a particular voxel’s data, we get 
regression parameter estimates that indicate how much of each EV is 
needed to explain what we see in the data. If the parameter estimate 
of β for any particular EV is nonzero, then it might seem reasonable 
to assume that the voxel in question is neuronally responding to the 
stimulus that the EV represents. However, we only have estimates/
approximations of the true β obtained from a limited amount of 
noisy fMRI data. So, given the amount of noise and the estimate of β 
obtained, how much can we trust that any particular β is nonzero? 

3.4 Inferring Neural 
Activity
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It is only those voxels where we can satisfy ourselves in a statistical 
manner that this is the case, that we label as being active. The first 
step towards this is to convert the parameter estimates of β into a use-
ful statistic. Most commonly, we use a T-statistic, given by:

 

t =
( )
b

b



std
 

(7)

where the denominator is the standard deviation (uncertainty) of our 
parameter estimate. If the parameter estimate is low relative to its 
estimated uncertainty, the T-statistic, t, will be low, implying that β is 
unlikely to be significantly nonzero (and vice versa). We will see later 
what the standard deviation of our parameter estimate depends upon.

The question remains as to how we determine that a T-statistic 
is significantly nonzero. This is achieved by comparing the calcu-
lated T-statistic to the distribution of T-statistics we would expect 
to get if the true β value was zero. This is a null hypothesis test (the 
null hypothesis is that β is zero).

As mentioned earlier, we typically assume that the noise in 
fMRI is Gaussian distributed. This means that our expected 
 distribution of T-statistics under the null hypothesis is T-distributed. 
This is a standard statistical distribution for which the probability, 
or P-value, of getting a T-value greater than the one we have cal-
culated if the null hypothesis were true, can easily be calculated. As 
illustrated in Fig. 9, a low probability (low P-value) of the null 
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Fig. 9 Performing a T-test. The T-statistic we calculate for each regression parameter estimate is compared 
with the distribution of T-statistics we would expect if the true regression parameter were zero. This “null 
distribution” is a standard T-distribution. Here we are using a T-distribution with 100 DOF (this would corre-
spond to about 100 time points in the data). We calculate a probability, or P-value, as the proportion of the area 
under the curve in the positive tail of the distribution defined by our T-statistic, t. A low probability, or P-value, 
(left plot) of the null hypothesis being true means that we can more confidently reject the null hypothesis and 
label the voxel as having a nonzero β, and therefore as being neuronally activated by the stimulus that the β 
in question represents. T-statistics that have larger P-values (middle plot) or are deep into the negative tail of 
the distribution (right plot) have high P-values. In the latter case, this might seem a bit counterintuitive as we 
have a T-statistic that is in the extremities of the null distribution. However, this is because the test is direc-
tional and so we calculate the P-value by looking in the positive tail of the distribution only
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hypothesis being true means that we can more confidently reject 
the null hypothesis and label the voxel as having a nonzero β. We 
will see in Sect. 7 how we choose a threshold for the P-values.

So far, we have addressed how we might go about producing 
T-statistics and P-values, which describe how strongly each voxel is 
related to each EV in our design matrix. Contrasts are a framework 
whereby we can ask not just questions about each EVs parameter 
estimate (PE, or β) in isolation, but also a wider range of questions 
that compare the different parameter estimates with each other.

In general, a contrast is defined by a P × 1 vector, c, (recall that 
P is the number of EVs in the design matrix). This is multiplied by 
the P × 1 vector of parameter estimates, b , to give what is known 
as a contrast of parameter estimates (COPEs), cT b . The COPE is 
therefore just a linear combination of the parameters estimates; it 
is equal to the sum of each PE multiplied by the relevant number 
in the contrast vector.

For example, it may be desirable to compare two different PEs 
to test directly whether one EV is more “relevant” to the data than 
another EV. In our combined auditory and visual experiment, this 
would be asking “Where does the brain respond more strongly to 
the auditory stimulus compared with the visual stimulus?”. In this 
example, we have two EVs, one for the auditory stimulus and one 
for the visual (recall Fig. 7). So our contrast to answer this question 
would be cT = [1 − 1] (c is a column vector, hence the transpose 
here), resulting in a COPE, cTβ = 1β1 − 1β2.

The COPE is then simply treated as if it were itself an individ-
ual regression parameter estimate. In other words, in the same 
manner as Eq. (7), we calculate a T-statistic by dividing the COPE 
by its standard deviation:
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where the T-distribution in question has degrees of freedom 
(DOF) of N − P (recall that N is the number of time points in the 
experiment), and:
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where σ2 is the estimate of the variance of the fMRI noise:
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where r is the residual, that is, an estimate of the error, e, and is what 
is left over after the model is fit to the data, and is given by r X= -¡ b.

3.5 Contrasts
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As with the T-test on a single PE, we can calculate a probability, 
or P-value, of getting the calculated T-statistic under the null 
hypothesis in the same manner as in Fig. 9. The null hypothesis is 
that the COPE = 0, so if the calculated P-value is low then this sug-
gests that the it is unlikely that the COPE = 0. If we apply a cT = [1 − 1] 
contrast in the auditory/visual experiment, then this is equivalent 
to saying “the voxel is responding more strongly to the auditory 
stimulus compared with the visual stimulus.” We can infer that it is 
the auditory that is stronger than the visual, and not vice versa, 
because these T-tests on these contrasts are directional. Technically, 
this is because we are doing the null-hypothesis test in Fig. 9 on one 
tail (in particular, the right-hand tail) of the distribution only. As 
shown in Table 1, if we want to ask “Where does the brain respond 
more strongly to the visual stimulus compared with the auditory 
stimulus?,” then we would use cT = [−1 1]. All that remains to com-
plete the null hypothesis test is a choice of threshold, such that if the 
calculated P-value drops below that threshold, we reject the null 
hypothesis and say that the contrast is significant. We shall see later 
in Sect. 7 how we go about doing this while also taking into account 
the spatial nature of the data.

Even in the relatively simple auditory/visual experiment, there 
are a number of different questions that can be answered. See 
Table 1 for some other examples.

Even in this relatively simple experiment, there are a number of 
different questions that can be answered. In particular, it is impor-
tant to remember that the directionality of the T-test is important. 
Note that:

EV1 is the auditory predicted response and EV2 is the visual pre-
dicted response.

COPE stands for contrast of parameter estimate and EV stands for 
explanatory variable

The last example contrast in Table 1 was a [1 1] contrast. It is a 
common misconception that such a contrast asks “Where is there 
significant activation due to either the visual or the auditory stimu-
lation?” In fact, this contrast calculates COPE = +b b 

1 2 , which is 
proportional to the average value of the two regression parameters, 
b b 

1 2 2+( ) / , and hence is actually asking “Where is there signifi-
cant activation averaged across both conditions?”

So how do we go about asking the question “I want to find 
where there is significant activity due to either the visual or the 
auditory stimulation”? The answer is to use F-tests. An F-test is 
defined by specifying a set of contrasts that we want to test simul-
taneously. This then tests the null hypothesis that all of the COPEs 
that are in the F-test are equal to zero. Therefore, we can find 
significance (reject the null hypothesis) if any of the COPEs is non-
zero. Another perspective is that the F-test will find significance if 

3.5.1 F-Tests

Statistical Analysis of fMRI Data



198

there is any linear combination of the COPEs that explains a sig-
nificant amount of variance in the data.

So to ask “Where is there significant activity due to either the 
visual or the auditory stimulation?,” we simply need to include in 
an F-test the contrast that asks where there is significant activity 
due to the auditory stimulation, [1 0], along with the contrast that 
asks where there is significant activity to the visual stimulation, 
[0 1]. Formally, this is done with an F-test contrast matrix, c, that 
contains both of these contrasts:

 
cT =

æ

è
ç

ö

ø
÷

1 0

0 1
.
 

Note that in the T-tests, our contrasts were P × 1 vectors. Now, 
F-tests are generally described as P × K contrast matrices, c, where 
K is the number of contrasts in the F-test, and recall that P is the 
number of regression parameters in the GLM. Using this contrast 
matrix, we can then calculate an F-statistic:

 
f

c c c

K
=

( )b b b  

T T T

.
var

 
(11)

Analagous to how the T-statistics were T-distributed under the 
null hypothesis that the COPE is zero, this F-statistic is F-distributed 
(with DOF K and N − P) under the null hypothesis that all of the 
contrasts in the F-test are zero cT .b =( )0  As such, we can proceed 
with a null-hypothesis test in exactly the same manner as we did 
with the T-test.

Table 1  
Examples of contrasts that might be used in the two stimulus auditory/visual experiment

Contrast, 
cT COPE, cTβ Meaning

[1 0] β1 Where is there significant auditory activation?

[0 1] β2 Where is there significant visual activation?

[−1 0] −β1 Where is there significant negative auditory activation?

[0 −1] −β2 Where is there significant negative visual activation?

[1 −1] β1 − β2 Where is there auditory activation significantly greater than visual activation?

[−1 1] β2 − β1 Where is there visual activation significantly greater than auditory activation?

[1 1] β1 + β2 Where is there significant activation averaged across both conditions?
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An important characteristic of F-tests is that they are blind to 
the directionality of the contrasts that make up the test. In other 
words, in our auditory/visual experiment example, the following 
F-tests are all equivalent:

 

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1
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è
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ö
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This is because F-tests are testing if there is a linear combination of 
the COPEs that explain a significant amount of variance in the 
data, and when we consider this variance, we are ignoring the sign 
of the COPEs.

It is instructive to consider how F-tests relate to T-tests by 
considering an F-test that consists of just one contrast. As illus-
trated in Fig. 10, such an F-test is equivalent to a two-tailed T-test 
on the contrast in question, with the relationship f = t2. Hence, 
F-contrasts containing single contrasts can be used to mimic two- 
tailed T-tests. The F-test’s blindness to the directionality of the 
contrasts is readily apparent when we consider the equivalent 
 two- tailed T-test. It is because we can get significance with either a 
significantly positive or negative COPE in either tail. As a result of 
calculating the P-value under both tails, a two-tailed T-test (or 
equivalently the F-test) is more conservative (with respect to posi-
tive activation) than the one-tailed T-test on the same contrast.

It is possible that the response to two different stimuli, when 
applied simultaneously, is greater than that predicted by adding up 
the responses to the stimuli when applied separately. If this is the 
case, then such “nonlinear interactions” may need to be allowed 
for in the model. The simplest way of doing this is to set up the 

3.6 Interaction 
Example

P-Value=0.2

P-Value=0.2

−4 −2 -t 0 t 2 4
T

0 1 2 3 4 65
F

f

Fig. 10 Here we are considering an F -test that consists of just one contrast. In this case, the F-test (left) is 
equivalent to a two-tailed T-test (right) on the same contrast, with the relationship f = t2
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two originals EVs, and then add an interaction EV, which will only 
be “up” when both of the original EVs are “up” and “down” oth-
erwise. In Fig. 11, EV1 could represent the application of a drug 
and EV2 could represent visual stimulation. EV3 will model the 
extent to which the response to drug + visual is greater than the 
sum of drug-only and visual-only. A contrast of [0 0 1] will show 
this measure, whereas a contrast of [0 0 − 1] shows where negative 
interaction is occurring. An F-contrast of

 

1 0 0

0 1 0

æ

è
ç

ö

ø
÷
 

will ask where is there significant activity to either drug-only or 
visual-only.

T- and F-statistics can be converted to Z-statistics, that is, statistics 
that are distributed as a standardized Normal (Gaussian)  distribution. 
This is simply achieved by ensuring that the P-value is the same 
regardless of which statistic is used, so to convert from a T- to 
Z-statistic, we calculate the P-value for the given T-statistic and then 

3.7 Converting 
T- and F-Statistics 
into Z-Statistics

Fig. 11 Example of modeling a nonlinear interaction between stimuli. The first 
two explanatory variables (EVs) model the separate stimuli and the third models 
the interaction, that is, accounts for the “extra” response when both stimuli are 
applied together
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determine the Z-statistic as being the one that gives the same P-value. 
One reason for doing this is so that we can compare statistics using 
a common currency. Another reason is so that we can perform 
generic thresholding techniques (such as described in Sect. 7), using 
Z-statistic maps, regardless of whether we have done T- or F-tests.

It is useful to be able to convert regression parameter estimates 
into percent BOLD changes. This is because percent BOLD 
change can be a common currency across different experiments 
(though BOLD is not a quantitative measure and depends on 
many experimental factors, and so should not be treated as compa-
rable without a good deal of care). It does not depend on things 
like the arbitrary scaling of intensity values output from the scan-
ner or arbitrary scaling of the EVs. As illustrated in Fig. 12, this is 
simple to do and just requires that we have an estimate of the 
baseline signal intensity, C, from the voxel in question, and that we 
know the peak-to-peak height, H, of the relevant EV. The percent 
BOLD change is then calculated as:

 
%change

C
.=100

H b

 
(12)

Since the signal fluctuation b ´H  is always small with respect to 
the baseline C, it is common to approximate C as more simply the 
mean of the time series, C′.

It is possible to do this for contrasts as well. However, it is not 
immediately obvious what the peak-to-peak height is in the con-
text of a general contrast. This can be dealt with by determining 

3.8 Percent Signal 
Changes

Fig. 12 Illustration of the calculation of percent blood oxygen level dependent 
(BOLD) signal change from a general linear model (GLM) fit. % 
change C=100H b /  where b  is the regression parameter estimate (effect 
size) and H is the peak-to-peak height for the relevant explanatory variable (EV). 
C is the baseline intensity of the fMRI data, but is common to approximate this 
with the mean of the time series, C′
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the effective regressor for a contrast. The effective regressor is the 
regressor in a new version of the design matrix whose regression 
parameter estimate (and its variance) is equal to the original 
COPE. This is given by [16]:

 X XQc c Qc Q X Xeff
T Twhere= ( ) = ( )- -1 1

,  (13)

The peak-to-peak height of this effective regressor can then be 
used in the percent signal change calculation above.

We described in Sect. 3.2 how we obtain regression parameter esti-
mates by finding the best fit of the GLM to the data (by using Eq. 
(6). The regression parameter estimates describe how much we 
need of each EV to explain what we see in the data. However, con-
sider what would happen in a poorly designed experiment, where 
two different stimuli are switched on and off at very similar times. 
The resulting predicted responses (EVs) are highly correlated. 
Note that we use the terms correlated and non-orthogonal (simi-
larly uncorrelated and orthogonal) interchangeably. The top of 
Fig.13 shows a design matrix containing our two very similar EVs. 
The model fitting will determine the regression parameter esti-
mates b1  and b 2  and describe how much we need of each EV to 
explain what we see in the data. However, because EV1 and EV2 
are so similar, we can equally well use either EV1 or EV2 to explain 
what we see in the data. The result is that we cannot estimate either 
b1  or b 2 ,  separately from each other, very well. Mathematically, 
we say that the design matrix is not of “full rank,” or that it is “rank 
deficient.”

To understand this, consider solving two simultaneous equa-
tions. If we have two unknowns to solve for, then we need two 
equations to solve for them. However, if the two equations are the 
same, then we really have only one equation and we cannot solve 
for the two unknowns.

The good news is that our statistical tests (T- and F-tests) take 
this all into account. When two EVs are highly correlated, the 
appropriate variances of the regression parameter estimates (see Eq. 
(9)) are automatically increased—acknowledging the fact that we 
cannot determine which EV should explain what in the data. So, 
even though the statistics accounts for orthogonality, it is clear that 
when we design our experiments, we want to avoid this being an 
issue whenever possible. This can be achieved by using approaches 
that assess the efficiency of experimental designs such as [16–18].

In Fig. 14, we can see three different design matrices. The first 
contains two EVs that are highly correlated, the second shows two 
EVs that are partly correlated, and the third shows two EVs that 
are completely uncorrelated. As discussed, the first design matrix is 
“rank deficient.” The third design matrix is the ideal scenario in 

3.9 Issues 
with Orthogonality 
and Estimating 
Contrasts
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Fig. 13 Rank-deficient design matrices. At the top, we can see a general linear model (GLM) with a design 
matrix containing two identical explanatory variables (EVs). Since EV1 and EV2 are so similar, we can equally 
well use either EV1 or EV2 to explain what we see in the data. At the bottom of the figure, we can see examples 

of identically good model fits with any linear combination of the EVs as long as b b 

1 2 0 9+ = . .  The result is 
that we cannot estimate either b1  or b 2  with any certainty (corresponding to [1 0] or [0 1] contrasts), but we 

can estimate b b 

1 2+  (corresponding to a [1 1] contrast)

that the EVs are uncorrelated and there is no ambiguity in how to 
determine which EV explains what in the data. We refer to this as 
a “well-conditioned” design matrix. But what happens in the case 
of the second design matrix where the EVs are partially correlated? 
It is useful to think of the EVs as having uncorrelated (orthogonal) 
and correlated (non-orthogonal) components. The correlated (or 
non-orthogonal) components are of no use, as they are, by defini-
tion, identical and cannot be used to disambiguate which EV 
explains what in the data. Hence, the model fitting can only be 
driven by the uncorrelated, or orthogonal, components of the 
EVs. As long as there is a substantial orthogonal component, then 
there is sufficient information to get an efficient estimate of the 
regression parameters, and we can successfully infer on such GLMs.

The idea that the model fitting can only be driven by the 
uncorrelated, or orthogonal, components of the EVs is a crucial 
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one, and is well illustrated by the following example. What hap-
pens to the regression parameter estimates when we have two par-
tially correlated EVs, and orthogonalize one with respect to the 
other? Figure 15 illustrates such a case. On the right, EV2 has been 
“orthogonalized with respect to” EV1, which just means that the 
part of EV2 which is correlated with EV1 has been subtracted from 
it. The counterintuitive result is that, even though it is EV2 that 
has been changed and EV1 has remained the same, it is β1 that has 
changed and β2 that remains the same. To understand this, remem-
ber that the model fitting can only be driven by the orthogonal 
components of the EVs. Although EV2 has changed, it has changed 
to be equal to the original orthogonal component and hence its 
orthogonal component is unchanged; subsequently, its regression 
parameter estimate is still the same. In contrast, although EV1 has 
not changed, because EV2 has been orthogonalized with respect 
to EV1, the orthogonal component of EV1 has changed; subse-
quently, its regression parameter estimate is different.

Everything we have considered up to now has been within the 
context of considering problems where we have two (or more) EVs 
that are correlated with one another. In fact, the problem is more 
general than this. We can see this by extending the analogy of solv-
ing simultaneous equations. In general, one encounters the same 
problems whenever it is possible to find a linear combination of the 
equations that is equal to another of the equations. For example, 
consider that we have three equations to solve for three unknowns, 

Fig. 14 Examples of different design matrices. Design matrix with two explana-
tory variables (EVs) that are highly correlated (left). Design matrix with two EVs 
that are partially correlated (middle). Design matrix with two EVs that are uncor-
related (right)
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but it turns out that if we take two times Eq. (1) and subtract Eq. 
(2), then we get exactly Eq. (3). In that case, we actually only really 
have two equations to solve for our three unknowns, and so we are 
in trouble. In the GLM, the EVs are analogous to the equations, and 
the regression parameters are the unknowns. And so we have a prob-
lem if any EV is the same (or close to being the same) as a weighted 
sum of the other EVs in the design matrix. Again, we describe such 
a design matrix as being (or close to being) “rank deficient.”

Even if we do have a design matrix that is close to being rank 
deficient, and therefore, there are some regression parameters that 
cannot be very well estimated, there may well be other regression 
parameters that can be estimated. There may even be contrasts that 
actually include the hard-to-estimate regression parameters, but 
that can still be estimated [16]. At first glance, this may seem a 
little counterintuitive. However, things should become clear if we 
consider a simple example of this. This occurs when we have the 
situation shown in Fig. 13 where we had a design matrix with two 
very similar EVs. As already discussed, we cannot estimate at all 
well the individual parameters β1 and β2 with [1 0] and [0 1] con-
trasts. However, we can estimate a [1 1] contrast since this does 

Fig. 15 Effects of orthogonalization. We, first, fit the design matrix (containing two 
partially correlated explanatory variables, EVs) on the left to the data from a voxel, 
and obtain regression parameter estimates b1  and b 2.  We then construct a new 
design matrix, shown on the right, where EV1 is unchanged and EV2 is the old EV2 
orthogonalized with respect to EV1. We then fit this new design matrix to the same 
data and obtain new regression parameter estimates b1  and b 2.  The counterin-
tuitive result is that even though it is EV2 that has been changed and EV1 that has 
remained the same, it is b1  that has changed and b 2  that remains the same. The 
underlying reason for this is that the model fitting can only ever be driven by the 
orthogonal components of the EVs
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not require us to separate out which EV explains what in the data. 
Again the simultaneous the first equation analogy is useful. 
Consider that we have two equations, 2x + 2y = 2 and 4x + 4y = 4. 
The second equation is simply two times of the first equation; and 
so we have a problem, and we cannot solve for x and y individually. 
However, we can solve for x + y; it is equal to one. Solving for x + y 
is analogous to estimating the [1 1] contrast in our GLM.

4 Modeling Hemodynamic Variability

Up to this point, we have been working under the assumption that 
the HRF is known. However, it is well established that the HRF 
varies between brain regions and subjects [19] and so in practice, 
it is necessary to incorporate into our modeling of the fMRI data 
some flexibility in the HRF. One option is to have a parameterized 
model of the HRF and then estimate the HRF shape parameters at 
the same time as we estimate the GLM regression parameters that 
represent the size of the response. For example, we could use the 
double gamma HRF illustrated in Fig. 5, but instead of fixing the 
five parameters that describe the shape, we now look to estimate 
those parameters from the fMRI data. The problem with this 
approach is that it is not straightforward to estimate these HRF 
shape parameters within the GLM framework, as they generally 
require nonlinear estimation approaches. A number of these 
approaches have been proposed, predominantly using Bayesian 
techniques [20–24]. However, these approaches are computation-
ally demanding and are not yet in common use.

A popular alternative is to use the approach of basis functions. 
These allow HRF modeling flexibility but within the computation-
ally undemanding GLM framework [19]. Figure 16a shows just 
one example of an HRF basis set that contains three basis func-
tions. The choice of basis set is clearly important and we will come 
to that later. Whatever basis set is used, the principle is the same: 
different linear combinations of the basis sets can be used to give 
different HRF shapes. This is illustrated in Fig. 16b.

But how do we use these HRF basis functions in combination 
with our known stimulus timings to create predicted responses 
that can be used in the GLM? The answer is to separately convolve 
each of the HRF basis functions with the stimulus function to cre-
ate an EV for each of the basis functions, as shown in Fig. 17. 
When the resulting design matrix is fit to the fMRI data, the 
required linear combination of these EVs is determined. If desired, 
the same linear combination can then be applied to the HRF basis 
functions to show the implied HRF shape.

The question remains as to how we set up a statistical test to 
ask, for example, “Where is there significant activation due to 

4.1 HRF Basis Sets
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condition A?” when we model the response to condition A using 
HRF basis functions. One answer is to use an F-test. Recall that one 
way to think about an F-test is that it will find significance if there is 
any linear combination of the contrasts (in the F-test) that explain a 
significant amount of variance in the data. So if we simply create an 
F-test made from the contrasts that pick out each of the regression 
parameter estimates for each of our basis function EVs for condition 
A, then we will find where there are any linear combinations of the 
basis set EVs that can be used to give HRF shapes that explain sig-
nificant amounts of variation in the data. In other words, if we have 
an experiment with just condition A, and we model it using three 
basis functions (Fig. 17), then we can ask “Where is there signifi-
cant activation to condition A?” with the F-test contrast matrix:
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0 0 1
.  

An important point to remember is that, as we are using an F-test, 
we lose directionality of the test. So we cannot tell if we are finding 
significance with a positive or negative response. However, it is 
possible to recover this post hoc if we are using a basis set that 
contains a canonical HRF, by looking at the sign of the regression 
parameter estimate for the corresponding canonical HRF EV. We 

Fig. 16 (a) Example of a hemodynamic response function (HRF) basis set con-
taining three basis functions. (b) Different linear combinations of the basis func-
tions in the basis set can be used to obtain different of HRF shapes
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can also make comparisons between two different conditions by 
pairing up the corresponding HRF EVs for the two conditions and 
setting up an F-test that looks for linear combinations of differ-
ences between corresponding HRF EV regression parameters. In 
other words, with three basis functions in our basis set, EVs 1–3 
model the HRF EVs for condition A, and EVs 4–6 model the HRF 
EVs for condition B, then we can ask “Where is there significantly 
different activation between condition A and condition B” with 
the F-test contrast matrix:
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More precisely, this is looking for where there is a significant 
amount of variance being explained by any linear combination of 
differences between condition A and condition B for correspond-
ing basis function EVs. This means that we can find a significant 
difference due to either a “shape” or “size” change. Note that for 
this approach to be sensible, we need to use the same basis set for 
both conditions.

Fig. 17 Setting up design matrix explanatory variables (EVs) using a hemodynamic response function (HRF) 
basis set. Each HRF basis function is separately convolved with the stimulus function to create an EV for each 
of the basis functions
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Figure 16a showed an example basis set that had been derived 
from a parameterized HRF that was made up of a series of half- 
cosine functions [15]. This was obtained by sampling thousands of 
example HRFs from within a range of plausible parameter values 
for the HRF model (Fig. 18), and then a principal component 
analysis was carried out on these samples to determine the principal 
modes/components of variation in the HRF shape. The three 
highest principle components were then used as the basis set. Note 
that this can equally well be done on any form of parameterized 
HRF, for example, a double gamma HRF or a biophysical model 
such as the balloon model [25].

When this approach is taken with any plausible HRF model, it 
is typical for the first basis function to turn out to be the mean HRF 
shape, or a “canonical” HRF, for the second to approximate the 
temporal derivative (i.e., linear combinations of the first and second 
basis functions result in versions of the canonical HRF shifted in 
time), and for the third to approximate a dispersion derivative (i.e., 
linear combinations of the first and third basis functions result in 
versions of the HRF with different widths of the main positive 
response). Although other basis sets that have been proposed (e.g., 
sets of Gamma functions and finite impulse response functions), 
this kind of basis set is highly recommended since it parsimoniously 
captures shape variations. It also has the advantage that the first 
(canonical) basis function will tend to dominate the fit to the data 
and can then be used to determine the positivity or negativity of the 
HRF. Note that it is quite common for people to neglect the dis-
persion derivative and use just a temporal derivative since temporal 
shifts represent the most important variation in the HRF shape, 
particularly when working with boxcar stimuli.

Thus far, we have considered basis sets made up of two or 
three basis functions. But why not use more? The reason for this, 

4.1.1 Choosing 
a Basis Set
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Fig. 18 (a) Parameterized hemodynamic response function (HRF) model. (b) Example HRFs sampled from this 
parameterized model of the HRF for plausible parameter values. (c) Samples of the HRF obtained from random 
linear combinations of the basis set shown in Fig. 16a
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and in general the reason why basis sets with large numbers of basis 
functions (e.g., finite impulse response basis sets) are suboptimal, 
is that the GLM becomes unrealistically flexible. This problem is 
evident even with just three basis functions. Figure 18c shows pos-
sible HRFs that result from random linear combinations of the 
basis set in Fig. 16a. Clearly, many of these HRFs are nonsensical. 
The problem is that random fluctuations in the fMRI noise can, by 
chance, look like these nonsensical HRFs and so we “over-fit” the 
model to the noise. The statistical inference (e.g., via F-tests across 
the basis functions) is still valid, but we lose sensitivity; it becomes 
harder to detect genuine activations. On the contrary, if we use too 
few basis functions then we can fail to estimate the true HRF and 
our model is then a poor match to the data and again we suffer a 
reduction in sensitivity. So there is a trade-off between providing 
enough basis functions to provide enough HRF variability, while 
not having so many that over-fitting becomes a problem. A general 
rule of thumb is that three basis functions are good for single-event 
designs and two basis functions are good for boxcar designs.

An increasingly used approach to overcome this problem is to 
infer on models that incorporate HRF variability using a Bayesian 
framework. One advantage of a Bayesian approach is that prior 
information can be included. Priors can be used that prohibit non-
sensical HRFs. Subsequently, more flexibility can be allowed while 
protecting against over-fitting [15, 22–24].

In Sect. 6, we will discuss how we model multisession/subject fMRI 
data. However, it is worth mentioning how basis functions are best 
used when we are ultimately doing a group analysis. In particular, we 
consider this in the context of the simple case of inferring a popula-
tion group mean. One option might be to pass up the regression 
parameter estimates for all basis functions into the higher-level group 
analysis, obtain the group average for each basis function separately, 
and then perform an F-test across them at the group level (in the 
same manner as we would do in a single- session analysis). However, 
it is not clear what benefit there would be of doing this. When our 
basis set contains a “canonical” HRF, the other basis functions, such 
as the temporal and dispersion derivatives, tend to average out to 
zero at the group level due to the different subject HRF shape varia-
tions. Subsequently, an often- recommended approach is to only pass 
up to the group level the canonical HRF regression parameter esti-
mates. This makes for a simple group analysis, and the benefits of 
including the basis function at the first level are still felt in terms of 
accounting for HRF variability that would otherwise cause increased 
noise in the first- level analysis.

Another option that can be taken is to calculate a size summary 
statistic from the single-session analyses (e.g., the root mean square 
of the basis function regression parameter estimates), and pass that 
up to the group level. However, it is important to note that this 

4.1.2 Basis Functions 
and Group Inference
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would then require different inference methods at the group level 
(e.g., see Sect. 7.4.2) than is generally used, as the population dis-
tribution of such a summary statistic is likely to be non-Gaussian.

So far we have assumed linearity of the HRF. That is, we have 
assumed that the response to a stimulus is well modeled by (linear) 
convolution of the stimulus with the HRF. Typically, this is the 
approach that people take in the majority of fMRI analyses. 
However, it has been shown that this assumption is poor in certain 
situations. For example, it can be shown that the response to a 
prolonged stimulus is not as large as the one we would predict 
from extrapolating results from applying a short stimulus [26, 27], 
and nonlinearities are predominant when there are short separa-
tions (less than ∼3 s) between stimuli [28]. Normally, these situa-
tions are intentionally avoided by designing experiments 
appropriately. For example, we avoid experiments where single 
events are occurring less than approximately 3 s apart, or experi-
ments that require comparisons between a mix of short (e.g., 
single- event) and prolonged (e.g., boxcar) stimuli. However, if 
these situations are unavoidable, then it becomes necessary to 
model the nonlinearities.

Such nonlinearities are predicted by nonlinear biophysical 
models, for example, the balloon model [25]. Hence, one solution 
is to model fMRI data using these nonlinear biophysical models 
[22]. Another approach that can be used in the GLM setting is to 
extend the idea of convolution to include second-order nonlinear 
terms using Volterra kernels [28].

Volterra kernels are a generalization of convolution to include 
higher order nonlinear terms. In fMRI, we need only to add the 
second-order terms to the first-order convolution terms to get the 
most important nonlinear behavior. A second-order Volterra ker-
nel model is given by:
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where s(t) is the stimulus, the first term contains the traditional 
linear HRF first-order kernel, h1(τ), and the second term includes 
the second order kernel, h2(τ1, τ2).

Many of the issues surrounding the use of second-order 
Volterra kernel basis functions are the same as they are for linear 
basis functions. For example, Volterra kernels can be determined 
empirically [25, 28], or derived from nonlinear biophysical models 
[22]. Either way, as with linear basis functions, there is variability 

4.2 Nonlinearities

4.2.1 Volterra Kernels
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in the response between different subjects and brain regions, and 
this variability can be parsimoniously captured within the GLM by 
using basis functions. We can obtain parsimonious basis sets for 
first- and second-order kernels by using principle component anal-
ysis on samples of the response from empirical data or from param-
eterized models. Furthermore, we can infer on the Volterra kernels 
in a Bayesian framework with priors that prohibit nonsensical 
responses, so that more flexibility can be allowed while protecting 
against over-fitting [22].

5 De-Noising fMRI Data

fMRI data are inherently noisy and contain a variety of fluctuations 
induced by processes beyond the control of the experimenter. 
Examples of such effects include artifacts related to the MR physics 
(such as slice-dependent signal dropout due to imperfect switching 
of the slice-select gradients, EPI “ghosting,” and thermal noise), 
subjects’ head motion effects, fluctuations induced by the cardiac 
and respiratory cycles, and spontaneous low-frequency fluctuations 
of the baseline signal.

Under the assumptions of the GLM, any fluctuation in the 
measured BOLD signal that is not modeled by the EVs in the 
design matrix is deemed to be noise. In Sect. 3.3, we discussed 
how such artifacts are more likely to occur at low frequencies and 
how we can use pre-whitening to deal with this. However, this 
assumed that all these fluctuations are stochastic, and that within 
the framework of the GLM, this stochastic noise is well described 
by a Gaussian distribution.

In practice, however, some of the underlying random noise 
fluctuations will have very distinct spatial and/or temporal struc-
ture. As an example, Fig. 19 shows a variety of such structured 
noise components identified from a single fMRI dataset using an 
independent component analysis (ICA) decomposition [29]. This 
suggests that such effects are structured rather than random sto-
chastic noise and the challenge is to account for their existence in 
order to obtain optimal estimates of the GLM model parameters.

The main problem with such structured noise artifacts is that they 
can severely impact our GLM-based analysis. The part of the arti-
fact that is orthogonal (uncorrelated) with all of the EVs will sim-
ply not be modeled by the design matrix regressors, and therefore, 
the presence of the structured noise effect will be reflected by an 
increase in the residual GLM noise variance. This, in turn, will 
decrease any T- or F-statistics value, making it harder for us to 
detect true activations. The non-orthogonal (correlated) part of 
such an artifact, however, will result in wrong parameter estimates 
for those EVs that correlate with the artifact. If the correlation is 

5.1 Structured Noise 
and the GLM
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positive, we will overestimate the parameter for the EV, making it 
more likely that we wrongly detect activations where there are 
none. If, on the other hand, the correlation is negative, then esti-
mated effect sizes will be underestimated, making it harder to 
detect true activations.

In short, the impact on the GLM estimates and the statistics 
values can be profound. Therefore, if we can characterize the spa-
tial and/or temporal structure of such artifacts, it is desirable to 
incorporate this knowledge into the data analysis and to explicitly 
account for the presence of these effects in the data.

One possible way of correcting for the negative impact on GLM 
statistics is to introduce additional “nuisance” or “confound” 
regressors in the GLM design matrix. Remember from Sect. 3.9 
that in the case of multiple regressors, the parameter estimates for 
each of the EVs can only be driven by the uncorrelated (orthogo-
nal) component of an EV. If we can find a suitable characterization 
of the temporal structure of an artifact, we can add this as a new 
regressor to the design matrix in order to use this to “explain” some 
of the measured variation in the data. The parameter estimate for 
EVs of interest will then only reflect the amount of  variation that 
the EV can explain over and above what can already be explained by 

5.2 Nuisance 
Regressors in the GLM
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Fig. 19 Examples of “structured noise” identified in a single fMRI dataset using independent component analy-
sis [29]: (a) residual head motion, (b) signal fluctuations in the ventricles, (c) spontaneous fluctuations in the 
bilateral sensory motor cortex, (d) fluctuations close to the sinuses (likely due to interactions between B0 field 
inhomogeneities and head motion), (e) high-frequency image ghosting, and (f) more spontaneous low- 
frequency fluctuations
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nuisance variables. Note, however, that we do need to pay a price 
for the use of nuisance regressors as part of the design matrix: every 
new regressor does reduce the number of DOF for our final statisti-
cal comparison. As such, it is desirable to keep the number of nui-
sance regressors to a minimum while trying to maximize the amount 
of structured noise variance captured by these regressors.

Figure 20 illustrates the use of a nuisance regressor. In this 
example, an fMRI time series exhibits an intensity jump due to the 
presence of a scanner-induced image artifact such that during one 
of the TRs, the measured image intensity for this time point is 
about 10 % above the mean intensity level. In Fig. 20a, the voxel’s 
time series without the artifact is analyzed using a simple GLM 
with one single EV. The analysis represents the data as a linear 
combination of the EV of interest and residual noise. The level of 
activation in this voxel is high, resulting in a very significant 
T-statistic. In Fig. 20b, the same GLM design matrix is now fitted 
to the voxel’s time series with the artifact present. The timing of 
the artifact is almost entirely uncorrelated with the primary EV and 
the presence of the artifact will therefore result in an inflated resid-
ual variance, causing a significant drop in the T-statistics value of 
more than 20 %. If information about the temporal characteristics 
of the artifact is available, then we can model the intensity variation 
at the specific time of the artifact by introducing a nuisance variable 
into the GLM design.

There are various ways of deriving useful nuisance variables. In 
general, these additional EVs should reflect the temporal charac-
teristics of structured noise that is thought to exist in the data.

Motion of the subject in the scanner is a typical problem in 
fMRI, and there are often intensity fluctuations related to head 
motion still present in the data even after alignment-based motion 

5.2.1 Deriving Nuisance 
Regressors

Fig. 20 Example of the utility of nuisance regressors in the general linear model (GLM): (a) data without artifact 
regressed against a single explanatory variables (EVs), (b) data with confound analyzed in a GLM without 
nuisance regressor, and (c) confounded data analyzed using both the EV of interest and a nuisance regressor
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correction. A common set of nuisance regressors (used to help 
model out such residual effects of motion) is the set of six time series 
obtained as the parameters of the head motion correction proce-
dure. In this case, the intensity variations in the data are expected to 
correlate with the size of the three translations and three rotations. 
When included, these regressors can jointly “explain” any signal 
variation in the data correlated with head motion.

Other sources of structured noise effects are the subjects’ car-
diac and respiratory cycles. A popular approach is to use retrospec-
tive image correction (RETROICOR [30]) in order to correct for 
these effects. Using additional measurements of the heart and res-
piration cycles, one can derive nuisance regressors that permit one 
to remove all signal variation in the fMRI data that temporally 
correlates with the relative phase of these physiological cycles. The 
regressors are based on these additional measurements as low- 
order Fourier terms, and can significantly reduce the amount of 
structured noise induced by physiological fluctuations.

The ability to correct for additive structured noise depends on the 
ability to characterize these noise components in terms of their 
temporal evolution. In the previous two examples, this was 
obtained by accurately estimating rigid-body motion or by using 
secondary measurements of physiological processes. For other 
types of noise, it is often not easy to predict such nuisance regres-
sors based on the understanding of the biophysics and of the imag-
ing process. One possibility is to use a model-free data analysis 
approach, such as ICA, in order to identify structured noise effects 
in the data prior to the GLM analysis. ICA and related techniques 
decompose the fMRI data into modes of variation that define the 
spatial and temporal extent of underlying fluctuations [29]. The 
estimated time courses of a component can then be used as nui-
sance regressors as part of a GLM analysis. An alternative is to 
explicitly regress out such effects prior to a GLM-based analysis, 
effectively running the model-based analysis on the residuals of a 
prior linear regression model designed to de-noise the data. 
Currently, as no well-established techniques exist for automatically 
identifying such noise components, such an approach relies on the 
experimenter to visually inspect all components. Further research 
is required to integrate such a model-free identification (e.g., using 
ICA) into the standard GLM in an unbiased objective way.

Figure 21 demonstrates the impact of structured noise on the 
GLM and highlights the utility of such a de-noising approach. 
Subjects were requested to perform simple finger tapping using 
either the left or right hand. All subjects were right-handed and 
one of the contrasts of interest involved the left-right comparison 
“Where is the activity larger when using the left hand when com-
pared with the right hand?” Prior to the noise removal, the 

5.2.2 ICA-Based 
De-noising

5.3 Example

Statistical Analysis of fMRI Data



216

histogram of the Z-statistic values for this contrast is highly non-
Gaussian. The contrast map itself did not reveal any significant dif-
ferences when using standard thresholding. After de-noising, the 
Z-statistic image of this contrast identifies significant differences in 
the BOLD, particularly in right motor cortical areas.

6 Multisubject Statistics

We have so far only focused on ways of modeling and fitting the 
(time series) signal and residual noise at the individual single- 
session level, in order to derive effect size estimates from a single 
fMRI dataset. The majority of fMRI studies, however, are used to 
address questions about activation effects in populations of sub-
jects. This generally involves a multisubject and/or multisession 
approach where data are analyzed in such a way as to allow for 
hypothesis tests at the group level [12, 31], for example, in order 
to assess whether the observed effects are common and stable 
across or between groups of interest.

Figure 22 illustrates an example scenario where the question of 
interest involves estimating the difference in activation between 
two groups of subjects. This question is addressed by having differ-
ent GLMs at the session, subject, and group level in a hierarchical 
fashion. At the lowest level of the analysis, the single-session time 
series data is modeled in the way described previously. At the sub-
ject and group level, there are GLMs that, for example, model the 
subject (cross-session) mean and group (cross-subject) mean effect 
sizes, respectively. At the top-level of the hierarchy, a set of statistic 
images is created that can be used for final statistical inference.
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Fig. 21 Example of the effect of fMRI de-noising in a simple finger tapping experiment: (a) histogram of the 
Z-statistic image for the differential left- versus right-hand finger tapping contrast. Because of the presence of 
structured noise, the histogram is far from being Gaussian distributed; (b) after regressing out a variety of 
structured noise effects, the histogram of Z-statistic values becomes unimodal and much closer to a Gaussian 
distribution; and (c) map of significant voxels after regressing nuisance effects out of the data
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Registration (aligning different brain images) is typically used 
when combining fMRI data from different sessions or subjects in a 
multisubject analysis. This allows us to assume that the data we are 
comparing across sessions or subjects come from approximately 
corresponding areas of the brain. In doing this, it is typical to 
transform the data into a common “standard brain space,” for 
example, the co-ordinate system specified by Talairach and 
Tournoux [32]. These standard spaces can be either what are 
known as templates or atlases.

A template is typically an average of many brains, all registered 
into a common co-ordinate system. An example is the MNI 305 
average [33]. An atlas is also based in a common co-ordinate sys-
tem, but contains richer information about the brain at each voxel, 
for example, information about tissue type, local brain structure, 
or functional area. Atlases can inform interpretation of fMRI 
experiments in a variety of ways, helping the experimenter gain the 
maximum value from the data.

An important question is that of how to model and estimate effects 
at the intermediate and higher level of the hierarchy. If we were 
only concerned about the particular set of subjects in our study, 
then we would use a fixed-effects model. More typically, however, 
we would want to generate results that extend beyond the particu-
lar population of subjects scanned as part of the study, into the 
wider population. In this case, we also need to account for the fact 
that the individual subjects themselves are sampled from the wider 
population and thus are random quantities with associated vari-
ances. It is exactly this step that marks the transition from a simple 
fixed-effects model to a mixed-effects model and it is imperative to 
formulate a model at the group level that allows for the explicit 
modeling and estimation of these additional variance terms.

As an example, consider the simplest case of estimating the 
effect size of a group of M subjects, where for each subject k, the 
pre-processed fMRI data is ϒk, the design matrix is Xk and the 

6.1 Brain Atlases

6.2 Fixed- 
Versus Mixed- Effects 
Models

Fig. 22 Hierarchical general linear model (GLM) for the analysis of group fMRI data. Within a summary statistics 
approach, the GLMs are estimated one level at a time and summary statistics are passed up to the next level 
of the hierarchy
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parameter estimates are βk (for k = 1,…, M). The individual first- 
level GLMs relate first-level regression parameters to the M indi-
vidual datasets: ϒk = Xkβk + εk, where εk specifies the single-subject 
residuals. If we are only concerned about the exact population of 
subjects scanned under our fMRI paradigm, then the estimate of 
the group mean effect size is simply the average over all the lower- 
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In this case, we simply need to average the first-level regression 
parameters and the only variance to consider is the average first- 
level variance.

If, however, we want to generalize our findings to the wider 
population then the second-level analysis needs to account for the 
sampling of the subjects, and we need to proceed by modeling the 
group effect size of interest as

 b b ek g g gX= +  (17)

where εg accounts for the variation of the different subjects’ means 
from the overall group mean. Both the within- and the between- 
subject variations contribute to the total mixed-effects variance 
against which the mean effect size is tested during the statistical 
inference procedure.

The difference between the two approaches is illustrated in 
Fig. 23. In the fixed-effects model (a), only the first-level variances 
need to be considered, whereas in the case of the mixed-effects 
analysis (b), both the first-level fixed-effects variances and the 
higher-level random-effects variance contribute to the total mixed- 
effects variance used for inference. The between-subject variance, 
σg

2, then accounts for the random sampling of the particular sub-
jects from the wider population.

In the following sections, we assume that a mixed-effects 
analysis is being performed, as this is typically what is required. 
Fixed- effect analyses are performed in a similar manner but 
without the complication of needing to estimate the random-
effect variances.
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We now come to the question of how we infer on the multilevel hier-
archy of a group study (an example of which was shown in Fig. 22), 
in order to ask questions such as “Where is there significant activity in 
response to the experimental task for the population?” or “Where is 
there significant differences between populations (e.g., controls ver-
sus patients)?” Recall that each level in the hierarchy is represented by 
its own GLM. Hence, one approach is to formulate a single complete 
GLM that combines together the first-level and higher-level GLMs. 
An example of such an approach is presented in Friston et al. [34] 
where the group analysis is carried out “all-in-one” using the within-
session fMRI time series data as input. However, in fMRI, where the 
human and computational costs involved in data analysis are rela-
tively high, it is desirable to be able to make group-level inferences 
using the results of separate first-level analyses. This approach is com-
monly referred to as the “summary statistics” approach to fMRI anal-
ysis [31]. Within such an approach, group parameters of interest can 
easily be refined as more data become available.

In Holmes and Friston [31], the regression parameter estimates 
were used as summary statistics. The regression parameter estimates 
from the lower level are used as the “data” at the next level up. For 
example, the estimates of βk are used in place of βk in Eq. (17). This 
approach was shown to be equivalent to inferring all-in-one under 
certain conditions [31]. For example, it requires balanced designs, 
that is, all lower-level design matrices need to be identical, preventing 
the use of behavioral scores or subject-specific confound regressors.

However, top-level inference using the summary statistics 
approach can be made equivalent to the all-in-one approach with-
out such restrictions [35, 36], if we pass up the correct summary 
statistics. In particular, it is important to pass up information about 
not only the effect sizes from the lower levels, but also their vari-
ances. We shall explore the benefits of doing this in Sect. 6.4.

6.3 Summary 
Statistics Approach

Fig. 23 Illustration of a simple group analysis using the fixed-effect and the mixed-effects models: (a) in the 
fixed-effects analysis, the only variance contribution to consider is the lower-level within-subject variance; (b) 
in the mixed-effects analysis, the between-subject random-effects variance, σ2, accounts for the random 
sampling of the subjects themselves and contributes to the overall mixed-effects variance
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When we use a summary statistic approach, we infer on each level 
of the hierarchy one at a time. The first-level inference is as we 
described earlier in the chapter. At higher levels in the hierarchy, 
however, estimating the regression parameters and variances of 
group-level GLMs offers a different set of challenges. At the first 
level, there typically exists a large number of observations (typically 
more than 100), so that relevant parameters and variances can be 
estimated with high DOF. In contrast, group-level variance com-
ponent estimation is typically troubled by having very few observa-
tions (i.e., low DOF).

A key issue in estimating mixed-effects models within the 
“summary statistics” approach is whether the variance information 
from the lower levels (e.g., first level) is used at the higher levels 
(e.g., group level). Approaches that use the variance information 
from the lower levels have a number of substantial advantages. 
First, such approaches do not require balanced designs and so per-
mit the analysis of fMRI data where the first-level design matrices 
have different structure from each other (e.g., contain behavioral 
scores as regressors) or where the data contains different numbers 
of observations (e.g., different numbers of sessions for each sub-
ject). Second, they provide more accurate variance estimation (and 
therefore more accurate inference) by ensuring that at every level, 
only positive estimates of the random-effects variances contribute 
to the overall mixed-effects variance. Finally, such approaches 
increase the ability to detect real activation, by weighting the dif-
ferent contributions from the lower levels by using the lower-level 
variance information. For example, effect sizes from subjects with 
high first-level variance get down-weighted compared with those 
with low first-level variance, when inferring at the group level.

Estimating mixed-effects models when the lower-level variance 
information is ignored can be carried out easily using ordinary least 
squares [31]. Approaches that use the lower-level variance 
 information and provide the advantages described above are a little 
more involved. For example, Worsley et al. [12] used an expecta-
tion maximization approach. Woolrich et al. [36] used a fully 
Bayesian framework using appropriate noninformative priors. This 
approach had the added advantage that one can model different 
variance components for different groups. For example, one can 
contrast effect sizes in a population of patients relative to a popula-
tion of controls under the assumption that these two groups have 
different within-group variance. This is important as, empirically, 
patient populations exhibit larger within-group variability than a 
carefully selected population of controls.

The approaches described so far assume that the population distri-
butions of the effect sizes are well modeled using a Gaussian distri-
bution. However, in practice group studies can include “outlier” 
subjects whose effect sizes are completely at odds with the general 

6.4 Estimation 
of the Mixed- Effects 
Model

6.5 Handling Outlier 
Subjects
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population for reasons that are not of experimental interest. For 
example, it could be due to excessive subject motion or misunder-
standing by the subject of the experiment instructions. The esti-
mate of the population variance can be inflated by outlier subjects, 
and the population mean estimates can be under-or over-estimated. 
This is analogous to the presence of structured noise in the context 
of single-session analysis, as discussed in Sect. 5.

A number of approaches have been proposed to deal with this 
problem. One option is to visually inspect both the data and the 
results of a group analysis to deduce outliers. These outlier subjects 
can then be removed and the group study re-analyzed without 
them. Although useful exploratory approaches have been proposed 
that aid in this process [37–39], human intervention is often still 
required. It is preferable to use approaches that are automatic, and 
soft-assign outlier behavior in a spatially localized manner [40, 41]. 
The approach of Woolrich [41] has the added benefit that it uses 
the lower-level variance information.

Another possibility to dealing with outliers is to use nonpara-
metric statistics (see Sect. 7.4.2). For example, Meriaux et al. [42] 
and Roche et al. [43] use permutation tests that take advantage of 
the lower-level variance information. These approaches protect the 
validity of the statistics but can be less sensitive compared with tech-
niques that explicitly model the outliers [41]. However, they are 
also potentially able to handle other deviations from Gaussian pop-
ulation distributions (e.g., populations with two sub- populations), 
and there is evidence that nonparametric statistics in general handle 
the multiple comparison problem better than random field theory 
(RFT) [44] (this is discussed further in Sect. 7.4.2).

When creating higher-level GLM design matrices, it is important 
to ensure that the design matrix at least models the cross-subject 
mean effect. This is different from a first-level analysis where the 
overall time series mean is normally not of interest and might actu-
ally be removed prior to the first-level GLM. In the case of a 
higher-level analysis, however, the mean lower-level effect often is 
exactly what is of interest and therefore needs to be explicitly mod-
eled as part of the design matrix, either as a single EV or as a linear 
combination of EVs.

Figure 24 gives a selection of typical fMRI higher-level designs. 
In the simplest case (a), the higher-level design only models a sin-
gle group mean effect and a simple [1] contrast then tests if the 
mean effect is greater than 0.

In some cases, additional subject-specific behavioral scores 
need to be included as additional EVs (b). This can be either to 
remove some higher-level variation of no interest by including 
these EVs as nuisance regressors (e.g., by regressing out subjects’ 
age or gender or reaction time), or because these regressors are 
part of a testable hypothesis and need to be included in a contrast 

6.6 Creating 
Higher- Level GLMs
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of interest (e.g., a researcher might be interested in effects which 
correlate significantly with duration of treatment in a clinical popu-
lation). In both cases, the additional EVs would need to be orthog-
onalized relative to the EV that is modeling the group mean. This 
is so that the regression parameter for the group mean EV can 
indeed be interpreted as the overall group mean effect.

The simplest multiple-group design involves just two groups 
where the question of interest involves assessing the between- group 
difference (c). In this case, each group’s mean effect is modeled using 
a separate EV, a [1 − 1] contrast can then be used to assess A > B dif-
ferences; the negative [–1 1] contrast tests for B > A differences.

Another typical design involves testing for differences between a 
set of data generated under different conditions A and B in the same 
population (d), for example, where subjects get scanned before and 
after a period of learning. This is often referred to as a paired T-test. 
Every subject has two observations and we need to account for the 
within-subject covariance by means of subject- specific confound 
regressors. In this case, the first EV models the A − B differences for 
the M subjects, while the M additional EVs account for the subject-
specific mean effects. For example, the second EV in Fig. 24d mod-
els the mean effect for the first subject. A [1 0 0 0 0] contrast can 
then be used to assess the A − B paired difference.

7 Inference (“Thresholding”)

As we saw in Sect. 3.5, a result of fitting a GLM is a T-statistic 
image for each contrast, where the intensity at each voxel assesses 
the evidence for a nonzero effect. Ideally, the statistic image would 
be zero where there is no effect and very large where there is an 
effect. Of course, because of the noise, this is not the case, and we 

Fig. 24 Typical higher-level general linear model (GLM) design matrices: (a) 
group mean effect size over eight subjects, (b) group mean and confounds over 
eight subjects, (c) unpaired group difference over two groups of four subjects, (d) 
paired group difference test over two conditions for four subjects. Note that for 
the sake of space, the number of subjects assumed here is lower than what 
would be typically expected in a group study
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must make inference—a statistically calibrated decision—on which 
voxels exhibit a signal and which voxels are just consistent with 
noise. Here we are talking about inferring on T-statistic images; 
however, the issues involved with F-statistic images generated from 
F-tests, or Z-statistic images (see Sect. 3.7), are similar.

The simplest inference method is voxel-wise thresholding. If the 
value of a T-statistic image is t at a given voxel, then we reject the 
null hypothesis of no experimental effect if t > u (where u is a signifi-
cance threshold). However, one should first ask: Why threshold?

The natural questions that any user of FMRI has of their data are: 
“What is the location of my signal?,” “What is the extent of my sig-
nal about that location?,” “What is the magnitude of my signal?.” 
For each of these, our statistical model should provide an estimate, a 
measure of uncertainty of the estimate (i.e., a standard error or a 
confidence interval), and a significance measure, like a P-value (i.e., 
could our result be explained by chance alone). For example, if a 
visual effect produced a cluster (a contiguous groups of supra-
threshold voxels, more on this in Sect. 7.2) with a peak at a certain 
location, how certain can I be that the true center of activation is 
near that location? Or, if a cluster had a volume of 500 voxels, what 
is my confidence that the true signal extent is 500 voxels?

Surprisingly, such basic questions cannot be answered with 
standard fMRI methods. In fMRI, we generally use a mass univari-
ate model, where a GLM is fit independently at each voxel. No 
information is shared over space, and, specifically, no explicit spatial 
model is used to express the extended signals that we expect. While 
more advanced methods that address these issues exist [45], the 
only inferential questions that a mass univariate model can answer 
are (a) “What is the signal magnitude at each voxel (with standard 
errors and P-values)?” and (b) “What is the signal extent for a given 
cluster-defining threshold (P-values only)?.” However, standard 
errors and P-values on locations (e.g., confidence intervals on local 
maxima or center of mass of a cluster) are not available.

The remainder of Sect. 7.2 focuses on these two types of infer-
ences: voxel-wise and cluster-wise.

The result of applying a contrast to the GLM fit at each voxel is a 
statistic image. This is anywhere from I = 20,000–100,000 brain 
voxels in a statistic image. The value in the image at each voxel is a 
T-, F-, or Z-statistic that measures the evidence for an effect defined 
by the contrast. The process of applying threshold u, and retaining 
all voxels with statistic value greater than u is known as voxel-wise 
inference. Precisely, we are performing I statistical tests of signifi-
cance, rejecting the null hypothesis at voxel i if ti ≥ u, where ti is 
the statistic value at voxel i.

Alternatively, we can apply a cluster-forming threshold, uclus, 
create a binary image of voxels ti ≥ uclus, and identify clusters, that is, 

7.1 Inference 
with the Mass 
Univariate Model

7.2 Voxel-Wise 
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contiguous groups of supra-threshold voxels, with cluster having 
size S. The process of retaining all clusters with size greater than k 
is known as cluster-wise inference. Precisely, we are performing L 
statistical tests, one for each of the L clusters in the image, rejecting 
the cluster null hypothesis if S ≥ k. The cluster null hypothesis is that 
all of the voxels in cluster have no signal, and the inference is clus-
ter-by-cluster. Hence, an unusually large cluster extent only tells us 
that there exists one or more signal voxels within the cluster, but 
not which voxels within the cluster have signal.

Figure 25 illustrates the difference between voxel- and cluster- 
wise inference. While voxel-wise inference rejects the null hypoth-
esis for individual voxels, cluster inference jointly rejects the null 
hypothesis for a set of voxels within a cluster as significant. As such, 
we say that cluster-wise inference has less spatial specificity than 
voxel-wise inference. On the contrary, since there are many fewer 
clusters than voxels, the multiple testing problem (see Sect. 7.3) is 
more severe with voxel-wise inference.

What cluster-forming threshold should be used? Using a relatively 
low threshold will allow clusters with small statistic values to be 
formed, but the clusters may not be significant, as a low threshold will 
also result in large clusters by chance alone. A high threshold ensures 
that clusters due to chance noise are small, but may then miss true 
signals that have relatively small magnitude. Below we will introduce 
two methods for finding P-values for cluster size, one of which requires 
relatively high thresholds: Random Field Theory requires relatively 
high uclus values (uncorrected P-value of 0.001 or smaller) to give 
accurate inferences [46], while permutation is valid with any chosen 
uclus threshold. Regardless of which threshold is chosen, the threshold 
should be picked before examining the data. Trying many thresholds 
introduces a multiplicity that is not easily accounted for, and will 
reduce the confidence of any significant findings. Later, in Sect. 7.5, 
we will consider the approach of threshold-free cluster enhancement, 
which provides cluster-like inference without the dependence on uclus.

Should we be using voxel-wise or cluster-wise inference, or 
both? If one examines both cluster-wise and voxel-wise results yet 
another multiple testing problem is introduced, and so one method 
does need to be chosen a priori. Friston et al. [47] shows that when 
the anticipated signals are broad or spatially extended, cluster size 
inference is best, and when focal, intense signals are anticipated, 
voxel-wise inference is best. Both methods are widely used, with 
cluster-wise inference being slightly more common, probably due 
to the large extent of effects typical after spatial smoothing.

Statistical hypothesis testing provides a means to test a default, or 
null, hypothesis with a pre-specified false positive rate. At a single 
voxel, a test statistic can be compared to an α = 0.05 significance 
threshold, denoted uα, where α is the allowed risk of false positives. 
For example, a Z-statistic at one voxel will, with many repetitions of 
a null experiment, exceed uα = 2 about 2 % of the time.

7.3 Correction 
for Multiple Tests
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Fig. 25 Voxel-wise versus cluster-wise inference. Inferences on fMRI statistic images are made either through 
voxel-wise or through cluster-wise methods. The top panel illustrates the values in a statistic image through 
one line of space, where large values indicate evidence for an experimental effect. The middle panel illustrates 
voxel- wise inference, where a significance threshold uα is applied to the image, and voxels above that thresh-
old are labeled as significant. The advantage of voxel-wise inference is that individual voxels are marked as 
significant, but the disadvantage is no spatial information is considered, and unusually expansive effects may 
be missed. The bottom panel illustrates cluster-wise inference, where a cluster-forming threshold uclus is 
applied to the image, and contiguous voxels are formed into clusters. Clusters that exceed a significance 
threshold kα in size are marked as significant. The advantage of cluster-wise inference is that low, spatially 
extended signals can be detected. The disadvantage is that clusters as a whole are marked as significant, and 
individual voxels within a cluster cannot be marked individually as significant
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For a particular observed statistic value, say t = 3.3, we measure 
the evidence against the null hypothesis with a P-value, here 
p = 0.0005, which is the chance of obtaining, over repeated null 
experiments, a result greater or equal to t = 3.3. (Take care not to 
confuse P-values with posterior probabilities: Bayesian methods 
give the posterior probability that the null is true, conditional on 
the data; classical P-values, in contrast, are the probability of the 
data, conditional on the null hypothesis).

But if I = 10,000 voxels (or K = 100 clusters) are tested at level 
α = 0.05, the false positive risk is only controlled at each voxel. 
Then over all voxels, a total of I × α = 500 false positive voxels (or 
five false positive clusters) would be expected. The problem is that 
standard hypothesis testing only accounts for the risk of false posi-
tives for one test. If multiple tests are to be considered, some mea-
sure of the risk of false positives over multiple tests is required.

To carefully define different types of false positive measures, 
Table 2 shows a cross classification of each of the I voxels in an 
image. Voxels can be truly null, or truly have nonzero signal, and 
additionally each voxel can be detected by some (imperfect) thresh-
olding method, or fail to be detected.

To fill in the values for true null and true signal voxels, we need 
to somehow know the underlying truth. Voxels that are marked as 
significant are “detected” and voxels that are not marked as signifi-
cant are “not detected”

The standard measure of false positives in multiple testing is 
the family-wise error (FWE) rate, that is, the chance of one or more 
false positive voxels (or clusters) anywhere in the image [FWE = P 
(IN+ > 0)]. Bonferroni is the most widely known FWE method, 
which produces critical thresholds uFWE that controls the FWE. This 
method simply divides the FWE rate (e.g., 0.05) by the number of 
tests (e.g., 10,000), to give a voxel-wise P-value threshold α 
(0.000005) that, when applied voxel-wise, results in the originally 
desired FWE control. Regardless of the method, if an αFWE = 0.05 
threshold is used, one can be 95 % confident that there are no false 
positives in the image at all.

A more recent measure of false positives is the false discovery 
rate (FDR), the expected false discovery proportion (FDP), where 
FDP is the proportion of false positives among all reported posi-
tives. Precisely, if I+ voxels are detected, FDP is the proportion of 
these that are false “discoveries,” FDP = IN+/I+, where FDP is 
defined to be 0 if no voxels are detected. FDP is a random quantity 
that cannot be known for any particular real dataset, so the FDR is 
defined as the expected value of FDP over many datasets, 
FDR = E(FDP). Figure 26 shows the difference between FDR and 
FWE inference. Imagine the ten images shown in the figure as the 
next ten experiments you will analyze; of course, you only consider 
a single dataset at a time, but this illustrates how the methods are 
calibrated over many (idealized) repetitions of an experiment.

7.3.1 Measures 
of Multiple False Positives: 
FWE and FDR
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Table 2 

Cross-tabulation of the number voxels in difference inference categories

Voxels not detected Voxels detected

True null voxels IN- IN+ IN

True signal voxels IS- IS+ IS

I− I+ I

Fig. 26 Comparison of uncorrected versus family-wise error (FWE)-corrected versus false discovery rate (FDR)-
corrected inferences. The top rows shows ten realizations of a central, circular signal added to smooth noise, and 
the next three rows show different possible voxel-wise thresholding methods applied to each realization. The 
dashed circles indicate the extent of the signal. The second row shows the result of an α = 10 % uncorrected 
threshold; most of the signal is correctly detected, but much of the background is also incorrectly detected. On 
average, 10 % of the background consists of false positives, but notice that the exact proportion of false positives 
varies from realization to realization. The third row shows the result of using an αFWE = 10 % threshold (e.g., a 
threshold from Bonferroni or random field theory). Much less of the signal is detected, but there are many fewer 
false positives, only 1-in-10 of the datasets considered had any false positives, this is a FWE. Of course in prac-
tice, we never know if the dataset in our hands is the 1-in-10 (or 20) that contains a family-wise error. The bottom 
row shows the result of using an αFDR = 10 % threshold. While we are guaranteed that the percentage of detected 
voxels that are false positive does not exceed 10 % on average, the actual percentage can vary considerably
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FDR is a more lenient measure of false positives allowing some 
false positives—as a fraction of the number of detections—while 
FWE regards any false positives as an error. One special case is 
notable when the definitions of FDR and FWE coincide. If there 
are no signal voxels at all (IS = 0), then FDP is 1 whenever there is 
an FWE, and the two methods give the same control of false posi-
tives. (In technical terms, it is said that FDR has weak control of 
FWE). This hints at the adaptive nature of FDR: when there is no 
signal, it behaves like FWE; as there are more and more signal vox-
els, it admits more and more false positives, yielding increased 
power while still controlling false positives in proportion.

The voxel-wise P-values referred to in previous sections are 
more accurately referred to as “uncorrected P-values,” as they do 
not account for the multiple testing problem. “Corrected P-values” 
refer to the FWE rate (or FDR if this is used instead).

So far we have only defined measure of false positives, but we have 
not described how we obtain thresholds that control these false 
positive measures. In addition to Bonferroni, there are two further 
methods that are commonly used in fMRI for controlling FWE; 
these are RFT and permutation, whereas there is generally just a 
single method for FDR.

The Bonferroni method for controlling FWE uses a significance 
threshold corresponding to α = αFWE/I, the nominal FWE test level 
divided by the number of tests. Bonferroni becomes quite conserva-
tive when the data is smooth, and has no way to adapt to the data in 
anyway. For example, imagine an extreme case where FMRI data is 
smoothed with a 1 m wide Gaussian smoothing kernel; such data will 
produce a statistic image with essentially a single constant value, 
meaning there is no multiple testing problem anymore; however, the 
Bonferroni threshold will still prescribe dividing αFWE by, say, 10,000.

RFT uses the smoothness of the data to adjust the significance 
threshold while still controlling FWE. The mathematics involved are 
elegant yet quite involved, and in what follows, we only give the most 
cursory review. For a more detailed review, see [48], or for a more 
technical overview, see [49]. The original Gaussian RFT paper for 
PET imaging remains a useful introduction [50], though also see [51] 
for more up-to-date results including T- and F-statistic RFT results.

To use RFT results, we must know the smoothness of the data, 
precisely the smoothness of the standardized noise images (e/σ in 
the notation from Sect. 3). Smoothness is parameterized by the full 
width at half maximum (FWHM) of the Gaussian kernel required 
to simulate images with the same apparent spatial smoothness as 
our data (Fig. 27). For example, if we say that our data has 6-mm 
FWHM smoothness, it means that if we were to simulate our data, 
we would generate noise data with no correlation and then con-
volve it with a Gaussian kernel with FHWM of 6 mm. The exact 

7.4 Corrected 
Inference Methods

7.4.1 Controlling FWE 
with RFT
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form of the spatial dependence of our data does not have to follow 
a Gaussian kernel, but for convenience, we describe the strength of 
the dependence in terms of the size a Gaussian kernel.

It may seem that if we take our fMRI data fresh from the scan-
ner and convolve it with a 6-mm Gaussian kernel, our FWHM for 
RFT would be 6 mm. This is incorrect, however, as the noise 
smoothness includes both intrinsic sources of smoothness (imper-
fect MRI resolution, physiological artifacts, etc.) and smoothness 
induced by the applied smoothing. As a result, the smoothness for 
RFT is not a user-specified parameter, but rather estimated from 
the residuals of the GLM ¡ -( )X b .

The definition of FWHM smoothness creates a notion of a 
smoothness- equivalent volume, a resolution element or RESEL. If 
the smoothness of the data is FWHMx, FWHMy, FWHMz in each 
of the principal directions, then a volume of space with dimensions 
FWHMx × FWHMy × FWHMz is one RESEL. In very approximate 
terms, the RESEL count captures the amount of independent 
information in the image; fewer RESELs = smoother data = less 
information = less severe multiple testing problem; more 
RESELS = rougher data = more severe multiple testing problem. 
The total RESEL count for a search volume is:

 RESELcount FWHM FWHM FWHM= ´ ´( )I x y z/  (18)

where I is the total number of voxels in the brain and FHWM is 
expressed in units of voxels. The RESEL count is important 
because it is the summary measure that determines the RFT thresh-
old, as illustrated next.

RFT can be used with any type of statistic image a GLM can create, 
including T-, F-, and Z-statistic images [51]. The formulas provide 
FWE-corrected P-values for voxel-wise thresholds and cluster sizes 

7.4.2 RESELs

7.4.3 RFT-Corrected 
P-Values

Full Width at Half Maximum

Half
Maximum

Full
Width

Fig. 27 Full width at half maximum (FWHM) is a generic way to describe the 
spread of a distribution, and is the way that smoothness is measured for random 
field theory
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and include corrections to account for edge effects (i.e., when 
blobs touch the edge of the search volume). The simplest result, 
for Z-statistic images with no edge corrections, can be used to gain 
some insight into the method.

For voxel-wise inference, a voxel with value z has a corrected 
P-value of:
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This shows that as z grows, the corrected P-value shrinks (the expo-
nential term dominates), which of course makes sense, as larger sta-
tistic values should produce smaller P-values. As the RESEL count 
grows, the corrected P-value grows. The RESEL count can increase 
because the search volume increases, which again is sensible, as a 
greater search volume demands a greater correction for multiple 
testing, and hence a less significant P-value. The RESEL count can 
also increase if the smoothness decreases, as per [18], which 
increases the amount of information in the image, again demanding 
a greater correction for multiple testing. For cluster-wise inference, 
the equation for the FWE-corrected P-value is more involved, but 
it also accounts for the image search space and smoothness.

The first RFT results published (and the equation shown above) 
assumed that the search region was large relative to the smooth-
ness of the image. This assumption was needed to avoid dealing 
with the case when a cluster touches the boundary of the search 
region. To see why this could be a problem, imagine two statistic 
images with the same smoothness, one the size and shape of the 
brain, the other with the same total volume but the shape of a 
long, narrow sausage. In the latter case, it is more likely that clus-
ters will touch the edge of the image, and, relative to other clus-
ters, have smaller volume. The results in [51] can be used to 
produce P-values that are accurate even with small search regions. 
When these results are used, they are sometimes referred to as 
“small volume correction.”

The use of RFT results is based on several assumptions and approx-
imations. The essential assumptions are:

 1. Gaussian data. For any collection of voxels, the distribution of 
the data is multivariate Gaussian.

 2. Sufficient smoothness. The data must be sufficiently smooth to 
approximate continuous random fields (upon which the the-
ory is based).

 3. Known smoothness. The results assume that the FWHM 
smoothness parameters are exact and contain at most negligi-
ble error.

7.4.4 Small-Volume 
Correction

7.4.5 RFT Assumptions
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 4. Constant smoothness for cluster-wise inference only. The standard 
cluster-wise results assume that the smoothness is the same 
everywhere in the image. If the data are “nonstationary,” 
regions of the brain that are smoother than others will generate 
large clusters just by chance. Updated methods are available 
[52] which account for varying nonstationarity, but they have 
reduced sensitivity unless the nonstationarity is severe; hence, 
this is principally suitable for voxel-based morphometry data. 
Generally, FMRI data does not exhibit severe nonstationarity.

In the light of these extensive assumptions, there can be good 
reason to seek alternative methods that do not require as many 
assumptions.

Nonparametric methods are generally used when the standard 
parametric assumptions are known to be false or cannot be verified. 
In the case of RFT, the assumptions are nearly impossible to verify, 
but more importantly, it has been found that voxel-wise RFT 
results are quite conservative for small group studies (e.g., when 
the number of subjects is less than about 40; [48, 53]). Hence, 
there has been interest in using alternative methods.

Instead of making assumptions about the distribution of the 
data, permutation testing uses the distribution of the data itself to 
find P-values and thresholds. Figure 28 illustrates the reasoning of 
the permutation test in the two-group setting.

While nonparametric tests are sometimes referred to as 
assumption- free, in fact they also have assumptions, just much 
weaker ones than standard parametric methods. The essential 
assumption for the permutation test is exchangeability under the 
null hypothesis. Exchangeability means that the data can be per-
muted (relative to the model) without altering its joint distribution. 
fMRI data presents a challenge for permutation testing. At the first 
level, temporal autocorrelation renders the data nonexchangeable 
and permutation methods cannot be directly applied (the data must 
be de-correlated, then permuted, and then re- correlated (see [6, 
54] for more details). However, in second-level analyses, exchange-
ability is generally not a problem. In the example in the figure, we 
assume that, under the null hypothesis, all six subjects are exchange-
able—this is very reasonable because if there is no group effect (this 
is the null hypothesis), then there is nothing special about the first 
three subjects versus the last three. For this example, there are 20 
possible ways of permuting the groups (including the correct label-
ing). For an arbitrary dataset with group sizes n1 and n2, the num-
ber of possible permutations is (n1 + n2)!/(n1!n2!).

By permuting the data many times, and for each permutation, 
assuming that the resulting test statistic (in this case, the 
 group- difference T-statistic) is an sample of what we would see if 
there were no real effect present, we build up a histogram of test 

7.4.6 Controlling FWE 
with Permutation
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Fig. 28 Permutation test applied to data from a single voxel for a hypothetical two-group fMRI second-level 
analysis

statistic values that will serve as the null distribution of that test 
statistic. We can then look to see how much “area under the tail” 
lies to the right of the actual test statistic value that we originally 
observed (under the correct labeling of the data), and hence esti-
mate our P-value; this is the same principle for relating the null 
distribution of the test statistic to the P-value as we saw in Fig. 9, 
but in this case, the null distribution has been generated via a com-
pletely different methodology.

The permutation test for the two group case can be generalized 
to three or more groups. In that case, we are testing the null 
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hypothesis that all groups are the same, and use an F-test to measure 
the evidence of any difference. Under the null hypothesis, all sub-
jects can be freely permuted. Likewise for a simple correlation 
model, the null hypothesis of no association justifies the free per-
mutation of all of the subjects. The permutation test for the one 
group case, however, is problematic without further assumptions: If 
all we have is a single group, what is there to permute? Shuffling the 
order of subjects will not change the value of a one-sample T-test.

In a second-level single group mean, the COPE images are 
always created as relative differences between baseline and active 
data. Even if an event-related design is used, and a contrast selects a 
single predictor, the effective predictor is a subtraction of event and 
baseline data. This is the case due to the relative, nonquantitative 
nature of the BOLD signal. As a result, we use here a slightly differ-
ent assumption to generate “permutations.” Under the null hypoth-
esis, we assume that each individual’s second-level COPE data are 
mean zero and have a symmetric distribution. Assuming mean zero 
data is reasonable, as, under the null, we expect no activation, posi-
tive or negative. Assuming a symmetric distribution is a weakened 
form of normality, and is exactly satisfied for any balanced effect 
(i.e., a COPE constructed as difference of two averages, where an 
equal number of scans contributed to each average).

The one-sample, group-level fMRI permutation thus works as 
follows. Assuming mean zero, symmetrically distributed COPE data, 
we randomly multiply each subject’s data by 1 or −1, or, equivalently, 
randomly flip the signs of each subject’s COPE image. Since the data 
are symmetrically distributed about zero, multiplication by −1 does 
not alter the distribution, and we generate a realization that is equiva-
lent to the original data. If there are n subjects in the analysis, there 
are 2n possible ways to flip the signs of the group-level data.

The permutation methods described so far will create uncor-
rected P-values at each voxel. Control of the FWE rate is easily 
obtained with permutation testing via the following observation: In 
complete-null data, an FWE occurs whenever one or more voxels 
exceed the threshold, which occurs exactly when the voxel with the 
largest statistic exceeds the threshold. Hence, inference based on the 
permutation distribution of the largest (maximum) statistic provides 
valid FWE inferences. Specifically, at each permutation, the maxi-
mum statistic value (across all voxels in the brain) is noted, creating 
a null distribution of the maximum-across-space test statistic. The 
95th percentile of that distribution gives an FWE- corrected thresh-
old (“p < 0.05, corrected”), and any particular statistic value can be 
compared to the maximum permutation distribution to obtain an 
FWE-corrected P-value. Similarly, the maximal cluster size distribu-
tion can be created to provide FWE cluster-wise inferences.

It is important to note that, while permutation may appear to 
be a completely different approach than those we described earlier, 
in fact all pre-processing and modeling are generally the same, and 
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it is only the P-value computation that differs. This is because the 
standard statistical models used generally have good sensitivity and 
robustness properties and should be used unaltered. For example, 
above we only discussed one- and two-sample T-tests, and did not 
mention other traditional nonparametric test statistics based on 
ranks, like the Wilcoxon Mann-Whitney test, as they often have 
much less power. There is an exception, however with small group 
data, with 20 or fewer subjects. With such small group data, there 
can be substantial sensitivity gains by using a nonstandard statistic, 
namely the smoothed variance T-test. As the fMRI data is generally 
smoothed before statistical modeling, we expect the variance image 
to be smooth as well. However, when the number of subjects is 
very small, the DOF available to estimate the variance is very low, 
and this can result in a noisy sample variance image. Smoothing 
regularizes the estimated variance image, effectively increasing the 
DOF and increasing sensitivity. While the null distribution of the 
smoothed estimated variance T-statistic image is not known, and 
so parametric methods cannot be used, nonparametric permuta-
tion methods can easily be used to generate FWE inferences based 
on the smoothed variance results.

Finally, if the number of possible permutations is very large, it 
can be impossible to compute them all. For example, for a 20 sub-
ject one-group analysis, there are over one million possible sign- 
flips of the data. In fact, it is sufficient to run a random subset of all 
possible permutations. If only k of a large number of possible per-
mutations is used, the margin of error on the P–values is approxi-
mately ±2p p(1 − p) / k, where p is the true P-value. For a nominal 
p of 0.05, this suggests that 1000 permutations is nearly sufficient 
(ME = ± 0.014, or 28 % of 0.05), while 10,000 is probably more 
than enough (ME = ± 0.0044, or 8.7 % of 0.05).

The method for finding a threshold that controls FDR is surpris-
ingly simple. It is based only on the uncorrected voxel-wise P-values 
in the statistic image. Let Pi be the P-value at voxel i, and P(i) be 
the ordered P-values, P(1) ≤ P(2) ≤ · · · ≤ P(I). Then the largest index i 
that satisfies

 
P

i

Ii( ) £ a FDR

 
(19)

defines the FDR threshold as P(i) [55]. This method works even 
when there is positive dependence between voxels [56, 57].

So far we have considered techniques that control the rate of false 
positives. This depends on knowing the null distribution (or non-
activation distribution) for relevant statistics under the null hypoth-
esis. In contrast, mixture modeling provides us with a way of 
estimating the “activating” and “nonactivating” distributions from 

7.4.7 Controlling FDR

7.4.8 Controlling False 
Positives and True 
Negatives: Mixture 
Modeling
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the data itself. For example, nonactivating voxel statistics may be 
modeled as coming from a (zero, or close-to-zero, mean) Gaussian 
distribution, activating voxels statistics as coming from a Gamma 
distribution, and de-activating voxels statistics as coming from a 
negative Gamma distribution [58–60]. The means and variances of 
these distributions are estimated from the whole statistic image. An 
example is shown in Fig. 29. Note that the mixture modeling 
approach is similar to the permutation approach (discussed in 
Sect. 7.4.2) in that both approaches extract information about the 
null distribution (or nonactivation distribution) from the data 
itself. However, permutation methods extract information about 
only the null distribution without making strong distributional 
assumptions, whereas mixture modeling extracts information 
about both the nonactivating and activating distributions by mak-
ing strong distributional assumptions.

Mixture modeling can provide a number of advantages over 
null hypothesis testing. First, there is a well-known problem in null 
hypothesis testing of FMRI in that if enough observations (e.g., 
time points) are made, then every voxel in the brain will reject the 
null hypothesis [34]. This is because in practice no voxels will show 
completely zero response to the stimulus, if only due to modeling 
inadequacies such as unmodeled stimulus-correlated motion or the 
point spread function of the scanner. By doing mixture modeling, 

Z-statistic image
Mixture model fit to the histogram of Z-statistics
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Fig. 29 Mixture modeling of a Z-statistic image. Top-left: Four example slices of a Z-statistic image obtained 
from fitting a general linear model (GLM) to the fMRI data at each voxel from an individual subject. The experi-
ment was a pain stimulus applied using a sparse single-event design. Right: Mixture model fit to the histogram 
of Z-statistics. Nonactivating voxel are modeled as coming from a close-to-zero mean Gaussian distribution, 
activating voxels as coming from a Gamma distribution, and de-activating voxels as coming from a negative 
Gamma distribution. However, note that there were found to be no de-activating voxels in this case. Bottom-
left: Image showing the probability that a voxel is activating—this information that can be extracted from the 
mixture model fit and can be used in thresholding to approximately control the true positive rate (TPR) as an 
alternative to null hypothesis testing
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we can overcome this by instead of asking the question “Is the 
activation zero or not?,” we ask the question “Is the activation big-
ger than the overall background level of ‘activation’?.”

Mixture modeling also provides inference flexibility. Because 
we have both the “activating” and “nonactivating” distributions, 
we can calculate the probability of a voxel being “activating” and 
the probability of a voxel being “nonactivating.” This provides us 
with far more inference flexibility compared with null hypothesis 
testing. We can still look to control the FPR by thresholding using 
the probability of a voxel being “nonactivating.” But now we could 
also look to approximately control the true positive rate (TPR) by 
thresholding using the probability of a voxel being “activating.” 
Controlling the TPR may be of real importance when using fMRI 
for pre-surgery planning [61].

The wider-spread use of mixture modeling is currently some-
what hampered by the violation of the strong distributional 
assumptions that need to be made. In the future, this may be allevi-
ated by the improvement of techniques such as ICA de-noising (see 
Sect. 5.2.2) rendering the distributional assumptions valid.

Aside from thresholding the final statistic images (either voxel-wise 
or cluster-wise), it is not advisable to make image-processing 
adjustments to statistic images. For example, smoothing a T-statistic 
image would be disastrous: While a T-statistic has approximately 
unit variance and follows a particular null distribution, a smoothed 
T-statistic image will have dramatically reduced variance with no 
particular distribution. Two exceptions to this are wavelet de- 
noising methods and a recently proposed threshold-free cluster 
enhancement (TFCE) method.

Wavelet methods transform the data in a scale-dependent fash-
ion, so that all of the large-scale information is segregated from the 
fine-scale information. Since we generally expect the signals of 
interest to be spatially extended, wavelet methods can be used to 
“shrink” variation associated with the finest scales, “de-noising” 
the image, while preserving the large-scale structure. For an over-
view of wavelet methods applied to fMRI, see [62].

Cluster-wise inference also tries to capture spatially extended 
signals, but requires the specification of an arbitrary cluster- forming 
threshold uclus. TFCE removes this dependence by, in essence, 
using all possible uclus values and then merging all the results into a 
single image. Specifically, at each voxel, let ei(h) be the extent of 
the cluster that voxel i belongs to with cluster-forming threshold h 

(or 0 if ti < h). Then, the TFCE image is defined by 
h

i

E He h h
>
å ( )

0

, 

where the sum is computed for a discrete set of h values, from 0 to 
the maximum statistic value, and E and H are tuning parameters. 
In [63], E = 0.5 and H = 2 were found to give generally good per-
formance for a range of classes of signals. TFCE seems to succeed 

7.5 Enhancing 
Statistic Images
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in matching or exceeding the sensitivity of optimized cluster-based 
thresholding without the arbitrariness and instability of the 
smoothing and initial thresholding. There is no known distribu-
tion for the TFCE image, and so permutation testing is used to 
convert the TFCE image into P-values.

References

 1. Friston K, Worsley K, Frackowiak R, Mazziotta 
J, Evans A (1994) Assessing the significance 
of focal activations using their spatial extent. 
Hum Brain Mapp 1:214–220

 2. Hykin J, Bowtell R, Glover P, Coxon R, 
Blumhardt L, Mansfield P (1995) Investigation 
of the linearity of functional activation signal 
changes in the brain using echo planar imag-
ing (EPI) at 3.0 T. In: Proc of the SMR and 
ESMRB Joint Meeting. p 795

 3. Cohen M (1997) Parametric analysis of fMRI 
data using linear systems methods. NeuroImage 
6:93–103

 4. Dale A, Buckner R (1997) Selective averag-
ing of rapidly presented individual trials using 
fMRI. Hum Brain Mapp 5:329–340

 5. Burock MA, Buckner RL, Woldorff MG, 
Rosen BR, Dale AM (1998) Randomized 
event-related experimental designs allow for 
extremely rapid presentation rates using func-
tional MRI. NeuroReport 9:3735–3739

 6. Bullmore E, Brammer M, Williams S et al 
(1996) Statistical methods of estimation and 
inference for functional MR image analysis. 
Magn Reson Med 35:261–277

 7. Friston K, Josephs O, Zarahn E, Holmes A, 
Rouquette S, Poline J-B (2000) To smooth or 
not to smooth? NeuroImage 12:196–208

 8. Woolrich M, Ripley B, Brady J, Smith S (2001) 
Temporal autocorrelation in univariate lin-
ear modelling of FMRI data. NeuroImage 
14:1370–1386

 9. Locascio J, Jennings P, Moore C, Corkin S 
(1997) Time series analysis in the time domain 
and resampling methods for studies of func-
tional magnetic resonance brain imaging. Hum 
Brain Mapp 5:168–193

 10. Purdon P, Weisskoff R (1998) Effect of tem-
poral autocorrelation due to physiological 
noise and stimulus paradigm on voxel-level 
false- positive rates in fMRI. Hum Brain Mapp 
6:239–249

 11. Marchini J, Ripley B (2000) A new statistical 
approach to detecting significant activation in 
functional MRI. NeuroImage 12:366–380

 12. Worsley K, Liao C, Aston J et al (2002) A 
general statistical analysis for fMRI data. 
NeuroImage 15:1–15

 13. Gautama T, Van Hulle MM (2004) Optimal spa-
tial regularisation of autocorrelation estimates in 
fMRI analysis. Neuroimage 23:1203–1216

 14. Penny W, Kiebel S, Friston K (2003) 
Variational Bayesian inference for fMRI time 
series. NeuroImage 19:1477–1491

 15. Woolrich M, Behrens T, Smith S (2004) 
Constrained linear basis sets for HRF mod-
elling using Variational Bayes. NeuroImage 
21:1748–1761

 16. Smith S, Jenkinson M, Beckmann C, Miller 
K, Woolrich M (2007) Meaningful design and 
contrast estimability in fMRI. NeuroImage 
34:127–136

 17. Dale A, Greve D, Burock M (1999) Optimal 
stimulus sequences for event-related 
fMRI. NeuroImage 9:S33

 18. Wager T, Nichols T (2003) Optimization of 
experimental design in fMRI: a general frame-
work using a genetic algorithm. Neuroimage 
18:293–309

 19. Josephs O, Turner R, Friston K (1997) Event- 
related fMRI. Hum Brain Mapp 5:1–7

 20. Lange N, Zeger S (1997) Non-linear Fourier 
time series analysis for human brain mapping 
by functional magnetic resonance imaging. 
Appl Stat 46:1–29

 21. Genovese C (2000) A Bayesian time-course model 
for functional magnetic resonance imaging data 
(with discussion). J Am Stat Assoc 95:691–703

 22. Friston KJ (2002) Bayesian estimation 
of dynamical systems: an application to 
fMRI. NeuroImage 16:513–530

 23. Marrelec G, Benali H, Ciuciu P, Pélégrini-Issac 
M, Poline J-B (2003) Robust Bayesian estima-
tion of the hemodynamic response function in 
event-related BOLD MRI using basic physio-
logical information. Hum Brain Mapp 19:1–17

 24. Woolrich M, Jenkinson M, Brady J, Smith S 
(2004) Fully Bayesian spatio-temporal model-
ling of FMRI data. IEEE Trans Med Imaging 
23:213–231

Statistical Analysis of fMRI Data



238

 25. Buxton R, Uludag K, Dubowitz D, Liu T 
(2004) Modeling the hemodynamic response to 
brain activation. NeuroImage 23(S1):220–233

 26. Boynton G, Engel S, Glover G, Heeger D 
(1996) Linear systems analysis of functional 
magnetic resonance imaging in human V1. 
J Neurosci 16:4207–4221

 27. Glover G (1999) Deconvolution of 
impulse response in event-related BOLD 
fMRI. NeuroImage 9:416–429

 28. Friston K, Josephs O, Rees G, Turner R 
(1998) Nonlinear event-related responses in 
fMRI. Magn Reson Med 39:41–52

 29. Beckmann C, Smith S (2004) Probabilistic 
independent component analysis for functional 
magnetic resonance imaging. IEEE Trans Med 
Imaging 23:137–152

 30. Glover G, Li T, Ress D (2000) Image-based 
method for retrospective correction of physi-
ological motion effects in fMRI: Retroicor. 
Magn Reson Med 44:162–167

 31. Holmes A, Friston K (1998) Generalisability, 
random effects & population inference. Fourth 
Int Conf on Functional Mapping of the Human 
Brain. NeuroImage 7:S754

 32. Talairach J, Tournoux P (1988) Co-planar 
stereotaxic atlas of the human brain. Thieme, 
New York

 33. Collins D, Neelin P, Peters T, Evans A 
(1994) Automatic 3D intersubject regis-
tration of MR volumetric data in standard-
ized Talairach space. J Comput Assist Tomo 
18:192–205

 34. Friston KJ, Penny W, Phillips C, Kiebel S, 
Hinton G, Ashburner J (2002) Classical and 
Bayesian inference in neuroimaging: theory. 
NeuroImage 16:465–483

 35. Beckmann C, Jenkinson M, Smith S (2003) 
General multi-level linear modelling for group 
analysis in FMRI. NeuroImage 20:1052–1063

 36. Woolrich M, Behrens T, Beckmann C, Jenkinson 
M, Smith S (2004) Multi-level linear modelling 
for FMRI group analysis using Bayesian infer-
ence. NeuroImage 21:1732–1747

 37. Kherif F, Poline J-B, Meriaux S, Benali H, Flandin 
G, Brett M (2003) Group analysis in functional 
neuroimaging: selecting subjects using similarity 
measures. Neuroimage 20:2197–2208

 38. Luo W-L, Nichols TE (2003) Diagnosis and 
exploration of massively univariate neuroimag-
ing models. Neuroimage 19:1014–1032

 39. Seghier M, Friston K, Price C (2007) Detecting 
subject-specific activations using fuzzy cluster-
ing. Neuroimage 36:594–605

 40. Wager T, Keller M, Lacey S, Jonides J (2005) 
Increased sensitivity in neuroimaging analy-

ses using robust regression. NeuroImage 
26:99–113

 41. Woolrich M (2008) Robust group analysis using 
outlier inference. NeuroImage 41:286–301

 42. Meriaux S, Roche A, Dehaene-Lambertz G, 
Thirion B, Poline J (2006) Combined permuta-
tion test and mixed-effect model for group average 
analysis in fMRI. Hum Brain Mapp 27:402–410

 43. Roche A, Meriaux S, Keller M, Thirion B 
(2007) Mixed-effect statistics for group analy-
sis in fMRI: a nonpara-metric maximum likeli-
hood approach. Neuroimage 38:501–510

 44. Thirion B, Pinel P, Mriaux S, Roche A, Dehaene 
S, Poline J (2007) Analysis of a large fMRI 
cohort: statistical and methodological issues 
for group analyses. Neuroimage 35:105–120

 45. Hartvig NV, Jensen JL (2000) Spatial mixture 
modeling of fMRI data. Hum Brain Mapp 
11:233–248

 46. Hayasaka S, Nichols TE (2003) Validating 
cluster size inference: random field and permu-
tation methods. NeuroImage 20:2343–2356

 47. Friston KJ, Holmes A, Poline J-B, Price CJ, 
Frith CD (1996) Detecting activations in 
PET and fMRI: levels of inference and power. 
NeuroImage 4:223–235

 48. Nichols TE, Hayasaka S (2003) Controlling 
the familywise error rate in functional neuro-
imaging: a comparative review. Stat Methods 
Med Res 12:419–446

 49. Cao J, Worsley KJ (2001) Applications of ran-
dom fields in human brain mapping. In: Moore 
M, (ed) Spatial statistics: methodological 
aspects and applications, vol 159, Springer lec-
ture notes in statistics. Springer. pp 169–182

 50. Worsley KJ, Evans AC, Marrett S, Neelin P 
(1992) Three-dimensional statistical analy-
sis for cbf activation studies in human brain. 
J Cerebr Blood F Met 12:900–918

 51. Worsley KJ, Marrett S, Neelin P, Vandal AC, 
Friston KJ, Evans AC (1996) A unified statisti-
cal approach for determining significant signals 
in images of cerebral activation. Hum Brain 
Mapp 4:58–73

 52. Hayasaka S, Luan Phan K, Liberzon I, Worsley 
KJ, Nichols TE (2004) Nonstationary cluster- 
size inference with random field and permuta-
tion methods. NeuroImage 22:676–687

 53. Nichols T, Holmes A (2001) Nonparametric 
permutation tests for functional neuroimaging: a 
primer with examples. Hum Brain Mapp 15:1–25

 54. Bullmore E, Long C, Suckling J et al (2001) 
Colored noise and computational inference in 
neurophysiological (fMRI) time series analysis: 
resampling methods in time and wavelet 
domains. Hum Brain Mapp 12:61–78

Mark W. Woolrich et al.



239

 55. Benjamini Y, Hochberg Y (1995) Controlling 
the false discovery rate: a practical and power-
ful approach to multiple testing. J R Stat Soc 
Ser B Methodol 57:289–300

 56. Genovese C, Lazar N, Nichols T (2002) 
Thresholding of statistical maps in functional 
neuroimaging using the false discovery rate. 
NeuroImage 15:870–878

 57. Benjamini Y, Yekutieli D (2001) The control of 
the false discovery rate in multiple testing 
under dependency. Ann Stat 29:1165–1188

 58. Everitt B, Bullmore E (1999) Mixture model 
mapping of brain activation in functional mag-
netic resonance images. Hum Brain Mapp 
7:1–14

 59. Hartvig N (2000) A stochastic geometry 
model for fMRI data. Technical Report 410. 
Department of Theoretical Statistics, University 
of Aarhus

 60. Woolrich M, Behrens T (2006) Variational 
Bayes inference of spatial mixture models for 
segmentation. IEEE Trans Med Imaging 
25:1380–1391

 61. Bartsch A, Homola G, Biller A, Solymosi L, 
Bendszus M (2006) Diagnostic functional 
MRI: illustrated clinical applications and 
decision- making. J Magn Reson Imaging 
23:921–932

 62. Van De Ville D, Blu T, Unser M (2006) Surfing 
the brain – an overview of wavelet-based tech-
niques for fMRI data analysis. IEEE Eng Med 
Biol 25:65–78

 63. Smith SM, Nichols TE (2008) Threshold-free 
cluster enhancement: addressing problems of 
smoothing, threshold dependence and localisa-
tion in cluster inference. NeuroImage. 
doi:10.1016/j.neuroimage.2008.03.061, In 
press; Epub ahead of print April 11, 2008

Statistical Analysis of fMRI Data

http://dx.doi.org/10.1016/j.neuroimage.2008.03.061


241

Massimo Filippi (ed.), fMRI Techniques and Protocols, Neuromethods, vol. 119,
DOI 10.1007/978-1-4939-5611-1_8, © Springer Science+Business Media New York 2016

Chapter 8

Dynamic Causal Modeling of Brain Responses

Karl J. Friston

Abstract

This chapter is about modeling-distributed brain responses and, in particular, the functional integration 
among neuronal systems. Inferences about the functional organization of the brain rest on models of how 
measurements of evoked responses are caused. These models can be quite diverse, ranging from concep-
tual models of functional anatomy to mathematical models of neuronal and hemodynamics. The aim of 
this chapter is to introduce dynamic causal models. These models can be regarded as generalizations of the 
simple models employed in conventional analyses of regionally specific brain responses. In what follows, 
we will start with anatomical models of functional brain architectures, which motivate some of the basic 
principles of neuroimaging. We then review briefly statistical models (e.g., the general linear model) used 
for making classical and Bayesian inferences about where neuronal responses are expressed. By incorporat-
ing biophysical constraints, these basic models can be finessed and, in a dynamic setting, rendered causal. 
This allows us to infer how interactions among brain regions are mediated. This chapter focuses on causal 
models for distributed responses measured with fMRI and electroencephalography. The latter is based on 
neural-mass models and affords mechanistic inferences about how evoked responses are caused, at the level 
of neuronal subpopulations and the coupling among them.

Key words Functional connectivity, Effective connectivity, Dynamic causal modeling, Causal, 
Dynamic, Nonlinear

1 Introduction

Neuroscience depends on conceptual, anatomical, statistical, and 
causal models that link ideas about how the brain works to observed 
neuronal responses. Here, we highlight the relationships among the 
sorts of models that are employed in imaging, with a special focus on 
dynamic causal models of functional brain architectures. We will show 
how simple statistical models used to identify where evoked brain 
responses are expressed (cf, neo-phrenology) can be elaborated to 
provide models of how neuronal responses are caused (e.g., dynamic 
causal modeling—DCM). We will review a series of models that range 
from conceptual models, motivating experimental design, to detailed 
biophysical models of coupled neuronal ensembles that enable ques-
tions to be asked, at a physiological and computational level.
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Anatomical models of functional brain architectures motivate 
the fundaments of neuroimaging. In the first section, we review 
the distinction between functional specialization and integration 
and how these principles serve as the basis for most models of neu-
roimaging data. The next section turns to simple statistical models 
(e.g., the general linear model—GLM) used for making classical 
and Bayesian inferences about functional specialization, in terms of 
where neuronal responses are expressed. By incorporating biologi-
cal constraints, simple observation models can be made more real-
istic and, in a dynamic framework, causal. This section concludes 
by considering the biophysical modeling of hemodynamic 
responses. All the models considered in this section pertain to 
regional responses. In the final section, we focus on models of dis-
tributed responses, where the interactions among cortical areas or 
neuronal subpopulations are modeled explicitly. This section cov-
ers the distinction between functional and effective connectivity and 
reviews DCM of functional integration, using fMRI and electroen-
cephalogram (EEG). We conclude with an example from event- 
related potential (ERP) research and show how the mismatch 
negativity (MMN) can be explained by changes in coupling among 
neuronal sources that may underlie perceptual learning.

2 Anatomical Models

From a historical perspective, the distinction between functional 
specialization and functional integration relates to the dialectic 
between localizationism and connectionism that dominated thinking 
about brain function in the nineteenth century. Since the formula-
tion of phrenology by Gall, who postulated fixed one-to-one rela-
tions between particular parts of the brain and specific mental 
attributes, the identification of a particular brain region with a spe-
cific function has become a central theme in neuroscience. Somewhat 
ironically, the notion that distinct brain functions could be localized 
in the brain was strengthened by early scientific attempts to refute 
the phrenologists’ claims. In 1808, a scientific committee of the 
Athénée at Paris, chaired by Cuvier, declared that phrenology was 
an unscientific and invalid theory [1]. This conclusion, which was 
not based on experimental results, may have been enforced by 
Napoleon Bonaparte (who, allegedly, was not amused after Gall’s 
phrenological examination of his own skull did not give the flatter-
ing results expected). During the following decades, lesion and 
electrical stimulation paradigms were developed to test whether 
functions could indeed be localized in animal models. Initial lesion 
experiments by Flourens on pigeons were  incompatible with phre-
nologist predictions, but later experiments, including stimulation 
experiments in dogs and monkeys by Fritsch, Hitzig, and Ferrier, 
supported the idea that there was a relation between distinct brain 

2.1 Functional 
Specialization 
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regions and certain cognitive or motor functions. Additionally, cli-
nicians like Broca and Wernicke showed that patients with focal 
brain lesions in particular locations showed specific impairments. 
However, it was realized early on that, in spite of these experimental 
findings, it was generally difficult to attribute a specific function to 
a cortical area, given the dependence of cerebral activity on the 
anatomical connections between distant brain regions; for example, 
a meeting that took place on 4 August 1881 addressed the difficul-
ties of attributing function to a cortical area, given the dependence 
of cerebral activity on underlying connections [2]. This meeting 
was entitled “localisation of function in the cortex cerebri.” Goltz 
[3], although accepting the results of electrical stimulation in dog 
and monkey cortex, considered that the excitation method was 
inconclusive, in that movements elicited might have originated in 
related pathways, or current could have spread to distant centers. In 
short, the excitation method could not be used to infer functional 
localization because localizationism discounted interactions or 
functional integration among different brain areas. It was proposed 
that lesion studies could supplement excitation experiments. 
Ironically, it was the observations on patients with brain lesions 
some years later (see Ref. [4]) that led to the concept of disconnec-
tion syndromes and the refutation of localizationism as a complete or 
sufficient explanation of cortical organization. Functional localiza-
tion implies that a function can be localized in a cortical area, 
whereas specialization suggests that a cortical area is specialized for 
some aspects of perceptual or motor processing, and that this spe-
cialization is anatomically segregated within the cortex. The cortical 
infrastructure supporting a single function may then involve many 
specialized areas whose union is mediated by the functional integra-
tion among them. In this view, functional specialization is only 
meaningful in the context of functional integration and vice versa.

The functional role of any component (e.g., cortical area, sub-area, 
or neuronal population) of the brain is defined largely by its con-
nections. Certain patterns of cortical projections are so common 
that they could amount to rules of cortical connectivity. “These 
rules revolve around one, apparently, over-riding strategy that the 
cerebral cortex uses—that of functional segregation” [5]. 
Functional segregation demands that cells with common func-
tional properties be grouped together. This architectural constraint 
necessitates both convergence and divergence of cortical connec-
tions. Extrinsic connections among cortical regions are not 
 continuous but occur in patches or clusters. This patchiness has, in 
some instances, a clear relationship to functional segregation. For 
example, when recordings are made in V2, directionally selective 
(but not wavelength or color selective) cells are found exclusively 
in its thick stripes. Retrograde (i.e., backward) labeling of cells in 
V5 is limited to these thick stripes; all the available physiological 
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evidence suggests that V5 is a functionally homogeneous area that 
is specialized for visual motion. Evidence of this nature supports 
the notion that patchy connectivity is the anatomical infrastructure 
that mediates functional segregation and specialization. If it is the 
case that neurons in a given cortical area share a common respon-
siveness, by virtue of their extrinsic connectivity, to some senso-
rimotor or cognitive attribute, then this functional segregation is 
also an anatomical one.

In summary, functional specialization suggests that challeng-
ing a subject with the appropriate sensorimotor attribute or cogni-
tive process should lead to activity changes in, and only in, the 
specialized areas. This is the anatomical and physiological model 
upon which the search for regionally specific effects is based. We 
will deal briefly with models of regionally specific responses and 
return to models of functional integration.

3 Statistical Models

Functional mapping studies are usually analyzed with some form of 
statistical parametric mapping (SPM). SPM entails the construc-
tion of continuous statistical maps (e.g., t-maps) to test hypotheses 
about regionally specific effects [6]. SPM uses the GLM and ran-
dom field theory (RFT) to analyze and make classical inferences 
about brain responses. Parameters of the GLM are estimated in 
exactly the same way as in conventional analysis of discrete data. 
RFT is used to resolve the multiple-comparisons problem induced 
by making inferences over a volume of the brain. RFT provides a 
method for adjusting p-values for the search volume of an SPM to 
control false positive rates. It plays the same role for continuous 
data (i.e., images or time series) as the Bonferroni correction for a 
family of discontinuous or discrete statistical tests.

There is a Bayesian alternative to classical inference with SPMs. 
This rests on conditional inferences about an effect, given the data, 
as opposed to classical inferences about the data, given the effect is 
zero. Bayesian inferences about effects that are continuous in space 
use posterior probability maps (PPMs). Although less established 
than SPMs, PPMs are potentially useful, not least because they do 
not have to contend with the multiple-comparisons problem 
induced by classical inference (see Ref. [7]). In contradistinction to 
SPM, this means that inferences about a given regional response 
do not depend on inferences about responses elsewhere. Bayesian 
inference is particularly relevant to dynamic casual modeling 
because the Bayesian formulation is an essential part of model 
specification and inversion. Before looking at the models underly-
ing Bayesian inference, we briefly review estimation and classical 
inference in the context of the GLM and show how this can be 
generalized to give a Bayesian approach.

3.1 Statistical 
Parametric Mapping
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The GLM is a simple equation

 y X= +b e  (1)

that expresses an observed response y in terms of a linear 
combination of explanatory variables in the design matrix X, plus 
a well- behaved error term. The GLM is variously known as analy-
sis of variance or multiple-regression and subsumes simpler vari-
ants, like the t-test for a difference in means, to more elaborate 
linear convolution models (see below). Each column of the design 
matrix models a cause of the data. These are referred to as explan-
atory variables, covariates, or regressors. Sometimes the design 
matrix contains covariates or indicator variables that take values of 
zero or one, to indicate the presence of a particular level of an 
experimental factor (cf, analysis of variance). The relative contri-
bution of each of these columns to the response is controlled by 
the parameters, β. Inferences about the parameter estimates are 
made using t or F-statistics, as in conventional statistics. Having 
computed the statistic, RFT is used to assign adjusted p-values to 
topological features of the SPM, such as the height of peaks or the 
spatial extent of blobs. This p-value is a function of the search 
volume and smoothness. The intuition behind RFT is that it con-
trols the false positive rate of peaks corresponding to regional 
effects. A Bonferroni correction would control the false positive 
rate of voxels, which is inexact and unnecessarily severe. The 
p-value is the probability of getting a peak in the SPM, or higher, 
by chance over the search volume. If sufficiently small (usually less 
than 0.05), the regional effect is declared significant.

Inference in neuroimaging is restricted largely to classical infer-
ences based upon SPMs. The statistics that comprise these SPMs 
are essentially functions of the data. The probability distribution of 
the chosen statistic, under the null hypothesis (i.e., the null distri-
bution), is used to compute a p-value. This p-value is the probabil-
ity of obtaining the statistic, or the data, given that the null 
hypothesis is true. If sufficiently small, the null hypothesis is 
rejected and an inference is made. The alternative approach is to 
use Bayesian or conditional inference based upon the posterior dis-
tribution of the activation given the data [8]. This necessitates the 
specification of priors (i.e., the probability distribution of the acti-
vation or model parameter). Bayesian inference requires the condi-
tional or posterior distribution and therefore rests upon a posterior 
density analysis. A useful way to summarize this posterior density is 
to compute the probability that the activation exceeds some thresh-
old. This represents a Bayesian inference about the effect, in rela-
tion to the specified threshold. By computing posterior probability 
for each voxel, we can construct PPMs that are a useful comple-
ment to classical SPMs.

3.2 General Linear 
Model

3.3 Classical 
and Bayesian 
Inference
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The motivation for using conditional or Bayesian inference is 
that it has high face validity. This is because the inference is about 
an effect, or activation, being greater than some specified size that 
has some meaning in relation to underlying neurophysiology. This 
contrasts with classical inference, in which the inference is about 
the effect being significantly different than zero. The problem for 
classical inference is that trivial departures from the null hypothesis 
can be declared significant, with sufficient data or sensitivity. From 
the point of view of neuroimaging, posterior inference is especially 
useful because it eschews the multiple-comparisons problem. In 
classical inference, one tries to ensure that the probability of reject-
ing the null hypothesis incorrectly is maintained at a small rate, 
despite making inferences over large volumes of the brain. This 
induces a multiple-comparisons problem that, for spatially contin-
uous data, requires an adjustment or correction to the p-value 
using RFT as mentioned earlier. This correction means that classi-
cal inference becomes less sensitive or powerful with large search 
volumes. In contradistinction, posterior inference does not have to 
contend with the multiple-comparisons problem because there are 
no false-positives. The probability that activation has occurred, 
given the data, at any particular voxel is the same, irrespective of 
whether one has analyzed that voxel or the entire brain. For this 
reason, posterior inference using PPMs represents a relatively more 
powerful approach than classical inference in neuroimaging.

PPMs require the posterior distribution or conditional distribution 
of the activation (a contrast of conditional parameter estimates), 
given the data. This posterior density can be computed, under 
Gaussian assumptions, using Bayes rule. Bayes rule requires the 
specification of a likelihood function and the prior density of the 
model parameters. The models used to form PPMs and the likeli-
hood functions are exactly the same as in classical SPM analyses, 
namely, the GLM. The only extra information that is required is 
the prior probability distribution of the parameters. Although it 
would be possible to specify those using independent data or some 
plausible physiological constraints, there is an alternative to this 
fully Bayesian approach. The alternative is empirical Bayes in which 
the prior distributions are estimated from the data. Empirical Bayes 
requires a hierarchical observation model where the parameters and 
hyper-parameters at any particular level can be treated as priors on 
the level below. There are numerous examples of hierarchical 
observation models in neuroimaging. For example, the distinction 
between fixed- and mixed-effects analyses of multisubject studies 
relies upon a two-level hierarchical model. However, in neuroim-
aging, there is a natural hierarchical observation model that is com-
mon to all brain mapping experiments. This is the hierarchy 
induced by looking for the same effects at every voxel within the 
brain (or gray matter). The first level of the hierarchy corresponds 

3.3.1 Hierarchical 
Models and Empirical 
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to the experimental effects at any particular voxel and the second 
level comprises the effects over voxels. Put simply, the variation in 
a contrast, over voxels, can be used as the prior variance of that 
contrast at any particular voxel. Hierarchical linear models have the 
following form:

 

y X

X

=

=

=¼

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 1 1

1 2 2 2

2

b e

b b e

b  

(2)

This is exactly the same as Eq. (1) but now the parameters of the 
first level are generated by a supra-ordinate linear model and so on 
to any hierarchical depth required. These hierarchical observation 
models are an important extension of the GLM and are usually 
estimated using expectation maximization (EM) [9]. In the pres-
ent context, the response variables comprise the responses at all 
voxels and β(1)s are the treatment effects we want to make an infer-
ence about. Because we have invoked a second level, the first-level 
parameters embody random effects and are generated by a second- 
level linear model. At the second level, β(2) is the average effect over 
voxels and ε(2) is its voxel-to-voxel variation. By estimating the vari-
ance of ε(2), one is implicitly estimating an empirical prior on the 
first-level parameters at each voxel. This prior can then be used to 
estimate the posterior probability of β(1) being greater than some 
threshold at each voxel. An example of the ensuing PPM is pro-
vided in Fig. 1 along with the classical SPM.

In summary, we have seen how the GLM can be used to test 
hypotheses about brain responses and how, in a hierarchical form, 
it enables empirical Bayesian or conditional inference. Then, we 
deal with the dynamic systems and how they can be formulated as 
GLMs. These dynamic models take us closer to how brain responses 
are actually caused by experimental manipulations and represent 
the next step towards dynamic causal models of brain responses.

In Friston et al. [10], the form of the impulsed hemodynamic 
response function (HRF) was estimated using a least squares de- 
convolution and a linear time invariant model, where evoked neu-
ronal responses are convolved or smoothed with an HRF to give the 
measured hemodynamic response (see also Ref. [11]). This simple 
linear convolution model is the cornerstone for making statistical 
inferences about activations in fMRI with the GLM. An impulse 
response function is the response to a single impulse, measured at 
a series of times after the input. It characterizes the input–output 
behavior of the system (i.e., voxel) and places important constraints 
on the sorts of inputs that will excite a response.

Knowing the form of the HRF is important for several reasons, 
not least because it furnishes better statistical models of the data. 

3.4 Dynamic Models

3.4.1 Convolution 
Models and Temporal 
Basis Functions
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The HRF may vary from voxel to voxel and this has to be accom-
modated in the GLM. To allow for different HRFs in different 
brain regions, temporal basis functions were introduced [12] to 
model evoked responses in fMRI and applied to event-related 
responses in Josephs et al. [13] (see also Ref. [14]). The basic idea 
behind temporal basis functions is that the hemodynamic response, 
induced by any given trial type, can be expressed as the linear com-
bination of (basis) functions of peri-stimulus time. The convolution 
model for fMRI responses takes a stimulus function encoding the 
neuronal responses and convolves it with an HRF to give a regres-
sor that enters the design matrix. When using basis functions, the 
stimulus function is convolved with each basis function to give a 
series of regressors. Mathematically, we can express this model as

contrast

z = 3mm
Design matrix

SPM PPM

z = 3mm

100

200

300

1 2 3 4

Fig. 1 Statistical parametric mapping (SPM) and posterior probability map (PPM) for an fMRI study of attention 
to visual motion. The display format (lower panel) uses an axial slice through extra-striate regions but the 
thresholds are the same as employed the in maximum-intensity projections (upper panels). Upper right: The 
activation threshold for the PPM was 0.7 au, meaning that all voxels shown had a 90 % chance of an activation 
of 0.7 % or more. Upper left: The corresponding SPM using an adjusted threshold at p = 0.05. Note the bilateral 
foci of motion-related responses in the PPM that are not seen in the SPM (gray arrows). As can be imputed 
from the design matrix (upper-middle panel), the statistical model of evoked responses comprised boxcar 
regressors convolved with a canonical hemodynamic response function. The middle column corresponds to 
the presentation of moving dots and was the stimulus attribute tested by the contrast
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where ⊗ means convolution. This equivalence shows how any convo-
lution model (right) can be converted into a GLM (left), using tem-
poral basis functions. The parameter estimates are the coefficients or 
weights that determine the mixture of basis functions of time Ti(t) 
that models h(t), the HRF for the trial type and voxel in question. We 
find the most useful basis set to be a canonical HRF and its deriva-
tives with respect to the key parameters that determine its form (see 
below). Temporal basis functions are important because they provide 
a graceful transition between conventional multilinear regression 
models with one stimulus function per condition and finite impulse 
response (FIR) models with a parameter for each time point, follow-
ing the onset of a condition or trial type. Figure 2 illustrates this 

Fig. 2 Temporal basis functions offer useful constraints on the form of the estimated response that retain the 
flexibility of finite impulse response (FIR) models and the efficiency of single regressor models. The specifica-
tion of these constrained FIR models involves setting up stimulus functions u(t) that model expected neuronal 
changes, for example, boxcar-functions of epoch-related responses or spike-(δ)-functions at the onset of 
specific events or trials. These stimulus functions are then convolved with a set of basis functions Ti(t) of peri- 
stimulus time that, in some linear combination, model the HRF. The ensuing regressors are assembled into the 
design matrix. The basis functions can be as simple as a single canonical HRF (middle), through to a series of 
top-hat-functions δi(t) (bottom). The latter case corresponds to an FIR model and the coefficients constitute 
estimates of the impulse response function at a finite number of discrete sampling times. Selective averaging 
in event-related fMRI [39] is mathematically equivalent to this limiting case
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graphically. In short, temporal basis functions offer useful constraints 
on the form of the estimated response that retain the flexibility of FIR 
models and the efficiency of single regressor models.

By adopting a convolution model for brain responses in fMRI, we 
are implicitly positing a dynamic system that converts neuronal 
responses into observed hemodynamic responses. Our 
 understanding of the biophysical and physiological mechanisms 
that underpin the HRF has grown considerably in the last few years 
(e.g., [15–17]). Figure 3 shows some simulations based on the 
hemodynamic model described in Friston et al. [18]. Here, neuro-
nal activity induces some autoregulated vasoactive signal that 
causes transient increases in regional cerebral blood flow (rCBF). 
The resulting flow increases dilate a venous balloon, increasing its 
volume, and diluting venous blood to decrease deoxyhemoglobin 
content. The blood oxygen level dependent (BOLD) signal is 
roughly proportional to the concentration of deoxyhemoglobin 
and follows the rCBF response with about a second delay. The 
model is framed in terms of differential equations, examples of 
which are provided in left panel.

3.5 Biophysical 
Models
3.5.1 Input-State-Output 
Systems

activity-dependent signal
˙

˙

˙ ˙

s = u − KS − ?(f −1)

tv = f − v1/a tq = f E(f. r)/ r − v1/a q/v

f

f

v

y = l(v.q)

s, f, v, q

u(t)

qv

f = s
flow induction

changes in volume changes in dHb

neuronal input

induced signal v & q

hemodynamics

no
rm

al
iz

ed
 fl

ow
 s

ig
na

l

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2
0 10 20 30

1.15

1.1

1.05

1

0.95

0.0
0 10 20 30no

rm
al

iz
ed

 v
ol

um
e 

&
 d

co
xy

H
b

1.51.5

1.4

1.3

1.2

1.1

1

0.9

1

0.5

0

0.5
0 10 20 300 10 20 30

no
rm

al
iz

ed
 fl

ow

rCBF response

time secs time secs

BOLD response

hidden states
pe

rc
en

t c
ah

ge

Fig. 3 Right: Hemodynamics elicited by an impulse of neuronal activity as predicted by a dynamical biophysical 
model (left). A burst of neuronal activity causes an increase in flow-inducing signal that decays with first-order 
kinetics and is downregulated by local flow. This signal increases regional cerebral blood flow (rCBF), which 
dilates the venous capillaries, increasing volume v. Concurrently, venous blood is expelled from the venous 
pool decreasing deoxyhemoglobin content q. The resulting fall in deoxyhemoglobin concentration leads to a 
transient increases in blood oxygen level dependent (BOLD) signal and a subsequent undershoot. Left: 
Hemodynamic model; on which these simulations were based
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Note that we have introduced variables like volume and 
deoxyhemoglobin concentrations that are not actually observed. 
These are referred to as the hidden states of input-state-output models. 
The state and output equations of any analytic dynamical system are
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The first line is an ordinary differential equation and expresses the 
rate of change of the states as a parameterized function of the states 
and inputs. Typically, the inputs u(t) correspond to designed 
experimental effects (e.g., the stimulus function in fMRI). There is 
a fundamental and causal relationship [19] between the outputs 
and the history of the inputs in Eq. (4). This relationship conforms 
to a Volterra series, which expresses the output as a generalized 
convolution of the input, critically without reference to the hidden 
states x(t). This series is simply a functional Taylor expansion of the 
outputs with respect to the inputs [20]. The reason for it is a func-
tional expansion that the inputs are a function of time.1
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where ki(σ1,…,σi) is the ith-order kernel. In Eq. (5), the integrals 
are restricted to the past. This renders the system causal. The key 
thing here is that Eq. (5) is simply a convolution and can be 
expressed as a GLM as in Eq. (3). This means that we can take a 
neurophysiologically realistic model of hemodynamic responses 
and use it as an observation model to estimate parameters using 
observed data. Here the model is parameterized in terms of kernels 
that have a direct analytic relation to the original parameters θ of 
the biophysical system. The first-order kernel is simply the conven-
tional HRF. High-order kernels correspond to high-order HRFs 
and can be estimated using basis functions as described above. In 
fact, by choosing basis functions according to
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one can estimate the biophysical parameters because βi = θi to a 
first-order approximation. The critical step we have taken here is to 
start with a dynamic causal model of how responses are generated 

1
 For simplicity, here and in Eq. (7), we deal with only one experimental input.

Dynamic Causal Modeling of Brain Responses



252

and construct a general linear observation model that allows us to 
estimate and infer things about the parameters of that model. This 
is in contrast to the conventional use of the GLM with design 
matrices that are not informed by a forward model of how data are 
caused. This approach to modeling brain responses has a much 
more direct connection with underlying physiology and rests upon 
an understanding of the underlying system.

Once a suitable causal model has been established (e.g., Fig. 3), we 
can estimate second-order kernels. These kernels represent a non-
linear characterization of the HRF that can model interactions 
among stimuli in causing responses. One important manifestation 
of the nonlinear effects, captured by the second-order kernels, is a 
modulation of stimulus-specific responses by preceding stimuli 
that are proximate in time. This means that responses at high- 
stimulus presentation rates saturate and, in some instances, show 
an inverted U behavior. This behavior appears to be specific to 
BOLD effects (as distinct from evoked changes in CBF) and may 
represent a hemodynamic refractoriness. This effect has important 
implications for event-related fMRI, where one may want to pres-
ent trials in quick succession.

In summary, we started with models of regionally specific 
responses, framed in terms of the GLM, in which responses were 
modeled as linear mixtures of designed changes in explanatory vari-
ables. Hierarchical extensions to linear observation models enable 
random-effects analyses and, in particular, empirical Bayes. The 
mechanistic utility of these models is realized though the use of for-
ward models that embody causal dynamics. Simple variants of these 
are the linear convolution models used to construct explanatory 
variables in conventional analyses of fMRI data. These are a special 
case of generalized convolution models that are mathematically 
equivalent to input-state-output systems comprising hidden states. 
Estimation and inference with these dynamic models tells us some-
thing about how the response was caused, but only at the level of a 
single voxel. Section 4 retains the same perspective on models, but 
in the context of distributed responses and functional integration.

4 Models of Functional Integration

Imaging neuroscience has established functional specialization as a 
principle of brain organization in man. The integration of special-
ized areas has proven more difficult to assess. Functional integration 
is usually inferred on the basis of correlations among measurements 
of neuronal activity. Functional connectivity is defined as statistical 
dependencies or correlations among remote neurophysiological events. 
However, correlations can arise in a variety of ways. For example, in 
multiunit electrode recordings, they can result from stimulus-locked 

3.5.2 Nonlinear System 
Identification

4.1 Functional 
and Effective 
Connectivity
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transients evoked by a common input or reflect stimulus-induced 
oscillations mediated by synaptic connections [21]. Integration 
within a distributed system is usually better understood in terms of 
effective connectivity. Effective connectivity refers explicitly to the 
influence that one neural system exerts over another, either at a synap-
tic (i.e., synaptic efficacy) or at a population level. It has been pro-
posed that “the (electrophysiological) notion of effective connectivity 
should be understood as the experiment- and time-dependent, sim-
plest possible circuit diagram that would replicate the observed tim-
ing relationships between the recorded neurons” [22]. This speaks 
about two important points: (a) effective connectivity is dynamic, 
that is, activity-dependent and (b) it depends upon a model of the 
interactions. The estimation procedures employed in functional 
neuroimaging can be divided into linear nondynamic models (e.g., 
[23]) or nonlinear dynamic models.

There is a necessary link between functional integration and 
multivariate analyses because the latter are necessary to model inter-
actions among brain regions. Multivariate approaches can be 
divided into those that are inferential in nature and those that are 
data-led or exploratory. We will first consider multivariate approaches 
that look at functional connectivity or covariance patterns (and are 
generally exploratory) and then turn to models of effective connec-
tivity (that allow for inference about their parameters).

In Friston et al. [24], we introduced voxel-based principal component 
analysis (PCA) of neuroimaging time series to characterize distributed 
brain systems implicated in sensorimotor, perceptual, or cognitive 
processes. These distributed systems are identified with principal com-
ponents or eigenimages that correspond to spatial modes of coherent 
brain activity. This approach represents one of the simplest multivari-
ate characterizations of functional neuroimaging time series and falls 
into the class of exploratory analyses. Principal component or eigen-
image analysis generally uses singular value decomposition to identify 
a set of orthogonal spatial modes that capture the greatest amount of 
variance expressed over time. As such, the ensuing modes embody the 
most prominent aspects of the variance–covariance structure of a 
given time series. Noting that covariance among brain regions is 
equivalent to functional connectivity renders eigenimage analysis par-
ticularly interesting because it was among the first ways of addressing 
functional integration (i.e., connectivity) with neuroimaging data. 
Subsequently, eigenimage analysis has been elaborated in a number of 
ways. Notable among these is canonical variate analysis (CVA) and 
multidimensional scaling [25, 26]. CVA was introduced in the con-
text of multiple analysis of covariance and uses the generalized eigen-
vector solution to maximize the variance that can be explained by 
some explanatory variables relative to error. CVA can be thought of as 
an extension of eigenimage analysis that refers explicitly to some 
explanatory variables and allows for statistical inference.

4.1.1 Eigenimage 
Analysis and Related 
Approaches
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In fMRI, eigenimage analysis (e.g., [27]) is generally used as 
an exploratory device to characterize coherent brain activity. These 
variance components may, or may not, be related to experimental 
design. For example, endogenous coherent dynamics have been 
observed in the motor system at very low frequencies [28]. Despite 
its exploratory power, eigenimage analysis is limited for two rea-
sons. First, it offers only a linear decomposition of any set of neu-
rophysiological measurements and second, the particular set of 
eigenimages or spatial modes obtained is determined by constraints 
that are biologically implausible. These aspects of PCA confer 
inherent limitations on the interpretability and usefulness of 
 eigenimage analysis of biological time series and have motivated 
the exploration of nonlinear PCA and neural network approaches.

Two other important approaches deserve to be mentioned here. The 
first is independent component analysis (ICA). ICA uses entropy maximi-
zation to find, using iterative schemes, spatial modes or their dynamics 
that are approximately independent. This is a stronger requirement than 
orthogonality in PCA and involves removing high-order correlations 
among the modes (or dynamics). It was initially introduced as spatial ICA 
[29], in which the independence constraint was applied to the modes 
(with no constraints on their temporal expression). More recent 
approaches use, by analogy with magneto- and electrophysiological time 
series analysis, temporal ICA where the dynamics are enforced to be inde-
pendent. This requires an initial dimension reduction (usually using con-
ventional eigenimage analysis). Finally, there has been an interest in cluster 
analysis [30]. Conceptually, this can be related to eigenimage analysis 
through multidimensional scaling and principal co-ordinate analysis.

All these approaches are interesting, but they are not used 
very much. This is largely because they tell you nothing about 
how the brain works or allow one to ask specific questions. Simply 
demonstrating statistical dependencies among regional brain 
responses or endogenous activity (i.e., demonstrating functional 
connectivity) does not address how these responses were caused. 
To address this, one needs explicit models of integration or more 
precisely, effective connectivity.

This section is about modeling interactions among neuronal popu-
lations, at a cortical level, using neuroimaging time series and 
dynamic causal models that are informed by the biophysics of the 
system studied. The aim of DCM [31] is to estimate, and make 
inferences about, the coupling among brain areas and how that 
coupling is influenced by experimental changes (e.g., time or cog-
nitive set). The basic idea is to construct a reasonably realistic neu-
ronal model of interacting cortical regions or nodes. This model is 
then supplemented with a forward model of how neuronal or syn-
aptic activity translates into a measured response (see previous sec-
tion). This enables the parameters of the neuronal model (i.e., 
effective connectivity) to be estimated from observed data.

4.2 Dynamic Causal 
Modeling 
with Bilinear Models
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Intuitively, this approach regards an experiment as a designed 
perturbation of neuronal dynamics that are promulgated and dis-
tributed throughout a system of coupled anatomical nodes to 
change region-specific neuronal activity. These changes engender, 
through a measurement-specific forward model, responses that are 
used to identify the architecture and time constants of the system at 
a neuronal level. This represents a departure from conventional 
approaches (e.g., structural equation modeling and auto- regression 
models; [32, 33]), in which one assumes that the observed responses 
are driven by endogenous or intrinsic noise (i.e., innovations). In 
contrast, dynamic causal models assume that the responses are 
driven by designed changes in inputs. An important conceptual 
aspect of dynamic causal models pertains to how the experimental 
inputs enter the model and cause neuronal responses. Experimental 
variables can elicit responses in one of two ways. First, they can elicit 
responses through direct influences on specific anatomical nodes. 
This would be appropriate, for example, in modeling sensory-
evoked responses in early visual cortices. The second class of input 
exerts its effect vicariously, through a modulation of the coupling 
among nodes. This sort of experimental variable would normally be 
more enduring, for example, attention to a particular attribute or 
the maintenance of some perceptual set. These distinctions are seen 
most clearly in relation to particular forms of causal models used for 
estimation, for example, the bilinear approximation
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where x x t= ¶ ¶/ . This is an approximation to any model of how 
changes in neuronal activity in one region xi are caused by activity 
in the other regions. Here the output function g(x) embodies a 
hemodynamic convolution, linking neuronal activity to BOLD, for 
each region (e.g., that in Fig. 3). The matrix A represents the cou-
pling among the regions in the absence of input u(t). This can be 
thought of as the endogenous coupling in the absence of experi-
mental perturbations. The matrix B is effectively the change in 
coupling induced by the input. It encodes the input-sensitive 
changes in A or, equivalently, the modulation of coupling by 
experimental manipulations. Because B is a second-order deriva-
tive, it is referred to as bilinear. Finally, the matrix C embodies the 
exogenous influences of inputs on neuronal activity. The parame-
ters θ = A,B, and C are the connectivity or coupling matrices that 
we wish to identify and define the functional architecture and 
interactions among brain regions at a neuronal level. They play the 
same role as rate constant in kinetic models and therefore have 
units of Hertz or per second.
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Because Eq. (7) has exactly the same form as Eq. (4), we can 
express it as a GLM and estimate the parameters using EM in the 
usual way (see Ref. [31]). Generally, estimation in the context of 
highly parameterized models like DCMs requires constraints in the 
form of priors. These priors enable conditional inference about the 
connectivity estimates. The sorts of questions that can be addressed 
with DCMs are now illustrated by looking at how attentional mod-
ulation is mediated in sensory processing hierarchies in the brain.

It has been established that the superior parietal cortex (SPC) exerts 
a modulatory role on V5 responses using Volterra-based regression 
models [34] and that the inferior frontal gyrus (IFG) exerts a simi-
lar influence on SPC using structural equation modeling [32]. The 
example here shows that DCM leads to the same conclusions but 
starting from a completely different construct. The experimental 
paradigm and data acquisition are described in the legend to Fig. 4. 
This figure also shows the location of the regions that entered the 
DCM. These regions were based on maxima from conventional 
SPMs testing for the effects of photic stimulation, motion, and 

4.2.1 DCM and 
Attentional Modulation

Fig. 4 Results of a dynamic causal modeling (DCM) analysis of attention to visual motion with fMRI. Right 
panel: Functional architecture based upon the conditional estimates shown alongside their connections, with 
the percent confidence that they exceeded threshold in brackets. The most interesting aspects of this archi-
tecture involve the role of motion and attention in exerting bilinear effects. Critically, the influence of motion is 
to enable connections from V1 to the motion-sensitive area V5. The influence of attention is to enable back-
ward connections from the inferior frontal gyrus (IFG) to the superior parietal cortex (SPC). Furthermore, atten-
tion increases the influence of SPC on V5. Dotted arrows connecting regions represent significant bilinear 
effects in the absence of a significant intrinsic coupling. Left panel: Fitted responses based upon the condi-
tional estimates and the adjusted data are shown for each region in the DCM. The insert (upper left) shows the 
location of the regions
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attention. Regional time courses were taken as the first eigenvariate 
of 8-mm-spherical volumes of interest, centered on the maxima 
shown in the figure. The exogenous inputs, in this example, com-
prise one sensory perturbation and two contextual inputs. The sen-
sory input was simply the presence of photic stimulation and the 
first contextual one was presence of motion in the visual field. The 
second contextual input, encoding attentional set, was one during 
attention to speed changes and zero otherwise. The outputs corre-
sponded to the four regional eigenvariates in Fig. 4 (left panel). The 
intrinsic connections were constrained to conform to a hierarchical 
pattern in which each area was reciprocally connected to its supra-
ordinate area. Photic stimulation entered at, and only at, V1. The 
effect of motion in the visual field was modeled as a bilinear modu-
lation of the V1 to V5 connectivity and attention was allowed to 
modulate the backward connections from IFG and SPC.

Subjects were studied with fMRI under identical stimulus con-
ditions (visual motion subtended by radially moving dots) while 
manipulating the attentional component of the task (detection of 
velocity changes). The data were acquired from a normal subject at 
2 T. Each subject had four consecutive 100-scan sessions compris-
ing a series of ten-scan blocks under five different conditions  
D F A F N F A F N S. The first condition (D) was a dummy condi-
tion to allow for magnetic saturation effects. F (fixation) corresponds 
to a low-level baseline where subjects viewed a fixation point at the 
center of a screen. In condition A (attention), subjects viewed 250 
dots moving radially from the center at 4.7°/s and were asked to 
detect changes in radial velocity. In condition N (no attention), the 
subjects were asked simply to view the moving dots. In condition S 
(stationary), subjects viewed stationary dots. The order of A and N 
was swapped for the last two sessions. In all conditions, subjects fix-
ated the center of the screen. During scanning, there were no speed 
changes. No overt response was required in any condition.

The results of the DCM are shown in Fig. 4 (right panel). Of 
primary interest here is the modulatory effect of attention that is 
expressed in terms of the bilinear coupling parameters for this 
input. As expected, we can be highly confident that attention mod-
ulates the backward connections from IFG to SPC and from SPC 
to V5. Indeed, the influences of IFG on SPC are negligible in the 
absence of attention (dotted connection). It is important to note 
that the only way that attentional manipulation can affect brain 
responses was through this bilinear effect. Attention-related 
responses are seen throughout the system (attention epochs are 
marked with arrows in the plot of IFG responses in the left panel). 
This attentional modulation is accounted for, sufficiently, by chang-
ing just two connections. This change is, presumably, instantiated 
by instructional set at the beginning of each epoch.

The second thing, this analysis illustrates, is how functional 
segregation is modeled in DCM. Here one can regard V1 as 
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“segregating” motion from other visual information and distribut-
ing it to the motion-sensitive area V5. This segregation is modeled 
as a bilinear “enabling” of V1–V5 connections when, and only 
when, motion is present. Note that in the absence of motion, the 
intrinsic V1–V5 connection was trivially small (in fact the estimate 
was −0.04 Hz). The key advantage of entering motion through a 
bilinear effect, as opposed to a direct effect on V5, is that we can 
finesse the inference that V5 shows motion-selective responses 
with the assertion that these responses are mediated by afferents 
from V1. The two bilinear effects above represent two important 
aspects of functional integration that DCM is able to characterize.

The central idea, behind DCM, is to treat the brain as a determin-
istic nonlinear dynamic system that is subject to inputs and pro-
duces outputs. Effective connectivity is parameterized in terms of 
coupling among unobserved brain states (e.g., neuronal activity in 
different regions). The objective is to estimate these parameters by 
perturbing the system and measuring the response. This is in con-
tradistinction to established methods for estimating effective con-
nectivity from neurophysiological time series, which include SEM 
and models based on multivariate auto-regressive processes. In 
these models, there is no designed perturbation and the inputs are 
treated as unknown and stochastic. Furthermore, the inputs are 
often assumed to express themselves instantaneously such that, at 
the point of observation, the change in states is zero. From Eq. 
(7), in the absence of bilinear effects, we have
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This is the regression equation used in SEM where A = D–I and D 
contains the off-diagonal connections among regions. The key 
point here is that A is estimated by assuming that u(t) is some ran-
dom innovation with known covariance. This is not really tenable 
for designed experiments when u(t) represent carefully structured 
experimental inputs. Although SEM and related auto-regressive 
techniques are useful for establishing dependence among regional 
responses, they are not surrogates for informed causal models 
based on the underlying dynamics of these responses.

In this section, we have covered multivariate techniques rang-
ing from eigenimage analysis that does not have an explicit forward 
or causal model to DCM that does. The bilinear approximation to 
any DCM has been illustrated though its use with fMRI to study 
attentional modulation. The parameters of the bilinear approxima-
tion include first-order effective connectivity A and its experimen-
tally induced changes B. Although the bilinear approximation is 
useful, it is possible to model coupling among neuronal subpopu-
lations explicitly. We conclude with a DCM that embraces a 

4.2.2 Structural Equation 
Modeling as a Special 
Case of DCM
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number of neurobiological facts and takes us much closer to a 
mechanistic understanding of how brain responses are generated. 
This example uses responses measured with EEG.

ERPs have been used for decades as electrophysiological correlates 
of perceptual and cognitive operations. However, the exact neuro-
biological mechanisms underlying their generation are largely 
unknown. In this section, we use neuronally plausible models to 
understand event-related responses. Our example shows that 
changes in connectivity are sufficient to explain certain ERP com-
ponents. Specifically, we will look at the MMN, a component asso-
ciated with rare or unexpected events. If the unexpected nature of 
rare stimuli depends on learning which stimuli are frequent, then 
the MMN must be due to plastic changes in connectivity that 
mediate perceptual learning. We conclude by showing that advances 
in the modeling of evoked responses now afford measures of con-
nectivity among cortical sources that can be used to quantify the 
effects of perceptual learning.

The minimal model we have developed [35] uses the connectivity 
rules described by Felleman and Van Essen [36] to assemble a net-
work of coupled sources. These rules are based on a partitioning of 
the cortical sheet into supra-, infra-granular, and granular layer 
(layer 4). Bottom-up or forward connections originate in agranular 
layers and terminate in layer 4. Top-down or backward connections 
target agranular layers. Lateral connections originate in agranular 
layers and target all layers. These long-range or extrinsic cortico-
cortical connections are excitatory and arise from pyramidal cells.

Each region or source is modeled using a neural mass model 
described by David and Friston [35], based on the model of Jansen 
and Rit [37]. This model emulates the activity of a cortical area 
using three neuronal subpopulations, assigned to granular and 
agranular layers. A population of excitatory pyramidal (output) 
cells receives inputs from inhibitory and excitatory populations of 
inter-neurons, via intrinsic connections (intrinsic connections are 
confined to the cortical sheet). Within this model, excitatory inter- 
neurons can be regarded as spiny stellate cells found predominantly 
in layer 4 and in receipt of forward connections. Excitatory pyra-
midal cells and inhibitory inter-neurons are considered to occupy 
agranular layers and receive backward and lateral inputs (Fig. 5).

To model event-related responses, the network receives inputs 
via input connections. These connections are exactly the same as 
forward connections and deliver inputs to the spiny stellate cells in 
layer 4. In the present context, inputs u(t) model subcortical audi-
tory inputs. The vector C controls the influence of the input on 
each source. The lower, upper, and leading diagonal matrices 
AF,AB, AL encode forward, backward, and lateral connections, 
respectively. The DCM here is specified in terms of the state equa-
tions shown in Fig. 5 and a linear output equation

4.3 Dynamic Causal 
Modeling with Neural 
Mass Models

4.3.1 Neural Mass 
Models
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where x0 represents the trans-membrane potential of pyramidal 
cells and L is a lead field matrix coupling electrical sources to the 
EEG channels. This should be compared with the DCM above for 
hemodynamics; here, the equations governing the evolution of 
neuronal states are much more complicated and realistic, as 
opposed to the bilinear approximation in Eq. (7). Conversely, the 
output equation is a simple linearity, as opposed to the nonlinear 
observer used for fMRI. As an example, the state equation for the 
inhibitory subpopulation is 2

2
 Propagation delays on the extrinsic connections have been omitted for clarity 

here and in Fig. 5.

Fig. 5 Schematic of the dynamic causal modeling (DCM) used to model electrical responses. This schematic shows 
the state equations describing the dynamics of sources or regions. Each source is modeled with three subpopula-
tions (pyramidal, spiny stellate, and inhibitory inter-neurons) as described in the main text. These have been 
assigned to granular and agranular cortical layers that receive forward and backward connections, respectively
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Within each subpopulation, the evolution of neuronal states rests 
on two operators. The first transforms the average density of pre- 
synaptic inputs into the average postsynaptic membrane potential. 
This is modeled by a linear transformation with excitatory and 
inhibitory kernels parameterized by He,i and τe,j. He,j controls the 
maximum post-synaptic potential and τe,j represents a lumped rate 
constant. The second operator S transforms the average potential 
of each subpopulation into an average firing rate. This is assumed 
to be instantaneous and is a sigmoid function. Interactions, among 
the subpopulations, depend on constants, γ1,2,3,4, which control the 
strength of intrinsic connections and reflect the total number of 
synapses expressed by each subpopulation. In Eq. (10), the top 
line expresses the rate of change of voltage as a function of current. 
The second line specifies how current changes as a function of volt-
age, current, and pre-synaptic input from extrinsic and intrinsic 
sources. Having specified the DCM in terms of these equations, 
one can estimate the coupling parameters from empirical data 
using EM as described above. See Ref. [38] for more details.

The example shown in Fig. 6 is an attempt to model the MMN in 
terms of changes in backward and lateral connections among corti-
cal sources. In this example, two (averaged) channels of EEG data 
were modeled with three cortical sources. Using this generative or 
forward model, we estimated differences in the strength of these 
connections for rare and frequent stimuli. As expected, we could 
account for detailed differences in the ERPs (the MMN) by 
changes in connectivity (see figure legend for details). Interestingly, 
these differences were expressed selectively in the lateral connec-
tions. If this model is a sufficient approximation to the real sources, 
these changes are a noninvasive measure of plasticity, mediating 
perceptual learning, in the human brain.

5 Conclusion

In this chapter, we have reviewed some key models that underpin 
image analysis and have touched briefly on ways of assessing 
 specialization and integration in the brain. These models can be 
regarded as a succession of modeling endeavors, that drawing more 
and more on our understanding of how brain-imaging signals are 
generated, both in terms of biophysics and the underlying neuro-
nal interactions. We have seen how hierarchical linear observation 
models encode the treatment effects elicited by experimental 

4.3.2 Perceptual 
Learning and the MMN
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Fig. 6 Summary of a dynamic causal modeling (DCM) analysis of event-related potentials (ERPs) elicited during 
an auditory oddball paradigm, employing rare and frequent pure tones. Upper panel: Schematic showing the 
architecture of the neuronal model used to explain the empirical data. Sources were coupled with extrinsic cor-
tico-cortical connections following the rules of Felleman and van Essen. The free parameters of this model 
included intrinsic and extrinsic connection strengths that were adjusted to best explain the data. In this example, 
the lead field was also estimated, with no spatial constraints. The parameters were estimated for ERPs recorded 
during the presentation of rare and frequent tones and are reported beside their corresponding connection (fre-
quent/rare). The most notable finding was that the mismatch response could be explained by a selective increase 
in lateral connection strength from 0.1 to 3.68 Hz (highlighted in bold). Lower panel: The channel positions (left) 
and ERPs (right) averaged over two subsets of channels (circled on the left). Note the correspondence between 
the measured ERPs and those generated by the model. Auditory stimuli, 1,000 or 2,000 Hz tones with 5 ms rise 
and fall times and 80 ms duration, were presented binaurally. The tones were presented for 15 min, every 2 s in 
a pseudo-random sequence with 2000-Hz tones occurring 20 % of the time and 1,000-Hz tones occurring 80 % 
of the time. The subject was instructed to keep a mental record of the number of 2000-Hz tones (nonfrequent 
target tones). Data were acquired using 128 EEG electrodes with 1,000 Hz sample frequency. Before averaging, 
data were referenced to mean earlobe activity and band-pass filtered between 1 and 30 Hz. Trials showing ocular 
artifacts and bad channels were removed from further analysis
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design. GLMs based on convolution models imply an underlying 
dynamic input-state-output system. The form of these systems can 
be used to constrain convolution models and explore some of their 
simpler nonlinear properties. By creating observation models based 
on explicit forward models of neuronal interactions, one can model 
and assess interactions among distributed cortical areas and make 
inferences about coupling at the neuronal level. The next years will 
probably see an increasing realism in the dynamic causal models 
introduced above (see Ref. [39]). These endeavors are likely to 
encompass fMRI signals enabling the conjoint modeling, or fusion, 
of different modalities and the marriage of computational neuro-
science with the modeling of brain responses.
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    Chapter 9   

 Brain Atlases: Their Development and Role in Functional 
Inference                     

     John     Darrell     Van     Horn     and     Arthur     W.     Toga      

  Abstract 

   Imparting functional meaning to neuroanatomical location has been among the greatest challenges to 
neuroscientists. The characterization of the brain architecture responsible in human cognition received a 
boost in momentum with the emergence of in vivo functional and structural neuroimaging technology 
over the past 30 years. Yet, individual variability in cortical gyrifi cation as well as the patterns of blood fl ow- 
related activity measured using fMRI and positron emission tomography complicated direct comparisons 
across subjects without spatially accounting for overall brain size and shape. This realization resulted in 
considerable effort now involving the collective efforts of neuroscientists, computer scientists, and math-
ematicians to develop common brain atlas spaces against which the regions of activity may be accurately 
referenced. We examine recent developments in brain imaging and computational anatomy that have 
greatly expanded our ability to analyze brain structure and function. The enormous diversity of brain maps 
and imaging methods has spurred the development of population-based digital brain atlases. Atlases store 
information on how the brain varies across age and gender, across time, in health and disease, and in large 
human populations. We describe how brain atlases, and the computational tools that align new datasets 
with them, facilitate comparison of brain data across experiments, laboratories, and from different imaging 
devices. The major philosophies are presented that underlie the construction of probabilistic atlases, which 
store information on anatomic and functional variability in a population. Algorithms which create compos-
ite brain maps and atlases based on multiple subjects are examined. We show that group patterns of cortical 
organization, asymmetry, and disease-specifi c trends can be resolved that may not be apparent in individual 
brain maps. Finally, we describe the development of four-dimensional maps that store information on the 
dynamics of brain change in development and disease.  

  Key words     Brain atlases  ,   Neuroanatomy  ,   Diffeomorphism  ,   Warping  ,   Functional activity  ,   Inference  

1      Introduction 

 Over a century ago, in a horrifi c accident, damage to the frontal 
lobe of Phineas Gage produced profound changes in his personality 
and cognitive function, the beginning of what may be considered as 
the modern era of the localization of brain function [ 1 ]. Nearly a 
decade later, the examination by Paul Broca of aphasic patients hav-
ing damage to the left inferior frontal areas (pars  triangularis, pars 
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opercularis) solidifi ed the notion that function could be linked to 
specifi c areas of cortical tissue [ 2 ]. At the turn of the twentieth cen-
tury, Dr. Alois Alzheimer, a German psychiatrist, identifi ed the fi rst 
case of what became known as  Alzheimer’s Disease (AD)   [ 3 ], now 
known to severely affect the thickness of the cortical mantle as well 
as the hippocampal area and its surrounding tissues. Since those 
early reports, a principle goal in  neuroscience   has been to classify 
the specifi c brain regions possessing unique functional components 
of complex thought and how these functions might be altered in 
response to injury or as a result of disease. 

 Over the past three decades, with the emergence of  neuroim-
aging   as the primary tool for the examination of the brain in vivo 
during cognitive task performance, the mapping of mental func-
tion has given rise to an explosion of functional experimentation 
and an ever-widening interest in understanding brain processes 
from fi elds beyond traditional neuroscience (e.g., economics, 
criminology, social science). This intense effort and expanse of data 
has emphasized the realization that there is considerable individual 
variation in brain size and shape that must be accounted for in the 
processing of brain imaging data and the assignment of functional 
signifi cance. Evaluation and comparison of brain imaging data 
with respect to and against well-defi ned anatomical references is 
now a critical element in the localization of essential cognitive 
functions in nearly all functional imaging investigations. 

 Brain atlases can now comprise imaging data describing mul-
tiple aspects of brain structure or  function   at different scales from 
different subjects, yielding a truly integrative and comprehensive 
description of this organ in health and disease [ 4 ,  5 ]. However, 
such complexity and variability of brain structure, especially in the 
gyral patterns of the human cortex, present challenges in creating 
standardized brain atlases that refl ect the anatomy of a population 
[ 6 ]. This chapter discusses the concepts behind population-based, 
age-, and disease-specifi c brain atlas construction that can be used 
to refl ect the specifi c anatomy and physiology of a particular clini-
cal subpopulation. Based on well-characterized subject groups, 
age-specifi c atlases can potentially contain thousands of structure 
models, composite maps, average templates, and visualizations of 
structural variability, asymmetry, and group-specifi c differences. 
They correlate the structural, metabolic, molecular, and histologic 
hallmarks of the disease [ 7 ,  8 ]. Rather than simply fusing informa-
tion from multiple subjects and sources, new mathematical strate-
gies are being introduced to resolve group-specifi c features not 
apparent in individual scans [ 9 ].  High-dimensional elastic map-
pings  , based on covariant partial differential equations, are devel-
oped to encode patterns of cortical variation [ 10 – 12 ]. In the 
resulting brain atlas, age-stratifi ed features and regional  asymmetries 
emerge that are not apparent in individual anatomies. The conse-
quential probabilistic atlas spaces can be used to identify patterns 
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of altered structure and function, and can guide algorithms for 
knowledge-based image analysis, automated image labeling, tissue 
classifi cation, data mining, and functional image analysis. These 
 integrative techniques   have provided signifi cant motivation for 
human brain mapping initiatives and have important applications 
in health and disease.  

2    Methods for Brain Atlas Construction 

 Creating atlases relies on the accumulation and compilation of 
many image sets along with appropriate  registration and warping 
strategies  , indexing schemes, and nomenclature systems. The pro-
cessing of multimodal brain images in the context of an atlas 
enables a more meaningful  interpretation   (Fig.  1 ). The complex-
ity and variability of human brain (as well as other species) across 
subjects is so great that reliance on atlases is essential to effectively 
manipulate, analyze, and interpret brain data. Central to these 
tasks is the construction of averages, templates, and models to 
describe how the brain and its component parts are organized. 
Design of appropriate reference systems for human brain data 
presents considerable challenges, since these systems must capture 
how brain structure and function vary in large populations, across 
age and gender, in different disease states, across imaging modali-
ties, and even across species.

  Fig. 1    A variety of  neuroimaging   methods permit the acquisition of brain data over time and space having a 
range of resolution granularity. Moreover, variation across individuals and how this changes over the lifespan 
must be accounted for in statistical examination of the data. Mapping these data to known spatial coordinate 
systems enables highly accurate inference concerning the brain’s structural change over time, between popu-
lations, or in terms of localizing functional change. Atlases denoting this variation after spatial warping, the 
characterization of shape, three-dimensional (3D) distortion, etc. will be essential in describing structural and 
functional alteration associated with normal aging as well as in disease       
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     Image registration is an elemental step in many of the analytic 
strategies involving brain imaging today [ 13 ]. Initially developed 
as an image processing technique to spatially align one image to 
match another, image registration now has a vast range of applica-
tions, such as automated image labeling and for pathology detec-
tion in individuals or groups [ 14 ]. Registration algorithms can 
encode patterns of anatomic variability in large human popula-
tions, and can use this information to create disease-specifi c, 
population- based brain atlases [ 15 ]. They may also blend data 
from multiple imaging devices to correlate different measures of 
brain structure and function. Finally, modern registration algo-
rithms and workfl ows can serve as a basic measure for patterns of 
structural change during brain development, tumor growth, or 
degenerative disease processes [ 16 ].  

   The objective in geodesic approaches has been to encourage varia-
tional methods for anatomical averaging that operate within the 
space of the underlying image registration problem [ 17 ]. This 
approach is effective when using a large deformation viscous frame-
work, where linear averaging might not be appropriate. The theory 
behind it is similar to registration-based techniques but with single 
image force replaced by the average forces from multiple sources. 
These group forces drive an average transport ordinary differential 
equation allowing one to estimate the geodesic that moves an 
image toward the mean shape confi guration. This model provides 
large deformation atlases that are optimal with respect to the shape 
manifold as defi ned by the data and the image registration assump-
tions. These procedures generate refi ned average representations 
of highly variable anatomy from distinct populations. For example, 
the population statistics have been used to show a signifi cant dou-
bling of the relative prefrontal lobe size in humans, as compared to 
nonhuman primates [ 18 ].  

   Initial approaches to population-based atlasing concentrated on 
generating mean representations of anatomy through the “inten-
sity pooling” of multiple MRI scans. This involves large number of 
MRI scans which are each linearly transformed into stereotaxic 
space, intensity-normalized, and averaged on a voxel-by-voxel 
basis, producing an average intensity MRI dataset. The average 
brains that result have large areas, especially at the cortex, where 
individual structures are blurred because of spatial variability in the 
population. While this blurring limits their usefulness as a quantita-
tive tool, the templates can be used as targets for the automated 
registration and mapping of MR and co-registered functional data 
into stereotaxic space [ 19 ].  

   In label-based approaches, large ensembles of brain data are labeled 
or “segmented” by a human operator or algorithmically into 
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subvolumes after mapping individual datasets into stereotaxic 
space. A probability map is then constructed for each segmented 
structure, by determining the proportion of subjects assigned a 
given anatomic label at each voxel position in stereotactic space. 
The prior information which these probability maps provide on the 
location of various tissue classes in stereotactic space has been use-
ful in designing automated tissue classifi ers and approaches to cor-
rect radio-frequency and intensity inhomogeneities in MR scans. 
Statistical data on anatomic labels and tissue types normally found 
at given positions in stereotactic space provide a vital independent 
source of information to guide and inform mathematical algo-
rithms, which analyze neuroanatomical data in stereotactic  space  .  

   Measuring and accounting for the considerable variability in brain 
shape across human populations necessitates realistically complex 
mathematical strategies to encode comprehensive information on 
structural variability [ 20 ]. Particularly relevant is a three- 
dimensional (3D) statistical information on group-specifi c patterns 
of variation and how these patterns are altered in disease. This 
information can be represented such that it can be exploited by 
expert diagnostic systems, whose goal is to detect subtle or diffuse 
structural alterations in disease [ 21 ]. Strategies for detecting struc-
tural anomalies can leverage information in anatomical databases 
by invoking encoded knowledge on the variations in geometry and 
location of neuroanatomic regions and critical functional inter-
faces, especially at the cortex.  

   Of particular relevance in dealing with brain substructures are 
methods used to defi ne a mean shape in such a way that departures 
from this mean shape can be treated as a linear process [ 22 ]. 
Linearization of the pathology detection problem, by constructing 
various shape manifolds and their associated tangent spaces, allows 
the use of conventional statistical procedures and linear decompo-
sition of departures from the mean to characterize shape change. 
These approaches have been applied to detect structural anomalies 
in schizophrenia by identifi cation of statistical differences in mean 
shape of brain  structures   [ 23 – 25 ] (Fig.  2 ).

      When applied to two different 3D brain scans, a nonlinear registra-
tion or warping algorithm calculates a deformation map that 
matches up brain structures in one scan with their counterparts in 
the other. The deformation map indicates 3D patterns of anatomic 
differences between the two subjects or populations [ 26 ]. In prob-
abilistic atlases based on deformation maps, statistical properties of 
these deformation maps are encoded locally to determine the mag-
nitude and directional biases of anatomic variation [ 27 ]. Encoding 
of local variation can then be used to assess the severity of struc-
tural variants outside of the normal range, which may be a sign of 
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disease. A major goal in designing this type of pathology detection 
system is to recognize that both the magnitude and local direc-
tional biases of structural  variability   in the brain may be different at 
every single anatomic point. Such atlases are not only cortically 
based but can also be done, for instance, on substructures and cer-
ebellum [ 28 ].  

   Disease-specifi c atlases are designed to refl ect the unique anatomy 
and physiology of a particular clinical subpopulation. Based on 
well-characterized patient groups, these atlases contain thousands 
of structure models, as well as composite maps, average templates, 
and visualizations of structural variability, asymmetry, and group- 
specifi c differences. They act as a quantitative framework that cor-
relates the structural, metabolic, molecular, and histologic hallmarks 

2.8   Disease-Specifi c 
Atlases  
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  Fig. 2    Variability in  brain cortical architectural asymmetry   leads directly to the 
consideration of probabilistic atlases and the use of cortically derived landmarks, 
for example, sulcal lines. In this fi gure, sulcal lines were manually determined for 
male and female normal subjects and those diagnosed with schizophrenia. 
Asymmetry maps were created in each group as defi ned by sex and diagnosis 
( NC  normal controls,  SZ  schizophrenic patients). Sulcal mesh averages for each 
hemisphere were subtracted from a refl ected version of the same structure in 
the other hemisphere to create displacement vectors. Thus, the mappings mea-
sure the degree of lateralization in terms of millimeters of displacement for the 
line under diffeomorphic and atlas space constraints. These maps, therefore, 
represent the magnitude of average asymmetry in sulcal anatomy between the 
two hemispheres between males and females and schizophrenic and normal 
subjects (Figure adapted from Narr et al. [ 72 ])       
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of the disease. Because they retain information on group anatomical 
variability, disease-specifi c atlases are a type of probabilistic atlas spe-
cialized to represent a particular clinical group. The resulting atlases 
can identify patterns of altered structure or function, and can guide 
algorithms for knowledge-based image analysis, automated image 
labeling, tissue classifi cation, and functional image analysis.  

   Inclusion of genetic data in an atlas makes it possible to go beyond 
simply describing the effects of a disease on the brain to investigating 
its fundamental causes. This not only allows the direct mapping of 
genetic infl uences on brain structure, but also allows us to quantify 
heritability for different features of the brain. Familial, twin, and 
genetic linkage studies have recently begun to expand the atlas con-
cept to tie together genetic and imaging studies of disease [ 7 ,  29 ]. 
Atlases that contain genetic brain maps, and a means to analyze them, 
can help screen relatives for inherited disease. They also offer a frame-
work to mine large imaging databases for risk genes and quantitative 
trait loci, as well as genetic and environmental triggers of disease.  

   The brain changes remarkably in its size and complexity over the lifes-
pan. There is considerable need to account for the age of particular 
populations in the context of brain maturation and the development of 
age-stratifi ed normal brain atlas spaces [ 30 ]. People who are mildly 
cognitively impaired, for instance, are at a fi vefold increased risk of 
imminent conversion to dementia, and present specifi c structural brain 
changes that are predictive of imminent disease onset [ 31 ,  32 ]. 
Language impairment in AD patients is also correlated with cortical 
atrophy in the left temporal and parietal lobes, bilateral frontal lobes, 
and the right temporal pole [ 33 ]. However, characterizing such change 
presents particular computational challenges. The fi tting of brain anat-
omy to a single template of undetermined age specifi cation may lead to 
errors in inference about brain morphometry of function relative to an 
inappropriate underlying template. Alternative approaches can also be 
fruitful and  metrics  , such as shape [ 34 ], cortical thickness mapping, 
tensor-based morphometry (TBM), may be better suited for shedding 
light on the neuroscience of aging and brain degeneration in AD and 
 mild cognitive impairment (MCI)   [ 35 ].   

3    Openly Available Atlases of the Brain 

 An increasing number and variety of brain atlases for humans, as well 
as other species, are being made openly available online for the neuro-
science community to use as authoritative references, for inclusion in 
data processing workfl ows, or for the display of results. These include 
probabilistic anatomical atlases [ 15 ,  36 ,  37 ], white matter fi ber atlases 
[ 38 ], and cortical surface atlases [ 39 ]. A brief listing of several from 
human, nonhuman primate, and the  mouse   are provided in Table  1 .

2.9   Genetic Atlases  

2.10   Age 
and Developmental 
Stratifi cation  
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4       Applications of Atlases for  Regional Parcellation and Functional Inference   

 Without reference to known geometries or atlas spaces, precise 
functional localization is not formally possible at the population 
level. For instance, in positron emission tomography (PET)/fMRI 
studies of human cognition analyzed using the  statistical paramet-
ric mapping (SPM)   software package relying on the  Montreal 
Neurological Institute (MNI)   atlas as the basis for within group 
and between group statistical comparisons, typically, each subject’s 
high-resolution anatomical image is warped to the MNI multisub-
ject T1 whole brain template using nonlinear and affi ne methods 
[ 40 ]. This transformation is then applied to the collection of lin-
early aligned fMRI time series or task-condition-specifi c PET 
images [ 41 ]. Employing regional labeling based upon the chosen 
atlas space, the process of localization analysis is enhanced by refer-
ence to known anatomical delineations. The process is typically 
decomposed into a series of steps: data warping, feature extraction, 
identifi cation of loci, fi tting of labels, and region activity value 
extraction ([ 42 ], for discussion). 

 Obtaining reliable spatial registration with the chosen atlas 
space is essential to accurate localization of  functional activity  . The 
alignment accuracy and impact on functional maps of four spatial 
normalization procedures have been compared using a set of high- 
resolution brain MRIs and functional PET volumes [ 43 ], suggest-
ing that the functional variability is much larger than that comprised 
anatomically and that precise alignment of anatomical features has 
low infl uence on the resulting inter-subject functional maps. At 
larger spatial resolutions, however, differences in localization of 
activated areas appear to be a consequence of the particular spatial 
 normalization   procedure employed. Despite these concerns, how-
ever, for typical sample sizes and numbers of observations per sub-
ject, reliable functional localization is achieved when performed for 
each individual using data in atlas space [ 44 ]. 

 The use of atlases provides more than just a space in which to 
morph images for computing population averages and inferential 
statistics on function, but is also useful for the precise labeling of 
cortical regions. Figure  3  shows an example of a LONI  Pipeline   
(  http://pipeline.loni.usc.edu    ) workfl ow for the process of brain 
extraction using FSL’s BET followed by warping to the ICBM452 
atlas using FSL FLIRT, and brain surface parcellation using the 
Brain Parser algorithm [ 45 ]. Unlike alternative methods for detect-
ing the major cortical sulci, which use a set of predefi ned rules 
based on properties of the cortical surface such as the mean curva-
ture, this approach learns a discriminative model using the  proba-
bilistic boosting tree (PBT) algorithm  , a supervised learning 
approach which selects and combines hundreds of features at dif-
ferent scales, such as curvatures, gradients, and shape index [ 46 ]. 
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  Fig. 3    ( a ) A  LONI Pipeline workfl ow diagram   that reads in an MR structural image volume, performs skull stripping, 
fi ts the data to the ICBM452 standardized atlas, performs Bayesian boost-tree region classifi cation, and ( b ) returns 
the regional delineation results to the original MR image space. Once obtained, the region labeling can be used to 
mask functional and/or extract functionally related signal from blood oxygen level dependent data. Such automated 
labeling of brain regions would be made considerably more challenging without the use of standard atlas spaces       
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Example output from this method can then be used as  regions of 
interest (ROIs)   from which  blood oxygen level dependent (BOLD)   
values may then be obtained.

   Historically, standardized atlases have demonstrated their 
greatest utility in the fi tting of experimental data from functional 
imaging studies with PET [ 40 ] and fMRI [ 47 ]. Population-based 
inference [ 48 ], the identifi cation of individual differences [ 49 ], 
meta-analytic comparisons [ 50 ], and other applications performed 
across subjects depend upon accurate atlas-based normalization. 
There is no doubt that this is the most scientifi cally benefi cial jus-
tifi cation of atlas construction and demonstrates their ability to 
form the spatial basis for comparing subjects with respect to cogni-
tive operations or in comparisons between patient samples. 

 Continued improvement and enhancement of extant atlases, 
such as the Talairach atlas [ 51 ], the several iterations of the MNI 
atlas, cytoarchitectonic atlases [ 52 ], as well as those of the ICBM 
probabilistic atlas [ 53 ], provide greater accuracy with respect to 
functional data and, hence, localization power. Improvement and 
enhancement of MNI or Talairach  landmarks  , for example, may 
enable more rapid calculation of spatial transformations, thereby 
providing fl exibility for specifi c applications [ 54 ].  

5    Brain Atlas  Revision and Evolution   

  Spatial mapping   of any form is an ongoing process of determining 
accurate coordinate locations for content appropriate to that map-
ping’s purpose. As previous content in a map changes or as new 
information is obtained, these maps need to be updated, corrected, 
and/or modifi ed to refl ect these changes in knowledge and the 
importance of what new knowledge is being conveyed. For instance, 
the information contained in US aeronautical charts is republished 
approximately every 3 months partly to refl ect changes in the 
Earth’s magnetic fi eld isogonic declination lines that point toward 
the magnetic North Pole. These fi eld lines vary across North 
America, from approximately −19° in the Western US through to 
nearly +20° in the East, and must be accounted for to locate the 
direction of the true North Pole when charting a navigational 
course. However, the Earth’s magnetic fi eld has been drifting slowly 
westward since measurements began around 1850, shifting roughly 
0.1° or 40 km/year. Failure to periodically update published maps 
that incorporate this shift in magnetic declination, as well as other 
information concerning changes in the Earth’s topographical fea-
tures, the construction of tall buildings in urban areas, alterations in 
air traffi c routing, errors in earlier revisions, etc., could result in 
pilots or computers making substantial navigational errors due to 
improper compass and course directional settings in the absence of 
 global positioning system (GPS)   satellite information. 

Brain Atlases: Their Development and Role in Functional Inference
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 Errors often appear in maps resulting from the information 
that was used to create them. Landmarks of note may be mis- 
located, their spatial extents distorted, and place names misspelled 
or mistranslated. This would also be true for brain mapping atlases 
where previous inaccuracies must be addressed, additional data 
included, or data from other modalities considered. 
Cytoarchitectonic maps from the classical period of describing 
brain anatomy have been noted as failing to incorporate sulcal pat-
tern, variation in cell orientation, and being presented as idealized 
versions of brain structure [ 15 ]. 

 However, even modern approaches, using multimodal meth-
ods, large databases, and sophisticated computer methods, are not 
immune from introducing errors. Data misaligned with respect to 
a standard atlas space may result in gross inaccuracies and consider-
able problems when trying to make inferences between diagnostic 
groups. For instance, the statistics of resulting voxel-based mor-
phometric comparisons may be uninformative about group differ-
ences wherever the spatial normalization algorithm has failed to 
register on any robustly appearing image gradient [ 55 ]. This has 
severe consequences for random-effects-based analyses of morpho-
metric changes due to disease or clinical outcome. 

 Electronic versions of the atlas of Talairach and Tournoux [ 56 ], 
including the Talairach Daemon (  http://www.talairach.org/    ) and 
the offi cial published versions by Thieme, have been found to con-
tain a discrepant region of the precentral gyrus on axial slice +35 mm 
that extends far forward into the frontal lobe. This region has been 
found to be anatomically incorrect and internally inconsistent 
within the digital atlas software applications that employ  multipla-
nar   cross-referencing tools [ 57 ]. This may be a case of simple mis-
labeling but other forms of atlas warping are known to result in 
distortions which must be predicated in context with the accurate 
interpretation of location. As new data are included and novel tech-
niques are developed to inform atlases that are open to scrutiny by 
researchers, with ongoing updates and corrections, will they become 
most widely valuable. 

 Workers in our lab have pursued the construction of improved 
digital brain atlases composed of data from manually delineated 
high-resolution MRI [ 58 ]. A total of 56 structures were labeled on 
the MR volumes of 40 normal healthy volunteers. The labeling was 
performed according to a set of protocols developed specifi cally for 
this project. In brief, pairs of raters were assigned to each structure 
and trained on the protocol for delineating that structure. Each 
rater pair was tested for concordance on 6 of the 40 brains; once 
they had achieved reliability standards, they divided the task of 
delineating the remaining 34 brains. The data were then spatially 
normalized to well-known atlas-based templates using each of 
three popular algorithms: AIR’s nonlinear warp [ 59 ] paired with 
the ICBM452 Warp 5 atlas [ 60 ], FSL’s FLIRT [ 61 ] was paired 
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with its own template, a skull-stripped version of the ICBM152 T1 
average; and SPM’s unifi ed segmentation method [ 62 ] was paired 
with its canonical brain, the whole head ICBM152 T1-weighted 
average. In the end, these approaches produced three variants of a 
resultant atlas, where each was constructed from 40 representative 
samples of a data processing stream that one might use for analysis. 
For each normalization algorithm, the individual structure delinea-
tions were then resampled according to the derived transforma-
tions and computed averages were obtained at each voxel location 
to estimate the probability of that voxel belonging to each of the 
56 structures. Each version of the atlas contains, for every voxel, 
probability densities for each region, thereby providing a resource 
for automated probabilistic labeling of external data types regis-
tered into standard spaces. Additionally, computed average inten-
sity images and tissue density maps based on the three methods 
and target spaces were also obtained. These atlases are publicly 
available on the LONI Web site (  http://loni.usc.edu    ) and, we 
believe, will serve as critical resources for diverse applications 
including meta-analysis of functional and structural imaging data 
and other bioinformatics applications where display of arbitrary 
labels in probabilistically defi ned anatomic space will facilitate both 
knowledge-based development and visualization of fi ndings from 
multiple disciplines. However, in time these, too, will be replaced 
by still more accurate atlases of larger sample size, improved spatial 
 resolution  , with fi ner anatomical detail.  

6    Conclusions 

 The evolution of brain atlases has seen tremendous advances; they 
can now accommodate observations from multiple modalities and 
from populations of subjects collected at different laboratories. 
The  probabilistic systems   described here show promise for identi-
fying patterns of structural, functional, and molecular variation in 
large image databases for pathology detection in individuals and 
groups and for determining the effects of age, gender, handedness, 
and other demographic or genetic factors on brain structures in 
space and time. Integrating these observations to enable statistical 
comparison has already provided a deeper understanding of the 
relationship between brain structure and function. Importantly, 
the utility of an atlas depends on appropriate coordinate systems, 
registration, and deformation methods to allow the statistical com-
bination of multiple observations in an agreed, but expandable, 
digital reference framework. In this review, we highlighted two 
sources of data that will have an increasingly important role in inte-
grative brain atlases: molecular architectonics and  diffusion tensor 
imaging (DTI)     . Once stored in a population-based atlas, informa-
tion from these techniques can help to interpret more conventional 
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functional and structural brain maps by integrating them with data 
on molecular content, physiology, and fi ber connections – a devel-
opment that can help to formulate and test new types of neurosci-
entifi c models. A goal of systems  neuroscience   is to establish brain 
systems that underlie cognitive processes and the factors that infl u-
ence them. DTI data on fi ber connectivity, stored in an atlas coor-
dinate system, can offer a rigorous computational basis to test how 
identifi able anatomical systems (e.g., visual, limbic, or corticotha-
lamic pathways) interact. This atlas information can be invoked as 
ROI that are incorporated into the statistical design of functional 
brain mapping studies (e.g., with fMRI or electroencephalogra-
phy), even when underlying fi ber connections are not evident in 
the data being collected for a particular study.  Molecular architec-
tonic mapping   also provides a complementary perspective in which 
known neurotransmitter and receptor pathways—the physiology 
and molecular features of which are now well understood—can be 
associated with functional subdivisions of the cortex, identifi ed 
with tomographic imaging. For example, an fMRI study of inhibi-
tory cognitive processes in drug abusers might be informed by 
other modalities of data on limbic–prefrontal connectivity (from 
DTI), or on cortical monoamine receptor distributions (from 
architectonic mapping). In each of these contexts, the coordinate 
system of the atlas, and the transformations that equate different 
modality data in the same reference frame, provide the means to 
build and test system-level models of cognition or disease, incorpo-
rating data from traditionally separate domains of neuroscience. 

 As brain atlases soon begin to incorporate data from thousands 
of subjects, new questions in basic and clinical neuroscience can be 
addressed that were previously out of reach. For example, quanti-
tative genetic studies are underway to link functional, structural, 
and connectivity information with variations in candidate genetic 
polymorphisms that could infl uence them. As polygenic disorders 
involve the interaction of  multiple genetic variations  , each with a 
small effect on the overall phenotype, digital atlases provide the 
ideal setting to mine large numbers of images computationally 
with hybrid techniques from computational anatomy and quantita-
tive genetics (such as linkage and association studies in which a 
statistic is computed at each voxel location in the brain). 

 Should atlases be constructed specifi c to different age groups 
or different age-related diseases? Several other authors [ 30 ,  63 ] 
have come to the same conclusion and many population-based 
atlases have emerged in response to this need [ 64 ]. But the same 
logic can be carried to the next level by creating many different 
 population-based atlases  , each specifi c to the group demographics, 
disease, age, or other characteristics of the subjects being studied. 
These provide, not only population statistics within the map, but 
arguably better represent the morphological signature of that par-
ticular cohort. What must be included in all analyses are confi dence 
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statistics on where the activity takes place. Whether this entails a 
statistic on probability, percentile, or other metric may depend on 
the experimental design and other factors. Adoption of a single 
normal atlas, even a probabilistic version, for all subject studies 
provides for the nominal capability for easier comparisons but in 
doing so fails to adequately measure the nuances within or between 
each group (Fig.  3 ). It, therefore, seems that it might be prudent 
to avoid dependency on a single modality, single group representa-
tion for every study. Any given imaging experiment will be better 
served by mapping to a population-based atlas that closely resem-
bles the cohort under study. We suggest that population atlases for 
groups, such as AD [ 35 ,  65 ], schizophrenia [ 66 ,  67 ], pediatric 
populations [ 68 ,  69 ], autism [ 70 ], even decades of life [ 71 ], should 
be utilized, as appropriate, for that specifi c subject group. 

 The next generation of  population-based atlases   [ 73 ] will pro-
vide the necessary statistical power to identify demographic, 
genetic, and environmental factors that infl uence therapeutic 
response. These will be essential in the study of the normal and 
abnormal human brain. Most important of all, brain atlases are 
now being enriched with data from genetics, protein expression, as 
well as refl ecting associations with phenotypic behaviors. These 
efforts can be expected to yield entirely new avenues of research 
into the functional organization of the brain and how this is altered 
in disease will be of interest not only just to specialists in neuroim-
aging, but also to all basic and clinical neuroscientists.     

   References 

    1.    Haas LF (2001) Phineas Gage and the science 
of brain localisation. J Neurol Neurosurg 
Psychiatry 71:761  

    2.    Cowie SE (2000) A place in history: Paul Broca 
and cerebral localization. J Invest Surg 
13:297–298  

    3.    Goedert M, Ghetti B (2007) Alois Alzheimer: 
his life and times. Brain Pathol 17:57–62  

    4.    Roland PE, Zilles K (1994) Brain atlases – a 
new research tool. Trends Neurosci 
17:458–467  

    5.    Toga AW, Thompson PM (2001) Maps of the 
brain. Anat Rec 265:37–53  

    6.    Toga AW, Thompson PM (2002) New 
approaches in brain morphometry. Am 
J Geriatr Psychiatry 10:13–23  

     7.    Thompson P, Cannon TD, Toga AW (2002) 
Mapping genetic infl uences on human brain 
structure. Ann Med 34:523–536  

    8.    Narr KL, Thompson PM, Sharma T, Moussai 
J, Cannestra AF, Toga AW (2000) Mapping 
morphology of the corpus callosum in schizo-
phrenia. Cereb Cortex 10:40–49  

    9.    Davatzikos C (1996) Spatial normalization of 
3D brain images using deformable models. 
J Comput Assist Tomogr 20:656–665  

    10.    Davatzikos C (1997) Spatial transformation 
and registration of brain images using elasti-
cally deformable models. Comput Vis Image 
Underst 66:207–222  

   11.    Thompson PM, Woods RP, Mega MS, Toga 
AW (2000) Mathematical/computational 
challenges in creating deformable and probabi-
listic atlases of the human brain. Hum Brain 
Mapp 9:81–92  

    12.    Weaver JB, Healy DM Jr, Periaswamy S, 
Kostelec PJ (1998) Elastic image registration 
using correlations. J Digit Imaging 11:59–65  

    13.    Barillot C, Lemoine D, Le Briquer L, 
Lachmann F, Gibaud B (1993) Data fusion in 
medical imaging: merging multimodal and 
multipatient images, identifi cation of struc-
tures and 3D display aspects. Eur J Radiol 
17:22–27  

    14.    Woods RP, Grafton ST, Holmes CJ, Cherry 
SR, Mazziotta JC (1998) Automated image 

Brain Atlases: Their Development and Role in Functional Inference



280

registration. I. General methods and intrasu-
bject, intramodality validation. J Comput Assist 
Tomogr 22:139–152  

      15.    Toga AW, Thompson PM, Mori S, Amunts K, 
Zilles K (2006) Towards multimodal atlases of 
the human brain. Nat Rev Neurosci 7:952–966  

    16.    Woods RP (2003) Characterizing volume and 
surface deformations in an atlas framework: 
theory, applications, and implementation. 
Neuroimage 18:769–788  

    17.    Avants B, Gee JC (2004) Geodesic estimation 
for large deformation anatomical shape averag-
ing and interpolation. Neuroimage 23(Suppl 
1):S139–S150  

    18.    Avants BB, Schoenemann PT, Gee JC (2006) 
Lagrangian frame diffeomorphic image regis-
tration: morphometric comparison of human 
and chimpanzee cortex. Med Image Anal 
10:397–412  

    19.    Evans AC, Collins DL, Milner B (1992) An 
MRI-based stereotactic atlas from 250 young 
normal subjects. J Neurosci Abstr 18:408  

    20.    Durrleman S, Pennec X, Trouve A, Ayache N 
(2007) Measuring brain variability via sulcal 
lines registration: a diffeomorphic approach. 
Med Image Comput Comput Assist Interv 
10(Pt 1):675–682  

    21.    Alayon S, Robertson R, Warfi eld SK, Ruiz- 
Alzola J (2007) A fuzzy system for helping 
medical diagnosis of malformations of cortical 
development. J Biomed Inform 40:221–235  

    22.    Rohlfi ng T, Maurer CR Jr (2007) Shape-based 
averaging. IEEE Trans Image Process 
16:153–161  

    23.    Narr KL, Bilder RM, Luders E et al (2007) 
Asymmetries of cortical shape: effects of hand-
edness, sex and schizophrenia. Neuroimage 
34:939–948  

   24.    Thompson PM, Giedd JN, Woods RP, 
MacDonald D, Evans AC, Toga AW (2000) 
Growth patterns in the developing brain 
detected by using continuum mechanical ten-
sor maps. Nature 404:190–193  

    25.    Corouge I, Dojat M, Barillot C (2004) 
Statistical shape modeling of low level visual 
area borders. Med Image Anal 8:353–360  

    26.    Cardenas VA, Boxer AL, Chao LL et al (2007) 
Deformation-based morphometry reveals brain 
atrophy in frontotemporal dementia. Arch 
Neurol 64:873–877  

    27.    Leow AD, Klunder AD, Jack CR Jr et al (2006) 
Longitudinal stability of MRI for mapping 
brain change using tensor-based morphometry. 
Neuroimage 31:627–640  

    28.    Diedrichsen J (2006) A spatially unbiased atlas 
template of the human cerebellum. Neuroimage 
33:127–138  

    29.    Toga AW, Thompson PM (2005) Genetics of 
brain structure and intelligence. Annu Rev 
Neurosci 28:1–23  

     30.    Toga AW, Thompson PM, Sowell ER (2006) 
Mapping brain maturation. Trends Neurosci 
29:148–159  

    31.    Apostolova LG, Thompson PM (2007) Brain 
mapping as a tool to study neurodegeneration. 
Neurotherapeutics 4(3):387–400  

    32.    Apostolova LG, Akopyan GG, Partiali N et al 
(2007) Structural correlates of apathy in 
Alzheimer’s disease. Dement Geriatr Cogn 
Disord 24:91–97  

    33.    Apostolova LG, Lu P, Rogers S et al (2008) 3D 
mapping of language networks in clinical and 
pre-clinical Alzheimer’s disease. Brain Lang 
104:33–41  

    34.    Scher AI, Xu Y, Korf ES et al (2007) 
Hippocampal shape analysis in Alzheimer’s dis-
ease: a population-based study. Neuroimage 
36:8–18  

     35.    Thompson PM, Hayashi KM, Dutton RA et al 
(2007) Tracking Alzheimer’s disease. Ann N Y 
Acad Sci 1097:183–214  

    36.    Mazziotta JC, Toga AW, Evans AC, Fox PT, 
Lancaster JL (1995) Digital brain atlases. 
Trends Neurosci 18:210–211  

    37.    Toga AW, Thompson PM, Mega MS, Narr KL, 
Blanton RE (2001) Probabilistic approaches 
for atlasing normal and disease-specifi c brain 
variability. Anat Embryol (Berl) 204:267–282  

    38.    Wakana S, Jiang H, Nagae-Poetscher LM, van 
Zijl PC, Mori S (2004) Fiber tract-based atlas 
of human white matter anatomy. Radiology 
230:77–87  

    39.    Van Essen DC (2005) A Population-Average, 
Landmark- and Surface-based (PALS) atlas of 
human cerebral cortex. Neuroimage 
15:635–662  

     40.    Fox PT, Perlmutter JS, Raichle ME (1984) 
Stereotactic method for determining anatomi-
cal localization in physiological brain images. 
J Cereb Blood Flow Metab 4:634  

    41.    Evans AC, Marrett S, Neelin P et al (1992) 
Anatomical mapping of functional activation in 
stereotactic coordinate space. Neuroimage 
1:43–53  

    42.    Nowinski WL, Thirunavuukarasuu A (2001) 
Atlas-assisted localization analysis of functional 
images. Med Image Anal 5:207–220  

    43.    Crivello F, Schormann T, Tzourio-Mazoyer N, 
Roland PE, Zilles K, Mazoyer BM (2002) 
Comparison of spatial normalization proce-
dures and their impact on functional maps. 
Hum Brain Mapp 16:228–250  

    44.    Swallow KM, Braver TS, Snyder AZ, Speer 
NK, Zacks JM (2003) Reliability of functional 

John Darrell Van Horn and Arthur W. Toga



281

localization using fMRI. Neuroimage 
20:1561–1577  

    45.    Tu Z, Zheng S, Yuille AL et al (2007) 
Automated extraction of the cortical sulci 
based on a supervised learning approach. IEEE 
Trans Med Imaging 26:541–552  

    46.    Luders E, Thompson PM, Narr KL, Toga AW, 
Jancke L, Gaser C (2006) A curvature-based 
approach to estimate local gyrifi cation on the 
cortical surface. Neuroimage 29:1224–1230  

    47.    Ashburner J, Friston KJ (1999) Nonlinear spa-
tial normalization using basis functions. Hum 
Brain Mapp 7:254–266  

    48.    Friston KJ, Stephan KE, Lund TE, Morcom A, 
Kiebel S (2005) Mixed-effects and fMRI stud-
ies. Neuroimage 24:244–252  

    49.    Miller MB, Van Horn JD, Wolford GL et al 
(2002) Extensive individual differences in 
brain activations associated with episodic 
retrieval are reliable over time. J Cogn Neurosci 
14:1200–1214  

    50.    Fox PT, Parsons LM, Lancaster JL (1998) 
Beyond the single study: function/location 
metanalysis in cognitive neuroimaging. Curr 
Opin Neurobiol 8:178–187  

    51.    Nowinski WL (2005) The cerefy brain atlases: 
continuous enhancement of the electronic 
talairach-tournoux brain atlas. 
Neuroinformatics 3:293–300  

    52.    Amunts K, Schleicher A, Zilles K (2007) 
Cytoarchitecture of the cerebral cortex – more 
than localization. Neuroimage 37:1061–1065, 
discussion 6–8  

    53.    Mazziotta J, Toga AW, Evans A et al (2001) A 
probabilistic atlas and reference system for the 
human brain: International Consortium for 
Brain Mapping (ICBM). Philos Trans R Soc 
Lond B Biol Sci 356:1293–1322  

    54.    Nowinski WL (2001) Modifi ed Talairach land-
marks. Acta Neurochir (Wien) 143:1045–1057  

    55.    Bookstein FL (2001) Voxel-based morphome-
try” should not be used with imperfectly regis-
tered images. Neuroimage 14:1454–1462  

    56.    Talairach J, Tournoux P (1988) Co-planar stereo-
tactic atlas of the human brain. Tieme, New York  

    57.    Maldjian JA, Laurienti PJ, Burdette JH (2004) 
Precentral gyrus discrepancy in electronic ver-
sions of the Talairach atlas. Neuroimage 
21:450–455  

    58.    Shattuck DW, Mirza M, Adisetiyo V et al 
(2008) Construction of a 3D probabilistic atlas 
of human cortical structures. Neuroimage 
39:1064–1080  

    59.    Woods RP, Grafton ST, Watson JD, Sicotte 
NL, Mazziotta JC (1998) Automated image 
registration. II. Intersubject validation of linear 

and nonlinear models. J Comput Assist Tomogr 
22:153–165  

    60.    Rex DE, Ma JQ, The TAW, LONI (2003) 
Pipeline processing environment. Neuroimage 
19:1033–1048  

    61.    Smith SM, Jenkinson M, Woolrich MW et al 
(2004) Advances in functional and structural 
MR image analysis and implementation as 
FSL. Neuroimage 23(Suppl 1):S208–S219  

    62.    Ashburner J, Friston KJ (2005) Unifi ed seg-
mentation. Neuroimage 26:839–851  

    63.    Van Essen DC (2002) Windows on the brain: 
the emerging role of atlases and databases in 
neuroscience. Curr Opin Neurobiol 
12:574–579  

    64.    Mazziotta J, Toga A, Evans A et al (2001) A 
four-dimensional probabilistic atlas of the 
human brain. J Am Med Inform Assoc 
8:401–430  

    65.    Mega MS, Dinov ID, Mazziotta JC et al 
(2005) Automated brain tissue assessment in 
the elderly and demented population: con-
struction and validation of a sub-volume prob-
abilistic brain atlas. Neuroimage 
26:1009–1018  

    66.    Yoon U, Lee JM, Koo BB et al (2005) 
Quantitative analysis of group-specifi c brain 
tissue probability map for schizophrenic 
patients. Neuroimage 26:502–512  

    67.    Cannon TD, Thompson PM, van Erp TG et al 
(2006) Mapping heritability and molecular 
genetic associations with cortical features using 
probabilistic brain atlases: methods and applica-
tions to schizophrenia. Neuroinformatics 4:5–19  

    68.    Wilke M, Schmithorst VJ, Holland SK (2002) 
Assessment of spatial normalization of whole- 
brain magnetic resonance images in children. 
Hum Brain Mapp 17:48–60  

    69.    Jelacic S, de Regt D, Weinberger E (2006) 
Interactive digital MR atlas of the pediatric 
brain. Radiographics 26:497–501  

    70.    Joshi S, Davis B, Jomier M, Gerig G (2004) 
Unbiased diffeomorphic atlas construction for 
computational anatomy. Neuroimage 23(Suppl 
1):S151–S160  

    71.    Mazziotta J, Toga A, Evans A et al (2001) A 
four-dimensional probabilistic atlas of the 
human brain. J Am Med Inform Assoc 
8:401–430  

    72.    Narr K, Thompson P, Sharma T et al (2001) 
Three-dimensional mapping of gyral shape and 
cortical surface asymmetries in schizophrenia: 
gender effects. Am J Psychiatry 158:244–255  

    73.    Amunts K, Hawrylycz MJ, Van Essen DC et al 
(2014) Interoperable atlases of the human 
brain. Neuroimage 99:525–532    

Brain Atlases: Their Development and Role in Functional Inference



283

Massimo Filippi (ed.), fMRI Techniques and Protocols, Neuromethods, vol. 119,
DOI 10.1007/978-1-4939-5611-1_10, © Springer Science+Business Media New York 2016

Chapter 10

Graph Theoretic Analysis of Human Brain Networks

Alex Fornito

Abstract

The human brain is a highly interconnected network. It is thus suitable for investigation with graph theory, 
a branch of mathematics concerned with understanding systems of interacting elements. Graph theory has 
become a popular tool for analyzing human MRI data. In this work, brain networks are modeled as graphs 
of nodes connected by edges. The nodes represent distinct brain regions and the edges represent some 
measure of structural or functional interaction between regions. This representation enables the computa-
tion of a broad range of metrics that quantify diverse aspects of network organization, thus offering a pow-
erful framework for understanding brain structure and function in both health and disease. This chapter 
overviews the principles and methods involved in building and analyzing graph theoretic models of the 
brain using MRI. It explains basic concepts, provides examples of how graph theory has shed new light on 
brain organization, and considers some limitations of current applications.

Key words Connectome, Connectivity, Graph analysis, Network, Complexity, MRI, DTI, fMRI

1 Introduction

The human brain is a complex, interconnected network. At micro-
scopic resolutions, axons and dendrites sprout from neuronal soma 
to enable communication with several thousand other neurons [1]. 
At macroscopic resolutions, the axons of populations of adjacent 
neurons coalesce to form fiber bundles that project through the 
white matter volume of the brain to connect distal areas. This 
interconnectivity allows the integration of segregated and func-
tionally specialized neuronal systems distributed throughout the 
brain. The network organization of the brain thus fundamentally 
shapes its function, and generating comprehensive maps of brain 
connectivity—so-called connectomes [2]—has become a major 
goal of neuroscience [3–5]. The burgeoning field of neural con-
nectomics is thus generating rich data sets describing brain net-
work organization across multiple species and multiple scales of 
resolution [6–12] using various microscopic, genetic, tract- tracing, 
informatic, and neuroimaging methods.
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Graph theory provides an ideal framework for characterizing, 
comparing, and integrating results across these diverse data. Graph 
theory is a branch of mathematics concerned with studying systems 
of interacting elements. The central assumption of the approach is 
that any such system can be represented as a graph of nodes (also 
called vertices) connected by edges (also called links, arcs, or con-
nections). Equivalently, the network can be represented as a matrix, 
in which each i-th row and j-th column represents a distinct node 
and each ij-th element encodes the type and strength of connectivity 
between each node pair (Fig. 1). The simplicity of this approach is 
matched by its versatility—nodes in brain graphs could represent 
individual neurons, neuronal populations, or macroscopic regions, 
while edges could represent axonal, dendritic, or synaptic contacts, 
or large-scale fiber bundles. More broadly, graph theory has also 
been used to model other networks found in nature, including social 

Fig. 1 Matrix and graph-based representations of brain networks. In matrix form (top row), each row and col-
umn represents a different region and each element represents the connectivity between region pairs. Matrices 
can be either binary, representing only the presence or absence of a connection (left and middle), or weighted 
to represent variations in the strength of inter-regional connectivity (right). The matrices can also be symmet-
ric, representing an undirected network (left; note how the top-right and bottom left triangles of this matrix are 
mirror images of each other), or asymmetric, to represent a directed network (middle and right). In graph form 
(bottom row), brain regions are represented as nodes or circles and connectivity as edges. Arrowheads can be 
used to represent the directionality of connectivity in directed networks (middle, right). Edge thickness can be 
used to represent variations in edge weight (right). These graphs are used for illustrative purposes and do not 
directly map onto the matrices shown in the top row. Weighted, undirected networks are not shown
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networks (e.g., nodes are people, edges are social or professional 
ties), economic networks (e.g., nodes are companies or countries 
and edges represent financial or trade transactions), technological 
networks such the world wide web (e.g., nodes are websites and 
edges are hyperlinks), transportation networks such as the global air 
transportation network (e.g., nodes are airports and edges are con-
necting flights), ecological networks (e.g., nodes are species and 
edges are predator-prey interactions) and biological networks other 
than the brain (e.g., nodes can be proteins or genes and edges can  
encode molecular interactions or coexpression patterns) (see [13, 
14] for reviews). Graph theory thus provides a standardized approach 
for representing and analyzing diverse types of network data.

In recent years, processing pipelines have been established to 
allow the application of graph theoretic methods to human neuro-
imaging data (Fig. 2). This is an important advance, since in vivo 

Fig. 2 Basic processing pipeline for graph theoretic analysis of MRI data. (a) Imaging data are first acquired. 
Structural connectivity is often assessed using either diffusion MRI (top) or T1-weighted MRI (middle). 
Functional and effective connectivity are typically investigated using fMRI (bottom). (b) Once the imaging data 
have been acquired, the brain must be parcellated into distinct regions, which act as network nodes. Shown 
here are examples of an anatomical parcellation (top), a random parcellation (middle), and a functional parcel-
lation (bottom). (c) The next step is to define some measure of connectivity between nodes, which will repre-
sent the edges of our brain graph. With diffusion MRI, inter-regional connectivity is measured using tractography 
(top). With T1-weighted MRI, structural connectivity is indirectly measured using inter-subject covariations in 
gray matter morphometry (middle). With fMRI, functional connectivity is measured as a statistical dependence 
between regional time series (bottom). (d) The connectivity between all pairs of brain regions can be repre-
sented as a connectivity matrix. MRI analyses typically yield weighted and symmetric matrices (left). These 
matrices can be thresholded to emphasize the strongest links in the network (right). (e) The connectivity matrix 
can be used to generate a graph-based representation of the network (i.e., a brain graph), in which regions are 
represented as nodes and connections as edges. See also Figs. 1 and 3. Parts of this figure have been repro-
duced from [109] with permission
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imaging techniques such as magnetic resonance imaging (MRI) 
currently represent the most cost-effective and tractable method 
for generating connectomic maps in humans [2] (see also [15, 16] 
for developments in the analysis of post-mortem tissue). 
Accordingly, there now exists a large literature using graph theory 
for the analysis of MRI data. Diffusion MRI is commonly used to 
assess structural connectivity of the brain, while functional MRI is 
used to characterize functional interactions between brain regions 
[17, 18]. Either technique can be used to generate a graph-based 
representation of brain network connectivity.

In this chapter, we consider some of the basic principles and 
methods of graph theoretic analysis of human MRI data. We first 
offer a brief history and rationale supporting the use of graph the-
ory in neuroscience, and in the analysis of human neuroimaging 
data in particular. We then discuss how such analyses are performed 
with respect to the two major steps involved: building a brain 
graph and analyzing a brain graph. We close by considering some 
emerging trends and areas for improvement in the field.

2 A Brief History of Graph Theory and MRI

Leonhard Euler is often credited as the founding father of graph 
theory [19]. In 1736, he published a solution to a major unre-
solved mathematical problem of the time: whether it was possible 
to find a route that traversed each of the seven bridges of the 
Prussian city of Konigsberg (now Kaliningrad in Russia) without 
crossing any single bridge more than once. Euler simplified the 
problem by depicting the geography of the city as a graph, in which 
the nodes were distinct landmasses and the edges were the bridges 
that connected these masses. Using this abstraction, he was able to 
show that no such path was possible.

Following Euler’s success, the application of graph theory was 
largely restricted to mathematical studies of topology and certain 
areas of theoretical chemistry. It was not until the middle of the 
twentieth century that the broader applicability of graph theory 
was realized first in the social sciences [20–23] and then in other 
fields following the seminal work of Paul Erdős and Alfred Rényi 
[24]. These two authors explored the mathematical properties of 
probabilistic random graphs in which nodes were connected with 
uniform probability. Such random graphs were used to model a 
wide variety of real-world biological, technological, and social sys-
tems until two analyses, both published in 1998, demonstrated 
that many such systems display a more complex pattern of connec-
tivity than implied by the Erdős-Rényi model.

One analysis, by Barabási and Albert [25], showed that net-
works as diverse as the world wide web, film actor collaborations, 
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and the western US electricity power grid show a heterogeneous 
distribution of connectivity across nodes. This distribution was 
characterized by a large number of vertices with a small number of 
connections and a small subset of vertices that were very highly 
interconnected with the rest of the network. These highly con-
nected nodes represented putative network hubs. The hub domi-
nance of these networks departs from the expectations of the 
Erdős-Rényi random graph model, in which each node has an equal 
probability of being connected.

In parallel, Watts and Strogatz [26] published an analysis that 
also suggested the Erdős-Rényi model was an insufficient model 
for real-world systems. They contrasted the organization of the 
Erdős- Rényi model with a regular, lattice-like graph. The nodes of 
this regular graph were arranged around a ring and were linked 
only to their k nearest neighbors. Two properties of these networks 
were examined: the clustering coefficient and the characteristic 
path length. The clustering coefficient quantifies the probability 
that two nodes connected to a third are also connected with each 
other (Fig. 4c). This metric captures a phenomenon that is well 
known in social networks, where two people are more likely to be 
friends if they share a third friend in common. The characteristic 
path length of a network is the average number of connections 
required to travel from one node to any other node in the network 
(Fig. 4b). A shorter average path length implies that the network is 
integrated and that information is able to spread more rapidly 
throughout the network. Watts and Strogatz found that the short-
range connectivity of the regular graph led to high clustering but 
high path length, since many short-range links were required to 
travel from one end of the network to the other. In contrast, the 
Erdős-Rényi random graph had lower path length but also had 
lower clustering, since all nodes had an equal probability of being 
connected. Compared to the extreme cases presented by the ran-
dom and regular graphs, Watts and Strogatz found that many real 
world networks, including the neuronal  network of C elegans, 
showed high clustering, much like a regular graph, coupled with a 
short average path length comparable to a random network. 
Indeed, they found that randomly rewiring just a small fraction of 
edges in a regular graph created network “short- cuts” that pro-
duced a dramatic reduction in the characteristic path length of the 
network with negligible impact on clustering, leading to a regime 
characterised by both high clustering and short average path 
length. They termed this organization “small-world,” in reference 
to the six degrees of separation phenomenon thought to character-
ize social networks.

It is easy to see how the findings of Barabási and Albert [25] 
and Watts and Strogatz [26] can provide important insights into 
brain network organization. For example, a heterogeneous 
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distribution of connectivity across nodes within the brain would 
point to highly connected hub regions that play a particularly 
prominent role in information-processing and integrating diverse 
network elements. Such a role has been proposed, for example, for 
association cortices [27]. Similarly, the small-world properties of 
high clustering and short path length provide an ideal foundation 
for functional specialization (tightly clustered connectivity) and 
functional integration (low average path length)—two fundamen-
tal principles of brain function [28, 29]. Accordingly, graph the-
ory was employed in some of the earliest analyses of connectomes 
inferred from the synthesis of published tract-tracing studies [9, 
30]. This work paved the way for a substantial body of subsequent 
work in these and other connectivity datasets [31–34] (reviewed 
in Ref. [35]).

Graph theory was first applied to human electroencephalogra-
phy (EEG) and magnetoencephalography (MEG) data in 2004 
[36], followed by several fMRI analyses published shortly thereaf-
ter [37–40]. Each of these studies focused on functional connec-
tivity networks. Connectivity was measured either between 
individual voxels [37], electrodes/sensors [36], or large-scale 
anatomical regions [38, 39]. This work presented evidence for a 
heterogeneous distribution of connectivity across nodes, pointing 
to the presence of highly connected hub regions, as well as the 
high clustering and short average path length consistent with 
small-world organization. Subsequent graph theoretic analysis of 
human structural connectivity data measured with diffusion MRI 
yielded the same conclusions [12, 41–43].

These developments paralleled an explosion in the graph theo-
retic characterization and modeling of diverse types of complex 
systems, and the emergence of a formal science of complex net-
works [13, 14, 44]. As this field has matured, it has generated a 
large repertoire of diverse measures and theoretical concepts for 
understanding different aspects of network organization, many of 
which have great appeal for neuroscience. Graph theory thus not 
only offers a standardized, flexible, and scalable method for repre-
senting brain networks, it also provides a rich range of metrics for 
making sense of brain network data.

In the following sections, we consider some of the basic 
graph theoretic measures applied to human neuroimaging data 
and discuss what they have taught us about brain network 
organization. We focus principally on concepts and measures 
that have been most commonly applied in neuroimaging con-
texts. We discuss more advanced topics in the final section. As 
a first step, we consider issues associated with building a brain 
graph, as these represent an important foundation for any sub-
sequent analysis.
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3 Building a Brain Graph

Nodes and edges are the fundamental building block of any net-
work graph. The basic unit of analysis in an MRI experiment is a 
voxel, which is typically 1–3 mm3 in volume. Voxels thus represent 
an aggregation of large populations of neural elements; on average 
an estimated 20,000–30,000 neurons and billions of synapses 
[45]. This coarse resolution creates ambiguities when attempting 
to define appropriate nodes and edges for network analysis. This 
problem is critical as invalid node definitions can alter, distort, or 
bias results, and accurate mapping of connectivity (edges) is essen-
tial for any valid analysis of network organization [46–50].

4 Defining Nodes

The central problem for node definition in MRI concerns how vox-
els should be aggregated to define a valid parcellation of the brain. 
Individual neurons and neuronal columns have both been proposed 
as fundamental units for brain network organization [7, 51], but 
cannot be resolved with typical human MRI acquisitions. Similarly, 
cytoarchitectonic regions, such as those delineated in Brodmann’s 
classic map, cannot be resolved with MRI and the boundaries of 
these regions are often poorly correlated with macroscopic land-
marks (e.g., sulci and gyri) [52, 53]. Due to these limitations, several 
different heuristic approaches have been used for node definition 
with MRI.

To this end, three criteria for an ideal node for a brain graph 
have been proposed [18]: (1) spatial embedding; (2) intrinsic 
homogeneity; and (3) extrinsic heterogeneity. The first criterion 
simply means that spatial relationships between nodes should be 
taken into account. The brain is embedded within the 
 three- dimensional volume of the skull and this embedding places 
important constraints on network wiring [54, 55]. Fortunately, 
spatial relations between nodes are easily accounted for in MRI 
analysis with standard stereotactic mapping techniques, since the 
location of each region can be easily represented with reference to 
the Montreal Neurological Institute (MNI) or Talairach and 
Tourneoux coordinate systems.

The second and third criteria simply mean that each node 
should represent a structurally or functionally homogeneous entity 
(intrinsic homogeneity) and should be distinguishable from other 
nodes (extrinsic heterogeneity). For example, a cytoarchitectonic 
region is intrinsically homogeneous, to the extent that it defines a 
population of neurons with shared histological properties. Different 
regions are extrinsically heterogeneous, to the extent that they 
serve different functional roles in the network (e.g., areas of visual 
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cortex processes visual information, regions of parietal cortex 
processes spatial information, and so on).

In practice, the extrinsic heterogeneity criterion is difficult to 
fulfill. The unique functional role of an individual node in a brain 
graph is determined by its connectivity with other areas (i.e., its 
“connectional fingerprint”) [56], as well as its own intrinsic circuitry, 
cellular composition, gene expression patterns, physiological prop-
erties, and so on. Comprehensively understanding how the intrinsic 
properties of each node vary, and how this variation defines the 
functional role of that node, is an unresolved question in neurosci-
ence. Consequently, nearly all graph theoretic studies of brain net-
works treat nodes as uniform network elements, and the primary 
distinctions between nodes are based on variations in their connec-
tivity profiles with other areas. (Note however, that some computa-
tional models do explicitly account for variations in the functional 
roles of different networks nodes [57].)

Given that the spatial embedding criterion is easily accommo-
dated with standard imaging techniques and the extrinsic heteroge-
neity criterion is difficult to meet in practice, the primary emphasis 
in developing methods for defining nodes for graph theoretic analy-
sis of MRI data has been on the intrinsic homogeneity criterion. 
Five broad approaches have been used, which we refer to here as 
voxel-based, anatomical, random, data-driven, and quantitative.

A simple solution to the node identification problem in MRI is to 
use the best resolution possible and thus treat each individual voxel 
as a distinct network node. This approach has been used in fMRI 
analyses (e.g. [49, 58, 59],) but suffers from two major drawbacks. 
First, there is no guarantee that voxel borders represent the 
 appropriate boundaries for delineating homogeneous neuronal pop-
ulations in the brain [60]. In other words, functionally homoge-
neous populations could extend over spatial scales that are either 
smaller (e.g., cortical columns) or larger (cytoarchitectonic divi-
sions) than the volume occupied by a single voxel. The second limi-
tation of a voxel-based approach is that it is computationally 
intensive. Voxel-based networks typically comprise 104–105 nodes 
and millions of connections. Such large networks can pose problems 
for computational tractability.

Anatomical atlases offer an alternative method for brain parcella-
tion that minimizes computational burden. For example, one pop-
ular atlas, the Automated Anatomical Labelling (AAL) atlas [61], 
parcellates the brain into 116 regions largely defined according to 
the sulcal and gyral landmarks of an individual brain. The general-
izability of this template is thus questionable. Alternative atlases, 
based on probabilistic maps of sulcal and gyral regions, such as the 
Harvard-Oxford atlas (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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Atlases) and the Desikan-Killaney atlas [62](see Fig. 2b, top), 
overcome this limitation. However, as previously stated, sulcal and 
gyral landmarks often correspond poorly with the borders of actual 
functional subdivisions of the brain. This poor correspondence 
limits the validity of these anatomical atlases. Moreover, the size of 
the regions in anatomical parcellations can vary considerably, and 
these variations can affect connectivity estimates and thus bias sub-
sequent analyses [48, 63].

One way to ensure that a parcellation comprises regions with homo-
geneous volume is to divide the brain into random parcels of similar 
size (e.g., Fig. 2b, middle). These parcellations can be performed at 
varying resolutions, typically yielding networks between 102 and 104 
nodes [12, 48, 50]. This approach ensures homogeneity of regional 
volume, but there is no guarantee that the random parcels accurately 
capture true functional subdivisions of the brain. Replication of 
results across several iterations of a random template may also be 
necessary to ensure that any findings are not due to the specific char-
acteristics of any single instance of a random parcellation.

A more hypothesis-driven method uses regions-of-interest defined 
according to some functional property of interest (e.g., Fig. 2b, 
bottom). For example, one study used a meta-analysis of task- 
based fMRI activation studies across a range of cognitive processes 
to identify 160 stereotactic coordinates of task-related activation 
peaks [64]. Spherical regions-of-interest centered on these coordi-
nates were then created and used as nodes in a graph theoretic 
analysis of developmental effects on human brain functional con-
nectivity (see also [65]). Other studies have used similar approaches 
after defining spherical regions-of-interest centered on peak coor-
dinates derived either from resting-state functional connectivity 
analyses [66] or task-related activation mapping [67, 68] (see also 
[69]). This approach is well suited for testing hypotheses about 
specific systems of interest with functional MRI. However, this 
method is harder to use with diffusion imaging, where larger areas 
of gray and white matter may need to be sampled to adequately 
measure the tracts projecting into and out of a region.

In contrast to hypothesis-driven methods for defining regions-of- 
interest, data-driven approaches attempt to define functionally 
homogeneous collections of voxels using specific characteristics of 
the imaging data. A classic example is spatial independent compo-
nent analysis (ICA), which decomposes fMRI data into a set of 
components (networks) whose voxels are correlated with each 
other, and maximally spatially independent of other components 
[70, 71]. Lower-order decompositions typically recover canonical 
neural networks such as the default mode network (DMN), fronto- 
parietal network, and so on [72]. Graph analysis between these 
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networks can be performed (called “functional network connectiv-
ity” analysis; e.g. [73],). However, as these networks commonly 
involve multiple, spatially distributed brain regions, they do not 
conform to a traditional conception of a brain network node as 
consisting of an anatomically contiguous region. Higher order 
decompositions can separate the regions comprising these distrib-
uted networks into separate components [74], although it is often 
difficult to know, a priori, the dimensionality of the decomposition 
required to obtain such a solution.

Other data-driven approaches examine the connectivity of 
each voxel or small region to all other areas, and cluster voxels 
or regions with similar connectivity profiles into single parcella-
tion units [59, 75–77]. When combined with spatial constraints 
[78], these methods can yield parcellations of the brain that 
guarantee spatial contiguity of all voxels within a region, while 
also ensuring that such voxels fulfill the criterion of intrinsic 
homogeneity (to the extent that they share similar inter-regional 
connectivity profiles). Whole-brain parcellations using such 
methods applied to task-free, resting-state fMRI are robust 
across samples [59, 77]. Similar approaches have been applied 
to diffusion MRI data to parcellate- specific regions based on 
structural connectivity profiles [79–81]. Diffusion MRI, being 
a measure of brain anatomy rather than function, should pro-
vide a more stable parcellation than those based on fMRI, but 
whole-brain parcellation of diffusion MRI has not yet been 
extensively validated.

A related data-driven approach involves using quantitative, bio-
logical criteria to define nodes. Recently, it has been suggested 
that the ratio of T1- to T2-weighted imaging contrast can be 
used to generate myelin maps of the brain, and that gradient 
detection algorithms can be used to identify boundaries where 
there are sharp transitions in myeloarchitecture [82]. In some 
areas, these boundaries correspond well with known functional 
boundaries [82]. However, it is as yet unclear whether this 
approach is scalable to whole-brain parcellations. Alternative 
quantitative parcellations involve the projection of data from 
postmortem analyses into stereotactic space, yielding probabilis-
tic cytoarchitectonic atlases [83] and maps of regional variations 
in chemoarchitecture [84]. However, such data are presently 
only available for limited regions of cortex.

There is a variety of methods for delineating brain network nodes 
in MRI data. Each approach has distinct strengths and weaknesses 
and there is no gold standard. Ultimately, investigators must 
choose an approach best suited to the specific hypothesis being 
tested, and ensure that analyses are interpreted with respect to the 
limitations of the specific method employed.

4.6 Quantitative 
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5 Defining edges

The edges of a brain graph represent the connectivity between pairs 
of brain regions. There are three broad classes of brain connectivity: 
structural, functional, and effective. Both the specific class of con-
nectivity studied and the method used to measure it have a major 
impact on the structure of the resulting brain graph and the types 
of analyses that can be performed. This section discusses issues asso-
ciated with measuring each of these types of connectivity.

Structural connectivity refers to the anatomical connections link-
ing distinct neural elements. At resolutions accessible with MRI, 
structural connectivity refers to axonal fiber bundles intersecting 
macroscopic brain regions. Structural connectivity has been mea-
sured with MRI using two approaches. A relatively indirect method 
involves analyzing correlations in the gray matter volume (or den-
sity or cortical thickness) of different regions across subjects (e.g., 
Fig. 2c, middle). Volumes of different brain regions vary across 
individuals. If these inter-individual variations of volume are cor-
related between two regions, the regions are said to be “con-
nected.” It is generally assumed that these correlations reflect 
anatomical connectivity or mutually trophic influences [85, 86].

A more direct approach uses diffusion MRI. Specifically, trac-
tographic analyses attempt to reconstruct the trajectories of major 
fiber bundles based on the preferred direction of water diffusion in 
each voxel. Axons present barriers to water diffusion. The direc-
tion of preferred water diffusion in the brain is thus constrained by 
the trajectory of its axonal fibers. These trajectories are recon-
structed using streamlines that propagate through the white mat-
ter on a voxel-by-voxel basis according to specific algorithmic rules 
(e.g., Fig. 2c, top). A wide range of tractography algorithms exists 
and each is associated with distinct strengths and weaknesses [87] 
(see also [18]). The accuracy of the algorithm critically determines 
the validity of the resulting structural brain graph.

Once putative fiber tracts have been reconstructed, connectiv-
ity between regions is commonly measured using one of two 
approaches. One method estimates the strength of connectivity as 
the number of reconstructed trajectories intersecting each pair of 
brain regions. The raw streamline count is also often normalized 
by the size of the connected regions, since larger regions will gen-
erally intersect a larger number of streamlines [12]. Measuring 
structural connectivity based on streamline counts assumes that 
there is a correlation between the number of axons comprising a 
fiber bundle and the number of streamlines required to reconstruct 
that bundle. However, a streamline is not tantamount to an axon; 
rather it is an abstract structure that is used to track a trajectory of 
water diffusion through the brain. It therefore provides an indirect 
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measure of axonal structure. In reality, reconstructed bundles may 
vary in the number of streamlines they posses because of differ-
ences in the axonal density of the actual fiber pathway, variations in 
the orientation and organization of the fibers, or variations in the 
signal-to-noise characteristics of the image [88].

An alternative approach is to compute some measure of 
fiber integrity averaged over the extent of the reconstructed 
fiber tract. One commonly used index is fractional anisotropy 
(FA), which measures the degree to which water diffusion is 
constrained within each voxel. Disorganized or damaged axons 
offer reduced barriers to water diffusion. Lower FA values are 
thus often used as a marker of impaired white matter integrity, 
and the average FA of voxels within a tract can be used to index 
of the integrity of that tract. Alternative diffusivity measures, 
such as mean, radial, and axial measures of diffusivity, can also 
be used for this purpose. This approach attempts to derive a 
more biologically meaningful index of connectivity than stream-
line count, although diffusion- based measures of white matter 
integrity can also be affected by differences in white matter 
organization and image signal-to-noise, making their interpre-
tation ambiguous [88]. An alternative approach involves com-
bining tractography results with magnetization transfer images, 
which provide a more direct index of the myelin content of 
brain voxels [89]. Another promising line of work is developing 
novel diffusion imaging sequences for measuring axonal diam-
eter [90].

An important limitation of diffusion tractography is that it can-
not resolve the source and target of a fiber pathway. The resulting 
connectivity measures are therefore undirected – they tell us 
whether a connection between two regions exists, but they do not 
tell us whether region i connects to j or vice-versa. As discussed 
below, this simplification limits the types of graph theoretic analy-
ses that can be performed and precludes a consideration of the 
directionality of information flow in the brain.

Functional connectivity refers to a statistical dependence between 
neurophysiological recordings measured in distinct brain regions 
[91] (e.g., Fig. 2c, bottom). It thus quantifies functional interac-
tions within brain networks. Most commonly, functional connec-
tivity is assessed via a simple Pearson correlation between time 
courses extracted from two or more regions, although alternative 
measures such as partial correlation, mutual information, coher-
ence, and so on can be used. Studies of simulated fMRI data have 
shown that these measures, which result in undirected measures of 
connectivity, vary in their ability to accurately reconstruct the true 
edges of a graph, although simple measures such as the Pearson 
correlation and partial correlation perform reasonably well [47].

5.2 Functional 
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Nonetheless, these measures do have limitations. For example, 
correlations do not distinguish between direct and indirect con-
nections, meaning that two regions lacking a structural connection 
may still show highly correlated activity because they are indirectly 
connected via a third area. Indeed, it is well known that correlation- 
based measures of functional connectivity are sensitive to polysyn-
aptic connections [92]; as a result, functional connectivity brain 
graphs tend to be more densely connected than structural connec-
tivity graphs [93]. This sensitivity to indirect connections can 
introduce non-trivial structure into the network [94]. Partial 
 correlations partly correct this problem, but can also be associated 
with bias in large-scale brain network analyses [94].

Functional connectivity is often assessed during task perfor-
mance or task-free “resting” states [95, 96]. During resting-state 
designs, functional connectivity has traditionally been measured 
using temporal correlation taken across the duration of the fMRI 
acquisition protocol. In effect, this approach summarizes brain 
activity occurring over that period with a single scalar value. It 
therefore assumes stationarity of brain dynamics. Recent work has 
shown that brain dynamics show significant non-stationarities [97, 
98] (see [99] for a review). These non-stationarities can be assessed 
using sliding window analyses [97] or multivariate decompositions 
(e.g., ICA) in the temporal domain [98]. The result is a time series 
of networks, which can then be analyzed to understand how brain 
network organization evolves over time. Recent multiband fMRI 
acquisition sequences that enable more rapid sampling of brain 
activity increase the power of such analyses [100].

A parallel line of work investigates functional connectivity dur-
ing task performance. In such analyses, we are often interested in 
isolating brain functional networks that are modulated by chang-
ing task conditions. Two approaches that are scalable to whole- 
brain networks have been developed. One method, termed beta 
series correlation, attempts to model regional activation changes to 
each and every task event. Events are then sorted by condition and 
concatenated to generate condition-specific pseudo-time series 
(termed beta series, because event-related activity is modeled using 
a beta coefficient estimated with a general linear model) reflecting 
trial-to-trial variations of evoked activity. These pseudo-time series 
are then correlated between regions to quantify task-related func-
tional connectivity as covariations in trial-to-trial fluctuations of 
brain activity evoked by each task condition [101, 102]. An alter-
native method is an adaptation of the psychophysiological interac-
tion (PPI) framework first proposed by Friston et al. [103]. PPI 
analysis multiples a task regressor of interest by the time course in 
a region-of-interest to generate a psychophysiological interaction 
term representing task-related modulations of that region’s activ-
ity. These terms can be correlated between regions to estimate 
task-related functional connectivity. Partialling out the raw regional 
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time courses and task regressors allows task-related functional con-
nectivity to be isolated from task-unrelated (intrinsic) dynamics 
[69]. Several variants of this method that are scalable to whole- 
brain networks have been used [67–69, 104].

Effective connectivity is the influence of one neural system over 
another [91]. It thus quantifies causal interactions amongst brain 
regions and the resulting connectivity estimates are directed 
(Fig. 1). Critically, the causal interactions that define effective con-
nectivity must be specified at the neuronal level. Because neuronal 
dynamics are not directly observable with fMRI, estimating effec-
tive connectivity with this imaging technique requires a model that 
maps the observed hemodynamic signal changes to the underlying 
neuronal dynamics from which they were generated [105].

The most popular framework for effective connectivity analysis 
of fMRI data is dynamical causal modeling (DCM) [106]. DCM 
uses a model of neurovascular coupling to specify the mapping 
between neuronal activity and hemodynamics. Different graph 
models of causal interactions (i.e., directed graph configurations) 
between neuronal systems are specified and compared to deter-
mine which model best accounts for the observed fMRI data. As 
the number of possible graph models rapidly increases with net-
work size, DCM has traditionally only been applied to relatively 
small subnetworks comprising a few regions. Work is under way to 
scale these methods to larger systems [107]. DCM is applicable to 
both task and resting-state fMRI data [108].

MRI-based measures of structural and functional brain connectiv-
ity are indirect. As a result, connectivity analyses of MRI data must 
be interpreted with regards to the limitations of the measurement 
technique. In the context of graph theoretic analyses, a major limi-
tation is that most structural and functional connectivity measures 
are undirected, limiting our capacity to resolve directions of infor-
mation flow in the brain and to uncover hierarchical organizational 
features of brain networks (e.g., top-down vs. bottom-up connec-
tions). Nonetheless, many of the organizational properties of the 
human brain identified with MRI have been replicated in analyses 
of other species, where connectivity data have been acquired using 
more precise and invasive techniques. We consider some of these 
properties in Sect. 9.

6 From Connectivity Matrix to Brain Graph

Once structural, functional, or effective connectivity between every 
pair of brain regions in a given parcellation has been measured, the 
data can be succinctly represented as a connectivity matrix. In 
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graph theory, this matrix is often called an adjacency matrix, 
denoted A (Fig. 1). These matrices can be binary or weighted, 
symmetric, or asymmetric. In a binary matrix, Aij =1 if nodes i and 
j are connected and Aij = 0  otherwise. All connections are treated 
equally and no distinction is made between connections with dif-
ferent strength or weighting. Binary matrices thus represent the 
presence or absence of a neural connection. By contrast, the ele-
ments of a weighted matrix can span a range of values that is deter-
mined by the method used to measure connectivity. For example, 
if functional connectivity is estimated using a Pearson correlation, 
the values will be bounded in the range [−1, 1]. If structural con-
nectivity is estimated using streamline counts, the values will 
positive integers.

If a connectivity matrix is symmetric, the values in the upper 
triangle of the matrix are the same as the values in the lower tri-
angle (Fig. 1). In other words, A Aij ji= . No distinction is made 
concerning the source and target of a connection. Such matrices 
are typical of diffusion MRI or correlation-based analyses. 
Asymmetric matrices explicitly encode asymmetries (and thus, 
directionality) in connectivity (i.e., A Aij ji¹ ). Asymmetric matrices 
are used to represent effective connectivity (Fig. 1). Both symmet-
ric and asymmetric matrices can be either weighted or unweighted.

MRI-based estimates of connectivity are inherently noisy and 
it is often useful to threshold the connectivity matrix to distinguish 
real or probable connections from spurious or improbable connec-
tions (Fig. 2d). Thresholding should be done with care, as net-
works should only be compared if they have the same number of 
nodes and edges. Any thresholding procedure should thus try to 
respect this condition. One common approach is to apply an adap-
tive threshold to different networks to achieve a pre- specified con-
nection density, which represents the number of edges present in a 
network relative to the total possible number of edges. For exam-
ple, we could apply a threshold that ensures only the top 10 % of 
connections across a sample of individuals are retained. However, 
systematic differences in connectivity strength between individuals 
or groups can bias this approach. If one group has lower mean 
connectivity than another group, a lower threshold will be required 
to achieve the desired connection density. This lowered threshold 
may result in the retention of a larger number of low-weight and 
potentially spurious connections, altering network structure [109]. 
A variety of alternative thresholding methods are available, but no 
method is completely free of bias [110]. It is therefore prudent to 
repeat analyses across a range of thresholds and using alternative 
strategies to ensure that any results obtained are robust to this 
methodological parameter.

Once the final structure of the connectivity matrix has been deter-
mined, the network can be represented as a graph (Figs. 1 and 2d). 
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In graph form, the rows and columns of the matrix—that is, the brain 
regions—are depicted as nodes (often circles), and the matrix ele-
ments Aij determine which pairs of nodes are linked by edges. 
Variations in connectivity strength encoded in weighted matrices are 
commonly represented as variations in edge thickness (Fig. 1). The 
directionality of connectivity that is encoded in asymmetric matrices is 
depicted by arrowheads attached to the edges (Fig. 1).

Brain graphs can be projected in different ways, in order to 
highlight specific relations between nodes. Common displays in 
neuroscience include anatomical projections, in which nodes are 
positioned according to their stereotactic coordinates; topological 
projections, in which node positions are determined based on 
some topological relation between nodes; and circular projections 
(also called connectograms [111]), which allow a simplified view 
of the connectivity of the entire network. Examples of each of 
these projections are presented in Fig. 3.

7 Analyzing Brain Graphs

Once the network has been mapped, it can be analysed with respect 
to either its connectivity or topology. Connectivity analysis con-
centrates on variations in the type and strength of connectivity 
between brain regions. Topological analysis is concerned with 
understanding how connections are arranged with respect to each 
other, and provides insight into key organizational principles of the 
connectome.

Fig. 3 Different graph projections of a brain network. (a) A projection in anatomical space, where nodes are 
positioned according to their stereotactic coordinates. Nodes and edges are colored according to the module 
to which they have been assigned. (b) A topological projection, in which nodes are located more closely in 
space if they have short path length between them. Nodes near the center of the graph have a short average 
path length to other nodes, and thus represent central elements of the network. Nodes colors are the same as 
in (a). (c) A ring projection, which is also called a connectogram. Nodes are clustered (and colored) by the 
modules to which they belong. Within each grouping, the nodes have been ordered according to their averaged 
connectivity strength with other nodes (yellow bars). The nodes have been labeled using arbitrary numbers
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8 Connectivity Analysis

Connectivity can be studied at the level of specific neural systems, 
called candidate systems analysis, or across the entire brain, called 
connectome-wide analysis [112]. Candidate system analyses do 
not require a comprehensive map of connectivity between all pairs 
of brain regions and typically focus on one or a few networks of 
interest. Such analyses are exemplified by seed-based connectivity 
approaches, in which the structural or functional connectivity of 
specific seed regions to the rest of the brain is assessed [80, 113], 
and studies using ICA to investigate brain network connectivity.

Connectome-wide analyses interrogate effects at each and 
every element of the connectivity matrix. These analyses pose a 
major multiple comparisons problem. In an undirected network 

with N nodes, there are 
N N -( )1

2
 possible connections. Thus, an 

analysis of an undirected network with 103 nodes will require cor-
rection over 499, 500 comparisons. A simple Bonferroni correc-
tion in such circumstances will be too conservative. Fortunately,  
more powerful correction procedures are available [114–116]. In 
one such approach, called the network-based statistic (NBS) [116], 
a test statistic of interest (e.g., t-test, correlation, etc.) is computed 
at each and every edge, resulting in a statistic matrix with the same 
dimensions as the connectivity matrix. A primary threshold is 
applied to this matrix to define a pseudo-network of statistic val-
ues. The size of the connected components of this pseudo-network 
are computed and evaluated with respect to an empirical null dis-
tribution, which is generated by repeating the analysis many times 
after appropriate permutation of the data. In this context, a con-
nected component refers to a collection of nodes that can be linked 
by a set of supra-threshold edges. The probability of observing 
components as large as those seen in the data by chance is com-
puted with respect to the empirical null distribution of maximum 
component sizes, ensuring that the resulting probability values are 
corrected for multiple comparisons [117]. In this manner, the 
NBS identifies sets of nodes and edges that show a common effect 
of interest. Simulation studies have shown that, compared to tradi-
tional correction methods such as the False Discovery Rate [118], 
the NBS can offer great gains in sensitivity when effects are distrib-
uted across multiple edges [116, 119].

An alternative to analyzing connectivity at each and every edge 
is to examine the average connectivity of each node to all other 
brain regions. This measure has been variously referred to as con-
nectivity strength, connectivity density, or global connectivity 
[120–122]. Since the analysis is conducted across nodes rather 
than edges, the multiple comparison correction required is much 
smaller (i.e., on the order of N, rather than N N -( )1 ). The analysis 
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is also readily scalable to voxel-wise networks and can be useful for 
mapping areas in which connectivity varies with some variable of 
interest (e.g., diagnosis or cognitive performance). However, as 
the connectivity of each node is averaged across all other brain 
regions, more subtle effects specific to particular pair-wise links or 
circuits may be missed.

9 Topological Analysis

Topological analysis of brain networks draws most heavily on graph 
theory. The goal of topological analysis is to characterize how con-
nections and nodes relate to each other, thereby shedding light on 
principles of brain network organization. Studies of brain network 
topology have revealed several non-trivial topological properties. 
In this section, we overview some of the most commonly applied 
metrics. Formal definitions are presented for binary, undirected 
networks. Generalizations for weighted and undirected networks 
are also available (see [123]).

Barabási and Albert’s [25] discovery that many real-world net-
works have a heterogeneous distribution of connectivity across 
nodes suggests that such networks possess highly connected hubs 
that exert a disproportionate influence over the network. In net-
work parlance, the total number of connections attached to a node 
is called its connectivity degree, denoted k, and the distribution of 
degree values across nodes is the degree distribution of a network. 
In the real-world networks they studied, Barabási and Albert found 
that the probability of finding a node with increasing k decayed as 
a power-law of the form P k k( ) -~ a , where α is the scaling expo-
nent that determines the rate of decay. This decay is generally much 
slower than the decay observed in homogeneous random networks 
such as those studied by Erdős and Rényi, where the degree distri-
bution approximates a Gaussian (more accurately, it conforms to a 
binomial distribution); i.e., most nodes have a degree value close 
to the mean, and the probability of finding large deviations from 
this mean is very low. This clustering around a mean value endows 
these networks with a single, characteristic scale. In contrast, 
power-law degree distributions are heavily skewed with an extended 
tail, pointing to a higher probability of finding nodes with very 
high connectivity values despite most nodes having low degree. 
There is no meaningful average degree or characteristic scale in 
these networks, so they are sometimes called scale-free.

Early work suggested that brain networks, at least when con-
structed at high resolution, conform to a power-law degree distri-
bution [37, 49, 58]. Other studies of both structural and functional 
connectivity networks have more commonly reported evidence 
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that the degree distribution of the human brain follows an expo-
nentially truncated power law [12, 40, 48]. Truncated power-law 
distributions show power-law scaling over a limited regime, point-
ing to the existence of highly connected hub nodes (e.g., Fig. 4a). 
However, they show a rapid decay in the probability of finding 
nodes with very high degree beyond a certain cut-off. For this rea-
son, networks with truncated power-law distributions are some-
times referred to as broad-scale [124]. This organization seems 
plausible for the brain, as metabolic and spatial constraints place an 
upper limit on the total number of connections that any single 
region can possess.

The presence of highly connected hubs in the brain suggests that 
certain brain regions play a critical role in integrative network func-
tion. Studies of both structural and functional connectivity converge 
to suggest that brain network hubs are predominantly located in 
multimodal association cortex, although hubs in the striatum and 
thalamus have also been noted [125–127]. These findings are consis-
tent with the proposed role of association cortices and subcortical 
nuclei in integrating information from diverse modalities. These 
brain network hubs are more highly interconnected with each other 
than expected by chance, forming a so- called rich-club of connectiv-
ity: a densely connected core of high-degree nodes that acts as a cen-
tral information-processing backbone that absorbs a large bulk of 
neuronal traffic [128, 129]. The rich-club organization of the brain 
facilitates the rapid transfer and integration of information between 
otherwise segregated neural systems [130].

The degree distribution of a network has important implications 
for its robustness to damage. Network robustness can be assessed 
by removing a node (or edge) and its incident connections accord-
ing to different rules. The properties of the remaining network can 
be analyzed after removal of each node to uncover which elements 
are most critical for network integrity. One commonly studied 
property in this context is the size of the largest connected compo-
nent, S. In an intact network, S N= , where N is the number of 
nodes in the network. The value S can be computed after each 
node is removed to determine the number of nodes that is required 
to fragment the network (determined by the point at which S N< ) .

By removing nodes in different orders, we can simulate different 
types of network disruption. Stochastic failures can be simulated by 
random removal of nodes, whereas attacks can be simulated by tar-
geted deletion of nodes based on their connectivity degree or some 
other property of interest. Compared to single-scale networks, scale-
free systems are more resilient to random failure but highly vulner-
able to targeted attack [131]. This vulnerability to attack arises 
because the concentration of connectivity on the hub nodes of a 
scale-free network means that only a few hubs need to be removed 
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to fragment the network. However, since hubs are  relatively rare, the 
probability that they will be affected by random failure is low; hence 
the greater resistance to random node deletion relative to single-
scale systems. Compared to scale-free systems, networks with trun-
cated power-law degree distributions, such as those thought to 
characterize human brain networks, show comparable resilience to 
failure and better robustness in the face of targeted attack [40]. This 
enhanced robustness occurs because the concentration of connectiv-
ity on hub nodes is less extreme than in scale-free systems.

Nonetheless, damage to hub nodes, or the links between them, 
exerts a more severe impact on network function than damage to 

Fig. 4 Example of key topological properties of brain networks. (a) illustration of a single network hub (red) with 
high degree compared to other nodes. (b) example of the shortest path between two nodes at opposite ends 
of the network (red). In this case, the shortest path traverses five edges, so the path length between these two 
nodes is five. The characteristic path length of a network is the average path length between every pair of 
nodes. (c) Example of a connected triangle of nodes (red). The clustering coefficient of a node is computed as 
the number of such triangles attached to that node, relative to the total possible number of triangles. (d) 
Illustration of a modular decomposition of the network. Three modules have been identified, as represented by 
the different background colors. Nodes within a module are strongly connected with each other and sparsely 
connected with nodes in other modules. Such a decomposition allows analysis of node roles and hub category. 
Red highlights a provincial hub which is highly connected within its own module. Orange highlights a connec-
tor hub, which has connections distributed across all modules
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peripheral brain regions or connections [125]. The clinical impli-
cations of this conclusion should be obvious: we should expect that 
brain disorders affecting hub regions will present with more severe 
symptoms and/or a higher degree of impairment [132]. The high 
connectivity of brain network hubs may also render them more 
susceptible to disease processes originating elsewhere in the brain 
[55, 132]. Consistent with this view, pathology of hub regions is 
over-represented in a wide variety of brain disorders [133].

The small-world class of networks discovered by Watts and Strogatz 
[26] provides an appealing model for the brain. Clustered connectiv-
ity offers a substrate for functional specialization, whereas short aver-
age path length facilities functional integration. Clustering is formally 
quantified using the clustering coefficient, which computes the prob-
ability that two nodes linked to an index node are also connected 
with each other. In other words, it counts the number of closed tri-
angles attached to a node (Fig. 4c). The path length between two 
nodes is simply the number of edges on the shortest path intersecting 
those nodes (Fig. 4b). The characteristic path length of a network is 
the average path length computed across all node pairs.

Empirically, the small-worldness of a network can be quanti-
fied by comparison to an ensemble of random graphs matched for 
the number of nodes, edges, and degree distribution. Various algo-
rithms are available for constructing such graphs by rewiring the 
connections of an observed network [122, 134]. Such surrogate 
networks provide a useful baseline for evaluating the degree to 
which a particular topological property is expressed in the brain.

Formally, a network is considered small-world if the scalar 
quantity s >1, where s g l= /  [135]. The quantity γ is computed 
as a ratio of the observed clustering coefficient to the average clus-
tering of an ensemble of matched randomized networks (i.e., 
g = C Cobs rand/ ). The quantity λ is the ratio of the observed network 
path length to average path length computed in the same ensemble 
of randomized graphs (i.e., l = L Lobs rand/ ). Small-world networks 
will have greater clustering and similar path length to randomized 
surrogates. As such, g >1 and l ~1, yielding s >1. Since σ is a 
ratio, variations in this value may be driven by changes in either γ 
or λ. It is therefore often more useful to understand variations in 
those parameters before considering σ.

The characteristic path length of a network is closely related to its 
topological efficiency. Communication in a network will be more 
efficient when fewer connections are required to transfer informa-
tion between any two nodes; i.e., when the characteristic path 
length is low. We can thus define a topological measure of the 

9.3 Small-Worldness

9.4 Cost 
and Efficiency
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global efficiency of a network as being inversely related to the char-
acteristic path length of the network [136]:
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where Lij is the minimum path length between nodes i and j. 
Similarly, a local measure of local communication efficiency can be 
computed as the efficiency of the subgraph defined by an index 
node’s neighbors (i.e., the nodes to which it directly connects), after 
removal of that node [137]. It should be evident from the above 
definition of Eglob that the efficiency of a network can be improved 
simply adding more direct connections between nodes, since each 
direct link between nodes reduces network path length. However, in 
many real-world networks, there is often a cost associated with form-
ing and maintaining each connection. This is certainly true for the 
brain, where axons, dendrites and synapses consume precious and 
limited metabolic resources. Accordingly, minimization of wiring 
costs is known to be an important pressure on brain organization, 
although wiring costs in the brain are not absolutely minimized 
[138]. If this were the case, brain connectivity would have a lattice-
like arrangement, in which links were only formed between spatially 
adjacent nodes via short-range connections [55]. Instead the brain 
forms certain, long-range and high- cost connections that promote 
integration and communication efficiency, and give rise to its small-
world organization [128, 137, 138]. Brain networks thus appear to 
be configured, at least in part, to satisfy competitive pressures to 
minimize cost and support efficient, integrated and complex func-
tion [54, 55, 139]. One fMRI study of healthy twins found evidence 
that this trade-off between cost and efficiency is strongly heritable 
[140], suggesting that it represents an important selection pressure 
on brain network evolution.

The clustered connectivity of many real-world networks often 
means that they can be (nearly) decomposed into subsets of nodes, 
termed modules, which show higher connectivity with each other 
than with other network elements (Fig. 4d). There exists a wide 
variety of algorithms for decomposing networks into modules 
(reviewed in [141]). These algorithms commonly attempt to find 
a decomposition of the network that maximizes some quality 
 function. The most commonly used function of this type is the 
Newman-Girvan Q-statistic [142], defined as
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where m is the total number of edges in the network, Aij =1 if nodes 
i and j are connected and zero otherwise, k is the node degree and 

d s si j, =1 if nodes i and j belong to the same module and 0 other-

wise. The term 
k k

m
i j

2
 represents the expected connectivity between 

nodes i and j if the positions of the edges in the graph were com-
pletely randomized. Thus, the modularity of a network is defined as 
the mean difference between the actual and chance- expected con-
nectivity between node pairs belonging to the same module.

The goal in modularity analysis is to find a decomposition that 
maximizes the Q-statistic. Optimization via exhaustive search is 
intractable for anything but the smallest networks, so various heu-
ristic algorithms have been proposed (reviewed in [141]; see [143] 
for a comparative evaluation). Because such heuristics are used, 
there may be many solutions that yield similar Q-values (i.e., the 
solutions may be degenerate [144]). Consequently, multiple runs 
of the algorithm should be performed to derive a consensus parti-
tion ( [145]; see also [67, 69, 122]). Furthermore, since even ran-
dom networks can show some modular structure [146], it is often 
useful to compare the Q-statistic of the observed network to an 
ensemble of random networks matched for the number of nodes, 
edges, and degree distribution. Such an analysis allows statistical 
inference on whether modularity is a significant characteristic of 
the empirical network.

Modularity analysis offers a powerful tool for characterizing 
topologically separable systems in the brain. Most such analyses of 
MRI data typically yield 4-6 modules, in which spatially adjacent 
nodes are often grouped together [125, 147, 148]. This spatial 
clustering may occur because brain connectivity decays rapidly 
with physical separation between nodes [149, 150]. This penalty 
on long-distance connectivity is compounded by imaging tech-
niques such as diffusion MRI, which have a limited ability to recon-
struct long-range connections due to difficulty tracking trajectories 
through voxels with crossing fibers [42]. Careful processing of 
functional MRI data has been shown to uncover larger numbers of 
spatially distributed networks that mirror those identified with 
other decomposition techniques, such as ICA [59].

A common assumption is that the high interconnectivity of 
nodes belonging to the same module implies some commonality of 
function. Evidence in support of this hypothesis was provided by 
meta-analytic work demonstrating that inter-regional coactivation 
during specific types of tasks was preferentially expressed within 
distinct modules [151]. This result links topological modules of 
the brain to the psychological modules long thought to support 
cognition [152]. Topological modularity also enables robustness 
to damage while also promoting functional diversity and 
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adaptability [153, 154]: damage sustained in a modular system will 
often be limited to the affected module, and the diverse function 
of different modules facilitate adaptation to different environmen-
tal challenges.

A particular strength of modularity analysis is that it allows one 
to characterize the role played by each node in the network with 
respect to its degree of intra-modular and inter-modular connec-
tivity [155]. Intra-modular connectivity is commonly computed as 
a z-score of each node’s intra-module connectivity relative to other 
nodes in the same module [155]. Nodes with high intra-modular 
connectivity are called “provincial hubs,” and are thought to play 
an important role in functional specialization, acting as central 
components of the module to which they belong (Fig. 4d). Inter-
module connectivity is commonly measured using the participa-
tion coefficient, which indexes how a node’s connectivity is 
distributed across different modules [155]. Nodes with a relatively 
even distribution of connectivity across different modules are called 
“connector hubs” and play an important role in functional integra-
tion because they support communication between different mod-
ules (Fig. 4d). Node role analysis can be used to identify different 
types of brain hubs [127] and to characterize the topological role 
of brain nodes under different contexts [67, 69].

Most methods for modularity decomposition yield a hard seg-
mentation of the brain such that nodes can belong to only one 
module. In reality, it is likely brain nodes can belong to more than 
one functional system. Indeed, this is a defining feature of associa-
tion cortex. Algorithms for fuzzy or overlapping modular decom-
positions are available, although evaluations with respect to 
benchmark networks have found their performance to be lacking 
in many circumstances [156]. The modular organization of the 
brain can also show a hierarchical structure, comprising modules 
within modules across several scales of resolution [157], although 
such multiscale organization has seldom been investigated in brain 
networks (for an exception, see [158]).

This section has presented a brief overview of some of the basic 
graph theoretic concepts applied to neuroimaging data, and the 
insights they have provided into brain network organization. Many 
other metrics are available, enabling a diverse range of analyses (see 
[159] for an introduction). It is important to bear in mind that 
many such methods were developed in the physical or social sci-
ences with networks other than the brain in mind. As such, they 
may not be directly portable to neuroscientific contexts. Indeed, 
the first wave of graph theoretic studies of neuroimaging data have 
concentrated on measuring canonical topological properties such 
as those discussed here, but alternative measures may provide more 
appropriate models of brain function. We consider some of these 
issues in the next section.

9.6 Summary
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10 Issues for Consideration and Developing Trends

In this chapter, we have considered the basic methodologies 
behind building and analyzing a graph theoretic model of the 
human connectome with MRI data. We have also highlighted the 
insights into brain organization that have been gained by this per-
spective and have drawn attention to the limitations of current 
methodologies where appropriate. Some additional considerations 
should be taken into account.

As already stated, many graph theoretic measures were devel-
oped for the analysis of networks other than the brain. Consequently, 
not all typical graph theoretic metrics may be appropriate for the 
characterization of brain networks. For example, topological mea-
sures based on shortest paths, such as the characteristic path length 
and global efficiency, assume that information in the brain travels 
along the shortest path between regions. In order to find the short-
est path in a network, one must have global knowledge of network 
topology to find the optimal route. It is unlikely that any individual 
neural element possesses such knowledge. This limitation was ele-
gantly shown in a recent study examining the relationship between 
structural and functional connectivity as measured using diffusion 
MRI and functional MRI, respectively [160]. Specifically, it was 
shown that characteristics of the shortest structural path between 
nodes strongly predicted the functional connectivity between 
those regions. These characteristics indexed how easy it is to find 
and/or remain on the shortest path. We should not expect such 
properties to relate to functional connectivity if neuronal signaling 
propagates exclusively along shortest paths (i.e., in such a scenario, 
the ease with which such a path can be found should be irrelevant). 
As such, alternative measures of brain network topology that 
assume dynamics which more closely approximate information 
transmission in the brain, such as those based on locally guided 
diffusion processes, may offer useful alternative measures of net-
work communication processes [129, 160, 161]. Moreover, meth-
ods for characterizing the temporal evolution of topological 
properties on non-stationary networks are being developed for 
analyses of dynamic functional connectivity [162].

Another consideration in graph theoretic analysis of MRI data 
specifically concerns functional connectivity networks. In such net-
works, edges are determined by some measure of statistical depen-
dence, such as the correlation coefficient. In this sense, the edges 
are somewhat abstract quantities. A structural link measured with 
 diffusion MRI unambiguously indexes a physical connection 
between nodes (notwithstanding the limitations of the measure-
ment technique; [88]). A functional link on the other hand, is a 
statistical measure of covariation in some physiological process. 
Due to the statistical nature of functional connectivity measures, 
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certain topological properties computed on brain functional net-
works may be difficult to interpret. For example, topological mea-
sures that consider indirect paths between nodes (e.g., those based 
on path length) are unlikely to represent viable measures of infor-
mation exchanged between two regions, since the measured func-
tional connectivity of those regions provides a direct estimate of 
their functional interaction [123]. Popular statistical measures 
such as the correlation coefficient are also often signed (that is, 
edge weights can be either positive or negative). Signed edges 
imply a qualitatively distinct type of interaction between brain 
regions [18]. This information is often ignored in imaging analy-
ses, where weights are either converted to absolute values or thres-
holded to focus only on positive weights. The adaptation of graph 
theoretic measures to deal with signed weights will assist in over-
coming this problem [123].

Finally, graph theory is emerging as a useful tool for integrating 
theory and experiment. Neural dynamics can be simulated on empiri-
cally derived network structures (e.g., a structural connectivity net-
work measured with diffusion MRI) to generate large- scale models of 
network functional connectivity [163]. These models allow analysis of 
how simulated lesions impact network dynamics [164, 165]. 
Alternatively, models of disease processes can be simulated on the net-
work structure to determine whether they accurately predict empirical 
patterns of disorder-related neuropathology [166, 167]. Similarly, 
developmental processes can be investigated using network growth 
models [168]. In these models, networks are grown by adding nodes 
and edges according to specific rules. The properties of the resulting 
network are compared to empirical data; a good match between 
model and data implies that the growth rules represent an important 
factor in brain network development. Growth models have been used 
to uncover key organizational imperatives for brain networks, largely 
involving  trade- offs between wiring costs and complex topological 
properties [139, 150, 168, 169], and for modeling developmental 
abnormalities in brain disorders [168] (see also [170, 171]).

Addressing the issues raised here and capitalizing on these 
emerging trends will ensure more accurate modeling of brain 
imaging data, while also establishing graph theory as a flexible and 
powerful framework for the integration of theory and experiment 
in neuroscience. This integration will be necessary to move beyond 
the simple description of empirical findings to formulate and test 
competing hypotheses about the underlying mechanisms that gen-
erated the observed data.
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    Chapter 11   

 Functional MRI: Applications in Cognitive Neuroscience                     

     Mark     D’Esposito      ,     Andrew     Kayser    , and     Anthony     Chen     

  Abstract 

   Neuroimaging, in many respects, revolutionized the study of cognitive neuroscience, the discipline that 
attempts to determine the neural mechanisms underlying cognitive processes. Early studies of brain–
behavior relationships relied on a precise neurological exam as the basis for hypothesizing the site of brain 
damage that was responsible for a given behavioral syndrome. The advent of structural brain imaging, fi rst 
with computerized tomography and later with magnetic resonance imaging, paved the way for more pre-
cise anatomical localization of the cognitive defi cits that manifest after brain injury. Functional neuroimag-
ing, broadly defi ned as techniques that provide measures of brain activity, further increased our ability to 
study the neural basis of behavior. Functional MRI (fMRI), in particular, is an extremely powerful tech-
nique that affords excellent spatial and temporal resolution. This chapter focuses on the principles underly-
ing fMRI as a cognitive neuroscience tool for exploring brain–behavior relationships.  

  Key words     Functional MRI  ,   Cognitive neuroscience  ,   Experimental design  ,   Statistics  

1      Introduction 

 Cognitive neuroscience is a discipline that attempts to determine 
the neural mechanisms underlying cognitive processes. Specifi cally, 
cognitive neuroscientists test hypotheses about brain–behavior 
relationships that can be organized along two conceptual domains: 
 functional    specialization   —the idea that functional modules exist 
within the brain, that is, areas of the cerebral cortex that are spe-
cialized for a specifi c cognitive process, and  functional    integra-
tion   —the idea that a cognitive process can be an emergent property 
of interactions among a network of brain regions, which suggests 
that a brain region can play a different role across many functions. 

 Early investigations of brain–behavior relationships consisted 
of careful observation of individuals with neurological injury 
resulting in focal brain  damage  . The idea of functional specializa-
tion evolved from hypotheses that damage to a particular brain 
region was responsible for a given behavioral syndrome that was 
characterized by a precise neurological examination. For instance, 
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the association of aphasia with right-sided limb weakness  implicated 
the left hemisphere as the site of language abilities. Moreover, 
upon the death of a patient with a neurological disorder, clinico-
pathological correlations provided confi rmatory information about 
the site of damage causing a specifi c neurobehavioral syndrome 
such as aphasia. For example, in 1861 Paul Broca’s observations of 
nonfl uent  aphasia   in the setting of a damaged left inferior frontal 
gyrus (IFG) cemented the belief that this brain region was critical 
for speech output [ 1 ]. The introduction of structural brain imag-
ing more than 100 years after Broca’s observations, fi rst with com-
puterized tomography (CT) and later with magnetic resonance 
imaging (MRI), paved the way for more precise anatomical local-
ization in the living patient of the cognitive defi cits that develop 
after brain injury. The superb spatial resolution of structural neu-
roimaging has reduced the reliance on the infrequently obtained 
autopsy for making brain–behavior correlations. 

 Functional neuroimaging, broadly defi ned as techniques that 
measure brain activity, expanded our ability to study the neural 
basis of cognitive processes. One such method, fMRI is as an 
extremely powerful technique that affords excellent spatial and 
temporal  resolution  . Measuring regional brain activity in healthy 
subjects while they perform cognitive tasks links localized brain 
activity with specifi c behaviors. For example, functional neuroim-
aging studies have demonstrated that the left IFG is consistently 
activated during the performance of speech production tasks in 
healthy individuals [ 2 ]. Such fi ndings from functional neuroimag-
ing are complementary to fi ndings derived from observations of 
patients with focal brain damage. This chapter focuses on the prin-
ciples underlying fMRI as a cognitive neuroscience tool for explor-
ing brain–behavior relationships.  

2    Inference in Functional Neuroimaging Studies of Cognitive Processes 

 Insight regarding the link between brain and behavior can be gained 
through a variety of approaches. It is unlikely that any single neuro-
science method is suffi cient to fully investigate any particular ques-
tion regarding the mechanisms underlying cognitive function. 
From a methodological point of view, each method will offer differ-
ent temporal and spatial resolution. From a conceptual point of 
view, each method will provide data that will support different types 
of inferences that can be drawn from it. Thus, data obtained address-
ing a single question but derived from multiple methods can pro-
vide more comprehensive and inferentially sound conclusions. 

 Functional neuroimaging studies support inferences about the 
association of a particular brain system with a cognitive  process  . 
However, it is diffi cult to prove in such a study that the observed 
activity is necessary for an isolated cognitive process because perfect 
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control over a subject’s cognitive processes during a functional 
neuroimaging experiment is never possible. Even if the task per-
formed by a subject is well designed, it is diffi cult to demonstrate 
conclusively that he or she is differentially engaging a single, identi-
fi ed cognitive process. The subject may engage in unwanted cogni-
tive processes that either have no overt, measurable effects or are 
perfectly confounded with the process of interest. Consequently, the 
neural activity measured by the functional neuroimaging technique 
may result from some confounding neural computation that is itself 
not necessary for executing the cognitive process seemingly under 
study. In other words, functional neuroimaging is an observational, 
correlative method [ 3 ]. It is important to note that the inferences 
that can be drawn from  functional   neuroimaging studies such as 
fMRI apply to all methods of physiological measurement (e.g., elec-
troencephalography, EEG, or magnetoencephalography, MEG). 

 The inference of necessity cannot be made without showing 
that a focal brain lesion disrupts the cognitive process in question. 
However, unlike precise surgical or neurotoxic lesions in animal 
models, lesions in patients are often extensive, damaging local neu-
rons and “fi bers of passage.” For example, damage to prominent 
white matter tracts can cause cognitive defi cits similar to those pro-
duced by cortical lesions, such as the amnesia resulting from lesions 
of the fornix, the main white matter pathway projecting from the 
hippocampus [ 4 ]. In addition, connections from region “A” may 
support the continued metabolic function of region “B,” but region 
A may not be computationally involved in certain processes under-
taken by region B. Thus, damage to region A could impair the 
function of region B via two possible mechanisms: (1) diaschisis [ 5 , 
 6 ] and (2) retrograde trans-synaptic degeneration. Consequently, 
studies of patients with focal lesions cannot conclusively demon-
strate that the neurons within a specifi c region are themselves criti-
cal to the computational support of an impaired cognitive process. 

 Empirical  studies   using  lesion and electrophysiological meth-
ods   demonstrate these issues regarding the types of inferences that 
can be logically drawn from them. For example, in monkeys, 
single- unit recording reveals neurons in the lateral prefrontal cor-
tex (PFC) that increase their fi ring during the delay between the 
presentation of information to be remembered and a few seconds 
later when that information must be recalled [ 7 ,  8 ]. These studies 
are taken as evidence that persistent neural activity in the PFC is 
involved in temporary storage of information, a cognitive process 
known as working memory. The necessity of PFC for working 
memory was demonstrated in other monkey studies showing that 
PFC lesions impair performance on working memory tasks, but 
not on tasks that do not require temporarily holding information 
in memory [ 9 ]. Persistent neural activity during working memory 
tasks is also found in the hippocampus [ 10 ,  11 ]. Hippocampal 
lesions, however, do not impair performance on most working 
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memory tasks [ 12 ], which suggests that the hippocampus is 
 involved  in maintaining  information   over short periods of time, but 
is not  necessary  for this cognitive operation. Observations in 
humans support this notion. For example, the well-studied patient 
H.M., with complete bilateral hippocampal damage and the severe 
inability to learn new information, could nevertheless perform 
normally on working memory tasks such as digit span [ 13 ]. The 
hippocampus is implicated in long-term memory especially when 
relations between multiple items and multiple features of a com-
plex, novel item must be retained. Thus, the hippocampus may 
only be engaged during working memory tasks that require some-
one to subsequently remember novel information [ 14 ]. 

 When the results from lesion and functional neuroimaging 
studies are combined, a stronger level of inference emerges [ 15 ]. 
As in the examples of Broca’s aphasia or working memory, a lesion 
of a specifi c brain region causes impairment of a given cognitive 
process and when engaged by an intact individual, that cognitive 
process evokes neural activity in the same brain region. Given these 
fi ndings, the inference that this brain region is computationally 
necessary for the cognitive process is stronger than the data derived 
from each study performed in isolation. Thus, lesion and func-
tional neuroimaging studies are complementary, each providing 
inferential support that the other lacks. 

 Other types of inferential failure can occur in the interpretation 
of functional neuroimaging studies when other common assump-
tions do not hold true. First, it is assumed that if a cognitive pro-
cess activates a particular brain region (evoked by a particular task), 
the neural activity in that brain region must depend on engaging 
that particular cognitive process. For example, a brain region show-
ing greater activation during the presentation of faces than to other 
types of stimuli, such as photographs of cars or buildings, is consid-
ered to engage face perception processes. However, this region 
may also support other higher-level cognitive processes such as 
memory processes, in addition to lower level perceptual processes 
[ 16 ]. See ref. [ 17 ] for a further discussion of this issue. 

 The opposite type of  inference   is made when it is assumed 
that if a particular brain region is activated during the perfor-
mance of a cognitive task, the subject must have engaged the 
cognitive process supported by that region during the task 
(referred to as a “reverse inference”). For example, when activa-
tion of the frontal lobes was observed during a mental rotation 
task, it was proposed that subjects engaged working memory 
processes to recall the identity of the rotated target [ 18 ]. (They 
derived this assumption from other imaging studies showing acti-
vation of the frontal lobes during working memory tasks.) 
However, in this example, because some other cognitive process 
supported by the frontal lobes could have activated this region 
[ 19 ], one cannot be sure that working memory was engaged 
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leading to the activation of the frontal lobes. Unfortunately, this 
potentially faulty logic is a fairly common practice in fMRI stud-
ies. See ref. [ 20 ] for a further discussion of this issue. 

 In summary, interpretation of the results of functional neuro-
imaging studies attempting to link brain and behavior rests on 
numerous assumptions. Familiarity with the types of inferences 
that can and cannot be drawn from these studies is helpful for 
assessing the validity of the fi ndings reported by such studies.  

3    Functional MRI as a Cognitive Neuroscience  Too  l 

 Functional MRI has become the predominant functional neuroim-
aging method for studying the neural basis of cognitive processes 
in humans. Compared to its predecessor, positron emission tomog-
raphy (PET) scanning, fMRI offers many advantages. For example, 
MRI scanners are much more widely available, and imaging costs 
are less expensive since MRI does not require a cyclotron to pro-
duce radioisotopes. MRI is also a noninvasive procedure since 
there is no requirement for injection of a radioisotope into the 
bloodstream. Also, given the half-life of available radioisotopes, 
PET scanning is unable to provide comparable temporal resolution 
to that of fMRI which can provide images of behavioral events 
occurring on the order of seconds rather than the summation of 
many behavioral events over tens of seconds. 

 In selected circumstances, however,  PET   scanning can provide 
an advantage over fMRI for studying certain questions concerning 
the neural basis of cognition. For example, a particular advantage 
of PET scanning in the study of cognition that can nicely comple-
ment fMRI studies is its ability to assess neurochemical (neu-
rotransmitter and neuromodulator) systems. Radioactively labeled 
ligands may be used to directly measure density and distribution of 
particular receptors and even receptor subtypes, distribution of 
presynaptic terminals or enzymes involved in the production or 
breakdown of particular neurochemicals [ 21 ]. For example, one 
study measured dopamine synthesis capacity in the striatum with 
PET and used fMRI to measure brain activity during a working 
memory task. It was found that activity in frontal cortex during the 
working memory task was related to caudate dopamine levels as 
well as task accuracy. Thus, combining PET and fMRI data in this 
unique way allowed the investigators to test a question regarding 
the neurochemical basis of cognition [ 22 ]. 

 The MRI scanner, compared to a behavioral testing room, is 
less than ideal for performing most cognitive neuroscience experi-
ments. Experiments are performed in the awkward position of lying 
on one’s back, often requiring subjects to visualize the presentation 
of stimuli through a mirror, in an acoustically noisy environment. 
Moreover, most individuals develop some degree of claustrophobia 
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due to the small bore of the MRI scanner and fi nd it diffi cult to 
remain completely motionless for a long duration of time that is 
required for most experiments (e.g., usually 60–90 min). These 
constraints of the MRI scanner make it especially diffi cult to scan 
children or certain patient populations (e.g., Parkinson’s disease 
patients), which has resulted in many fewer fMRI studies involving 
children than adults and neurological patients in general. However, 
mock scanners have been built in many imaging centers, with 
motion devices that acclimate children to the scanner environment 
before they participate in an fMRI study. This approach has led to 
an increasing number of fMRI studies of children being reported in 
the literature that are providing tremendous insight regarding the 
mechanisms underlying the developing brain ( for review ,  see  [ 23 ]). 

 All sensory systems have been investigated with fMRI includ-
ing the visual, auditory, somatosensory, olfactory, and gustatory 
systems. Each system requires different technologies for successful 
presentation of relevant stimuli within an MRI environment. At 
the time of this writing,    there are now many off-the-shelf commer-
cial products that exist that are MRI-compatible. Acquiring ancil-
lary electrophysiological data such as electromyographic recordings 
to measure muscle contraction or electrodermal responses to mea-
sure autonomic activity enhances many cognitive neuroscience 
experiments. Devices have been developed that are MR compatible 
for these types of measurements as well as other physiological mea-
sures such as heart rate, electrocardiography, oxygen saturation, 
and respiratory rate. The recording of eye movements is common-
place in MRI scanners predominantly with the use of infrared video 
cameras equipped with long range optics. Video images of the 
pupil–corneal refl ection can be sampled at 500–1000 Hz allowing 
for the accurate (<0.5°) localization of gaze within 50 horizontal 
and 40 vertical degrees of visual angle. 

 EEG recordings have also been successfully performed during 
MRI scanning [ 24 ,  25 ]. Both measures of event-related potentials 
(ERPs) and spectral EEG power in specifi c frequency bands and 
have been successfully recorded and related to variations in under-
lying BOLD activity and behavior [ 26 – 29 ]. However, the record-
ing of low amplitude EEG events, such as ERPs and transient 
changes in spectral EEG power, can be more diffi cult in a magnetic 
fi eld due to large artifacts induced by gradient switching and head 
movement and voltage changes from cardiac pulsation. The 
 optimization of data acquisition methods and post-processing 
algorithms to remove artifacts have allowed for reliable measure-
ments of ERPs and transient EEG events during fMRI scanning 
[ 30 – 33 ]. In summary, most challenges facing cognitive experi-
ments and the study of spontaneous activity within the MRI envi-
ronment have been overcome, creating an environment that is 
comparable to standard psychophysical testing labs outside of a 
scanner. Recent work has focused on minimizing exacerbated EEG 
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artifacts present during high-fi eld MRI scanning [ 34 ]. Although 
individual laboratories have achieved most of these advancements, 
MRI scanners originally designed for clinical use by manufacturers 
are now being designed with consideration of many of these 
research-related issues. 

 Another promising technique is the delivery of transcranial 
magnetic stimulation (TMS) during MRI scanning [ 35 ,  36 ]. TMS 
induces depolarization of neurons under the coil and, when com-
bined with functional MRI, can be used to reveal patterns of remote 
connectivity, such as between the frontal eye fi eld (FEF) and early 
visual cortex [ 36 ], the  lateral   prefrontal cortex and face- and house-
selective regions in temporal cortex [ 35 ], and within and between 
large-scale brain networks [ 37 ]. There are many challenges in com-
bining TMS and MRI such as the need for a large MRI head coil to 
accommodate the presence of the TMS coil, the diffi culty of precise 
localization [ 38 ], and the increased subject discomfort. However, 
perhaps the largest challenge of delivering TMS in a manner that 
does not lead to artifacts in the MRI signal has been largely over-
come by new commercially available TMS coils 

   Two types of  temporal resolution   need to be considered for cogni-
tive neuroscience experiments. First, what is the briefest neural 
event that can be detected as an fMRI signal? Second, how close 
together can two neural events occur and be resolved as separable 
fMRI signals? 

 The time scale on which neural changes occur is quite rapid. For 
example, neural activity in the lateral intraparietal area of monkeys 
increases within 100 ms of the visual presentation of a saccade target 
[ 39 ]. In contrast, the fMRI signal gradually increases to its peak 
magnitude within 4–6 s after an experimentally induced brief (<1 s) 
change in neural activity, and then decays back to baseline after sev-
eral more seconds [ 40 – 42 ]. This slow time course of fMRI signal 
change in response to such a brief increase in neural activity is infor-
mally referred to as the blood oxygen level-dependent (BOLD) 
fMRI hemodynamic response or simply, the hemodynamic response 
(Fig.  1 ). Thus, neural dynamics and neurally evoked hemodynamics, 
as measured with fMRI, are on quite different time scales.

   The sluggishness of the hemodynamic response limits the tem-
poral resolution of the fMRI signal to hundreds of milliseconds to 
seconds as opposed to the millisecond temporal resolution of elec-
trophysiological recordings of neural activity, such as from single- 
unit recording in monkeys and EEG or MEG in humans. However, 
it has been clearly demonstrated that brief changes in neural activ-
ity can be detected with reasonable statistical power using 
fMRI. For example, appreciable fMRI  signal   can be observed in 
sensorimotor cortex in association with single fi nger movements 
[ 43 ] and in visual cortex during very briefl y presented (34 ms) 
visual stimuli [ 44 ]. In contrast, the temporal resolution of fMRI 

3.1  Temporal 
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limits the detection of sequential changes in neural activity that 
occur rapidly with respect to the hemodynamic response. That is, 
the ability to resolve the changes in the fMRI signal associated with 
two neural events often requires the separation of those events by 
a relatively long period of time compared with the width of the 
hemodynamic response. This is because two neural events closely 
spaced in time will produce a hemodynamic response that refl ects 
the accumulation from both neural events, making it diffi cult to 
estimate the contribution of each individual neural event. In gen-
eral, evoked fMRI responses to discrete neural events separated by 
at least 4 s appear to be within the range of resolution [ 45 ]. 
However, provided that the stimuli are presented randomly, sig-
nifi cant differential functional responses between two events (e.g., 
fl ashing visual stimuli) spaced as closely as 500 ms apart can be 
detected [ 46 – 48 ]. The effect of fi xed and randomized intertrial 
intervals on the BOLD signal is illustrated in Fig.  2 .

   In some tasks, the order of individual trial events cannot be 
randomized. For example, in certain types of working memory 
tasks, the presentation of the information to be remembered dur-
ing the delay period, and the period when the subject must recall 
the information, are individual trial events whose order cannot be 
randomized. In these types of tasks, short time scales (<4 s) cannot 
be temporally resolved. These temporal resolution issues in fMRI 
have been extensively considered regarding their impact on experi-
mental design [ 49 ,  50 ].  
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  Fig. 1    A typical  hemodynamic response   (i.e., fMRI signal change in response to a 
brief increase of neural activity) from the primary sensorimotor cortex. The fMRI 
signal peaked approximately 5 s after the onset of the motor response (at time 
zero)       
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   As approaches are sought that maximize both BOLD signal 
strength and in-plane resolution, fMRI studies in humans have 
recently been extended to higher magnetic fi eld strengths (7.0 T 
and 9.4 T) [ 51 – 53 ]. Such studies have the power to potentially 
evaluate much fi ner cortical details, such as the representation of 
individual fi ngertips  within   primary somatosensory cortex [ 51 ]. 
However, as the fi eld strength increases, factors that are less conse-
quential at 3.0 T—including magnetic fi eld inhomogeneities [ 52 ] 
and the contribution of macrovascular structures to the typical 
gradient-echo signal [ 53 ]—become signifi cantly more  problematic, 
requiring further innovations in pulse sequence development. 
Single-echo gradient-echo sequences using echo times (TE) that 
exceed the repetition time (TR), for example, take advantage of 
reduced distortion relative to single-shot gradient-echo sequences, 
while also avoiding the prolonged acquisition times of typical 
single- echo sequences. During functional MRI of a simple fi nger 
tapping task at 9.4 T using such a sequence, researchers were able 
to obtain 0.4 × 0.4 mm in-plane resolution within presumptive pri-
mary motor cortex [ 53 ]. Similarly, spin-echo sequences, which 
have a reduced signal-to-noise ratio relative to gradient-echo 
sequences but greater spatial specifi city, become feasible for use at 
9.4 T. Within a fi nger-tapping paradigm, a study taking this 
approach reduced the infl uence of macrovascular contributions to 

3.2  Spatial 
Resolution

  Fig. 2    Effect of  fi xed vs. randomized intertrial intervals   on the blood oxygen level-
dependent (BOLD) fMRI signal [ 46 ]       
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the BOLD signal relative to a gradient-echo sequence, while 
obtaining 1 mm isotropic resolution. As such techniques are vali-
dated and extended, they may someday allow for imaging of thou-
sands of neurons per voxel, as opposed to the hundreds of 
thousands of neurons per voxel currently more typical for a human 
cognitive neuroscience fMRI experiment. 

 Virtually all fMRI studies model the large BOLD signal 
increase, which is due to a local low-deoxyhemoglobin state, in 
order to detect changes correlating with a behavioral task. However, 
optical imaging studies have demonstrated that preceding this 
large positive response there is an initial negative response refl ect-
ing a localized increase in oxygen consumption causing a high- 
deoxyhemoglobin state [ 54 ]. This early hemodynamic response is 
called the “initial dip” and is thought to be more tightly coupled 
to the actual site of neural activity evoking the BOLD signal as 
compared to the later positive portion of the BOLD response. For 
example, Kim et al., scanning cats in a high fi eld scanner, demon-
strated that the early negative BOLD response (e.g., initial dip) 
produced activation maps that were consistent with orientation 
columns within visual cortex. This fi nding is quite remarkable 
given that the average spacing between two adjacent orientation 
columns in cortex is approximately 1 mm. In contrast, the activa-
tion maps produced by the delayed positive BOLD response 
appeared more diffuse and cortical  columnar   organization could 
not be identifi ed [ 55 ]. Thus, empirical evidence suggests that 
deriving activation maps by correlating behavioral responses with 
the initial dip may markedly improve spatial resolution. 

 Another unique method for improving spatial resolution has 
been called functional magnetic resonance-adaptation (fMR-A), 
which could provide a means for identifying and assessing the func-
tional attributes of sharply defi ned neuronal populations within a 
given region of the brain [ 56 ]. Even if the spatial resolution of fMRI 
evolves to the point of being able to resolve a population of a few 
hundred neurons within a voxel, it is still likely that this small popu-
lation will contain neurons with very different functional properties 
that will be averaged together. The adaptation method is based on 
several basic principles. First, repeated presentation of the same type 
of stimuli (i.e., a picture of the one object) causes neurons to adapt 
to those stimuli (i.e., neuronal fi ring is reduced). Second, if these 
neurons are then exposed to a different type of stimulus (i.e., a pic-
ture of another object) or a change in some property of the stimulus 
(i.e., the same object in a different orientation), then recovery from 
adaptation can be assessed (i.e., whether or not the BOLD signal 
returns to its original state). If the signal remains adapted it implies 
that the neurons are invariant to the attribute that was changed or if 
the signal recovers from the adapted state it would imply that the 
neurons are sensitive to that attribute. For example, Grill-Spector 
et al. demonstrated that an area of lateral occipital cortex thought to 
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be important for object recognition was less sensitive to changes in 
object size and position as compared to changes in illumination and 
viewpoint [ 57 ]. Thus, with this method it is possible to investigate 
the functional properties of neuronal populations with a level of spa-
tial resolution that is beyond that obtained from conventional fMRI 
data analysis methods. 

 Considering all the neuroscientifi c methods available today for 
studying human brain–behavior relationships, fMRI provides an 
excellent balance of temporal and spatial resolution. Improvements 
on both fronts will clearly add to type of basic and clinical neuro-
scientifi c questions that can be addressed with this method.   

4    Issues in Functional MRI Experimental Design 

 Numerous options  exist   for designing experiments using fMRI. The 
prototypical fMRI experimental design consists of two behavioral 
tasks presented in blocks of trials alternating over the course of a 
scanning session, and the fMRI signal between the two tasks is 
compared. This is known as a blocked design. For example, a given 
block might present a series of faces to be viewed passively, which 
evokes a particular cognitive process, such as face perception. The 
“experimental” block alternates with a “control” block that is 
designed to evoke all of the cognitive processes present in the 
experimental block except for the cognitive process of interest. In 
this experiment the control block may comprise a series of objects. 
In this way, the stimuli used in experimental and control tasks have 
similar visual attributes, but differ in the attribute of interest (i.e., 
faces). The inferential framework of “cognitive subtraction” [ 58 ] 
attributes differences in neural activity between the two tasks to 
the specifi c cognitive process (i.e., face perception). Cognitive sub-
traction was originally conceived by Donders in the late 1800s for 
studying the chronometric substrates of cognitive processes [ 59 ] 
and was a major innovation in imaging [ 58 ,  60 ]. 

 The assumptions required for cognitive subtraction may not 
always hold and could produce erroneous interpretation of func-
tional neuroimaging data [ 45 ]. Cognitive subtraction relies on two 
assumptions: “pure insertion” and linearity. Pure insertion implies 
that a cognitive process can be added to a preexisting set of cogni-
tive processes without affecting them. This assumption is diffi cult 
to prove because one needs an independent measure of the preex-
isting processes in the absence and presence of the new process 
[ 59 ]. If pure insertion fails as an assumption, a difference in the 
neuroimaging signal between the two tasks might be observed, not 
because a specifi c cognitive process was engaged in one task and 
not the other, but because the added cognitive process and the 
preexisting cognitive processes interact. 
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 An example of this point is illustrated in working memory 
studies using delayed-response tasks [ 61 ]. These tasks [ 62 ] typi-
cally present information that the subject must remember (engag-
ing an  encoding  process), followed by a delay period during which 
the subject must hold the information in memory over a short 
period of time (engaging a  memory  process), followed by a probe 
that requires the subject to make a decision based on the stored 
 information   (engaging a  retrieval  process). The brain regions 
engaged by evoking the  memory  process theoretically are revealed 
by subtracting the BOLD signal measured by fMRI during a block 
of trials that the subject performs that do not have a delay period 
(only engaging the  encoding  and  retrieval  processes) from a block 
of trials with a delay period (engaging the  encoding ,  memory , and 
 retrieval  processes). In this example, if the addition or “insertion” 
of a delay period between the  encoding  and  retrieval  processes 
affects these other behavioral processes in the task, the result is 
failure to meet the assumptions of cognitive subtraction. That is, 
these “nonmemory” processes may differ in delay trials and no- 
delay trials, resulting in a failure to cancel each other out in the two 
types of trials that are being compared. 

 Empirical evidence of such failure exists [ 63 ]. For example, 
Figure  3  demonstrates BOLD signal derived from the PFC from a 
subject performing a delayed-response task similar to the tasks 

  Fig. 3    Data derived from the performance of a normal subject on a spatial delayed-response  tas  k [ 64 ]. This 
task comprised both delay trials ( circles ) as well as trials without a delay period (no-delay trials;  diamonds ). ( a ) 
Trial averaged fMRI signal from prefrontal cortex that displayed delay-correlated activity. The gray bar along 
the  x -axis denotes the 12 s delay period during delay trials. The delay trials display a level of fMRI signal 
greater than baseline throughout the period of time corresponding to the retention delay (taking into account 
the delay and dispersion of the fMRI signal). The peaks seen in the signal correspond to the encoding and 
retrieval periods. ( b ) Trial averaged fMRI signal from a region in prefrontal cortex that did not  display   the char-
acteristics of delay-correlated activity. This region displays a signifi cant functional change associated with the 
no-delay trials, and a signifi cant functional change associated with the encoding and retrieval periods of the 
delay trials, but not one associated with the retention delay of delay trials       
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described above. The left side of the fi gure illustrates BOLD signal 
consistent with delay period activity whereas the right side of the 
fi gure illustrates BOLD signal from another region of PFC that did 
not display sustained activity during the delay yet showed greater 
activity in the delay trials as compared to the trials without a delay. 
In any blocked functional neuroimaging study that compares delay 
vs. no-delay trials with subtraction, such a region would be detected 
and likely assumed to be a “memory” region. Thus, this result 
provides empirical grounds for adopting a healthy doubt regarding 
the inferences drawn from imaging studies that rely exclusively on 
cognitive subtraction.

   In functional neuroimaging, the transform between the neural 
signal and the hemodynamic response (measured by fMRI) must 
also be linear for the cognitive subtractive method to yield valid 
results. In other words, it is assumed that the BOLD signal being 
measured is approximately proportional to the local neural activity 
that evokes it. Surprisingly, although thousands of empirical stud-
ies using fMRI to study brain–behavior relationships have been 
published, only a handful exist that have explored the neurophysi-
ological basis of the BOLD signal (for reviews  see  refs. [ 64 ,  65 ]). 
In several studies it has been demonstrated that linearity does not 
strictly hold for the BOLD fMRI system but a linear transform 
model is reasonably consistent with the data. For example, Boynton 
et al. tested whether the BOLD signal in response to long duration 
stimuli can be predicted by summing the responses to shorter 
duration stimuli [ 42 ]. Using pulses of fl ickering checkerboard pat-
terns and measuring within human primary visual cortex, these 
investigators found that the BOLD signal response to various 
durations of stimulus presentation (6, 12, or 24 s) could be pre-
dicted from the responses they obtained from shorter stimulus pre-
sentations. For example, the BOLD signal response to a 6 s pulse 
could be predicted from the summation of  the   BOLD signal 
response to the 3 s pulse with a copy of the same response delayed 
by 3 s. However, temporal summation did not always hold, and 
there are clearly nonlinear effects in the transform of neural activity 
to a hemodynamic response that must be considered [ 66 – 69 ]. If 
these nonlinearities lead to saturation of the BOLD effect at a cer-
tain stimulus intensity, erroneous interpretation of particular results 
of fMRI experiments may occur. 

 Another class of experimental designs, called event-related 
fMRI, attempts to detect changes associated with individual trials, 
as opposed to the larger unit of time comprising a block of trials 
[ 70 ,  71 ]. Each individual trial may be composed of one behavioral 
“event,” such as the presentation of a single stimulus (e.g., a face 
or object to be perceived) or several behavioral events such as in 
the delayed-response task described above (e.g., an item to be 
remembered, a delay period, and a motor response in a delayed- 
response task). For example, with an event-related design, activity 
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within the PFC has consistently been shown to correlate with the 
delay period, supporting the role of the PFC in temporarily main-
taining information [ 63 ]. This fi nding is consistent with single- 
neuron recording studies in the PFC of monkeys [ 7 ]. An 
event-related design offers numerous advantages. For example, it 
allows for stimulus or trial randomization avoiding the behavioral 
confounds of blocked trials. It also permits the separate analysis of 
functional responses that are identifi ed only in retrospect (i.e., tri-
als on which the subject made a correct or incorrect response). Of 
course, an experiment does not have to be limited to either a block 
or event-related designs—a mixed-type (both event-related and 
blocked) design where particular trial types are randomized within 
a block is perfectly feasible. In this type of design, both item-related 
processes (e.g., transient responses to stimuli) as well as state- 
related processes (processes sustained throughout a block of trials 
or a task) are perfectly feasible [ 72 ,  73 ]. 

 Overall, much fl exibility exists in the type of  experimental   
design that can be utilized in fMRI experiments and continued 
innovation in this area will greatly expand the types of neuroscien-
tifi c questions that can be addressed.  

5    Issues in Interpretation of fMRI Data 

   Many  statistical techniques   are used for analyzing fMRI data, but 
no single method has emerged as the ideal or “gold standard.” The 
analysis of any fMRI experiment designed to contradict the null 
hypothesis (i.e., there is no difference between experimental con-
ditions) requires inferential statistics. If the difference between two 
experimental conditions is too large to be reasonably due to chance, 
then the null hypothesis is rejected in favor of the alternative 
hypothesis, which typically is the experimenter’s hypothesis (e.g., 
the fusiform gyrus is activated to a greater extent by viewing faces 
than objects). Unfortunately, since errors can occur in any statisti-
cal test, experimenters will never know when an error is committed 
and can only try to minimize them [ 74 ]. Knowledge of several 
basic statistical issues provides a solid foundation for the correct 
interpretation of the data derived from fMRI studies. 

 Two types of statistical errors can occur. A type I error is commit-
ted when the null hypothesis is falsely rejected, that is, a difference 
between experimental conditions is found but a difference does not 
truly exist. This type of error is also called a false-positive error. In an 
fMRI study, a false-positive error would be fi nding a brain region 
activated during a cognitive task, when actually it is not. A type II 
error is committed when the null hypothesis is accepted when it is 
false, that is, no difference between experimental conditions exists 
when a difference does exist. This type of error is also called a false-
negative error. A false-negative error in an fMRI study would be 
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failing to fi nd a brain region activated during the performance of a 
cognitive task when actually it is. The concept of type II error is 
closely related to the idea of statistical power. If the false-negative rate 
for a given study design is 20 %, for instance, then the “power” of that 
design to detect an activation is 100 − 20 % or 80 %. 

 In cognitive neuroscience studies, much emphasis has been 
placed on avoiding type I errors. The negative effects of incorrectly 
identifying a brain region as task-active include the expenditures of 
time, money, and effort spent in replicating and/or expanding 
upon a false positive result. Type II error, on the other hand, is seen 
as less damning; failure to detect brain  activity   in a research study 
has fewer implications for future research, provided that one is care-
ful to interpret so-called null results correctly. For example, cogni-
tive neuroscience studies (due to factors such as the expense and the 
diffi culty of fi nding research participants, for example) tend to 
employ a small number of subjects—15 would typical—and there-
fore frequently lack power to detect signifi cant brain activations. 
One must consequently be careful to avoid interpreting a lack of 
activation in one part of the brain as true inactivity during the task. 

 In a clinical research study, on the contrary, the emphasis may 
be different, especially when fMRI studies are being used diagnos-
tically in individual patients. A type II error—failing to detect 
active brain regions related to movement or language in the vicin-
ity of a brain tumor, for example—may lead to a larger surgical 
resection that leaves the patient with avoidable residual defi cits. On 
the contrary, a type I error—for example, identifying motor  activity 
adjacent to a tumor when in fact none exists—may erroneously 
lead to a more cautious surgical resection, or to use of a different 
treatment modality. Which error is deemed more tolerable may 
depend on the clinical situation. 

 In fMRI experiments, like all experiments, a tolerable probabil-
ity for type I error, typically less than 5 %, is chosen for adequate 
control of specifi city, that is, control of false-positive rates. Two fea-
tures of fMRI data can cause unacceptable false-positive rates, even 
with traditional parametric statistical tests. First, there is the problem 
of multiple comparisons. For the typical resolution of images 
acquired during fMRI scans, the full extent of the human brain 
could comprise as many as 15,000 voxels. Thus, with any given sta-
tistical comparison of two experimental conditions, there are actu-
ally 15,000 statistical comparisons being performed. With such a 
large number of statistical tests, the probability of fi nding a false-
positive activation, that is, committing a type I error, somewhere in 
the brain increases. Several methods exist to deal with this problem. 
One method, a Bonferroni correction, assumes that each statistical 
test is independent and calculates the probability of type I error by 
dividing the chosen probability ( p  = 0.05) by the number of statisti-
cal tests performed. Another method is based on Gaussian fi eld the-
ory [ 75 ], and calculates the probability of type I error when imaging 
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data are spatially smoothed. Many other methods for determining 
thresholds of statistical maps are proposed and utilized [ 76 ,  77 ] but 
unfortunately,    no single method has been universally accepted. 
Nevertheless, all fMRI studies must apply some type of correction 
for multiple comparisons to control the false- positive rate. 

 The second feature that might increase the false-positive rate is 
the “noise” in fMRI data. Data from BOLD fMRI are temporally 
autocorrelated, with more noise at some frequencies than at oth-
ers. The shape of this noise distribution is characterized by a 1/
frequency function with increasing noise at lower frequencies [ 78 ]. 
Traditional parametric and nonparametric statistical tests assume 
that the noise is not temporally autocorrelated, that is, each obser-
vation is independent. Therefore, any statistical test used in fMRI 
studies must account for the noise structure of fMRI data. If not, 
the false-positive rates will infl ate [ 78 ,  79 ]. 

 Type II error is rarely considered in functional neuroimaging 
studies. When a brain map from an fMRI experiment is presented, 
several areas of activation are typically attributed to some experimen-
tal manipulation. The focus of most fMRI studies is on brain activa-
tion whereas it is often implicitly assumed that all of the other areas 
(typically most of the brain) were not activated during the experi-
ment. Power as a statistical concept refers to the probability of cor-
rectly rejecting the null hypothesis [ 74 ]. As the power of an fMRI 
study to detect changes in brain activity increases, the  false- negative 
rate decreases. Unfortunately, power calculations for particular fMRI 
experiments are rarely performed, although methods exist to address 
this issue [ 80 – 82 ]. Reports that specifi c brain areas were not active 
during an experimental manipulation should provide an estimate of 
the power required for detection of a change in the region. All 
experiments should be designed to maximize power. Relatively sim-
ple strategies can increase power in an fMRI experiment in certain 
circumstances, such as increasing the amount of imaging data col-
lected or increasing the number of subjects studied. It is also impor-
tant to note that task designs can affect sensitivity [ 83 ]. For example, 
since BOLD fMRI data are temporally autocorrelated, experiments 
with fundamental frequencies in the lower range (e.g., a boxcar 
design with 60 s epochs) will have reduced sensitivity, due to the 
presence of greater noise at these lower frequencies. Finally, in a 
study that simultaneously measured neural signal via intracortical 
recording and BOLD signal in a monkey, it was observed that the 
SNR of the neural signal was on average at least one order of mag-
nitude higher than that of the BOLD signal. The investigators of 
this study concluded that “the statistical and thresholding methods 
applied to the hemodynamic responses probably underestimate a 
great deal of actual neural activity related to a stimulus or task” [ 84 ]. 
Thus,    the magnitude of type II error in BOLD fMRI may currently 
be underestimated and warrants further consideration in the inter-
pretation of almost any cognitive neuroscience experiment.  
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   When comparing changes in fMRI BOLD signal levels within  the   
brain of an individual subject across different cognitive tasks and 
making conclusions regarding changes in neural activity and the 
pattern of activity, numerous assumptions are made regarding the 
steps comprising neurovascular coupling (stimulus → neural activ-
ity → hemodynamic response → BOLD signal) and the regional 
variability of the metabolic and vascular parameters infl uencing the 
BOLD signal. It should be obvious that fMRI studies of cognition 
of individuals with local vascular compromise or diffuse vascular 
disease (e.g., patients with strokes or normal elderly) are poten-
tially problematic. For example, many fMRI studies have sought to 
identify age-related changes in the neural substrates of cognitive 
processes. Those studies that directly compare changes in fMRI 
BOLD signal intensity across age groups rely upon the assumption 
of age-equivalent coupling of neural activity to BOLD signal. 
However, there is empirical evidence that suggests that this general 
assumption may not hold true. Extensive research on the aging 
neurovascular system has revealed that it undergoes signifi cant 
changes in multiple domains in a continuum throughout the 
human lifespan, probably as early as the fourth decade (for review 
 see  ref. [ 85 ]). These changes affect the vascular ultrastructure [ 86 ], 
the resting cerebral blood fl ow [ 87 ,  88 ], the vascular responsive-
ness of the vessels [ 89 ], and the cerebral metabolic rate of oxygen 
consumption [ 90 ,  91 ]. Aging is also frequently associated with 
comorbidities such as diabetes, hypertension, and hyperlipidemia, 
all of which may affect the fMRI BOLD signal by affecting cerebral 
blood fl ow and neurovascular coupling [ 92 ]. Any one of these age- 
related differences in the vascular system could conceivably pro-
duce age-related differences in BOLD fMRI signal responsiveness, 
greatly affecting the interpretation of results from such studies. 

 Our  laboratory   compared the hemodynamic response function 
(HRF) characteristics in the sensorimotor cortex of young and 
older subjects in response to a simple motor reaction-time task 
[ 70 ]. The provisional assumption was made that there was identi-
cal neural activity between the two populations based on physio-
logical fi ndings of equivalent movement-related electrical potentials 
in subjects under similar conditions [ 93 ]. Thus, we presumed that 
any changes that we observed in BOLD fMRI signal between 
young and older individuals in motor cortex would be due to vas-
cular, and not neural activity changes in normal aging. Several 
important similarities and differences were observed between age 
groups. Although there was no signifi cant difference in the shape 
of the hemodynamic response curve or peak amplitude of the sig-
nal, we found a signifi cantly decreased SNR in the fMRI BOLD 
signal in older individuals as compared to young individuals. This 
was attributed to a greater level of noise in the older individuals. 
We also observed a decrease in the spatial extent of the BOLD 
signal in older individuals compared to younger individuals in 

5.2  Altered 
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sensorimotor cortex (i.e., the median number of suprathreshold 
voxels). Similar results have been replicated by other laboratories 
( e.g ., [ 94 ,  95 ]). These fi ndings suggest that there is some property 
of the coupling between neural activity and fMRI BOLD signal 
that changes with age. 

 The notion that vascular differences among individuals may 
affect BOLD signal is especially a concern when considering studies 
of patient populations with known vascular changes such as stroke. 
For example, in a fMRI study of patients with an isolated subcortical 
lacunar stroke compared to a group of age-matched controls, a 
decrease in the rate of rise and the maximal fMRI BOLD HRF to a 
fi nger- or hand-tapping task in both the sensorimotor cortex of the 
hemisphere affected by the stroke and the unaffected hemisphere 
was found [ 96 ]. These investigators proposed that given the wide-
spread changes of these fMRI BOLD signal differences, the change 
was unlikely a direct consequence of the subcortical lacunar stroke, 
but rather a manifestation of preexisting diffuse vascular pathology. 

 In summary,  comparing   BOLD signal in two different groups 
of individuals that may differ in their vascular system should be 
done with caution [ 97 ]. For example, in one scenario, a compari-
son of activation of young and elderly individuals during a cogni-
tive task may show less activation by elderly (as compared to young 
subjects) in some brain regions, but greater activation in other 
regions. In this scenario, it is unlikely that regional variations in the 
hemodynamic coupling of neural activity to fMRI signal would 
account for such age-related differences in patterns of activation. 
In another scenario, a comparison of young and elderly subjects 
may show less activation by elderly (as compared to young sub-
jects) in some brain regions, but no evidence of greater activation 
in any other region. In this case, it is possible that the observed 
age-related differences are not due to differences in intensity of 
neural activity, but rather to other nonneuronal contributions to 
the imaging signal, i.e., neurovascular coupling. 

 In summary,  fMRI BOLD contrast methods   yield signal 
changes that result from a complex mix of vascular effects and pro-
vide only relative, rather than absolute, measures. One approach to 
accounting for the infl uence of purely vascular effects is to directly 
measure regional and individual variability in vascular reactivity via 
a breathholding task, which increases carbon dioxide concentration 
in the blood and leads to vascular dilatation [ 98 ]. The task- related 
BOLD signal in each subject can then be corrected for particular 
region- and subject-specifi c vascular effects. One alternative func-
tional neuroimaging approach, based on more direct measurements 
of cerebral blood fl ow to active brain areas, is known as arterial spin 
labeling (ASL). In the various ASL techniques, the MRI scanner 
selectively magnetizes blood fl ow with a particular range of loca-
tions and/or velocities, then waits for the appearance of the mag-
netic “tag” in downstream vessels. It thus becomes possible to 
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obtain absolute measures of cerebral perfusion [ 99 ], thereby open-
ing up the possibility of more quantitatively distinguishing between 
the differential infl uence of a disease on blood fl ow, and its effect on 
brain activity [ 100 ]. Additionally, relative to BOLD contrast these 
absolute measurements appear to be more stable over long experi-
ments because of better signal-to-noise at very low frequencies 
[ 101 ], to show less between-subject and between-session variability 
[ 102 ], and to produce decreased susceptibility artifact in areas such 
as medial temporal lobe [ 103 ]. A signifi cant limitation is temporal 
resolution: one must both wait for the generation of suffi cient mag-
netic label, and also acquire two scans, a reference scan and a post-
labeling scan, to produce a single data point. However, a recently a 
new  MRI acquisition method   has been developed that allows for 
more slices for measuring perfusion in a larger region of the brain 
than  currently   possible with previous methods [ 104 ]. Another 
potential disadvantage somewhat related to the temporal issues is 
the lower SNR of ASL relative to BOLD, but this decline may be 
compensated in group studies by the observation that ASL meth-
ods appear to be less variable across subjects [ 99 ].   

6    Types of Hypotheses Tested Using fMRI 

 Functional neuroimaging experiments test hypotheses regarding 
the anatomical specifi city for cognitive processes (functional spe-
cialization) or direct or indirect interactions among brain regions 
(functional integration). The experimental design and statistical 
analyses chosen will determine the types of questions that can be 
addressed. Ultimately, the most powerful approach for the testing 
of theories on brain–behavior relationships is the analysis of con-
verging data from multiple methods. 

   The major focus of fMRI studies of cognition is testing theories on 
 functional specialization  . The concept of functional specialization 
is based on the premise that functional modules exist within the 
brain, that is, areas of the cerebral cortex are specialized for a spe-
cifi c cognitive process. For example, facial recognition is a critical 
primary function likely served by a functional module. 
Prosopagnosia is the selective inability to recognize faces. Patients 
with prosopagnosia, however, can recognize familiar faces, such as 
those of relatives, by other means, such as the voice, dress, or 
shape. Other types of visual recognition, such as identifying com-
mon objects, are normal. Prosopagnosia arises from lesions of the 
inferomedial temporo-occipital lobe, which are usually due to a 
stroke within the posterior cerebral artery circulation. No lesion 
 studies   have precisely localized the area crucial for facial percep-
tion. However, they provide strong evidence that a brain area is 
specialized for processing faces. Functional imaging studies have 

6.1  Functional 
Specialization
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provided anatomical specifi city for such a module. For example, 
Kanwisher et al. [ 105 ] used fMRI to test a group of healthy indi-
viduals and found that the fusiform gyrus was signifi cantly more 
active when the subjects viewed faces than when they viewed 
assorted common objects. The specifi city of a “fusiform face area” 
was further demonstrated by the fi nding that this area also 
responded signifi cantly more strongly to passive viewing of faces 
than to scrambled two-tone faces, front-view photographs of 
houses, and photographs of human hands. These elegant experi-
ments allowed the investigators to reject alternative functions of 
the face area, such as visual attention, subordinate-level classifi ca-
tion, or general processing of any animate or human forms, dem-
onstrating that this region selectively perceives faces. 

 Of course, the existence of brain areas specialized for certain 
functions does not exclude the strong possibility that those areas 
show either fi ner, voxel-level structure or are part of larger networks. 
Recent neuroimaging work has focused on pattern classifi cation 
methods—that is, on techniques to explore whether a distributed 
spatial pattern of brain activity, both within a single region and across 
larger brain areas, corresponds to object (or more abstract) represen-
tations. This area of research draws on results from physics, computer 
science, and statistics, among other disciplines, to search for more 
broadly distributed structure in neuroimaging data. As such, the 
techniques themselves differ. For example, to distinguish between 
voxel activity patterns across experimental conditions, various reports 
have used correlations between the set of activations in visual 
responses to faces and other objects [ 106 ]; neural network classifi ers 
to identify particular patterns correlated with particular memories 
[ 107 ]; and variants of a matrix algebra transformation known as sin-
gular value decomposition to look for distributed spatial correlates of 
memory storage and search [ 108 ]. By establishing sophisticated 
models of the relationships between brain activity and visual stimuli 
in visual cortex, representations of natural images may even be suc-
cessfully decoded [ 109 ]. A large number of other techniques—too 
large to be reviewed here—are also continually being developed 
[ 110 ,  111 ]. As such research demonstrates that task-relevant brain 
activity can be detected even in the absence of classic univariate activ-
ity changes. However, it will remain important to control for poten-
tial confounds in brain activity data, with validation via comparison 
with behavioral responses, in order to ensure that these patterns are 
not epiphenomenal or a result of  confounds   such as reaction time 
[ 112 ]. At a higher tier of analysis, information decoding techniques 
are being used to examine mechanisms by which higher order cogni-
tion can modulate information representations. A step beyond simply 
detecting the existence of a particular representational code, one can 
now ask, for example, to what extent goal- direction (attention) might 
change the tuning of neural network codes to better represent infor-
mation related to a goal [ 113 ,  114 ].  
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   Functional neuroimaging  experiments   can also test hypotheses 
about interactions between brain regions by focusing on covari-
ances of activation levels between regions [ 115 ,  116 ]. These 
covariances refl ect “functional connectivity,” a concept that was 
originally developed in reference to temporal interactions among 
individual neurons [ 117 ]. 

 In addition to providing information about the specialization 
of various brain regions, functional neuroimaging can also address 
the interactions between brain regions that underlie cognitive 
 processing. Understanding the various techniques that permit 
these types of analysis comprises a very active area of current 
research [ 118 ]. However, most, if not all, of the techniques used 
to test for regional interactions are ultimately based on the covari-
ance of activation levels in different brain regions across time—in 
other words, on the way in which activity levels in different areas of 
the brain rise or fall in relation to each other. Such statistical tech-
niques are commonly known as “multivariate,” both because they 
rely on interactions between two or more brain areas, and to dis-
tinguish them from the “univariate” methods applied in most tests 
of functional specialization. 

 The universe of multivariate  techniques   is further subdivided 
into two types, determined by whether the method in question is 
designed to assess connectivity in a model-free (“functional con-
nectivity”) or model-based (“effective connectivity”) fashion. The 
former refers simply to methods that measure the temporal covari-
ance in activity between brain areas without a priori notions about 
which brain areas are relevant or how they should interact. Examples 
of model-free techniques would include correlation and its fre-
quency-based analogue, coherence, which can be applied irrespec-
tive of hypotheses about the neural events that produced them. On 
the contrary, model-based, or effective connectivity, approaches 
begin with hypotheses about the interactions between different 
brain regions, and attempt to support/refute them by evaluating 
the presence/absence of specifi c activity covariance patterns. 
Examples of these techniques would include structural equation 
modeling and dynamic causal modeling, both of which start by pos-
tulating the existence of infl uences (potentially complex, potentially 
time-varying) between specifi c brain regions. Both types of statisti-
cal techniques have value, of course; their use is determined by the 
problem at hand. Model-free approaches are more general, and 
more easily deployed in exploratory analyses. However, they are not 
as powerful as model-based methods that address specifi c hypoth-
eses about how regions interact—but which fail if the model is mis-
specifi ed. Model-free methods, for example, may be more useful 
when attempting to determine which networks of brain areas might 
be involved in a task, whereas model-based methods may be most 
appropriate when the nodes of the network are known, and specifi c 
notions about how they interact need to be tested. 

6.2  Functional 
Integration
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 In our own laboratory, we have developed and used functional 
connectivity techniques to understand how brain interactions change 
under different task conditions, and over time [ 119 ,  120 ]. For 
example, we have shown that functional connectivity changes as 
subjects learn a complex fi nger tapping task [ 121 ]. In the early 
phases of learning, the data show that subjects not only activate wide 
areas of primary sensorimotor cortex, premotor cortex, and the sup-
plementary motor area, but also that the coherence between these 
areas is increased relative to later stages. Such changes were not 
observed when subjects performed an already learned motor skill; 
and more importantly, they were not found in the univariate 
responses, whose means were unchanged despite the changes in the 
subjects’ facility at the task. Similarly, in a working memory task for 
faces [ 122 ], we have found an interesting dissociation between their 
univariate and multivariate analyses in the networks that support so-
called delay period activity (see below). In our protocol, subjects 
encoded a cue face, maintained the image across a delay of several 
seconds, and then decided whether a subsequently presented probe 
face matched the initial one. Interestingly, we found that despite a 
general decrease in the univariate activity from the cue to the delay 
period, there was a robust increase in the correlation between activ-
ity in the right fusiform face area (a brain region known to be sensi-
tive to face stimuli) and a diffuse set of brain regions including the 
frontal and  parietal   cortices as well as the basal ganglia. 

 In such known networks, effective connectivity techniques can 
be employed to more specifi cally evaluate the infl uence of the 
nodes of the network on each other. McIntosh et al., for example, 
were able to exploit their own functional neuroimaging research 
on working memory networks to formulate a hypothesis about the 
interactions of the PFC, cingulate cortex, and other brain regions 
during task performance [ 116 ]. Using structural equation model-
ing, the authors found shifting prefrontal and limbic interactions in 
a working memory task for faces as the retention delay increased 
(Fig.  4 ). The different interactions between brain regions at short 
and long delays were interpreted as a functional change. For exam-
ple, strong corticolimbic interactions were found at short delays, 
but at longer delays, when the image of the face was more diffi cult 
to maintain, strong fronto-cingulate-occipital interactions were 
found. The investigators postulated that the former fi nding was 
due to maintaining an iconic facial representation, and the latter 
due to an expanded encoding strategy, resulting in more resilient 
memory. As in our own previous studies, information that was not 
seen in the univariate analysis was captured by an approach sensi-
tive to regional interactions. In addition to structural equation 
modeling, other approaches have been applied to fMRI datasets to 
capture information regarding the relative timing of activation 
across brain regions such as Granger causality, information analysis, 
and coherence ( see  [ 119 ,  120 ,  123 ]).
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   Mathematical tools based on graph  theory   have recently 
emerged as a method to quantify large-scale network properties of 
the brain as well as to identify the role of individual brain regions 
within these large-scale networks. These tools, developed for ana-
lyzing a wide variety of networks (e.g., social networks, the inter-
net, protein associations), allow one to make quantitative 
measurements of brain network structure. Typically, these meth-
ods are used to analyze the spontaneous coherent fl uctuations in 
BOLD signal measured by fMRI at rest, which consistently identi-
fi es stable intrinsic functional networks, that, in a short fMRI 
recording session, recapitulate a number of sub- networks   normally 
engaged by a variety of different tasks (see Fig.  5 ).

      Experiments using fMRI can also test theories of the underlying 
mechanisms  of   cognition. For example, an fMRI study [ 124 ] 
attempted to answer the question, “To what extent does perception 
depend on attention?” One hypothesis is that unattended stimuli in 
the environment receive very little processing [ 125 ], but another 
hypothesis is that the processing load in a relevant task determines 
the extent to which irrelevant stimuli are processed [ 126 ]. These 
alternative hypotheses were tested by asking normal individuals to 
perform linguistic tasks of low or high load while ignoring irrele-
vant visual motion in the periphery of a display. Visual motion was 
used as the distracting stimulus, because it activates a distinct region 
of the brain (cortical area MT or V5, another functional module in 
the visual system). Activation of area MT would indicate that irrel-
evant visual motion was processed. Although task and irrelevant 
stimuli were unrelated, fMRI of motion-related activity in MT 
showed a reduction in motion processing during the high-process-
ing load condition in the linguistic task. These fi ndings supported 
the hypothesis that perception of irrelevant environmental 

6.3  Cognitive Theory

  Fig. 4     Network analysis   of fMRI data using  structural equation modeling   during performance of a working 
memory task across three different delay periods [ 111 ]. Areas of correlated increases in activation ( solid lines ) 
and areas of correlated decreases in activation ( dotted lines ) are shown. Note the different pattern of interac-
tions among brain regions at short and long delays       
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information depends on the information processing load that is 
currently relevant and being attended to. Thus, by the fi nding that 
perception depends on attention, this fMRI experiment provides 
insight regarding underlying cognitive mechanism.   

7    Integration of Multiple Methods 

 The most powerful approach toward understanding brain–behavior 
relationships comes from analyzing converging data from multiple 
methods. There are several ways in which different methods can 
provide complementary data. For example, one method can pro-
vide superior spatial resolution (e.g., fMRI) whereas the other can 
provide superior temporal resolution (e.g., ERP). Also, the data 
from one method may allow for different conclusions to be drawn 
from it such as whether a particular brain region is necessary to 
implement a cognitive process (i.e., lesion methods) or whether it is 
only involved during its implementation (i.e., physiological meth-
ods). The following sections describe examples of such approaches. 

   The combined use of functional neuroimaging and lesions  studies   
can be illustrated with studies of the neural basis of semantic mem-
ory, the cognitive system that represents our knowledge of the 

7.1  Combined fMRI/
Lesion Studies

  Fig. 5    A brain graph derived from resting state fMRI data collected from healthy young subjects illustrating 
identifi ed modules, represented as different  shades of color . There are four distinct modules identifi ed in this 
graph       
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world. Early studies of patients with focal lesions supported the 
notion that the temporal lobes mediate the retrieval of semantic 
knowledge [ 127 ]. For example, patients with temporal lobe lesions 
may show a disproportionate impairment in the knowledge of liv-
ing things (e.g., animals) compared with nonliving things. Other 
patients have a disproportionate defi cit in the knowledge of nonliv-
ing things [ 128 ]. These observations led to the notion that the 
semantic memory system is subdivided into different sensorimotor 
modalities, that is, living things, compared with nonliving things, 
are represented by their visual and other sensory attributes (e.g., a 
banana is yellow), while nonliving things are represented by their 
function (e.g., a hammer is a tool but comes in many different visual 
forms). The small number of patients with these defi cits, and often 
large lesions, limits precise anatomical-behavioral relationships. 
However, functional neuroimaging studies in normal subjects can 
provide spatial resolution that the lesion method lacks [ 129 ]. 

 These original observations regarding the neural basis of seman-
tic memory confl icted with functional neuroimaging studies consis-
tently showing activation of the left IFG during the retrieval of 
semantic knowledge. For example, an early cognitive activation PET 
study revealed IFG activation during a verb generation task com-
pared with a simple word repetition task [ 60 ]. A subsequent fMRI 
study [ 130 ] offered a fundamentally different interpretation of the 
apparent confl ict between lesion and functional neuroimaging stud-
ies of semantic knowledge: left IFG activity is associated with the 
need to select some relevant feature of semantic knowledge from 
competing alternatives, not retrieval of semantic knowledge per se. 
This interpretation was supported by an fMRI experiment in normal 
individuals in which selection, but not retrieval, demands were var-
ied across three semantic tasks.    In a verb generation task, in a high 
selection condition, subjects generated verbs to nouns with many 
appropriate associated responses without any clearly dominant 
response (e.g., “wheel”), but in a low selection condition nouns 
with few associated responses or with a clear dominant response 
(e.g., “scissors”) were used. In this way, all tasks required semantic 
retrieval, and differed only in the amount of selection required. The 
fMRI signal within the left IFG increased as the selection demands 
increased (Fig.  6 ). When the degree of semantic processing varied 
independently of selection demands, there was no difference in left 
IFG activity, suggesting that selection, not retrieval, of semantic 
knowledge drives activity in the left IFG.

   To determine if left IFG activity was correlated with but not 
necessary for selecting information from semantic memory, the 
same task used during the fMRI study was used to examine the 
ability of patients with focal frontal lesions to generate verbs [ 131 ]. 
Supporting the earlier claim regarding left IFG function derived 
from an fMRI study [ 130 ], the overlap of the lesions in patients 
with defi cits on this task corresponded to the site of maximum 
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fMRI activation in healthy young subjects during the verb genera-
tion task (Fig.  6 ). In this example, the approach of using converg-
ing evidence from lesion and fMRI studies differs in a subtle but 
important way from the study described earlier that isolated the 
face processing module. Patients with left IFG lesions do not pres-
ent with an identifi able neurobehavioral syndrome refl ecting the 
nature of the processing in this region. Guided by the fMRI results 
from healthy young subjects, the investigators studied patients 
with left IFG lesions to test a hypothesis regarding the necessity of 
this region in a specifi c cognitive process. Coupled with the well- 
established fi nding that lesions of the left temporal lobe impair 
semantic knowledge, these studies further our understanding of 
the neural network mediating semantic memory.  

    Transcranial magnetic stimulation (TMS)   is a noninvasive method 
that can induce a reversible “virtual” lesion of the cerebral cortex in 
a normal human subject [ 132 ]. Using both fMRI and TMS provides 
another means of combining brain activation data with data derived 
from the lesion method. There are several advantages for using TMS 
as a lesion method. First, brain injury likely results in brain reorgani-
zation after the injury and studies of patients with lesions assume 
that the nonlesioned brain areas have not been affected, whereas 
TMS is performed on the normal brain. Another advantage for using 
TMS is that it has excellent spatial resolution and can target specifi c 
locations in the brain whereas lesions in patients with brain injury are 
markedly variable in location and size across individuals. Such an 
approach can be illustrated in an investigation of the role of the 

7.2  Combined fMRI/
Transcranial Magnetic 
Stimulation Studies

  Fig. 6    Regions of overlap of fMRI activity in healthy human subjects ( left side of 
fi gure ) during the performance of three semantic memory tasks, with the con-
vergence of activity within the left inferior frontal gyrus ( white region ) [ 125 ]. 
Regions of overlap of lesion location in patients with selection-related defi cits on 
a verb generation task ( right side of fi gure ) with maximal overlap within the left 
inferior frontal gyrus [ 126 ]       
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medial frontal cortex in task switching [ 133 ]. In this study, subjects 
fi rst performed an fMRI study that identifi ed the regions that were 
active when they stayed on the current task vs. when they switched 
to a new task. It was found that medial frontal cortex is activated 
when switching between tasks. In order to determine if the medial 
frontal cortex was necessary for the processes involved in task switch-
ing, the same paradigm was utilized during inactivation of the medial 
frontal cortex with TMS. Guided by the locations of activation 
observed in the fMRI study, and using an MRI guided frameless 
stereotaxic procedure, it was found that applying a TMS pulse over 
the medial frontal cortex disrupted performance only during trials 
during which the subject was required to switch between tasks. TMS 
over adjacent brain regions did not show this effect. Also, the excel-
lent temporal resolution of TMS allowed the investigators to stimu-
late during precise periods of the task, determining that the observed 
effect was during the time when the subjects were presented a cue 
indicating they must switch tasks prior to the actual performance of 
the new task. Thus, combining the results from both fMRI and 
TMS, it was concluded that medial PFC was essential for allowing 
individuals to intentionally switch to a new task. 

 It is possible to perform TMS studies not only as an adjunct 
to, but also concurrently with, fMRI. The advantage of this 
approach is clear: applying TMS at various times  during  (rather 
than after) fMRI scans permits it to be causally linked with func-
tional changes in the brain, even independently of behavior. In 
an early study employing this technique, Ruff, Driver and col-
leagues [ 36 ,  134 ] examined the infl uence on early visual cortex 
of a parietal region (the anterior intraparietal sulcus, or aIPS) 
implicated in the generation of both covert spatial attention and 
eye movements. They chose a range of TMS )   stimulus intensi-
ties, all of which were thought to be in an effectively stimulatory 
rather than inhibitory range, and applied them to the aIPS while 
subjects fi xated the center of a viewing screen. On some trials, a 
randomly moving visual stimulus was present; subjects had no 
other task than to maintain fi xation. Using this approach, the 
authors were able to demonstrate a parametric, so-called top-
down effect from aIPS following TMS—an increase in the BOLD 
response in early visual cortex with increasing TMS intensity—
that could be found only when visual stimuli were absent, and 
that did not vary with retinotopic eccentricity. In distinction, 
their previous work (extended here) had shown that TMS of the 
frontal eye fi eld (FEF) led to a decrease in BOLD response in the 
central visual fi eld but to an increase in BOLD response in the 
peripheral visual fi eld, irrespective of the presence or absence of 
a visual stimulus. The authors were  consequently able to con-
clude that the aIPS and the FEF have distinct top-down effects 
on visual cortex, a fi nding that would not have been possible 
without concurrent TMS.  
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   The strength of combining these two methods is  coupling   the 
superb spatial resolution of fMRI with the superb temporal resolu-
tion of ERP recording. An example of such a study was reported 
by Dehaene et al. who asked the question “Does the human capac-
ity for mathematical intuition depend on linguistic competence or 
on visuospatial representations?” [ 135 ]. In this study, subjects per-
formed two addition tasks—one in which they were instructed to 
select the correct sum from two numerically close numbers (exact 
condition) and one in which they were instructed to estimate the 
result and select the closest number (approximate condition). 
During fMRI scanning greater bilateral parietal lobe activation was 
observed in the approximation condition as compared to the exact 
condition. Since this activation was outside the perisylvian lan-
guage zone, it was taken as support that visuospatial processes were 
engaged during the cognitive operations involved in approximate 
calculation. Greater left lateralized frontal lobe activation was 
observed to be greater in the exact condition as compared to the 
approximate condition, which was taken as evidence for language 
dependent coding of exact addition facts. In order to consider an 
alternative explanation of the fMRI fi ndings, the investigators also 
performed an ERP study. The alternative explanation was that in 
both the exact and approximate tasks, subjects would compute the 
exact result using the same representation for numbers but later 
processing, when they had to make a decision as to the correct 
choice, was what led to the differences in brain activation. Since 
fMRI does not offer adequate temporal resolution to resolve these 
two behavioral events on such a brief time scale, ERP was the 
appropriate method to test this hypothesis. In the ERP study it was 
demonstrated that the evoked neural response during exact and 
approximate  trials   already differed signifi cantly during the fi rst 
400 ms of a trial before subjects had to make a decision.  

   Combining pharmacological challenges  during   the performance of 
cognitive tasks during fMRI scanning may yield signifi cantly differ-
ent information than either method alone. In isolation, fMRI cogni-
tive task paradigms provide little information with respect to the 
underlying pharmacologic systems involved in cognition. On the 
contrary, drug administration without a brain measure cannot deter-
mine underlying neural mechanisms of the effects of neuromodula-
tory systems on cognition. Combining the two approaches allows 
the potential of probing the pharmacologic bases of  behavior. One 
may measure the interactive effects of drug (compared to placebo, 
or a range of doses) with cognitive task-related modulation of brain 
activity. It is fair to infer that drug × task interactions refl ect modula-
tion of the underlying anatomical and chemical brain systems, and 
do not simply refl ect nonspecifi c vascular effects. For example, dopa-
minergic agonists have been shown to have task- specifi c effects 
[ 136 – 138 ], and different component processes of working memory 
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are differentially affected by a dopaminergic drug, with effects that 
may differ between individuals depending on their baseline state 
[ 139 ]. This latter study demonstrated that a dopamine agonist 
improved the fl exible updating (switching) of relevant information 
in working memory. However, the effect only occurred in individu-
als with low working memory capacity, but not in individuals with 
higher working memory capacity. This behavioral effect was accom-
panied by dissociable effects of the dopaminergic agonist on fronto-
striatal activity. The dopamine agonist modulated the striatum 
during switching but not during distraction from relevant informa-
tion in working memory, while the lateral frontal cortex was modu-
lated by the drug during distraction but not during switching.   

8    Application of a Cognitive Neuroscience Approach Toward Clinical Studies 

   Cognitive neuroscience studies using fMRI may provide an impor-
tant foundation for clinical studies. A biomarker is an indicator that 
refl ects a process, event, or condition in a biological system. 
Biomarkers may be useful for providing a measure of exposure, 
effect, or susceptibility. Reliable biomarkers of a neural system could 
reliably quantify how such a neural system is affected by almost any 
input. The input may be the effects of a drug, the effects of cogni-
tive therapy, or the effects of a disease process. For a measurement 
to be useful as a biomarker in clinical studies, it needs to have well-
defi ned signifi cance based on preclinical studies. That is, a change in 
an fMRI measurement would ideally refl ect a change in a well-
understood process, thus providing a clear a priori hypothesis and 
interpretation of the fi ndings. Once the processes are established, 
fMRI biomarkers may then be useful for addressing a number of 
clinical questions. For any neurophysiologic measurement to be a 
 surrogate  marker, a stable, reliable relationship between the fMRI 
measurement and a defi ned clinical outcome needs to be defi ned. 
Only in that scenario would an fMRI measurement provide a suit-
able surrogate for other clinical outcomes. Cognitive neuroscience 
studies provide the foundation for fMRI biomarkers, but the stud-
ies necessary for defi ning fMRI surrogate markers are rarely done. 

 Questions regarding the mechanisms of brain function dis-
rupted by pathologic states, processes affected by treatment inter-
ventions, or the nature of post-injury reorganization of function 
are examples of clinical questions that can be tested with fMRI. For 
example, attentional modulation of information processing-related 
activity in visual cortex is a well-established phenomenon in cogni-
tive neuroscience studies, with effects measurable using fMRI. For 
example, it has been shown that activity in category-selective 
regions of inferior temporal cortex is modulated based on the tar-
get of attention, relatively up-modulated if the target is relevant to 
the region and down-modulated if not relevant [ 140 ,  141 ]. This 
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fi nding provides a biomarker of attentional control over visual pro-
cessing, and as noted below, could serve as a useful biomarker for 
clinical interventions such as cognitive training in individuals with 
attentional defi cits.  

   Functional MRI may be useful not only in defi ning “static” brain–
behavioral relationships, but also may be applied to defi ning the 
neural mechanisms that underlie learning, experience, or injury. 
Two general categories of questions may be investigated. First, 
fMRI can be used to examine factors that infl uence response to the 
perturbations of training (learning), experience or injury. Second, 
fMRI can be used to examine changes that underlie or are the 
result of these various perturbations. 

 Investigation of baseline factors that may infl uence response to 
training has particular clinical relevance. A better understanding of 
pre-training neural characteristics that infl uence response to reha-
bilitation training could have major clinical value in guiding treat-
ment decisions. fMRI could provide a number of possible 
measurements that could mark an important neural process. For 
example, certain parameters of brain network organization may be 
particularly important in supporting the potential for learning and 
plasticity. For example, parameters of the functional organization 
of whole brain networks have been shown to predict response to 
training of attention regulation after injury [ 142 ]. In another 
example, a simple measurement of the quantity of activation in 
prefrontal cortex has been shown to predict response to training to 
use a verbal memory strategy [ 143 ]. Such approaches may help 
elucidate either personal factors or strategic approaches that under-
lie variations in learning or response to interventions. 

 Investigation of  changes  over time is particularly relevant for 
understanding neural mechanisms of post-injury rehabilitation. In 
order to assess changes with intervention, longitudinal or repeated 
measurements are required. Because fMRI involves no 
 exposure- limiting factors such as radiation, it is suitable for repeated 
measurements. However, multi-session studies are also signifi -
cantly more complicated to design, analyze, and interpret due to a 
number of issues discussed below. 

 There are at least two distinct  approaches   relevant to assessing 
changes within an individual. First, fMRI may be used for deter-
mining the after-effects of a learning intervention. Functional MRI 
measures pre- and post-intervention may be used to address this 
question. For example, after two pieces of information have been 
strongly associated over repetitive exposures, one may fi nd reduced 
activation in response to presentation of that information, but 
increased functional connectivity between regions of the brain that 
process the two types of information [ 115 ]. Second, fMRI may be 
used for determining the processes that occur during an interven-
tion, such as cognitive training. To do this one would need to 
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acquire fMRI data  during  the process of training. An alternative 
approach is to use a cross-sectional approach to examine differ-
ences across individuals rather than within individuals [ 144 ]. For 
example, brain activation differences between experts in a particu-
lar skill (e.g., long-term meditation practitioners, pianists) and 
novices may be used to infer the neural effects of training to achieve 
expertise. However, other confounding effects of differences 
between cohorts are diffi cult to exclude (e.g., self-selection in per-
severing to achieve expertise), and a stronger inference for causa-
tion requires longitudinal, prospective studies. 

 The use of fMRI to defi ne changes over time requires consider-
ation of certain additional methodological issues. Test–retest reliabil-
ity needs to be considered. Estimates of reliability depend on what is 
being measured. For example, in statistical parametric mapping, the 
question may be whether particular brain regions are stably labeled as 
“active” or not in serial sessions. A handful of studies have addressed 
this question. For example, one group showed that with a classifi ca-
tion learning task, scans 1 year apart resulted in highly concordant 
results with defi ned regions of interest [ 145 ]. Another group showed 
that maps obtained from a working memory task were similar across 
time [ 146 ], but with a motor task, there appeared to be signifi cant 
variation over time in volume and spatial location of activation [ 147 ]. 

 In longitudinal studies, sources of variability may be both phys-
iologic and nonphysiologic (e.g., MRI hardware). In some cases, 
the magnitudes of activation in specifi c brain regions of interest are 
themselves an outcome of interest. In these instances the stability of 
BOLD signal measurements becomes an even more salient issue. It 
may be worthwhile to utilize within-session indices that effectively 
normalize parameters of interest. For example, rather than compar-
ing estimates of the magnitudes of activation, it may be worthwhile 
utilizing an index of activity for one condition compared to a sec-
ond controlled condition with each session. An additional statistical 
approach that could account for potential variability in SNR is to 
combine data sets across sessions and then “whiten” the noise, 
effectively normalizing noise contribution across sessions. Another 
promising future direction is the use of quantitative techniques 
such as arterial spin labeling (ASL), mentioned earlier in this chap-
ter, to help reduce nonphysiologic sources of variability. This type 
of quantitative index may be particularly valuable in studies that 
attempt to  examine   brain functioning longitudinally. 

 Other factors that concurrently change over time can produce 
confounds to the interpretation of longitudinal studies. For exam-
ple, performance may change, resulting in changes in reaction time 
or accuracy. All of these may alter measured responses making 
determination of the neural bases of the process of interest, such as 
a treatment intervention, more diffi cult. These and a number of 
other theoretical issues are discussed by Poldrack in consideration 
of learning-related (though not post-injury) changes [ 144 ]. 
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Responses of hippocampal formation neurons 
in the monkey related to delayed spatial 
response and object-place memory tasks. 
Behav Brain Res 33(3):229–240  

 Other analytic approaches may be taken that are less sensitive 
to nonphysiologic instabilities. For example, one could test for 
changes in the spatial  pattern  of activation, which is not necessarily 
affected by signal magnitude changes. For example, one could test 
whether the patterns of activity are identical to within a scaling fac-
tor [ 108 ]. Furthermore, one could examine the more fundamental 
measurement of the information coded within brain activity pat-
terns. These measurements may provide more informative indices 
of particular neural process, while also being more robust for lon-
gitudinal studies.   

9    Conclusions 

 Functional MRI is an extremely valuable tool for studying brain–
behavior relationships, as it is widely available, noninvasive, and has 
superb temporal and spatial resolution. New approaches in fMRI 
experimental design and data analysis continue to appear at an 
almost exponential rate, leading to numerous options for testing 
hypotheses on brain–behavior relationships. Combined with infor-
mation from complementary methods, such as the study of patients 
with focal lesions, healthy individuals with TMS, pharmacological 
interventions, or ERP, data from fMRI studies provide new insights 
regarding the organization of the cerebral cortex as well as the 
neural mechanisms underlying cognition. Moreover, cognitive 
neuroscience approaches that have been developed for fMRI pro-
vide an excellent foundation for its use as a clinical tool.     
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    Chapter 12   

 fMRI of Language Systems                     

     Jeffrey     R.     Binder       

  Abstract 

   Language refers to the uniquely human capacity for communication through productive combination of 
symbolic representations. Functional neuroimaging studies have in recent decades greatly expanded our 
knowledge of the brain systems supporting language, producing a dramatic reawakening of interest in this 
topic and a call to revise and extend the nineteenth century neuroanatomical model formulated by Broca, 
Wernicke, and others. This chapter presents some theoretical issues regarding functional imaging of lan-
guage systems, a model of the functional neuroanatomy of language based on recent empirical results in 
several selected processing domains, and a survey of language mapping paradigms in common clinical use. 
A central theme is that interpretation of fMRI language studies depends on an informed analysis of the 
cognitive processes engaged during scanning. This analytic approach can help avoid common pitfalls in 
task design that limit the sensitivity and specifi city of language mapping studies and should encourage the 
development of a standardized methodological and conceptual framework for such studies.  

  Key words     fMRI  ,   Language  ,   Semantics  ,   Phonology  ,   Orthography  

1      Language and Language Processes 

 The central role of language in human culture and social interac-
tion is self-evident. In addition to providing a formal system for 
overt communication, the symbolic structures of language enable 
such uniquely human cognitive capacities as the ability to manipu-
late concepts, plan the future, and invent technology. Scientifi c 
investigation of the neural basis of language began in earnest with 
the work of Broca, Wernicke, and other nineteenth-century neu-
rologists, leading to the classical  Wernicke - Lichtheim  model of lan-
guage and aphasia that remains with us today [ 1 – 4 ]. Over the past 
two decades, however, functional imaging methods, particularly 
fMRI, have greatly expanded our knowledge of the brain systems 
supporting language, producing a dramatic reawakening of inter-
est in this topic and a call to revise and extend the classical model 
[ 5 ,  6 ]. This chapter provides a brief survey of some of this work, 
together with a discussion of theoretical issues central to the design 
and interpretation of language mapping studies. The goal is to 
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provide a basic theoretical foundation and practical suggestions for 
designing effective and interpretable clinical protocols. 

 What is language? One  defi nition   often cited is that language 
processes are those that enable communication. In biological 
terms, however, this defi nition is overly inclusive, in that many 
bodily functions (e.g., cardiac, pulmonary, general arousal, and 
sustained attention systems) provide critical support for communi-
cation but are not linguistic in nature. Communication typically 
requires neural systems that process auditory or visual sensory 
information, hold this information in a short-term store, direct 
attention to specifi c features or aspects of the information, perform 
comparisons and other general operations on the information, 
select a response based on such operations, and carry out the 
response. The extent to which any of these systems is specialized 
for use in language behavior is a matter of debate. Careful consid-
eration of these domain-general systems is especially relevant for 
interpreting and designing language mapping studies, which often 
employ relatively complex tasks that engage motor, sensory, atten-
tion, memory, and “central executive” functions in addition to lan-
guage. Should these other components be considered part of the 
language system because they are so critical for adequate task per-
formance, or should they be delineated from language processes 
per se? In this chapter, I assume that the goal of  language mapping   
is to identify neural systems involved specifi cally in language pro-
cesses, i.e., to distinguish these brain networks from early sensory, 
motor, and general executive systems. 

 A more precise  defi nition   of language is that it is a system of 
communication based on the symbolic representation and manipu-
lation of information. Languages are also, by defi nition,   generative   , 
in that the symbols of a language can be productively combined to 
make a virtually limitless number of new expressions. In formulat-
ing a general defi nition of this kind, however, it is critical to keep 
in mind that language is not a unitary process, but rather a collec-
tion of processes operating at distinct levels and on distinct types of 
information. Clinicians working with aphasic patients historically 
have focused on the dichotomy between “expressive” and “recep-
tive” language functions, but a more useful taxonomy of compo-
nent language processes is available from the fi eld of linguistics. 
For spoken languages, these processes include: (1) phoneme per-
ception, the processes serving  recognition of speech   sounds; (2) 
phonology, the processes by which speech sounds are represented 
and manipulated in abstract form; (3) speech articulation, the pro-
cesses by which speech movements are planned and executed; (4) 
orthography, the processes by which written characters are repre-
sented and manipulated in abstract form; (5) semantics, the pro-
cessing of word meanings, names, and other declarative knowledge 
about the world; and (6) syntax, the processes by which words are 
combined to make sentences and sentences analyzed to reveal 
underlying relationships between words. A basic assumption of 
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language mapping is that activation tasks can be designed to make 
varying demands on these processing subsystems. For example, a 
task requiring careful listening to word-like nonwords (called  pseu-
dowords , e.g., “nurdle”) would make great demands on phoneme 
perception (and on pre-phonetic auditory processing and attention) 
but very little demand on semantic or syntactic processing, given 
that the stimuli have no (or very little) meaning. In contrast, a task 
requiring semantic categorization of printed words (e.g., Is it an 
animal or not?) would make great demands on orthographic and 
semantic processing but relatively little on phonetic, phonological, 
or syntactic processing. 

 On the other hand, the processing subcomponents of language 
often act together. The extent to which each component can be 
examined in isolation remains a major methodological issue, as it is 
not yet clear to what extent the systems responsible for these pro-
cesses become active “automatically” when presented with linguis-
tic stimuli [ 7 ]. One familiar example of this interaction is the 
 Stroop effect  , in which  orthographic and phonological processing   
of printed words occurs even when subjects are instructed to attend 
to the color of the print, and even when this processing interferes 
with task performance [ 8 ]. Other examples include  semantic prim-
ing effects   during word recognition, picture–word interference 
effects, lexical effects on phonetic perception,  orthographic effects   
on letter perception, and  semantic–syntactic interactions   during 
sentence comprehension [ 9 – 17 ]. If linguistic stimuli such as words 
and pictures evoke obligatory, automatic language processing, 
these effects need to be considered in the design and interpretation 
of language activation experiments. Use of such stimuli in a “base-
line” condition could result in undesirable subtraction (or partial 
subtraction) of language-related activation. Because investigators 
frequently try to match stimuli in control and language tasks very 
closely, such inadvertent subtraction is relatively commonplace in 
functional imaging studies of language processing. 

 A fi nal theoretical issue is the extent to which language pro-
cesses occur during “resting” states or states with minimal task 
requirements (e.g., visual fi xation or “passive” stimulation). 
Language involves interactive systems for manipulating   internally 
stored knowledge    about words and word meanings. In examining 
these systems we typically use familiar stimuli or cues to engage 
processing, yet it seems likely that activity in these systems could 
occur independently of external stimulation and task demands. 
The idea that the conscious mind can be internally active indepen-
dent of external events has a long history in psychology and neuro-
science [ 18 – 22 ]. When asked, subjects in experimental studies 
frequently report experiencing seemingly unprovoked thoughts 
(including words and recognizable images) that are unrelated to 
the task at hand [ 21 ,  23 – 26 ]. The extent to which such “thinking” 
engages linguistic knowledge remains unclear [ 27 ,  28 ], but many 
researchers have demonstrated close parallels between behavior 
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and language content, suggesting that at least some internal 
thought processes make use of verbally encoded semantic knowl-
edge and other linguistic representations [ 27 ,  29 ,  30 ]. Many 
authors have argued that “rest” and similar conditions are actually 
active states in which subjects frequently are engaged in processing 
linguistic and other information [ 25 ,  26 ,  31 – 38 ]. Use of such 
states as control conditions for language imaging studies may thus 
obscure similar processes that occur during the language task of 
interest. This is a particularly diffi cult problem for language studies 
because the internal processes in question cannot be directly mea-
sured or precisely controlled.  

2     Functional Neuroanatomy   of Component Language Systems 

 Considering that  neuroimaging   studies on language processing 
now number in the thousands, the following review is inevitably 
incomplete and somewhat cursory. Nor is it possible to cover every 
topic that might be of interest. This review focuses on single word 
and sublexical processes, with less attention to studies of sentence 
comprehension and syntax. Several interesting topics, including 
bilingualism and sign language processing, are not touched on 
here; the interested reader is referred to reviews on these topics 
[ 39 – 48 ]. A visual summary of the following discussion is provided 
in Fig.  1 .

     Traditional clinical models of  aphasia   often treat comprehension of 
speech as a single function [ 49 ], but it is important to distinguish at 
least two processes engaged during speech comprehension. Spoken 
words not only possess meanings, they are also composed of very 
complex and rapidly changing auditory signals. Thus, useful models 
of auditory word recognition include not only a semantic stage in 
which words are mapped onto their meanings, but also a stage prior 
to semantic access in which consonant and vowel sounds—known 
collectively as  phonemes —are identifi ed. The distinction between 
these stages becomes clearer if one considers the differences between 
listening to a tone (for example, a note played on a piano), a pseu-
doword (such as “dap”), and a word (such as “tap”). The tone has 
no phonemic value; it cannot be identifi ed as any vowel or conso-
nant. In contrast, the pseudoword “dap” contains three phonemes—
/d/,/æ/,/p/—although it has no meaning. Finally, the word “tap” 
conveys both phonemic and semantic information. The importance 
of the phoneme perception stage is illustrated by the fact that “dap” 
and “tap” differ at a physical level only in the presence of a brief 
(typically 20–30 ms) noise at the beginning of “tap” but not “dap,” 
produced by release of the tongue from the roof of the mouth 
slightly prior to the onset of vocal cord vibration. These and many 
other subtle acoustic cues must be rapidly and continuously 
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processed in real time for accurate speech comprehension to occur. 
The absence of this important linguistic process in traditional clinical 
models of language can be attributed to at least two factors. First, 
very little was known about the physical acoustic properties of  pho-
nemes   prior to the mid-twentieth century; the scientifi c study of 
speech perception has developed only in the last 60–70 years. 
Second, cases of isolated phoneme perception diffi culty, known as 
 pure word deafness , are rare, resulting in a relative lack of familiarity 
with this fi eld of study on the part of many clinicians. 

 Over the past several decades, scientists using functional  neu-
roimaging   methods have identifi ed a region in the superior tempo-
ral lobes that responds more strongly to speech than to nonspeech 
sounds like tones and noise [ 50 – 57 ]. These speech-related 
 activations are found consistently in the middle portion of the 
superior temporal sulcus (STS, see yellow region in Fig.  1 ), i.e., the 
sulcus separating the superior temporal gyrus (STG) from the mid-
dle temporal gyrus (MTG). This activation  i  s often found in both 

  Fig. 1    A schematic model of some major language regions and networks.  Yellow  indicates a bilaterally repre-
sented  phoneme   (speech sound) perception system.  Blue  indicates the posterior perisylvian area (posterior 
superior temporal and supramarginal gyri, roughly equivalent to the traditional Wernicke area), which supports 
pre-articulatory phonological access.  Red  indicates the temporal and parietal components of a distributed sys-
tem that stores and processes word meaning (semantic memory) information.  ORANGE  indicates several pre-
frontal components of the semantic processing network, including the pars orbitalis of the inferior frontal gyrus 
(IFGpo) and the dorsomedial prefrontal cortex (DMPFC), which are proposed to control the activation and selec-
tion of information in the posterior semantic memory store.  GREEN  indicates a more general language control 
system, made up of the pars triangularis and opercularis of the IFG (roughly equivalent to the traditional Broca 
area) and adjacent cortex in the inferior frontal sulcus, which is proposed to control the retrieval and mainte-
nance of phonological information, a process that is critical for word retrieval, verbal working memory, and 
sentence production. Speech repetition requires the pathway designated  A  in the fi gure, linking phoneme per-
ception with phonological access systems, as well as more anterior sensorimotor regions (not shown) that 
support articulatory preparation and execution. Spoken word comprehension involves pathway  B  in the fi gure, 
which maps perceived phoneme sequences to word concepts. Communicative speech production, in which the 
speaker retrieves words and formulates sentences to express concepts, requires control of the semantic system 
by the pathways marked  D , as well as pathway  C , which maps concept representations onto phonological rep-
resentations, and pathway  E , which controls and maintains the activation of phonological codes. Pathway  F  
indicates a direct mapping from visual word forms to phonological representations, required for reading aloud       
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the left and right STS, though usually with leftward lateralization. 
These activations are identical whether the stimuli are words or 
word-like pseudowords, thus they refl ect processing of phonemes 
and not word meaning [ 54 ]. Though some of the activation in this 
region could be explained by the fact that speech sounds are more 
acoustically complex than the tones and noises used as nonspeech 
controls, more recent experiments using acoustically matched 
speech and nonspeech sounds (e.g., rotated speech, sinewave 
speech) have shown convincingly that at least some of the activa-
tion in this region is due specifi cally to activation of phoneme codes 
[ 58 – 63 ]. 

 These observations are fully consistent with localization data 
from patients with pure word deafness, who typically have lesions 
restricted to the STG and STS [ 64 – 70 ]. Most of these cases have 
bilateral lesions, though rarely a large left temporal lobe lesion can 
produce the syndrome [ 71 ,  72 ]. These patients show impairments 
in recognizing speech phonemes and may have other defi cits of 
higher-order auditory perception, especially when the lesions are 
bilateral, but they have no defi cits in written comprehension, nam-
ing, or propositional speech production that would indicate any loss 
of word concepts. Taken together, these functional imaging and 
lesion data make it clear that the left STG plays a relatively specifi c 
role in language processing, i.e., that it contains general auditory 
systems and specialized networks for recognizing speech phonemes, 
regardless of whether these phonemes form words or have meaning. 
This conceptualization stands in stark contrast to the traditional clin-
ical model of aphasia, which identifi es the left STG as “Wernicke’s 
area,” the principal site for “language comprehension.”  

   Traditional  neuroanatomical   models of written word recognition 
derive mainly from the late 19 th  century descriptions by Déjerine of 
alexia with and without agraphia [ 73 – 75 ]. According to these 
models, visual perception of letters occurs in the primary visual 
cortex of both hemispheres, which then transmit this information 
to the left angular gyrus, where “memories” of written words are 
activated. Lesions of the left angular gyrus destroy these visual 
word codes, producing both inability to read and inability to write. 
Alexia without agraphia (also known as pure alexia, peripheral 
alexia, or letter-by-letter reading) results when an occipital lobe 
 lesion   destroys both the left visual cortex and the decussating white 
matter pathway from right visual cortex to left angular gyrus, 
 effectively disconnecting the  angular   gyrus from visual input with-
out destruction of the visual word codes themselves [ 76 ]. 

 In recent decades it has become clear, however, that pure alexia 
can result from ventral occipital–temporal lesions that damage nei-
ther the primary visual cortex nor the angular gyrus. Though initially 
ascribed to involvement of white matter pathways projecting to the 
angular gyrus [ 77 – 79 ], it is now clear that most of these cases are due 
to focal damage to the left ventral occipital-temporal cortex, 
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particularly the mid-portion of the left fusiform gyrus [ 80 – 84 ]. Thus, 
normal reading requires the participation of a left- lateralized visual 
association area in or near the mid-fusiform gyrus, which receives 
input from earlier visual processing stages in both hemispheres. 

 Functional neuroimaging research has strongly confi rmed this 
model. Numerous studies have demonstrated a focal region in the 
lateral left fusiform gyrus that responds more strongly to words and 
word-like pseudowords than to consonant letter strings or non-
sense characters [ 85 – 92 ]. This focal region of cortex has conse-
quently been named the “visual word form area.” Activation in this 
area increases as a direct function of how frequently the letter com-
binations comprising the stimulus occur in the reader’s language, 
and this activation is also correlated with effi ciency of letter percep-
tion during tachistoscopic presentation [ 93 ]. It thus appears that 
during the many hours spent learning to read fl uently, neurons in 
this region become “tuned” to detect familiar letter combinations, 
resulting in a high degree of perceptual expertise that allows multi-
letter fragments and even whole words to be processed in parallel. 
Destruction of these “expert” neurons prevents the patient from 
recognizing multiletter fragments effi ciently, forcing the adoption 
of a much slower, letter-by-letter decoding process [ 94 – 96 ].  

   The term   paraphasia    refers to speech production that is fl uent but 
contains errors, such as substitution of incorrect phonemes or words, 
or rearrangement of the order of phonemes within a word. Paraphasia 
is characteristic of many forms of aphasia, particularly the Wernicke 
and conduction syndromes, and typically affects both spoken and 
written output. Paraphasia indicates an inability to retrieve or properly 
use a mental representation of word sounds—what nineteenth cen-
tury theorists called “sound images” and what in modern parlance are 
referred to as  phonological representations . Patients who cannot access 
(i.e., activate, compute) correct phonological representations show 
paraphasic errors on all speech output tasks, including conversing, 
naming objects, reading aloud, and repeating, as well as on a variety of 
other tasks that require phonological access. For example, patients 
with phonological  impairments may be unable to determine whether 
two printed words rhyme. Writing normally involves a mapping from 
phonological (sound-based) to orthographic (grapheme-based) rep-
resentations, which is why patients with impaired  phonology   also typi-
cally show paraphasic errors in their writing. 

 The brain regions most strongly implicated in phonological access 
(see blue region in Fig.  1 ) are in the left posterior perisylvian area, 
especially the posterior STG, posterior STS, and supramarginal gyrus 
(SMG). For example, patients with conduction aphasia—a relatively 
isolated disorder of phonological access featuring phonemic parapha-
sia in naming, reading, and repetition tasks—have lesions confi ned to 
this region [ 97 – 104 ], as do patients with phonological defi cits in writ-
ten production [ 105 – 107 ]. A recent voxel-based lesion correlation 
study linked damage in this posterior perisylvian region with inability 
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to silently judge whether written word pairs rhyme [ 108 ], indicating 
that lesions in this region impair phonological processing prior to and 
independent of any overt articulation processes. A number of func-
tional imaging results also support this model. For example, contrasts 
between visual stimuli that can be named and those that cannot (e.g., 
pictures vs. nonsense shapes, pronounceable vs. unpronounceable let-
ter strings, letters vs. unfamiliar characters) reliably produce activation 
in the left posterior STS, STG, and inferior SMG [ 109 – 116 ] as do 
silent “word generation” tasks [ 117 – 119 ]. 

 Temporary activation of phonological  codes   is also central to 
the concept of  verbal working memory . The standard model of ver-
bal working memory includes a “phonological loop” responsible 
for maintaining phonological sequences in short-term memory 
[ 120 ]. The phonological loop is further subdivided into a “phono-
logical store” that represents the phonological information itself 
and an “articulatory rehearsal” mechanism that reactivates the 
information before it fades from the store. A number of neuroim-
aging studies have linked the phonological store with the left SMG 
[ 121 ] and with the posterior STG and STS [ 122 – 125 ]. 

 These regions implicated in phonological access and tempo-
rary storage of phonological representations overlap partly with 
those implicated in speech perception, though the evidence sug-
gests that the phoneme perception system is situated more anteri-
orly along the STG and STS [ 126 ], whereas the phonological 
access system is more posterior and extends more dorsally, involv-
ing dorsal STG (planum temporale) and SMG. These systems can-
not be entirely overlapping, since most patients with conduction 
aphasia (phonemic paraphasia) do not have speech perception defi -
cits.    As noted above, the speech perception system is also bilaterally 
represented, which may explain why it is more resistant to left STG 
damage than is the phonological access system, which is more 
strongly left-lateralized.  

   The human brain has an  enormous   capacity to acquire knowledge 
from experience. The characteristic shapes, colors, textures, move-
ments, sounds, smells, and actions associated with objects in the 
environment, for example, must all be learned from experience. In 
addition, consider the enormous variety of verb concepts ( build ,  cel-
ebrate ,  discuss ,  throw , etc.), which depend on knowledge of how par-
ticular kinds of events happen, or social/emotional concepts ( anger , 
 deceit ,  love ,  trust , etc.), which depend on knowledge of how human 
beings behave and why. Much of this knowledge is represented sym-
bolically in language and underlies our understanding of word 
meanings. These relationships between words and the stores of 
knowledge they signify are known collectively as the  semantics  of a 
language [ 127 ]. The term  semantic processing  refers to the cognitive 
act of accessing stored knowledge about the world through words. 
The stored knowledge itself is often called  semantic memory . 

2.4  Semantic 
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 Semantic properties of words are readily distinguished from 
their structural properties. For example, words can have both spo-
ken (phonological) and written (orthographic) forms, but these 
surface forms are typically related to word meanings only through 
the arbitrary conventions of a particular language. There is nothing, 
for example, about the letter sequences D-O-G or C-H-I-E-N that 
inherently links these sequences to a particular concept. Conversely, 
it is trivial to construct surface forms (e.g., CHOG) that possess all 
of the phonological and orthographic properties of words in a par-
ticular language,    but which have no meaning in that language. A 
simple, operational distinction can thus be made between the pro-
cesses involved in analyzing the surface form (phonology, orthogra-
phy) of words, and semantic processes, which concern access to 
knowledge that is  not directly represented in the surface form . 

 Semantic processing is a defi ning  feature   of human behavior, 
central not only to language, but also to our capacity to access 
acquired knowledge in reasoning, planning, and problem solving. 
Impairments of semantic processing fi gure in a variety of brain disor-
ders, such as Alzheimer disease, semantic dementia, fl uent aphasia, 
schizophrenia, and autism. The neural basis of semantic processing 
has been studied extensively by analyzing patterns of brain damage in 
such patients [ 128 – 135 ]. This topic has also been addressed in a 
large number of functional neuroimaging studies on healthy volun-
teers (see [ 133 ,  136 – 140 ] for reviews). Of greatest interest for the 
present review are studies that focused specifi cally on semantic pro-
cessing by incorporating control tasks that make comparable demands 
on surface form (phonological or orthographic) processing and on 
general executive processes such as attention, working memory, and 
response production (see [ 25 ,  50 ,  141 – 151 ] for some examples). 

 Binder et al. [ 138 ] performed a quantitative meta-analysis of 
120 of these well-controlled studies. The results revealed a widely 
distributed, left-lateralized network underlying semantic memory 
storage and retrieval (see red and orange regions in Fig.  1 ). Seven 
major brain regions were implicated: (1) the angular gyrus; (2) the 
middle and inferior temporal gyri, extending into the lateral ante-
rior temporal lobe; (3) the anterior fusiform and parahippocampal 
gyri; (4) the anterior aspect (pars orbitalis) of the inferior frontal 
gyrus (IFGpo); (5) dorsomedial prefrontal cortex, including the 
superior frontal gyrus and the posterior aspect of the middle fron-
tal gyrus; (6) ventromedial prefrontal cortex; and (7) the posterior 
cingulate gyrus. These are all regions considered to be supramodal 
cortex, distant from primary sensory and motor areas, and there-
fore likely to be involved in processing highly abstracted (i.e., non-
perceptual) information. Activation in these regions tends to be 
left-lateralized, though most studies show at least some activation 
in homologous regions of the right hemisphere. Some evidence 
suggests that the right hemisphere semantic system contributes to 
processing concrete, imageable concepts, and much less to pro-
cessing abstract concepts [ 150 ,  152 ,  153 ]. 
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 These functional  neuroimaging   results are very consistent with 
pathological data from patients with semantic disorders. For exam-
ple, lesion localization studies in patients with transcortical sensory 
aphasia, a syndrome characterized by multimodal semantic impair-
ment with intact phonological processing, implicate widely distrib-
uted regions of the left ventral temporal lobe and angular gyrus 
[ 128 ,  154 – 156 ]. Semantic dementia, a degenerative disorder char-
acterized by gradual loss of semantic knowledge, is associated with 
progressive neuronal loss in the anterior and ventral temporal lobes 
bilaterally [ 135 ,  157 – 161 ]. Other pathological conditions that 
affect the ventral temporal lobes, such as herpes encephalitis and 
Alzheimer disease, often produce focal semantic memory loss, par-
ticularly loss of knowledge about living things [ 132 ,  162 – 165 ], 
while inferior parietal and posterior temporal lobe damage may 
produce selective loss of knowledge about man-made objects, par-
ticularly tools [ 132 ,  137 ]. Whereas these temporal and parietal 
lesions damage the semantic memory store itself (red regions in 
Fig.  1 ), dorsal left prefrontal lesions seem to impair the ability to 
retrieve information from the semantic store. These latter lesions 
produce transcortical motor aphasia, a syndrome characterized by 
inability to initiate spontaneous speech [ 155 ,  166 ].  

   The work reviewed so far focused on  processing   of single word 
structure and meaning, which can be thought of as the basic 
 building blocks of language. Natural language, however, consists 
almost entirely of sentences. At least two phenomena distinguish 
processing at the sentence level from processing of single words. 
First, in sentence processing, the meanings of individual words are 
combined to create more complex and context-specifi c meanings. 
For example, consider:

    1.    The tigers lost their jungle habitat.   
   2.    The tigers lost in extra innings.    

  It is the combination of words that  specifi es   in each case the 
meaning of “tigers” and “lost.” This process of  conceptual combi-
nation  is a fundamental phenomenon in language production and 
comprehension. A second distinguishing feature of sentence pro-
cessing is the use of syntactic information—word order, grammati-
cal function words, and word infl ections—to indicate the thematic 
roles played by constituent content words. In the two example 
sentences above, for example, “the” marks the beginning of a noun 
phrase, which can be followed by either a noun or a modifi er 
phrase. The plural infl ection of “tigers” then identifi es this second 
word as a noun, which  because   of its position is likely to be the 
subject of the sentence, and so on. 

 One type of neuroimaging study used to examine these pro-
cesses compares processing of sentences with word lists that do not 
form a sentence, the latter sometimes created simply by randomly 

2.5  Sentence 
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rearranging the order of words in sentences (“scrambled sen-
tences”). Common areas of activation in these contrasts (sentences 
vs. scrambled sentences) include the left anterior superior temporal 
lobe, left IFG, and left angular gyrus [ 167 – 173 ]. Debate has 
ensued over whether these activations represent syntactic or seman-
tic processes, as sentences possess both more syntactic structure 
and more complex meanings than lists of isolated words. This 
question has focused particularly on the anterior temporal lobe, a 
region often activated in studies using sentence materials but rarely 
in studies using isolated words. Humphries et al. [ 172 ] showed 
that activation in the anterior STS is modulated by the presence of 
syntactic structure independently of the meaningfulness of con-
stituent content words, suggesting that this region may play a role 
in early parsing processes (e.g., role assignment). These authors 
also examined the processing of combinatorial semantic structure 
in word lists and sentences by manipulating the degree to which 
words in the stimuli were thematically related. Remarkably, this 
contrast showed widespread regions in the ventral left temporal 
lobe, angular gyrus, and inferior frontal lobe that were activated 
when words were thematically related (and thus could be com-
bined to form more complex and specifi c meanings) compared to 
when words were unrelated [ 172 ,  174 ]. This effect of  combinatorial 
semantic structure was largely  unaffected   by whether the stimuli 
were syntactically correct sentences or word lists. 

 Many other  fMRI   and PET studies have focused on specifi c 
syntactic operations, such as repair of syntactic and morphosyntac-
tic violations [ 175 – 180 ] and comprehension of object-extracted 
relative clauses, passive voice, and other noncanonical or derived 
syntactic structures [ 181 – 189 ]. While these studies have generally 
implicated regions in the left IFG and left superior temporal lobe, 
the precise localization of specifi c syntactic operations remains a 
source of debate. Another ongoing discussion centers on whether 
these activations refl ect operations specifi c to syntax processing or 
instead more domain-general working memory and executive pro-
cesses [ 187 ,  190 – 197 ]. The reader is referred to reviews that cover 
this work in detail [ 198 – 202 ].  

   Using language  depends   on a variety of executive “control” pro-
cesses, including the ability to voluntarily activate phonological or 
semantic information as needed for a given task, the ability to select 
the correct name or concept when a number of competing alterna-
tives are activated, and the ability to maintain the selected item(s) in 
short-term memory while the task is completed. For example, if the 
task is to answer a question, such as, “What farm animal gives milk?”, 
it is necessary to use the content words in the question (i.e., farm, 
animal, give, milk) to activate a fi eld of associated concepts, select 
from among several activated alternatives (e.g., cow, goat, sheep), 
use the selected concept to retrieve an associated name, and 
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maintain the concept and name in an activated state during produc-
tion of the response. These control processes depend mainly on the 
left prefrontal cortex (green and orange regions in Fig.  1 ) [ 195 , 
 203 ]. 

 This modern view of the left prefrontal  cortex   contrasts with the 
traditional concept of “Broca’s area” as a region involved only in 
speech production. In fact, the same retrieval, selection, and mainte-
nance operations are required for many tasks in which no speech pro-
duction occurs, such as silently naming a picture, or comprehending 
a sentence. Damage to the prefrontal cortex produces obvious 
impairments on a range of language production tasks, but usually not 
because speech articulation or motor sequencing is impaired. Rather, 
frontal lesions impair the ability to voluntarily retrieve concepts and 
verbal labels and to maintain these in short-term memory. The con-
tribution of these regions increases as the need for these control pro-
cesses increases, for example as  sentences   become more complex or 
ambiguous, or items to be retrieved become less familiar.   

3    An Analysis of Some Language Mapping Paradigms in Common Use 

 The variety of possible stimuli and tasks that could be used to 
induce language processing is vast, and a coherent, concise discus-
sion is diffi cult. Table  1  lists some of the broad categories of stimuli 
that have been used and some of the brain systems they engage. 
“ Auditory Nonspeech  ” refers to noises or tones that are not per-
ceived as speech. Such stimuli can be variably “complex” in their 
temporal or spectral features, and possess to varying degrees the 
acoustic properties of speech (see [ 54 ,  204 – 207 ] for some exam-
ples). “Auditory Phonemes” are speech sounds that do not com-
prise words in the listener’s language; these may be simple 
consonant-vowel monosyllables or longer sequences (e.g., pseudo-
words). “Visual Nonletter” refers to any unfamiliar visual shape. 
Examples include characters from unfamiliar alphabets, nonsense 
shapes, and “false font.” Such stimuli can be variably complex and 
possess to varying degrees the visual properties of familiar letters. 
“Visual Letterstrings” are random strings of letters that do not 
form familiar or easily pronounceable letter combinations (e.g., 
FCJVB). “Visual Pseudowords” are letterstrings that are not words 
but possess the orthographic and phonological characteristics of 
real words (e.g., SNADE).

   The degree to which these stimuli engage the processes listed in 
Table  1  depend partly on the task that the subject is asked to per-
form, though the processes in Table  1  are activated “automatically” 
to some degree even when subjects are given no explicit task. This 
is less true for the  processing systems   listed in Table  2 , which seem 
to be strongly task-dependent. The semantic system appears to be 
partly active even during “rest” or when stimuli are presented 
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         Table 1  
  Effects of auditory and visual stimuli on sensory and linguistic  processing   systems   

 Stimuli 
 Early 
sensory 

 Phoneme 
perception 

 Visual 
wordform 

 Object 
recognition  Syntax 

 Auditory nonspeech  Aud  −  −  −  − 

 Auditory phonemes  Aud  +  −  −  − 

 Auditory words  Aud  +  −  −  − 

 Auditory sentences  Aud  +  −  −  + 

 Visual nonletters  Vis  −  −  −  − 

 Visual  letterstrings    Vis  −  +/−  −  − 

 Visual pseudowords  Vis  −  +  −  − 

 Visual words  Vis  −  +  −  − 

 Visual sentences  Vis  −  +  −  + 

 Visual objects  Vis  −  −  +  − 

     Table 2  
  Effects of task states on some linguistic processing systems   

 Phonological  Speech  Working 

 Other language  Tasks  Semantics  Access  Articulation  Memory 

 Rest or “passive”  +  −  −  −  − 

 Sensory discrimination  −  −  −  +/−  − 

 Read or repeat covert  +  +  −  +/−  − 

 Read or repeat overt  +  +  +  +/−  − 

 Phonetic decision  −  +  −  +  − 

 Phonological decision  −  +  −  +  − 

 Orthographic decision  −  +/−  −  −  − 

 Semantic decision  +  +/−  −  +  Semantic search 

 Word generation covert  +  +  −  +  Lexical search 

 Word generation overt  +  +  +  +  Lexical search 

 Naming covert  +  +  −  −  Lexical search 

 Naming overt  +  +  +  −  Lexical search 
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“passively” to the subject [ 25 ,  33 – 35 ,  37 ,  208 ]. Other tasks sup-
press semantic processing by requiring a focusing of attention on 
perceptual, orthographic, or phonological properties of stimuli [ 25 , 
 26 ,  35 ,  208 ]. Examples include “Sensory Discrimination”  tasks   
(e.g., intensity, size, color, frequency, and other discriminations 
based on physical features), “ Phonetic Decision” tasks   in which the 
subject must detect a target phoneme or phonemes,  “Phonological 
Decision” tasks   requiring a decision based on the phonological 
properties of a stimulus (e.g., detection of rhymes, judgment of syl-
lable number), and “Orthographic Decision” tasks requiring a deci-
sion based on the letters in the stimulus (e.g., case matching, letter 
identifi cation). Other tasks, such as reading and repeating, make no 
overt demands on semantic systems but may elicit automatic seman-
tic processing. The extent to which this occurs probably depends 
on how meaningful the stimulus is: sentences likely elicit more 
semantic processing than isolated words, which in turn elicit more 
than pseudowords. Finally, many tasks make overt demands on 
retrieval and use of semantic knowledge. These include “Semantic 
Decision” tasks requiring a decision based on the meaning of the 
stimulus (e.g., “Is it living or nonliving?”), “Word Generation” 
tasks requiring retrieval of a word or series of words related in mean-
ing to a cue word, and “Naming” tasks requiring retrieval of a ver-
bal label for an object or object description.

   As noted earlier, “Phonological Access” refers to the processes 
engaged in retrieving a phonological (sound-based) representation 
of a word (or pseudoword). In addition to speech output and pho-
nological tasks, any task using printed words, including ortho-
graphic and semantic tasks, will be accompanied to some degree by 
obligatory phonological access [ 8 ,  15 ,  111 ]. In contrast, “Speech 
Articulation” processes are engaged fully only when an overt spo-
ken response is produced [ 119 ]. “Verbal Working Memory” is 
required whenever a written or spoken stimulus must be held in 
memory. Some degree of short-term phonological memory is 
needed for most language tasks, and particularly in cases where the 
stimulus is relatively long (i.e., sentences more than single words) 
or has multiple components, or must be held in memory while a 
response is generated (e.g., word generation tasks involving mul-
tiple responses for each cue). Finally, semantic decision, word gen-
eration, and naming tasks make strong demands on frontal 
mechanisms involved in searching for and retrieving information 
associated with a stimulus [ 118 ,  195 ,  209 ,  210 ]. 

 With these somewhat over-simplifi ed stimulus and task charac-
terizations in mind, it is possible to make some general predictions 
about the processing systems whose level of activation will differ 
when two task conditions are contrasted, and thus the likely pat-
tern of brain activation that will be observed in a simple subtrac-
tion analysis. Some commonly encountered examples are listed 
below and in Table  3 .
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    Paradigm 1 
 Language task: Passively Listening to Words or Sentences 

 Control task: Rest  

 As shown in Table  1 ,  auditory words   activate early auditory cor-
tices and phoneme perception areas. Since both rest and passive 
stimulation are accompanied by spontaneous semantic processes and 
make no other overt cognitive demands, no other language- related 
activation should appear in this contrast. The resulting activation 
pattern involves mainly auditory cortex in the superior temporal gyri 
bilaterally (Fig.  2a ) [ 54 ,  167 ,  208 ,  211 ,  212 ]. The magnitude and 
extent of this activation increase with rate of word presentation 
[ 213 ,  214 ]. This STG activation is relatively symmetrical and is not 
correlated with language dominance as measured by Wada testing 
[ 215 ]. Although some authors have equated this STG activation 
with “Wernicke’s area for receptive language,” most of this 

    Table 3  
  Some task contrasts used for  language mapping   and the regions in which robust activations are 
typically observed   

 Ventrolateral  Dorsal  Superior  Ventrolateral  Ventral  Angular 

 Prefrontal  Prefrontal  Temporal  Temporal  Occipital  Gyrus 

 1. Hearing words vs. 

 Rest  B 

 2. Hearing words vs. 

 Nonspeech  sounds    L > R 

 3. Word generation vs. 

 Rest  L > R  L > R  B 

 4. Word generation vs. 

 Reading  L 

 5. Object naming vs. 

 Rest  B  L > R  B 

 6. Semantic decision vs. 

 Sensory discrimination  L  L  L > R  L  L 

 7. Semantic decision vs. 

 Phonological decision  L  L  L 

 8. Reading sentences vs. 

 Letterstrings  L > R  L > R  L > R 

   L  = left hemisphere,  R  = right hemisphere,  B  = bilateral  
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  Fig. 2    Group average fMRI activation patterns in 26 neurologically normal, right-handed volunteers during fi ve 
fMRI language paradigms (see [ 208 ] for details).  Auditory word and tone stimuli   were equivalent in each of the 
fi ve paradigms. ( a ) Passive listening to words contrasted with resting. Superior temporal activation occurs 
bilaterally. ( b ) Passive listening to words contrasted with passive listening to tones. A small region in the left 
STS shows activation specifi cally related to speech processing. ( c ) Semantic decision on words contrasted 
with resting. Activation occurs in bilateral auditory (STG) and attentional/working memory (dorsolateral pre-
frontal, anterior cingulate, anterior insula, IPS, and subcortical) networks, with left lateralization in the IFG. 
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activation represents early auditory processing rather than language-
specifi c processes per se.

    Paradigm 2 
 Language task: Passively Listening to Words or Sentences 

 Control task: Passively Listening to Auditory Nonspeech  

 Because there are no differences in task requirements, and because 
semantic processing occurs in all passive conditions, the  activation pat-
tern   associated with this contrast mainly refl ects activation of the  pho-
neme perception system   (Table  1 ). As mentioned earlier, studies 
employing such contrasts reliably show activation in the STS, with 
leftward lateralization, and little or no activation elsewhere (Fig.  2b ) 
[ 51 ,  52 ,  54 ,  56 ,  204 ,  208 ]. When sentences are used, this STS activa-
tion extends more anteriorly into the  dorsal temporal pole region  , 
possibly refl ecting early syntactic parsing processes [ 167 ,  171 ,  172 , 
 204 ,  216 – 219 ]. 

  Paradigm 3 
 Language task: Word Generation 

 Control task: Rest  

 Because the rest state includes no control for sensory process-
ing, early auditory or visual cortices may be activated bilaterally 
depending on the  sensory modality   of the cue stimulus (Table  1 ). 
The strength of this sensory activation depends on the rate of stimu-
lus presentation: in some protocols, a single cue (e.g., a letter or a 
semantic category) is provided only at the beginning of an activation 
period; in others, a new cue is provided every few seconds. Unlike 
rest, word generation makes demands on lexical search, phonologi-
cal access, and working memory systems (Table  2 ). Speech articula-
tion systems will also be activated if an overt spoken response is 
required. These predictions are confi rmed by many studies employ-
ing this contrast, which results primarily in activation of the left IFG 
and left > right premotor cortex, systems thought to be involved in 
phonological production, working memory, and lexical search [ 118 , 
 211 ,  215 ,  220 – 225 ]. There may be activation of left posterior tem-
poral regions (posterior MTG and STG) due to engagement of the 
phonological access system [ 117 ,  119 ,  226 ]. 

Fig. 2 (continued)  ( d ) Semantic decision on words contrasted with a tone decision task. Activation is strongly 
left-lateralized in prefrontal, lateral and ventral temporal, angular, and posterior cingulate cortices. ( e ) Semantic 
decision on words contrasted with a phoneme decision task on pseudowords. Activation is strongly left-later-
alized in dorsal prefrontal, angular, ventral temporal, and posterior cingulate cortices. Data are displayed as 
serial sagittal sections through the brain at 9-mm intervals.  X -axis locations for each slice are given in the  top 
panel. Green lines  indicate the stereotaxic  Y  and  Z  origin planes.  Hot colors  ( red–yellow ) indicate positive 
activations and cold colors ( blue–cyan ) negative activations for each contrast. All maps are thresholded at a 
whole-brain corrected  P  < 0.05 using voxel-wise  P  < 0.0001 and cluster extent >200 mm 3 . Adapted, with per-
mission, from [ 208 ]       
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  Paradigm 4 
 Language task: Word Generation 

 Control task: Reading or Repeating  

 Here we assume that the same  stimulus modality (auditory or 
visual)   is used for both tasks. The stimuli in both cases are single 
words, thus no difference in activation of sensory, phoneme per-
ception, or visual word form systems is expected. Both tasks are 
accompanied by semantic processing (automatic semantic access in 
the case of the control task, effortful semantic retrieval in the case 
of word generation) and by phonological access processes. The 
word generation task makes greater demands on lexical search and 
on working memory; consequently greater activation is expected 
in left inferior frontal areas associated with these processes. These 
predictions match fi ndings in many studies using this contrast, 
which show primarily left-lateralized activation in the IFG [ 118 , 
 210 ,  226 ,  227 ]. 

  Paradigm 5 
 Language task: Visual Object Naming 

 Control task: Rest  

 Compared to resting,  visual object perception   activates early visual 
sensory cortices and higher-level object recognition systems bilaterally 
(Table  1 ) [ 228 – 230 ]. There may be additional, left- lateralized activa-
tion in semantic systems of the ventrolateral posterior temporal lobe 
[ 231 – 235 ]. Unlike resting, naming requires lexical search and phono-
logical access, and, when overt, speech articulation (Table  2 ). These 
predictions match fi ndings in several studies using this contrast, which 
show extensive bilateral visual system activation and modest left later-
alized inferior frontal activation [ 223 ,  234 – 236 ]. 

  Paradigm 6 
 Language task: Semantic Decision 

 Control task: Sensory Discrimination  

 We again assume that the same stimulus modality is used for 
both tasks. If the stimuli in the sensory discrimination task are non-
linguistic (e.g., tones or nonsense shapes), then the semantic deci-
sion task will produce relatively greater activation in phoneme 
perception or visual wordform systems, depending on the sensory 
modality. In addition, there will be greater activation of  semantic 
memory and semantic search mechanisms   in the semantic decision 
task. Note that unlike the resting and passive control tasks used in 
the protocols described so far, effortful sensory discrimination tasks 
interrupt ongoing semantic processes, providing a control state that 
is relatively free of conceptual or semantic processing [ 25 ,  34 ,  35 , 
 37 ,  208 ]. Working memory systems may or may not be activated in 
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this contrast, depending on whether or not the control task also has 
a working memory component. These predictions match fi ndings 
in studies using this contrast, which show left lateralized activation 
of phoneme perception (middle and anterior superior temporal sul-
cus) or visual wordform (mid-fusiform gyrus) regions, and exten-
sive activation of left prefrontal, lateral and ventral left temporal, 
and left posterior parietal systems involved in semantic memory and 
semantic access (Fig.  2d ) [ 5 ,  50 ,  208 ,  237 – 240 ]. 

  Paradigm 7 
 Language task: Semantic Decision 

 Control task: Phonological Decision  

 These tasks can also be given in either the visual or auditory 
modality. Stimuli in the phonological decision task can be either 
words or pseudowords, and these can be matched to the words 
used in the semantic task on all structural (physical, orthographic, 
phonological) variables. Thus, there should be no activation of 
sensory or wordform systems in this contrast. There will be greater 
activation of semantic memory and semantic search systems in the 
semantic decision task. These predictions match fi ndings in many 
studies using this contrast, which show activation of left prefrontal, 
lateral and ventral left temporal, and left posterior parietal systems 
believed to be involved in semantic processing (Fig.  2e ) [ 25 ,  50 , 
 142 – 144 ,  146 ,  148 ,  208 ,  241 ,  242 ]. 

  Paradigm 8 
 Language task: Sentence or Word Reading 

 Control task: Passively Viewing Letterstrings  

 Compared to letterstrings, sentences engage visual word-form, 
syntactic, and phonological access systems, and make variable 
demands on working memory. Both reading and passive viewing 
probably involve semantic processing. There should be left- lateralized 
activation of the fusiform gyrus (visual word-form system), posterior 
STG and STS (phonological access), and IFG ( orthographic-phono-
logical mapping  , working memory, syntax). These predictions are 
consistent with several studies using this contrast [ 111 ,  243 – 246 ]. 

 In many clinical settings, the main goal of language mapping is 
simply to identify as many language-related areas as possible and to 
assess hemispheric lateralization of language. A review of Table  3  
suggests that the  “Semantic Decision vs. Sensory Discrimination” 
paradigm   may offer advantages for this purpose in terms of the sheer 
number of regions activated and leftward lateralization of activation. 
Binder et al. put this prediction to a quantitative test by comparing 
the extent and lateralization of activation produced by fi ve language-
related task contrasts, conducted on the same 26 participants during 
a single scanning session [ 208 ]. These contrasts included: (1) 
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passively listening to words vs. resting, (2) passively listening to 
words vs. passively listening to tones, (3) performing a semantic 
decision task with words vs. resting, (4) performing a semantic deci-
sion task with words vs. a sensory discrimination task with tones, and 
(5) performing a semantic decision task with words vs. a phonologi-
cal task with pseudowords. As shown in Fig.  3 , the Semantic 
Decision—Tone Decision contrast produced by far the largest acti-
vation volume in the left hemisphere, as well as an optimal combina-
tion of extensive activation and strong left-lateralization.

   The example paradigms discussed here cover only a small sam-
ple of all possible language activation protocols. There are also 
numerous published studies employing designs that do not fi t 
neatly into the schema provided here. Many of these represent 
attempts to further defi ne or fractionate a particular language pro-
cess, or to defi ne further the functional role of a specifi c brain 

  Fig. 3    Group average activation volumes ( top graph ) and laterality indexes ( bottom graph ) for fi ve fMRI lan-
guage paradigms [ 208 ]. Laterality indexes can vary from −1 (all activation in the right hemisphere) to +1 (all 
activation in the left hemisphere).  Error bars  represent standard error. The Semantic Decision–Tone Decision 
paradigm produces the greatest left hemisphere activation as well as a strongly left-lateralized pattern       
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region. The reader should appreciate that the review given here is 
merely a coarse outline of some of the most commonly used types 
of stimuli and tasks. Above all, it is important to note that activa-
tions in a particular part of the language system are seldom “all or 
none,” but vary in a graded way depending on the particular stim-
uli and tasks used.  

4    Conclusions and Future Directions 

 Functional neuroimaging techniques have enhanced profoundly 
our understanding of how language processes are implemented in 
the human brain. This work has led to a number of new discover-
ies, such as a more precise localization of cortical networks under-
lying phoneme and grapheme perception, phonological access, 
and semantic processing. Not all of the claims made here with 
regard to these component language systems are uncontroversial. 
In particular, there are ongoing debates and a number of unre-
solved issues concerning localization of semantic memory and 
semantic retrieval systems, especially with regard to the role played 
by the left IFG in semantic processes [ 146 ,  209 ,  210 ,  247 – 250 ]. 
The notion that semantic processes are actively engaged during the 
resting state, though gaining traction in some quarters, is far from 
universal acceptance or recognition. For example, many authors 
continue to regard with suspicion any activation associated with 
semantic tasks that is not also observed in comparison to a resting 
baseline [ 147 ,  251 ,  252 ]. As in other areas of cognitive neurosci-
ence, neuroimaging research on language processing has been to 
some extent clouded by an incomplete understanding of task 
demands and inadequate recognition of potential confounding 
factors. For example, many task contrasts are confounded by dif-
ferences in task diffi culty, which are well known to cause differen-
tial activation of domain-general networks involved in arousal, 
attention, working memory, decision, response selection, and error 
monitoring [ 151 ,  253 – 259 ]. Despite these well-documented 
effects, many researchers continue to advocate the use of covert 
tasks and passive conditions that provide no information about 
task performance, level of attention, or degree of diffi culty. These 
defi ciencies are particularly troubling in clinical studies, where the 
interpretation of brain activation (or lack of activation) can sub-
stantially infl uence clinical decision-making and patient outcome. 

 As the fi eld of functional neuroimaging continues to mature, it 
is likely that these potential pitfalls will eventually be universally 
recognized and that an increasingly standardized methodological 
and conceptual framework for language mapping studies will 
emerge. FMRI practitioners, whether working in clinical or 
research fi elds, should continue to strive toward these goals.     
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    Chapter 13   

 Neuroimaging Approaches to the Study of Visual Attention                     

     George     R.     Mangun     ,     Yuelu     Liu    ,     Jesse     J.     Bengson    ,     Sean     P.     Fannon    , 
    Nicholas     E.     DiQuattro    , and     Joy     J.     Geng     

  Abstract 

   Selective attention is a core cognitive ability that enables organisms to effectively process and act upon relevant 
information while ignoring distracting events. Elucidating the neural bases of selective attention remains a key 
challenge for neuroscience and represents an essential aim in translational efforts to ameliorate attentional defi cits 
in a wide variety of neurological and psychiatric disorders. Moreover, knowledge about the cognitive and neural 
mechanisms of attention is essential for developing and refi ning brain–machine interfaces, and for advancing 
methods for training and education. We will discuss how functional imaging methods have helped us to under-
stand fundamental aspects of attention: How attention is controlled, focused on relevant inputs, and reoriented, 
and how this control results in the selection of relevant information. Work from our groups and from others will 
be reviewed. We will focus on fMRI methods, but where appropriate will include related discussion of electro-
magnetic recording methods used in conjunction with fMRI, including simultaneous EEG/fMRI methods.  

  Key words     Attention  ,   Control  ,   fMRI  ,   EEG  ,   ERPs  ,   DCM  ,   Human  ,   Vision  

1      Introduction 

 Attention is a key cognitive ability that supports our momentary 
awareness, and affects how we analyze sensory inputs, retain informa-
tion in memory, process it for meaning, and, fi nally, act upon it. In 
this review chapter we will consider the role of attention in  sensory 
processing and perception  . We begin with a defi nition of attention as 
it will be investigated in the studies to follow, starting with nineteenth 
century insights provided by psychologist William James [ 1 ]:

  “Everyone knows what attention is. It is the taking possession by the 
mind, in clear and vivid form, of one out of what seem several simulta-
neously possible objects or trains of thought. … It implies withdrawal 
from some things in order to deal effectively with others, …” 

   Relying on introspection, James noted key  characteristics   of atten-
tion that frame the theoretical landscape of attentional mechanisms. 
He noted the voluntary aspects of attention and its selection of rele-
vant from irrelevant information, as well as its capacity limitations. 
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 Our review will focus on studies of visual attention, and 
therefore, we also consider the work of James’ contemporary, 
Hermann von Helmholtz [ 2 ], who in his studies of visual  psycho-
physics   made observations and speculations on the mechanisms of 
visual attention. He wrote, in studies investigating the limits of 
visual perception, the following:

  “… by a voluntary kind of intention, even without eye movements, 
and without changes of accommodation, one can concentrate atten-
tion on the sensation from a particular part of our peripheral nervous 
system and at the same time exclude attention from all other parts.” 

   Helmholtz’s observations are in line with today’s knowledge 
about attention mechanisms, which include detailed understand-
ing of how attention infl uences stimulus processing at early and 
late stages of sensory analysis. 

    Attention is neither a single capability, nor is it supported by a single 
mechanism or brain system. Theoretically, we can consider two main 
forms of attention—voluntary attention and refl exive attention [ 3 ]. 
Voluntary attention is goal-directed and suggests a top-down infl u-
ence that is under intentional control. In contrast, refl exive attention 
is a stimulus-driven process involving bottom- up effects, for exam-
ple, as when a salient sensory signal grabs our attention. These two 
general categories of attention differ in their properties and perhaps 
their neural mechanisms. In this chapter, we will concentrate on 
studies of voluntary attention to illustrate how functional imaging 
has been used to elucidate brain attention mechanisms. 

 Another way of thinking about attention mechanisms is to 
consider the domain of information processing on which attention 
operates. For example, attention can operate within or between 
sensory modalities. That is, we can attend to visual inputs at the 
expense of auditory ones, or vice versa, or may attend to one aspect 
of visual input (e.g., stimulus location) at the expense of other 
stimulus attributes (e.g., color or motion). Thus, one may ask 
whether the mechanisms of attentional control are similar or dif-
ferent for attention to different sensory modalities compared with 
attention to different stimulus attributes [ 4 ]. One may also con-
sider whether the mechanisms supporting stimulus selection are 
modality and attribute independent, being instead specialized for 
the particular items to be attended [ 5 ]. In order to constrain the 
discussion in this chapter, for the most part, we will focus on visual 
attention, emphasizing attentional control and selection for  atten-
tion   based on stimulus location (spatial attention) and elementary 
stimulus features (e.g., color and motion).  

   One of the key questions in attention research has been where in 
information processing attention has its infl uence. If as Helmholtz 
suggested, attention could select some information coming from 

1.1  Varieties 
of  Attention  

1.2   Early and Late 
Selection Models  
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the peripheral nervous system, then it is essential to ask where 
within the ascending sensory pathways attention can alter stimulus 
processing to achieve selective processing. In the 1950s, Broadbent 
[ 6 ] described the idea of an attentional gate that could be opened 
for attended information and closed for ignored information. Like 
Helmholtz, Broadbent suggested that information selection might 
occur early in sensory processing. This idea has been termed  early  
  selection   , and it is the idea that a stimulus need not be completely 
perceptually analyzed before it can be selected for further process-
ing or rejected by a gating mechanism. 

 In contrast, so-called   late selection  models   hold that all 
(attended and unattended) sensory inputs are processed equiva-
lently by the perceptual system to a very high level of coding before 
they are selected by attention [ 7 ]. This high level is generally con-
sidered to be the level of categorical, or semantic, encoding where 
the elementary feature codes (e.g., orientation, contrast, color, 
form) are replaced by conceptual codes (e.g., that is a chair). Late 
selection models posit that selection takes place on these higher- 
level codes and thereafter representation in awareness may take 
place. This view, then, holds that selective attention does not infl u-
ence our perceptions of stimuli by changing the low-level sensory- 
perceptual processing of the stimulus. 

 A long debate and many studies have addressed the early ver-
sus late selection controversy [ 8 – 11 ], and physiological approaches 
including functional imaging have provided key information about 
the stages of sensory processing that are infl uenced by selective 
attention. We will thus begin our consideration of attention with 
its role in stimulus selection processes and how functional imaging 
has been used to investigate these mechanisms. But fi rst, in the 
next section, some design issues in the study of selective attention 
deserve consideration as they are of paramount importance for 
 physiological   studies of attention, including functional imaging.  

   The focus of the vast majority of studies of effects of attention on 
perception involves selective attention, attention to one thing at 
the expense of another. This is to be contrasted with nonselective 
attention, which includes generalized behavioral arousal (e.g., the 
classic orienting response) that does not necessarily involve attend-
ing one input while ignoring another. These latter nonselective 
attention mechanisms are certainly interesting, but selective mech-
anisms have generated the greatest interest and we review only 
these studies. Therefore, it is critical to understand the design 
parameters that permit selective versus nonselective attention to be 
isolated and studied, and to make note of some of the confounding 
infl uences that might contaminate studies of selective attention 
when nonselective factors (e.g., arousal) are not properly con-
trolled. We turn then to an example from the early history of the 
physiology of attention. 

1.3  Methodological 
Issues in Experimental 
Studies of  Selective 
Attention     
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 In the 1950s, the great Mexican neurophysiologist Raúl 
Hernández Peón and his colleagues [ 12 ] studied the neuroanatomy 
and neurophysiology of the ascending sensory pathways and how 
top-down attention might modulate sensation. Their work in the 
auditory system was motivated by the well-known neuroanatomical 
substrate for top-down modulation, the  olivocochlear bundle 
(OCB)  , which involves centrifugal neural projections from higher 
levels of the central nervous system downward to earlier processing 
stages especially the peripheral nervous system out to the level of 
the cochlea. The OCB provided a very strong neuroanatomical 
mechanism by which top-down effects of mental processes like 
attention might gate early auditory processing, in a fashion sug-
gested by Helmholtz and later Broadbent, among others. 

 Hernández Peón’s group recorded the activity in neurons in 
the subcortical auditory pathway in cats while they were either pas-
sively listening to the sounds from a speaker or were not attending 
the sounds. By showing the cats two live mice safely contained in a 
closed bottle, the cats were induced to ignore the sounds while 
they attended the mice. The researchers found that the amplitude 
of activity recorded from electrodes implanted in the cochlear 
nucleus was larger when the animals attended the sounds versus 
ignored the sounds while attending the bottled mice. This was 
interpreted as evidence that selective attention infl uences stimulus 
processing as early as the subcortical sensory pathways via the infl u-
ence of the top–down neural control inputs. 

 This work, published in the journal  Science , would however, 
later be shown to include a fatal fl aw. The fl aw was that the sounds 
presented to the cats to evoke auditory activity were delivered by 
speakers near the cats. When the cats attended the mice, they also 
oriented their ears and heads toward the mice, and away from the 
speakers, thereby altering the amplitudes of the  auditory   sounds at 
the ears due to simple physical  differences   in the relation of the ears 
to the sounds. Changes in the amplitudes of the sounds at the ear 
lead, in and of themselves, to changes in the amplitudes of auditory 
responses in the ascending pathways, and this tells us nothing 
about attention, although it mimics the kind of effect one would 
expect from an attentional mechanism. This problem can be elimi-
nated by controlling the amplitudes and qualities of the sensory 
stimuli when attended and ignored so that an ensuing difference in 
neural responses would be attributable to internal attentional 
modulations of sensory processing, not differences in the physical 
stimuli themselves across conditions. Similarly, the two conditions 
of Hernández Peón and colleagues likely also differed in nonspe-
cifi c behavioral arousal that may also have infl uenced the neuronal 
recordings since when cats see mice they are undoubtedly more 
aroused than when they listen to Beethoven, although the oppo-
site would hopefully hold for at least some human listeners. In 
either case, differences in behavioral arousal between comparison 
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conditions could confound the effects of selective attention, and 
therefore, like physical stimulus differences, must be rigorously 
controlled [ 13 ]. Failure to do so properly could lead to changes in, 
for example, hemodynamic signals that would present a serious 
confound in functional imaging studies of attention.   

2    Imaging Attentional Selection  Mechanisms   

 Studies using electrophysiological recordings have provided evidence 
that voluntary selective attention can infl uence the processing of sen-
sory inputs at early stages of neural analysis. Hillyard and colleagues 
[ 14 ] in what is considered the fi rst properly controlled study of audi-
tory selective attention in humans, showed that scalp- recorded audi-
tory cortical  event-related potentials (ERPs)   were enhanced with 
selective attention. In vision, the Hillyard group [ 15 ] similarly dem-
onstrated in humans that by 70-ms post stimulus onset, the electrical 
brain response to a stimulus presented to an attended spatial location 
was enhanced compared with an identical stimulus presented when 
that location was ignored; similar fi ndings reported previously could 
not rule out nonspecifi c effects of arousal or differential preparation 
for relevant targets based on learning the stimulus sequence [ 16 ,  17 ]. 

 The timing of the ERP method (in the order of milliseconds) 
provides strong evidence that early stages of information processing 
were infl uenced by visual selective attention because the fi rst inputs 
to the human visual cortex arrive only at about 40 ms after stimulus 
onset (based on intracranial recordings in patients). However, the 
scalp recordings are limited in the spatial localization they can pro-
vide in humans because the ERPs are recorded outside the skull and 
are, therefore, distant from the neuroelectric sources generating the 
signals. The volume conduction of the electrical signal through the 
brain, skull, and scalp is, on the one hand, an advantage that per-
mits scalp recordings in the fi rst place, but it also means that the 
electrical currents spread on the scalp (and are also fi ltered and spa-
tially blurred by the intervening tissues, especially the skull) and are 
hard to track backward to their three- dimensional intracranial site 
of generation [ 18 ]. Related studies in animals showed that area 
V4 in extrastriate cortex in the macaque monkey showed increased 
neuronal fi ring rates to attended-location stimuli as compared with 
unattended stimuli [ 19 ], and subsequent work has extended this to 
other extrastriate areas [ 20 – 22 ], as well as striate cortex [ 23 ,  24 ] 
and the subcortical visual relays in the thalamus [ 25 ]. 

 In humans, however, studies using functional imaging meth-
ods have provided the most detailed information about where in 
the ascending pathways visual selective attention modulates stimu-
lus processing, because methods such as positron emission tomog-
raphy (PET) and functional magnetic resonance imaging (fMRI) 
provide precise  information   about the neuroanatomical loci of 
attention effects and attention processes in the brain. 
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   Functional imaging methods provide neuroanatomical information 
about the mechanisms of human attention. That is, together with 
information from neurophysiological recordings, imaging approaches 
help to locate the neuroanatomical stages of information processing 
infl uenced by attention. For visual-spatial attention ( see  [ 26 ] for stud-
ies of nonspatial attention), we began using O 15  PET to provide func-
tional anatomical information to complement our earlier ERP studies. 
Indeed, in these early studies that began in 1991, we fi rst combined 
ERP and PET methods to provide a spatial–temporal approach to 
studying human attention [ 27 ,  28 ]. In subsequent studies beginning 
in the mid-1990s, we incorporated fMRI methods. 

 The goal of these functional imaging studies was to identify 
where within the visual system visual–spatial selective attention fi rst 
infl uenced sensory analysis. We presented subjects with bilateral 
stimulus arrays of nonsense symbols (two in each hemifi eld) fl ashed 
at a rapid varying rate, averaging about two stimulus arrays per 
second (Fig.  1 ). In order to control for physical stimulus differ-
ences between conditions, the subjects were required to maintain 
fi xation on a central fi xation point and their compliance was 
ensured using high-resolution infrared photometric monitoring 

2.1  Functional 
Imaging of  Visual–
Spatial Attention     

  Fig. 1    Stimuli and task used in a functional imaging and event-related potential 
(ERP) study of spatial  attention   [ 105 ]. Two blocked conditions of attention are 
shown: Attend left condition ( left column ) and attend right condition ( right col-
umn ). Subjects viewed rapid sequences of arrays (about 2.5/s) of nonsense sym-
bols (fl ashed for 100 ms) while maintaining fi xation of their eyes on a central 
fi xation spot ( plus sign ). There were always two symbols in the left and two in the 
right visual hemifi eld in locations each demarcated by an outline rectangle. The 
task was to detect and press a button to pairs of identical symbols at the attended 
location and to ignore all stimuli in the opposite hemifi eld. In the fi gure (but not 
in the actual experiment) the focus of covert spatial attention is indicated by a 
 dashed circle        
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and the horizontal  electro-oculograms (EOGs)  . In order to con-
trol for differences in nonspecifi c behavioral arousal, we included 
two main attention conditions that were equated in task diffi culty 
and arousal. The subjects had to covertly pay attention to the left 
half of the array in one condition and ignore the right (attend left 
condition), or attend the right half of the array while ignoring the 
left (attend right condition). Hemodynamic responses  (activations) 
in the brain could be compared for attend-left versus attend- right 
conditions. To be clear, the relevant design features were: (1) the 
stimulus arrays were identical, striking the same regions of the ret-
ina in the two attention conditions, (2) the two attention condi-
tions (attend left and attend right) were also equated for nonspecifi c 
arousal because the discrimination task was identical for both con-
ditions, and (3) the stimuli were presented randomly in a nonpre-
dictable sequence, so that the subjects could not adjust the global 
level of attentiveness on a trial-by-trial basis. As a result, any 
changes we observed in visual cortex could not be attributed to 
either differences in visual stimulation or to nonspecifi c factors 
such as arousal, but instead could be attributed to spatially-specifi c 
modulations of visual processing with the direction of spatial 
attention.

   We observed that spatial attention led to activations in extrastri-
ate cortex in the cerebral hemisphere that was contralateral to the 

  Fig. 2    fMRI and event-related potential (ERP) data from a study of visual-spatial selective  attention  . ( a ) Coronal 
structural scan of a single subject showing activations in contralateral visual cortex with spatial attention in 
the extrastriate cortex (left hemisphere is on the left). The activations were focused in the lingual gyrus (LG) 
and posterior fusiform gyrus (FG) and the middle occipital gyrus (MOG). ( b ) ERP attention effects shown as 
difference waves from a single lateral occipital electrode site in the right hemisphere (attend left minus attend 
right). The vertical scale is 2 μV per side (positive plotted downward). The onset of the array is indicated at time 
zero ( t  = 0), and the tick marks are 100 ms. ( c ) Topographic voltage attention difference map (110-ms latency) 
on the scalp surface viewed from the rear (left side of head on left side of fi gure) (adapted from [ 105 ])       
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attended side of the stimulus arrays (Fig.  2a ). These activations were 
highly statistically signifi cant in the posterior fusiform gyrus on the 
ventral cortical surface and in lateral-ventral occipital regions. In 
these early studies, no effects of visual-spatial attention were observed 
in primary visual cortex (area V1) but as we shall see later, such 
effects have since been observed using fMRI. The fi nding of local-
ized brain activations corresponding to the action of spatial atten-
tion alone is in accord with evidence from prior ERP studies [ 15 ,  29 , 
 30 ]. Also in this study, in a separate session, testing the same sub-
jects, we recorded ERPs for the same stimuli and task. The scalp-
recorded ERPs showed the expected P1 attention effects (Fig.  2b, 
c ), and by using neuroelectric dipole modeling we investigated 
whether intracranial neural generators at the loci of functional acti-
vations could produce activity in the model scalp that was similar to 
what we actually recorded in the ERPs (not shown in fi gure). We 
showed that the ERP and fMRI attention effects in the posterior 
fusiform gyrus (i.e., extrastriate visual cortex) were strongly related.

   This combined use of ERPs and functional imaging provided 
evidence for short-latency (around 100 ms after stimulus onset) 
changes in responses to visual stimuli as a function of spatial attention 
that were generated early in extrastriate visual  cortex  . In several stud-
ies, we and others have followed up these effects [ 31 ,  32 ] and have 
observed that these  modulations   with spatial attention affect multiple 
stages of visual cortical processing, from V1 toward inferotemporal 
cortex in the ventral visual stream. The next section reviews related 
work that also combined structural, functional, and cognitive imag-
ing to detail the structure of spatial attention effects in visual cortex.  

   A beautiful illustration of how spatial attention infl uences sensory 
processing in human visual cortex comes from the work of Tootell 
et al. [ 33 ]. They used fMRI to identify the borders of the fi rst few 
visual areas in humans (retinotopic mapping) and then conducted a 
spatial attention study similar to what was described earlier. In the 
Tootell study, subjects performed a simple spatial attention task that 
required subjects to covertly and selectively attend stimuli located in 
one visual fi eld quadrant while ignoring those in the other quad-
rants; different quadrants were attended in different conditions. 
Attentional activations were then mapped onto the fl attened repre-
sentations of the visual cortex, permitting the attention effects to be 
related directly to the multiple visual areas of human visual cortex, 
showing that spatial attention led to robust modulations of activity 
in striate cortex and multiple extrastriate visual areas (Fig.  3 ).

   By combining different methods for recording electrical activ-
ity, imaging brain structure, defi ning functional anatomy (i.e., reti-
notopic maps), and combining this with functional imaging in 
carefully controlled studies of selective attention, we can learn a 
great deal about the effects exerted by attention on sensory pro-
cesses in humans. Specifi cally, for spatial attention we now 

2.2   Mapping Spatial 
Attention in Vision  
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  Fig. 3    Spatial  attention   effects in multiple visual cortical areas in humans as demonstrated by fMRI. Activations 
with spatial attention to left-fi eld stimuli are shown in the fl attened right visual cortices of two subjects (one in 
the left column and the other on the right). The  white lines  ( dotted and solid ) indicate the borders of the visual 
areas as defi ned by representations of the horizontal and vertical meridians; each area is labeled from V1 (stri-
ate cortex) through V7, a retinotopic area adjacent to V3A. The  solid black line  is the representation of the hori-
zontal meridian in V3A. Panels ( a ) and ( b ) show the retinotopic mappings of the left visual fi eld for each subject, 
with colored activations corresponding to the  polar angles  shown at right (which represent the left visual fi eld). 
Panels ( c ) and ( d ) show the attention-related modulations (attended vs. unattended) of sensory responses to 
a target in the upper left quadrant (the quadrant of the stimuli is shown at right). Panels ( e ) and ( f ) show the 
same for stimuli in the lower left quadrant. In ( c ) through ( f ), the  yellow  to  red colors  indicate areas where 
activity was greater when the stimulus was attended to than when it was ignored; the  bluish colors  represent 
the opposite, where the activity was greater when the stimulus was ignored than when attended. The attention 
effects in ( c ) through ( f ) can be compared to the pure sensory responses to the target bars when passively 
viewed [( g ) and ( h )]. Note the retinotopic pattern of the attention effects in ( c ) through ( f ): The attention effects 
to targets in the lower left quadrant produced activity in several lower fi eld representations, which included the 
appropriate half of V3A (inferior V3A labeled with an “i”) in both subjects, and V3 and V2 in one subject. In 
contrast, attention to the upper left quadrant produced activity in the upper fi eld representation of V3A (S) and 
in the adjacent upper fi eld representation of area V7 (from [ 33 ])       

understand that it exerts powerful infl uences over the processing 
of visual inputs: Attended stimuli produce greater neural responses 
than do unattended stimuli, even when arousal and physical stimu-
lus differences are rigorously controlled, and this happens in mul-
tiple visual cortical areas beginning at short latencies after stimulus 
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onset (as short as 70 ms in humans). In part, such effects may help 
to bias competition between attended and ignored sensory inputs 
at the level of neuronal receptive fi elds as well as higher order  rep-
resentations   of the stimuli [ 34 ].   

3    Neuroimaging of Attentional Control Networks 

   A major goal in studies of  selective attention   is to understand how 
attention is controlled in the brain. Given that activity in sensory- 
specifi c cortex is modulated by attention, and therefore that the 
neuronal response properties of sensory neurons have been tempo-
rarily altered, what mechanisms lead to these changes in informa-
tion processing? Most models posit that some brain systems form 
 executive control systems   that, as a function of momentary behav-
ioral goals, are able to alter sensory-neural activity. Some models 
have referred to attentional control networks as the “sources” of 
attentional signals, and the sensory (and motor) systems that are 
affected as the “sites” where attention is implemented [ 35 ]. 

 This source versus site dichotomy is useful as it helps to distin-
guish between the role attention plays in modulating  sensory pro-
cessing   in the sensory systems and the neural mechanisms that 
produce this effect (Fig.  4 ). Presumably, neuronal projections from 
executive attentional control systems contact and infl uence neu-
rons in sensory-specifi c cortical areas in order to alter their excit-
ability. As a result, the response in sensory areas to a stimulus may 
be either enhanced if the stimulus is given high priority (i.e., is 
relevant to the behavioral goal) or attenuated if it is irrelevant to 
the current goal. More generally, though, attentional control sys-
tems could be involved in modulating thoughts and actions, as 
well as sensory processes.

   Studies of patients with brain damage, animal recordings and 
lesion studies, and functional imaging converge to show that a large 
network of cortical and subcortical areas is activated during atten-
tional orienting and selection [ 36 ,  37 ]. How can we measure the 
activity of the different  brain regions   during the execution of atten-
tional selection tasks in order to determine which networks involve 
attention control (sources of attention) and which are the sites of 
selection? In part, the answer is to implement tasks that, at least 
theoretically, dissociate attentional control processes from selection 
in time, as do trial-by-trial attentional cuing paradigms. In such par-
adigms, attention is cued at time 1, which is followed by a delay 
period of several hundred milliseconds or seconds, and then by the 
target stimuli at time 2 [ 38 ]. Such designs are different from that 
described earlier (Fig.  1 ), which used blocked attention conditions 
and rapid streams of stimuli to study attentional mechanisms, 
because theoretically, the cue (e.g., an arrow) triggers the action of 
the attentional control network at time 1, whereas selective stimulus 

3.1  Isolating 
Attentional Control 
Mechanisms
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processing would not take place until the target is presented later at 
time 2. Hence, by recording brain responses to the cue and target 
separately, one can identify the networks for control and selection, 
which was fi rst utilized in ERP studies by Russell Harter and his col-
leagues in the late 1980s [ 39 ]. Blocked- design fMRI attention stud-
ies make this diffi cult because the activations produced by attentional 
control and selection processes cannot be easily distinguished given 
that they are co-occurring in the images. Although  functional brain 
imaging  , which taps hemodynamic changes, is a rather poor method 
for tracking the time course of brain activity, when used in an event-
related design, and appropriate analytic strategies are employed to 
separate overlapping hemodynamic responses, it is possible to con-
duct an experiment like that just described; we and others have done 
so in several studies of selective attention. 

 In our initial studies [ 31 ], we used  event-related fMRI   to inves-
tigate attentional control mechanisms during visual-spatial 

  Fig. 4    Diagrammatic models of the infl uence of top-down attention control net-
works ( top ) on  sensory processing   ( bottom ). Sensory inputs are transduced at 
left and processed in multiple stages of analysis ( A ,  B , and  C ). Top-down infl u-
ences are shown as  vertical arrows  from the attentional control network. Here, 
the  dashed line arrows  indicated no infl uence on sensory processing stages  A  or 
 B , and the  heavy solid line arrow  indicates an infl uence of attention on process-
ing in sensory processing stage  C , with the result being selection, which is rep-
resented by three arrows coming into  C , but only one arrow leaving as output 
( bottom right ). If this were to refer to spatial attention, then the  arrows  in the 
sensory processing stream could correspond to different parallel visual fi eld 
location inputs in a retinotopic fashion, and the  single output arrow  at C refl ect-
ing that selective attention to one location was relatively facilitated (selected) 
with respect to the other locations       
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attention. An arrow, presented at the center of the display, indicated 
the side to which attention should be directed for that trial. Eight 
seconds later, a bilateral target display (fl ickering black and white 
checkerboards) appeared for 500 ms. The participants’ task was to 
press a button if some of the checks on the cued sides only were 
gray rather than white. The 8-s gap between the cue and the target 
stimuli allowed us to extract the hemodynamic responses linked to 
the attention-directing cues separately from those linked to the sub-
sequent targets. We were thus able to identify a top–down atten-
tional control network triggered by the presentation of the cue. 

 The attentional control network consisted of regions in the 
superior frontal cortex, inferior parietal cortex, superior temporal 
cortex, and portions of the posterior cingulate cortex and  insula   
(Fig.  5 ). These areas were not involved in the sensory analysis of 
the cue that was refl ected by activity in the visual cortex (identifi ed 
in control scans where the cue was passively viewed). Therefore, 
this attentional network of frontal, parietal, and temporal brain 
areas can be considered the sources of attention control signals in 
the brain [ 40 ], and has come to be known as the frontoparietal 
attention network or the dorsal attention network [ 41 ,  42 ]. The 
result of attentional control on the activity of visual cortex before 
and during target processing helps us to understand the relation-
ship between control signals and selective sensory effects of spatial 
attention, as described next.

   Figure  6  shows coronal sections through the visual  cortex   at 
two time points: fi rst in the cue-to-target period, prior to the 
appearance of the lateral target arrays, and then second, during 
target processing. Two contrasts are shown for each time point: 
the case for activity when left cue was greater than right cue (attend 
left > right), and the inverse (attend right > left). Following the 
attention-directing cue and prior to target onset, one can see sig-
nifi cant contralateral activation in multiple regions of visual cortex. 
These changes are spatially selective, being in the right visual cor-
tex for leftward attention, and in the left cortex for rightward 
attention. Importantly, they occur prior to the onset of the targets, 
which occurred more than 8 s later, and were not related to the 
simple visual features of the cue, which stimulated different regions 
of visual cortex. These contralateral activations to the cues repre-
sent a kind of attentional priming of sensory cortex, which is 
thought to form the basis for later selective processing of target 
inputs [ 43 ,  44 ]. Indeed, as also shown in the bottom half of Fig.  6 , 
the selective processing of subsequent target stimuli produced sim-
ilar contralateral activations in visual cortex. Another way to 
describe these patterns of activity to cues and targets is to say that 
regions of visual  cortex   that code the spatial locations of the 
expected target stimuli showed increases in background activity 
levels when attention was directed to those locations by the cues, 
even before the targets appeared.
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  Fig. 5    Activations during attention control  and target selection  . Group ( N  = 6 subjects) average activations 
time-locked to the cue (cues > targets contrast) isolating attentional control regions are shown on the  left . 
Those time locked to the targets (targets > cues contrast), indicating target processing and motor responses, 
are on the  right . The activated areas are shown in different colors to refl ect the statistical contrasts that 
revealed the activations:  bluish  for brain regions that were more activated to cues than targets, and  reddish -
 yellow  to indicate regions that were more active to targets than cues. The  top row  shows a view of the dorsal 
surface of the brain, the  middle row  shows a lateral view of the left hemisphere, and the  bottom row  shows its 
medial surface; the activity was the same for the right hemisphere, which is not shown. Attentional control 
involved the frontal-parietal attention network involving superior and middle frontal gyri (labeled  1 – 3 ), and the 
regions in and around the IPS (labeled  4 – 7 ), the superior temporal cortex (labeled  8 ), and the posterior cingu-
late cortex (labeled  10 ). In contrast, during target selection, the main areas of activation were now the supple-
mentary motor area (labeled  a ), the motor and somatosensory cortex (labeled  b – e ), posterior superior parietal 
lobule (labeled  f ,  g ), the ventral-lateral prefrontal cortex (labeled  h ) and the cuneus (labeled  i ) and the visual 
cortex (labeled  j ) (adapted from [ 31 ])       

   Similar effects have been observed in neurophysiological stud-
ies in monkeys [ 22 ]. Computationally, such effects may well be a 
mechanism for selective sensory processing by changing the base-
line gain of sensory neurons such that when later stimulated, they 
produced enhanced responses [ 45 ]. This illustrates the  mechanism   
put forward at the beginning of this section that top–down spatial 
attentional control may lead to selective changes in sensory pro-
cessing by changing the background fi ring rates of neurons, thereby 
improving their sensitivity and/or selectivity.  
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   One key question about  top–down attentional control systems   is 
the extent to which such mechanisms are generalized for the con-
trol of attention regardless of the modality or specifi c stimulus 
attributes to which selective attention is directed [ 46 ]. For exam-
ple, does preparatory attention for spatial selective attention involve 
the same or different control networks as would selective attention 
for color or motion? We have addressed this in studies using similar 
methods to those described in the foregoing. 

 In one study [ 32 ] we undertook a direct test of whether the neu-
ral mechanisms for the top-down control of both spatial and nonspa-
tial attention were the same. In this study, we compared spatial 
selective attention to nonspatial  color-selective attention  . That is, 
subjects were either cued to select the target stimulus based on loca-
tion or color. Our design was as follows. We randomly intermingled 
trials in which either the location or the color of an upcoming target 
was cued. The cues were letters (e.g., “L” = attend left and “B” = attend 
blue) located at fi xation in one task or the periphery above fi xation in 
another version of the task. The stimuli to be discriminated were 
rectangles (outlines) that when following spatial cues were located in 
the left or right hemifi elds or when following color cues were over-
lapping outline rectangles located at fi xation in one task version or 
above fi xation in the second task version. The participants were 
instructed to covertly direct attention to select an upcoming rectan-
gle stimulus based on the cued feature (location or color) with the 

3.2  Specializations 
in Attentional Control

  Fig. 6    Priming of visual cortex by spatial  attention  . The  top row  shows increased baseline activity in six sub-
jects to the cues in visual cortex. The  bottom row  shows the same effects to targets (adapted from [ 31 ])       
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task of discriminating its orientation. That is, in the  spatial cue condi-
tion  , if the cue signifi ed left, the subjects were to maintain fi xation on 
the central fi xation point, but focus covert attention to the left and to 
discriminate the orientation of the rectangle presented there  (vertical 
or horizontal), and to press the appropriate response key. When the 
cue indicated blue, however, this meant that the subjects should 
focus covert attention in preparation for discriminating the blue rect-
angle location in the same place as the cue (i.e., either at fi xation or 
in the periphery just above fi xation). 

 As in our studies [ 31 ] described earlier, event-related fMRI 
measures were obtained to the cues and to the targets, and sepa-
rately for spatial location and color attention trials. Because we 
jittered the  stimulus-onset-asynchrony   between cues and targets 
from 1000 to 8000 ms, it was possible to deconvolve the overlap-
ping hemodynamic responses [ 47 – 49 ]. This permitted us to utilize 
a paradigm that was more similar to cued attention designs in the 
cognitive psychology literature where the time between cues and 
targets was not too long for subjects to maintain a strong atten-
tional set (i.e., to sustain the covert allocation of attention to the 
cued color or location). In our prior work [ 31 ] and that of others, 
the need to separate the sluggish hemodynamic responses to adja-
cent stimuli typically resulted in long stimulus-onset-asynchronies 
in order to avoid overlap of the responses to cues and targets. By 
using specially designed stimulus sequences and analytic strategies 
it is possible to design cued attention studies that optimize the 
design parameters for investigating attentional mechanisms. 
Indeed, in cued attention designs, the speed of stimulus presenta-
tion can be even faster than the 1000–8000-ms lag between cues 
and target described here [ 50 ,  51 ]. 

 In this study, comparing preparatory attention for locations 
and colors we found that large regions of the frontoparietal net-
work were commonly activated by the spatial and nonspatial  cues   
alike (Fig.  7 ). Such related patterns of activity refl ect those aspects 
of the task that the two attentional control conditions shared, such 
as low-level sensory processing of the cues, decoding of linguistic 
information in the cue letter and matching that to the task instruc-
tion, establishing the appropriate attentional set and holding this 
information in working memory during the cue-to-target period, 
and fi nally, preparing to respond.

   To test whether any of the areas activated in response to the 
cues were selective for spatial or nonspatial orienting, we directly 
statistically compared activity in response to location and color 
cues. The results of this direct  comparison   are shown in Fig.  8a  for 
the activations where locations cues produce more activity than 
color cues. We found nonoverlapping regions of superior frontal 
and parietal cortex that were activated during orienting to location 
versus color. Orienting attention based on stimulus location acti-
vated regions of the dorsal frontal cortex [posterior middle frontal 
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gyrus and frontal eye fi elds (FEF)], posterior parietal cortex [intra-
parietal sulcus (IPS) and precuneus], and supplementary motor 
cortex. The inverse statistical contrast (color > location cues) 
 produced no signifi cant activations in the superior frontal or pari-
etal regions, and only showed activity in the ventral occipital cortex 
(OCC) (posterior fusiform, posterior middle temporal cortex, and 
left insula) (not shown in the fi gure).

   The pattern of selectivity in the frontoparietal attentional con-
trol network for location cuing suggests that  neural specializations   
exist for the control of orienting attention to locations or for cod-
ing some aspect of space tapped in spatial attention tasks [ 52 ]. But 
a question that must be addressed is whether these superior frontal 
and parietal regions are sensitive only for spatial orienting, and we 
have tested this by investigating specializations in attentional con-
trol for other presumably nonspatial features. 

 We investigated the idea that specializations in superior frontal 
and parietal cortex for preparatory spatial selective attention might 
also be involved in other aspects of  visual attentional processing  . In 
one study we compared preparatory attention for stimulus motion, a 
dorsal stream process, to the same nonspatial ventral stream feature, 
color used in Giesbrecht and colleagues [ 32 ]. In this study each trial 
began with an auditory word cue that instructed subjects to attend to 
a target of a particular stimulus feature (i.e., involving either color or 
motion attention). If cued to a color, then they were to prepare for 
and detect brief color fl ashes within a display of randomly moving 
dots presented during a subsequent test period. If cued to motion, 
then they were to prepare for and detect the brief coherent motion 
stimulus in the display of randomly moving dots [ 53 ,  54 ]. 

  Fig. 7     Cue-related activity  . Group-averaged data for brain regions signifi cantly 
activated to attention-directing cues, overlaid onto a brain rendered in 3D. Areas 
activated in response to location cues are shown in  blue , color cues in  red , and 
those areas activated by both cues are shown in  green . Maps are displayed 
using a height threshold of  p  < 0.005 (uncorrected) and an extent threshold of ten 
contiguous voxels (modifi ed from [ 32 ])       
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 In the study of preparatory attention for motion and color we 
observed activity in the frontal-parietal attention network for 
both motion and color cues that was similar to prior work [ 31 , 
 32 ,  40 ,  42 ,  43 ,  50 ,  55 – 58 ]. As in our study comparing location 
versus color  processing   (Fig.  8a ) we conducted direct statistical 
contrasts for motion versus color cues (Fig.  8b ). Again, as with 
the location versus color analyses, for motion versus color we 
found subregions of the attentional control network that were 
more active for motion than for color, and vice versa. Bilateral 
posterior superior frontal cortex and the left superior parietal cor-
tex were selectively active to motion cues, but no superior corti-
cal areas were selectively activated for the inverse contrast of color 
versus motion (color > motion). The activations for the motion 
versus color attentional control contrast were very similar to three 
regions of the attention control network we previously found to 
be selectively activated for preparatory spatial attention. There 
were also some differences, however, including failure to see 
activity in the right superior parietal cortex for the motion versus 
color contrast, suggesting that this right parietal region may also 
be involved in directing attention to locations. 

  Fig. 8    Attentional control activations for location and motion cues versus color 
 cues  . ( Top ) Results of the direct comparison between location and color cue 
conditions overlaid on an axial slice. Greater activity to location cues than color 
cues is seen in the superior frontal gyrus (SFG) and the superior parietal lobule 
(SPL) bilaterally (modifi ed from [ 32 ]). ( Bottom ) Results of the direct comparison 
between motion and color cue conditions overlaid on an axial slice. Greater activ-
ity to motion cues than color cues is seen in the superior frontal gyrus (SFG) 
bilaterally, but the superior parietal lobule (SPL) only on the left (modifi ed from 
[ 54 ])       
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 It is important to point out that in Fig.  8  we are comparing 
results across different studies in different populations of volun-
teers, and indeed using slightly different imaging methods and 
analyses (although conceptually the same). In order to know 
whether preparatory attention for location and motion activated 
identical subregions in the frontal-parietal attention network, one 
would have to conduct the within subjects experiment contrasting 
attentional cuing to location, motion, and color. Nonetheless, the 
similar fi ndings across these studies are highly suggestive and require 
some interpretation. How can one conceptualize these  fMRI   results 
of similar specializations in location and motion attention? 

 One view is that the  dorsal visual stream projecting   from visual 
cortex to parietal cortex represents, in part, visual information 
required for generating actions [ 59 – 62 ], rather than merely cod-
ing location per se as originally conceived by Ungerleider and 
Mishkin [ 63 ]. In line with this view is the evidence that the dorsal 
stream attentional control areas overlap with regions implicated in 
the control of voluntary eye movements [ 52 ,  64 – 66 ]. This opens 
the possibility that the close correspondence of superior frontal 
and parietal activity present for location and motion selective atten-
tion more than for nonspatial (color) attention is related to the role 
of both of these forms of attention in preparing actions, specifi cally 
those involved in oculomotor output. In the case of attention to 
locations the activity in oculomotor areas may represent prepara-
tion for  unexecuted  eye movements toward the attended location, 
and in the case of attention to directions of motion the activity may 
represent analogous preparation for ocular pursuit. Such a view is 
supported by the study of [ 67 ] who investigated  brain activations   
in cued covert attention, overt saccade tasks, and pointing tasks. 
They observed overlapping activity in the superior frontal and pari-
etal cortex for all three tasks. As noted, future studies will be 
required to address the speculations we have provided here and 
must include studies designed to compare and contrast different 
forms of preparatory attention.  

   So far we have focused our discussion of attentional control on the 
dorsal frontal and parietal cortex, the so-called dorsal attention 
network. The idea is that top-down signals from this system exert 
attentional control over perception based on behavioral goals and 
strategies. But when attention must be reoriented from an attended 
location to another location or object, a different network of brain 
 areas   has been shown to be activated (Fig.  9 ). This network has 
been called the  ventral attention network , and involves the 
 temporal- parietal junction (TPJ)  , together with ventral frontal 
regions including the insula, the portions of the inferior frontal 
gyrus and middle frontal gyrus of the right hemisphere [ 41 ,  68 , 
 69 ]. Evidence from various sources, such as resting-state fMRI 
[ 70 ] indicates that the dorsal and ventral attention networks are 

3.3  The  Ventral 
Attention Network  
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largely independent from one another anatomically, interacting via 
presumed frontal nodes (middle frontal gyrus) where the two net-
works show common activity in resting-state imaging.

   In early models [ 40 ] activity of the ventral attention network 
had been likened to a circuit breaker that upon detecting a poten-
tially task relevant item, sends a signal to the dorsal attention net-
work to disrupt its current attention focus and reorient attention 
to the new event. This model would require that the ventral atten-
tion network or some portion of it respond with short latency to 
stimulus events that might be task relevant. However, research 
using magnetoencephalography ( MEG)      has shown that both the 
parietal and frontal areas of the dorsal attention network have 
shorter latency responses [ 71 ] than those in the ventral attention 
network, such as in ERP recordings of the P300 that originate in 
TPJ [ 72 ]. These data, therefore, raise some doubts that the ventral 
attention network supports a fast circuit breaking mechanism. 

 Despite evidence against the idea that the ventral attention 
network acts as a circuit breaker permitting the dorsal attention 
network to reorient, it is nonetheless the case that the integrity of 
the ventral network is important for successful reorienting of atten-
tion to relevant events. Patients with lesions in the right ventral 
attention network, and who have contralateral neglect, have dis-
ruption in the interhemispheric coordination of the left and right 
IPS as shown by resting-state fMRI [ 73 ].  Transcranial magnetic 
stimulation (TMS)      studies has shown that  disruption   of the ventral 

  Fig. 9    Diagram of the  nodes   in the dorsal attention network ( blue ), ventral atten-
tion network ( orange ), and visual cortex ( light blue ) in the left and right hemi-
spheres of the human brain. The dorsal system is clearly bilateral in organization, 
but the ventral system is believed to be more right lateralized (noted by the dif-
ference in saturation of the  orange-colored nodes ). Putative connections within 
each hemisphere are shown by the  arrows. FEF  frontal eye fi elds,  IPS  intrapari-
etal sulcus,  VFC  ventral frontal cortex,  TPJ  temporoparietal junction,  V  visual 
cortex [ 76 ]       
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attention network in healthy volunteers leads to disordered orient-
ing and target detection [ 74 ]. Data such as these support the idea 
that the dorsal and ventral attention networks work together in 
attentional control, but this interaction may be different depend-
ing on the specifi c tasks demands [ 75 ] (for reviews see [ 76 ,  77 ]). 

 In order to evaluate the directionality of infl uences between the 
dorsal and ventral attention networks (or nodes in the network) we 
[ 78 ] used fMRI and dynamic causal modeling (DCM)       to investigate 
the interactions between TPJ and FEF during spatial attention [ 79 , 
 80 ]. In the task, subjects received a spatial cue at fi xation that 
directed them to focus covert attention on a location in either the 
left or right visual hemifi eld. Following the cue a few seconds later, 
bilateral stimuli were fl ashed to the left and right visual fi eld loca-
tions. The subjects’ task was to make a button press response (yes/
no) indicating whether a predesignated color target appeared at the 
cued (attended) location. Three different stimulus conditions were 
possible: a neutral condition where neither stimuli were the color 
target (response = no); a target condition where the color target 
appeared at the cued location (response = yes); and a target-colored 
distractor condition where the predesignated color stimulus appeared 
at the uncued location (response = no). The design, therefore, 
included a condition where a distractor stimulus that was the same 
color as the predesignated target color could appear at the uncued 
location. We reasoned that if the ventral attention network regions 
of the right hemisphere were involved only in reorienting spatial 
attention towards task-relevant stimuli, they would only respond 
with signifi cant changes in activation when the target-colored dis-
tracter was present. This  target-colored distractor   condition is the 
only condition where a relevant color stimulus appeared in the unat-
tended fi eld; neither of the other two conditions were expected to 
reorient spatial attention based on feature relevance because the tar-
get either appeared in the cued location or was absent. 

 We found that  reaction times (RT)   were about 50 ms slower in 
the target-colored distractor condition, indicating that the relevant 
color stimulus presented to the uncued location resulted in distrac-
tion, as would be expected based on the literature on contingent 
attentional capture [ 81 ,  82 ]. The question then, is what brain 
regions are sensitive to this attentional capture? Signifi cant activa-
tions in regions of the dorsal attention network were obtained to 
the  target-colored distractor  , including FEF, IPS, and the precu-
neus, and these activations were greater than for the target-present 
or neutral distractor conditions. This is in line with the idea that the 
dorsal attention network was more engaged during stimulus condi-
tions where attentional capture by distractors had to be  overcome. 
Regions within the dorsal network, including right FEF, were also 
signifi cantly activated by the cues, suggesting involvement during 
shifts of spatial attention  reorienting  , in response to the cue and 
target-colored objects in the uncued location. 
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 In contrast, the right TPJ was signifi cantly activated in all three 
stimulus conditions, with activation being largest when the target- 
colored distractor was presented. Interestingly, right TPJ was not 
selectively activated in the condition where the relevant color stim-
ulus appeared at the uncued location, providing evidence that this 
node of the ventral attention network is not only engaged to when 
attention is reoriented to task-relevant stimuli at unattended loca-
tions [ 69 ]. Importantly, the right TPJ did not respond to merely 
any stimulus: all responses to the 3 stimulus conditions were greater 
than that evoked by the spatial cues, which were not different from 
zero. From these patterns of activity, it appears the right FEF, but 
not the right  TPJ   was most engaged by the need to reorient spatial 
attention to potential or actual target stimuli; TPJ was activated by 
all stimulus conditions that required a response. 

 In order to assess the dynamics of interactions between the 
dorsal and ventral attention networks, we used DCM with time 
series data extracted from the right  FEF and TPJ  . The hypothesis 
that TPJ sends a signal to FEF to initiate reorienting of attention 
by the dorsal attention network predicts that our model should 
display an early TPJ response to stimulus driven inputs from the 
colored distractor, and a positive modulatory parameter on the 
connection from TPJ to FEF. However, if instead TPJ is involved 
in post-perceptual attentional or decisional processes, we would 
expect stimulus driven inputs to FEF, with modulation of the con-
nection from FEF to TPJ. First, none of the models that best fi t the 
data were consistent with the idea that right TPJ is activated rap-
idly by the potentially relevant (target-colored) distractor and 
sends a reorienting signal to the dorsal attention network. Instead, 
the model best supported by the DCM exercise was that right FEF 
receives stimulus inputs fi rst and then modulates activation in right 
TPJ (Fig.  10 ). This supports the notion that right TPJ is involved 
in post-perceptual processes rather than as a stimulus-driven circuit 
breaker that interrupts the current focus of attention and reorients 
attention by signaling the dorsal attention  network   [ 68 ,  77 ].

       Models of attentional control, as laid out in the foregoing, hold 
that activity in the sensory cortex is under top-down infl uences 
from control areas in the frontoparietal cortex during voluntary 
attention [ 35 ,  41 ,  83 ]. Despite recent advancements in our under-
standing of visual selective attention, one unresolved issue about 
the nature of top-down attentional control is whether attentional 
biasing is achieved primarily by enhancing the sensitivity of task- 
relevant sensory cortices or alternatively, via the inhibition of task- 
irrelevant areas. Further, a related question is whether areas residing 
outside of the sensory cortex but known to mediate other  task- 
independent processes  , such as the default mode network [ 84 ], are 
also “sites” that receive top–down modulation from the attentional 
control system as part of goal-directed behavior. 

3.4  Attentional 
Control Mechanisms 
Revealed 
by Simultaneous 
 EEG-fMRI  
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 The concurrent recording of EEG and fMRI open up new 
avenues to address the above questions related to attentional con-
trol mechanisms. Recording EEG simultaneously with fMRI 
enables the examination of trial-by-trial functional relationship 
between well-established attention-related neural markers in EEG/
ERP and BOLD activities in the attentional control system within 
an individual, thereby largely alleviating the issue of inter-session 
variability associated with multisession recordings. 

 In a recent study, we [ 85 ] utilized simultaneous EEG-fMRI to 
examine the mechanisms of  visuospatial attention  . Participants 
performed a standard visuospatial attention task during which they 
were cued to attend either the left or right spatial location in their 
peripheral vision. Following a random cue-target interval (2–8 s), 
the target stimulus was fl ashed at one of the peripheral spatial loca-
tion for 100 ms. Only when the target stimulus appeared in the 
attended hemifi eld were participants required to discriminate the 
spatial frequency of the target stimulus (5.0 vs. 5.5 cycles per 
degree of visual angle) and make a two-alternate forced choice 
response via a button press. EEG and fMRI  data   from the cue- 
target interval, when participants allocated their attention but 
before the target onset, were analyzed to isolate processes specifi c 
to attentional control. 

  Fig. 10    Dynamic causal models of interactions between rTPJ and  rFEF   showing 
driving inputs and intrinsic connections. ( a ) Model for the condition where the stimu-
lus included the target-colored distractor, which shows positive stimulus- driven 
infl uences on rFEF (0.72) but not rTPJ (-0.22), and positive (.60) intrinsic connectivity 
from FEF to TPJ: the only signifi cant modulatory parameter (−0.19) was on the con-
nection from rFEF to rTPJ. ( b ) Model for the condition where there was a target 
present (on the cued side). Here again the pattern is for a positive stimulus driven 
input to rFEF, and a positive intrinsic connection from rFEF to rTPJ. These models are 
consistent with FEF begin active fi rst, followed by activity in TPJ       
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 EEG studies of visuospatial attention have shown modulations 
of the posterior alpha rhythm (8–12 Hz) as a reliable signature of 
selective sensory biasing during lateralized attention allocation 
[ 86 ]. Following an attention-directing cue the alpha rhythm is 
more strongly suppressed over the occipital scalp regions contralat-
eral to the direction of attention than over the hemisphere ipsilat-
eral to the attended  direction   [ 86 – 89 ] (Fig.  11a ). This 
topographically-specifi c modulation of alpha is thought to refl ect 
an increase in baseline cortical excitability in the task-relevant sen-
sory cortex and at the same time might also refl ect an inhibition of 
task-irrelevant sensory areas in anticipation of upcoming stimulus 
events [ 90 ,  91 ]. To investigate the relationship between attention- 
related alpha lateralization and top–down attentional control net-
works we used the post-cue alpha modulation as an index of 
top-down sensory facilitation and correlated single-trial alpha 
power on each hemisphere with concurrently recorded BOLD sig-
nals to study mechanisms of attentional control.

  Fig. 11    Attentional modulation of EEG alpha and its coupling with  attentional control structures  . ( a ) Scalp topog-
raphy of alpha desynchronization showed that relative to a pre-cue baseline, alpha power was more strongly 
suppressed over the hemisphere contralateral to the attended hemifi eld for both the attend-left ( top left panel ) 
and attend-right ( top-middle ) conditions. The asymmetry in alpha desynchronization was further demonstrated 
by the difference topography contrasting attend-left and attend-right ( top-right ). ( b ) BOLD activities in bilateral 
intraparietal sulci (IPS) showed inverse coupling with alpha power measured on the hemispheres both contra-
lateral ( bottom-left ) and ipsilateral ( bottom-right ) to the attended hemifi eld (adapted from [ 85 ])       
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   We fi rst established a direct link between attentional modulation 
of alpha power (Fig.  11a ) and BOLD activity in the dorsal attention 
network (Fig.  11b ). The bilateral  intraparietal sulci (IPS)      were 
inversely correlated with single-trial alpha power measured in the 
hemispheres both contralateral and ipsilateral to the attended hemi-
fi eld. This indicates that on a trial-by-trial basis, when the IPS was 
more active, alpha was reduced more over the occipital regions on 
both hemispheres, providing direct evidence that the sensory cor-
tex excitability is modulated by the dorsal attention system. Further, 
a ROI-based analysis within the IPS revealed that the inverse cou-
pling was stronger for alpha contralateral to the attended hemifi eld 
than for alpha ipsilateral to the attended hemifi eld. Specifi cally, the 
number of voxels in IPS showing inverse coupling with alpha con-
tralateral to the attended hemifi eld were signifi cantly higher than 
those coupled with alpha ipsilateral to the attended hemifi eld (lIPS-
contralateral alpha: 222 voxels vs. lIPS-ipsilateral alpha: 184 voxels; 
rIPS-contralateral  alpha  : 262 voxels vs. rIPS- ipsilateral alpha: 
55 voxels;  p  < 0.001, one-sided, paired  t -test). In addition to the 
differences in cluster size, the level of inverse coupling between 
alpha and BOLD in lIPS was stronger (more negative) for alpha on 
the hemisphere contralateral than ipsilateral to the attended hemi-
fi eld (coupling strength for contralateral alpha: −1.26; ipsilateral 
alpha: −0.96;  p  < 0.05, one-sided, paired  t -test). In rIPS, we also 
found a similar but insignifi cant trend toward stronger inverse cou-
pling for contralateral alpha compared with ipsilateral alpha (cou-
pling strength for contralateral alpha: −1.04; ipsilateral alpha: −0.96; 
 p  > 0.05). Since post-cue reduction of alpha power was observed in 
both hemispheres relative to a pre-cue baseline in our study, the 
stronger inverse coupling between IPS and alpha contralateral to 
the attended hemifi eld suggests that visuospatial attention is 
enhancing neuronal activity within the task- relevant visual cortex, 
instead of inhibiting the task-irrelevant visual cortex. 

 Next, we examined whether other task-irrelevant networks 
outside of the visual system, or even outside of the sensory/motor 
system, were also modulated by visuospatial attention. For this 
purpose, we examined regions showing positive trial-by-trial 
 coupling with occipital alpha following the cue onset. This positive 
BOLD-alpha coupling would indicate a decreased level of BOLD 
activity when alpha power also decreased during attention deploy-
ment, and hence would identify regions potentially inhibited by 
attentional mechanisms. We found that areas in the sensorimotor 
cortices including the pre- and post-central gyri, as well as nodes in 
the default mode network including the  middle temporal gyrus 
(MTG)  , and the  medial prefrontal cortex (MPFC)   showed this 
positive BOLD-alpha  coupling   (Fig.  12a, b ). This might suggest a 
“push–pull”  mechanism   similar to that observed in studies involv-
ing attention to multiple sensory modalities [ 92 ,  93 ], where 
increased visual alpha (decreased visual cortical excitability) was 
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seen when attention is directed either to the somatosensory [ 94 , 
 95 ] or to the auditory domain [ 96 – 98 ]. Here we extend this 
“push–pull” mechanism to incorporate the default mode network 
and suggest that the level of task-independent self-referential pro-
cesses were also inversely coupled with attentional processes on a 
trial-by-trial level.

   Finally, as described in Sect.  1.1  of this chapter, voluntary 
attention is a type of goal-directed behavior under intentional 
control. One question related to this defi nition that is still not 
 well- understood is what brain structures are responsible of repre-
senting the goal and mediating the voluntary allocation of atten-
tional resources. More specifi cally, is the goal (or attentional-set) 
represented intrinsically within the  attentional control system  , or 
alternatively, are other executive structures also engaged in this 
process? Past studies have proposed the degree of alpha lateraliza-
tion across two hemispheres as an index of voluntary attention 
allocation during spatial attention [ 88 ,  99 – 101 ], with greater 
alpha lateralization signifying more effi cient allocation of atten-
tional resources according to the task rules. We thus correlated 
the trial-by-trial alpha lateralization index with BOLD and found 

  Fig. 12    Regions showing positive coupling between BOLD and alpha power mea-
sured on hemispheres  contralateral   ( a ) and ipsilateral ( b ) to the attended hemi-
fi eld. ( c ) A sagittal slice showing a region in the dorsal anterior cingulate cortex 
(dACC) with BOLD being positively correlated with the alpha hemispheric lateral-
ization.  MPFC  medial prefrontal cortex,  MTG  middle temporal gyrus,  postCG  
post- central gyrus (adapted from [ 85 ])       

 

Neuroimaging Approaches to the Study of Visual Attention



412

that activity in the  dorsal anterior cingulate cortex (dACC)   and 
adjacent regions within the MPFC and the left  dorsolateral pre-
frontal cortex (DLPFC)   are positively correlated with this alpha 
lateralization (Fig.  12c ). This positive correlation indicates that 
when alpha is more strongly lateralized, BOLD activity in these 
regions are also higher, implicating these areas in the mainte-
nance of the attentional-set and the modulation of goal-directed 
behavior [ 102 – 104 ]. Our results suggest that the voluntary allo-
cation of attentional resources also involves prefrontal executive 
 regions   other than the dorsal attention system. 

 In summary, the simultaneous EEG-fMRI recording tech-
nique has emerged as a powerful tool that can contribute signifi -
cantly to our understanding of the top-down mechanisms of 
attention. By mapping regions that were either positively or 
inversely coupled with posterior alpha over the hemispheres con-
tralateral or  ipsilateral   to the attended hemifi eld, we revealed that 
attentional mechanisms act as a combination of selective enhance-
ment of the task-relevant visual cortex and inhibition of task- 
irrelevant sensory and cognitive modalities. The voluntary 
allocation of attentional resources is further mediated by prefrontal 
executive cortices outside of the dorsal attention system.   

4    Conclusions 

 In this chapter we have reviewed the use of functional imaging in 
the study of selective attention. We addressed this topic from four 
perspectives: First, we laid out the theoretical and experimental 
design issues that are critical for studying attention, especially 
selective attention. Second, we illustrated that the attention system 
can be conceptualized as consisting of different  cognitive-neural 
components   (i.e., sources and sites of attention), and therefore, 
functional imaging methods that permit these different compo-
nents to be isolated and studied are necessary. Third, we described 
evidence that specializations in attention systems can be investi-
gated by experimental design approaches that capitalized on 
 comparisons between different forms of attention such as spatial 
versus nonspatial, and top-down voluntary attention and stimulus 
driven attention. In describing how specialized networks can be 
revealed we presented an application of the analysis of  functional 
connectivity   to probe the nodes within and between attention net-
works, in this case, using DCM as described in detail in a chapter 
of this volume by Karl Friston. Fourth, we pointed to the use of 
combined imaging and electrophysiological recording methods (in 
parallel or simultaneously) to provide temporal information and 
single-trial information (from  electroencephalography  ) that is not 
available using functional imaging based on hemodynamic or met-
abolic methods, as well as to shown how electrophysiological 
information can be used to inform the analysis of imaging data. 
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 We took our examples primarily from work in our laboratories 
but also presented the work of others where useful. We focused on 
visual attention, principally spatial attention, but the methodologi-
cal approaches are germane to all studies of attention, across 
modalities, and including translational efforts in disorders of atten-
tion and other psychiatric and neurological disorders. 

 Methodological advances have helped to reveal the neural 
mechanisms of attention. It is clear that attention mechanisms help 
to refi ne the processing of sensory information beginning as early 
as sensory-specifi c cortex, a concept that was hotly debated until 
the 1990s. For voluntary attention, a frontal parietal attentional 
control system provides biasing signals to sensory cortex that result 
in selective sensory processing, and functional imaging has proven 
crucial for understanding these relationships in humans. Other 
networks, such as the ventral attention network and the default 
mode network have also been identifi ed by functional imaging in 
humans. This work is leading to an increasingly rich understanding 
of the principles, organization, and mechanisms of human 
attention.     
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    Chapter 14   

 fMRI of Memory                     

     Federica     Agosta    ,     Indre     V.     Viskontas    ,     Maria     Luisa     Gorno-Tempini    , 
and     Massimo     Filippi      

  Abstract 

   Numerous fMRI studies have investigated the network of brain regions critical for memory. Whereas 
neuropsychological techniques can delineate the brain regions that are necessary for intact memory func-
tion, neuroimaging techniques can be used to investigate which regions are recruited during healthy 
memory formation, storage, and retrieval. For example, fMRI studies have shown that lateral prefrontal 
cortex (PFC) supports some components of working memory function. However, working memory is not 
localized to a single brain region but is likely a property of the functional interaction between the PFC and 
posterior brain regions. The medial temporal lobe (MTL) and its connections with neocortical, prefrontal, 
and limbic structures are implicated in episodic memory. Semantic memory is mediated by a network of 
neocortical structures, including lateral and anterior temporal lobes, and inferior frontal cortex, possibly to 
a greater extent in the left hemisphere. Memory for semantic information benefi ts from the MTL for only 
a limited time, and can be acquired, albeit slowly and with diffi culty, without it. To date, most of the 
emphasis has been on exploring the unique aspects of these different types of memory. Some evidence, 
however, of functional overlap in general retrieval processes does exist.  

  Key words     Working memory  ,   Encoding  ,   Retrieval  ,   Episodic memory  ,   Semantic memory  ,   Prefrontal 
cortex  ,   Medial temporal lobe  

1      Introduction 

 Memory shapes our behavior by allowing us to store, retain, and 
retrieve past experiences, and thus enables us to imagine the con-
sequences of our actions. These processes infl uence and are modi-
fi ed by the type of information that is to be remembered, the 
duration of time over which it must be retained, and the way in 
which the brain will use the information in the future. The  neural 
circuits   underlying these processes are dynamic, refl ecting the fl ex-
ibility of memory itself. fMRI enables detailed study of the neural 
networks that support memory function. To delineate the neural 
circuitry underlying memory, it is helpful to breakdown memory 
into simpler components. In this chapter, we focus on memory 
that is consciously accessible, and use the duration of retention to 
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dictate its parcellation: beginning with working memory, which 
holds information in mind for seconds to minutes, and moving on 
to long-term memory, which can be further divided into episodic 
and semantic memory.  

2    Working Memory 

 Working memory (WM) refers to the temporary storage and 
manipulation of information that was most recently experienced or 
retrieved from long-term memory but is no longer available in the 
external environment [ 1 – 3 ]. Most models of WM separate two 
 components   of WM: temporary stores of information, in the form 
of “buffers” or “slave systems,” that are usually modality-specifi c, 
and a central “executive” or set of processes that manipulate the 
information [ 2 ,  4 ]. Items in WM are stored only as long as the 
information is either being rehearsed (subvocally) or manipulated 
in some other fashion (i.e., rotated or integrated with existing 
information in semantic memory). The  capacity   of WM is limited 
by attention to about seven (plus or minus two) meaningful “bits” 
(or chunks) of information—these bits can be manipulated and 
either discarded or associated and transferred into long-term mem-
ory [ 5 ]. WM is central to everyday functioning and contributes 
signifi cantly to other areas of cognition. Baddeley and Hitch [ 1 ] 
proposed a model of memory that has infl uenced virtually all sub-
sequent research in the area. Their model is composed of  a   three- 
component system: (1) the “phonological loop,” comprising a 
limited capacity phonological store in which verbal information is 
stored temporarily and maintained by subvocal rehearsal (e.g., 
repeated subvocal articulation when trying to keep a phone num-
ber in mind), (2) the “visuospatial sketch pad,” a storage buffer for 
nonverbal material, such as the visual representations of objects, 
and (3) the “central executive,” which is responsible for strategic 
manipulation and execution of the aforementioned “slave” sys-
tems. The original model has subsequently been updated [ 2 ] to 
include an “episodic buffer” that provides an interface between the 
subsystems of WM and long-term memory. 

 The fi rst evidence for a role of prefrontal cortex ( PFC)   in WM 
came from lesion and electrophysiological studies in nonhuman pri-
mates [ 6 ,  7 ]. The fi rst neurons discovered – showing persistent 
activity during the delay period of WM—were found in the monkey 
 PFC   using single-unit neuron recording techniques [ 8 – 10 ]. This 
sustained activity is thought to provide a bridge between the stimu-
lus cue, for instance, the location of a fl ash of light, and its contin-
gent response, such as a saccade to the remembered location. 
Persistent activity during blank memory intervals is a very powerful 
observation and established a strong link implicating the PFC as a 
critical node supporting WM [ 3 ]. Since then,  physiological studies 
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in nonhuman primates have revealed active delay neurons in a large 
number of brain regions, including the dorsolateral (DL) and ven-
trolateral (VL) PFC, the intraparietal sulcus (IPS), posterior percep-
tual areas, and subcortical structures, such as the caudate and the 
thalamus (for a review,  see  Ref. [ 11 ]). In humans, however, the 
advent of modern  functional brain imaging techniques  , such as pos-
itron emission tomography (PET) and fMRI, enabled a more 
detailed study of the functional neuroanatomy of WM processes. 
Many of the neuroimaging experiments designed to elucidate the 
neural underpinnings of WM separate executive control processes 
from storage. For example, a number of studies have been designed 
such that WM maintenance is the task of interest (e.g., delayed 
response,    delayed recognition, delayed alternation, and delayed 
match-to-sample tasks). In a typical delayed recognition trial, the 
subject is fi rst required to remember a stimulus presented during a 
 cue  period and then to maintain this information for a brief  delay  
interval when the stimulus is absent. Then, the subject responds to 
a  probe  stimulus to determine whether the information was success-
fully retained. Thus, the maintenance and recognition decision pro-
cesses are temporally segregated and can be investigated in relative 
isolation. In this way, using fMRI, investigators can record neural 
activity during these distinct stages of WM. Brain regions exhibiting 
persistent activity above resting baseline during the delay period are 
often interpreted as being involved in WM maintenance processes 
[ 12 – 20 ]. Functional neuroimaging studies have revealed that the 
same collection of regions that were shown to be involved in WM 
in nonhuman primates displays signifi cantly increased activity dur-
ing delay tasks in humans [ 21 – 29 ]. For instance, in one fMRI study, 
subjects were scanned while they performed an oculomotor delayed 
matching-to-sample task that required maintenance of the spatial 
position of single dot of light over a delay period after which a 
memory-guided saccade was generated [ 27 ]. Both frontal eye fi elds 
and IPS showed activity that spanned the entire delay period. 
Moreover, the magnitude of the activity correlated positively with 
the accuracy of the memory- guided saccade that followed later 
[ 27 ]. Despite the relative simplicity of the delay period, however, 
multiple cognitive processes remain engaged concurrently, includ-
ing information maintenance, suppression of distraction, motor 
response preparation, mental timing, expectancy, monitoring of 
internal and external states, and preservation of alertness. As a 
result, even the maintenance period of WM is likely to be mediated 
by a distributed network of distinct brain regions, rather than to be 
localized to a single brain region [ 20 ]. 

   The extensive reciprocal connections from the PFC to virtually all 
cortical and subcortical structures place the PFC in an unique neu-
roanatomical position to monitor and manipulate diverse cognitive 
processes [ 20 ]. Marklund et al. [ 28 ] employed a mixed block and 

2.1  Organization 
of the WM Network

fMRI of Memory



422

event-related design in an fMRI study of episodic, semantic, and 
working memories contrasted with sustained attention. This 
approach identifi ed transient activity, particularly in the left DL 
PFC, that appears to refl ect the operation of WM during retrieval 
from long-term memory [ 28 ]. Furthermore, it has been found 
that the PFC shows activity during retention interval of delay task 
regardless of the type of information (e.g., spatial, faces, objects, 
words) [ 22 ,  24 ,  29 ]. In fact, there is a critical mass of functional 
neuroimaging studies emphasizing the stable persistent neural 
activity in selective lateral PFC neurons during the delay period in 
humans (“the  fi xed-selectivity model”)   (for review,  see  Ref. [ 3 ]). 

 A controversial issue in the literature is the extent to which 
WM can be segregated anatomically according to the type of to- 
be- retained material (e.g., verbal, space, object, visual, and audi-
tory) or the component processes (e.g., maintenance vs. 
manipulation of information) (for a review,  see  Refs. [ 3 ,  30 – 34 ]). 

   First, let us evaluate the evidence supporting anatomical segregation 
on the basis of stimulus category. Three types of material have been 
most commonly studied: verbal, spatial, and object  information  . A 
prevalent theory of material-type segregation in the frontal cortex 
suggests that there are dorsal and ventral memory streams for spatial 
and object information, respectively, similarly to the “where” and 
“what” pathways of the visual system [ 35 ]. The dorsal stream proj-
ects from the extrastriate cortex to the inferior parietal lobule (IPL) 
and the IPS and is involved in processing spatial information [ 35 ]. 
The ventral stream extends from the extrastriate cortex to the inferior 
surface of the frontal pole and processes object information [ 35 ]. 
Within the frontal cortex, WM for spatial information involves the 
superior DL  PFC   or the superior frontal sulcus, whereas object WM 
relies upon several mid- and inferior frontal regions (VL PFC) (for 
review,  see  Ref. [ 3 ]). Furthermore, there is a tendency for verbal and 
 object   WM to recruit more left- hemisphere areas, and for spatial tasks 
to recruit more right- hemisphere areas (for review,  see  Ref. [ 3 ]). 

 The processing of nonverbal spatial information is right lateral-
ized and associated with the activation of a fronto-parietal network 
(e.g.,  see  Ref. [ 36 – 41 ]). Using event-related fMRI, Courtney et al. 
[ 37 ] demonstrated a neuroanatomical dissociation between delay 
period activity during WM maintenance for either the identity 
(object memory) or location (spatial memory) of a set of three face 
stimuli. Greater activity during the delay  period   on face identity trials 
was observed in the left inferior frontal gyrus (IFG), whereas greater 
activity during the delay period of the location task was observed in 
dorsal frontal cortex (bilateral superior frontal sulcus) [ 37 ] (Fig.  1 ).

   WM for objects, mostly visually presented faces, houses, and line 
drawings that are not easily verbalizable, seems to be  right- lateralized 
and activates the temporal-occipital regions [Brodmann area (BA) 
37] (e.g.,  see  Refs. [ 21 ,  26 ,  29 ,  36 ,  39 ,  42 – 44 ]). 

2.1.1  Organization 
of WM by Material Type
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 In contrast to object, processing of verbal WM activates regions 
in the left hemisphere. Broca’s area (BAs 44/45), premotor areas 
(supplementary motor area and premotor cortex) [ 45 – 48 ], and the 
 cerebellum   [ 24 ,  47 ,  49 ,  50 ] are critical for the articulatory subvocal 
rehearsal. Phonological maintenance has been associated with 
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  Fig. 1    An event-related fMRI study of  delay period activity   during working memory (WM) maintenance for 
either the identity (object memory) or location (spatial memory) of a set of three face stimuli. ( a ) Schematic 
depiction of the fMRI tasks: subjects saw a series of three faces, each presented for 2 s in a different location 
on the screen, followed by a 9-s memory delay. Then a single test face appeared in some location on the 
screen for 3 s, followed by a 6-s intertrial interval. Before each series, subjects were instructed to remember 
the locations or the identities of the three faces in the memory set. For the spatial task, the subject indicated 
with a left or right button whether the test location was the same as one of the three locations presented in the 
memory set, regardless of the face that marked that location. For the face memory task, the subject indicated 
whether the test face was the same as one of the three faces observed in the memory set, regardless of the 
location where the face appeared. For the sensorimotor control task, scrambled faces appeared (control stimu-
lus set), and when the fourth scrambled picture appeared after the delay, subjects pressed both buttons 
(control response). Contrasts between task components are shown below the task diagram: ( 1 ) visual stimula-
tion vs. no visual stimulation, ( 2 ) memory stimuli vs. control stimuli, ( 3 ) control stimulus set vs. control response, 
( 4 ) memory stimulus set vs. test stimulus and response, ( 5 ) delays during anticipation of response vs. intertrial 
intervals, and ( 6 ) memory delays vs. control delays. ( b ) Areas with signifi cant sustained recruitment in a single 
subject during the WM delay for faces ( blue outline ) and for spatial locations ( red outline ) overlaid onto the 
subject’s Talairach normalized anatomical MR image. Level above the bicommissural plane is indicated for 
each axial section (from Courtney et al. [ 37 ])       
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activity in parietal areas, particularly the IPL (i.e., BAs 39 and 40) 
[ 24 ,  45 ,  46 ,  49 – 53 ] but also in the superior parietal lobe [ 47 ,  49 , 
 52 ,  53 ]. For instance, using an event-related design, Chein and Fiez 
[ 45 ] designed a delayed serial recall task requiring subjects to encode, 
maintain, and overtly recall sets of verbal items for which phonologi-
cal similarity, articulatory length, and lexical status were manipulated 
and reported that Broca’s area and BA 40 showed patterns of sus-
tained activity during the delay period of a verbal WM task. 

 More recently, Raye et al. [ 48 ] provided evidence that left VL 
PFC appears associated with subvocal rehearsal of single words, 
whereas left DL PFC activation is associated with participants 
“refreshing” (simply thinking about) the visual appearance of a 
recently presented word [ 48 ]. 

 Despite this growing evidence for  segregation   by material type, 
there are also several human functional imaging studies that have 
failed to fi nd evidence for segregation in PFC WM activity (e.g.,  see  
Refs. [ 16 ,  54 ,  55 ]). For instance, using an event-related design, 
Postle and D’Esposito [ 16 ] evaluated the organization of WM for 
the identity and location of visually presented stimuli (target stimuli 
for all object trials were 16 abstract polygon stimuli, determined in 
normative testing to be diffi cult to associate with real-world objects). 
Although the task produced considerable  delay-period activity   in VL 
PFC, DL PFC, and superior frontal cortex, in no subject, PFC activ-
ity was greater for one  stimulus domain   than for the other [ 16 ]. 
Moreover, in a large meta-analysis based on 60  neuroimaging   (both 
PET and fMRI) studies of WM [ 55 ], analyses of material type showed 
the expected dorsal–ventral dissociation between spatial and nonspa-
tial storage in the posterior cortex, but not in the frontal lobe. Some 
support was found for left frontal dominance in verbal WM, but only 
for tasks with low executive demand. Executive demand increased 
right lateralization in the frontal cortex for spatial WM [ 55 ].  

   The other axis along which investigators have suggested that human 
lateral PFC involvement in WM is segregated is according to the type 
of operation performed upon the contents of WM, rather than the 
type of information being maintained. In particular, several fMRI 
studies have focused on the distinction between two fundamental 
WM processes, namely the passive   maintenance    of information in 
short-term memory and the active  manipulation  of this information, 
within the PFC (for review,  see  Ref. [ 3 ]). This model received initial 
support from a PET study by Owen et al. [ 56 ] in which dorsal PFC 
activation was found during three spatial WM tasks thought to 
require greater monitoring of  remembered   information (i.e., a mne-
monic variant of modifi ed Tower of London planning task requiring 
short-term retention and reproduction of problem solutions) than 
two other WM tasks (i.e., the modifi ed Tower of London planning 
task, and a control condition that involved identical visual stimuli and 
motor responses) that activated only ventral PFC. 

2.1.2  Organization 
of WM by Process Type
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 This model was also tested using fMRI (for review,  see  Ref. [ 3 ]). 
The VL PFC has been suggested to be primarily involved only in 
WM  mechanisms   that support simple retrieval of information for 
sensory-guided sequential behavior (maintenance) [ 57 – 60 ], whereas 
DL  PFC   (particularly BA 46) has been found to serve mechanisms 
of active monitoring and manipulation of information (or general-
ized executive processing) in WM [ 61 – 63 ]. For instance, in an 
event-related fMRI study [ 61 ], subjects were presented with two 
types of trials in random order in which they were required to either 
maintain a sequence of letters across a delay period or manipulate 
(alphabetize) this sequence during the delay in order to respond cor-
rectly to a probe. The authors found that dorsal PFC activity was 
greater in trials during which actively maintained information was 
manipulated, providing further support for a process- specifi c PFC 
organization. However, this functional PFC division has not been 
consistently replicated and seems to vary with materials and diffi culty 
[ 55 ]. Moreover, this distinction is not compatible with evidence of 
continuous DL PFC activity in tasks without any manipulation [ 32 , 
 64 ]. A large meta-analysis [ 55 ] showed that tasks requiring execu-
tive processing generally produce more dorsal frontal activations 
than do storage-only tasks, but not all executive processes show this 
pattern. For instance, superior frontal cortex (BAs 6, 8, and 9) 
responded most when WM must be continuously updated and when 
memory for temporal order has to be maintained [ 55 ]. Right ventral 
frontal cortex (BAs 10 and 47) responded more frequently with 
demand for manipulation (including dual- task requirements or 
mental operations) [ 55 ]. Posterior parietal cortex (BA 7) was found 
to be involved in all types of executive functions [ 55 ].   

   fMRI studies of WM have also found that the fronto-parietal net-
work is not the only region that is active during the temporary 
retention of task-relevant information.  PFC   and parietal cortex do 
not seem to be suffi cient to perform WM for novel stimuli when 
parahippocampal regions are lesioned [ 65 ], although they are suf-
fi cient to maintain normal WM for familiar stimuli [ 66 ]. 
Surprisingly, early fMRI studies of WM did not report activity 
within parahippocampal regions such as perirhinal (PrC) or ento-
rhinal cortex [ 67 ]. An fMRI study by Stern et al. [ 68 ] demon-
strated differential activation for novel vs. familiar stimuli during 
performance of a 2-back WM task.       This study showed that WM for 
a highly familiar set of complex visual images primarily activated 
prefrontal and parietal cortices, whereas the same task using novel 
(trial-unique) visual images strongly activated parahippocampal 
structures in addition to prefrontal and parietal cortices. Activation 
of parahippocampal structures associated with WM for novel stim-
uli has also been shown in an event-related fMRI study using novel 
face stimuli [ 25 ,  69 ].  

2.2  Medial Temporal 
Lobe  Involvement   
in  WM  
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   By varying experimental design (e.g., parametric memory load 
variation [ 23 ,  43 ]), attempts have been made to associate identi-
fi ed brain regions with different processes occurring during the 
delay. The fi rst fMRI study aimed at characterizing regional inter-
actions in WM has used a block-design fMRI paradigm with a 
graded  n -back verbal WM task [ 70 ]. Changes of effective connec-
tivity within a fronto-parietal WM network related to different lev-
els of WM load were studied. The results revealed enhanced inferior 
fronto-parietal connectivity and also increased interhemispheric 
communication between DL PFC regions as correlates of increas-
ing WM load [ 70 ]. A following event-related fMRI study charac-
terized the neural network mediating the online maintenance of 
faces [ 71 ] (Fig.  2 ). The fusiform face area (FFA) was defi ned as a 
seed and was then used to generate whole-brain correlation maps. 
A random effects analysis revealed a network of brain regions 
exhibiting signifi cant correlations with the FFA seed during the 
WM delay period. This maintenance network included the DL and 
VL PFC, the premotor cortex, the IPS, the caudate nucleus, the 
thalamus, the hippocampus, and occipitotemporal regions [ 71 ].

   These fi ndings support the notion that the coordinated  func-
tional   interaction between nodes of a widely distributed network 
underlies the active maintenance of a perceptual representation and 
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provides convergent evidence that fronto-parietal and 
interhemispheric frontal connectivities are central in WM [ 70 ,  71 ]. 
More recently, it has been demonstrated that visual WM involves 
top-down signals from the lateral PFC to parietal cortex [ 72 ,  73 ] as 
well as communication from fronto-parietal regions to visual cortex 
[ 74 ]. Additionally, interactions between basal ganglia and the lat-
eral PFC are thought to mediate the fi ltering of task- irrelevant 
information and the updating of task-relevant information in WM 
[ 75 ]. Future  studies   are warranted to understand further the func-
tions resulting from interactions between these regions to build a 
complete picture of WM.   

3    Long-Term Memory for Consciously Accessible Material: Episodic 
and Semantic 

 Within the declarative or consciously accessible long-term memory 
system, “episodic” and “semantic” memory can be distinguished. 
Episodic m emory (EM)   allows the recollection of unique personal 
experiences: rich, vivid reexperiencing of past events. Semantic 
memory ( SM)  , in contrast, refers to generic information that is 
acquired across many different instances and accessed indepen-
dently of the details of the context in which the information was 
fi rst encountered [ 76 ]. This fractionation of declarative memory is 
supported by evidence that episodic and semantic memory have 
distinctive anatomical substrates [ 77 – 80 ]. Therefore, we will con-
sider each memory type individually. Of note, autobiographical 
memory can be either semantic, as in one’s knowledge of the 
names of all the schools that one attended, or episodic, as in one’s 
memory for a particular birthday: what binds autobiographical 
memories to each other is self-awareness.  

4    Episodic Memory 

 EM enables us to access and reexperience the sights, sounds, smells, 
and other details of a specifi c event [ 76 ]. Most  EMs   are available 
for several minutes or hours but over time access to their details 
degrades [ 81 ]. Others remain accessible with their details for a life-
time [ 82 ]. This temporal difference in storage highlights the com-
plexity of EM: episodic remembering is composed of several 
component processes, including the retrieval of information from 
across sensory domains and the reconstruction of an event from a 
set of individual details. 

   One of the major advances in the study of EM has been the appli-
cation of  neuroimaging techniques   to distinguish the component 
processes of encoding and retrieval. In neuropsychological studies, 
it is often diffi cult or even impossible to separate failures of EM 

4.1  Distinguishing 
Encoding and Retrieval 
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due to encoding or retrieval processes. Functional imaging affords 
researchers the opportunity to separate the neural underpinnings 
of these processes and is particularly helpful in understanding the 
distinct roles of medial temporal lobe ( MTL)   subregions, which 
are often damaged equivocally in patients with lesions [ 83 ]. 
Furthermore, neuroimaging evidence has shown that prefrontal 
and other cortical areas are engaged during episodic remembering, 
a fact that had not been clear from patient data alone [ 84 ]. 

 Neuroimaging studies have indicated that individual elements 
of EMs may be permanently stored within the same neocortical 
regions that are involved in initial processing and analyzing of the 
information [ 85 ,  86 ]. Several studies have demonstrated the reac-
tivation of the visual cortex during retrieval of visual details [ 85 , 
 87 ], activation in the  auditory cortex   during auditory memory 
retrieval [ 88 ], and activation in the motor cortex during the 
retrieval of memory for actions [ 89 ]. Insofar as episodic remem-
bering involves reexperiencing the details of an event, it is not sur-
prising that brain regions involved in the initial perception of these 
details are reactivated during their retrieval. 

 According to several infl uential memory models, each differ-
ent cortical region makes a unique contribution to the storage of 
a given memory and all regions participate together in the cre-
ation of a complete memory representation [ 90 – 92 ]. The  MTL  , 
then, is saddled with the task of binding together these different 
regional contributions into a coherent memory trace [ 90 ]. In the 
MTL, the  hippocampal formation   receives processed sensory 
information from association areas in the frontal, parietal, and 
occipital lobes via the parahippocampal cortex [ 93 ]. Given its 
anatomical placement and architecture, the hippocampus has the 
unique ability to bind “what happened,” “when it happened,” 
and “where it happened” together [ 90 ]. The architecture of the 
hippocampus includes a circular pathway of neurons from the 
entorhinal cortex to the dentate gyrus, CA3 and CA1 neurons of 
the hippocampus to the subiculum, and back to the entorhinal 
cortex [ 94 ]. The connections within the hippocampal formation 
and between the MTL and neocortical regions are formed more 
rapidly than are the connections between disparate cortical 
regions [ 92 ]. Therefore, when a particular cue in the environ-
ment or the mental state of the person activates cells in the corti-
cal regions, the MTL network that is associated with that cue is 
reactivated and the entire neocortical representation is strength-
ened. As multiple reactivations occur, the connections between 
the relevant  neocortical regions   are slowly strengthened until the 
memory trace no longer depends on the activity of the MTL, but 
may be entirely represented in the neocortex [ 90 ]. Using both 
fMRI and neuropsychological techniques, consistent evidence 
suggests that the hippocampus remains involved in the retrieval 
of EMs regardless of the age of the memory [ 95 ]: several authors, 
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then, have proposed that the hippocampus acts as a pointer or 
index, recreating the activation in the neocortex that represents 
the individual elements of the memory [ 96 ]. 

   Simply perceiving and attending to information in the world is not 
suffi cient to create a lasting long-term memory trace. Some other 
process or processes are engaged in order to bind elements of an 
episode into a coherent memory trace. There is some disagreement 
concerning whether all memories are initially episodic and later 
become semantic, or whether some memories are semantic in 
nature from the outset [ 97 ,  98 ]. One might argue that every learn-
ing episode is encoded as such, and as items from an episode get 
integrated into the network of semantic information, those items 
become disassociated from the episode itself and associated instead 
with the information already in semantic memory [ 97 ]. In fact, 
several memory models suggest that episodic and semantic infor-
mation is learned via different mechanisms: elements of an episode 
are rapidly bound together by autoassociative processes in the den-
tate gyrus and CA3 fi eld [ 99 ], while semantic information is grad-
ually acquired over many repetitions by reorganization of Hebbian 
synapses in the neocortex [ 91 ,  100 ,  101 ]. 

 Pioneering neuroimaging studies in the 1990s implicated the 
PFC, particularly the left lateral PFC, in semantic or associative 
encoding, by showing that this region, in addition to the  MTL  , 
shows greater neural activity during semantic encoding than  during 
more superfi cial or perceptual encoding [ 102 ,  103 ]. Furthermore, 
novel stimuli have been shown to elicit greater neural activity in the 
MTL than familiar stimuli [ 104 ,  105 ], providing more evidence 
for the involvement of the MTL in encoding processes. 

 A direct link to episodic encoding processes, however, required 
the advent of event-related fMRI designs to investigate these cog-
nitive processes [ 106 ]. Encoding trials were binned according to 
whether information presented on a given trial is subsequently 
remembered or forgotten. Subsequent memory studies have shown 
that activation in the left and right PFC, the parahippocampal 
gyrus [ 107 ,  108 ], and hippocampus [ 109 ] during encoding pre-
dicts successful memory retrieval (Fig.  3 ). Since these original 
studies, many more studies have replicated the fi nding that  MTL   
activity correlates with episodic encoding [ 110 – 113 ]. Furthermore, 
fMRI studies have shown that hippocampal activity correlates with 
the subsequent retrieval of contextual details presented during 
encoding, while activity in the PrC correlates with successful 
retrieval of an individual item, but not with retrieval of episodic 
details [ 111 – 115 ]. Staresina and Davachi [ 116 ] have shown that 
since the PrC receives inputs mainly from cortical areas devoted to 
the processing of visual information, recruitment of this region 
also correlates with the retrieval of visual features of items, such as 
the color in which they were presented, but not with other 
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contextual details. These data suggest that while the hippocampus 
 binds   elements from all domains, the more specialized regions of 
the MTL and surrounding cortices may play domain-specifi c roles 
in EM encoding. Furthermore, the authors report that the activa-
tion in the hippocampus increased stepwise with increasing num-
bers of successfully encoded associations.

   A number of studies, however, have also failed to fi nd reliable 
MTL activation related to successful episodic encoding [ 117 – 120 ]. 
While neuropsychological data demonstrate that the MTL is nec-
essary for new episodic encoding, processes following encoding 
such as retrieval, consolidation, interference, and so on may have a 
larger impact on subsequent remembering than encoding-related 
MTL activity.  

   Work on EM retrieval points to a set of highly fl exible retrieval 
operations that are differentially engaged depending on the par-
ticular demands of the situation. In general, the network that sup-
ports these retrieval operations includes PFC, MTL structures, and 
posterior sensory cortices. Identifying the contributions of these 
brain regions to episodic retrieval processes has demanded new 
methodologies capable of distinguishing subtle dissociations across 
similar retrieval tasks. This section explores three emerging themes: 
the role of PFC and posterior sensory cortices, the role of MTL 
subregions and the role of parietal cortex in retrieval success. 

4.1.2  Retrieval
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   Early neuroimaging work contrasting encoding and retrieval 
processes revealed a consistent asymmetry in the activations of pre-
frontal regions [ 121 ,  122 ]: specifi cally, greater activation of the left 
PFC during encoding, and relatively greater activation of the right 
PFC during episodic retrieval [ 121 ,  122 ]. This pattern, termed 
“hemispheric encoding-retrieval asymmetry” (HERA), provided 
early insights into the neural basis of EM retrieval and a framework 
for the design of future studies [ 122 ]. 

 Further exploration of this relationship, however, demon-
strated that the HERA model was insuffi cient. The current view is 
that HERA refl ects the maintenance of a retrieval mode, or a back-
ground cognitive state in which one is mentally attuned to the 
retrieval process, is sensitive to incoming cues, and is capable of 
becoming consciously aware of successful retrieval. Lepage et al. 
[ 123 ] compared data across four PET studies and concluded that 
six PFC regions were consistently recruited by episodic recogni-
tion. These included bilateral posterior ventrolateral areas, bilateral 
frontopolar regions, right dorsal PFC, and midline cingulate area 
near the supplementary motor area.    How and when these regions 
are recruited in EM retrieval depends on task demands. As pro-
posed in the source-monitoring framework [ 124 ], retrieval 
attempts differ in the strategies used to access different cortical 
representations  depending on the nature and source of those represen-
tations . For example, visuospatial, semantic, or emotional cues are 
often called upon to aid in episodic retrieval, and each of these cues 
stimulates a slightly different set of cortical regions. 

 Using event-related fMRI, Dobbins and Wagner [ 125 ] showed 
that the recollection of conceptual or perceptual details of an epi-
sode results in greater activation in the left frontopolar and poste-
rior PFC than the detection of novelty. The authors interpret this 
fi nding as an evidence that a domain-general control network is 
engaged during contextual remembering. In contrast, left anterior 
VL PFC coactivated with a left middle temporal region associated 
with semantic representation, during conceptual recollection, 
while right VL PFC and bilateral occipito-temporal cortices were 
coactivated during recollection of perceptual details. Therefore, 
whereas left frontopolar and posterior PFC may be involved in 
domain-general retrieval processes, the middle temporal, right VL 
PFC, and occipito-temporal regions may be more 
domain-specifi c. 

 Interestingly, emerging data suggest that PFC is not involved in 
distinguishing correct from incorrect retrieval. Dobbins et al. [ 126 ] 
found that activation in the left MTL was greater for correct than 
for incorrect source attributions, or episodic retrieval, but that 
numerous PFC regions that showed increased activation during 
source memory retrieval did not distinguish between correct and 
incorrect trials. Moreover, activation in some of these regions was 
actually numerically greater for failed retrieval attempts. The authors 
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interpret these fi ndings as evidence that the  PFC   is involved in 
elaborative or monitoring operations, which may be enhanced 
when retrieval fails. Furthermore, Velanova et al. [ 127 ], using a 
mixed block/event-related design to explore sustained and tran-
sient control processing during EM retrieval, found that left PFC 
activation was associated trial-by-trial with retrieval when high con-
trol was required, whereas right PFC and several right posterior 
regions were associated with sustained control processes, which the 
authors viewed as a refl ection of attentional set or retrieval mode. In 
line with this idea, Kahn et al. [ 128 ] also failed to fi nd differences in 
prefrontal responses as a function of source retrieval outcome, and 
PFC regions were more active during trials for old items than for 
new ones. In addition,    Wheeler and Buckner [ 129 ] found that acti-
vation in PFC correlates with retrieval processes and not with 
retrieval success: they found that left posterior and mid- VL PFC 
activity for items that were highly rehearsed and therefore easily 
identifi ed as old was not different than for new items. By contrast, 
left PFC activity for items previously encountered only once was 
greater than for both the old and new items, suggesting that left 
PFC activity does not correspond to retrieval success. The authors 
concluded that left VL PFC activity refl ects a processing control 
operation that is selectively engaged during demanding retrieval.  

   Investigating MTL activation using fMRI can be diffi cult not only 
because the region is susceptible to artifacts attributed to the ear 
canal, but also because the region seems to be active during a wide 
variety of tasks, including undirected “rest” [ 130 ]. Therefore, 
many studies of episodic remembering do not report greater acti-
vation in the MTL, even though this region is known to be 
involved. In order to observe MTL activity, a baseline task such as 
an odd/even digit judgment may be used to deactivate the MTL 
during the control trials [ 130 ]. 

 Unlike data from the PFC, activation in the  MTL   has been 
found to correlate with episodic retrieval success [ 131 ,  132 ] 
(Fig.  4 ).    Several neuroimaging studies investigating the role of 
 MTL   subregions in EM have relied on the remember/know 
 procedure to distinguish episodic retrieval, or the processes of 
“remembering or recollecting” (R), from retrieval based on famil-
iarity, called the “knowing or recalling” (K) [ 133 ]. This technique 
was based on the fi nding that patients with MTL damage, espe-
cially those showing selective loss of hippocampal function, show 
impairments in EM and a comparatively intact SM [ 80 ,  134 ]. In 
addition, patients with degeneration of extrahippocampal temporal 
cortex show the opposite pattern: impaired SM combined with a 
relatively intact EM [ 78 ]. Using the remember/know procedure, 
Eldridge et al. [ 131 ,  132 ] found that hippocampal activity is pri-
marily associated with “remembering” rather than “knowing”: the 
hippocampus was more active during retrieval of “R” items than 

 MTL  Activation   in Episodic 
 Remembering  
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during retrieval of “K” items. In a follow-up study, Eldridge et al. 
[ 135 ] found that during encoding of items that were subsequently 
correctly recognized, there was more activity in the dentate gyrus 
and CA2/3 fi elds of the hippocampus than during encoding of 
items that were subsequently forgotten. During retrieval, activity 
in the subiculum correlated uniquely with “R” responses. These 
data are particularly compelling because the dentate gyrus and 
CA2/3 fi elds are located early in the hippocampal circuit, while 
the subiculum is the major output region of the hippocampus.

      The medial parietal cortex exhibits opposite levels of fMRI activity 
during encoding and retrieval, a pattern dubbed the encoding/
retrieval (E/R) fl ip. These opposing effects were originally reported 
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  Fig. 4     Results   from anatomically defi ned hippocampal regions of interest. ( a ) Sections from the anatomical 
template with the left hippocampal region of interest outlined in  red . ( b ) Averaged event-related responses in 
the hippocampus from 11 subjects.  Error bars  represent one standard error (between subjects) of estimated 
response amplitudes.  Correct R  correct remember (R) response (when subjects could recollect the moment the 
item was studied),  Correct K  correct know (K) response (when the word is familiar but unaccompanied by the 
recollection of the specifi c moment the word was presented),  Correct rejection  correct response for nonrecog-
nized items,  Miss  miss response (in which subjects did not recognize old items) (from Eldridge et al. [ 131 ])       
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by Daselaar et al. [ 136 ] who observed this pattern within the same 
participants for a variety of stimuli and memory paradigms. Since 
then, the E/R-fl ip pattern has been replicated in several other 
studies (for review,  see  Ref. [ 137 ]). It has been shown that this pat-
tern occurs regardless of the type of information (words, faces, 
spatial scenes), stimulus modality (auditory or visual), and memory 
test (item or relational memory) (Fig.  5 ). Several hypotheses have 
been formulated to explain the E/R-fl ip pattern (for review,  see  
Ref. [ 137 ]). The  internal orienting account  asserts that medial 
parietal cortex involvement in encoding and retrieval is dependent 
on the internal versus external orientation of attentional. The  self - 
 referential processing account  explains medial  parietal cortex   activity 
in terms of orienting toward self-relevant thoughts versus the 
external environment. The  reallocation account  states that the acti-
vation differences in medial parietal cortex depend on task-demands 
and follows response times. Finally, the  bottom - up attention account  
asserts that activity within medial parietal regions refl ects bottom-
 up orienting of attention towards information retrieved from 
memory. Yet none of these cognitive accounts seems to provide a 
full explanation for the E/R-fl ip pattern in the PMC [ 137 ].

        One somewhat less-studied component of EM is the process of 
assigning a temporal order to a series of events. While this part of 
the fi eld is sparse in terms of neuroimaging data, there are a hand-
ful of studies that can shed some light on this process. Bilateral 
middle prefrontal areas near BA 9, left inferior prefrontal (near BA 
44/45), left anterior prefrontal (near BA 10/46), and bilateral 
medial temporal areas show more activation during “high” tempo-
ral order retrieval trials (that is, when choosing between two words 
that were close together on a list: i.e., which came fi rst, word # 6 
or word #3?) than during “low” trials (that is, when choosing 
between words that were spaced far apart on a list: i.e., which came 
fi rst, word #1 or word # 9?) [ 138 ]. Activation in the middle frontal 
gyrus (MFG) near BA 9 is especially interesting because there is 
convergent evidence for the involvement of this region in the 
human neuropsychological [ 139 ] and monkey literature [ 140 ]. 
There may also be a hemispheric specialization in temporal pro-
cessing. Suzuki et al. [ 141 ] asked participants to study pictures 
during two separate sessions: one in the morning and another in 
the afternoon. In the scanner, participants were asked to judge 
whether an item was studied in the morning or in the afternoon, or 
which of two items in the same list was studied earlier. They found 
that right prefrontal activity was associated with temporal order 
judgments of items between lists (morning vs. afternoon) while 
left prefrontal activity was associated with the  retrieval   of temporal 
order information within a list.  

4.2   Temporal 
Processing  
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  Fig. 5    Figure shows the encoding/retrieval fl ip in four different fMRI experi-
ments using ( 1 ) faces, ( 2 ) spatial scenes, ( 3 ) word pairs, and ( 4  and  5 ) single 
words. During encoding, activity in the posterior midline  region   was greater for 
misses ( M ) than for hits ( H ), whereas during retrieval, activity was greater for 
hits than for misses.  Bar graphs  indicate mean cluster activity for the compari-
son between hits and misses during encoding and retrieval, respectively (from 
Daselaar et al.[ 136 ])       
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   Prior to the advent of fMRI, declarative memory, particularly EM, 
was thought to be dependent almost exclusively on the MTL. Both 
animal and human lesion studies provided the bulk of this evi-
dence.  Neuroimaging techniques   have demonstrated, however, 
that PFC regions are recruited time and time again to support EM 
retrieval. Interestingly, PFC does not seem to be sensitive to the 
outcome of retrieval, but rather seems to support retrieval inten-
tion and strategy. The MTL, in contrast, seems to be driven largely 
by “bottom-up” processes: being more data-driven and less volun-
tary [ 142 ]. Whereas details of an event are thought to be eventu-
ally stored in the same regions that were initially involved in their 
perception, the hippocampus creates and stores an index of the 
memory that can regenerate the original pattern of activation dur-
ing EM retrieval. Therefore, in healthy adults, EM involves a large 
network of prefrontal, neocortical, and MTL regions acting in 
concert to support this complex reconstructive process.  

   The difference between EM and  SM   is the difference between the 
active reconstruction of an event to extract information specifi c to 
that occurrence and the abstraction of statistical regularities and 
general properties about the world over multiple experiences. The 
constructive nature of memory, therefore, is most easily observed 
in EM: the reexperiencing of past events requires the reconstruc-
tion of a narrative sequence via the reactivation of stored sensory 
information. A growing interest in the constructive aspects of EM 
has led to the postulation of the   constructive episodic simulation  
hypothesis   [ 143 – 145 ], which suggests that the EM system is built, 
in part, to enable the simulation or imagination of future events. 
Support for this view comes from several neuroimaging studies 
demonstrating that the network of brain regions involved in EM 
retrieval overlaps substantially with that supporting the imagina-
tion of future events [ 146 – 148 ]. Furthermore, as Hassabis and 
Maguire [ 149 ,  150 ] have eloquently described, EM retrieval can 
be thought of as relying heavily on scene construction as a key 
component process. This approach may help explain why many 
other cognitive tasks such as imagining a fi ctitious event seem to 
employ many of the same regions involved in episodic 
remembering.   

5    Semantic Memory 

 In contrast to EM, SM corresponds to the general knowledge of 
objects, words, facts, and people: declarative memories that are  laid 
  down independently of the original encoding context [ 76 ]. This 
information is often encountered over multiple repetitions, in a vari-
ety of contexts, and thus can be retrieved without regenerating details 
of the original learning event. While initially limited to a memory 
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system for “words and other verbal symbols, their meanings and ref-
erents, about relations among them, and about rules, formulas and 
algorithms” [ 76 ], SM currently refers to a broader knowledge set 
that includes facts, concepts, and beliefs [ 151 ]. 

 Reports of patients with focal defi cits in SM that were category- 
specifi c [ 152 – 155 ] led to the hypothesis that SM is organized by 
 taxonomic categories   [ 156 ]. In addition, a highly infl uential the-
ory proposed by Allport [ 157 ] suggests that the same sensorimo-
tor areas that are involved in the initial processing of experience are 
also used to represent abstractions related to the experience. Much 
like fi ndings from neuroimaging studies of EM, this theory pre-
dicts that modality-specifi c information is represented in the cortex 
that processes that modality. Finally, studies of patients with pro-
gressive neural degeneration leading to defi cits in SM suggest that 
information in SM is also organized hierarchically, such that the 
more specifi c a concept is, the more vulnerable it may be to brain 
damage [ 158 ]. Therefore, we will consider evidence from neuro-
imaging studies that address these three components of SM: 
 category specifi city, reactivation of sensorimotor areas, and hierar-
chical organization. 

   Before the advent of functional brain imaging, our knowledge of 
the neural bases of SM was dependent on studies of patients with 
 brain injury  . Investigations of semantic impairment arising from 
brain disease suggested that the  anterior temporal lobes (ATLs)         
are critical for semantic abilities in humans, across all stimulus 
modalities and for all types of conceptual knowledge [ 154 ,  155 , 
 159 – 165 ]. As mentioned earlier, patients with semantic demen-
tia and progressive degeneration of the anterior temporal cortex 
are impaired on all tasks requiring knowledge about the mean-
ings of words, objects, and people, although possibly to different 
degrees for each category depending on the lateralization of 
atrophy [ 162 ,  164 ,  166 ,  167 ]. Other brain diseases that can 
affect the ATLs, such as  Alzheimer’s disease   [ 168 ] and herpes 
simplex viral encephalitis [ 155 ], also often disrupt SM. Finally, it 
is worth noting that patients with damage to the left PFC often 
have diffi culty in retrieving words in response to specifi c cues, 
even in the absence of aphasia [ 169 ]. 

 Although ATLs’ activation has been associated with a few 
semantic tasks (i.e., sentence comprehension, and famous face 
naming or identifi cation, e.g.,  see  Refs. [ 170 ,  171 ]), the vast major-
ity of the functional imaging experiments on SM have reported 
posterior temporal, typically stronger in the left than in the right 
hemisphere, and/or frontal activations in the left VL PFC, with no 
mention to the ATLs (for review,  see  Refs. [ 151 ,  172 – 175 ]). 
Intersubject variability and the occurrence of fMRI susceptibility 
artifacts in the ATLs may be possible reasons for the lack of fMRI 
activations detected in ATLs [ 176 ]. 

5.1  Organization 
of SM Network
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 Functional imaging results have also indicated that semantic 
knowledge is encoded in a widely distributed cortical network, 
with different regions specialized to represent particular types of 
information [ 177 ], particular categories of objects [ 178 ], or both 
[ 179 ], leading to the concept that no single region supports 
semantic abilities for all modalities and categories. However, in 
addition to these modality-specifi c regions and connections, the 
various different surface representations (such as shape) connect 
to, and communicate through, a shared, amodal “hub” in the 
 ATLs      [ 175 ]. At the hub stage, associations between different pairs 
of attributes (such as shape and name, shape and action, or shape 
and color) are all processed by a common set of neurons and syn-
apses, regardless of the task. Damasio [ 180 ] was the fi rst to argue 
for unifi ed conceptual representations that abstract away from 
modality-specifi c attributes. He proposed the existence of “ conver-
gence zones”   that associate different aspects of knowledge clearly 
articulating the importance of such zones for semantic processing. 
The convergence-zone hypothesis proposes that there is no multi-
modal cortical area that would build an integrated and indepen-
dent semantic representation from its low-level sensory 
representations. Instead, the representation takes place only in the 
low-level cortices, with the different parts bound together by a 
hierarchy of convergence zones. A semantic representation can be 
recreated by activating its corresponding binding pattern in the 
convergence zone. 

 Finally, unlike EM, remote SM is not dependent on the 
involvement of the MTL [ 95 ]. The MTL is needed only temporar-
ily, until the knowledge itself is represented permanently by the 
neocortical structures specialized in processing the acquired 
information.  

   Functional neuroimaging studies in which the cortical organiza-
tion for semantic knowledge has been addressed have revealed dis-
sociations in the processing of different object categories (for 
review,  see  Refs. [ 156 ,  172 ,  173 ,  175 ,  177 ,  181 ]). The most fre-
quently documented distinction is between “living” and “nonliv-
ing” items, body parts and numerals, and the most studied 
categories have been human faces, houses, animals, and tools. 
Various theoretical models have been proposed to explain the cog-
nitive mechanisms underlying category specifi city. (1) The  sensory 
and functional/motor theory   states that categories are defi ned by 
the type of information needed to recognize items as belonging to 
that category. “Living” items require object-related information 
appreciable through perceptual channels (shape, color, sound, 
etc.), whereas tools and body parts are more recognizable from 
information concerning action, activity, or the motor scheme to 
use them [ 154 ,  155 ,  160 ], (2) The “ domain-specifi c theory”   sug-
gests that evolutionary pressure has led to specifi c adaptations for 
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recognizing and responding to animals and plants, but not to 
objects [ 156 ]. (3) The “ correlated-structure principle theory”   
proposes that conceptual organization refl ects the statistical co- 
occurrence of the properties of objects rather than an explicit divi-
sion into “living” and “nonliving” categories [ 182 ]. 

 An impairment for processing items in the “living things”    cat-
egory has mainly been described in patients with damage to the 
anterior portions of the temporal lobe bilaterally [ 162 ,  163 ,  183 , 
 184 ]. Nevertheless, the majority of functional neuroimaging stud-
ies (both PET and fMRI) failed to show consistent ATLs’ activa-
tions for “living item” stimuli (see earlier). PET studies in normal 
subjects have shown that “living items” tend to activate predomi-
nantly posterior visual association cortices [ 185 – 188 ]. Only a 
meta-analysis of seven individual PET studies [ 189 ] found 
 activations for “living” objects in the temporal poles bilaterally. 
This large multistudy dataset provided suffi cient sensitivity to 
detect ATLs’ activations despite their inconsistency across subjects 
and lack of signifi cance in each study taken in isolation [ 189 ]. In 
contrast, patients with defi cits in the “nonliving” category show 
damage in the left dorsolateral perisylvian regions [ 163 ,  183 ,  184 ] 
Consistently, PET studies found activations specifi c to “nonliving” 
stimuli in the left posterior middle and superior temporal gyri and 
in the left inferior frontal cortex [ 185 ,  186 ,  189 – 191 ]. In an event- 
related fMRI study in which words belonging to the categories 
“living” and “nonliving” were presented visually, common areas of 
activation during processing of both categories included the infe-
rior occipital gyri bilaterally, the left IFG, and the left IPL [ 192 ]. 
During processing of “living” minus “nonliving” items, signal 
changes were present in the right inferior frontal, middle temporal, 
and fusiform gyri. 

 Numerous fMRI studies have shown that different object cat-
egories elicit activity in different regions of the ventral temporal 
cortex (for review,  see  Refs. [ 156 ,  172 ,  173 ,  175 ,  177 ,  181 ]). 
Although it is more likely that these differences are due to percep-
tual,  object   recognition process rather than to semantic memory 
function, we will briefl y discuss them here. Perceiving animals 
showed heightened, bilateral activity in the more lateral region of 
the fusiform gyrus, whereas tools show heightened, bilateral activity 
in the medial region of the fusiform gyrus and in the posterior mid-
dle temporal gyrus (MTG) [ 193 ]. A similar pattern of activations 
was found for viewing faces (in the lateral fusiform) relative to view-
ing houses (the medial fusiform) [ 193 ]. The so-called FFA [ 194 ] 
responds more strongly to faces than to other object  categories  , but 
is not exclusive for faces [ 195 ,  196 ] (Fig.  6 ).    House- related activity 
was reported in more medial regions, including the fusiform and 
lingual gyri [ 197 ], and parahippocampal cortex (the parahippocam-
pal place area [ 191 ], especially for landmarks [ 198 ]). More interest-
ingly, a meta-analysis by Joseph [ 195 ] revealed that the recognition 
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task used (i.e., viewing, matching, or naming) also predicted brain 
activation patterns. Specifi cally, matching tasks recruit more inferior 
occipital regions than either naming or viewing tasks do, whereas 
naming tasks recruit more anterior ventral temporal sites than either 
viewing or matching tasks do, thus indicating that the cognitive 
demands of a particular recognition task are as predictive of cortical 
activation patterns as is category membership.

  Fig. 6    A PET study investigating brain responses to famous and nonfamous  faces and buildings.   The results 
showed category-specifi c effects in the right fusiform and bilateral parahippocampal/lingual gyri for faces and 
buildings, respectively, but no effect of fame. In contrast, the left anterior middle temporal gyrus showed an 
effect of fame for both faces and buildings, but no effect of category. ( a ) Examples of the stimuli used in experi-
ments 1 and 2 for  the   face conditions and in experiment 2 for the building conditions. ( b ) From  top  to  bottom , 
this fi gure illustrates areas of activation and parameter estimates for regions that were more activated for ( a ) 
faces than for buildings, ( b ) buildings than for faces, ( c ) famous than for nonfamous faces and buildings, and 
( d ) famous than for nonfamous faces only. In the left column, all activations are superimposed on axial slices 
of the mean of the nine subjects’ normalized structural MRIs and thresholded at  p  < 0.001 (uncorrected). In the 
right column, the plots indicate the value of the normalized regional cerebral blood fl ow at the indicated voxel 
( y -axis) for each of the experimental conditions in experiments 1 and 2 ( x -axis).  EXP  experiment,  FF  famous 
faces,  NFF  nonfamous faces,  FB  famous buildings,  NFB  nonfamous buildings (from Gorno-Tempini et al. [ 196 ])       
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      Several of the early PET studies of semantic processes focused on 
the question of whether words (both auditory and visual) and pic-
tures are interpreted by a common semantic system [ 170 ,  188 , 
 199 ,  200 ], or whether distinct systems are needed to support these 
two domains. These studies reached similar conclusions providing 
evidence for a distributed semantic system that is shared by visual/
auditory and verbal modalities [ 170 ,  188 ,  199 ,  200 ] and that it is 
distributed throughout inferior temporal and frontal cortices with 
a few areas uniquely activated by pictures only (left posterior 
 inferior temporal sulcus) or words (left anterior MTG and left infe-
rior frontal sulcus) [ 200 ]. More recently, fMRI studies have pro-
vided additional support for this view by demonstrating that 
regions of the left posterior temporal cortex, known to be active 
during conceptual processing of pictures and words (fusiform 
gyrus and inferior and middle temporal gyri), are also active during 
auditory sentence comprehension [ 201 – 203 ]: activity was modu-
lated by speech intelligibility [ 201 ,  202 ] and semantic ambiguity 
[ 203 ]. A fMRI study used the phenomenon of semantic ambiguity 
to identify regions within the fronto-temporal language network 
that are involved in the processes of activating, selecting,  and   inte-
grating contextually appropriate word meanings [ 203 ]. Subjects 
heard sentences containing ambiguous words (e.g., “The shell was 
fi red towards the tank”) and well-matched low-ambiguity sen-
tences (e.g., “Her secrets were written in her diary”). Although 
these sentences had similar acoustic, phonological, syntactic, and 
prosodic properties, the high-ambiguity sentences required addi-
tional processing by those brain regions involved in activating and 
selecting contextually appropriate word meanings. The ambiguity 
in these sentences went largely unnoticed, and yet high-ambiguity 
sentences resulted in increased recruitment of the left posterior 
inferior temporal cortex and the IFG bilaterally [ 203 ].  

   While the neural systems involved in SM may be modulated both 
by categories and modalities there is also evidence that the senso-
rimotor regions that are involved in the initial processing of par-
ticular information are recruited during SM retrieval (for review, 
 see  Refs. [ 172 ,  173 ,  175 ,  177 ,  181 ,  204 ]). In particular, semantic 
decisions involving object properties suggest a broad relationship 
between perceptual knowledge retrieval and sensory brain mecha-
nisms, though recent work also suggests that this observation may 
be itself category-specifi c [ 165 ]. 

 Activation of the left or bilateral ventral temporal cortex (fusi-
form gyrus) when retrieving  color  information, relative to other prop-
erties, has been replicated by several fMRI studies [ 174 ,  205 ,  206 ]. 
Beauchamp et al. [ 205 ] showed that neural activity is limited to the 
occipital lobes when color perception was tested by a passive viewing. 
When the task was made more demanding by requiring subjects to 
use color information to perform a color-sequencing task, several 
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areas in the ventral cortex were identifi ed: the most posterior, located 
in the posterior fusiform gyrus, corresponded to an area activated by 
passive viewing of colored stimuli, and more anterior and medial 
color-selective areas located in the collateral sulcus and fusiform gyrus 
[ 205 ]. These more anterior areas were also most active when visual 
color information was behaviorally relevant, suggesting that atten-
tion infl uences activity in color- selective areas [ 205 ]. 

 Parietal cortex appears to be involved in retrieval of  size  [ 174 ]. 
For instance, in Oliver and Thompson-Schill [ 174 ], seven subjects 
made binary decisions about the shape, color, and size of named 
objects during fMRI. Bilateral parietal  activity   was signifi cantly greater 
during retrieval of shape and size than during retrieval of color [ 174 ]. 

 An area in the posterior superior temporal cortex, adjacent to 
the auditory-association cortex, is activated when participants are 
asked to judge the  sound  that an object makes [ 207 ].  Action knowl-
edge  involves the left lateral temporal cortex, particularly the medial 
and superior temporal (MT/MST) regions, anterior to an area 
associated with motion perception [ 208 – 210 ]. For instance, in two 
fMRI experiments Kourtzi and Kanwisher [ 209 ] found stronger 
activation of the MT/MST regions during viewing of static photo-
graphs with implied motion compared with viewing of photographs 
without it. Taken together, these data provide strong evidence that 
information about a particular object property is stored in the same 
neural system engaged when the property is perceived.   

6    Conclusions 

 Working, episodic, and semantic memory systems engage multiple 
brain regions and rely upon a number of cognitive processes. WM 
is likely a property of the functional interaction between the PFC 
and posterior brain regions. The MTL and its connections with 
neocortical, prefrontal, and limbic  structures      are implicated in 
EM. SM is mediated through a network of neocortical structures, 
including the lateral and ATLs, and the inferior frontal cortex, pos-
sibly to a greater extent in the left hemisphere. Taken together, 
these memory systems do have overlapping neuroanatomical 
underpinnings, and even share some of the same component pro-
cesses, such as item and information retrieval. One emergent simi-
larity between the systems is the fi nding that those sensory and 
association areas that are engaged during perceptual and senso-
rimotor processing of item information are tapped once again 
when the information is required for memory processing. Future 
work by researchers using neuroimaging to study memory will 
require even further refi nement in the defi nitions of memory sys-
tems and their components, as exemplifi ed by the current work in 
EM, where the retrieval component is being further reduced into 
components such as scene construction.     
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Chapter 15

fMRI of Emotion

Simon Robinson, Ewald Moser, and Martin Peper

Abstract

Recent brain imaging work has expanded our understanding of the mechanisms of perceptual, cognitive, and 
motor functions in human subjects, but research into the cerebral control of emotional and motivational 
function is at a much earlier stage. Important concepts and theories of emotion are briefly introduced, as are 
research designs and multimodal approaches to answering the central questions in the field. We provide a 
detailed inspection of the methodological and technical challenges in assessing the cerebral correlates of 
emotional activation, perception, learning, memory, and emotional regulation behavior in healthy humans. 
fMRI is particularly challenging in structures such as the amygdala as it is affected by susceptibility-related 
signal loss, image distortion, physiological and motion artifacts, and colocalized Resting State Networks 
(RSNs). We review how these problems can be mitigated by using optimized echo-planar imaging (EPI) 
parameters, alternative MR sequences, and correction schemes. High-quality data can be acquired rapidly in 
these problematic regions with gradient-compensated multiecho EPI or high-resolution EPI with parallel 
imaging and optimum gradient directions, combined with distortion correction. Although neuroimaging 
studies of emotion encounter many difficulties regarding the limitations of measurement precision, research 
design, and strategies of validating neuropsychological emotion constructs, considerable improvement in 
data quality and sensitivity to subtle effects can be achieved. The methods outlined offer the prospect for 
fMRI studies of emotion to provide more sensitive, reliable, and representative models of measurement that 
systematically relate the dynamics of emotional regulation behavior with topographically distinct patterns of 
activity in the brain. This will provide additional  information as an aid to assessment, categorization, and 
treatment of patients with emotional and personality disorders.

Key words Emotion, fMRI, Research design, Reliability, Validity, Amygdala, Signal loss, Distortion, 
Resting state networks

1 Introduction

While recent brain imaging work has expanded our understanding 
of the mechanisms of perceptual, cognitive, and motor functions in 
human subjects, research into the cerebral control of emotional 
and motivational functions has been less intense. For several years, 
however, a growing body of fMRI and positron emission tomogra-
phy (PET) work has been assessing the cerebral correlates of emo-
tional activation, perception, learning and memory, and emotional 
regulation behavior in healthy humans [1–6].
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Current brain imaging work is based on the concepts and 
hypotheses of the multidisciplinary field of “affective neurosci-
ence” [7–9]. The endeavors of the subdisciplines of affective neu-
roscience have not only complemented but also promoted each 
other, stimulating a rapid growth of knowledge in the functional 
neuroanatomy of emotions. It is increasingly recognized that these 
areas also share similar methodological problems.

The expanding area of emotion neuroimaging has provided 
new methods for validating neurocognitive models of emotion 
processing that are crucial for many areas of research and clinical 
application. Progress is being made in disentangling the cerebral 
correlates of interindividual differences, personality, as well as of 
abnormal conditions such as, for example, anxiety, depression, psy-
choses, and personality disorders [10–12]. It has been recognized 
that psychological assessment, categorization procedures, and psy-
chotherapy treatment may profit from models that integrate func-
tional connectivity information. The relevance and usefulness of 
valid neurocognitive models of emotion processing have recently 
been recognized by many fields of applied research such as, for 
example, psychotherapy research [13], criminology [14], as well as 
areas such as “neuroeconomics” [15] and “neuromarketing” [16].

Several human lesion studies have pointed to the deficits of 
neurological patients in recognizing emotions in faces, particularly 
often for the decoding of fearful faces especially after bilateral 
amygdala damage [17–20]. Other studies have reported impair-
ments not only for fear but also for other negative emotions such 
as anger, disgust, and sadness [21, 22]. Recent functional imaging 
studies have confirmed the importance of the amygdala in emotion 
processing. Due to the multiple connections between the amyg-
dala and various cortical and subcortical areas, and the fact that the 
amygdala receives processed input from all the sensory systems, its 
participation is essential during the initial phase of stimulus evalu-
ation [23]. The appraisal function of the amygdala, combining 
external cues with an internal reaction, reflects the starting point 
for a differential emotional response and is hence the basis for 
emotional learning. Involvement of the amygdala during classical 
conditioning especially during the initial stages of learning [24, 
25] as well as during processing signals of strong emotions has 
been documented repeatedly with fMRI. However, a problem in 
verifying amygdala activation with neuroimaging tools may be the 
rapid habituation of its responses [10, 26].

Although the need for brain imaging data is not unequivocally 
acknowledged by all researchers in their specialties, the increasing 
body of neuroimaging data has value in challenging and constraining 
existing theories. Followers of cognitive emotion theory must face the 
fact that their results need to be compatible with or at least not con-
tradict with established neuroscience (neuroimaging) findings [27]. 
However, to appropriately evaluate and integrate this knowledge, it is 
necessary to deal with the basic methodological problems of the field.

Simon Robinson et al.
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Therefore, this chapter is organized around the two major issues 
of the neuroimaging of emotional function. First, it addresses under-
lying conceptual issues and difficulties associated with operational-
izing and measuring emotion (for more detailed reviews, see Refs. 
[28–31]). The problems and limitations of brain imaging work that 
are associated with measurement precision, response scaling, repro-
ducibility, as well as validity and generalizability are discussed corre-
sponding to general principles of behavioral research [32].

Second, the complexities of neuroimaging methods are exam-
ined to supplement recent quantitative meta-analyses (for a sum-
mary of findings of the emotional neuroimaging literature, see 
Refs. [2, 4, 5]). We raise here some grounds for reflection about 
current measurement in neuroimaging of emotions, and to encour-
age the adoption of recent methodological advances of fMRI tech-
nology. In summary, it is suggested that additional interdisciplinary 
efforts are needed to advance measurement quality and validity, 
and to accomplish an integration of brain imaging technology and 
neuropsychological assessment theory.

2 Psychological Methods

Emotions have been defined as episodes of temporarily coupled, 
coordinated changes in component functions as a response of the 
organism to external or internal events of major significance. These 
component functions entail subjective feelings, physiological acti-
vation processes, cognitive processes, motivational changes, motor 
expression, and action tendencies [33, 34]. Emotions represent 
functions of fast and flexible systems that provide basic response 
tendencies for adaptive action [35].

Emotions can be differentiated from mood changes (extended 
change in subjective feeling with low intensity), interpersonal 
stances (affective positions during interpersonal exchange), atti-
tudes (enduring, affectively colored beliefs, preferences, and pre-
dispositions toward objects or persons), and personality traits 
(stable dispositions and behavior tendencies) [29, 34].

The frequently used concept of “emotional activation” charac-
terizes a relatively broad class of physiological or mental phenom-
ena (e.g., strain, stress, physiological activation, arousal, etc.). It 
can be specified with respect to a variety of dimensions such as 
valence (quality of emotional experience), intensity or arousal 
(global organismic change), directedness (motivational and orien-
tating functions), and selectivity (specific patterns of change) [36]. 
In contrast, the terms emotional reactivity or arousability, and psy-
chophysical reactivity refer to the dispositional variability of the 
above activation processes under defined test conditions [37, 38].

Environmental objects possess a latent meaning structure of 
emotional information, which is represented by a hierarchy of 

2.1 Emotion Theories 
and Constructs

2.1.1 Definitions

fMRI of Emotion
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constructs with relatively fixed intra- and interclass relations [29, 
39, 40]. Accordingly, physical stimulus properties or surface cues 
serve as a basis for “universal” emotion categories such as happi-
ness, surprise, fear, anger, sadness, and disgust that originate at a 
primary level [41]. On a secondary level, dimensions such as valence 
and arousal arise from the preceding levels [42]. Table 1 suggests a 
potential structure of emotional concepts or domains that inte-
grates both discrete (primary) and secondary emotions [29].

Emotional activation has also been characterized as a process 
with a sequence of stages [29, 35]: following an initial evaluation 
of novelty, familiarity, and self-relevance, a stimulus object or con-
text is fully encoded. This involves detection of physical stimulus 
features, recognition of object identity, and identification of higher-
order emotional dimensions such as pleasantness or need signifi-
cance. During the subsequent stages, cognitive appraisal processes 
are initiated to evaluate the significance of the event. These evalu-
ation checks include an appraisal of whether the stimulus is relevant 
for personal needs or achieving certain goals. Finally, the potential 
to overcome or cope with the event and the compatibility of behav-
ior with the self or social norms is evaluated [35].

The measurement of emotions crucially depends on an appropriate 
operationalization of the construct of interest and definition of 
response parameters. Such considerations have typically been elab-
orated in the context of psychological assessment theory [30, 38, 

2.1.2 Operationalization

Table 1  
Hierarchical organization of emotion concepts (modified from [29])

Emotion concepts or 
domains Example constructs Basis for higher-order grouping

Dimensional concepts Valence (positive/negative 
emotions), approach/withdrawal, 
activity (active/passive), control, 
etc.

Conceptual or meaning space for 
subjective experience and verbal 
labels

Basic, fundamental, 
discrete, modal emotions 
or emotion families

Anger, fear, sadness, joy, etc. Similarity of appraisal, motivational 
consequences, and response 
patterns; convenient label for 
appropriate description and 
communication

Specific appraisal/response 
configurations for 
recurring events/
situations

Righteous anger, jealousy, mirth, 
fright, etc.

Temporal coordination of different 
response systems for a limited 
period of time as produced by a 
specific appraisal pattern

Continuous adaptational 
changes

Orienting reflex, defense reflex, 
startle, sympathetic arousal, etc.

Automatic activations and 
coordination of basic 
biobehavioral units

Simon Robinson et al.
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43]. The latter explains how psychological and physiological mea-
sures can be empirically assessed, decomposed, and used as indica-
tors of the psychological constructs of interest. It organizes the 
assumptions concerning measurement, segmentation, and aggre-
gation of activation measures, and evaluates the distribution char-
acteristics and reliability of the data. It also determines the range of 
the construct of interest by localizing it according to variables, sub-
jects or settings/situations, or combinations of these sources of 
variation. Since most current operationalizations are confined to 
one of these aspects, the range of conclusions to be drawn from the 
findings is also limited.

A particular problem associated with measuring emotional 
reactions is a certain lack of covariation of response measures. A 
frequent finding is that the expected synchronization of verbal, 
motor, and physiological response systems during an emotional 
episode is the exception rather than the rule. Although emotional 
episodes supposedly give rise to a synchronization of central, auto-
nomic, motor, and behavioral variables [44], most emotional 
response measures only show imperfect coupling [45]. This 
response incoherence may be attributed to a temporary decoupling 
or dissociation of function [46]. This has led authors to suggest a 
triple response measurement strategy that suggests a multimodal 
assessment of emotion including responses in the verbal, gross 
motor, and physiological (autonomic, cortical, neuromuscular) 
response systems [47].

Research on human emotion has illustrated how the broad 
concept of emotion is subdivided into several component func-
tions that dynamically interact during an emotional episode. 
Diverse operationalizations have been suggested to assess these 
subconstructs, many of which are highly correlated and form clus-
ters or families of similar functions. Emotional activation processes 
are embedded in a multicomponential system of situational and 
personal determinants. Factors that shape the level and pattern of 
the emotional activation process are the following [29, 48]: the 
functional context of the task (e.g., cognitive processing, motor 
responses, autonomic functions, etc.); the direction and extension 
of effects (e.g., global versus selective activation); the intensity and 
the degree of emotional strain (e.g., low, middle, or traumatic 
intensity; degree of threat; intensity of physical/mental load; stim-
ulus intensities below or above threshold); the time characteristics 
(e.g., duration, structure, and variability of a stimulus; effects of 
stimulus repetition or pre-exposure); the informational content 
(e.g., the degree of information and dimensions inherent in the 
experimental stimuli such as emotional valence or arousal, pre-
paredness, novelty, safety, predictability, contingency information, 
etc.); the implications for action (conduciveness, implications for 
instrumental reactions; artificial vs. realistic nature of the proce-
dure); the coping potential (e.g., active coping vs. passive 

fMRI of Emotion
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enduring, degree of controllability, helplessness, social support, 
specific coping strategies); and, compatibility with self or social 
norms (e.g., personal relevance).

These different aspects have led to a large number of opera-
tionalizations. These include procedures to elicit orienting or star-
tle reactions, basic emotions or “stress,” as well as stimulus-response 
paradigms and conditioning procedures. For example, one such 
standard procedure is to elicit orienting reactions (OR) by emo-
tionally meaningful stimuli. The OR is a nonassociative process 
being modulated by excitatory (sensitization) and inhibitory 
(habituation) mechanisms. Pavlovian (classical) or instrumental 
conditioning of excitatory or inhibitory reactions has traditionally 
been investigated in autonomic reactions (cardiovascular, vasomo-
tor, and electrodermal conditioning), motor responses (eye blink), 
and endocrine or immune system reactions [1].

Emotional experience is strongly influenced by cognitive activities 
which modulate attention and alertness (avoidance and escape), vigi-
lance processes (information search and problem solving), person–
situation interactions (denial, distancing, cognitive restructuring, 
positive reappraisal, etc.), and actions, which change the person–envi-
ronment relationship [49]. Coping research has identified typical cog-
nitive strategies to regulate arousal during an emotional episode such 
as rejection (venting, disengagement) and accommodation strategies 
(relaxation, cognitive work) [50]. Cognitive activities subsume 
engagement (reconceptualization, reevaluation strategies such as 
rationalization or reappraisal) and distraction techniques.

These behavioral and cognitive regulation processes have been 
studied for many decades [51]. This research has shown that the 
outcome of coping processes crucially depends upon the valence, 
ambiguity, controllability, and changeability of a stressor. Input- 
related regulation (denial, distraction, defense, or cognitive restruc-
turing; [52]) or antecedent-focused regulation (selection, 
modification, or cognitive restructuring of situational antecedents; 
[53]) have been differentiated from response-focused processes 
(suppression of expressive behavior and physiological arousal; [53]).

While the behavioral procedures mentioned above are mostly 
unstandardized, a vast number of standardized psychometric instru-
ments are available to assess the higher-order emotional processes (for 
a review see Ref. [31]). Questionnaires are the most frequently used 
method, being followed by behavior ratings by experts or significant 
others. However, these data assess subjective representations, that is, 
personal constructs and may be obscured by biased responding

The requirements for experimental research [32] are not always 
fulfilled by many early research designs of emotional neuroimaging 
work. This is typical for the pilot stage of scientific progress. In 
many cases, only preliminary or correlational interpretations are 
possible due to incomplete or missing control conditions (e.g., 
with respect to the “awareness” of emotional stimuli; [54]). In 

2.2 Research Design 
and Validity

2.2.1 Research Design

Simon Robinson et al.
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contrast, more recent work increasingly makes use of full factorial 
designs or applies parametric variations of the independent variable 
[55]. Moreover, new techniques of covariance analysis are available 
to explore the causal predictive value of structural data on emo-
tional brain activation. The relationship of structural and func-
tional connectivity data has been explored by means of Structural 
Equation Modeling [56–58] and Dynamic Causal Modeling [59]. 
Moreover, functional brain imaging has been successfully com-
bined with the lesion approach to elucidate the modulating influ-
ences of interconnected brain regions [60]. Thus, by means of 
appropriate research plans and advanced techniques of analysis, an 
“effective connectivity” can be identified that elucidates the causal 
relations of one neural system to another [61]. For example, the 
functional connectivity of the prefrontal cortex (PFC) that is 
 supposed to modulate amygdala activity [62] might thus be better 
evaluated in terms of causality.

To avoid operationalization errors, the quality of the emotion 
induction procedure needs to be scrutinized, that is, it must be 
evaluated whether the intended emotion has actually been elicited. 
For example, since a variety of emotional and nonemotional stimu-
lus situations may trigger amygdala activations [5], it is necessary 
to evaluate whether the intended emotion (such as fear) has actu-
ally been elicited. Since subjective report is not always an appropri-
ate manipulation check, additional psychophysiological criteria are 
needed to validate the intended emotion. Sympathetic activity as 
indexed by electrodermal activity (EDA) has been assessed during 
imaging procedures for this purpose. Nevertheless, this does not 
validate fear since skin conductance responses represent the end-
point of many different processes [63].

Brain imaging work implements specific neuropsychological con-
struct validation strategies by associating behavioral measurement 
of emotion with functional brain activation data for different 
localizations [31]. Here, functional (physiological) data are 
related to but still remain categorically distinct from the psycho-
logical data that emerge from a particular behavioral paradigm. 
During the process of construct validation, indicators of connec-
tional or neurophysiological constructs are related to the indica-
tors of psychological constructs. Thus, different operationalizations 
of a certain psychological construct (procedures or task) are 
expected to be correlated with activations of a certain area or 
cluster of areas. A different construct is expected to correlate with 
another but not the previous area and vice versa. This corre-
sponds to the double dissociation approach, which inspects task 
by localization interactions. This process of neuropsychological 
concept formation typically starts at a relatively broad level and 
proceeds downward in the above hierarchy finally specifying 
within-systems localization constructs [64].

2.2.2 Construct 
Validation

fMRI of Emotion
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However, depending on limitations of the measurement device 
described below, the reliability of psychological or activation data 
declines at lower levels of structural constructs complicating this 
validation process. The diverse validation attempts typically draw 
upon convergent or divergent associations of constructs that are 
located at quite different levels of generality. However, successful 
construct validation very much depends upon whether brain activa-
tion and psychological measures are analyzed on the same level of 
generality. In cases of asymmetry, low relationships may result that 
provoke misinterpretations and confuse the validation process. Thus, 
successful construct validation in the affective neurosciences requires 
emotional constructs and brain activation data to be  measured on 
the same (symmetrical) level of generality or aggregation [31].

Emotional neuroimaging is typically guided by neuropsychologi-
cal construct validation strategies. Here, the constructs are opera-
tionally defined by the complementary methods of emotion 
psychology and of neurophysiology. Both construct types are embed-
ded in hierarchically organized networks with lower- and higher-
order levels of generality. Both types of data are associated with each 
other during validation. However, it is necessary to define neural and 
emotional constructs on the same level of generality. For example, 
when a relatively broad behavioral category or set of functions (“emo-
tion regulation”) is being associated with isolated cerebral substruc-
tures, the relationship is likely to be asymmetrical and disappointing 
low correlations might result confusing the validation process.

FMRI is known to be a highly reactive measure because the scanner 
setting (gradient noise and the supine position) causes the subject to 
respond to the experimental situation as a stressor. Unless habitua-
tion sessions are included in the procedure, tonic stress and arousal 
effects may be induced that modulate responding as discussed above. 
For example, a decreasing rate of response of the amygdala to a con-
ditioned stimulus during the late phase of acquisition [10, 24, 26, 
65] may also be attributable to testing effects (sensitization to the 
setting, acquaintance with the procedure, and type of unconditioned 
stimulation) rather than fast amygdala habituation per se (other fac-
tors might also explain reduced amygdala perfusion measures such 
as potential ceiling effects, baseline dependencies, and regression to 
the mean). In general, familiarity with emotionally activating proce-
dures in the scanner induces states of expectation, sensitizing or 
desensitizing effects that may confound follow-up measurement. In 
addition to these testing effects, history, that is, occurrences other 
than the treatment and individual experiences between a first and a 
second measurement are likely to endanger the assessment of emo-
tion (e.g., when assessing psychotherapy effects).

Changes in the observational technique, the measurement 
device or sequence and other instrumentation effects may also 
obscure emotion-related treatment variance during an fMRI 

2.2.3 Internal Validity

Simon Robinson et al.



459

session or across sessions. From the discussion of MR methods it is 
clear that longitudinal changes of measurement precision are also 
to be expected from inconsistent acquisition geometry and shim, 
as well as system instabilities and hardware changes.

It is well known from psychophysiological research that the 
interpretation of repeated measurement factors is complicated by 
initial value dependencies [66]. When the hemodynamic response is 
fitted relative to the prestimulus baseline, a physiological or  statistical 
dependency of tonic perfusion levels and the phasic reaction may 
prevail [67]. While the first experimental blocks may show extreme 
effects, subsequent measurements are likely to be closer to the 
mean. Moreover, it has been pointed out above that the reliability 
of blood oxygen level-dependent (BOLD) measurements may be 
compromised by distortions or signal loss. When emotional para-
digms with inconsistent effects are used or when subjects with an 
extreme variability of emotional responsivity are investigated, 
experimental effects are likely to show “regression to the mean.”

Subjects change as a function of time and these maturation 
effects may occur during the time range of the experiment (psy-
chophysiological changes of organismic state or psychological 
stance, in particular during aversive paradigms). State-dependent 
influences or maturation effects may hamper within-subject repli-
cation or evaluations of long-term psychotherapy effects.

Subject groups with an elevated emotionality are more likely to 
show greater dropout rates in stressful experiments, that is, subjects 
of one group drop out as a consequence of their specific reactivity 
to the emotionally strain of the challenge paradigm. If exit from an 
emotionally activating study is not random, this effect of “experi-
mental mortality” may confound comparison between groups.

Selection effects, that is, group differences from the outset of 
the study, are likely in functional imaging studies with very small 
numbers of participants. Selective recruitment of volunteers or drop 
out of participants may lead to decreased reactivity and lower emo-
tionality in the remaining study group. Poor recruitment techniques 
(e.g., drafting subjects from the social circle of the lab partially 
acquainted with the procedures) or lack of random assignment to 
groups may further limit the validity of emotional fMRI studies.

Interactions of selection with maturation may occur when 
groups that differ with respect to maturation processes are com-
pared (e.g., administering a social stress test for cortisol stimula-
tion at different times of the day). Gender, personality traits, or 
psychopathology are all associated with specific individual differ-
ences of emotional regulation behavior. When these behaviors 
change over time as a function of personal development, follow-up 
measurements may be confounded by this type of effect. Thus, 
poor randomization or lack of control of personality-specific vari-
ance may jeopardize brain activation studies of emotional behavior. 
Finally, an interaction of selection with instrumentation occurs 
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when experimental subjects and controls show pre-experimental 
differences with respect to the shape of their responses such as 
floor or ceiling effects.

In general, emotional responses show an intraindividual insta-
bility due to measurement artifacts (see Sect. 3), state-dependent 
influences, or characteristics of the subject (age, gender, experience, 
temperament) all impose additional effects on functional neuroim-
aging results [5]. A considerable degree of within- and between-
subject variation in the time course of emotional responding 
depends on habitual, subject-specific mechanisms. First, the phasic 
activation pattern reflects the short-term modulation in response to 
the emotional stimulus. Due to the temporal within- trial variability 
of BOLD responses in different brain regions, averaging across sub-
jects may obscure the detection of activation in a specific region and 
reduce effect sizes specifically for higher-level reactions. Second, 
activation also varies across the time course of the experiment. Most 
subjects show a constant increase in autonomic arousal depending 
on the degree of emotional stimulation. This is not only accompa-
nied by a systemic response (tonic increase of sympathetic activation 
including blood pressure, cardiac contractility, and variability), but 
also by variations of tonic perfusion. These changes may show 
divergent trends for cortical and limbic regions imposing an 
unknown error on the measurement of the phasic BOLD reaction. 
These tonic and phasic variations appear to reflect the subject-spe-
cific mechanisms of emotional regulation behavior.

The majority of current paradigms have focused on lower-level 
perceptual or learning processes pertaining to basic or secondary 
emotional categories. Since the results depend on the selected task 
parameters (degree of induced arousal, hedonic strength, and 
motivational value; degree of involvement of memory processes; 
reinforcement schedule; conditioning to cues or contexts; etc.), a 
comparison with and generalization to other operationalizations 
remains difficult. Systematic neuroimaging approaches to higher- 
level appraisal processes are still sparse. These involve evaluations 
of the motivational conditions and coping potential, that is, the 
ability to overcome obstructions or to adapt to unavoidable con-
sequences [29]. An expanded range of constructs would involve 
an assessment of social communication processes, beliefs, prefer-
ences, predispositions, high-level evaluation checks, as well as 
modulating sociocultural influences. Higher-order appraisal pro-
cesses involve the evaluation of whether stimulus events are com-
patible with social standards and values or with the self-concept. 
Another function to be explored concerns the degree to which a 
stimulus event may increase, decrease, or even block goal attain-
ment or need satisfaction, and activate a reorientation of the indi-
vidual’s goal/need hierarchy and behavioral planning (goal/need 
priority setting) [29].

2.2.4 External Validity 
and Generalizability

Generalization to Other 
Procedures and Paradigms
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Whereas frontostriatal mechanisms of motor control have been 
increasingly investigated, recent work has made efforts toward devel-
oping an understanding of how emotion and motivation are linked 
to the frontal mechanisms controlling the preparation and execution 
of behavior [68, 69]. Behavior preparation and execution represent 
closely integrated components within an emotional episode. 
Mobilization of energy is required to prepare for a certain class of 
behavior. Action planning and motor preparation requires sequenc-
ing of actions and generation of movements. However, an emotion 
preceding behavior is only one of a number of factors, including 
situational pressures, strategic concerns, or instrumentality, involved 
in eliciting the concrete action. Additional research is needed to 
trace the information flow from motivational to motor systems.

Another component is the verbal or nonverbal communication of 
emotions such as facial expression or vocal prosody [70]. The ability 
to verbally conceptualize emotions and to communicate emotional 
experiences plays an important role in the regulation of an ongoing 
emotional episode. For example, explicit emotion- labeling tasks have 
been shown to decrease the activation level of the amygdala [71, 72].

Finally, sociocultural factors may shape attitudes (relatively 
enduring, affectively colored beliefs, preferences, and predisposi-
tions toward objects or persons) as well as interpersonal stances 
(affective stance taken toward another person in a specific interac-
tion). The ability of the individual to form representations of 
beliefs, intentions, and affective states of others has a considerable 
importance for affective and interpersonal interaction. However, 
the effects of beliefs, preferences, and predispositions on lower lev-
els of emotional responding have attracted little attention. Top- 
down processes may induce considerable variations of task and 
stimulus parameters by modulating lower-level automatic processes 
and by controlling the late behavior preparation stages during the 
emotional process. Thus, generalization to other paradigms and 
constructs has limitations because higher-level behavioral and cog-
nitive strategies that are part of the individual emotion regulation 
system ([50]; see later) modulate the emotion process.

The study groups of many fMRI studies have been relatively small 
and poorly described with respect to personality dimensions. Since 
several studies provide evidence for trait-dependent differences in 
responding [73–76], it remains unclear to what extent the results 
may have been influenced by interindividual differences of the par-
ticipating subjects. The representativeness of results is particularly 
poor if members of the social circle of the lab serve as participants 
instead of independently recruited participants. Thus, when the 
effects of an emotional paradigm interact with characteristics of the 
study groups (such as a low level of emotionality in subjects willing to 
participate in an activating scanning condition), this selection × treat-
ment effect may endanger generalizations to other populations.

Generalization to Other 
Subjects and Populations
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The prediction of future emotional or psychopathological disor-
ders on the basis of emotional behavior assessed in the scanner 
remains difficult [77]. Eliciting emotions in the imaging scanner is 
a highly artificial situation. It remains unclear to what extent these 
results can be generalized to other settings and, in particular, to 
real life settings. Small and Nusbaum [78] have criticized the 
unnatural MRI scanner setting and suggested an “ecological func-
tional brain imaging approach” that includes monitoring of natural 
behaviors using a multimodal assessment and environmental con-
text of presentation or behavior. Nevertheless, in contrast to the 
scanner, emotion in real settings is not restricted to simple reac-
tions but includes the full range of regulatory actions. By correlat-
ing fMRI and field data, such as, for example, generated by emotion 
monitoring during everyday life [79], the “ecological validity,” 
that is, the predictive value of cerebral perfusion patterns for real- 
life emotions could be better evaluated.

3 fMRI Methods

A host of fMRI studies have identified the amygdalae as central 
structures in emotion processing (see Sect. 1 and Zald et al. [5], for 
example, for a review). The amygdalae lie in the anterior medial 
temporal lobe (MTL), bounded ventrolaterally by the lateral ven-
tricles and medially by the sphenoid sinuses (Fig. 1). The differing 
magnetic susceptibilities of these tissues cause large deviations in 
the static magnetic field, B0. There is also a strong gradient in B0 in 
the MTL, and differing precession frequencies lead to dephasing of 

Generalization to Other 
Times and Settings

3.1 Methodological 
Challenges

3.1.1 Introduction

Fig. 1 The amygdalae, central brain structures in emotion processing, lie in a region of moderate deviation 
from the static magnetic field (left) and very high static magnetic field gradients (right). The planes intersect in 
the amygdala at MNI coordinate (18, −2, −18), marked by arrows. Single subject measurement at 4.0 T
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the bulk magnetization and loss of signal in images. This problem 
is not restricted to the amygdala, however. Inferior frontal and 
orbitofrontal regions, likewise involved in emotion processing 
[80], are also zones of high static magnetic field gradient. In addi-
tion to signal loss, static magnetic field gradients also lead to echo 
times (TE) becoming shifted, so that BOLD sensitivity may be 
reduced, or signal may not be acquired at all (termed “Type 2” loss 
[81]). These problems are examined in Sect. 3.1.2.

Local variations in the static magnetic field strength confound 
spatial encoding of the MR signal, leading to image distortion. 
Particular considerations for the MTL in this regard are discussed 
in Sect. 3.1.3. Even at high field, deviations from B0 immediately 
in the amygdala are relatively moderate (Fig. 1 left; 10 Hz mea-
sured at the arrow position, for data acquired at 4.0 T) but the 
field gradient is high (2 Hz/mm at the same position), leading to 
very large distortions in neighboring structures, which can cause 
signal to encroach into the amygdalae.

The ventral brain is also prone to physiological artifacts of car-
diac and respiratory origin, as described in Sect. 3.1.4, which may 
be mitigated to some extent by simultaneous measurement of car-
diac and respiratory processes and the application of postprocess-
ing corrections. In addition to the measurement challenges of 
ventral brain imaging, the presence of large magnetic field gradi-
ents makes the ventral brain susceptible to stimulus-correlated 
motion (SCM) artifacts, as discussed in Sect. 3.1.5. These can lead 
to the appearance of neuronal activation (Fig. 2) arising from sub-
tle head movements which are time locked to stimuli.
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Fig. 2 Large static magnetic field gradients make the amygdala region prone to the artifactual appearance of 
neuronal activation when stimulus-correlated motion (SCM) is present. Left : Observed patterns of SCM of 
schizophrenic patients and controls in a 3.0-T experiment with three stimulus blocks (facial emotion and age 
discrimination “EMO” and “AGE”). Right : a baseline (no stimulus) study in which a subject executed submil-
limeter SCM similar to that of Patient 1. The contrast corresponds to the “EMO” periods (uncorrected p < 0.0001; 
t threshold = 5, Montreal Neurological Institute coordinates 22, −6, −16)
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A further potential confound is the presence of RSNs which 
colocalize with regions under study. These show slow fluctuations 
in the absence of stimuli and constitute sources of unmodeled 
noise and intertrial variation. The existence of a RSN in the amyg-
dalae (Fig. 3) offers a possible explanation of why small signal 
changes are generally recorded in these structures, despite the high 
neurovascular reactivity of deep gray matter nuclei. This and other 
RSNs which may involve the amygdala are described in Sect. 3.1.6.

In Sect. 3.1 we expand on the problems outlined here, and go 
on in Sect. 3.2 to detail approaches to optimizing conventional 
single-shot 2D gradient-recalled echo-planar imaging (EPI) to 
mitigate their effects, alternative sequences which are less sensitive 
to static magnetic field gradients and, in Sect. 3.3, methods to cor-
rect for image distortion, physiological noise, and SCM artifacts.

It is worthwhile to briefly review the problem of signal loss from an 
empirical perspective. A temporal resolution of 1–3 s is usually 
desirable in fMRI. The whole brain may be covered in this time by 
acquiring images with voxels of typically 3-mm size (or 27 μl). 

3.1.2 Signal Loss 
and BOLD Sensitivity Loss

Fig. 3 Signal changes in the amygdala in emotion experiments have to be measured against a background of 
resting state fluctuations. A resting state network recently been reported, covering the amygdala and basal 
ganglia (3.0 T, group independent component analysis of 26 young healthy adults). Adapted from [106] with 
permission from the ISMRM
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Relatively long TEs are employed, partly also as a technical neces-
sity—to allow time for gradient switching and echo sampling—but 
also to confer T2

* weighting. As well as providing sensitivity to 
BOLD effects, however, this allows time for dephasing from mac-
roscopic inhomogeneities to develop. The severe signal loss seen in 
EPI in the anterior MTL with typical parameters is illustrated 
Fig. 4 in the lower left two images.

In gradient-echo imaging, the MR signal decays with a time 
constant T2

*, comprising the transverse relaxation time, T2 (reflect-
ing irreversible decay arising from time-varying microscopic spin- 
spin processes), and T2

′
, the reversible contribution to the transverse 

decay rate and the major source of BOLD contrast. T2,
′ itself can be 

separated into “mesoscopic” contributions (which operate on a 
scale smaller than the voxel, e.g., dephasing in the capillary bed), 
and “macroscopic” contributions (meaning larger than the voxel) 
which stem from bulk field inhomogeneities and which are depen-
dent on the tissues present, on the quality of shim, and on the 
scanning parameters such as voxel size and slice orientation. 
Separating these effects, the MR signal S in a gradient-echo experi-
ment decays such that at the TE it can be expressed [82] as:

Fig. 4 Effects of voxel size and acceleration factor on T2
* and echo-planar imag-

ing (EPI) image quality at high field (4.0 T). Top: T2
* in coronal and axial slices 

through the amygdala at two voxel sizes. Bottom: corresponding EPI in slices 
through the amygdala with acquisition voxel sizes of 4 × 4 × 4 mm, 3 × 3 × 3 mm, 
2 × 2 × 2 mm, and 2 × 2 × 2 with GRAPPA acceleration of factor 2, all with echo 
time (TE) = 32 ms
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This illustrates that the signal decay rate may be reduced by decreas-
ing the voxel size—to reduce the gradients across voxels, ΔBi—or 
by reducing the TE.

The aim of any attempt to optimize an EPI sequence is not just 
to maximize signal, described above, but also BOLD sensitivity (BS), 
which is equal to the product of image intensity and TE; for magneti-
cally homogeneous regions is a maximum when the EPI effective TE 
is equal to the T2

* of the target region [83]. In homogeneous regions, 
however, the presence of field gradients shifts the location of signal in 
k-space, mainly in the phase-encode direction (because of the low 
bandwidth), changing the local TE [81]. Through-plane field gradi-
ents lead to signal loss and reduce BS. If the component of the in-
plane susceptibility gradient in the phase- encode direction is 
antiparallel to the phase-encode gradient “blip” direction, then the 
TE is also reduced, reducing BS further. Conversely, if it is parallel to 
the phase-encode “blips” then TE increases. While this increases BS, 
to some extent compensating for signal loss, if the shift of TE is too 
large the echo will fall outside the acquisition window, leading to 
complete signal dropout. This is commonly observed in the anterior 
MTL for a negative-going phase-encode scheme.

This description motivates the optimization approaches to EPI 
in susceptibility-affected regions which will be outlined later in this 
section; compensating through-plane gradients, selecting image 
orientation and gradient direction to minimize echo shifts, and 
reducing voxel sizes to reduce field gradients. These techniques 
will be shown to increase both signal and BS.

Accurate spatial encoding in MRI is founded upon a homogeneous 
static magnetic field in the object. The location of signal is deduced 
from the local field strength under the application of small orthog-
onal, linear magnetic fields in directions usually referred to as slice 
select, readout, and phase-encode. The method is confounded if 
there are regional variations in the static magnetic field, which lead 
to signal mislocalization (distortion). Typical field offsets are illus-
trated in Fig. 1 (left) and lead to EPI distortions of the image 
shown in Fig. 4.

The extent of distortion, expressed as the number of pixels by 
which signal is mislocalized, is equal to the local magnetic field 

3.1.3 Image Distortion
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deviation divided by the bandwidth per pixel (the reciprocal of the 
time between measuring adjacent points in k-space), expressed in the 
same units. The bandwidth per pixel in the readout direction 
(rBWread/pix) is equal to the total imaging bandwidth (the signal 
sampling rate) divided by the image matrix size in the readout direc-
tion. In EPI, the pixel bandwidth in the phase-encode direction is 
smaller than this again by a factor of the image matrix size in the 
phase-encode direction. The fact that total bandwidth is often 
increased in proportion with the readout matrix dimension in order 
to keep rBWread/pix constant means that distortion (in distance 
rather than number of pixels) is approximately constant as a function 
of matrix size (and thereby resolution, at constant matrix size). To 
illustrate the size of expected distortions, in a 64 × 64 matrix acquisi-
tion, a typical rBWread might be 1500 Hz/pixel, giving (as 1500/64) 
a rBWphase of 23 Hz/pixel. A value of ΔB0 of 50 Hz (common at 
high fields, see Fig. 1) would lead to a shift of 0.03 voxels in the read-
out direction, but 2 voxels in the phase- encode direction, or 7 mm 
for a typical field of view for brain imaging. In a higher resolution 
acquisition with a 128 × 128 matrix and the same rBWread, rBW-
phase would be 12 Hz/pixels and the distortion 4 voxels, but also 
7 mm because of the proportionately smaller voxel size.

The relationship between EPI distortion and field strength is 
not simple, depending both on hardware and usage. Susceptibility- 
induced field changes increase linearly with static magnetic field 
strength while gradient amplitude (the factor which limits sam-
pling rate) is approximately constant in the standard to high field 
regimes. While theoretically this leads to an approximate propor-
tionality between distortion and field strength, in practice higher 
acquisition bandwidths are often used at high field to the achieve 
shorter effective TEs, to match reduced T2

* times.
Image distortion frustrates attempts to coregister data from 

many subjects to a common probabilistic atlas [84], which can 
reduce significance in fMRI even in relatively homogeneous areas 
[85]. Established methods for correcting image distortion are 
compared for their performance in the amygdala in Sect. 3.3.1.

A number of physiological processes give rise to fluctuations in the 
MR signal which are unrelated to neuronal activation, and should 
therefore be corrected for or modeled in a statistical analysis. The 
amygdala area is particularly prone to cardiac artifacts due to the 
proximity of the arteries in the Circle of Willis, and to respiratory 
artifacts because of the susceptibility gradients.

Respiration leads to head motion, changes in the magnetic field 
distribution in the head due to changes of gas volume or oxygen 
concentration in the chest [86], and variation in the local oxyhemo-
globin concentration, probably due to flow changes in draining 
veins [87]. Subtle changes in respiration rate and depth are thought 
to be the origin of spontaneous changes in arterial carbon dioxide 

3.1.4 Physiological 
Artifacts
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level at about 0.03 Hz which have been shown to lead to significant 
low-frequency variations in BOLD signal [88]. The lag of 6 s in this 
process corresponds to the time taken for blood to transit from the 
lungs to the brain, and for cerebral blood flow volume to respond 
to CO2, a cerebral vasodilator. Magnetic field changes in the head 
particularly affect ventral brain imaging due high field gradients. 
Respiration-related artifacts typically affect the image periphery, 
making them problematic for the amygdala, which is usually at the 
anterior boundary of the signal- providing region.

Cardiac pulsatility causes expansion of the arteries, bulk motion 
of the brain, and cerebrospinal fluid flow and leads to the influx of 
fully relaxed spins into an imaging slice. As a consequence, the 
signal may increase in many of the arteries that lie close to the 
amygdala, such as the middle cerebral artery and other elements of 
the Circle of Willis [89]. Cardiac artifacts are particularly complex 
with regard to emotion studies as the amygdala innervates the 
autonomic nervous system via the hypothalamus and brainstem, 
increasing heart rate, as has been shown in fMRI [90], and human 
depth electrode studies [91]. Recently, fluctuations in cardiac rate 
have been shown to explain almost as much variation in the BOLD 
signal as the oscillations related to each cardiac cycle, as revealed by 
shifted cardiac rate regressors [92].

Cardiac and respiratory cycles are connected by a number of 
processes [93], leading to many regions showing BOLD fluctua-
tions of cardiac origin [92] being also observed in studies of respi-
ratory effects [94].

Cardiac and respiratory artifacts may be corrected for by a 
number of approaches, some of which require additional measure-
ments at the time of imaging. The effectiveness of these techniques 
in the ventral brain is outlined in Sect. 3.3.2.

Motion artifacts affect all regions of the brain, but are particularly 
problematic in emotion studies because the nature of the task 
material is prone to induce SCM as a startle, attention, or repulse 
response. Patients with disorders with emotional components 
(such as schizophrenia and posttraumatic stress disorder) are less 
likely to remain still throughout the experiment and the interac-
tion between motion and distortion in regions of high susceptibil-
ity gradient produces nonlinear pixel shifts that are not well 
corrected with rigid-body methods. Partial brain coverage proto-
cols, such as those that may be used to allow z-shimming or high 
spatial and temporal resolution fMRI in the amygdala, are also 
more prone to partial voluming in the outermost slices and spin 
history effects, in which motion between the acquisition of adja-
cent slices leads to some spins being excited twice within one rep-
etition time (TR) while others are not excited at all.

Head motion can be minimized using bite bars, vacuum cush-
ions, thermoplastic masks, or plaster head casts. As well as effective 

3.1.5 Motion Artifacts
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immobilization, casts allow for repositioning in longitudinal studies 
[95]. Such devices are not appropriate for emotion studies, however, 
due to the added degree of discomfort and distraction they provide.

SCM was originally investigated by Hajnal et al. [96] in hybrid 
simulations with quite large (3 mm) introduced pixel shifts, which 
led to peripheral correlations. A study by Field et al. [97] found 
that small-amplitude motion can lead to false positive results, par-
ticularly in regions of high field gradient. Likewise, larger motions 
can reduce significance and lead to false negative results. Two dis-
tinct patterns of SCM are often observed in fMRI experiments. As 
in the example of identified motion with sample schizophrenic 
patients and controls (Fig. 2, left), patients may execute large 
motions at the first presentation of a stimulus, and many patients 
and controls show very small displacements which endure for 
entire blocks. Reproducing the submillimeter head motions 
observed in that experiment in a separate session (without stimuli), 
these have been shown to lead to highly significant correlations in 
the amygdala which are difficult to distinguish from genuine acti-
vation (Fig. 2, right), a problem not mitigated by standard motion 
correction methods [98].

An additional methodological confound comes in the form of 
RSNs, which constitute additional sources of signal fluctuations 
unrelated to experimental task. In the absence of tasks or stimuli, 
the brain undergoes slow (0.01–0.1 Hz) fluctuations in function-
ally related networks of brain regions [99, 100]. These endure dur-
ing task execution, and have been shown to account not only for 
much of the intertrial variation in the BOLD response in evoked 
brain response [101], but also to the intertrial variability in behav-
ior [102]. Approximately ten such RSNs have been discovered 
over the past decade [99, 100, 103–105] in networks relating to 
sensory or cognitive function. A network with similar low- 
frequency characteristics has recently been identified in the amyg-
dala and basal ganglia [106].

The network illustrated in Fig. 3 shows the results from a group 
of independent component analysis (ICA), performed with 
MELODIC [107], of resting state data acquired from 26 subjects. It 
is continuous, fully incorporating symmetrically the striate nuclei 
(pallidum, puitamen, and caudate nuclei), extending inferiorly to the 
amygdaloid complexes. The network is weaker than those previously 
reported (measured by the amount of variance it explains in the data), 
but is reproducible across subgroups of subjects, runs, and resting 
state conditions (fixation and eyes closed) and offers a tantalizing 
explanation as to why, despite the fact that neurovascular reactivity is 
high in deep gray nuclei, BOLD signal changes are weaker and less 
consistent in the amygdalae and basal ganglia than in the cortex.

This may not be the only RSN in which the amygdala is 
involved. Correlations were observed between the amygdalae, and 

3.1.6 Colocalized Resting 
State Networks
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between the amygdalae and hippocampi and anterior temporal 
lobes in one of the earliest resting state analyses, using functional 
connectivity [100]. The amygdala was also listed as an element in 
the “default mode” network [108], when originally reported as 
regions showing deactivations across a number of tasks in PET 
[109]. The fact that the amygdala has not been observed as part of 
this network in this context may relate to the technical challenges 
of measurement discussed in this chapter.

While the signal to noise ratio (SNR), the magnitude of BOLD 
signal changes, and the specificity of the BOLD response to micro-
vascular contributions all increase with field strength, so do physi-
ological noise, field inhomogeneities, and physiological artifacts 
which specifically affect the anterior MTL. The advantages of high 
field for emotion studies are therefore restricted to particular 
regimes and methods in which these problems are minimized. 
Human emotion fMRI studies have been carried out at field 
strengths from 1.0 to 7.0 T. In line with the development of 
sequences and approaches to EPI in susceptibility-affected area 
which are discussed in Sect. 3.2.2–3.2.8 (high-resolution single 
and multishot EPI, multiecho and spiral acquisitions, gradient 
compensation, and parallel imaging), emotion fMRI in the high 
field regime (3.0–4.0 T) has become commonplace, although 
applied studies have generally used standard sequences and param-
eters despite the problems which have received attention in the 
MR literature [110] and a number of promising remedies (see the 
following sections). Ultra-high field strength studies of emotion 
are still sparse, however, and it is likely that they will be restricted 
to highly specific questions during the next 5–10 years of hardware 
and sequence development.

Theoretical gains in SNR at high field are limited by physio-
logical noise, which increases both with field strength and voxel 
size, and causes time-series SNR (tSNR) to reach as asymptotic 
limit with voxel volume [111]. This limit was found to increase 
only modestly with field strength, being 65 at 1.5 T, 75 at 3 T, 
and 90 at 7 T, so that for large (5 × 5 × 3 mm) voxels, tSNR was 
only 11 % higher at 3 T than at 1.5 T, and only 25 % higher at 7 T 
than 1.5 T. The tendency toward asymptotic behavior began at 
relatively small volume volumes, with 80 % of the asymptotic 
maximum being reached at 28.6, 15.0, and 11.7 mm3 at 1.5, 3, 
and 7 T, respectively. For small voxels, however, where thermal 
noise dominates, tSNR gains were almost linear with field 
strength. In the same study, the authors found that with 
1.5 × 1.5 × 3 mm3 voxels, tSNR increased by 110 % at 3 T com-
pared to 1.5 T, and by 245 % at 7 T compared to 1.5 T [111]. 
This study clearly shows that tSNR gains are to be made at high 
field in the small voxel volume regime.

3.2 MR Methods, 
Sequences, 
and Protocols

3.2.1 Field Strength
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These tSNR results also explain the often modest gains achieved 
in fMRI studies at higher field, particularly in regions affected by 
signal dropout. Krasnow et al. [112] compared activation in 
response to perceptual, cognitive, and affective tasks at 1.5 and 3 T 
with a relatively large voxel protocol (3 × 3 × 4 mm) and observed 
only moderate increases in activated volume at 3 T for the percep-
tual and cognitive tasks (23 and 36 %, respectively), but no signifi-
cant improvement in the activated amygdala volume due to 
increased susceptibility-related signal loss. A high-resolution, high- 
field approach has been exemplified in the only human study of 
amygdala function at 7 T to date of which we are aware, which was 
carried out at submillimeter resolution [113].

These studies define the regime in which field strength gains 
are to be made, but it is fair to ask why one should move to high- 
resolution measurements if the neuroscience question does not 
require, for instance, subnuclei of the amygdala to be resolved, 
but—as is more commonly the case—the study of interactions 
between the amygdalae and the cortex, for which whole brain cov-
erage is essential. The use of high resolution here is not principally 
to distinguish activation in small structures, but to reduce both 
physiological noise and susceptibility artifacts. A number of works 
have shown the value of averaging thin slices, downsampling, and 
smoothing data acquired at high resolution [114–116] and using 
multichannel coils [115] to regain losses in SNR inherent to small 
voxels generally and yielding net gains in susceptibility affected 
areas [115, 117].

The effect of signal dephasing arising from through-plane gradi-
ents may be reduced by creating a composite image from a number 
of acquisitions in which different slice-select gradients are applied 
[118], a process known as z-shimming. In each image the applied 
gradient pulse is appropriate to counteract susceptibility gradients 
in particular regions. The method is effective in regaining signal in 
the anterior MTL, but clearly reduces temporal resolution by a fac-
tor equal to the number of images acquired, usually a minimum of 
3. Alternatively, a single, moderate preparation pulse may be used. 
This reduces through-plane dephasing in affected areas at limited 
cost to BS and signal in homogeneous areas, and allows slices to be 
orientated so that TE shifts are small, reducing signal loss due to 
in-plane gradients [119]. z-Shimming and other compensation 
schemes have been applied in a number of other sequences 
described in this section.

Spins may also be refocused using tailored radio frequency 
pulses which create uniform in-plane phase but quadratic phase 
variation through the slice, allowing dephasing to be “precompen-
sated” [120]. Analogous to z-shimming, in the original implemen-
tation a number of acquisitions with different precompensations 
were required, suited to different regions. More recently 3D 

3.2.2 z-Shimming, 
Gradient Compensation, 
Tailored RF Pulses
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versions have been developed, and while these are promising the 
pulse lengths are long, and the distribution of susceptibilities must 
be known [121], or calculated iteratively online [122]. These are, 
however, important steps toward single-shot compensation of sus-
ceptibility dropout.

Divergent findings and recommendations for the optimum slice 
orientation for amygdala fMRI are due to the absence, until rela-
tively recently, of an adequate description of signal loss and BS in 
the presence of field gradients [81, 119, 123].

In many early studies, quite nonisotropic voxels were used to 
achieve short TR while minimizing demands on scanner hardware, 
with slice thickness being substantially larger than the in-plane 
voxel size. Gradients across voxels were highest then, and signal 
loss most severe, if the direction of strongest field gradient was 
along the slice (through-plane) direction [124]. With many studies 
finding that the direction of the field vector across the amygdala 
was principally superior-inferior [125], this prescription precluded 
an axial orientation. As bilateral structures, the amygdala could be 
imaged in the same slice in the coronal but not the sagittal planes, 
leading to the coronal orientation being preferred by many [110].

The optimum imaging plane is also dependent on whether 
gradient compensation is used [81]. If so, through-plane gradients 
may be compensated for with a moderate gradient in the slice 
direction, although this will lead to a small decrease in BS in unaf-
fected areas. The slice can then be orientated so that in-plane 
 gradients are below the critical threshold for Type 2 signal loss. 
The value of this has been demonstrated in the orbitofrontal cortex 
[119] but the approach yields lower rewards in the amygdala 
region [126] as gradients are higher (making it more difficult to 
find a suitable value for compensation), and are more variable 
between subjects.

The simulations of Chen et al. [125] for the amygdala sug-
gested that the maximum BS was to be achieved by orienting the 
slice direction perpendicular to the maximum gradient vector and 
the readout direction parallel to it, indicating an (oblique) coronal 
orientation with superior–inferior readout. The angle between the 
gradient vector and the superior–inferior direction was shown to 
vary widely between subjects (from −7° to +26° at 1.5 T, from −5° 
to +34° at 3 T), meaning that field gradients need to be mapped 
for each subject before measurement. This scheme also invokes 
distortions which are asymmetric about the midline (left–right). If 
erroneous conclusions about lateralization are to be avoided, resid-
ual distortions in the amygdala should be symmetric, requiring the 
phase–encode direction to be superior–inferior for coronal slices or 
anterior–posterior for axial slices.

As well as the direction of imaging gradients, the sign of phase- 
encode blips is important for signal loss and BS [123]. Encoding in 

3.2.3 Slice Orientation 
and Gradient Directions
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EPI can be either with a large positive phase-encode “prewinder” 
followed by a succession of small negative “blips,” or a negative 
prewinder followed by positive blips. In homogeneous fields these 
schemes are equivalent, but we have seen that in the presence of 
susceptibility gradients echo positions are shifted away from the cen-
ter of k-space, along the phase-encode axis. Positive and negative 
blip schemes have quite different properties, therefore, depending 
on whether the component of susceptibility gradient in the phase-
encode direction is itself positive or negative [123]. The phase-
encode direction (PE), slice angle, and z-shimming prepulse gradient 
moments (PP) that lead to maximum BS for EPI with otherwise 
standard EPI parameters (TE = 50/30 ms at 1.5 T/3 T, 
3 × 3 × 2 mm3 voxels) have been measured throughout the brain by 
Weiskopf et al. at 1.5 and 3 T [126]. They define positive slice angles 
as being those in which, beginning from the axial plane, the anterior 
edge is tilted toward the feet, and a positive PE as being that in 
which the prewinder gradient points from the posterior to the ante-
rior of the brain. In the amygdala they find that the highest BS is 
achieved with positive PE, a −45° slice tilt and a PP = +0.6 mT/m ms 
at 3 T, and positive PE, −45° slice tilt and PP = 0.0 mT/m ms at 
1.5 T. These values led to a 14 % increase in BS at 3 T over a standard 
acquisition (with positive PE, a −0° slice tilt and a PP = −0.4 mT/m ms) 
but only 5 % at 1.5 T. This indicates that BS can be increased by 
selecting optimum geometry parameters and compensations gradi-
ents, although improvement is more modest than that which has 
been demonstrated with the more technically challenging or time-
consuming strategies described in this chapter. The gradient and 
geometry values suggested in Weiskopf et al. [126] should be 
adopted for EPI with standard parameters at these field strengths. At 
other field strengths their analysis could be followed, or interpolated 
values adopted from the trends evident in that study.

Among many solutions to the problem of signal loss in the anterior 
MTL, reduced voxel size was established very early as an effective 
means of mitigating susceptibility-related signal loss [127, 128]. 
Equation (2) describes how the rate of signal decay is reduced with 
voxel size by lowering field gradients across voxels. The effective-
ness of this can be seen in the 4-T images of Fig. 4 over a range of 
resolutions, with T2

* in the amygdala (measured with a multiple 
gradient-echo sequence with the same geometry as the EPI) 
increasing from 22 to 38 ms when the voxel size is reduced from 
64 to 8 mm3, with corresponding EPI signal increase apparent in 
the anterior MTL.

Reducing voxel size comes at the expense of temporal resolu-
tion (or brain coverage) and SNR. The relationship between image 
SNR and voxel volume, ΔV, is

3.2.4 Voxel Size
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where Ni is the number of samples in direction i and rBW the 
receiver bandwidth [129]. The commonly held view that voxel 
volume is simply proportional to SNR is premised on changing 
the volume via the field of view [130], or that, in addition to 
increasing Nx and Ny by a factor f, (considering only in-plane 
resolution) receiver bandwidth is also increased by the same fac-
tor. If receiver bandwidth and field of view are held constant, 
however, then we see from Eq. (3) (because N N N k Vx y z = / | ,FOV  
where k is the total imaged volume) that SNR is proportional to 
the square root of the voxel volume, and SNR may be restored by 
downsampling high-resolution images. In this time-consuming 
scheme, partial k-space acquisition may be used to achieve the 
desired TE, SNR can be increased with multichannel coils, as has 
been validated for the MTL [115] and parallel imaging used to 
reduce an otherwise long TR.

While this analysis provides the basis for the dependence of 
image signal on imaging parameters, it neglects the effects of phys-
iological noise. The most important measure of signal in this con-
text is tSNR, which translates into the feasibility of detecting a 
specified signal change in fMRI [131] and has been shown to be 
useful in assessing the viability of amygdala fMRI in individual 
 subjects [132]. In a study of optimum parameters for GE-EPI for 
3-T amygdala EPI with a volume coil, a protocol with approxi-
mately 2-mm isotropic voxels was found to yield 60 % higher tSNR 
than a protocol with standard parameters (with approximately 
4-mm isotropic voxels) [117], despite having been measured at 
twice the receiver bandwidth. Additional gains with smaller voxels 
(thinner slices) were not large, because T2

* had already increased to 
a value close to that in homogeneous regions. This is in concor-
dance with models calculations which suggest that 2 mm repre-
sents the smallest voxel size that should be used for amygdala 
imaging providing the activated size is itself at least 2 mm [125].

There are many differences between the conditions and met-
rics of the methodological work cited and typical fMRI studies. It 
is encouraging, therefore, that these findings have been confirmed 
in the significance and extent of amygdala activation in fMRI 
experiments [133, 134].

In summary, small voxels should be used in high field strength 
studies in order to operate in a regime dominated by technical, 
rather than physiological noise. In inhomogeneous regions this 
results in reduced field gradients, reducing signal loss and echo 
shifts, making BS more uniform in the volume. Time-series SNR 
may be increased by using multichannel coils and downsampling 
small voxels.
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Taking the simplest approach of matching effective echo time 
(TEeff) to the T2

* of the structures of interest in GE-EPI might be 
seen as being problematic in large voxel size acquisitions, with T2

* 
s varying quite widely (e.g., between the amygdala and the fusi-
form face area). One solution is to use a multiecho sequence, in 
which the each time of each image is appropriate for regions with 
particular field gradients, as will be described in more detail in 
Sect. 3.2.8. A novel solution to matching TEeff to T2

* in the amyg-
dala without sacrificing BS in more dorsal slices is to use an axial 
acquisition with slice-specific TE, demonstrated at 1.5 T with 
TEeff = 60 ms in dorsal slices, TEeff = 40 ms in ventral slices, and a 
transition zone with intermediate effective TE [135].

It should be remembered, though, that the maximum of BS is 
quite flat as a function of TE, and TE is itself not well defined in 
EPI. In the previous sections, we also saw that in-plane susceptibil-
ity gradients change local TE [81]. This exposes the limitation of 
the approach of simply reducing the TEeff of the sequence. In the 
common, negative blip scheme, signal in the anterior MTL will in 
fact be shifted to a longer TE. Using a short TEeff makes the 
sequence more prone to complete (type 2) signal loss.

This explains the experimental findings of Gorno-Tempini 
et al. [136] and Morawetz et al. [134]. In 2-T dual-echo EPI with 
large voxels, Gorno-Tempini et al. found that although signal loss 
was reduced at the short TE (26 ms) BOLD activation was signifi-
cantly greater in the hippocampus at the longer TE (40 ms). 
Morawetz et al. [134] studied four EPI protocols in their efficacy 
at mapping amygdala activation, using variants with two different 
TE (27 and 36 ms) and slices thicknesses (2 and 4 mm), all with 
high in-plane resolution (2 mm). Activation results were poor in 
the 4-mm protocols, even at the shorter TE.

A more effective approach than reducing TEeff is to reduce 
susceptibility gradients, and thereby signal dephasing and echo 
shifts, using the techniques described earlier; gradient compensa-
tion, selection of appropriate gradient direction and slice orienta-
tion, and the use of smaller voxels. This increases T2

* in 
susceptibility-affected regions and, by reducing echo shifts, makes 
BS more homogeneous throughout the imaging volume. 
Conditions then approach those with a homogeneous static field, 
where BS is maximized by using TEeff = T2

* .
The increase in T2

* in the amygdala with reduced voxel size is 
illustrated at 4 T in Fig. 4; from 22 ms in a 4 × 4 × 4-mm acquisition 
to 38 ms in 2 × 2 × 2-mm data, consistent with previous results at 
3 T [117]. Likewise, increase in BS was illustrated in the Morawetz 
et al. study [134], in which robust amygdala activation was only 
detectable in the high-resolution acquisition.

The previous sections have shown that many of the techniques 
which mitigate susceptibility-related signal loss in the amygdala, 

3.2.5 Echo Time
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hypothalamus, and MTL are also time consuming, limiting either 
temporal resolution or brain coverage. This is undesirable where 
brain coverage cannot be reduced to the amygdala. Parallel imaging 
allows acceleration by undersampling k-space and using the sensi-
tivity profiles of a number of receiver channel to reconstruct data 
without image fold-over [137, 138]. By this means it is possible to 
reduce TEeff, which reduces susceptibility loss, and to reduce TR by 
the acceleration factor. Image distortions and echo shifts are like-
wise reduced by the acceleration factor so that even at the same 
effective TE as in a conventional acquisition, signal loss in the 
amygdala region is lower (Fig. 4, bottom right). The noise proper-
ties of images reconstructed from parallel acquisition lead to BS 
reductions of the order of 15–20 % in other regions, however [139].

The effectiveness of parallel imaging and suitable acceleration fac-
tors for the MTL have been studied by Schmidt et al. [140]. Statistical 
power in the study of MTL activation was higher in the parallel-acqui-
sition data with an acceleration factor of 2 than in the acquisition with-
out acceleration, but neither image quality nor statistical power 
improved with higher acceleration factors, as noise and reconstruction 
artifacts reduced tSNR prohibitively. Particular gains in BS can be 
made in the MTL using parallel imaging with a modest acceleration 
factor combined with high-resolution imaging [115]. Combining 
parallel imaging, high-resolution and high field has even allowed dif-
ferential response of the hypothalamus to be recorded in response to 
funny as opposed to neutral stimuli at 3 T [141, 142], which could 
potentially be used to diagnose narcolepsy and cataplexy.

The following is a consideration which is common to fMRI studies in 
all brain regions. The flip angle that should be used in a sequence is 
that which maximizes the signal with a particular experimental TR. In 
a spoiled gradient-echo sequence this is the Ernst angle, θE, given by
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T1 values can be taken from the literature, if available, or mapped in a 
single study of a representative group of subjects, mostly simply using 
an inversion recovery sequence and a range of inversion times. At 
high (3.0–4.0 T) and very high field (7.0 T or higher), dielectric 
effects lead to B1 inhomogeneity, and flip angles achieved deviate 
from nominal values. Particularly at 7.0 T it is worthwhile to map the 
RF field [e.g., using the 180° signal null point using a simple spoiled 
gradient-echo sequence [143] to calibrate nominal flip angles].

If multiple echo images are acquired following a single excitation, the 
range of TEeff in these provides near-optimum BS for a number of 
regions [144, 145]. Images acquired at different TEs may be analyzed 
separately, or combined to maximize BOLD contrast-to- noise ratio 
[145]. Acquiring multiple images in a single shot also allows 

3.2.7 Flip Angle
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additional features to be built into the sequence, such as 3D gradient 
compensation, in which different combinations of compensation gra-
dients are applied to each echo [146], leading to excellent signal 
recovery in the amygdala in the combined image [147]. Alternatively, 
the phase-encoding gradient polarity may be reversed to yield images 
with distortions in opposite directions, allowing for their correction 
[148].

Similar multiecho and compensation techniques have been 
applied to spiral acquisitions. A spiral-in trajectory has been shown 
to reduce signal loss compared to a conventional spiral–out scheme 
with the same TE, and SNR and BS could be increased with a spiral 
in–out scheme by combining images optimally from the two acqui-
sitions [149]. A number of variants of this have been developed to 
further reduce susceptibility artifacts, including applying a z-shim 
gradient to the second echo [150] or subject-dependent slice- 
specific z-shims to both echoes [151].

A number of segmented methods are being developed to over-
come the temporal constraints of multiecho and high-resolution 
acquisitions. In conventional segmented EPI, subsets of inter-
leaved k-space lines are acquired after successive excitations. The 
higher phase-encode bandwidth leads to reduced distortions and 
smaller echo shifts, but the method is inherently slow and prone to 
motion and physiological fluctuations, as each image is built up 
over a number of TRs. In the MESBAC sequence, navigator echoes 
are acquired in both the readout and phase-encode directions 
between each segment. Multiple echoes are acquired with different 
amounts of compensation for each echo [152], and combined to 
give impressive signal in inferior frontal areas.

In the subsections of Sect. 3.2 we have looked at the influence of 
field strength, gradient compensation, slice orientation, voxel size, 
TE, and acquisition acceleration factor on susceptibility-related 
signal and BS reduction in the anterior MTL, as well as discussing 
some variants of multiecho and spiral schemes which have been 
tailored for this region. While the interdependent nature of EPI 
parameters and changing considerations at different field strength 
necessarily make some considerations complex, we would like to 
pick out two lines of approach presented here as being particularly 
effective, and clarify recommendations.

The first approach is high-field, high-resolution single-shot 
EPI with gradient compensation and acceleration. BOLD signal 
changes are greater at high field (3.0–4.0 T), and the tSNR advan-
tages of high field strength are capitalized upon by measuring with 
small (circa 8-μl voxels), where thermal noise rather than physio-
logical noise dominates. Measuring with small voxels reduces sig-
nal dephasing, making T2

* more homogeneous. Shifts in local TE 
are also less, reducing Type 2 signal loss and increasing BOLD 
sensitivity. Moderate slice select gradient compensation and an 
oblique axial acquisition with a tilt between 20 and 45° (anterior 

3.2.9 Summary
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slice edge toward the head) reduces in-plane gradients and echo 
shifts further. With susceptibility gradients reduced—evidenced by 
T2

* values close to those in magnetically homogeneous regions—
BS can be maximized by setting the TEeff = T2

* . The TEeff can be 
reached using parallel imaging acceleration (e.g., factor 2), which 
further reduces both TE shifts and image distortion. Images 
acquired with these parameters have high signal in the anterior 
MTL, low distortion, and quite homogenous BS. Time-series SNR 
can be increased before statistical analysis by downsampling or 
smoothing images. This approach is attractive in that it may be 
achieved on most modern high field systems.

Not only the value of gradient compensation was discussed in 
Sect. 3.2.2, but also the high cost in temporal resolution, if images 
with a number of compensation gradients are acquired. The  second 
approach we wish to highlight involves the application of a range 
of compensation gradients to each of a number of echoes acquired 
after a single excitation, so reducing the time penalty. Both the 
multiecho echo-planar [146] and multiecho spiral acquisitions 
[151] described in Sect. 3.2.8 have been shown to be effective in 
reducing susceptibility-related signal loss in the anterior MTL.

The field map (FM) method was first described by Weisskoff and 
Davis [153] and developed by Jezzard and Balaban [154]. In 
Sect. 3.1.2 we saw that distortion in EPI is only significant in the 
phase-encode direction and that the number of pixels by which 
signal is mislocated is equal to the local field offset divided by the 
bandwidth per pixel in the phase-encode direction. In the fieldmap 
method, static magnetic field deviations, ΔB, are calculated from 
the phase difference, Δϕ, between two scans with TE separated by 
ΔTE (or a dual-echo scan), using the relation D DB = 2pg jTE . 
This map is distorted (forward-warped) to provide a map of the 
voxel shifts required to reverse the distortion at each EPI location. 
Gaps in the corrected image are filled by interpolation.

While undemanding from the sequence perspective, considerable 
postprocessing is required to produce FMs that do not contain errors. 
Phase imaging is only capable of encoding phase values in a 2π range, 
with values outside this range being aliased, causing “wraps” in the 
image. These can be removed in the spatial domain using a number of 
freely available algorithms (e.g., PRELUDE [155] or ΠUN [156]), 
or by examining voxel-wise phase evolution in time if three or more 
echoes are acquired [157]. If imaging is being carried out with a mul-
tichannel radiofrequency receive coil, phase images created via the 
sum-of-squares reconstruction [158] will show nonphysical disconti-
nuities from arbitrary phase offsets between the coil channels (incon-
gruent wraps) unless these offsets are removed [159, 160]. 
Alternatively, images from channels may be processed separately and 
individual FMs, weighted by coil sensitivities, combined. In 2D spatial 
unwrapping, additional global, erroneous 2π phase changes are occa-
sionally inferred between TE when the algorithm begins to unwrap 
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from different sides of a phase wrap at the two TE. In multichannel 
imaging, these slice phase shifts may be identified by examining the 
consistency between coil channels [161], as may unreliable voxels at 
the image edge and in regions of high-field gradient. The FM may 
finally need to be smoothed to remove high frequency features and 
dilated to ensure that it extends to the periphery of the brain.

In the point spread function (PSF) approach [162] applied to 
distortion correction [163], the imaging sequence is similar to 
EPI, but with the initial phase prewinder gradient replaced by a 
phase gradient table, the values are applied in a loop. The PSF of 
each voxel is the Fourier transform of the acquired data, and the 
displacement of the voxel is the shift of the center of the PSF (e.g., 
if the center of this is at zero additional phase, this corresponds to 
no local field offset). For one major scanner manufacturer, this 
method has been robustly implemented with the flexibility to be 
used for parallel imaging with high acceleration factors [164].

The FM and PSF methods have been compared at 1.5 T [163]. 
The PSF was found to be generally superior, although some con-
clusions were based on deficiencies in FMs in regions of high field 
gradient which may be improved upon.

The effectiveness of the two methods in correcting larger 
distortions at 4.0 T is shown in Fig. 5, focusing on a section 

Fig. 5 Distortion correction of echo-planar imaging (EPI) at high field (4.0 T). A comparison of field-map (col-
umn 3) and point-spread function (column 4) correction of distortion in EPI (column 2) at the level of the 
amygdala (top row) compared to a more dorsal section (bottom row). Salient features have been copied from 
a gradient-echo geometric reference scan (column 1)
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through the amygdala (top row), and comparing this with the 
situation in a more dorsal slice (bottom row). Raw and corrected 
EPIs are compared to a gradient-echo reference which has the 
same (subvoxel) distortion in the readout direction, but no dis-
tortion in the phase- encode direction. The distortion at the 
anterior boundary of the amygdala (A) is circa 3 mm—moderate 
compared to the displacement of the ventricles (9 mm at B) and 
the frontal gray-white matter border indicated at C (12 mm). If 
the multiplicity of phase information available from multichan-
nel coils is used in the FM method [161], both FM and PSF 
methods perform very well in all areas, with only minor errors at 
the periphery of the FM-corrected images due to residual field 
map inaccuracies at those locations (at D, not present in the 
PSF-corrected images).

The choice of correction method is often a pragmatic one 
based on which is more robustly and conveniently implemented.

Physiological fluctuation in a sequence of gradient-echo images can 
be corrected using a navigator echo technique [165]. A single echo 
is acquired before the encoding scheme is begun and used to amend 
the phase changes in the image data which arise from susceptibility 
effects. This “global” correction approach, using the central k-space 
point only, can be extended to 1D [166] and 2D [167]. These 
methods are effective, but have as drawbacks an increase in TR.

To avoid them being aliased in EPI time series, respiratory 
fluctuations (circa 0.2–0.3 Hz) and cardiac fluctuations (circa 
1 Hz) would need to be sampled at least at 2 Hz. That is, the TR 
of the sequence would need to be 500 ms or less. Typical TRs in 
whole-brain fMRI are 1–4 s, and the previous sections have indi-
cated that many of the strategies that should be implemented to 
improve data quality in fMRI for emotion studies lead to longer 
repetition times. Respiratory and cardiac fluctuations will nor-
mally be aliased, then, and not generally into a particular fre-
quency band [168]. Simple band-pass filtering is therefore not 
generally  possible; although a range of alternative correction 
methods have been developed.

A class of correction methods requires additional physiological 
measurement to be made concurrent with the fMRI time-series, 
using a respiration belt to monitor breathing and an electrocardio-
gram or pulse oximeter to monitor heart rate. Applied in image 
space, the RETROICOR correction method involves plotting pix-
els according to their acquisition time within the respiratory cycle 
(classified also by respiration depth) and subtracting a fit to fluctua-
tions over the cycle [169]. Despite the many reasons why physio-
logical artifacts are expected to particularly affect amygdala fMRI, 
their correction with RETROICOR was found to bring only mod-
est improvements in group fMRI results in an emotion processing 
task; up to 13 % in t statistic values depending on the degree of 
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smoothing [170]. Those improvements were mostly due to cor-
rection of cardiac effects. Recent findings that cardiac rate changes 
lead to signal changes of similar size to the effect due to cardiac 
action itself [88], which are not modeled in the RETROICOR 
approach, suggest that further gains are possible.

Modeling physiological fluctuations [171] by including mea-
sured signal as “Nuisance Variable Regressors (NVRs)” is a conve-
nient alternative to fitting and removing them. A detailed 
examination of these and other sources of noise showed respiratory- 
induced noise particularly at the edge of the brain, larger veins and 
ventricles, and cardiac-induced noise focused on the middle cere-
bral artery and Circle of Willis, close to the amygdala [168], which 
could be well modeled.

A number of image-based methods for physiological artifact 
correction have been developed, which do not require physio-
logical monitoring data. Physiological fluctuations can be mod-
eled with NVRs based on ventricular and white matter ROI 
values [172]. Alternatively, the data can be decomposed using 
ICA (e.g., MELODIC [173] or GIFT [174]) and components 
relating to physiological processes identified with automated or 
semiautomated methods. These can be based on experimental 
thresholds [175], statistical testing [176], automatic threshold-
ing [177], or supervised classifiers [178]. Once identified, these 
components can be removed from the data. While in their 
infancy, these methods are very promising, particularly for the 
ventral brain. Tohka et al., for instance, demonstrated marked 
Z-score increases in frontal ventral regions and other areas close 
to susceptibility artifacts.

In patient group studies, Bullmore et al. [179] have shown the 
need to compare the extent to which SCM explains variance 
between the groups, and suggest that this be identified using an 
analysis of covariance (ANCOVA). Without this approach, differ-
ences between the groups arising from higher SCM in the 
 schizophrenic group in their study would have been attributed to 
differential activation in response to the task.

In the example of Fig. 2 (left), realignment of the time series 
in the motion-only replication did not substantially reduce the 
amygdala SCM artifact (right), but including identified motion 
parameters in the model as NVRs was effective [168, 180]. 
Alternatively, a boxcar NVR corresponding to presentation and 
response periods can be included in the model [181]. This and a 
number of other studies [182] have shown that the temporal 
shift in response introduced by the hemodynamic response func-
tion (HRF) makes it possible to separate motion from activation 
for short presentation periods, making event-related designs less 
sensitive to motion than block designs.

3.3.3 Correction 
of Stimulus- Correlated 
Motion Artifacts

fMRI of Emotion



482

4 Summary and Discussion

Emotional neuroimaging is a rapidly expanding area that provides 
an interface between neurobiological work and psychophysiologi-
cal emotion research. One important view that has emerged from 
the area of behavioral neuroscience is that emotional processes play 
a central role in the adaptive modulation of perceptual encoding, 
learning and memory, attention, decision-making, and control of 
action [9]. Many of neuroimaging studies have demonstrated that 
amygdala activation, for example, modulates attention and mem-
ory storage in other brain regions such as the hippocampus, stria-
tum, and neocortex. Such interactions may occur as facilitations or 
modulations of neurocognitive function at several levels of process-
ing. Conversely, recent work has shown that the organism is pre-
vented from excessive emotional activation not only by low-level 
habituation or negative feedback mechanisms but also as a result of 
protective inhibition processes. Diverse behavioral and cognitive 
strategies have been identified that modulate and downregulate 
the ongoing emotion process [6]. The modulating effects on emo-
tional arousal during an emotional episode such as rejection (vent-
ing and disengagement) or accommodation (relaxation, distraction, 
reconceptualization, rationalization, or reappraisal) deserve further 
inspection with respect to the involved neural mechanisms.

Although important advances have been made in the area of 
human emotion perception, learning, and autonomic conditioning, 
research has typically been limited to a small number of primary and 
mostly negative emotions such as fear, anger, or disgust. Limiting 
the range of investigated categories (neglecting shame, guilt, inter-
est, etc.), dimensions (neglecting positive emotions such as care, 
support, etc.) and behavioral procedures does not do justice to the 
complexity of the multistage emotional appraisal process described 
above [29]. It is equally important but more  difficult to identify the 
correlates of complex emotions such as those resulting from beliefs, 
preferences, predispositions, or interpersonal exchange. Not only 
the social dimensions such as untrustworthiness or dishonesty [183, 
184], but also positive aspects such as social fairness [185], trust, 
and supportiveness play a role. Moreover, an understanding of 
modulating sociocultural influences is essential for a comprehensive 
conceptualization of human emotion [29].

Current neuroimaging research on emotion can be described as 
an ongoing construct validation process [186], which draws upon 
convergent and divergent associations of local activation variables and 
psychological constructs. The experimental measures (operational-
izations of psychological constructs) are expected to be correlated 
with regional brain activations. It is evaluated whether topographi-
cally distinct patterns of activation in a certain region consistently 
predict engagement of different processes (for an example in the area 
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of cognitive processing, see Ref. [187]). Indicators of a different con-
struct are expected to correlate with activations of different areas. 
This corresponds to the well-known double dissociation strategy that 
inspects task by localization interactions in neuropsychology [64].

This validation process typically starts at a relatively broad con-
struct level and proceeds downward in the hierarchy of constructs 
to finally specify within-systems constructs. Previous studies have 
demonstrated a relatively high cross-laboratory repeatability of 
emotional brain activation patterns at a higher systems level. At 
lower levels, however, the reliability of psychological or activation 
data may decline depending on limitations of the instruments.

Nonetheless, high-field fMRI scanners permit an improved dis-
crimination of activations, for example, within the different subnuclei 
of the amygdala [5]. It is evident that increased discrimination on the 
neural side must be accompanied by a refined technology to assess 
more fine-grained emotional constructs on the behavioral side.

Neuropsychological construct validation requires additional 
physiological data to obtain some kind of convergent information 
about the indicator variable. At the neurophysiological level, the 
perfusion mechanisms has been elucidated by combining the greater 
spatial resolution of fMRI with the real-time resolution of intracorti-
cal local field ERP (LFP) recordings. The neurophysiological cou-
pling mechanisms of neural activity and the BOLD response can 
thus be assessed [188]. An application of both fMRI methods and 
electrophysiological approaches (e.g., surface and deep electrode 
recordings from limbic brain structures) is useful [189]. The combi-
nation of brain perfusion changes and electrophysiological correlates 
of oscillatory coupling will foster the understanding of the neural 
interaction processes within frontal and temporal networks [190].

On the level of the autonomic nervous system, multivariate 
coregistrations of psychophysiological response patterns including 
emotion modulated startle, heart rate variability, or cortisol secre-
tion alleviate the validation of experimentally induced emotions or 
presence of specific emotional disorders.

Emotional neuroimaging has continuously profited from 
improvement in scanning techniques and the adaptation and stan-
dardization of signal processing strategies. However, this area has 
not only benefited from the diverse contributions of its subdisci-
plines but also inherited their methodological problems. An inspec-
tion of brain imaging studies of emotion showed that measurement 
quality may be influenced by many factors: by a rapid and differen-
tial habituation of responses to emotional stimuli in some regions; 
by artifacts of certain signal scaling techniques that are applied by 
default; by situational or state-dependent influences; and by insuf-
ficient validation of the emotion to be elicited (manipulation 
check). Interindividual differences of emotional regulation behav-
ior appear to modulate event-related reactions during the time 
course of the experiment.
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Some of the many approaches to reducing signal loss in EPI in 
the anterior MTL have been outlined here, as well as some of the 
methods for identifying and correcting artifacts arising from SCM, 
distortion, and physiological artifacts. Despite the gravity of the 
problem and the effectiveness of some of these strategies, the over-
whelming majority of fMRI studies of the emotions use the same 
measurement protocols and analysis methods as have been applied 
to study cognitive function over the last decade.

Combining many of the simpler strategies described here—high 
field strength, small voxel volumes, partial k-space acquisition with the 
correction of physiological and SCM artifacts—allows reliable results 
to be achieved in the anterior MTL [191]. Figure 6 demonstrates 
such an example; the detection of subtle differences in amygdala acti-
vation between explicit and implicit emotion processing [192].

Moreover, new research designs and analysis methods such as 
Structural Equation Modeling or Dynamic Causal Modeling are 
now available to inspect the effective or causal connectivity that, 
for example, permits the PFC to modulate amygdala activity [62]. 
The influences of individual brain regions on each another can also 
been studied by combining functional brain imaging with the 
lesion approach or transcranial magnetic stimulation [193].

We have raised a number of caveats that highlight some of the 
limitations of emotion assessment in a scanner environment. As has 
been argued above, a lack of representativeness must be noted, that 
is, emotion includes a much broader conceptual network than 

Fig. 6 High-resolution imaging detailed in this chapter allows the acquisition of low-artifact echo-planar imag-
ing (EPI) and allows subtle processing effects to be distinguished. Group results from 29 subjects for the condi-
tions (a) emotion recognition (b) implicit emotion processing (age discrimination) and (c) the difference 
between the two conditions (3.0 T). Results, showing activation in the amygdala and fusiform gyrus (as well as 
cerebellum and brainstem) are overlaid on mean EPI and thresholded at p = 0.05, family-wise error corrected. 
Reprinted from [192], with permission
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 currently covered by neuroimaging research. Thus, generalizations 
to other areas of functioning remain difficult. Representative 
designs are needed that pay greater attention to high-level strate-
gies that depend on sociocultural factors and initiate, modulate, or 
regulate emotions. Moreover, the representativeness of results is 
limited due to small, selected, and poorly described study groups. 
Finally, since emotion elicitation in the scanner has been highly 
artificial, the power to predict emotions outside the neuroimaging 
context remains questionable. An ecological functional brain imag-
ing approach that includes natural behaviors and environmental 
contexts of presentation may help to obtain a more representative 
view of real-life emotions.

Subject-specific mechanisms regulating the strength and tem-
poral pattern of response to emotional stimuli and the balance of 
excitatory and inhibitory processes are of particular interest. The 
variability of the BOLD response between trials and across the 
time course of the experiment needs to be explained. Future 
research may therefore examine individual and group differences 
with a view to resolving inconsistencies in the literature [5, 12, 
77]. Investigations into personality disorders or psychiatric diseases 
will provide further insight into the dispositional factors modifying 
the response to situational stressors. Paradigms specifically adapted 
to the investigated disorder may help to identify prefrontal dys-
function and associated failure to tonically inhibit amygdala output 
or to recognize safety signals eventually inducing sympathetic 
overactivity [194]. It may be that—as is the case in motor tasks—a 
large proportion of the intertrial variation not only in the behav-
ioral response [102], but also in the BOLD signal [101] is explained 
by fluctuations in underlying RSNs.

Eliciting emotions in the environment of an imaging scanner 
remains a highly artificial process. This raises the question as to the 
predictive value of current neuroimaging data for explaining the emo-
tional modulations in real-life contexts. This is particularly important 
for applied areas such as psychotherapy and coping research. Thus, in 
addition to identifying the neurobiological basis of emotional regula-
tion behavior, the generalizability or predictive validity of imaging 
data for real-life emotions should be systematically evaluated.

5 Conclusions

Neuroimaging has replicated and extended earlier findings of neu-
ropsychological studies in brain damaged subjects. It has signifi-
cantly contributed to unraveling the organization of neural systems 
subserving the different components of emotional stimulus- 
response mediation along the neuraxis in healthy human subjects. 
Improved operational definitions and paradigms have contributed 
to differentiating subcomponents of emotional functions such as, 
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for example, perceptual decoding, anticipation, associative learn-
ing, awareness, and response mediation. However, despite obvious 
advances, a comprehensive model integrating the diverse emo-
tional behaviors on the basis of involved cerebral mechanisms is 
still unavailable. Moreover, the interpretation of findings is compli-
cated by technical and methodological difficulties.

Research advances not only depend upon the technical 
refinement of imaging methodology but also on the improve-
ment of behavioral procedures and measurement models. 
Neuropsychological construct validation procedures imply that 
an increase of localization precision of the imaging technology 
would also require an enhanced precision on the side of behav-
ioral operationalizations. However, this seems not to be case as 
many studies still use unsophisticated stimulus materials or 
global instructions involving multiple or undefined subfunc-
tions. As much as relatively global operationalizations are applied, 
however, the obtained neuropsychological correlations (for 
example, regarding activations of the PFC) will remain 
incomprehensible.

We have suggested here the framework of a lense-type assess-
ment model, wherein activations in well-characterized neural 
structures may be used as predictors of particular emotional pro-
cesses. According to this, a hierarchy of latent constructs consti-
tutes the behavioral level, an idea, which is largely accepted in 
psychology. On the level of brain activity, patterns or families of 
topographically distinct activity can be identified in a similar way 
and used as a predictor of behavioral function. Following the 
assumptions of a methodological parallelism, neuropsychologi-
cal construct validation procedures make uses of this framework 
of activity–behavior associations on different levels of the hierar-
chy. It can be extrapolated from multivariate personality theory, 
that the prediction of behavior will only be successful if activa-
tion measures and psychological data are analyzed on a similar 
level of generality or aggregation.

In view of the complexities of emotional regulation behavior in 
human subjects, it is equally important to advance assessment the-
ory, psychological conceptualization, and behavioral methodology 
[29]. Future work should therefore more closely inspect issues 
related to model construction, symmetry of neural and behavioral 
variables, and their aggregation levels. Multidisciplinary approaches 
that combine improvement in brain activation measurement with 
enhanced psychological data theory may thus foster construct valid-
ity, reliability, and predictive power of emotional neuroimaging.

Knowledge pertaining to the localization of brain activations 
and its functional connectivity is also an important input to inform 
and constrain cognitive theories of emotion psychology. Thus, 
insights from the brain will thus help to explain the incoherences 
of psychophysiological, behavioral, and subjective indicators of 
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emotion that are so frequently observed in psychophysiological 
studies. Activation data may also help to establish models that pos-
sess a better “breakdown compatibility,” that is, power to predict 
behavioral change as a consequence of brain damage.

The introduction of structural/connectional and functional 
data has considerably bolstered scientific construct validation 
processes in the affective neurosciences and emotion psychol-
ogy. Topographically distinct activity patterns are increasingly 
identified that possess a certain incremental validity, that is, an 
increasing power to predict the individual dynamics of emo-
tional regulation behavior. Establishing a representative and 
valid model of emotional functioning is a necessary precondi-
tion for many areas of application such as the categorization of 
patients with emotional disorders and the assessment of 
psychotherapy.

Greater attention to methodological issues may help to 
bring more rigors to experimentation in the field of emotional 
neuroimaging, promote interdisciplinary research, and alleviate 
cross- laboratory replication. A wealth of approaches have been 
presented to countering BS loss in the amygdala, many of which 
are available as standard on commercial scanners or simply 
require the adoption of suitable imaging parameters [117, 125, 
134]. Also, in the absence of a measurement theory that 
describes validated procedures or instruments for assessing 
emotional constructs, single findings cannot be trusted. 
Although absence of validation is acceptable for early stages of 
the research cycle, current emotional neuroimaging work has 
only just begun to approach the confirmatory stage. To estab-
lish confidence in the suggested models, additional efforts are 
required to empirically validate assessment strategies and 
instrumentation.
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    Chapter 16   

 fMRI of Pain                     

     Emma     G.     Duerden    ,     Roberta     Messina    ,     Maria     A.     Rocca    , 
    Massimo     Filippi    , and     Gary     H.     Duncan      

  Abstract 

   Pain was fi rst considered to be a hard-wired system in which noxious input was passively transmitted along 
sensory channels to the brain. However, today it is generally accepted that the experience of pain is not 
simply driven by noxious stimulus characteristics, but that the brain is the structure where the subjective 
perception of pain emerges and is critically linked with other cognitive processes. 

 The fi eld of pain research has progressed immensely due to the advancement of brain imaging tech-
niques. The initial goal of this research was to expand our understanding of the cerebral mechanisms 
underlying the perception of pain; more recently the research objectives have shifted toward chronic 
pain—understanding its origins, developing methods for its diagnosis, and exploring potential avenues for 
its treatment. While several different neuroimaging approaches have certain advantages for the study of 
pain, fMRI has ultimately become the most widely utilized imaging technique over the past decade because 
of its noninvasive nature, high-temporal and spatial resolution, and general availability; thus, the following 
chapter will focus on fMRI and the special aspects of this technique that are particular to pain research.  

  Key words     Pain  ,   Functional neuroimaging  ,   Brain  ,   Perception  

1      Introduction 

 The history of  pain imaging   is relatively short, although it has 
advanced immensely within the last decade due to improvements in 
imaging techniques, statistical analysis, and specialized equipment 
for the delivery of painful stimuli. Initially, brain-imaging studies 
sought simply to examine the brain areas that are involved in pain 
processing, to make comparisons with the long established neuro-
physiological studies reported in this fi eld. Many of these initial 
imaging studies were prompted by electrophysiological data from 
patients undergoing brain surgery in the early part of the twentieth 
century [ 1 ], which had questioned the role of the cortex in nocicep-
tive processing. It was initially believed that the thalamus was pri-
marily responsible for nociceptive processing as suggested by defi cits 
in pain perception observed in patients with thalamic lesions [ 2 ]. 
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 In the early 1990s, activation in the human brain evoked by 
experimental pain stimuli was studied using  positron emission 
tomography (PET)   [ 3 ,  4 ] and  single photon emission tomography 
(SPECT)   [ 5 ]. Then in 1995 the fi rst fMRI studies examining the 
 cortical representation of pain   [ 6 ] were conducted largely to con-
fi rm the fi ndings of previous PET studies and to examine whether 
the cortical nociceptive signal could be detected using fMRI. In 
more recent years, the fi eld of  pain imaging   has expanded 
immensely, allowing researchers to answer complex questions con-
cerning pain processing, such as how cortical regions are connected 
and modifi ed during the perception of pain and, most importantly, 
how the cortex responds during the modulation of pain. These 
experimental studies were conducted in healthy humans in order 
to answer broad questions regarding pain processing, with the 
eventual goal of applying this knowledge to a better understanding 
and alleviation of pain and suffering associated with  chronic pain 
syndromes  . The  use of fMRI   and other imaging techniques have 
revealed a number of cortical and subcortical changes that may 
occur as a result of prolonged exposure to pain—or possibly as 
causal factors in chronic pain conditions [ 7 – 9 ]. Indeed, with the 
advent of high-speed image acquisition and computational pro-
cessing, not only has the technology of fMRI revealed areas of 
cortical plasticity associated with chronic pain, but it is also now 
possible to use fMRI in real-time to furnish feedback to subjects 
(and patients) to teach them how to modulate their cortical activa-
tion in response to chronic pain [ 10 ,  11 ]. 

 This chapter reviews and discusses the various advances in our 
knowledge of cerebral pain processing that have been achieved 
using fMRI, the response properties of cortical nociceptive neu-
rons in relation to both imaging techniques and stimuli used to 
evoke pain, the applications of this research to treat clinical pain in 
patients, and the future of pain research using fMRI.  

2    Use of fMRI  to Study Nociceptive Processing   

 Compared to other brain mapping techniques currently used to 
study pain experimentally in humans—such as PET,  electroencepha-
lography (EEG)  ,  magnetoencephalography (MEG)  , or optical imag-
ing—fMRI is the tool of choice, given its high spatial resolution, 
noninvasiveness, and reasonable temporal resolution, which allow 
the study of rapid dynamic processes involved in pain processing. 
However, a number of methodological issues concerning the use of 
the  BOLD signal   in research involving cortical, and more recently, 
spinal mechanisms of pain perception has to be considered. 

   For cortical nociceptive processing related to cutaneous heat stimuli, 
the  hemodynamic response function (HRF)   peaks slightly later and 

2.1   Nociceptive 
  BOLD Signal
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lasts longer in comparison to innocuous stimuli. Chen et al. [ 12 ] 
performed a direct comparison of the temporal properties of the 
HRF in response to noxious thermal heat pain and innocuous brush-
ing stimuli in SI and SII. While both stimuli were of the same dura-
tion, the time course for innocuous stimuli peaked ~10 s after the 
onset of the stimulus and dissipated quickly after its removal. 
However, noxious thermal heat stimuli produced a time course 
peaking at ~15 s after the onset of the stimulus and the response was 
sustained for several seconds. Similar results have been reported in 
response to painful electrical stimuli [ 13 ]; identical trains of noxious 
and innocuous stimuli produced differential time courses, with the 
HRF for painful stimulation lasting twice as long as that produced 
by nonpainful stimuli. 

 Time course information on the BOLD response to noxious 
stimuli is crucial for interpreting data analyzed using the standard 
canonical HRFs available in the majority of fMRI analysis software, 
which approximate this time period at ~6 s. Ideally to establish a 
more representative model of painful stimuli, a canonical HRF 
should be created based on data from independent studies employ-
ing similar noxious stimulation. The  BOLD signal   can then be 
regressed against this  canonical   HRF to reveal activation more spe-
cifi c to the nociceptive signal. 

 A related issue in analyzing data recorded during experimental 
pain studies is the critical importance of considering the rise time 
of thermal stimuli when establishing time periods in the event 
design matrix. As the temperature of the thermode gradually 
increases, warm and pain fi bers will become increasingly activated. 
In order to maximize sensitivity for detection of the pain-related 
 BOLD signal  , it is important to enter into the design matrix solely 
the period of time during which the thermode has exceeded the 
subjects’ pain threshold—not the initial rise-time of the stimulus 
period, which would be associated with the innocuous warm sensa-
tions perceived before the actual onset of pain.  

   A newly developing fi eld in pain fMRI is spinal cord imaging, which 
is crucial for a better understanding of  central nervous system (CNS)   
pain processing. The spinal cord and brainstem receive input from 
the periphery before relaying this information on to the cortex. These 
subcortical regions are involved in the modulation of nociceptive 
input and the potentially abnormal processing of that input that may 
lead to chronic pain syndromes. Therefore, knowledge concerning 
the peripheral mechanisms of nociceptive processing is crucial to 
understanding a number of pathological pain conditions resulting 
from nerve injury or infl ammation. These factors contribute to the 
generation and maintenance of two key components of chronic pain, 
namely hyperalgesia and allodynia.  Hyperalgesia   is the phenomenon 
where an exaggerated response occurs after exposure to a noxious 
stimulus.  Allodynia   is an exaggerated response toward nonpainful 

2.2  BOLD fMRI 
of  Spinal Nociceptive 
Signals     
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mechanical stimuli. Both occur when nociceptive fi bers become sen-
sitized, after exposure to a noxious stimulus, causing the release of 
“painful” substances in the periphery. Peripheral sensitization can 
occur due to infl ammation of peripheral tissues as a result of a burn 
or cut. Because of this barrage of input, peripheral nociceptors can 
become hyperexcitable. This peripheral sensitization can also occur 
due to ectopic fi ring of peripheral nerves resulting from an amputa-
tion or injury. Central sensitization can occur in the dorsal horns of 
the spinal cord, when peripheral nerves that were once insensitive to 
nociceptive input switch their fi ring patterns and begin to transmit 
nociceptive information, causing the area of affected skin to become 
painful to the slightest touch. Much research in this area is focused at 
the periphery, although these processes have been shown to have 
supra-spinal effects resulting in aberrant cortical activity and the reor-
ganization of body maps in somatosensory cortices. 

 To fulfi ll this need to study spinal mechanisms of nociception, 
experimental models directed toward spinal fMRI have begun in 
 humans      [ 14 ,  15 ]. 

 Applications of spinal fMRI to the study of chronic pain could 
have vast clinical applications. Use of a noninvasive functional imag-
ing modality could shed light on the spinal mechanisms involved in 
the generation of neuropathic pain, such as dysesthetic pain in 
patients with spinal cord injury or syringomyelia. In addition to 
understanding the effects of chronic pain on neuroplasticity of the 
spinal cord, spinal fMRI could provide insight into the potential 
mechanisms of medications and their effi cacy at treating chronic pain.   

3    Methods for fMRI Pain  Experiments   

   A key issue in functional imaging of the cortical nociceptive signal 
is to ensure that the stimuli delivered to the subjects are perceived 
as noxious. Pain thresholds are commonly determined during a 
separate session prior to the scan. This procedure also serves to 
familiarize participants with the stimuli and reduce anxiety, thereby 
minimizing anxiety-related fl uctuations in cardiovascular activity 
[ 16 ]. Stimuli utilized for the scanning session are frequently tai-
lored to each individual’s pain threshold; conversely, all subjects 
can be administered the same level of noxious stimulation, which 
has been determined to evoke the perception of pain in all subjects. 
A corollary to the appropriate choice of noxious stimuli is the con-
fi rmation that predetermined levels of stimulation are actually per-
ceived as painful, within the scanning environment. A number of 
contextual factors can alter the perception of stimuli that were 
originally considered painful during a pre-scanning test, including 
the temperature of the scanning suite, the position of the body in 
the scanner, and distractions of noise, possible feelings of claustro-
phobia, and other conditions specifi c to the scanning paradigm. 

3.1     Pain Assessment
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 It is also important to note that the perception of pain can 
change during the course of a scanning session, due either to  habit-
uation  , sensitization, or the potential changes in attention during a 
long scanning experiment [ 17 ,  18 ]. 

 To address this issue, pain assessment ratings can be obtained  dur-
ing  the fMRI scanning session through subjective reports from par-
ticipants using a variety of methods. Subjects can rate their perception 
after each stimulus, continuously during the stimuli, or at the end of 
the scanning run by giving an average rating of all the stimuli. Subjects’ 
scores are recorded typically using numerical or  visual analog scales 
(VAS)   [ 19 ]. In fMRI experiments, ratings can be obtained during or 
immediately after the presentation of each stimulus. Conversely, due 
to methodological issues, pain ratings within the context of PET stud-
ies can be taken only at the end of a scanning session several minutes 
after stimulus presentation. Increased time between stimulus presen-
tation and assessment can cause inaccuracies in subject responses [ 20 ]. 
This is a special consideration in studies examining mechanisms of 
analgesic relief since retrospective ratings can be infl ated with increased 
time after stimulus presentation [ 21 ,  22 ]. 

 In addition to ensuring that the noxious stimuli are actually 
painful, pain assessment ratings (and other behavioral measures) can 
be used as regressors in the fMRI design matrix to aid in identifying 
cortical regions involved in various aspects of pain processing. 
Behavioral data can be incorporated into the fMRI design matrix as 
a weighting factor applied to the canonical HRF. Alternatively, con-
tinuous pain ratings (recorded during the stimulus presentations) 
can be modeled in the design matrix (e.g.,  see  ref. [ 23 ]). The result-
ing contrasts produce activation sites that are more closely based on 
the degree to which a region’s activity correlates with the perceived 
intensity of the stimuli rather than with the physical intensity of the 
stimulus—in other words a “percept- related” activation as opposed 
to a “stimulus-related” activation [ 24 ]. 

 This experimental approach may have important implications for 
studying the dissociation that sometimes occurs between the intensity 
of peripheral stimulation and the perception of pain. For example, pre-
sentation of noxious mechanical stimuli over longer durations (~2 min) 
has been shown to disrupt the relationship between the fi ring fre-
quency of nociceptive  afferents   and the perceived intensity of pain 
evoked by the stimuli [ 25 ,  26 ]. This paradoxical relationship may be 
explained by the process of temporal summation—a disproportionate 
increase in the fi ring rate of dorsal horn neurons over time, whereby 
their response threshold to sensory input is substantially lowered. 
Additionally, repeated exposure to short-duration heat pain stimuli can 
cause habituation to both the perceived intensity and unpleasantness of 
the stimuli [ 27 ]. Therefore, subjective pain ratings can play a key role 
in the interpretation of nociceptive processing in the cortex, as opposed 
to utilizing simply the duration or intensity of the noxious stimuli that 
may not aptly refl ect the resulting activations. 
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 Several studies have explored the possible cerebral 
mechanisms underlying habituation or sensitization to painful 
stimuli, showing activation of cerebral regions involved in anti-
nociception. However, these gave confl icting results concerning 
any specifi c association between cerebral activity and ratings of 
pain intensity [ 17 ,  28 – 30 ]. 

 On the whole, however, these ambiguities in the correspondence 
between stimulus delivery, evoked nociceptive signal, and subjective 
reports of pain intensity, underscore the importance of accessing the 
level of perceived pain during scanning sessions, rather than assuming 
a fi xed relationship between stimulation and percept. 

 A number of advantages and potential disadvantages are asso-
ciated with obtaining continuous pain ratings of stimuli during 
fMRI experiments. Clearly, participants’ perceptual evaluations 
will rely less on memory and will tend to be more accurate, com-
pared with evaluations made after the scanning run. In turn, the 
resulting brain activation will be less refl ective of mnemonic or 
error detection processes. Additionally, continuous ratings can be 
used to deduce the time lag between the application of the stimu-
lus and the onset of pain perceived by the subject, and to provide 
further details about the time course of pain perception and the 
underlying neural activity. 

 While continuous ratings provide real-time information about 
a subject’s perception of the stimuli, a clear disadvantage to their 
use is that the motor activity and motor-related activation can pro-
duce a confound that complicates interpretation of sensory-related 
activity. However, this can be accounted for by including the 
movements as covariates in the fMRI design  matrix  .   

4     Neuroanatomy of Pain Processing   

 Before describing how fMRI measures the cortical and spinal noci-
ceptive signal, it is important to understand how this signal is 
transferred to the cortex. In the periphery, a painful stimulus 
applied to the body is transmitted to the CNS through nociceptors 
[ 31 ].  Myelinated A-delta fi bers   transmit sharp pricking pain [ 32 ], 
while unmyelinated C-fi bers transmit slow burning pain, often 
referred to as second pain [ 33 ]. The cell bodies of A-delta and 
C-fi bers are located in the dorsal root ganglia, receiving afferent 
input from the periphery and then sending the information into 
the spinal cord to terminate in the dorsal horn [ 34 ,  35 ]. Axons 
from the second-order dorsal horn neurons rise through several 
ascending pathways that transmit nociceptive information to the 
thalamus, reticular formation, and cortex [ 8 ,  36 ]. Pain and tem-
perature information applied to the face is relayed through cranial 
nerves to the spinal nucleus V terminating in the thalamus via the 
trigeminothalamic tract, which is then relayed to the cortex. 
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 A number of spinal and cortical neurons respond to noxious 
stimuli including nociceptive-specifi c (NS) and  wide dynamic 
range (WDR) projection neurons  , the latter of which respond to 
both noxious and innocuous stimuli. Additionally, the dorsal horns 
and cortical somatosensory regions contain neurons responsive 
solely to innocuous stimuli called  low threshold mechanical (LTM) 
neurons   and  thermoreceptive neurons   responsive to temperatures 
in the warm and cold range. However, recent studies demonstrated 
that nociceptive, tactile, auditory and visual stimuli can elicit spa-
tially indistinguishable cortical responses, thus indicating that the 
bulk of the brain responses to nociceptive stimuli refl ects multi-
modal neural activity (i.e., activity that can be triggered by any 
kind of stimulus independently of sensory modality) [ 37 ]. This 
range of responses is an important consideration when interpreting 
results from fMRI studies of pain in terms of exactly what the acti-
vation pattern is  refl ecting  . 

 Typically, pain-evoked brain activation is achieved by applying 
contact thermodes to the skin. This technique involves an increase 
in temperature at the rate of 1–10 °C s −1 . Depending on the base-
line temperature it can take several seconds to reach perceived pain 
threshold. In addition to activating NS neurons with noxious heat, 
contact thermodes may activate both LTM and WDR neurons 
through innocuous mechanical and thermal stimulation of the skin 
as the stimulation temperature rises towards pain threshold. 
Therefore, to examine pain-specifi c cortical activations, it is neces-
sary to compare pain-related activations to those associated with 
the presentation of innocuous warm stimuli. 

 In addition to conductive heating of the skin using contact 
thermodes, nociceptive afferents can be activated using thermal 
radiation administered through infrared laser stimulators [ 38 ,  39 ]. 
Lasers can deliver heat stimuli without the need for a contact probe, 
thus selectively stimulating C-fi bers and A-delta fi bers without con-
taminant activation of A-beta fi bers that transmit touch informa-
tion. Additionally, laser stimuli can activate nociceptive nerve 
endings at rapid rates for short durations (1 ms) [ 40 ,  41 ] and are 
therefore well suited for rapid event-related fMRI studies. However, 
an important consideration associated with the use of laser stimuli 
is the diffi culty of measuring and controlling skin temperature, 
which is the primary factor triggering the cascade of neural responses 
that culminate in the processing of heat-related nociceptive infor-
mation in the brain and likewise the assessment of pain by the sub-
jects [ 42 ]. Laser and contact heat stimuli have been shown to 
produce similar patterns of BOLD activation in anterior cingulate 
cortex (ACC), insula, primary motor cortex, prefrontal cortex 
(PFC), parahippocampal gyrus, thalamus, basal ganglia,  periaqua-
ductal gray (PAG)  , and cerebellum. However, stronger activation in 
response to contact heat stimuli was noted in secondary somatosen-
sory cortex (SII), posterior insula, posterior ACC, and regions in 
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parietal and frontal cortices [ 43 ]. Thus, these two modes of 
delivering noxious heat stimulation cannot be considered identical 
in terms of the evoked pain-related BOLD activations, and the 
advantages and disadvantages of each should be weighed in relation 
to the research questions and appropriate stimulation  paradigms  . 

   During the past 3–5 years, neuroimaging studies have extensively 
investigated the neural basis of pain perception, thus showing that 
nociceptive stimuli commonly elicit activity within a very wide array 
of subcortical and cortical brain structures [ 44 ,  45 ]. Regions most 
frequently activated by painful stimuli include primary somatosen-
sory cortex (SI), SII, ACC, the insula, the PFC, and the thalamus. 

 Regions responsible for pain processing are categorized along 
two functional lines—the fi rst being the sensory-discriminative ( lat-
eral pain system  ) component involved in the perception of temporal, 
intensity, and localization aspects of pain processing, and the second, 
the affective-motivational (medial) component associated with the 
emotional aspects of pain [ 46 ,  47 ]. Dissociations between the two 
systems are made through subjective reports on pain scales. After 
exposure to noxious stimuli, subjects are asked to quantify separately 
how intense and how unpleasant is the perceived pain. Regions 
implicated in the lateral pain system include SI, SII, posterior insula, 
and lateral thalamus, while the medial pain system consists of the 
medial thalamic nuclei, the ACC, and the PFC. Much of what is 
known regarding the two components in pain processing was ini-
tially explored through single-unit recordings in nonhuman pri-
mates and lesion studies in humans. However, the more recent 
ability to study these functional components noninvasively in 
humans using fMRI and other brain mapping techniques has allowed 
pain researchers to advance rapidly in their understanding of the role 
of these cortical regions in pain processing and how they interact. 

   SI is located in the postcentral gyrus, is composed of four areas (areas 
3a, 3b, 1, and 2) [ 48 ], and is involved in the processing of both 
tactile and noxious stimuli [ 49 ]. It was long debated whether SI was 
necessary to perceive pain. Early studies of patients with brain lesions 
suggested that defi cits in nociceptive processing were rather com-
mon following lesions to the thalamus, but were very rare when 
damage was restricted to the area believed to incorporate SI [ 2 ]. 
Likewise, later studies, using electrical stimulation of the human cor-
tex during awake brain surgery, reported that direct stimulation of 
SI rarely evoked any perception of pain in  patients      [ 1 ]. 

 The advent of imaging technology allowed a more global 
exploration of the role of SI and other cortical regions involved in 
pain processing, and these studies could be conducted in healthy 
volunteers, rather than in patients with brain injuries that might 
alter normal function. The fi rst of these studies involved PET and 
demonstrated that noxious stimuli applied to the hands were 

4.1     Supraspinal 
Processing 
of Nociceptive Stimuli

4.1.1   Primary 
Somatosensory Cortex     
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associated with robust activation in SI [ 3 ]. Several other early 
studies failed to detect SI activation [ 4 ,  5 ], and subsequent reports, 
using either PET or fMRI, have resulted in contradictory fi ndings 
(for SI activation, see for example: [ 50 – 53 ]; for absence of SI acti-
vation,  see  refs. [ 54 ,  55 ]). 

 In particular, several studies showed that the anterior portion 
of SI (the area 3a) receives input originating predominantly from 
unmyelinated nociceptors, distinguishing it from posterior SI 
(areas 3b and 1), long recognized as receiving input predominantly 
from myelinated afferents, including nociceptors [ 56 ]. 

 The inconsistency of SI activation reported across imaging 
studies could be due to several factors. Wide variations in the loca-
tion of the central sulcus across subjects may lead to a wash out in 
signal across averaged group data. In addition, a reduction in SI 
activity below statistically signifi cant levels could be caused in some 
paradigms by inhibitory effects induced by noxious stimuli on tac-
tile inputs [ 4 ,  57 ]. In a review discussing the issue of pain-related 
activation of SI, Bushnell et al. concluded that the  BOLD signal   in 
SI largely depends on task design that is likely to infl uence the 
attentional state of the subject [ 58 ]. Results from subsequent 
 studies have likewise indicated that pain-related BOLD activation 
of SI is increased when subjects attend to pain and decreased when 
they are distracted [ 59 ]. 

 On the contrary, attention may also show a deleterious effect 
on SI activation as noted by Oshiro et al. [ 60 ] in their fMRI study 
examining the neural correlates involved in processing spatial local-
ization of pain. The authors failed to fi nd activation in SI in 
response to painful stimulation of the calf. However, the authors 
noted that this lack of activation may have been a result of the 
response properties of the cortical nociceptive neurons. 

 Nociceptive input to  SI      is somatotopically organized [ 61 – 63 ], 
and the small receptive fi elds of SI [ 64 ] suggest that this region is 
well suited to make fi ne spatial discriminations of noxious stimuli 
applied to the body. Oshiro et al. [ 60 ] required subjects to focus 
on stimulation applied to their calves, and this increased attention 
on the leg area may have caused a reduction in the receptive fi eld 
sizes of nociceptive neurons, which would enhance spatial acuity 
needed to perform the task—but cause deterioration in resulting 
brain activation. In another study using a discrimination task, 
Albanese et al. [ 65 ] explored short-term memory for the spatial 
location and intensity of painful thermal stimuli applied to the 
palms. In contrast to the study by Oshiro et al. [ 60 ], Albanese 
et al. [ 65 ] reported robust pain-related activation in SI/posterior 
parietal cortex, which was sustained during the memory period of 
the trial, suggesting that this region has a role in the encoding and 
retention of noxious stimuli. Differences between the two studies 
may be due to the larger somatotopic organization of the hand 
representation of SI. Additionally, subjects in the Albanese study 
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were required to detect the end of each stimulus, a strategy that 
may have heightened attention toward the stimuli and contributed 
to a temporal summation of the  BOLD signal   in SI. 

 Somatosensory brain regions have also been found to play a 
role during pain anticipation. A recent study [ 66 ] revealed greater 
changes in activation of SI in nocebo responders compared to con-
trols, supporting the notion that anticipatory activation of a 
prefrontal- limbic network is involved in nocebo hyperalgesia.  

   SII is also considered to be an important region for processing the 
sensory-discriminative component of pain. SII is located in the 
parietal operculum in the dorsal bank of the lateral sulcus. Like SI, 
this region receives projections from the ventroposterior lateral 
nucleus (VPL) of the thalamus, but its major nociceptive input 
comes directly from the  ventroposterior inferior (VPI) nucleus   
[ 52 ]. Studies of patients with lesions that include SII have demon-
strated defi cits in the perception of pain intensity [ 67 ,  68 ]; how-
ever, lesions comprised additional cortical regions that may work in 
concert with SII to process this piece of information. In addition 
to these clinical fi ndings, converging evidence from a number of 
studies supports the notion that SII possesses a functional capacity 
to discriminate between different intensities of noxious stimuli pre-
sented to the contralateral side of the body. Evidence from PET 
provides a role for this region in intensity processing in that sub-
jects’ ratings of pain intensity in response to thermal heat pain have 
been shown to be highly correlated with activation of SII [ 69 ]. 
Additionally, an  fMRI   study by Maihofner et al. [ 70 ] found 
increased activation in SII in response to painful mechanical stimuli 
compared to thermal heat pain. In turn, ratings of subjective inten-
sity were correlated with the intensity of mechanical pain. However, 
dissociative processing was noted in this region as ratings of 
unpleasantness were not found to correlate with SII activation. 

 Contrary to these fi ndings, evidence from fMRI suggests this 
region may be involved in some emotional aspects of pain process-
ing. For example, Gracely et al. [ 71 ] found that fi bromyalgia 
patients who scored higher on a pain catastrophizing questionnaire 
showed increased activation in both the ACC and SII in response 
to noxious stimuli. Catastrophizing (and in turn anxiety about 
painful stimuli) is inherently linked with pain perception, where 
the individual’s emotional state augments neural processing of 
these stimuli. In line with these fi ndings are data that show 
increased activity in SII during the anticipation of painful stimuli, 
indicative of an enhanced emotional  response   [ 66 ,  72 ].  

   The insula is extensively connected to other brain regions such as 
the prefrontal cortex, cingulum, amygdala, SI, SII, and also tha-
lamic nuclei (VPI, the centromedian-parafasicular, the medial dor-
sal [MD], and the ventral medial posterior [Vmpo] nuclei). It may 

4.1.2   Secondary 
Somatosensory Cortex (SII)     

4.1.3      Insular Cortex  
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therefore act as a relay integrating afferent nociceptive information 
with working memory, affect, and attention, and may selectively 
gate nociceptive information at the cortical level to modulate vary-
ing levels of appreciation of the nociceptive stimulus [ 73 ]. 

 Functional neuroimaging studies suggested that the anterior, 
mid, and posterior division of the insula subserve different func-
tions in the perception of pain [ 74 ]. 

 Early clinical reports and quantitative studies [ 75 – 77 ], have indi-
cated that patients with lesions encompassing the insula do not 
exhibit normal withdrawal or emotional responses to noxious stimuli, 
indicating an altered or defi cient perception of pain affect. Accordingly, 
fMRI activity in the anterior insula in response to noxious  stimuli   is 
correlated with subjective ratings of pain unpleasantness [ 78 ,  79 ]. 

 The insula, in particular its posterior region, has also been found 
to process sensory-discriminative features of nociceptive informa-
tion, making it a likely area of convergence of the two pain systems. 
Evidence for the role of the insula in sensory- discriminative process-
ing comes from direct electrical stimulation to the region during 
awake brain surgery, demonstrating evoked painful sensations in the 
body [ 80 ], and also from fMRI studies that showed a signifi cant cor-
relation between posterior insula activity and painful stimulus inten-
sity [ 79 ,  81 ]. Furthermore, several other lines of evidence indicate 
that this region may be involved in the localization of painful stimuli, 
as it contains a somatotopic map of the body. The dorsal posterior 
insula receives pain and temperature information from a somato-
topically organized region of the thalamus—the VMpo [ 82 ], which 
in turn receives projections from thermoreceptive and nociceptive 
neurons residing in lamina I of the spinal  cord   [ 79 ,  83 ] (Fig.  1 ).

   Neuroimaging studies of pain perception frequently report 
insular activation, making it diffi cult to dissociate it from activation 
seen in adjacent regions of SII [ 84 ]. Resolving the precise somato-
topic organization of the insula using fMRI has become feasible 
with the availability of high-fi eld strength magnets. Several fMRI 
studies at 3 T have revealed a nociceptive somatotopic organiza-
tion in the dorsal posterior insula in response to both cutaneous 
and muscle pain [ 85 ,  86 ]. 

 It is further notable that the posterior insula has been suggested 
to be involved also in directing pain-related motor  responses   [ 73 ].  

   The ACC plays a prominent role in pain processing. This region 
receives thalamo-cortical input from nociceptive neurons in the 
thalamus and contains nociceptive-specifi c neurons responsive to 
noxious stimuli [ 87 ]. Additionally, the ACC is implicated in medi-
ating antinociceptive responses as it contains high numbers of opi-
ate receptors [ 88 ,  89 ]. 

 Historically, the ACC was considered key to affective process-
ing, as it was classifi ed along with the retrosplenial cortex, hippo-
campus, amygdala, and several basal forebrain structures as part of 

4.1.4      Anterior Cingulate 
Cortex (ACC)  
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the limbic lobe, which was considered central in mediating emotion 
[ 90 ]. Likewise, the ACC was targeted for surgical lesions to allevi-
ate the suffering of chronic pain [ 91 ]; patients reported that they 
still experienced the pain they felt prior to surgery, but its emo-
tional unpleasantness was dampened [ 92 ]. 

 The ACC is subdivided cytoarchitectonically into several 
Brodmann areas (BA), namely 24 and 32 [ 93 ], with two further 

  Fig. 1     Pain   ( a ) and temperature ( d ) processing brain regions: brain areas with signifi cantly increased activation 
during noxious than innocuous stimulation and during warm stimulation are coded  red , while regions coded 
 blue  show signifi cantly increased activation during innocuous than noxious stimulation and during cold stimu-
lation. Insular clusters (seed clusters) with pain- ( b ) and temperature- ( e ) specifi c activity divided in aINS 
( green  and  yellow ) and pINS ( red  and  blue ), that were used for the insular functional connectivity analysis: both 
aINS and pINS were functionally connected to a large brain network, which predominantly includes areas 
involved in nociception and thermoception (SI, SII, cingulate gyrus, PFC, and parietal association cortices). 
Comparison of pain- ( c ) and temperature- ( f ) specifi c functional connectivity of the two insular areas (areas 
with signifi cantly stronger functional connectivity to aINS than to pINS are coded  red – yellow , while areas with 
signifi cantly stronger functional connectivity to pINS than to aINS are coded  blue – green ): the aINS was more 
strongly connected to PFC and to ACC than was pINS; pINS meanwhile was more strongly connected to SI and 
to the primary motor cortex. From [ 79 ] with permission       
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subdivisions: BA33 located in the perigenual region, and BA25 
located in the subcallosal region. The  ACC   is functionally divided, 
rather independent of the cytoarchitectonic borders, into a caudal 
cognitive division involved in attention (BA24 and BA32) and a ros-
tral affective division, which is more involved in emotional processes 
(BA24, 25, 33) [ 94 ,  95 ]. Dissociation between the cognitive divi-
sion and pain-related processing region was elegantly demonstrated 
using fMRI by Davis et al. [ 96 ], who compared BOLD activation 
evoked by noxious stimuli to that seen during a demanding cogni-
tive task. Activation associated with the noxious stimuli was found to 
be inferior and caudal to that produced by the cognitive  task  . 

 The fi rst direct evidence for the role of  ACC   in processing 
affective components of pain came from a PET study, in which 
subjects under hypnosis were instructed to modulate the perceived 
unpleasantness of a painful stimulus while maintaining perceived 
pain intensity [ 97 ]. Results showed that activation of the ACC was 
highly correlated with the subjects’ ratings of pain unpleasantness, 
while activation of the SI was unaltered by emotional processes. 
More recently, a resting state (RS) functional connectivity (FC) 
study [ 98 ] demonstrated that the dorsal ACC is connected with 
regions which comprise the affective/motivational network (ante-
rior insula and medial thalamus), the cognitive/evaluative network 
(dorsolateral prefrontal cortex, inferior parietal lobule), and the 
motor network (pre- supplementary motor area (SMA)  , and SMA). 

 Nevertheless, these imaging and lesion data should not be 
interpreted too rigidly, since the ACC has been shown to have 
some sensory-discriminative characteristics, such as a crude noci-
ceptive somatotopic organization [ 99 ]. Furthermore, reductions 
in both pain intensity and unpleasantness have been described fol-
lowing a neurosurgical capsulotomy—interruption of fi ber tracts 
to the ACC [ 3 ]. The rostral ACC has also been supposed to play a 
relevant role in  coding   the variability of pain perception [ 100 ].  

   Regions of the PFC have been implicated in both pain processing 
and pain modulation. PFC activation seen in brain imaging studies 
of pain is believed to refl ect attention toward the stimuli [ 69 ,  101 ], 
but it has also been shown to be directly involved in modulating 
responses to painful stimuli. Recently, Lobanov et al. [ 102 ] dem-
onstrated that attention to both spatial and intensity feature of the 
noxious stimulus was associated with activation of fronto-parietal 
areas, including the PFC. 

 Functional imaging studies have shown that activity in the 
PFC reduces the pain magnitude or hyperalgesia, suggesting that 
the PFC can regulate the amount of pain an individual perceives. 
Activity in the PFC is also associated with episodes of emotional 
detachment, when the “suffering” element of pain is absent. 
Negative emotional responses can heighten the experience of pain, 
and the ventrolateral PFC seems to regulate these responses via 
interactions with the nucleus accumbens and the amygdala [ 103 ]. 

4.1.5   Prefrontal Cortex 
(PFC)     
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 Using fMRI, Wager et al. have demonstrated increased PFC 
activity during the anticipation of pain, which was interpreted as a 
 preemptive   anticipatory response triggering a descending modula-
tion of the pending nociceptive signals via activation of midbrain 
structures [ 104 ]. 

 PFC activity is consistently seen in studies employing experi-
mental models of chronic pain. Most commonly, sensitization was 
associated with a signal increase in the DLPFC. The functional 
signifi cance of this activation is, however, still under debate: a posi-
tive correlation with the unpleasantness of pain indicates that 
DLPFC activation refl ects altered cognitive-affective processing in 
the pathological pain state. Increased DLPFC activations might 
also refl ect the  recruitment   of endogenous mechanisms of pain 
control [ 77 ].  

   The amygdala, buried beneath the uncus and located at the tail of 
the caudate nucleus, is a key limbic structure involved in the pro-
cessing of emotional stimuli. The amygdala is suited for such pro-
cessing as it is the sole subcortical structure to receive projections 
from every sensory area. 

 Functional neuroimaging studies utilizing various types of 
aversive stimuli including pain, habitually report amygdala activa-
tion [ 105 ]. Studies using fMRI have demonstrated that amygdala 
activation is associated with extremely unpleasant noxious stimuli, 
suggesting an involvement of this region in processing the affective 
component of pain [ 106 ,  107 ]. Other evidence from fMRI has 
implicated the amygdala in processing uncertainty associated with 
painful  stimuli   [ 108 ].  

   In addition to cortical regions, a host of midbrain structures are 
also involved in processing pain affect including the PAG, superior 
colliculus, red nucleus, nucleus cuneiformis, Edinger-Westphal 
nucleus, nucleus of Darkschewitsch, pretectal nuclei, interstitial 
nucleus, and intercolliculus nucleus [ 109 ]. 

 Several of these structures are involved in pain modulation—
the best characterized being the PAG. The PAG surrounds the 
cerebral aqueduct in the midbrain. Inhibitory encephalin- 
containing neurons in the PAG disinhibit local interneurons and in 
turn excite neurons in the  rostral ventral medulla (RVM)   and/or 
the locus coeruleous (LC). The aminergic efferents from the RVM 
and LC then project to the spinal cord and dampen pain transmis-
sion in dorsal horn neurons through several different mechanisms 
[ 103 ,  110 – 112 ]. Activity within the RVM can provide important 
antinociceptive effects, which can be benefi cial during stressful cir-
cumstances. However, the RVM can also enhance nociception fol-
lowing infl ammation and injury. Clearly, this pronociceptive effect 
is protective during recovery from injury and promotes tissue 
repair, but the failure of such an effect to resolve after the tissue has 
healed may result in chronic pain [ 103 ]. 

4.1.6      Amygdala  

4.1.7      Brainstem  
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 Activity within the  PAG   and the  mesencephalic pontine reticular 
formation (MPRF)   has been strongly associated with the develop-
ment of hyperalgesia, and evidence suggests that the MPRF is spe-
cifi cally involved in the maintenance of central sensitization [ 103 ]. 

 However, recently, La Cesa et al. showed that the greater the 
PAG activation the higher the pain threshold and the weaker the 
pain intensity perceived, thus highlighting the key role of the PAG 
in inhibiting the pain afferent pathway  function   [ 113 ] (Fig.  2 ).

   The sensitivity and in-plane resolution of 1.5 and 3.0 T MRI 
scanners are limited in their ability to resolve fi ne spatial localiza-
tion of many brainstem structures. In addition, brainstem func-
tional imaging is also limited by image distortion and is susceptible 

  Fig. 2    ( a ) Correlation analysis between the BOLD response in the PAG and pain threshold, recorded in seconds, 
during the cold pressor test: the pain threshold directly correlated with BOLD activation in the PAG (cluster level 
corrected threshold  p  < 0.05, Pearson’s  r  = 0.63). ( b ) Correlation analysis between the BOLD response in the 
PAG and pain intensity ratings, as assessed by the numerical rating scale, during the cold pressor test: the pain 
rating inversely correlated with  BOLD   activation in the  PAG   (cluster level corrected threshold  p  < 0.05, Pearson’s 
 r  = 0.45). From [ 113 ] with permission       
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to local magnetic fi eld inhomogeneities and pulsation artifacts. 
Therefore, optimized approaches to study brainstem fMRI are 
 needed   [ 114 – 116 ].  

   A number of other cortical and subcortical regions are commonly 
activated during fMRI studies of pain including many regions 
involved in motor processing. Motor regions include the primary 
motor cortex, premotor cortex, supplementary motor area, 
 cerebellum, and basal ganglia. Frequently, these regions are con-
comitantly activated along with those involved with affective and 
sensory aspects of pain processing [ 117 ]. 

 The perception of a painful stimulus involves an orienting 
response and subsequent retraction of the body part being tar-
geted. Activation of motor areas during functional neuroimaging 
studies is believed to refl ect motor preparatory responses. However, 
several of these areas, such as the nuclei associated with the basal 
ganglia, are directly responsive to noxious stimuli [ 118 ,  119 ]. 
Using fMRI, a reliable somatotopic organization has been shown 
in the putamen [ 120 ,  121 ] in response to noxious stimuli, which 
indicates that this region may be involved in sensory-discriminative 
processing of pain.  

   Higher-resolution imaging studies coupled to surgical investiga-
tions have confi rmed the relevance of thalamic nuclei in nocicep-
tive processing. As a critical relay site, it is not surprising that the 
thalamus is implicated in chronic pain [ 8 ]. In particular, recent 
evidence indicates that neuroinfl ammation in the thalamus might 
contribute to chronic pain states [ 122 ].   

   To date, only a few reports have assessed the feasibility of studying 
nociception using fMRI of the spinal cord [ 123 ]. One study by 
Brooks et al. [ 14 ] examined the spinal nociceptive signal at 1.5 T 
in response to noxious heat pain stimuli. Using a tailored, high- 
resolution scanning protocol and postprocessing techniques for 
controlling physiological noise, they demonstrated reliable pain- 
related activation in the ipsilateral dorsal horn. 

 A recent connectivity analysis revealed functional coupling 
between the spinal cord dorsal horn and typical ascending thalamo- 
cortical pain pathways. More importantly, the spinal cord was also 
functionally connected with brain regions involved in descending 
pain modulation, such as the PAG. A positive correlation between 
the individual strength of connectivity within this descending pain 
modulatory pathway and the behavioral pain ratings was found, 
thus pointing to the functional relevance of this system during the 
processing of physiological nociceptor pain [ 124 ]. In a similar 
study, BOLD fMRI response in the spinal cord was correlated with 
individual pain  ratings  , further supporting the contribution of 
spinal cord activity to the perception of pain [ 125 ].   

4.1.8      Motor Cortices  

4.1.9      Thalamus  

4.2     Spinal Cord 
Processing 
of Nociceptive Stimuli
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5    fMRI and the Study of  Higher Cognitive Pain Processing   

   What is clear from several studies is that nociceptive information 
processing, and consequent pain perception, is subject to signifi -
cant pro- and anti-nociceptive modulations that can be infl uenced 
dramatically by cognitive, emotional, and contextual factors [ 126 ]. 

 Pain modulation can occur through both endogenous mecha-
nisms and as a result of exogenously administered agents. One fi nal 
common pathway for analgesic mechanisms is believed to be through 
the release of endogeneous opioids [ 127 ] acting on sites in the 
brainstem and midbrain that block the nociceptive signal through 
their descending pathways; the fi nal effects of this descending mod-
ulation are exerted either on the spinal cord and/or at the site of 
peripheral nerves that transmit the nociceptive stimuli. Additionally, 
recent research has implicated endocannibinoids in pain modula-
tion, which may act on similar descending pathways [ 128 ]. 

 fMRI is a useful tool for examining cerebral mechanisms of pain 
modulation, whereby subjects experience either analgesia or hyperal-
gesia—a decrease or increase in perceived pain, respectively. First, the 
anatomical resolution of fMRI is suffi cient to localize some of the 
small brain regions involved in pain modulation, such as the RVM or 
PAG [ 112 ,  129 ], and the temporal resolution allows an assessment of 
the time course of activations within those regions. fMRI is also well 
suited to study procedures that evoke changes in pain perception 
since it accommodates the use of parametric data, whereby experi-
mental parameters such as pain ratings (intensity, expectation, 
unpleasantness) can be correlated with brain activations and thus 
used to characterize cortical structures according to their response 
profi le to various experimental parameters. As a corollary of increased 
temporal resolution, a major advantage of using  fMRI   to study pain 
modulation is the possibility of utilizing event-related designs 
whereby the time course of brain activations over different phases of 
the modulation period can be studied—the anticipation of the nox-
ious stimulus, the onset of pain perception, changes in pain percep-
tion over time, and post- stimulus ratings. Anticipation of the painful 
stimulus is a crucial phase of the pain modulation process, since at 
this time point neural mechanisms act on descending modulatory 
systems to diminish or enhance the response to the stimulus [ 130 ]. 

 fMRI has been widely applied to study modulatory processes 
triggered either through endogenous mechanisms utilizing cogni-
tive strategies, such as attention [ 77 ,  131 ], hypnosis [ 132 – 134 ], 
placebo and nocebo effects [ 104 ,  135 ], or through exogenous 
agents, such as pharmacological [ 126 ,  136 – 138 ] and non pharma-
cological interventions [ 139 ]. 

 Several lines of evidence strengthen the notion that pain mod-
ulation occurs via an integrated “frontal to brainstem to spinal 
cord” system. Disruption of the descending pain modulatory 
 system may represent a point of vulnerability for the development 
and maintenance of chronic pain [ 126 ].  

5.1  Pain Modulation
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   Inherent to processing the emotional component of pain is the 
ability to understand the emotional reactions of other people who 
are experiencing pain—i.e., pain empathy [ 140 ]. This rapidly 
growing fi eld of empathy research is directed toward studying the 
mental representation of pain—both that which is perceived to be 
experienced by others, as well as that which is perceived as one’s 
own. Several different types of experimental stimuli implicating 
other people in pain have been used in these fMRI paradigms, 
including photographic images [ 141 – 145 ], or short animations 
[ 146 ] of body parts in potentially tissue-damaging situations, view-
ing the faces of actors evoking facial expressions of pain [ 147 ], or 
subjects actually receiving painful stimuli [ 148 ], or those of chronic 
pain patients [ 149 ], or being cued that a loved one in the room 
was receiving painful stimuli [ 150 ]. 

 A common fi nding from these studies is that the processing of 
pain in others recruits brain regions involved in affective processing—
namely the ACC and insula. In a recent meta-analysis, Lamm et al. 
[ 151 ] compiled brain activation coordinates from 32 studies that 
had investigated empathy for pain using fMRI. Authors identifi ed a 
core network, consisting of bilateral anterior insular cortex and 
medial/anterior cingulate cortex, that was associated with empathy 
for pain. Activation in these areas overlapped with activation during 
directly experienced pain, thus linking their involvement to repre-
senting global feeling states and the guidance of adaptive behavior 
for both self- and other-related experiences. Moreover, the analysis 
demonstrates that—depending on the type of experimental para-
digm—this core network was coactivated with distinct brain regions: 
viewing pictures of body parts in painful situations recruited areas 
underpinning action understanding (inferior parietal/ventral pre-
motor cortices) to a stronger extent; eliciting empathy by means of 
abstract visual information about the other’s affective state more 
strongly engaged areas associated with inferring and representing 
mental states of self and others (precuneus, ventral medial prefrontal 
cortex, superior temporal cortex, and temporo-parietal junction). 

 Several transcranial magnetic stimulation studies reported modu-
lation of sensory-discriminative regions associated with pain empathy, 
thus suggesting a somatotopic specifi city in the perceived pain of oth-
ers. Although early functional imaging studies suggested that somato-
sensory areas contribute very little to the neural response when seeing 
others’ pain or empathizing with it, Morrison et al. have recently dem-
onstrated that just viewing others’ painful actions biases participants 
to report tactile stimulation even when none occurred [ 145 ]. Such 
discrepancies might have resulted from differences in experimental 
paradigms, since it was shown that only the picture-based  paradigms   
activated somatosensory areas during empathy for pain [ 151 ]. 

 fMRI has provided considerable insight into the neural mecha-
nisms of processing pain in others, and suggests a number of inter-
esting clinical implications. Since pain is a sensory and emotional 

5.2   Pain Empathy  
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phenomenon that is primarily experienced by the patient—as 
opposed to an easily measured sign of illness, such as fever or 
weight loss, for example—health-care professionals who are con-
fronted with patients in pain must be able to infer their discomfort 
accurately and treat them accordingly. Further understanding of 
the neural mechanisms underlying how we interpret pain in others 
is an initial step toward how these neural circuits can change—
depending on the clinical context or after years of repeated expo-
sure to those in pain.   

6    Combining fMRI  with Morphometry   

 For the study of nociceptive processing and pain perception, MRI- 
based morphometric analyses can be used to examine neuroana-
tomical changes that are correlated with particular chronic pain 
states or to examine differences in the anatomy of specifi c brain 
regions that may underlie the variability in pain perception that is 
observed within a population in healthy volunteers. A number of 
recent studies have reported changes in cortical and subcortical 
brain regions in individuals with chronic pain [ 152 ,  153 ]. 

 To date, a few studies have combined morphometric and func-
tional neuroimaging analysis. The combination of functional and 
structural brain measures has revealed that patients with fi bromyal-
gia had overlapping decreases of cortical thickness, brain volumes, 
and regional functional activity in the rACC [ 154 ]. These fi ndings 
provide a neuroanatomical basis for reduced cortical activity, 
strengthening the importance of relating anatomical structure to 
physiological function. 

 However the future of pain fMRI lies in the development of 
complimentary brain imaging analysis techniques to improve our 
understanding of pain  processing  .  

7    fMRI as a Therapy for Chronic  Pain      

 Recent improvements in the speed of analysis of fMRI data have 
led to the possibility that “real-time” fMRI (rt-fMRI) can be devel-
oped as a potential “therapy” for chronic pain patients. In princi-
ple, if patients can be given feedback regarding the level of activity 
in specifi c areas of the brain that are associated with the perception 
of pain or its unpleasantness, then learning to (self)-regulate this 
activity can allow them to control their own chronic pain—in much 
the same way as neurosurgeons attempt to control a patient’s pain 
by stimulating a specifi c area of the brain or by placing a lesion in a 
targeted area. Self-regulation training with EEG has provided the 
basis for much of the neurofeedback research; however, due to 
several methodological limitations, EEG offers relatively poor 
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spatial specifi city within the brain [ 155 ,  156 ]. By contrast, fMRI 
offers superior spatial resolution, especially for deeper brain 
regions, and is more suitable for targeting activity in a small, local-
ized brain region [ 157 ,  158 ]. 

 Neurofeedback, using real-time analysis of fMRI data, was ini-
tially developed by Cox et al. [ 159 ], and several groups have used this 
technology to study learned control over brain activity during a num-
ber of tasks [ 160 – 163 ]. Recently, the use of rt-fMRI has been applied 
to several clinical conditions whose etiology or symptoms might be 
linked to abnormal activity in known areas of the brain, including pain 
syndromes [ 11 ,  164 ]. In one study testing the feasibility of rt-fMRI as 
a neuroimaging therapy for chronic pain patients [ 10 ], normal sub-
jects receiving experimental noxious stimuli were trained to control 
activity in a targeted region within the ACC. Results demonstrated 
that these subjects were able to use the feedback provided by rt-fMRI 
to either increase or decrease, on command, ACC activity, and that 
the level of this activity correlated with their estimates of pain evoked 
by the experimental stimuli. Likewise, a small cohort of chronic pain 
patients, following a similar rt-fMRI training paradigm, reported a 
signifi cant reduction in their level of chronic pain in comparison to 
that of a control patient group, which received feedback training 
based only on autonomic measures. Furthermore, the patients in the 
rt-fMRI group demonstrated a direct correlation between their ability 
to control  ACC   activation and their degree of pain reduction. 

 In the future, rt-fMRI could also be applied to modify corti-
cal hyperactivity that has been described for a number of other 
pain  syndromes  .  

8    Future of  Pain Imaging   

 The last decade has seen a considerable improvement in the sensi-
tivity of fMRI in both the spatial and temporal localization of 
regions of activation. Moreover, the shift to higher fi eld strengths 
of 4.0 and 7.0 T scanners has been shown to signifi cantly enhance 
the SNR, compared to that observed with the 1.5–3.0 T scanners, 
which have been used in most pain studies. Pain imaging is poised 
to benefi t from these advances more than other disciplines, 
because—unlike visual or motor tasks, for example, which produce 
changes in CBF on the order of ~40 % [ 165 ], BOLD response to 
nociceptive stimuli produce signal changes only in the range of 
~5 % [ 54 ]. Improved spatial localization of fMRI pain protocols 
would provide better information regarding the specifi city of 
somatosensory regions involved in noxious processing and their 
somatotopic organization; likewise, improved spatial localization 
and SNR will aid greatly to investigations of small brainstem struc-
tures that have been implicated in modulating pain processing at 
both spinal and supra-spinal levels. 
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 Another burgeoning fi eld in pain imaging is that of  arterial 
spin labeling (ASL)   perfusion MRI, which was fi rst described 
more than a decade ago [ 166 ]. ASL directly measures CBF by 
magnetically labeling water molecules in infl owing arteries. Recent 
application of ASL to study experimental pain in healthy subjects 
[ 167 ,  168 ] has shown that this technique offers several advan-
tages. ASL gives a precise localization of neuronal structures and 
has demonstrated great inter-individual reliability of activation. 
Additionally, compared with BOLD fMRI, ASL is well suited for 
pain imaging studies, since it is less susceptible to signal loss and 
image distortions [ 169 ] due to magnetic fi eld inhomogeneities at 
the air–tissue interface around frontal, medial, and inferior tempo-
ral lobes [ 170 ,  171 ]. Although several methods are available to 
reduce these susceptibility artifacts in the  BOLD signal  , ASL is 
nevertheless an attractive alternative for pain studies that target 
the limbic system where signal loss from susceptibility artifacts is 
troublesome for such regions as the orbitofrontal cortex and 
amygdala. ASL also has the additional advantage of permitting 
longer acquisition times and is thus well suited for studying neu-
ronal processing that may take longer to develop, such as pain 
modulation through hypnotic induction; fMRI, on the contrary, 
is limited in terms of its length of acquisition due to drifts in the 
baseline. However, ASL is limited in that it cannot detect changes 
occurring faster than 30 s and is therefore not suited for event-
related designs. Additionally, the technique is limited by its tem-
poral  resolution   and slice coverage in which whole brain imaging 
is not possible using current methods. These issues should be 
resolved with advances made in fast echo planar imaging sequences.  

9    Conclusions 

 The experience of pain is complex: both sensory and cognitive 
components depend on a network of neural processing spread 
throughout many cortical and subcortical regions of the CNS. The 
advent of noninvasive imaging techniques has allowed us to gain a 
deep understanding of this multifaceted phenomenon in humans—
the experimental preparation that is most relevant to our ultimate 
goal of understanding, managing, and alleviating pain in patients. 
Pain is a characteristic common to many diseases and injuries, a 
consequence of many medical and dental procedures, and chronic 
pain is essentially a syndrome in its own right—an insufferable sen-
sation that many times has no obvious stimulus. fMRI in human 
subjects is helping us to understand the cerebral mechanisms of 
pain processing and the modulation of pain by both endogenous 
and exogenous factors. The results of these studies are making sub-
stantial contributions to the development of effi cacious interven-
tions for treating and alleviating pain.     
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    Chapter 17   

 fMRI of the Sensorimotor System                     

     Massimo     Filippi     ,     Roberta     Messina    , and     Maria     A.     Rocca     

  Abstract 

   The extensive application of fMRI to the assessment of the human sensorimotor system has disclosed a 
complexity that is largely beyond our original understanding. From the available data, it is accepted 
that this system consists of a large, and somewhat yet unknown, number of cortical and subcortical 
areas, with a precise location and a specialized function. In particular, a large number of regions in the 
frontal and parietal lobes contribute to different aspects of motor act performance. It is also evident 
that the properties and potentialities of this network still need to be fully elucidated by further research. 
Defi ning how the human sensorimotor system works is of outmost importance for understanding its 
dysfunction in case of diseases and also to develop potential therapeutic strategies capable to enhance 
its functional plasticity and reserve.  

  Key words     Sensorimotor system  ,   Mirror-neuron system  ,   fMRI  ,   Motor training  

1      Introduction 

 During the past 15 years, fMRI has become a valuable  tool to 
study normal brain function  , due to the development of revolu-
tionary methods for data acquisition and postprocessing, as well as 
for paradigm design. Due to its noninvasiveness and relatively high 
spatial and temporal resolution, fMRI has rapidly substituted other 
techniques, such as  positron emission tomography (PET)  , in the 
assessment of brain function. In addition, the combination of 
fMRI with neurophysiological techniques, such as  transcranial 
magnetic stimulation (TMS)  , is providing important pieces of 
information for the understanding of brain function in healthy 
individuals, which, on turn, is critical for the interpretation of func-
tional changes in diseased people. 

 This chapter summarizes the major contributions of fMRI for 
the in vivo assessment of the sensorimotor network in healthy 
human subjects, with a specifi c focus on studies of performance of 
a simple motor task with the dominant upper limb.  
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2    Sensorimotor Paradigms 

 Activity of the  sensorimotor system   has been investigated by using 
several experimental paradigms. The majority of the studies ana-
lyzed the performance of active tasks consisting of movement of 
the hand, using tasks that require fl exion-extension of the hand 
and/or fi ngers, tapping the hand or fi ngers, closing–opening the 
hand, hand manipulation, and squeezing. A few studies investi-
gated the movement of the foot, leg, arm, shoulder, and tongue, 
with the main goal of defi ning the somatotopic location and hemi-
spheric lateralization of these body parts and assessing the complex 
interplay between multiple sensorimotor areas [ 1 – 3 ]. Other stud-
ies analyzed the fMRI correlates of interlimb coordination [ 4 ,  5 ]. 

 The brain activations associated to the performance of passive 
tasks have also been evaluated [ 2 ,  6 – 9 ]. This strategy has mainly 
been prompted by the need of obtaining meaningful comparisons 
between controls and patients with neurological diseases that might 
impair the “ability” to perform active tasks correctly [ 6 – 8 ]. The use 
of passive tasks is also supported by the fact that there are reciprocal 
projections between the motor and the related sensory cortices; 
hence, patterns of brain activations that refl ect local fi eld potentials 
from presynaptic activity primarily [ 10 ], even with entirely passive 
movements, may identify those brain regions involved in active vol-
untary movements. This hypothesis has indeed been confi rmed by 
fMRI studies of healthy controls which have demonstrated that 
activations associated to active and passive limb movements are sim-
ilar in localization and size [ 6 ,  7 ,  11 ]. However, recent studies 
revealed a greater activation of brain areas responsible for motor 
planning and visuomotor coordination during active-movements 
execution and a selective recruitment of regions involved in motor 
response inhibition during passive  movements   [ 9 ,  12 ]. Finally, it is 
now established that motor network recruitment can be elicited 
also by the imagination of movements [ 13 – 15 ]. 

 One of the major caveats in the set up of fMRI experiments of 
the sensorimotor system is an adequate monitoring of subjects’ per-
formance during task execution, which might require to be corrected 
during the statistical analysis. Several variables have been shown to 
infl uence the observed patterns of movement-associated cortical acti-
vations in healthy subjects during motor task execution, including:

    1.    Movement rate, which has been positively correlated with the 
recruitment of the contralateral primary  sensorimotor cortex 
(SMC)   [ 16 ],  supplementary motor area (SMA)   [ 17 ] and ipsi-
lateral cerebellar cortex [ 11 ,  18 ].   

   2.    Force, as suggested by the load-dependent effect observed in 
the primary SMC [ 16 ,  19 ] and cerebellum [ 20 ], and the dif-
ferent pattern of brain activity associated with the production 
of static or dynamic force pulses [ 21 ].   
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   3.    Movement complexity, which has been shown to modulate 
activity of the primary SMC [ 22 ,  23 ], SMA, and premotor cor-
tex [ 11 ,  24 ], as well as several regions of the parietal lobes [ 16 ].     

 Several strategies can be adopted to minimize these possible 
confounding factors, including an accurate monitoring of task per-
formance during fMRI acquisition either visually or using more 
sophisticated techniques, such as position and force sensors. 

 Other variables that need to be considered when dealing with 
motor task investigations include:

    1.    Hemispheric dominance. Approximately 90 % of the popula-
tion has a left-hemispheric dominance for processing motor 
acts [ 25 ]. In line with this, fMRI studies have demonstrated 
that motor-related activations are usually lateralized to the left 
hemisphere in right-handers and bilateralized or lateralized to 
the right hemisphere in left-handers [ 26 – 30 ].   

   2.    Gender. Women have larger activations of cortical motor areas 
during motor tasks, while men exhibited signifi cantly stronger 
activation in the striatal regions [ 31 ].   

   3.    Age. There appears to be greater motor task-related brain activ-
ity in a wider network of brain regions in older compared to 
younger subjects [ 32 ,  33 ]. A study of healthy individuals has 
demonstrated an age-related increased functional connectivity 
of motor cortices between the two hemispheres [ 34 ]. These 
results are consistent with a more general reduction of func-
tional lateralization of the motor cortex recruitment with aging, 
which has been interpreted as a compensatory response to 
increased functional demands (Fig.  1 ) [ 35 ,  36 ]. However, other 
studies suggested that the increased cerebral recruitment might 
refl ect an ineffi cient response to an age-related higher diffi culty 
of task [ 33 ]. An age-specifi c pattern of activations of cerebral 
areas during motor imagery has also been demonstrated [ 37 ].

3           Components of the Human Sensorimotor  Network   

 The control of motor acts is a complex process that involves several 
motor, sensory, and association areas, including the primary SMC, 
 secondary sensorimotor cortex (SII)  , SMA, cingulum, basal gan-
glia, cerebellum, and several regions located in the frontal and pari-
etal lobes. Thus, the sensorimotor network is a relatively complex 
system, with a hierarchic organization. Anatomically, this view is 
supported by the presence of large, somatotopically organized, pri-
mary cortices with converging projections to smaller association 
areas. The extensive application of functional techniques to the 
assessment of this system’s function in healthy subjects is contrib-
uting to increase our knowledge of its behavior and connections. 
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  Fig. 1    Comparison of mean activation in old vs. young healthy subjects during the 
performance of wrist extension/fl exion and index fi nger abduction/adduction 
with the left and right upper limb, respectively. Areas more signifi cantly activated 
in old subjects are coded in  red spectrum , while areas more signifi cantly acti-
vated in young subjects are coded in  blue spectrum . Activations have been over-
laid on a standard T1 brain image in neurological view. For each motor task, the 
contralateral primary sensorimotor cortex and the premotor cortex had signifi -
cantly greater activation in the young group and caudal supplementary motor 
area had signifi cantly greater activation in the old group. Ipsilateral sensorimotor 
cortex was more signifi cantly activated in the old group for index fi nger motor 
tasks of both hands (From ref. [ 35 ], with permission)       

In addition, this has allowed to defi ne the role that the different 
components of the network have during the performance of a 
motor act. 

   Anatomically, the primary SMC is the cortex lying within the ante-
rior and posterior banks of the central sulcus [ 1 ]. In line with clini-
cal and electrical stimulation studies, fMRI studies confi rmed the 
somatotopic organization of the primary SMC of the left 

3.1  The  Primary 
Sensorimotor Cortex     
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hemisphere, with distinct subregions controlling movements of 
the foot, arm, and face [ 38 ,  39 ]. As already mentioned, there is a 
large body of evidence supporting the prominent role of the pri-
mary SMC of the dominant hemisphere in the performance of 
simple motor acts. In healthy subjects, the role of the ipsilateral 
primary SMC in the control of movements is still controversial, 
since several studies have reported confl icting results with respect 
to the occurrence of ipsilateral primary SMC activation [ 16 ,  26 , 
 40 ,  41 ]. In particular, while there is a general agreement on con-
sistent activation of the primary SMC of the ipsilateral hemisphere 
with increasing motor task complexity [ 16 ,  24 ], only a few studies 
reported its activation during simple task performance [ 26 ,  38 , 
 40 ]. A mechanism that has been advocated to shed lights on pri-
mary  SMC   behavior is transcallosal inhibition. In healthy individu-
als, a transcallosal inhibitory pathway between the primary motor 
cortices of the two hemispheres has been demonstrated by neuro-
physiological studies [ 42 ,  43 ] and has been postulated to be 
responsible for the control of homologous hand muscles during 
unilateral movements [ 42 ,  43 ]. These data are supported by  fMRI   
studies that have shown a decreased activation of the ipsilateral 
primary SMC during sequential fi nger movements [ 41 ,  44 – 46 ]. 
The reason for the ipsilateral inhibition during unilateral hand 
movements remains speculative. However, this decreased excitabil-
ity could improve the capacity to perform fi ne movements of the 
fi ngers, for which a high level of dexterity is needed. Usually, such 
movements are carried out unilaterally. A suppression of excitabil-
ity of the ipsilateral SMC would then minimize the risk of contra-
lateral interference, and improve the cortical focus on unilateral 
activation [ 47 ]. The inhibitory interhemispheric interactions 
decrease with age [ 48 ] and this loss of inhibition appears to be 
ameliorated by physical activity [ 49 ].  

   Another important component of the motor network is the SMA, 
which is the cortex lying above the cingulate sulcus and anteriorly 
within the paracentral lobule [ 1 ]. The SMA contributes to the 
preparation, coordination, temporal course, and execution of 
movements [ 50 – 52 ]. Studies of healthy individuals suggest that 
the movement-related activity of the primary SMC might be 
 mediated by the extensive input it receives from the SMA [ 53 ], 
which might act as facilitator or suppressor according to the task 
conditions [ 54 ], and that the SMA recruitment might increase by 
increasing task diffi culty and complexity [ 16 ,  21 ,  24 ]. The extent 
of  SMA   activation has been inversely related to the amount of 
training an individual has gained with that specifi c task [ 50 ,  52 , 
 55 ]. Inter- and intrahemispheric connections between the primary 
SMC, the premotor cortex, and the SMA are likely to be mediated 
primarily by the SMA [ 56 ]. In addition, strong bilateral connec-
tions exist between bilateral SMA and the basal ganglia, thus 
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playing an important role in motor planning and behavior [ 57 ]. In 
agreement with this notion, lesions of the SMA typically result in 
alterations of bimanually coordinated movements [ 58 – 60 ]. 
Efferents from the SMA project directly to the brainstem and the 
cervical cord; as a consequence, an increased SMA activation might 
represent recruitment of motor pathways that can function in par-
allel with the contralateral corticospinal tract [ 61 ]. A recent study 
showed that  spinal cord injury (SCI)   can lead to network func-
tional changes, including increased neural activity within the SMA, 
that might refl ect a compensatory  mechanism   [ 62 ]. 

 Functionally, the SMA can be divided into the pre-SMA 
(located more rostrally) and the SMA-proper (located more cau-
dally), and event-related fMRI studies have shown that the pre- 
SMA is activated preferentially during movement preparation [ 51 , 
 63 ] and contributes to motor response inhibition [ 64 ]. In addi-
tion, it has been shown that pre-SMA recruitment precedes pri-
mary SMC activation by several seconds [ 65 ].  

   The frontal cortex contains many areas contributing to the motor 
network [ 66 ,  67 ]. In addition to the primary SMC, these areas 
include the ventral premotor areas (including the inferior frontal 
gyrus [IFG]   )   , the dorsal premotor cortex (sometimes divided into 
a caudal and a rostral part) (PMd), and a set of motor areas on the 
medial wall of the hemispheres, such as the SMA and the cingulate 
motor area ( CMA)     . The premotor areas in the frontal lobe infl u-
ence motor output through connections with the primary SMC 
and direct projections to the spinal cord [ 68 ]. All previous premo-
tor areas contain corticospinal neurons that give a substantial con-
tribution to corticospinal projections, which have a high degree of 
topographic  organization   [ 39 ,  69 ]. 

 The role of the left inferior frontal lobe (ventral premotor cor-
tex/Broca’s area) in motor sequence control is well documented 
by several studies [ 70 – 74 ]. Activation of Broca’s area has been 
reported in various functional imaging studies based on fi nger 
movements [ 71 ,  72 ], movement imagination, and motor learning 
[ 70 ]. This area is supposed to receive rich sensory information 
originating from the parietal lobe (including the SII) and to use it 
for action [ 75 ]. In addition, modulation of this area’s activity by 
task complexity has been clearly documented [ 73 ]. Studies in 
humans have shown that this region is important for encoding 
hand/object interactions [ 3 ,  75 ] and mediating motor response 
inhibition via connectivity with the preSMA [ 74 ]. 

 The PMd has an important role in motor preparation, selec-
tion, and initiation of voluntary actions [ 76 – 78 ]. Imaging and 
TMS experiments suggest that the PMd cortex of the left hemi-
sphere is dominant in right-handed people [ 79 ]. This area is recip-
rocally connected with the ipsilateral and contralateral primary 
SMC, as well as with the parietal cortex and the contralateral PMd 
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[ 79 – 81 ]. Using a labeling retrograde strategy, Marconi et al. [ 82 ] 
showed transcallosal homotopic and heterotopic connections 
between different portions of the PMd of the two hemispheres and 
between the two PMd and the SMA. A correlation between pres-
ervation of motor performance after disruption of the left PMd 
activity by means of  TMS   and increased activation of the right 
PMd  cortex  , the SMA, and the cingulate cortex has been demon-
strated in healthy individuals. This pattern was not seen after TMS 
inhibition of the left SMC, while TMS of the reorganized right 
PMd disrupted motor performance. These fi ndings suggest that 
adaptive changes of PMd function might contribute to maintain 
motor behavior despite the presence of structural damage [ 83 ]. A 
recent experiment confi rmed the same results, revealing a stronger 
TMS-related increase in activity in medial and premotor areas in 
association with external cues [ 81 ]. 

 The anatomical variability of the cingulate sulcus in humans 
hampers functional analysis of this region. The caudal  CMA   is con-
sidered to be primarily involved in movement execution [ 1 ,  66 , 
 84 ], while the rostral portion of the CMA has been shown to have 
a role in action selection [ 85 ], initiation, motivation, and goal- 
directed behaviors [ 86 ]. A recent study demonstrated that the 
CMA has a key role in realizing intentional motor control (Fig.  2 ) 
[ 87 ]. Activation of this region has also been found to be related to 
the presentation of new motor tasks and perhaps its recruitment 
refl ects relative task diffi culty [ 24 ,  88 ]. This cortical area is involved 
in attentional tasks and subserves several executive functions [ 89 ]. 
In addition, the CMA has been suggested to play an important 
role in confl ict monitoring [ 90 ,  91 ]. The role of the CMA in the 
execution of spatially complex coordination tasks has been under-
lined by a study of Wenderoth et al. [ 92 ], where an increased CMA 
activation was detected during the performance of a bimanual  task     .

      The parietal cortex is formed by a multiplicity of independent 
areas, each of which deals with specifi c aspects of sensory 
 information [ 93 ]. Physiological and imaging techniques have been 
extensively applied to defi ne the location and functional specializa-
tion of parietal cortex regions in humans. Although this effort 
resulted in the identifi cation of several areas related to the 
 sensorimotor network, understanding their precise function and 
relationship still require further experiments. 

 Among the regions of the parietal cortex, the SII is considered 
to function as a high-order processing area for somatosensory per-
ception, and its activation seems also to be related to attention, 
manual dexterity, and coordination [ 94 ,  95 ]. SII activity has been 
associated with processing of the temporal features of somatic sen-
sations, sensorimotor integration [ 96 ,  97 ], tactile recognition, and 
tactile learning and memory [ 98 ]. In addition, neurons from SII 
project directly to the spinal cord [ 99 ], indicating that this region 
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might provide alternative pathways for motor control in case of 
primary SMC injury. SII is known to have extensive connections 
with the prefrontal cortex, the parietal lobe, and the insula. Similarly 
to the primary SMC, SII has a somatotopic representation of differ-
ent body parts, with the upper limb areas located more anteriorly 
and more inferiorly than the lower limb areas [ 39 ,  100 ]. 

  Fig. 2    Comparison of the  anterior mid-cingulate cortex (aMCC)   overall functional 
connectivity (FC) with neural correlates of intentional movement generation. 
Intentional movement initiation yielded increased neural activity in virtually the 
same brain regions involved in the FC network of the aMCC. This observation 
was quantitatively verifi ed by the conjunction of the FC analysis of the aMCC ( a ) 
and the neural network of intentional movement initiation ( b ), revealing a “core 
network” that comprised the aMCC, supplementary motor area (SMA), pre-SMA, 
dorsolateral prefrontal cortex, dorsolateral premotor cortex, area 44, anterior 
insula, inferior parietal lobule, intraparietal sulcus, cerebellum, anterior putamen, 
and the right caudate nucleus ( c ) (From ref. [ 87 ], with permission)       
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 Numerous areas along the  intraparietal sulcus (IPS)   have also 
been associated with processing of sensorimotor tasks. The ante-
rior part of the IPS contains neurons that discharge in response to 
3D object presentation and during grasping movements [ 101 , 
 102 ], and it is connected to the IFG for control of action in object 
manipulation [ 3 ,  71 ]. This area has a central role for visuomotor 
integration (crossmodal information process) [ 93 ]. In addition, 
increased activity of the IPS has also been described in normal sub-
jects during complex fi nger movement sequences [ 22 ]. Activity of 
the IPS has been associated to object matching and grasping, with 
a selective involvement in processing intrinsic object attributes, 
such as size and shape, for the execution of an effi cient  grasp      [ 93 , 
 102 ]. The precuneus has been related to the execution of spatially 
complex coordination tasks [ 92 ], which require shifting attention 
between different locations in space. Finally, the  superior parietal 
gyrus (SPG)  , that has a well-demonstrated hand/fi nger represen-
tation [ 71 ], is thought to be involved in the elaboration of somato-
sensory modalities and computations underlying a transformation 
from spatial target to movement vector [ 103 ].  

   The basal ganglia have extensive connections to the motor and 
somatosensory cortices and are involved in motor programming, 
execution, and control [ 104 ,  105 ]. In particular, basal ganglia activ-
ity has been associated with motor program selection and suppres-
sion at early stages of motor planning, as well as with control of 
movement simulation [ 57 ,  106 ]. In addition, they are implicated in 
the formation of motor skills and are part of subsystems whose 
activity has been associated with timing of motor acts [ 107 – 110 ]. 

 The thalamus [ 104 ,  111 ] and the insula [ 112 ] have extensive 
connections with the motor and somatosensory cortices and are 
involved in motor execution [ 104 ,  112 ]. Interestingly, the thala-
mus is an important relay station of the complex re-entrant cir-
cuitry that links the motor and the prefrontal cortices to the basal 
ganglia, which is part of the feedback loops of the limbic system 
able to modulate the cortical motor output [ 57 ,  113 ]. 

 The  insular cortex   has been shown to play a role in crossmodal 
transfer of information [ 114 ]. In addition, the insular cortex, 
which has connections with numerous cortical and subcortical 
motor regions, is involved in the synchronization of movement 
kinematic [ 115 ] and skeletomotor body  orientation      [ 116 ].  

   The cerebellum integrates sensory information and motor pro-
grams to coordinate fi ne movements. Functionally, the cerebellum 
is organized in modules arranged in the medio-lateral direction, 
being the medial part responsible for control of posture and the 
lateral regions for coordination and movements. Anatomically, the 
cerebellum is divided along the rostro-caudal axis in the anterior 
lobe, which contains a somatotopic representation of movement of 
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the ipsilateral side and contributes to motor control [ 117 ], and the 
posterior lobe, which is thought to be related to motor imagery 
[ 75 ] and motor learning [ 118 ,  119 ]. The posterior lobe of the 
cerebellum has projections from and to regions of the parietal cor-
tex, involved in the processing of sensory information [ 120 – 122 ], 
which is then used to correct movements. However, recent studies 
revealed functionally distinct areas within and across cerebellar lob-
ules, thus demonstrating a functional parcellation that is indepen-
dent of anatomical lobular divisions [ 122 ]. 

 Several imaging studies have reported a cerebellar recruitment 
associated to timing of rhythmic movements [ 123 ]. Some studies 
also described increased cerebellar activation corresponding to 
increase in movement frequency and velocity [ 50 ,  110 ,  124 ,  125 ]. 
The cerebellum has also been involved in the “automatization” 
(improvement of motor performance) of learned skills, establish-
ment of movement strategies, and consolidation of such a motor 
knowledge [ 110 ,  126 ,  127 ]. Further evidence supporting the role 
of the cerebellum in motor learning is based on data from patients 
with focal cerebellar lesions, who have shown impairment in learn-
ing new motor  skills      [ 126 ,  128 ,  129 ], imaging studies that high-
lighted its contribution to motor recovery after SCI [ 62 ] and other 
studies of motor learning in healthy individuals, who showed 
prominent cerebellar recruitment [ 130 ,  131 ].   

4    Cortical Reorganization During  Motor Training and Motor Skill Learning   

 Psychophysiological studies have demonstrated that the acquisi-
tion of motor skills follows two distinct stages. The fi rst is a fast 
learning stage during which considerable improvement in perfor-
mance can be observed within a single training session; the second 
is a later, slow learning stage, during which further gains can be 
observed across several sessions of practice [ 23 ]. Karni et al. [ 23 ] 
used a simple fi nger-opposition task, during which healthy indi-
viduals were trained over the course of several weeks and were 
scanned at weekly interval using fMRI. Repetition of the task after 
3 weeks of practice showed that there was a signifi cant larger acti-
vation of the contralateral primary SMC as compared with the acti-
vation obtained with a control, untrained fi nger-opposition 
sequence. These results support the notion that motor practice 
induces recruitment of additional M1 units into a local network 
specifi cally representing the motor trained sequence. These fi nd-
ings are in agreement with the demonstration that, in healthy indi-
viduals, the recruitment of the primary SMC can be modifi ed by 
previous activities, such as playing musical instruments [ 124 ,  132 ] 
or sports [ 133 – 135 ]. In the previous experiment, changes in pri-
mary SMC recruitment were also observed in the early scan ses-
sion, refl ecting a sort of initial habituation-like effect, in which the 
second sequence performed in a set evoked a smaller response than 
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the fi rst sequence [ 23 ]. Different type of motor training might 
induce different cortical reorganization. For instance, music- 
related motor training usually requires auditory feedback. The 
coupling between auditory input and motor output increases dur-
ing motor training, thus leading to a cortical reorganization not 
only in motor areas but also in auditory  areas   [ 55 ]. On the other 
hand, sport-related motor expertise might induce cortical reorga-
nization in motor, visual, and sensory-motor areas. 

 Although several studies demonstrated that learning of motor 
tasks is associated with an increased activation of the contralateral 
primary SMC, the pattern of functional reorganization is still 
unclear. The evaluation of activation patterns associated with repeti-
tion of simple movements gave confl icting results, since some stud-
ies reported reductions, and others increases of task-related 
activations [ 23 ,  136 – 138 ]. These discrepancies among studies 
might be related to variability in number and length of sessions, 
length of training, as well as monitoring of motor performance. 
Recent evidence suggests that the repetition of a simple sequence 
within a brief time window typically results in a reduced recruit-
ment of the primary SMC, due to habituation [ 23 ,  136 ,  139 ]. 
Activity decreases may also indicate a more effi cient organization of 
task-related brain networks through intensive training [ 55 ,  140 ]. 

 In addition, a change in the degree of activation of the pari-
etal lobe from healthy volunteers has also been described after 
motor training [ 139 ]. 

 Dynamic activation changes during acquisition of motor skills 
have also been seen in different subcortical areas [ 135 ,  141 ]. In 
details, the dorsal parts of the putamen and the more rostral striatal 
areas have been shown to be active only during the early learning 
stage. On the contrary, activations of the posteroventral regions of 
the putamen and globus pallidus increase with practice (Fig.  3 ) [ 141 ].

   Recent research has indicated that motor expertise infl uences 
not only brain activity during motor execution, but also during 
motor observation [ 142 ], motor imagery and planning [ 143 ] and 
motor  prediction   [ 144 ].  

5    The Mirror-Neuron System 

 The mirror-neuron system ( MNS)      is an observation-execution match-
ing system. Several neurophysiological [ 145 ,  146 ] and neuroimaging 
[ 75 ,  147 – 149 ] studies have demonstrated that MNS neurons dis-
charge not only when an individual performs a specifi c goal-directed 
action, but also when an individual observes actions made by other 
individuals, implying an involvement of this system in imitation and 
motor learning [ 55 ,  140 ,  150 ]. The main role of the MNS is postu-
lated to be the understanding of actions [ 151 ,  152 ]. This system is 
also thought to be involved in motor imagery [ 153 ] and empathy 
[ 154 ,  155 ]. In humans, neurons of this system have been described in 
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the IFG, the adjacent premotor cortex [ 156 ], and the rostral part of 
the inferior parietal lobule [ 157 ]. The MNS is connected with the 
 superior temporal sulcus (STS)   that provides a higher-order visual 
description of the observed action [ 152 ,  158 ]. Mirror neurons are 
likely to be multimodal, as they respond to both the visual observation 
of an action as well as the sound associated with specifi c actions [ 159 ]. 
A recent fMRI study showed that regions supporting visuomotor 
integration and MNS abilities are multimodal convergent zones of the 
visual and motor streams (Fig.  4 ). In addition, the MNS seems to be 
a privilege position for incorporating and integrating basic sensory-
motor information into higher-order cognitive centers [ 160 ].

   In humans, mirror neurons are part of a system serving the 
imitation of actions and speech generation. Therefore, the  MNS   

  Fig. 3    Activation patterns in the basal ganglia and  cerebellum   during acquisition of motor skills. ( a   Upper ) 
Activation maps obtained in the putamen superimposed on a coronal T1-weighted image. There was a pro-
gressive activation decrease in the dorsal part of the putamen ( arrows ) and an increase in a more ventrolateral 
area ( arrowheads ) bilaterally, which persisted after 4 weeks of training. ( a   Lower ) Percentage signal 
increase ± SEM averaged across all subjects for each run of the trained sequence confi rmed the activation 
decrease in the dorsal putamen and increase in the ventral putamen. ( b   Top ) Activation maps obtained in the 
substantia nigra (SN) and  subthalamic nucleus (STN)   superimposed on EPI images. During session 1, STN 
activation was observed during the fi rst run of T-sequence (T1). After 4 weeks of training, these areas were no 
more activated during the T-sequence. There was no signifi cant signal change in the SN across runs. ( b  
 Bottom ) Signal-to-time curves ± SEM in the STN averaged across all subjects and epochs confi rm the activa-
tion decrease. ( c   Left ) Activation maps obtained in the cerebellum during the T-sequence (T1 on day 1 and T5 
on day 28). Activation in the lateral cerebellar hemispheres, the left dentate nucleus (DN), and the pons 
decreased with training. ( c   Right ) Percentage signal increase ± SEM averaged across all subjects for each run 
of the trained sequence in the left and right DN. In the right DN, activation increased transiently during T2 
(10 min of practice) and returned to pretraining values (From ref. [ 141 ], with permission)       
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might constitute a bridge between action and language processing 
and might represent the neuronal substrate from which human lan-
guage evolved [ 161 ,  162 ]. Activity of this system is elicited by both 
the execution and observation of object-related transitive and 
intransitive actions [ 148 ,  158 ,  163 ]. These observations suggest 
that the MNS is a network that has been preserved during evolution 
and has developed “new” functions. Therefore, the  MNS   seems to 
be an extremely plastic system, with the capacity to adapt to new 
cognitive, social, or behavioral requirements to which an individual 
is exposed [ 162 ,  164 ]. This hypothesis assumes that these “evolu-
tionary” changes have occurred over an extremely long time win-
dow (phylogenetic plasticity). It is plausible that, as shown for other 

MNS: Mirror Neuron System

vPM/I: ventral Premotor / Insula

aOP4: anterior Operculum Parietale-4

OPI: Operculum Parietale-I

SPL: Superior Parietal Lobe

Visual

Motor

Major Visuo-Motor Integration

Other Visuo-Motor Integration
Functional Connections
(no white matter tracts)

Stepwise Convergence of
Visual and Motor Cortices

  Fig. 4    Diagram showing the convergence of the visual ( green nodes ) and motor 
( red nodes ) systems into the multimodal integration network ( blue nodes ) or mir-
ror neuron system. Visual cortex streams converge into a common destiny in the 
brain network. The main motor functional stream connects motor areas with the 
same network as the visual system does. Therefore, motor and visual functional- 
related streams meet in a multimodal integration network. Other regions such as 
premotor, dorsolateral prefrontal, anterior lateral occipital, or even in situ primary 
motor areas may be relevant for visuomotor integration as well, although they 
engage fewer convergent functional pathways than the multimodal integration 
core ( light blue nodes ) (From ref. [ 160 ] with permission)       
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brain networks, including the motor one, disease- related changes of 
such a plastic system might occur in case of CNS injury (adaptive 
plasticity). This hypothesis has indeed been  supported by the results 
of a recent study in patients with multiple sclerosis, which demon-
strated that these patients tend to activate regions that are part of 
the MNS during the performance of a simple motor task [ 165 ]. 
Defi ning the role of the MNS after brain injury may be central to a 
better understanding of the clinical manifestations of various neuro-
logical conditions and, as a consequence, to develop new rehabilita-
tive strategies. Indeed, mirror therapy has been administered to 
treat various neurological conditions leading to improvement in 
motor function [ 166 ]. A recent study suggested that mirror therapy 
represents an appropriate method to recruit the contralesional 
motor areas to promote  functional recovery through interhemi-
spheric transfer of information (Fig.  5 ) [ 167 ].

   The majority of the  MNS   studies has been focused on the 
attempt to better defi ne the exact role of this system and its precise 
location in healthy individuals. In this perspective, it has been dem-
onstrated that: (1) the  MNS   has a bilateral representation [ 168 ]; 
(2) mirror neurons in the premotor cortex have a somatotopic 
organization, as shown for the classical motor cortex homunculus 
[ 163 ]; and, fi nally, (3) there are gender differences in MNS func-
tion [ 169 ]. Recently, it has been suggested that there might be a 
relation between activity of the MNS and handedness [ 165 ]. 

 Functional studies have suggested a role of  MNS   dysfunction, 
in combination with limbic system impairment, in patients with 
autism [ 170 ,  171 ], suggesting that this neuronal system may play 
a role in autistic social impairment. These studies described a 
reduced activity in the IFG and premotor cortex during action/
face imitation and observation in adults [ 170 ] and children [ 171 ] 
with autism spectrum disorders. However, recently, some studies 
showed that the capacity of children with autism to understand the 
goal of observed motor acts is preserved, thus bringing the mirror 
hypothesis of autism into question [ 152 ].  

6    Conclusions 

 Functional neuroimaging has dramatically changed our under-
standing of the human sensorimotor system by showing that it is 
constituted by a large number of cortical and subcortical areas, 
with a precise location and a specialized function. It is also evident 
that this system functions in cooperation with other brain networks 
in order to integrate all the information coming from the environ-
ment and to fi nalize the performance of motor acts. Defi ning this 
system’s behavior is of the outmost importance for the understand-
ing of its dysfunction in case of disease and to develop potentially 
successful therapeutic strategies capable to enhance its plasticity.     
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  Fig. 5     Brain activity patterns   between healthy participants who were trained on simple motor tasks with their 
right hand with (mirror training group—MG) and without a mirror (control training group—CG). The fMRI analy-
sis revealed activation changes within the right dorsal premotor cortex (dPMC), left inferior parietal lobule 
(vPMC), left ventral premotor cortex (IPL) and left  primary sensorimotor cortex   (SMC) in the MG in comparison 
with the CG ( schema 1 ). The functional connectivity (FC) analysis revealed an increased FC between previous 
regions and the left  supplementary motor area (SMA)   in the MG over the CG ( schema 2 ). The dynamic causal 
modeling, which estimates and makes inferences about the coupling among brain areas, revealed that the 
right dPMC and left vPMC interacted with the left SMA, which in turn had access to the left SMC (and the left 
IPL interacted with the left vPMC) ( schema 3 ) (From ref. [ 167 ], with permission)       

 

fMRI of the Sensorimotor System



538

       1.    Fink GR et al (1997) Multiple nonpri-
mary motor areas in the human cortex. 
J Neurophysiol 77(4):2164–2174  

    2.    Ciccarelli O et al (2005) Identifying brain 
regions for integrative sensorimotor process-
ing with ankle movements. Exp Brain Res 
166(1):31–42  

      3.    Nowak DA, Glasauer S, Hermsdorfer 
J (2013) Force control in object manipula-
tion—a model for the study of sensorimotor 
control strategies. Neurosci Biobehav Rev 
37(8):1578–1586  

    4.    Debaere F et al (2001) Brain areas involved 
in interlimb coordination: a distributed net-
work. Neuroimage 14(5):947–958  

    5.    Rocca MA et al (2007) Infl uence of body 
segment position during in-phase and anti-
phase hand and foot movements: a kinematic 
and functional MRI study. Hum Brain Mapp 
28(3):218–227  

      6.    Reddy H et al (2001) Altered cortical acti-
vation with fi nger movement after peripheral 
denervation: comparison of active and passive 
tasks. Exp Brain Res 138(4):484–491  

    7.    Reddy H et al (2002) Functional brain reor-
ganization for hand movement in patients 
with multiple sclerosis: defi ning distinct 
effects of injury and disability. Brain 125(Pt 
12):2646–2657  

    8.    Petsas N et al (2013) Evidence of impaired 
brain activity balance after passive sensorimo-
tor stimulation in multiple sclerosis. PLoS 
One 8(6):e65315  

     9.    Jaeger L et al (2014) Brain activation associ-
ated with active and passive lower limb step-
ping. Front Hum Neurosci 8:828  

    10.    Logothetis NK et al (2001) Neurophysiological 
investigation of the basis of the fMRI signal. 
Nature 412(6843):150–157  

      11.    Mehta JP et al (2012) The effect of move-
ment rate and complexity on functional 
magnetic resonance signal change during 
pedaling. Motor Control 16(2):158–175  

    12.    Francis S et al (2009) fMRI analysis of active, 
passive and electrically stimulated ankle dorsi-
fl exion. Neuroimage 44(2):469–479  

    13.    Decety J et al (1994) Mapping motor repre-
sentations with positron emission tomogra-
phy. Nature 371(6498):600–602  

   14.    Porro CA et al (1996) Primary motor and 
sensory cortex activation during motor per-
formance and motor imagery: a functional 
magnetic resonance imaging study. J Neurosci 
16(23):7688–7698  

    15.    van der Meulen M et al (2014) The infl uence 
of individual motor imagery ability on cere-
bral recruitment during gait imagery. Hum 
Brain Mapp 35(2):455–470  

         16.    Wexler BE et al (1997) An fMRI study of 
the human cortical motor system response to 
increasing functional demands. Magn Reson 
Imaging 15(4):385–396  

    17.    Deiber MP et al (1999) Mesial motor areas 
in self-initiated versus externally triggered 
movements examined with fMRI: effect of 
movement type and rate. J Neurophysiol 
81(6):3065–3077  

    18.    VanMeter JW et al (1995) Parametric analy-
sis of functional neuroimages: application 
to a variable-rate motor task. Neuroimage 
2(4):273–283  

    19.    Dettmers C et al (1995) Relation between 
cerebral activity and force in the motor areas of 
the human brain. J Neurophysiol 74:802–815  

    20.    Keisker B et al (2009) Differential force scal-
ing of fi ne-graded power grip force in the 
sensorimotor network. Hum Brain Mapp 
30(8):2453–2465  

     21.    Neely KA et al (2013) Segregated and over-
lapping neural circuits exist for the produc-
tion of static and dynamic precision grip 
force. Hum Brain Mapp 34(3):698–712  

     22.    Schlaug G, Knorr U, Seitz R (1994) Inter- 
subject variability of cerebral activations in 
acquiring a motor skill: a study with posi-
tron emission tomography. Exp Brain Res 
98(3):523–534  

         23.    Karni A et al (1995) Functional MRI evidence 
for adult motor cortex plasticity during motor 
skill learning. Nature 377(6545):155–158  

       24.    Rao SM et al (1993) Functional magnetic 
resonance imaging of complex human move-
ments. Neurology 43(11):2311–2318  

    25.    Annett M (1973) Handedness in families. 
Ann Hum Genet 37(1):93–105  

      26.    Kim SG et al (1993) Functional magnetic 
resonance imaging of motor cortex: hemi-
spheric asymmetry and handedness. Science 
261(5121):615–617  

   27.    Singh LN et al (1998) Comparison of ipsilat-
eral activation between right and left handers: 
a functional MR imaging study. Neuroreport 
9(8):1861–1866  

   28.    Solodkin A et al (2001) Lateralization of 
motor circuits and handedness during fi nger 
movements. Eur J Neurol 8(5):425–434  

   29.    Verstynen T et al (2005) Ipsilateral motor 
cortex activity during unimanual hand 

   References 

Massimo Filippi et al.



539

movements relates to task complexity. 
J Neurophysiol 93(3):1209–1222  

    30.    Pool EM et al (2015) Functional resting-state 
connectivity of the human motor network: 
differences between right- and left-handers. 
Neuroimage 109:298–306  

    31.    Lissek S et al (2007) Sex differences in corti-
cal and subcortical recruitment during simple 
and complex motor control: an fMRI study. 
Neuroimage 37(3):912–926  

    32.    Ward NS (2006) Compensatory mechanisms 
in the aging motor system. Ageing Res Rev 
5(3):239–254  

     33.    Loibl M et al (2011) Non-effective increase 
of fMRI-activation for motor perfor-
mance in elder individuals. Behav Brain Res 
223(2):280–286  

    34.    Taniwaki T et al (2007) Age-related altera-
tions of the functional interactions within 
the basal ganglia and cerebellar motor loops 
in vivo. Neuroimage 36(4):1263–1276  

     35.    Hutchinson S et al (2002) Age-related 
differences in movement representation. 
Neuroimage 17(4):1720–1728  

    36.    Mattay VS et al (2002) Neurophysiological 
correlates of age-related changes in human 
motor function. Neurology 58(4):630–635  

    37.    Wang L et al (2014) Age-specifi c activation 
of cerebral areas in motor imagery—a fMRI 
study. Neuroradiology 56(4):339–348  

     38.    Alkadhi H et al (2002) Reproducibility of 
primary motor cortex somatotopy under con-
trolled conditions. AJNR Am J Neuroradiol 
23(9):1524–1532  

      39.    Cunningham DA et al (2013) Functional 
somatotopy revealed across multiple cortical 
regions using a model of complex motor task. 
Brain Res 1531:25–36  

     40.    Chiou SY et al (2013) Co-activation of pri-
mary motor cortex ipsilateral to muscles 
contracting in a unilateral motor task. Clin 
Neurophysiol 124(7):1353–1363  

     41.    McGregor KM et al (2015) Reliability of neg-
ative BOLD in ipsilateral sensorimotor areas 
during unimanual task activity. Brain Imaging 
Behav 9(2):245–254  

     42.    Netz J, Ziemann U, Homberg V (1995) 
Hemispheric asymmetry of transcallosal inhi-
bition in man. Exp Brain Res 104(3):527–533  

     43.    Liepert J et al (2001) Inhibition of ipsilateral 
motor cortex during phasic generation of low 
force. Clin Neurophysiol 112(1):114–121  

    44.    Allison JD et al (2000) Functional MRI cere-
bral activation and deactivation during fi nger 
movement. Neurology 54(1):135–142  

   45.    Nirkko AC et al (2001) Different ipsilateral 
representations for distal and proximal move-
ments in the sensorimotor cortex: activa-
tion and deactivation patterns. Neuroimage 
13(5):825–835  

    46.    Stefanovic B, Warnking JM, Pike GB (2004) 
Hemodynamic and metabolic responses 
to neuronal inhibition. Neuroimage 
22(2):771–778  

    47.    Geffen GM, Jones DL, Geffen LB (1994) 
Interhemispheric control of manual motor 
activity. Behav Brain Res 64(1–2):131–140  

    48.    Davidson T, Tremblay F (2013) Age and 
hemispheric differences in transcallosal inhi-
bition between motor cortices: an ispsilateral 
silent period study. BMC Neurosci 14:62  

    49.    McGregor KM et al (2011) Physical activ-
ity and neural correlates of aging: a com-
bined TMS/fMRI study. Behav Brain Res 
222(1):158–168  

      50.    Sadato N et al (1997) Role of the supplemen-
tary motor area and the right premotor cortex 
in the coordination of bimanual fi nger move-
ments. J Neurosci 17(24):9667–9674  

    51.    Lee KM, Chang KH, Roh JK (1999) Subregions 
within the supplementary motor area activated 
at different stages of movement preparation and 
execution. Neuroimage 9(1):117–123  

     52.    Ohara S et al (2000) Movement-related 
change of electrocorticographic activity in 
human supplementary motor area proper. 
Brain 123(Pt 6):1203–1215  

    53.    Arai N et al (2012) Effective connectivity 
between human supplementary motor area 
and primary motor cortex: a paired-coil TMS 
study. Exp Brain Res 220(1):79–87  

    54.    Gao Q et al (2014) Differential contribution 
of bilateral supplementary motor area to the 
effective connectivity networks induced by 
task conditions using dynamic causal model-
ing. Brain Connect 4(4):256–264  

       55.    Yang J (2015) The infl uence of motor exper-
tise on the brain activity of motor task perfor-
mance: a meta-analysis of functional magnetic 
resonance imaging studies. Cogn Affect 
Behav Neurosci 15(2):381–394  

    56.    Rouiller EM et al (1994) Transcallosal con-
nections of the distal forelimb representations 
of the primary and supplementary motor cor-
tical areas in macaque monkeys. Exp Brain 
Res 102(2):227–243  

      57.    Marchand WR et al (2013) Functional 
architecture of the cortico-basal ganglia cir-
cuitry during motor task execution: correla-
tions of strength of functional connectivity 
with neuropsychological task performance 

fMRI of the Sensorimotor System



540

among female subjects. Hum Brain Mapp 
34(5):1194–1207  

    58.    Brinkman C (1981) Lesions in supplemen-
tary motor area interfere with a monkey’s 
performance of a bimanual coordination task. 
Neurosci Lett 27(3):267–270  

   59.    Brinkman C (1984) Supplementary motor 
area of the monkey’s cerebral cortex: short- 
and long-term defi cits after unilateral ablation 
and the effects of subsequent callosal section. 
J Neurosci 4(4):918–929  

    60.    Akkal D, Dum RP, Strick PL (2007) 
Supplementary motor area and presupple-
mentary motor area: targets of basal gan-
glia and cerebellar output. J Neurosci 
27(40):10659–10673  

    61.    Martino AM, Strick PL (1987) Corticospinal 
projections originate from the arcuate premo-
tor area. Brain Res 404(1–2):307–312  

     62.    Hou JM et al (2014) Alterations of resting- 
state regional and network-level neu-
ral function after acute spinal cord injury. 
Neuroscience 277:446–454  

    63.    Humberstone M et al (1997) Functional 
magnetic resonance imaging of single motor 
events reveals human presupplementary 
motor area. Ann Neurol 42(4):632–637  

    64.    Zhang S, Ide JS, Li CS (2012) Resting-state 
functional connectivity of the medial superior 
frontal cortex. Cereb Cortex 22(1):99–111  

    65.    Weilke F et al (2001) Time-resolved fMRI 
of activation patterns in M1 and SMA 
during complex voluntary movement. 
J Neurophysiol 85(5):1858–1863  

     66.    Picard N, Strick PL (1996) Motor areas of 
the medial wall: a review of their location 
and functional activation. Cereb Cortex 
6(3):342–353  

    67.    Rizzolatti G, Luppino G (2001) The cortical 
motor system. Neuron 31(6):889–901  

    68.    Dum RP, Strick PL (1991) The origin of cor-
ticospinal projections from the premotor areas 
in the frontal lobe. J Neurosci 11(3):667–689  

    69.    Dum RP, Strick PL (2002) Motor areas in 
the frontal lobe of the primate. Physiol Behav 
77(4–5):677–682  

     70.    Stephan KM et al (1995) Functional anat-
omy of the mental representation of upper 
extremity movements in healthy subjects. 
J Neurophysiol 73:373–386  

      71.    Binkofski F et al (1999) A fronto-parietal 
circuit for object manipulation in man: evi-
dence from an fMRI-study. Eur J Neurosci 
11(9):3276–3286  

    72.    Harrington DL et al (2000) Specialized 
neural systems underlying representations 

of sequential movements. J Cogn Neurosci 
12:56–77  

    73.    Haslinger B et al (2002) The role of lateral 
premotor-cerebellar-parietal circuits in motor 
sequence control: a parametric fMRI study. 
Brain Res Cogn Brain Res 13(2):159–168  

     74.    Duann JR et al (2009) Functional connec-
tivity delineates distinct roles of the inferior 
frontal cortex and presupplementary motor 
area in stop signal inhibition. J Neurosci 
29(32):10171–10179  

       75.    Grafton ST et al (1996) Localization of grasp 
representations in humans by positron emission 
tomography. 2. Observation compared with 
imagination. Exp Brain Res 112(1):103–111  

    76.    Scott SH, Sergio LE, Kalaska JF (1997) 
Reaching movements with similar hand paths 
but different arm orientations. II. Activity 
of individual cells in dorsal premotor cor-
tex and parietal area 5. J Neurophysiol 
78(5):2413–2426  

   77.    Grafton ST, Fagg AH, Arbib MA (1998) 
Dorsal premotor cortex and conditional 
movement selection: a PET functional map-
ping study. J Neurophysiol 79(2):1092–1097  

    78.    Bestmann S et al (2008) Dorsal premotor 
cortex exerts state-dependent causal infl u-
ences on activity in contralateral primary 
motor and dorsal premotor cortex. Cereb 
Cortex 18(6):1281–1291  

     79.    Schluter ND et al (2001) Cerebral dominance 
for action in the human brain: the selection of 
actions. Neuropsychologia 39(2):105–113  

   80.    Schluter ND et al (1998) Temporary inter-
ference in human lateral premotor cortex 
suggests dominance for the selection of 
movements. A study using transcranial mag-
netic stimulation. Brain 121(Pt 5):785–799  

     81.    Moisa M et al (2012) Uncovering a 
context- specifi c connectional fi ngerprint of 
human dorsal premotor cortex. J Neurosci 
32(21):7244–7252  

    82.    Marconi B et al (2003) Callosal connec-
tions of dorso-lateral premotor cortex. Eur 
J Neurosci 18(4):775–788  

    83.    O’Shea J et al (2007) Functionally specifi c 
reorganization in human premotor cortex. 
Neuron 54(3):479–490  

    84.    Cunnington R et al (2006) The selection 
of intended actions and the observation of 
others’ actions: a time-resolved fMRI study. 
Neuroimage 29(4):1294–1302  

    85.    Deiber MP et al (1991) Cortical areas and 
the selection of movement: a study with posi-
tron emission tomography. Exp Brain Res 
84(2):393–402  

Massimo Filippi et al.



541

    86.    Devinsky O, Morrell MJ, Vogt BA (1995) 
Contributions of anterior cingulate cortex to 
behaviour. Brain 118:279–306  

     87.    Hoffstaedter F et al (2014) The role of ante-
rior midcingulate cortex in cognitive motor 
control: evidence from functional connectivity 
analyses. Hum Brain Mapp 35(6):2741–2753  

    88.    Paus T et al (1993) Role of the human anterior 
cingulate cortex in the control of oculomo-
tor, manual, and speech responses: a positron 
emission tomography study. J Neurophysiol 
70(2):453–469  

    89.    Vogt BA, Finch DM, Olson CR (1992) 
Functional heterogeneity in cingulate cortex: 
the anterior executive and posterior evaluative 
regions. Cereb Cortex 2(6):435–443  

    90.    Botvinick M et al (1999) Confl ict monitoring 
versus selection-for-action in anterior cingu-
late cortex. Nature 402(6758):179–181  

    91.    Carter CS et al (1998) Anterior cingulate cor-
tex, error detection, and the online monitoring 
of performance. Science 280(5364):747–749  

     92.    Wenderoth N et al (2005) The role of anterior 
cingulate cortex and precuneus in the coor-
dination of motor behaviour. Eur J Neurosci 
22(1):235–246  

      93.    Rizzolatti G, Fogassi L, Gallese V (1997) 
Parietal cortex: from sight to action. Curr 
Opin Neurobiol 7(4):562–567  

    94.    Karhu J, Tesche CD (1999) Simultaneous 
early processing of sensory input in human pri-
mary (SI) and secondary (SII) somatosensory 
cortices. J Neurophysiol 81(5):2017–2025  

    95.    Hamalainen H, Hiltunen J, Titievskaja I 
(2000) fMRI activations of SI and SII cortices 
during tactile stimulation depend on atten-
tion. Neuroreport 11(8):1673–1676  

    96.    Huttunen J et al (1996) Signifi cance of 
the second somatosensory cortex in senso-
rimotor integration: enhancement of sen-
sory responses during fi nger movements. 
Neuroreport 7(5):1009–1012  

    97.    Shergill SS et al (2013) Modulation of somato-
sensory processing by action. Neuroimage 
70:356–362  

    98.    Mima T et al (1998) Attention modulates 
both primary and second somatosensory corti-
cal activities in humans: a magnetoencephalo-
graphic study. J Neurophysiol 80(4):2215–2221  

    99.    Dobkin BH (2003) Functional MRI: a poten-
tial physiologic indicator for stroke rehabilita-
tion interventions. Stroke 34(5):e23–e28  

    100.    Del Gratta C et al (2002) Topographic orga-
nization of the human primary and second-
ary somatosensory cortices: comparison 
of fMRI and MEG fi ndings. Neuroimage 
17(3):1373–1383  

    101.    Culham JC, Kanwisher NG (2001) 
Neuroimaging of cognitive functions in 
human parietal cortex. Curr Opin Neurobiol 
11(2):157–163  

     102.    Monaco S et al (2015) Neural correlates of 
object size and object location during grasp-
ing actions. Eur J Neurosci 41(4):454–465  

    103.    Barany DA et al (2014) Feature interactions 
enable decoding of sensorimotor transforma-
tions for goal-directed movement. J Neurosci 
34(20):6860–6873  

      104.    Parent A, Hazrati LN (1995) Functional 
anatomy of the basal ganglia. I. The cortico- 
basal ganglia-thalamo-cortical loop. Brain Res 
Brain Res Rev 20(1):91–9127  

    105.    Choi EY, Yeo BT, Buckner RL (2012) The 
organization of the human striatum esti-
mated by intrinsic functional connectivity. 
J Neurophysiol 108(8):2242–2263  

    106.    Kessler K et al (2006) Investigating the human 
mirror neuron system by means of cortical syn-
chronization during the imitation of biological 
movements. Neuroimage 33(1):227–238  

    107.    Harrington DL, Haaland KY, Knight 
RT (1998) Cortical networks underlying 
mechanisms of time perception. J Neurosci 
18(3):1085–1095  

   108.    Ivry RB, Keele SW, Diener HC (1988) 
Dissociation of the lateral and medial cer-
ebellum in movement timing and movement 
execution. Exp Brain Res 73(1):167–180  

   109.    Jantzen KJ, Steinberg FL, Kelso JAS (2004) 
Brain networks underlying human timing 
behavior are infl uenced by prior context. Proc 
Natl Acad Sci U S A 101(17):6815–6820  

      110.    Walz AD et al (2014) Changes in corti-
cal, cerebellar and basal ganglia repre-
sentation after comprehensive long term 
unilateral hand motor training. Behav Brain 
Res 278C:393–403  

    111.    Brooks DJ (1995) The role of the basal gan-
glia in motor control: contributions from 
PET. J Neurol Sci 128(1):1–13  

     112.    Mesulam MM (1998) From sensation to cog-
nition. Brain 121(Pt 6):1013–1052  

    113.    Chaudhuri A, Behan PO (2000) Fatigue and 
basal ganglia. J Neurol Sci 179(S 1–2):34–42  

    114.    Hadjikhani N, Roland PE (1998) Cross- 
modal transfer of information between the 
tactile and the visual representations in the 
human brain: a positron emission tomo-
graphic study. J Neurosci 18(3):1072–1084  

    115.    Mosier K, Bereznaya I (2001) Parallel cortical 
networks for volitional control of swallowing 
in humans. Exp Brain Res 140(3):280–289  

    116.    Taylor KS, Seminowicz DA, Davis KD (2009) 
Two systems of resting state connectiv-

fMRI of the Sensorimotor System



542

ity between the insula and cingulate cortex. 
Hum Brain Mapp 30(9):2731–2745  

    117.    Nitschke MF et al (1996) Somatotopic motor 
representation in the human anterior cerebel-
lum. A high-resolution functional MRI study. 
Brain 119(Pt 3):1023–1029  

    118.    Sakai K et al (1998) Separate cerebel-
lar areas for motor control. Neuroreport 
9(10):2359–2363  

    119.    Kim JJ, Thompson RF (1997) Cerebellar 
circuits and synaptic mechanisms involved 
in classical eyeblink conditioning. Trends 
Neurosci 20(4):177–181  

    120.    Ehrsson HH, Kuhtz-Buschbeck JP, Forssberg 
H (2002) Brain regions controlling nonsyn-
ergistic versus synergistic movement of the 
digits: a functional magnetic resonance imag-
ing study. J Neurosci 22(12):5074–5080  

   121.    Allen GI, Tsukahara N (1974) 
Cerebrocerebellar communication systems. 
Physiol Rev 54(4):957–951006  

     122.    Kipping JA et al (2013) Overlapping and 
parallel cerebello-cerebral networks contrib-
uting to sensorimotor control: an intrinsic 
functional connectivity study. Neuroimage 
83:837–848  

    123.    Ramnani N, Passingham RE (2001) Changes 
in the human brain during rhythm learning. 
J Cogn Neurosci 13(7):952–966  

     124.    Jancke L, Shah NJ, Peters M (2000) Cortical 
activations in primary and secondary motor 
areas for complex bimanual movements in 
professional pianists. Brain Res Cogn Brain 
Res 10(1–2):177–183  

    125.    Wenzel U et al (2014) Functional and struc-
tural correlates of motor speed in the cerebel-
lar anterior lobe. PLoS One 9(5):e96871  

     126.    Doyon J et al (1998) Role of the stria-
tum, cerebellum and frontal lobes in the 
automatization of a repeated visuomotor 
sequence of movements. Neuropsychologia 
36(7):625–641  

    127.    Jueptner M, Weiller C (1998) A review of 
differences between basal ganglia and cer-
ebellar control of movements as revealed 
by functional imaging studies. Brain 121(Pt 
8):1437–1449  

    128.    Sanes JN, Dimitrov B, Hallett M (1990) 
Motor learning in patients with cerebellar 
dysfunction. Brain 113(Pt 1):103–120  

    129.    Bracha V et al (2000) The human cerebel-
lum and associative learning: dissociation 
between the acquisition, retention and extinc-
tion of conditioned eyeblinks. Brain Res 
860(1–2):87–94  

    130.    Jenkins IH, Frackowiak RS (1993) Functional 
studies of the human cerebellum with posi-

tron emission tomography. Rev Neurol 
(Paris) 149:647–653  

    131.    Jenkins IH et al (1994) Motor sequence 
learning: a study with positron emission 
tomography. J Neurosci 14(6):3775–3790  

    132.    Krings T et al (2000) Cortical activation pat-
terns during complex motor tasks in piano 
players and control subjects. A functional 
magnetic resonance imaging study. Neurosci 
Lett 278(3):189–193  

    133.    Pearce AJ et al (2000) Functional reorgan-
isation of the corticomotor projection to the 
hand in skilled racquet players. Exp Brain Res 
130(2):238–243  

   134.    Milton J et al (2007) The mind of expert 
motor performance is cool and focused. 
Neuroimage 35(2):804–813  

     135.    Bishop DT et al (2013) Neural bases for 
anticipation skill in soccer: an FMRI study. 
J Sport Exerc Psychol 35(1):98–109  

     136.    Dirnberger G et al (2004) Habituation in 
a simple repetitive motor task: a study with 
movement-related cortical potentials. Clin 
Neurophysiol 115(2):378–384  

   137.    Loubinoux I et al (2001) Within-session and 
between-session reproducibility of cerebral 
sensorimotor activation: a test–retest effect 
evidenced with functional magnetic reso-
nance imaging. J Cereb Blood Flow Metab 
21(5):592–607  

    138.    Tracy JI et al (2001) A comparison of ‘Early’ 
and ‘Late’ stage brain activation during brief 
practice of a simple motor task. Brain Res 
Cogn Brain Res 10(3):303–316  

     139.    Morgen K et al (2004) Kinematic specifi city of 
cortical reorganization associated with motor 
training. Neuroimage 21(3):1182–1187  

     140.    Kruger B et al (2014) Parietal and premo-
tor cortices: activation refl ects imitation 
accuracy during observation, delayed imita-
tion and concurrent imitation. Neuroimage 
100:39–50  

      141.    Lehericy S et al (2005) Distinct basal ganglia 
territories are engaged in early and advanced 
motor sequence learning. Proc Natl Acad Sci 
U S A 102(35):12566–12571  

    142.    Kim YT et al (2011) Neural correlates related 
to action observation in expert archers. Behav 
Brain Res 223(2):342–347  

    143.    Baeck JS et al (2012) Brain activation patterns 
of motor imagery refl ect plastic changes asso-
ciated with intensive shooting training. Behav 
Brain Res 234(1):26–32  

    144.    Balser N et al (2014) Prediction of human 
actions: expertise and task-related effects on 
neural activation of the action observation 
network. Hum Brain Mapp 35(8):4016–4034  

Massimo Filippi et al.



543

    145.    Fadiga L et al (1995) Motor facilitation dur-
ing action observation: a magnetic stimula-
tion study. J Neurophysiol 73(6):2608–2611  

    146.    Hari R et al (1998) Activation of human pri-
mary motor cortex during action observation: 
a neuromagnetic study. Proc Natl Acad Sci U 
S A 95(25):15061–15065  

    147.    Grezes J et al (2003) Activations related to 
“mirror” and “canonical” neurones in the 
human brain: an fMRI study. Neuroimage 
18(4):928–937  

    148.    Rizzolatti G et al (1996) Localization of 
grasp representations in humans by PET: 1. 
Observation versus execution. Exp Brain Res 
111(2):246–252  

    149.    Mengotti P, Corradi-Dell’acqua C, Rumiati 
RI (2012) Imitation components in the 
human brain: an fMRI study. Neuroimage 
59(2):1622–1630  

    150.    Buccino G et al (2004) Neural circuits under-
lying imitation learning of hand actions: 
an event-related fMRI study. Neuron 
42(2):323–334  

    151.    Rizzolatti G, Craighero L (2004) The 
mirror- neuron system. Annu Rev Neurosci 
27:169–192  

      152.    Rizzolatti G, Sinigaglia C (2010) The func-
tional role of the parieto-frontal mirror cir-
cuit: interpretations and misinterpretations. 
Nat Rev Neurosci 11(4):264–274  

    153.    Johnson SH et al (2002) Selective activation of a 
parietofrontal circuit during implicitly imagined 
prehension. Neuroimage 17(4):1693–1704  

    154.    Leslie KR, Johnson-Frey SH, Grafton ST 
(2004) Functional imaging of face and hand 
imitation: towards a motor theory of empa-
thy. Neuroimage 21(2):601–607  

    155.    Filippi M et al (2010) The brain functional 
networks associated to human and animal 
suffering differ among omnivores, vegetarians 
and vegans. PLoS One 5(5):e10847  

    156.    Cerri G et al (2015) The mirror neuron 
system and the strange case of Broca’s area. 
Hum Brain Mapp 36(3):1010–1027  

    157.    Rizzolatti G, Fogassi L, Gallese V (2001) 
Neurophysiological mechanisms underlying 
the understanding and imitation of action. 
Nat Rev Neurosci 2(9):661–670  

     158.    Iacoboni M (2005) Neural mechanisms of imi-
tation. Curr Opin Neurobiol 15(6):632–637  

    159.    Kohler E et al (2002) Hearing sounds, under-
standing actions: action representation in 
mirror neurons. Science 297:846–848  

     160.    Sepulcre J (2014) Integration of visual and 
motor functional streams in the human brain. 
Neurosci Lett 567:68–73  

    161.    Rizzolatti G, Arbib MA (1998) Language 
within our grasp. Trends Neurosci 
21(5):188–194  

     162.    Oztop E, Kawato M, Arbib MA (2013) 
Mirror neurons: functions, mechanisms and 
models. Neurosci Lett 540:43–55  

     163.    Buccino G et al (2001) Action observa-
tion activates premotor and parietal areas in 
a somatotopic manner: an fMRI study. Eur 
J Neurosci 13(2):400–404  

    164.    Filippi M et al (2013) The “vegetarian brain”: 
chatting with monkeys and pigs? Brain Struct 
Funct 218(5):1211–1227  

     165.    Rocca MA et al (2008) The mirror-neuron 
system and handedness: a “right” world? 
Hum Brain Mapp 29(11):1243–1254  

    166.    Buccino G (2014) Action observation 
treatment: a novel tool in neurorehabilita-
tion. Philos Trans R Soc Lond B Biol Sci 
369(1644):20130185  

     167.    Hamzei F et al (2012) Functional plastic-
ity induced by mirror training: the mirror as 
the element connecting both hands to one 
hemisphere. Neurorehabil Neural Repair 
26(5):484–496  

    168.    Aziz-Zadeh L et al (2006) Lateralization of 
the human mirror neuron system. J Neurosci 
26(11):2964–2970  

    169.    Cheng Y-W et al (2006) Gender differ-
ences in the human mirror system: a mag-
netoencephalography study. Neuroreport 
17(11):1115–1119  

     170.    Theoret H et al (2005) Impaired motor facili-
tation during action observation in individu-
als with autism spectrum disorder. Curr Biol 
15(3):R84–R85  

     171.    Dapretto M et al (2006) Understanding emo-
tions in others: mirror neuron dysfunction in 
children with autism spectrum disorders. Nat 
Neurosci 9(1):28–30    

fMRI of the Sensorimotor System



545

Massimo Filippi (ed.), fMRI Techniques and Protocols, Neuromethods, vol. 119,
DOI 10.1007/978-1-4939-5611-1_18, © Springer Science+Business Media New York 2016

    Chapter 18   

 Functional Imaging of the Human Visual System                     

     Guy     A.     Orban      and     Stefania     Ferri     

  Abstract 

   The human visual system consists of a large, yet unknown number of cortical areas. We summarize the efforts 
which have led to the identifi cation of 19 retinotopic areas in human occipital cortex, using the macaque 
visual cortex as a guide. In this process retinotopic mapping has proven far superior to the study of functional 
properties. Macaques and humans share early areas (V1, V2, and V3), a motion-sensitive middle temporal 
(MT/V5) cluster as well as six other areas. The remaining human occipital areas either result from reorgani-
zation of a group of monkey areas or seem to be specifi cally human. Several regions sensitive to motion and 
even higher-order motion have been described in parietal cortex, the retinotopic organization of which is still 
under debate. On the other hand, both dorsal and ventral regions are sensitive to shape, which is most pro-
nounced in the lateral occipital complex (LOC) extending into the fusiform gyrus. The anterior part of this 
complex is fl anked by specialized regions devoted to processing faces and bodies and represents “visual 
objects” rather than image properties. Its exact organization requires further investigation.  

  Key words     Vision  ,   Retinotopy  ,   Cortical area  ,   Visual fi eld  ,   Motion  ,   2D and 3D Shape  ,   Actions  

1      Introduction 

 The  human visual system   is located in the occipital lobe and extends 
rostrally into the parietal and temporal lobes. It is estimated to 
encompass 30 % of  human cortex   [ 1 ]. Functional imaging gives us 
direct access to the function of this important part of human  cortex  . 
One way to study this system is to consider a number of perceptual 
or visual cognitive functions and to localize their neural correlates. 
An alternative is to consider the visual system as an anatomically orga-
nized collection of cortical areas and subcortical centers that process 
retinal information and transform it into messages appropriate for 
processing in the nonvisual cerebral regions to which the visual sys-
tem projects. A critical aim in visual neuroscience is to defi ne the 
different cortical areas that make up the human visual system. In 
other species, such as the nonhuman primates,  cortical areas   are 
defi ned by the combination of four criteria: (1) cyto- and myelo-
architectonics, (2) anatomical connections with other (known) areas, 
(3) topographic organization, i.e., retinotopic organization, and 
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(4) functional properties. It is important to note that while not all 
criteria may apply to each area, it is essential to obtain as much con-
verging information as possible. In the nonhuman primate, 30 or 
more visual cortical areas have been identifi ed using these criteria, 
although it is fair to state that even in these species there is discussion 
about the exact defi nition of areas, especially those at the higher levels 
in the system [ 1 ]. The defi nition of the visual cortical areas is only a 
fi rst step in understanding the visual system; next is the investigation 
of the nature of the processing performed by these areas and the fl ow 
of information through the areas as a function of the behavioral con-
text and task demands. 

 Recent advances in brain imaging have provided powerful 
tools for the defi nition and mapping of cortical areas.  Functional 
magnetic resonance imaging (fMRI)      provides insights into the 
functional characteristics of cortical areas by means of specifi c con-
trasts of brain activity that isolate a functional property. For exam-
ple, in the monkey in which a number of visual areas have been 
identifi ed using anatomical and neurophysiological measurements, 
fMRI has shown that a small number of functional characteristics, 
defi ned by a few subtractions, allow the defi nition of six motion- 
sensitive regions in the monkey superior temporal sulcus (STS) 
[ 2 ]. Functional MRI can also provide evidence for retinotopic 
organization. It actually is more powerful than single cell studies in 
this respect, as it is less biased in its sampling and the measure 
required is simply responsiveness. It has been suggested that the 
topology of an area, that is, its localization with respect to neigh-
boring areas, might be a valuable addition for the identifi cation of 
areas [ 3 ]. Imaging has not yet provided clear means to obtain his-
tological structure, although at high fi eld (7.0 T) the stria of 
Gennari becomes visible, and myelin density can be measured indi-
rectly at 3 T [ 4 ]. The situation is slightly better for anatomical 
connections, as  diffusion tensor imaging (DTI)   [ 5 ,  6 ] is increas-
ingly seen as a potential measure of connectivity between areas, 
although the methodological issues remain formidable [ 7 ]. In the 
present chapter we will provide an overview of how these two 
fMRI strategies, functional specialization and retinotopic organi-
zation, have been used for defi ning cortical areas. 

 Despite all its strengths functional imaging has severe limita-
tions due to its limited temporal and spatial resolution. With the 
present 3 T systems a few millimeters can be resolved. While this is 
ample to defi ne cortical regions it is a long way from the resolution 
of the single neuron. In fact, fMRI signals are only indirect, hemo-
dynamic refl ections of average activity of thousands of neurons. 
Hence, fMRI is very sensitive at detecting average activity levels, 
but it has great diffi culty in measuring neuronal selectivity. It has 
been proposed that repetition suppression can be used to measure 
neuronal tuning, but the case for it might be overstated as in single 
neurons the tuning of the adaptation is narrower than the response 
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tuning [ 8 – 10 ]. Recent developments using  multivoxel pattern 
analysis (MVPA)   [ 11 ] provide sensitive tools for studying neural 
representations beyond the resolution of conventional fMRI 
approaches. Yet the estimation provided by this analysis depends 
heavily on the clustering of neurons with similar properties, like 
those in cortical columns, and the discrimination provided falls 
quite short of what single neurons can achieve. For example, single 
V1 neurons can signal orientation differences of 5°–10° with an 
84 % chance of success [ 12 ].  MVPA   of human V1 has so far yielded 
values of 35° [ 13 ]. Therefore, much can be gained by combining 
functional imaging in humans with knowledge derived from inva-
sive studies, such as single cell recordings in nonhuman primates. 
The combination has become possible with the advent of fMRI in 
the awake monkey [ 14 ]. Indeed this allows parallel imaging experi-
ments leading to the defi nition of cortical regions and their charac-
teristics in the two species, paving the way for establishing 
homologies. Once a homology is established, one can test whether 
the neuronal properties in that area apply to the human homolog. 
Indeed, comparison of the single cell recordings and fMRI in the 
monkey using similar stimuli allows one to derive an fMRI signa-
ture of a neuronal property. One can then verify that the human 
homolog also exhibits this fMRI signature [ 15 ,  16 ]. Hence, the 
defi nition of cortical areas in both species is a critical step for knowl-
edge transfer from animal models to the  human visual system  .  

2       Methodological Issues 

   Defi nition of  the    visual stimulus   is important as it determines to a 
large degree the brain activation pattern and thus the experimental 
fi ndings reported. It is important to note that a precise stimulus 
description is crucial for repeating an experiment and replicating 
the results. For example, very different stimuli are used for defi n-
ing motion-responsive areas. A motion localizer used to localize 
human middle temporal (hMT/V5) region often consists of ran-
dom dots, but may also consist of gratings, either rectangular or 
circular. Random dots may have different densities, sizes, lumi-
nance, etc., or the whole pattern may be of a different size. Random 
dots may translate in one or several directions, but may also rotate 
or move radially. All these paradigms, using very different stimuli, 
are referred to as motion localizers, but because of their differences 
they may result in activation of different cortical regions, reducing 
the value of the localization.  

   One of the main challenges in brain imaging is investigating the 
link between neural activity and human behavior. Recent studies 
using parametric stimulus manipulation employ detection or dis-
crimination tasks [ 17 – 19 ] rather than passive viewing of the 
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stimuli. These paradigms allow correlation between behavioral 
data (psychometric functions) and fMRI activations. This approach 
is important for discerning the functional role of different cortical 
areas and evaluating their contribution to behavior. Further, atten-
tionally demanding tasks (e.g., detection of changes in the fi xation 
target, 1-back matching task) are used during scanning to ensure 
that observers pay attention across all stimulus conditions and that 
activation differences across conditions are not simply due to dif-
ferences in the general arousal of the participants or the task diffi -
culty across conditions. For example, when mapping the  lateral 
occipital complex (LOC)  , participants view intact and scrambled 
images of objects. It is possible that higher activations for intact 
images of objects are due to the fact that these images attract the 
participants’ attention more than scrambled images. To control for 
this potential confound observers are instructed to perform a task 
on different properties of the fi xation target or the stimulus (e.g., 
dimming of the fi xation point or part of the shape) [ 20 ] that entail 
similar attention across all stimulus conditions. Another task that 
has been adopted for controlling attentional confounds is the 
1-back matching task (detect a repeat of an intact or scrambled 
image) [ 21 ]. This task is more demanding for scrambled than 
intact images, thus excluding the possibility that higher activations 
for intact images of objects are due to attentional  differences  .  

   Control of fi xation is mandatory in motion response studies, reti-
notopic mapping experiments, and in spatial attention studies. 
Although in the past it was acceptable to show that the subjects 
fi xated well based on off-line measurements, standards have 
evolved. In addition, precise eye movement records, provided by 
infrared corneal refl ection methods, allow one to remove the effect 
of residual eye movements that occur despite fi xation. In general, 
in all visual experiments, control of fi xation will ensure that the 
part of visual fi eld stimulated is known and will remove eye move-
ments as a source of unwanted and uncontrolled activations.  

   The conventional fMRI approach for identifying cortical areas 
involved in different processes and cognitive tasks entails a 
 subtraction of activations between different stimulus types that are 
presented in blocked or event-related designs. 

 One of the limitations of these fMRI paradigms is that they 
average across neural populations that may respond homogeneously 
across stimulus properties or may be differentially tuned to different 
stimulus attributes. Thus, in most cases, it is impossible to infer the 
properties of the underlying imaged neural populations. fMRI 
adaptation (or repetition suppression) paradigms [ 22 – 27 ] have 
recently been employed to study the properties of neuronal popula-
tions beyond the limited spatial resolution of fMRI. These para-
digms capitalize on the reduction of neural responses for stimuli 
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that have been presented for prolonged time or repeatedly [ 28 ,  29 ]. 
A change in a specifi c stimulus dimension that elicits increased 
responses (i.e., rebound of activity) identifi es neural populations 
that are tuned to the modifi ed stimulus attributes. fMRI adaptation 
paradigms have been used in both monkey and human fMRI stud-
ies as a sensitive tool that allows us to investigate: (a) the sensitivity 
of the neural populations to stimulus properties, and (b) the invari-
ance of their responses within the imaged voxels. Adaptation across 
a change between two stimuli suggests a common neural represen-
tation invariant to that change, while recovery from adaptation sug-
gests neural representations sensitive to specifi c stimulus properties. 
For example, recent imaging studies tested whether fMRI measure-
ments can reveal neural populations in early visual areas sensitive to 
elementary visual features, e.g., orientation, color, and direction of 
motion [ 30 – 34 ]. Consider the case of motion direction: after pro-
longed exposure to the adapting motion direction, observers were 
tested with the same stimulus in the same or in an orthogonal 
motion direction. Decreased fMRI responses were observed in MT 
when the test stimuli were at the same motion direction as the 
adapting stimulus. However, recovery from this adaptation effect 
was observed for stimuli presented at an orthogonal direction. 
These studies suggest that the neural populations in human MT are 
sensitive to direction of motion [ 31 ,  34 ]. Using the same procedure 
in the monkey, Nelissen et al. [ 2 ] indeed observed adaptation in 
MT/V5 but also in other motion-sensitive regions, such as the 
medial superior temporal (MST) region. Similarly, recent studies 
have shown stronger adaptation in hMT/V5 +  for coherently than 
transparently moving plaid stimuli. These fi ndings provide evidence 
that fMRI adaptation responses are linked to the activity of pattern-
motion rather than component- motion cells in MT/MST [ 32 ]. 
Thus, these studies suggest that the fMRI signal can reveal neural 
selectivity consistent with the selectivity established by neurophysi-
ological methods. However, recent studies comparing fMRI adap-
tation and neurophysiology in monkeys call for cautious 
interpretation of the relationship between fMRI  adaptation   effects 
and neural selectivity or invariance at higher levels in the system 
[ 10 ]. In particular, fMRI adaptation in a given cortical area may be 
the result of adaptation at earlier or later stages of processing that is 
propagated along the visual areas. Hence in higher-order areas 
receiving from multiple inputs fMRI adaptation might refl ect adap-
tation of one of the inputs, while recordings show that local neuro-
nal responses driven by the other inputs are not adapted. 

 Interestingly, novel MVPA methods [ 11 ,  35 ,  36 ] provide an alter-
native approach for investigating neural selectivity based on fMRI sig-
nals. Unlike conventional univariate analysis, MVPA takes advantage of 
the information across multiple voxels in a cortical area and allows us 
to characterize neural representations of features that are encoded at a 
higher spatial resolution in the brain than the typical resolution of 
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fMRI. These classifi cation analyses have been used successfully for the 
decoding of elementary visual features (e.g., orientation [ 13 ,  37 ], 
motion direction [ 38 ], and object categories [ 39 – 42 ]). The weakness 
of the MVPA approach is its dependence on the clustering of neurons 
with similar properties. This is also the case for a third technique which 
is has been proposed to infer neuronal selectivity from fMRI measure-
ments: measuring the tuning of individual voxels [ 43 ]. Just as MVPA, 
tuning of voxels is prone to false negative results, as the grouping of 
neurons for higher-order selectivity is frequently unknown. In contrast 
adaptation fMRI is prone to false positives as inputs may adapt and not 
the local neuronal activity. For all these methods greater caution is 
required at higher level in the cortex.  

   The statistical evaluation of activation differences between stimulus 
and tasks is typically conducted by comparing responses for each voxel 
using the general linear model. Analysis of activation patterns across 
the whole brain (whole brain analysis) reveals clusters of activations in 
different anatomical regions that show signifi cant differences in their 
functional processing. This approach has allowed researchers to iden-
tify and localize cortical regions with different functions and evaluate 
their involvement in various cognitive tasks. In contrast,  region of 
interest (ROI) analysis   focuses on specifi c cortical areas identifi ed ana-
tomically or functionally following standard mapping procedures 
(e.g.,  retinotopic mapping  ). The advantage of this approach is that it 
allows us to zoom in on specifi c cortical regions and investigate their 
neural computations using parametric stimulus manipulations. Such 
manipulations result in fi ne stimulus variations and differences in 
behavioral performance. Identifying fMRI activations that refl ect 
these fi ne differences in neural processing may require the high signal-
to-noise ratio that is possible when scanning and analyzing smaller 
regions of cortex. However, ROI analyses are limited in two respects: 
(a) the ROI may be outside the volume scanned or analyzed, (b) the 
voxels of interest (i.e., voxels that show differential activations across 
conditions) may cover a smaller cortical volume than the ROI; as a 
result, the differential activations may be averaged out within the 
ROI. Taken together, whole brain and ROI analyses can be used as 
complementary tools for studying the functional roles of cortical 
regions. Whole brain analyses search the entire brain for regions 
involved in the analysis of a given stimulus or a cognitive task, while 
ROI methods are more appropriate for fi ner investigation of the neu-
ral processing in these cortical regions [ 44 ,  45 ].   

3       Retinotopic Organization 

   Initially,  positron emission tomography (PET)   studies have concen-
trated on the  retinotopy   of V1 [ 46 ], which is a large area of known 
localization in the calcarine sulcus. With the advent of fMRI, 
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mapping was extended to areas neighboring V1 [ 47 ] (but see also 
[ 48 ]). An additional step was the introduction of angular and 
eccentricity periodic sweeping stimuli that generate eccentricity and 
polar angle maps based on phase encoding of stimulus position 
[ 49 ]. This allowed the mapping of all three early areas (V1, V2, V3, 
Fig.  1 ) [ 51 – 53 ], in which polar angle and eccentricity vary along 
orthogonal directions on the cortical surface. The eccentricity var-
ies from the central representation at the posterior tip of the calca-
rine fi ssure to that of large eccentricities rostrally along the calcarine. 
Polar angle varies in dorsoventral direction with the lower fi eld 
being represented above the calcarine and the upper fi eld below 
(Fig.  1 ). The three early visual areas are also shown on the fl atmaps 
of Fig.  2  which cover a smaller eccentricity range (0.25°–7.75°) 
compared to that in Fig.  1  (0°–12°). Figures  1  and  2  show retino-
topic maps of individual subjects and these maps exhibit quite some 
variability. To derive a more general representation one generates 
 maximum probability maps (MPM)   which plot in each voxel the 
area with the highest probability for a given set of subjects. These 
maps depend heavily on the quality of the inter- subject alignment 
[ 20 ,  56 ,  57 ] and this is dramatically improved by using the  novel   
multimodal surface matching technique [ 57 ]. The resulting MPM 
of the left hemisphere is shown on the infl ated brain in Fig.  3a, b , 
and on the fl atmap in Fig.  3c . These maps are freely available in 
Caret [ 56 ], and can be used to identify activations without the need 
to spend valuable time mapping the retinotopic areas in the subjects 

  Fig. 1    The  sweeping stimulus retinotopy paradigm     . Two stimuli are used to measure the retinotopic maps in 
the cortex. Expanding ring stimuli map eccentricity, and rotating wedge stimuli map polar angle. The phase of 
the best-fi tting sinusoid for each voxel indicates the position in the visual fi eld that produces maximal activa-
tion for that voxel. Thus, these pseudocolor phase maps are used to visualize the retinotopic maps. Data area 
is shown for the left hemisphere (medial view) of one subject. Because of the heavy folding of human cortex, 
these retinotopic maps are best seen on fl attened hemispheres (from Dougherty et al. [ 50 ])       
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  Fig. 2    The 18 retinotopic areas defi ned in the polar angle ( a ) and eccentricity ( b ) maps by Georgieva et al. [ 54 ], and 
Kolster et al. [ 55 ]; right hemisphere of subject 1.  Stars : central visual fi eld,  purple : eccentricity ridge,  white dotted 
lines : horizontal meridian,  black full  and  dashed lines : lower and upper vertical meridian (from Abdollahi et al. [ 56 ])       

under study. Of course, when investigating the actual properties of 
retinotopic areas, the direct mapping remains a superior strategy.

     The three early visual cortical areas all have a large, complete rep-
resentation of the contralateral hemifi eld, with the upper quadrant 
projecting ventrally and lower quadrant dorsally. The representation 
of the vertical meridian (VM) constitutes the boundary between V1 
and V2 as well as the anterior boundary of V3. The representations of 
the horizontal meridian (HM) split the V1 representation and consti-
tute the boundary between V2 and V3. The central representations of 
the three areas are fused in the central confl uence (Figs.  1 ,  2 , and  3 ). 
This retinotopic organization is very similar in humans and macaques 
(Fig.  4 ). This is not surprising as the presence of three early visual areas 
is a feature of primates [ 59 ,  60 ]. In all three areas the central represen-
tation is magnifi ed compared to that of the periphery [ 51 ]. Duncan 
and Boynton [ 61 ] observed a correlation between magnifi cation fac-
tor in V1 of human subjects and Vernier acuity but not grating acuity. 
The  surface of V1 has been estimated from histological specimens to 
range between 2000 and 4500 mm 2 , while the central 12° occupy 
2200 mm 2  according to one imaging study [ 50 ]. Comparison 
between histological and fMRI estimates is diffi cult because of the dif-
fi culty of estimating the shrinkage in the histological specimens and 
the portion of V1 occupied by the central representation [ 62 ]. In 
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  Fig. 3    ( a  and  b ) MPMs of the retinotopic areas (MSM-retino registration) in the left hemisphere on the infl ated 
cortical surface, lateral ( a ) and medial ( b ) views; ( c ) schematic representation of retinotopic organization of the 
18 areas shown on the retinotopic MPM: upper (+) and lower (−) fi elds and central vision ( stars ); same color 
code as in ( a ). The location of V6 and V6A in the parieto-occipital sulcus is indicated in ( b ); Note that the MPM 
of areas V2 and V3 does not include the large eccentricities, otherwise V3 would abut V6       

  Fig. 4    Comparison of retinotopic layout of monkey ( a ) and human ( b ) visual cortex. Adapted with permission 
from Vanduffel et al. [ 58 ].  Stars  indicate central representations       
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both types of studies large variation between individuals (a factor of 2) 
were observed. A similar range of variation has been observed in the 
macaque, in which the average surface of V1 is roughly half the size of 
its human counterpart [ 63 ]. The surface of human V2 is estimated to 
be 80 % of that of V1—that of V3 60 %. Hence, cortical magnifi cation 
is somewhat lower in V2 and V3 than in V1 [ 50 ,  51 ], but magnifi ca-
tion factors decrease with eccentricity at similar rates in V1, V2, and 
 V3   [ 50 ]. In fact the relative size of V1, V2, and V3 depend on the 
eccentricity range explored, e.g. in the Abdollahi et al. study [ 56 ] V2 
is actually slightly larger than V1.

   The retinotopic maximum probability maps allow also com-
parison with other parcellations of the same region, in particular 
those based on morphological features. Figure  5a  comparers the 
retinotopic regions with the average myelin density maps based on 
the T1/T2 ratio [ 4 ]. It shows that the three early visual cortical 
areas are heavily myelinated. The three early areas correspond rela-
tively closely to the cytoarchitectonic areas hOc1, hOc2, and the 
combination of hOc3d and hOc3v, respectively (Fig.  5b ). On the 
other hand the retinotopic parcellation has little in common with 
earlier attempts to parcel occipital cortex using DTI [ 65 ]. The 
comparisons in Fig.  5  also indicate that the central 7.75° of the 
visual fi eld are represented in roughly half of the V1–V3 surface.

  Fig. 5    ( a ) Outlines ( black lines ) of retinotopic MPMs superimposed on myelin density( blue  to  red color ) maps 
of left hemisphere (L) of 196 subjects. Color code: myelin content in percentiles of the normalized T1w/T2w 
distribution. ( b ) outlines ( white ) of retinotopic MPM superimposed on the cytoarchitectonic MPM of left (L) 
hemisphere.  Black lines : 50 % contours of PAs of hOc1, hOc2, hOc5 from Fischl et al. [ 64 ].  Inset  color code of 
cytoarchitectonic areas (from Abdollahi et al. [ 56 ])       
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      V5 or the Middle Temporal (MT) area in humans was initially 
localized in the ascending branch of the inferior temporal sulcus 
(ITS) [ 66 ,  67 ]. This identifi cation was supported by the fMRI 
study of Tootell et al. [ 68 ], showing that this region of human cor-
tex has properties, such as luminance and color contrast sensitivity, 
similar to those of macaque MT/V5. Subsequently this region has 
been referred to as human MT/V5+ [ 52 ] to indicate that probably 
it corresponds not just to MT/V5 of the macaque but also to sev-
eral of its satellites. It has proven diffi cult to demonstrate a retino-
topic organization in this region. Huk et al. [ 69 ] have suggested 
that the MT/V5 complex in humans contains a posterior retino-
topic part, considered the homolog of MT/V5, and an anterior 
part driven by ipsilateral stimuli [ 70 ], considered the homolog of 
MST. One of the drawbacks of this parcellation was the absence of 
an homolog of the fundus of the superior temporal (FST) area. Also 
the retinotopic organization of what was believed to be MT in 
humans [ 69 ,  71 ] seems opposite to that of macaque MT in which 
the lower visual fi eld projects in the dorsal part of MT [ 72 ,  73 ]. The 
breakthrough occurred when refi ning the sweeping technique 
proved that MT and its satellites could be  mapped   in the macaque 
(Fig.  4 ) [ 74 ]. Applying the same strategy to humans yielded a MT 
cluster organized exactly as in the monkey and including four reti-
notopic areas, considered homologues of MT, MSTv, FST, and V4t 
(Figs.  2  and  3 ). The critical point was to identify the central visual 
fi eld representation in the eccentricity maps, as it corresponds to the 
center of the cluster from which the four areas radiate. This center 
is distinct from the central confl uence (Fig.  2 ) and separated from 
it by a representation of the periphery, the so-called peripheral edge 
(purple in Fig.  2 ), which was initially noted by Tootell and cowork-
ers [ 75 ]. It is noteworthy that in both species the cluster does not 
included MSTd involved in optic fl ow processing [ 76 ]. There is at 
present little consensus on the criteria to defi ne the human counter-
part of this MST component [ 69 ,  77 ]. 

 In humans, V3A has a similar retinotopic organization as in 
macaque: it is defi ned by a hemifi eld representation in which the 
representations of the two quadrants, separated by the HM, are 
neighbors and occupies the banks of the transverse sulcus [ 78 ]. The 
posterior quadrant is the lower quadrant, separated from that of 
V3d by a lower VM. In contrast to macaque V3A, hV3A is motion 
sensitive [ 14 ,  78 ,  79 ]. In the initial mapping study [ 68 ] the central 
representation of V3A was considered to be fused with that of V1–
V2–V3. Subsequent studies [ 80 – 82 ] have shown that the central 
representation is separated from and located more dorsal than that 
of the V1–3 confl uence, as it generally is in monkeys (5/8 hemi-
spheres in [ 73 ]). It has also been noted in humans that this foveal 
projection, which V3A shares with V3B (see below), can vary con-
siderably in clarity, being well defi ned in about half (13/30) hemi-
spheres [ 83 ]. In fact the retinotopic organization of dorsal occipital 
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cortex is more complex than initially assumed based on the monkey 
model, and this part of cortex includes one or more retinotopic 
areas in addition to V3A (see below). It is noteworthy that in all 
primates the visual cortex includes an MT area, but that the pres-
ence of an area V3A in new world monkeys in  unclear   [ 60 ,  84 ].  

   In their 1995 study, Sereno et al. [ 51 ] reported an upper quadrant 
representation anterior to V3v, that they labeled V4v as it occupied 
the same position as ventral V4 in macaque. Many studies have 
replicated that fi nding of a lower quadrant in front of V3v, but it 
has proven diffi cult to identify a corresponding dorsal V4 quadrant 
in front of dorsal V3 [ 75 ]. One possible explanation was that stan-
dard mapping technique locating meridians did not apply. Indeed, 
in the macaque the horizontal meridian, which represents the ante-
rior border of ventral V4, forms the boundary of dorsal V4 only 
over a short distance, as it curves to join the HM splitting MT/V5 
into two halves [ 73 ,  85 ]. Hence, we [ 3 ] and others [ 75 ] have sug-
gested that the region between V3/V3A and hMT/V5 + , which we 
refer to as LOS [ 20 ], is the homolog of macaque dorsal V4. Indeed 
it is located in a position similar to that of dorsal V4 and has func-
tional properties relatively similar to those of macaque dorsal V4, 
for example, is sensitive to 3D shape from motion (Fig.  7 ), to 2D 
shape [ 20 ], and kinetic boundaries [ 87 ,  88 ]. 

 Yet, subsequent mapping studies concentrating on the central 
6° of the visual fi eld have suggested that the two halves of macaque 
V4 have become separated in humans and are each integrated into 
a separate representation of the contralateral hemifi eld. Brewer 
et al. [ 89 ] have shown that a lower quadrant was located in front 
of the upper quadrant initially labeled V4v, with the eccentricity 
running at right angle to the polar variations. They proposed that 
this hemifi eld, located in front of V3v (Figs.  2  and  3 ) should be 
considered human V4. They went on to describe two additional 
maps located in front of hV4: ventral occipital (VO)1 and VO2, 
each supposedly containing a hemifi eld representation. 
Interestingly, the two face areas, the fusiform and occipital face 
areas are located just lateral to hV4 and VO2, respectively. In the 
same vein, Larsson and Heeger [ 83 ] have described a complete 
hemifi eld representation in front of V3d, which they refer to as 
lateral occipital (LO)1. The posterior half of this region is a lower 
quadrant that was initially described by Smith et al. [ 90 ] as 
V3B. Thus, the posterior parts of hV4 and LO1 apparently seem 
more responsive, explaining why they were discovered fi rst. Just as 
is the case ventrally, a second hemifi eld representation has been 
described in front of LO1: LO2, of which the anterior  border   is 
close to hMT/V5 + . The LO1–2/hV4 scheme led to the sugges-
tion that beyond V1–3 the  monkey occipital cortex   was not an 
adequate model for human cortex [ 81 ], prompting some [ 91 ] to 
attempt to rescue the monkey model by suggesting that human V4 
was similar to that of the monkey. 

3.3  The Fate  of   V4 
in Human 
Visual Cortex
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 Our mapping results also favor the LO1–2/hV4 scheme [ 54 , 
 92 ]. The fi nal resolution of this problem came with the recogni-
tion that the retinotopic organization of occipito-temporal cortex 
in the monkey is more complex than initially appreciated. A recent 
study showed that cytoarchitectonic area TEO, located just in 
front of V4, and which initially was thought to contain a single 
retinotopic map [ 93 ] in fact corresponds to four retinotopic areas: 
V4A, OTd and PITv and PITd (Fig.  4  [ 94 ,  95 ]). This resolved the 
problem in the sense that human cortex also includes a cluster sim-
ilar to the PIT cluster [ 55 ] and considered homologous to the 
monkey PITs, and that the region between V3 and the PIT cluster 
contains six quadrant representations in both species. In the mon-
key four of these quadrants are part of a split organization and only 
two combine into a hemifi eld, while in humans all quadrants form 
hemifi eld representations.  

   Human V3A has been suggested to share its central representation 
with an area referred to as V3B, located in front of V3A and dor-
sally from the LO1/LO2 pair [ 83 ,  96 ]. V3B occupied in this 
scheme a position initially referred to as V7 [ 97 ]. V7 is now instead 
described as an area rostro-dorsal to a complex of dorsal occipital 
areas, the V3A complex, which includes four hemifi elds organized 
pairwise (Figs.  3  and  4 ). The lower pair, V3A/V3B shares its 
peripheral representation (P-cluster) like hV4 and VO1, while the 
upper pair V3C/V3D shares a central representation (C-cluster). 
Area V7 instead is a parietal area corresponding to IPS0 of Swisher 
et al. [ 98 ] and seems to correspond to the ventral intraparietal sul-
cus (VIPS) motion-sensitive region [ 79 ,  82 ,  99 ], located in the 
most ventral part of the occipital part of human intraparietal sulcus 
(IPS) [ 100 ]. In fact V7 is part of another C-cluster sharing its cen-
ter with V7A [ 101 ], corresponding to IPS1 and likely the homo-
logue of the pair CIP1–2 described in the monkey [ 102 ,  103 ]. 

 In the human parieto-occipital sulcus (POS) Pitzalis et al. [ 104 ] 
have described human V6, which borders the dorsal parts of V2 and 
V3, representing large eccentricities in the lower visual fi eld (Fig.  3b ), 
and seems to be homologous in both  species  . It represents the con-
tralateral hemifi eld, but with an emphasis on the periphery of the 
visual fi eld rather than the center. Pitzalis et al. [ 105 ] described 
lower-fi eld only representation in the opposite bank of the POS 
(Fig.  3b ), which they labeled human V6A. This area shows strong 
pointing responses, unlike V6, and likely belongs to parietal cortex. 

 Finally, several attempts have been made to parcel visual regions 
in human IPS. Using standard retinotopic mapping, Swisher et al. 
[ 98 ] described four retinotopic maps, labeled IPS1–4, separated by 
VM representations. Konen and Kastner [ 106 ] added IPS5 and 
SPL1, relying again only on polar angle maps. Responses to stan-
dard retinotopic stimuli are weak in this region, and within ante-
rior parts of IPS moving stimuli are more appropriate to map 

3.4   Dorsal Occipital 
  and Intraparietal Areas
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retinotopic organization than are black and white fl ickering 
checkerboards (Fig.  1 ). Others have used attentional stimuli [ 107 ], 
delayed saccade stimuli [ 108 – 110 ] or stereoscopic stimuli [ 101 ] to 
map retinotopic organization. Progress will come not just from 
using more appropriate stimuli but also recognizing that eccentric-
ity has to be mapped in addition to polar angle in order to identify 
correctly retinotopic clusters, which seem to be the dominant 
organization. Our preliminary results suggest that human IPS 
includes two additional C-clusters including together four to eight 
areas. Further work is need to understand the retinotopic organi-
zation of this part of human parietal cortex and its relationship to 
the monkey organization in four areas (LIPv, LIPd, VIP, and AIP)  

   Human occipital cortex is now almost completely mapped and 
includes 19 areas: early areas V1–V3, middle areas LO1–2, hV4, 
ventral areas VO1–2, dorsal areas V3A–D and hV6, plus the 
occipito-temporal MT and PIT clusters. The competing scheme 
using only polar angle maps to defi ne areas [ 111 ] only lists 12 
occipital retinotopic  areas  . 

 Most (13/19) areas are similar to those in the monkey (Fig.  4 ), 
if we admit the proposal of Orban et al. [ 112 ] that TFO1–2 located 
ventrally to V4/PITv in the monkey are the homologues of VO1–
2. The main inter-species differences are the reorganization of V4/
V4A/OTd into LO1–2/hV4, perhaps related to the separation of 
the PITs from the central confl uence [ 55 ], and the emergence of 
areas V3B–D. These latter areas seem to have no counterpart in 
the monkey in which V3A neighbors CIP1–2, and may relate to 
the expansion of IPL in humans giving rise to the occipital part of 
IPS. It is noteworthy that clear homologies are present both at 
early and high-order level in the occipital cortex, refuting the idea 
that the human visual system divergence more and more from its 
monkey counterpart as one ascends into the hierarchy. Also homol-
ogous areas may differ in functional properties, e.g. V3A is motion 
sensitive in humans and not in monkeys. 

 In human occipital cortex all areas beyond V1–3 have a hemi-
fi eld organization, while in macaque hemifi eld representations 
seemed for a long time the exception and split representations, with 
separate dorsal and ventral quadrants, the rule. Indeed most initially 
known areas (V1–4) had split organization with MT/V5 and V3A 
being the exceptions. With most areas mapped, only 5/16 areas 
have a split representation in the monkey (Fig.  4 ), still a larger pro-
portion than in humans (3/19). What is the benefi t of the hemi-
fi eld arrangement? As noticed earlier the dorsal region between 
V3/V3A and hMT/V5+, in macaque as well as in human, has some 
particular functional characteristics, such as 3D shape from motion 
sensitivity. The advantage of the human arrangement is that this 
sensitivity applies to the whole visual fi eld, while in macaque it 
applies only to the lower fi eld. This might be an evolutionary 

3.5  Conclusions
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advantage explaining the changes in this region, which has expanded 
considerably in humans. More generally the hemifi eld organization 
shortens the distance between neurons with RFs in upper and lower 
fi eld allowing a better integration across the visual fi eld. This appar-
ently outweighs the need for shorter distances across neighboring 
areas which favors split representations. 

 Finally it is worth mentioning that most if not all of occipital 
cortex is retinotopically organized in both species, and that this 
organization, again in both species, is maintained in the visual parts 
of parietal cortex but not temporal cortex [ 103 ], with the excep-
tion of parahippocampal  cortex   [ 113 ].   

4    Motion-Sensitive Regions 

   The two most prominent motion-sensitive regions in human visual 
cortex are human MT/V5+ and V3A (see earlier). They display the 
highest  z  scores in a contrast between moving and static random 
dots. Their activation remains signifi cant at low stimulus contrasts 
typical of the magnocellular stream [ 78 ]. In the occipital cortex 
motion responses have also been noted in lingual gyrus, probably 
corresponding to ventral V2, V3, and in parts of LOS [ 20 ,  79 , 
 114 ,  115 ]. This activation pattern depends heavily on the size of 
the stimuli. With large stimuli, lower-order motion additionally 
recruits hV6 [ 116 ]. 

 In the early studies it was noted that some parietal regions 
were also responsive to motion in a contrast between moving and 
static random dots. Sunaert et al. [ 79 ] described four motion- 
sensitive regions in the IPS. The ventral IPS (VIPS) region is 
located at the bottom of the IPS near hV3A. This region, we 
believe corresponds to V7 (see above). The parieto-occipital IPS 
(POIPS) region is located dorsally with respect to VIPS, at the 
junction of the parieto-occipital sulcus and IPS, in the vicinity of 
hV6. Not surprisingly, it represents mainly the peripheral visual 
fi eld [ 82 ] (Fig.  6 ). The dorsal IPS medial and anterior (DIPSM 
and DIPSA) regions are located in the horizontal part of IPS, and 
both represent mainly the central visual fi eld [ 82 ] (Fig.  6 ). They 
are considered the homolog of anterior part of lateral intraparietal 
(LIP) region (DIPSM) and posterior part of anterior intraparietal 
(AIP) region (DIPSA), and indeed DIPSA is located just behind 
the region referred to as human homolog of AIP based on activa-
tion by grasping actions [ 117 ]. All these regions are also activated 
by 3D shape from  motion   [ 100 ], which just as motion itself has a 
much more extensive representation in human IPS than in macaque 
IPS (Fig.  7 ) [ 86 ,  118 ]. We have speculated that this might in part 
be due to the more extensive tool use in humans than in monkeys, 
and using a tool indeed activates DIPSM and DIPSA [ 119 ]. These 
different parietal regions may be engaged in different visuomotor 

4.1  Low-Level 
Motion  Regions     
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  Fig. 6    Human motion-sensitive regions: distinction between central and peripheral visual fi eld. ( a ) Stimulus 
confi guration in experiment 1: the randomly textured pattern (RTP) was positioned either centrally or 5° into 
left and right visual fi eld ( red dot  indicates fi xation point). ( b  and  c )  Statistical parametric maps (SPMs)   showing 
voxels signifi cant ( yellow :  p  < 0.0001 uncorrected for multiple comparisons, corresponding to a false discovery 
rate of less than 5 % false positives;  red :  p  < 0.001 uncorrected) in the group random-effects analysis (experi-
ment 1,  n  = 16) for the subtraction moving minus stationary conditions for the centrally ( b ) and peripherally 
(right visual fi eld) ( c ) positioned stimulus, rendered on the posterior and superior views of the standard human 
brain. Further statistical testing revealed that the interaction between type of stimulus (motion, stationary) and 
location (center, periphery) was signifi cant (random effects analysis) in DIPSA ( Z  = 3.12,  p  < 0.001 uncorrected 
and  Z  = 3.58,  p  < 0.001 uncorrected for right and left, respectively), DIPSM ( Z  = 3.58,  p  < 0.001 uncorrected 
and  Z  = 4.35,  p  < 0.0001 uncorrected for right and left, respectively) and weakly in POIPS ( Z  = 2.69,  p  < 0.01 
uncorrected and  Z  = 2.24,  p  < 0.01 uncorrected for right and left, respectively). ( d ) Overlap of voxels ( p  < 0.001 
uncorrected;  yellow ) in the group random-effects analysis for the subtraction moving minus stationary condi-
tions for the centrally ( red ) and peripherally (right and left visual fi eld;  green ) positioned stimulus (experiment 
1), rendered on the posterior and superior views of the standard human brain. ( e ) Stimulus confi guration in 
experiment 2: RTP was positioned centrally or at 5° eccentricity on upper or lower vertical or horizontal merid-
ian. ( f – i ) SPMs showing voxels signifi cant ( p  < 0.05 corrected) in experiment 2 ( n  = 3) for the subtraction mov-
ing minus stationary conditions for the stimuli positioned in the central visual fi eld ( f ,  red ), peripherally left and 
right on the horizontal meridian ( g ,  green ), and on the lower ( h ,  blue ) and upper vertical meridian ( i ,  white ), 
rendered on the superior view of the standard human brain (posterior part). ( j ) SPM showing voxels that are 
active only in the central condition (obtained by exclusive masking of the subtraction in ( f ) with those in ( g – i )). 
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control circuits, for example, in the control of heading [ 120 ], or 
tracking [ 121 ]. Furthermore, it has been shown that fl icker is 
rejected gradually from hMT/V5+ to the more anterior IPS regions 
[ 72 ,  99 ,  122 ].

    Further regions sensitive to motion, but not to 3D shape 
from motion, are V6 and premotor regions corresponding to the 
frontal eye fi eld (FEF) [ 79 ,  100 ,  116 ], as well as a region in the 
posterior insula, caudal to the somatosensory opercular complex 

Fig. 6 (continued) The opposite procedure, subtractions ( g – i ) masked by that in ( f ), yielded no active voxels. 
 R  right,  L  left,  VF  visual fi eld.  White and yellow numbers  in ( a ) and ( e ) indicate eccentricity and diameter (diam-
eter), respectively. Numbers in ( b – d ) correspond to the activation sites listed:  1  and  8 : hV3A;  2  and  9 : lingual 
gyrus;  3 ,  10 , and  11 : hMT/V5 + ;  4 : LOS;  5  and  12 : VIPS;  13 : POIPS;  6 : DIPSM; and  7 : DIPSA [ 82 ]       

  Fig. 7    Visual cortical regions sensitive to 3D shape from motion in human and macaque.  Statistical parametric 
maps (SPMs)   for the subtraction viewing of 3D rotating lines minus viewing of 2D translating lines ( p <  0.05, 
corrected) of a single human ( a ) and monkey (M4) ( b ) subject projected on the posterior part of the fl attened 
right hemisphere.  White stippled and solid lines : vertical and horizontal meridian projections (from separate 
retinotopic mapping experiments);  black stippled lines : motion-responsive regions from separate motion local-
izing tests;  purple stippled lines : region of interspecies difference encompassing V3 and intraparietal sulcus. 
 PCS  post- central sulcus,  IPS  intraparietal sulcus,  LaS  lateral sulcus,  POS  parieto-occipital sulcus,  CAS  calca-
rine sulcus,  STS  superior temporal sulcus,  ITS  inferior temporal sulcus,  CoS  collateral sulcus,  IOS  inferior 
occipital sulcus,  OTS  occipito-temporal sulcus,  PMTS  posterior middle temporal sulcus,  AMTS  anterior middle 
temporal sulcus (modifi ed from Vanduffel et al. [ 86 ])       
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[ 123 ], which we refer to as posterior insular cortex (PIC) region 
[ 79 ,  118 ] and which might be the homolog of a visual region 
located next to the posterior insular vestibular cortex (PIVC) in 
macaques [ 14 ,  124 ,  125 ].  

   Using kinetic gratings, that is, stimuli in which random dots 
move in opposite directions in alternate stripes, and comparing 
them to luminance gratings or uniform motion, our group [ 87 , 
 126 ,  127 ] discovered a region located between V3/V3A and 
hMT/V5+ that appeared selective for kinetic boundaries and 
that we referred to as the kinetic occipital (KO) region. Recent 
work by Zeki et al. [ 128 ] has proposed that KO responds to 
boundaries defi ned by other cues (e.g., colors). These fi ndings 
do not dispute the responsiveness of KO to kinetic gratings as 
several groups have observed these responses [ 83 ,  129 ]. 
Although they have been presented differently, these fi ndings are 
in fact consistent with our PET [ 127 ] and fMRI studies [ 87 ] 
showing responses in  KO   for both kinetic and luminance grat-
ings, suggesting that KO responds to contours of different 
nature, not just kinetic contours. However, it is important to 
emphasize that in contrast with responses in hMT/V5 +  and 
other motion-sensitive regions, KO is selective for kinetic con-
tours as opposed to uniform motion. Thus, we meant selectivity 
in the motion domain, not in the domain of cues defi ning con-
tours, when we stated [ 87 ] that KO is selective for kinetic 
boundaries. In the Van Oostende et al. study [ 87 ] we observed 
overlap of the KO region with response to the LO localizer. 
Indeed, Larsson and Heeger [ 83 ] in their study identifying 
LO1/2 showed that the maximal response to kinetic gratings 
compared to transparent motion, the contrast most sharply 
defi ning KO [ 87 ], was strongest in LO1 and V3A/B. The coor-
dinates of LO1 [ 83 ] are very similar to those of KO (±31, −91, 
0, and −32, −92, 0 [ 87 ]), supporting the identifying LO1 as the 
core region of KO. Thus KO is another functionally defi ned 
region that is incorporated into retinotopic regions, as those 
become known, the human motion area [ 66 ], or hMT/V5+, 
being the primary example, and EBA [ 130 ] another one [ 92 ].  

   All these motion-sensitive regions are low-level motion regions in 
the sense that they are driven by motion of light over the retina. 
Claeys et al. [ 99 ] provided evidence for an attention-based motion- 
sensitive region in the inferior parietal lobule (IPL). This region 
has activated equiluminant color gratings in which one of the col-
ors is more salient than the other, a paradigm tapping third-order 
motion [ 131 ,  132 ]. In addition this region has a bilateral represen-
tation of the visual fi eld, while all other motion-sensitive areas have 
mainly a contralateral  representation  .   

4.2  The Kinetic 
Occipital (KO)  Region  

4.3  High-Level 
Motion  Area  
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5     Shape-Sensitive Regions      

 There is accumulating evidence that neuronal processes supporting 
object recognition are coarsely localized in the ventral visual stream 
[ 133 ] that contains a hierarchy of cortical processing stages 
(V1 → V2 → V4 → IT). The highest stages of this stream (i.e., ante-
rior inferior temporal cortex, AIT or anterior TE in the monkey, 
and the rostral part of LOC in the human [ 20 ,  21 ,  134 ,  135 ]) are 
thought to be involved in shape processing and support object 
recognition (Fig.  8 ). But how are these neuronal representations 

  Fig. 8    ( a ) Shape-sensitive regions in human occipital, temporal, and parietal cortex adapted from Sawamura et al. 
[ 136 ]:  yellow : voxels signifi cant ( p  < 0.05; corrected) in the subtraction 32-objects minus identical condition;  black 
and blue lines : borders of shape-sensitive regions [i.e., voxels signifi cant in the subtractions intact vs. scrambled 
images] obtained by Sawamura et al. [ 136 ] and Denys et al. [ 20 ] respectively.  Numbers : local maxima listed in 
 black . ( b ) Face, place, and body patches in human occipital and occipito-temporal cortex: activations are projected 
onto fl attened right hemisphere of fsaverage atlas. Faces ( red )- and body ( dark blue ) selective regions: approximate 
probabilistic data of Engell and McCarthy [ 137 ]; Dynamic facial expressions ( ocre ): real data from Zhu et al. [ 138 ]; 
ATFP: approximate data from (Rajimehr et al. [ 139 ]; aSTS: approximate data from (Pitcher et al. [ 140 ], showing 
Talairach coordinates of individual activations (local maxima). Scene patches ( light blue ) from Nasr et al. [ 141 ]. 
Biological motion sensitivity ( green shape  main effect,  white  kinematics main effect,  white interaction ): approxi-
mate data from Jastorff and Orban [ 142 ]. Regions sensitive for primate vocalizations ( black outlines ) and intelligible 
speech ( dashed yellow outlines ): real data from Joly et al. [ 143 ]. Retinotopy: approximate probabilistic data from 
PALS-B12 atlas; VIPS, POIPS, DIPSM, DIPSA, and phAIP ( green dashed outlines ): are approximate locations from 
Jastorff et al. [ 144 ],.  White star  is central representation in V6       
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that support object recognition constructed in the brain? In the 
monkey, the visual system has been suggested to recruit a hierar-
chical network of areas across the ventral visual pathway [ 133 , 
 145 ] with selectivity for features of increasing complexity from 
early to later stages of processing [ 146 ]. Recent neuroimaging 
studies suggest a similar organization in the human brain. That is, 
local image features (e.g., position, orientation) are shown to be 
processed at the fi rst stage of cortical processing (V1) [ 11 ,  37 ] 
while complex shapes and even abstract object categories (faces, 
bodies, places) are represented toward the end of the pathway in 
the LOC [ 147 – 150 ]. Combined monkey and human fMRI studies 
showed that the perception of global shapes involves both early 
(retinotopic) and higher (occipito-temporal) visual areas that may 
integrate local elements to global shapes at different spatial scales 
[ 151 ,  152 ]. However, unlike neurons in early visual areas that inte-
grate local information about global shapes within the neighbor-
hood of their receptive fi elds, neural populations in the LOC 
represent the perceived global form of objects. In particular, recent 
imaging studies [ 153 ] have shown fMRI adaptation in LOC when 
the perceived shape of visual stimuli was identical but the image 
contours differed (because occluding bars occurred in front of the 
shape in one stimulus and behind the shape in the other). In con-
trast, recovery from adaptation was observed when the contours 
were identical but the perceived shapes were  different      (because of 
a fi gure-ground reversal).

   The idea of a single, general ventral stream processing objects, 
has been contradicted by the recent fi ndings of multiple specialized 
regions processing faces, bodies, and scenes (Fig.  8b  [ 58 ])This has 
led to the view that in addition to a general purpose object process-
ing system housed in LOC, the human ventral pathway includes also 
category specifi c processing regions [ 154 ]. This compromise is not 
very satisfactory as it implied a dissociation between semantic and 
visual defi nition of categories and the fact that general purpose 
mechanisms for categorization have been located in prefrontal and 
parietal cortex [ 155 ] and not in inferotemporal cortex of the mon-
key [ 156 ]. Therefore, we have recently proposed that the ventral 
visual pathway is organized in three stages [ 103 ]: fi rst a retinotopic 
stage which included the phPIT cluster, processing visual features of 
the image; second the anterior part of LOC, corresponding to mon-
key TE, processing real world entities (RWE), a general term cover-
ing objects, faces, and bodies, and third the temporal pole, processing 
known, complete RWEs. Furthermore the second stage operates in 
parallel with more dorsal regions processing actions and more ven-
tral regions processing scenes. This middle stage is subdivided into a 
more dorsal substream processing shape and a more ventral sub-
stream processing material properties (color, texture etc.). 

 The parallel streams and substreams for general shape, faces, 
bodies, and material properties start in the rostral part of the 
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retinotopic cortex, as shown by the overlap between the caudal 
face, body and color patches, and retinotopic cortex. For example 
OFA overlaps with retinotopic cortex but also the posterior two 
thirds of EBA [ 92 ]. At more anterior levels, i.e. the second and 
third stage,  retinotopy   is absent, as stated above. Central-periphery 
organization has been reported at this level [ 157 ,  158 ] but this is 
the simple consequence of the fact that faces require detail avail-
able in central vision while scenes require at least moderately large 
eccentricities. Finally along these streams and substreams the visual 
information is gradually abstracted away from the image proper-
ties. This is best documented for the LOC, and its monkey coun-
terpart TE [ 23 ,  136 ,  146 ,  148 ,  159 ], i.e. the general shape 
substream, but likely applies to all (sub)streams [ 160 ]. In particu-
lar, representations in the anterior subregion of the LOC in the 
fusiform gyrus (pFs) were shown to be largely invariant to size and 
position, but not invariant to the direction of illumination and 
rotation around the vertical axis. In contrast, representations in the 
posterior subregion of the LOC in the lateral occipital (LO) cortex 
did not show size or position  invariance      [ 23 ,  24 ].  

6       Depth Processing and 3D Shape Perception 

 Neurophysiological studies have revealed selectivity for binocular 
disparity at multiple levels of the visual hierarchy in the monkey 
 brain      from early visual areas, to object- and motion-selective areas 
and the parietal cortex (for reviews: [ 161 – 164 ]). Imaging studies 
have identifi ed multiple human brain areas in the visual, temporal, 
and parietal cortex that show stronger activations for stimuli 
defi ned by binocular or monocular depth cues than for 2D versions 
of these stimuli. In particular, areas V3A [ 165 – 168 ] and V3B/
LO1/KO [ 87 ,  128 ,  129 ,  169 ] have been implicated in the analysis 
of disparity-defi ned surfaces and boundaries. Furthermore, studies 
have employed parametric manipulations to investigate the neural 
correlates of surface depth (i.e., near vs. far) judgments [ 167 ,  170 ] 
and 3D shape perception [ 19 ]. Finally, several recent studies sug-
gest that areas involved in disparity processing, primarily in the 
temporal and parietal cortex, are also engaged in the processing of 
monocular cues to depth (e.g., texture, motion, shading) [ 20 ,  86 , 
 100 ,  171 – 178 ] and the combination of binocular and monocular 
cues for depth perception [ 179 ]. 

 Depth relates to the distance from the fi xation point and needs 
to be combined with eye position information to yield distance 
from the observer. The derivatives of depth provide information 
about surface orientation and object shape. Gradient selective neu-
rons extracting these derivatives from monocular or binocular 
image(s) shave been amply documented in parietal and temporal 
cortex of the monkey [ 15 ]. A systematic set of fMRI studies [ 15 ] 
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have documented the parietal and temporal regions involved in 
this extraction in humans. While 3D shape from texture, motion, 
and disparity is extracted both in dorsal and ventral pathways, 3D 
shape from shading is predominantly processed in ventral regions 
close to the phPIT cluster. Systematic combination of single cell 
recordings, monkey and human fMRI with identical stimuli have 
allowed to infer the presence of gradient selective  neurons   in some 
of the human regions such as pFST or DIPSA [ 15 ,  58 ].  

7    Processing of Observed Actions 

  The    visual processing of actions   performed by others has been 
largely neglected in studies of the visual system [ 180 ]. Recent 
studies [ 144 ,  181 ] have shown that this information is processed in 
regions homologous to the upper and lower bank of middle and 
rostral STS of the monkey [ 112 ,  182 ]: posterior MTG/pSTG and 
posterior OTS/posterior fusiform cortex respectively. These areas 
are also involved in processing biological motion [ 112 ,  142 ,  183 ].  

8    Conclusions 

 The human visual system likely includes about 40–45 cortical 
areas. About two/thirds of these have been identifi ed so far, using 
retinotopic mapping, which proved more effi cient than functional 
properties or morphological features. Further progress can be 
expected from mapping retinotopic organization with functionally 
more specifi c stimuli than black and white checkerboards and from 
mapping higher-order visual attributes, such as 3D shape or actions, 
combined with detection of gradients in maps relying on morpho-
logical features and/or connections [ 184 ].     
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    Chapter 19   

 fMRI of the Central Auditory System                     

     Deborah     Ann     Hall      and     Aspasia     Eleni     Paltoglou     

  Abstract 

   Over the years, blood oxygen level-dependent (BOLD) fMRI has made important contributions to the under-
standing of central auditory processing in humans. Although there are signifi cant technical challenges to over-
come in the case of auditory fMRI, the unique methodological advantage of fMRI as an indicator of population 
neural activity lies in its spatial precision. It can be used to examine the neural basis of auditory representation 
at a number of spatial scales, from the micro-anatomical scale of population assemblies to the macro-anatomical 
scale of cortico-cortical circuits. The spatial resolution of fMRI is maximized in the case of mapping individual 
brain activity, and here it has been possible to demonstrate known organizational features of the auditory system 
that have hitherto been possible only using invasive electrophysiological recording methods. Frequency coding 
in the primary auditory cortex is one such example that we shall discuss in this chapter. Of course, noninvasive 
procedures for neuroscience are the ultimate aim and as the fi eld moves towards this goal by recording in awake, 
behaving animals so human neuroimaging techniques will be increasingly relied upon to provide an interpretive 
link between animal neurophysiology at the multi-unit level and the operation of larger neuronal assemblies, as 
well as the mechanisms of auditory perception itself. For example, the neural effects of intentional behavior on 
stimulus- driven coding have been explored both in animals, using electrophysiological techniques, and in 
humans, using fMRI. While the feature-specifi c effects of selective attention are well established in the visual 
cortex, the effect of auditory attention in the auditory cortex has generally been examined at a very coarse spatial 
scale. Ongoing research in our laboratory has started to address this question and here we present preliminary 
evidence for frequency-specifi c effects of attentional enhancement in the human auditory cortex. We end with 
a brief discussion of several future directions for auditory fMRI research.  

  Key words     Technical challenges  ,   Frequency coding  ,   Selective attention  ,   Perceptual representation  , 
  Task specifi city  

1      Challenges of Auditory fMRI 

 The construction of a brain image using MR imaging depends 
upon the magnetic properties of hydrogen ions that, when placed 
in a static magnetic fi eld, can absorb pulses of radiowave energy of 
a specifi c frequency. The time taken for the ion alignments to 
return to equilibrium after the  radiofrequency (RF)   pulse differs 
according to the surrounding tissue, thus providing the image 
contrast, for example between gray matter, white matter, cerebro-
spinal fl uid, and bone. The use of MR techniques for detecting 
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functional brain activation relies on two factors: fi rst that local neu-
ral activity is a metabolically demanding process that is closely asso-
ciated with a local increase in the supply of oxygenated blood to 
those active parts of the brain, and second that the different para-
magnetic properties of oxygenated and deoxygenated blood pro-
duce measurable effects on the MR signal. The functional signal 
detected during fMRI is known as the  blood oxygen level- 
dependent (BOLD)   response. Essentially, the functional image 
represents the spatial distribution of blood oxygenation levels in 
the brain, and the small fl uctuations in these levels over time are 
correlated with the stimulus input or cognitive task. 

 MR scanners operate using three different types of  electromag-
netic fi elds  : a very high static fi eld generated by a superconducting 
magnet, time-varying gradient magnetic fi elds, and pulsed RF fi elds. 
The latter two fi elds are much weaker than the fi rst, but all pose a 
number of unique and considerable technical challenges for conduct-
ing auditory fMRI research within this hostile environment. In the 
fi rst place, the static and time-varying magnetic fi elds preclude the use 
of many types of electronic sound presentation equipment, as well as 
preventing the safe scanning of patients who are wearing listening 
devices such as hearing aids or implants. Additionally, the high levels 
of scanner noise generated by the fl exing of the gradient coils in the 
static magnetic fi eld can potentially cause hearing diffi culties. The 
scanner noise masks the perception of the acoustic stimuli presented 
to the subject in the scanner making it diffi cult to calibrate audible 
hearing levels and adding to the diffi culty of the listening task. And 
fi nally, the scanner noise not only activates parts of the auditory brain, 
but also interacts with the patterns of activity evoked by experimental 
stimuli. Auditory fMRI poses a number of other challenges, not 
related to the hostile environment of the MR scanner, but related 
instead to the nature of the neural coding in the auditory cortex. The 
response of auditory  cortical neurons   to a particular class of sound is 
determined not only by the acoustic features of that sound, but also 
by its presentation context. For example, neurons respond strongly to 
the onset of sound events and thereafter tend to show rapid adapta-
tion to that sound in terms of a reduction in their fi ring rate. Thus, the 
result of any particular auditory fMRI experiment will depend not 
only on the physical attributes of a stimulus, but also on the way in 
which the stimuli are presented. In this fi rst section, we shall take each 
one of these issues in turn, introducing the problems in more detail as 
well as proposing some solutions. 

     The ideal requirement is a sound presentation system that produces 
a range of sound levels [up to 100-dB  sound pressure level (SPL)  ], 
with low distortion, a fl at frequency response, and a smooth and 
predictable phase response. The fi rst commercially available solu-
tion utilized loudspeakers, placed away from the high static mag-
netic fi eld, from which the sound was delivered through plastic 
tubes inserted into the ear canal (Fig.  1a ) through a protective ear 

1.1  Use of Electronic 
Equipment for Sound 
Presentation in the MR 
Scanner

1.1.1  Problems
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defender (Fig.  1b ). One general disadvantage of the  tube phone 
system   is that the tubing distorts both the phase and amplitude of 
the acoustic signal, for example, by imposing a severe ripple on the 
spectra and reducing sound level, especially at higher frequencies. 
Another limitation is the leak of the scanner noise through the pipe 
walls to the pipe inner and hence the ear. Despite alternative sys-
tems now being readily available, tube phone systems are still com-
mercially manufactured (e.g. Avotec Inc. Stuart, Florida, USA, 
  www.avotec.org/    ).  The Avotec system   has been specifi cally designed 
for fMRI use and boasts an equalizer to provide a reasonably fl at 
audio output (±5 dB) across its nominal bandwidth 
(150 Hz–4.5 kHz) and a procedure for acoustic  calibration that 
feeds a known electrical input signal to the audio system input and 
makes a direct acoustic output measurement at the headset.

   Alternative electronic systems often used for  psychoacoustical 
research   deliver high-quality signals, but these systems are gener-
ally unsuitable for use in the MR environment because most head-
phones use an electromagnet to push and pull on a diaphragm to 
vibrate the air and generate sound. Of course, this electromagnet 

  Fig. 1    MR compatible headsets for sound delivery and noise reduction: ( a ) tube phones system with foam ear 
inserts, ( b ) circum-aural ear defenders, plus foam ear plugs for passive noise reduction, ( c ) MRC IHR sound 
presentation headset combining commercially available electrostatic transducers in an industry standard ear 
defender, and ( d ) modifi ed MRC IHR headset for sound presentation and for  active noise cancellation (ANC)  , 
including an optical error microphone positioned underneath the ear defender       
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is rendered inoperable by the magnetic fi elds in the MR scanner. 
Headphone components constructed from ferromagnetic material 
also disrupt the magnetic fi elds locally and induce signal loss or 
spatial distortion in areas close to the ears. In addition, the elec-
tronic components can be damaged by the static magnetic fi eld, 
while electromagnetic interference generated by the equipment is 
detected by the MR receiver head coil. Electronic sound delivery 
systems for use in auditory fMRI research have been designed spe-
cifi cally to overcome these diffi culties.  

   Despite the restriction on the materials that can be used in a 
scanner, a number of different  MR-compatible active head-
phone   driving units have been produced. An ingenious system 
has been developed and marketed by one auditory neuroimag-
ing research group (MR confon GmbH, Magdeburg, Germany, 
  www.mr- confon.de    ). This system incorporates a unique, elec-
trodynamic driver that uses the scanner’s static magnetic fi eld in 
place of the permanent magnets that are found in conventional 
headphones and loudspeakers. It produces a wide frequency 
range (less than 200 Hz–35 kHz) with a fl at frequency response 
(±6 dB). Another company manufactures and supplies high-
quality products for MRI, with a special focus on the fast-grow-
ing fi eld of functional imaging (NordicNeuroLab AS, Bergen, 
Norway,   www.nordicneurolab.com/    ). Their audio system uses 
 electrostatic transducers   to ensure high performance. 
Electrostatic headphones generate sound using a conductive 
diaphragm placed next to a fi xed conducting panel. A high volt-
age polarizes the fi xed panel and the audio signal passing 
through the diaphragm rapidly switches between a positive and 
a negative signal, attracting or repelling it to the fi xed panel and 
thus vibrating the air. Their technical specifi cation claims a fl at 
frequency response from 8 Hz to 35 kHz. The signal is trans-
ferred from the audio source to the headphones in the RF 
screened scanner room using either fi lters through a fi lter panel 
or fi ber-optic cable through the waveguide. 

 Here at the  MRC Institute of Hearing Research  , we became 
engaged in auditory fMRI research well before such commercial sys-
tems were widely available and so, for our own purposes, we developed 
an MR-compatible headset (Fig.  1c ) based on commercially available 
electrostatic headphones, modifi ed to remove or replace their ferro-
magnetic components, and combined with standard industrial ear 
defenders to provide good acoustic isolation [ 1 ]. Our  custom-built 
system   delivers a fl at frequency response (±10 dB) across the frequency 
range 50 Hz–10 kHz and has an output level capability up to 120-dB 
SPL. Again, the digital audio source, electronics, and power supply 
that drive the system are housed outside the RF screened scanner room 
to avoid electromagnetic interference with MR scanning, and all elec-
trical signals passing into the screened scanner room are RF fi ltered.   

1.1.2  Solutions
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     No ferromagnetic components can be placed in the scanner bore as 
they would experience a strong attraction by the static magnetic 
fi eld and potentially cause damage not only to the scanner and the 
listening device, but also to the patient. Induced currents in the 
electronics, caused directly by the  time-varying gradient magnetic 
fi elds   or the RF pulses, are an additional hazard to the electronic 
devices themselves, while some materials can also absorb the RF 
energy causing local tissue heating and even burns if in contact with 
soft tissue. For these reasons, there are restrictions on scanning peo-
ple who have electronic listening devices. These include hearing 
aids, cochlear implants, and brainstem implants. Hearing aids 
amplify sound for people who have moderate to profound hearing 
loss. The aid is  battery-operated   and worn in or around the ear. 
Hearing aids are available in different shapes, sizes, and types, but 
they all work in a similar way. They all have a built-in microphone 
that picks up sound from the environment. These sounds are pro-
cessed electronically and made louder, either by analogue circuits or 
digitally, and the resulting signals are passed to a receiver in the 
hearing aid where they are converted back into audible sounds. In 
contrast, cochlear and brainstem implants are both small, complex 
electronic devices that can help to provide a sense of sound to peo-
ple who are profoundly deaf or severely hard-of- hearing. Cochlear 
implants bypass damaged portions of the inner ear (the cochlea) 
and directly stimulate the auditory nerve, while auditory brainstem 
implants bypass the  vestibulocochlear nerve   in cases when it is dam-
aged by tumors or surgery and directly stimulate the lower part of 
the auditory brain (the cochlear nucleus). In general, both types of 
implant consist of an external portion that sits behind the ear and a 
second portion that is surgically placed under the skin. They con-
tain a microphone, a sound processor (which converts sounds 
picked up by the microphone into an electrical code), a transmitter 
and receiver/stimulator (which receive signals from the processor 
and convert them into electric impulses), and fi nally an electrode 
array (which is a set of electrodes that collect the impulses from the 
stimulator and stimulate groups of  auditory neurons). Coded infor-
mation from the sound processor is delivered across the skin via 
electromagnetic induction to the implanted receiver/stimulator, 
which is surgically placed on a bone behind the ear.  

   Offi cial approval for the manufacture of implant devices requires 
rigorous testing for  susceptibility   to electromagnetic fi elds, radi-
ated electromagnetic fi elds, and electrical safety testing (including 
susceptibility to electrical discharge). However, such tests are con-
ducted under normal conditions, not in the magnetic fi elds of an 
MR scanner. Some implant designs have been proven to be MR 
compatible [ 2 – 5 ], but they are not routinely supplied in clinical 
practice. Standard listening devices do not meet MR compatibility 
criteria and, for the patient, risks include movement of the device 

1.2  Risk to Patients 
Who Are Wearing 
Listening Devices 
in the MR Scanner

1.2.1  Problems

1.2.2  Solutions
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and localized heating of brain tissue, whereas, for the device, the 
electronic components may be damaged.  Magnetic Resonance 
Safety Testing Services (MRSTS)   is a highly experienced testing 
company that conducts comprehensive evaluations of implants, 
devices, objects, and materials in the MR environment (MRSTS, 
Los Angeles, CA,   www.magneticresonancesafetytesting.com/    ). 
Testing includes approved assessment of magnetic fi eld interac-
tions, heating, induced electrical currents, and artifacts. A database 
of the devices and results of implant testing is accessible to the 
interested reader (  www.mrisafety.com/    ). However, auditory 
devices have generally been tested only at low  magnetic fi elds   (up 
to 1.5 T) because most clinical MR systems operate at this fi eld 
strength. Since research systems typically operate at 3.0 T (for 
improved BOLD signal-to-noise ratio, BOLD SNR) it may be nec-
essary for individual research teams to ensure the safety of their 
patients. For example, here at the MRC Institute of Hearing 
Research, we have recently assessed the risks of movement and 
localized tissue heating for two middle ear piston devices [ 6 ]. For 
the safety reasons discussed in this subsection, listeners who nor-
mally wear hearing aids could be scanned without their aid but, to 
compensate, have been presented with sounds amplifi ed to an 
audible level. Given that implanted devices cannot be removed 
without surgical intervention, clinical imaging research of implan-
tees has generally used other brain imaging methods, namely posi-
tron emission tomography [ 7 ].   

     The scanning sequence used to measure the BOLD fMRI signal 
requires rapid on and off switching of electrical currents through 
the three gradient coils of wire in order to create time-varying mag-
netic fi elds that are required for selecting and encoding the three-
dimensional image volume (in the  x ,  y , and  z  planes). This rapid 
switching in the static magnetic fi eld induces bending and buckling 
of the gradient coils during MRI. As a result, the gradient coils act 
like a moving coil loudspeaker to produce a compression wave in 
the air, which is heard as acoustic noise during the image acquisi-
tion. Scanner noise increases nonlinearly with static magnetic fi eld 
strength, such that ramping from 0.5 to 2 T could account for a rise 
in sound level of as much as 11-dB SPL [ 8 ]. A brain scan is com-
posed of a set of two-dimensional “slices” through the brain. 
Gradient switching is required for each slice acquisition and so an 
intense scanner “ping” occurs each time a brain slice is collected. 
Each ping lasts about 50 ms and so during  fMRI  , each scan is audi-
ble as a rapid sequence of such “pings” (see inset in Fig.  2  for an 
example of the amplitude envelope of the scanner noise).

   The dominant components of the noise spectrum are com-
posed of a peak of sound energy at the gradient switching frequency 
plus its higher harmonics. Most of the energy lies below 3 kHz. 
Secondary acoustic noise can be produced if the vibration of the 

1.3  Intense MR 
Scanner Noise and Its 
 Effects   on Hearing

1.3.1  Problems
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coils and the core on which they are wound conducts through the 
core supports to the rest of the scanner structure. These secondary 
noise characteristics depend more on the mechanical resonances of 
the coil assemblies than on the type of imaging sequence and they 
tend to be the dominant contributor to the bandwidth and the 
spectral envelope of the noise. In this example of the frequency 
spectrum captured from a BOLD fMRI scanning sequence that was 
run on a Philips 3 Tesla Intera (Fig.  2 ), the spectrum has a peak 
component at 600 Hz with several other prominent pseudo-har-
monics at 300, 1080, and 1720 Hz. The sound level measured in 
the bore of the scanner is typically 99-dB SPL [98 dB(A) using an 
A-weighting], measured using the maximum “fast” root-mean-
square (RMS) time constant (125 ms). Clearly, exposure to such an 
intense sound levels without protection is likely to cause a tempo-
rary threshold shift in hearing and tinnitus, and it could be perma-
nently damaging over a prolonged dosage [ 9 ].  

   The simplest way to treat the intense noise is to use ear protection in 
the form of ear defenders and/or ear plugs (shown in Fig.  1b ). Foam 
ear plugs can compromise the acoustic quality of the experimental 
sounds delivered to the subject and so ear defenders are preferable. 

1.3.2  Solutions
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  Fig. 2    Typical frequency spectrum of the scanner noise generated during blood 
oxygen level-dependent (BOLD) fMRI. This example was measured in the bore of 
a Philips Intera 3.0 Tesla scanner. The  black line  (uncancelled) indicates the 
acoustic energy of the noise recorded under normal scanning conditions. The 
 gray line  (canceled) indicates the residual acoustic energy at the ear when the 
active noise cancellation (ANC) system is operative. The  inset  ( upper right ) shows 
an example of the amplitude envelope of the scanner noise for a brain scan 
consisting of 16 slices corresponding to a sequence of 16 intense “pings”       
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Typically,  transducers   are fi tted into sound attenuating earmuffs to 
reduce the ambient noise level at the subject’s ears. Attenuation of 
the external sound by up to 40 dB can be achieved in this manner, 
although the level of reduction drops off at the high-frequency end 
of the spectrum. Commercial sound delivery systems all incorporate 
passive noise attenuation of this sort. An additional method of noise 
reduction is to line the bore of the scanner with a sound-energy 
absorbing material ([ 10 ]; see also   www.ihr.mrc.ac.uk/research/
technical/soundsystem/    ). The results of a set of measurements 
directly comparing the sound intensity of the scanner noise with and 
without the foam lining are shown in Fig.  3 . However, this strategy 
does not provide a feasible solution because neither the design of the 
scanner bore nor the automated patient table are suited to the per-
manent installation of a foam lining and some types of acoustic foam 
can present risks of noxious fumes if they catch fi re.

   Some manufacturers have attempted to minimize scanner 
sound levels by modifying the design of the scanner hardware. For 
example,  MR scanners   manufactured by Toshiba (Toshiba America 
Medical systems, Inc.,   www.medical.toshiba.com/    ) incorporate 
Pianissimo technology—employing a solid foundation for gradient 
support, integrating sound dampening material in the gradient 
coils and enclosing them in a vacuum to reduce acoustic noise, 
even at full gradient power. This technology claims to reduce scan-
ner noise by up to 90 % [ 11 ]. Subjects are reported to hear sounds 
at the volume of gentle drumming instead of the jackhammer noise 
level of other MR systems. 

  Fig. 3    Acoustic waveforms of the scanner noise measured with and without a lining of acoustic damping foam 
in the bore of the scanner. Our data demonstrate that the foam reduces the  sound pressure level (SPL)   at the 
position of the subject’s head and in scanner room by a signifi cant margin (about 8 dB). The segment of scan-
ner noise that is illustrated here has a duration of approximately 1 s       
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 Another solution is to run modifi ed pulse sequences that 
reduce acoustic noise by slowing down the gradient switching. 
This approach is based on the premise that the spectrum of the 
acoustic noise is determined by the product of the frequency spec-
trum of the gradient waveforms and the frequency response func-
tion of the gradient system [ 12 ]. The frequency response function 
is generally substantially reduced at low frequencies (i.e. below 
200 Hz) and so the sound level can be reduced by using gradient 
pulse sequences whose spectra are band limited to this low- 
frequency range using pulse shapes with smooth onset and offset 
ramps [ 13 ]. A low-noise  fast low-angle shot (FLASH)   sequence 
can be modifi ed to have a long gradient ramp time (6000 μs) and 
it generates a peak sound level of 48-dB SPL measured at the posi-
tion of the ear. This type of sequence has been used for mapping 
central auditory function [ 14 ]. However, the low noise is achieved 
at the expense of slower gradient switching, extending the acquisi-
tion time. Low-noise sequences are not suitable for rapid BOLD 
imaging in which the fundamental frequency of the gradient wave-
form is greater than 200 Hz.   

      Not only is the intense scanner noise a risk for hearing, but it also 
masks the perception of the acoustic stimuli presented to the sub-
ject. The exact specifi cation of the acoustic  signal-to-scanner-noise 
ratio   (acoustic SNR) in fMRI studies using auditory stimuli is a 
potentially complicated matter. Nevertheless, we have sought to 
establish the relative difference between the stimulus level and the 
scanner noise level at the ear, by measuring these signals using a 
reference microphone placed inside the cup of the ear defender 
while participants perform a signal detection in noise task. 
Detection thresholds for a narrow band noise centered at the peak 
frequency of the scanner noise (600 Hz) are elevated when the 
target coincides with the scanner noise. We have demonstrated an 
average 11-dB shift in the 71 % detection threshold for the 600-Hz 
target when we modulate the perceived level of the scanner noise 
using  active noise cancelation (ANC) methods   (see later). 

 This evidence suggests that even with hearing protection, 
whenever the scanner noise coincides with the presented sound 
stimulus it produces changes in task performance and probably 
also increases the attentional demands of the listening task. The 
frequency range of the scanner acoustic noise is crucial for  speech 
intelligibility  , and speech experiments can be particularly compro-
mised by a noisy environment ([ 15 ]; for review,  see  [ 16 ]). A recent 
study has quantifi ed the effect of acoustic SNR using four listening 
tasks: pitch discrimination of complex tones, same/different judg-
ments of minimal-pair nonsense syllables, lexical decision, and 
judgement of sentence plausibility [ 17 ]. Across these tasks, perfor-
mance was assessed in silence (acoustic SNR = infi nity) and in a 
background of MR scanner noise at the three acoustic SNR levels 

1.4  The Effect 
of Scanner Noise 
on Stimulus Audibility

1.4.1  Problems
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(−6, −12, and −18 dB). Performance of normally hearing listeners 
signifi cantly decreased as a function of the noise (Fig.  4 ). Even at 
−6 dB acoustic SNR, participants made many more errors than in 
quiet listening conditions ( p  < 0.01). Thus, across a range of audi-
tory tasks that vary in linguistic complexity, listeners are highly 
susceptible to the disruptive impact of the intense noise associated 
with fMRI scanning.

  Fig. 4    Mean performance in a simulated scanning environment across four acoustic signal-to-noise ratios 
[ 17 ]. The  top panel  plots the proportion of correct responses on the individual tasks, while the  bottom panel  
shows the overall mean performance ( SNR  signal-to-noise ratio,  dB  decibels)       
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      The aggregate noise dosage can be reduced by acquiring either a 
single or at least very few  brain slices  , but at the expense of only a 
partial view of brain activity [ 18 ]. For whole brain fMRI, other 
strategies are required. 

 One novel method that has been developed and evaluated at 
our Institute combines optical microphone technology with an 
active noise controller for signifi cant attenuation of ambient noise 
received at the ears [ 19 ]. The canceller is based upon a variation of 
the single channel feed-forward fi ltered-x adaptive controller and 
uses a digital signal processor to achieve the  noise reduction   in real 
time. The canceler minimizes the noise pressure level at a specifi c 
control point in space that is defi ned by the position of the error 
microphone, positioned underneath the circum-aural ear defender 
of the headset ( see  Fig.  1d ). In 2001, we published a psychophysical 
assessment of the system using a prototype system built in the labo-
ratory that utilized a loudspeaker as the noise generator [ 19 ]. This 
system produced 10–20 dB of subjective noise reduction between 
250 Hz and 1 kHz and smaller amounts at higher  frequencies. 
More recently, we have obtained psychophysical threshold data in a 
Philips 3 Tesla scanner confi rming that the same level of cancella-
tion is achieved in the real scanner environment (Fig.  5 ; [ 20 ]). 
Again, the subjective impression of the scanner noise is the volume 
of gentle drumming when the sound system is operating in its can-
celed mode. Thus, it is possible to achieve a high level of noise 
attenuation by combining both passive and active methods.

   A much more common strategy for reducing the masking infl u-
ence of the concomitant scanner noise combines a passive method of 
ear protection with an experimental protocol that carefully controls 

1.4.2  Solutions
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the timing between stimulus presentation and image acquisition so 
that sound stimuli can be delivered during brief periods of quiet in 
between successive brain scans [ 21 ]. Specifi c details of several  pulse 
sequence protocols   that reduce the masking effects of scanner noise 
are discussed in more detail in the next subsection.   

      To increase the  BOLD SNR  , it is necessary to acquire a large num-
ber of scans in each condition in an fMRI experiment. Typically, an 
experimenter would collect many hundreds of brain scans in a sin-
gle session, with the time in between each scan chosen to be as 
short as the scanner hardware and software will permit. Remember 
that, for fMRI, an intense “ping” is generated for each slice of the 
scan and so of course this means that the participant can easily be 
subjected to several thousand repeated “pings” of noise during the 
experiment. Not only does this scanner noise acoustically mask the 
presented sound stimuli, but the elevated baseline of sound-evoked 
activation due to the ambient scanner noise also makes the experi-
mentally induced auditory activation more diffi cult to detect statis-
tically. Much of the work examining the infl uence of acoustic 
scanner noise has been directed toward its capacity to interfere 
with the study of audition or speech perception by producing acti-
vation of various brain regions, especially the auditory cortex [ 22 –
 25 ]. Several studies highlight the reduced activation signal (i.e. the 
difference between stimulation and baseline conditions) in the 
auditory cortex when the amount of prior scanner noise is increased, 
demonstrating that the scanner noise effectively masks the detec-
tion of auditory activation [ 22 ,  26 ,  27 ]. In another example, taken 
from one of the early  fMRI experiments   conducted at the MRC 
Institute of Hearing Research, we used a specially tailored scanning 
protocol to measure the amplitude and the time course of the 
BOLD response to a high-quality recording of a single burst of 
scanner noise presented to participants over headphones [ 24 ]. Our 
results revealed a reliable transient increase in the BOLD signal 
across a large part of the auditory cortex. As in many other brain 
regions, the evoked response to this single brief stimulus event was 
smoothed and delayed in time. It rose to a peak by 4–5 s after 
stimulus onset and decayed by 5–8 s after stimulus offset [ 24 ]. Its 
amplitude reached about 1.5 % of the overall signal change, which 
is considerable considering that stimulus-related activation usually 
accounts for a BOLD signal change of approximately 2–5 %. 
Figure  6  illustrates the canonical BOLD response to a noise onset.

   In many  fMRI experimental paradigms  , regions of stimulus- 
evoked activation are detected by comparing the BOLD scans 
acquired during one sound condition with the BOLD scans acquired 
during another condition, which could be either a condition in 
which a different type of sound was presented or no sound (known 
as a baseline “silent” condition) was presented. Activation is defi ned 
as those parts of the brain that demonstrate a statistically signifi cant 
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difference between the two conditions. For example, let us consider 
the simplest case in which one condition contains a sound and the 
other does not. Since the scanner noise is present throughout, the 
sound condition effectively contains both stimulus and scanner 
noise, while the baseline condition also contains the scanner noise 
(i.e. it is not silent). Given the spectrotemporal characteristics of the 
scanner noise, it generates widespread sound- related activity across 
the auditory cortex. Thus, the subtraction analysis for detecting acti-
vation is sensitive only to whatever is the small additional contribu-
tion of the sound stimulus to auditory neural activity.  

   A number of different scanning protocols have been used to mini-
mize the effect of the scanner acoustic noise on the measured pat-
terns of  auditory cortical activation  . In this section, we will describe 
two of these, but before we do, we need to consider some impor-
tant details about the time course of the BOLD response to the 
scanner noise and introduce some new terms. 

 During an fMRI experiment, the BOLD response to the scan-
ner noise spans two different temporal scales. First, the “ping” 
generated by the acquisition of one slice early in the scan may 
induce a BOLD response in a slice, which is acquired later in the 
same scan if that later scan is positioned over the auditory cortex. 
We shall call this inter-slice interference.  Inter-slice interference   is 
maximally reduced when all slices in the scan are acquired in rapid 
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succession and the total duration of the scan is not more than 2 s 
[ 26 ]. A common term for the scanning protocol that uses a mini-
mum inter-slice interval is a clustered-acquisition sequence. 
Edmister et al. [ 28 ] found that the clustered-acquisition sequence 
provides an advantageous auditory BOLD SNR compared with a 
conventional scanning protocol. The second form of interference 
is called inter-scan interference. This occurs when the scanner noise 
evokes an auditory BOLD response that extends across time to 
subsequent scans, predominantly when the interval between scans 
is as short as the MR system will permit. Reducing the inter-scan 
interference can easily be achieved by extending the period between 
scans (the inter-scan interval). By separately manipulating the tim-
ing between slices and between scans, we can reduce the inter-slice 
and inter-scan interference independently of one another. When 
the clustered-acquisition sequence is combined with a long (e.g. 
10 s) inter-scan interval, the activation associated with the experi-
mental sound can be separated from the activation associated with 
the scanner sound (Fig.  7a ). Furthermore, because the scanner 
sound is temporally offset, it does not produce acoustical masking 
and does not distract the listener. This scanning protocol is com-
monly known as  sparse sampling   [ 21 ]. Sparse sampling is often the 
scanning protocol of choice for identifying auditory cortical evoked 
responses in the absence of scanner noise ( see  e.g. [ 29 – 33 ]). 
However, it requires a scanning session that is longer than that of 
conventional “continuous” protocols in order to acquire the same 
amount of imaging data, and participants can be intolerant of long 

Sparse sampling

true scans
EPI readout

inter-scan interval = 10 s

Interleaved silent steady state sampling

dummy scans

a

b

true scans
EPI readout

inter-scan interval = 2.5 s

silent slice-selective RF excitation

  Fig. 7    Two scanning protocols that have been used to minimize the effect of the 
scanner acoustic noise on the measured patterns of auditory cortical activation. 
See text for further explanation ( s  seconds,  EPI  echo-planar imaging,  RF  
radiofrequency)       
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sessions. It also relies upon certain assumptions about the time to 
peak of the BOLD response after stimulus onset and a sustained 
plateau of evoked activity for the duration of the stimulus.

   A second type of scanning protocol acquires a rapid set of scans 
following each silent period in order to avoid some of the afore-
mentioned diffi culties—“ interleaved silent steady state  ” sampling 
[ 34 ]. The increased number of scans permits a greater proportion 
of scanning time to be used for data acquisition and at least partial 
mapping of the time course of the BOLD response (Fig.  7b ). 
However, some pulse programming is required to avoid T1-related 
signal decay during the data acquisition, hence ensuring that signal 
contrast is constant across successive scans. The software modifi ca-
tion maintains the longitudinal magnetization in a steady state 
throughout the scanning session by applying a train of  slice- selective 
excitation   pulses (quiet dummy scans) during each silent period.   

      The  acoustic environment   is typically composed of one or more 
sound sources that change over time. Over the years, both psycho-
physical and electrophysiological studies have amply demonstrated 
that stimulus context strongly infl uences the perception and neural 
coding of individual sounds, especially in the context of stream seg-
regation and grouping [ 35 – 37 ]. A simple example of the infl uence 
of stimulus context is forward masking, which occurs when the 
presence of one sound increases the detection threshold for the 
subsequent sound. The perceptual effects of forward masking are 
strongest when the spectral content of the fi rst sound is similar to 
the second sound, when there is no delay between the two sounds, 
and when the masker duration is long [ 38 ]. Forward inhibition 
typically lasts from 70 to 200 ms. This type of suppression has not 
only been demonstrated in anesthetized preparations, but also in 
awake primates. In the latter case, suppression was seen to extend 
up to 1 s in time [ 39 ]. As well as tone–tone interactions, neural fi r-
ing rate is sensitive to stimulus duration. Neurons respond strongly 
to the onset of a sound and their response decays thereafter. Many 
illustrative examples can be found in the literature, especially in 
cases where longer duration sounds are presented (e.g. 750–
1500 ms in the case of Bartlett and Wang [ 38 ], see their Fig.  4  ) . 

 By transporting these well-established paradigms into a neuro-
imaging experiment, researchers are beginning to address the con-
text dependency of neural coding in humans. One way in which 
the effect of sound context on the auditory  BOLD fMRI signal   has 
been examined is in terms of different repetition rates [ 19 ,  40 ]. 
This is conceptually analogous to the presentation rate manipula-
tions of the forward masking studies described earlier, but goes 
beyond the simple case of two-tone interactions. In the fMRI stud-
ies, stimuli were long trains of noise bursts presented at different 
rates. The slowest rate was 2 Hz and the fastest rate was 35 Hz, 
with intermediate rates being 10 and 20 Hz. Noise bursts at each 
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repetition rate were presented in prolonged blocks of 30 s, each 
followed by a 30-s “silent” period. During sound presentation, 
scans were acquired at a  short inter-scan interval   (approximately 
2 s) so that the experimenters could reconstruct the 30-s time 
course of the BOLD response to each of the different repetition 
rates, hence determining the multi-second time pattern of neural 
activity. The scans were positioned so that a number of different 
auditory sites in the ascending auditory system could be measured: 
(1) the inferior colliculus in the midbrain, (2) the medial genicu-
late nucleus in the thalamus, and (3) Heschl’s gyrus and the supe-
rior temporal gyrus in the cortex. The plots of the BOLD time 
course demonstrated a systematic change in its shape from mid-
brain up to cortex. In the inferior colliculus, the amplitude of the 
BOLD response increased as a function of repetition rate while its 
shape was sustained throughout the 30-s stimulus period. In the 
medial geniculate body, increasing rate also produced an increase 
in BOLD amplitude with a moderate peak in the BOLD shape just 
after stimulus onset. Repetition rate exerted its largest effect in the 
auditory cortex. The most striking change was in the shape of the 
BOLD response. The low repetition rate (2 Hz) elicited a sus-
tained response, whereas the high rate (35 Hz) elicited a phasic 
response with prominent peaks just after stimulus onset and offset. 
The follow-up study [ 40 ] confi rmed that it was the temporal enve-
lope characteristics of the acoustic stimulus, not its sound level or 
bandwidth, that strongly infl uenced the shape of the BOLD 
response. The authors offer a perceptual interpretation of the neu-
ral response to different repetition rates. The shift in the shape of 
the cortical BOLD response from sustained to phasic corresponds 
to a shift from a stimulus in which component noise bursts are 
perceptually distinct to one in which successive noise bursts fuse to 
become individually indistinguishable. The onset and offset 
responses of the phasic response coincide with the onset and offset 
of a distinct, meaningful event. The logical conclusion to this argu-
ment is that the succession of individual perceptual events in the 
low repetition rate conditions defi nes the sustained BOLD response 
observed at the 2-Hz rate. It is clear from these results that while 
the amplitude of the  BOLD response   to sound can inform us about 
the tuning properties of the underlying neural population (e.g. 
sensitivity to repetition rate), other properties of the BOLD 
response, such as its shape, provide different information about 
neural coding (e.g. segmentation of the auditory environment into 
perceptual events). 

 It is crucial that these contextual infl uences on the BOLD sig-
nal are accounted for in the design and/or interpretation of audi-
tory fMRI experiments. To illustrate this case in point, I use a set 
of our own experimental data [ 41 ]. In this experiment, one of the 
sound conditions was a diotic noise (identical signal at the two 
ears) presented continuously for 32 s at a constant sound level 
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(∼86-dB SPL) and at a fi xed location in the azimuthal plane. Scans 
were acquired every 4 s throughout the stimulus period. When the 
scans acquired during this sound condition were combined 
together and contrasted against the scans acquired during the 
“silent” baseline condition, no overall signifi cant activation was 
obtained ( p  > 0.001). We interpret this lack of activation as evi-
dence that the auditory response had rapidly habituated to a static 
signal. This conclusion is confi rmed by plotting out the time course 
of the response at one location within the  auditory cortex  . The 
initial transient rise in the BOLD response at the onset of the 
sound begins to decay at about 4 s and this reduction continues 
across the stimulus epoch. The end of the epoch is characterized by 
a further rise in the BOLD response, elicited by the other types of 
sound stimuli that were presented in the experiment (Fig.  8a ).

      It is common for auditory fMRI experiments to use a blocked 
design in which a sound condition is presented over a pro-
longed time period that extends over many seconds, even tens 
of seconds. Indeed as we described in Sect.  1.5 , the blocked 
design is at the core of the  sparse sampling protocol  , and so the 
risk of neural adaptation is a legitimate one. The BOLD signal 
detection problem caused by neural adaptation is often circum-
vented by presenting the stimulus of interest as a train of stimu-
lus bursts at a repetition rate that elicits the sustained cortical 
response (e.g. 2 Hz). Many of the auditory fMRI experiments 
that have been conducted over the years in our research group 
have taken this form [ 30 ,  31 ,  42 – 44 ]. Alternatively, if the stim-
ulus contains dynamic spectrotemporal changes, then it is not 
always necessary to pulse the stimulus on and off. To illustrate 
this case in point, I return to a set of our own experimental data 
[ 41 ]. In this experiment, one of the sound conditions was a 
broadband noise convolved with a generic head-related transfer 
function to give the perceptual impression of a sound source 
that was continuously rotating around the azimuthal plane of 
the listener. Although the sound was presented continuously 
for 32 s, the filter functions of the pinnae imposed a changing 
frequency spectrum and the  head shadow effect   imposed low-
rate amplitude modulations in the sound envelope presented to 
each ear. When the scans acquired during this sound condition 
were combined together and contrasted against the scans 
acquired during the “fixed sound source” condition, wide-
spread activation was obtained ( p  < 0.001) across the posterior 
auditory cortex (planum temporale): an area traditionally 
linked with spatial acoustic analysis. The time course of activa-
tion demonstrates a sustained BOLD response across the entire 
duration of the epoch (Fig.  8b ). The sustained response con-
trasts with the transient response observed for the fixed sound 
source condition (Fig.  8a ).    
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  Fig. 8    Adjusted blood oxygen level-dependent (BOLD) response (measured in arbitrary units) across the 32-s 
stimulus epoch shaded in  gray  ( a ) for a sound from a fi xed source and ( b ) for a sound from a rotating source. 
Adjusted values are combined for all six participants and the trend line is indicated using a polynomial sixth 
order function. The response for both stimulus types is plotted using the same voxel location in the planum 
temporale region of the right auditory cortex (coordinates  x  63,  y  −30,  z  15 mm). The position of this voxel is 
shown in the  inserted panel . The activation illustrated in this  insert  represents the subtraction of the fi xed sound 
location from the rotating sound conditions ( p  < 0.001)       

2    Examples of Auditory Feature Processing 

    Within the inner ear, an incoming sound is separated into its indi-
vidual frequency components by the way in which the energy at 
different frequencies travels along the cochlear partition [ 45 ]. 
 High-frequency tones   maximally stimulate those nerve fi bers near 
the base of the cochlea while low-frequency tones are best coded 
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towards the apex. This cochleotopic representation persists 
throughout the auditory pathway where it is referred to as a tono-
topic map. Within the mammalian auditory cortex, electrophysio-
logical recordings have revealed many tonotopic maps [ 46 ,  47 ]. 
Within each map, neurons tuned to the same sound frequency are 
colocalized in a strip across the cortical surface, with an orderly 
progression of frequency tuning across adjacent strips. Frequency 
tuning is sharper in the primary auditory fi elds than it is in the sur-
rounding nonprimary fi elds, and so the most complete representa-
tions of the audible frequency range are found in the primary fi elds. 
Primates have at least two tonotopic maps in primary auditory cor-
tex, adjacent to one another and with  mirror-reversed frequency   
axes. It is possible to demonstrate tonotopy by fMRI as well as by 
electrophysiology, even though frequency selectivity deteriorates at 
the moderate to high sound intensities required for fMRI sound 
presentation. As a recent example, mirror-symmetric frequency 
gradients have been confi rmed across primary auditory fi elds using 
high-resolution fMRI at 4.7 T in anesthetized macaques and at 
7.0 T in awake behaving macaques [ 48 ]. This section describes 
results from several fMRI experiments that have sought to demon-
strate tonotopy in the human auditory cortex. 

 fMRI is an ideal tool for exploring the  spatial distribution   of 
the frequency-dependent responses across the human auditory 
cortex because it provides good spatial resolution and the analysis 
requires few a priori modeling assumptions ( see  [ 49 ] for a review). 
In addition, it is possible to detect statistically signifi cant activation 
using individual fMRI analysis. This is important when determin-
ing fi ne-grained spatial organization because averaging data across 
different listeners would inevitably blur the subtle distinctions. A 
number of recent studies have sought to determine the organiza-
tion of human tonotopy [ 29 ,  33 ,  50 – 52 ]. To avoid the problem of 
neural adaptation discussed in Sect.  1.6 , experimenters chose stim-
uli that would elicit robust auditory cortical activation. For exam-
ple, Talavage et al. [ 51 ,  52 ] presented amplitude-modulated 
signals, while Schönwiesner et al. [ 50 ] presented sine tones that 
were frequency modulated across a narrow bandwidth. Langers 
et al. [ 33 ] used a signal detection task in which the tone targets at 
each frequency were briefl y presented (0.5 s). In agreement with 
the primate literature, evidence for the presence of tonotopic orga-
nization is at its most apparent within the primary auditory cortex 
while frequency preferences in the surrounding  nonprimary areas   
are more erratic [ 33 ]. Thus, we shall consider in more detail the 
precise arrangement of tonotopy in the primary region. 

 In their fi rst study, Talavage et al. [ 51 ] contrasted pairs of low 
(<66 Hz) and high (>2490 Hz) frequency stimuli of moderate 
intensity and suffi cient spectral separation to produce spatially 
resolvable differences in activation (low > high and high > low) 
across the auditory cortical surface. These activation foci were con-
sidered to defi ne the endpoints of a frequency gradient. In total, 
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Talavage et al. identifi ed eight  frequency-sensitive sites   across 
Heschl’s gyrus ( HG  , the primary auditory cortex) and the 
 surrounding superior temporal plane (STP, the nonprimary audi-
tory cortex). Each site was reliably identifi ed across listeners and 
the sites were defi ned by a numerical label [ 1 – 8 ]. 

 Foci 1–4 occurred around the medial two-thirds of HG and 
are good candidates for representing  frequency coding   within 
the primary auditory cortex (Fig.  9 ). Finding several endpoints 
does not provide direct confi rmation of tonotopy because tono-
topy necessitates a linear gradient of frequency sensitivity. 
Nevertheless, Talavage et al. argued that the foci 1–3 were at 
least consistent with predictions from primate electrophysiology. 
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  Fig. 9    ( a ) Sagittal view of the brain with the  oblique white line  denoting the approximate location and orienta-
tion of the schematic view shown in panel ( b ) along the supratemporal plane. ( b ) Schematic representation of 
the most consistently found high ( red ) and low ( blue ) frequency-sensitive areas across the human auditory 
cortex reported by Talavage et al. [ 50 ,  51 ]. The primary area is shown in  white  and the nonprimary areas are 
shown by  dotted shading . Panels ( c ) and ( d ) illustrate the high- ( red ) and low- ( blue ) frequency sensitive areas 
across the left auditory cortex of one participant (unpublished data). Two planes in the superior-inferior dimen-
sion are shown ( z  = 5 mm and  z  = 0 mm above the CA-CP line).  A  anterior,  P  posterior,  M  medial,  L  lateral,  HG  
Heschl’s gyrus,  HS  Heschl’s sulcus,  FTTS  fi rst transverse temporal sulcus,  STP  supratemporal plane       
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The arrangement of the three foci encompassed the primary 
auditory cortex, suggested a common low-frequency border, 
and had a mirror-image reversed pattern. This interpretation was 
criticized by Schönwiesner et al. [ 50 ] who stated that it was 
wrong to associate these foci with specifi c tonotopic fi elds 
because pairs of low- and high-frequency foci could not clearly 
be attributed to specifi c frequency axes nor to anatomically 
defi ned fi elds. Indeed, in their own study, Schönwiesner et al. 
[ 50 ] did not observe the predicted gradual decrease in fre-
quency-response amplitude at locations away from the best-fre-
quency focus, but instead found a rather complex distribution of 
response profi les. Their explanation for this fi nding was that the 
regions of frequency sensitivity refl ected not tonotopy, but dis-
tinct cortical areas that each preferred different acoustic features 
associated with a limited bandwidth signal.

   Increasing the  BOLD SNR   might be necessary for charac-
terizing some of the more subtle changes in the response away 
from best frequency and more recent evidence using more 
sophisticated scanning techniques does support the tonotopy 
viewpoint. Frequency sensitivity in the primary auditory cortex 
was studied using a 7-T ultra-high fi eld MR scanner to improve 
the BOLD SNR and to provide reasonably fi ne-grained (1 mm 3 ) 
spatial resolution [ 29 ]. Formisano et al. [ 29 ] sought to map the 
progression of activation as a smooth function of tone frequency 
across HG. Frequency sensitivity was mapped by computing the 
locations of the best response to single frequency tones pre-
sented at a range of frequencies (0.3, 0.5, 0.8, 1, 2, and 3 kHz). 
Flattened cortical maps of best frequency revealed two mirror-
symmetric gradients (high-to-low and low-to-high) traveling 
along HG from an anterolateral point to the posteromedial 
extremity. In general, the amplitude of the BOLD response 
decreased as the stimulating tone frequency moved away from 
the best frequency tuning characteristics of the voxel. A receiver 
coil placed close to the scalp over the position of the auditory 
cortex is another way to achieve a good BOLD SNR and this 
was the method used by Talavage et al. [ 52 ]. Talavage et al. 
measured best-frequency responses to an acoustic signal that 
was slowly modulated in frequency across the range 0.1–8 kHz. 
Again, the results confi rmed the presence of two mirror- 
symmetric maps that crossed HG (extending from the anterior 
fi rst transverse temporal sulcus to the posterior Heschl’s sulcus) 
and shared a low-frequency border. 

 Although more evidence will be required before a clear con-
sensus is established, the studies presented in this section have 
made infl uential contributions to the understanding of  frequency 
representation   in the human auditory cortex and its correspon-
dence to primate models of auditory coding.  
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    We live in a complex sound environment in which many different 
overlapping auditory sources contribute to the incoming acoustical 
signal. Our brains have a limited processing capacity and so one of 
the most important functions of  neural coding   is to separate out 
these competing sources of information. One way to achieve this is 
by fi ltering out the uninformative signals (the “ground”) and 
attending to the signal of interest (the “fi gure”). Competition 
between incoming signals can be resolved by a bottom-up, stimulus- 
driven process (such as a highly salient stimulus that evokes an 
involuntary orienting response), or it can be resolved by a top-
down, goal-directed process (such as selective attention). Selective 
attention provides a modulatory infl uence that enables a listener to 
focus on the fi gure and to fi lter out or attenuate the ground [ 53 ]. 

 Visual scientists have shown that attention can be directed to 
the features of the fi gure (feature-based attention, for a review  see  
[ 54 ]) or to the entire fi gure (object-based attention, for a review  see  
[ 55 ]). Given that so little is known about the mechanisms by which 
 auditory objects   are coded [ 56 ], we shall focus on those studies of 
auditory feature-based attention. A sound can be defi ned according 
to many different feature dimensions including frequency spec-
trum, temporal envelope, periodicity, spatial location, sound level, 
and duration. The experimenter can instruct listeners to attend to 
any feature dimension in order to investigate the effect of selective 
attention on the neural coding of that feature. Different listening 
conditions have been used for comparison with the “attend” condi-
tion. The least controlled of these is a passive listening condition in 
which participants are not given any explicit task instructions [ 30 , 
 57 ,  58 ]. Even if there are cases where a task is required, but the 
cognitive demand of that task is low, participants are able to divide 
their attention across both relevant and irrelevant stimulus dimen-
sions ( see  [ 59 ] for a review on attentional load). Again, this leads to 
an uncontrolled experimental situation. For greater control, some 
studies have employed a visual distractor task to compete for atten-
tional resources and pull selective attention away from the auditory 
modality [ 60 ,  61 ]. However, there is some evidence that the mere 
presence of a visual stimulus exerts a signifi cant infl uence on audi-
tory cortical responses [ 62 ,  63 ] and hence modulation related to 
selective attention might interact with that related to the presence 
of visual stimuli in a rather complex manner. This can make com-
parison between the results from bimodal studies [ 60 ,  61 ] and uni-
modal auditory studies [ 32 ,  64 ] somewhat problematic. 

 One paradigm that has been commonly used to examine 
 feature- based attention   manipulates two different feature dimen-
sions independently within the same experimental session and lis-
teners are required to make a discrimination judgement to one 
feature or the other. Studies have compared attention to spatial 
features such as location, motion, and ear of presentation with 
attention to nonspatial features such as pitch and phonemes [ 60 , 
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 64 ]. Results typically demonstrate a response enhancement in 
nonprimary auditory regions. For example, Degerman et al. [ 60 ] 
found auditory enhancement in left posterior nonprimary regions, 
but only for attending to location relative to pitch and not the 
other way round. Ahveninen et al. [ 64 ] used a novel paradigm in 
which they measured the effect of attention on neural adaptation. 
Their fMRI results showed smaller adaptation effects in the right 
posterior nonprimary auditory cortex when attending to location 
(relative to phonemes), but again not the other way round. Both 
studies reported enhancement for attending to location in addi-
tional nonauditory regions, notably the prefrontal and right pari-
etal areas. This asymmetry in the effects observed across spatial and 
nonspatial attended domains is worthy of further exploration since 
spatial analysis is well known to engage the right posterior auditory 
and right parietal cortex [ 65 ]. 

 Another experimental design that has been used to examine 
feature-based attention presents concurrent visual and  auditory 
stimuli and participants   are required to make a discrimination judge-
ment to stimuli in one modality or the other. One example of this 
design used novel melodies and geometric shapes, and participants 
were required to respond to either long note targets or vertical line 
targets [ 57 ,  58 ]. When “attending to the shapes” was subtracted 
from “attending to the melodies” the results revealed relative 
enhancement bilaterally in the lower boundary of the superior tem-
poral gyrus. This fi nding supports the view that there is sensory 
enhancement when attending to the auditory modality. In addition, 
it was shown that when “attending to the shapes,” the auditory 
response was suppressed relative to a bimodal passive condition. 
This is tentative evidence for neural suppression when ignoring the 
auditory modality. A novel feature of the experiment by Degerman 
et al. [ 66 ] was that in one selective attention condition, participants 
had to respond to a target defi ned by a particular combination of 
cross-modal features (e.g. high pitch and red circle). The conven-
tional general linear analysis did not show any signifi cant difference 
in the magnitude of the auditory response in the cross-modal condi-
tion compared with a condition in which participants simply attended 
to the high- and low-pitch targets in the audiovisual stimulus. 
However, a region of interest analysis (defi ning a region in the pos-
terolateral superior temporal gyrus) did suggest some enhancement 
for the audiovisual attention condition compared with the auditory 
attention condition. Thus, it is possible that nonprimary auditory 
regions are involved in attention- dependent binding of synchronous 
auditory and visual events into coherent audio–visual objects. 

 In audition, it has long been established behaviourally that 
when participants expect a tone at a specifi c frequency, their ability 
to detect a tone in a noise masker is signifi cantly better when the 
tone is at the expected frequency than when it is at an unexpected 
frequency (the probe-signal paradigm [ 67 ]). The benefi t of 
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selective attention for  signal detection   thresholds can be plotted as 
a function of frequency. The ability to detect tones at frequencies 
close to the expected frequency is also enhanced, and this benefi t 
drops off smoothly with the distance away from the expected fre-
quency [ 67 ,  68 ]. The width of this attention-based listening band 
is comparable to the width of the critical band related to the 
frequency- tuning curve, which can be measured psychophysically 
using notched noise maskers [ 68 ]. This equivalence suggests that 
selective attention might be operating at the level of the sensory 
representation of tone frequency. 

 Evidence from  electrophysiological recordings   demonstrates 
frequency-specifi c attentional modulation at the level of the primary 
auditory cortex, consistent with a neural correlate of the psycho-
physical phenomena found in the probe-signal paradigm. In a series 
of experiments, awake behaving ferrets were trained to perform a 
number of spectral tasks including tone detection and frequency dis-
crimination [ 69 ]. In the tone detection task, ferrets were trained to 
identify the presence of a tone against a background of broadband 
rippled noise. The spectro-temporal receptive fi elds measured dur-
ing the noise for frequency-tuned neurons showed strong facilita-
tion around the target frequency that persisted for 30–40 ms. In the 
two-tone discrimination task, ferrets performed an oddball task in 
which they responded to an infrequent target frequency. Again, the 
spectro-temporal receptive fi elds showed an enhanced and persistent 
response for the target frequency, plus a  decreased  response for the 
reference frequency. These opposite effects serve to magnify the 
contrast between the two center frequencies, and thus facilitate the 
selection of the target. The results of these two tasks confi rm that 
the acoustic fi lter properties of auditory cortical neurons can dynam-
ically adapt to the attentional focus of the task. 

 Recently, we have addressed the question of  attentional enhance-
ment   for selective attention to frequency using a high- resolution scan-
ning protocol (1.5 mm 2  × 2.5 mm) (unpublished data). To control for 
the demands on selective attention, we presented two concurrent 
streams (low- and high-frequency tones). Participants were requested 
to attend to one frequency stream or the other and these attend con-
ditions were presented in an interleaved manner throughout the 
experiment. Behavioral testing confi rmed that performance signifi -
cantly deteriorated when these sounds were presented in a divided 
attention task. To be able to identify high- and low-frequency sensi-
tive areas around the primary auditory cortex we designed two types 
of stimuli using different rhythms for each of the two streams. For 
example, one stimulus contained a “fast” high-frequency rhythm and 
a “slow”  low- frequency rhythm so that the stimulus contained a 
majority of high-frequency tones. The other stimulus was the con-
verse. Areas of  high-frequency sensitivity   were identifi ed by subtract-
ing the low-frequency majority stimulus from the high-frequency 
majority stimulus, and vice-versa (Fig.  9c, d ). For each of the three 

Deborah Ann Hall    and Aspasia Eleni Paltoglou



597

participants, we selected those frequency-specifi c areas that best 
corresponded to areas 1–4 (defi ned by Talavage et al. [ 51 ,  52 ];  see  
Sect.  2.1 ). Within these areas, we extracted the BOLD signal time 
course for every voxel and performed a log transform to standardize 
the data. We collapsed the data across low- and high-frequency sensi-
tive areas [ 1 – 4 ] according to their “best frequency” (BF). The best 
frequency of an area corresponds to the frequency that evokes the 
largest BOLD response. A univariate  ANOVA   showed response 
enhancement when participants were attending to the BF of that area, 
compared with attending to the other frequency ( p  < 0.01). In addi-
tion, response enhancement was also found when attending to the BF 
of that area, compared with passive listening ( p  < 0.05) (Fig.  10 ). Note 
that for these results area 4 was excluded from the analysis, because it 
showed different pattern of attentional modulation. The response 
profi le of area 4 might differ from that of areas 1–3 in other ways 
because it is not consistently present in all listeners [ 51 ]. Our fi nding 
of frequency-specifi c attentional enhancement in primary auditory 
regions contrasts with that of Petkov et al. [ 61 ], who reported atten-
tion-related modulation to be  independent of stimulus frequency and 
to engage mainly the nonprimary auditory areas. However, our result 
is more in keeping with the predictions made by the neurophysiologi-
cal data reported by Fritz et al. [ 69 ].
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3        Future Directions 

 It is increasingly likely that auditory cortical regions compute aspects 
of the sound signal that are more complicated in their nature than 
the simple physical acoustic attributes of the sound. Thus, the 
encoded features of the sound refl ect an increasingly abstract repre-
sentation of the sound stimulus. We have already presented some 
evidence for this in terms of the way in which the auditory cortical 
response is exquisitely sensitive to the temporal context of the sound, 
particularly the way in which the time course of the BOLD response 
represents the temporal envelope characteristics of the sound, 
including sound onsets and offsets [ 18 ,  40 ], ( see  Sect.  1.4 ). However, 
there are many other ways in which neural coding refl ects higher 
level processing. In this fi nal section, we shall introduce two impor-
tant aspects of the listening context that determine the auditory 
BOLD response: the perceptual experience of the listener and the 
operational aspects of the task. A number of fMRI studies have dem-
onstrated ways in which activity within the human auditory cortex is 
modulated by auditory sensations, including loudness, pitch, and 
spatial width. Other studies have revealed that task relatedness is also 
a signifi cant determining factor for the pattern of activation. These 
fi ndings highlight how future auditory fMRI studies could usefully 
investigate these contributory factors in order to provide a more 
complete picture of the neural basis of the listening process. 

   One approach used in auditory fMRI to investigate perceptually 
relevant coding imposes systematic changes to the listener’s per-
ception of a sound signal by parametrically manipulating certain 
acoustic parameters and subsequently correlating the perceptual 
change with the variation in the pattern of activation. For example, 
by increasing sound intensity (measured in SPL), one also increases 
its perceived loudness (measured in phons). Loudness is a percep-
tual phenomenon that is a function of the auditory excitation pat-
tern induced by the sound, integrated across frequency. Sound 
intensity and loudness are measures of different phenomena. For 
example, if the bandwidth of a broadband signal is increased while 
its intensity is held constant, then loudness nevertheless increases 
because the signal spans a greater number of frequency channels. 
In an early fMRI study, Hall et al. [ 31 ] presented single-frequency 
tones and harmonic-complex tones that were matched either in 
intensity or in loudness. The results showed that the complex tones 
produced greater activation than did the single-frequency tones, 
irrespective of the matching scheme. This result indicates that 
bandwidth had a greater effect on the pattern of auditory activa-
tion than sound level. Nevertheless, when the data were collapsed 
across stimulus class, the amount of activation was signifi cantly 
correlated with the loudness scale, not with the intensity scale. 

3.1   Cortical 
Activation   Refl ects 
Perceptually Relevant 
Coding
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 In people with elevated hearing thresholds, the perception of 
sound level is distorted. They typically experience the same dynamic 
range of loudness as normally hearing listeners despite having a com-
pressed range of sensitivity to sound level. The BOLD response to 
sound level is refl ected in a disproportionate increase in loudness 
with intensity. A recent study has characterized the BOLD  response   
to frequency-modulated tones presented at a broad range of intensi-
ties (0–70 dB above the normal hearing threshold) [ 33 ]. Both nor-
mally hearing and hearing impaired groups showed the same 
steepness in the linear increase in auditory activation as a function of 
loudness, but not of intensity (Fig.  11 ). The results from this study 
clearly demonstrate that the BOLD response can be interpreted as a 
correlate of the subjective strength of the stimulus percept.

   Pitch can be defi ned as the sensation whose variation is associ-
ated with musical melodies. Together with loudness, timbre, and 
spatial location, pitch is one of the primary auditory sensations. 
The salience of a pitch is determined by several physical properties 
of the pitch signal, one being the numbered harmonic components 
comprising a harmonic-complex tone. The cochlea separates out 
the frequency components of sounds to a limited extent, so that 
the fi rst eight harmonics of a harmonic-complex tone excite dis-
tinct places in the cochlea and are said to be “resolved,” whereas 
the higher harmonics are not separated and are said to be “unre-
solved.” Pitch discrimination thresholds for unresolved harmonics 
are substantially higher than those for resolved harmonics, consis-
tent with the former type of stimulus evoking a less salient pitch 
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[ 70 ]. A pairwise comparison between the activation patterns for 
resolved (strong pitch) and unresolved (weak pitch) harmonic- 
complex tones has identifi ed differential activation in a small, spa-
tially localized region of nonprimary auditory cortex, overlapping 
the anterolateral end of Heschl’s gyrus [ 71 ]. The authors claim 
that this fi nding refl ects the cortical representation for pitch 
salience. Another way to determine the salience of a pitch is by the 
degree of fi ne temporal regularity in the stimulus (i.e. the monau-
ral repeating pattern within frequency channels). This is true even 
for signals in which there are no distinct frequency peaks in the 
cochlear excitation pattern from which to calculate the pitch. A 
range of pitch saliencies can be created by parametrically varying 
the degree of temporal regularity in an iterated-ripple noise stimu-
lus (using 0, 1, 2, 4, 8, and 16 add-and-delay iterations during 
stimulus generation) [ 72 ]. Again the anterolateral end of Heschl’s 
gyrus appeared highly responsive to the change in pitch salience, in 
a linear manner. 

 Spatial location is another important auditory sensation that is 
determined by the fi ne temporal structure in the signal, this time it 
being the binaural temporal characteristics across the two ears. The 
 interaural correlation (IAC)   of a sound represents the similarity 
between the signals at the left and right ears. Changes in the IAC 
of a wideband signal result in changes in sound’s perceived “width” 
when presented through headphones. A noise with an IAC of 1.0 
is typically perceived as sound with a compact source located at the 
center of the head. As the  IAC   is reduced the source broadens. For 
an IAC of 0.0, it eventually splits into two separate sources, one at 
each ear [ 73 ]. Again the parametric approach has been employed 
to measure activation across a range of IAC values (1.00, 0.93, 
0.80, 0.60, 0.33, and 0.00) [ 74 ]. The authors found a signifi cant 
positive relationship between BOLD activity and IAC, which was 
confi ned to the anterolateral end of Heschl’s gyrus, the region that 
is also responsive to pitch salience. The slope of the function was 
not precisely linear but the BOLD response was more sensitive to 
changes in IAC at values near to unity than at values near zero. 
This response pattern is qualitatively compatible with previous 
behavioral measures of sensitivity to IAC [ 75 ]. 

 There is some evidence to support the claim that the neural 
representations of auditory sensations (including loudness, pitch, 
and spatial width) evolve as one ascends the auditory pathway. 
Budd et al. [ 74 ] examined sensitivity to values of IAC associated 
with spatial width within the inferior colliculus, the medial genicu-
late nucleus, as well as across different auditory cortical regions, 
but the effects were signifi cant only within the nonprimary audi-
tory cortex. Griffi ths et al. [ 72 ,  76 ] also examined sensitivity to the 
increases in temporal regularity associated with pitch salience 
within the cochlear nucleus, inferior colliculus, medial geniculate 
nucleus, as well as across different auditory cortical regions. Some 
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degree of sensitivity to pitch salience was found at all sites, but the 
preference appeared greater in the higher centers than in the 
cochlear nucleus [ 76 ]. Thus, the evidence supports the notion of 
an increasing responsiveness to percept attributes of sound 
throughout the ascending auditory system, culminating in the 
nonprimary auditory cortex. These fi ndings are consistent with the 
hierarchical processing of sound attributes. 

 Encoding the perceptual properties of a sound is integral to 
identifying the object properties of that sound source. The nonpri-
mary auditory cortex probably plays a key role in this process 
because it has widespread cortical projections to frontal and parietal 
brain regions and is therefore ideally suited to access distinct higher 
level cortical mechanisms for sound identifi cation and localization. 
Recent trends in auditory neuroscience are increasingly concerned 
with auditory coding beyond the conventional limits of the audi-
tory cortex (the superior temporal gyrus in humans), particularly 
with respect to the hierarchical organization of sensory coding via 
dorsal and ventral auditory processing routes. At the top of this 
hierarchy  stands   the brain’s representation of an auditory “object.” 
The concept of an auditory object still remains controversial [ 56 ]. 
Although it is clear that the brain needs to code information about 
the invariant properties of a sound source, research in this fi eld is 
considerably underdeveloped. Future directions are likely to begin 
to address critical issues such as the defi nition of an auditory object, 
whether the concept is informative for auditory perception, and 
optimal paradigms for studying object coding.  

   Listeners interact with complex auditory environments that, at any 
one time point, contain multiple auditory objects located at 
dynamically varying spatial locations. One of the primary chal-
lenges for the auditory system is to analyze this external environ-
ment in order to inform goal-directed behavior. In Sect.  2.2  we 
introduced some of the neurophysiological evidence for the impor-
tance of the attentional focus of the task in determining the pattern 
of auditory cortical activity [ 69 ]. Here, we consider the contribu-
tion of human auditory fMRI research to this question. In 
 particular, we present the interesting fi ndings of one group who 
have started to address how the auditory cortex responds to the 
context and the procedural and cognitive demands of the listening 
task ( see  [ 77 ] for a review). 

 In that review, Scheich and colleagues report a series of research 
studies in which they suggest that the function of different audi-
tory cortical areas is not determined so much by stimulus features 
(such as timbre, pitch, motion, etc.), but rather by the task that is 
performed. For example, one study reported the results of two 
fMRI experiments in which the same frequency-modulated stimuli 
were presented under different task conditions [ 78 ]. Top-down 
 infl uences   strongly affected the strength of the auditory response. 

3.2  Cortical 
Activation Also 
Refl ects  Behaviourally 
Relevant Coding  
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 Application of fMRI to Multiple Sclerosis and Other 
White Matter Disorders                     

     Massimo     Filippi      and     Maria     A.     Rocca     

  Abstract 

   The variable effectiveness of reparative and recovery mechanisms following tissue damage is among the 
factors that might contribute to explain, at least partially, the paucity of the correlation between clinical 
and magnetic resonance imaging (MRI) fi ndings in patients with white matter disorders. Among the 
mechanisms of recovery, brain plasticity is likely to be one of the most important with several possible dif-
ferent substrates (including increased axonal expression of sodium channels, synaptic changes, increased 
recruitment of parallel existing pathways or “latent” connections, and reorganization of distant sites). The 
application of fMRI has shown that plastic cortical changes do occur after white matter injury of different 
etiology, that such changes are related to the extent of white matter damage, and that they can contribute 
in limiting the clinical consequences of brain damage. Conversely, the failure or exhaustion of the adaptive 
properties of the cerebral cortex might be among the factors responsible for the accumulation of “fi xed” 
neurological defi cits in patients with white matter disorders.  

  Key words     Multiple sclerosis  ,   Functional magnetic resonance imaging  ,   White matter  ,   Adaptation  , 
  Maladaptation  ,   Myelitis  ,   Vasculitides  

1      Introduction 

 Over the past decade, modern structural  magnetic resonance imag-
ing (MRI) techniques   have been extensively used to study patients 
with white matter disorders with the ultimate goal of increasing 
the understanding of the mechanisms responsible for the accumu-
lation of irreversible disability [ 1 – 3 ]. Although the application of 
these techniques has provided important insight into the  pathobi-
ology   of many of these disorders, the magnitude of the correlation 
between MRI and clinical fi ndings remains suboptimal [ 1 – 3 ]. This 
might be explained, at least partially, by the variable effectiveness of 
reparative and recovery mechanisms following tissue damage. 
Cortical reorganization has been suggested as a potential contribu-
tor to the recovery or to the maintenance of function in the pres-
ence of irreversible white matter damage [ 4 ,  5 ]. Brain plasticity is a 
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well-known feature of the human brain, which is likely to have 
several different substrates (including increased axonal expression 
of sodium channels, synaptic changes, increased recruitment of 
parallel existing pathways or “latent” connections, and reorganiza-
tion of distant sites) [ 6 ]. The application of functional MRI (fMRI) 
has shown that plastic cortical changes do occur after  central ner-
vous system (CNS)   white matter injury of different etiology, that 
such changes are related to the extent of WM damage, and that 
they can contribute in limiting the clinical consequences of wide-
spread disease-related tissue damage [ 4 ,  5 ]. Conversely, the failure 
or the exhaustion of the adaptive properties of the cerebral cortex 
might be among the factors responsible for the accumulation of 
“fi xed” neurological defi cits in patients affected by  white matter 
disorders (WMD)   [ 4 ,  5 ]. 

 This chapter summarizes the major contributions of fMRI for 
the in vivo monitoring of several white matter diseases. Since fMRI 
has been mostly applied to improve our understanding of the 
pathophysiology of multiple sclerosis (MS), a special focus is 
devoted to this condition and allied WMD.  

2    fMRI in MS 

   The main problem in the interpretation of  fMRI studies   in dis-
eased people is that the observed changes might be biased by 
differences in task performance between patients and controls. 
Clearly, this is a major issue in MS, which typically causes impair-
ment of various functional systems. Therefore, despite providing 
several important pieces of information, the value of the earliest 
fMRI studies of patients with MS [ 7 – 13 ] has to be weight against 
this background. For this reason, more recent fMRI studies in 
MS have been based on larger and more selected patients’ groups 
than the seminal studies. These studies have investigated the 
brain patterns of cortical activations during the performance of a 
number of motor, visual, and cognitive tasks in patients with all 
the major  clinical phenotypes   of the disease. Another appealing 
strategy which has been introduced for the study of functional 
network rewiring in clinically impaired patients is based on the 
assessment of functional abnormalities at rest in the main brain 
functional networks (resting state networks). One of the most 
solid conclusions that can be drawn from fMRI studies of MS is 
that cortical reorganization does occur in patients affected by 
this condition. The correlation between various measures of 
structural MS damage and the extent of cortical activations also 
suggests an adaptive role of such cortical changes in contributing 
to clinical recovery and maintaining a  normal level of function-
ing in patients with MS, despite the presence of irreversible 
axonal/neuronal loss.  

2.1  General 
Considerations
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   The method usually applied to investigate the visual system con-
sists of the application of a 8 Hz photic stimulation to one or both 
eyes [ 8 ,  12 – 18 ]. A study of the visual system [ 12 ] in patients who 
had recovered from a single episode of acute unilateral optic neu-
ritis demonstrated that these patients, relative to healthy volun-
teers, had an extensive activation of the visual network, including 
the claustrum, lateral temporal and posterior parietal cortices, and 
thalamus, in addition to the primary visual cortex, when the clini-
cally affected eye was studied. When the unaffected eye was stimu-
lated, only activations of the visual cortex and the right insula/
claustrum were observed. A strong correlation was found in these 
patients between the volume of the extra-occipital activation and 
the latency of the  visual evoked potential (VEP)   P100, suggesting 
that the functional reorganization of the cortex might represent an 
adaptive response to a persistently abnormal visual input. The 
results of this preliminary study have been confi rmed and extended 
by subsequent studies [ 14 ,  15 ,  17 ]. Using fMRI and VEP to mon-
itor the functional recovery after an acute unilateral optic neuritis, 
Russ et al. [ 15 ] found a strong relationship between fMRI and 
VEP latencies, suggesting that fMRI might contribute to the 
assessment of the temporal evolution of the visual defi cits during 
recovery. Levin et al. [ 17 ] showed reduced activation of the pri-
mary visual cortex and increased activation of the  lateral occipital 
complex (LOC)   in eight subjects who recovered clinically from an 
episode of optic neuritis, but who still had prolonged VEP laten-
cies in comparison with healthy controls. 

 Structural MRI, electrophysiology, and fMRI have been com-
bined in another study to investigate why ON patients exhibit a 
wide variation in severity of acute visual loss. Optic nerve lesion 
length and VEP amplitude were associated with visual loss. Bilateral 
activation in the extra-striate occipital cortex correlated directly 
with vision, after adjusting for optic nerve lesion length, VEP 
amplitude, and demographic characteristics [ 19 ] (Fig.  1 ).

   These data suggest that acute visual  loss   is associated with the 
extent of infl ammation and conduction block in the optic nerve, 
but not with pathology in the optic radiations or occipital cortex. 
The association of better vision with greater fMRI responses, after 
accounting for factors which reduce afferent input, suggested a 
role for adaptive neuroplasticity within the association cortex of 
the dorsal stream of higher visual processing [ 19 ]. In a 1-year 
follow- up study, Toosy et al. [ 14 ], using a novel technique that 
modeled the fMRI response and optic nerve structure together 
with clinical function, demonstrated a potential adaptive role of 
cortical reorganization within the extra-striate visual areas. An 
increased optic nerve gadolinium-enhanced lesion length at base-
line was associated with a reduced functional activation within the 
visual cortex and poorer vision. At 3 months, more severe optic 
nerve damage was associated with an increased fMRI response in 

2.2   Visual System  
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the bilateral temporal cortices, whereas at 1 year, the right tempo-
ral cortex correlation reversed. These results illustrate how the 
same regions may play different roles at different times during 
recovery, refl ecting the complexity of brain plasticity and the MS 
process. This notion has been supported by a region-of-interest 
longitudinal study [ 18 ] that demonstrated dynamic changes in 
the fMRI response following visual stimulation not only in V1, 
V2, and the LOC, but also in the lateral geniculate nucleus (LGN) 
in patients with isolated acute optic neuritis. In this study, abnor-
mal LGN response was found not only following stimulation of 
the affected eye, but also after stimulation of the unaffected one, 
indicating that the visual pathways undergo early functional 
changes following tissue injury. 
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  Fig. 1    Statistical parametric maps showing group correlations between functional magnetic resonance imag-
ing (fMRI) response and visual acuity, after correcting for age, gender, side affected, gadolinium-enhanced 
lesion length, fast spin-echo lesion length, and visual evoked potential (VEP) amplitude. A correlation is seen 
in the region of the cuneus bilaterally, where better visual acuity is associated with a greater fMRI response. 
The graph plots logMAR visual acuity against the mean corrected fMRI response (approximate percentage 
blood oxygenated level dependent signal change), at the peak voxel. The statistical parametric maps are thres-
holded at cluster level  p  < 0.05 (corrected), and the scale bar indicates the voxel level  t -scores (from ref. [ 19 ])       
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 Another 1-year longitudinal study demonstrated that early func-
tional abnormalities in the LOC contribute to predict visual out-
come after a clinically isolated ON [ 20 ]. Specifi cally, greater baseline 
fMRI responses in the LOCs were associated with better visual out-
come at 12 months. This was evident on stimulation of either eye 
and was independent of measures of demyelination and neuroaxonal 
loss. A negative fMRI response in the LOCs at baseline was associ-
ated with a relatively worse visual outcome. These fi ndings suggest 
that early neuroplasticity in higher visual areas is likely to be an 
important determinant of recovery from ON, independent of tissue 
damage in the anterior or posterior visual pathways. 

 In patients with established MS and a relapsing-remitting (RR) 
course with a unilateral optic neuritis, a reduced recruitment of the 
visual cortex after stimulation of the affected and the unaffected 
eyes was found when compared with healthy subjects. On average, 
patients with optimal clinical recovery showed increased visual cor-
tex activation than those with poor or no recovery, although the 
extent of the activation remained reduced compared with controls 
[ 8 ]. Another study [ 13 ] of nine patients with previous optic neuri-
tis confi rmed the previous results [ 8 ] and showed that these 
patients not only have a reduced activation of the primary visual 
cortex, but also a reduced fMRI percentage signal change in this 
region, again suggesting an abnormality of the synaptic input.  

   The investigation of the motor system in patients with MS has 
mainly focused on the analysis of the performance of simple motor 
tasks with the dominant right upper limbs [ 9 – 11 ,  21 – 40 ]. Such 
tasks were either self-paced or paced by a metronome. A few stud-
ies assessed the performance of simple motor tasks with the domi-
nant right lower limbs [ 23 ,  27 ,  33 ], while even fewer studies have 
investigated the performance of more complex tasks, including 
phasic movements of dominant hand and foot [ 27 ,  33 ], object 
manipulation [ 41 ], and visuomotor integration tasks [ 42 ]. 

 An altered brain pattern of movement-associated cortical acti-
vations, characterized by an increased recruitment of the contralat-
eral primary sensorimotor cortex (SMC) during the performance of 
simple tasks [ 23 ,  27 ] and by the recruitment of additional “classi-
cal” and “higher-order” sensorimotor areas during the performance 
of more complex tasks [ 27 ], has been demonstrated in patients with 
clinically isolated syndrome (CIS) suggestive of MS. The clinical 
and conventional MRI follow-up of these patients has shown that, 
at disease onset, CIS patients with a subsequent evolution to clini-
cally defi nite MS tend to recruit a more widespread sensorimotor 
network than those without short-term disease evolution [ 36 ]. 
These fi ndings suggest that in CIS patients the extent of early corti-
cal reorganization might be a factor associated with a different clini-
cal evolution. This would support the notion that, whereas increased 
recruitment of a widespread sensorimotor network contributes to 

2.3   Motor System  
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limiting the impact of structural damage during the course of MS, 
its early activation might be counterproductive, as it might result in 
an early exhaustion of the adaptive properties of the brain. This 
notion is also supported by studies of stroke patients, where a per-
sistent overrecruitment of a widespread cortical network has been 
related to an unfavorable clinical outcome [ 43 ]. 

 An increased recruitment of several sensorimotor areas, mainly 
located in the cerebral hemisphere ipsilateral to the limb that per-
formed the task, has also been demonstrated in patients with early 
RRMS and a previous episode of hemiparesis [ 29 ]. In patients with 
similar characteristics, but who presented with an episode of optic 
neuritis, this increased recruitment involved sensorimotor areas that 
were mainly located in the contralateral cerebral hemisphere [ 30 ]. 

 In patients with established MS and a RR course, functional 
cortical changes, mainly characterized by an increased recruitment 
of “classical” motor areas, including the primary SMC, the supple-
mentary motor area (SMA), and the secondary sensorimotor cor-
tex (SII), have been shown during the performance of simple 
motor [ 9 – 11 ,  22 ] and visuomotor integration tasks [ 42 ]. 
Movement-associated cortical changes, characterized by the activa-
tion of highly specialized cortical areas, have also been described in 
patients with secondary progressive (SP) MS [ 24 ] during the per-
formance of a simple motor task and in patients with primary pro-
gressive (PP) MS during the performance of active [ 21 ,  33 ] and 
passive [ 44 ] motor experiments. Interestingly enough, contrary to 
what happens in SPMS, the movement-associated pattern of acti-
vations seen in benign (B) MS resembles that of healthy people, 
and its abnormalities are restricted to the  sensorimotor network      
[ 45 ]. These results suggest that the long-term preservation of 
brain functional adaptive mechanisms might be among the factors 
contributing to the favorable clinical course of BMS. 

 The concept that movement-associated cortical reorganiza-
tion varies across patients at different stages of the disease has 
been shown by a fMRI study of patients with different disease 
phenotypes [ 28 ] (including 16 patients with a CIS suggestive of 
MS, 14 with RRMS and no disability, 15 with RRMS and mild 
clinical disability, and 12 with SPMS) acquired during the perfor-
mance of a simple motor task with their unimpaired dominant 
hand. CIS patients had an increased activation of the contralateral 
primary SMC when compared with those with RRMS and no dis-
ability, whereas patients with RRMS and no disability had an 
increased activation of the SMA when compared with those with 
CIS (Fig.  2 ). Patients with RRMS and no disability had an 
increased activation of the primary SMC, bilaterally, and ipsilateral 
SMA when compared with patients with RRMS and mild clinical 
disability. Conversely, patients with RRMS and mild clinical dis-
ability had an increased activation of the contralateral SII, inferior 
frontal gyrus (IFG), and ipsilateral precuneus. Patients with 
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RRMS and mild clinical disability had an increased activation of 
the contralateral thalamus and ipsilateral SII when compared with 
those with SPMS. The opposite contrast showed that patients 
with SPMS had an increased activation of the IFG, bilaterally, 
middle frontal gyrus (MFG), bilaterally, contralateral precuneus, 
and ipsilateral cingulate motor area (CMA) and inferior parietal 
lobule. This study suggests that early in the disease course more 
areas typically devoted to motor tasks are recruited, then a bilat-
eral activation of these regions is seen, and late in the disease 
course, areas that healthy people recruit to perform novel or com-
plex tasks are activated [ 28 ], perhaps in an attempt to limit the 
functional consequences of accumulating tissue damage.

  Fig. 2    Comparisons of patients at presentation with clinically isolated syndrome (CIS) suggestive of MS and 
patients with relapsing-remitting (RR) MS and no disability during a simple, right-hand, motor task. Patients 
with CIS showed an increased activation of the contralateral primary sensorimotor cortex when compared with 
patients with RRMS and no disability ( top row ). Patients with RRMS and no disability had a more signifi cant 
activation of the supplementary motor area, bilaterally, when compared with patients with a CIS ( bottom row ). 
Images are color-coded for activation and  arrows  show  t  cut-off values. Activations were superimposed on a 
high-resolution T1-weighted scan obtained from one healthy individual and normalized into a standard statisti-
cal parametric mapping space (neurological convention) (from ref. [ 28 ])       
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   To provide a more comprehensive view of abnormalities of 
cerebral response to task stimulation in MS patients at different 
stages of the disease, activation and deactivation patterns during 
passive hand movements have also been investigated [ 46 ]. In line 
with previous fi ndings, analysis of activations showed a progressive 
extension to the ipsilateral brain hemisphere according to the 
group and the clinical form (HC < RRMS < SPMS). Compare to 
controls, MS patients had reduced deactivation of the ipsilateral 
cortical sensorimotor areas. Deactivation of posterior cortical areas 
belonging to the  default mode network (DMN)   was increased in 
RRMS, but not in SPMS, with respect to HC. 

 As described in another chapter of this book, fMRI has been 
also applied for the investigation of cervical cord neuronal activity 
during a proprioceptive and a tactile stimulation of the right upper 
limb from patients with the main MS clinical phenotypes [ 47 – 51 ]. 
During the application of both stimulations, healthy controls and 
MS patients had signifi cant activations of the cervical cord between 
C5 and C8. On average, MS patients had 20 % higher cord fMRI 
signal  changes   during either stimulations, suggesting an abnormal 
cord function in these patients. Compared to controls, MS patients 
tend to show a more distributed pattern of cord recruitment with 
additional activations of regions located in the anterior and contra-
lateral portions of the cord. Such a behavior was more pronounced 
in patients with SPMS vs. those with RRMS and PPMS [ 49 ,  50 ].  

   Several fMRI studies have suggested that functional cortical 
changes might have an adaptive role also in limiting MS-related 
cognitive impairment [ 52 – 68 ]. Therefore, brain plasticity might, 
in part, explain the weak relationship found in MS between neuro-
psychological defi cits and conventional MRI measures of disease 
burden [ 69 ]. 

 Several cognitive domains have been investigated in MS 
patients with fMRI. Working memory has been the most exten-
sively studied by means of the  Paced Auditory Serial Addition Test 
(PASAT)   or the  Paced Visual Serial Addition Task (PVSAT)   [ 52 –
 55 ,  60 ,  64 ,  70 ] (which also involve sustained attention,  information 
processing speed, and simple calculation), the  n -back task [ 59 , 
 61 – 63 ,  65 ,  71 ], or a task adapted from the Sternberg paradigm 
[ 57 ]. Additional cognitive domains including attention [ 58 ], epi-
sodic memory [ 72 ], planning [ 68 ], and emotional processing [ 73 ] 
have also been interrogated. 

 In patients at  presentation   with CIS suggestive of MS, an 
altered pattern of cortical activations has been described during the 
performance of the PASAT [ 55 ,  56 ,  70 ], confi rming the presence 
of cortical reorganization at the earliest clinical stage of the disease. 
Staffen et al. [ 52 ] found that, during the performance of the 
PVSAT, MS patients with intact task performance had an increased 
activation of several regions located in the frontal and parietal 
lobes, bilaterally, compared with healthy volunteers, suggesting the 

2.4   Cognition  
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presence of functional compensatory mechanisms. An increased 
recruitment of several cortical areas during the performance of a 
simple cognitive task has also been shown in patients with RRMS 
and mild clinical disability (Fig.  3 ) [ 60 ].

   An increased activation of regions exclusively located in the right 
cerebral hemisphere (in particular in the frontal and temporal lobes) 
has also been found in MS patients when testing rehearsal within 
working memory [ 57 ]. The degree of right hemisphere recruitment 
was strongly related to patient neuropsychological performance 
[ 57 ]. In patients with RRMS and no cognitive defi cits, using fMRI 
during an  n -back test, a reduced activation of the “core” areas of the 
working memory circuitry (including prefrontal and parietal regions) 
and an increased activation of other regions within and beyond the 
typical working memory circuitry (including areas in the frontal, 
parietal, temporal, and occipital lobes) have been found [ 63 ]. This 
shift of activation was most prominent with increased working mem-
ory demands. These fi ndings suggest that, as shown for motor and 
visual tasks, dynamic changes of brain activation patterns can occur 
in RRMS patients during cognitive tasks. Other studies [ 61 ,  62 ,  66 ], 
which also investigated working memory performance in MS 

  Fig. 3    Brain patterns of cortical activations on a rendered brain during the execution of the Paced Auditory 
Serial Addition Task (PASAT) in ( a ) 22 healthy controls and in ( b ) 22 patients with MS. ( b1 ,  b2 ) Rendered images 
for patients with MS subgrouped according to their performance at the PASAT during fMRI showing signifi cant 
activated foci in ( b1 ) for 12 patients whose performance was similar to that of healthy controls and in ( b2 ) the 
activations found in the 10 patients who exhibited lower scores (from ref. [ 60 ])       
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patients, demonstrated: (1) an increased recruitment of regions 
related to sensorimotor functions and anterior attentional/executive 
components of the working memory  system   in patients compared 
with healthy controls, and (2) a reduced recruitment of several 
regions in the right cerebellar hemisphere in patients compared with 
healthy individuals [ 66 ], thus suggesting that the cerebellum might 
play a role in the working memory impairment of MS. 

 In a fMRI study [ 65 ], working memory was investigated with an 
 n -back task and functional connectivity analysis in a group of 21 
RRMS patients and 16 age- and sex-matched healthy controls. With 
similar task performances, activations were found in similar regions for 
both groups. However, patients had relatively reduced activations of 
the superior frontal and anterior cingulate gyri. Patients also showed a 
variable, but generally substantially smaller increase of activation than 
healthy controls with greater task complexity, depending on the spe-
cifi c brain regions assessed. These fi ndings suggest that, despite similar 
brain regions were recruited in both groups, patients have a reduced 
functional reserve for cognition relevant to memory. The functional 
connectivity analysis revealed increased correlations between right 
dorsolateral prefrontal and superior frontal/anterior cingulate activa-
tions in controls, and increased correlations between activations in the 
right and left prefrontal cortices in patients (Fig.  4 ), suggesting that 
altered interhemispheric interactions between dorsal and lateral pre-
frontal regions may yet be an additional adaptive mechanism distinct 
from recruitment of novel processing regions [ 65 ].

   Using a 3 T scanner, more signifi cant activations of several areas 
of the cognitive network involved in the performance of the Stroop 
test have also been demonstrated in a group of 15 cognitively pre-
served patients with benign MS (BMS) when compared with 19 
healthy controls (Fig.  5 ) [ 67 ]. BMS patients also showed an 

  Fig. 4    Analysis of functional connectivity during the performance of the  n -back task with different levels of 
diffi culty in healthy individuals and patients with MS. The most signifi cant correlations between activation in 
regions involved in processing increasing task demand are indicated in ( a ). In ( b ) are those connections more 
signifi cant for controls ( p  < 0.05). The image in ( c ) shows connections that were more signifi cant in patients 
than controls ( p  < 0.05).  C  cingulate,  SF  superior medial frontal,  RF  right dorsolateral prefrontal,  LF  left dorso-
lateral prefrontal,  RP  right parietal,  LP  left parietal (from ref. [ 65 ])       
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increased connectivity of several cortical areas of the sensorimotor 
network, including the left IFG, the anterior cingulated cortex and 
the left SII, with the right IFG and the right cerebellum, as well as 
a decreased connectivity between some areas (including the left SII, 
the prefrontal cortex, and the right cerebellum), and the anterior 
cingulate cortex. These results suggest an altered interhemispheric 
balance in favor of the right hemisphere in BMS patients in com-
parison with healthy controls, when performing cognitive tasks.

   fMRI during the performance of the Stroop task has also been 
used to determine whether modifi cation of the connections between 
cerebellar and prefrontal areas might vary among MS phenotypes and 
might be associated with cognitive failure [ 74 ]. Activation and effec-
tive connectivity analyses showed that,  compared with the other 
groups, RRMS patients had abnormal recruitment of regions of the 
left frontoparietal lobes, whereas compared with RRMS, SPMS 
patients had abnormal recruitment of the posterior cingulum/precu-
neus. BMS patients had increased activation of the right prefrontal 
cortex, and increased interaction between these regions and the right 
cerebellum. In healthy controls, reaction times (RTs) inversely corre-
lated with activity of right cerebellum and several frontoparietal 
regions. In MS, RTs inversely correlated with bilateral cerebellar activ-
ity and directly correlated with right precuneus activity. In MS, disease 
duration inversely correlated with right cerebellar activity and directly 
correlated with left inferior frontal gyrus and right precuneus activity. 
Higher T2 lesion volume and lower brain volumes were related to 
activity in these  areas  . These results suggest that MS patients who have 
various clinical phenotypes experience different abnormalities in acti-
vation and effective connectivity between the right cerebellum and 
frontoparietal areas, which contribute to ineffi cient cortical reorgani-
zation, with increasing cognitive load.  

  Fig. 5    Areas showing increased activations in patients with BMS in comparison with healthy controls during 
the analysis of the Stroop facilitation condition (random effect interaction analysis, ANOVA,  p  < 0.05 corrected 
for multiple comparisons). BMS patients had increased activations of several areas located in the frontal and 
parietal lobes, bilaterally, including the anterior cingulate cortex, the superior frontal sulcus, the inferior frontal 
gyrus, the precuneus, the secondary sensorimotor cortex, the bilateral visual cortex, and the cerebellum, bilat-
erally. Note that the color-encoded activations have been superimposed on a rendered brain and normalized 
into standard SPM space (neurological convention) ( see  ref. [ 67 ])       
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   In addition to an abnormal pattern of functional activations, the 
majority of the previous studies described a variable relationship 
between the extent of fMRI activation and several measures of tis-
sue damage [ 7 ,  8 ,  10 ,  11 ,  21 – 25 ,  30 ,  33 ,  42 ,  53 ,  56 ,  58 ,  60 ]. 

 An increased recruitment of several brain areas with increasing 
T2 lesion load has been shown in patients with RR [ 7 ,  8 ,  54 ,  60 , 
 72 ] and PPMS. The severity of intrinsic T2-visible lesion damage, 
measured using T1-weighted images [ 30 ],  magnetization transfer 
(MT)  , and diffusion tensor (DT) MRI [ 22 ], has been found to 
modulate the activity of some cortical areas in these patients. The 
severity of  normal appearing brain tissue (NABT)   injury, measured 
using proton MR spectroscopy [ 10 ,  11 ,  25 ], MT MRI [ 21 ,  22 ,  53 , 
 56 ], and DT MRI [ 21 ,  23 ,  25 ], is another important factor associ-
ated to an increased recruitment of motor- and cognitive-related 
brain regions, as shown by studies of patients at presentation with 
CIS suggestive of MS [ 23 ,  53 ,  56 ], patients with RRMS and vari-
able degrees of clinical disability [ 10 ,  11 ,  22 ,  25 ], patients with 
PPMS [ 21 ], and with SPMS [ 10 ,  11 ]. Finally, subtle GM damage, 
which goes undetected when using conventional MRI, may also 
infl uence functional cortical recruitment, as demonstrated, for the 
motor system, in patients with RRMS [ 42 ], SPMS [ 24 ], and 
patients with clinically defi nite MS and nonspecifi c (less than three 
focal white matter lesions) conventional MRI fi ndings [ 25 ]. In 
cognitively intact MS  patients  , the increased activation of a left 
prefrontal region during the counting Stroop task has been corre-
lated with the normalized brain parenchymal volume [ 58 ].  

   Structural damage of white matter pathways that connect functional 
relevant areas for a given task has been shown to modify the observed 
brain patterns of cortical activations in patients with MS. Damage to 
the corticospinal tract [ 30 ,  31 ] (Fig.  6 ) as well as damage to the 
corpus callosum (CC) [ 75 ,  76 ] has been related to a more bilateral 
movement-associated brain pattern of cortical activations.

   The role of the CC in interhemispheric connectivity and in elic-
iting functional cortical changes has been underpinned by a study by 
Lowe et al. [ 32 ], who showed, by measuring low- frequency BOLD 
fl uctuations, a reduced functional connectivity between the right 
and the left hemisphere primary motor cortices in MS patients. 

 The recent development of diffusion-based tractography 
methods that allow to defi ne with precision the pathways connect-
ing different CNS structures and their application to patients with 
MS resulted in an improvement of the correlation between struc-
tural and functional abnormalities. Several studies combined 
 measures of abnormal functional connectivity with DT MR mea-
sures of damage within selected white matter fi ber bundles in 
patients with RRMS [ 40 ], BMS [ 67 ] and PPMS [ 77 ]. In patients 
with RRMS and no clinical disability [ 40 ], measures of abnormal 
connectivity inside the motor network were correlated with 
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structural MRI metrics of tissue damage of the corticospinal and 
the dentatorubrothalamic tracts, while no correlation was found 
with measures of damage within “not-motor” white matter fi ber 
bundles. These fi ndings suggest an adaptive role of functional con-
nectivity changes in limiting the clinical consequences of structural 
damage to selected white matter pathways in RRMS patients [ 40 ]. 
In patients with BMS [ 67 ], measures of abnormal connectivities 
inside the cognitive network were moderately correlated with 
structural MRI metrics of tissue damage within intra- and inter-
hemispheric cognitive-related white matter fi ber bundles, while no 
correlations were found with the remaining fi ber bundles studied, 
suggesting that functional cortical changes in patients with BMS 
might represent an adaptive response driven by damage to specifi c 
white matter structures [ 67 ]. 

 In patients with PPMS [ 21 ], a relationship has been demon-
strated between the severity of spinal cord pathology, measured 
using MT MRI, and the extent of movement-associated cortical 
activations.  

  Fig. 6    Brain patterns of cortical activations on a rendered brain from MS patients 
without ( a  and  c ) and with ( b  and  d ) lesions in the left corticospinal tracts, during 
the performance of a simple motor task with their clinically unimpaired and fully 
normal functioning, dominant right hands. In patients with corticospinal tract 
lesions, a more bilateral pattern of activations is visible. Note that the activations 
are color-coded according to their  t  values. Images are in neurological conven-
tion ( see  ref. [ 31 ])       
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   Although the actual role of cortical reorganization on the clinical 
manifestations of MS remains to be established, there are several 
pieces of evidence which suggest that cortical adaptive changes are 
likely to contribute in limiting the clinical consequences of  MS-related 
structural damage  . In nondisabled patients with RRMS [ 22 ], an 
increased activation of several motor regions, mainly located in the 
contralateral cerebral hemisphere, has been seen during the perfor-
mance of a simple motor task. The correlations found in this study 
[ 22 ] between the extent of fMRI activations and several MT and DT 
MRI metrics of structural brain damage suggested that an increased 
recruitment of movement-associated cortical network contributes to 
limiting the functional impact of MS-related damage. 

 The notion that an increased recruitment of areas that are usu-
ally activated by healthy individuals when performing different/
more complex motor tasks might be one of the mechanisms play-
ing a role in MS recovery/maintenance of function has been high-
lighted by the results of two experiments [ 39 ,  41 ]. The fi rst showed 
that MS patients, during the performance of a simple motor task, 
activate some regions that are part of a  fronto-parietal circuit  , 
whose recruitment occurs typically in healthy subjects during 
object manipulation (Fig.  7 ) [ 41 ]. The second, which assessed the 
fMRI patterns of activation during the performance of a simple 
motor task and of a task aimed at investigating the mirror-neuron 
system, demonstrated activations of regions that are part of the 
mirror-neuron system in patients with MS during the performance 
of the simple motor task [ 39 ].

   The compensatory role of cortical reorganization has also been 
demonstrated by studies investigating the cognitive domains, 
which showed increased recruitment of several  cortico-subcortical 
areas   in cognitively preserved MS patients [ 52 – 58 ]. In patients 
complaining of fatigue, when compared with matched nonfatigued 
MS patients [ 78 ], a reduced activation of a complex movement- 
associated cortical/subcortical network, including the cerebellum, 
the thalamus, and regions in the frontal lobes, has been shown. 
The correlation found in these patients between the reduction of 
thalamic activity and the clinical severity of fatigue indicates that a 
“pseudoreduction” of brain functional recruitment might be asso-
ciated with the appearance of  MS symptomatology  . Additional 
work has shown that the pattern of movement-associated cortical 
activations in MS is determined by both the extent of brain injury 
and disability and that these changes are distinct [ 26 ,  33 ].  

   The results of several studies suggest that an increased cortical 
recruitment might not always be benefi cial for patients with MS. As 
already mentioned, disease progression and accrual of disability has 
been observed in patients with SPMS, despite the widespread acti-
vations of regions in the frontal and parietal lobes during the per-
formance of simple motor tasks [ 24 ,  28 ]. fMRI studies of the 
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motor system [ 21 ,  33 ,  44 ] of patients with PPMS suggested a lack 
of “classical” adaptive mechanisms as a potential additional factor 
contributing to the accumulation of disability. In these patients 
during the performance of different motor tasks with the nonim-
paired dominant limbs, a recruitment of a widespread movement- 
associated cortical network usually considered to function in 
motor, sensory, and multimodal integration processing (i.e., the 
frontal and temporal lobes, and the insula) was detected [ 21 ,  33 , 
 44 ]. The absence of a concomitant recruitment of the “classical” 
motor areas, including the primary SMC, the SMA, the infrapari-
etal sulcus, and the SII, was interpreted as a failure of part of the 
adaptive capacity of the cerebral cortex in this severely disabling 
phenotype of the disease [ 21 ,  33 ]. The notion that multimodal 
integration areas might have a critical role in PPMS patients has 
been strengthened by another study which showed increased 

  Fig. 7    Comparison of simple vs. complex task with the dominant right hands in healthy subjects ( top row ;  a – c ) 
and patients with MS ( bottom row ;  d – g ) (paired  t  test for each group, corrected  p  value <0.05). The ipsilateral 
anterior lobe of the cerebellum ( a  and  d ), bilateral insula/basal-ganglia ( b ,  e ,  f ) and contralateral primary sen-
sorimotor cortex and supplementary motor area ( c  and  g ) were identifi ed in both groups. Compared with 
healthy subjects, MS patients also had a signifi cant activation of the contralateral inferior frontal gyrus and 
bilateral secondary sensorimotor cortex ( e ). Note that the activations are color-coded according to their  t  val-
ues. Images are in neurological convention ( see  ref. [ 41 ])       
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activations of these regions in PPMS patients, in comparison with 
healthy controls, during passive movements [ 44 ]. Similar fi ndings 
have led to similar conclusions in patients with cognitive decline 
[ 59 ,  64 ], in whom a “poor” pattern of cortical activations in the 
expected areas [ 59 ] and the activation of regions that are not nor-
mally devoted to the performance of the investigated task [ 64 ] 
were detected during the performance of the administered tasks. 

 The comparison of the movement-associated brain patterns of 
cortical activations between RRMS patients complaining of revers-
ible fatigue after weekly interferon (IFN) beta-1a administration 
and those without fatigue suggested an association between the 
presence of  fatigue   and an increased activation of several areas of 
the motor network, including the thalamus, the cingulum, and 
several regions located in the frontal lobes, including the SMA and 
the primary SMC bilaterally [ 37 ] (Fig.  8 ). These results suggest 
that the overrecruitment of brain networks in MS might, at least to 
some degree, have a detrimental effect.

   The assessment and interpretation of fMRI results (cerebral 
activity) during cognitive tasks can be diffi cult when task 
 performance differs across patients (e.g., poorer performance in 
cognitively impaired patients). As such, the analysis of resting state 
(RS) brain functional connectivity has been proposed as a valid 
alternative to task-active fMRI investigations, particularly in clini-
cally impaired populations [ 79 ]. 

 The analysis of brain activity at rest has shown an increased 
synchronization of the majority of the resting-state networks in 
CIS patients [ 80 ]. In patients with cognitive impairment a reduced 
functional connectivity of anterior regions of the brain, mostly 
located in the frontal lobes [ 81 ,  82 ] is related not only to the sever-
ity of cognitive impairment, but also to structural disruption of 
connecting WM tracts [ 81 ]. In another study [ 83 ] better cognitive 
performance in MS patients was associated with an increased func-
tional connectivity among several regions of the attention network, 
thus supporting the adaptive role of RS functional connectivity 
modifi cations. However, fi ndings from other studies [ 84 – 86 ] seem 
to contradict the adaptive/compensation hypothesis since a cor-
relation between increased functional connectivity and worse cog-
nitive performance was found. 

 A recent study assessing intra- and inter-network functional 
connectivity at rest in the brain from RRMS patients has demon-
strated a distributed pattern of abnormal functional connectivity, 
which was correlated to the extent of T2 lesions and the severity of 
disability [ 87 ]. If such functional abnormalities confer a systematic 
vulnerability to disease progression or, conversely, protect against 
the onset of clinical defi cits needs to be investigated. The “cogni-
tive reserve hypothesis” has also been considered to explain the 
incomplete relationship between brain disease and cognitive status 
in MS; it has been demonstrated that MS patients with a greater 
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intellectual enrichment require less deactivation of the brain at rest 
and less recruitment of prefrontal cortices to perform tasks in a way 
equal to that of patients with lesser enrichment [ 88 ]. 

 Despite the clear advantages of RS fMRI, it is important to note 
that there might be some mechanisms related to cognitive network 
function which are unlikely to be captured properly by the use of a 
non task-active/resting paradigm. In particular, it has been sug-
gested that, compared to healthy controls, MS patients might have 

  Fig. 8    Relative cortical activations of MS patients with reversible fatigue after 
interferon (IFN) beta-1a injection during the performance of a simple motor task 
with their clinically unimpaired and fully normal functioning, dominant right hands. 
At entry ( a  and  b ) (when they did not complain of fatigue), compared with MS 
patients without reversible fatigue, these patients showed an increased recruit-
ment of the contralateral primary SMC ( a ), the thalamus ( b ), the superior frontal 
sulcus ( a  and  b ), and the cingulate motor area ( b ). At day 1 ( c  and  d ) (after IFN 
beta-1a administration, when fatigue was present), compared with MS patients 
without fatigue, these patients showed increased recruitment of the ipsilateral 
thalamus ( d ), and contralateral middle frontal gyrus ( c ). Note that the color-coded 
activations have been superimposed on a high-resolution T1-weighted scan 
obtained from a single, healthy subject and normalized into standard statistical 
parametric mapping space (neurological convention) (from ref. [ 37 ])       
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a limited ability to increase the activation/deactivation within 
cognitive-related networks with increasing task diffi culty. Such an 
inability to optimize cognitive network recruitment, which refl ects 
an impaired cognitive functional reserve (that is the ability to match 
brain activity to increasing cognitive demand) [ 65 ,  89 – 91 ], is likely 
to be a maladaptive mechanism contributing to the clinical  manifes-
tations   of the disease, since it is more pronounced in patients with 
SPMS [ 89 ] as well as in those with cognitive impairment [ 92 ].  

   Dynamic functional changes have been described in an MS patient 
following an acute relapse [ 10 ]. These results have been confi rmed 
and extended by another study which assessed the early cortical 
changes following acute motor relapses secondary to pseudotu-
moral lesions in 12 MS patients and the evolution over time of 
cortical reorganization in a subgroup of these patients [ 38 ]. Short- 
term cortical changes were mainly characterized by the  recruitment 
of pathways in the unaffected hemisphere. A recovery of function 
of the primary SMC of the affected hemisphere was found in 
patients with clinical improvement, while in patients without clini-
cal recovery, there was a persistent recruitment of the primary 
SMC of the unaffected hemisphere, suggesting that the restoration 
of function of motor areas of the affected hemisphere might be a 
critical factor for a favorable recovery (Fig.  9 ).

   A longitudinal (time interval of 15–26 months) fMRI study of 
the motor system has been conducted in a group of patients with 
early RRMS [ 93 ]. Patients exhibited greater bilateral activations 
than controls in both fMRI studies. Although no signifi cant 
 differences between the two fMRI scans were observed in controls, 
a reduction of the functional activity of the ipsilateral SMC and the 
contralateral cerebellum was seen in patients at follow-up. 
Moreover, activation changes in ipsilateral motor areas correlated 
inversely with age, extent, and progression of T1 lesion load, and 
occurrence of a new relapse, suggesting that younger patients with 
less structural brain damage and a favorable clinical course demon-
strate brain plasticity that follows a more lateralized pattern of 
brain activations [ 93 ]. 

 Longitudinal modifi cations of cognitive networks’ recruitment 
and their impact on patients’ cognitive status have been marginally 
explored. A 1-year longitudinal  study   in patients with early MS 
found an association between increased levels of activation in the 
right dorsolateral prefrontal cortex during a cognitive task and 
improved working memory and processing speed performance 
[ 94 ]. A 20 month longitudinal study [ 95 ] showed that worsening 
of SDMT performance in RRMS patients is correlated with 
increased activity of the left inferior parietal lobule over time, prob-
ably refl ecting a maladaptive mechanism.  

2.9  Use of fMRI 
to Assess Longitudinal 
Changes of  Cortical 
Reorganization  
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   The potential of fMRI in a multicentre setting has been explored by 
a few studies of the motor [ 96 ,  97 ] and cognitive [ 92 ] networks. 

 Only a few fMRI studies have been performed to monitor the 
 effect   of treatments in MS [ 58 ,  98 ,  99 ]. Different patterns of 
brain response to lower dose acute and higher dose chronic 
administration of rivastigmine have been demonstrated in MS 
patients using cognitive tasks [ 58 ,  99 ].  Rivastigmine   was shown to 
enhance the prefrontal function and alter the functional connec-
tivity associated with cognition. In MS patients, increased activa-
tion in the ipsilateral primary SMC and SMA has been observed 
after a single dose of 3,4-diaminopyridine (a potassium channel 

2.10  fMRI to Monitor 
Treatment

  Fig. 9    Longitudinal evolution of cortical activations in the primary sensorimotor cortex (SMC), bilaterally, during 
task performance with impaired hand compared with unimpaired hand in one patient with good clinical recov-
ery during follow-up ( a  and  b ) and in one patient with poor/absent clinical recovery ( c  and  d ). Scans obtained 
during left hand motor task have been fl ipped to keep the left hemisphere contralateral to movement. At 
baseline, both patients showed an increased activation of the primary SMC of the unaffected (ipsilateral) 
hemisphere ( a  and  c ). During follow-up, the patient with good clinical recovery showed an increased recruit-
ment of the primary SMC of the affected hemisphere ( b ), while the patient with poor/absent clinical recovery 
continued to show an increased recruitment of the primary SMC of the unaffected hemisphere ( d ). Note that 
the activations are color-coded according to their  t  values ( see  ref. [ 38 ])       
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blocker), suggesting that this treatment may modulate brain 
motor activity in patients with MS, probably by enhancing excit-
atory synaptic transmission [ 98 ]. 

 Active and RS fMRI have also been applied to assess modifi ca-
tions of the patterns of activations and functional connectivity fol-
lowing motor [ 100 ] and cognitive rehabilitation in a few 
single-center studies [ 101 – 103 ]. A recent study demonstrated that 
changes in RS functional connectivity of cognitive-related net-
works contributes to the persistence of the effects of cognitive 
rehabilitation after 6 months in RRMS patients [ 104 ].   

3    fMRI in  MS-Allied Conditions   

 Among the known MS-allied conditions, only patients with  neuro-
myelitis optica (NMO)   have been assessed using fMRI. Rocca et al. 
[ 35 ] investigated the performance of a simple motor task with the 
dominant and nondominant upper limbs in ten patients with NMO 
and found that, compared with matched controls, NMO patients 
had an increased recruitment of several regions of the sensorimotor 
network (primary SMC, postcentral gyrus, MFG, rolandic opercu-
lum, SII, precuneus, and cerebellum) and of several other regions 
mainly in the temporal and occipital lobes, such as MT/V5, the 
fusiform gyrus, the cuneus, and the parahippocampal gyrus during 
the performance of both tasks. For both tasks, strong correlations 
were found between relative activations of cortical sensorimotor 
areas and the severity of cervical cord damage, suggesting that the 
observed functional cortical changes might have an adaptive role in 
limiting the clinical outcome of NMO structural pathology. 

 Using RS fMRI, abnormal functional connectivity in the 
majority of RS networks has also been detected in NMO patients 
and has been correlated to the severity of clinical disability [ 105 ].  

4    fMRI in Other WMD and Conditions Associated with “Signifi cant” 
White Matter Damage 

   Studies of patients with spinal cord injury of different etiology (i.e., 
traumatic and/or demyelinating) with no or only partial clinical 
recovery have shown movement-associated cortical changes, consist-
ing of an abnormal location of the activated areas and in a more wide-
spread recruitment of motor areas, mainly located in the hemisphere 
contralateral to the  limb   used to perform the task [ 106 – 108 ]. 

 In patients with isolated myelitis of probable demyelinating 
origin and normal function in the investigated limbs, an abnormal 
pattern of movement-associated cortical activation has been 
described [ 34 ,  109 ,  110 ] and has been related to the degree of 
daily hand use [ 109 ], the severity of cervical cord damage [ 34 , 
 110 ], and the level of spinal  cord   involvement [ 110 ].  

4.1  Isolated Spinal 
Cord Injury
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   In patients with  neuropsychiatric systemic lupus erythematosus 
(NPSLE)   without overt motor impairment, movement-associated 
functional cortical changes, characterized by more signifi cant acti-
vations of the contralateral primary SMC, putamen, dentate 
nucleus, several regions located in the frontal and parietal lobes, 
MT/V5, and the middle occipital gyrus, bilaterally, have been 
observed when compared with matched healthy controls [ 111 ] 
(Fig.  10 ). The correlations found in these patients between relative 
activations of sensorimotor areas and the extent and severity of 
brain damage suggest that also in these patients functional cortical 
changes might contribute to the maintenance of their normal func-
tional capacities [ 111 ] (Fig.  10 ).

      Several fMRI studies have contributed to the  classifi cation   of 
migraine as a neurovascular or even a brain disorder. The pioneer-
ing study by Hadjikhani and coworkers [ 112 ] has shown that dur-
ing induced and spontaneous visual aura a focal increase of BOLD 
signal (possibly refl ecting vasodilation) developed within occipital 
extrastriate cortex (area V3A) (Fig.  11 ).

   This BOLD change progressed contiguously and slowly over 
the cortex, congruent with the retinotopy of the visual percept and, 
then, following the same retinotopic progression, it diminished 
(possibly refl ecting vasoconstriction). This spreading signal 
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  Fig. 10    Relative cortical activations in patients with neuropsychiatric systemic lupus erythematosus during a 
simple motor task with the right hand in comparison with healthy volunteers (color-coded  t  values). ( a ) 
Contralateral primary sensorimotor cortex. ( b ) Contralateral putamen, contralateral middle frontal gyrus (MFG), 
bilateral MT/V5 complex, contralateral middle occipital gyrus (MOG). ( c ) Contralateral putamen, ipsilateral 
inferior frontal gyrus, bilateral MT/V5 complex, ipsilateral MOG. ( d ) Contralateral dentate nucleus. The relative 
activation of the contralateral primary sensorimotor cortex was signifi cantly correlated with brain dual-echo 
lesion load ( e ) ( p  < 0.001,  r  = 0.79) (from ref. [ 111 ])       
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disturbance had striking similarity with cortical spreading depression 
(CSD) phenomenon, thus supporting the theory that CSD was the 
electrophysiological correlate of visual aura. Notably, a spreading 
neural activity suppression has also been described in  migraine with-
out aura (MWoA)   patients during triggered migraine attacks [ 113 ]. 

 FMRI studies have also confi rmed dysfunctional activity of 
brainstem nuclei involved in pain modulation during both the ictal 
and interictal phases [ 114 ]. Stankewitz et al. [ 115 ] confi rmed an 
increased activation of the dorsal pons in migraine patients during 
induced migraine attacks. This study also revealed a selective 
gradient- like activity in the spinal trigeminal nucleus: after trigemi-
nal nociceptive stimulation, interictal migraine patients exhibited 
lower activations of this nucleus; however, shortly before the 
migraine attack, patients had an increased activation at this level. 
Of interest, the time interval to the next headache attack could be 
predicted by the  amplitude   of signal intensities in the spinal tri-
geminal nuclei, suggesting that this oscillating behavior may repre-
sent a key phenomenon in migraine pathogenesis. 

 Studies which have explored cerebral activity with the pain net-
work in migraine using experimental pain stimulation have shown 
abnormalities of a widespread subcortical and cortical brain net-
work involved in pain processing in these subjects. However, one 

  Fig. 11    Source localization and time of onset of the blood oxygenation level-dependent (BOLD) signal changes 
during induced and spontaneous visual aura attack in patients with migraine: ( a ) data are represented on 
infl ated cortical surface shown from a posterior-medial view; ( b ) a fully fl attened view of the cortical surface 
of the involved region. Cortical regions showing the fi rst BOLD perturbations are coded in  red  (according to the 
color-coded scale representing variation in time) and locations showing the BOLD perturbations at progres-
sively later times are coded by  green  and  blue  (according to the color-coded scale representing variation in 
time). The aura-related changes appeared fi rst in extrastriate cortex (area V3A) and then progressed contigu-
ously and slowly over the cortex following the same retinotopic progression of visual disturbance. From [ 112 ] 
with permission       
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of the main challenges in the interpretation of these results is to 
differentiate fi ndings consistent with a general pain response from 
those that might be specifi c to migraine [ 116 ]. Using a contact 
thermode as a noxious stimulation paradigm, migraine patients 
were found to exhibit a greater activation in the anterior cingulate 
cortex at 51 °C and less activation in the bilateral somatosensory 
cortex at 53 °C [ 117 ], thus supporting the presence of an increased 
antinociceptive activity in these patients, which could represent a 
compensatory functional reorganization aimed at modulating pain 
perception to the intensity of healthy controls. Other fMRI studies 
have demonstrated alterations in pain modulatory/inhibitory cir-
cuits, which may be related to the lack of habituation after repeti-
tive painful stimulation and increased cortical excitability to painful 
stimuli, that may lead to the development of allodynia [ 118 ]. The 
thalamus is now considered to play a pivolat role in the manifesta-
tion of allodynia. Burstein et al. [ 119 ] showed that brush and heat 
stimulation at the skin of the dorsum of the hand produced larger 
BOLD responses in the posterior thalamus of patients undergoing 
a migraine attack with extracephalic allodynia than the correspond-
ing responses registered when the same patients were free of 
migraine and allodynia. 

 An increased activation of cortical regions mediating the affec-
tive dimension of pain has also been demonstrated in migraineurs. 
During spontaneous and induced migraine, these patients had 
increased BOLD signal intensities in limbic structures (e.g., the 
amygdala and insula) and exhibited a stronger recruitment of affec-
tive cortical areas when exposed to emotional inputs [ 118 ]. Based 
on these data, a model of migraine as a dysfunction of a “neurolim-
bic” pain network has been proposed [ 120 ]. 

 Abnormalities of function of pain processing regions have also 
been investigated in patients with chronic migraine, particularly 
those with medication-overuse headache (MOH). Before the 
withdrawal of the offending medications, these patients had 
reduced pain related activity in areas of the lateral pain pathway, 
including the primary and secondary sensorimotor area. Such 
abnormalities regressed after treatment withdrawal [ 121 ]. In addi-
tion, patients with MOH presented dysfunctional activity of the 
meso-cortico-limbic dopamine circuit, including the ventro-medial 
prefrontal cortex and the substantia nigra/ventral tegmental area 
complex, during the execution of a decision-making under risk 
paradigm. The ventro-medial prefrontal cortex dysfunctions were 
reversible and attributable to the headache, whereas the substantia 
nigra/ventral tegmental area complex dysfunctions were persistent 
despite treatment withdrawal, suggesting that MOH may share 
some neurophysiological features with addiction [ 118 ]. 

 It is well established that migraine patients show also hyper- 
responsiveness of the primary visual cortex and a lack of habitua-
tion to visual stimuli [ 114 ]. These phenomena are more pronounced 
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in patients with migraine with aura (MWA) [ 122 ]. 
Hyper- responsiveness of the visual cortex in migraine extends 
beyond  primary visual areas, even in the interictal period. Antal 
et al. [ 123 ] demonstrated signifi cantly stronger activation of the 
extrastriate, motion-responsive MT area, representing the medial-
superior temporal area, in migraine patients vs. healthy controls in 
response to coherent/incoherent moving dot stimuli. This cortical 
hyperexcitability may represent the biological basis for the clinical 
observation of heightened vulnerability to motion sickness that 
migraine sufferers often report [ 114 ]. 

 Numerous studies provided a conceptual framework for under-
standing vestibular migraine as a variant of MWA produced by the 
convergence of vestibular information within migraine circuits. 
Several fMRI studies showed that vestibular stimulation activate 
cerebral regions that are generally involved in migraine and pain 
perception, such as the posterior and anterior insula, orbitofrontal 
cortex, and the posterior and anterior cingulate gyri, thus suggest-
ing that central constituents of the migraine circuit might include 
components of central vestibular pathways [ 124 ]. However, so far, 
fMRI has not been applied yet to investigate functional cortical 
abnormalities in patients with vestibular migraine. 

 RS fMRI studies have shown that functional connectivity is 
generally increased in pain-processing networks in migraineurs, 
whereas it is decreased in pain modulatory circuits [ 125 ]. In par-
ticular, migraineurs with a history of allodynia exhibit signifi cantly 
reduced RS functional connectivity between  periacqueductal gray 
matter (PAG)  , prefrontal regions, and anterior cingulate cortex 
compared with migraineurs without allodynia [ 126 ]. This RS func-
tional connectivity abnormalities have been related to the fre-
quency of migraine attacks and disease duration [ 125 ]. Signifi cant 
abnormalities of RS functional connectivity occur also in affective 
networks [ 125 ], the DMN [ 127 ] and the executive network [ 116 ].   

5    Conclusions 

 Taken all together, fMRI studies of patients with various white 
matter disorders demonstrate the potential of this technique to 
provide important insights into the mechanisms of cortical reorga-
nization following white matter injury. As a consequence, fMRI 
holds promise to improve our understanding of the factors associ-
ated with the accumulation of irreversible disability in MS and 
other white matter conditions. Although the role of cortical reor-
ganization in limiting the functional impact of white matter struc-
tural damage is still not proved defi nitively, the available data 
support the concept that cortical adaptive responses may have an 
important role in compensating for irreversible tissue damage, 
such as axonal loss. Thereby, it can be concluded that the presently 
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available fMRI data suggest that the rate of accumulation of 
 disability in MS and other white matter disorders might be a func-
tion not only of tissue loss, but also of the progressive failure of the 
adaptive capacity of the brain with increasing tissue damage.     
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    Chapter 21   

 fMRI in Cerebrovascular Disorders                     

     Nick     S.     Ward      

  Abstract 

   Stroke is a major cause of long-term disability worldwide. One of the key factors underpinning recovery of 
function is reorganization of surviving neural networks. Noninvasive techniques such as fMRI allow this 
reorganization to be studied in humans. However, the design of experiments involving patients with impair-
ment requires careful consideration and is often constrained. Diffi culty with some tasks can lead to a number 
of performance confounds, and so tasks and task parameters that avoid or minimize this should be selected. 
Furthermore, when studying patients with cerebrovascular disease, it is important to consider the possibility 
that the blood oxygen level-dependent signal may be altered and affect interpretation of results. Despite these 
potential problems, careful experimental design can provide real insights into system- level reorganization 
after stroke and how it is related to functional recovery. Currently, results suggest that functionally relevant 
reorganization does occur in cerebral networks in human stroke patients. For example, it is apparent that 
initial attempts to move a paretic limb following stroke are associated with widespread activity within the 
distributed motor system in both cerebral hemispheres. This reliance on nonprimary motor output pathways 
is unlikely to support full recovery, but improved effi ciency of the surviving networks is associated with 
behavioral gains. This reorganization can only occur in structurally and functionally intact brain regions. 
Understanding the dynamic process of system-level reorganization will allow greater understanding of the 
mechanisms of recovery and potentially improve our ability to deliver effective restorative therapy.  

  Key words     fMRI  ,   Stroke  ,   Blood oxygen level-dependent  ,   Motor cortex  ,   Premotor cortex  ,   Plasticity  , 
  Rehabilitation  

1      Introduction 

 Studying patients who have suffered from stroke with functional brain 
imaging is diffi cult for a variety of reasons. The motivation behind 
such studies is a desire to understand and subsequently improve the 
process of functional recovery. Stroke and other forms of  neurological 
damage   account for nearly half of all severely disabled adults [ 1 – 3 ]. 
Longitudinal studies of recovery suggest that only 50 % of stroke sur-
vivors with signifi cant initial upper limb paresis recover useful function 
of the limb [ 4 ]. Furthermore, those with poor recovery of arm func-
tion have dramatically impaired quality of life and sense of well-being 
[ 5 ,  6 ]. It is clear that effective treatment of motor impairment after 
stroke is critically important to many people. 
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 The mainstay of treatment is neurorehabilitation. The overall 
approach is effective and the benefi t of strategies aimed at helping 
patients  adapt  to impairment well proven [ 7 ]. Treatments aimed at 
 reducing  impairment, remain poorly developed. There is an over-
riding assumption that one way to tackle impairment in those 
patients with  focal brain damage   is to attempt to promote func-
tionally relevant reorganization within surviving neural networks 
[ 8 ]. Over the last decade, advances in our understanding of how 
the normal brain is organized at the molecular, cellular, and sys-
tems level have improved enormously. Advances in our under-
standing of the mechanisms of impairment after brain injury, 
including stroke, are way behind. Translating fi ndings from proof- 
of- principle studies into real treatments remains problematic and 
requires urgent attention [ 9 ]. Thus, the clinical neurosciences have 
the potential to make a unique contribution toward developing 
 rehabilitation   strategies designed to reduce impairment. 

 The tools available for studying the working  human brain   are 
different to those used in animal models. In human subjects, 
experiments are performed at the level of neural systems rather 
than single cells or molecules. This chapter will concentrate on the 
way that fMRI can be used to contribute. The fi rst half will con-
sider the specifi c diffi culties involved in performing fMRI experi-
ments in stroke patients, in particular how fMRI signals might be 
affected in cerebrovascular disease and how studying patients with 
impairment should infl uence experimental design. In the second 
half, examples of studies using fMRI in stroke patients will be dis-
cussed to illustrate advances in our understanding of post-stroke 
functional brain reorganization. Many studies have been per-
formed in the somatosensory [ 10 – 12 ] and language systems [ 13 –
 15 ], but studies of the motor system are particularly numerous and 
will be used to illustrate how fMRI may be used.  

2    Blood Oxygen Level-Dependent Signal in Cerebrovascular Disease 

 fMRI relies on the blood oxygen level-dependent (BOLD) signal. 
In brief, the BOLD signal relies on the close coupling between 
blood fl ow and metabolism. During an increase in  neuronal activa-
tion   there is an increase in local cerebral blood fl ow, but only a 
small proportion of the greater amount of oxygen delivered locally 
to the tissue is used. This results in a net increase in the tissue con-
centration of oxyhemoglobin and a net reduction in paramagnetic 
deoxyhemoglobin in the local capillary bed. The magnetic proper-
ties of hemoglobin depend on its level of oxygenation so that this 
change results in an increase in local tissue-derived signal intensity 
on T2*-weighted MR images [ 16 ]. 

 The mechanism of neurovascular signaling to the  blood vessels   
controlling cerebral blood fl ow is still unclear, although it may 
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involve metabolic [ 17 ,  18 ] or neurochemical [ 19 ,  20 ] mechanisms. 
In addition, the generation of BOLD signal is still reliant on venous 
blood volume, blood fl ow, blood oxygenation, and oxygen con-
sumption. Thus, it is possible that any disease state that changes 
these parameters will potentially modify the BOLD signal. It is 
therefore legitimate to be concerned whether the BOLD signal is 
reliable in patients who have suffered stroke and in subjects with 
evidence of both large and small vessel atherosclerosis. The poten-
tial problem arises because in general, the BOLD signal is assumed 
to have the same shape in all subjects and in all brain regions. In one 
case, the canonical  hemodynamic response function (HRF)   has 
been derived by principle component analysis of empirical data with 
a peak magnitude occurring 6 s after the neuronal activity [ 21 ]. 

 There is evidence to suggest that the shape of the hemody-
namic response might be altered after stroke. Newton et al. [ 22 ] 
demonstrated a greater time to peak BOLD response in ipsilateral 
compared with contralateral primary motor cortex (M1) in con-
trols. In three  chronic stroke patients  , the time to peak BOLD 
response was increased in ipsilesional (contralateral) M1 compared 
with controls. Interestingly, in these patients the time to peak 
BOLD response in contralesional M1 was equivalent or less than 
that for ipsilesional M1, representing a fi nding opposite to that 
seen in healthy controls. Pineiro et al. [ 23 ] have also described a 
slower time to peak BOLD response in sensorimotor cortex bilat-
erally in 12 chronic stroke patients with lacunar infarcts. Thus, 
modeling the BOLD response with a canonical HRF might be less 
effi cient in stroke patients. It is worth considering what the effect 
of this would be in the context of a standard functional imaging 
analysis using the general linear model approach. If the canonical 
HRF was a poor fi t for the actual response, then the residual error 
of the analytical model would be greater (than if the fi t was good), 
thus  lowering t - and  Z -scores and depressing sensitivity to detec-
tion of differences. In fact, in general, most studies of stroke 
patients have found increased activation in a number of brain 
regions over and above healthy controls, so it might be the case 
that these overactivations have been  underestimated . However, 
modeling differences in measured HRF from the canonical is likely 
to be benefi cial. The use of temporal and dispersion derivatives of 
the canonical HRF to specifi cally capture differences in the timing 
or duration of the peak response, for example, is likely to increase 
sensitivity. 

 In addition to changes in the shape of the HRF, there is evi-
dence that in patients with impaired cerebrovascular reserve or 
advanced narrowing of the cerebral arteries, the BOLD fMRI sig-
nal may be reduced, or even become negative [ 24 – 26 ]. Röther 
et al. [ 27 ] describe a single patient, which illustrates the point. The 
patient was found to have bilateral occluded internal carotid arter-
ies and an occluded vertebral artery. The  cerebrovascular reactivity  , 
as determined by reduced change in T2* signal during 
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hypercapnia, was severely impaired in the left hemisphere. The 
fi nding of importance was that during a motor task with the right 
hand, the BOLD response in the left motor cortex was negative for 
the duration of the task. This suggests that the initial dip in BOLD 
signal due to a relative decrease in oxyhemoglobin was not fol-
lowed by the normal vascular response (which would have resulted 
in an increase in oxygenated and decrease in deoxygenated hemo-
globin). This subject had previously suffered from a transient isch-
emic attack involving the right arm. It is likely that these symptoms 
were related to hemodynamic insuffi ciency, and it is interesting to 
speculate that the presence of a prolonged negative dip in BOLD 
signal represents a marker for those at risk from such symptoms. 
Others have made the point that this impaired cerebrovascular 
reactivity might be due to either large or small vessel disease [ 26 ]. 
Further investigation will reveal whether this idea has genuine 
potential as a clinical tool. 

 Several studies have now suggested that impairment of normal 
 vasodilatation   in response to hypercapnia is associated with dimin-
ished magnitude of BOLD signal [ 25 ,  26 ,  28 ,  29 ]. Thus, in patients 
with severely impaired cerebrovascular reactivity neuronal activation 
may not translate into a BOLD response in the conventional sense, 
and standard models using the canonical HRF may not be suffi cient. 

 However, the scale of the problem is not yet clear. For exam-
ple, the cerebrovascular reactivity in the right hemisphere of the 
patient studied by Röther et al. [ 27 ] was moderately impaired and 
the BOLD response during a motor  tas  k with the left hand was 
entirely normal. Patients with hemodynamic symptoms are rare, 
and are likely to be excluded from fMRI studies. In addition, 
patients with severe stenosis of ipsilesional internal carotid arteries 
are usually also excluded, although it is not clear that this is neces-
sary. It may also be the case that small vessel disease may also make 
a signifi cant contribution to impaired cerebrovascular reactivity. 

 Thus, although there is evidence that impaired  cerebrovascular 
reactivity   can diminish the BOLD response, there is no evidence 
that the BOLD signal is erroneously detected in these patients, i.e., 
this is largely a problem of false negative results. In general, the lit-
erature concerning differences between stroke patients and healthy 
controls is dominated by the fi nding of overactivity in patients com-
pared with controls, and once again, it is possible that the issue of 
cerebrovascular disease has led to an underestimation of changes in 
cortical organization after stroke. It is clear that when examining for 
differences between a group of patients and a group of healthy con-
trols, the nonneural factors that can infl uence the BOLD response 
will contribute signifi cantly to whether a difference is found or not. 
However, several studies have begun to use a correlation approach. 
That is to say, to attempt to explain variability in the task-related 
BOLD signal with some other parameters, such as a measure of 
recovery [ 30 ] or corticospinal tract integrity [ 31 ,  32 ]. It is unlikely 
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that changes in cerebrovascular responsiveness will correlate with 
recovery or an anatomical measure of corticospinal tract integrity, 
and so it is unlikely to account for any signifi cant (and biologically 
plausible) results. As we have already discussed, however, the ability 
to detect a real fi nding is likely to be diminished by alterations in 
nonneural contributors to the BOLD signal. A multimodal approach 
using different imaging techniques (BOLD, perfusion, hypercapnic 
challenge) and concurrent neurophysiological methods (electroen-
cephalography [EEG], magnetoencephalography [MEG], transcra-
nial magnetic stimulation [TMS]) may be useful when addressing 
the infl uence of multiple physiological variables. These issues will 
require further empirical study. 

 The discussion regarding differences in hemodynamic coupling 
is also of relevance when considering the effects of age, given that 
stroke is commoner with advancing age, and that often age- matched 
controls are used in studies of stroke patients. D’Esposito et al. [ 33 ] 
examined the effects of age on the BOLD signal generated during a 
button press task in response to a visual cue, using a sparse event-
related design. Using a standard fi xed effects analysis,  task-related 
activation   was detected in M1 above the chosen threshold in only 
75 % of the older subjects but 100 % of the younger subjects. 
Furthermore, for those in whom activation was detected, four times 
the number of suprathreshold voxels was present in the younger 
compared with the older subjects. Thus, on the face of it, M1 appears 
to be less active during a button press task in older subjects. However, 
the most important fi nding was in relation to the  signal-to-noise 
ratio (SNR)  , which was reduced in elderly subjects. Results from 
single subject or group fi xed effects analyses of functional imaging 
data are generally presented as  t  statistics for each voxel (volume ele-
ment) of the brain. The result is therefore dependent on both the 
magnitude of the signal change and the residual variance after this 
has been accounted for. Thus, an increased SNR will lead to a lower 
 t  statistic, and therefore fewer suprathreshold voxels. In fact, 
D’Esposito et al. [ 33 ] found no difference in the magnitude of task-
related signal change in M1, supporting the notion that the dimin-
ished number of  suprathreshold voxels   was largely attributable to 
the decreased SNR in the older subjects. 

 The problem of reduced  SNR   can be effectively dealt with by 
employing the statistical technique of random effects analysis as 
opposed to fi xed effects analysis. Random effects analysis of func-
tional imaging data treats each subject as a random variable. The 
experimental variance is dominated by between subjects variability 
(as opposed to within subject variability in the case of fi xed effects 
models). The data for each subject comprise the voxel-wise param-
eter estimate for the task under consideration, which refl ects the 
magnitude of the signal change in each voxel. Appropriate statistics 
can be performed on these data, which are less likely to be infl u-
enced by differences in SNR [ 33 ]. Using a random effects analysis, 
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and employing both temporal and dispersion derivatives of the 
HRF, Ward et al. [ 34 ] demonstrated no change in the shape of the 
hemodynamic response during a hand grip task with advancing 
age, in keeping with the fi ndings described earlier.  

3    Issues in Experimental Design 

 The results from any functional imaging study are only as reliable 
as the care with which the experiment is constructed and executed, 
but studies involving patients who have had a stroke raise some 
specifi c issues. The selection of patients, choice of experimental 
paradigm, within scanner monitoring of performance, and the 
approaches to data analysis all require careful consideration. 

   In general, stroke patients are a heterogeneous group differing in 
several important ways, not least the site and size of infarct, patency 
of the vascular system, age, comorbidities, and concurrent medica-
tion. The criteria for patient selection will to an extent depend on 
the experimental question. It is unlikely that averaging the results 
from a wide variety of patient types will prove useful because of this 
variability, but there are two other ways of approaching the experi-
mental design. First, it may be desirable to use a group of patients 
highly selected on the basis of lesion location, for example. Results 
from this type of controlled study are powerful, but do not gener-
alize outside the subgroup selected. Alternatively, it might be more 
useful to study a group of patients who vary in a specifi c factor of 
interest (e.g., outcome), to explore the relationship between this 
factor and task-related brain activity. Results from studies using 
this approach can be generalized more easily.  

   The choice of experimental task is critical and is dependent on the 
experimental question. For example, a study of the relationship 
between brain activation and outcome after stroke will by necessity 
involve patients with different performance abilities. Similarly, a  lon-
gitudinal study   will require that patients are studied at different stages 
of recovery. For an active motor or language task this can result in the 
problem of performance confounds, because the ability to perform 
the task is not the same across patients or sessions. A change in exper-
imental task performance can have signifi cant effects upon the pat-
tern of brain activation. In other words, comparison across patients 
or time points is made diffi cult if the patients are performing the task 
differently. Thus, each patient must perform the  same task  during the 
fMRI experiment, so that a meaningful comparison can be made 
across subjects or scanning sessions. Maintaining a consistent task is 
therefore of great importance, but in stroke recovery studies equality 
of task may be interpreted in a number of ways. In particular, a task 
may be consistent across patients with different abilities in terms of 
 absolute  or  relative  parameters. 

3.1   Subject Selection  

3.2  Performance 
Confounds
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 This can be illustrated by considering a simple  motor experiment  . 
The absolute task parameters can be fi xed (by setting the same tar-
get force and rate for each subject or session), but performing a task 
may be experienced as more or less effortful depending on the level 
of recovery. Consequently, any differences in results between sub-
jects or sessions could be attributed to differences in “effort” 
exerted. Alternatively, the relative task parameters (i.e., the level of 
task diffi culty) can be fi xed across subjects/sessions. In this sce-
nario, patients will perform the task at different absolute forces and 
rates, and so differences in results across subjects/sessions could be 
attributed to differences in the absolute task parameters. When 
using an “active task,” these factors must always be considered and 
results interpreted with these confounds in mind. Increased effort is 
a potentially useful strategy for overcoming motor, language, or 
cognitive impairment in a real world setting. As described earlier, 
some patients may use less effortful as their performance improves. 
Is the focus of interest the reorganization that might be the sub-
strate for recovery, or is it the strategy that each patient uses to 
perform a task to a certain level, given the constraints of their 
impairment? Both may be of interest, but the choice of experimen-
tal design has an impact on which process is being studied. The 
problem of performance confounds is avoided with passive tasks 
(e.g., passive limb movements and passive listening), but these are 
complementary approaches to active tasks, not substitutes for them.  

   The rate of task performance is also something that has implications 
for both data analysis and interpretation of results. Consider once 
again a simple motor task such as fi nger tapping or hand squeezing. 
The rate of performance of a repetitive task will  infl uence how 
effortful the task is, in the same way as the target force. Most experi-
ments are conducted in a “block design”   ; that is to say a period of 
activity (usually for 16–30 s) followed by a period of rest. If subjects 
are asked to perform at the same rate (even if the target force is 
scaled according to each subject’s own performance abilities), for 
example, fi nger tapping at 1 Hz for 20 s, then differences across 
subjects/sessions could be due to differences in perceived effort, 
just as with equal absolute target forces. Some investigators have 
varied the rate at which subjects are asked to perform a task to try 
to control for effort exerted. However, comparing blocks with dif-
ferent numbers of “events” within them is problematic because the 
BOLD signal summates depending on how many events there are. 
The BOLD response needs approximately 10 s and longer to return 
to baseline, but “events” are usually more frequent than this (e.g., 
1 Hz fi nger tapping). It is usually assumed that there is a summa-
tion of the overlapping BOLD responses, which is largely (but not 
entirely) linear [ 35 ,  36 ]. The basis function (boxcar design) in the 
general linear model will have the same “height,” and so more fre-
quent events will result in a larger parameter estimate, for the same 
amount of event-related activity. In fact, it is the quantity of events, 
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not their frequency, which will modulate BOLD signal in motor 
cortices [ 37 ]. Thus, if a subject performs the task at 1 Hz and then 
at 0.5 Hz in both cases for 20 s, and each period is modeled with 
the same boxcar basis function, then the parameter estimate (or 
magnitude of activity) will appear to be roughly twice as much dur-
ing the more frequent task. This refl ects the quantity of “events,” 
but not a change in the way the brain is organized. Thus, if patients 
perform a task more slowly than healthy controls to control for 
effort, then the brain  activity   associated with that movement will be 
underestimated in comparison to those subjects who perform the 
task at a faster rate. One way around this problem is to use an event-
related design in which the intertrial interval is long enough for the 
task to be performed repetitively without increasing the sense of 
effort. This design may be less effi cient in terms of fMRI design, 
but avoids the confounds described earlier [ 31 ,  32 ].  

   Investigators are often tempted to use more complex tasks when 
studying patients with impairment in the hope that this will maxi-
mize differences between patients and control subjects. This is 
sometimes done in the hope of exploring a more  ecologically valid  
task, i.e., one which is relevant to function in the real world. 
However, it is never possible to study the neural correlates of a task 
that a subject cannot themselves perform. By introducing more 
complexity into the task, patients with signifi cant  impairment   are 
more likely to adopt new operational strategies toward these 
 experimental tasks in an attempt to adapt to their impairment. 
These differences in strategy could therefore account for differ-
ences between subject groups. Although of clinical interest, differ-
ences in strategy across a group represent a potential experimental 
confound if they are unexpected and not measured. One approach 
is therefore to use a simple task that minimizes difference in strate-
gic approach to the task so that valid comparisons can then be 
made  across   subjects/sessions.  

   Once a paradigm has been selected it is important that task perfor-
mance is monitored during the experiment. Intersubject variability 
may be greater after stroke and new sources of variability can arise, 
such as mirror or associated movements. To take account of this, 
some investigators record behavior during a prescan rehearsal, 
whilst others incorporate the increasingly available instrumentation 
that is compatible with the MRI setting. Prescan rehearsal provides 
some idea of whether a task can be performed correctly, or whether 
mirror movements are present, for example. However, in-scanner 
recordings allow this information to be incorporated into image 
analysis as a covariate, and thus improving statistical power by 
accounting for correlated variance in the measured scan signal. 

 The experimental approach is therefore dictated by the experi-
mental question. Not all investigators will have the same question, 

3.4  Task Complexity
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but the issues discussed earlier need to be considered in all cases. For 
most questions, this approach is entirely appropriate and standard-
ization of experimental paradigms, patient selection, and method of 
analysis across experiments is not required. In the case of experimen-
tal questions that require a multicenter approach that is technically 
feasible, standardization of such factors would be required.   

4    Reorganization in the Motor System After Stroke 

   Early studies of  motor system organization   after stroke compared 
brain activation during movement in well-recovered patients and 
normal controls. Early group studies of stroke patients with sub-
cortical lesions described greater activation within a number of 
motor-related cortical regions compared with controls during a 
fi nger tapping task [ 38 – 42 ]. It was suggested that nonprimary (or 
secondary) cortical motor regions were thus responsible for recov-
ery of motor function in these patients. Strick [ 43 ] had proposed 
this as a potential mechanism of restoration of function, some years 
before based on an understanding of the organization of the corti-
cal motor system in primates. Normal distal motor function is facil-
itated largely through the corticospinal pathway, from the cortical 
motor system to the spinal cord motor neurons. The majority of 
corticospinal fi bers originate in the M1, but there are contribu-
tions from other cortical regions [ 44 ]. In  primates  , the M1, arcu-
ate (or lateral) premotor cortex (PM), and supplementary motor 
area (SMA) are each part of parallel, independent motor networks 
with (1) separate projections to spinal cord motoneuron and (2) 
interactions at the level of the cortex [ 43 ]. There is some similarity 
between the corticospinal projections from the hand regions of 
M1, PM, and SMA. Thus, it seemed feasible that a number of 
motor networks acting in parallel could generate an output to the 
spinal cord necessary for movement, and that damage in one of 
these networks could be at least partially compensated for by activ-
ity in another [ 45 ,  46 ]. Subsequently, many studies have demon-
strated that the performance of a simple motor task with the 
affected limb is associated with greater bilateral brain activation in 
a number of cortical motor-related areas compared with healthy 
volunteers, including dorsal PM (PMd) and ventral PM (PMv), 
SMA, and cingulate motor areas (CMA) [ 23 ,  38 – 42 ,  47 – 52 ]. 

 A critical question is whether these differences are related to 
recovery. As discussed previously in this chapter, this question 
requires that the group of patients examined have a wide variety of 
outcomes, or else  longitudinal studies   should be performed. In the 
fi rst such cross-sectional study, a group of chronic stroke patients 
with infarcts sparing M1 were scanned during a hand grip with 
visual feedback task using fMRI [ 30 ]. The target forces used were 
always a proportion of each subject’s own maximum grip force, so 

4.1  Residual 
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that any differences were unlikely to be due to differences in effort. 
The more affected patients had greater task-related activity in sec-
ondary motor regions in both affected and unaffected hemispheres, 
whereas patients with the best motor scores had activation patterns 
that were indistinguishable from healthy age-matched volunteers. 
A similar result was observed in a group of patients studied at 
approximately 10 days post-stroke [ 53 ]. It was hypothesized that, 
secondary motor areas are recruited in response to damage to cor-
ticospinal output. A subsequent study demonstrated a strong posi-
tive correlation between secondary motor area recruitment in both 
hemispheres and corticospinal system damage (Fig.  1 ) [ 31 ]. A 
more “normal” corticospinal system was associated with greater 
task-related activity in contralesional M1 (hand area), suggesting a 
progressive shift away from primary to secondary motor areas with 
increasing disruption to corticospinal system. This has also been 

  Fig. 1    Brain regions in which there is a  negative correlation   between corticospinal system integrity (as assessed 
with transcranial magnetic stimulation) and task-related signal change during hand grip with the affected 
hand. Increasing task-related activity is seen in a number of secondary motor areas including premotor regions 
and supplementary motor area as damage to the corticospinal system increases. The affected hand was on 
the left side. Results are displayed on a “glass brain” shown from the right side ( top left image ), from behind 
( top right image ), and from above ( bottom left image ). Voxels are signifi cant at  P  < 0.001 (uncorrected), and 
clusters are signifi cant at  P  < 0.05 (corrected) (Reproduced from ref. [ 31 ], Oxford University Press.)       
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described as an increase in either bilateral or contralesional  activity  , 
but the exact pattern is likely to depend on the anatomy of the 
damage. Furthermore, several secondary motor areas have bilateral 
projections to motor output systems [ 54 ,  55 ]. Thus, after stroke, 
the brain will use what is available (i.e., what is intact and con-
nected so that motor output can be infl uenced) in an attempt to 
generate motor output to spinal cord motoneurons.

   These results do not immediately support the idea that second-
ary motor areas are the substrate for motor recovery. Labeling corti-
cospinal neurons with retrograde tracers has revealed multiple 
nonprimary corticospinal output zones in both the lateral and the 
medial areas of the frontal lobe (SMA, CMA, PMd, and PMv) [ 56 –
 58 ]. These output zones contain large numbers of  corticospinal 
neurons   that project to the intermediate zone and ventral horn of 
the spinal cord suggesting their potential for direct control of spinal 
motoneurons in a way paralleling corticospinal output from M1 
[ 45 ]. In primates, however, projections from secondary motor areas 
to spinal cord motor neurons are less numerous and less  effi cient at 
exciting spinal cord motoneurons than those from M1 [ 59 ,  60 ]. 
Moreover, unlike M1, facilitation of distal muscles from SMA, PMd, 
and PMv is not signifi cantly stronger than facilitation of proximal 
muscles. These brain regions probably exert their infl uence via indi-
rect descending motor pathways such as the reticulospinal or rubro-
spinal pathways [ 61 ]. These pathways often have bihemispheric 
origins, hence bihemispheric task-related activity is more common 
after stroke. Furthermore, they are also more likely to supply the 
upper limb fl exors, hence fl exor synergistic patterns of movement in 
patients who are reliant on these indirect rather than direct path-
ways. Alternatively, or possibly in addition, cortico- cortical interac-
tions, presumably with surviving M1 output, may also play an 
important role in supporting recovered motor function. 

 What is the evidence for the idea that the secondary motor 
areas of both hemispheres are contributing to recovered function? 
There are two ways to investigate the functional relevance of sec-
ondary motor region recruitment. One is to measure how task- 
related activity co-varies with modulation of task parameters. In 
healthy humans, for example, increasing force production is associ-
ated with linear increases in BOLD signal in contralateral M1 and 
medial motor regions, implying that they have a functional role in 
force production [ 62 – 64 ]. A recent study examined specifi cally for 
regional changes in the control of force modulation after stroke 
[ 32 ]. In patients with greater corticospinal system damage, force- 
related signal changes were seen mainly in contralesional dorsolat-
eral PM, bilateral ventrolateral premotor cortices, and contralesional 
cerebellum, but not ipsilesional M1 (Fig.  2 ).

   Thus, not only do premotor cortices become increasingly active 
as corticospinal system integrity diminishes [ 31 ], but they can take 
on a new “M1-like” role during modulation of force output, which 
implies a new and functionally relevant role in motor control. 
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 Second, experiments in which  premotor activity   is transiently 
disrupted with TMS can lead to worsening of recovered motor 
behaviors in patients with no effect on the performance of control 
subjects [ 51 ,  65 ,  66 ], again implying new and functionally relevant 
roles. Furthermore, TMS to contralesional PMd is more disruptive 
in patients with greater impairment [ 51 ], whereas TMS to ipsile-
sional PMd is more disruptive in less impaired patients [ 65 ] in 
keeping with a general shift toward functionally relevant activity in 
the contralesional hemisphere of patients with greater damage to 
motor output pathways. 

 These results are important because they tell us that the 
response to focal injury does not involve simple substitution of one 
cortical region for another. It is clear that nodes within remaining 
motor networks can take on new functional roles. The  contribution 
of  contralesional M1 to recovery   is surprisingly unresolved. An 
early view was that the contralesional M1 might be viewed much 
like an extra secondary motor area, contributing what descending 
signals it could. An alternative view suggested that contralesional 
M1 impairs motor recovery through excessive inhibitory drive to 

Force modulation with
intact CST

ipsilesional M1

contralesional PMd

contralesional PMv ipsilesional PMv

contralesional cerebellum (Cr I)

Force modulation with increasing
CST damage

  Fig. 2    Brain regions in which the blood oxygen level-dependent (BOLD) signal varies linearly with force exerted 
during hand grip change as a function of corticospinal tract (CST)  integrity   (as assessed with transcranial 
magnetic stimulation). The affected hand was on the left side. In the  left panel , increasing force leads to 
greater modulation of BOLD signal in ipsilesional M1 in patients with less damage to CST. In the  right panel , 
increasing force leads to greater modulation of BOLD signal in contralesional dorsal premotor cortex, contral-
esional cerebellum, contralesional, and ipsilesional ventral premotor cortex. This demonstrates that brain 
regions involved in force modulation shift away from primary motor cortex to premotor regions with increasing 
CST damage. Results are overlaid onto the average T1-weighted structural scan obtained from all stroke 
patients in the study (Adapted from ref. [ 32 ], Blackwell Publishing.)       
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ipsilesional M1 [ 8 ]. The more mundane truth is likely to be that 
the role played by contralesional M1, secondary motor areas and 
indeed ipsilesional M1 is likely to depend on a number of factors, 
most importantly the profi le of anatomical damage and the actual 
task being performed.  

   Subsequent studies have turned to examining how connectivity 
between nodes in the motor network is affected by stroke [ 67 ]. 
Techniques such as Dynamic Causal Modelling have examined 
task-related networks, whereas other approaches have looked at 
“large-scale” whole brain networks (using for example, graph- 
theory). In general, both approaches have followed the same theme 
in looking for differences between patients and healthy controls as 
well as testing for correlations between brain imaging measures, 
particularly interhemispheric connectivity, and clinical scores. Most 
fi ndings at rest point to lower connectivity between motor cortices 
in patients with more impairment [ 68 ] and greater corticospinal 
tract damage [ 69 ]. During movement of the affected hand the 
infl uence of contralesional to ipsilesional M1 is more inhibitory, 
but once again, only in more impaired patients [ 70 ]. Even the 
interhemispheric infl uence of ipsilesional dorsolateral premotor 
cortex is different depending on the level of motor impairment 
(itself dependent on residual structural anatomy) [ 71 ]. 

 In summary, in the chronic stroke brain, there is a reconfi gura-
tion of the cerebral motor system. Task-related brain activation 
varies across chronic stroke patients in a way that appears to be 
predictable. It is important to stress that this reorganization is 
often not successful in returning motor function to normal. It is 
less effective than that in the intact brain but will nevertheless 
attempt to generate some form of motor signal to spinal cord 
motoneurons in the most effi cient way. The exact confi guration of 
this new motor system will be determined most obviously by the 
extent of the anatomic damage. This includes the extent to which 
the damage affects cortical motor regions, white matter pathways, 
and even which hemisphere is affected [ 72 ]. The more of the nor-
mal functional architecture that survives, the greater will be the 
potential for full recovery. In patients with damage to primary sen-
sorimotor cortex, for example, tests of fractionated fi nger move-
ment correlated more strongly with the proportion of surviving 
“normal” sensorimotor cortex (as defi ned by functional activation 
maps in normal controls) than with total infarct volume [ 73 ]. 

 This anatomic explanation accounts for why some patients do 
better than others, but it does not account for the recovery of 
function that occurs over weeks and months in individual patients. 
How does the reorganized state evolve? Longitudinal fMRI studies 
have shed further light on the process [ 47 ,  50 ,  74 – 76 ], although 
only a handful have studied patients on more than two occasions. 
One study scanned subcortical stroke patients on average eight 
times over 6 months after stroke [ 76 ] and demonstrated an early 

4.2  Connectivity 
Based Analysis 
of  Post-stroke Motor 
Networks  
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Thereafter, functional recovery was associated with a focusing of 
task-related brain activation patterns toward a “normal” lateralized 
 pattern  . In general, longitudinal studies have demonstrated a 
focusing of activity toward the lesioned hemisphere motor regions 
that is associated with improvement in motor function [ 47 ,  74 ], 
with some patients showing persistent recruitment [ 50 ].   

5    Conclusions 

 In summary, the brain activation pattern of an individual patient 
represents the state of reorganization within that system at the 
time of study. This pattern is highly infl uenced by a number of 
methodological factors as previously discussed. However, in appro-
priately controlled experiments, these activation patterns tell us 
something about how that brain is functionally organized. 
Functional improvement with treatment is likely to be associated 
with changes within this network. The potential for functionally 
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    Chapter 22   

 fMRI in Psychiatric Disorders                     

     Erin     L.     Habecker    ,     Melissa     A.     Daniels    ,     Elisa     Canu    ,     Maria     A.     Rocca    , 
    Massimo     Filippi    , and     Perry     F.     Renshaw      

  Abstract 

   Functional neuroimaging has become an important tool for clinical research, with the potentiality to 
provide information on psychiatric disease pathology and treatment response. We review functional mag-
netic resonance imaging (fMRI) research fi ndings for fi ve psychiatric disorders: schizophrenia, major 
depressive disorder, bipolar disorder, obsessive-compulsive disorder, and posttraumatic stress disorder. 
Brain functional abnormalities and possible underlying mechanisms for disease symptoms are discussed, 
with a focus on future clinical implications for fMRI in psychiatric disease.  

  Key words     fMRI  ,   Blood oxygen level dependent  ,   Psychiatric disorders  ,   Schizophrenia  ,   Major depres-
sive disorder  ,   Bipolar disorder  ,   Obsessive-compulsive disorder  ,   Posttraumatic stress disorder  

1      Introduction 

   Functional magnetic resonance imaging (fMRI) is a unique, noninva-
sive method of measuring neural activation through changes in oxida-
tion and regional blood fl ow. An important  clinical research tool   that 
has been used more and more frequently in recent years, fMRI is able 
to indirectly detect brain activity in the working brain, allowing for the 
assessment of psychiatric disease physiology and treatment effects. 
fMRI does not involve exposure to radioactive tracers, thus allowing 
patients and subjects to undergo multiple scans over a short period of 
time, if necessary. Most fMRI studies involve the measurement of sig-
nal arising from hydrogen nuclei [ 1 ,  2 ]. Common types of fMRI used 
in psychiatric neuroimaging include blood oxygen level dependent 
(BOLD) and arterial spin labeling (ASL). 

 Instead of incorporating a radioactive tracer as in  positron 
emission tomography (PET)   or  single photon emission computed 
tomography (SPECT)  , fMRI makes use of the unique properties 
of hemoglobin (BOLD and BOLD contrast methods) or the water 
molecules of fl owing blood (ASL) to produce images of neural 
activation. Most fMRI studies today are BOLD studies that make 

1.1  Overview of fMRI
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use of T 2 * mechanisms. ASL fMRI depends on  T 1  effects  , which 
will be further described below. Hemoglobin is present in the body 
in two forms: the oxygenated form, oxyhemoglobin; and the deox-
ygenated form, deoxyhemoglobin. T 2 * weighed images of each 
form of hemoglobin are distinctive because the two have different 
magnetic properties. Neuronal activity results in greater cerebral 
blood fl ow (CBF) to the specifi c brain areas involved in the pro-
cessing of a particular task, leading to an increase in T 2 * signal and 
a more intense MR signal on the images created. Tasks and stimuli 
are used during fMRI to elicit a predicted brain response—they are 
intended to alter neural activity in brain regions thought to be 
impacted by the disorder in question.  

   The advantages of BOLD fMRI—the most common  psychiatric 
fMRI modality  —as compared with other functional imaging tech-
niques, such as PET, include the greater sensitivity of the fMRI 
signal to event-related changes in neuronal blood fl ow and the 
increased spatial resolution of fMRI images [ 3 ]. Temporal resolu-
tion, which was historically poor in previous imaging methods, has 
been improved drastically through the use of high-speed MR scan-
ners with the ability to perform echo planar imaging, acquiring 
single image planes in 50–100 ms [ 4 ]. However, one distinct dis-
advantage of this mode of functional imaging that must be taken 
into consideration during experimental construction is the inability 
of BOLD signal to differentiate between changes in CBF that are 
correlated with  neuronal activity   and changes that are independent 
of it. Such changes include activity-related signal changes in drain-
ing veins away from the brain activity [ 5 ], incidental neural activa-
tions that are unrelated to the task at hand [ 6 ], and changes in 
CBF caused by changes in respiration. Even small respiration 
changes can alter blood arterial carbon dioxide tension ( P CO 2 ), 
which has a large effect on CBF [ 7 ,  8 ]. Subjects with an anxiety 
disorder, or state anxiety induced by the  MRI environment  , are 
particularly susceptible to variations in respiration, and this must 
be taken into account during experiment planning using 
BOLD. The effects of respiration changes on  P CO 2  may be man-
aged by acquiring continuous measurements of  P CO 2 , or end-tidal 
CO 2 , during the experimental protocol [ 3 ]. When this function is 
available, investigators have the option of either acquiring data 
only during steady-state CO 2  levels [ 9 ], or attempting to adjust for 
the effect of  P CO 2  on global CBF [ 10 ,  11 ] and integrate this mod-
ifi cation into fMRI indices.  

    ASL   differs from BOLD in that it depends on T 1  mechanisms and 
the magnetic labeling of water molecules to generate images. Water 
molecules in fl owing blood are tagged through the saturation or 
inversion of the longitudinal component of the MR signal [ 12 ]; 
these molecules then diffuse from capillaries into brain tissue where 

1.2  BOLD

1.3  ASL
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they alter the magnetization of the local tissue [ 1 ]. As blood fl ow 
into the imaging slice increases, there is a more signifi cant differ-
ence between the magnetized condition and the control condition, 
during which the magnetization of arterial blood is fully relaxed 
[ 1 ]. Control and tagged images are then taken, and the difference 
between them is proportional to the CBF. ASL can be used to 
measure global CBF changes dynamically; its use of water mole-
cules as an endogenous blood fl ow tracer means that the images 
generated by ASL are not susceptible to neurovascular changes 
that are not related to neuronal activation. ASL has another advan-
tage over BOLD in that effects of frequency drifts tend to be mini-
mized in ASL, making this method more suitable for longer 
duration scans [ 12 ]. However, BOLD acquisitions tend to have 
greater temporal resolution, greater maximum number of slices, 
and appear to be more sensitive to parametric manipulations of 
task demands [ 1 ,  13 ,  14 ]. BOLD maps also usually have larger 
activation areas than  ASL   maps [ 15 ,  16 ], which could either be 
due to the decreased sensitivity or improved signal localization 
inherent in ASL [ 13 ]. There are three classes of ASL methods: 
pulsed ASL, continuous ASL, and velocity selective ASL [ 1 ]. A 
discussion of the relative methodologies and merits of the three 
techniques is beyond the scope of this chapter.   

2    fMRI in Psychiatry 

   A wide range of neuropsychiatric disorders have now been investi-
gated using fMRI techniques and protocols. This review will 
explore the paradigms employed, imaging results, and future 
research opportunities in fi ve mental disorders: schizophrenia, 
major depression, bipolar disorder (BD), obsessive-compulsive dis-
order (OCD), and posttraumatic stress disorder (PTSD). These 
particular disorders were selected due to the fact that they repre-
sent a subset of psychotic, mood, and anxiety disorders; have a 
signifi cant prevalence in the general population (0.4–14 % depend-
ing on age and gender of the sample); are popular candidates for 
fMRI research; and have each been the subject of research on diag-
nosis, disease progression, and treatment using imaging. Table  1  
summarizes the nature, range, and prevalence of the selected disor-
ders in the general population.

   Modern imaging techniques have been crucial to the delinea-
tion of the brain structures and functions that are negatively 
impacted in psychiatric disorders such as the ones reviewed here. 
Traditionally, such disorders have been characterized primarily via 
clinical psychiatric evaluation of abnormal symptoms, and treat-
ments consist of a trial-and-error strategy combined with patient 
self-selection of treatment options or option combinations [ 17 ]. 
The use of fMRI to evaluate the underlying cognitive disturbances 

2.1   Clinical   
Disorders
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present across a heterogeneous psychiatric disorder, or even a 
range of psychiatric disorders, is important in that it allows for the 
investigation of core dysfunctions that might highlight more effec-
tive treatment options. Studying differences in neural response 
between psychiatric patients and normal subjects with respect to 
affected brain regions, and incorporating a variety of emotional 
and cognitive challenges to examine localized activation, investiga-
tors have the opportunity to evaluate subtle differences in the ways 
that the brains of patients process different types of information 
and perform tasks. In addition, functional  imaging   can be used to 
evaluate the effi cacy of a psychiatric medication, especially in con-
junction with the usual clinical symptom assessments. New  fi ndings 
are also highlighting the ways in which fMRI could be utilized to 
aid in the diagnosis of psychiatric disease [ 17 – 19 ].   

3    Psychotic Disorders 

    Schizophrenia   is a lifelong illness associated with a high rate of 
 morbidity and disability   due to the severity and neurologically dis-
ruptive nature of its symptoms. It is often thought of as the most 
serious psychiatric disorder, and the affl icted population (about 1 % 
of the general population) is impaired in one or more major areas 
of functioning: interpersonal relations, work or education, or self- 
care (American Psychiatric Association, Diagnostic and Statistical 
Manual of Mental Disorders, 5th edition, 2014—DSMV 2014). 
The disorder, which typically manifests sometime in an individual’s 
mid-20s, is diagnosed through a number of characteristic symp-
toms falling into positive (an excess or distortion of normal func-
tion) or negative (attenuation or loss of normal function) categories. 
Positive symptoms include delusions, hallucinations, disorganized 
speech, and disorganized or catatonic behavior, while the negative 
symptoms encompass affective fl attening and abulia (DSM-V, 
2014). Because schizophrenia is a heterogeneous disorder with a 
wide range of associated impairments, the range of tasks employed 
during fMRI studies has been similarly broad. Table  2  summarizes 
the most common paradigms, which include verbal fl uency [ 31 ], 
affective pictures [ 22 ,  27 ,  28 ], working memory (WM) [ 20 ,  23 , 
 26 ], and inhibitory control [ 21 ,  33 ]. These studies have reported 
attenuation and deactivation of fMRI signal, as compared to 
 healthy control groups  , in prefrontal and temporal lobe structures 
including the amygdala, hippocampus, and parahippocampal 
gyrus. In addition, increased activation of the basal ganglia and 
striatum has been observed during WM and inhibitory control 
tasks [ 20 ,  21 ,  26 ,  33 ].

    fMRI assessment   of cognitive verbal and memory  tasks   in 
schizophrenic patients allows for an analysis of cognitive defi cits 
and enables investigation of the abnormal language functionality 

3.1  Schizophrenia

Erin L. Habecker   et al.
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seen in some individuals with the disorder. WM performance, as 
commonly measured by encoding and recognition tasks, continu-
ous performance paradigms, and the Sternberg test, to name a few, 
appears to be impacted by schizophrenia. Diffi culties in encoding 
and free recall are common, indicating the possible involvement of 
the prefrontal cortex and hippocampus, both of which have been 
shown to participate in the neural mechanisms of working, epi-
sodic, and semantic memory [ 34 – 36 ]. Ragland et al. [ 26 ], using a 
word encoding and recognition task, observed dorsolateral 
 prefrontal cortex (DLPFC) dysfunction manifested by bilateral 
defects during encoding, left hemisphere hypoactivity during rec-
ognition, and right side signal attenuation during successful 
retrieval, as compared to a healthy control group. This fi nding has 
been replicated using a visual oddball continuous task [ 30 ]. In 
addition, marked increase in parahippocampal activation in schizo-
phrenic patients as compared to healthy controls has been observed 
during task performance, suggesting a core defi cit in the reciprocal 
connections between the hippocampus and the neocortex [ 26 ]. 
Other  WM fMRI studies   of schizophrenia have reported attenu-
ated activations in the  anterior cingulate cortex (ACC)   and cere-
bellum [ 29 ], and signifi cantly increased activity in the basal ganglia 
and thalamus [ 20 ]. It has been hypothesized that frontostriatal 
circuitry defects could account for these deviations, and the ana-
tomical as well as functional normality of this circuitry in schizo-
phrenic patients has been targeted for further study [ 20 ]. 

 Investigations of  emotional processing  , long a part of psychiatric 
research into mood disorders, have begun in recent years to be used 
in the study of schizophrenia. fMRI protocols have used primarily 
affective facial expressions, as well as emotional pictures and words, 
to evoke cortical responses in the temporal and frontal lobes. 
Attenuation of amygdala response, as well as that of the amygdala-
hippocampal complex, has been noted by several investigators in 
response to emotional faces, discrimination of facial affect, and the 
evocation of negative mood [ 22 ,  25 ,  27 ,  28 ]. Some of these studies 
have also shown attenuation in the ACC and medial prefrontal cor-
tex (mPFC) as compared to healthy controls [ 22 ,  27 ]. This reduced 
activation is often accompanied by increased activation in another 
area, such as the middle frontal gyrus (MFG) in one study [ 22 ]. This 
suggests that the observed increased activations are secondary mech-
anisms evoked to compensate for the dysfunction in related areas. 

 Other fMRI studies of schizophrenia have focused on the neu-
ral underpinnings of the episodic memory, language, and learning 
defi cits common in the disorder. Hofer et al. [ 23 ] found decreased 
activations in the bilateral DLPFC and lateral temporal cortices in 
schizophrenic patients, despite the fact that recognition perfor-
mance in the schizophrenic patients was intact. A language pro-
cessing task highlighted underactivity in the temporal lobe which 
improved after treatment with   d -cycloserine     , in conjunction with 
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negative symptom improvement [ 31 ]. Reduced activation of the 
left inferior prefrontal cortex was observed, accompanied by exag-
gerated activation in the left superior temporal gyrus, during a 
semantic encoding learning task [ 24 ]. These fi ndings are particu-
larly relevant in a clinical sense, as encoding, learning, and lan-
guage skills are important for normal social interaction and 
functioning. These studies increase our level of understanding of 
the neuropsychological dysfunctions that underlie some of the 
most disruptive symptoms of schizophrenia, and point to a need 
for further study to determine optimal treatment options. 

   In the last decades, several studies have attempted to defi ne the 
prodromal traits predictive of future conversion to schizophrenia in 
at-risk subjects, especially after demonstration that early interven-
tion improves disease prognosis [ 37 ]. The eventual “risk” to 
develop schizophrenia is defi ned in terms of genetic aspects, such as 
a positive family history for schizophrenia (e.g., individuals who 
have an affected fi rst-degree family member-FHR), or in terms of 
clinical (prodromal) features. Among individuals with a clinical 
high risk (CHR) to develop schizophrenia, subjects ‘at risk mental 
state’ (ARMS) [ 38 ] are those having clinically defi ned sub- psychotic 
symptoms and subjects at ultra-high risk (UHR) are defi ned by the 
presence of prevalent positive clinical symptoms [ 38 ,  39 ]. 

 Although altered activation of frontal and prefrontal cortices 
has been amply reported in people with increased risk of psychosis, 
at present it is still not clear if this neurofunctional alteration 
increases in line with the level of psychosis risk. On this purpose, a 
study observed a relationship between the level of working mem-
ory task-related deactivation in the mPFC and precuneus and the 
level of psychosis risk, with deactivation weakest in the UHR 
group, at an intermediate level in the FHR  group  , and greatest in 
healthy controls [ 40 ]. In another study, while controls showed a 
negative association between age and frontal functional activation 
during verbal working memory, clinical high risk youth who con-
verted to psychosis showed the opposite [ 41 ], likely refl ecting an 
emerging hyperactivity in frontal regions for compensative pur-
poses [ 41 ]. During an executive task, a signifi cant reduction in the 
topological centrality of the ACC in ARMS subjects which later 
converted into a psychotic disorder suggested this as a potential 
biomarker for the transition to psychosis [ 42 ]. 

 In subjects at risk, functional alterations at the frontal regions 
are likely to subtend not only their cognitive but also their emo-
tional features. In FHR subjects, it has been reported a reduced 
coupling between amygdala and prefrontal cortex during facial 
expression processing [ 43 ]. Adolescent FHR subjects have shown 
reduced ACC activation during emotional processing [ 44 ] and 
specifi c hyperactivation in the right superior frontal gyrus and right 
precentral gyrus during fearful face presentations [ 45 ]. Patients 
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with schizophrenia and their nonpsychotic relatives showed limbic 
system hypoactivation similarities during facial affect attribution 
tasks [ 46 ,  47 ] and similar hypoactivation in the amygdala while a 
sad mood was elicited [ 25 ]. 

 In terms of metacognitive abilities, while processing a decision, 
subjects at risk did not demonstrate “jumping to conclusion” biases, 
typical of patients with schizophrenia. However, ARMS subjects 
showed a signifi cant hypoactivation in the right ventral striatum, simi-
lar to that of schizophrenic patients, during the decision making [ 48 ]. 

 Finally, since poor social functioning is a hallmark of schizophre-
nia and may precede the onset of illness, a number of studies focused 
on the investigation of the theory of mind (ToM)    in subjects at high 
risk of psychosis [ 49 ]. While performing a ToM task, UHR subjects 
experiencing psychotic symptoms in the past had lower activation of 
the right inferior parietal lobule and parts of the prefrontal cortex 
[ 50 ]. Moreover, those subjects who at the day of scanning had psy-
chotic symptoms displayed activations more similar to patients with 
manifest schizophrenia [ 50 ]. In contrast, subjects at high risk who 
had never experienced psychotic symptoms showed signifi cantly 
greater activation in the MFG compared to high risk subjects who 
did experience psychotic symptoms in the past.    

4    Mood Disorders 

   Major  depression   is diagnosed in patients who experience one or 
more major depressive episodes without any associated mania. A 
major depressive episode occurs when a patient presents with per-
sistent feelings of deep despair and loss of pleasure or interest in 
nearly all activities for at least 2 weeks, accompanied by at least fi ve 
of the following symptoms: two are core features, i.e., depressed 
mood and markedly diminished or loss of interests and pleasure; 
the other three could be among sleep disturbances, disruption of 
appetite, feelings of hopelessness or worthlessness, diffi culty con-
centrating, or suicidal thoughts (DSM V, 2014). Individuals with 
major depressive disorder may present a range of heterogeneous 
symptoms within this framework, implying that the disease impacts 
more than one brain region or neurotransmitter system. Studying 
mood and cognition-induced brain activations in affected individ-
uals represents a powerful way to unlock the functional discrepan-
cies between the depressed and normal nervous system. fMRI 
studies have revealed a wide-range network of limbic and paralim-
bic neural regions and circuitry whose interactions appear to be 
disrupted in major depressive disorder [ 51 – 53 ]. 

 The limbic-cortical model of depression advanced by Mayberg 
et al. hypothesizes major depression as a dysfunction among dis-
crete, but functionally integrated pathways in the dorsal, ventral, and 
rostral compartments of the brain [ 17 ]. Respective  dysfunctions   in 

4.1  Major 
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components of each of these compartments, which include the dor-
solateral and dorsomedial prefrontal cortex, dorsal ACC, and poste-
rior cingulate (dorsal compartment); subgenual anterior cingulate, 
ventral prefrontal cortex, insula, hippocampus, and amygdala (ven-
tral compartment); and rostral ACC (rostral compartment), can all 
be associated with the collection symptoms seen in major depression 
(Fig.  1 ) [ 53 ]. In addition, it has been theorized that the failure of 
the healthy elements in the system to maintain homeostasis of emo-
tionality during times of stress when a part of the system is compro-
mised is a contributor to major depressive episodes [ 17 ]. Depressed 
subjects demonstrate abnormalities in regional cerebral blood fl ow 
(rCBF) and regional cerebral glucose metabolism (regional cerebral 
metabolic rate for glucose, rCMRglc) in the dorsal and ventral com-
partments. Decreases rCBF and rCMRglc that have been observed 
in the DLPFC [ 52 ,  54 ], dorsomedial and dorsal anterolateral pre-
frontal cortex, as well as the dorsal ACC [ 54 ,  55 ] in depressed sub-
jects during PET and SPECT studies have highlighted these areas 
for exploration with fMRI BOLD paradigms—as do the observed 
increases in rCBF and rCMRglc that have been found in 

  Fig. 1    A limbic-cortical model of depression adapted and modifi ed from Mayberg 
et al. [ 53 ]. It involves three compartments: a dorsal, a ventral, and a rostral com-
partment.  BG  basal ganglia,  TH  thalamus,  dACC  dorsal anterior cingulate cortex, 
 rACC  rostral anterior cingulate cortex       
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components of the ventral compartment, including the ventrolat-
eral, ventromedial, orbitofrontal cortex (OFC), the subgenal pre-
frontal cortex, the amygdala, and the insular cortex [ 56 ,  57 ].

   The amygdala has been extensively investigated for its involve-
ment in the processing of emotional stimuli and abnormal response in 
individuals with major depressive disorder. Emotional paradigms used 
in these fMRI studies include the exhibition of emotional fi lm clips, 
facial photographs, or the presentation of audio cues during the scan 
to induce feelings of sadness, happiness, or fear [ 4 ]. During negative 
emotional tasks (negative words and sad faces), it has been shown that 
the amygdala in the depressed brain displays abnormally sustained 
activations as compared to the amygdala in the normal brain [ 19 ,  58 , 
 59 ]. Other studies utilizing emotional facial expression stimuli with 
depressed subjects have also shown increased activation in the hippo-
campus, left parahippocampal gyrus, and other regions of the left 
brain (Table  3 ) [ 19 ,  60 ], as well as increased dynamic range bilaterally 
in the cerebellum and ACC extending to the rostral prefrontal cortex 
in response to sad faces, as compared to healthy controls [ 19 ].

   Cognitive disturbances associated with depression, such as con-
centration diffi culties, explicit memory impairment, and impairment 
in executive functioning, have been examined with fMRI paradigms 
that incorporate various WM and executive control tasks. In com-
parison to healthy control subjects, depressed individuals demon-
strate slower reaction times and decreased accuracy with regards to 
executive control challenges in conjunction with decreased DLPFC 
activity [ 59 ]. Interestingly, depressed subjects were also shown, in 
another study, to have increased activation in the DLPFC in response 
to cognitive load in a WM task [ 64 ]. 

 Ideally, identifying brain regions and circuitry impacted by 
depressive disorder will lead to a greater understanding of the 
effects of drug treatment and yield important information regard-
ing the feasibility and success of various treatment options. In 
order to delineate the neurocircuitry involved in processing emo-
tional cues and gather information about the pharmacodynamics 
of various antidepressants, studies have been undertaken that 
examine the effects of antidepressant treatment in a variety of sce-
narios.  PharmacoMRI (pMRI)   studies of a single dose of an anti-
depressant with healthy control subjects allow any focal changes in 
brain activity induced by the drug to be observed during BOLD 
 scanning  . Pre- and posttreatment studies of antidepressants incor-
porate structural MRI and fMRI to combine activation paradigms 
with antidepressant treatment and identify brain functional corre-
lates of antidepressant treatment and symptomatic response [ 19 , 
 78 ]. Two studies investigating, respectively, the effects of citalo-
pram and mirtazapine on the healthy nervous system in a pMRI 
format found that each antidepressant enhanced activations right 
OFC during a Go/No-go task [ 61 ,  63 ]. In addition, one study 
incorporating the emotional faces paradigm found that the 
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 administration of a serotonergic drug attenuated right amygdala 
response to aversive faces [ 61 ]. 

 Pre- and posttreatment studies of depressed subjects have posed 
the question of whether clinical response to antidepressant drugs 
can be predicted by indicators present at the baseline scan. One 
study found that more positive activation in the ACC at the baseline 
scan (in response to facial affect processing) was associated with 
faster rates of symptom improvement as measured by Hamilton 
Depression Rating Scale [ 79 ]. This fi nding needs to be replicated, 
but clear differences between pre- and posttreatment have been 
shown in the fMRI results: signifi cantly attenuated activations after 
treatment were seen in limbic-subcortical systems, including the 
amygdala, that had shown enhanced activations in depressed sub-
jects at baseline in response to an emotional face processing task 
[ 19 ]. In addition, as the treatment decreased this capacity for over-
activation in the limbic-subcortical region, a corresponding increase 
was seen in prefrontal cortex activation in response to the highest 
levels of affective load [ 19 ]. This could be explained by the fact that 
treatment exposure induced changes in mood state have a proposed 
association with reciprocal changes in limbic-subcortical systems and 
frontoparietal circuitry: as limbic- subcortical  regions   activations to 
sadness are selectively lowered by drug treatment, greater dynamic 
range is available for high levels of affective load and increased acti-
vation in the prefrontal cortex is seen [ 17 ]. These results have great 
implications for the future of fMRI studies in major depressive dis-
order: in theory, it should be possible in the years to come to use 
quantitative measurements of brain function to determine optimal 
treatment and predict treatment response patterns for a person pre-
senting with a major depressive episode, thereby increasing positive 
outcomes and chances of eventual recovery [ 17 ]. 

   As in schizophrenia, subjects at risk to develop major depression 
have been the focus of a number of fMRI studies in the fi eld with 
the main aim to emphasize the adverse impact of a positive family 
history (FH+) and/or early psychosocial stressors on cerebral vul-
nerability and risk for depression. In this perspective, in a sample of 
120 adolescent girls at the age of 11 and 12 years, a study observed 
that low parental warmth was associated with increased response to 
potential rewards in the mPFC, striatum, and amygdala and with 
increased depressive symptoms at the age of 16 years [ 80 ]. While 
performing a similar task, compared with healthy controls, right- 
sided ventral striatum activation was reduced in both currently 
depressed and high-risk girls who were daughters of mothers 
affected by major depression [ 81 ]. This ventral striatal activity cor-
related signifi cantly with maternal depression scores suggesting 
this as a vulnerable factor for major depression [ 81 ]. Another study 
demonstrated an overactivity of the bilateral insula (also associated 
with subject personality) in response to increasing executive and 
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language task diffi culty in FH+ subjects who developed major 
depression 2 years later [ 82 ]. This pattern differentiated them from 
healthy controls and from other individuals at high risk who did 
not become unwell [ 82 ]. During an encoding task, FH+ subjects 
showed an  overrecruitment   (likely refl ecting a compensatory 
mechanism for the task performance maintaining) of the dorsal 
ACC, insula, and putamen, which are all regions involved in 
 processing the salience of stimuli [ 83 ]. While performing an emo-
tional face processing, never-depressed monozygotic twins with a 
co-twin history of depression showed increased neural response in 
dorsal ACC, dorsomedial PFC, and occipito-parietal regions; a 
stronger negative coupling between the hyperactive regions and 
amygdala; increased attention vigilance for fearful faces and slow-
ness at recognizing facial expressions compared to low-risk twins 
(monozygotic twins without a co-twin history of depression) [ 84 ].   

   BD, a prevalent  neuropsychiatric illness   manifesting as depressed 
and manic episodes in affected individuals, is among the leading 
worldwide causes of disability (DSM V, 2014). Bipolar depressed 
patients exhibit symptomatology that overlaps with that of unipo-
lar depressed patients: feelings of despair, lack of motivation and 
goal-setting behavior, social isolation, lethargy, and sleep distur-
bances. Bipolar patients in the manic state, meanwhile, experience 
elevated mood, heightened energy levels, altered thought pro-
cesses, and sometimes irritability, while bipolar euthymic individu-
als show neither depressive or manic symptoms (DSM V, 2014). 

 FMRI studies coupled with analysis of bipolar clinical manifes-
tations have led to the  hypothesis   that, much like depression, the 
mechanism of the disorder involves abnormalities in the limbic, 
frontal, and subcortical cortical areas, perhaps caused by a dysfunc-
tion in the neural networks present in these regions [ 75 ,  85 ]. 
Anterior limbic networks, incorporating the amygdala, ACC, 
DLPFC, and midline cerebellum, have been implicated in this dis-
order, as these areas contribute to behavioral functions seen to be 
abnormal in individuals with BD [ 75 ]. Functional imaging studies 
have been performed on bipolar patients in the euthymic state, the 
manic state, and the depressed state to compare brain activations 
across groups, and found comparatively increased activations in 
prefrontal and dorsal ACC in all states that were not consistent 
bilaterally [ 86 ]. There was evidence of a small increase in signal on 
the right side of the ventral prefrontal cortex for patients in the 
manic state, while patients in the depressed state showed much 
greater signal increases as compared to healthy controls and manic 
patients in the left ventral PFC [ 86 ]. This indicates that differential 
signal changes across brain hemispheres may be connected with 
the type of mood episode experienced by the bipolar individual. 
Traditionally, two types of tasks have been used to generate neural 
activations thought to be altered in BD:  fronto-executive function   

4.2  Bipolar Disorder
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cognitive studies and emotional processing studies [ 75 ,  85 ,  86 ], as 
bipolar patients are known to have emotional regulatory impair-
ments and impaired cognitive control. 

 Cognitive tasks employed in fMRI study of BD include tests of 
WM, interference tasks, encoding tasks, and other performance 
related paradigms [ 85 ]. Lagopoulos et al. [ 77 ], noting that defi cits 
in WM seem to be of particular signifi cance in bipolar individuals, 
examined cortical activations in euthymic bipolar patients and 
healthy controls during a  parametric WM task   with three load con-
ditions. As compared to the healthy subjects, bipolar patients 
exhibited attenuation of activation across several frontal brain 
regions. The DLPFC, which was activated across all WM condi-
tions in healthy controls, failed to activate under the same condi-
tions in bipolar patients, although these did not have signifi cantly 
poorer task performance. As the group noted that bipolar subjects 
recruited the inferior frontal gyrus during all WM components, 
while healthy subjects did not, it was theorized that this could rep-
resent a compensatory mechanism for normal  DLPFC perfor-
mance   [ 77 ]. This group also noted a failure of BD patients to 
activate the parahippocampal gyrus during the delay condition. It 
should be noted that these cognitive defects were observed in 
euthymic bipolar patients, suggesting that BD-associated cognitive 
defects are not restricted to state conditions of mania or depres-
sion. Similarly, Monks et al. [ 73 ] found that euthymic bipolar 
patients on lithium therapy showed reduced activations bilaterally 
in frontal, parietal, and temporal regions during two WM tasks, 
coupled with increased activations as compared to the control 
group in the left precentral, right medial frontal, and left supramar-
ginal gyri. This and similar data [ 74 ] suggest that fronto-executive 
region function is compromised during WM tasks in bipolar 
patients, which could lead to the recruitment of other neural areas 
in task performance. Two other studies, also using WM, found 
exaggerated task-induced activations in the left DLPFC, ACC, and 
thalamus of bipolar patients [ 67 ,  68 ]. Unifi cation of these data will 
require further fMRI study with increased, heterogeneous sample 
sizes, but all the studies consistently point to an underlying dys-
function in the region of the  prefrontal- subcortical circuitry   [ 68 ]. 

 Stroop tasks have been utilized in several fMRI studies of BD 
to examine variations in local activations induced by cognitive 
interference. As mentioned above, Blumberg et al. [ 86 ] found 
bilateral differences in the cortical activations of bipolar patients 
that were state-dependent and signifi cantly different from those of 
healthy controls. In addition, Gruber et al. showed that stable 
bipolar patients had reduced signal intensity in the right  anterior 
amygdaloid area (AAA)   subdivision of the ACC, accompanied by 
an increase in  DLPFC activation   during the interference condition 
in what was hypothesized to be a compensatory manner [ 69 ]. In a 
study of medicated bipolar subjects, unmedicated bipolar subjects, 
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and healthy controls, both groups of patients were seen to exhibit 
relatively increased activations as compared to the control group in 
the medial occipital cortex, as well as reduced activations in the 
temporal cortical regions, MFG, putamen, and midline cerebellum 
[ 87 ]. These studies illustrate the various differences in neural struc-
tures involved in interference processing in the bipolar vs. healthy 
brain, as well as differences in magnitude of MR signal intensity in 
identical areas. 

  Emotional processing   studies of BD involve the evocation of 
transient mood reactions by presenting subjects in the scanner with 
cues, such as charged facial expressions or auditory stimuli. Four 
fMRI paradigms involving the presentation of some combination 
of happy, fearful, sad, and neutral faces yielded varied results. 
Lawrence et al. [ 70 ] noted increased subcortical and ventrolateral 
PFC activation to all categories of emotional expression, as com-
pared to the healthy group and a group with major depressive dis-
order. Yurgelun-Todd et al. [ 65 ] found increased amygdala 
activation in BD patients in response to fearful facial affect, accom-
panied by a reduction in DLPFC signal. Individuals with BD also 
demonstrated an impaired ability to identify fearful faces as com-
pared to their ability to identify faces carrying positive emotion. An 
increased amygdala response was also found by Blumberg et al. 
[ 66 ], this time in response to happy faces, as well as decreased ros-
tral ACC activation in unmedicated BD patients–medicated BD 
patients, meanwhile, exhibited an attenuation of emotional 
response differences across the two groups, demonstrating that 
 mood-stabilizing medications   have the ability to ameliorate 
BD-induced functional abnormalities. Increased activity in the 
right amygdala, right pregenual ACC, and paralimbic cortex was 
noted by Pavuluri et al. [ 76 ] in pediatric BD in response to faces 
displaying both a positive and a negative emotional state. Face 
stimuli presentation to bipolar patients, then, appears to elicit a 
range of abnormal frontotemporal responses, with consistent over-
activation of the amygdala seen across several studies. 

 State-dependent differences in brain activation in response to 
emotional cues have been investigated using charged pictures as 
well as  facial affect paradigms  . Malhi et al. [ 71 ] showed positive, 
negative, and reference captioned pictures to hypomanic and 
depressed female patients, fi nding that the hypomanic patients 
restricted response to the negative-captioned pictures to subcorti-
cal regions while healthy controls displayed a more widespread pat-
tern of cortical activation. In depressed-state patients, 
positive-captioned pictures signifi cantly increased similar subcorti-
cal region reactions, including activations in the thalamus and 
amygdala [ 72 ]. The depressed patients also showed relatively 
increased right-side brain activity as compared to the healthy con-
trol group [ 72 ]. These results suggest that subcortical limbic sys-
tems are involved to a much greater extent in emotional processing 
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in the bipolar hypomanic and the bipolar depressed individual, as 
well as further illustrating the need to study euthymic, manic, and 
depressed bipolar subjects as separate groups. 

 BD involves dysfunction in several key limbic and cortical net-
works, evidence for which is summarized above. One other addi-
tional feature refl ected by BD fMRI research is the consistent 
fi ndings of abnormal PFC activations across  state and trait boundar-
ies  . Similar fi ndings in major depressive disorder and schizophrenia 
could indicate that the dysfunction caused by BD may share certain 
underlying characteristics with other psychiatric disorders [ 85 ]. 

   Given that the strongest risk factor for developing mania is a posi-
tive family history (FH+) for BD [ 88 ], several studies have 
attempted to characterize the fMRI features in non symptomatic 
subjects at risk using cognitive and emotional processing tasks. In 
a motor inhibition task, compared to healthy controls and BD 
patients, asymptomatic youths with a fi rst-degree BD relative 
exhibited increased activation of the putamen during unsuccessful 
inhibition [ 89 ]. Compared with their low-risk peers, children 
without disorders born from parents with BD showed aberrant 
prefrontal neural responses to reward, aberrant connectivities 
among reward-related regions, and neural correlates in mesolimbic 
regions to novelty seeking and impulsive traits [ 90 ]. During a WM 
task, compared to controls, both BD patients and non symptom-
atic FH+ subjects exhibited failure to suppress emotional arousal 
and functional activity of the anterior insular and frontopolar cor-
tices [ 91 ]. While processing facial expressions, relative to HC, both 
BD patients and FH+ subjects rated anger faces as less hostile and 
they showed decreased modulation in the amygdala and inferior 
frontal gyrus during anger face presentation [ 92 ]. Youth at 
increased genetic risk for BD demonstrated reduced brain signal of 
the left inferior frontal gyrus when inhibiting responses to fearful 
face stimuli, compared with subjects from control families [ 93 ].    

5    Anxiety Disorders 

   OCD is a complex and clinically  heterogeneous disorder   character-
ized by obsessions (intrusive, unwanted, and repetitive thoughts), 
compulsions (repetitive behaviors), or both. These dysfunctional 
“solutions” represent the patient intention to diminish the levels of 
anxiety in specifi c daily situations, however they cyclically lead to 
always higher levels of distress (DSM V, 2014). The intensity of 
symptoms is generally varied throughout a patient’s lifetime, but 
complete and spontaneous remission is rare [ 94 ]. Some studies 
have pointed to an association between different dimensions of the 
disorder and different treatment responses: in particular, the 
hoarding impulse has been associated with poorer behavioral and 
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pharmacologic treatment response [ 95 ]. These fi ndings illustrate 
the heterogeneity of the disease; however, fMRI and other neuro-
imaging studies have tended to group together patients with a 
range of symptoms, allowing for the delineation of underlying 
neural mechanisms present across all categories. 

  Resting-state studies   of functional neuroanatomy using PET 
and SPECT have uncovered elements of the neurobiology of OCD 
that should be taken into consideration when undertaking and 
analyzing results of fMRI research. Specifi cally, examinations of 
CBF in OCD patients during a resting state have revealed that 
these patients exhibit increased metabolism in the OFC and head 
of the caudate nucleus compared to healthy controls [ 94 ]. In addi-
tion, one study involving OCD patients with comorbid major 
depression showed reduced CBF in the hippocampus, caudate, and 
thalamus as compared to both the group of “pure” OCD patients 
and the control group [ 96 ]. These resting state variations should 
be taken into account when conducting BOLD research on this 
disorder, as the sensitivity of fMRI to changes in brain metabolism 
that are independent of task-evoked activation can be a signifi cant 
confounding factor [ 3 ]. Accordingly, fMRI techniques have been 
used to investigate a number of states in patients with OCD 
(Table  4 ): studies comparing local activations in the brains of OCD 
patients and healthy controls during cognitive tasks; pre- and post-
treatment studies; and symptom-provocation studies during which 
transient OCD-related anxiety symptoms are incited through 
pictures or contact with “contaminated” objects [ 108 ,  109 ]. This 
research has generally supported the involvement of  frontal- 
striatal- thalamic-cortical circuitry   in OCD symptomatology, with 
OCD patients demonstrating functional deviations from healthy 
controls in the affected brain regions [ 98 ,  99 ,  108 ].

    Cognitive challenge   studies examine abnormal activations in 
the brains of OCD patients as compared to healthy controls during 
a variety of learning and inhibition control tasks. The proposal of 
the frontal cortex and striatum as possible sites of dysfunction in the 
disease suggests the use of tasks that have previously been found to 
require processing by the frontal and subcortical systems during 
performance by healthy subjects [ 110 ]. Using a Tower of London 
task, van den Heuvel et al. [ 97 ] found decreased frontal- striatal 
responsiveness in OCD patients as compared to the control group, 
noting that this was accompanied by increased involvement of the 
ACC, the ventrolateral PFC, and the parahippocampal cortex in a 
possibly “compensatory” mechanism. Roth et al., using a response 
inhibition “Go/no-go” task, demonstrated that the OCD group 
had reduced activations in the right thalamus during response inhi-
bition [ 99 ], a fi nding consistent with a signifi cant body of literature 
reporting structural [ 111 ,  112 ] and functional [ 96 ,  113 ] thalamus 
abnormalities in OCD patients. This study also reported a reduced 
activation of the right OFC and dorsal cingulate gyrus in patients 
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with the most severe symptoms during response inhibition, while 
another group also observed reduced activations in the right OFC 
and in the right caudate nucleus during a reversal learning task 
[ 98 ]. These fi ndings support the involvement of the OFC, thala-
mus, and cortical circuitry in the abnormal patterns of response 
inhibition that characterize OCD, as well as indicating that some of 
the behavioral impairments associated with the disorder may be 
attributed to dysfunction in this region [ 98 ]. 

  Treatment studies   in OCD incorporating fMRI to track local 
activation changes across a course of medication have traditionally 
combined symptom-provocation tasks with longitudinal study 
designs [ 108 ]. The caudate nucleus has shown decreased glucose 
metabolism following treatment with serotonin reuptake inhibi-
tors (SRIs) such as clomipramine and fl uoxetine, suggesting that 
the right anteriolateral OFC plays a role in the mediation of OCD 
symptoms and response of OCD patients to pharmacotherapy 
[ 114 ]. During symptom-provocation experiments, increased acti-
vations have been observed in the OFC, cingulate cortex, striatum, 
thalamus, lateral PFC, amygdala, caudate, and insula among 
unmedicated OCD patients [ 98 ,  114 ]. These results add support 
to the theory that dysfunctions of the OFC and frontal-subcortical 
circuitry are responsible for a great extent of OCD symptomatol-
ogy. One theory with the potential to unify a great deal of func-
tional imaging data to date involves the orbitofrontal-subcortical 
circuitry, which has classically been described as having a “direct” 
and an “indirect” pathway (Fig.  2 ) [ 115 ]. It has been hypothesized 
that OCD symptoms could be caused by a captured signal in the 
direct pathway creating a  positive feedback   loop and increasing 
activity in the OFC, ventromedial caudate, and medial dorsal thala-
mus—leading to an excessive fi xation on issues of hygiene, order, 
danger, violence, and sex coupled with an inability to distract one-
self from these thoughts or change behavior patterns [ 114 ]. 
Interventions that alter and functional imaging experiments that 
study the direct–indirect pathway balance within the orbitofrontal- 
subcortical circuits would be particularly benefi cial to the future of 
OCD research, as they could directly test these theories and help 
to advance the understanding of OFC functionality in the brains of 
OCD patients [ 114 ].

     Genetic epidemiological studies have revealed that OCD has a sig-
nifi cant familial aggregation [ 116 ]. The aggregate risk in fi rst- 
degree relative of probands with OCD has been estimated at 
approximately 8–23 % [ 116 ]. As relatives of patients are at a signifi -
cantly higher risk of developing OCD symptoms than the general 
population, young relatives at risk represent a valuable group to 
examine potential neurobiological precursors of the disorder, how-
ever up to date few fMRI studies have been carried on in this popu-
lation. One of these studies observed that a WM increased task 

5.1.1   fMRI Features   
of Subjects at Risk 
to Develop Obsessive- 
Compulsive Disorder
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load was associated with increased task-related brain activity in 
OCD and in their unaffected siblings compared with controls, 
however this increase was smaller while reaching the highest task 
load [ 117 ]. These fi ndings indicate that compensatory frontopari-
etal brain activity in OCD patients and their unaffected relatives 
preserves task performance at low task loads but is insuffi cient to 
maintain performance at high task loads [ 117 ]. Authors concluded 
that the frontoparietal dysfunction may constitute a neurocogni-
tive endophenotype for OCD [ 117 ]. In another study, patients 
with OCD and their siblings performed a stop-signal task during 
the MRI [ 118 ]. In this task, reaction times provide a behavioral 
measure of response inhibition [ 118 ]. Compared with controls, 
patients with  OCD   and their siblings showed greater activity in the 
presupplementary motor area during (successful) inhibition [ 118 ]. 
The presupplementary motor area hyperactivity was negatively 
correlated with stop-signal reaction time, likely representing an 
OCD neurocognitive endophenotype which may contribute to 
their inhibition defi cit [ 118 ].   

   PTSD is an anxiety disorder caused by the onset of an extreme 
stressor such as combat, childhood physical/sexual abuse, motor 
vehicle accidents, rape, and natural disasters.  Symptoms   vary across 
subtype of disorder and can include one or several of the following: 
sleep disturbance with dreams characterized by negative emotions, 

5.2  Posttraumatic 
Stress Disorder

  Fig. 2    The cortico-striatal model of obsessive-compulsive disorder (adapted from 
ref. [ 115 ]). The striatum projects via direct and indirect pathways through the 
globus pallidus to the thalamus, which, in turn, projects to the neocortex. 
Excitatory connections are labeled “+”; inhibitory connections are labeled “−”       
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intrusive memories, fl ashbacks, avoidance of traumatic stimuli, 
numbing of emotions, and social dysfunction (DSM V, 2014). 

 There are four basic  neural mechanisms   that appear to function 
abnormally in the brains of patients with PTSD: the fear response, 
fear extinction, behavioral sensitization, and memory [ 119 ]. Fear 
response in PTSD patients appears greatly exaggerated: in the nor-
mal brain, the pairing of potentially dangerous stimuli with fear is 
an important survival mechanism, decreasing response time and 
initiating fi ght or fl ight mechanisms when such a stimuli is pre-
sented. In the brain of a PTSD patient, it seems that there is an 
overgeneralization of danger cues such that nonthreatening stimuli 
is seen as dangerous and can then be linked to past traumatic mem-
ories, which come hand-in-hand with intrusive memories and 
fl ashbacks. As a result of such nonthreatening yet triggering stim-
uli, patients with PTSD often exhibit avoidance of such stimuli or 
numbing of emotional reactions [ 120 ]. In functional neuroimag-
ing studies of PTSD, symptom-provocation paradigms measure 
brain activity when subjects are exposed to visual or auditory stim-
ulation reminiscent of their past experienced trauma to determine 
the mechanism of the abnormal response [ 2 ]. The main structure 
involved in the response to fearful stimuli is the central nucleus of 
the  amygdala  , with additional involvement by the sensory cortex, 
thalamus, and the mPFC [ 120 ]. PTSD patients also often exhibit 
a failure of fear extinction: normally, the brain is able to process 
stimuli from a dangerous situation from which there were no 
adverse outcomes such that the representation of these stimuli elic-
its a smaller fear response than the initial situation. However, in 
patients with PTSD, repeated encounters with fearful stimuli can 
continue to result in a consistent, heightened fear response, regard-
less of the actual danger of the situation [ 2 ]. The main neuroana-
tomical structures involved in the extinction of fear response 
overlap with those involved in fear conditioning, and their func-
tionality may be studied concurrently [ 121 ]. 

 PTSD patients often have increased  sensitivity to stress  , which 
leads to an increase in responses such as arousal and vigilance in 
response to stressful stimuli [ 119 ] known as behavioral sensitization. 
The neuroanatomy of the stress response is not centralized but 
involves a wide range of structures and mechanisms—many of which 
overlap with those involved in fear conditioning and fear response 
[ 122 ]. Many of those affl icted with PTSD also exhibit memory defi -
ciencies thought to be connected to hippocampal function and 
reduction in hippocampal volume [ 123 ]. It is unclear whether a 
stressful event leading to PTSD causes volume reductions in the hip-
pocampus through exposure to elevated glucocorticoids accompa-
nied by a reduction of brain-derived neurotrophic factor [ 124 ,  125 ], 
or if persons with reduced hippocampal volume from birth are sim-
ply more prone to developing PTSD [ 126 ]. However, hippocampal 
volume and functionality is an important area of PTSD study. 
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  FMRI research   into PTSD has focused on the examination of 
the brain structures outlined above using symptom-provocation 
paradigms to examine fear response and stress sensitivity, as well as 
cognitive task paradigms to investigate memory defi ciencies and 
other cognitive problems potentially associated with the disorder. 
It has been theorized that neurocircuitry links the amygdala to the 
mPFC, the hippocampus, and the thalamus through excitatory and 
inhibitory connections that are dysfunctional in PTSD [ 115 ] 
(Fig.  3 ). Consistent with this, fMRI studies have found alterations 
in BOLD signal in OFC, ACC, anterior temporal cortex, and 
amygdala [ 100 ,  127 ], as well as in the hippocampus, parahippo-
campus, and thalamus [ 2 ,  128 ,  129 ].  Symptom-provocation stud-
ies   fi nd exaggerated amygdala responses and decreased activation 
within medial frontal areas [ 101 ,  130 ,  131 ]. Rauch et al. [ 100 ] 
used an fMRI paradigm incorporating a happy vs. fearful faces task 
in healthy combat veterans and combat veterans suffering from 
PTSD. The study found increased activation of the amygdala in the 
PTSD group in response to fearful faces, which could be positively 
correlated with PTSD symptom severity. Similarly, Hendler et al. 
[ 103 ] presented combat and noncombat related slides to PTSD 
and non-PTSD Israeli soldiers, and found that activity in the amyg-
dala was signifi cantly increased, although their results  demonstrated 

  Fig. 3    The  amygdalocentric neurocircuitry model   of posttraumatic stress disor-
der (adapted from ref. [ 115 ]). Excitatory connections are labeled “+”; inhibitory 
connections are labeled “−”       
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this increased activity regardless of whether the slide presented was 
traumatic (combat-related) or nontraumatic (noncombat- related). 
One study presenting autobiographical cues to borderline person-
ality disorder patients with and without PTSD found increased 
activation in the amygdala in the group with PTSD only [ 105 ], 
and another showed increased amygdala activation in response to 
traumatic stimuli correlating with PTSD symptom severity [ 106 ].

   The inappropriate  fear responses   associated with PTSD may be 
linked to dysfunction of the mPFC, as well as the amygdala. The 
mPFC is associated with fear response and fear extinction [ 132 –
 134 ]. A number of studies have reported diminished activations in 
the mPFC as compared to groups of healthy control subjects [ 101 , 
 102 ,  104 ,  107 ,  135 ]. These abnormal activations have been 
reported during such symptom-provocation tasks as traumatic nar-
ratives, combat-related stimuli, emotional word tasks, and emo-
tional Stroop tasks. For example, using an autobiographical script, 
two studies by Lanius et al. [ 101 ,  104 ] found reduced activity as 
compared to healthy controls in both the mPFC and thalamus of 
PTSD subjects, suggesting an alteration of normal neurocircuitry in 
those regions. In a fMRI paradigm incorporating a happy vs. fearful 
faces task, Shin et al. [ 107 ] noted that the observed decrease in 
mPFC activity in the PTSD group as compared to controls was 
accompanied by increased amygdala activations. The theory has 
been advanced that PTSD symptoms are caused by an overactive 
amygdala in PTSD patients accompanied by a failure of the mPFC, 
including the ACC, and the  hippocampus   to inhibit this abnormal 
activation [ 136 – 139 ]. The fact that the functionality and structure 
of the hippocampus is also often altered in this disorder contributes 
evidence to this hypothesis. In one study combining fMRI and PET 
with verbal declarative memory tasks, the hippocampus of PTSD 
patients failed to activate entirely during the same tasks that caused 
activations in two control groups [ 125 ]. Other PET studies have 
noted hypoactivations of the hippocampus during memory tasks 
[ 140 ,  141 ], but one other fMRI study found increased hippocam-
pal activation during a Stroop task [ 78 ], and another PET study 
noted increased resting state blood fl ow in the hippocampus and 
parahippocampal gyrus that was positively correlated with symptom 
severity [ 142 ]. Overall, reduced volume and increased resting blood 
fl ow in the hippocampus have been seen in many PTSD patients 
during both PET and fMRI studies. More study is needed to bring 
a greater degree of consistency to the imaging data with regards to 
this structure, incorporating subjects that are consistent for age, 
gender, and subtype of PTSD (primarily manifesting as fl ashback 
symptoms or primarily involving dissociation) [ 104 ]. 

 The majority of  functional PTSD fMRI studies   to date provide 
evidence for hyperactivation of the amygdala coupled with a  relative 
decrease in mPFC activity. It is hypothesized that the hippocam-
pus, parahippocampus, and thalamus also represent participatory 
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areas and that dysfunction in regional neurocircuitry leads to the 
symptoms of the disorder [ 115 ]. More research with larger subject 
groups and standardized study guidelines is needed to unify the 
fMRI data and uncover more consistent trends in PTSD imaging 
research. 

   Only one study so far investigated the fMRI features related to the 
risk to develop PTSD [ 143 ]. Authors assessed the fMRI differ-
ences between combat-exposed veterans with PTSD and their 
identical combat-unexposed co-twins vs. combat-exposed veterans 
without PTSD and their identical combat-unexposed co-twins. 
During a Multi-Source Interference Task, combat-exposed veter-
ans with PTSD and their unexposed co-twins had signifi cantly 
greater activation in the dorsal ACC and tended to have larger 
response time difference scores, as compared to combat-exposed 
veterans without  PTSD   and their co-twins [ 143 ]. This cerebral 
activation in the unexposed twins was positively correlated with 
their combat exposed co-twins’ PTSD symptom severity [ 143 ] 
leading authors to conclude that hyperresponsivity in the dorsal 
ACC appears to be a familial risk factor for the development of 
PTSD following psychological trauma [ 143 ].    

6    Summary and Future Directions 

 Table  5  summarizes the overall neural activation differences between 
affected psychiatric patients and healthy subjects during a sampling 
of common fMRI paradigms designed to test the normality of the 
patients’ emotional, memory, inhibitory, learning, language, and 
executive functionality. As expected, decreased activity in cortical 
regions is common in the diseased brain, but neural structure over-
activity is just as prevalent in certain disorders. Many researchers 
have theorized about the possibility of secondary effects, whereby 
the functional defi cits that underlie the symptomatology of certain 
disorders are compensated for by involvement of accessory struc-
tures or overactivation in another area [ 17 ,  22 ]. Clearly, the effects 
of these disorders cannot be summarized by a single regional defi cit, 
and current fMRI research is moving toward investigation of neural 
circuitry and abnormal systemic interactions. It is hoped that the 
documentation of these disorders’ underlying dysfunctionality will 
yield common threads that connect the ranges of heterogeneous 
symptoms and indicate new clinical strategies. However, the use of 
fMRI as a diagnostic imaging method in psychiatric practice has thus 
far been limited. Although some studies are beginning to hone in on 
early indicators of disease, as well as the potential treatment response 
of the newly diagnosed, clinical method development is hampered 
by cost, complexity of typical research paradigms and protocols, and 
the known and unknown effects of drug treatments of CBF [ 4 ].

5.2.1   fMRI Features   
of Subjects at Risk 
to Develop Posttraumatic 
Stress Disorder

Erin L. Habecker   et al.
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    Chapter 23   

 fMRI in Neurodegenerative Diseases: From Scientifi c 
Insights to Clinical Applications                     

     Bradford     C.     Dickerson     ,     Federica     Agosta    , and     Massimo     Filippi     

  Abstract 

   fMRI is a technology with great promise as a tool to probe abnormalities of brain activity in neurodegenerative 
diseases. The detection of functional brain abnormalities may be useful, in the appropriate clinical context, for 
early diagnosis, differential diagnosis, or prognostication. Prediction of response to treatment or therapeutic 
monitoring may also be possible with fMRI. In addition, fMRI has the potential to provide a variety of scien-
tifi c insights that may have clinical relevance, including compensatory hyperactivation of brain circuits or 
genetic modulation of functional brain activity.  

  Key words     Alzheimer’s disease  ,   Amyotrophic lateral sclerosis  ,   Functional MRI  ,   Huntington disease  , 
  Magnetic resonance imaging  ,   Neurodegenerative diseases  ,   Parkinson’s disease  

1      Introduction 

 Neurodegenerative diseases are a major medical and  social burden   in 
many societies, particularly with the growth of older population seg-
ments. Neurodegenerative diseases include many dementias, move-
ment disorders, cerebellar, and motor neuron diseases. In many cases, 
these diseases involve the pathologic accumulation of abnormal pro-
tein forms. As the biology of these diseases is elucidated, hope is begin-
ning to emerge for specifi c treatments targeted at modifi cation of 
fundamental  pathophysiologic processes   [ 1 ,  2 ]. For this hope to be 
realized, methods for early detection of specifi c disease processes need 
to be identifi ed. Furthermore, reliable methods for monitoring the 
progression of the diseases will likely be critical in demonstrating the 
effects of putative disease- modifying therapies. Although molecular 
biomarkers measured via  positron emission tomography (PET)   or 
cerebrospinal fl uid (CSF) have emerged in the past 5–10 years as a 
major class of biomarker, magnetic resonance imaging (MRI) contin-
ues to offer great potential in assessment and monitoring of neurode-
generative diseases [ 3 ]. Given the growing body of evidence that 
alterations in synaptic function are present very early in the course of 
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neurodegenerative disease processes, possibly long before the 
development of clinical symptoms and even signifi cant neuropathol-
ogy [ 4 ,  5 ], functional MRI (fMRI) may be particularly useful for 
detecting alterations in brain function that may be present very early in 
the trajectory of neurodegenerative diseases. In addition, fMRI may be 
a critical biomarker for the detection of  physiological alterations   over a 
short period of time, thus serving as a measure of target engagement in 
clinical trials. The uses of fMRI in neurodegenerative dementias will be 
reviewed, with a focus on Alzheimer’s disease (AD), to illustrate many 
points of relevance to other neurodegenerative diseases. 

 Before specifi cally discussing fMRI, though, it is worth consid-
ering the current concepts of  clinicopathologic constructs   of neu-
rodegenerative diseases, since the interpretation of imaging data in 
patients depends critically on a detailed understanding of the clini-
cal characteristics of the patient population(s) being studied.  

2    Constructs of Neurodegenerative Disease: Clinical,  Prodromal, 
and Presymptomatic Phases   

 The fi eld of neurodegenerative dementias has increasingly shifted as 
molecular biomarkers have become available to considering neuro-
pathology separately from clinical syndrome. The major neuropa-
thologies of neurodegenerative dementias include Alzheimer’s 
disease (AD), frontotemporal lobar degeneration (including FTLD-
TDP43 and FTLD-tau, which many experts consider to encompass 
not only classical Pick’s disease but also progressive supranuclear 
palsy [PSP] and corticobasal degeneration [CBD]), the Lewy body 
diseases, and Huntington’s disease. The clinical syndromes include 
AD dementia, the primary progressive aphasias (PPA), behavioral 
variant frontotemporal dementia (bvFTD), the PSP syndromes, cor-
ticobasal syndrome, dementia with Lewy bodies (DLB) and 
Parkinson’s disease dementia (PDD), amyotrophic lateral sclerosis 
with cognitive/behavioral impairment (ALS-FTD), and 
Huntington’s disease [ 6 ,  7 ]. Clinicopathologic relationships within 
the family of neurodegenerative dementias is immensely complex, 
with growing data supporting many types of overlap between condi-
tions traditionally thought of as distinct. 

 Many neurodegenerative diseases contributing to dementia are 
thought to arise from pathophysiologic processes that take place over 
a decade or more prior to the development of symptoms. For exam-
ple, the clinical diagnosis of AD has traditionally been made after a 
patient has developed impairment in multiple cognitive domains that 
is substantial enough to interfere with routine social and/or occupa-
tional function (dementia). Previously, it was only after this point that 
FDA-approved medications were currently indicated—that is, in 
patients with clinically probable AD dementia. By this time, substan-
tial neuronal loss and neuropathologic change have damaged many 
brain regions. Furthermore, clinical trials of amyloid- modifying drugs 
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have failed in patients with AD dementia, indicating that to date it is 
not possible to slow progression. Thus, it would be ideal to initiate 
treatment with neuroprotective medications at a time when—or even 
before—AD is mildly symptomatic [ 3 ,  8 ]. We are moving rapidly 
toward this goal with the 2011 revision of the diagnostic criteria for 
AD to include prodromal and preclinical phases [ 9 – 11 ]. This scenario 
is true for many neurodegenerative diseases, and is even more com-
pelling in diseases in which known genetic abnormalities can be iden-
tifi ed that predict future disease, as in FTD [ 12 ], Huntington’s disease 
[ 13 ], and autosomal dominant forms of AD [ 14 ]. 

 To approach the goal of early intervention in neurodegenerative 
diseases, we must improve our capability to identify individuals in 
the earliest symptomatic phases of the diseases prior to signifi cant 
functional impairment. For example, individuals are categorized as 
having mild cognitive impairment (MCI) when symptoms sugges-
tive of AD are present but mild enough that traditional diagnostic 
 criteria   (which require functional impairment consistent with 
dementia) are not fulfi lled. This gradual transitional state often lasts 
for a number of years, offering opportunities for intervention when 
the disease is in its prodromal stages. Diagnostic criteria for MCI 
have been developed [ 15 ] and operationalized [ 16 ] and subse-
quently revised including biomarkers to enable the identifi cation of 
patients with MCI highly likely due to AD [ 10 ], or prodromal AD, 
which has been the target population in a number of clinical trials to 
date. If the pathophysiologic process of AD can be slowed at this 
stage of the disease, then it may be possible to preserve cognitive 
function and delay the ultimate development of dementia for a 
period of time, which is clearly clinically meaningful. 

 Finally, the presymptomatic phase of neurodegenerative dis-
eases is the phase when pathologic alterations are developing but 
symptoms are not yet apparent. In the case of AD, this phase has 
been studied through the identifi cation of cohorts with particular 
risk factors, such as genetic determinants (e.g., amyloid precursor 
protein (APP) or presenilin mutations, Down syndrome) or sus-
ceptibility factors (e.g., apolipoprotein E ( APOE ) ε4) or through 
biomarkers of the underlying disease process (e.g., amyloid imag-
ing or spinal fl uid). The development of research diagnostic criteria 
for preclinical AD has been transformative [ 9 ], and in the last few 
years therapeutic clinical trials of medications in preclinical AD 
have begun using all of these strategies [ 17 ].  

3    Strengths and Weaknesses of fMRI as a Tool to Probe  Brain Activity   
in Neurodegenerative Diseases 

 Since functional neuroimaging tools assess inherently dynamic 
processes that may change over short time intervals in relation to a 
host of factors, these measures have unique characteristics that may 
offer both strengths and weaknesses as potential biomarkers of 
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neurologic disease. Functional neuroimaging measures may be 
affected by transient brain and body states at the time of imaging, 
such as arousal, attention, sleep deprivation, sensory processing of 
irrelevant stimuli, or the effects of substances with pharmacologic 
central nervous system activity. Imaging measures of brain func-
tion may also be more sensitive than structural measures to consti-
tutional or chronic differences between individuals, such as 
genetics, intelligence or educational level, learning, mood, or med-
ication use. While these may be effects of interest in certain experi-
mental settings, they need to be controlled when the focus is on 
disease-related changes and differences between subject groups or 
within individuals over time. 

 Among functional neuroimaging techniques, fMRI has many 
potential advantages in studying patients with neurodegenerative 
disorders, as it is a noninvasive imaging technique that does not 
require the injection of a contrast agent. It can be repeated many 
times over the course of a longitudinal study and thus lends itself 
well as a measure in clinical drug trials. It has relatively high spatial 
and temporal resolution, and the use of event-related designs 
enables the hemodynamic correlates of specifi c behavioral events, 
such as successful memory formation [ 18 ] or momentary ratings 
of emotional intensity [ 19 ], to be measured. 

 A caveat essential to the interpretation of task-related func-
tional neuroimaging data is that healthy individuals of any age 
demonstrate differences in brain activation depending on how well 
they are able to perform the particular task. For example, when 
cognitively intact individuals learn new information during fMRI 
scanning, the strength of this signal is related to subsequent ability 
to remember the information [ 20 – 24 ]. AD patients typically per-
form less well on the memory tasks, which complicates the inter-
pretation of these data [ 25 ]. Conversely, the recruitment of 
additional brain regions during task performance by patients with 
neurodegenerative or other neurologic disease may indicate the 
presence of processes attempting to compensate for damaged net-
works [ 26 ,  27 ]. While the task performance factor is important to 
consider when designing or interpreting functional neuroimaging 
studies of neurodegenerative diseases, it also indicates that these 
imaging biomarkers may be particularly sensitive to changes in 
cognitive or sensorimotor function, which not only provides face 
 validity   for these measures but also supports their potential use in 
short-term, early proof-of-concept drug trials. 

 There are additional challenges to performing fMRI studies in 
patients with neurodegenerative diseases. The technique is particu-
larly sensitive to even small amounts of head motion. Finally, 
although a growing number of test-retest reliability studies of task- 
related [ 28 – 39 ] and resting state [ 31 ,  40 – 44 ] fMRI have been 
published in the last 5–10 years, most of these are in healthy young 
adults. A small but growing number of longitudinal fMRI studies 
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have been performed in patient populations; some of these have 
been focused on investigating reliability of signal [ 45 – 50 ] and oth-
ers have been aimed at identifying changes in brain activation or 
connectivity associated with longitudinal clinical change [ 51 ,  52 ].  

4    Clinical Applications of  fMRI   in Neurodegenerative Diseases 

 Functional MRI has been applied in a number of ways in studies of 
patients with neurodegenerative diseases. fMRI has been used to 
identify abnormal patterns of brain activity during the performance 
of a variety of tasks in patients with neurodegenerative diseases; 
these abnormal patterns may reveal new insights into the disrup-
tion of brain circuits by such diseases. They may also be useful in 
differential diagnosis. Similarly, studies of resting state fMRI have 
begun to demonstrate how this relatively newer method can pro-
vide insights into disrupted brain circuitry in neurodegenerative 
diseases. Hyperactivation or hyperconnectivity has been identifi ed 
in many of these studies, which is a fascinating area of ongoing 
research [ 53 ]. fMRI has been used to assess the modulatory effects 
of genetic factors on brain activation in patients with or at risk for 
neurodegenerative disorders, and has been used to monitor the 
effects of therapeutic  interventions   and is beginning to be used to 
try to help predict the course of the diseases. 

   fMRI has been used to investigate abnormalities in patterns of 
regional brain activation during a variety of  cognitive tasks   in 
patients diagnosed with mild AD compared with control subjects. 
It is important to keep in mind that the particular abnormalities 
found in an fMRI study of an AD or other patient group are heav-
ily dependent on the type of behavioral task used in the study—if 
the task does not engage a particular circuit, functional abnormali-
ties will not likely be observed. Also, the nature of functional 
abnormalities may depend on whether the activated brain regions 
are directly affected by the disease, are indirectly affected via con-
nectivity, or are not pathologically affected. Tools are now available 
to directly investigate the overlap of disease-related alterations in 
brain structure and task-related functional activity (Fig.  1 ). Yet it 
should also be kept in mind that even brain regions not usually 
thought to be affected by a particular neurodegenerative disease 
(e.g., sensorimotor areas in AD) have been shown to exhibit abnor-
mal function [ 54 ,  55 ].

   In addition to memory, which is discussed next, aspects of  lan-
guage and attention   have been studied. Altered patterns of frontal 
and temporal activation have been observed in AD patients per-
forming language tasks [ 56 – 58 ]. Similarly, although temporo- 
parietal activation was diminished in AD during performance of 
semantic memory task, increased activation in temporal and frontal 

4.1  Patterns 
of Abnormal Regional 
Brain Activation 
During Task 
Performance
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regions was also observed, suggesting possible compensatory 
processes [ 59 ]. Increased activation of the semantic memory cir-
cuits was observed in MCI patients when task performance remains 
at levels comparable to healthy controls [ 60 ]. This increased acti-
vation was particularly evident in the posterior cingulate cortex, 
posterolateral parietal cortex, and frontal cortex [ 60 ]. During per-
formance of a visual attention task, AD patients showed alterations 
in parietal activation; increased prefrontal activation was also 
observed compared with controls, again suggesting possible com-
pensatory mechanisms [ 61 ]. fMRI has been used to explore the 
neural basis of interesting phenomena in AD including abnormali-
ties in discriminating foreground from background sounds (the 
“cocktail party effect” in auditory scene analysis) [ 62 ]. 

  Fig. 1    The localization, magnitude, and extent of abnormalities observed in fMRI 
studies of patients with neurologic diseases depend on both localization and 
severity of pathology and on functional networks engaged by the particular fMRI 
task, as well as participant performance on the task. In this illustration, regions of 
cortical thinning in Alzheimer’s disease from structural MRI ( bottom ;  brighter blue 
colors  indicate greater degree of thinning) are compared with cortical areas acti-
vated, as measured with fMRI, in normals during an event-related study of suc-
cessful learning of new information that was able to later be freely recalled ( top , 
 yellow colors  indicate greater blood oxygen level-dependent (BOLD) signal in the 
contrast of recalled items vs. fi xation) (reproduced with permission from [ 76 ])       
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 With respect to  memory  , a number of pioneering fMRI studies 
in patients with clinically diagnosed AD, using a variety of visually 
presented stimuli, have identifi ed decreased activation in hippo-
campal and parahippocampal regions than in control subjects dur-
ing episodic encoding tasks [ 63 – 67 ]. Neocortical abnormalities in 
AD have also been demonstrated using fMRI. A meta-analysis of 
both fMRI and fl uorodeoxyglucose positron emission tomography 
(FDG-PET) memory activation studies of AD identifi ed several 
cortical regions as showing greater encoding-related activation in 
controls than in AD patients, including the ventrolateral prefrontal 
cortex, precuneus, cingulum and lingual cortex [ 68 ]. In addition 
to AD-related differences in task-related blood oxygen level- 
dependent (BOLD) signal amplitude or spatial extent, the tempo-
ral dynamics of activation appear to be altered in patients with AD 
[ 69 ]. Increased activation in prefrontal and other regions has also 
been found in AD patients performing memory tasks [ 67 ]. 

 While  memory-task related fMRI   data regarding medial tempo-
ral lobe (MTL) activation in individuals with MCI are less consistent 
than data from patients diagnosed with AD, with reports of both 
decreased and increased activation [ 26 ,  64 ,  66 ,  70 – 75 ], they indi-
cate that differences are present in comparison to older controls. 
Some of the variability in fMRI data in MTL activation appears to 
relate to degree of impairment along the spectrum of MCI, which 
suggests that fMRI may be sensitive to relatively subtle clinical dif-
ferences in disease severity [ 76 ,  77 ]. Similarly to studies of AD 
patients, investigations of posteromedial cortical deactivation during 
encoding in MCI patients has demonstrated reduced deactivation 
[ 78 ]. Other tasks have been used to demonstrate functional brain 
activation abnormalities in patients with MCI, including abnormali-
ties of lateral temporal activation during word reading [ 79 ]. 

 Since the advent of  molecular markers   of brain amyloid, includ-
ing both amyloid imaging and CSF amyloid assays, research has 
intensifi ed investigating task-related fMRI in cognitively normal 
(CN) older adults with brain amyloid, who are often viewed as 
having preclinical AD. One of the most widely replicated fi ndings 
in  CN amyloid-positive individuals   is impaired posterior cingu-
late/precuneus deactivation during memory encoding [ 80 – 83 ], as 
well as impaired activation of this region during retrieval [ 81 ], and 
also in an attentional control task [ 84 ]. The MTL hyperactivates 
during encoding in association with increasing amyloid load in CN 
older adults [ 82 ,  85 ]. Prefrontal regions may also hyperactivate 
during successful encoding [ 82 ,  85 ], although not all studies dem-
onstrate this fi nding [ 83 ]; in one study, the degree of hyperactiva-
tion was associated with memory performance [ 85 ], supporting 
the interpretation of possible compensatory hyperactivation. As 
tau PET imaging is developed [ 86 ], it will be exciting to test 
hypotheses regarding the effects of local hyperphosphorylated tau 
deposition on regional activation and connectivity. 
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 Very little work has been done with  task-related fMRI   in patients 
with bvFTD, probably in large part due to the diffi culties these 
patients often have in cooperating with task instructions and in the 
setting of MRI. During the viewing of faces conveying emotional 
expressions, bvFTD patients exhibit abnormally reduced activation in 
ventrolateral prefrontal cortex, insula, and a variety of other brain 
regions, but elevated activation in posterior parietal cortex [ 87 ]. 
fMRI has also been used to investigate the neural basis for changes in 
understanding of emotion conveyed through music [ 88 ] and in rea-
soning for personal vs. impersonal moral dilemmas [ 89 ] in bvFTD. 

 In PPA, an early fMRI study using simple  phonological and 
semantic tasks   demonstrated relatively normal activation within 
canonical regions of the language network but with increased 
recruitment in areas not typically recruited by controls; these 
increases correlated with greater language impairment [ 90 ]. Sonty 
et al. subsequently used dynamic causal modeling to show that 
effective connectivity between canonical language regions was 
impaired in PPA [ 91 ]. 

 In a study of syntactic comprehension in nonfl uent variant 
 PPA patients  , the caudal inferior frontal cortex did not show rela-
tively greater activation for complex sentences than for simple sen-
tences, as it did in controls [ 92 ]. 

 Vandenbulcke et al. [ 93 ] used an  associative-semantic fMRI par-
adigm   to demonstrate that patients with the semantic variant of PPA 
show an abnormal rightward lateralization of anterior temporal acti-
vation, which is reminiscent of a similar language laterality shift that 
has been reported in patients with stroke aphasia. This paradigm was 
also used in nonfl uent variant PPA patients to identify a similar effect 
[ 94 ]. The phenomenon of surface dyslexia was investigated in seman-
tic variant PPA; in patients but not controls the inferior parietal cor-
tex was recruited for irregular words, but mid-fusiform and superior 
temporal cortex was under-recruited in PPA patients [ 95 ]. 

 Patients with the semantic variant of PPA have also been stud-
ied using a paradigm comparing meaningful to meaningless sounds. 
Compared with controls, patients showed abnormal activation of 
dorsolateral temporal cortical areas for both meaningless sounds as 
well as for meaningful sounds (animal sounds versus tool sounds), 
suggesting that aberrant processing of sounds in semantic PPA 
extends to pre-semantic perceptual processing [ 96 ]; prior work by 
the same authors demonstrated abnormal auditory processing in 
patients with the nonfl uent variant of PPA as well [ 97 ]. 

 fMRI has been used to study abnormal patterns of brain activa-
tion in a variety of tasks in patients with  Parkinson’s disease (PD)  , 
most commonly in tasks engaging the motor system [ 98 ,  99 ]. fMRI 
studies investigating brain activations in PD patients during self-initi-
ated movements demonstrated evidence of reduced neural responses 
in the pre-supplementary motor areas (SMA), along with hyperactiva-
tion in both the lateral premotor cortex and parietal cortex 
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[ 100 – 102 ]. Some authors interpret these fi ndings as a shift from 
medial to lateral premotor loops, possibly indicating impairment in 
generating internal cues for movement and greater dependence on 
external cues [ 103 – 105 ]. In addition, cognitive tasks have been 
employed, such as a working memory paradigm that demonstrated 
hypoactivation in fronto-striatal regions in  PD   patients with cognitive 
impairment compared with those patients who were not cognitively 
impaired [ 106 ]. These fi ndings were confi rmed by a large fMRI study 
showing a frontostriatal hypoactivation during a verbal two-back 
working memory task in PD patients [ 107 ]. In the PD group, patients 
with MCI (PD-MCI) had an additional hypoactivation of the bilateral 
anterior cingulate cortex and the right caudate nucleus compared with 
non-MCI PD patients [ 107 ] (Fig.  2 ). Interestingly, PD-MCI patients 
also showed a lower single-photon emission computed tomography 
dopamine presynaptic uptake in the right caudate than patients with-
out MCI, which correlated with striatal fMRI signal [ 107 ]. The rela-
tionship between cognitive impairment and frontostriatal dysfunction 
was also suggested by a study showing that patients with PD-MCI 
had a reduced activity of the premotor cortex and cognitive corticos-
triatal loop, which includes the caudate nucleus and prefrontal cortex, 
while planning a set shift during fMRI, whereas non-MCI patients 
experienced activation patterns similar to those of healthy participants 
[ 108 ]. Impulsive behavior is an important problem in some patients 
with PD, and fMRI paradigms have been developed to understand 
the neural basis of these symptoms as well; behavioral abnormalities 
and their underlying neural substrates are exacerbated with dopami-
nergic therapy [ 109 ,  110 ].

   Very little work using fMRI has been performed in patients 
with  diffuse Lewy body disease (DLB)  , with one recent study dem-
onstrating a complex set of differences between DLB and AD 
patients in visual cortical activation during face, color, and motion 
perceptual tasks, many of which were explainable by differences in 
task performance [ 111 ]. 

 In  Huntington’s disease  , a growing body of work has employed 
attentional or executive tasks to probe fronto-parietal or fronto- 
striatal systems using fMRI. In an early study, reduced activation was 
found in multiple cortical regions in HD patients performing a serial 
reaction time task, compared to controls [ 112 ]. Both increased and 
decreased recruitment has been observed on working memory tasks 
in HD patients [ 113 ,  114 ]. On a visual attention/response inhibi-
tion task, HD patients showed reduced prefrontal-anterior cingulate 
interhemispheric functional connectivity, and reduced connectivity 
predicted slower reaction times and increased numbers of errors on 
the task [ 115 ]. On a set- shifting task, HD patients showed greater 
prefrontal activation than controls; a lesser degree of activation was 
associated with more prominent performance impairment on the 
task and neuropsychiatric symptoms [ 116 ]. Reduced error-related 
activation was also found in an anti-saccade task [ 117 ]. 
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  Fig. 2    Pattern of fMRI signal during a verbal two-back working memory task in PD patients and cognitive 
impairment. Signifi cant under-recruitment occurred in ( a ) the bilateral anterior cingulate cortex and ( b ) the 
right caudate in PD patients with MCI ( n  = 30) compared with those without MCI ( n  = 26;  red ). Mean beta 
values in ( c ) the anterior cingulate cortex cluster and ( d ) right caudate, contrasting two-back with baseline 
conditions for PD patients with ( blue ) and without ( red ) MCI and control individuals ( green ). ( e ) Mean beta 
values in the right caudate, contrasting two-back with baseline for motor-matched (Unifi ed Parkinson’s 
disease Rating Scale III) groups for PD patients with MCI and without MCI. The group sizes were held con-
stant ( n  = 18 in each group) and matched by scanner model. Error bars are 1 standard error. Figure reprinted 
from [ 107 ] with permission       
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 In ALS, fMRI has been used to demonstrate abnormalities in 
 motor cortical activation  . Furthermore, it has been used to investi-
gate whether there are different patterns of cortical activation dur-
ing a simple motor task in ALS patients with a primarily upper 
motor neuron (UMN) pattern of clinical defi cits vs. those with a 
 lower motor neuron (LMN)   pattern [ 118 ]. The UMN patient 
subgroup showed relatively greater activation of the anterior cin-
gulate and caudate than the LMN subgroup, suggesting that fMRI 
may provide insights into the differentiation of disease subtypes. 
Since many patients with ALS develop cognitive and/or affective 
symptoms (and in some cases full-blown frontotemporal demen-
tia), fMRI paradigms including verbal fl uency [ 119 ], inhibitory 
control [ 120 ], and an emotional word viewing task [ 121 ] have 
been used to demonstrate functional brain activation abnormalities 
in relevant circuits. Further work is necessary to better understand 
whether fMRI task activation abnormalities may predict the emer-
gence of symptoms impacting function in daily life.  

   Hypoperfusion/metabolism is typically seen with nuclear medical 
 imaging techniques   (such as FDG-PET or SPECT) in temporo- 
parietal/posterior cingulate cortical regions in AD patients during 
the “resting” state. The medial parietal/posterior cingulate cortex, 
along with medial frontal and lateral parietal regions, compose a 
“default mode” network (DMN) that is generally more active 
when individuals are not engaged in specifi c tasks [ 122 ], and which 
is thought to play a role in memory, self-appraisal, self-referential 
planning, and a variety of other mental states [ 123 ]. Multiple 
 studies in AD patients have demonstrated alterations in the deacti-
vation and functional connectivity of these regions [ 124 – 127 ]. 
Substantial overlap is present between the DMN and the localiza-
tion of amyloid PET tracer binding [ 128 ]. 

 These early observations have been markedly enriched in the 
past decade with the explosion of research using  resting state fMRI  . 
More than 20 years ago, Biswal originally observed [ 129 ] that low-
frequency fl uctuations in BOLD signal amplitude could be mea-
sured while subjects lie “at rest” in the scanner without engaging 
in a specifi c task, and that correlations between the oscillations in a 
“seed” region of interest could be used to identify correlated signal 
in other areas that are likely part of the same large-scale circuit, and 
that share the same topography as regions activated during a  fi n-
ger-tapping task  . Similar fi ndings can be obtained using data-driven 
analysis methods such as independent component analysis. 
Although maps of networks obtained using resting state fMRI 
methods are thought to represent connections beyond strict mono-
synaptic connections, the topography of networks identifi ed using 
these methods has been validated against traditional tract tracing 
methods in nonhuman primates as refl ecting the major gray matter 
sites of origin and termination of large-scale networks [ 130 ]. One 

4.2  Abnormalities 
in Functional 
Connectivity in 
Patients with Neuro-
degenerative 
Diseases: Resting 
State fMRI
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advantage of using  resting state fMRI methods   in patients with 
cognitive impairment or dementia is that the challenges of engag-
ing patients in specifi c tasks can be avoided. 

 A growing body of work has developed confi rming Biswal’s 
original observation across multiple networks, showing the corre-
spondence between the topography of distributed neural networks 
identifi ed at rest and those engaged by task performance in tradi-
tional  task-related fMRI   [ 131 ]. Major networks have been identi-
fi ed using these methods including somatosensory, visual, auditory, 
language, attention/executive function, affective, memory, DMN, 
and other networks [ 131 ,  132 ]. 

 In resting state fMRI studies of AD dementia, one of the most 
reproduced fi ndings from is the consistent reduction of connectivity 
within the DMN [ 133 – 138 ]. As has been pointed out more than a 
decade ago, this should not be surprising given that amyloid deposi-
tion, hypometabolism, and atrophy convergently affect many key 
nodes of the DMN in patients with AD [ 128 ]. The magnitude of 
reduced connectivity within the DMN correlates with the severity of 
symptoms [ 133 ,  135 ,  136 ,  139 ]. The sensitivity of resting state fMRI 
measures in differentiating AD patients from healthy elderly controls 
ranges from 72 to 85 % and specifi city from 77 to 80 % [ 125 ,  140 , 
 141 ]. Longitudinal data have begun to suggest that some subnet-
works within the DMN may develop  hyperconnectivity   early in the 
disease course while others show hypoconnectivity, but all decline 
over time [ 142 ]. A few studies have begun to  compare connectivity 
at rest to connectivity during tasks; typically, controls show greater 
connectivity within the DMN at rest than they do while performing 
a task (presumably because some nodes of the DMN may contribute 
to the task). One recent study showed that AD patients fail to modu-
late connectivity within the DMN during a simple visual attention 
task [ 143 ]. Another study showed that AD patients had greater 
memory encoding task-related prefrontal activation and greater pre-
frontal resting state connectivity than controls [ 144 ]. 

 Since  AD dementia   is a syndrome of multiple domains of cog-
nitive impairment, it stands to reason that other networks would 
be disrupted as well. However, evidence to date is not consistent. 
There is some evidence demonstrating reduced connectivity in 
multiple networks in addition to the DMN [ 136 ], but not all stud-
ies demonstrate such widespread effects. This is likely in part 
related to the heterogeneity of AD itself and of the patient samples 
in these studies, particularly with regard to the types and severity of 
symptoms. In addition, some fi ndings point to increased connec-
tivity in the salience network [ 133 ] and  frontoparietal network   
[ 144 ], although confl icting data have been reported showing 
reduced rather than increased connectivity within these networks 
[ 136 ,  145 ]. The connectivity within the executive control net-
work, in contrast, appears more consistently increased in AD [ 144 –
 146 ], which is surprising given the common occurrence of 
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executive dysfunction in these patients, although in one of these 
studies the increased connectivity was correlated with neuropsy-
chological performance [ 146 ]. 

 Although  AD dementia   is typically a multidomain amnesic 
dementia, major subtypes are well recognized. Two of these have 
received preliminary investigation with regard to the overlap of the 
topography of atrophy with the topography of healthy functional 
connectivity network. In posterior cortical atrophy (PCA), the atro-
phy pattern mapped most closely onto higher visual networks, while 
in logopenic variant PPA (lvPPA), the atrophy pattern mapped most 
closely onto the language network [ 147 ]. It is also well-recognized 
that early-onset AD differs in many respects from late-onset AD; 
whereas in late-onset AD the DMN is most prominently affected as 
described above, in early-onset AD the salience and executive control 
networks seem most robustly affected [ 148 ,  149 ]. This fi ts with the 
atypical clinical phenotypes commonly seen in early-onset AD [ 150 ]. 

 Decreased  DMN connectivity   was also found to be predictive 
of clinical conversion to AD in patients with MCI [ 139 ,  151 ]. 
With the rise of biomarkers of amyloid, an increasing number of 
studies have investigated the functional connectivity abnormalities 
associated with preclinical AD (asymptomatic cerebral amyloido-
sis). There is consistent evidence for disrupted DMN connectivity 
in preclinical AD [ 152 – 156 ]. See below for a discussion of  APOE  
and other genetic effects. 

 In patients with  bvFTD  , the resting state fMRI connectivity of 
the salience network is consistently abnormal [ 133 ,  145 ]; in one 
study, this was seen in both bvFTD and semantic dementia [ 157 ]. 
The degree of abnormality of functional connectivity in the salience 
network correlates with symptom severity [ 133 ,  157 ]. Interestingly, 
some investigations have reported increased DMN connectivity in 
bvFTD [ 133 ], although other studies have reported reduced DMN 
connectivity [ 145 ,  158 ]. In another study of semantic variant PPA, 
graph theoretical analyses of resting state fMRI data demonstrate 
loss of integrity in multimodal ventral temporal cortex as well as in 
the modality-specifi c caudal ventral visual stream [ 159 ]. Surprisingly, 
there have been no other studies of functional connectivity in PPA. 

 In patients with the typical  “Richardson” PSP clinical syn-
drome  , resting state fMRI has been used to identify a dorsal mid-
brain tegmentum- thalamocortical network in healthy individuals 
that shows reduced connectivity in patients with PSP, with the 
magnitude of reduced connectivity correlating with symptom 
severity [ 160 ]. The topography of this network bears remarkable 
similarity to the distributed set of regions known to accrue tau 
pathology in PSP [ 161 ]. In a separate study, PSP patients showed 
reduced thalamo- cortical connectivity which correlated with cog-
nitive and motor symptoms [ 162 ]. To date, there have been no 
resting state fMRI studies of CBD. 
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 In ALS, most resting state fMRI studies have focused on the 
 sensorimotor network  , with fi ndings of either reduced or mixed 
changes in connectivity relative to controls [ 163 ]. Very little work 
in this area has included participants with cognitive or behavioral 
impairment and there is not yet a study using resting state fMRI in 
patients with ALS- FTD. In one study, a subset of the ALS patients 
exhibited cognitive or behavioral impairment [ 164 ]. As a group, 
the ALS patients showed both reductions and increases in connec-
tivity within the DMN and frontoparietal network with no differ-
ences in executive or salience networks. Within the group of ALS 
patients, there was an inverse correlation between performance on 
the Wisconsin Card Sort Test and connectivity within the DMN as 
well as within the frontoparietal network, suggesting that at least 
some of the increases in connectivity relate to impairments in cogni-
tive performance. 

 Early  resting state fMRI studies   of DLB produced substantially 
differing results. One study showed that connectivity was reduced 
between the precuneus seed and medial prefrontal cortex and hip-
pocampus, while it was increased between the precuneus seed and 
regions of the dorsal attention network and putamen [ 165 ]. 
Another study found increased connectivity between the posterior 
cingulate cortex seed and anterior cingulate, culmen, cerebellum, 
and putamen with no areas of decreased connectivity [ 166 ]. In 
another analysis focused on subcortical connectivity, seed regions in 
bilateral caudate, putamen, and thalamus showed greater connec-
tivity with other structures than controls [ 167 ], with no reduced 
connectivity compared to controls. Using independent component 
analysis, another analysis demonstrated reduced functional connec-
tivity within the DMN, salience, and executive networks with 
increased basal ganglia connectivity compared to controls [ 168 ]. 

 Several resting state fMRI studies have been conducted of  PD 
with mild cognitive impairment (PD-MCI)   or  PD dementia 
(PDD)  . In one study which employed seed-based analysis, the 
DMN showed no differences but the caudate seed showed reduced 
connectivity in PDD with dorsolateral prefrontal cortex and puta-
men [ 169 ]. Another group used the posterior cingulate cortex/
precuneus as a seed for a DMN analysis and reported decreased 
connectivity in the right inferior frontal gyrus in PDD as compared 
to PD and controls [ 170 ]. In another study, PDD patients demon-
strated reduced connectivity within the DMN compared to PD 
patients without cognitive impairment, and widespread reductions 
compared with controls [ 171 ]. In another study of PD with or 
without MCI, the DMN was found using independent component 
analysis to be reduced in both groups compared to controls, while 
the connectivity of bilateral prefrontal cortex within the  frontopa-
rietal network   was reduced and the strength of connectivity cor-
related with visuospatial cognitive test performance [ 172 ]. Finally, 
another study examined local resting signal fl uctuations in PD-MCI 
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or PDD and found reduced spontaneous brain activity in regions 
important for motor control (e.g., caudate, supplementary motor 
area, precentral gyrus, thalamus), attention and executive func-
tions (e.g., lateral prefrontal cortex), and episodic memory (e.g., 
precuneus, angular gyrus, hippocampus) [ 173 ]. 

 Another study employed both independent component and 
 seed-based analyses   to study PD-MCI. Independent component 
analysis results revealed reduced connectivity between the dorsal 
attention network and frontoinsular regions, associated with worse 
performance in attention/executive functions. The DMN dis-
played increased connectivity with medial and lateral occipito- 
parietal regions, associated with worse visuospatial performance. 
The seed-based analyses mainly revealed reduced within both the 
DMN and dorsal attention network, along with disruptions of dor-
sal attention-frontoparietal and DMN-dorsal attention network 
interactions [ 174 ]. 

 A series of recent resting state fMRI studies have investigated 
group differences in PD and DLB compared to each other or to 
patients with PD but no  cognitive impairment  . In a study investi-
gating both PDD and DLB, PDD was associated with local con-
nectivity reductions in frontal regions while DLB was associated 
with local connectivity reductions in posterior cortical regions 
[ 175 ]. Another study compared PDD and DLB and found reduc-
tions in both frontoparietal networks and supplementary motor 
network in both diseases [ 176 ]. 

 Other recent studies have focused on resting state fMRI corre-
lates of specifi c symptoms. Fluctuations in cognition in DLB were 
associated with reduced connectivity in the left frontoparietal net-
work [ 177 ]. Apathy in PD was found to be associated with reduced 
connectivity in limbic striatal and frontal circuits, but surprisingly, 
the severity of apathy was inversely correlated with connectivity in 
these circuits [ 178 ]. Visual hallucinations in PD were associated 
with increased occipito-striatal [ 179 ] and DMN connectivity [ 180 ]. 

 In HD, several resting state fMRI studies have been conducted 
with mixed results in analysis of sensorimotor and  basal ganglia–
thalamocortical networks   [ 181 – 184 ]. With regard to cognitive 
networks, HD patients showed widespread reduction in synchrony 
in the dorsal attention network, which was associated with poorer 
cognitive performance [ 182 ]. Widespread DMN changes, not cor-
relating with the atrophy of the involved nodes, also appear to be 
present in symptomatic HD patients [ 181 ], and correlate with 
cognitive disturbances [ 183 ]. 

 In part from functional connectivity MRI studies (as well as 
from diffusion tensor imaging structural connectivity MRI stud-
ies), the hypothesis that neurodegeneration progresses along con-
nectional pathways has received greater support. Seeley et al. [ 185 ] 
provided a compelling set of results relating the  spatial topographic 
patterns   of atrophy in fi ve neurodegenerative syndromes (AD, 
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bvFTD, semantic variant PPA, nonfl uent variant PPA, and cortico-
basal syndrome) to the topography of large-scale networks in the 
healthy brain as measured by resting state fMRI and gray matter 
structural covariance. This seminal observation has spurred a grow-
ing body of research and links with studies of the potential cell-to-
cell transmission of misfolded proteins [ 186 ]. Technical advances in 
graph theoretical and related mathematical modeling approaches to 
functional and diffusion MRI data are leading to new ideas about 
how the human brain connectome may provide important context 
for neurodegeneration [ 187 ].  

   Aside from neocortical hyperactivation in AD, consistent data sug-
gest that there is a phase of increased MTL activation in MCI 
(Fig.  3 ) [ 188 ]. This increase, which also may be present in cogni-
tively intact carriers of the  APOE-ε4 allele   (for review,  see  [ 189 ]), 
may represent, at least in part, an attempted compensatory response 
to AD neuropathology [ 190 – 192 ], given that some MCI individu-
als with smaller hippocampal volume perform similarly on memory 
tasks to MCI individuals with larger hippocampal volume but have 
relatively greater MTL activation [ 26 ,  74 ]. Additional studies 
employing  event-related fMRI paradigms   [ 18 ,  24 ,  75 ] will be very 
helpful in determining whether increased MTL activation in MCI 
patients is specifi cally associated with successful memory, as 
opposed to a general effect that is present regardless of success 
(possibly indicating increased effort). Whether or not hyperactiva-
tion is associated with better memory performance and thus could 
be viewed as behaviorally compensatory, it appears to be associated 
with more prominent neurodegeneration [ 193 ] and poorer prog-
nosis [ 194 ]. It is possible that MTL hyperactivation refl ects cholin-
ergic or other neurotransmitter upregulation in MCI patients 
[ 195 ]. Alternatively, increased regional brain activation may be a 
marker of the pathophysiologic process of AD itself, such as aber-
rant sprouting of cholinergic fi bers [ 196 ] or ineffi ciency in synaptic 

4.3  Compensatory 
Hyperactivation: 
A Universal Adaptation 
Response to Brain 
Injury?

  Fig. 3    A phase of compensatory hyperactivation appears to occur in the medial temporal lobe (MTL) in mild 
cognitive impairment (MCI), prior to the clinical onset of Alzheimer’s disease (AD) dementia. Representative 
single subjects from each group, showing normal memory-related MTL activation measured with fMRI in 
normal older controls, hyperactivation, and very mild atrophy in MCI, and hypoactivation and more prominent 
atrophy in mild AD (reproduced with permission from [ 76 ])       
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transmission [ 197 ] or aberrant synchronous fi ring along the lines 
of  epileptiform   discharges [ 198 ]. In fact, the treatment of MTL 
hyperactivation using the anticonvulsant levitiracetam in MCI is 
associated with improved memory performance [ 199 ]. It is impor-
tant, however, to acknowledge that multiple nonneural factors may 
confound the interpretation of changes in the hemodynamic 
response measured by BOLD fMRI, such as age- and disease- 
related changes in neurovascular coupling [ 54 ,  55 ], AD-specifi c 
alterations in vascular physiology [ 200 ], and resting hypoperfusion 
and metabolism in MCI and AD [ 201 ], which may result in an 
amplifi ed BOLD fMRI signal during activation [ 202 ,  203 ]. Further 
research to determine the specifi city of hyperactivation with respect 
to particular brain regions and behavioral conditions will be valu-
able to better characterize this phenomenon [ 76 ,  77 ].

   “Compensation” is typically defi ned as greater regional brain 
activity (hyperactivation) in an MCI/AD group in the setting of 
 task performance accuracy   that is similar to that of a matched con-
trol group. Regional hyperactivation may involve greater magni-
tude of activity in brain regions typically active during performance 
of the task (when performed by controls), or the recruitment of 
additional brain regions not normally engaged by controls. 
However, it is also clear that greater task diffi culty may provoke 
similar alterations in regional brain activity in healthy individuals 
[ 204 – 207 ]. It is challenging to know to what degree MCI/AD 
groups fi nd memory tasks to be “more diffi cult” than they would 
in the absence of disease. This has led some investigators to attempt 
to match task diffi culty between MCI/AD patients and controls 
[ 192 ]. It is also possible that different  cognitive strategies   during 
memory task performance (e.g., semantic elaborative encoding 
strategies vs. visualization strategies) may contribute to differences 
in the recruitment of particular brain regions [ 208 ] and that this 
may vary between patient and control groups. Further work in this 
area, including longitudinal studies in MCI/AD patients [ 52 ], ide-
ally including detailed behavioral measures of reaction time as well 
as accuracy and possibly self-report of task diffi culty, will be impor-
tant to better clarify the situations in which activity increases can be 
reasonably interpreted as compensatory for brain disease. 

 In PD, a potential compensatory response was demonstrated 
in an fMRI study showing that maintenance of movement is 
accompanied by hyperactivation in lateral  premotor areas   [ 209 ]. In 
the same subjects, dopaminergic therapy normalized these activa-
tion patterns in the setting of constant motor performance (see 
later for additional discussion of  pharmacologic fMRI  ). Monchi 
et al. [ 210 ] showed that, during a set-shifting task, PD patients 
have reduced ventrolateral prefrontal activity relative to controls, 
but greater dorsolateral prefrontal activity, suggesting not only 
that frontostriatal circuits are dysfunctional in PD but that there 
also may be attempted compensatory activity. An elegant study of 

fMRI in Neurodegenerative Diseases: From Scientifi c Insights to Clinical Applications



716

motor imagery in PD patients with strongly lateralized symptoms 
demonstrated that when patients judged the laterality of hand 
images in different orientations, occipito-parietal cortex hyperacti-
vation was most prominent for imagery employing the affected 
hand compared with the unaffected hand [ 211 ]. 

 In HD, hyperactivation was observed in multiple regions dur-
ing a visual attention/interference task [ 212 ]. Notably, greater 
 premotor activation   correlated with a greater degree of clinical 
impairment, supporting the conjecture that response that is at least 
attempting to compensate for the disease. The authors suggest that 
the HD patients may have required increased effort to inhibit inap-
propriate motor responses. As in most studies identifying possible 
compensatory hyperactivation, there are a number of other inter-
pretations of how hyperactivation may relate to severity of illness. 

 In ALS, sensorimotor cortical hyperactivation is present in 
comparison to both healthy normal controls and to controls with 
 peripheral motor weakness  , indicating that the hyperactivation is 
not purely a refl ection of weakness [ 213 ]. Schoenfeld et al. [ 214 ] 
used a button-press sequencing task to investigate whether task 
diffi culty level was primarily responsible for greater activation 
within motor circuits. Although during the simple task ALS 
patients showed motor hyperactivation compared with controls, 
when the task was manipulated such that controls had to respond 
more rapidly and thus made more errors (equivalent to those of 
ALS patients in the simpler task), motor activation was similar 
between the two groups. Functional recruitment of cerebral 
regions involved in motor learning has also been noted in ALS 
patients, including basal ganglia, cerebellum, and brainstem [ 215 ]. 

 Despite the caveats mentioned earlier with regard to many of 
the studies of hyperactivation in neurodegenerative diseases, accu-
mulating evidence suggests that  task-related regional brain   hyper-
activation may be a universal neural response to insult, as it occurs 
in sleep deprivation [ 216 ], aging [ 217 ], and a variety of neuropsy-
chiatric disorders and conditions, including AD/MCI, PD, ALS, 
cerebrovascular disease [ 218 ,  219 ], multiple sclerosis [ 220 ,  221 ], 
traumatic brain injury [ 222 ], human immunodefi ciency virus 
(HIV) [ 223 ], alcoholism [ 224 ], and schizophrenia [ 225 ]. In many 
of these studies, task-related regional brain hyperactivation was 
associated with the relative preservation of performance on the 
task, suggesting that hyperactivation may be serving, at least in 
part, a compensatory role for neurologic insult. The evidence dis-
cussed earlier also indicates that increased  MTL activation   can be 
seen in MCI in the setting of minimal MTL atrophy [ 70 ], which 
provides in vivo support for laboratory data suggesting that physi-
ologic alterations may precede signifi cant structural abnormalities 
very early in the course of a neurodegenerative disease such as AD 
[ 4 ,  226 ] and may represent ineffi cient neural circuit function 
[ 197 ]. Thus, fMRI may provide a means to detect changes in 
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human brain circuit function that underlie the earliest symptoms of 
neurodegenerative diseases and may be useful in identifying groups 
of subjects at high risk for future decline prior to a clinical diagno-
sis of these diseases (Fig.  4 ).

   It is possible, however, that hyperactivation refl ects ineffi cient 
function of  neural circuits   in the face of injury, and that such a 
response may be deleterious in the long run. Thus, it will be critical 
to elucidate the relationships between behavioral performance, 
neural circuit function, and clinical course of disease, with the ulti-
mate goal of determining how best to use these fMRI measures as 
biomarkers of putative therapeutic response in clinical trials. 
Numerous resting state fMRI studies have also found increased 
connectivity [ 227 ], and efforts are also ongoing to better interpret 
these fi ndings in the context of clinical or longitudinal data.  

   In the last decade, there has been an explosion in literature on 
imaging and genetics, primarily in  psychiatric disorders   [ 228 ] and 
the basic science of genetic modulators of brain function [ 229 , 
 230 ]. This is an area that is ripe for study in neurologic disease, 
with a number of studies having been done in populations at ele-
vated genetic risk for AD, FTD, ALS, and HD. 

 The   APOE  ε4 allele   is a major genetic susceptibility factor 
associated with increased risk for AD. Several fMRI studies have 
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  Fig. 4    Illustration of degenerative-compensatory model, proposed as a universal 
response to brain insult. In the case of neurodegenerative diseases, the model 
proposes that there is a phase of task-related hyperactivation of regional brain 
circuits subserving task performance, followed by the gradual development of 
regional hypometabolism and atrophy as the disease progresses from presymp-
tomatic to prodromal to overtly symptomatic phases       
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investigated regional brain activation during task performance in 
cognitively intact subjects stratifi ed by their  APOE  allele status. 
Smith et al. reported decreased activation in inferior temporal 
regions on a visual naming and a letter fl uency fMRI paradigm 
(there was no hippocampal or other medial temporal activation 
reported with these tasks) in  APOE  ε4 carriers [ 231 ]. In a subse-
quent report, this group reported increased parietal activation in 
women with an  APOE  ε4 allele [ 232 ]. Bookheimer et al. reported 
increased activation in left hippocampal, parietal, and prefrontal 
regions among  APOE  ε4 carriers, compared with noncarriers, 
using a word-pair associative memory paradigm [ 233 ]. In addi-
tion, an increased number of activated regions in the left  hemisphere 
at baseline was associated with a decline in memory at the 2-year 
follow-up among the  APOE  ε4 carriers. The authors hypothesized 
that this increase in activation in the  APOE  ε4 carriers might rep-
resent the additional cognitive effort or neuronal recruitment 
required to adequately perform the task. Similarly increased activa-
tion in multiple brain regions was recently reported in cognitively 
intact older  APOE  ε4 carriers compared with ε3 carriers, although 
the effect was lateralized to the right MTL region (left hippocam-
pal activation was greater in ε3 carriers) [ 234 ]. Among a group of 
29 controls, MCI subjects, and AD patients, Dickerson et al. 
reported that 13  APOE  ε4 carriers demonstrated greater entorhi-
nal activation than noncarriers, in the absence of genotype-related 
differences in the volumes of these regions [ 70 ]. Other studies 
suggest that decreased medial temporal activation may also be seen 
in APOE ε4 carriers [ 235 ]. 

 With regard to functional connectivity, a number of studies 
have identifi ed reduced DMN connectivity in cognitively normal 
middle-aged or older adults who carry the APOE ε4 allele [ 236 –
 239 ], suggesting the possibilities that either early preclinical patho-
logical changes associated with AD may be present or that this 
genetic risk factor itself may alter brain network function (Fig.  5 ). 
In these studies, the amyloid status of participants was unknown. In 
another investigation, amyloid- negative  APOE  ε4 carriers were 
compared to noncarriers and found to have reduced DMN connec-
tivity [ 240 ]. This latter fi nding raises the question of whether  APOE  
itself infl uences the effi ciency of this neural network independently 
of its promotion of  amyloid pathology  . In support of the hypothesis 
that  APOE  modulates network effi ciency, two studies of healthy 
young adults have found increased DMN connectivity in  APOE ε4  
carriers [ 241 ,  242 ]. These fi ndings are challenging to interpret at 
present, but raise the possibility that  APOE ε4  may have both devel-
opmental effects on the connectivity of the DMN as well as its well-
known effect of increasing the likelihood of amyloid pathology as a 
function of age.

   A number of studies of  functional activation   and connectivity in 
autosomal dominant forms of AD have been conducted in the past 
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decade. During memory encoding, presymptomatic carriers of  pre-
senilin  ( PSEN ) mutations show hippocampal hyperactivation [ 243 , 
 244 ] and reduced precuneus deactivation [ 244 ,  245 ]. DMN func-
tional connectivity is reduced in presymptomatic carriers of autoso-
mal dominant mutations as they approach estimated age of onset in 
their family [ 134 ,  246 ]. Yet children who carry these mutations 
show increased DMN functional connectivity [ 245 ], again suggest-
ing a possible inverse U-shaped curve of hyperconnectivity prior to 
loss of connectivity. These fi ndings are supported by similar previ-
ous results in a small study of two PSEN mutation carriers com-
pared to three noncarriers [ 247 ]. In summary, these fi ndings 
suggest that the increased activation seen in the APOE ε4 allele 
carriers may not be due solely to compensatory mechanisms but 
may indicate, in part, an independent physiological mechanism. 

 With regard to FTD, a few studies of resting state fMRI have 
been performed    in presymptomatic carriers of autosomal domi-
nant mutations associated with these FTD and/or ALS. In eight 
presymptomatic  MAPT  carriers, reduced DMN connectivity was 

  Fig. 5    APOE ε4 status reduces DMN connectivity in healthy older adults. Functional connectivity is decreased 
in ε4 carriers compared to ε3 homozygotes in both the ( a ) anterior, and ( b ) posterior DMN. The bar graphs 
depict the distribution of the effects across subgroups. They show the mean parameter estimates of a selected 
region within the anterior DMN (the right anterior cingulate gyrus) and the left posterior cingulate cluster within 
the posterior DMN, for male and female ε3 homozygotes and male and female ε4 carriers. The difference 
across both genotype and gender is signifi cant for the anterior cingulate gyrus. For the posterior cingulate 
gyrus only the difference across genotype is signifi cant. The statistical maps are overlaid on the Montreal 
Neurological Institute (MNI) 152 brain; MNI coordinates (in mm) of the slices are displayed. Figure modifi ed 
from [ 239 ] with permission       
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observed with no change in salience network connectivity [ 158 ]. In 
a mixed group of  MAPT  and  GRN  carriers, presymptomatic muta-
tion carriers showed an age-related reduction in connectivity 
between the anterior insula and the anterior cingulate cortex [ 248 ] 
which was not seen in controls, suggesting that as carriers approach 
symptom onset the integrity of this network declines. In a group of 
 GRN  carriers, presymptomatic carriers showed increased connec-
tivity in the salience network on one study [ 249 ] and in another 
study showed reduced connectivity in the frontoparietal network/
dorsal attention network with increased connectivity within the 
executive control network [ 250 ]. In this same study, the authors 
investigated the modulatory effects of a polymorphism in 
  TMEM106B    which has been shown to infl uence age of onset in 
 GRN  carriers; they found that carriers of the increased risk allele 
showed reduced connectivity in the frontoparietal network and 
ventral salience network compared to noncarriers [ 250 ]. One rest-
ing state fMRI study has been conducted of symptomatic carriers of 
the  C9orf72  repeat expansion, a major genetic factor contributing 
to FTD and ALS. FTD patients with this mutation show reductions 
in connectivity in the salience and sensorimotor networks; salience 
network connectivity reduction correlated with atrophy in the pul-
vinar thalamic nucleus, which is known to exhibit pathology in this 
form of the disease [ 251 ]. 

 A few  task-related fMRI studies   have been performed in indi-
viduals with presymptomatic HD. An attentional interference task 
was used to identify reduced anterior cingulate activation in pres-
ymptomatic  huntingtin  mutation carriers compared to controls; 
carriers also had subtle performance abnormalities on the task 
[ 252 ]. Two studies have focused on mood-related abnormalities. 
In the fi rst, negative feedback on performance was given to partici-
pants, and abnormally reduced amygdala activation and aberrant 
amygdala-orbitofrontal coupling was observed in  presymptomatic 
HD individuals   [ 253 ]. In the other study, a mood induction task 
was used to identify increased activation in presymptomatic HD 
individuals relative to controls of pulvinar, cingulate cortex, and 
somatosensory association cortex; pulvinar activation correlated 
inversely with putaminal gray matter volume and directly with clin-
ical ratings of irritability [ 254 ]. 

 Reduced dorsolateral prefrontal cortical activation was 
observed in presymptomatic HD individuals on a working mem-
ory task [ 255 ]; this reduction was stable over a 2-year period 
[ 256 ]. Working-memory task-related functional connectivity was 
reduced in presymptomatic HD [ 257 ]. Presymptomatic HD indi-
viduals showed increased recruitment of prefrontal regions but 
reduced task-related connectivity between these regions longitudi-
nally over an 18-month period [ 258 ]. 

 In a resting state functional connectivity study, presymptom-
atic HD individuals showed decreased correlated activity in the 
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sensorimotor and dorsal attention networks; decreased level of 
synchrony in the sensorimotor network was associated with poorer 
motor performance [ 182 ]. In presymptomatic HD individuals, 
 DMN connectivity   was reduced [ 259 ]. In another study of pres-
ymptomatic HD, the authors found no longitudinal change in 
resting-state connectivity over 3-year period [ 260 ].  

   Very little work has been done on the use of fMRI as a predictive 
biomarker for prognosis. Miller et al. pursued such a study of a 
group of 25 senior citizens spanning the spectrum of MCI, none 
of whom were demented at the time of baseline assessment, but 
who exhibited varying degrees of mild symptoms of cognitive 
impairment clinically [as measured using the  CDR sum-of-boxes 
(CDR-SB)  ] [ 194 ]. At baseline, subjects performed a visual scene- 
encoding task during fMRI scanning and were clinically followed 
longitudinally after scanning. Over about 6 years of follow-up after 
scanning, subjects demonstrated a wide range of cognitive decline, 
with some showing no change and others progressing to dementia 
(change in CDR-SB ranged from 0 to 6). The degree of cognitive 
decline was predicted by hippocampal activation at the time of 
baseline scanning, with greater hippocampal activation predicting 

4.5  fMRI 
as a  Predictive 
Biomarker  

  Fig. 6    fMRI as a predictive quantitative imaging biomarker. In a group of mild 
cognitive impairment patients, hippocampal activation at baseline predicts the 
degree of cognitive decline over 6 years after scanning. Scatterplot shows, on the 
 Y -axis, parameter estimates (representing percent BOLD signal change) of dif-
ferential hippocampal activation in novel versus repeated contrast. The  X -axis 
shows estimated rate of change in CDR SB score per year after fMRI scan in 
participants who remained classifi ed as having MCI and in those who were diag-
nosed with probable AD during the follow up interval. Figure reprinted from [ 194 ] 
with permission       
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greater decline (Fig.  6 ). This fi nding was present even after con-
trolling for baseline degree of impairment (CDR-SB), age, educa-
tion, and hippocampal volume, as well as gender and APOE status. 
Similarly, a longitudinal fMRI study showed that healthy subjects 
with more rapid cognitive decline over a 2-year period had both 
the highest hippocampal activation at baseline and the greatest loss 
of hippocampal activation over follow up, where the rate of activa-
tion loss correlated with the rate of cognitive decline [ 52 ]. These 
data suggest that fMRI may provide a physiologic imaging bio-
marker useful for identifying the subgroup of MCI  individuals   at 
highest risk of cognitive decline for potential inclusion in disease- 
modifying clinical trials. Thus, hyperactivation might represent an 
early response to AD pathology, which may predict forthcoming 
hippocampal failure and memory decline.

      FMRI may be particularly valuable in evaluating acute and subacute 
effects of therapeutic interventions—whether pharmacologic, non-
pharmacologic (e.g., transcranial magnetic stimulation), or behav-
ioral/rehabilitative—on neural activity [ 261 ]. This may be useful 
for showing that the intervention modulates targeted circuits and 
may help elucidate mechanisms of action. Additionally, it may help 
identify or even predict treatment responders or nonresponders. 

 Alterations in memory-related activation related to the admin-
istration of pharmacologic agents known to impair memory can be 
detected with pharmacologic fMRI [ 262 – 264 ]. The effects of cog-
nitive enhancing drugs on brain activation during cognitive task 
performance have shown that fMRI can detect changes after 
administration of cholinesterase inhibitors in patients with AD and 
MCI [ 265 ,  266 ]. In one of the earliest studies, after receiving a 
single dose of galanthamine, AD patients demonstrated increased 
fusiform activity during a face encoding task and increased prefron-
tal activity during a working memory task [ 265 ]. Another study 
showed that acute dosing increased hippocampal activation during 
a memory task while chronic dosing was associated with decreased 
activation [ 267 ]. Although these pilot studies did not include pla-
cebo-control groups to reduce potential confounding factors, such 
as learning effects, they indicate that fMRI is sensitive to both 
acute and subacute medication effects, some of which relate to 
behavioral change. Similar fi ndings have been observed in subse-
quent placebo-controlled acute dosing studies [ 268 ]. Another 
placebo-controlled acute dose physostigmine study demonstrated 
normalization of both visual stimulus-specifi c activation in occipi-
tal and attention-dependent activation in frontoparietal regions in 
patients with AD [ 269 ]. 

 Pharmacological fMRI has also been used to evaluate the effects 
of chronic  treatment   over 2–6 months in patients with AD demen-
tia. For the most part, these studies have demonstrated treatment-
related increased activation in brain regions engaged by the variety 
of tasks used [ 270 – 272 ]. Whereas some studies have found 

4.6  Uses of fMRI 
in Understanding 
and Monitoring 
 Neurotherapeutics  
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decreased activation in areas engaged by the task at baseline [ 267 , 
 273 ,  274 ]. However, some studies have demonstrated a more com-
plex effect, with relatively greater prefrontal activation increases 
being associated with a more advanced stage of cognitive impair-
ment [ 268 ], supporting the perspective that task-related activation 
in the MCI-AD dementia spectrum whether on or off drug changes 
with the course of the disease, presenting challenges for attempts at 
group comparisons. Nevertheless, at least two studies have demon-
strated that increased task-related activation in association with 
cholinesterase inhibitor therapy is associated with improved cogni-
tive function in patients with AD dementia [ 275 ,  276 ]. 

 Pharmacological fMRI can be used to extend our understand-
ing of the effects of standard AD therapies on brain function. 
During the auditory encoding of sentences, healthy individuals 
show a suppression of activity in auditory cortex; AD patients do 
not, but treatment with donepezil normalizes this activity and is 
associated with better memory [ 277 ]. A subsequent analysis of 
these data also demonstrated attenuated activity within the execu-
tive function network during verbal recall, which was also partially 
normalized after donepezil treatment [ 278 ]. 

 Fewer pharmacological fMRI investigations have been done of 
MCI. In one of the fi rst, MCI patients who received 6 weeks of 
donepezil showed increased prefrontal activation after this course 
of medication, which related to improvements in performance of a 
working memory task [ 266 ]. Similarly, after MCI patients received 
galanthamine for approximately 1 week, performance on a work-
ing memory task was improved in conjunction with increased acti-
vation in precuneus and middle frontal regions. In addition, 
increases in hippocampal, prefrontal, cingulate, and occipital 
regions were seen during an episodic encoding task, although per-
formance did not improve on this memory task [ 279 ]. In another 
study, increased hippocampal activation in MCI patients after 7 
days of galathamine treatment was associated with neuropsycho-
logical improvement [ 280 ]. In a more recent study, investigators 
compared task-related activity during a memory encoding para-
digm in an MCI group before and after 3 months of treatment 
with donepezil. After treatment, the medial temporal lobe hypoac-
tivation and medial parietal hypo-deactivation seen at baseline were 
both normalized in association with improved cognitive perfor-
mance [ 281 ], similar to fi ndings observed in other chronic cholin-
ergic  therapy   pharmacological fMRI studies [ 282 ,  283 ]. In the 
latter study, after 3 months of donepezil treatment, functional con-
nectivity during episodic encoding increased between the fusiform 
cortex and hippocampus [ 283 ]. 

 Several recent studies have begun to employ resting-state fMRI 
as a probe to assess the modulatory effects of pharmacologic thera-
pies on AD and MCI, in part because of the ease of its implementa-
tion. Functional connectivity of the hippocampus at rest with other 
brain regions was shown to be modulated by 6 weeks of donepezil 
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therapy in patients with AD, with connectivity changes in parahip-
pocampal and frontal regions being correlated with cognitive 
improvement [ 284 ]. A follow-up analysis of the same dataset along 
with arterial spin labeled perfusion MRI showed increases in 
regional cerebral blood fl ow after therapy, with functional connec-
tivity changes in the medial prefrontal cortex being correlated with 
cingulate perfusion and cognition [ 285 ]. Furthermore, increased 
functional connectivity in the medial prefrontal areas demonstrated 
an association with Alzheimer’s disease Assessment Scale-Cognitive 
subscale (ADAS-cog) score changes (Fig.  7 ). In a similar study of 
mild AD dementia patients before and after 8 weeks of treatment 
with donepezil, the investigators observed increases in prefrontal 
connectivity [ 286 ]. Lorenzi et al. [ 287 ] studied AD patients before 
and after 6 months of treatment with memantine relative to pla-
cebo, showing a greater DMN connectivity in the precuneus in the 
group treated with memantine than the placebo group. A recent 
study incorporated both task-related visual scene encoding and 
resting-state functional MRI in eight patients with AD dementia 
receiving 3 months of donepezil therapy. Resting-state fMRI 
showed changes mainly in the parahippocampal cortex while task- 
related activation fMRI showed stable middle temporal gyrus acti-
vation in contrast with the control group who showed declining 
middle temporal gyral activation [ 288 ]. Another study found that 
APOE genotype modulated resting-state functional connectivity 
measures in patients with AD dementia being treated with cholin-
esterase inhibitors. They found that APOE e4 carriers showed 
greater responses to donepezil in functional connectivity of multi-
ple cognitive networks compared to APOE e4 noncarriers with AD 
dementia [ 289 ]. Taken together, these studies suggest that func-
tional connectivity can be a feasible and valuable biomarker for 
tracking treatment-related changes in AD.

   In addition to studies of pharmacological interventions, rest-
ing state fMRI has been used to study the effects of acupuncture, 
meditation, and cognitive rehabilitative training in the MCI/AD 
spectrum. In one study of patients with AD, baseline resting state 
scans showed reduced connectivity (compared to controls) between 
the hippocampus and frontal and temporal cortex which was 
increased following 3 min of acupuncture [ 290 ]. Ongoing work is 
attempting to determine whether acupuncture stimulation at par-
ticular acupoints is associated with stronger effects than stimula-
tion at other acupoints [ 291 ]. 

 In AD dementia patients who participated in meditation train-
ing, there was increased functional connectivity between the poste-
rior cingulate cortex and bilateral medial prefrontal cortex and left 
hippocampus compared to controls [ 292 ]. An fMRI  encoding   and 
recognition paradigm was used before and after 8 weeks of cogni-
tive rehabilitation training in a group of seven patients with AD 
dementia, compared with a control group of eight AD patients 
who received either relaxation therapy or no intervention [ 293 ]. 
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  Fig. 7    Behavioral signifi cance of functional connectivity changes in the middle and posterior cingulate net-
works in AD patients after 12-week donepezil treatment. In the middle congulate connectivity network ( a ), 
functional connectivity changes in the ventral anterior cingulate cortex and the ventral prefrontal cortex were 
signifi cantly correlated with the ADAS-cog score change. Functional connectivity change in the ventral anterior 
cingulate cortex was correlated with the ADAS-cog score change also in the posterior cingulate connectivity 
network ( b ). The  blue solid circles  and  dotted lines  represent the seed regions and the functional connections, 
respectively. Figure modifi ed from [ 285 ] with permission       

On the recognition task, the group who received cognitive 
 rehabilitation showed increased activation in bilateral prefrontal 
cortex and insula, while the control group showed decreases in 
these areas. Another study used memory strategy training in 
patients with MCI, and found that following training,  hippocampal 
activation during a memory task was increased compared to the 
control group [ 294 ]. 
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 PD is an excellent clinical scenario in which to apply pharmaco-
logical fMRI, given the typical rapid responsiveness of symptoms to 
dopaminergic therapy. In drug-naïve patients with mild PD, SMA 
and contralateral motor cortex hypoactivation during a simple fi nger 
movement task normalized with  l -dopa therapy [ 295 ]. Motor per-
formance was constant across conditions, suggesting that any change 
could be ascribed to pharmacological modulation within basal gan-
glia–thalamocortical loops. A  l -dopa-induced spatial remapping of 
the cortico-striatal resting state fMRI connectivity has been detected 
in chronically treated PD patients [ 296 ,  297 ]. Recent studies have 
suggested that dopaminergic-related changes in resting state func-
tional connectivity occur also in drug-naïve PD cases [ 298 – 300 ]. 

 In addition to motor behavior, the modulatory effects of dopa-
minergic therapy on cognition and emotion have also been studied 
in PD. In one well-controlled study, the modulatory effects of 
dopamine replacement were studied using both sensorimotor and 
working memory tasks [ 301 ]. The cortical motor regions activated 
during the motor task showed greater activation during the 
dopamine- replete state, but the cortical regions subserving work-
ing memory displayed greater activation during the hypodopami-
nergic state. Interestingly, the greater cortical activation during the 
working memory task in the hypodopaminergic state correlated 
with errors in task performance, while the increased activation in 
the cortical motor regions during the dopamine-replete state was 
correlated with improvement in motor function. These results are 
consistent with evidence that the hypodopaminergic state is associ-
ated with decreased effi ciency of prefrontal cortical information 
processing and that dopaminergic therapy improves the physiolog-
ical effi ciency of this region, and also indicate that hyperactivation 
does not necessarily refl ect better behavioral performance. 

 In a study of emotional face processing in PD,  amygdala   activa-
tion was reduced compared with controls during a hypodopaminer-
gic state, and partly normalized with dopaminergic therapy [ 302 ]. 

 Moving beyond its uses in pharmacologic studies, fMRI has 
been used to study the effects of deep brain stimulation (DBS). 
DBS is a well-accepted therapeutic modality for PD and is fi nding 
a growing number of applications in other neurologic and psychi-
atric disorders. Initial studies focused on safety and the measure-
ment of BOLD signal changes during on versus off stimulator 
activity [ 303 ,  304 ]. More recently, fMRI is elucidating mecha-
nisms through which DBS modulates neural circuits [ 305 ,  306 ].   

5    Beyond Exclusion: The Use of Imaging Measures as  Disease Biomarkers   

 At present, the potential effi cacy of disease-modifying therapies for 
AD and other neurodegenerative diseases is evaluated primarily using 
clinical measures of cognition, movement, and other behaviors. 
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In clinical trials, outcome measures are typically performance- based 
instruments, such as the ADAS-Cog, or structured surveys of clini-
cian/caregiver impression of change. Although the effi cacy of dis-
ease-modifying treatments for AD and other neurodegenerative 
diseases must ultimately be demonstrated using clinically meaningful 
outcome measures such as the slowing of decline in progression of 
symptoms or functional impairment, such trials will likely require 
hundreds of patients studied for a minimum of 1–2 years. Thus, sur-
rogate markers of effi cacy with less variability than clinical assessments 
are desperately needed to reduce the number of subjects. These 
markers may also prove particularly valuable in the early phases of 
drug development to detect a preliminary “signal of effi cacy” over a 
shorter time period. 

 Since the pathophysiologic process underlying cognitive 
decline in AD and other neurodegenerative diseases involves the 
progressive degeneration of particular brain regions, repeatable 
in vivo neuroimaging measures of brain anatomy, chemistry, physi-
ology, and pathology hold promise as an important class of poten-
tial biomarkers [ 3 ]. A growing body of data indicates that the 
natural history of gradually progressive cognitive decline in AD can 
be reliably related to changes in such imaging measures. 
Furthermore, regionally specifi c changes in brain anatomy, chem-
istry, and physiology can be detected by imaging prior to the point 
at which the disease is symptomatic enough to make a typical clini-
cal diagnosis. Finally, evidence is accumulating that alterations in 
synaptic function are present very early in the disease process, pos-
sibly long before the development of clinical symptoms and signifi -
cant cell loss, which may relate closely to symptomatic progression 
in manifest disease [ 4 ,  5 ,  307 ,  308 ]. Thus, potential disease- 
modifying therapies may act by impeding the accumulation of neu-
ropathology, slowing the loss of neurons, altering neurochemistry, 
or preserving synaptic function; neuroimaging modalities exist to 
measure each of these putative therapeutic goals, and fMRI could 
potentially play a valuable role in the development of new scientifi c 
insights into functional brain abnormalities early in the course of 
these diseases and in the development of therapeutic agents. 

 Although measures of brain structure (MRI)    and brain metab-
olism (FDG-PET) are well-accepted as imaging biomarkers of neu-
rodegeneration in AD and other neurodegenerative diseases and 
are used clinically, fMRI received approval for current procedural 
technology (CPT) codes by the American Medical Association, 
one application of which is toward the assessment of complex cog-
nitive and sensorimotor function in patients with neuropsychiatric 
disorders [ 309 ]. It will be extremely valuable for studies to con-
tinue to collect fMRI data in the context of structural MRI, FDG- 
PET, and other multimodal imaging data to begin to understand 
the relationships between these data types and the ultimate clinical 
or research utility of fMRI in neurodegenerative diseases.  
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6    Conclusions 

 Functional MRI is a particularly attractive method for use by clinical 
investigators to study task-related brain activation or large-scale 
functional network connectivity in patients with neurodegenerative 
diseases. There has been a dramatic growth of promising fMRI 
studies in various neurodegenerative disorders that highlight the 
potential uses of fMRI in both basic and clinical spheres of investi-
gation. Functional MRI may provide novel insights into the neural 
correlates of cognitive, affective, and sensorimotor abilities, and 
how they are altered by neurologic disease and by medications. The 
technique may help elucidate fundamental aspects of brain- behavior 
relationships, such as the genetic infl uences on task- related brain 
physiology. Functional MRI measures hold promise for multiple 
clinical applications, including the early detection and differential 
diagnosis, predicting future change in clinical status, and as a marker 
of alterations in brain physiology related to neurotherapeutic agents. 
The greatest potential of fMRI may lie in the study of very early and 
preclinical stages of progressive neurologic diseases, at the point of 
subtle neuronal dysfunction prior to overt anatomic pathology, or 
as an early readout of target engagement in intervention studies. 
There is a need for further validation and reliability studies and con-
tinued technical advances to fully realize the potential of fMRI.     
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    Chapter 24   

 fMRI in Epilepsy                     

     Rachel     C.     Thornton    ,     Louis     André     van     Graan    ,     Robert     H.     Powell    , 
and     Louis     Lemieux      

  Abstract 

   This chapter provides an overview of the application of functional MRI applied to the fi eld of Epilepsy and 
is divided into two sections, covering cognitive mapping and imaging of paroxysmal activity, respectively. 
In addition to a review of the most scientifi cally and clinically relevant fi ndings, technical and methodologi-
cal background information is provided to help the reader better understand the data acquisition process. 
We show how both approaches may play a role in the presurgical evaluation of patients with drug-resistant 
focal epilepsy and provide opportunities for new insights into the neuropathological processes that under-
lie both focal and generalized epilepsy.  

  Key words     Epilepsy  ,   Focal epilepsy  ,   Generalized epilepsy  ,   Interictal  ,   Ictal  ,   Imaging  ,   Functional mag-
netic resonance imaging  ,   fMRI  ,   Electroencephalography  ,   EEG  ,   Multi-modal imaging  ,   EEG- 
correlated fMRI  ,   Cognitive mapping  ,   Functional mapping  ,   Brain activity mapping  ,   Language 
lateralization  ,   Memory mapping  ,   Presurgical evaluation  

1      Cognitive fMRI in Epilepsy 

 The commonest surgical procedure for patients with drug resistant 
temporal lobe epilepsy ( TLE)   is anterior temporal lobe resection 
( ATLR  ). Complications of this operation include a decline in lan-
guage and memory abilities, and an important part of the presurgi-
cal assessment lies in the careful selection of patients to minimize 
these adverse cognitive sequelae. This has traditionally been the 
role of neuropsychology and the intracarotid amytal test (IAT). 
Since the advent of functional MRI (fMRI), however, there has 
been much interest in its possible role in the presurgical assessment 
of those with epilepsy, principally in the identifi cation of eloquent 
cortex to be spared during surgery. 

 There is a substantial body of literature reporting on cognitive 
function in epilepsy—employing a spectrum of indices and param-
eters, including task performance, lesion type and location, func-
tional and effective connectivity measures and activation study 
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outcomes that investigate and report cognitive impairment and 
idiosyncrasies in epilepsy, including working memory [ 1 – 3 ], long- 
term memory [ 4 ] and language organization [ 5 ,  6 ]. 

  Neuropsychology   has played a prominent role throughout the 
modern era of epilepsy surgery, mainly because of the importance of 
the temporal lobes in memory function. The principal role of base-
line neuropsychological assessments is in establishing a baseline 
quantifi cation of relevant cognitive function whilst providing an 
indication of the potential impact of surgery. It does so in the con-
text of a conventional understanding of lateralization and localiza-
tion of cerebral disturbance, predicting the impact of surgery on 
memory, providing data on lateralization and localization of cerebral 
disturbance, and providing evidence for cerebral reorganization. 

 The IAT plays a role in the  presurgical assessment   of  TLE      in 
some centers. Its uses are in assessing the capacity of the contralat-
eral temporal lobe to maintain useful memory functions thus 
guarding against a severe postoperative amnesic syndrome, and 
provides a means of lateralizing language function. The procedure 
involves the injection of sodium amytal into one carotid artery, 
inactivating the corresponding hemisphere for around 10 min, and 
thus crudely mimicking the effects of surgery on the medial tem-
poral lobe (MTL) structures. During this time, the patient’s lan-
guage and memory abilities are tested. Although still commonly 
used, the IAT has considerable disadvantages, not least the fact 
that it is an expensive, invasive procedure with potentially serious 
complications. Doubts also exist about its reliability and validity in 
predicting postoperative amnesia. In contrast to the traditional 
neuropsychological assessment, which relies on standardized tests 
of cognitive abilities and yields results that are easily validated, IAT 
procedures vary signifi cantly between institutions with respect to 
the testing protocol used, choice of behavioral stimuli, dosage, and 
administration of amytal, all of which can lead to variations in the 
results [ 7 ]. The IAT is also poor at predicting verbal memory 
decline as deactivation of the language dominant hemisphere may 
impede verbal process that are constituent to verbal memory, 
thereby causing increased errors on verbal memory testing [ 8 ]. 

 fMRI has the potential for replacing the IAT and for providing 
additional information to that provided by baseline neuropsycho-
logical assessment in the lateralization and localization of language 
and memory function. Practically, fMRI is cheaper than the IAT, 
noninvasive, and repeatable. There are, however, important poten-
tial caveats when considering the role of fMRI. First, areas acti-
vated by a particular fMRI paradigm are not necessarily crucial for 
the performance of that task. Second, it does not necessarily follow 
that all areas involved in a task will be activated by a particular 
fMRI paradigm. Third, the extent of activation seen in a task, in 
terms of both the area activated and the magnitude of the peak, 
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may bear no relation to the competence with which that task is 
performed. The development of insight and greater appreciation 
of engagement of multiple haemodynamic networks in cognitive 
tasks together with technical improvement in acquisition and pro-
cessing is likely to elaborate the value of fMRI paradigms in map-
ping cognitive functions. 

 Whilst being neither very sensitive nor specifi c with regards the 
neurobiological substrates of these cognitive functions—psychomet-
ric data provides some measurement and quantifi cation. When 
understood that the psychometric testing itself provides a behavioral 
sample of cognitive processes rather than a true ecological measure 
it compounds the interpretation of the correlation between fMRI 
data and the test scores, as sensitive or specifi c measure of changes in 
brain function. Caution will also be needed in the interpretation of 
results bearing in mind that fMRI techniques, while useful for the 
localization of cognitive function, may not reliably indicate the 
capacity of unilateral temporal lobe structures. 

 In the following section, we review how fMRI is used to lateral-
ize language function. We then discuss the current state of research 
efforts to localize brain regions involved in language and memory, 
and study the effects of epilepsy upon these. Furthermore, the efforts 
to assess the reliability of fMRI in the prediction of postoperative 
language and memory defi cits following ATLR are discussed. 

    The aims of preoperative language fMRI are primarily to lateralize 
and localize language functions and to use this information to pre-
dict and avert postoperative complications. A number of task para-
digms to engage anterior/expressive as well as posterior/
comprehension language areas [ 9 – 14 ] have been used to identify 
language representation. Complementary indices provided by ver-
bal fl uency, verb generation and semantic decision tasks, are vari-
ously and commonly employed in the clinical context [ 15 ]. The 
most widely used tasks in language fMRI experiments are  verbal 
fl uency tasks  . These are generally strongly lateralizing and reliably 
identify “expressive language functions” in the dominant inferior 
frontal gyrus (IFG) (Brodmann Areas [BA], 44, 45). Specifi cally, 
verbal fl uency tasks show more prominent activity in left frontal 
regions, corresponding to Broca’s area, than in the medial tempo-
ral lobe in healthy controls and TLE patients [ 16 ,  17 ]. Although 
these tasks are usually covert (i.e. performed silently without per-
formance monitoring), they have been reliably replicated in numer-
ous studies in both normal and patient populations. Their 
within-subject reproducibility has been demonstrated, with frontal 
activations shown to be more reliable than temporoparietal ones 
[ 18 ]. In addition they can be applied to patients with a wide range 
of cognitive abilities, with language lateralization results appearing 
to be relatively unaffected by patients’ performance levels [ 19 ]. 

1.1   Language fMRI  

1.1.1  Paradigm Design 
and Analysis
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Although tasks of verbal fl uency do show language-related activa-
tions, they are not pure language tasks, containing substantial 
components of executive processing and of working and verbal 
memory. These activations are typically seen in the middle frontal 
gyrus ( MFG  ) (BA 46, 49) (Fig.  1 ).

   Paradigms that specifi cally recruit the areas that are removed 
during ATLR should be established [ 17 ,  20 ]: Activation paradigms 
for naming functions that could provide greater specifi city in the 
context of  ATLR   [ 21 ] include object naming paradigms involving 
visual [ 22 ,  23 ] and auditory stimuli [ 24 ,  25 ]. The multidimensional 
structure of language representation is illustrated by discrete contri-
bution of different task paradigms. For example, verbal fl uency 
identifi es areas that are not activated with verb generation. In turn 
verb generation causes more discrete activation than verbal fl uency 
[ 15 ]. Fluency tasks are also less reliable in identifying “receptive” 
language areas located in the dominant temporal lobe. These pro-
cessing areas are best assessed by tasks that probe language compre-
hension such as reading sentences or stories, which tend to activate 
superior temporal cortex extending to supramarginal gyrus (BA 20, 
21, 39) [ 26 ,  27 ], but are less strongly lateralizing than verbal fl u-
ency tasks (Fig.  1 ). Using a panel of fMRI tasks (verbal fl uency, 
reading comprehension, and auditory comprehension) was shown 
to be helpful in reducing inter-rater variability and helped in the 
evaluation of language laterality in patients with focal epilepsy [ 28 ]. 

  Fig. 1    Verbal fl uency and reading comprehension: Typical fMRI fi ndings in a patient performing tasks of verbal 
fl uency ( left ) and reading comprehension ( right ) showing activation in the dominant frontal lobe and bilateral 
superior temporal lobes, respectively. Areas of activation are overlaid on a distortion matched high resolution 
echo-planar  image         
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 These functional imaging experiments have used block design 
paradigms to detect regions of the brain showing greater activation 
during task blocks when compared with rest blocks. The advantage 
of block designs over event-related designs is that they are effi cient 
in detecting differences between two conditions; however, they 
offer less fl exibility in the experimental design required for study-
ing complex cognitive functions. 

 The degree of lateralization is often quantifi ed using a lateral-
ization (LI) or asymmetry index, (AI) = ( L  −  R )/( L  +  R ), where  L  
and  R  represent the strength of activation for the left (L) and right 
(R) sides, respectively, based on the number of activated voxels for 
the whole hemisphere or using regions of interest (ROIs) targeted 
to known as language areas [ 29 ]. A positive value represents left 
language lateralization and a negative, right-sided dominance, 
although AI values between −0.2 and +0.2 are often classifi ed as 
bilateral. This can be determined by counting the number of voxels 
exceeding a specifi ed threshold of signifi cance. This type of AI cal-
culation has some problems, in particular, the fact that the AI can 
differ according to the signifi cance threshold chosen for the activa-
tion map from which it is calculated [ 30 ]. One suggested solution 
to this is to calculate AIs from all voxels that correlated positively 
with a task, but with each weighted by their own statistical signifi -
cance [ 31 ]. Using this method,  AIs   were less variable than those 
calculated from suprathreshold voxels only. Alternative approaches 
to estimating the degree of asymmetry include measuring the mean 
signal intensity change induced by the task within a brain volume 
of interest [ 30 ], and performing a statistical comparison of the 
magnitude of task-induced activation in homotopic regions of the 
two hemispheres [ 32 ]. These methods measure the magnitude of 
the mean signal change and have the advantage of not being 
threshold dependent. Language networks in focal epilepsy have, in 
fact, been localized using data driven approaches: These algorithms 
yielded signifi cant observations not seen with conventional fMRI, 
specifi cally in relation to the effects of epilepsy on language repre-
sentation [ 33 – 35 ]. Other studies have suggested that visual rating 
appears to work as well as calculating AIs [ 36 ] by using pattern 
classifying algorithms that have demonstrated concordance with 
existing LI and visual rating classifi cation methods [ 37 ,  38 ]. 

 The simplest forms of study designs (including those described 
earlier) employ cognitive subtraction designs. These involve selecting 
a task that activates the cognitive process of interest and a baseline 
task that controls for all but the process of interest. One problem of 
this type of design is that it depends on an assumption known as pure 
insertion, which supposes that a new cognitive component can be 
inserted without affecting those processes that are also engaged by 
the baseline task [ 39 ]. Another problem with cognitive subtraction is 
in fi nding baseline tasks that activate all but the process of interest. 
These problems can be overcome by using more complex experi-
mental designs, such as factorial designs and cognitive conjunctions. 
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 Factorial designs use two or more variables (e.g. sentence vs. 
word presentation and auditory vs. visual presentation) and allow 
the effect that one variable has on the other to be measured explic-
itly. The analysis of this type of design involves calculating the main 
effects of each variable and the interaction between them [ 39 ]. 
 Cognitive conjunctions   are an extension of cognitive subtraction 
paradigms. Cognitive subtraction looks for activation differences 
between a single pair of tasks, while cognitive conjunction looks at 
two or more task pairs, which share a common processing differ-
ence [ 40 ]. The advantages of this approach are that it allows greater 
freedom in selecting the baseline task as it is not necessary to con-
trol for all but the component of interest, and that it does not 
depend on the assumption of pure insertion.  

  Focal epilepsy may be associated with disrupted lateralization and 
localization of language regions; therefore, one would expect a 
higher probability of abnormal language lateralization. Nevertheless, 
signifi cant differences have been reported between centers in the 
relative proportions of right and left hemisphere dominant patients 
using the IAT, some of which may be due to the different criteria 
used for assessing dominance. The percentage of left hemisphere 
dominant right-handed patients has ranged from 63 to 96 % [ 41 ] 
while for left-handers a similar variation has been reported between 
38 and 70 % [ 42 ,  43 ]. Results of fMRI studies have also shown 
greater atypical language dominance in patients. In a comparison 
between 100 right-handed healthy subjects and 50 right-handed 
epilepsy patients, 94 % of the normal subjects were considered as left 
hemisphere dominant and 6 % had bilateral representation. The epi-
lepsy group showed greater variability of language dominance, with 
78 % showing left hemisphere dominance, 16 % symmetric activa-
tion, and 6 % showing right  hemisphere dominance  . Atypical lan-
guage dominance was associated with an earlier age of brain injury 
and with weaker right hand dominance [ 44 ]. 

 The localization of the  epileptogenic lesion and epileptic 
activity   [ 45 ] has also been shown to infl uence language organiza-
tion. In a retrospective study of patients with hippocampal sclero-
sis (HS) who had undergone presurgical  evaluation  , atypical 
speech dominance occurred in 24 % of those with left-sided HS, 
whereas all those with right-sided HS had left-sided speech domi-
nance. In addition, atypical speech representation was associated 
with higher spiking frequency and in those with sensory auras 
suggesting ictal involvement of the lateral temporal structures. 
No association was demonstrated between either age at epilepsy 
onset or age at initial precipitating injury and atypical speech rep-
resentation [ 46 ]. 

 Comparing the degree of reorganization of  frontal and tempo-
ral lobe   language functions has shown a signifi cantly more left 
lateralized pattern of language activation in controls and right TLE 

1.1.2   Language 
Lateralization   in Epilepsy
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patients than left TLE patients [ 47 ]. In patients with atypical 
language representation, the degree of reorganization towards the 
right hemisphere was greater in the temporal lobes than in the 
frontal lobes. In a study of 50 patients with focal epilepsy, greater 
atypical language dominance was seen in those with left hemi-
sphere seizure focus [ 48 ]. Left TLE patients who did not have 
atypical language also had lower asymmetry indices in both frontal 
and temporal ROIs, mainly because of greater activation in homol-
ogous right hemisphere regions. Atypical language representation 
in Wernicke’s area is more frequently observed in TLE patients, 
whereas FLE, conversely, appears to have a greater effect on the 
organization of anterior language areas [ 49 ]. 

 The degree of language lateralization has also been related to 
the nature of the  epileptogenic lesion   with early acquired lesions, 
such as HS, considered to be associated with greater incidence of 
atypical language lateralization compared with developmental 
lesions originating in utero, such as malformations of cortical devel-
opment (MCDs). Atypical language organization has been observed 
in a number of other clinical presentations: including stroke, medial 
temporal sclerosis, focal cortical lesions as well as patients with a 
normal structural MRI [ 50 ]. A higher degree of atypical language 
dominance, in both frontal and temporal language areas, has been 
demonstrated in patients with left HS compared with patients with 
left frontal and lateral temporal lesions [ 51 ], suggesting that the 
hippocampus itself may play an important role in the establishment 
of language dominance. Another study, however, demonstrated no 
difference in the frequency of atypical language lateralization 
between left TLE patients with HS and those with developmental 
tumors [ 52 ]. Interestingly, HS has been associated with altered 
functional organization of cortical networks involved in lexical and 
semantic processing [ 53 ] in TLE patients. 

 It is interesting to speculate on how TLE affects language 
lateralization, and it is possible that strong connectivity between 
inferior frontal and temporal areas make frontal lobe functions 
particularly sensitive to temporal pathology. Language lateraliza-
tion is not associated with type and location of lesion (acquired 
or developmental), symptoms and gender [ 54 ] or age of seizure 
onset [ 49 ]. However, an association between language lateraliza-
tion and handedness, location and nature of pathologic substrate 
and duration of epilepsy has been identifi ed [ 55 ].  Verbal memory   
scores on psychometric tests have been associated with lateraliza-
tion of language implicating connectivity between inferior frontal 
cortex and hippocampus [ 56 ,  57 ]. The increased incidence of 
atypical language dominance in epilepsy illustrates the impor-
tance of establishing language dominance prior to performing 
surgical resection and as a consequence much of the work on 
fMRI in epilepsy has been directed towards trying to replace the 
IAT as a means of doing this.  

fMRI in Epilepsy
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  Studies comparing fMRI and the IAT are summarized in Table  1 . 
Just as IAT protocols differ between centers, a number of fMRI 
paradigms to determine language dominance have been employed 
but agreement of approximately 80–90 % is seen between the two 
techniques [ 11 ,  58 ]. The remaining cases generally exhibit partial 
disparity where one method shows bilateral language representa-
tion and the other lateralized language dominance and outright 
disagreement between fMRI and IAT is rare. In an interesting 
study that assessed the relative accuracy of Wada and fMRI in dis-
cordant cases fMRI provided a more accurate prediction of naming 
at postsurgical outcome in seven patients, Wada was more accurate 
in two patients. The two methods provided comparable accuracy 
in one patient [ 58 ].

   One study suggested that fMRI may be less reliable in left- sided 
neocortical epilepsy (25 % disparity) in comparison with left- sided 
medial TLE (3 % disparity) [ 36 ]. Another showed that concordance 
between fMRI-based laterality and IAT was much lower in left TLE 
patients than in patients with right TLE [ 59 ]. One interesting case 
of false lateralization of language function in a post-ictal patient 
with left HS also illustrates the need for caution in the interpreta-
tion of results in individual patients. No activation was seen in the 
left temporal lobe during multiple language tasks after a cluster of 
left temporal lobe seizures but in a repeat fMRI experiment 2 weeks 
later, activation was seen predominantly over the left temporal 
 region   [ 60 ]. However, bearing in mind the previously mentioned 
limitations of the IAT, it is even debatable whether fMRI and IAT 
are directly comparable as they probe different aspects of language. 
fMRI language localization can replace Wada test in the majority of 
patients. However, the Wada test is still a valuable adjunct and can 
be employed when a patient cannot undergo fMRI. It can also be 
used for validation of fMRI results or for the assessment of selective 
language areas near structural  abnormalities         [ 61 ]. 

 Comparisons have also been performed between fMRI activa-
tion maps and regions showing disruption of function during 
intraoperative electrocortical stimulation (ECS). In order for fMRI 
to be used instead of ECS, it must demonstrate a high predictive 
power for the presence as well as the absence of critical language 
function in regions of the brain. As with IAT, these studies show 
strong, but incomplete agreement with fMRI, with high sensitivity 
but lower specifi city [ 69 – 71 ]. Although false-positive activation 
(fMRI activation but no ECS disruption) is relatively common, 
this is not surprising given that fMRI activates whole networks of 
regions, not all of which are essential for the task in question. False- 
negative fi ndings (regions showing disruption by ECS but no 
fMRI activation) are more critical when planning a surgical resec-
tion, and these were identifi ed in 2 patients out of 21 reported in 
two series. Activation and disruption was typically within 5 mm in 
frontal regions and 10 mm in temporal areas. 

1.1.3  Comparison 
of fMRI,  IAT     , 
and  Electrocortical 
Stimulation      Findings
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   Table 1 
  Concordance between fMRI language lateralization and the IAT   

 Authors 
 Sample 
size a   fMRI language lateralization tasks  Concordance 

 Desmond et al. 
(1995) [ 62 ] 

 7  Semantic decision task  100 % 

 Binder et al. 
(1996) [ 63 ] 

 22  Semantic decision task   r  = 0.96 

 Hertz-Pannier 
et al. (1997) 
[ 64 ] 

  6  b   Verbal fl uency paradigm  100 % 

 Yetkin et al. 
(1998) [ 65 ] 

 13  Word generation task   r  = 0.93 

 Benson et al. 
(1999) [ 66 ] 

 12  Verb generation task  100 % 

 Lehericy et al. 
(2000) [ 27 ] 

 10  Semantic fl uency  Semantic fl uency > story 
listening > sentence 
repetition  Sentence repetition Story listening 

 Greater concordance between 
IAT results and activation 
asymmetry in frontal than 
temporal lobes 

 Carpentier et al. 
(2001) [ 67 ] 

 10  Identifi cation of syntactic/semantic errors 
in target sentences 

 80 % 

 Gaillard et al. 
(2002) [ 29 ] 

 21  Reading paradigm  85 % 

 Woermann 
et al. (2003) 
[ 36 ] 

 100  Word generation  91 % 

 Sabbah et al. 
(2003) [ 68 ] 

 20 c   Word generation  95 % 

 Semantic decision 

 Benke et al. 
(2006) [ 59 ] 

 Arora et al. 
(2009) [ 11 ] 

 Janecek et al. 
(2013) [ 58 ] 

 68 
 40 
 229 

 Semantic decision 
 Reading sentence comprehension/

auditory sentence comprehension and a 
verbal fl uency task. 

 Semantic decision/tone decision 

 89 %—right TLE 

 72 %—left TLE 
 91.3 % 
 86 % 

   IAT  intracarotid amytal test,  TLE  temporal lobe epilepsy 
  a Some of these studies report fMRI data on larger samples. However, only the patients with fMRI and IAT data are 
included here 
  b Age range 8–18 

  c Patients with suspected atypical language lateralization were selected  
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 A combination of four different language tasks has shown 
more reliable and robust lateralization in normal subjects by tar-
geting brain regions common to different tasks, thereby focusing 
on areas critical to language function. Regions of activation 
detected in this way corresponded well with ECS fi ndings in the 
temporoparietal region [ 72 ]. Sensitivity was 100 % in all but one 
patient. This high negative predictive value suggested that areas 
where no signifi cant fMRI activity was present could be safely 
resected without using ECS. fMRI activity, however, was not 
always absent at noncritical language areas limiting its positive pre-
dictive value for the presence of critical language. Although this 
suggests that fMRI is not yet ready to replace ECS, it could be 
used to speed up intracranial mapping procedures and to guide the 
extent of the  craniotomy           .  

  Language defi cits have been reported following  language- dominant   
ATLR, with naming the most commonly affected function [ 73 ,  74 ]. 
It has also been suggested that the risk for post-operative decline in 
naming abilities increases with age of seizure onset and the extent of 
lateral temporal neocortex resected [ 75 ]. Preoperative cortical stimu-
lation via subdural grid electrodes has been used to localize language 
function, suggesting that early onset of dominant temporal lobe sei-
zure foci leads to a more widespread or atypical distribution of lan-
guage areas, particularly naming and reading areas [ 76 ]. A subsequent 
study also reported that markers of early left hemisphere damage 
(such as early seizure onset, poor verbal IQ, left handedness, and right 
hemisphere memory dominance) increase the chances of essential lan-
guage areas being located in more anterior temporal regions. Again 
these areas were identifi ed using naming and reading tasks [ 77 ]. 

 These fi ndings suggest that naming and reading abilities are 
the language skills most at risk following dominant temporal lobe 
surgery. In patients with right TLE, preserved naming function is 
associated with activation of the left hippocampus by the verbal 
fl uency task. Patients with left TLE, who show preservation of 
naming, conversely appear to involve the left frontal lobe, in an 
apparent compensatory response to epileptic activity in the left 
 hippocampus [ 13 ]. Although the IAT may provide a useful index 
of language laterality, it does not provide detailed information on 
the localization of these specifi c language skills. As these may also 
vary in location between individuals, the role IAT can play in the 
prediction of postoperative defi cits in individual patients is there-
fore limited. Designing fMRI paradigms that specifi cally probe 
naming and reading skills would provide a useful clinical tool for 
mapping relevant language skills that could be used in the predic-
tion of postoperative defi cits. Specifi cally, auditory and visual nam-
ing paradigms may yield greater predictive specifi city with regard 
to naming diffi culties after  ATLR   [ 21 ]. 

1.1.4  Language 
Localization and Prediction 
of Postoperative Language 
 Defi cits  
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 One study has used  preoperative functional neuroimaging   to 
predict language defi cits following left ATLR: Temporal lobe fMRI 
asymmetry was found to be predictive of defi cits seen on a postop-
erative naming test with a greater degree of language lateralization 
toward the left hemisphere related to poorer naming outcome and 
language lateralization towards the right hemisphere associated 
with less or no decline. The correlation between temporal lobe 
fMRI AI and naming defi cits was stronger than that seen in the 
frontal lobes and also stronger than that between IAT and naming 
defi cits [ 78 ]. In this regard, fMRI activation of the left middle 
frontal gyrus (MFG) with a verbal fl uency task was seen to predict 
signifi cant postsurgical naming decline in patients with left TLE, 
showing good sensitivity but rather poor specifi city [ 17 ]. 

 Interestingly, many patients do not suffer any  language defi cits   
following ATLR, suggesting that multiple sets of neural systems 
may exist that are capable of performing the same cognitive func-
tion, and that some of these may be engaged following focal brain 
injuries. In a study of patients who had undergone left ATLR but 
did not have defi cits in sentence comprehension, decreased activa-
tion was demonstrated in undamaged areas of the normal left 
hemisphere system but increased activation was seen in several 
right frontal and temporal regions not usually engaged by normal 
subjects [ 79 ]. This suggests that there is more than one neural 
system capable of sustaining sentence comprehension. This study 
was, however, unable to tell whether this functional reorganization 
to the right IFG occurred pre- or postoperatively. A separate study 
looked at the role of the right IFG by comparing its functional 
activation on a verbal fl uency task in controls with left TLE patients 
[ 80 ]. The patients were shown to activate a more posterior right 
IFG region compared with controls, although left IFG activation 
did not differ signifi cantly between the two groups. Further, verbal 
fl uency-related activation in the right IFG was not anatomically 
homologous to left IFG activation in either patients or controls. 
This suggests that reorganization takes place preoperatively in 
patients with chronic left  TLE  , and that the prediction of language 
outcome following left ATLR may depend not only on the extent 
of preoperative right hemisphere activation, but also its location.  

  Complex behaviors such as language and memory rely upon net-
works of neurons, which integrate the functions of spatially remote 
brain regions. The combination of fMRI to identify cortical regions 
involved in language function and MR-tractography to visualize 
white matter pathways connecting these regions offers an opportu-
nity to study the relationship between structure and function in the 
language system (Fig.  2 ). Studies have revealed structural asym-
metries in controls, with greater left-sided frontotemporal connec-
tions in the dominant hemisphere [ 81 ]. Patients with left TLE had 
reduced left-sided and greater right-sided connections than both 

1.1.5  Combination of  
MRI and MR- Tractography     
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controls and right TLE patients, refl ecting the altered functional 
lateralization seen in left TLE patients, and signifi cant correlations 
were demonstrated between structure and function in controls and 
patients, with subjects with more highly lateralized language func-
tion having a more lateralized pattern of connections [ 82 ]. The 
combination of fMRI with information on the structural connec-
tions of these normally and abnormally functioning areas offers the 
opportunity to improve understanding of the relationship between 
brain structure and function and may improve the planning of sur-
gical resections to maximize the chance of seizure remission and to 
minimize the risks of cognitive impairment.

       A range of memory functions are commonly affected in epilepsy 
including modality specific processes in working and long term 
memory. fMRI can reliably localize and assess the impact of surgery 
on memory networks [ 83 ,  84 ]. In addition LIs have been estab-
lished to evaluate the effects of epilepsy and surgical intervention on 
memory [ 85 ]. MTL structures are associated with memory func-
tioning, and surgical resection is known to cause reduced memory 
function in some cases. The study of patients following temporal 
lobe surgery has provided considerable evidence supporting the 

1.2   Memory fMRI  

  Fig. 2    Combined MR tractography and  functional mapping  . Frontal lobe connections overlaid on a structural 
template along with group fMRI effects for word generation ( solid arrows ) and reading comprehension ( dashed 
arrows ), showing how the tracts connect together the frontal and temporal lobe functionally active  regions            
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critical role that the hippocampi play in memory functioning. 
 Bilateral injury   to these areas leads to a characteristic amnesic syn-
drome [ 86 ], while unilateral lesions lead to material-specific defi-
cits, and a decline in verbal memory following surgery to the 
language-dominant hemisphere has been consistently reported and 
studied [ 87 ], along with deficits in topographical memory follow-
ing nondominant ATLR [ 88 ]. Although rare, some patients have a 
severe anterograde amnesic syndrome following a unilateral 
ATLR. Most of these, however, have subsequently been found to 
have evidence of contralateral hippocampal pathology, either on 
postoperative electroencephalography (EEG) [ 89 ], post-mortem 
pathological findings [ 90 ], or post- operative volumetric MRI [ 91 ]. 

 Immediate recall in the verbal and visual modalities demon-
strate signifi cantly less activation in patients with HS as compared 
to healthy subjects [ 92 ]. A recent study shows that patients employ 
the contralateral hippocampus and the ipsilateral parahippocampal 
gyrus, refl ecting mechanisms of functional adaptation [ 93 ]. Two 
different models of  hippocampal function   have previously been 
proposed to explain memory defi cits following unilateral ATLR: 
hippocampal reserve and functional adequacy [ 94 ]. According to 
the hippocampal reserve theory, postoperative memory decline 
depends on the capacity or reserve of the contralateral hippocam-
pus to support memory following surgery, while the functional 
adequacy model suggests that it is the capacity of the hippocampus 
that is to be resected that determines whether changes in memory 
function will be observed. Evidence from baseline neuropsychol-
ogy [ 95 ], the IAT [ 96 ], histological studies of hippocampal cell 
density [ 97 ], and MRI volumetry [ 98 ] has suggested that of the 
two, it is the functional adequacy of the ipsilateral MTL, rather 
than the functional reserve of the contralateral MTL that is most 
closely related to the typical material-specifi c memory defi cits seen 
following ATLR. However, compensatory reorganization in the 
context of HS have been shown to be elaborate involving temporal 
and extra temporal structures [ 92 ,  93 ,  99 ,  100 ]. 

 The assessment of ability to sustain memory is critical for plan-
ning ATLR as memory decline is not an inevitable consequence of 
temporal lobe surgery. Accurate prediction of likelihood and sever-
ity of postoperative memory decline is necessary to make an 
informed decision regarding surgical treatment. Much work has 
been focused on the identifi cation of prognostic indicators for risk 
of memory loss after  ATLR  . Language lateralization, verbal as well 
as visual memory fMRI activation patterns, age at onset of epilepsy 
and memory performance all serve as predictors of verbal memory 
decline in left ATLR. However, these factors appear to be less sen-
sitive in prediction of postsurgical visual memory impairment in 
right ATLR [ 101 ]. Recent results [ 102 ] confi rm age at onset of 
epilepsy, shorter duration of epilepsy and lower seizure frequency 
as critical factors that infl uenced verbal memory encoding in 
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patients with TLE. Conversely this study showed that longer dura-
tion and higher seizure frequency were associated with greater 
ineffi cient, extra-temporal reorganization. The severity of HS on 
MRI is an important determinant, being inversely correlated with 
a decline in verbal memory following left ATLR, with less severe 
HS increasing the risk of memory decline [ 98 ,  103 ,  104 ]. 
Specifi cally, the extent of verbal memory decline after left ATLR is 
correlated with greater BOLD activation of the diseased left hip-
pocampus and its connectivity to ipsilateral posterior cingulate 
[ 105 ].  Preoperative memory   performance has been related to 
degree of postoperative memory impairment, with better perfor-
mance increasing the risk of memory decline [ 95 ,  106 ,  107 ]. These 
risk factors refl ect the functional integrity of the resected temporal 
lobe and suggest that patients with residual memory function in 
the pathological hippocampus are at greater risk of memory impair-
ment postoperatively. Recently, fMRI has also been shown to be a 
potential predictor of postoperative material-specifi c memory 
decline following ATLR. Comparison of pre- and postoperative 
fMRI activation and correlation with better verbal memory out-
come after left ATLR indicate preoperative reorganization of ver-
bal memory function to the ipsilateral posterior medial temporal 
lobe [ 85 ]. Other results indicate that visual and verbal memory 
function following ATLR is correlated to activity of the contralat-
eral medial temporal lobe and its connectivity to the posterior cin-
gulate cortex ipsilateral to the damaged hippocampus [ 105 ,  108 ]. 

  Impairment in memory encoding following ATLRs suggests that 
anterior MTL regions are critical for successful memory encoding, 
and in the patient HM, who was rendered amnesic following bilat-
eral temporal lobe resections, more posterior MTL structures 
remained intact [ 109 ].  Intracranial electrophysiological recordings   
during verbal encoding tasks have also shown greater responses in 
anterior hippocampal and parahippocampal regions for words 
remembered than those forgotten [ 110 ]. However, functional 
imaging studies have proved contradictory, with many showing 
encoding-related activations in posterior hippocampal and para-
hippocampal regions, which would be left intact following ATLRs. 

 One possible explanation for this apparent confl ict is that ante-
rior temporal regions are subject to signal loss during fMRI 
sequences. It has been demonstrated that signal loss due to suscep-
tibility artifact is most prominent in the  inferior frontal   and  infero-
lateral temporal regions   [ 111 ], and as the hippocampus rises from 
anterior to posterior, one would expect greater susceptibility- 
induced signal loss in the anterior (inferior) relative to posterior 
(superior) hippocampus. This may have been one reason for the 
relative lack of anterior hippocampal activation in early fMRI 
studies of memory [ 112 ]. One study has directly examined the 
effects of susceptibility artifact on hippocampal activation by 

1.2.1  The Diffi culty 
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demonstrating its differential effect on the anterior vs. the poste-
rior hippocampus. The averaged resting voxel intensity in an ante-
rior hippocampal ROI was signifi cantly less than in a posterior 
hippocampal ROI and intensity decreases were substantial enough 
to leave many voxels below the threshold at which BOLD effects 
could be detected [ 112 ]. Moreover, it has been shown that the 
sensitivity to BOLD changes is proportional to signal intensity at 
rest so that voxels with a lower baseline signal (such as those in 
anterior hippocampal regions) would be more diffi cult to activate 
than those with higher baseline signals [ 113 ]. 

 An alternative explanation for the lack of anterior hippocampal 
activation seen in many early memory fMRI experiments is that the 
paradigms used were not optimal for detecting subsequent mem-
ory effects. The use of fMRI in studying memory function is more 
challenging than for language. This is partly due to the different 
components involved in memory processing, such as encoding and 
retrieval, and the fact that the nature of the material being encoded 
or retrieved infl uences which brain areas are activated. A further 
diffi culty is how to separate brain activity related specifi cally to 
memory from that related to other  cognitive processes  . In conse-
quence, more complex paradigms are required when studying 
memory than for examining language  function  . 

 Standard fMRI experiments initially used block design para-
digms looking for regions of the brain showing greater activation 
during task blocks compared with rest blocks. A problem when 
designing memory fMRI experiments was how to separate brain 
 activ  ity specifi cally due to memory from that due to other cognitive 
processes being used in the task. Early fMRI studies of memory 
encoding employed block experimental designs to contrast tasks 
promoting differing memory performance, using the “depth of 
encoding”  principle   [ 114 ]. This states that if you manipulate mate-
rial in a “deep” way (e.g. make a semantic decision about a word), 
then it is more likely to be recalled successfully than material manip-
ulated in a “shallow” way (e.g. make a decision of whether the fi rst 
letter of a word is alphabetically before the last letter). These studies 
tended to show consistent activation in left prefrontal cortical 
regions along with less reliable MTL activation [ 115 – 118 ]. Similar 
assumptions underlie the use of “novelty” paradigms in probing 
memory encoding. During these experiments, alternating blocks of 
novel and repeated stimuli are presented, with the hypothesis being 
that more memory encoding takes place while viewing a block of 
novel stimuli than when viewing the same repeated stimulus [ 119 ]. 

 The advantage of  block designs   is that they are generally the 
most effi cient in detecting differences between two conditions. 
The main problem in their interpretation, however, lies in the 
inference that the effects shown by these contrasts refl ect differ-
ences in memory encoding, rather than any other differences 
between the two conditions (e.g. response to novelty and semantic 
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processing) that are independent from differences in memory 
encoding. Attempts were made to overcome this problem using 
parametric block designs but were soon superseded by the advent 
of event-related  studies  . 

 Event-related fMRI is defi ned as the detection of  transient hemo-
dynamic responses   to brief stimuli or tasks. This technique, derived 
from those used by electrophysiologists to study event- related poten-
tials, enables trial-based rather than block-based experiments to be 
carried out. Trial-based designs have a number of methodological 
advantages, in particular that trials can be categorized post-hoc 
according to a subject’s performance on a subsequent test to obtain 
fMRI data at the individual item level. Therefore, when studying 
memory encoding, activations for individual items presented can be 
contrasted according to whether they are remembered or forgotten in 
a subsequent memory test. This type of analysis allows the identifi ca-
tion of brain regions showing greater activation during the encoding 
of items that are subsequently remembered compared with items sub-
sequently forgotten (subsequent memory effects), which are then 
taken as candidate neural correlates of memory encoding [ 120 ]. 
Although  event- related designs   are less powerful than block designs at 
detecting differences between two brain states and may be more vul-
nerable to alterations in the hemodynamic response function (e.g. due 
to pathology), they have the advantage of permitting specifi cally the 
detection of subsequent memory effects due to successful encoding. 

 One study looking at encoding of words, pictures, and faces in 
healthy controls employed an experimental design, which allowed 
data analysis either as a block design, or as an event-related design 
of successful encoding [ 121 ]. The results demonstrated a functional 
dissociation between anterior and posterior hippocampus. The 
main effects of memory encoding, demonstrated specifi cally using 
an event-related analysis, were seen in the  anterior hippocampus   
(Fig.  3 ), with the main effects of viewing stimuli,  demonstrated 
using a block analysis, being located in more posterior regions.

     Defi cits in verbal memory following left ATLR and topographical 
memory following right ATLR suggest a material-specifi c lateral-
ization of function in MTL structures. Functional imaging studies 
have been used to look for lateralization of cerebral activation pat-
terns during episodic memory processes. Many have shown 
material- specifi c lateralization in prefrontal regions but this has 
been more diffi cult to demonstrate in the MTL [ 115 ,  119 ,  121 , 
 122 ]. Working memory can be affected in TLE patients with HS, 
with indication of altered connectivity between regions [ 123 ]. 
Specifi cally, a disruption of the regional balance between task-pos-
itive and task- negative functional networks is associated with work-
ing memory dysfunction in TLE [ 124 ]. Reduced right superior 
parietal lobe activity is associated with suppression of activity in the 
healthy hippocampus in the context of an increasing WM load with 

1.2.2  The Effect of  TLE   
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maintained levels of performance [ 3 ]. In FLE, patients particularly 
recruit the frontal lobe contralateral to the seizure focus in a com-
pensatory pattern that sees patients employ a wider range of net-
works than healthy controls [ 84 ]. 

 A number of studies have used fMRI to look at the lateraliza-
tion of memory in patients with TLE compared with that seen in 
normal subjects, and also compared the fi ndings with the results of 
the IAT. These are summarized in Table  2 . These employed block 
design studies, demonstrating predominantly posterior MTL acti-
vation, and therefore cannot claim that subsequent memory effects 
have been specifi cally examined.

   Studies performed in patients with TLE showing patient 
groups studied, experimental design employed, and principal fi nd-
ings  HS  hippocampal sclerosis,  IAT  intracarotid amytal test,  MTL  
medial temporal lobe,  TLE  temporal lobe epilepsy. 

 More recently event-related studies have demonstrated a 
material- specifi c lateralization of memory encoding within anterior 
 MTL      regions that would be resected during standard ATLR (Fig.  4 ) 
[ 121 ]. In addition, a reorganization of function has been demon-
strated in patients with unilateral TLE due to HS, with reduced ipsi-
lateral activation, and increased contralateral activation in patients 
compared with controls [ 128 ,  129 ] (Fig.  5 ). Comparing groups of 
patients with controls demonstrated a functional reorganization away 
from the pathological hemisphere; however, it is not clear whether 

  Fig. 3    Left  hippocampal   activation in a single subject performing a word encod-
ing task       
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   Table 2    
fMRI memory studies in TLE   

  Authors    Sample size  fMRI tasks  Findings 

 Detre et al. 
(1998) 
[ 122 ] 

 Controls  n  = 8  Block design  Symmetric MTL activation in normal subjects. 
Lateralization of memory concordant with 
IAT in 9/10 subjects  Patients  n  = 10  Complex visual scenes 

vs. abstract pictures 

 Bellgowan 
et al. 
(1998) 
[ 125 ]    

 Patients  n  = 28, 
14 left TLE, 
14 right 
TLE 

 Block design 
Semantic decision 
vs. auditory 
perception task 

 Greater activation in the left MTL in right TLE 
compared to left TLE group 

 Dupont 
et al. 
(2000) 
( 79 ) 

 Controls  n  = 10  Block design  Left occipitotemporoparietal network activated 
in controls. Reduced MTL activation and 
increased activation in left dorsolateral 
frontal cortex in patients 

 Patients  n  = 7, 
left HS 

 Verbal encoding and 
retrieval vs. fi xation 
on the letter A 

 Jokeit et al. 
(2001) 
[ 126 ]    

 Controls  n  = 17  Block design Roland’s 
Hometown 
Walking vs. baseline 

 No asymmetry of MTL activation in controls, 
greater activation in the MTL contralateral 
to seizure focus in 90 % of patients  Patients  n  = 30 

 Golby et al. 
(2002) 
[ 127 ]    

 Patients  n  = 9  Block design 
comparing novel 
vs. repeated stimuli 

 Group level—greater activation in the MTL 
contralateral to seizure focus for all encoding 
stimuli 

 Four encoding stimuli 
used—patterns, 
faces, scenes and 
words 

 Single subjects—lateralization of memory 
concordant with IAT in 8/9 subjects 
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  Fig. 4    Material-specifi c lateralization of memory encoding in the anterior hippo-
campus. fMRI activation within left and right hippocampal ROIs in healthy con-
trols demonstrating left lateralized activation for word encoding, right-lateralized 
activation for face encoding and bilateral activation for picture encoding       
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this represents an effective way of maintaining memory function in 
individual patients. By correlating fMRI activation and performance 
on standard neuropsychological memory tests, it has been shown 
that MTL activation ipsilateral to the pathology is correlated with 
better performance while contralateral, compensatory activation cor-
relates with poorer performance [ 129 ]. The conclusion that memory 
function in unilateral TLE is better when sustained by the activation 
within the damaged hippocampus is consistent with the observation 
that preoperative memory performance is a predictor of postopera-
tive memory decline, with better performance predicting worse 
decline [ 106 ,  107 ], and adds further support to the functional ade-
quacy model of hippocampal  function  .     
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  Fig. 5    fMRI memory encoding experiment: Left TLE patients vs. healthy controls. Regions showing signifi cant 
differences in activation between left temporal lobe epilepsy (TLE) patients and controls are highlighted. 
Contrast estimates are shown on the right of the images. Controls (C) are on the  left  and patients (P) on the 
 right . A reorganization of function is seen in the left TLE patients with reduced activation in the left hippocam-
pus, and greater activation in the right hippocampus, compared with healthy controls       
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 Prediction of postoperative memory decline is necessary to make 
an informed decision regarding surgical treatment. To date a small 
number of studies have used fMRI to predict the effect of left or 
right ATLR on verbal and nonverbal memory. In patients with left 
HS, greater verbal memory encoding activity in the left hippocam-
pus compared with the right hippocampus predicted the extent of 
verbal memory decline following left ATLR [ 130 ]. In a further 
analysis of the same patients, it was demonstrated that greater acti-
vation within the left hippocampus predicted a greater postopera-
tive decline in verbal memory [ 131 ]. These fi ndings have since 
been replicated and extended to patients undergoing right ATLR 
[ 132 ]. Other groups have demonstrated correlations between 
MTL activation asymmetry ratios and postsurgical memory 
 outcome in patients with both left and right TLE, with increased 
activation ipsilateral to the seizure focus correlating with greater 
memory decline [ 133 ,  134 ]. A recent study showed that bilateral 
posterior hippocampal activation correlated with less verbal mem-
ory decline postoperatively whereas left frontal and anterior medial 
temporal activations in left TLE patients correlated signifi cantly 
with greater verbal memory decline [ 102 ]. 

 As discussed earlier, two different models of hippocampal 
function have been proposed to explain memory defi cits follow-
ing unilateral ATLR: hippocampal reserve and functional ade-
quacy [ 94 ]. Studies using asymmetry indices are unable to 
address this important issue; however, the fi ndings of some of 
the above studies that greater preoperative activation within the 
ipsilateral, to-be- resected hippocampus, correlated with greater 
postoperative decline in memory support the functional ade-
quacy  theory   [ 131 ,  132 ].   

   When designing paradigms for patients with neurological defi cits, it 
is important to use tasks that they are able to perform. A differential 
pattern of activation between patients and normal subjects is only 
interpretable if patients are performing the task adequately [ 135 ]. 

 In addition, one must be aware of differences in the questions 
being asked by cognitive neuroscientists and clinicians, which can 
lead to different approaches to data analysis. Generally, neuroscien-
tists look at groups of matched controls performing the same task 
and determine which brain regions are commonly activated across 
the group. The emphasis is on avoiding false-positive results (Type 
I errors) and conservative statistical thresholds need to be used, 
which may lead to an under representation of brain areas truly 
involved. Conversely, clinicians are considering individual patients 
where the priority is to identify all brain regions involved in a task, 
i.e., avoiding false negatives (Type II errors). As a result, less strin-
gent statistical thresholds are required and indeed thresholds used 
may need to vary on an individual basis.  

1.2.3  The Prediction 
of Postoperative Memory 
 Changes  

1.3  Challenges 
of Clinical Cognitive 
 fMRI  
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   fMRI is a noninvasive and widely available tool, which has had a 
dramatic impact on cognitive neuroscience. Much of the progress 
made will benefi t  clinical neuroimaging  , although some problems 
exist in the application of fMRI to patients with neurological defi -
cits. fMRI allows the noninvasive assessment of language function 
to be performed and offers a valid alternative to the IAT for estab-
lishing language dominance. By tailoring paradigms towards the 
localization of the specifi c language skills most at risk following 
temporal and frontal resections, it will be possible to map relevant 
language functions in the epilepsy surgery population. This in turn 
will allow better assessment of the risks posed by surgery in each 
individual patient. 

 Considerable effort is also being made in the development of 
memory paradigms that can lateralize MTL functions and provide 
meaningful data at the single subject level. This information, in 
combination with structural MRI to evaluate hippocampal pathol-
ogy and baseline neuropsychology, will enable preoperative predic-
tion of likely material specifi c memory impairments seen following 
unilateral ATLR to be made with greater accuracy. In consequence, 
it will be possible to modify surgical approaches in those patients 
most at risk and to improve preoperative patient counseling. 

 Clinically it is what happens to individual patients that is 
important and the next step in the validation of these techniques 
will involve similar studies with larger numbers of patients. These 
should include more heterogeneous samples, including both left 
and right TLE undergoing ATLR. As well as showing group level 
correlations either at the voxel-level or within a predefi ned ROI, it 
will be important to establish methods for using this data to pre-
dict language and memory changes in individual cases. Investigating 
how the brain sustains memory postoperatively also requires fur-
ther investigation. Longitudinal fMRI studies with pre- and post-
operative imaging, including correlations with neuropsychological 
measures of language and memory, will be required to look at 
functional reorganization following surgery, and it is anticipated 
that these will offer valuable insights into brain plasticity.   

2    fMRI of Paroxysmal Activity 

 Despite major developments in the fi eld of neuroimaging over the 
last two decades, the localization of the brain regions involved in 
seizure onset is problematic in a signifi cant proportion of patients 
with focal epilepsy, thereby precluding surgical treatment. 
Furthermore, our understanding of the  neurobiological mecha-
nisms   underlying epileptogenic networks in focal and generalized 
epilepsies is incomplete. 

 Scalp EEG and magnetoencephalography ( MEG  ) are compara-
ble in their ability to detect and measure synchronized neuronal 

1.4  Cognitive fMRI 
in Epilepsy: Summary
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activity taking place mainly over relatively superfi cial parts of the 
brain with exquisite temporal resolution. Although both remain 
extremely active areas of investigation, the interpretation of EEG 
and MEG data and in particular their utility in localizing brain gen-
erators is severely limited as a consequence of the principle of super-
position and its corollary, the non-unicity of the inverse solution 
[ 136 ,  137 ]. This is in contrast to tomographic functional imaging 
modalities such as positron emission tomography (PET) or fMRI, 
which do not suffer from the problem of non-unicity and sampling 
bias is relatively minor. Although much superior to PET, the tempo-
ral resolution of fMRI, which is essentially governed by the local 
hemodynamic response, remains inferior to that of EEG by roughly 
three orders of magnitude. Nonetheless, fMRI allows hemodynamic 
changes linked to brief (∼ms) neuronal events to be detected and 
localized with a fair degree of reliability. Although our understand-
ing of the blood oxygen level-dependent (BOLD) fMRI signal is 
constantly improving, in part due to combined EEG and fMRI 
experimental data, as a general rule it remains an indirect and relative 
measure of neuronal activity. Although combined MEG-MRI seems 
a distant prospect, combined EEG-fMRI  experiments were per-
formed only a few years following the advent of fMRI [ 138 ]. 

 Often presented as combining the advantages of its constituent 
parts, a concept that motivated the technique’s pioneers, inevitably 
combined EEG-fMRI also suffers from some of their individual lim-
itations. Whatever the technique’s pros and cons, it will soon become 
clear to the reader that EEG-fMRI is unique in allowing the hemo-
dynamic correlates of brief, unpredictable bursts of neuronal activity 
observed on scalp EEG, such as interictal spikes, to be investigated. 

 Prior to the possibility of EEG-fMRI experiments, studies of 
paroxysmal activity using fMRI were limited to ictal events and often 
relied on the correlation of the image time-series with observed clin-
ical manifestations but sometimes did not [ 139 – 142 ]. 

 The fi rst studies of  paroxysmal brain activity   using fMRI were 
predominantly in patients with focal epilepsy, clinically motivated 
by the possibility of noninvasively localizing seizure focus. This 
continues to be an important source of motivation for this rapidly 
moving fi eld, but much current research focuses its attention on 
the understanding of the networks underlying the generation of 
seizures in both focal and generalized epilepsies. 

 Although an exciting development with potential clinical 
value, the technique currently remains within the realm of 
advanced, exploratory imaging modalities that require resources 
not available in most epilepsy clinics. We therefore begin this 
review by discussing some of the technique’s key technological and 
methodological aspects. We will then present an overview of the 
state of EEG-fMRI applied to the investigation of focal and gener-
alized epilepsies. 
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 The analysis and interpretation of fMRI data acquired from 
patients lying in the resting state with simultaneous EEG recording 
differs fundamentally from that of paradigm-driven fMRI in at 
least two ways: a lack of a prior experimental control and uncer-
tainty about the nature of the relationship between EEG event and 
putative hemodynamic effects. This important topic will be the 
subject of a discussion. 

   The recording of EEG inside the MR scanner still presents safety, 
image data quality and EEG data quality challenges. Historically, the 
issue of EEG data quality has been the determining factor in the 
technique’s evolution, from interleaved to simultaneous EEG- 
fMRI. This refl ects in part the fact that a gradual degradation in 
EEG quality mainly linked to cardiac activity can be readily observed 
in most subjects as they are moved inside the MR scanner (without 
scanning), posing an immediate challenge ahead of any other con-
siderations such as safety (albeit this should also be at the forefront 
of the considerations of investigators introducing any new equip-
ment in the scanner room) or the effect of scanning on EEG quality 
and the possible impact of the EEG recording equipment on image 
quality. In the following, we provide an overview of the state of 
EEG-fMRI technology, which remains an active area of research in 
particular in the area of EEG quality, although mostly for the pur-
pose of evoked response recordings. The focus will be on the impli-
cations for studies in epilepsy and in particular at fi eld strengths 
commonly used in neurological studies (≤3.0 T); the reader inter-
ested in the implementation of combined EEG and fMRI record-
ings at higher fi eld strengths (e.g. 7 T) is directed towards two recent 
specialized reports that address data quality and safety [ 143 ,  144 ]. 

  The electro-magnetic processes that take place during MR image 
acquisition and that are susceptible to interactions with the EEG 
system are: strong static magnetic fi eld (∼1.0–3.0 T), switching 
magnetic gradient fi elds (∼100 T/m/s), and radio frequency 
(RF) pulses (∼10 μT and 100 MHz). In addition, although MR 
scanners are designed to optimize the magnetic component of the 
RF pulses, an electrical component is unavoidable. This may lead 
to linear antenna effects with possible safety implications [ 145 ]. 
EEG recording, on the other hand, requires electrodes and leads 
to be placed within the imaging fi eld of view and electronic 
components, depending on the exact equipment and setup, in 
proximity to the scanner coils and antenna(s). 

 Four main mechanisms are at the origin of EEG-MR instru-
mentation interactions:

    1.    Magnetic induction: any change in magnetic fl ux (essentially 
the component of the magnetic fi eld that is perpendicular to a 
surface) over time through a conducting medium (loop, sur-
face, volume) gives rise to an electromotive force in the mate-

2.1  EEG-Correlated 
fMRI in Epilepsy: 
Technical Issues

2.1.1  Physical Principles 
of EEG- MR System 
Interactions  
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rial and hence an induced current. This phenomenon is 
governed by Faraday’s law of induction. Changes in magnetic 
fl ux, and the associated induced currents, can be caused by 
movement (change of position, orientation, or shape) of the 
conducting medium in a magnetic fi eld or change in the mag-
netic fi eld to which the conducting medium is  exposed  ;   

   2.    Magnetic susceptibility differences: static interactions due to 
the magnetic properties of the components of the EEG record-
ing system;   

   3.    RF radiation emanating from active components of the EEG 
recording system;   

   4.    Magnetic force on ferro- or paramagnetic components with 
associated risks of foreign instruments or their elements 
 becoming projectiles in the scanner room; in the following we 
will assume that all usual design and manipulation precautions 
have been taken to avoid these effects.     

 Magnetic induction can result in EEG quality degradation in 
the form of pulse-related and image acquisition (gradient- switching 
and RF)-related artifacts. Magnetic susceptibility differences and RF 
radiation linked to the EEG system can give rise to image artifacts.  

  Health hazards not normally encountered when MR or EEG are 
performed separately can arise due to induced currents fl owing 
through loops or the heating of EEG components in proximity or 
contact with the subject. For a specifi c 1.5 T scanner, and based on 
a worst case scenario, this study recommended that one 10 kΩ 
current-limiting resistor be inserted serially at each electrode lead 
and the possibility of large (EEG lead-electrode-head-electrode-
lead- amplifi er circuit) loops being formed reduced to a minimum 
by lead twisting. In experiments using a different custom-made 
EEG system, no signifi cant heating was observed [ 146 ]. An impor-
tant general consideration when placing wires in contact with the 
body is the type of RF transmit coil used and length of wire exposed 
to the electrical component of the RF fi eld [ 147 ]. A number of 
MR-compatible EEG system or electrode cap vendors have incor-
porated current-limiting resistors in their product design. To the 
authors’ knowledge, no adverse incident linked specifi cally to 
EEG-fMRI data acquisition has been formally reported to  date  .  

  Image quality remains an important issue throughout the fi eld of 
MRI and the subject of investigation, particularly for echo-planar 
imaging (EPI), which is particularly prone to distortion and local 
signal dropout [ 148 ]. Artifacts caused by electrodes and leads were 
observed in early EEG-fMRI experiments [ 138 ]. Therefore, one 
must consider carefully the choice of materials and components 
placed within the fi eld-of-view [ 146 ,  149 – 152 ]. It has been shown 
that the presence of high-density (256 channels) EEG caps can 
signifi cantly impair structural MR imaging [ 153 ].  

2.1.2   Safety  

2.1.3   Image Quality  
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  In the literature it is common to categorize the artifacts observed 
on EEG recorded inside the MR scanner into two types: heart 
beat-related (whether scanning is taking place or not) and MR 
image acquisition-related. These can be considered distinct in 
terms of their generating mechanism, and deserve to be addressed 
separately in terms of remedies to minimize them, as refl ected in 
the structure of this section. However, in practice they are linked 
by a third phenomenon, widely recognized as a nuisance in fMRI, 
namely subject motion. This is in part because the heart  beat- related 
artifact is thought to mostly originate from the body motion linked 
to the heart beat, but also because subject (and EEG electrode and 
lead) motion can have an important impact on the ability to cor-
rect both types of artifact, depending on the approach taken. 
Therefore body motion is nefarious for EEG recording quality 
(and almost without saying, fMR image quality) and should be 
minimized. This will be the subject of Sect.  2.1.4.3 . 

  The fi rst attempts at recording EEG inside MR scanners revealed 
the presence of pulse-related artifacts delayed in relation to the 
QRS complexes on ECG [ 138 ]. This effect has been shown to be 
common across subjects and has a slight frontal emphasis [ 154 ]. 
The pulse artifacts can have amplitude of the order 50 μV (at 1.5 T) 
and resemble epileptic spikes. Because of natural heart beat variabil-
ity, it is considered a more challenging problem than that of image 
acquisition artifacts. EEG artifacts linked to subject movement are 
also amplifi ed in the scanner’s strong static magnetic fi eld. 

 The precise mechanism through which the circulatory system 
exposed to a strong magnetic fi eld gives rise to these artifacts 
remains uncertain, but it is thought to represent a combination of 
the motion of the electrodes and leads (induction) and the Hall 
effect (voltage induced by fl ow of conducting blood in proximity 
of electrodes) [ 155 ]. Electrode motion can result from local arte-
rial pulsation, brain and head motion or whole-body motion (bal-
listocardiogram, or BCG, in the latter case) [ 156 ,  157 ]. 

 Methods to reduce artifacts at the source include: careful lay-
ing out and immobilization of the leads, twisting of the leads, 
bipolar electrode chain arrangement [ 158 ], head vacuum cushion 
[ 159 ] and the introduction of a reference electrode layer insulated 
from the EEG-measuring electrodes to capture and subtract the 
artifact from the EEG prior to amplifi cation [ 160 ]. Such measures 
do not eliminate the problem completely resulting in degraded 
EEG quality, impeding the identifi cation of epileptiform dis-
charges. The fi rst pulse artifact reduction algorithm published, and 
to this day still the gold standard against which most methods are 
compared, is based on subtraction of a running average estimate of 
the artifact based on automatic QRS detection, and is commonly 
referred to as the average artifact subtraction (AAS) method [ 154 ]. 
Using this method, the residual artifact is of the order of a few 
microvolts. The reliance of the algorithm on ECG is a common, 
though not universal, feature among subsequently developed 

2.1.4  EEG Quality
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techniques (some of which use the signal from the standard scan-
ner pulse oxymeter). The method has been and continues to be 
used successfully in our lab allowing the satisfactory identifi cation 
of ictal and  interictal epileptiform discharges (IED)      in real time (at 
1.5 T) [ 161 ] and for the purpose of source analysis [ 162 ], and has 
been implemented in widely used commercial MR-compatible 
EEG recording systems ( see  Fig.  6 ).

   The artifact amplitude is theoretically directly proportional to 
the scanner static fi eld strength ( B  0 ). This phenomenon, and an 
increasing interest in recording evoked potentials in the MR scan-
ner, has motivated an important research effort towards improving 
existing pulse-related artifact reduction methods and the develop-
ment of new ones. Variants of the AAS method have been pro-
posed, ranging from different ways of estimating the artifact 
waverform, for example to account for a greater degree of inter- 
beat variability [ 158 ,  166 – 168 ], more general motion effects [ 151 , 
 169 ,  170 ], to improving QRS detection [ 171 ] and removing the 
need for ECG  recording         [ 172 ]. 

  Fig. 6    IED-related BOLD pattern in patient with drug-resistant focal epilepsy. The patient had refractory focal epilepsy, 
lateralized to the right with a normal structural MRI. Frequent mid and posterior temporal sharp waves were recorded 
on EEG.( a ) Representative segment of 32-channel EEG showing a sharp wave, maximum at the right mid-posterior 
temporal region, recorded during two 20-min fMRI sessions.  Top left : EEG prior to artifact correction [ 154 ,  163 ]. 

 

Rachel C. Thornton et al.



Fig. 6 (continued) ( b ) Design matrix: BOLD signal changes related to 40 sharp waves were modeled by convolution 
of the EEG event onsets with a canonical HRF and its time-derivative. Signal changes linked to head motion and 
heartbeat were modeled as nuisance effects [ 164 ,  165 ]. ( c )  Top : SPM showing signifi cant sharp wave-related BOLD 
response in glass brain display ( p  < 0.05 corrected for multiple comparisons). The  red arrow  marks the global maxi-
mum, located in the BA 28 (superior temporal gyrus).  Bottom : BOLD response overlaid onto the patient’s normalized 
T1-weighted volumetric scan. Intracranial recording confi rmed a right posterior temporal lobe onset. No signifi cant 
sharp wave-related deactivation was revealed. The activation clusters were labeled using the Talairach Daemon, 
  http://ric.uthscsa.edu/project/talairachdaemon.html             

http://ric.uthscsa.edu/project/talairachdaemon.html
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 Spatial EEG fi ltering methods have been proposed based on 
temporal principal components analysis (PCA) or independent 
components analysis (ICA) [ 152 ,  159 ,  173 – 180 ]. It is important 
to note that some PCA and ICA-based correction methods may 
not be applicable in real time, making it diffi cult to visualize epilep-
tiform activity during the experiments with possible practical and 
safety implications. In studies in which residual noise was quanti-
fi ed, improvements of the order of 0.1–1 μV compared with vari-
ous implementations of the AAS method have been demonstrated 
[ 172 ,  179 ,  181 ]. Two important pulse artifact correction meth-
ods, AAS and optimal basis set, have been evaluated and compared 
independently [ 182 ].  

  In the absence of any special measures, the EEG recorded inside 
the MR scanner becomes un-interpretable during image acquisi-
tion because of the presence of repetitive artifact waveforms caused 
by the time-varying fi elds employed in the scanning process super-
imposed on the physiological signal [ 163 ,  183 ]. In addition, on 
some MR instruments, the helium cooling pump can introduce 
signifi cant amount of noise in the signals measured using the EEG 
equipment, and a method to remedy this problem has been pro-
posed in cases where the pump cannot be switched off for the 
duration of the scan [ 184 ]. 

 One way of circumventing this problem is to leave time gaps in 
the fMRI acquisition (e.g. between EPI volumes) of suffi cient 
duration to capture the EEG features of interest (assuming suffi -
cient data quality, e.g., following pulse artifact removal); this is 
 interleaved EEG - fMRI  [ 158 ,  185 ,  186 ]. This approach relies on 
artifact not persisting following each acquisition (e.g. due to ampli-
fi er saturation). Interleaved EEG-fMRI can be most useful to study 
predictable events (evoked responses) or slowly varying phenom-
ena, such as brain rhythms. EEG-triggered fMRI and in particular 
spike-triggered fMRI, which involves limiting fMRI acquisition to 
single or multi-volume blocks, each triggered following the 
 identifi cation of an EEG event of interest is a form of interleaved 
EEG- fMRI with obvious relevance to epilepsy [ 183 ,  187 – 190 ]. 

 Although interleaved EEG-fMRI is capable of providing useful 
data in many circumstances, it imposes a limit on experimental effi -
ciency due to EEG quality degradation during scanning. 

 We now review the technical developments that have made it 
possible to record EEG of suffi cient quality throughout fMRI 
acquisition (so-called  continuous EEG - fMRI ), by the image acquisi-
tion artifact to be corrected. For all practical purposes, and assum-
ing that the time gap between volumes is the same as between slices, 
the artifact’s spectral signature ranges from 1/TR (TR: slice acqui-
sition repetition time) to around 1 kHz (corresponding to the read-
out gradient). In fact it extends into the mega-hertz (RF) range, 
well beyond the recording capability of any EEG equipment. It can 
appear artifi cially benign when captured using standard EEG 
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equipment [ 138 ]. Only using equipment with suffi cient bandwidth, 
sampling rate and dynamic range, can one capture the artifact with 
adequate  accuracy         [ 163 ,  191 ]. 

 Experiments have shown that the gradient switching-related 
effects generally dominate over RF in terms of amplitude and extent 
in time, although the balance between the two mechanisms will vary 
depending on the specifi c MR sequence used [ 163 ,  171 ,  191 ,  192 ]. 
For standard EPI sequences, the pattern of gradients is repeated 
exactly across slices. Compared with the problem of cardiac- related 
artifact reduction, this determinism greatly facilitates the task of 
image acquisition artifact removal; however, the induced waveforms 
will be subjected to variations in time due to changes in the elec-
trode/lead confi guration caused by subject motion. 

 Before discussing artifact reduction postprocessing techniques, 
let us review some of the hardware modifi cations and other mea-
sures that can facilitate the recording of good quality EEG during 
fMRI. First, some of the tricks described previously to reduce the 
pulse-related artifact at the source, and in particular those to limit 
the area of loops formed by EEG leads and head motion, can also 
help to lessen the image acquisition artifact problem. Second, low- 
pass fi ltering at the front end of the EEG system may be used to 
reduce the artifact signifi cantly, although not suffi ciently to result 
in adequate EEG quality [ 163 ]. Third, a scheme has been devised 
to reduce the amplitude of the artifact at the source by modifi ca-
tion of the MR sequence and careful synchronization with EEG 
sampling [ 191 ]. It has also been noted that the subject’s head posi-
tion can have an important impact on the magnitude of the 
gradient- switching artifact and therefore this can be reduced at the 
source through simple manipulation [ 193 ]. 

 In the studies by Allen et al. [ 163 ] and Anami et al. [ 191 ], 
custom-built EEG recording systems with high sampling rates 
(1–20 KHz) and large dynamic range (∼20 mV), based on the 
notion that the artifact must be captured accurately to be under-
stood, were measured and eliminated. Specially designed 
“MR-compatible” EEG recording hardware has now become the 
norm in the fi eld, with a number of commercial products now 
available on the market ( see also  [ 158 ,  192 ,  194 ] for a description 
of other modifi ed or purpose-built apparatus)         . 

 Postprocessing methods to reduce image acquisition artifacts can 
be categorized as fi ltering, template subtraction methods or PCA/
ICA. Filtering based on the identifi cation and subsequent suppres-
sion of frequencies linked to the image acquisition process can lead to 
an improvement in EEG quality and be used for simultaneous EEG-
fMRI [ 168 ,  194 ,  195 ]. However, it is severely limited by the spectral 
overlap between the artifact and physiological signals, ringing effects 
and has been shown to be inferior to template subtraction [ 159 ]. 

 The most commonly used image acquisition artifact reduction 
method is based on average template artifact subtraction (sometimes 
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referred to as AAS) method [ 163 ] ( see  Fig.  6 ). It relies on the lack of 
correlation between physiological signals and the artifacts, enabling 
the latter to be estimated by averaging the EEG over a number of 
epochs, corresponding to individual scan repetitions, for example. 
The success of the artifact (template) estimation and its subsequent 
subtraction from the ongoing EEG depend critically on the sam-
pling rate, the number of averaging epochs, and the precision of 
their timing. In Allen’s original implementation, this is addressed by 
the use of the scanner’s scan trigger pulse to mark each scan acquisi-
tion and interpolation. Following subtraction, residual artifacts are 
reduced using Adaptive Noise Cancellation. The method can be 
used in real time, allowing continuous EEG-fMRI studies in patients 
with epilepsy [ 196 – 199 ]. Possibly the most important practical 
development has been the demonstration that synchronized MR 
acquisition and EEG digitization lead to signifi cantly improved EEG 
quality, and in particular over a wider frequency range, when com-
bined with an AAS-like method [ 225 ]. The method has been found 
to perform well for spiral EPI [ 226 ]. As noted previously, changes in 
the artifact waveform due to subject motion will lead to suboptimal 
template estimation. To address this, refi nements of Allen’s method 
which incorporate PCA of the residual artifact have been proposed 
[ 171 ,  227 ]. The shape of the image acquisition artifact may be cap-
tured in a separate experiment for subsequent subtraction [ 192 ]. In 
the study by Wan et al. [ 228 ], a method designed to bypass the 
requirement for a slice acquisition signal from the scanner is pro-
posed. As is commonly the case for artifact reduction methods based 
on ICA, identifi cation of the components containing artifact is 
mainly done visually [ 179 ]. A diffi culty encountered when compar-
ing the  various methods available for artifact reduction is the range 
of methodologies used. This has been addressed to some degree in 
a rigorous comparative  study         [ 229 ].  

   Subject (head)  motion  , and almost inevitably motion of the EEG 
recording circuit (formed by the head, electrodes and leads) which 
results from it, will cause fl uctuations in the recorded signal addi-
tive to the effects discussed in the previous sections. In most situa-
tions, this motion is not synchronized with either the scanning 
process or heartbeat; due to the associated change in geometry of 
the EEG circuit in relation to the scanner, it therefore can intro-
duce random fl uctuations in the magnitude of both types of arti-
fact. In terms of the AAS algorithm, this phenomenon imposes a 
limit on the quality of the artifact correction: the greater and more 
random the motion, the less effi cient AAS will be. The previously 
mentioned measures to reduce the pulse artifacts based on subject 
immobilization and minimization of EEG loops are obviously 
worth reiterating at this point [ 158 ,  159 ]. More recently, a method 
to measure head motion and use the information to reduce pulse 
and scanning-related artifacts has been proposed [ 230 ,  231 ].    

 EEG Quality: 
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   fMRI can be used to investigate the  hemodynamic correlates   of 
paroxysmal activity, and in particular to reveal regional changes in 
the BOLD signal thereby potentially providing new localizing 
 information  .  See  Table  3  for a list of notable published studies.

   The conventional approach to the analysis of fMRI data is 
predicated on the correlation of the fMRI time series with 
experimentally- determined stimuli within the framework of the 
general linear model (GLM). This methodology allows voxel-by- 
voxel testing of the degree of fi t of predicted and observed BOLD 
time courses, and subsequent inferences. The application of fMRI 
for the assessment of spontaneous paroxysmal activity in epilepsy 
offers a number of additional challenges, namely: the lack of exper-
imental paradigm (subjects scanned in the resting state), the iden-
tifi cation of paroxysmal activity in relation to the fMRI time series, 
and the representation and translation of this activity into a 
GLM. The latter point is crucial and as we will see, has been an area 
of continuing investigation in the fi eld. 

 In addition to the diffi culties associated with the observation of 
subjects within the confi ned space of an MR scanner, and perhaps 
more importantly the use of behaviourally derived (seizure manifes-
tations) time markers when possible, although crucial, does not 
provide as complete a picture of the event as one would wish given 
the importance of putative concomitant EEG abnormalities. 

 The advent of EEG-correlated fMRI has been a major advance 
in this respect, providing an established, albeit imperfect, marker of 
paroxysmal activity and more generally brain state. Importantly, it 
allows the study of interictal activity, particularly IED, which only 
manifest on EEG. Although this type of data allows the experimen-
talist to study hemodynamic changes linked to specifi c EEG events, 
it presents a number of challenges linked to the subjective nature 
of EEG interpretation. The investigator is also soon confronted 
with a “chicken and egg” type problem of not knowing precisely 
what the time course of the changes is, and in particular whether 
the hemodynamic “response” function associated with paroxysmal 
discharges deviates from normality, a necessary element of the 
modeling, or its spatial substrate, the latter being precisely the 
motivation for undertaking the experiment given its clinical 
implication. 

  As mentioned previously, a number of case studies of ictal events 
captured using fMRI alone were published prior to the advent of 
EEG-fMRI [ 139 – 142 ]. Despite the fact that these contain inter-
esting observations, particularly with regard to the signal change 
around the time of seizure onset, the availability of simultaneously 
recorded EEG would have contributed important information. 
The development of the ability to record good quality EEG inside 
the MR scanner has offered the possibility of improved models of 
ictal fMRI signal changes by the inclusion of precisely timed 

2.2  Application 
of fMRI to the Study 
of Paroxysmal Activity

2.2.1   Ictal    fMRI      in Focal 
Epilepsy
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EEG- derived information in the model, and also by providing an 
indication of head motion due to artifacts on the EEG which may 
assist interpretation. Clearly the problem of motion is particularly 
pertinent to the acquisition of seizure data, as it can severely 
degrade image data quality and consequently the ability to detect 
and map regional hemodynamic changes accurately in relation to 
those manifestations [ 232 – 234 ]. 

 Given the above limitations and concerns regarding patient 
safety, EEG-fMRI data of seizures is often acquired incidentally 
[ 198 ,  205 ,  235 – 237 ]; however, a systematic study of patients 
recruited specifi cally in the expectation of capturing seizures has 
provided new information on the transition from the interictal 
state, and ictal onset and evolution (spread) [ 213 ]. A noteworthy 
observation was the common involvement of multiple regions 
beyond the conventionally defi ned EZ, during the preictal period. 
The electrophysiological substrate of ictal BOLD increases and 
decreases were specifi cally investigated in a case who underwent 
SEEG [ 238 ], showing distinct signatures.  

  Although the study of ictal events may be useful in pursuing the 
aim of noninvasively identifying the seizure onset zone and thereby 
contributing most to presurgical  evaluation  , its acquisition remains 
challenging. Attention has, therefore, focused on interictal activity 
and the insight gained from it into the function of epileptic net-
works. Spike-triggered fMRI acquisition was used in the fi rst appli-
cations of EEG-fMRI in epilepsy, which tended to focus on the 
study of subjects pre-selected for the large number of IED observed 
in prior routine surface EEG or as part of presurgical assessment. 
The acquisition and analysis of spike-triggered fMRI data generally 
rests on the assumption that interictal spikes are associated  with   a 
BOLD signal change pattern similar to the so-called canonical 
HRF. In these series, regions of positive BOLD signal change asso-
ciated with IED were observed in approximately 50 % of the cases 
overall, and occasional negative changes [ 183 ,  187 ,  189 ,  190 , 
 200 – 202 ,  204 ,  239 ,  240 ]. Using bursts of BOLD EPI scans, 
Krakow et al. made an initial attempt at estimating the shape of the 
IED-related HRF [ 189 ]. We note that in the work by Seeck and 
colleagues, Clonazepam was used to suppress interictal discharges, 
thereby creating a control scan state [ 200 ,  204 ]. Interleaved EEG- 
fMRI, whereby fMRI data are acquired in blocks with inter-block 
gaps of a suffi cient duration to allow interpretation of part of the 
EEG was employed in a patient with IGE for the mapping of 
BOLD changes related to spike-wave complexes [ 218 ]. 

 Following the implementation of image acquisition artifact 
removal [ 163 ], the technique of continuous, simultaneous EEG- 
fMRI acquisition was demonstrated along with estimation of the 
shape of the IED-related HRF in a subject with Raussmussen’s 
encephalitis and stereotyped high amplitude sharp waves on the 
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EEG [ 197 ].  See  Fig.  6  for example of EEG-fMRI in patient with 
focal epilepsy. When applied to relatively large case series of subjects 
with predominantly focal epilepsy selected on frequent interictal dis-
charges on routine EEG [ 190 ,  199 ], a yield (proportion of signifi -
cant BOLD activations or deactivations) of 60–70 % was observed 
where IED were recorded. This result has been reproduced in fur-
ther studies despite variation in the analysis strategies and patient 
groups. Sensitivity can be increased using spike template matching 
based on EEG recorded outside the MRI scanner [ 241 ]. Positive 
BOLD changes tended to correspond with the site of the presumed 
seizure onset zone (based on electroclinical localization), but occa-
sionally appeared at sites distant from this region, the signifi cance of 
which remains unclear. Negative BOLD changes were more often 
observed remote from the presumed focus, with a striking pattern of 
retrosplenial deactivation in a signifi cant proportion of cases [ 199 ]. 
It was shown that activations were more likely when there was good 
electroclinical localization, frequent stereotyped spikes, less head 
motion, and less background EEG abnormality. Furthermore, the 
fi ndings suggest that signifi cant activation is more likely for runs of 
spikes than for isolated   discharges  , when the event duration is taken 
into account in the  modeling   [ 199 ,  242 ]. 

 In TLE, IED-related activation of the MTL ipsi-lateral to the 
presumed focus was found to be common, and is reminiscent of 
the thalamic pattern observed in generalized spike and wave dis-
charges (GSW) [ 243 ]. 

 The possible explanations for lack of activation include: com-
bination of insuffi cient number of events and limited fMRI sensi-
tivity, incorrect model due to suboptimal EEG event identifi cation 
and classifi cation, choice of HRF and limited extent to which scalp 
EEG refl ects ongoing activity (throughout the brain). Automated 
and semi-automated spike detection methods have been proposed 
to attempt to reduce the level of subjectivity of EEG event identi-
fi cation [ 162 ]. Nonetheless, although the ability to record EEG 
during fMRI is necessary to study the hemodynamic correlates of 
EEG events observed on the scalp, total reliance on scalp EEG can 
also be seen as a limitation when attempting to interpret the BOLD 
signal throughout the brain and in particular the part which may 
not be linked to activity refl ected on the scalp. In the absence of 
clear epileptiform discharges, the presence of slow activity may 
provide useful localizing information [ 244 ,  245 ]. However, if data 
from clinical video-telemetry EEG are available showing IED, the 
corresponding topographic map can be correlated with that of the 
intra-MRI EEG as a function of time to attempt to reveal BOLD 
changes corresponding to the epileptic topographic pattern [ 246 ]. 
Data-driven or region-based fMRI analysis techniques may offer 
another way forward in this respect, although interpretation of the 
observed patterns in the former is signifi cantly impaired by the lack 
of an a priori model and numerous possible  confounds   [ 247 ,  248 ].  
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  The normal hemodynamic response associated with neuronal activ-
ity arising from brief external stimuli in humans has a characteristic 
shape with a peak at around 5–6 s following the event, the so- 
called canonical HRF, with a signifi cant degree of inter-subject 
variability [ 249 ]. The shape of the HRF is a key element of fMRI 
signal modeling with an important impact on sensitivity, and it is 
therefore important to attempt to characterize it. In epilepsy, par-
ticularly in relation to deactivations it has been proposed that neu-
rovascular coupling is abnormal with possible consequences on the 
shape of the HRF, and this was suggested to be one possible expla-
nation for the signifi cant widespread BOLD deactivations observed 
in both focal and generalized epilepsy [ 250 ,  251 ]. 

 This has lead to increased interest in estimating the shape of 
the HRF in epilepsy. An effi cient way of estimating the shape of the 
hemodynamic changes linked with epileptiform discharges is by 
using a set of functions (sometimes referred to as “basis set”) that 
can, by linear superposition, fi t signal changes with almost any time 
course. Various such schemes have been used in studies of epilepsy 
including sets of gamma response functions, Fourier basis sets and 
a linear combination of canonical HRF, its time derivative and a 
dispersion derivative [ 197 ,  199 ,  207 ,  252 ,  253 ]. Although a 
degree of variability has been observed, the HRF linked to IED 
was found to be principally  canonical   in shape [ 254 ]. In some cases 
deviation from the norm at locations distant to the IED may refl ect 
artifacts, while in others, deviant activation in proximity to the pre-
sumed focus, early responses may refl ect brain activity that system-
atically precedes the event captured on the scalp or propagation 
[ 252 ,  255 ]. In a recent study, the development of penicillin- 
induced epileptic activity was correlated with increase in BOLD 
signal prior to the onset of IED [ 256 ]. These studies coupled with 
those combining EEG-fMRI with multiple source analysis [ 257 ] 
suggest that in some cases the maximum BOLD response may be 
detected just prior to seizure or even IED onset. It may be, how-
ever, that this refl ects BOLD changes linked to interictal abnor-
malities, which are not included in the model by virtue of the fact 
they are not seen on the scalp  EEG  .  

  Having shown that EEG-fMRI is capable of providing a unique 
form of localizing information, the issue of its clinical value arises. 
The evaluation of new noninvasive imaging modalities in the pre-
surgical assessment of patients with drug-resistant epilepsy is a 
complex issue in part due to the lack of an established method-
ological consensus (baseline) across centers. Added value and clini-
cal relevance are a function of the new test’s sensitivity and 
specifi city. In the case of EEG-fMRI, neither has been properly 
assessed to date. Thus far the fi eld has focused on proof of principle 
demonstrations, usually in patients selected based on high rates of 
EEG abnormalities, with a success rate of roughly 50–60 % [ 183 , 
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 187 ,  189 ,  199 ,  202 ,  204 ,  240 ]. Therefore, one may anticipate a 
lower success rate in the most clinically challenging cases for which 
the need for noninvasive assessment is most pressing. 

 When available, the new localizing information must be evalu-
ated relative to a surgically confi rmed irritative and epileptogenic 
zone [ 258 ] using the current gold standard of invasive recording 
and outcome data. In practice, a gradual approach to validation is 
often taken, whereby the face validity of new localizing informa-
tion is tested against other existing techniques in cases with well 
characterized syndromes, such as mesial  TLE  . 

 In our laboratory, we have assessed the value of the fMRI fi nd-
ings by comparing the localization of the BOLD cluster containing 
the most signifi cant activation to the seizure onset zone defi ned 
electro-clinically, when possible, and found a very good degree of 
concordance at the lobar level [ 187 ,  189 ,  199 ]. Additional regions 
of activation were observed in roughly 50 % of the cases with 
 signifi cant activation. The fi nding of localized BOLD activation in 
cases with poor electroclinical localization suggests a means of 
obtaining target areas for intracranial EEG [ 199 ]. In TLE, the 
yield has been characterized as relatively high [ 259 ] and the degree 
of concordance of BOLD activations with the presumed focus gen-
erally good in one study [ 199 ], but more varied in another [ 259 ]. 

 Comparison of EEG-fMRI with source localization suggests 
that IED-related BOLD activation are often in proximity to those 
detected by conventional EEG source localization, but some stud-
ies have suggested a distance of up to 50 mm. The possible sources 
of discrepancy between BOLD and electrical (or magnetic) source 
localization include: differences in the nature of the observed phe-
nomena and neurovascular coupling, vascular architecture and 
scanner fi eld-related effects on sensitivity, instrumental and physi-
ological noise, source reconstruction limitations, fMRI sensitivity 
limitations [ 208 ,  260 – 262 ]. 

 Presurgically, intracerebral EEG data are widely recognized as 
the localization gold standard. Comparison of scalp EEG-fMRI 
against invasive EEG has been performed in small groups and using 
widely varying fMRI analysis techniques and comparison criteria 
[ 190 ,  200 ,  250 ], noting a degree of concordance between the epi-
leptogenic zone and the area of maximal BOLD activation in some, 
but not all subjects [ 204 ,  208 ]. The potential role of EEG- fMRI in 
presurgical  evaluation   was assessed in a series of patients with focal 
epilepsy in whom surgery was not offered following conventional 
electroclinical evaluation [ 210 ]. The impact of the EEG- fMRI fi nd-
ings was assessed in eight cases with unclear foci or suspected muti-
focality (based on the center’s usual battery of tests) in whom 
signifi cant IED-related BOLD activation were observed: IED-
related changes suggested a more  restricted   seizure onset zone in 
four, and multifocality in a further patient. The EEG-fMRI fi nding 
was concordant with intracranial recordings in two. The authors 
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suggest that this supports a possible role for EEG-fMRI in  presurgi-
cal evaluation   where a potential, but possibly widespread focus is 
identifi ed. In a series of 23 patients with FCD who underwent inva-
sive EEG, EEG-fMRI mapping of IED was successful in 50 %; the 
pattern of IED-related BOLD changes tended to refl ect the inva-
sive EEG fi ndings and in particular widespread involvement was 
associated with poor surgical outcome or widespread SOZ, sug-
gesting a signifi cant clinical role [ 211 ]. In another substantial retro-
spective case series, Pittau et al., found a high degree of concordance 
of the interictal EEG-fMRI localization with the confi rmed or pre-
sumed IZ, and showed the test to provide added value (“contribu-
tory” to the defi nition of the epileptic focus) in a large proportion 
of cases [ 212 ]. A comparison of the results of IED mapping and 
ictal SPECT in a series of 28 patients has revealed a common high 
degree of spatial overlap often beyond the presumed EZ, possibly 
refl ecting common propagation pathways, with some notable mis-
matches which the authors explain by the different nature of the 
two techniques and inter-session  effects   [ 216 ].  

  Focal epilepsy can be divided by pathological subtype. Given the 
knowledge that the irritative and epileptogenic zones may extend 
beyond the area of pathological abnormality and that animal models 
suggest abnormal subpopulations of neurons within dysplastic areas, 
there have been studies of EEG-fMRI aimed at evaluating the hemo-
dynamic response in abnormal tissue revealed on MRI [ 203 ,  211 , 
 244 ,  263 – 266 ]. In a series of 14 cases with heterotopia notable vari-
ability of the BOLD response across abnormal tissue was observed, 
but the area of BOLD signal increase was often concordant with the 
area of pathology, with a more mixed pattern of deactivations [ 266 ]. 
In MCDs and particularly Taylor type focal cortical dysplasia, BOLD 
signal increase was observed within the lesion while peri-close and 
distant from the lesional activity displayed a negative BOLD response 
in four out of six cases [ 237 ]. Other studies in cases with MCD have 
supported these fi ndings. IED-related BOLD signal changes have 
been observed in patients with cavernomas [ 267 ] close and distant 
from the lesion. The frequently observed negative BOLD responses, 
particularly in MCD have been attributed to loss of neuronal inhibi-
tion (in the presence of normal neurovascular coupling) in the 
regions surrounding the abnormality or abnormalities in neurovas-
cular coupling itself. The signifi cance of these deactivations will be 
discussed in more detail later.  

  EEG-fMRI has been used to attempt to localize sources in specifi c 
epilepsy syndromes, in addition to adding evidence to the under-
standing of the differences in subtypes of focal epilepsy. TLE is of 
particular interest in this context as surface EEG may not detect 
the deep sources involved in TLE and surgery for TLE, where it is 
correctly localized, is associated with excellent outcome [ 268 ]. 
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 A large series of subjects with temporal and extra-temporal lobe 
epilepsy showed that temporal lobe spikes are seen at the presumed 
seizure focus, but also unsurprisingly on the opposite homologous 
cortex, but did not give further localizing  information   [ 259 ]. 

 A further more recent study compared IED-related BOLD 
responses between subjects with temporal and extra-temporal lobe 
epilepsy and found that those brain areas involved in the so-called 
“default mode network” [ 269 ] were commonly deactivated during 
temporal lobe IED whereas other areas were involved in BOLD 
activation and deactivation in extra-temporal lobe epilepsy [ 243 ]. 

 Other subtypes of epilepsy studied include benign rolandic 
epilepsy of childhood [ 262 ,  270 ] and other focal epilepsies in 
 children, which have demonstrated concordant IED-correlated 
BOLD activation in approximately 60 % of cases [ 222 ,  223 ]. A 
study of lesional epilepsy in children not only revealed positive 
BOLD response concordant with the seizure onset zone in a sig-
nifi cant number of subjects, but also a higher number of deactiva-
tions than those observed in adult studies [ 223 ]. However, sedation 
was used in this study, the effect of which has not been investigated 
in detail to date. EEG-fMRI is a particularly attractive option for 
the study of childhood epilepsies as it is noninvasive, but experi-
ments are long and require a high degree of subject cooperation. 

 In a recent study comparing the BOLD patterns (and cortical 
morphology) associated with eye closure and (spontaneous and 
triggered) GSW in patients with eyelid myoclonia with absences (a 
form of refl ex epilepsy) has provided evidence of specifi c alterations 
in the visual (and other, related) system, thereby supporting the 
notion of a distinct epileptic syndrome [ 221 ].  

  The  generalized epilepsies   (IGE) (that is the syndromes of 
Absences, Myoclonic epilepsies, and primary generalized tonic 
clonic seizures coupled with generalized spike and wave discharges 
on the EEG [ 271 ] are not currently amenable to surgical treat-
ment. Therefore, the primary focus of EEG-fMRI investigations of 
generalized epilepsy has been the exploration of hypotheses devel-
oped in vitro and animal models [ 196 ,  217 ,  219 ,  261 ,  272 – 276 ]. 

 Specifi c BOLD activation and deactivation of resting state net-
works are found to be correlated with interictal GSW activity. In 
particular, the so-called Default Mode Network (DMN), normally 
found to be particularly active at rest, is commonly deactivated and 
thalamic-cortical network activated [ 273 ,  277 ,  278 ]. Moeller and 
colleagues [ 279 ] found changes in functional connectivity during 
GSW and GSW-free period. 

 It is commonly assumed that decreased DMN  activity   is a con-
sequence of the epileptic discharges, perhaps refl ecting alterations 
in awareness. This may be the case. However, a study using con-
nectivity analysis has suggested that the deactivation of the DMN 
drives thalamic-cortical network changes and can lead to the pro-
duction of generalized spikes waves (GSW) suggesting a large-scale 
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interaction between different brain networks. In particular, it has 
been proposed that the precuneus has a crucial role in facilitating 
the production of GSW and in alter the state of consciousness 
[ 280 ]. Other evidence based on the analysis of the temporal 
sequence of BOLD response suggesting an early frontal activation 
in support of the cortical focus theory [ 281 ]. Moreover, other 
results have shown that the thalamus is the pacemaker of the 
abnormal status in brain networks in this patient population [ 282 ]. 
As demonstrated, there is no clear evidence regarding the direction 
of the interaction between resting state networks and GSW. 

 Simultaneous EEG-Arterial Spin Labelling (ASL) MRI in 
patients with spike and wave discharges revealed degrees of corre-
lation between BOLD and CBF consistent with normal neurovas-
cular coupling [ 277 ]. This study also revealed a remarkable degree 
of within subject, inter-session (and inter-scanner) reproducibility, 
albeit in a small  group     .  

   BOLD signal deactivation   has been observed in the monkey visual 
system and found to have a linear relationship with CBF in the 
same way as positive BOLD signal change in normal physiological 
conditions [ 283 ]. The pattern of cortical deactivation commonly 
observed in relation to GSW using EEG-fMRI in humans has been 
discussed earlier. Gotman et al. proposed that the reason for 
observing the widespread cortical deactivation may be hypersyn-
chronization of the thalamus, supporting Avoli’s proposed model 
of the thalamus driving the cortex during GSW [ 273 ]. The results 
of Hamandi et al. using EEG-ASL are consistent with GSW-related 
deactivation refl ecting decreased cortical activity [ 277 ]. 

 Focal IED-related deactivations are less common than activa-
tions and seem particularly linked to the presence of activation, 
possibly refl ecting a smaller hemodynamic effect of individual 
events [ 199 ,  251 ]. In cases with MCD IED-related negative 
BOLD signal change adjacent to the seizure onset zone or area of 
dysplastic cortex, has led to several possible explanations including 
“vascular steal” from more metabolically active regions, abnormal 
neuronal coupling, or perhaps more likely, loss of inhibitory neu-
ronal activity in these regions supporting the link between BOLD 
deactivation and underlying decrease in neuronal activity [ 251 , 
 264 ]. 

 Deactivation of the default mode areas is a typical feature of 
IED-related BOLD changes in TLE in contrast to cases with extra- 
TLE [ 243 ]. The observed pattern may refl ect IED-related effects 
in areas involved in cognition, with a possible link to transient cog-
nitive impairment [ 284 ].  

  Although limited by the sluggish BOLD response, we have seen 
that EEG-fMRI is able to reveal multiple regions more or less 
simultaneously activated or deactivated in relation to EEG events 
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[ 196 ,  199 ,  243 ]. The involvement of the thalamus in GSW has 
been discussed earlier, but it has also been observed that subcorti-
cal BOLD activation can be seen in focal epilepsy [ 209 ,  259 ,  264 ]. 
A spike-triggered EEG-fMRI study of subjects with MCD identi-
fi ed BOLD activation concordant with seizure onset in all patients 
studied, and subcortical activations in various structures were 
observed in 50 % of subjects [ 264 ], and in Agakhani et al.’s study 
of focal epilepsies, thalamic activations were observed correlated 
with interictal IED, particularly where these were bilateral and syn-
chronous [ 209 ].  

  The study of spontaneous, pathological brain activity using fMRI 
presents the experimentalist numerous challenges. The advent of 
simultaneously recorded EEG greatly facilitates this endeavor. EEG-
fMRI was originally held to be an excellent tool incorporating the 
spatial coverage and resolution of imaging techniques and the tem-
poral resolution of EEG. However, a number of challenges remain. 

 Technically, postprocessing methods are now available to offer 
EEG quality suffi cient to allow a degree of abnormality identifi ca-
tion reliability comparable to that of routine clinical EEG. Although 
EEG quality is suffi cient to detect most IED with a good degree of 
certainty (at 1.5 T) [ 161 ], pulse-related artifacts can sometimes 
interfere with EEG interpretation particularly at 3 T. Improved 
artifact correction and the use of techniques based on EEG source 
reconstruction may yield more localized and reproducible results 
[ 162 ,  257 ]. In addition, very little work has been done on this 
aspect of EEG interpretation and in particular the differences 
between the clinical and experimental approaches, with the former 
using a summary of the abnormalities observed over the whole 
EEG rather than categorization and quantifi cation of all IED 
required for fMRI. Concerning the effects of motion, which is par-
ticularly problematic in patients with epilepsy (and other neuro-
logical conditions), on MR image and EEG quality, the advent of 
prospective motion correction offers a possible way forward [ 285 ]. 

 Reliance on scalp EEG for fMRI modeling is both a strength, 
as it allows to answer the question “what, if any, are the BOLD 
correlates of EEG pattern X?”, and weakness because it is bur-
dened with certain limiting aspects of scalp EEG, such as sensitivity 
bias subjectivity in interpretation, and the unpredictable nature of 
the phenomena of interest. This presents the investigator with sig-
nifi cant challenges in terms of unpredictable experimental effi -
ciency (and consequently yield) and EEG interpretation for the 
purpose of GLM building. The former may require a more aggres-
sive approach possibly using drug management as a tool for modu-
lating EEG activity [ 200 ]. Although EEG event classifi cation 
remains problematic, possible solutions may give the opportunity 
of using fMRI to inform  EEG      interpretation [ 162 ]. 

2.2.10  Limitations, 
 Challenges     , and Future 
Work
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 The “yield” of EEG-fMRI studies is to some extent a function 
of the previous points. A particular problem is that subjects are 
scanned for a limited period of time, and interictal discharges are 
not always observed during this period. A signifi cant BOLD 
response is also only present in 50 % of cases giving an overall 
“yield” of the order of only 25 % in many studies. 

 Attempts at interpreting resting state fMRI patterns in patients 
with epilepsy without reference to EEG (or clinical manifestations) 
using data-driven analysis techniques have had mixed success 
[ 248 ], but one can envisage the possibility of being able to reliably 
identify sets of patterns that are potentially related to epileptic 
activity, with 100 % yield [ 286 ]. 

 Despite providing whole-brain coverage of putative BOLD 
changes, the technique is effectively limited to the study of the events 
seen on the scalp EEG. We know from intracranial EEG that a large 
amount of pathological activity is not seen on the scalp, despite orig-
inating from a fi xed location [ 287 ]. Therefore, the possible mis-
match between scalp-derived model and ongoing activity raises the 
question of the nature of the baseline, with implications for sensitiv-
ity. This may be refl ected in event onset time offset refl ected in “early 
responses” [ 252 ,  253 ]. Furthermore, this means that EEG-fMRI 
cannot be used to exclude regions from epileptogenic  zone     . 

 An additional degree of modeling uncertainty arises with 
regards to the IED-related hemodynamic response function linked 
with the potential effects of pathology and the nature of scalp EEG 
[ 250 ]. However, the latest evidence points to a preserved neuro-
vascular coupling and shape of the HRF in line with the physiolog-
ical response in healthy brains [ 252 ,  277 ]. 

 The sluggishness of the BOLD response in relation to EEG 
means that activation patterns effectively represent a time averaged 
picture of a sequence of neuronal events, such as propagation and 
loops. The causal relationship between the activity in these regions 
on the one hand and the EEG on the other cannot be untangled 
based on the correlation-based machinery that is the 
GLM. Nonetheless, these sets of regions may be thought of as a 
static or averaged picture of evolving networks, which may be sub-
jected to further investigation. This may be particularly relevant to 
spontaneous brain activity compared with experimentally con-
trolled experiments because of the greater uncertainty in the origin 
and sequence of neuronal events. The neurophysiology underlying 
the BOLD response is not fully understood. Much remains to be 
elucidated on the spatial-temporal relationship between IED and 
time-locked BOLD signal changes, for example the signifi cance of 
responses distant from the presumed focus for which extensive 
comparison of the fMRI with the gold standards of intracranial 
EEG and postsurgical outcome will be required. The possibility of 
using MRI to directly detect local changes in magnetic fi eld is an 
exciting prospect [ 288 ]. 
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 The interpretation of BOLD activation patterns consisting of mul-
tiple clusters in relation to focal IED remains an area of active investiga-
tion. Recently, an attempt has been made to increase the technique’s 
ability to temporally resolve multiple regions of BOLD activation by 
combining EEG-fMRI with multiple source analysis [ 262 ]. 

 Finally, EEG-fMRI as implemented and analyzed currently may 
be considered purely as a hemodynamic imaging technique, with 
EEG simply acting as a time marker for scan classifi cation. However, 
we envisage a more symmetrical approach whereby the two forms 
of data are used to infer neuronal activity, which must be the ulti-
mate aim of the entire functional imaging  enterprise      [ 289 ].  

  The possibility of recording EEG of good quality during fMRI has 
created a new instrument, which to date has been mainly used in 
an exploratory fashion. 

 EEG-fMRI of ictal and interictal activity in focal epilepsy has 
demonstrated the capability to provide new localization information 
in a large proportion of cases. In focal epilepsy, varied patterns have 
been identifi ed often suggestive of “functional lesions” homologous 
to abnormalities seen on structural imaging, but additionally the 
involvement of possibly less disease-specifi c regions. The clinical 
value of this information remains uncertain and is the subject of 
ongoing investigations. At the very least, EEG-fMRI may provide 
complementary data useful for planning of invasive recordings where 
conventional localization of the seizure focus is unsuccessful. 
However, there are signs that it may be able to offer more. 

 In generalized epilepsy, EEG-fMRI has revealed activation and 
deactivation patterns that are mainly suggestive of less specifi c 
effects linked to generalized spike-wave, rather than refl ecting syn-
drome, the spatial distribution of the EEG generators or more spe-
cifi cally a putative focus responsible for initiating GSW due in part 
to the averaging effect of BOLD.  

  Some of the brain regions of most interest in epilepsy are subject 
to susceptibility artifact, leading to geometric distortions and sig-
nal loss during fMRI acquisition. Ideally in the absence of an 
applied gradient, the magnetic fi eld would be homogenous 
throughout the bore of an MRI scanner. Unfortunately, the differ-
ent magnetic properties of bone, tissue, and air introduce inhomo-
geneities in the fi eld when a head is introduced into the bore. Brain 
regions closest to borders between sinuses and brain or bone and 
brain, for example the inferior frontal and MTLs, are most affected, 
and therefore especially likely to suffer geometric distortions or 
signal loss [ 290 ]. This can result in reduced sensitivity and ana-
tomical uncertainties when interpreting the images. Most epilepsy 
studies have been performed on 1.5 T clinical MRI scanners. 
Scanning at higher fi eld strength improves signal-to-noise ratio but 
increases distortions and dropout [ 291 ]. 
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 Geometric distortions of the EPI data make it diffi cult to 
directly overlay fMRI activations on coregistered high-resolution 
scans. They can be unwarped using techniques that map the local 
fi eld in the head [ 292 ], though it has been shown that approaches 
of this kind can introduce extra noise into the corrected EPI data 
[ 293 ]. Alternative acquisition sequences that do not experience 
geometric distortions are available [ 294 ] though these rarely have 
the temporal resolution or high signal to noise ratio (SNR) per 
unit time of  EPI  . 

 The second artifact in EPI data is more serious, as signal loss 
leads to sensitivity loss, which is unrecoverable by image processing 
techniques. Some of these artifacts can be corrected by shimming, 
a process whereby the static magnetic fi eld is made more homog-
enous over the region of interest [ 290 ]. Some will remain, how-
ever, leading to distortion and dropout in echo-planar images. 
Other approaches to removing dropout often involve acquiring 
extra images, leading to a loss of temporal resolution [ 295 ], but 
more recent work has shown that dropouts and distortions can be 
reduced without incurring time penalties if regions of reduced spa-
tial extent are imaged [ 296 ]. The use of high-performance gradi-
ents and thin slice acquisitions ameliorate these problems and 
improve fMRI quality. fMRI is also extremely sensitive to motion, 
although generally epilepsy patients are familiar with MRI scanners 
and may move less than control subjects [ 29 ]. 

 Motion remains problematic for all applications of fMRI 
[ 234 ], but the problem may be particularly harmful in patient 
studies in view of two factors: fi rst, patients may be more prone to 
movement than selected and highly motivated healthy subjects; 
second, each patient dataset may have greater value than that from 
inter-changeable healthy subjects. Therefore, measures have been 
proposed to extract as much information as possible from what are 
effectively suboptimal fMRI  studies   [ 164 ,  165 ,  297 ].       
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    Chapter 25   

 fMRI in Neurosurgery                     

     Oliver     Ganslandt     ,     Christopher     Nimsky    ,     Michael     Buchfelder    , 
and     Peter     Grummich      

  Abstract 

   Functional magnetic resonance imaging has evolved from a basic research application to a useful clinical 
tool that also has found its place in modern neurosurgery. The localization of functional important brain 
areas as language and sensorimotor cortex has been the focus of numerous investigations and can now be 
implemented in neurosurgical planning. Since the neurosurgeon must have detailed knowledge about the 
individual anatomy and related neurological function to resect a brain tumor with the highest safety, the 
need for individualized maps of brain function is essential. Advanced fMRI techniques and modern imag-
ing methods contribute signifi cantly to brain mapping as do already established concepts of electrophysi-
ological monitoring and the Wada test. The implementation of functional maps into neuronavigation 
systems enables the surgeon to superimpose anatomy and function to the surgical site. This chapter 
describes our experience with the use of fMRI in neurosurgery.  

  Key words     fMRI  ,   Neurosurgery  ,   Functional neuronavigation  ,   Magnetoencephalography  ,   Language  , 
  Somatosensory cortex  

1      Introduction 

 The concept of using information about functionally important 
brain areas (also known as “eloquent  cort   ex  ”) to safely guide neu-
rosurgical procedures has been established in the middle of the 
twentieth century by use of electrical stimulation in awake crani-
otomies. Based on the seminal work of Penfi eld [ 1 ], modern neu-
rosurgeons used the technique of electrical stimulation to 
meticulously map the cerebral cortex of their patients, for instance, 
to delineate the borders of resection in epilepsy and tumor surgery. 
Today, electrical stimulation is still regarded as the “gold standard” 
for neurosurgical functional brain localization [ 2 ,  3 ]. However, 
these invasive direct cortical stimulation methods are not available 
for preoperative decision making and surgical planning. They are 
also time consuming and demand special resources. Therefore, in 
the past decade new efforts have been made to overcome the 
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limitations of using electrical stimulation in awake craniotomy by 
using new techniques of brain imaging and the implementation of 
these data into the neurosurgical workspace. In recent years, two 
noninvasive techniques have been found especially suitable for pre-
surgical localization of the  eloquent cortex  : magnetoencephalogra-
phy (MEG) and fMRI. Studies using these techniques successfully 
localized functional activity [ 4 ,  5 ]. 

 One of the most interesting applications was the merge of func-
tional brain imaging with frame-based and frameless stereotaxy, also 
known as  functional neuronavigation      [ 6 ,  7 ]. There is strong evi-
dence that the use of functional neuronavigation for lesions adja-
cent to eloquent brain areas may favor clinical outcome [ 8 – 10 ], but 
large controlled studies to support this assumption are still needed. 

 If surgery near eloquent brain areas is planned, a detailed 
knowledge about the topographic relation of a lesion to the adja-
cent functional brain area is crucial to avoid postoperative neuro-
logical defi cits. In neurosurgery, the primary sensorimotor cortex 
and the cortical areas subserving language comprehension and 
production are considered to be the main structures of risk. In 
temporal lobe surgery memory function is also an important func-
tion to preserve. These structures usually cannot be depicted from 
 conventional structural imaging techniques  . Other reasons that 
warrant a detailed evaluation are the individual representation of 
these eloquent areas and the phenomenon of cortical reorganiza-
tion of these areas from their original positions [ 11 ,  12 ]. 
Furthermore, normal sulcal anatomy is not often discernible 
because of a space occupying lesion. These situations require meth-
ods for localizing functional areas prior to surgery for decision 
making, planning, and avoiding crippling postoperative results. 

 fMRI has become indispensable in neurosurgery to easily gain 
knowledge about the topographic relation of a given lesion to the 
functional brain area at risk and thus to plan the surgical approach. 
Furthermore, fMRI-derived information about the extent of corti-
cal involvement in function can be used in conjunction with image- 
guided surgery during resection of lesions adjacent to eloquent 
brain areas under general anesthesia for navigation. The almost 
ubiquitous availability of modern MR scanners favors the use of 
fMRI over other modalities as MEG or positron emission tomog-
raphy ( PET     ) that demand resources not commonly available. In 
addition, its noninvasiveness gives the opportunity to repeat the 
examinations and conduct follow-up studies on reorganization of 
cortical function. Advances in MRI technology, such as the intro-
duction of higher fi eld strengths, will undoubtedly improve signal 
acquisition and processing [ 13 ]. Over the last years, a substantial 
number of publications have described the usefulness of clinical 
fMRI for neurosurgical applications [ 14 ,  15 ]. The use of fMRI for 
the presurgical localization of the sensorimotor cortex is now 
widely appreciated and has been investigated by several groups 
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[ 14 ,  16 ,  17 ], which also performed comparisons with direct motor 
stimulation. Language fMRI has been found to be an alternative to 
the invasive Wada test [ 18 – 20 ] for language lateralization. 
Furthermore, fMRI has been used to predict memory localization 
[ 21 ]. Concerning the reliability of fMRI-localization of speech 
areas in the  frontotemporal cortex  , as compared with direct electri-
cal stimulation, the neurosurgical community is still reluctant to 
rely on fMRI language alone, since inconsistent agreement has 
been found between activation sites by fMRI naming and verb- 
generation tasks and cortical stimulation [ 5 ]. As language fMRI 
and intraoperative electrophysiological monitoring use different 
physiological mechanisms the results of language fMRI are not per 
se to be considered wrong. The ongoing clinical use of language 
fMRI in our department has shown that this modality can be used 
with the same results as awake craniotomy.  

2    Methods 

 In our department, all neurosurgical fMRI measurements are 
acquired on a 1.5 T MR scanner by echo-planar imaging 
(Magnetom Sonata, Siemens, Erlangen, Germany). 

 Measurements for localization of motor and sensory activity are 
performed with 16 slices of 3 mm thickness, a TR = 1580, and a 
TE = 60. Stimulation is done in a block paradigm with 120 stimulus 
presentations in six blocks. Twenty measurements during rest alter-
nated with 20 measurements during stimulation. During the motor 
activation blocks, the patient is asked to perform a motor task: in 
particular, we are interested in localizing the cortical representation 
of the toes, foot, leg, fi ngers, hand, arm, tongue, lips, and eye lid. 

 Our selection of the motor tasks for each patient depends on 
the tumor location. Attention is paid that the patient does not move 
the opposite limb. With this, the possibility to detect reorganization 
of functional areas to the contralateral hemisphere is ensured. Each 
patient is also instructed not to touch anything during movement. 
For this reason, the motor task is usually not a fi nger-tapping task. 
Only in cases where we are interested in localizing the supplemen-
tary motor area we conduct a fi nger-tapping task. 

 For the localization of the sensory cortex, we use a tactile 
stimulation of different limbs whose cortical representations we 
wish to localize. 

 Measurements for language are done with 25 slices of 3 mm 
thickness, a TR = 2470, and a TE = 60. Stimulation is done in a block 
paradigm with 180 measurements in six blocks. We perform 30 
measurements in an activation condition during which the patient is 
instructed to perform a language task; we alternate these with 30 
measurements in a resting condition. We also developed a battery of 
several paradigms for mapping of memory function. 
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Two tests for factual knowledge consist of a recall of capitals of given 
countries. Factual knowledge can also be tested by recall of celebri-
ties. Memorizing and recall of four digits is another test of hippo-
campal memory function (Fig.  1 ). In other tests the patients are 
asked to connect telephone numbers to persons. By means of a mir-
ror that is attached to the head coil, the patient is able to observe 
words, numbers, or pictures projected onto a screen.

   We developed several stimulation paradigms for localizing the 
Broca’s and the Wernicke’s areas. Usually, each patient is asked to 
undergo four different paradigms during fMRI measurements. The 
paradigms are selected according to tumor location and are adapted 
to the abilities of each patient. The length of the interstimulus 
interval is also adjusted according to the patient’s abilities, varying 
between 900 and 3000 ms. The duration of the stimulus presenta-
tion lies between 600 and 1700 ms (300 ms less than the inter-
stimulus interval). We ask the patients to perform the tasks as 
quickly as possible immediately after stimulus presentation and to 
perform the task silently to avoid artifacts from mouth movement. 

 Paradigms are chosen on the basis of: (a) tumor location and 
(b) patient cognitive abilities:

  Fig. 1    fMRI-guided epilepsy surgery for ganglioglioma in the left hippocampus. We localized activity for factual 
knowledge in the parahippocampal gyrus ( crosshair ). The segmented area is depicted in  green  in the  right 
image  showing the view through the navigation microscope. Also shown in  purple  are the fi ber tracts of the 
visual pathway and occipitofrontal fasciculus ( middle )       
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    (a)    In case of tumor location in the inferior parietal area close to the 
intraparietal sulcus, we use an arithmetic task so that besides 
Wernicke’s area (activated by reading, adding numbers, and for-
mulating the result) the cortex for calculation in the intraparietal 
sulcus is also activated and so can be spared during surgery. 

 In case of tumor location close to Broca’s area, we select 
language tasks that are also expressive and demand grammati-
cal abilities, because these may increase activity in Broca’s area. 
This happens during the verb-generation task, but also the 
verb conjugation task gives suitable Broca’s area activations.   

   (b)    For patients with reduced abilities, simple tasks are selected to 
obtain reliable results. Especially in patients who suffer from 
word fi nding disorders, we avoid the picture-naming task. For 
patients with better cognitive performance, we select one or 
more complex tasks such as verb-generation task, because these 
are reported to show a more clear lateralization, whereas in 
patients who have diffi culties in this complex task the activa-
tion is usually worse than with a simple paradigm.     

 For motion correction, we apply an image-based prospective 
acquisition correction by applying interpolation in the k-space 
[ 22 ]. We produce activation maps by analyzing the correlation 
between signal intensity and a square wave reference function for 
each pixel according to the paradigm. Pixels exceeding a signifi -
cance threshold (typical correlations above a threshold of 0.3 with 
 p  < 0.000045) are displayed, if at least six contiguous voxels con-
stitute a cluster, to eliminate isolated voxels. We align the func-
tional slices to magnetization prepared rapid acquisition gradient 
echo (MPRAGE) images (160 slices of 1 mm slice thickness).  

3    Results 

   Since 2002, we have investigated preoperative fMRI with motor or 
sensory stimulation in 515 cases. Of these patients, 205 underwent 
tumor resection and 75 had stereotactic brain biopsy. In fi ve addi-
tional patients, invasive electrodes were implanted by fMRI guid-
ance for chronic recording of epileptic discharges. 

 For language  and memory test        ing, we examined 623 cases and 
used additional information from MEG studies. Of them, 465 
underwent tumor resection and 53 had stereotactic brain biopsy. 
The remaining patients either obtained radiation therapy, endovas-
cular treatment, or were just enrolled in a “wait-and-see” protocol. 

 It was possible to localize the primary motor and  sensory    cor-
tex   as well as the  supplementary motor area (SMA)   in all examined 
cases (Figs.  2  and  3 ). Only in one case, the motor activity of the toe 
was not detectable by fMRI because of tumor infi ltration. However, 
in this patient it was possible to obtain motor activation from 
nearby muscle representations of the motor homunculus.

3.1  Localizations
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    We were able to defi ne the motor homunculus along the cen-
tral sulcus in the posterior wall of the precentral gyrus with fMRI 
by motor activation of the respective muscle groups (Fig.  4 ). We 
localized toe, foot, leg, arm, hand, fi nger, thumb, tongue, lip, and 
eye movements. Additionally, sometimes we found activity in the 

  Fig. 2    fMRI activations during movement of left foot in a patient with an oligoastrocytoma (WHO III) in the right 
parietal lobe. In front of the activation of the motor cortex (posterior wall of precentral gyrus), activation of the 
supplementary motor area (SMA) is also  evident         

  Fig. 3    Comparison of fMRI motor activations during arm movement and sensory 
stimulation of the arm (oligoastrocytoma WHO III, same patient as Fig.  2 )       

 

 

Oliver Ganslandt et al.



807

ipsilateral homotopic cortex. Especially when the motor task was 
more complex there was also activity at the frontal wall of the pre-
central gyrus. Additional activity can be detected in the  SMA   in the 
 interhemispheric sulcus  .

   Activity at the posterior wall of the postcentral gyrus 
(Brodman area 2) can be found and sometimes in the gyrus pos-
teriorly, which is likely to represent proprioceptive activation due 
to the positions of the limbs. 

 Sensory activity was seen in the anterior wall (Brodman area 3) 
of the postcentral gyrus. Sometimes there was also blood oxygen 
level-dependent (BOLD) activation in the homotopic cortex of 
the ipsilateral hemisphere that may indicate the presence of mecha-
nisms of cortical plasticity. 

 With  verbal stimulation tasks  , we were able to localize lan-
guage, calculation, and memory activity. In the frontal lobe, we 
found activity in the following cortical areas: (1) at the bottom of 
the opercular part of the inferior frontal gyrus anteriorly to the 
precentral gyrus (Brodmann area 44, classical Broca’s area); (2) in 
the adjacent part of the frontal cranial edge of the insular cortex; 
and (3) close to the upper end of the inferior frontal gyrus, which 
sometimes extends into the medial frontal gyrus. Here, there are 
usually three cortical areas that extend from the pars triangularis to 
pars opercularis (from anterior to posterior). 

 In the temporo-parietal region, we found language activity in 
the superior temporal gyrus at its bottom in the temporal sulcus 
and at its lateral side. Activity was also found at the top of the supe-
rior temporal gyrus in the planum temporale. Additional activity 
was found in the supramarginal gyrus in the frontal part of the 
intraparietal sulcus. 

  Fig. 4    fMRI activations during movement of toe, leg, arm, and fi ngers (note that the lesion, a cavernoma in the 
left motor cortex, is located between the cortical representation of the arm and that of the leg in the precentral 
gyrus)       
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 In 53 % of our patients with high-grade glioma, language 
activity was not clearly detectable by fMRI alone, because of 
changes in vascular function (see below).  

   Although it is generally accepted that the majority of people has left 
hemispheric  language dominance     , the true number of atypical (right) 
dominance is unknown. Studies using the Wada test showed an inci-
dence of left hemispheric dominance in right handers in a range of 
63–96 % and a right hemispheric dominance for left handers and ambi-
dextrous patients in 48–75 % [ 23 ]. Furthermore, it is thought that 
there are varying degrees of language dominance in the population. 

 In certain circumstances, activity can be located in both hemi-
spheres or reorganization to the other hemisphere could have been 
occurred. FMRI is a useful method to clarify this. If activity is only 
found in one hemisphere or the activity on one side is much stron-
ger than the activity on the other side, then it is clear that the active 
area has to be spared during surgery. 

 It is important to know that certain stimulation tasks and modali-
ties show more lateralized activations than others. In case of complex 
motor tasks, the ipsilateral hemisphere may also show activation. 

 For the localization of language activity, we found that visual 
stimulation shows a more accentuated lateralization than acoustic 
stimulation [ 24 ]. Stimulation with words, especially in a complex task, 
shows a stronger lateralization than a picture-naming task, a fi nding 
that was also described by Herholz et al. [ 25 ,  26 ]. In rare cases, it can 
occur that not all language areas are located on the same side.  

   We perform fMRI-guided surgery by coregistering the activation 
maps onto a 3D MRI data set that can be used with a navigation 
system. Targets and areas at risk determined by fMRI are seg-
mented and made visible for the surgeon through a navigation 
microscope (Figs.  5 ,  6 , and  7 ). Thus functional data are visualized 

3.2  Laterality

3.3  Surgery

  Fig. 5    Microscopic view with neuronavigation markers showing the sensory activation of the arm area in  light 
blue  and the pyramidal tract in  purple  (oligoastrocytoma WHO III, same patient as Fig.  2 )       
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in the operation fi eld throughout the whole surgery. 
Neuronavigation support is provided by the VectorVision Sky 
Navigation System (BrainLab AG, Heimstetten, Germany). A fi ber 
optic connection ensures MR-compatible integration into the 
radiofrequency-shielded room of our intraoperative MR suite. A 
ceiling-mounted camera is used to monitor the positions of the 
operating microscope (Pentero, Zeiss, Oberkochen, Germany), 
which is placed outside the 5 G line, and other instruments.

  Fig. 6    fMRI activation of Broca’s and Wernicke’s areas and primary motor cortex 
after a reading paradigm. The functional mapping was requested to plan surgery 
of a cavernoma, which was located between Broca’s area and the motor cortex       

  Fig. 7    Same patient as Fig.  5 . Segmentation lines indicating Broca’s area ( left ) 
and motor cortex of tongue ( right ). The fi gure shows the beginning of the corti-
cotomy on a trajectory that spared the eloquent cortices ( cross ). Postoperatively 
the patient was neurologically intact       
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     A 1.0 mm isotropic  3D MPRAGE dataset   (TE: 4.38 ms, TR: 
2020 ms, slice thickness: 1.0 mm, FOV: 250 × 250 mm, measure-
ment time: 8 min 39 s) is acquired prior to surgery with the head 
already fi xed in the MR-compatible headholder as navigational refer-
ence dataset. For registration, fi ve adhesive skin fi ducial markers are 
placed in a scattered pattern on the head surface prior to imaging and 
registered with a pointer after their position is defi ned in the 3D data-
set (Fig.  6 ). Functional data from MEG and fMRI, which were 
acquired preoperatively, are integrated into the 3D dataset. 
Furthermore, data from diffusion tensor imaging (DTI) depicting 
the course of major white matter tracts are integrated as well as in 
selected cases metabolic maps from proton magnetic resonance spec-
troscopy ( 1 H-MRS) are coregistered to the navigational dataset. In 
addition, further standard anatomical datasets, such as T2-weighted 
images, are coregistered. Repeated landmark checks are performed to 
ensure overall accuracy. In case intraoperative imaging depicts some 
remaining tumor, which should be further removed, intraoperative 
image data are used for updating the navigation system (Fig.  8 ). After 
a rigid registration of pre- and intraoperative images (ImageFusion 
software, BrainLAB, Heimstetten, Germany), all data are transferred 
to the navigation system and then the initial patient registration fi le is 
restored, so that no repeated patient registration procedure is needed.

   In our series with a surgical resection close to the motor cor-
tex, only 15 out of 205 patients (7.3 %) had postoperative neuro-
logic dysfunction. Three of them recovered within 2 days. In the 
other cases, the condition improved over several months. One 
patient, who had a hemiplegia prior to surgery, was able to move 
the affected side after surgery. 

  Fig. 8    Intraoperative MRI showing the outcome of the fMRI-guided tumor resection. Note that the tumor was 
removed sparing the sensory cortex (oligoastrocytoma WHO III  right , same patient as Fig.  2 )       
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 No permanent postoperative deterioration of speech was 
observed in our patients with surgery close to the language areas 
( N  = 465 patients). However, in 53 patients, in whom surgery was 
conducted very close to the language areas, a transitory deteriora-
tion was observed (11 % of all patients with surgery neighboring 
language areas). Thirty-two patients were not able to name part of 
the shown objects; this impairment lasted from 1 day to few weeks, 
but they all resolved completely. 

 No patient had suffered from global aphasia after surgery. The 
result of having no permanent speech disorder in our patients indi-
cates that our language mapping is reliable. The presence of patients 
with transitory disturbances suggests that resection was conducted 
close to the boundaries of functional areas. This is in accordance to 
other series that evaluated the outcome of glioma surgery in eloquent 
areas with direct cortical stimulation. In a recent publication by 
Duffau et al., the rate of severe neurological defi cits was 6.5 % [ 27 ]. 

 The safety margin that should be kept to preserve the func-
tional areas depends from several factors: (1) the kind of functional 
center and the situation of reorganization; (2) the situation of blood 
supply; and (3) the status of the connectivity fi bers. At present, no 
recommendations can be given for the exact distance to avoid the 
risk of neurologic defi cits. Neurosurgeons who use fMRI-guided 
neuronavigation have to keep in mind that the fMRI- activation 
does not represent the actual extent of the functional brain areas, 
but rather a “center of gravity” of the functional units that are mea-
sured. Also one has to take into account that descending pathways 
(e.g., the pyramidal tract) have also to be spared. A recent study 
that investigated the accuracy between the actual location of the 
pyramidal tract and subcortical electric stimulation with stereotactic 
navigation found a mean difference in distance of 8.7 ± 3.1 mm 
(standard deviation) [ 28 ]. Nevertheless, there are functional areas 
that can be compensated for, if destroyed. These are the SMA and 
the area in the fusiform gyrus for word recognition. 

 For the language areas, Haglund et al. [ 29 ] described in an 
electrical stimulation study that above a resection distance of 
10 mm from the eloquent areas they observed no permanent  lan-
guage defi cits  . When surgery was 7–10 mm close to the language 
area, they found 43 % patients who suffered from permanent lan-
guage defi cits (severe or mild aphasia). The 9 % of patients had no 
language defi cit at all and the remaining 48 % experienced transi-
tory language defi cits, which resolved within 4 weeks [ 29 ]. Two of 
our patients showed an amelioration of language function after 
surgery. One patient, who was not able to talk before surgery, was 
able to talk afterwards. Another patient, who had severe naming 
problems, showed an improvement after surgery.  

   Sometimes the BOLD activations are not clearly visible in spite of 
the fact that the function is there, as confi rmed by MEG 

3.4  Problems 
with the  BOLD Effect  
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measurements. In our experience, such a discrepancy between 
MEG and fMRI occurred only in the case of large tumors. Previous 
reports indicated similar effects of vascular conditions on the 
BOLD effect [ 30 – 32 ]. A reduction of the BOLD effect in the 
vicinity of a glioma but not in the vicinity of nonglial tumors was 
described by Schreiber et al. [ 33 ]. These fi ndings are in agreement 
with our results. In our series, we found that in 53 % of the patients 
with high-grade gliomas the fMRI maps did not give clear indica-
tions of language areas in their vicinity. 

 Because of the impact of gliomas on the BOLD effect, the 
dominant hemisphere sometimes is more easily found by MEG 
measurements. This is seen for a patient with an astrocytoma 
(WHO Grade II) in Fig.  9 . Here MEG localizations of Wernicke’s 
and Broca’s area were only on the right side. This was in accor-
dance with the Wada test that showed right hemispheric language 
dominance in this left-handed patient. In this patient, fMRI local-
izations of Wernicke’s activity were similar on both sides, in MEG 

  Fig. 9    Wernicke and Broca activity during reading of fragmentary sentences with mistakes. Comparison 
between fMRI ( orange ) and MEG beamformer localizations at 500 ms ( light blue ). With fMRI a bilateral activa-
tion in the operculum frontale and in the superior temporal sulcus can be seen. With MEG, activity is only seen 
in the right hemisphere. In the  fi rst  and  second image  in the  lower row , activity of the insula can be seen with 
MEG only. Left-handed patient with astrocytoma WHO II       
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they were only found in the right hemisphere. The activity detected 
by MEG in the right insula was not found by fMRI.

   Other reasons that might lead to suboptimal fMRI results are 
continuous brain activation during rest or a very short activation of 
brain areas. This may be the reason why memory activity in the 
hippocampus is diffi cult to fi nd by fMRI.   

4    Conclusions 

 The use of preoperative fMRI brain mapping provides important 
information for: (1) estimating the risk of a surgical procedure; (2) 
planning the surgical approach; (3) indicating hemispheric domi-
nance; and (4) revealing whether reorganization of brain function 
took place and at what degree. The integration of the functional 
markers into the navigation system is a good tool to continuously 
track the locations of the functional areas during surgery and enables 
a resection close to the eloquent areas to be performed. Thus, fMRI-
guided functional navigation increases the amount of radical surgery 
and decreases morbidity. When using fMRI in neurosurgery, it is 
important to know that, in certain circumstances, the  BOLD effect   
can be suppressed, which may lead to wrong conclusions. Beside 
integration of fMRI data the additional use of fi ber tracking of the 
descending pathways as well as other paraclinical investigations 
( PET     , proton magnetic resonance spectroscopy, MEG, etc.) should 
lead to a comprehensive understanding of the options and limita-
tions of glioma surgery adjacent to important functional brain areas.     

   References 

    1.    Penfi eld W, Rasmussen T (1950) The cerebral 
cortex of man. A clinical study of localization 
of function. Macmillan, New York  

    2.    Berger MS, Rostomily RC (1997) Low grade 
gliomas: functional mapping resection strate-
gies, extent of resection, and outcome. 
J Neurooncol 34:85–101  

    3.    Duffau H, Capelle L, Denvil D, Sichez N, 
Gatignol P et al (2003) Usefulness of intraop-
erative electrical subcortical mapping during 
surgery for low-grade gliomas located within 
eloquent brain regions: functional results in a 
consecutive series of 103 patients. J Neurosurg 
98:764–778  

    4.    Kober H, Moller M, Nimsky C, Vieth J, 
Fahlbusch R et al (2001) New approach to 
localize speech relevant brain areas and hemi-
spheric dominance using spatially fi ltered mag-
netoencephalography. Hum Brain Mapp 
14:236–250  

     5.    Roux FE, Boulanouar K, Lotterie JA, Mejdoubi 
M, LeSage JP et al (2003) Language functional 
magnetic resonance imaging in preoperative 
assessment of language areas: correlation with 
direct cortical stimulation. Neurosurgery 
52:1335–1345, discussion 1345–1337  

    6.    Nimsky C, Ganslandt O, Kober H, Moller M, 
Ulmer S et al (1999) Integration of functional 
magnetic resonance imaging supported by 
magnetoencephalography in functional neuro-
navigation. Neurosurgery 44:1249–1255, dis-
cussion 1255–1246  

    7.    Rutten GJ, Ramsey N, Noordmans HJ, 
Willems P, van Rijen P et al (2003) Toward 
functional neuronavigation: implementation of 
functional magnetic resonance imaging data in 
a surgical guidance system for intraoperative 
identifi cation of motor and language cortices. 
Technical note and illustrative case. Neurosurg 
Focus 15:E6  

fMRI in Neurosurgery



814

    8.    Rossler K, Sommer B, Grummich P, Hamer 
HM, Pauli E et al (2015) Risk reduction in 
dominant temporal lobe epilepsy surgery com-
bining fMRI/DTI maps, neuronavigation and 
intraoperative 1.5-Tesla MRI. Stereotact Funct 
Neurosurg 93:168–177  

   9.    Zhang J, Chen X, Zhao Y, Wang F, Li F et al 
(2015) Impact of intraoperative magnetic reso-
nance imaging and functional neuronavigation 
on surgical outcome in patients with gliomas 
involving language areas. Neurosurg Rev 
38:319–330, discussion 330  

    10.    Sun GC, Chen XL, Yu XG, Zhang M, Liu G 
et al (2015) Functional neuronavigation- 
guided transparieto-occipital cortical resection 
of meningiomas in trigone of lateral ventricle. 
World Neurosurg 84(3):756–765  

    11.    Duffau H, Denvil D, Capelle L (2002) Long 
term reshaping of language, sensory, and 
motor maps after glioma resection: a new 
parameter to integrate in the surgical strategy. 
J Neurol Neurosurg Psychiatry 72:511–516  

    12.    Grummich P, Nimsky C, Fahlbusch R, 
Ganslandt O (2005) Observation of unaver-
aged giant MEG activity from language areas 
during speech tasks in patients harboring brain 
lesions very close to essential language areas: 
expression of brain plasticity in language pro-
cessing networks? Neurosci Lett 380:143–148  

    13.    Tieleman A, Vandemaele P, Seurinck R, 
Deblaere K, Achten E (2007) Comparison 
between functional magnetic resonance imag-
ing at 1.5 and 3 Tesla: effect of increased fi eld 
strength on 4 paradigms used during presurgi-
cal work-up. Invest Radiol 42:130–138  

     14.    Matthews PM, Jezzard P (2004) Functional 
magnetic resonance imaging. J Neurol 
Neurosurg Psychiatry 75:6–12  

    15.    Tharin S, Golby A (2007) Functional brain map-
ping and its applications to neurosurgery. 
Neurosurgery 60:185–201, discussion 201–202  

    16.    Majos A, Tybor K, Stefanczyk L, Goraj B 
(2005) Cortical mapping by functional mag-
netic resonance imaging in patients with brain 
tumors. Eur Radiol 15:1148–1158  

    17.    Roux FE, Boulanouar K, Ibarrola D, Tremoulet 
M, Chollet F et al (2000) Functional MRI and 
intraoperative brain mapping to evaluate brain plas-
ticity in patients with brain tumours and hemipare-
sis. J Neurol Neurosurg Psychiatry 69:453–463  

    18.    Desmond JE, Sum JM, Wagner AD, Demb JB, 
Shear PK et al (1995) Functional MRI mea-
surement of language lateralization in Wada- 
tested patients. Brain 118(Pt 6):1411–1419  

   19.    Lehericy S, Cohen L, Bazin B, Samson S, 
Giacomini E et al (2000) Functional MR eval-

uation of temporal and frontal language domi-
nance compared with the Wada test. Neurology 
54:1625–1633  

    20.    Stippich C, Rapps N, Dreyhaupt J, Durst A, Kress 
B et al (2007) Localizing and lateralizing lan-
guage in patients with brain tumors: feasibility of 
routine preoperative functional MR imaging in 81 
consecutive patients. Radiology 243:828–836  

    21.    Branco DM, Suarez RO, Whalen S, O’Shea JP, 
Nelson AP et al (2006) Functional MRI of mem-
ory in the hippocampus: laterality indices may be 
more meaningful if calculated from whole voxel 
distributions. Neuroimage 32:592–602  

    22.    Thesen S, Heid O, Mueller E, Schad R (2000) 
Prospective acquisition correction for head 
motion with image-base tracking for real-time 
fMRI. Magn Reson Med 44:457–465  

    23.    Springer JA, Binder JR, Hammeke TA, 
Swanson SJ, Frost JA et al (1999) Language 
dominance in neurologically normal and epi-
lepsy subjects: a functional MRI study. Brain 
122(Pt 11):2033–2046  

    24.    Grummich P, Nimsky C, Pauli E, Buchfelder 
M, Ganslandt O (2006) Combining fMRI and 
MEG increases the reliability of presurgical lan-
guage localization: a clinical study on the dif-
ference between and congruence of both 
modalities. Neuroimage 32:1793–1803  

    25.    Herholz K, Reulen HJ, von Stockhausen HM, 
Thiel A, Ilmberger J et al (1997) Preoperative acti-
vation and intraoperative stimulation of language-
related areas in patients with glioma. Neurosurgery 
41:1253–1260, discussion 1260–1262  

    26.    Lazar RM, Marshall RS, Pile-Spellman J, Duong 
HC, Mohr JP et al (2000) Interhemispheric 
transfer of language in patients with left frontal 
cerebral arteriovenous malformation. 
Neuropsychologia 38:1325–1332  

    27.    Duffau H, Lopes M, Arthuis F, Bitar A, Sichez 
JP et al (2005) Contribution of intraoperative 
electrical stimulations in surgery of low grade 
gliomas: a comparative study between two series 
without (1985–96) and with (1996–2003) func-
tional mapping in the same institution. J Neurol 
Neurosurg Psychiatry 76:845–851  

    28.    Berman JI, Berger MS, Chung SW, Nagarajan 
SS, Henry RG (2007) Accuracy of diffusion 
tensor magnetic resonance imaging tractogra-
phy assessed using intraoperative subcortical 
stimulation mapping and magnetic source 
imaging. J Neurosurg 107:488–494  

     29.    Haglund MM, Berger MS, Shamseldin M, 
Lettich E, Ojemann GA (1994) Cortical local-
ization of temporal lobe language sites in 
patients with gliomas. Neurosurgery 34:567–
576, discussion 576  

Oliver Ganslandt et al.



815

    30.    Hamzei F, Knab R, Weiller C, Roether 
J (2002) Intra- und extrakranielle 
Gefäßstenosen beeinfl ussen BOLD Antwort. 
Aktuelle Neurologie 29:231  

   31.    Holodny AI, Schulder M, Liu WC, Maldjian 
JA, Kalnin AJ (1999) Decreased BOLD func-
tional MR activation of the motor and sen-
sory cortices adjacent to a glioblastoma 
multiforme: implications for image-guided 
neurosurgery. AJNR Am J Neuroradiol 
20:609–612  

    32.    Holodny AI, Schulder M, Liu WC, Wolko J, 
Maldjian JA et al (2000) The effect of brain 
tumors on BOLD functional MR imaging acti-
vation in the adjacent motor cortex: implica-
tions for image-guided neurosurgery. AJNR 
Am J Neuroradiol 21:1415–1422  

    33.    Schreiber A, Hubbe U, Ziyeh S, Hennig 
J (2000) The infl uence of gliomas and nonglial 
space-occupying lesions on blood-oxygen- 
level-dependent contrast enhancement. AJNR 
Am J Neuroradiol 21:1055–1063    

fMRI in Neurosurgery



817

Massimo Filippi (ed.), fMRI Techniques and Protocols, Neuromethods, vol. 119,
DOI 10.1007/978-1-4939-5611-1_26, © Springer Science+Business Media New York 2016

    Chapter 26   

 Pharmacological Applications of fMRI                     

     Paul     M.     Matthews       

  Abstract 

   Increasing societal expectations for new drugs, lack of confi dence in short-term endpoints related to long- term 
outcomes for chronic neurological and psychiatric diseases and rising costs of development in an increasing 
cost-constrained market all have created a sense of crisis in CNS drug development. New approaches are 
needed. For some time, the potential of clinical functional imaging for more confi dent progression from pre-
clinical to clinical development stages has been recognized. Pharmacological functional MRI (fMRI), which 
refers specifi cally to applications of fMRI to questions in drug development, provides one set of these tools. 
With related structural MRI measures, relatively high resolution data concerning target, disease-relevant 
pathophysiology and effects of therapeutic interventions can be related to brain functional anatomy. In this 
chapter, current and potential applications of pharmacological fMRI for target validation, patient stratifi cation 
and characterization of therapeutic molecule pharmacokinetics and pharmacodynamics are reviewed. 
Challenges to better realizing the promise of pharmacological fMRI will be discussed. The review concludes 
that there is a strong rationale for greater use of pharmacological fMRI particularly for early phase studies, but 
also outlines the need for preclinical and early clinical development to be more seamlessly integrated, for 
greater harmonization of clinical imaging methodologies and for sharing of data to facilitate these goals.  

  Key words     Pharmacological fMRI  ,   Target validation  ,   Patient stratifi cation  ,   Pharmacokinetics  , 
  Pharmacodynamics  

1       Introduction 

 Both the pharmaceutical industry and regulators are searching for 
better models and for new drug development, particularly for CNS 
drugs [ 1 ]. Public confi dence in the industry has declined in the 
face of what is viewed as a lack of commitment to addressing major 
diseases with innovative drugs, while new drug costs continue to 
escalate. Industry sees the risks of drug development to be high 
particularly for chronic CNS diseases, for which there is a notable 
lack of consensus regarding underlying causes and mechanisms in 
the scientifi c community.  CNS drug   development appears uncer-
tain, slow, and expensive. 

 Pharmacological fMRI provides a relatively direct measure of 
CNS functions. Noninvasive imaging methods also allow the same 
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endpoint  measures to be used in preclinical as in clinical develop-
ment. This facilitates interpretation of clinical imaging outcomes in 
terms of molecular and cellular changes found with invasive meth-
ods preclinically [ 2 ]. These and related considerations have embed-
ded imaging in drug development already. Almost 30 % of new 
molecular entities approved for neuropsychiatric indications by the 
Food and Drug Administration between 1995 and 2004 were 
developed with contributions from imaging [ 3 ]. A 2013 review 
identifi ed 70 CNS drug trials registered on the registry website 
clinicaltrials.gov, that incorporated imaging endpoints [ 4 ]. In 
selected areas, such as multiple sclerosis drug development or 
recent trials of molecules for Alzheimer’s disease, clinical imaging 
measures are used routinely for patient selection, for trials, or for 
response and safety monitoring. While most of these applications 
have relied on serial structural MRI, they have demonstrated the 
feasibility of implementing large scale, regulatory compliant clini-
cal trials with imaging endpoints. They make the case for future use 
of pharmacological fMRI plausible. 

 Another factor that contributes to the plausibility of greater 
use of pharmacological fMRI in clinical drug development is the 
increasing premium being placed on integration of preclinical 
studies and early- phase development in an “experimental medi-
cine” (sitting fl uidly on the Phase I/IIa boundary) stage as part of 
confi dence building and risk mitigation.  Experimental medicine   
uses human experimentation to address mechanistic questions in 
ways that traditionally were reserved for preclinical studies. It is 
part of a biologically driven therapeutics development strategy 
involving hypothesis-led research that often is performed widely 
across levels of biological complexity (e.g., cells to the whole 
organism). A fundamental premise is that animals can be used to 
model biology, but cannot be expected to model human disease, 
which must be studied in the human. With this thinking, the clas-
sically unidirectional “critical path” from drug development 
(Fig.  1 ) is enabled by tools (e.g., from omics and imaging) to 
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  Fig. 1    The “critical path” for drug development. Pharmacological MRI has the potential to enhance the effi -
ciency of early clinical development with better translation of biological concepts from preclinical to clinical 
studies, providing a new pharmacodynamic measure and enhancing potential in proof-of-mechanism studies 
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become more powerfully bidirectional (e.g., from preclinical to 
clinical data and “back again”).

2        Principles of Functional MRI (fMRI) 

 FMRI is based on indirect measures of neuronal response mediated 
through associated changes in blood fl ow. Increased neuronal activ-
ity is associated with a local hemodynamic response involving both 
increased blood fl ow and blood volume. This neurovascular cou-
pling is related to the increased local energy consumption associ-
ated with neuronal activity, which generally is believed to refl ect 
predominantly presynaptic activity [ 5 – 7 ]. The  hemodynamic 
response   has a magnitude and time course that depends on contri-
butions from both inhibitory and excitatory inputs to the local fi eld 
potential [ 8 ]. It therefore can be considered as a measure of local 
information input. While this may be correlated with local multi-
unit activity (neuronal spiking activity) under some conditions, 
such a relationship is not necessarily generalizable. 

 The neurovascular response is regulated by  neuronal–glial 
interactions   mediated by multiple signaling mechanisms. 
Pharmacological fMRI applications therefore need to take into 
account any potential impact of experimental molecules (or the 
disease of interest) on these coupling mechanisms. For example, 
the cerebrovascular effects of multiple neurotransmitter systems 
that may be the target for therapeutic molecules (e.g., gluta-
mate, dopamine, norepinephrine, serotonin, acetylcholine, and 
prostaglandins) are well described [ 9 ]. Disorders of  cerebrovas-
cular regulation   also are recognized in a number of disease states 
including not only primary cerebrovascular diseases such as 
stroke, but also, e.g., Alzheimer’s disease [ 10 – 12 ]. 

 The most commonly used fMRI methods rely on blood oxy-
gen level-dependent ( BOLD  ) imaging contrast [ 13 ,  14 ]. This 
contrast arises because the concentrations of deoxyhemoglobin, 
which is paramagnetic and thus locally modulates an applied 
static magnetic fi eld, vary with local blood fl ow and oxygen con-
sumption. In the MRI magnet, where a highly  homogeneous  (i.e., 
spatially invariant) magnetic fi eld is generated, the paramagnetic 
deoxyhemoglobin generates small magnetic fi eld  inhomogeneities  
around blood vessels. Their magnitude increases with the amount 
of paramagnetic deoxyhemoglobin. These  inhomogeneities   
reduce the MRI signal acquired with a gradient echo MRI acqui-
sition sequence (echo planar imaging or EPI). Transient decreases 
in BOLD contrast associated with brain activity refl ect neuronal 
activation because blood fl ow increases with greater neuronal 
activity to an extent that is larger than is needed simply for 
increased oxygen delivery with greater tissue demands. This 
reduces the local ratio of deoxy- to oxyhemoglobin in the blood 
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enough to be associated with an increase in the local EPI MRI 
signal. While this effect is small (0.5–5 % typically at 3 T), it can 
be measured reliably with signal averaging. 

 Alternative approaches to brain functional imaging rely on 
measures of brain blood fl ow. The advent of fMRI was heralded by 
changes in blood fl ow measured by tracking a bolus of intravenously 
injected exogenous contrast material [ 15 ]. Arterial spin labeling 
MRI ( ASL     ) has been developed more recently as an alternative, 
noninvasive pharmacological fMRI approach that is based on mea-
suring brain activity associated changes in blood fl ow by means of 
 noninvasive magnetic “tagging”   (with a radiofrequency pulse) of 
blood fl owing into the brain. Methods have become increasingly 
standardized in recent years, are widely available on commercial 
clinical imaging systems and can have considerable precision [ 16 ]. 

 Both approaches to pharmacological fMRI can be applied in 
two general ways. In “task based” pharmacological fMRI, con-
strained shifts in cognitive state are induced to explore the way in 
which physiological differences between the states are modulated 
by an associated intervention. A typical experiment would involve 
acquisition of a series of images over the course of a controlled, 
periodic variation in cognitive state (e.g., performing a working 
memory task relative to resting) with and without the putative 
modulatory intervention of interest. Regions of signifi cant change 
in the difference in BOLD signal between the two cognitive states 
then are defi ned by statistical analysis of the time series data. 

 An alternative design relies on the modulation of brain sponta-
neous activity in the absence of specifi c stimuli, i.e., in the “resting 
state”. This approach is based on the observation that correlated, 
local and long-distance temporally varying signals are found with 
fMRI just as was previously found in the EEG [ 17 ]. This oscilla-
tory activity appears fundamental to brain functional organization. 
Far fi eld activity in the gamma range (~30–80 Hz) may be particu-
larly relevant for the BOLD signal responses found in resting-state 
fMRI [ 7 ,  18 ]. There are multiple ways of defi ning the long-dis-
tance oscillatory coupling in fMRI [ 19 ], as yet without great stan-
dardization. For both task- and resting-state fMRI applications, 
assessment of responses to interventions involves statistical con-
trasts of time-courses before and after the intervention [ 20 ]. 

 Both BOLD and  ASL     -based fMRI signals are low and can be 
confounded by other contributions to the temporally varying brain 
signal from subject movement (even on the order of mm), cardio-
respiratory variations, image acquisition artifacts, and even differ-
ence in imaging system performance over time [ 21 ]. Some artifacts 
(e.g., movement) are easier to recognize and can be “edited out” 
 post hoc  [ 22 ]. Controlling for potential systematic variation in the 
parameters (e.g., increased respiratory rate in anxious subjects with 
a brain disease relative to healthy control subjects) as best as is pos-
sible is particularly important [ 21 ]. The potential for these factors 
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to have an impact on outcomes emphasizes the importance of rep-
lications of results across laboratories and study populations, 
although this has rarely been achieved to date.  

3     Target Validation 

 The traditional progression of drug development through target 
validation in preclinical models that express phenotypes plausibly 
related to the human disease is hugely challenged by most of the 
major diseases of the brain. Concepts for preclinical analogues of 
neuropsychiatric disorders with complex behavioral phenotypes 
(e.g., schizophrenia) and the validity of models for other major 
diseases including the chronic diseases of late life and those involv-
ing slow, progressive neurodegeneration are limited by differences 
in biological context and environment. New strategies for drug 
development are needed. 

 Preclinical models still provide powerful tools for detailed 
study of specifi c biological mechanisms believed to contribute to 
disease. With these models, pharmacological fMRI endpoints can 
be related to the underlying molecular changes in ways that both 
validate interpretation of the imaging endpoints and establish a 
framework in which they can be used to infer the dynamics of 
molecular pathogenic events. For example, the acute effects of 
NMDA receptor antagonism with ketamine were mapped in the 
rodent, demonstrating a pattern of cortico-limbic-thalamic activa-
tion and establishing a relationship between specifi c cognitive sys-
tems and the pharmacology [ 23 ]. Similar functional effects also 
were seen with other antagonists against the same target [ 24 ,  25 ], 
further confi rming the specifi city of the systems modulated. A 
framework for interpretation of these results was able to be pro-
vided by convergent studies using 2-deoxyglucose autoradiogra-
phy [ 26 ] as an index of presynaptic activity, along with single unit 
electrophysiological recording and immediate early gene expres-
sion [ 27 ]. Analogous pharmacological fMRI experiments con-
ducted in human studies provided mapped homologous systems in 
humans and to relate the pharmacology to the associated thought 
disorder and disturbance of consciousness in turn [ 28 ]. While indi-
rect and insuffi cient alone, these clinical studies together provided 
important information supporting target validation of NMDA 
receptors for psychotic disorders; the “bi-directional” translational 
approach also supported the potential relevance of this preclinical 
pharmacology for understanding a form of human psychosis. 

 An exciting, emerging extension of this approach applies struc-
tural MRI and pharmacological fMRI measures together as   endophe-
notypes    in testing for heritable quantitative traits [ 29 ]. Consider, for 
example, a complex genetic disease such as schizophrenia, which 
shows a  heritable phenotype with variable expression. Both structural 
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and functional differences can be defi ned relative to the healthy brain. 
The concept of the endophenotype is that their  forme fruste  are heri-
table and can be identifi ed in people even without clinical expression 
of the disease or trait. To the extent that this is true, the imaging 
endpoints themselves can be used as outcome measures in searches 
for genetic or other factors that may contribute to the disease. An 
endophenotype-based target validation approach also may bias detec-
tion towards causative rather than simply (possibly incidental or non-
specifi c) associated features. Candidate genes  DISC1 ,  GRM3 , and 
 COMT , which are associated with altered hippocampal structure and 
function [ 30 ], glutamatergic fronto- hippocampal function [ 31 ], and 
prefrontal dopamine responsiveness [ 32 ], respectively, all have been 
related to imaging endophenotypes for schizophrenia in this way. 

 The concept of fMRI endophenotypes strengthens the rationale 
nosological reclassifi cation of disease in terms of shared neurobio-
logical system dysfunction. Applications of fMRI approaches that 
defi ne neurobiological bases for general cognitive processes (such as, 
in the context of psychiatric disease, motivation, or reward) facilitate 
more holistic views of targets that may be relevant to more than one 
disease. For example, fMRI approaches have contributed to the cur-
rent appreciation for neural mechanisms common to addictive 
behaviors across a wide range of substances abuse states. Studies of 
cue-elicited craving have defi ned similar activities of the mesolimbic 
reward circuit in addictions to nicotine [ 33 ], alcohol [ 34 ], gambling 
[ 35 ], amphetamine [ 36 ], cocaine [ 37 ] and opiates [ 38 ]. 

 Combination of pharmacological fMRI with positron emission 
tomography ( PET  ) receptor mapping can be used to relate systems-
level dysfunction directly with the molecular targets of drug thera-
pies in ways that enhance target validation for new pharmacological 
treatments faster and more cheaply than conventional clinical 
designs allow (see, e.g., [ 39 ]). In another example, a combined 
PET  D3 receptor   availability and resting-state pharmacological 
fMRI study provides a paradigmatic example of the way in which 
modulation of both target and system contributes to better defi ning 
fundamental mechanistic relationships between different symptoms 
[ 40 ]. First,  D3 receptor   availability was assessed in the ventral teg-
mentum/substantia nigra in healthy subjects using PET with the 
D3/D2 selective radioligand, [ 11 C](+)-4-propyl-9- 
hydroxynaphthoxazine ([ 11 C]PHNO). Differences in receptor 
expression and basal dopamine release determine binding of the 
[ 11 C]PHNO, which varied across subjects. A resting-state pharma-
cological fMRI study was conducted simultaneously. Parametric 
variation of the resting-state pharmacological fMRI functional con-
nectivities with D3 receptor availability measured by PET showed 
that low midbrain D3 receptor availability (refl ecting dopamine 
release) was associated with increased connectivity between orbito-
frontal cortex ( OFC     ) and brain networks implicated in cognitive 
control and salience processing. The results together further vali-
dated dopamine D3 receptor signaling as an important modulator 
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of systems underpinning human goal- directed behavior, while 
highlighting differentially modulated interactions between  OFC   
and networks implicated in cognitive control and reward. 

 With confi dence in the relationship between a pattern of brain 
functional network activation and behaviors of interest, the former 
can be used as a clinically relevant biomarker for target validation. 
One of the fi rst demonstrations of this was with the modulation of 
hippocampal activation with a working memory fMRI task based on 
allelic differences in a   BDNF  gene polymorphism   [ 41 ]. This provided 
early evidence in humans supporting target validation of the TrkB 
receptor agonism for the treatment of cognitive symptoms associated 
with synaptic plasticity [ 42 ]. A different example illustrating how 
such studies can be used for decision making in drug development 
was provided by an imaging experimental medicine study linking to a 
PET receptor occupancy of a highly specifi c μ-opioid antagonist, 
GSK1521498, to pharmacological fMRI modulation of brain activa-
tion associated with palatable taste stimuli [ 43 ]. This allowed a fi rst 
demonstration that salience and reward systems relevant to food 
intake were modulated by the target, suggesting the potential of 
antagonists as appetite suppressants, an inference supported by a 
later, larger Phase IIa study with a direct behavioral endpoint [ 44 ].  

4     Patient Stratifi cation 

 A critical issue in early drug development is to establish an appro-
priate level of confi dence in the potential of a new molecule to 
become a therapy. One way in which this can be done is by better 
controlling for the substantial variations in therapeutic responses 
between individuals in early-phase studies. As well demonstrated in 
oncology [ 45 ], stratifi cation of patients based on specifi c disease 
characteristics can enable more powerful trial designs [ 46 ]. 
Consider, hypothetically, the difference in outcome of trials for a 
population in which a new molecule has a 50 % treatment effect in 
20 % of patients (giving a 10 %  net  treatment effect, i.e., unlikely to 
be detected) relative to that in a stratifi ed population enriched so 
that 70 % are responders (a net 35 % treatment effect). By predict-
ing potential responders, imaging also can suggest ways of best 
selecting optimal indications for new molecules. To the extent that 
the enrichment is successful and any new pharmacological activity 
being evaluated is detectable, clinical trials may demonstrate 
 molecule effects with fewer subjects exposed. This can be of special 
value in early Phase II trials when safety data is limited and the 
focus is on internal decision making. 

 An early application of imaging based stratifi cation is expected to 
be for enrichment of populations for clinical trials in diseases such as 
Alzheimer’s disease for which there is considerable phenotypic over-
lap between different disorders manifesting in the same population 
(e.g., dementia and late-life depression). The posterior cingulate and 
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hippocampus show high functional connectivity in resting-state fMRI 
[ 47 ] and form the core of a so-called “default mode” network [ 48 ]. 
Decreases in default mode resting-state fMRI connectivity distin-
guish Alzheimer’s patients from healthy subjects and can distinguish 
patients with mild cognitive impairment who undergo cognitive 
decline and conversion to Alzheimer’s disease from those who remain 
stable over a medium term follow-up period [ 49 ,  50 ]. Distinct pat-
terns of  resting-state fMRI   may distinguish patients with Parkinson’s 
disease, for whom reduced resting state functional connectivity from 
the basal ganglia was reported [ 51 ]. Together, these fi ndings suggest 
that resting-state fMRI (conducted in conjunction with other struc-
tural imaging measures), could be used to enrich trials for early dis-
ease modifi cation of Alzheimer’s disease. 

 Establishing fMRI measures for stratifi cation of patients [ 52 ] 
also ultimately could aid in establishing prognosis and in patient 
management. Where alternative treatment approaches are available 
that have potentially signifi cant individual variation in response 
across a population, selection of the optimal treatment for an indi-
vidual patient could be assisted by fMRI ( personalized medicine ). 
For example, with depression, treatment responses are highly vari-
able, e.g., only about 70 % of patients respond well to a given anti-
depressant [ 53 ]. Higher BOLD signal in the amygdala with a 
simple task fMRI may be predictive of subsequent treatment 
response [ 54 ]. Multivariate fMRI responses that change with treat-
ment in depression also have been proposed as candidate pharma-
cological fMRI markers, e.g., signal change in the ventromedial 
prefrontal and anterior cingulate cortices [ 55 ] or modulation of 
 cortico-limbic functional connectivity   [ 56 ]. 

 In similar ways, there is a potential for integrated structural MRI 
and verbal task fMRI to distinguish people with  prodromal schizo-
phrenia   from phenotypic mimics [ 57 ]. Network based analyses pro-
vide evidence for a continuous spectrum of psychosis from healthy 
variants to disabling expressions of schizophrenia [ 58 ]. Brain func-
tional measures distinguishing abnormal network functions ulti-
mately may provide more meaningful approaches to the classifi cation 
of neuropsychiatric diseases for improved prognosis and for target-
ing of treatment [ 59 – 62 ], although establishing the robustness of 
classifi ers in terms of longer term clinical outcome will demand stan-
dardization of methods and long-term, prospective studies. 

 Arguably fundamental changes in the understanding of  chronic 
pain   as a disease with individual differences in susceptibility have 
developed in recent years in part as a consequence of fMRI studies 
[ 63 ,  64 ]. Activity in the posterior insula with nociception provides 
a link between the subjectively “painful” experiences of pain empa-
thy [ 65 ], hypnotically induced pain [ 66 ], and recalled pain experi-
ences [ 67 ]. Inspired by studies showing a dopaminergic response 
with anticipation of benefi t in Parkinson’s disease, nigro-striatal 
pathways (as well as those associated with endogenous opioid 
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release) have been implicated in the placebo response in pain and 
depression [ 68 ]. Individual variation in pain vulnerability thus is 
associated with alterations in wide range brain networks concerned 
with reward, motivation/learning, and descending modulatory 
control [ 69 ]. Greater functional connectivity between the PFC 
and nucleus accumbens explains pain persistence, suggesting that 
the frontal-striatal connectivity mediates the transition from acute 
to chronic pain; cortical-striatal connectivity explains longer term 
outcomes of patients with sub-acute back pain [ 70 ]. 

 Nonetheless, despite this promise, validation and development 
of these concepts as clinical tools or for confi dent use as an enrich-
ment strategy or as a secondary outcome measure in later-phase 
clinical trials appears stalled by lack of standardization of evalua-
tions and methods for quality control and analysis [ 4 ]. A focus on 
longer term, well powered clinical studies is needed to validate 
relationships between fMRI measures and disease pathology or 
long-term clinical outcomes. Confi dent demonstrations are needed 
to establish that fMRI or pharmacological fMRI reliably distin-
guish clinically meaningfully changes.  

5     Pharmacodynamics 

 As the previous section highlighted, applications of pharmacologi-
cal fMRI to the direct assessment of drug action are expanding. 
  Pharmacodynamic  data   (e.g., testing whether a drug at the chosen 
dose has an effect on brain function) can be obtained from analysis 
of brain imaging changes induced by the administration of a drug. 
The similar intrinsic brain architecture across species can support 
translational proof of mechanism studies with comparisons of end-
points from preclinical and imaging-supported Phase I studies using 
similar methodologies [ 71 ]. Additional information can come from 
correlation of brain activity with behavioral effects of drug adminis-
tration [ 72 ] (Fig.  2 ) or with characterization of the way in brain 
 activity   associated with a probe-task is modulated by a drug [ 73 –
 75 ]. This information can inform clinical dose-ranging studies. As 
noted earlier, correlations between fMRI measures of brain func-
tional system response and drug receptor or receptor occupancy 
measurements by  PET   are possible [ 39 ,  43 ,  76 ]. The last, more 
recent study [ 43 ], demonstrated additionally how integration of 
time-receptor occupancy data from PET with fMRI measures can 
differentiate the distinct pharmacologies of different antagonists.

   In some situations, by providing a measure of  endophenotype  
responses, pharmacological fMRI can defi ne effects of treatment in 
populations too small for behavioral effects to be discerned or 
where usual clinical measures are simply insensitive to drug effects 
[ 77 – 79 ]. In the simplest application, modulation of brain activa-
tion in functional anatomically plausible regions after dosing with 
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candidate molecule simply to provide supportive evidence for rel-
evant direct CNS activity. A retrospective case study of NK-1 
receptor antagonists for chronic pain proposed that early decisions 
based on fMRI measures could have anticipated the later failure of 
clinical trials [ 80 ]. However, a potential risk of such entirely phar-
macological fMRI-derived pharmacodynamics markers is that they 
may not be specifi c for (or predictive of) clinically relevant changes. 

 One way of minimizing this risk is to frame the measures in 
terms of important disease symptoms based on the relationship 
between fMRI measures and individual symptoms. Mechanistic 
plausibility is suggested by the extent to which changes in the asso-
ciated networks have been independently related to clinically 
meaningful symptoms. An illustration of this is provided by the 
way fMRI has been used to dissect the  subjective experience  of pain 
into anatomically distinct activities of different functional systems 
(including arousal and the  somatosensory and limbic systems  ), the 
precise pattern for which may vary for an individual depending on 
context, mood, and cognitive state [ 64 ,  81 ]. 

 As highlighted in the introduction to this review, imaging has 
the potential to bridge directly between preclinical and clinical 
studies [ 2 ]. While many behaviors cannot be translated across spe-
cies, functional-anatomical correlations allow direct drug responses 

  Fig. 2    Pharmacological fMRI can be performed in both animals and humans to assess correspondences in 
tests of  mechanisms  . ( a ) Pharmacological fMRI results with metamphetamine challenge of a rodent, identify-
ing major regions in the monamine network as sites of direct or indirect action ( Mctx  motor cortex,  PrL  pre-
limbic medial prefrontal cortex,  thal  thalamus,  SSctx  somatosensory cortex,  AcbSh  shell of the nucleus 
accumbens,  VTA  ventral tegmental area) (Images courtesy of Dr. A. Bifone, GSK, Verona). ( b ) A similar pharma-
cological fMRI experiment with acute amphetamine infusion in human subjects performed using “mind racing” 
as a behavioral index of drug effects identifi ed comparable elements of the core response network ( OFC  
orbitofrontal cortex,  ACC  anterior cingulate cortex,  NAC  nucleus accumbens)       
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elicited in the brain for translation of underlying neurobiology. For 
example, pharmacological fMRI experiments in which unstimu-
lated brain responses to acute compound challenges can be used to 
defi ne brain regions in which activity is modulated by the same 
compound in animals (Fig.  2 ). Preclinically, these observations can 
be linked to results from more invasive studies, e.g., direct measure-
ments of neurotransmitter release that distinguish direct and indi-
rect effects of the compound [ 82 ]. Similar observations of drug 
modulation of brain activity can be made in human volunteers, pro-
viding a way of confi rming mechanism (Fig.  2 ) [ 72 ]. State- 
dependent modulation of these regions can further contribute to 
this [ 83 ]. By relating plasma concentrations to brain responses, 
similar approaches could be used to defi ne dose, for example. fMRI 
can address the need for evaluation of receptor agonists, partial 
agonists, and inverse agonists, as well as antagonists. Even when a 
receptor targeted radioligand is available, PET methods generally 
will not be informative with the former classes of agents [ 84 ]. 

 However, caution is needed in the confi dence with which 
fMRI endpoints are interpreted. There are two distinct validation 
issues that must be addressed. First is the “proof of biology” based 
on demonstration that the biological change being measured is 
related to the relevant target engagement. Second is the “proof of 
concept” that the biological change has relevance for clinical out-
come [ 9 ]. Relationships seen with the natural history of the disease 
should not be assumed to hold after therapeutic modulations [ 85 ]. 
Testing for any changes in this relationship with  pharmacological 
modulation   is important to ensure that the biomarker remains 
plausibly related to a clinically meaningful outcome. 

 In general, validation of a candidate biomarker’s surrogacy 
involves the demonstration that it possesses the properties required 
for its use as a substitute for a true endpoint. A surrogate can be 
used at the individual subject level when there is a perfect associa-
tion between the surrogate and the fi nal endpoint after adjustment 
for treatment. This criterion essentially requires the surrogate 
 variable to ‘capture’ any relationship between the treatment and the 
true endpoint, a notion that can be operationalized by requiring the 
true endpoint rate at any follow-up time to be independent of treat-
ment, given the preceding history of the surrogate variable [ 86 ].  

6     Current  Limitations   and Some Future Extensions of Pharmacological fMRI 

 Although there is real promise for pharmacological fMRI, there are 
major general challenges to meaningful, quantitative interpretations 
of measures that need to be considered in planning applications. A 
fi rst challenge is to distinguish disease or pharmacodynamic effects 
on hemodynamic coupling from those on neuronal activity and 
metabolism [ 11 ]. Some limitations to interpretation of the BOLD 
response can be addressed with use of complementary forms of MRI 

Pharmacological Applications of fMRI



828

contrast. For example, direct measures of brain blood fl ow can be 
made using noninvasive “arterial spin labeling” MRI methods and 
the BOLD signal can be calibrated as a measure of local oxygen 
extraction for quantitative MRI [ 87 ]. However, even without this 
uncertainty, the relationship of blood fl ow changes to modulation of 
presynaptic activity can change with physiological (and, potentially, 
pharmacological) context. Even the relative direction of relative acti-
vation in disease states may be diffi cult to interpret precisely. For 
example, reduced activation may refl ect brain functional impairment 
[ 88 ] or improved  effi ciency   [ 89 ] in different contexts. Experimental 
designs need to recognize this uncertainty and incorporate elements 
that allow meaningfully specifi c interpretations, e.g., by studying 
dose–response relations, parametric activity relationships and behav-
ioral correlates [ 90 ]. A more direct approach is to link pharmaco-
logical fMRI with electrophysiological measures [ 91 ]. 

 General validation of methods to enable their wider use will 
depend on standardization across sites, reliability and repeatability, 
and the development of validated quantifi cation methods, ideally 
largely automated to minimize needs for harmonization of user 
training. Practical considerations also need to be address to enable 
integrated use of the most accurate and effi cient combination of 
markers and optimization of costs for the clinical trial environment 
[ 92 ]. Greater openness and sharing of data would be an important 
enabler of this. These steps, while still not yet part of routine prac-
tice in the academic laboratories in which advanced clinical imag-
ing is most often performed, need not stifl e innovation, which can 
progress in parallel, but is essential of translation of this promising 
method as a major tool for drug development is to be achieved.     
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    Chapter 27   

 Application of fMRI to Monitor Motor Rehabilitation                     

     Steven     C.     Cramer       and     Jessica     M.     Cassidy      

  Abstract 

   Motor defi cits contribute to disability in a number of neurological conditions. A wide range of emerging 
restorative therapies have the potential to reduce this by favorably modifying function. In many medical 
contexts, a study of target organ function improves effi cacy of a therapeutic intervention. However, the 
optimal methods to prescribe a restorative therapy in the setting of central nervous system (CNS) disease 
are not clear. Brain mapping studies have the potential to provide useful insights in this regard. Examples of 
restorative therapies are provided, and human trials are summarized whereby brain mapping data have 
proven useful in promoting motor improvements in subjects with a neurological condition. A number of 
forms of brain mapping metrics are under study, including those emphasizing network connectivity obtained 
using resting-state fMRI. In some cases, brain mapping fi ndings that correlate with better outcome with 
spontaneous behavioral recovery correspond to fi ndings that predict better treatment response in the con-
text of a clinical trial. Similarities across CNS conditions, such as stroke and multiple sclerosis, are discussed. 
Further studies are needed to understand which methods have the greatest value to monitor, predict, triage, 
and dose restorative therapies in trials that aim to reduce motor, and other neurological, defi cits.  

  Key words     Functional neuroimaging  ,   Brain mapping  ,   Stroke  ,   Motor system  ,   Recovery  ,   Repair  , 
  Plasticity  ,   Treatment  

1      Motor Defi cits  and Restorative Therapies   

 Motor defi cits are a major contributor to disability in the setting of 
a number of neurological diseases marked by focal central nervous 
system (CNS) injury, such as stroke, multiple sclerosis (MS), spinal 
cord injury (SCI), and traumatic brain injury [ 1 ]. In general, 
motor defi cits show some degree of spontaneous improvement in 
the weeks following the insult. Spontaneous recovery is generally 
incomplete, however. 

 A number of therapies are in development to promote recovery 
in patients with motor defi cits after a CNS insult. Some target the 
acute phase of injury, when the brain is galvanized and produces 
growth-related substances at levels reminiscent of development. 
Other therapies target patients in the chronic phase. Regardless, the 
goal of such therapies is not to salvage injured tissue, rather to pro-
mote repair and restore function. 
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 Many forms of  restorative therapy   are under study. Examples 
include small molecules [ 2 – 5 ], immune approaches such as via 
neutralization of the axon growth inhibitor Nogo-A with mono-
clonal antibodies [ 6 ], growth factors [ 7 – 15 ], cell-based methods 
[ 16 – 19 ], electromagnetic stimulation [ 20 – 24 ], neuroprosthetics 
[ 25 ,  26 ], and methods based on various forms of therapy and prac-
tice [ 27 – 37 ]. Issues of inter-individual variability in response to 
many of these therapies make it diffi cult to assess treatment feasi-
bility and/or effi cacy. Examination of these restorative therapies 
requires judicious analysis of the intended target, the brain. 

 A key thesis of this chapter is that optimal prescription of such 
restorative  therapies   will be achieved by probing the state of the 
brain. Clinical trials often enroll patients based on demographic or 
behavioral measures. However, these are only an approximation of 
the type of brain state information that is important to promoting 
 repair and recovery  . 

 There are examples in other medical specialties a measure of tar-
get organ function is obtained in addition to behavior and demo-
graphic data in order to maximize therapeutic gains. For example, 
 hypothyroidism   is optimally treated not by serial behavioral exam, 
rather by serial measures of pituitary–thyroid axis via serum TSH. 
 Treatment   of myeloproliferative and related hematological syndromes 
is ultimately dosed not by behavioral or demographic measures, but at 
least in part on the basis of serial measure of the cell population of 
interest.  Cardiac arrhythmias   and  coronary artery disease   are often 
assessed by evaluating cardiac function, e.g., in the setting of electro-
physiological studies, exercise, or a sympathomimetic challenge. These 
practices suggest the general principle that some form of study of the 
therapy’s target organ might be useful for optimizing therapy. In the 
setting of focal CNS  injury  , a technique such as fMRI might therefore 
be useful for a restorative therapy to assist with study entry criteria, to 
defi ne optimal therapy dose or duration, or to serve as a biological 
marker of treatment effect. This issue is considered below with respect 
to three conditions characterized by an acute focal neurological insult.  

2    Stroke 

 The  motor system   is among the most frequently affected domains by 
stroke [ 38 ,  39 ]. Duncan et al. [ 40 ,  41 ] found that the most dramatic 
improvements occurred in the fi rst 30 days post-stroke, though sig-
nifi cant improvement continued to occur up to 90 days after stroke 
in patients with more severe defi cits. Nakayama et al. [ 42 ] measured 
arm disability and found that maximum arm  function was achieved 
by 80 % of patients within 3 weeks, and by 95 % of patients within 9 
weeks. Wade et al. [ 43 ] also found that signifi cant improvement was 
mainly seen across the fi rst 3 months after stroke. Despite these 
improvements, residual  motor defi cits   remain in approximately half 
of patients in the chronic phase of stroke [ 38 ,  39 ]. 
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 A number of studies [ 44 – 46 ] have examined the brain events 
underlying the spontaneous recovery of motor behavior that does 
arise after stroke. In sum, stroke-related injury is associated with 
reduced activation, function, and neurophysiological responsiveness 
in injured (or for deep strokes, the overlying/corresponding) pri-
mary cortex. The best spontaneous return of behavior is associated 
with resolution of these reductions, i.e., return of activity in primary 
cortex, sometimes with particular shifts in the site of activation. 
Several compensatory responses may also contribute to  spontaneous 
behavioral recovery  , including increased activation in secondary 
areas that are normally connected to the injured zones in a distrib-
uted network, as well as a shift in interhemispheric laterality towards 
the contralesional hemisphere. The larger the injury or greater the 
defi cits, the more these compensatory events are seen. These com-
pensatory responses are tricks of the desperate, but in patients with 
injury-related defi cits they are better present than absent [ 47 – 51 ]. 
These events that underlie spontaneous recovery are important 
because in some cases they are the same measures used to guide 
optimization of therapy- derived recovery. 

   One study used functional neuroimaging in a clinical trial of a 
restorative intervention to extract data from an fMRI scan in order 
to guide details of decision-making during therapy [ 24 ,  52 ]. An 
fMRI scan was used to identify the centroid of ipsilesional primary 
motor cortex activation when patients with stroke moved the 
affected hand. This information then guided neurosurgical place-
ment of an investigational epidural cortical stimulation device over 
 ipsilesional motor cortex  . Using this approach, patients receiving 
stimulation plus rehabilitation therapy showed signifi cantly greater 
arm motor gains than patients receiving rehabilitation therapy 
alone. A similar approach was used in studies based on transcranial 
magnetic stimulation ( TMS)      to identify the optimal physiological 
representation site for hand motor function. These studies found 
repetitive TMS to be useful for improving motor function after 
stroke [ 20 ,  21 ].  

   An additional application of functional neuroimaging in the setting 
of restorative therapy is to predict behavioral response to  treatment. 
Several studies have examined this issue [ 53 – 60 ]. For example, 
Koski et al. [ 56 ], using TMS, and Dong et al. [ 54 ], using fMRI, 
have found that changes in brain function early into therapy pre-
dict behavioral gains measured at the end of therapy. Note that in 
both cases, the fi ndings that predicted better treatment response 
(improved motor evoked response in affected hand with TMS of 
ipsilesional hemisphere, and increased laterality of fMRI activation, 
i.e., towards the ipsilesional hemisphere, with movement of the 
affected hand, respectively) correspond to the fi ndings correlating 
better outcome with spontaneous behavioral recovery. This latter 

2.1  Use of Functional 
Neuroimaging to Guide 
a Restorative 
Intervention in 
Patients with Stroke

2.2  Use of Functional 
Neuroimaging 
to Predict  Response   
to a Restorative 
Intervention 
in Patients with Stroke
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pair of studies also hints at the potential use of human  brain map-
ping   measures to identify the dose of a restorative therapy in indi-
vidual patients. For example, could a TMS or fMRI measure of 
brain function inform a clinician of the likelihood that the brain is 
receptive to further change that supports behavioral gains? In this 
regard, note that a probe of brain plasticity, such as might be used 
to predict treatment response to a restorative intervention, can be 
developed even in the setting of severe defi cits, such as complete 
plegia [ 61 ]. 

 Another study found that fMRI had independent value for pre-
dicting treatment response in a restorative therapy trial in patients 
with chronic stroke [ 57 ]. This study used a multivariate model to 
examine the specifi c ability of a baseline fMRI to predict trial-related 
behavioral gains, and compared this fMRI predictive ability directly 
to a number of other baseline measures. Patients in this study each 
underwent baseline clinical and functional MRI assessments, 
received 6 weeks of rehabilitation therapy with or without investi-
gational motor cortex stimulation, then had repeat assessments. 
Across all patients, univariate analyses found that several baseline 
measures had predictive value for trial-related gains. However, mul-
tiple linear regression modeling found that only two variables 
remained signifi cant predictors: degree of motor cortex activation 
on fMRI (lower motor cortex activation predicted larger gains) and 
arm motor function (greater arm function predicted larger gains). 
This study emphasized that an assessment of brain function can be 
a unique source of information for clinical decision- making in the 
setting of restorative therapy after stroke. Interestingly, clinical 
gains during study participation were paralleled by boosts in motor 
cortex activity, the latter detected via serial fMRI scanning, suggest-
ing that lower baseline cortical activity in some patients likely repre-
sents under-use of an available cortical resource. 

 Burke Quinlan and colleagues [ 60 ] also utilized a multivariate 
model that encompassed various demographic, behavioral, and 
neuroimaging measures to determine which metrics best predicted 
behavioral gains following a three-week upper-extremity robotic 
therapy program in individuals with chronic stroke. Bivariate 
screening revealed signifi cant correlations between improvement 
in upper- extremity status with baseline MRI and diffusion tensor 
imaging measures of brain injury (i.e. infarct volume, cortical 
injury, percentage injury to corticospinal tract), task-evoked fMRI 
measures of cortical function (i.e. ipsilesional primary motor cor-
tex area (M1) activation), and resting fMRI measures of ipsile-
sional/contralesional M1 connectivity. Subsequent multivariate 
linear regression modeling revealed that the percentage injury to 
corticospinal tract and ipsilesional/contralesional M1  connectiv-
ity   accounted for 44 % of the variance in treatment gains. Brain-
based measures, therefore, depicted better predictive quality than 
the more conventional behavioral and demographic measures. 
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A similar study focusing on lower-extremity motor gains after a 
course of physical therapy showed that baseline lower-extremity 
status and ipsilesional foot primary sensorimotor cortex activation 
volume contributed to 63 % of the variance in gait velocity change 
[ 59 ]. Combined, these studies [ 59 ,  60 ] provide supporting evi-
dence for the use of fMRI measures as potential biomarkers for 
rehabilitation gains. There are a number of important variables 
that differ across patients, study designs, fMRI acquisition and 
analysis methods, and more. As such, further studies are needed to 
understand the extent to which the above fi ndings generalize 
across other stroke studies.  

   Carey et al. [ 62 ] found that a population of subjects with chronic 
stroke, when performing a fi nger tracking task with the stroke- 
affected hand, had activation within contralesional brain regions, 
i.e., regions that were primarily ipsilateral to movement. After 
training at this task, the normal pattern of laterality of brain activa-
tion was restored, with activation shifting to ipsilesional brain 
regions, i.e., contralateral to movement, and thereby more closely 
resembling fi ndings in healthy control subjects. In this landmark 
study, functional neuroimaging provided insights into the mecha-
nistic effects of treatment. Since then, other studies have shown 
varying modulatory effects of cortical activation following Botox 
[ 63 ], constraint-induced movement therapy (CIMT) [ 64 ], visuo-
motor tracking task practice [ 65 ], implicit motor learning [ 66 ], 
real-time fMRI feedback training [ 67 ], and noninvasive brain stim-
ulation in individuals with chronic stroke [ 68 ]. 

 Two meta-analyses [ 69 ,  70 ] extend these results by examining 
studies that have employed functional neuroimaging as a biological 
marker of treatment effects targeting the motor system after stroke. 
A review of 24 studies utilizing sensorimotor tasks in 255 patients 
found higher activation in the contralesional M1 (relative to 
healthy controls) that decreased over time but was unrelated to 
motor outcome. Reorganization consistent with increased 
 ipsilesional M1 and medial premotor cortex activation was associ-
ated with positive recovery; whereas, increased activation of the 
cerebellar vermis was associated with negative recovery. These con-
clusions highlight both benefi cial and detrimental examples of 
neuroplastic  reorganization   following stroke as demonstrated by 
shifts in premotor and cerebellar vermis activation, respectively. An 
earlier meta-analysis that reviewed 13 studies of 121 patients per-
mitted drawing a number of conclusions [ 70 ]. Motor defi cits have 
been most often studied, in part because of their substantial contri-
bution to overall disability after stroke, and in part because of their 
relatively high prevalence. Most published studies have focused on 
patients with good to excellent outcome at baseline since they were 
more able to perform the motor tasks required to probe brain 
function. Consequently, less is known about the functional 

2.3  Use of Functional 
Neuroimaging to 
Investigate the  
 Biological 
Mechanisms   of 
Restorative 
Intervention Effects 
in Patients with Stroke
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anatomy of therapy- induced recovery processes in the large 
population of patients with more severe defi cits after stroke despite 
the great need for further study of restorative interventions in this 
population. Very few studies have used functional imaging to 
examine treatment effects during the fi rst few months after stroke, 
when spontaneous behavioral recovery is at its greatest. The effects 
that many key variables such as lesion site, recovery level, gender, 
and age have on the performance of functional neuroimaging in 
this context requires further study. Studies could be improved by 
incorporating measures of injury and/or physiology. 

 Baseline differences in the stroke population under study can 
have a signifi cant impact on the informative value of functional 
neuroimaging measures in the setting of a clinical trial. One suc-
cessful CIMT study was associated with  decreased  inter-hemispheric 
laterality in a study of weaker patients [ 71 ], while a second study 
found  increased  laterality in a study of stronger patients [ 72 ] with 
chronic stroke. Additionally, Könönen et al. [ 73 ] observed 
increased sensorimotor area activation after a 2-week CIMT pro-
gram amongst individuals with poorer baseline hand function. 
Investigators found no change in hemispheric laterality for premo-
tor and sensorimotor regions of interest. 

 This divergence in fi ndings emphasizes how differences in a 
single  variable  , such as baseline motor status, might infl uence the 
utility of brain mapping in the setting of a clinical trial, and high-
lights the need for further studies in this regard.   

3    Multiple Sclerosis 

  Motor defi cits   are common in MS. For example, across a broad 
population of subjects with MS, the median time to reach irrevers-
ible limited walking ability for more than 500 m without aid or rest 
is 8 years, to walk with unilateral support no more than 100 m 
without rest is 20 years, and to walk no more than 10 m without 
rest while leaning against a wall or support is 30 years [ 74 ]. Upper 
extremity motor defi cits, such as those related to ataxia and paresis, 
are also a common source of disability. 

  Brain plasticity      is an important determinant in MS in at least 
two contexts. First, steady destruction of myelin and of axons over 
years results in disability. During this period, reorganization of brain 
function can reduce the impact of such injury on behavioral status. 
Second, approximately 85 % of patients with MS have a relapsing, 
remitting course [ 75 ], in which a relapse peaks over 1–2 months 
and then improves over a similar time period. The resolution of 
these MS fl ares has been attributed to a number of brain events, 
such as neurological reserve and resolution of infl ammatory insult 
[ 75 ], and a number of studies suggest that brain plasticity is also 
important [ 76 ]. Note too that there are numerous asymptomatic 
brain lesions for each symptomatic one in most patients with MS, a 
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fact that might further support the importance of brain plasticity in 
maintenance of behavioral status in this condition. 

  Brain plasticity   thus is likely important to motor status in MS, 
by minimizing the debilitating effects of MS injury accrual over 
time, and by promoting recovery from silent or symptomatic MS 
fl ares. A number of studies have provided insights into the brain 
events important in this regard, with substantial overlap as com-
pared to fi ndings in patients with stroke. This information gains 
importance in the current discussion because events important to 
maximizing behavioral status in the natural course of the disease 
are likely to be many of the same measures whose measurement 
can guide optimization of therapy-derived recovery. 

 Studies of brain plasticity in MS have found that, early in the 
course of the disease, brain activation is larger and more wide-
spread as compared to healthy controls. Later in the disease, later-
ality of activation is reduced (i.e., activation is more bilateral) 
[ 77 – 79 ], akin to stroke patients who have larger infarcts or greater 
defi cits [ 80 ,  81 ].  Bilateral sensorimotor cortical regions   are acti-
vated to a greater extent in the setting of MS-related white matter 
injury [ 82 ,  83 ]. This increased degree of bilateral organization per-
sists to the greatest extent in subjects with persistent defi cits after 
an acute MS relapse, and returns to a normal, lateralized (i.e., 
contralateral- predominant) form of organization in subjects with 
the least degree of persistent disability [ 84 ,  85 ]. The pattern of 
brain activation during performance of a simple motor task in sub-
jects recovered from stroke has been considered similar to the pat-
tern seen in healthy subjects during performance of a complex task 
[ 86 ]; a similar analogy has been made in subjects with MS [ 87 ]. 

 Interestingly, when a subset of subjects with mild MS, depict-
ing no outward clinical defi cits or disability despite long-standing 
diagnosis, performed a combination of sensory, cognitive, and 
motor tasks during an  fMRI   session, investigators found increased 
activation of cognitive-related regions relative to controls [ 88 ]. 
Further, when comparing mild vs. more severe relapsing-remitting 
MS phenotypes during an fMRI hand motor task, those subjects 
with mild MS showed increased activation throughout sensorimo-
tor regions that correlated with increasing lesion volume and 
decreasing cortical volume [ 89 ]. These fi ndings reaffi rm the notion 
that preservation of physical function in MS relies on the deploy-
ment of compensatory brain plasticity mechanisms involving 
enhanced recruitment of  cognitive and sensorimotor areas  . 

   The extent to which these spontaneous changes in brain function 
after MS can be used to monitor therapeutic interventions has 
been assessed in several small studies. One study tested the effects 
of increased cholinergic tone on the pattern of fMRI activation 
during performance of a cognitive task, the  Stroop test  . At base-
line, patients with MS and moderate disability had similar behav-
ioral performance as compared to controls, but on fMRI showed 
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increased left medial prefrontal, and decreased right frontal, activa-
tion. Treatment with the cholinesterase inhibitor rivastigmine nor-
malized both of these fMRI abnormalities in patients, but had little 
effect on a small cohort of healthy control subjects [ 90 ]. 

 In another study, administration of  3,4-diaminopyridine   to 
patients with MS was associated with increased activation in senso-
rimotor cortex and SMA ipsilateral to movement. This pattern is 
the reverse of the laterality pattern seen in normals but might cor-
respond to effects of increased injury [ 80 ,  81 ] or task complexity 
[ 91 ,  92 ]. TMS measures were also affected by treatment, showing 
a drug-induced reduction in intracortical inhibition and increase in 
intracortical facilitation [ 93 ]. The relationship that these changes 
had with behavioral effects of drug administration was not reported. 

 A few studies have examined experience-dependent plasticity in 
MS following motor practice [ 94 ,  95 ]. In one study, subjects with MS 
practiced a visuomotor tracking task daily for approximately two 
weeks [ 94 ]. Investigators examined both short- and long- term (min-
utes and days, respectively) practice effects. They discovered an asso-
ciation between tracking improvement and attenuated blood-oxygen 
level dependent (BOLD) signal bilatera in sensorimotor, premotor, 
cingulate, temporal, and parahippocampal cortices for short-term 
practice improvement and trends of smaller BOLD signal in superior 
parietal lobule and occipital cortex for long-term improvement. 
Importantly, tracking improvement was independent of MRI-derived 
brain pathology metrics; meaning, that improvement was not dictated 
by the extent of structural brain damage. Subjects with MS were also 
studied with fMRI before and after 30 min of thumb fl exion training 
[ 95 ]. Subjects with MS did not show a training-induced reduction in 
contralateral primary sensorimotor and parietal association cortices 
that healthy controls illustrated across the training period. Apart from 
implications regarding brain function in the setting of MS, these fi nd-
ings demonstrate a limitation of this paradigm for probing short-term, 
experience-dependent plasticity in this  population   [ 95 ]. Consideration 
of  task complexity   is also important, and may further explain these 
contrasting fi ndings [ 94 ,  95 ] of short-term experience-dependent 
plasticity or lack thereof in MS.   

4    Spinal Cord Injury 

 Though SCI can be associated with a range of injury patterns, motor 
defi cits are generally a prominent feature. At the time of discharge 
from initial SCI, the most frequent neurologic  category   is incom-
plete tetraplegia (34.1 %), followed by complete paraplegia (23.0 %), 
complete tetraplegia (18.3 %), and incomplete paraplegia (18.5 %). 
Less than 1 % of persons experience complete neurologic recovery by 
hospital discharge. By 10 years after SCI, 68 % of persons with para-
plegia, and 76 % of those with tetraplegia, are unemployed [ 96 ]. 
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 Subjects with SCI generally show modest  spontaneous sensory 
and motor improvement   in the fi rst 3–6 months following injury 
[ 97 ,  98 ], although signifi cant improvement beyond the fi rst year 
post-SCI is uncommon [ 99 ]. Motor defi cits are thus common and 
persistent after SCI, and these impact a number of health, quality 
of life, and other issues in subjects with SCI [ 100 – 102 ]. 

   There has been limited study of the  CNS mechanisms   underlying 
spontaneous motor improvement during the months following 
SCI. Jurkiewicz et al. [ 103 ] examined the acute-to-chronic time-
course of post-SCI sensorimotor reorganization in four individuals 
with tetraplegia over a 12-month period. Shortly after injury, sub-
jects with SCI demonstrated a similar volume of  contralateral M1 
activation   as healthy controls when attempting ankle dorsifl exion 
movements. However, with increasing time post injury and persist-
ing paralysis, contralateral M1 activation decreased along with pre-
frontal, premotor, supplementary, primary somatosensory, and 
posterior parietal cortices and cingulate motor area activation. 
These results depict a progressive shift in cortical reorganization 
further infl uenced by lower-extremity disuse. A related study in 
individuals with chronic SCI found cortical thinning in the leg area 
of the M1 and primary sensory cortex compared to healthy con-
trols [ 104 ]. Moreover, subjects with SCI demonstrated increased 
activation of the left M1 leg area during right handgrip task com-
pared to controls that was associated with smaller cervical cord area 
and impaired upper-extremity function. Lundell et al. [ 105 ] also 
found associations between spinal cord atrophy, motor function, 
and ipsilateral M1, somatosensory, and premotor cortical activa-
tion during ankle dorsifl exion movements in individuals with 
chronic SCI. Additional investigation is needed to further substan-
tiate the relationship between neuroplastic reorganization, severity 
of SCI, and ensuing motor function. 

 Studies to date have more been focused on the nature of  brain 
motor systems function   in the chronic state, with some divergence 
of results to date. Some studies have found a broad decrease in acti-
vation [ 106 – 108 ], particularly in primary sensorimotor cortex, 
whereas others have found supranormal activation [ 109 ]. The basis 
for these discrepancies remains unclear but could be due to differ-
ences in age or injury pattern of the population studied, years post- 
SCI at the time of study, amount of motor function at the time of 
study, or the nature of the task used to probe motor system function, 
some uncovering defi cient processing and others emphasizing supra-
normal efforts to compensate [ 107 ,  110 ]. A commonly described 
feature is a change in  somatotopic organization   within primary sen-
sorimotor cortex contralateral to sensory or motor events, with rep-
resentation of supralesional body regions expanding at the expense 
of infralesional body regions [ 111 – 115 ]. Spontaneous changes in 
laterality, so prominent in studies of stroke or MS, as above, are 
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generally not prominent after SCI [ 116 ], perhaps due in part to the 
fact that injury typically affects the CNS bilaterally or perhaps due in 
part to the fact that SCI spares brain commissural fi bers whose integ-
rity helps maintain normal hemispheric balance. As such, laterality is 
unlikely to be a useful variable to examine in  brain mapping   studies 
of treatment effects in the setting of SCI. 

 At least two studies have evaluated changes in brain function in 
relation to therapy after SCI. Winchester et al. [ 117 ] studied body 
weight supported treadmill training in four patients with motor 
incomplete SCI. These authors compared fMRI during attempted 
unilateral foot and toe movement before vs. after training. This 
therapy was associated with increased activation within several 
bilateral areas, including primary sensorimotor cortex and cerebel-
lum, though to a variable extent. The authors observed that, 
although all participants demonstrated a change in the BOLD 
 signal following training, only those patients who demonstrated a 
substantial increase in activation of the cerebellum demonstrated 
an improvement in their ability to walk over ground, suggesting 
that this measure in this brain region, at least when examined using 
this task during  fMRI  , might be useful as a biological marker of 
successful treatment effect. 

 Another form of intervention that has been evaluated after SCI is 
 motor imagery  . Motor imagery normally activates many of the same 
brain regions as motor execution, and has been associated with 
improvements in motor performance [ 118 ,  119 ]. The effects of 
1-week of motor imagery training to tongue and to foot were evalu-
ated in ten subjects with chronic, complete tetra-/paraplegia plus ten 
healthy controls [ 61 ]. The behavioral outcome measure was speed of 
performance of a complex sequence. Motor imagery training was 
associated with a signifi cant improvement in this behavior in non-
paralyzed muscles (tongue for both groups, right foot for healthy 
subjects). In both the healthy controls and the subjects with SCI, 
serial fMRI scanning (before vs. after training) during attempted 
right foot movement was associated with increased fMRI activation 
in left putamen, an area associated with motor learning, despite foot 
movements being present in controls and absent in subjects with 
SCI. Behavioral training can thus result in measurable brain plasticity 
that is not accompanied by outward behavioral gains, a fi nding that 
might be important for designing biological markers in trials target-
ing severely disabled patient populations. Note that this fMRI change 
was absent in a second healthy control group serially imaged without 
training. The main conclusion from this study is that motor imagery 
training improves brain function whether or not sensorimotor func-
tion is present in the trained limb. An additional conclusion is that 
 motor imagery  , by virtue of its favorable effects on brain motor sys-
tem organization, might have value as an adjunct motor restorative 
therapy. Another key point from this study is that brain plasticity 
related to plegic limbs can be studied in subjects with chronic SCI. 
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 One hypothesis suggested by this study’s fi ndings is that the 
results of a short-term brain plasticity probe, such as this motor 
imagery training intervention, will predict response to a longer- 
term treatment [ 17 ,  18 ], for example, patients who show the 
greatest extent of brain plasticity with such a 1-week motor imag-
ery intervention are those might be those who are most likely to 
respond to a more intensive intervention such as stem cell injec-
tions. Thus, at least in chronic SCI, some measure of the capacity 
for the brain to adapt in the short-term might predict likelihood of 
response to a more intense intervention.   

5    Conclusions 

 Motor defi cits are a major source of disability, across a number of 
conditions. A number of  restorative therapies   are under study to 
improve motor function in this regard. Optimal prescription of 
such therapies might benefi t from an assessment of the function of 
the target organ, in addition to assessment of behavior or 
 demographics. This is an approach that has often proven fruitful in 
general medical practice, and given the added complexities related 
to the CNS, is likely to be particularly important in for application 
of CNS restorative therapies. 

 Towards this goal, establishment of standardized protocols, such 
as for measuring motor cortex plasticity [ 120 ], to extract measures of 
brain function might help maximize the extent to which  functional 
neuroimaging   can be effectively applied. Dynamic protocols that 
incite a CNS response, such as over 30 min [ 121 ] or days [ 54 ,  56 ] of 
activity, might have particular value as compared to a single cross-
sectional behavioral probe. Also, studies that provide a greater under-
standing of the underlying neurobiologic principles related to 
spontaneous recovery will also aid application of restorative therapies 
given that brain changes important to spontaneous recovery likely 
overlap substantially with changes whose measurement can effec-
tively guide trials to maximize treatment- induced gains. 

 Further studies are needed to better characterize the measures 
that have the potential for monitoring, predicting, and dosing in 
the setting of a restorative trial of patients with motor defi cits. 
Also, a minority of studies has examined language, neglect, and 
other domains injured in  CNS disease  , and further studies in these 
areas are also needed. Some similarities exist across diseases, such 
as those discussed between stroke and MS above, and further 
investigation of such points of similarity might prove fruitful in a 
broader sense to advancing restorative therapeutics. 

 The crux of this review centered on task-related fMRI. 
Examination of  network connectivity   using resting-state fMRI may 
also serve as a valuable biologic measure of disease status and/or 
treatment effectiveness in stroke [ 122 – 126 ], MS [ 127 – 129 ], and 
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SCI [ 130 ,  131 ]. Finally, this review focused on fMRI as a means of 
probing the state of the CNS. Other investigative methods might 
also prove useful, including functional, anatomical, and other 
forms of probe. Examples include positron emission tomography, 
diffusion tensor imaging, proton MR spectroscopy, TMS, electro-
encephalography, and measures of anatomy or perfusion. These 
can measure white matter integrity [ 58 ], injury in relation to nor-
mal anatomy [ 132 ,  133 ], metabolic state [ 134 ,  135 ], and more 
that might prove equally useful in models that aim to inform thera-
peutic approaches to restoring motor function in the setting of 
neurological disease.     
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    Chapter 28   

 Multimodal Fusion of Structural and Functional 
Brain Imaging Data                     

     Jing     Sui     and     Vince     D.     Calhoun      

  Abstract 

   Recent years have witnessed a rapid growth of interest in moving functional magnetic resonance imaging 
(fMRI) beyond simple scan-length averages and into approaches that can integrate structural MRI measures 
and capture rich multimodal interactions. It is becoming increasingly clear that multimodal fusion is able to 
provide more information for individual subjects by exploiting covariation between modalities, rather an 
analysis of each modality alone. Multimodal fusion is a more complicated endeavor that must be approached 
carefully and effi cient methods should be developed to draw generalized and valid conclusions out of high 
dimensional data with a limited number of subjects, such as patients with brain disorders. Numerous research 
efforts have been reported in the fi eld based on various statistical models, including independent component 
analysis (ICA), canonical correlation analysis (CCA), and partial least squares (PLS). In this chapter, we sur-
vey a number of methods previously shown in multimodal fusion reports, performed with or without prior 
information, and with their possible strengths and limitations addressed. To examine the function–structure 
associations of the brain in a more comprehensive and integrated manner, we also reviewed a number of 
multimodal studies that combined fMRI and structural (sMRI and/or diffusion tensor MRI) measures, 
which could reveal important brain alterations that may not be fully detected by employing separate analysis 
of individual modalities, and also enable us to identify potential brain illness biomarkers.  

  Key words     Multimodal fusion methods  ,   Data driven  ,   Functional magnetic resonance imaging  , 
  Structural MRI  ,   Diffusion MRI  ,   Independent component analysis  ,   Canonical correlation analysis  

1      Introduction 

 There is increasing evidence that instead of focusing on the  rela-
tionship   between physiological or behavioral features using a single 
imaging modality, multimodal brain imaging studies can help pro-
vide a better understanding of  inter-subject variability   from how 
brain structure shapes brain function, to what degree brain func-
tion feeds back to change its structure, and what functional or 
structural aspects of physiology ultimately drive cognition and 
behavior. Collecting multiple modalities of magnetic resonance 
imaging (MRI) data from the same individual has become a com-
mon practice, in order to search for task- or disease-related changes. 
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Each imaging technique provides a different view in examining the 
brain activity. For example, functional MRI (fMRI) measures the 
hemodynamic response related to neural activity in the brain 
dynamically; structural MRI (sMRI) provides information about 
the tissue type of the brain [gray matter (GM), white matter (WM), 
cerebrospinal fl uid (CSF)].  Diffusion tensor (DT) MRI      can addi-
tionally provide information on structural connectivity among 
brain networks. A key motivation for jointly analyzing multimodal 
data is to take advantage of the cross-information in the existing 
data, thereby potentially revealing important variations that may 
only partially be detected by a single modality. The availability of 
several modal measurements allows  joint analysis   via the applica-
tion of a number of statistical approaches, including (but not being 
limited to) correlational analyses [ 1 ], data integration [ 2 ,  3 ] or 
data fusion [ 4 ,  5 ] based on higher-order statistics and/or modern 
machine learning algorithms. These methods enable indirect or 
direct associations to be inferred on putative structure–function 
relationships [ 6 ], however, it is not necessary for these modalities 
to have been measured simultaneously or have later been processed 
in a concurrent fusion model. 

 Approaches for combining or fusing  data   in brain imaging can 
be conceptualized as having a place on an analytic spectrum with 
meta-analysis (highly distilled data) to examine convergent evi-
dence at one end and large-scale computational modeling (highly 
detailed theoretical modeling) at the other end [ 7 ]. In between are 
methods that attempt to perform a direct data fusion [ 8 ]. We next 
review several multivariate multimodal fusion methods including 
their statistical assumption, possible strengths and limitations, and 
multimodal neuroimaging applications, especially combining fMRI 
with structure measures. Behavioral relevance of the assessed phys-
iological features will be mentioned whenever possible.  

2    Summary of Approaches Applied in   Joint Analysis   of Multimodal MRI Data 

 Before introduction of the statistical models, we would like to clar-
ify the use of “feature” as input to most of the mentioned models. 
We note that this defi nition of “feature” is somewhat different 
than what is used in traditional machine learning algorithms [ 9 ]. 
Basically, a “feature” is a distilled dataset representing the interest-
ing part of each modality [ 8 ] and it contributes as an input vector 
for each modality and each subject. Usually the brain imaging data 
is high dimensional, in order to reduce the redundancy and facili-
tate the identifi cation of relationships between modalities, the raw 
data can be preprocessed to generate a second-level output, that is 
“feature,” which can be a contrast map calculated from task-related 
fMRI by the  general linear model (GLM)  , a component image 
such as the “default mode” resulting from a fi rst-level  ICA  , a 
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 fractional anisotropy (FA)   from DT MRI measures, or segmented 
gray matter (GM) from sMRI data. The main reason to use fea-
tures is to provide a simpler space in which to link the data. The 
trade-off is that some information may be lost, e.g., GM does not 
directly measure volume or cortical thickness and FA does not pro-
vide directional information; however, there is considerable evi-
dence that the use of features is quite useful and valid [ 8 ,  10 ]. 
Figure  1  provides a direct view of the current popular multimodal 
data analysis approaches related to fMRI.

   “ Data integration  ” is an alternative, but dissimilar approach to 
“data fusion.” One characteristic of data integration is that it is 
asymmetric, e.g., using the results from one modality to constrain 
models of the other—as DT MRI being constrained by fMRI or 
sMRI data in [ 11 ,  12 ], or fMRI-informed EEG [ 13 ,  14 ]. While 

  Fig. 1    Summary of the current multimodal data analysis approaches related to fMRI       
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these are powerful techniques, a limitation is that they may impose 
potentially unrealistic assumptions upon the constrained data, 
which are fundamentally of a different nature than the known 
modality. Another integration example is to analyze each data type 
separately and overlay them—thereby not allowing for any interac-
tion between the data types. For example, a data integration 
approach would not detect a change in fMRI activation maps that 
is related to a change in brain structure remotely. 

 By contrast, multimodal fusion refers to the use of a common 
forward model of neuronal activity that explains different sorts of 
data symmetrically [ 15 ], which provides more views for individual 
subjects and covariation between modalities. This is a more com-
plicated endeavor, especially when studying complex mental ill-
nesses which impact many brain circuits. Also, in the real world, 
the conclusions usually need to be drawn out of high dimensional 
brain imaging data from a limited number of subjects. Hence effi -
cient methods should be developed carefully. 

 Multivariate approaches for combing brain imaging data can 
be divided into two classes: hypotheses-driven and data-driven. 
 Hypotheses-driven approaches   such as multiple linear regression 
[ 16 ,  17 ],  dynamic causal modeling (DCM)  , and confi rmatory 
structural equation modeling [ 18 ], have the advantages of: (1) 
allow for testing specifi c hypotheses about the networks implied in 
the experimental paradigm; (2) allow for simultaneous assessment 
of several connectivity links, which would have been compromised 
by the one-by-one assessment of covariance [ 19 ]. However, it is 
possible to miss important connectivity links that were not included 
in a set of a priori hypotheses and it does not provide information 
about inter-voxel relationships [ 20 ,  21 ]. 

  Data-driven approaches   include, but are not limited to,  princi-
pal component analysis (PCA)  ,  ICA  , canonical correlation analysis 
( CCA  )   , and partial least squares ( PLS  )   . These methods are attrac-
tive as they do not require a priori hypotheses about the connec-
tion of interest. Hence, these methods are convenient for the 
exploration of the full body of data. However, the some methods 
may be more demanding from a computational standpoint. 

 The multivariate approaches adopted in multimodal MRI 
fusion can be further divided into four classes based on the require-
ment of priori and the dimension of the MRI data used:

    1.      Blind  methods   that typically use  second-level fMRI data (3D 
contrast image)  , including joint  ICA   (jICA)    [ 22 ],  multimodal 
canonical correlation analysis (mCCA)   [ 23 ], linked  ICA   [ 24 ], 
 independent vector analysis(IVA)   and mCCA + jICA [ 25 ,  26 ].   

   2.     Blind  methods that have been developed for use with raw 
fMRI data (4D data), including partial least squares ( PLS  )    [ 27 , 
 28 ] and multiset  CCA   [ 29 ].   

   3.      Semi-blind  methods   that use second-level fMRI data (3D con-
trast), e.g.,  parallel ICA   [ 30 ], coeffi cient-constrained  ICA   
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(CC-  ICA  )    [ 31 ,  32 ],  PCA with reference (PCA-R)   [ 33 ,  34 ] 
and informed multimodal  PLS   [ 27 ].   

   4.    Other multimodal fusion applications using 4D fMRI and 
EEG data, include multiple linear regression,  structural equa-
tion modeling (SEM)   [ 18 ] or DCM [ 35 ].     

 Here we will emphasize on the data-driven multivariate fusion 
methods due to their fl exibilities and advantages. The optimization 
strategies of seven above mentioned multivariate models are dis-
played in Fig.  2 . In the following sections, we will introduce fi ve 
blind fusion models and their applications in combining functional 
and structural MRI in detai l.

  Fig. 2    A summary of seven blind and  semi-blind data-driven methods      for multimodal fusion. Figure modifi ed 
and reprinted with permission from Sui et al. [ 4 ]       
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3       Review of Multivariate Models Applied in Multimodal Fusion with fMRI 

   Joint  ICA   ( jICA  )    is a  second-level fMRI analysis method   that 
assumes two or more features (modalities) share the same mixing 
matrix and maximizes the independence among joint components 
[ 36 ]. This is a straightforward yet effective method by performing 
 ICA   on the horizontally concatenated features (along voxels). It is 
suitable for examining the common connection among modalities 
and requires acceptance of the likelihood of changes in one data 
type (e.g., GM) being related to another one, such as functional 
activation. Joint  ICA   is feasible to many paired combinations of 
features, such as fMRI, sMRI, and DT MRI, or three-way data 
fusion [ 37 – 41 ]. In order to control for intensity differences in MR 
images based on scanner, template, and population variations, usu-
ally each feature matrix (dimension: number of subject by number 
of voxel) is normalized to a study specifi c template [ 42 ,  43 ]. 

 Figure  3  [ 36 ], shows analyzed data collected from groups of 
schizophrenia patients and healthy controls using the jICA 
approach. The main fi nding was that group differences in bilateral 
parietal and frontal as well as posterior temporal regions in GM 
matter distinguished groups. A fi nding of less patient GM and less 
hemodynamic activity for target detection in these bilateral anterior 
temporal lobe regions was consistent with previous work. An unex-
pected corollary to this fi nding was that, in the regions showing the 
largest group differences, GM concentrations were larger in patients 
vs. controls, suggesting that more GM may be related to less func-
tional connectivity during performance of an auditory oddball task  .

3.1    Joint  ICA  

  Fig. 3    Auditory oddball/gray matter jICA  analysis  . Only one component demonstrated a signifi cant difference 
between patients and controls. The joint source map for the auditory oddball fMRI data ( left ) and gray matter 
( middle ) data is presented along with the loading parameters for patients and controls ( far right ). Reproduced 
with permission from Calhoun et al. [ 36 ]       
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      Multimodal  CCA   allows a different mixing matrix for each modality 
and is used to fi nd the transformed coordinate system that maxi-
mizes these inter-subject covariations across the two data sets [ 44 ]. 
This method decomposes each dataset into a set of components 
and their corresponding mixing profi le, which is called  canonical 
variants (CVs)  . The CVs have varying levels of activations for dif-
ferent subjects and are linked if they modulate similarly across sub-
jects. After decomposition, the CVs correlate each other only on 
the same indices and their corresponding correlation values are 
called canonical correlation coeffi cients. Compared to jICA that 
constrains two features to have the same mixing matrix, mCCA is 
fl exible in that it allows common as well as distinct level of connec-
tion between two features, as shown in Fig.  4 , but the associated 
source maps may not be spatially sparse, especially when the canon-
ical correlation coeffi cients are not suffi ciently distinct [ 4 ].

   Multimodal  CCA   is invariant to differences in the range of the 
data types and can be used to jointly analyze very diverse data 

3.2    Multimodal  CCA     

  Fig. 4     MCCA + jICA enables      people to capture components of interest that are either common or distinct across 
modalities. For example, when examining group differences across three modalities, joint ICs are signifi cantly 
group-discriminative in more than two modalities ( green framed ), while modality-specifi c discriminative ICs 
( pink framed ), i.e., fMRI_IC4, DTI_IC3, and DTI_IC7 only show signifi cant group difference in a single modality. 
Reproduced with permission from Sui et al. [ 5 ]       
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types. It can also be extended to multiset  CCA   to incorporate more 
than two modalities [ 45 ]. Note that multimodal  CCA   works on 
the second-level fMRI feature-contrast maps, while multiset- CCA   
can work with 4D raw fMRI data (not shown in Fig.  1 ), e.g., to 
maximize the trial-to-trial covariation between the concurrent 
fMRI and EEG data   [ 29 ].  

   Partial Least Squares ( PLS  )       as part of a family of multivariate data 
analyses, is based on the defi nition of a linear relationship between 
a dependent variable and predictor variables, and hence the goal is 
to determine which aspect of a set of observations (e.g., imaging 
data) are related directly to another set of data (e.g., experimental 
design, behavior) [ 46 ].  PLS   was fi rst applied to multimodal fusion 
by Martinen-Montes et al. [ 28 ], where the multiway  PLS   ( N-PLS  ) 
was proposed to fi nd correlations between fMRI time courses 
(dependent variables) and the spectral components of the EEG 
data (independent variables) from a single subject. Chen et al. [ 27 ] 
further proposed a multimodal  PLS   ( MMPLS  ) to simultaneously 
characterize the linkage between patterns of PET and GM. The 
multimodal  PLS   can be performed either informed to the variable 
of interest such as age or agnostic to this additional information 
(with or without  priori ). Investigators may want to pre-specify 
which of these two methods to use in the data analysis. The agnos-
tic MMPLS was used to identify the linkage between PET (depen-
dent data block) and sMRI (independent data block), which is 
mainly oriented for extraction of covariance patterns and related 
latent variables rather than for classifi cations. 

 Even though  PLS   has some similarity to  CCA   in that they both 
maximize between-set correlations,  PLS   is based on the defi nition 
of a dependency and works well especially when the dependence 
among the constituents of the datasets is explicitly assessed [ 47 ]; 
while  CCA   does not assign independent/dependent labels to either 
of the modalities and treats both equally [ 48 ]. Hence  PLS   is par-
ticularly suited to the analysis of relationships between measures of 
brain activity and of behavior or experimental design [ 49 ], while 
interpretational diffi culties in  PLS   often arise when the effects iden-
tifi ed do not correspond to the a priori expectations of the researcher.  

   According to many previous fi ndings in brain connectivity studies 
which combined function and structure [ 19 ,  50 ], it is plausible to 
assume the components decomposed from each modality have some 
degree of correlation between their mixing profi les among subjects. 
mCCA + jICA is a blind data-driven model that is optimized for this 
situation [ 26 ,  51 ] and also to have excellent performance for achiev-
ing both fl exible modal association and source separation. It takes 
advantage of two complementary approaches: mCCA and jICA, 
thus allowing both strong and weak inter-modality connection as 
well as the joint independent components. mCCA makes the jICA 

3.3  Partial Least 
Squares

3.4     mCCA + jICA     
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job more reliable by providing a closer initial match via correlation; 
while jICA further decomposes the remaining mixtures in the asso-
ciated maps and relax the requirement of suffi ciently distinction 
imposed on the canonical correlation. The code of jICA, 
mCCA + jICA can be accessed via the Fusion  ICA   Toolbox (FIT, 
  http://mialab.mrn.org/software/fi t/    ). Note that the mCCA + jICA 
approach does not increase the computational load appreciably and 
is not limited to two-way fusion, but can potentially be extended to 
three-way or  N -way fusion of multiple data types by replacing the 
multimodal  CCA   with multiset  CCA   [ 45 ]. It enables robust identi-
fi cation of correspondence among  N  diverse data types and enables 
one to investigate the important question of whether certain disease 
risk factors are shared or are distinct across multiple modalities. In 
accordance with this notion, this approach has already been used to 
fuse fMRI, sMRI, and DT MRI to study schizophrenia [ 25 ,  51 ], as 
shown i  n Fig.  4 .  

   Linked  ICA   is a fully probabilistic approach based on a modular 
Bayesian framework, which is designed for simultaneously model-
ing and discovering common characteristics across multiple modal-
ities [ 24 ]. The combined modalities can potentially have different 
units, noise level, spatial smoothness, and intensity distributions. 
Each modality group is modeled using a Bayesian tensor  ICA   
model [ 52 ]. Note that the Bayesian  ICA   differs from standard 
methods like FastICA [ 53 ] and Infomax [ 54 ] in that it incorpo-
rates dimensionality reduction into the  ICA   method itself by the 
use of automatic relevance determination priors on components 
[ 55 ] and works on the full-dimensionality data directly. Linked 
 ICA   is good at detecting and isolating single-modality noise; how-
ever, it is much more computationally demanding than the above 
four methods, and the spatial maps of the decomposed compo-
nents tend to be scattered. In a real application, linked  ICA   was 
applied to high functioning autism by combining DT MRI,  voxel- 
based morphometry (VBM)  , and resting-state fMRI connectivity 
to assess differences in brain structure and function   [ 56 ].   

4    Other Multimodal Applications Based on     Functional and Structural MRI         
Measures 

 All above multivariate, data-driven approaches focus on examining 
the inter-modality covariance, which provides a natural way to fi nd 
multimodality associations. Whereas, there are many other multi-
modal studies in the context of cross-modal connectivity and classifi -
cations incorporating both functional and structural MRI measures. 

 Historically, the combination of structural and functional brain 
imaging has been used for the purpose of analyzing functional 
activity in a priori defi ned (based on atlas) or data-driven selected 
(e.g., based on  ICA   components) brain regions. A central 

3.5     Linked ICA     
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assumption of systems neuroscience is that the structure of the 
brain can predict and/or is related to functional connectivity. The 
fi ndings of Segall et al. [ 57 ] support this hypothesis, which gener-
ally show that each single structural component derived from  ICA   
usually corresponds to several resting-state functional components. 
Functional information has been shown to be able to improve the 
correspondence of functional boundaries across subjects beyond 
the standard structural normalization [ 58 ]. Studies on psycho-
pathological phenomena could also discover spatial overlaps of 
structural and functional alterations in schizophrenia or at risk 
mental state using cognitive tasks and GM volume. Salgado-Pineda 
et al. [ 59 ] found three regions including the thalamus, the anterior 
cingulate, and the inferior parietal that showed both structural and 
functional impairments associated with attentional processing in 
schizophrenia. A follow-up study of the same group [ 60 ] also 
found both functional alterations (facial emotion task) and GM 
volume reductions in the DMN in schizophrenia. 

 On the other hand, many of the conducted fMRI-DT MRI 
studies addressed disruptions of brain connectivity seen with mental 
illnesses such as depression, schizophrenia, Alzheimer’s disease, and 
bipolar disorder. For example [ 61 ], evaluated interactions between 
measurements of anatomical and functional connectivity collected in 
the same subjects to study global schizophrenia-related alterations in 
brain connectivity. Schlosser et al. observed a direct correlation in 
schizophrenia between frontal FA reduction and fMRI activation in 
regions of the prefrontal and occipital cortices [ 62 ]. This fi nding 
highlights a potential relationship between anatomical changes in a 
frontal-temporal anatomical circuit and functional alterations in the 
prefrontal cortex. Another study [ 63 ] also illustrated that DT MRI- 
and fMRI-derived topologies are similar, and that the fMRI-DT 
MRI combination can provide additional information in order to 
choose reasonable seed regions for identifying functionally relevant 
networks and to validate reconstructed WM fi bers. A recent study of 
Koch et al. [ 64 ] showed that WM fi ber integrity in terms of increased 
radial diffusivity of the left superior temporal gyrus is associated with 
reduced neuronal activation in lateral frontal and cingulate cortices, 
suggesting that intact WM connectivity plays an important role for 
the pattern and intensity of functional activations with neuronal net-
works engaged in decision making. 

 As to the classifi cation, there are additional studies demon-
strating that the potential of the fusion of structural and functional 
data may improve the brain disease classifi cation. For example, 
 mild cognitive impairment (MCI)  , often an early stage of 
Alzheimer’s disease, is diffi cult to diagnose due to its rather mild 
and nearly insignifi cant symptoms of cognitive impairment. When 
trying to identify MCI patients from healthy controls, Kim et al. 
[ 65 ] showed that the integration of sMRI and fMRI can provide 
complementary information to improve the diagnosis of MCI 
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relative to results from one modality alone (error rate: 6 % using 
both versus 15 % using fMRI only and 35 % using sMRI only) [ 66 ]. 
Similarly, Wee et al. [ 67 ] integrated information from DT MRI 
and resting fMRI by employing  multiple-kernel support vector 
machines (SVMs)  , yielding statistically signifi cant improvement 
(>7.4 %) in classifi cation accuracy of predicting MCI from healthy 
controls by using multimodal data (96.3 %) compared to using 
each modality independently. Furthermore, with the ensemble fea-
ture selection strategy and advance support vector machine, Westlet 
et al. [ 68 ] combined resting-state fMRI, EEG, and sMRI data to 
classify schizophrenia from healthy controls and achieved the best 
performance with 91 % accuracy compared to each single modali-
ties, confi rming the effectiveness and advantages of multimodal 
fusion. The above fi ndings suggest the multimodal classifi cation 
facilitated by advanced modeling techniques could provide more 
accurate and early detection of brain abnormalities, which may not 
have been revealed through separate uni-modal analyses as typi-
cally performed in the majority of neuroimaging experiments   .  

5    Conclusions 

 It is abundantly clear that there is a diverse and growing collection 
of scientifi c tools available for noninvasively studying human brain 
functioning and relating it to cognitive and behavioral measures. 
Using these technologies, substantial progress has been made in 
characterizing structural/functional brain abnormalities and their 
interactions. In addition, a major goal in integrating/fusing 
approaches is to capitalize on the relative strengths of each modal-
ity, providing results synergistically. All of the multimodal studies 
that are reviewed in this paper are summarized and separated into 
different modality categories in Table  1 . In general, most studies 
we reviewed demonstrate congruent effects across measurement 
modalities and combining modalities does provide more differen-
tiating power among multiple diseases.

   Although recent multimodal imaging results are promising 
[ 19 ,  69 ], much work remains to be done. As the fi eld of multi-
modal imaging is relatively new, most of the studies represent novel 
fi ndings; however, replication is needed to draw general conclu-
sions about structure–function relationships. Secondly, multimodal 
fusion proves to be fruitful for a more informative understanding of 
brain activity and disorders, but fusing as many modalities/features 
as possible in the training sample does not guarantee best discrimi-
nation or classifi cation between groups, as reported in [ 8 ,  70 ]; thus 
it would be helpful to compare a combination of uni- modal and 
multimodal results, as done in [ 71 ]. This work can be pursued in 
future by using larger data sets and various modalities. Furthermore, 
a main challenge in multimodal data fusion comes from 
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dissimilarity of the data types being fused and result interpretation. 
However, emerging in 2009,  N -way multimodal fusion may 
become one of the leading directions in future neuroimaging 
research given the predominance of multimodal data acquisition 
[ 5 ]. Finally, introducing multimodal analyses in longitudinal brain 
studies has not been done frequently yet, which could be another 
new direction, as there are many possibilities for modeling the base-
line and change over multiple time points. 

 In summary, we are just beginning to unlock the potential of 
multimodal imaging, which provides unprecedented opportunities 
to further deepen our understanding of the brain disorders [ 51 ] 
based on various brain imaging measures. The most promising 
avenues for the future may rest on developing better models that 
can complement and exploit the richness of our data [ 15 ]. These 
models may well already exist in other disciplines (such as machine 
learning, machine vision, computational neuroscience, and behav-
ioral economics) and may enable the broader neurosciences to 
access neuroimaging so that key questions can be addressed in a 
theoretically grounded fashion.     

   Table 1  

  Summary of studies combining measures of  functional and structural MRI     

 Modality  Focus  Papers  Subject type  Methods 

 fMRI-sMRI  Connectivity  [ 6 ,  57 ,  59 ,  60 , 
 65 ,  72 – 80 ] 

 HC-MDD, HC-SZ, 
HC-MCI-AD 

 HC-TBI 

 Correlational analysis 
 Multiple regression 

 Covariance  [ 36 ,  44 ,  67 , 
 81 – 83 ] 

 HC-SZ, HC-MDD, 
HC-AD 

 jICA, mCCA 

 fMRI-DTI  Connectivity  [ 61 – 64 , 
 84 – 92 ] 

 Healthy children, 
HC-MDD, HC-SZ, 
HC-BP, HC-TBI 

 HC-AD-MCI 

 Correlational 
analysis, SEM 

 Multiple Regression 

 Covariance  [ 26 ,  38 ,  40 ]  HC-SZ, HC-SZ-BP  jICA, mCCA + jICA 

 Three-way fusion  connectivity  [ 93 – 97 ]  HC-ADHD 
 Children-Adults 
 HC-MDD 
 HC-psychotic 

 Correlational 
analysis 

 Multiple regression 

 Covariance  [ 8 ,  24 ,  25 ,  48 , 
 51 ,  70 , 
 98 – 101 ] 

 HC-SZ 
 HC-AD 
 HC-MCI-AD 

 jICA, mCCA, 
mCCA + jICA 

 Linked  ICA   
 SVM 

 Other fusion 
applications 

 fMRI-EEG 
 DTI-sMRI 
 GM-WM 

 [ 16 ,  27 – 29 , 
 42 ,  48 , 
 102 – 110 ] 

 HC-SZ, HC-AD 
 HC-MCI, HC-BP 

 Correlational 
analysis 

 Multiple regression 
 jICA, mCCA 
 PCA,  PLS  , parallel 

 ICA   
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Chapter 29

Functional MRI of the Spinal Cord

Patrick Stroman and Massimo Filippi

Abstract

Evidence to date shows that fMRI of the spinal cord (spinal fMRI) can reliably demonstrate regions 
involved with sensation of tactile, thermal, and painful stimuli, and with motor tasks. Spinal fMRI acquisi-
tion methods based on BOLD contrast have been recently optimized. Results have demonstrated the 
ability of spinal fMRI to provide objective assessments of sensory and motor function, and discriminate 
responses when modulated by cognitive/emotional factors. Studies have been also carried out with patients 
with cord trauma, and in people with multiple sclerosis (MS). The availability of essentially automated 
analysis, large extent coverage of the spinal cord, and spatial normalization to permit comparisons with 
reference results and labeling of active regions are being implemented with the aim to translate the method 
into a practical clinical assessment tool.

The research completed so far indicates that spinal fMRI will be able to demonstrate where the neu-
ronal activity is altered at any level (cervical, thoracic, lumbar, or sacral), whether or not information is 
reaching the cord from the periphery, and whether or not there is descending modulation of the response. 
It may also be able to provide an objective measure of pain, and to demonstrate the extent and mechanism 
of changes over time after an injury.

Key words Spinal fMRI, Blood oxygen level dependent, Multiple sclerosis, Cord trauma, Pain

1 Introduction

Evidence to date shows that fMRI of the spinal cord (spinal fMRI) 
can reliably demonstrate regions involved with sensation of tactile, 
thermal, and painful stimuli, and with motor tasks. There is also 
reliable evidence of the descending modulation of activity in the 
spinal cord. While spinal fMRI has not yet been applied or verified 
in a clinical setting, its value is expected to be in its ability to pro-
vide objective assessments of sensory and motor function, and dis-
criminate responses when modulated by cognitive/emotional 
factors, or even detect responses when a patient cannot feel the 
stimulus or is even conscious. Studies have been carried out with 
patients with cord trauma, and in people with multiple sclerosis 
(MS) to investigate the clinical utility of the results. Robust meth-
ods for analysis, and for displaying the results in an effective  manner 
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to facilitate their interpretation, are also necessary. At present, the 
usefulness and reliability of spinal fMRI as a research tool has been 
demonstrated, analysis and display methods have been developed, 
and further improvements are rapidly developing. The research 
completed so far indicates that spinal fMRI will be able to demon-
strate where the neuronal activity is altered at any level (cervical, 
thoracic, lumbar, or sacral), whether or not information is reaching 
the cord from the periphery, and whether or not there is descend-
ing modulation of the response. It may also be able to provide an 
objective measure of pain, and to demonstrate the extent and 
mechanism of changes over time after an injury.

In the following paragraphs, we discuss the current evidence 
for the most effective spinal fMRI method and the points that are 
still under debate, the applications that have been carried out to 
date and the degree of reliability and sensitivity these studies dem-
onstrate, and the proposed future developments and applications.

2 Background of Spinal fMRI

As with any fMRI method, spinal fMRI requires alternated 
periods of stimulation and a reference condition, while a time-
series of images is acquired over several minutes. Neuronal 
activity is detected only in gray matter regions, and is revealed 
by the local MR signal intensity having a component of signal 
change that corresponds with the stimulation paradigm. Unlike 
conventional brain fMRI, unique challenges are encountered in 
the heterogeneous tissues of the spine and spinal cord, because 
differences in magnetic susceptibilities between tissues produce 
spatial variations in the magnetic field. The spinal cord itself 
lies within the spinal canal surrounded by cerebrospinal fluid, 
and averages 45 cm in length, with cross-sectional dimensions 
of roughly 15 mm × 8 mm in the largest regions of the cervical 
and lumbar enlargements (Fig. 1). The entire cord is therefore 
in close proximity to the heart and lungs, and has been observed 
to move with each heart-beat, presumably as a result of the 
pulsatile CSF flow around it [1, 2]. An inherent challenge of 
fMRI is that it is necessary to monitor the signal intensity 
changes in a specific tissue volume, and this tissue may move 
between adjacent voxels over the course of the fMRI time-
series, obscuring the measurements that are obtained. Moreover, 
other sources of signal intensity change such as random noise 
and motion artifacts can interfere with the detection of signal 
changes related to neuronal activity. While these challenges 
may seem daunting, most have been overcome by adapting 
methods for analysis and motion correction that have been 
developed for brain fMRI.
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Fig. 1 Anatomy of the spinal cord (reproduced with permission from Blumenfeld H., Neuroanatomy Through 
Clinical Cases. Sunderland, MA: Sinauer Associates; 2002, p 22)

Functional MRI of the Spinal Cord
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3 Spinal fMRI Acquisition Methods

The first published example of fMRI in the spinal cord was by 
Yoshizawa et al. in 1996 [3]. This work and the earliest attempts by 
other groups applied the established brain fMRI methods of the time 
to the spinal cord [4, 5]. The consistent features of the studies by 
Yoshizawa et al. [3], Stroman et al. [6], Madi et al. [7], and Backes 
et al. [8] were that they were carried out with healthy volunteers and 
employed a hand motor task with imaging of the cervical spinal cord. 
All used gradient-echo methods with echo times (TE) of 40–50 ms 
at 1.5 T, and 31 ms at 3 T, as is typical with brain fMRI, and all com-
pared data obtained with transverse and sagittal slices. The areas of 
activity in the spinal cord that were demonstrated by these studies 
corresponded to areas of neuronal activity that were expected with 
the stimuli applied. The conclusions reported from each of these 
studies included the point that spinal fMRI is a feasible method for 
assessing neuronal activity in the cord. However, the results obtained 
also demonstrated variability in the areas of activity, and that it is dif-
ficult to obtain high-quality fMRI data in the spinal cord with gradi-
ent-echo methods and sensitivity to the BOLD effect.

The debate over the choice of imaging method was started 
with a study designed to verify that the BOLD effect occurred in 
the spinal cord [9], by comparing data obtained with gradient- 
echo and spin-echo methods at the same echo times. This was fol-
lowed by a study to characterize the signal changes detected with 
spin-echo methods [10]. The BOLD theory shows that with the 
comparison in the first of these studies the gradient-echo method 
should produce signal intensity changes between rest and stimula-
tion conditions that are three to four times higher than the spin- 
echo method [11]. The results, however, showed that the two 
methods produced signal intensity changes of approximately equal 
magnitudes, the image quality obtained with the spin-echo method 
was superior, and that the spin-echo method may therefore be 
superior for spinal fMRI. However, the apparent departure from 
the expected BOLD responses was unexplained.

A number of studies followed which investigated the underly-
ing contrast mechanisms, and it was proposed that changes in tissue 
water content related to neuronal activity could augment the BOLD 
contrast at short echo time (TE) values [12–16]. However, it has 
been shown that the optimal contrast-to-noise ratio with spin-echo 
fMRI in the spinal cord is obtained when the TE value is set for 
optimal spin-echo BOLD contrast, at approximately 75 ms [17]. As 
a result, whether spin-echo or gradient-echo imaging methods are 
used for spinal cord fMRI, the contrast provided is BOLD, and the 
two methods have roughly equal sensitivity when optimized, as 
detailed below. The debate over the choice of imaging method con-
tinues however, between gradient-echo methods which provide 
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greater speed, and spin-echo methods which  provide better image 
quality. The real advantage of spin-echo methods was in its lower 
sensitivity to the nonuniform magnetic field environment in the 
spinal cord, and the ability to acquire images quickly without resort-
ing the echo-planar imaging (EPI) spatial encoding methods.

As mentioned above, the earliest results with BOLD methods [3, 
6–9, 18] showed promise that spinal fMRI is feasible. Yoshizawa 
et al. demonstrated areas of activity with a hand motor task (average 
signal changes 4.8 %) corresponded with consistent areas of the 
spinal cord gray matter; they also showed that the rostral-caudal 
distribution of activity corresponded well with the neuroanatomy 
[3]. This was the first spinal fMRI study, and it set the standard for 
the studies which followed by Stroman et al. [6, 9], Madi et al. [7], 
and Backes et al. [8], which had a number of similarities. As in the 
study by Yoshizawa et al., each of these employed gradient-echo 
imaging (fast gradient-echo or echo- planar encoding), relatively 
thick (5–10 mm) transverse slices, with the echo-time (TE) set for 
BOLD sensitivity. All of these studies investigated activity with 
motor tasks, two investigated activity with sensory stimuli as well 
[6, 9], and three of them [6–8] compared results obtained with 
sagittal (4–8 mm) and transverse slices.

The results of these studies showed a number of consistent fea-
tures (Fig. 2). Signal intensity changes with hand motor tasks were 
consistently in the range of 4.3–4.8 % by Yoshizawa et al. [3] and 
Stroman et al. [6], and 0.5–7.5 % with graded force tasks by Madi 
et al. [7], and 8–12 % by Backes et al. [8], although there were 

3.1 Gradient-Echo 
Methods

Fig. 2 Example of spinal fMRI results obtained with gradient-recalled echo EPI in transverse slices of the cervi-
cal spinal cord (reproduced from Stroman and Ryner. Magn. Reson. Imaging 19: 27–32, 2001) [9]. (a) The left 
side of the body is at the top of this image and the red marks indicate the locations which underwent intensity 
changes in response to sensory stimulation of the right hand. The location of the slice is indicated in relation 
to the sagittal view of the cervical spine shown in the larger image. (b) Five transverse slices corresponding to 
the slices indicated in the sagittal view

Functional MRI of the Spinal Cord
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differences in field strength (1.5 T vs. 3 T) and image resolution 
which complicate any direct comparison. Each of these studies 
showed a rostral-caudal dependence of the areas with the task being 
performed, but only about half observed apparent laterality (left vs. 
right) of the active regions [3, 6]. Backes et al. [8] pointed out that 
there may be problems with the sensitivity to draining veins and the 
small anatomy, and the differences in spatial localization may simply 
be attributed to the extent of the draining vein field for the area 
being stimulated (ventral vs. dorsal). Another significant feature 
introduced by Backes et al., was the use of cardiac gating. In their 
results the cardiac gating can be expected to have significantly 
reduced the effects of cerebrospinal fluid (CSF) flow and spinal 
cord motion, and their results also showed the sensitivity of the 
BOLD methods to the draining veins leading from the gray matter 
to cord surface, as shown in more recent studies as well [19].

Another consistent feature of many of these studies was that 
they used echo-planar imaging (EPI), and made efforts to reduce 
the data readout time in order to reduce image distortion, includ-
ing high bandwidth and sampling on the gradient ramps [7] or 
multishot acquisitions [8]. Maieron et al. [20] employed methods 
of parallel imaging (SENSE encoding) with EPI to reduce the dis-
tortion effects for spinal fMRI. This method showed improve-
ments over previous methods but spatial distortions and variations 
in sensitivity in the rostral-caudal direction along the spinal cord 
were clearly visible. Even with extensive efforts to reduce distor-
tions in images obtained with EPI encoding the image data suffer 
from severe distortions and areas of signal dropout, and they can-
not be used in the presence of implanted devices to stabilize the 
spine after an injury.

More recent examples of applications of spinal fMRI with 
gradient- echo methods include one by Summers et al. who investi-
gated details of BOLD responses to innocuous and noxious heat 
applied to the hand [21]. Their results demonstrated activity spread 
across a small S/I range in ipsilateral dorsal and contralateral ventral 
spinal cord, and BOLD time-course responses were shown with 
good correspondence with the timing of the thermal stimulation. 
This study was carried out an 3 T and employed a segmented gradi-
ent-echo EPI sequence, with an echo time of 23 ms, temporal reso-
lution of 4 s, with images acquired in four segments (segment 
TR = 1 s). Fifteen, 4-mm-thick, axial slices were imaged with a field 
of view of 186 × 140 mm, acquisition matrix of 170 × 108 and a 
reconstructed voxel size of 0.98 × 0.98 × 4 mm. The approach of 
dividing the acquisition into multiple segments allowed for a larger 
sampling matrix, reduced the distortion, and provided greater spa-
tial precision in the results. Several other studies have also used gra-
dient-echo EPI methods, with details below, and have focused on 
pain processing and changes with cognitive state such as attention, 
placebo, and nocebo [22–26]. These studies were focused primarily 
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on sensory or pain processing, and effects such as placebo, nocebo, 
and attention modulation. Four of these examples used almost iden-
tical methods at 3 T, and used gradient-echo EPI acquisitions with 
10–12 axial slices which were 5 mm thick, with slice-specific z-shim-
ming, with in-plane resolution of 1 mm × 1 mm with a 128 × 128 
matrix, and parallel imaging (GRAPPA) with an acceleration factor 
of 2 [23–26]. The repetition times ranged from 1.17 to 1.5 s, and 
the TE was 40–42 ms. One recent study was slightly different and 
employed spiral encoding instead of EPI [22]. In this study a 
128 × 128 matrix was used, with 1.25 mm × 1.25 mm in-plane reso-
lution, with 4 mm thick slices, with a 1.25 s TR and TE of 25 ms. In 
each of these examples, BOLD responses were detected in the spinal 
cord, ipsilateral to the stimulus, and were highly localized. In many 
cases the activity was reported at a single location in the spinal cord.

One of the earliest spinal fMRI studies [10] was a comparison of 
the signal intensity time-course properties obtained with T2- 
weighted and T2*-weighted acquisitions. The intent was to inves-
tigate whether the BOLD effect occurred in the spinal cord as in 
the brain. The T2-weighted data had signal changes that were as 
large, or larger, than the T2*-weighted data at approximately the 
same echo time, and so the observations were not entirely consis-
tent with the BOLD model. More importantly, the results indi-
cated that spinal fMRI is feasible with both motor and sensory 
stimulation at 1.5 T, and can be achieved with good image quality 
with spin-echo imaging methods. A series of studies followed, to 
investigate the biophysical nature of the underlying contrast mech-
anism, and consistently showed significant BOLD effects, as well as 
a contribution from a proton-density change which was greater at 
shorter echo times [12–16, 27–30]. However, a key observation 
across these studies was that the spatial encoding method—EPI or 
fast spin-echo—is a critical factor in the choice of methods. A 
detailed analysis of the methods, including characterizations of the 
noise, physiological motion, and sensitivity to neuronal activity, 
demonstrated several key findings [17]. These included that it is 
important to avoid EPI methods for spinal fMRI, and that optimal 
sensitivity is obtained with spin-echo fMRI with an echo time (TE) 
of 75 ms (at 3 T), which corresponds with the T2 of the spinal cord 
tissue. This finding agrees with the established BOLD theory. This 
increase in TE, compared to methods used in earlier studies, repre-
sented a small (20 %) but significant increase in sensitivity. These 
findings also confirmed that the previous studies with an echo time 
of 38 ms were likely dominated by BOLD contrast, with only a 
small contribution from the proton-density change [31–37]. This 
point is important because it means that earlier studies done with a 
shorter echo time, and the more recent studies that are optimized 
for BOLD contrast, are dominated by the same contrast mecha-
nism and the results are comparable.

3.2 Spin-Echo 
Methods

Functional MRI of the Spinal Cord
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The applications of spinal fMRI with spin-echo fMRI methods 
have included studies of sensory responses with thermal and vibra-
tion stimuli, pain processing, and effects of traumatic spinal cord 
injury and diseases such as MS. Lawrence et al. demonstrated the 
ability to localize activity in the spinal cord with vibration stimula-
tion of different sensory dermatomes [38]. The spatial precision was 
further demonstrated with a later study of somatotopic mapping of 
thermal sensory responses in the cervical spinal cord and brainstem, 
with localization of C5 and C8 dermatomes and distinct right/left 
responses, as well as corresponding responses in brainstem regions 
[39]. A study of response characteristics compared constant thermal 
stimuli (i.e. block design) and a stimulus that gradually increased in 
intensity in a staircase pattern [40]. The static and dynamic thermal 
stimulation paradigms were designed to stimulate different periph-
eral receptors, and the comparison of the fMRI responses revealed 
significant differences in the spinal cord and brainstem in terms of 
the extent of the activity and the time-courses of the BOLD 
responses. These studies serve to demonstrate the spatial precision 
and the sensitivity of current spinal fMRI methods.

Several pain studies have also been carried out to date using spi-
nal fMRI with spin-echo methods. One study demonstrated different 
responses in the spinal cord and brainstem with innocuous and nox-
ious thermal stimuli [31]. BOLD responses were observed to be cor-
related with individual pain ratings in both the ipsilateral dorsal spinal 
cord, corresponding to the segment that was stimulated, and in the 
midbrain near the periaqueductal gray matter (PAG). Innocuous and 
noxious touch and brush stimuli were also compared in a separate 
study, and results demonstrated differences in fMRI responses in the 
spinal cord and brainstem [32]. Thermal pain responses in the spinal 
cord and brainstem have also been shown to be modulated by manip-
ulating the attention focus of research participants [41], and by sen-
sitizing the skin with capsaicin [35, 36]. Recently, the analgesic effects 
of listening to preferred music were investigated, and demonstrated 
moderate pain relief and corresponding changes in the cervical spinal 
cord and brainstem [42]. These studies consistently demonstrate a 
distribution of active regions in the cervical spinal cord with ipsilateral 
dorsal activity with a small rostral-caudal spread, within the stimu-
lated segment of the cord and occasionally within adjacent segments, 
and contralateral ventral activity. Depending on the stimulus and 
study conditions, contralateral dorsal activity has also been observed. 
In addition, corresponding brainstem activity is consistently detected 
in studies that span the cervical spinal cord and brainstem. The active 
regions that have been detected, and their variation with study condi-
tions, consistently demonstrate the role of descending modulation of 
sensory and pain responses in the spinal cord from brainstem regions. 
These represent important findings for our understanding of human 
pain processing, and the methods that have been developed show 
promise as tools for characterizing individual pain states.
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A considerable component of the potential value of spinal cord 
fMRI methods depends on what they can reveal about pathological 
processes in the spinal cord, such as the effects of injury or disease or 
aberrant pain conditions. Several spinal fMRI studies have been car-
ried out by the same group to investigate the effects of MS on spinal 
cord function [43–49]. These studies used tactile stimuli with spinal 
fMRI to probe sensory changes in MS, and demonstrated differences 
in responses in the cervical spinal cord depending on the MS sub-
type. Specifically, they observed that cord recruitment was increased 
in progressive MS patients compared to healthy control participants 
and in SPMS compared to PPMS patients. This finding also builds on 
prior studies that showed greater activity in RRMS and SPMS patients 
compared to controls, but no difference between patient groups. 
The effects of traumatic spinal cord injury on thermal sensory/pain 
processing have also been studied with spinal fMRI, even in patients 
with implanted devices to stabilize the spine. Cadotte et al. observed 
increased fMRI responses to thermal stimulation in the cervical spinal 
cord after injury, providing evidence of plasticity [50]. This work was 
built upon prior studies that demonstrated spinal cord responses to 
sensory stimulation or attempted movement tasks, below the site of 
injury [51, 52]. Again in these earlier studies, the fMRI responses 
were noted to be larger after spinal cord injury in many participants, 
compared to a group of healthy control participants.

The spin-echo methods that are widely used for spinal fMRI 
have also been quite similar across a number of recent studies, with 
an example shown in Fig. 3 [32, 35–37, 39–42, 45, 48, 50, 52]. 

Fig. 3 Example of T2-weighted fMRI data acquired with a half-Fourier single-shot 
fast spin-echo (HASTE) sequence at 3 T, with 1.5 mm × 1.5 mm in-plane resolu-
tion, 2 mm thick slices, a 192 × 144 acquisition matrix, and echo time of 76 ms
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These studies were focused primarily on sensory or pain processing, 
and effects of attention focus, mood, or stimulation modality on 
activity detected in the spinal cord, or the effects of MS or spinal 
cord injury on sensory processing. Most of these examples used 
very similar methods at 3 T, and used single-shot fast spin-echo 
acquisitions, with partial k-space sampling (such as the HASTE 
sequence) with nine to ten contiguous sagittal slices which were 
2 mm thick, with in-plane resolution of 1.5 mm × 1.5 mm with a 
192 × 144 matrix. Parallel imaging has not been used in any of these 
studies to date. The repetition times ranged from 6.75 to 9 s. In 
earlier studies the TE was typically 32–40 ms. These studies 
employed BOLD contrast with a contribution from changes in pro-
ton-density, due to changes in tissue water content [15]. More 
recent studies have been carried out with longer TE values of 76 ms 
to optimize the BOLD contrast, as described above [40, 42].

4 Comparison of the Currently Most-Used Spin-Echo and Gradient-Echo fMRI 
Methods

The spinal fMRI methods that have been used in studies to date 
appear to have converged on two widely-used methods, one based 
on spin-echo to avoid EPI spatial encoding, and the other based on 
gradient-echo EPI. In terms of the magnitude of the BOLD response 
that is expected, when the two methods are both optimized, they 
can be expected to be approximately equal, as detailed in Table 1.

In Table 1 the terms Δ(1/T2
*) and Δ(1/T2) refer to the changes 

in transverse relaxation rates between two conditions, such as a 
“baseline” state and “active” state. It is well established that, under 
the same experimental conditions, Δ(1/T2

*) is three to four times 
larger than Δ(1/T2) and hence T2*-weighted imaging is most fre-
quently used for fMRI [11, 28]. However, another important fac-
tor is that the echo time, TE, for optimal BOLD contrast is equal 
to the transverse relaxation time (i.e., T2

* or T2) which is roughly 
three times larger for spin-echo than gradient-echo. The net effect 
is that the magnitude of the BOLD response detected with spin-
echo methods is nearly equal to that with gradient-echo methods, 
when both methods are set for optimal BOLD sensitivity.

The signal-to-noise ratio and image quality are also important 
considerations for fMRI methods. The SNR can be compared 
between imaging methods with the expression [53]:
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This equation applies if T1-weighting can be ignored and a roughly 
90° flip angle is used for both methods. The “total imaging volume” 
is the image field-of-view multiplied by the slice thickness, the values 
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of Nx and Ny are the image acquisition matrix dimensions, and the 
“acceleration factor” refers to the parallel imaging acceleration fac-
tor. With the acquisition parameters used in the most recent meth-
ods, the spin-echo method is expected to have more than three 
times higher SNR than the gradient-echo method (Table 2). 
However, another important factor is the acquisition speed, because 
the number of volumes that are acquired to detect the BOLD 
responses influences the sensitivity. Rearranging the expression 
described by Murphy et al. [54] to estimate the number of volumes 
needed, we can estimate the effect size (i.e., the % BOLD change) 
that can be detected for a given number of volumes (N):

 
eff

erfc
SNR

=
( )

-( )
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1
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where “eff” is the effect size, “p” is the statistical threshold used, 
the function “erfc−1” is the inverse complementary error function, 
and “R” is the proportion of time spent in the stimulation condi-
tion, assuming a block design with only two conditions. For the 
purposes of this comparison we can set R = 0.5, and p = 10−6, which 
corresponds to erfc−1(p) = 3.46. An estimate of the corresponding 
t-value is given by √2 erfc−1(p), which is equal to 5.0. Using these 
numbers we can compare the relative sensitivities of the methods, 
in terms of the % BOLD signal change that can be detected with a 
fixed acquisition duration (Table 2).

These estimates show that the faster sampling of the gradient- 
echo EPI method offsets its lower SNR and improves its sensitivity, 
but it does not reach the sensitivity of the spin-echo HASTE method. 
With either of these methods the duration of the fMRI acquisitions 
can be increased to provide greater sensitivity, within practical limits. 

Table 1  
Comparison of the expected BOLD response magnitude detected with 
gradient-echo and spin-echo methods
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Estimates are for data acquired at 3 T, in the spinal cord, with TE values set for optimal 
BOLD contrast. The values for the expected changes in relaxation rates, Δ(1/T2

*) and 
Δ(1/T2), are taken from [28]
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Ultimately, the number of volumes that is acquired influences the 
sensitivity for detecting BOLD responses, not the sampling rate [53].

The final factor to be considered when comparing the spin- echo 
and gradient-echo methods is the image quality that is  provided, as 
shown in Fig. 4. Spinal fMRI acquisitions with gradient-echo EPI 
methods employ axial slices in all of the examples cited above, 
because axial slices appear to provide better image quality. However 
sagittal views are extracted from the volume spanned by axial slices, 
it can be seen that the images are still severely spatially distorted, and 
the distortion depends on the rostral- caudal position. Slice-specific 
shimming has been shown to improve the image quality over that 
shown in Fig. 4, but it does not eliminate the distortions [55]. The 
net trade-off of using EPI methods is that they introduce more 
problems than they solve, and provide higher temporal resolution at 
the expense of loss of spatial fidelity, less anatomical coverage, 
increased physiological noise, lower SNR, and lower BOLD sensitiv-
ity, compared to single-shot fast spin- echo methods.

5 Recent Developments

Recent studies have further developed spinal fMRI methods with 
regard to improving study designs, our understanding of the noise 
characteristics, and analysis methods. One of the greatest technical 

Table 2  
Estimates of SNR for commonly used gradient-echo and spin-echo spinal fMRI acquisitions

Typical brain fMRI
Gradient-echo spinal 
fMRI Spin-echo spinal fMRI

Imaging 
parameters

3.3 mm × 3.3 mm
3.3 mm thick slice
200 kHz bandwidth
64 × 64 matrix
TE = T2

*

Acceleration factor = 1 (no 
parallel imaging assumed)

1 mm × 1 mm
5 mm thick slice
200 kHz bandwidth
128 × 128 matrix
TE: 43 ms (~1.7 T2

*) 
acceleration factor = 2

1.5 mm × 1.5 mm
2 mm thick slice
151 kHz bandwidth
192 × 144 matrix
TE: 75 ms (T2) 

acceleration factor = 1

Estimated SNR 150 15 56

Acquisition time/
volume

3 s 1.1 s 6.75 s

Estimated effect 
size

p = 10−6, 12 min 
acquisition

0.42 % 2.6 % 1.7 %

SNR values are estimated compared to a typical brain fMRI method which is assumed to have an SNR of approximately 
150 at 3 T
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challenges encountered with spinal fMRI is the physiological noise 
arising from multiple sources. Cardiac-related motion has been 
identified as arising from CSF flow, related movement of the spinal 
cord within the spinal canal, and artifacts related to heart move-
ment itself, and the motion has been shown to be a complex inter-
action of several sources [1, 56, 57]. A recent study has identified 
an additional important component arising from artifactual move-
ment of the spinal cord in gradient-echo EPI images, in relation to 
respiration [58]. Changes in the static magnetic field, B0, due to 
changes in lung volume have been shown to cause a shift of the 
apparent position of the spine/spinal cord as large as 10 mm in 
MR images, when acquired with EPI methods. The shift also varies 
with rostral/caudal position along the spine. Understanding this 
source of artifactual movement can be expected to improve the 
sensitivity and reliability of spinal fMRI methods. The noise char-
acteristics in spin-echo HASTE spinal fMRI data has also been 
investigated recently, and have shown that in spite of the multiple 
sources of cardiac- and respiratory-related movement, the noise is 

Fig. 4 Comparison of image quality obtained with gradient-echo EPI and spin-echo HASTE sequences for 
spinal fMRI. Gradient-echo EPI images were acquired in contiguous axial slices (left panel) and were reformat-
ted into sagittal views (middle frame) for comparison with spin-echo HASTE images acquired in sagittal planes 
(right frame). Selected axial slices are shown for comparison, and the slice positions are indicated relative to 
the caudal medulla (top slice)
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essentially random with negligible auto-correlation [17]. That is, 
the physiological noise is uncorrelated between successive volumes 
due to the relatively slow sampling rate. The authors proposed that 
the most effective way to reduce the impact of physiological noise 
is therefore to simply acquire as much data as possible.

Another recent important development is the ability to accu-
rately coregister 3D spinal cord data. The Medical Image 
Registration Toolbox (MIRT) includes a nonrigid 3D registration 
tool that has been shown to be effective at reducing noise in spinal 
fMRI data acquired in sagittal planes [17, 59, 60]. In addition, an 
automated spatial normalization method has been developed 
recently, and with it a normalized 3D anatomical template of the 
cervical spinal cord and brainstem. A previous user-guided normal-
ization method has been described [17, 61], and this was used to 
create a reference template using data from 356 healthy partici-
pants. An iterative process was used to normalize the individual 
image data to this template using the automated method, and each 
iteration resulted in more precisely coregistered images from indi-
viduals and a more reliable reference template. The resulting tem-
plate consists of 1 mm × 1 mm × 1 mm voxels spanning the entire 
cervical spinal cord, brainstem, medial portion of the thalamus, 
and includes the corpus collosum.

The automated normalization process consists of first interpo-
lating the data to 1 mm cubic voxels and matching the orientation 
to the reference template. Predefined sections of the template are 
then matched to sections of the image data using the location at the 
maximum cross-correlation, with template sections rotated over a 
small range of angles. The first section identified includes the corpus 
callosum and thalamus, because of their distinct features. In subse-
quent sections the position and angle are weighted towards pre-
dicted values based on prior segments resulting in a stable mapping 
process. The distance along the cord (moving caudally) from the 
pontomedullary junction is matched in the template and image data 
to ensure that the cord anatomy is not altered in length due to a lack 
of rostral/caudal features in the cord tissue [62]. The final step of 
the normalization process was to fine-tune the mapping to the nor-
malized template using the MIRT toolbox [60]. The resulting tem-
plate is shown in Fig. 5. The automated normalization process can 
be applied to data from individuals acquired in sagittal planes with 
spin-echo methods, to enable mapping of data to the normalized 
space for group analyses, group contrasts, second-level analyses, etc.

The normalized 3D template has also been used to define an 
anatomical region mask for the cervical spinal cord and brainstem. 
The region locations and extents were compiled from numerous 
anatomical atlases and published papers [63–65]. This mask has 
been used to extract fMRI data from specific anatomical regions for 
regions-of-interest analyses, and for effective connectivity analyses 
using Structural Equation Modeling (SEM) [40, 42]. A SEM 
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method has been developed for spinal cord fMRI data, written in 
MatLab® (The Mathworks Inc.), based on prior descriptions [66, 
67]. The method is based on identifying coordinated BOLD 
responses between regions, accounting for the fact that input to one 
region may arise simultaneously from multiple other regions [68, 
69]. The BOLD signal time-courses in each region are expressed as 
a linear combination of the BOLD signal time-courses in other 
regions, and the weighting factors for the linear combination (i.e. 
the “connectivity strengths”) are determined for a complete net-
work [70]. This analysis requires a predefined anatomical model of 
all plausible connections between regions, which is provided by the 
normalized temperature and region mask described above. Possible 
connectivity relationships between the regions were identified based 
on the extensive description of the regions/networks involved in 
pain processing provided by Millan [71]. An example of SEM results 
from Bosma and Stroman [40] is shown in Fig. 6.

Recent advances in the applications of spinal fMRI serve to fur-
ther demonstrate the reliability and sensitivity of the results, and their 
potential value for future clinical applications. The first detailed rest-
ing-state study was carried out by Barry et al. [72] and used a 3D 
multishot gradient-echo sequence at 7 T. They demonstrated func-
tional connectivity between right- and left-side gray matter in the spi-
nal cord, in the resting state. This is an important finding for spinal 
cord fMRI in general, because of the variations in the baseline state 
that may occur, even when a stimulus is not applied. Related studies 
have also been carried out using spin-echo methods, by using either 
thought directed at a particular region of the body [73] or images 
displayed to the participant [74, 75]. In each of these studies, signal 
variations were detected in the spinal cord in response to the cogni-
tive/emotional stimuli, demonstrating the influence of descending 
input to the spinal cord. These findings may be related to the recent 
demonstrations of effects such as placebo [23]. Detailed studies of 

Fig. 5 A 3D-normalized reference template for the cervical spinal cord, brain-
stem, and medial regions of the thalamus and corpus collosum. Image views 
through the center of the volume are shown in axial (upper left), sagittal (upper 
right), and coronal (lower right) slices
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pain processing have also been carried out, showing effects of pain 
modulation by changes in attention focus and by listening to music 
[23, 24, 42]. Individual differences in pain processing have also been 
investigated, and demonstrate correlations between BOLD responses 
and individual pain ratings in the PAG, PBN, and spinal cord dorsal 
horn [76]. This study provides evidence that spinal fMRI methods are 
adequately sensitive to provide characterizations of the pain state in 
individuals. Moreover, a study of the effects of spinal cord injury on 
thermal sensory processing has demonstrated plasticity, with signifi-
cant differences detected in individuals compared to a group of healthy 
control participants [50]. This body of recent work shows that spinal 
fMRI methods and applications are rapidly developing and expand-
ing. Their future clinical potential is also further demonstrated.

6 Data Acquisition Details and Analysis Methods

The sensitivity of fMRI studies depends on how well the paradigm 
design matches the neural function of interest, and excludes con-
founding effects, possibly more than it depends on the acquisition 

Fig. 6 SEM results obtained from healthy participants with a block-design stimulus at 45 °C, and a step-wise 
increase in temperature to 45 °C. Arrows indicate the direction of the influence, while the line thickness indi-
cates the strength of the SEM connectivity. Solid lines represent positive path coefficients and dotted lines 
represent negative coefficients. Abbreviations are as follows: Cord right dorsal region of the C8 spinal cord 
segment, PBN parabrachial nucleus, LC locus coeruleus, NRM nucleus raphe magnus, NTS nucleus tractus 
solitarius, NGC nucleus gigantocellularis, DRt dorsal reticular nucleus, PAG periaqueductal gray matter, HYP 
hypothalamus, Thal thalamus. This figure is reproduced from Bosma and Stroman, J Magn Reson Imaging 
2014 (DOI: 10.1002/jmri.24656) [41]
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parameters discussed earlier. The spinal cord receives tonic input 
from brainstem regions, even when no task is performed or stimu-
lus is applied [71]. Therefore, as has been observed already with 
spinal fMRI, the “baseline” state, in the absence of a stimulus, can-
not be considered an “inactive” state [31, 76]. Other important 
considerations for spinal fMRI study designs are the properties of 
sensory receptors, and the expected input they provide to the spi-
nal cord, communication via interneurons within and between spi-
nal cord segments, and the descending modulation of responses 
from brainstem regions [40]. Spinal cord responses cannot be 
assumed to be constant across repeated applications of stimuli, or 
tasks, because of the emotional/cognitive component of descend-
ing modulation [23, 24, 40–42, 74–77]. An additional conse-
quence of these properties of the spinal cord and brainstem is that 
upon application of a stimulus or task, both inhibitory and facili-
tory input signaling to the regions can increase, or decrease. The 
net change in metabolic demand can also therefore be an increase, 
or a decrease, and negative BOLD responses are possible, and have 
been observed consistently across studies [17, 31–33, 35, 37, 39–
42]. These observations across studies show that taking the periph-
eral and supraspinal input signaling into consideration in the study 
design can improve the sensitivity of the results and the accuracy of 
their interpretation. Moreover, these observations demonstrate the 
sensitivity of the results that can currently be achieved.

The key steps in the analysis of spinal fMRI data are essentially 
the same as with brain fMRI data. The preprocessing steps typically 
include converting the data from DICOM to an easier-to-use for-
mat such as NIfTI, then applying motion-correction by realigning 
the data to match one volume in the time series, slice-timing correc-
tion, spatial normalization, and spatial smoothing. The preprocessed 
data can then be analyzed with a number of methods such as a 
General Linear Model (GLM) to detect predicted BOLD responses, 
region-of-interest (ROI) analyses to extract time-course responses 
from specific regions, and connectivity analyses. A number of studies 
have used brain fMRI analysis software such as SPM (Statistical 
Parametric Mapping, Wellcome Trust Centre for Neuroimaging, 
London, UK) [23, 24, 26] or AFNI [72, 78] and have adapted its 
use for spinal fMRI. Specialized software has also been developed in 
MatLab for analysis of spinal fMRI data acquired with spin-echo 
methods [17, 40, 42]. A detailed investigation of the noise charac-
teristics and effects of preprocessing steps has shown that efforts to 
model physiological noise for inclusion as regressors in GLM analy-
sis provide only a small improvement in the ability to detect BOLD 
responses [17, 56, 57]. This limited effect appears to be the result of 
the complexity of the physiological noise. A data-driven method of 
extracting global sources of variance across the entire spinal cord has 
been shown to have a significant effect on improving the sensitivity 
of the results [17]. In the same study it was shown that accurate 
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motion-correction (i.e. realignment of the data) provides the greatest 
improvement in measurement sensitivity of all of the preprocessing 
steps. Temporal filtering, on the other hand, alters the t-value distri-
bution which artificially inflates the significance of the results, lead-
ing to false- positive results [17, 79]. Ultimately, this study showed 
that the best analysis approach (to date) involves only effective 
motion- correction, data-driven estimates of noise regressors in the 
GLM. Moreover, the most effective way to deal with either random 
or physiological noise is to collect as many volumes as possible to 
describe the fMRI time-series. In effect, these results to date have 
confirmed principles of fMRI study design and analysis that have 
long been known for brain fMRI, but are often over-looked in the 
effort to develop more “sophisticated” methods.

7 Conclusions and Future Directions

The evidence to date shows that spinal fMRI has developed rap-
idly over the past several years, and highly sensitive results have 
been obtained. Details of responses to sensory and motor para-
digms, pain processing, and descending modulation related to 
cognitive and emotional factors have all been demonstrated. 
Detailed anatomical mapping of responses has also been demon-
strated. There is no question that spinal fMRI is feasible and effec-
tive for research applications. It has also been shown to provide 
valuable information about multiple-sclerosis and traumatic spinal 
cord injury. However, it still has many limitations and will require 
more development before clinical applications can be considered. 
While the technical challenges and limitations of spatial and tem-
poral resolution have been identified, and efforts to overcome 
these challenges are proceeding, one key limitation for the prog-
ress of spinal fMRI is the lack of “critical mass” of researchers 
working on it. Divisions over the best methods to use have further 
limited the pace of development. Consensus over the acquisition 
methods would contribute to the development of common soft-
ware methods for analysis. This would reduce the burden of time 
and effort for new groups to apply spinal fMRI to new research 
questions, and would allow new developments to be shared more 
easily between groups. Fortunately, efforts are underway to facili-
tate sharing of ideas such as “Spinal Cord Hack 2014” organized 
by Dr. Paul Summers as a satellite meeting of the International 
Society for Magnetic Resonance in Medicine (ISMRM) 2014 
annual meeting, and the 2015 version being organized by Dr 
Julien Cohen-Adad. In addition, the International Spinal Research 
Trust and the Wings for Life Foundation have organized interna-
tional imaging workshops [80, 81], and are promoting a multisite 
diagnostic trial using spinal cord imaging.
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    Chapter 30   

 Clinical Applications of the Functional Connectome                     

       Massimo     Filippi       and     Maria     A.     Rocca      

  Abstract 

   Network-based analysis of brain functional connections has provided a novel instrument to study the 
human brain in healthy and diseased individuals. Graph theory provides a powerful tool to describe quan-
titatively the topological organization of brain connectivity. Using such a framework, the brain can be 
depicted as a set of nodes connected by edges. Distinct modifi cations of brain network topology have been 
identifi ed during development and normal aging, whereas disrupted functional connectivity has been asso-
ciated to several neurological and psychiatric conditions, including multiple sclerosis, dementia, amyo-
trophic lateral sclerosis, and schizophrenia. Such an assessment has contributed to explain part of the 
clinical manifestations usually observed in these patients, including disability and cognitive impairment. 
Future network-based research might reveal different stages of the different diseases, subtypes for cogni-
tive impairments, and connectivity profi les associated with different clinical outcomes.  

  Key words     Brain networks  ,   Structural connectivity  ,   Functional connectivity  ,   Graph theory  ,   Multiple 
sclerosis  ,   Dementias  ,   Psychiatric conditions  

1      Introduction 

  Brain function   depends on both local information processing 
combined with effective global communication and integration of 
information within a network of neural interactions. Brain func-
tion is not only based on the properties of single regions, but 
rather emerges from interactions of the network as a whole. Brain 
areas are interconnected by large-scale bundles of axonal projec-
tions, forming a macroscopic network of white matter pathways 
that enable functional communication between distinct, anatomi-
cally separated brain regions. Recent advances in  magnetic reso-
nance imaging (MRI)   allow the reconstruction of both the 
structural and functional connections of this large-scale neural sys-
tem, thus enabling effi cient mapping of connectivity across the 
entire brain [ 1 ].  Network-based analysis   of brain structural and 
functional connections has provided a novel instrument to study 
the human brain in healthy and diseased individuals [ 2 ]. Using the 
theoretical framework of networks and graphs, the brain can be 
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represented as a set of nodes (i.e., brain regions) joined by pairs by 
lines (i.e., structural or  functional connectivity     ). Graph  analysis   
has revealed important features of brain organization, such as an 
effi cient “small-world” architecture (which combines a high level 
of segregation with a high level of global effi ciency) and distrib-
uted, highly connected network regions, called “hubs.” In a small-
world network, a high clustering coeffi cient indicates that nodes 
tend to form dense regional cliques, implying high effi ciency 
in local information transfer/processing. Path length and global 
effi ciency are measures of network integration, which is the ability 
to combine specialized information rapidly from distributed brain 
regions. Distinct modifi cations of brain network topology have 
been identifi ed during development and normal aging, whereas 
disrupted functional network properties have been associated with 
several neurological and psychiatric conditions, including neuro-
degenerative diseases, multiple sclerosis (MS), and schizophrenia. 

 The methodological aspects related to graph analysis (the key 
mathematical framework for much of this research) have been 
described in details in another chapter of this book (Chapter 10). 
This chapter provides a summary of modifi cations of brain network 
topology associated with normal development and aging, and of 
how they are perturbed in course of brain diseases.  

2    Normal  Development   

 Using graph-theoretical methods, the maturation of the control 
network and  default-mode network (DMN)   have been explored by 
analyzing resting state (RS) fMRI data of healthy subjects from 7 to 
31 years old [ 3 ,  4 ]. In children, the control network was more inte-
grated and comprised a single system, contrasting with the adult 
confi guration, which was characterized by a dual-network structure 
including cingulo-opercular and fronto-parietal networks. These 
data indicated a less between-network segregation and greater 
within-network connectivity in children. The DMN, which con-
tains a set of regions usually deactivated during goal- oriented tasks, 
was only sparsely connected in children while a cohesive integrated 
network emerged in adults. Developmental changes in DMN 
regions were characterized by increases in correlation strengths and 
occurred in an anterior-posterior orientation. Conversely, the devel-
opmental pattern of the control network involved both increases 
and decreases of correlation strengths. Maturation of whole-brain 
functional networks from 8 to 25 years old has also been investi-
gated [ 5 ]. Such a study showed that although the modular struc-
ture was well built since 8 years old, the modules changed 
dramatically from anatomical proximity to a more “distributed” 
architecture, grouping regions mainly by their functional roles. 
Measures of small-world structure (i.e., clustering coeffi cient and 
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path length) were preserved through development, indicating that 
functional networks in children were effi cient for both global and 
local information transfer as those in adults. Another RS fMRI 
study [ 6 ] replicated the previous results and also described a signifi -
cantly decreased subcortical-cortical and increased cortico-cortical 
 connectivity   in the developing brain (Fig.  1 ). Both these studies 
observed the phenomenon of increased long-range connections 
and decreased short-range connections, which provides crucial sup-
port for segregation and integration processes at a system level over 
brain development. Another study showed that the hub locations 
and the core hub–hub network structure was kept consistent from 
10 to 20 years of age while the main changes happened to the con-
nectivity linking hubs and nonhub regions [ 7 ].  

 RS  functional connectivity (FC)   patterns extracted by support 
vector machine-based multivariate pattern analysis can make accu-
rate predictions about individuals’ brain maturity across develop-
ment [ 8 ]. Gender effects on whole-brain functional networks have 
also been explored in healthy children from 6 to 18 years old [ 9 ]. 
Compared to girls, boys had higher global effi ciency and shorter 
path length, with regional differences mainly located in the DMN, 
language, and visual areas. This fi nding is consistent with the 
notion that cognitive and emotional  development   differs between 
girls and boys, particularly in visuospatial, language, and emotion 
processing areas of the brain. A study in 12-year-old monozygotic 
and dizygotic twins showed that the global network effi ciency was 
under genetic control [ 10 ]. The functional brain network in 
infancy was also studied. Two-week-old pediatric subjects only 
have primitive and incomplete DMN, whereas, after a marked 
increase of connectivity, the DMN in 2 years of age became similar 
to that observed in adults. Whole-brain functional networks in the 
infant brain already exhibited functional hubs mainly located in 
primary sensory and motor areas, which was distinct from the hub 
distribution of the adults in the heteromodal association cortex 
[ 11 ]. Another RS fMRI study showed that the functional brain 
networks have the small-world topology immediately after birth, 
followed by a remarkable improvement in the network effi ciency 
and resilience until 2 years of age [ 12 ].  

3    Normal  Aging   

 The analysis of RS fMRI data has demonstrated a reduced cost- 
effi ciency in older people with aging with detrimental effects mainly 
located to frontal and temporal cortical and subcortical regions 
[ 13 ]. Another study [ 14 ] found the RS FC of both DMN and 
dorsal attention network decreased with aging, with long-range 
connections showing higher vulnerability to aging effects than 
short-range connections. Other investigations confi rmed a decrease 
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  Fig. 1    Developmental changes in interregional  functional connectivity  . ( a ) Children had signifi cantly greater 
subcortical-primary sensory, subcortical-association, subcortical-paralimbic, and lower paralimbic- 
association, paralimbic-limbic, association-limbic connectivity than young-adults ( p  < 0.01, indicated by **). 
( b ) Graphical representation of developmental changes in functional connectivity along the posterior-anterior 
and ventral-dorsal axes, highlighting higher subcortical connectivity (subcortical nodes are shown in green) 
and lower paralimbic connectivity (paralimbic nodes are shown in gold) in children, compared to young-adults. 
Brain regions are plotted using the  y  and  z  coordinates of their centroids (in mm) in the MNI space. 430 pairs 
of anatomical regions showed signifi cantly higher correlations in children and 321 pairs showed signifi cantly 
higher correlations in young-adults ( p  < 0.005, FDR corrected). For illustration purposes, the plot shows dif-
ferential connectivity that were most signifi cant, 105 pairs higher in children (indicated in  red ) and 53 higher 
in young-adults (indicated in  blue ), ( p  < 0.0001, FDR corrected). From [ 6 ] with permission       
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in DMN connectivity (e.g., precuneus and posterior cingulate 
regions) with aging. Using supporting vector machine  analysis   
[ 15 ], modifi cations of connectivity in the sensorimotor and 
cingulo- opercular networks were identifi ed as distinguishing char-
acteristics of age-related reorganization (Fig.  2 ).   

4    Multiple  Sclerosis   

 Consistent with the known multifocal distribution of structural 
damage to the central nervous system, MS patients experience a 
distributed pattern of RS FC abnormalities, which are related to 
the extent of structural damage and the severity of clinical disability 
and cognitive impairment [ 16 ]. Only a few studies have applied 
graph analysis methods in these patients. 

 Several authors have used graph-theoretical analysis of RS fMRI 
data to improve the understanding of the mechanisms responsible 
for the presence of cognitive defi cits and clinical disability in patients 
with MS [ 17 – 19 ]. A study from 246 MS patients and 55 matched 
healthy controls [ 18 ] found that global network properties (includ-
ing network degree, global effi ciency, and path length) were abnor-
mal in MS patients compared to controls and contributed to 
distinguish cognitively impaired MS patients from controls, but not 
the main MS clinical phenotypes. Compared to controls, MS 
patients also showed a loss of hubs in the superior frontal gyrus, 
precuneus, and anterior cingulum in the left hemisphere; a different 
lateralization of basal ganglia hubs (mostly located in the left hemi-
sphere in controls, and in the right hemisphere in MS patients); and 
the formation of hubs, not seen in controls, in the left temporal 
pole and cerebellar lobule IV-V. Such a modifi cation of regional 
network properties was found to contribute to cognitive impair-
ment (Fig.  3 ) and phenotypic variability of MS.  

 A RS fMRI study of 16 early MS patients detected increased 
network modularity (i.e., diminished functional integration 
between separate functional modules) in patients compared to 
healthy controls [ 19 ]. Such modularity abnormalities in patients 
correlated with worse performance at a dual task. Another study 
explored the effects of gender on the correlation between network 
functional abnormalities and cognitive function [ 17 ]. Compared 
to male controls, male MS patients had reduced network effi ciency, 
but normal clustering coeffi cient. No abnormalities were found in 
female patients. Decreased network effi ciency in male patients was 
correlated with reduced visuospatial memory. 

 Using a pattern recognition technique, MS  patients   could be 
discriminated from healthy controls based on RS FC with a sensi-
tivity of 82 % and specifi city of 86 %. The most discriminative con-
nectivity changes were found in subcortical and temporal regions, 
and contralateral connections were more discriminative than ipsi-
lateral ones [ 20 ].  

Clinical Applications of the Functional Connectome



  Fig. 2     Aging   effect on resting-state functional connectivity .  Illustration of the consensus features that 
decreased positive correlation with age ( top ) and the consensus features that increased positive correlation 
with age and decreased negative correlation with age ( bottom ). Connections are scaled by their respective 
feature weight, with thicker connections representing greater feature weight. From [ 15 ] with permission       
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5    Neurodegnerative Diseases 

   Many studies used graph theoretical analysis in patients with the 
most prevalent type of dementia, Alzheimer’s disease (AD). A cor-
relation between the site of amyloid-β deposition in AD patients 
and the location of major hubs as defi ned by graph theoretical 
analysis of RS FC in healthy adults has been demonstrated [ 21 ]. 
These regions include the posterior cingulate cortex/precuneus, 
the inferior parietal lobule, and the medial frontal cortex, implying 
that the hubs are preferentially affected in the progression of 
AD. There is also convergent evidence from methodologically 
 disparate MRI studies that AD is associated with perturbations of 
brain small-world network organization [ 22 – 24 ]. 

 Although studies showed considerable variability in reported 
group differences of most graph properties, the average 

5.1  Alzheimer’s 
Disease and Other 
 Dementias        

  Fig. 3    Functional hub distribution in healthy controls and multiple sclerosis  patients  . Brain hubs ( a  left hemi-
sphere,  b  right hemisphere) of the functional networks of healthy controls (HCs) and patients with MS as a 
whole and according to the presence/absence of cognitive impairment. Hubs were identifi ed as brain regions 
having either integrated nodal degree or betweenness centrality one standard deviation greater than the net-
work average. Hubs present in HC only are reported in  red , hubs present in MS patients only are reported in 
 blue , and hubs present in all groups are reported in  black. CP  cognitively preserved,  CI  cognitively impaired, 
 ACC  anterior cingulate cortex,  Caud  caudate nucleus,  Cereb  cerebellum,  ITG  inferior temporal gyrus,  Ling  lin-
gual gyrus,  MCC  middle cingulate cortex,  MTG  middle temporal gyrus,  OFC  orbitofrontal cortex,  Pall  pallidus, 
 Precun  precuneus,  Put  putamen,  SFG  superior frontal gyrus,  Sup TP  superior temporal pole,  Thal  thalamus. 
From [ 18 ] with permission       
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characteristic path length has been most consistently reported to be 
increased in AD, as a result of loss of connectivity, while the cluster-
ing coeffi cient is likely to be less affected by AD pathology [ 25 ]. 

 An fMRI graph analysis study in mild AD [ 24 ] suggested that 
loss of small-world network properties might provide a clinically 
useful diagnostic marker, since clustering was reduced at a global 
level and at a local level (in both hippocampi), and global cluster-
ing was able to discriminate AD patients from healthy elderly sub-
jects with relatively high sensitivity (72 %) and specifi city (78 %). 
Another fMRI study [ 23 ] showed that the characteristic path 
length of AD brains is closer to the theoretical values of random 
networks compared with controls. Decreased RS FC in the parietal 
and occipital regions, and increased connectivity in frontal cortices 
and corpus striatum were also found [ 23 ] (Fig.  4 ). Decreased 
global effi ciency and increased local effi ciency were also found in 
moderate AD cases, in whom the altered brain regions were mainly 
located in the DMN, temporal lobe, and subcortical regions [ 26 ].  

 Graph theoretical analysis was recently applied to RS fMRI 
data from patients with the  behavioral variant of frontotemporal 
dementia (bvFTD)   [ 27 ]. Global and local functional networks 
were altered in bvFTD patients, indicated by reduced mean net-
work degree, clustering coeffi cient, and global effi ciency and 
increased clustering coeffi cient relative to normal subjects. Altered 
brain regions were located in structures that are closely associated 
with  neuropathological         changes in bvFTD, such as the frontotem-
poral lobes and subcortical regions.  

   Consistent motor and extra-motor brain pathology supports the 
notion of amyotrophic lateral sclerosis (ALS) as a system failure. 
Thus, a simplistic (motor-based) approach to ALS is no longer ten-
able. Overall functional organization of the motor network was 
unchanged in patients with ALS compared to healthy controls; 
however, patients with a stronger and more interconnected motor 
network had a more progressive disease course [ 28 ].   

6     Psychiatric Conditions   

 Evidence is accumulating that neural network changes are underly-
ing structural and functional brain changes in psychiatric diseases, 
and may provide a more sensitive measure to detect brain abnor-
malities than measurements of properties of separate brain areas 
alone [ 29 ,  30 ]. The potential of network approaches to psychiatry 
can be illustrated by fi ndings in schizophrenia, a severe psychiatric 
disease which has for long been hypothesized to refl ect a discon-
nection syndrome. Connectomic studies have shown a reduced 
whole-brain functional connectivity in patients with schizophrenia 
[ 31 ,  32 ]. Functional networks in schizophrenia patients were 

5.2  Amyotrophic 
Lateral  Sclerosis     
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characterized by reduced clustering and modularity and increased 
global effi ciency compared with healthy controls, suggesting 
increased global integration and decreased local segregation [ 31 , 
 33 ,  34 ]. By assessing dynamic graph properties of time-varying 
functional brain connectivity in RS fMRI data, a recent study 

  Fig. 4    Resting-state synchronization in healthy controls and Alzheimer’s  disease   patients. ( a ) Matrix of signifi -
cant differences of synchronization between Alzheimer’s disease (AD) and controls (2-tail t-test,  p  < 0.05 
uncorrected). The white and black dots represent brain areas pairs with increased and decreased synchroniza-
tion in AD respectively. ( b - d ) A subset of connectional differences corresponding to the matrix ( a ) are plotted 
at three superior-to-inferior levels through the anatomical automatic labeled brain template. Lines depict 
synchronization between pairs of regions: solid lines = enhanced synchronization; dashed lines = reduced 
synchronization. Note the pattern of generalized posterior (parietal and occipital) synchronization reductions 
and increased frontal synchronization. From [ 23 ] with permission       
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demonstrated a decreased variance in the dynamic topological 
parameters in patients with schizophrenia compared to healthy 
controls, which might contribute to explain the abnormal brain 
performance in this mental illness [ 35 ]. The disconnectivity 
hypothesis in schizophrenia is also supported by studies which 
showed an abnormal hub organization. A less hub-dominated con-
fi guration has been observed in functional and structural  schizo-
phrenia   connectomes [ 31 ,  36 ] Specifi cally, schizophrenia patients 
exhibit reduced regional centrality in hubs including the frontal 
association, parietal, limbic, and paralimbic brain areas based on 
structural studies, and including the frontal, temporal, parietal, 
limbic, and occipital areas based on functional studies.  

7    Conclusions 

 The extensive application during the past few years of graph theoreti-
cal approaches to defi ne brain network topology in healthy and dis-
eased people has undoubtedly provided a novel instrument to 
characterize functional abnormalities associated with different neuro-
logical and psychiatric conditions and to test hypothesized discon-
nectivity effects in these diseases. Disrupted functional brain 
connectivity is present in the major neurological and psychiatric con-
ditions discussed in this chapter and their assessment has contributed 
to explain part of the clinical manifestations of these patients. 
However, there are also inconsistencies between existing studies, 
which might be attributable to the clinical heterogeneity of the 
patient groups as well as to differences in imaging modality and ana-
lytic methods. Future network-based research might reveal different 
stages of the different diseases, subtypes for cognitive impairments, 
and connectivity profi les associated with different clinical outcomes.     
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