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    Chapter 18   

 Bioinformatic Analysis   of Next-Generation Sequencing 
Data to Identify WT1-Associated Differential Gene 
and Isoform Expression                     

     Stuart     Aitken     and     Ruthrothaselvi     Bharathavikru      

  Abstract 

   Differential gene expression analysis has been conventionally performed by microarray techniques; however 
with the recent advent of next-generation sequencing (NGS) approaches, it has become easier to analyze 
the coding as well as the noncoding components. Additionally, NGS data analysis also provides information 
regarding the expression changes of specifi c isoforms. There are several bioinformatics tools available to 
analyze NGS data but with different parameters. This chapter provides a comparative insight into these tools 
by utilizing NGS datasets available from Wt1 knockout and embryonic stem cell line model.  
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1      Next-Generation  Sequencing     Data Analysis  : Current Challenges 

 High-throughput  sequencing   is a rapidly developing technology 
with diverse applications including de novo DNA sequence assem-
bly, SNP detection, and the detection of differentially expressed 
genes. In contrast with earlier techniques, there is no need to spec-
ify probe sequences or any restriction to a reference genome assem-
bly [ 1 ]. Sequencing costs are reducing and this is another factor 
contributing to the increased use of this technique. 

 However, estimating the abundance of RNA transcripts from 
sequencing data is not without diffi culty. Early approaches treated 
the read data simply as count data—read counts per transcript have 
been shown to be linearly related to transcript abundance—and 
used the Poisson distribution as the underlying statistical model 
[ 2 ]. Problems have subsequently been identifi ed with this assump-
tion as counts typically show a variance that is greater than the 
mean (mean and variance are the same in the Poisson distribution, 
which has a single parameter λ) [ 2 ]. The assumed distribution 
plays a role in testing for differential expression, hence impacts on 
the assignment of differential expression. 
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 It has been noted that the variance in sequencing read counts 
varies with the mean; hence many attempts have been made to esti-
mate dispersion (the disparity between the variance and the mean) 
from the available data, usually as a function of the mean, and use 
the negative binomial distribution (which has two parameters, the 
mean and variance) when testing for differential expression. 

 The state-of-the-art tools for differential expression testing 
include DESeq2 [ 3 ], Cuffdiff2 [ 4 ], and edgeR [ 5 ]. DESeq2 
adopts the negative binomial distribution and applies sophisti-
cated techniques to estimate dispersion on a per-gene basis, 
detect outliers, and prevent type I errors (false positives). DESeq2 
calculates an estimate of the fold change that is moderated, that 
is, reduced in absolute value in comparison with a simple estimate 
from raw read counts. Cuffdiff2 estimates the read counts for 
each isoform of each gene, rather than treating each gene as a 
single entity, adopting the beta-negative binomial distribution for 
testing differential expression. Trapnell et al. note that for genes 
with multiple isoforms, a change in fragment count for a gene 
does not necessarily mean a change in expression but may indi-
cate a change in isoform abundance [ 4 ]. Distinguishing the 
expression of alternative isoforms is of interest in many situations, 
for example, to distinguish isoforms of Wt1 with and without the 
KTS sequence as described below. 

 A recent comparison of differential expression tools [ 1 ] con-
cluded that the number of biological replicates was a major factor: 
where two or more replicates were available the tools made simi-
larly good predictions. In the absence of replicates, differences in 
calls of signifi cant genes were more notable. 

 In this chapter, we present protocols for running Cuffdiff2 and 
DESeq2. Following is the protocol for generating expression data 
from cell line models .  

2    Materials 

   Mouse ES cell line E14 and the Wt1 knockout ES line (KO1A) 
were cultured as a monolayer with retinoic acid (1 μM) for 5 days 
in ES cell media without LIF [ 6 ].  

   These cell lines were processed for RNA isolation using the Qiagen 
RNAeasy mini columns as per the manufacturer’s protocol.  

   The isolated total RNA was subjected to Poly A selection and sub-
jected to library preparation with the NEBnext Ultra RNA library 
kit for Illumina for performing NGS.   

2.1  Cell Lines

2.2  RNA Isolation

2.3  Library 
Preparation
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3    Methods 

       1.    Cells were harvested by trypsinization and collected in PBS 
followed by lysis in RLT buffer + β-mercaptoethanol as recom-
mended. Centrifuged at 8049 ×  g  for 3 min in a microfuge.   

   2.    The supernatant was mixed with equal volume of absolute eth-
anol and added to the RNeasy Qiagen columns (700 μl at a 
time). Centrifuged at 13792 ×  g  for 1 min in a microfuge.   

   3.    The columns were washed with RW1 buffer (700 μl). 
Centrifuged at 13792 ×  g  for 1 min in a microfuge.   

   4.    The columns were washed with RPE buffer with ethanol 
(500 μl), twice. Centrifuge at 13792 ×  g  for 1 min. Centrifuge 
again at 13792 g for 2 min in a microfuge.   

   5.    To the columns, 30 μl of RNase-free water was added to elute 
RNA. The columns were centrifuged at 13792 ×  g  for 1 min to 
collect the RNA sample in a microfuge tube.   

   6.    RNA concentration was estimated by nanodrop and stored in 
−80 °C till further use.      

       1.    mRNA was polyA+ enriched from the total RNA sample of 
1 μg.   

   2.    cDNA synthesis was performed by random hexamer priming 
and subjected to enrichment.   

   3.    The above samples were barcoded and multiplexed, and sub-
jected to sequencing on the Illumina platform to obtain 50 bp 
single reads.      

   Here we present the essential steps in the computational analysis of 
the unpaired 50 bp reads generated by Illumina sequencing described 
above. The following protocols are easily adapted to the situation 
where sequencing data for multiple biological replicates is available. 

   The Cuffdiff2 analysis requires the following tools to be installed 
and run at the command line: bowtie2 (v2.2.3), tophat2 (v2.0.13), 
cuffl inks (v2.2.0), and samtools (0.1.18). Files from the Ensembl 
mouse genome assembly mm9/mm10 must also be installed (avail-
able from   http://support.illumina.com/sequencing/sequencing_
software/igenome.html    ). The following protocol is based on [ 7 ]. 
The steps in the protocol are organized into bash shell scripts that 
specify the resource fi les and command arguments needed. These 
scripts are designed to be run at the command line (full paths to fi les 
are omitted for brevity, they should be substituted for <path>). 

 Each replicate sequencing data set for each condition should 
fi rst be aligned to the genome ( step 1 ). Note that the label “X” 
should be replaced by a meaningful term such as wild type (WT) or 

3.1  RNA Isolation

3.2  Samples for RNA 
Sequencing

3.3    Data Analysis   
Protocols

3.3.1    Cuffdiff2 Protocol  
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knockout (KO) (which could be read from the command line). 
When using a gtf annotation fi le (tophat2 -G option), the chromo-
some names, i.e., 1, 2, 3 or chr1, chr2 chr3, in the gtf fi le must 
match those in the bowtie2 index (use bowtie2-inspect –names 
< index-fi le> to check). Cuffl inks can also be run with a gtf fi le as 
input when attempting to identify novel transcripts in the context 
of an established reference [ 8 ] but this option is not essential [ 7 ]. 

  Cuffdiff2 Step 1.  Script to run tophat2 and cuffl inks on sequenc-
ing data X (bowtie2 is used for alignment). Note that the results of 
the alignment and cuffl inks results are written to the directories 
tophat_X and cuffl inks_X, respectively. The samtools commands 
sort and index the bam fi le for use in genome browsers such as 
IGV.

   #!/bin/sh 
 bowtie2index="<path>/Mus_musculus/Ensembl/NCBIM37/
Sequence/Bowtie2Index/genome" 
 gtffile="<path>/Mus_musculus/Ensembl/NCBIM37/
Annotation/Genes/genes.gtf"  

  tophat2 -p 4 -o tophat_X -G $gtffi le $bowtie2index 
sequencing_data_X.fastq 
 cd tophat_X 
 if test -f accepted_hits.bam 
 then { 

 samtools sort accepted_hits.bam accepted_
hitsSorted; 
 samtools index  accepted_hitsSorted.bam; 
 mv accepted_hitsSorted.bam accepted_hits.bam; 
 mv accepted_hitsSorted.bam.bai accepted_hits.
bam.bai; } 

 fi  
 cd .. 
 cuffl inks -p 4 -o cuffl inks_X ./tophat_X/accepted_hits.bam    

 Once all data has been aligned (X and Y in the present exam-
ple), a merged assembly of transcripts found in all conditions can 
be created by listing the cuffl inks transcript outputs in a fi le called 
assemblies.txt ( step 2 ), and running cuffmerge ( step 3 ). 

  Cuffdiff2 Step 2 . Create the assemblies.txt fi le that identifi es the 
cuffl inks transcripts to be merged in  step 3 .

   <path>/cuffl inks_X/transcripts.gtf 
 <path>/cuffl inks_Y/transcripts.gtf    

  Cuffdiff2 Step 3 . Script to run cuffmerge on the set of transcripts 
in the fi le assemblies.txt created in  step 2 . Note that the results are 
written to the directory merged_XY.

   #!/bin/sh 
 gtffi le="<path>/Mus_musculus/Ensembl/NCBIM37/Annotation/
Genes/genes.gtf" 
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 fastafi le="<path>/Mus_musculus/Ensembl/NCBIM37/Sequence/
WholeGenomeFasta/genome.fa"  

  cuffmerge -o merged_XY -g $gtffi le -s $fastafi le -p 4 
 assemblies.txt    

 The merged X–Y assembly and the aligned reads in X and Y are 
inputs to cuffdiff which performs the differential expression analy-
sis ( step 4 ). This step is very computationally intensive, and can be 
time consuming even when using 4 cores (-p 4 option). 

  Cuffdiff2 Step 4 . Script to run cuffdiff on the mapped reads in data 
sets X and Y using the merged transcript fi le created in  step 3 . Note 
that the labels X and Y in –L X,Y should be replaced by something 
more meaningful such as wild type and knockout (–L WT,KO), and 
that the results are written to the directory cuffdiff_XY.

   #!/bin/sh 
 fastafi le="<path>/Mus_musculus/Ensembl/NCBIM37/Sequence/
WholeGenomeFasta/genome.fa"  

  cuffdiff -o cuffdiff_XY -b $fastafi le -p 4 -L X,Y -u 
merged_XY/merged.gtf \      ./tophat_X/accepted_hits.bam 
./tophat_Y/accepted_hits.bam    

 The fi nal step of the Cuffdiff analysis is performed in R using the 
Cummerbund library.  Step 5  shows the creation of the cuffdiff data-
base object and the extraction of signifi cant genes and isoforms from 
it. R version 3.2.1 was used here; note that earlier versions of R will 
not load Cummerbund v2.8.2. Additional details can be found in [ 7 ]. 

  Cuffdiff2 Step 5 . R code calling methods in Cummerbund to 
create the cuffmerge database and to extract signifi cant genes and 
isoforms.

   cuffData <- readCuffl inks(dir="<path>/cuffdiff_XY", 
g t f F i l e = " < p a t h > / m e r g e d _ X Y / m e r g e d . g t f " ,                                                     
genome="mm9", rebuild=TRUE); 

 sigGenes       <- getSig(cuffData,level='genes',al
pha=0.05); 
 sigIsoforms  <- getSig(cuffData,level='isoforms',al
pha=0.05) ;     

   The DESeq2 [ 3 ] analysis also requires the reads in each dataset to 
be aligned to the genome. The alignment performed in  step 1  of 
the Cuffdiff protocol can be used. It is necessary to count the reads 
assigned to each gene to generate a table of raw counts, and this 
can be performed with htseq-count (v0.6.1p1) as shown in  step 1 . 

  DESeq2 Step 1 . Command to generate counts per gene using 
htseq-count using the reads mapped by bowtie2 in  step 1  of the 

3.3.2    DESeq2 Protocol  
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 Cuffdiff2 protocol  . Note that the fi nal lines in X_counts.tsv con-
tain run information.

   $htseq-count -s no -f bam ./tophat_X/accepted_hits.bam    \ 
 <path>/Mus_musculus/Ensembl/NCBIM37/Annotation/Genes/
genes.gtf > X_counts.tsv    

  DESeq2 Step 2 . R code calling methods in DESeq2 to create a 
data table from the htseq-count output fi les, run the DESeq 
 analysis, and order the results by  p  value.

   sampleTable <- data.frame(sampleName = c("WT","KO"), 
 fi leName = c("X_counts.tsv",
"Y_counts.tsv"), 
 condition = c("untreated",
"treated")); 

 htseq <- DESeqDataSetFromHTSeqCount(sampleTable = sampleTable, 
 directory = <path>, 
 design= ~ condition); 

 colData(htseq)$condition <- factor(colData(htseq)$condition, 
 levels=c("untreated","treated")); 

 htseq <- DESeq(htseq); 
 result <- results(htseq); 
 result <- result[order(result$pvalue),];    

 The remainder of the analysis is performed in R using the 
DESeq2 library.  Step 2  shows the creation of the count object 
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  Fig. 1    Transcriptome changes in ES cells upon Wt1 knockout: ( a ) Venn diagram representation of the number of 
differentially regulated genes identifi ed by the three different tools used for analysis, DESeq2, Cuffdiff2, and 
EdgeR. ( b ) Differential regulation of gene expression in Wt1 knockout cells compared to the ES cells represented 
as log2 fold change. Data points represent analysis by DESeq2 ( red triangles ) and Cuffdiff2 ( blue squares )       
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No. Isoform Id KTS

1 TCONS_00058269 Present

2 TCONS_00058270 Present

3 TCONS_00058272 Present

4 TCONS_00058273 Present

5 TCONS_00058276 Present

6 TCONS_00058278 Present

7 TCONS_00058279 Present

8 TCONS_00058271 Not present

9 TCONS_00058274 Not present

10 TCONS_00058277 Not present

11 TCONS_00058281 Not present

12 TCONS_00058268 No exon 9

13 TCONS_00058275 No exon 9

14 TCONS_00058280 No exon 9

TCONS_00058268

TCONS_00058269

TCONS_00058270

TCONS_00058271

TCONS_00058272
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  Fig. 2    RNA sequencing approach identifi es  Wt1 isoforms   in ES cells: Different isoforms of Wt1 identifi ed in the 
ES cells are represented with their identifi cation numbers. The table represents information of the presence or 
absence of KTS in the above isoforms       
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from the output fi les of htseq-count, running the analysis, and 
extracting the results .    

   Cuffdiff2 identifi ed 67 regulated genes, including 24 upregulated 
and 43 downregulated genes (using a generous alpha value of 0.2). 
DESeq2 did not identify any signifi cantly changed genes (all 
adjusted  p  values were >0.9) and Cuffdiff2 did not identify any 
isoforms with signifi cant changes in the E14 data. To compare 
DESeq2 with Cuffdiff2, a set of the highest confi dence genes 
(those with the highest regularized log 2 fold change calculated by 
DESeq2) of the same size as the set calculated by Cuffdiff2 was 
created. As a further comparison, edgeR [ 5 ] was run using a single 
value for dispersion estimated from the two samples available. The 
results of edgeR were fi ltered by  p  value to create a gene set of size 
67: the intersection of the three sets of results is shown in Fig.  1a .

   The differences in estimates of fold change calculated by 
DESeq2 and Cuffdiff2 are illustrated in Fig.  1b , where it can be 
seen that DESeq2 has reduced the fold changes to moderated val-
ues of approximately +2 or −2 from the greater estimates that fol-
low from the read counts more directly. The alternative isoforms of 
Wt1 identifi ed by Cuffdiff2 are shown in Fig.  2 . There is suffi cient 
information in the isoform annotation to identify those isoforms 
that contain the KTS sequence, those that do not, and those that 
lack exon 9.  Wt1 isoforms   are typically reduced in expression in the 
KO condition, some considerably; however, the Cuffdiff2 statisti-
cal model does not assign a signifi cant adjusted  p  value.

4        Notes 

1.      Good-quality RNA is absolutely essential for an informative 
sequencing experiment. Although most sequencing experi-
ments have now been modifi ed so as to use starting material 
of very low nanogram concentration as well as to include 
formalin-fi xed, paraffi n- embedded (FFPE) samples, a good 
coverage can be guaranteed only from reasonably well-con-
centrated samples with a good RNA integrity number (RIN) 
value.  

2.          The agreement between DESeq2 and Cuffdiff2 is 34 % for 
the data set analysed. Given the small number of genes identi-
fi ed, a practical strategy would be to consider the union of 
genes called as having (more) signifi cant changes, and to con-
sider the wider set called by edgeR. Considering the analysis 
in [ 1 ] we can conclude that the discrepancy (and lack of sig-
nifi cant genes called by DESeq2) is most likely due to the lack 
of biological replicates, a common situation in exploratory 
studies. Hence, if possible, it is always advised to sequence 
replicate s  .      

3.4  Results
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