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    Chapter 3   

 The Role of WT1 in Embryonic Development and Normal 
Organ Homeostasis                     

     Bettina     Wilm      and     Ramon     Muñoz-Chapuli     

  Abstract 

   The Wilms’ tumor suppressor gene 1 ( Wt1 ) is critically involved in a number of developmental processes in 
vertebrates, including cell differentiation, control of the epithelial/mesenchymal phenotype, proliferation, and 
apoptosis. Wt1 proteins act as transcriptional and post-transcriptional regulators, in mRNA splicing and in 
protein–protein interactions. Furthermore, Wt1 is involved in adult tissue homeostasis, kidney function, and 
cancer. For these reasons, Wt1 function has been extensively studied in a number of animal models to establish 
its spatiotemporal expression pattern and the developmental fate of the cells expressing this gene. In this chap-
ter, we review the developmental anatomy of Wt1, collecting information about its dynamic expression in 
mesothelium, kidney, gonads, cardiovascular system, spleen, nervous system, lung, and liver. We also describe 
the adult expression of Wt1 in kidney podocytes, gonads, mesothelia, visceral adipose tissue, and a small frac-
tion of bone marrow cells. We have reviewed the available animal models for Wt1-expressing cell lineage analy-
sis, including direct Wt1 expression reporters and systems for permanent Wt1 lineage tracing, based on 
constitutive or inducible Cre recombinase expression under control of a Wt1 promoter. Finally we provide a 
number of laboratory protocols to be used with these animal models in order to assess reporter expression.  
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1      Introduction 

   The  Wilms’ tumor   suppressor gene 1 ( Wt1 ) is well known for its 
dynamic expression pattern during embryonic development, both 
in mouse and human. The gene gives rise to at least 24 protein 
isoforms in human, which are involved in the regulation of the 
expression of target genes acting in tissue development, growth, 
differentiation, and apoptosis. Target gene expression is frequently 
regulated through binding to co-regulators. Furthermore, Wt1 
proteins also act as post-transcriptional regulators in mRNA splic-
ing and in protein–protein interaction [ 1 ]. 

 In this chapter, we fi rst give a short overview of the distribu-
tion of Wt1 expression at gene and/or protein level during devel-
opment in mice and other animal models, and describe the adult 
expression of Wt1. We then review the murine models available for 

1.1  Developmental 
Anatomy of Wt1
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the study of Wt1 function and provide protocols that include the 
use of some of these models, with special emphasis on  Wt1 - 
expressing  cell lineage tracing   (in short: Wt1 lineage tracing).  

   The mesothelium is a simple epithelium that lines the coelomic 
 cavities      and the organs that develop within these cavities. It forms 
from the lateral mesoderm at around E9 in the mouse embryo. By 
this time  Wt1  transcripts start to be detected in the parietal coelo-
mic lining, and over the  heart  , intestine, and urogenital ridge [ 2 ]. 
Expression of Wt1 protein appears fi rst over the urogenital ridge at 
E9.5, but between E10.5 and E11.5 Wt1 protein is present in the 
mesothelial layers of the parietal coelomic linings, over the heart, 
intestine,  lungs  , and  liver  , and also in the septum transversum and 
developing diaphragm [ 3 – 7 ]. Wt1 is also found in many submeso-
thelial mesenchymal cells in the parietal layers of the coelom at 
later stages of development [ 8 ].   

2     Kidney   

 Expression analysis of the murine  Wt1  gene in the developing kid-
ney by in situ hybridization and immunohistological analysis 
revealed that  Wt1  mRNA/Wt1 protein is expressed in the urogeni-
tal ridge from E9, the pro- and mesonephric tissues from E10, and 
the metanephric mesenchyme (MM) from E12 [ 9 ,  10 ]. The func-
tional postnatal kidney develops from two tissues that have their 
origin in the intermediate mesoderm, the metanephric mesen-
chyme, and the ureteric bud (UB). Reciprocal induction events 
between MM and UB lead to the formation of the functional kid-
ney. This involves several rounds of induction and branching events, 
involving MM condensation into the mesenchymal cap around the 
UB, and a subsequent differentiation of condensed cap mesen-
chyme via mesenchymal-to-epithelial transition (MET) into epithe-
lial cells forming the nephron. Expression of Wt1 in metanephric 
structures is highly dynamic with highest levels of expression in the 
condensing cap mesenchyme, comma- and s-shaped body of the 
developing nephrons, and fi nally remaining restricted to the  podo-
cytes   of the glomeruli [ 11 – 13 ]. This was confi rmed in transgenic 
mice expressing LacZ under control of  YAC   fragments that har-
bored the human  WT1  gene locus including fl anking regions of 
470 or 280 kb [ 14 ]. Wt1 expression is not found in the UB. 

 Specifi cally, Wt1 is intimately involved in the regulation of the 
early steps of nephron formation and the maintenance of the glom-
eruli, through interactions with a range of nephrogenic and renal 
proteins. Wt1 regulates kidney development from early stages 
leading to complete renal agenesis in loss of Wt1 mutants through 
apoptosis of the mesonephric tubules and the metanephric mesen-
chyme, resulting in failure to induce ureteric bud outgrowth [ 15 ]. 

1.2   Mesothelium  
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Apoptosis of renal  progenitors   in absence of Wt1 has recently been 
related with downregulation of fi broblast growth factor and induc-
tion of BMP/pSMAD signaling, and this apoptosis can be rescued 
by recombinant FGFs or inhibition of pSMAD  signaling         [ 16 ]. 
Analysis of subsequent stages of kidney development, which is pre-
cluded due to metanephric apoptosis in the Wt1 null mutants, has 
been performed using kidney organoid culture in combination 
with siRNA approaches [ 17 ], and conditional inactivation of Wt1 
in vivo [ 18 ]. These studies showed that Wt1 controls MET to 
allow formation of renal vesicles and subsequent stages towards 
nephron formation from MM, through control of Wnt4 expres-
sion.  Wnt4   has been identifi ed as a crucial regulator of MET dur-
ing nephron formation [ 19 ,  20 ]. Furthermore, a specifi c role for 
Wt1 in the control of Wnt4 expression had been described since 
Wt1 expression precedes that of Wnt4, Wt1 can control Wnt4 
expression in vitro, and Wnt4 expression is lost in the embryonic 
kidney mesenchyme when Wt1 is inactivated [ 18 ,  21 ,  22 ]. 

 At later stages, Wt1 protein controls the formation of  podo-
cytes   and their homeostasis through transcriptional regulation of 
Pax2,  Nephrin  , and  Podocalyxin   [ 13 ,  23 – 26 ]. 

 Wt1 also regulates the expression of  Nestin  , an intermediate 
fi lament protein, in the glomeruli, although the signifi cance of 
Nestin expression in the kidney is not well understood [ 27 ]. 
Conditional deletion of Wt1 in embryonic kidneys using a  Nestin- 
Cre    model   leads to a failure in MET and nephron formation [ 18 ]. 

 Using ChIP-PCR to identify Wt1 target sites in vivo, a recent 
systemic study demonstrated that a range of factors important for 
kidney development are transcriptional targets of Wt1, including 
Bmp7 and Sall1 [ 28 ]. Taken together, recent studies in the devel-
oping kidney have shown that Wt1 is a key regulator of a range of 
molecular pathways that lead to the formation of functional neph-
rons from the metanephric mesenchyme.  

3     Gonads   

 Gonads develop from the urogenital ridge, initially as indifferent 
 primordia     , but later they specify into testis and ovaries. They start 
to arise at around E11 from the  mesonephros  , the embryonic  kid-
ney   that forms only transiently, and the overlying coelomic 
 mesothelium. The coelomic mesothelial cells contribute to gonad 
formation by migrating into the gonadal ridge, forming the pri-
mary sex cords and later giving rise to the Sertoli cells (male) or 
granulosa cells (female) [ 29 ,  30 ]. In situ hybridization and immu-
nohistochemical studies have shown that Wt1 is expressed in the 
mesonephros and the overlying coelomic epithelium from around 
E10, but as the urogenital ridges thicken during gonad formation, 
Wt1 is strongly expressed in the mesenchymal component [ 12 ,  13 ]. 
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 Development into male or female gonads and genital organs is 
regulated by Sry expression, leading to testes formation and differ-
entiation of the Wolffi an ducts into seminal vesicles, epididymis, 
and vas deferens in the male, or  ovary   formation and the emergence 
of the oviducts, Fallopian tubes, uterus, and upper vagina from the 
Müllerian ducts in the female. However, most components of the 
testis arise from mesonephric cells migrating into the gonad, includ-
ing peritubular and vascular endothelial cells, while the Leydig cells 
are formed in waves from primary mesonephric and mesonephric-
derived cells [ 31 – 33 ]. One can speculate that since Wt1 is expressed 
in the gonadal anlagen from early on, most gonadal cells have their 
origin in cells originally expressing  Wt1  . 

  Testis : A complex hierarchical cascade of transcription and sig-
naling factors controls the formation and maintenance of the male 
gonads. Wt1 is involved in this cascade at several levels since Wt1 
expression is required for the survival of the early gonadal anlagen 
[ 34 ]. A range of studies have shown that Wt1 is an important regu-
lator of sex determination by controlling the expression of the  Sry  
gene [ 34 – 39 ]. Loss of function studies have demonstrated that 
Wt1 regulates the expression of steroidogenic factor 1 ( Sf1 ) in the 
indifferent gonad [ 40 ]. In addition, molecular and in vitro data 
indicate that Wt1 acts in concert with Sf1 to regulate the expres-
sion of the Müllerian inhibiting substance ( MIS , also called anti- 
Müllerian hormone, AMH) [ 41 ], and it probably indirectly 
activates Dax1 during early gonadal development [ 42 ]. 

 Using a mouse model for testis-specifi c conditional ablation of 
Wt1, Vicky Huff and collaborators showed that Wt1 is required for 
the formation and maintenance of the seminiferous tubules, Sertoli 
cells, and  germ cells   in the testicular cords [ 43 ]. Specifi cally, proteins 
expressed in Sertoli  cells      including Sox8, Sox9, and MIS were lost 
when Wt1 function was abolished. Importantly, loss of Wt1 in the 
testes leads to β-catenin accumulation which in turn results in testicu-
lar cord disruption [ 44 ]. Further evidence for a role of Wt1 in tes-
ticular cord and Sertoli cell maintenance and germ cell survival stems 
from the fi nding that testicular cord integrity is associated with the 
expression of  Col4a1  and  Col4a2  as these collagens are downregu-
lated in the testes of mice with testis-specifi c loss of Wt1 [ 45 ]. Using 
an siRNA approach and transgenic mice expressing dominant nega-
tive  Wt1 , similar results were reported, supporting an essential role 
for Wt1 in Sertoli cell and germ cell integrity and survival [ 46 ]. 

   Ovary   : During female  gonad   development, Wt1 is expressed in 
stromal cells, granulosa cells, and the overlying coelomic  mesothe-
lium   of the ovary [ 10 ]. Specifi cally, granulosa cells of the primor-
dial, primary, and secondary follicles express Wt1 during ovary 
development, and expression is maintained throughout adult life 
[ 47 ], suggesting that Wt1 is involved in  folliculogenesis  . 

   Germ cells   : Wt1 is expressed in germ cells when they start con-
verting from primary germ cells to gonadal germ cells, beginning 
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at embryonic day E11.5. Chimera experimentation has shown that 
loss of  Wt1  in ES cells leads to their exclusion from the germ cell 
lineage, suggesting that Wt1 is involved in germ cells proliferation, 
maturation, or  survival   [ 48 ].  

4     Heart   and Blood Vessels 

 Wt1 expression in the  heart   is predominantly, but not exclusively, 
associated with epicardial development. The earliest expression of 
Wt1 during cardiac morphogenesis is detected in mouse embryos 
at E9.5 in the proepicardium, which is the epicardial primordium; 
subsequently, Wt1 expression continues during the epicardial cov-
ering of the heart [ 2 ,  49 ]. Wt1 expression is maintained in the 
epicardial-derived mesenchymal cells (EPDC) which delaminate 
from the  epicardium   and invade fi rst the subepicardial space, and 
then the myocardium. This expression is progressively downregu-
lated as EPDC differentiate and contribute to the vascular and 
connective tissue of the heart. 

 The role played by Wt1 in the developing  epicardium      seems to 
be critical, since conditional Wt1 loss of function in this tissue leads 
to impaired generation of EPDC, abnormal coronary morphogen-
esis, and thinning of the myocardium, resulting in embryonic 
lethality [ 50 ]. The mechanism by which Wt1 acts in the epicardium 
is not completely understood, but results from recent studies sug-
gest that the balance between Snail and E-cadherin activity [ 50 ] 
and the canonical β-catenin pathway [ 51 ] serve as main downstream 
effectors of Wt1 in regulating epicardial to mesenchymal transition. 
Additionally, recent data indicate that in the epicardium Wt1 regu-
lates the transcriptional activation of Raldh2, which represents the 
main retinoic acid synthesizing enzyme in mesodermal tissues [ 52 ]. 
It had been previously established that cross-talk between epicar-
dium and myocardium, facilitating development of both compo-
nents, is dependent on retinoic acid signaling [ 53 ,  54 ]. 

 Other genes activated by Wt1 in the  epicardium   include the 
neurotrophin receptor  TrkB  [ 55 ] and  α4 integrin , required to 
maintain epicardial adhesion to the myocardium [ 56 ]. Wt1 regu-
lates the expression of the erythropoietin receptor [ 57 ] in hemato-
poietic cells and its ligand erythropoietin in in vitro assays [ 58 ]. 
Since the erythropoietin signaling system also acts in the epicar-
dium and its failure causes myocardial thinning [ 59 ], Wt1 may also 
be involved through this pathway in epicardial-myocardial interac-
tion, thus supporting development and differentiation of both tis-
sues. Finally, an unsuspected role of Wt1 in the developing 
epicardium is the regulation of the expression of some chemokines. 
Specifi cally, Wt1 downregulates Ccl5 and Cxcl10, two chemokines 
that inhibit EPDC migration and myocardial proliferation. This 
role is performed through increasing of the levels of  Irf7   [ 60 ]. 

The Role of WT1 in Embryonic Development and Normal Organ Homeostasis



28

 In summary, in the epicardium Wt1 activates a set of genes 
related with epicardial adhesion, epithelial-mesenchymal transi-
tion, and migration. Thus,  Wt1  represents a key gene for epicardial 
development and function. 

 Wt1 expression has also been found in non-epicardial- derived     , 
cardiac cells. A few cells expressing Wt1 are already present in the 
endocardium and possibly in the myocardium of E9.5 embryos [ 61 ]. 

  Lineage   tracing studies of Wt1-expressing cells using Cre- 
LoxP technology have shed further light onto the role of Wt1 dur-
ing cardiovascular development and function. Importantly, these 
studies have shown that the fate of Wt1-expressing cells in the 
 heart   is clearly related to coronary vascularization and the forma-
tion of cardiac connective tissue. Specifi cally, Wt1-lineage studies 
have confi rmed an extensive contribution to coronary smooth 
muscle and cardiac fi broblasts [ 62 ]. EPDC-derived Wt1-expressing 
cells have also been shown to contribute to the lateral atrioven-
tricular cushions where they differentiate into fi broblastic cells of 
the valves [ 63 ]. However, contribution of Wt1-expressing cells to 
coronary endothelium has been more controversial. Using differ-
ent lineage tracing approaches, it was shown that the proportion of 
coronary endothelial cells originating from Wt1-expressing cells 
comprises less than 15 % [ 3 ,  62 ]. Recent data demonstrate a large, 
but not complete, overlap between the Wt1 lineage and a  bona fi de  
epicardial-derived lineage characterized by the activation of a Gata4 
enhancer in the septum transversum and proepicardium [ 64 ]. 
These epicardial-derived cells contribute to a minor, but signifi cant 
fraction of the coronary endothelium (about 20 % of all the endo-
thelial cells), at least during embryonic life and early postnatal 
stages. This agrees with recent fi ndings reporting that the endocar-
dium is a major contributor to the coronary endothelium [ 65 ,  66 ]. 
Wagner and colleagues showed that Wt1 is expressed in the coro-
nary endothelium of late gestation mouse embryos, while Wt1 −/−  
embryos that survive to close to term reveal a dramatic lack in 
 coronary vasculature   [ 55 ]. In addition, the group could identify 
the neurotrophin receptor TrkB as a downstream target of Wt1 in 
the coronary endothelium [ 55 ], and argued that loss of the coro-
nary vasculature in Wt1 mutant embryos was directly linked to 
downregulation of TrkB  expression  . 

 Furthermore, using in vitro experiments, Wt1 was shown to 
bind to the VEGF  promoter   and regulate its expression [ 67 ,  68 ]. 
The intermediate fi lament and  progenitor   marker  Nestin   has also 
been shown to be downstream of Wt1 in the developing coronary 
vasculature [ 27 ], and to be co-expressed in the vasa vasorum of 
human tissue samples [ 69 ]. The fi nding that Wt1 regulates 
VE-cadherin expression in vitro and in vivo since VE-cadherin 
 expression      is reduced in the  liver   and  hearts   of Wt1 mutant embryos 
[ 70 ], corroborates the hypothesis that Wt1 is important for the 
regulation of blood vessel formation. 
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  Lineage   tracing studies have also added to controversy around 
the contribution of Wt1-expressing cells to the myocardium. Of 
note, this hypothetical contribution may originate from two 
sources, (1) the EPDC and (2) migration of myocardial progeni-
tors from the posterior secondary cardiac fi eld, where Wt1 expres-
sion is prominent in mesenchymal cells of the transverse septum. 
Original evidence for Wt1-derived myocardial cells provided by 
Zhou et al. [ 62 ] was questioned by Rudat and Kispert [ 61 ] on the 
basis of the unsuitability of the Cre drivers used. Zhou and Pu [ 71 ] 
responded by providing new validating evidence for the existence 
of cardiomyocytes derived from Wt1-expressing cells, which they 
considered as epicardial-derived. On the other hand, the existence 
of a sinus venosus defect in Wt1-defi cient mouse embryos [ 8 ] 
could be interpreted as the lack of a Wt1 lineage population con-
tributing to the infl ow tract myocardium. This possibility was ruled 
out by Norden et al. [ 8 ] who, by using two different models ( LacZ 
reporter   and Wt1-Cre), found that Wt1-expressing cells did not 
give rise to myocardial cells. These authors conclude that the 
involvement of the Wt1 lineage in sinus venosus development 
seems to be  indirect  .  

5    Developmental Hematopoiesis 

 Molecular evidence for Wt1 as a regulator of developmental hemato-
poiesis is based on studies showing that Wt1 regulates the expression 
of both Epo and its receptor EpoR in the fetal  liver   as the primary 
hematopoietic organ during mid-gestation [ 57 ,  58 ]. Furthermore, 
loss of Wt1 affects in vitro differentiation of fetal liver cells, suggesting 
that Wt1 regulates possibly in synergy with EpoR the differentiation 
potential of fetal hematopoietic stem cells [ 57 ]. However, transplanta-
tion studies into lethally irradiated mice showed that fetal liver-derived 
Wt1 −/−  hematopoietic stem cells were as potent in restoring bone mar-
row and peripheral blood cells as wild-type cells [ 72 ].  

6    Spleen 

 Wt1 is expressed in the spleen rudiment of the dorsal mesogastrium 
of mouse embryos by E10.5, continuing in the spleen capsule and 
epithelium by E14.5 [ 12 ]. Herzer et al. [ 73 ] reported expression by 
E12.5 and described failure of spleen development in Wt1 −/−  
embryos. Koehler et al. [ 74 ] found that the expression of  Wt1  in the 
spleen follows that of  Hox11  (a homeobox gene required for spleen 
development) with a delay of one day, while Hox11 −/−   embryos      
show reduced expression of Wt1 in the spleen rudiment, suggesting 
that Wt1 is acting downstream of Hox11 in spleen development.  
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7    Body Muscle 

 Expression of Wt1 in musculature of the body wall of E12-E13 
mice embryos was described by Armstrong et al. [ 2 ], but this 
observation has not been confi rmed by further reports. It is possi-
ble that the presence of mesenchymal cells migrating from the dor-
solateral coelomic epithelium to the lateral body wall is related 
with this early description.  

8    Nervous System and  Eye   

 Besides its extensive expression in mesodermal cells, there are only 
a few specifi c domains of Wt1 expression in the neuroectoderm. In 
mouse embryos, Wt1 is expressed from E11 in a narrow linear 
domain located between the mantle and the ependymal layers. 
This expression domain becomes more pronounced by E12 and 
expands by E13 before turning more diffuse, extending to the ven-
tral part of the marginal area of the medulla and fi nally disappear-
ing at the end of gestation [ 2 ,  12 ,  14 ]. This expression is 
anatomically related to the area where motoneurons differentiate. 
A second area of expression is found in the roof of the fourth ven-
tricle, in a diverticulum of the ependymal layer, close to the rostral 
part of the medulla oblongata [ 2 ,  12 ]. 

 Wt1 is also expressed in developing retina, as shown by 
RT-PCR in E12.5 mice embryos. In humans, retina expression of 
Wt1 has been detected in day 42 fetuses [ 2 ]. Wt1 seems to be 
required for retinal development since Wt1-defi cient mouse 
embryos show defects in retinal ganglion cells [ 75 ]. This effect 
could be due to the activation of Pou4f2, a transcription factor 
essential for the survival of retinal ganglion cells.  

9     Lung   

 Wt1 is expressed in mesothelial cells of the murine  lungs      from the 
early sprouting of the lung buds onwards [ 6 ,  12 ,  76 ]. Differently to 
the  heart  , Wt1 is rapidly downregulated in cells delaminating from 
the  mesothelium   and incorporating into the pulmonary mesen-
chyme. These mesothelial-derived cells contribute to most pulmo-
nary mesodermal tissues, including vascular and bronchial smooth 
muscle, tracheal cartilage, and a small fraction of the  vascular endo-
thelium   [ 6 ,  76 ]. In neonates, about 1.5 % of all the dissociated pul-
monary cells and about 11 % of all the endothelial cells derive from 
the Wt1-expressing cell lineage [ 6 ]. Another difference with the  epi-
cardium   is that the migration of the mesothelial- derived cells inside 
the pulmonary stroma is dependent of hedgehog signaling [ 5 ].  
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10     Liver   

 Wt1 is expressed in the liver mesothelium from the early stages 
of hepatic development [ 2 ,  14 ]. Liver mesothelial cells continue 
to express Wt1 when they migrate from the surface and inter-
mingle with the hepatoblasts and the hematopoietic cells to dif-
ferentiate into sinusoidal endothelium and  stellate cells   [ 14 ]. In 
contrast to the  heart   and the lung, in the liver Wt1 is not down-
regulated with the onset of differentiation of mesothelium-
derived cells. In fact, Wt1 expression is still detectable in 
sinusoidal endothelial cells [ 14 ]. This invasion of mesothelial-
derived cells is necessary for proper hepatic development [ 4 ,  77 ].  

11    Adult Expression of Wt1 

 Wt1 expression has been reported in a few sites of adult mice, 
namely  kidney    podocytes  , Sertoli cells of the testes, granulosa 
cells of the  ovary  , mesothelia, pancreatic  stellate cells  , the stro-
mal vascular component of several fat bodies including visceral 
adipose tissue  progenitors  , and a small fraction of  bone marrow 
cells   [ 3 ,  78 – 80 ]. 

 The podocytes are the most prominent site of adult Wt1 
 expression     , and in fact podocyte maintenance and function 
depends on Wt1 [ 80 ]. In postnatal stages, Wt1 is involved in the 
regulation of the maintenance of the glomerular fi ltration func-
tion of the kidney, as shown through a range of studies. Mice 
with reduced Wt1 expression and subsequent downregulation of 
 nephrin   and  podocalyxin   expression showed increased glomeru-
losclerosis [ 26 ]. The damage to the glomeruli is possibly caused 
by insuffi cient levels of podocalyxin and nephrin both of which 
are required for the functional morphology of the slit diaphragm 
and foot processes of the glomerular fi ltration membrane. 
Furthermore, recent study from the Ai lab has shown that Wt1 
is important for maintaining cross- talk between podocytes and 
glomerular endothelial cells across glomerular fi ltration mem-
brane. Specifi cally, Wt1 controls the expression of the 
6-O-endosulfatases Sulf1 and Sulf2 which in turn regulate sig-
naling of VEGFA from podocytes to glomerular endothelial cells 
across the glomerular fi ltration barrier [ 81 ]. 

 Wt1 expression is not maintained in all adult mesothelial tis-
sues: while it is present in the adult intestine [ 3 ] and the  mesothe-
lium   lining the visceral fat [ 78 ,  79 ], there are confl icting fi ndings 
about Wt1 expression in the  lung   mesothelium, with Dixit and col-
leagues reporting downregulation of Wt1 in postnatal and adult 
mice, while Que and colleagues have shown continued expression 
in P45 animals [ 5 ,  79 ]. Karki et al. [ 82 ] also stated that the 
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expression of Wt1 remains in the adult pulmonary mesothelium, 
and its loss is correlated with mesenchymalization and fi brosis. Wt1 
expression in the  liver   mesothelium seems to be downregulated 
after E13.5 [ 4 ]. It is possible that a low basal level of Wt1 expres-
sion in adult  mesothelium   is the basis for these discrepancies. 

 The expression of Wt1 in the visceral fat mesothelium and in 
the progenitors of the visceral  white adipose tissue (WAT)   estab-
lishes a key difference with other fat bodies such as  subcutaneous 
WAT   and brown adipose tissue that do not develop from Wt1- 
expressing cells [ 79 ]. This difference could be signifi cant given the 
different potential of visceral and subcutaneous WAT as risk factor 
for a number of diseases. 

 Expression of Wt1 is maintained into adulthood in the Sertoli 
and granulosa  cells      [ 2 ,  10 ]. Wt1 regulates Sertoli cell polarity in 
the testes, and it is essential for  germ cell   survival, differentiation, 
and spermatogenesis [ 83 ,  84 ]. Additionally, the expression of 
Wt1 in Sertoli cell is essential to maintain steroidogenesis in Leydig 
cells [ 85 ,  86 ]. In the  ovary  , Wt1 is also expressed in granulosa cells, 
controlling their polarity and differentiation [ 87 ]. In a mouse 
model mimicking the  Denys-Drash syndrome (DSS)  , heterozy-
gous mice have reduced ovulation rates, premature differentiation 
of granulosa cells, leading to disturbed development of follicles 
[ 87 ]. This study supports the notion that Wt1 is required not only 
for normal spermatogenesis but also for oogenesis. 

 Besides the ovary, Wt1 expression has also been reported in 
the embryonic and adult uterus, specifi cally the myometrium and 
human endometrium [ 10 ,  88 ,  89 ]. 

 Wt1 expression was detected in the bone marrow of mice and 
humans for the fi rst time by Fraizer et al. [ 90 ]. A range of studies 
showed that Wt1 expression in hematopoietic cells is restricted to 
the phase of expansion of hematopoietic  progenitor   cells while 
expression was found to be reduced in mature hematopoietic cells 
and absent in the mature peripheral blood ([ 91 ] and references 
therein). Furthermore, it was found that Wt1 expression was down-
regulated in hematopoietic cell lines that underwent differentiation, 
while high expression of Wt1 was correlated with induced prolifera-
tion of cells in culture [ 92 ,  93 ]. Wt1 seems to have confl icting roles 
in different stages of hematopoiesis since it can induce quiescence in 
early (CD34+ CD38−) progenitors, while it stimulates differentia-
tive behavior in more committed progenitor cells. Wt1 is present in 
erythroblastic  progenitors  , where it transactivates the EPO receptor 
[ 56 ]. Wt1 is also involved in granulocyte differentiation [ 94 ]. Single 
cell qPCR of cells during hematopoiesis revealed a biphasic expres-
sion pattern with high activity in quiescent primitive precursor cells 
and specifi c myeloid cell populations [ 95 ,  96 ]. Interestingly, using a 
genetically modifi ed mouse line which expresses GFP under control 
of the endogenous Wt1 locus, Hosen and colleagues came to a 
slightly different fi nding, since in Wt1 GFP/+  mice, Wt1 expression was 
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absent or very low in hematopoietic stem cells or fully differentiated 
granulocytes, respectively, while expression was higher in myeloid 
progenitor cells [ 97 ]. Loss of Wt1 in hematopoietic stem cells was 
shown to affect their differentiation potential [ 98 ]. Furthermore, in 
an independent study using ES cells lacking Wt1 protein that were 
differentiated towards the hematopoietic lineage, similar observa-
tions were made, as the colony forming/differentiation potential of 
the cells was greatly reduced [ 99 ]. The authors could show that 
Wt1 −/−  ES cells undergo apoptosis that is dependent of  Vegfa     , and 
that Wt1 is responsible for splicing of Vegfa into functional isoforms. 
The function of Wt1 in blood cell differentiation could be mediated 
by p21cip1 induction, leading to growth arrest [ 95 ]. This would 
explain the role played by Wt1 mutations in leukemogenesis (see 
below). 

 In some pathological conditions, the adult expression of Wt1 
becomes more prominent. Wt1 is expressed in coronary arteries 
(endothelium and smooth muscle) after  myocardial infarction   
[ 100 ]. This is probably due to the hypoxia produced by the local 
ischemia, since the upregulation of the  Wt1  gene, mediated by a 
hypoxia responsive element in the Wt1  promoter  , is mimicked by 
exposing rats to hypoxic conditions [ 101 ]. Thus, low oxygen ten-
sion could be a driver for Wt1-regulated  angiogenesis   [ 102 ]. 

 Wt1 was named after its supposed role in the development of 
Wilms’ tumor [ 103 ], although only a fraction of these tumors shows 
alterations in WT1 expression. In contrast, abnormal overexpression 
of WT1 has been reported in a number of tumor cells [ 104 ], and it 
is particularly prominent in  acute myeloid leukemia (AML)   [ 105 –
 107 ]. WT1 is overexpressed in malignant cells of 90 % of patients 
with AML and appears mutated in approximately 10 % of these 
patients [ 108 ]. Importantly, these observations have raised expecta-
tions for Wt1 as a target in  cancer immunotherapy   [ 109 ,  110 ].  

12    Wt1 Expression in Non-mammalian Animal Models 

 The developmental expression of Wt1 in chicken embryos is in prin-
ciple similar to that described for mammals [ 111 ]. Wt1 has been used 
as a marker of proepicardial, epicardial, and epicardial- derived cells by 
a number of groups studying chick development [ 112 – 116 ]. 

 In  zebrafi sh  , two  Wt1  genes,   wt1a    and   wt1b   , have been 
reported, both showing +KTS and −KTS isoforms [ 117 ]. In early 
embryos the expression of both genes is dynamic and restricted to 
intermediate mesoderm. Expression of wt1a in the zebrafi sh  pro-
nephros   is regulated by retinoic acid through a highly conserved 
enhancer [ 118 ]. In addition, wt1a has recently been reported to 
regulate the expression of osr1, thus controlling the differentiation 
of zebrafi sh  podocytes         [ 119 ]. The expression domains of wt1a and 
wt1b in adult fi sh tissues are more extensive than in mammals, 
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including  gonads  ,  kidneys  ,  heart  , spleen, and muscle. Both wt1a 
and wt1b have also been reported in other fi sh, such as  Oncorhynchus , 
 Oryzias ,  Takifugu , and  Tetraodon  (reviewed in ref.  120 ). In 
 Tetraodon , the highly conserved motif KTS, distinguishing DNA 
binding to DNA nonbinding isoforms, is changed to KPS [ 120 ]. 

 Information on Wt1 expression in amphibians is more limited. 
Wt1 is expressed in Sertoli cells, spermatogonia, and mature sperm 
stages in the testes of the newt  Cynops pyrrhogaster  [ 121 ]. In 
 Xenopus , Wt1 expression is fi rst restricted to the developing neph-
ric system, and later is also detected in the developing  heart   [ 121 , 
 123 ]. Since Wt1 is not detected in developing pronephric tubules 
and ducts, its function seems to be related with the development of 
the glomeruli. In fact, when Wt1 was ectopically expressed in 
 Xenopus  embryos by mRNA injection, it inhibited pronephric 
tubule development [ 124 ]. 

 Regarding invertebrates, a Wt1 ortholog has been found in the 
cephalochordate  Branchiostoma fl oridae  [ 125 ]. Furthermore, the 
 Drosophila  gene  Klumpfuss  has been considered as a Wt1 ortholog 
and is involved in neuronal [ 126 ,  127 ] and hemocyte  differentiation 
[ 128 ]. However, despite the similarity between the four  zinc- fi nger   
domains with those of the vertebrate Wt1, the N-terminal region 
is clearly different making this orthology very  doubtfu     l.     
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