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  To my father, 
 who introduced me to fractals as a young boy, 
 as well as to science, for science’s sake. 
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   Foreword   

 The  Fractal Geometry of the Brain  adopts an encyclopedic view of the multiple 
ways the notion of fractal enters into the clinical, as well as scientifi c, understanding 
of the human brain, with multiple papers addressing the brain’s form, function, and 
pathologies. This ambitious task is undertaken from the perspective of making 
available to the biomedical community a measure of complexity that can character-
ize both disease and wellness, a measure, the fractal dimension, which is fully con-
sistent with the complexity of biomedical phenomena and with phenomena that 
have historically resisted being characterized by one or a few scales. 

 A fractal is a geometric concept used to describe the scaling of physical objects 
in space, which cannot be characterized by one or a few scales. This is not an 
esoteric mathematical concept, but is a concrete practical measure of variability in 
complex phenomena. Thus, the folds of the brain’s surface, the regions of space 
that confi ne the fl ow of material through the brain, as well as tumor growth, are 
not described by smooth integer dimension paths, or surfaces, but have dimen-
sions between the integers. These fractal dimensions entail a scaling across mul-
tiple scales, with the fractal dimension determining how the scales are tied 
together. This scaling gives rise to a self-similarity of the object in space, which 
like nested Russian dolls repeat the same structure at ever smaller scales. Multiple 
examples of such space-fi lling biomedical phenomena are presented throughout 
the book and used to explain how such scaling is related to robustness and its loss 
to disease. 

 A fractal can also describe a dynamic process, as observed in physiologic time series. 
Here again the variability cannot be determined by a given rate or any other characteris-
tic scale determined by an average. The dynamic changes in physiologic time series are 
coupled across a wide range of time scales, with no one scale being dominant. A fractal 
dimension again determines how the slowest and the fastest changes are coupled 
together, even though one may be on the order of fractions of a second and the other on 
the order of days or even weeks. Such coupling gives rise to a self-similarity of the 
dynamic variability in time. The scale at which a physician ought to intervene, in order 
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to control the dynamics of the process, is often the crucial question. Here again a number 
of dynamic phenomena and their disruptions are described throughout the book. 

 Finally, there is the statistical fractal, where the self-similarity does not 
reside in the space or time variation of the variable of interest, but rather this 
fractal is contained in the scaling of the distribution describing the random fl uc-
tuations in physiological variables. But here, as in the cases of the two other 
kinds of fractals, it is not the mathematics that is emphasized; although the 
multiple ways the fractal dimension can be estimated from data is discussed, it 
is the biomedical implications of the self-similar statistics that is of most con-
cern. How the scaling opens up a new way of understanding, of both the normal 
behavior and the multiple ways normality can be subverted, is of most impor-
tance to clinical medicine. 

 I have taken the space to distinguish the three manifestations of fractal used in 
the book for good reason. Each fractal form assists in understanding a different 
aspect of the brain. The phrase fractal geometry in the book’s title is not geometry 
in the classical mathematical sense, but that should not be a surprise. Mathematicians 
have been arguing over the meaning (and existence) of fractals and fractal geometry, 
since Benoit Mandelbrot 1  introduced his idiosyncratic defi nitions into the scientifi c 
lexicon, over 40 years ago. Mandelbrot was more interested in understanding the 
complexity of natural and social phenomena, using relatively simple mathematical 
models, than he was in satisfying the scientifi c criteria in any given discipline, 
including those laid down by mathematicians. 

 The brain, with its rich complexity of neuronal interconnections, the broad spec-
trum of time scales in its dynamics, and its statistical variability in the performance 
of tasks, is a natural candidate for fractal modeling. The brain’s complexity is 
defi ned by a balance between regularity and randomness as captured by its various 
fractal dimensions. The fractal dimension is ubiquitous in the various complex pro-
cesses within the brain because fractal processes have been proven to have an evo-
lutionary advantage over those that do not. 

 Mandelbrot recognized a number of ways that his fractal concept could be used 
to gain a deeper understanding of physiologic complexity 1 , using what he candidly 
admitted were toy models. The handbook,  Fractal Physiology,  2  extending his appli-
cations of the fractal concept to real-world physiological data, was introduced in 
1994, but it took another 20 years for a journal of the same name to become avail-
able. Ewald Weibel, in the memorial volume dedicated to Mandelbrot, 3  entitled his 
contribution: “How Benoit Mandelbrot Changed My Thinking About Biological 
Form.” This remembrance details his personal, but not atypical, journey a number 
of biomedical scientists have taken, from the traditional perspective of biology and 

1   B.B. Mandelbrot,  Fractals, Form, Chance and Dimension , W.H. Freeman and Co., San Francisco, 
1977. 
2   J.B. Bassingthwaighte, L.S. Liebovitch, and B.J. West,  Fractal Physiology , Oxford University 
Press, NY, 1994. 
3   M. Frame and N. Cohen, Eds.,  Benoit Mandelbrot; A Life in Many Dimensions , World Scientifi c, 
NJ, 2015. 
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physiology to one encompassing the rich variability observed in the data and 
 captured by the concept of fractal dimension. This book is in this tradition, with a 
focus on the human brain, and is remarkably successful in its undertaking. 

 March 2016   Bruce J. West, PhD 
 Fellow of APS, ARL, and AAAS 
 Information Science Directorate 

 US Army Research Offi ce 
 Research Triangle Park, NC, USA  

Foreword
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  Pref ace   

 This book’s title,  The Fractal Geometry of the Brain , recalls Benoit Mandelbrot’s 
famous book in which he described  the fractal geometry of nature  more than 
30 years ago. Since then fractals have found application in many fi elds, especially 
in the biomedical sciences and, in particular, the neurosciences. In light of the 
hodological interconnection of ideas regarding the study of the amazing and com-
plex system called the brain, it seems natural that neuroscientists also peered 
through the lens of fractal analysis to view the brain as fractal, self-similar in both 
neuroanatomical structures and neurophysiological time series. Nonetheless, in 
practice fractals – often deemed too exotic, esoteric, misunderstood, or simply not 
understood – do not yet have clearly defi ned roles in biomedical research and clini-
cal neurosciences. With an aim of defi ning those roles, the scope of this book sum-
marizes the state of the art of fractal analysis in neuroscience. 

 This book reviews the most intriguing applications of fractal analysis to the neu-
rosciences with a focus on current applications and future perspectives, limits, 
advantages, and disadvantages. It is essentially for scientists, scholars, physicians, 
and students of different disciplines interested in applying fractal-based computa-
tional models to the study of the brain. This book is mainly clinically oriented, 
offering suggestions for applying fractals “from bench to bedside,” but also covers 
numerous research aspects. Thanks to the valuable inputs of 58 experts worldwide 
(physicians, basic and clinical neuroscientists, computer scientists, mathematicians, 
psychologists, biologists, physicists, and engineers, among others) from 19  different 
countries, who have made personal contributions in the fi eld, this book is a holistic 
body of work on fractals and the brain that describes how fractal analysis can help 
analyze the marvelous and complex system called the brain in its entire 
 physiopathological spectrum. 

 The book is organized into four parts, each introduced by a short chapter that 
summarizes the topics of its section:

   Part I “Introduction to Fractal Geometry and Its Applications to the Neurosciences” 
(Chaps.   1    ,   2    ,   3    , and   4    ) summarizes the “nuts and bolts” of fractal geometry and 
its applications to basic and clinical neurosciences.  

http://dx.doi.org/10.1007/978-1-4939-3995-4_1
http://dx.doi.org/10.1007/978-1-4939-3995-4_2
http://dx.doi.org/10.1007/978-1-4939-3995-4_3
http://dx.doi.org/10.1007/978-1-4939-3995-4_4
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  Part II “Fractals in Neuroanatomy and Basic Neurosciences” (Chaps.   5    ,   6    ,   7    ,   8    ,   9    , 
  10    , and   11    ) investigates the brain as a fractal object in a hierarchical, multilevel 
analysis from neurons and microglia to the whole brain itself, with all its struc-
tural and functional complexity. A specifi c chapter is dedicated to the fractal 
geometry of cranial sutures, and the concluding chapter explores an evolutionary 
perspective on the fractal geometry of the human brain.  

  Part III “Fractals in Clinical Neurosciences” (Chaps.   12    ,   13    ,   14    ,   15    ,   16    ,   17    ,   18    ,   19    , 
  20    ,   21    ,   22    ,   23    ,   24    ,   25    ,   26    ,   27    ,   28    ,   29    , and   30    ) summarizes applications of com-
putational fractal-based analysis to the clinical neurosciences, moving sequen-
tially through the different disciplines. Chapters   13    ,   14    , and   15     summarize 
applications of fractal analysis to neurological diseases and in particular neuro-
degenerative diseases. Chapters   16    ,   17    , and   18     discuss cerebrovascular-related 
topics, and Chaps.   19     and   20     focus on neuroimaging. Chapter   21     bridges neuro-
imaging to the fi eld of neuro-oncology, and Chaps.   22    ,   23    , and   24     investigate 
brain tumors from neuropathological, neuroradiological, and oncological points 
of view. Next, Chaps   25    ,   26    , and   27     cover fractal-based analysis of brain time 
series (i.e., EEG, EMG, and biosignals in Parkinsonian diseases). Chapter   28     
focuses on applications of fractals to the sensory extension of the brain, the eye. 
Chapter   29     covers cognitive neurosciences and psychiatric diseases, and lastly in 
the section, Chap.   30     focuses on the relationships between fractals and visual 
experiences, including in the visual arts.  

  Part IV “Computational Fractal-Based Neurosciences” (Chaps.   31    ,   32    ,   33    ,   34    ,   35    , 
and   36    ) illustrates applications of fractal analysis to neuroscience by means of 
software and computer science tools. Chapters   35     and   36     introduce some 
bioengineering- related aspects of fractal geometry, from fractal neuronal inter-
faces to future perspectives in artifi cial intelligence.    

 I hope that this book provides the stimulus to ignite new ideas in the open minds 
of out-of-the-box thinkers who are interested in the study and treatment of the brain 
from a novel and progressive perspective.  

 February 2016      Antonio     Di     Ieva  
  Sydney, Australia  

Preface

http://dx.doi.org/10.1007/978-1-4939-3995-4_5
http://dx.doi.org/10.1007/978-1-4939-3995-4_6
http://dx.doi.org/10.1007/978-1-4939-3995-4_7
http://dx.doi.org/10.1007/978-1-4939-3995-4_8
http://dx.doi.org/10.1007/978-1-4939-3995-4_9
http://dx.doi.org/10.1007/978-1-4939-3995-4_10
http://dx.doi.org/10.1007/978-1-4939-3995-4_11
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    Chapter 1   
 The Fractal Geometry 
of the Brain: An Overview                     

     Antonio     Di     Ieva     

    Abstract     The fi rst chapter of this book introduces some history, philosophy, and 
basic concepts of fractal geometry and discusses how the neurosciences can benefi t 
from applying computational fractal-based analyses. Further, it compares fractal 
with Euclidean approaches to analyzing and quantifying the brain in its entire 
physiopathological spectrum and presents an overview of the fi rst section of the 
book as well.  

  Keywords     Brain   •   Fractals   •   Fractal geometry   •   Fractal analysis   •   Multifractal   • 
  Neurosciences   •   Fractal dimension   •   Lacunarity   •   Self-similarity   •   Scaling  

     You cannot explain the third dimension to ones living in a 2D world. 
 Neither can you explain the fractal dimension to some counting only in integer 

numbers. 
 You cannot describe the light to people living in the darkness. 
 Or ask people to think out of the box, if they don’t know anything else than the box 

itself. 
 Sharing knowledge is the fi nal aim, teaching is an illusion. 
 You can just hope to ignite stimuli in the right minds. 
 (A.D.I., Caserta, Italy, March 2015) 
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1.1       From the  Fractal Geometry of Nature  to Fractal Analysis 
in Biomedicine 

 Among the cycling trends characterizing how humans have built knowledge over 
time, relatively recent applications of the reductionist approach have allowed for 
great discoveries and paradigm shifts in several modern scientifi c disciplines. Even 
given the limits of reductionism, this approach has favored development of very 
specifi c individual topics and allowed for important advances as diverse as space 
exploration and the discovery of DNA. Ironically, though, the reductionist approach, 
encroaching on its own heels, has also ushered in a more holistic view of nature, 
while several disciplines focusing on the study of very specifi c and restricted topics 
have reemerged in the  omics  (a suffi x referring to the concept of wholeness, or 
“completion”): genomics, metabolomics, proteomics, connectomics, etc. Genomics, 
for instance, in attempting to defi ne and explain individual pathologies by analyz-
ing the genome, spurred further need to analyze each gene product (the proteins), 
spawning the age of proteomics. Fortunately, the even more detailed view of the 
nature of things has still left space for the general idea that everything is 
interconnected. 

 Fractal geometry, even though it developed from a holistic view of nature, as 
theorized by fractal pioneer Benoit Mandelbrot (1924–2010), has had a similar des-
tiny. As a fi eld, it underwent rapid development of methods and ideas, culminating 
in the discipline of “fractalomics” [ 17 ], a view wherein everything is fractal, where 
 Fractals Everywhere  (to use the title of Michael Barnsley’s book [ 3 ]), where every-
thing can be explained or at least described by means of fractal geometry. This view, 
however, is inadequate. As emphasized by Mandelbrot in his seminal  The Fractal 
Geometry of Nature  [ 23 ], fractals are not everywhere and are not really a panacea 
[ 21 ]. As happens with so many theories, the initial enthusiasm and explosion of 
scientifi c publications, conferences, and ideas has been scaled down, owing at least 
in part to intrinsic limitations of the methods and pitfalls described by both “fans” 
and critics of the latest fashion. 

 The application of fractalomics to biomedical science has followed essentially 
within this path. In the beginning, fractal analysis was applied to the study of histo-
logical and/or microscopic images [ 5 ,  6 ,  33 ], planting roots in several branches of 
biology and medicine. Yet substantial amounts of research and numerous publica-
tions regarding fractals in biomedicine notwithstanding, fractal geometry was not 
fully introduced into the lexicon of physicians, generally known as reluctant to 
accept paradigm shifts. In neuroscience in particular, as widely described in this 
book, several applications of “neuro-fractalomics” have been used to explain and 
quantify physiological and pathological phenomena, yet a common protocol, which 
might give fractal analysis the dignity of a consolidated scientifi c methodology, is 
still lacking. 

 One contributor to the slow transition to clinical application in biomedicine and 
neuroscience is a practical one. The substantial work on fractals noted above is not 
all readily accessible to the clinical world. This is evident when one crosses the 
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keywords “fractal” and “brain” on PubMed, which provides about 600 articles, or 
on PubMed Central, which yields a few thousand, neither of which gives suffi cient 
merit to the real weight that fractal analysis has had in the fi eld of neuroscience and 
its potential for further investigation [ 8 ,  9 ]. Fractal geometry is a relatively new 
paradigm and, like many new paradigms, has required, and still requires, a long time 
to be “metabolized,” to become accepted by the general audiences of physicians, 
scientists, and laypeople. Thus, this book links together several experts in the fi eld 
to ignite new ideas and potential collaborations for a new perspective on the study 
of the human brain in its entire physiopathological spectrum. This fi rst chapter 
introduces fractal geometry and fractal analysis and briefl y outlines the contents of 
the book’s fi rst section on the rudiments of fractal analysis in neuroscience.  

1.2     From Euclid to the Fractal Metrology 

 Fractal geometry is a mathematical and philosophical model with strengths and 
weaknesses. Mandelbrot coined the word “fractal” from the Latin adjective  fractus  
(meaning broken, or fractured), with the corresponding Latin verb  frangere  signify-
ing “to break,” or to create irregular fragments [ 23 ]. As is well known to the readers 
of Mandelbrot’s works, fractal geometry was initially developed on the basis of 
what were considered “monsters” of Euclidean geometry: mathematical or natural 
phenomena not fully explicable or quantifi able by means of ideal, platonic, and/or 
Euclidean approaches. Mandelbrot “visited” galleries of such monsters, populated 
by bizarre mathematical creatures described by Cantor, Peano, Hausdorff, Sierpinski, 
and Urysohn, among several other mathematicians, and drafted a manifesto of frac-
tal geometry based upon a body of well-defi ned laws and coherent principles, 
including those derived from chaos theory [ 32 ] “to bear resemblance to pathologic 
entities or mathematical monsters, […] despite, or owing to, their beauty, richness 
and fascinating shapes” [ 20 ]. 

 Similar to the way that music can be considered a universal language [ 7 ], fractal 
geometry can be seen as a universal language by which nature can be explained, or 
at least described and quantifi ed. Expanding the music analogy, the “notes” of fractal 
geometry are fractal dimensions (denoted FD,  D  F,  or simply  D , in this book) arrived 
at through fractal analysis.  D  can be considered a dimension, a quantitator, a param-
eter, an estimator, and so on, but is essentially a number that quantifi es something. 
This “something” can be the “geometrical complexity” or the “space- fi lling prop-
erty” of an object or a pattern, the roughness of a surface, or the variation of a time 
series, for instance, where the more irregular a phenomenon or the more an object or 
pattern fi lls the space in which it is embedded (e.g., the microvascular network in a 
tissue), the higher the  D  [ 23 ].  D  is also a continuous variable, easy to use and com-
pare by means of mathematical and statistical methods, and suited for describing the 
physiological gradualism of natural phenomena in a “non-saltatory” manner. There 
are different methods to compute  D , the box-counting algorithm being the most 
basic and frequently used one (see Chaps.   2    ,   3    ,   7    , and   32     among others). 
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 In his milestone paper on Britain’s coastline, published in the journal  Science  in 
1967 [ 24 ], Mandelbrot defi ned the concepts of fractal dimension and self-similarity. 
According to Mandelbrot’s defi nition, the topological dimension ( D  T ), which can be 
informally understood as the commonly known dimensions of typical ( Euclidean ) 
geometry, is always an integer, but  D  need not be an integer. Expanding further, a 
fractal is a set for which  D  (or more specifi cally, a measure known as the Hausdorff- 
Besicovitch dimension) strictly exceeds the topological dimension [ 23 ]. 

 The value of  D  arrived at for a particular phenomenon is an intrinsic and unique 
value of that phenomenon itself, but represents an “averaging” of variation in data 
[ 28 ]. The fact that it is strictly linked to the geometrical complexity of an object 
does not mean that it is the object. Different objects can share the same  D  value, and 
a series of objects with the same  D  do not necessarily belong to the same class [ 34 ]. 
It should also be emphasized that owing to logarithmic calculations involved in 
determining a  D  value (see Chaps.   2     and   3    , for details), small changes in  D  can cor-
respond to big differences in the shape of an object. In sum,  D  describes the overall 
structure and complexity of an object, but does not tell the shape of the object (nei-
ther can a Euclidean dimension). In principle, this is similar to other metrics, such 
as the unit meter, for instance, which can quantify the height of objects or persons, 
where a chair and table can have the same height in meters but are not the same 
object, just as people are unique but may have the same height and weight values. 
These general principles apply to  D  determined for other phenomena such as time 
series as well as objects. 

 The universality of fractal geometry is shown by the fact that the same concepts 
or methods may be applied to completely different disciplines, from meteorology to 
medicine, from physics to biology. As an example, the box-counting method, 
despite having several intrinsic limitations, can be used to analyze the geometrical 
complexity of a microvascular network of a tumor as well as the distribution of trees 
in a forest, or the surface roughness of a cell as well as the coastline of an island. 

 Of course, as in every model, there are limitations. Despite being a “universal 
language,” fractal geometry has not proposed or found any holy grails nor, as alluded 
to above, is it a cosmological constant able to describe and/or explain everything. 
The concepts and methods of fractal analysis applied to “biomedical fractalomics,” 
for example, have neither explained nor defeated cancer, and “neuro-fractalomics” 
has not unveiled the great mysteries of the brain. A positivist view of fractal geom-
etry might lead to its own failure as a model. 

 Moreover, mathematicians may argue that the existence of a fractal pattern is the 
 conditio sine qua non  for applying fractal analysis, and, from a strictly mathemati-
cal point of view, this is correct. Mathematical fractals are invariant under certain 
transformations of scale (self-similar) infi nitely, whereas natural “fractals” are self- 
similar within limits [ 24 ]. To elaborate, it is not appropriate to extrapolate for bio-
logical systems (e.g., the brain) or features (e.g., cell morphology or event frequency) 
beyond certain limits of investigation; rather, natural fractal or fractal-like patterns 
can be considered statistically self-similar only within upper and lower limits (the 
scaling window), in which the relationship between the scale of observation and 
measured size or length can be established [ 19 ]. Indeed, it has been proposed that 
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biological fractality can only be considered to be supported by the evidence when 
the experimental scaling range covers at least two orders of magnitude [ 17 ,  38 ]. 

 Despite the reality of limited or statistical self-similarity, however, fractal analy-
sis of biological phenomena is viable. The box-counting method, for example, 
offers a quantitative parameter, the box-counting dimension, which is related to the 
space-fi lling property (or the “level of occupancy”) of an analyzed object regardless 
of whether the object is fractal, pseudo-fractal, quasi-fractal, semi-fractal, super- 
fractal, or any of the other defi nitions that have been proposed. In this respect, it is 
diffi cult to overemphasize that fractal geometry is a model that, like other models, 
can be an approximation. It is reasonable to use fractals as models of natural objects 
in the same way that a perfect circle is often used to represent the cross section of 
an artery, for example [ 2 ]. 

 Focusing the interest on biomedicine, fractal geometry has dual usefulness: (1) 
providing a unique model of analysis to attempt to explain the peculiarity and sin-
gularity of phenomena and (2) proposing a system of universal quantifi cation, a 
simple tool used to describe natural things in an appropriate and more realistic way. 

 These two points require some clarifi cation. Every phenomenon has its peculiar 
features, its own “fi ngerprint” of features, which makes it unique or different from 
others. As described in Chap.   24    , the pattern of distribution of microvessels in 
tumors, for example, is different from the one found in normal tissues. In the same 
way, neoplastic cells have different shapes and features in comparison to normal 
cells. Similarly, electroencephalographic records of healthy individuals have their 
own specifi c and unique features that are different from those of patients affected 
by epilepsy (see Chap.   25    ). In general, each phenomenon has its spatiotemporal 
peculiarity, which may be very diffi cult to describe in terms of Euclidean geome-
try or nonlinear mathematics but more readily described in terms of fractal 
geometry. 

 In such a view, fractal geometry indeed has a double role: on one hand, it aims to 
outline the “cutoff” which separates different phases of transition, from physiologic 
to pathological states for example, with an increase or decrease in geometrical com-
plexity or space-fi lling properties. On the other hand, fractal analysis provides valid, 
objective, and more realistic tools of measurement. 

 The objectiveness of the parameters is of course related to the standardization 
of the methods of data acquisition (e.g., image resolution or scale window limits); 
otherwise, comparing outputs computed by means of a heterogeneous dataset may 
lead to various (and wrong) results (see the “black box” concept in Chap.   12    ). This 
has been (and still is) one of the most notorious pitfalls encountered in clinical 
applications of fractal analysis. But this problem is also quite “ancient”; indeed in 
the history of measurement, samples have always been collected or standardized in 
order to be used as a reference, such as the international prototype kilogram, 
deposited at the International Bureau of Weights and Measures, or, the second, 
defi ned as the  second  division of the hour by 60 (the fi rst division being the minute) 
or, more precisely, the duration of 9,192,631,770 cycles of radiation corresponding 
to the transition between two energy levels of the caesium-133 atom at rest at a 
temperature of 0 K.  
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1.3     The Fractal Geometry of the Brain 

 The title of this book implicitly assumes that the brain is a fractal structure and that 
the fractal geometry of the brain exists. This might be wrong, or at least misleading, 
as several mathematicians do not consider fractal geometry as a formal geometry in 
the traditional sense. In general, geometry was developed for the measurement of 
the earth, as the Greek etymology of the word suggests, and is the branch of math-
ematics related to the analysis of shape, size, relative positions, and properties of 
objects. Although developed for practical purposes, traditional geometry is not suf-
fi cient to fully describe the complexity of physical phenomena. Regardless of the 
existing controversies on the nature of fractal geometry and the distinctions between 
fractal and formal Euclidean geometry, both serve practical purposes. 

 Whereas the concepts and rules of Euclidean geometry may be considered ade-
quate for an ideal world [ 18 ], fractal geometry provides tools of analysis more 
appropriate for the real world. It searches for the generators, or common rules, that 
nature, for entropic economy, adopts for phenomena which can be otherwise appar-
ently completely different and through fractal analysis provides valid, objective, 
and more realistic tools like the fractal dimension, to analyze shapes and properties 
of natural objects. As stated by Mandelbrot: “Many patterns of Nature are so irregu-
lar and fragmented, that, compared with Euclid—a term used in this work to denote 
all of standard geometry—Nature exhibits not simply just a higher degree but alto-
gether a different level of complexity. The existence of these patterns challenges us 
to study those forms that Euclid leaves aside as being  formless , to investigate the 
morphology of the  amorphous ” [ 23 ]. 

 According to Mandelbrot, the fractal dimension has been “injected” into several 
different scientifi c fi elds [ 25 ], from physics to geomorphology and from economics 
to biology. Among a myriad of examples, fractals have been used to analyze Internet 
traffi c [ 1 ], econometrics time series [ 22 ], DNA base sequences [ 31 ] and packing of 
chromatin in the human genome [ 16 ], recursive genome function [ 30 ], social net-
works [ 35 ], ecosystems [ 4 ], metabolite exchange [ 40 ], automatic keyword extrac-
tion in text [ 27 ], human gait [ 39 ], and even the architecture of Gothic cathedrals and 
the neurobiological mechanisms of human creativity [ 11 ]. The application of fractal 
geometry to the neurosciences has been the consequence of a new trend of research 
focused on the analysis of the intrinsic complexity of biological systems, which 
have, according to Ludwig von Bertalanffy’s weltanschauung, a tendency to form 
multilevel structures of “systems within systems,” each of which forms a “whole in 
relation to its parts and is simultaneously part of a larger whole” [ 12 ]. Fractal geom-
etry represents a holistic framework to explain biological ontogenesis involving a 
fractal hierarchy, from a single cell to the function of the human brain [ 13 ,  37 ]. 

 With the intention to avoid philosophical or mathematical diatribe on the mean-
ing of fractal geometry or any speculations on the real fractal geometry of nature and 
of the brain, this book is essentially focused on the translational practical applica-
tions of fractal analysis to the neurosciences. Computational neuroscience is inter-
disciplinary, where different fi elds, such as cognitive science and computer science, 
mathematics and physics, psychology, and neurobiology, converge in the study of 

A. Di Ieva
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the nervous system. Fractal analysis can be seen as a tool, or a methodology, of 
computational neuroscience.  Computational fractal-based analysis  is most likely 
the most correct term, considering that in this perspective fractals “simply” become 
a tool in the hands of the scientists dealing with biomedical sciences. Putting fractal 
analysis under the same umbrella as all the computational methods used to analyze 
the brain can be considered wrong, and the use of  D  as a universal quantitator to 
describe every natural object can be misleading. But it is true that fractal geometry 
offers powerful tools for an objective and more realistic description of complex 
systems, such as the brain, and that some estimators, such as the box-counting 
dimension, are robust quantitative parameters. Despite continuous debates about the 
use of the term fractal to describe natural objects, fractal geometry is still a useful 
 tool  to describe and quantify the inherent complexity of objects [ 23 ], including neu-
rons and the brain itself. A tool is a tool, and as famously stated by Lars Leksell, the 
Swedish neurosurgeon who pioneered stereotaxis and radiosurgery, “A fool with a 
tool is still a fool.” It rests upon the operator how to use such a powerful tool to 
explain phenomena and quantify natural things. 

 Of course fractal analysis does not “simply” offer some quantitative parameters. 
 D  and related parameters obtained through fractal analysis, for example, with all 
their pros and cons, are powerful  geometrical  tools. But fractal geometry has some-
thing more than a  normal  geometry. The concept of self-similarity, the repetition of 
iterations generating natural patterns, the scale invariance, the multifractal scaling, 
the strange attractors, and the chaotic patterns are all concepts with much more 
intriguing roots. The elegant beauty of the Koch curve (the “snowfl ake”) and the 
sublime fascination of the Mandelbrot set evoke something more than mere rules 
and equations of other descriptive geometries. It is not by coincidence that fractal 
patterns have been found in music and visual arts, and computer graphics have 
offered a true exploitation of fractal art. 

 I have personally always been fascinated by Hofman’s concept that “the macro-
scopic organization of the brain in mammals is governed by a few simple genera-
tive rules and that these internal factors of brain design, bearing no relation to the 
selective reasons of initial enlargement, may be the primary determinants directing 
the evolution of the brain” [ 14 ]. The repetition of patterns to microscopic, meso-
scopic, and macroscopic levels is a peculiarity of mathematical fractals, but natural 
objects own such a peculiarity in a fi nite range, and this cannot ever be emphasized 
enough. This resolution scaling effect applies to cell morphometry (including neu-
ron morphometry) and overall brain morphometry. Convoluted brain tissue, tortu-
ous brain vessels, ramifi ed neural cells, and jagged electroencephalographic 
records, for instance, all resist description by Euclidean and other more traditional 
geometries, yet, within their respective limits, yield gracefully to the universal lan-
guage of fractal analysis. 

 As the old adage goes, “not everything that matters can be measured and not 
everything that can be measured matters.” But it is also true that if it is worth doing, 
it is worth measuring. Fractal geometry offers a novel perspective on the description 
and measurement of nature. Nature shows complexity, roughness, apparent chaos 
and mystery, and beauty—the sublime. And what is there in nature more complex, 
apparently chaotic and mysterious, beautiful, and sublime than the human brain?  

1 The Fractal Geometry of the Brain: An Overview
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1.4     Fractal Dimension and Neurosciences 

 At this point it is clear that natural and especially biological morphologies are irreg-
ular, and, when we can assess them (using computers) as distributions of points in 
space and time, we can often describe and quantitate them rather compactly by the 
methods of fractal analysis [ 15 ,  29 ]. 

 But how is fractal analysis performed? As expressed in the preface to this book, 
the fi rst section offers one answer to this question by outlining key tenets of fractal 
analysis. In particular, Chaps.   2    ,   3    , and   4     explain basic concepts of  fractal geometry 
(fractal dimension, self-similarity, and scaling) and introduce specifi c methods and 
examples of practical applications of fractal analysis to neuroscience. 

 The fractal dimension is a powerful tool for characterizing features, but its mean-
ing has to be fully understood in order to avoid misuse of fractal analysis in bio-
medicine [ 26 ]. Several important limitations, caveats, and recent methodological 
considerations are therefore also discussed in those chapters. In addition, supple-
mentary methods of fractal analysis are discussed. In Chap.   2    , for instance,  Audrey 
Karperien and Herbert Jelinek  discuss lacunarity, a measure that complements  D . 
In box counting,  D  measures  how much  the object (or data) fi lls the space [ 10 ], but 
lacunarity measures  how  the data fi ll the space [ 23 ,  36 ]. Other fundamental param-
eters and concepts of fractal analysis, such as the Hurst coeffi cient ( H ), the scaling 
exponent ( α ), the power exponent ( β ), the fractional differencing parameter, and 
fractal noise, are discussed in Chap.   3     by  Tatjana Stadnitski . While Chap.   2     focuses 
mainly on applications of fractal analysis to images, Chap.   3     is essentially dedicated 
to time series analysis. Finally, Chap.   4    , by  Renaud Lopes and Antoine Ayache , 
discusses limitations of the “mono-fractal” approach, which describes phenomena 
by means of a single  D  value, introducing multifractal behavior measured by a spec-
trum of  D  values. 

 The reader who is already an expert in fractal analysis, familiar with basic con-
cepts, and up to date on methodological developments may jump directly to Section 
II of this book, but less versed readers can read the next three chapters in order to 
comprehensively understand the rest of the book wherein specifi c applications of 
fractals in basic and clinical neurosciences are discussed.     
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Chapter 2
Box-Counting Fractal Analysis: A Primer 
for the Clinician

Audrey L. Karperien and Herbert F. Jelinek

Abstract This chapter lays out elementary principles of fractal geometry under-
pinning much of the rest of this book. It assumes minimal mathematical back-
ground, defines key principles and terms in context, and outlines the basics of a 
fractal analysis method known as box counting and how it is used to do fractal, 
lacunarity, and multifractal analyses. As a standalone reference, the chapter 
grounds the reader to be able to understand, evaluate, and apply essential methods 
to appreciate the exquisitely detailed fractal geometry of the brain.

Keywords Box-counting • Fractals • Fractal analysis • Lacunarity • Multifractal • 
FracLac • Theoretical Models

2.1  Fractal Analysis: What Does It Measure?

Fractal analysis is a way of measuring phenomena when the details of design are as 
important as gross morphology. It has been applied to fields as diverse as music 
[75], finance [10], space science [3], urban development [25], materials technology 
[5], geology [2], epidemiology [30, 31], and search and rescue [79], in addition to 
topics in this book such as signal processing (EEG/ECG) [16, 17, 41, 46], diagnos-
tic imaging [103, 104], histology [45], tumor morphology [22], vasculature [34, 
55], and overall brain structure [70]. A common thread narrows the field to a focus: 
the need to measure peculiar phenomena that are difficult to describe other than by 
noting that they tend to repeat themselves at different scales or have the property of 
being “self-similar.”
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In the parlance of fractal analysis, this property is often called complexity, 
and its value in neuroscience is the remarkable feature that it can be assigned a 
number called a fractal dimension (DF). Whereas the concept of a Df applies to 
both temporal and spatial patterns, we introduce it here in terms of spatial pat-
terns only, specifically what one can observe with one’s eyes, using the analogy 
of zooming in on a slide under a microscope or a digital image on a computer. 
In particular, this chapter is primarily about fractal analysis of digital images.  
In that context, for this practical, non-mathematically oriented chapter, the 
 working definition of complexity or a Df is a change in detail with change in 
resolution [66]:

To appreciate why “detail” is emphasized in this definition of a Df, imagine first 
a pattern with no detail, such as a simple line, upon which one zooms in many times 
to always see the same simple line—this is trivial, not fractal, scaling and what is 
commonly referred to as Euclidean geometry. In contrast, now imagine always see-
ing the same intricate pattern reproduced at every level of resolution—that is fractal 
scaling [23, 24]. Figure 2.1 illustrates this distinction as well as differences between 
theoretical and practical self-similar scaling.

Supplementary Measures in Fractal Analysis The self-similarly detailed phe-
nomena typically quantified with fractal analysis are also often investigated using 
measures that complement Dfs, such as lacunarity and multifractality. Lacunarity, 
at the other end of the spectrum to self-similarity, measures heterogeneity, and mul-
tifractality identifies certain patterns of complexity not identifiable with the single 
Df. The rest of this chapter explains the basics of how to calculate and critically 
evaluate all three, Dfs (Sect. 2.2), lacunarity (Sect. 2.4), and multifractality 
(Sect. 2.6), in neuroscience.

Fractal Dimension (Df)
A unitless number to measure fractal scaling as a change in detail with change 
in scale; strictly speaking, the number conveys that a pattern scales as a fractal 
if it both has meaningful detail and repeats that detail at all levels of magnifi-
cation or resolution. (Section 2.3.1 explains how to quantify the change in 
detail and the change in scale.)

Self-Similar
Being a whole that resembles a part of itself; similar in this term connotes 
similitude as in the usual definition of the word but can also mean “identical 
to” (i.e., a self-similar pattern may be approximately like or identical to a part 
of itself).

A.L. Karperien and H.F. Jelinek
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2.2  How Is a DF Calculated?

One of the simplest ways to calculate a DF is as the logarithmic ratio of change in 
detail (N) to change in scale (S) (Eq. 2.1):

 
D

N

SF = log

log  
(2.1)

 Koch curves

Simple curve

Infinitely repeating 
self-similarity

a b c

d

Practical or limited 
self-similarity

Trivial (non-fractal)
 self-similarity

 Koch flake

Effect of rotating 
using pixels

Fig. 2.1 Infinite, practical, and trivial self-similar scaling (a) Each row shows the top image scaled 
by magnifying 1/3 of the pattern to the parent size successively. The Koch Flake and Koch Curve 
(a side of the flake) in a and b are canonical fractals. Fractal curves, in theory, are scale independent, 
infinitely reproducing the same starting pattern or unit of detail regardless of the resolution used to 
inspect them. (b) The bottom frame shows that each scaling reproduces a defining unit of detail four 
times. The bottom frame in b shows the smallest unit of detail that a theoretical Koch fractal is based 
on, although by definition no amount of magnification would make a theoretical fractal resolve into 
its basic unit of detail. In contrast to a theoretical fractal, a pixel- or print-based image of a Koch 
fractal eventually resolves into straight-line segments. Whereas dynamic computer graphics can be 
made to simulate infinite scaling, fixed pixel-based digital and printed images repeat only to the 
practical minimum element size (pixels or printer resolution) used to render them. (c) A simple line 
may scale self-similarly and, in theory, infinitely, but the scaling is trivial, lacking detail, ever resolv-
ing into virtually straight segments. In contrast, fractal patterns never resolve into undetailed, 
smooth segments. (d) Another limitation of pixel-based images is fidelity. Lines in digital images 
differ with the angle of rotation and arcs are approximated by “steps,” because they are represented 
using an array of fixed pixels (fractal images generated with the ImageJ Fractal-Generator plugin 
available from http://imagej.nih.gov/ij/plugins/fractal-generator.html)
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A Df relates these features to each other somewhat like “narrowness” relates length 
to width, or “circularity” relates circumference to diameter, but whereas people can 
decide how relatively narrow or circular something is by looking at it, most people 
cannot so easily gauge how relatively complex something is by looking at it (at least 
not at this point in history).

Despite not being intuitive, the change in detail with change in scale is 
explainable in a straightforward way. First, to understand what the change in 
scale, S, refers to, imagine, for example, measuring the length of a DNA strand 
or tortuous blood vessel, or the circumference of a crenelated plasma membrane 
in a digital image. Depending on the reason for measuring any of these struc-
tures, one might be interested in the net distance covered from one point to 
another, or, alternatively, the unraveled length. Likewise, depending on how we 
expect to use the measurement, we might measure the Koch Curve in Fig. 2.1 as 
either as long as the box enclosing it in the second row in Fig. 2.1a, or as long as 
the sum of all the steps along its winding path. S in Eq. 2.1 is based on the first 
measure, the net length:

The change in detail, N, for Eq. 2.1, is based on the second measure of a struc-
ture, that found by unravelling the twists or more generally, counting the details. 
The bottom of Fig. 2.1b shows the basic unit of detail that is reproduced in the Koch 
curve. The relationship between this detailed size and the net size is the key to 
understanding fractal scaling [66]:

Substituting the values for N and S for the Koch Curve into Eq. 2.1 yields a DF = 
log 4/log 3 = 1.26. Although the arrangement of the new parts is important to a 
 pattern per se, at this point in the discussion, the number of new parts sufficiently 

Change in Scale (S in Eq. 2.1)
The relative change in magnification or resolution used to determine a Df; the 
reciprocal of the ratio that is multiplied by an original net size to get a new 
size when scaling a pattern to calculate a Df. As an example, in Fig. 2.1a, the 
enclosing box’s net length is multiplied by 1/3 in each successive row so 
S = 3. The numerator in this example is 1 but this is not a restriction—S for 
scaling a geometric pattern into, for example, 4 pieces each 3/8 the original 
size, is 8/3.

Change in Detail (N in Eq. 2.1)
The number of times a starting pattern or unit of detail repeats at each scaling; 
the number of new parts in each scaled piece when S is the change in scale for 
calculating a Df. In terms of the Koch Curve in Fig. 2.1(a and b), for instance, 
the pattern resolves into four new parts when scaled by 1/3 the length of the 
parent box. In other words, when this fractal pattern is magnified by a factor 
of 3, the number of new parts is not the more intuitive 3 but 4.

A.L. Karperien and H.F. Jelinek
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represents the change in detail for calculating a Df (see Sects. 2.2.1.1, 2.3.1, and 
2.4.2.1 for further discussion of the pattern itself) [23, 49].

2.2.1  Practical Points

2.2.1.1  Statistical Self-Similarity

Equation 2.1 and the definition of a Df (Sect. 2.1) suggest that self-similar fractal 
scaling must be infinite and exact, but this is not the case in nature. Infinite theoreti-
cal fractals differ from finite manifestations of them. The lower limit illustrated in 
Fig. 2.1b, for instance, is a case of the broad rule that practical bounds generally 
limit fractal scaling in not just digital images but nature as well. Moreover, in addi-
tion to having limiting physical bounds, scaling in nature is typically statistical, as 
illustrated in Fig. 2.2, which shows three branching structures generated using the 
same scaling ratio applied as both exact and averaged patterns [62].

a

c

b

Fig. 2.2 Exactly and statistically self-similar branching. (a) An exactly self-similar, skeletonized, 
branching pattern reproducing a defining unit of detail by generating 4 new branches each 3/8 the 
length of the parent, with a theoretical Df = log 4/log (8/3) = 1.41. (b) The same fundamental 
branching pattern as in a but represented as a silhouette; although branch diameter changes as well 
as length, the branching Df based on branch length and number is the same as for (a). (c) A statisti-
cally self-similar pattern having the same theoretical Df as a and b that reproduces itself by gener-
ating, on average, 4 new branches 3/8 the length of the parent (images generated using the fractal 
biomodeling tool MicroMod for ImageJ)
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2.2.1.2  DF and Density

Another practical point to be aware of is how the Df relates to density. Generally, the 
closer a geometric form comes to filling the space it is embedded in, the higher the 
DF. To elaborate, the line in Fig. 2.1c, when scaled by 1/3, resolves into three new 
parts each 1/3 the length of the original enclosing box, so has a DF = log 3/log 
3 = 1.00. Similarly, a filled plane scaled by 1/3 would have nine new parts, and DF = 
log 9/log 3 = 2.00. The Koch Curve, with a Df of 1.26, lies between these limits. The 
principle that the Df approaches the dimension of the space a pattern is embedded 
in holds for many fractal patterns, but does not mean the Df measures merely den-
sity; rather, a Df measures additional features and is not necessarily strictly corre-
lated with density (see Sect. 2.4.2.1) [23, 65, 66].

2.2.1.3  The DF in Neuroscience

Many phenomena in neuroscience scale statistically self-similarly or scale invari-
antly, with structural and functional implications on many levels. The complexity in 
the contour of the Koch Curve, for instance, is reminiscent of the complexity in the 
borders of tumor masses, the plasma membranes of individual tumor cells, and the 
membranes of cell parts such as nuclei within a tumor cell as observed on histopa-
thology slides [69]. Fractal scaling also resides in tortuous and branching nervous 
system structures that scale into scale-invariant parts (e.g., neurons and other 
branching brain cells, tracts, and vessels) [19, 76].

Scale invariance in the nervous system sometimes extends beyond the level of 
discrete structures. DFs for cultured rat oligodendrocytes, for instance, have been 
shown to be consistent over a tenfold range of magnification when comparing por-
tions of cells, whole cells, and entire fields of cells [7]. At the same time, this is not 
to suggest that all ways of inspecting a phenomenon will necessarily converge on 
a single Df. They may or they may not. In contrast to the consistency in cultured rat 
oligodendrocytes, the Df in living organisms may vary with the level of magnifica-
tion or resolution from the tissue level to the cellular level (where the cell mem-
brane boundaries dictate the Df) to the subcellular and molecular levels [6, 59, 61, 
82]. It may also vary with the particular part of a brain structure being investigated, 
where there may exist several pertinent Dfs (e.g., different layers of newborn rat 
retina have distinct Dfs and altered oxygen exposure leads to histo-architectural 

Statistical Self-Similarity or Scale Invariance
Self-similar scaling that resembles fractal scaling but is not necessarily  infinite 
or not necessarily exact (or both); the type of scaling typically seen in nature; 
a statistically self-similar pattern, for example, may be composed of units that 
are similar but not necessarily identical to the whole and that repeat in a regu-
lar but not necessarily strictly defined scaling pattern.
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changes characterized by in some layers increased but in other layers decreased 
Dfs [87, 88]).

Whereas in the examples of Figs. 2.1 and 2.2 the scaling was known and easy to 
identify, in practice, scaling in biological phenomena is usually not so readily mea-
sured. Emphasizing this point, Fig. 2.3 illustrates statistical scale invariance in 
membrane detail and branching patterns for two brain cells.

As might be inferred from Fig. 2.3, one reason natural fractal scaling is typically 
not easily measured on inspection is sheer practicality. It would be tedious and time 
consuming to manually trace, unravel, determine the angles of, and measure the 
lengths and widths of parts of patterns, then identify and count them as units of 

Hypertrophied 
astrocyte

Hypertrophied 
microglial cell

Fig. 2.3 Two types of brain cell showing statistical self-similarity as is typically found in nature 
Insets highlight detail roughly repeated at each scaling. Hypertrophied refers to morphological 
changes after brain trauma compared to in normal tissue. These cell morphologies were deliber-
ately selected to illustrate fractal scaling; in reality, both astrocytes and microglia comprise mor-
phologically and functionally heterogeneous groups of which the cells depicted are but one type 
[6, 59, 91]
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detail, and then further analyze the measurements to find scaling trends [37]. This 
applies to finding the basic unit of detail in everything within the purview of digital 
image analysis in fractal-based neuroscience, meaning anatomical subjects ranging 
from gross overall CNS structure [70] to the most tortuous of vessels, great and 
small [19, 76], to tracts and functional circuitry [28], and further to the finest levels 
within cells and the extracellular milieu [92], all represented by a variety of imaging 
modalities including retinal photography, radiography, histopathology, electron 
microscopy, etc. [20, 33, 34].

Fortunately, the tedium of finding units of detail and scaling rules can be left to 
software, and the joy of discovery to the analyst. Without manually measuring any 
part of the cells in Fig. 2.3, one can estimate their DFs using any of several accessi-
ble software packages. From the freeware FracLac for ImageJ [50], for instance, the 
measured Df of the astrocyte in Fig. 2.3 is 1.58 and the microglial cell 1.59. These 
values are not theoretically but empirically determined Dfs called box- counting 
dimensions (DB).

One can analyze the fractal geometry of the brain using any of several Dfs (e.g., 
dilation, mass vs. radius [50], or local connected Dfs [55, 58]), but the DB stands out 
as an elegant, robust, easily implemented, and often used measure; therefore, it is 
the chief Df discussed in the rest of this chapter [11, 40, 42, 52, 53, 56, 76, 94].

2.3  Box Counting

What exactly does the DB measure for the cells in Fig. 2.3? It measures the usual 
ratio of change in detail with change in scale, log N/log S from Eq. 2.1, with a slight 
twist to measure detail indirectly. The basic method of box counting is to examine 
images at increasing levels of resolution by using a series of smaller and smaller 
sampling elements and then determine the scaling ratio from the data for the series. 
This is similar to how the Koch Curve in Fig. 2.1 was scaled and magnified, except 
that in box counting the actual scale and unit of detail are unknown, so the image is 
sampled using arbitrary values of S and the unit of detail is inferred from the data 
after the fact. Figure 2.4 illustrates the essential process for a binary image of a 
Koch Curve.

Box-Counting Dimension (DB)
A type of empirically determined, averaged Df typically calculated using 
software implementing box-counting methods that measure proxies for 
the change in detail and the change in scale (see Eq. 2.1); a DB does not 
identify or depend on identifying the actual unit of detail and its corre-
sponding scaling ratio but is usually determined from the regression line 
for log N vs log S in Eq. 2.1.
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N = 4

N = 16

Box counting estimatesActual count

mean mass = 115  
std dev = 57

mean mass = 29
std dev = 11 

mean mass = 9
std dev = 4 

a b c

N = 19

N = 6N = 4

N = 16

N = 64 N = 62

mean mass = 78  
std dev = 91

mean mass = 24  
std dev = 10

mean mass = 7  
std dev = 5

N = 64

Fig. 2.4 Measuring the change in detail by box counting compared to actual counting. (a) A Koch 
Curve measured precisely by breaking it up using its known scaling (i.e., 4 new parts each enclosed 
in a rectangular space 1/3 the net length of the parent). Box-counting algorithms implemented in 
software (e.g., b, c) approximate this process. (b) Box counting based on a priori knowledge of the 
scaling ratio and unit of detail. (c) Box counting based on a guess at the scaling pattern. In the fixed 
grid box-counting method shown in b and c images are broken into evenly spaced square boxes, 
and N (Eq. 2.1) is the number of boxes containing foreground pixels (edge blocks in the figure are 
truncated for display but are counted as an entire box if they contain any foreground pixels). 
Another quantity, the mass, is the number of foreground pixels per box. N is identical for a and b 
at each level because b was set up using the Koch Curve’s known scaling ratio (log4/log3) and the 
sample closest to ideal was selected out of many attempts at positioning the boxes. In practice, 
scaling features are usually unknown, and N corresponds to theoretical only in an average sense 
(explained in Sect. 2.3.2.1). Similarly, for mass, in a, the proportion of the pattern in every box is 
equal at any particular scale, but in typical box counting, it varies by box so that the overall mass 
for any box size is found by averaging. (b and c generated in FracLac for ImageJ using the “draw 
grids” option)

Binary Image
Binary in the context of fractal analysis usually refers to digital images having 
only two possible pixel values (usually black and white), one of which is 
deemed foreground and the other background. Binary images are the usual 
input for binary box-counting fractal analysis; binary patterns are usually 
extracted from original color or grayscale (Sect. 2.5) digital images. There are 
three basic types: binary silhouettes are filled patterns, binary contours are 
unfilled outlines, and binary skeletons are tracings of a pattern without regard 
for diameter (such as the branching pattern in Fig. 2.2a). Importantly, all of 
these binary pattern types can generally be extracted from the same image 
(see Sect. 2.4.2.1 for discussion of pattern type and DB).
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2.3.1  Sampling, S, and N in Box Counting

The method is called “box” counting because the sample elements are usually con-
ceptually boxes, meaning square arrays of pixel points; however, the sampling ele-
ments can also be ovals, hexagons, rectangles, or even virtual volumes instead of 
areas, providing the possibility of analyzing three-dimensional (3D) images. Most 
box-counting algorithms do not overlap sampling elements, placing them in a “tight” 
or “fixed grid” pattern, but one type, sliding-box algorithms, does overlap samples. 
Moreover, box-counting algorithms usually sample images exhaustively but can also 
sample randomly, for another case in which samples may overlap [51, 84].

In all types of sampling, S for Eq. 2.1 relates to the sampling element’s size; for 
2-dimensional (2D) images, S approximates the sampling unit’s length, such as the 
side of the square or diameter of the hexagon or oval. As an example, if the top image 
in Fig. 2.4a is 1 arbitrary unit, at a 1/3 scale, the box size would be (1 × 1/3) = 1/3 with 
S its reciprocal, 3 (see Table 2.1a) [23, 50].

N for Eq. 2.1 relates to the content of each sampling element and depends on the 
type of analysis being done. For fixed grid binary box counting, N is the number of 
boxes containing any foreground pixels, as was illustrated in Fig. 2.4b, c. For binary 
mass box counting, N is based on the average foreground pixels per box or “mass” 
and is used to determine fractal metrics other than the DB, including mass dimen-
sions, mass lacunarity (explained in Sect. 2.4), and mass multifractal spectra 
(explained in Sect. 2.6). For grayscale analysis, N is based on a projected volume 
(explained in Sect. 2.5) [14, 23, 66, 72, 73, 85].

Table 2.1 Using different box sizes and regression lines to calculate the DB for a Koch Curve

Box counting Box size S N log N/log S DB

(a) Idealized Relativea

  Figure 2.4a–b (1/3) × 1 = 1/3 3 4 1.26 Log
(1/3)2 × 1 = 1/9 9 16 1.26 1.26
(1/3)3 × 1 = 1/27 27 64 1.26

(b) Idealized Pixels
  Figure 2.4a, b (1/3) × 81 = 27 1/27 4 0.42 Reg

(1/3)2 × 81 = 9 1/9 16 1.26 1.26
(1/3)3 × 81 = 3 1/3 64 3.79

(c) Actual Pixels
  Figure 2.4c 27 1/27 6 0.54 Reg
  Same sizes as b 9 1/9 19 1.34 1.06
  Different locations than b 3 1/3 62 3.76
(d) Actual Pixels
  Not shown 40 1/40 5 0.44 Reg
  Different sizes than Fig. 2.4 20 1/20 15 0.90 1.22
  Different locations than Fig. 2.4 5 1/5 67 2.61

Log log-log calculation, Reg regression line slope
aOriginal image size = 81 pixels
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2.3.2  Methodological Issues in Box Counting

Unlike in the idealized box counting with known scaling shown in Fig. 2.4a, b, in 
practical box counting, how a unit of detail is arranged and scales are not usually 
known ahead of time. As Fig. 2.4c illustrates, this is problematic because N deter-
mined with box counting varies with box size and position.

2.3.2.1  Regression Lines

To address in part the lack of knowledge of scaling ahead of time, box-counting 
software implementations typically apply a series of sizes and then extract a single 
value for the DB through regression analysis. This is done by applying several dec-
remented scales, counting the respective Ns, and finding the DB as the limit of the 
ratio for Eq. 2.1 as size gets smaller and smaller, calculated as the slope of the 
regression line for log N vs. log S (see Table 2.1b–d). Because the starting image 
size is the same for all sample sizes, S can be determined from the reciprocal of each 
box size (Table 2.1b–d) [23, 60, 66].

High Correlation Coefficients: Necessary but Not Sufficient By the properties 
of regression lines, if the relationship between log N and log S is linear for a large 
proportion of the sizes, the correlation coefficient (r2) is high. However, a valid lin-
ear relationship, a high r2, does not validate a DB. Indeed, several regression lines 
with r2 greater than 0.99 (1.00 being perfect correlation) but widely differing slopes 
(DBs) can be found for the same control image by manipulating both the scaling 
between and the range of sizes [8, 49, 52, 69]. Therefore, a high r2 is necessary for 
but does not guarantee high validity.

2.3.2.2  Sampling Size, Location, and Rotational Orientation Bias

To obtain a valid regression line slope, box-counting implementations have to 
address several factors inherent to the method itself. These include determining the 
smallest and largest valid sizes, the method of scaling sizes between them, and the 
positioning of boxes [8, 36, 69]. Figure 2.4b, c illustrated that an image can be 
sampled in different ways using just one gauge of sampling element, resulting in the 
ambiguous situation of there being many Ns for one size, substantially influencing 
the resulting DBs and mass-related measures (e.g., compare the DBs from  
Table 2.1a–d) [26, 47, 49, 64, 80].

Related to grid location, the rotational orientation of a pattern, or from an alterna-
tive perspective, the rotational orientation of the sampling grid, can also affect the DB 
[48]. As was illustrated in Fig. 2.1d, this is because pixels are arranged in 2D arrays, 
such that rotating an image through an arc digitally requires making approximations 
that can change the primary data—in sum, it can create a new pattern. The various 
arcs that make up a simple circle, for instance, can be shown to have different  
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empirical DBs owing to the arrangement of pixels to emulate roundness (e.g., enlarg-
ing a single pixel wide circle reveals horizontal portions at the top and bottom and 
vertical portions on the sides) [48]. Note that this is a digital image-rendering phe-
nomenon and is not the same as the feature known as rotational invariance measured 
by lacunarity (see Sect. 2.4).

Table 2.2 quantitates the phenomenon from two perspectives in the standard 
deviation (σ) columns. The σ-r column shows the variation comparing rotations as 
individual images, each rotation scanned at 12 grid locations, and σ shows the 
 overall variation for an image considering all rotations and locations. The computa-
tional difference is evident in the first entry (b-Koch Curve-o), which has different 
ranges and standard deviations for each but the same mean. In general, the range of 
DBs can be broad despite the variability not being correspondingly high if a small 
part of the arc yields a markedly different value than the rest (see b-Koch Flake-o, 
for instance).

Also, the table shows that different patterns are affected to different degrees; for 
example, the DB for the filled rectangle is considerably more affected by rotation 
than that for the outlined, and the round (-c) texture samples depend less on rota-
tion (lower standard deviation) than do square samples from the same areas on the 
same images. Two factors influencing variation with digital rotation are the overall 
shape and the density of pixels. Figure 2.5 shows the dependency on the ratio of the 

Table 2.2 Effect on the DB of rotating 800 × 800 pixel digital images by 30° increments (rotate 
function in FracLac using 12 locations × 12 rotations = 144 samples per image)

Image

DBR DBT

μ-r Min-r Max-r σ-r Min Max σ
b-Koch Curve-o 1.25 1.24 1.26 0.005 1.22 1.29 0.022
b-Koch Flake-o 1.27 1.22 1.29 0.001 1.21 1.30 0.020
b-Rectangle-o 1.02 1.02 1.02 0.001 0.99 1.04 0.019
b-Rectangle-f 1.85 1.74 1.85 0.048 1.72 1.91 0.055
b-Mic-o 1.52 1.52 1.52 0.002 1.50 1.57 0.022
b-Mic-f 1.59 1.58 1.60 0.003 1.57 1.63 0.021
b-Ast-o 1.59 1.57 1.59 0.009 1.55 1.62 0.021
b-Ast-o 1.58 1.58 1.60 0.008 1.56 1.61 0.020
g-TEM-s 1.61 1.58 1.67 0.046 1.56 1.72 0.051
g-TEM-c 1.62 1.61 1.62 0.000 1.60 1.66 0.021
g-Retina-s 1.25 1.21 1.31 0.043 1.18 1.34 0.045
g-Retina-c 1.28 1.28 1.28 0.002 1.26 1.30 0.009

DBR average box-counting dimension per rotation (from an image rotated in 30° increments to 
make 12 rotated images each scanned at 12 locations), DBT average box-counting dimension for 
all (144) scans, μ-r mean DBR (also equals mean DBT), Min-r DBR for rotation image with lowest 
DBR, Max-r DBR for rotation image with highest DBR, σ-r standard deviation for μ-r, Min and Max 
lowest and highest DBT, respectively, σ standard deviation for DBT, b binary, g grayscale, -o out-
lined, -f filled, -s square sample, -c circular sample, Mic microglia (Fig. 2.3), Ast astrocyte 
(Fig. 2.3), TEM transmission electron micrograph of mouse cerebellum (see Fig. 2.11), Retina 
retinal fundus photograph (see Fig. 2.8)
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maximum span across a pattern to the total area of the pattern for two samples 
(binary contours, one of whole microglia and one of astrocytoma nuclei). In addi-
tion, it is known that digital images of non-stellate are more affected than digital 
images of stellate neurons [77].

2.3.2.3  Box-Counting Solutions

All of the above suggests a paradox—that accurate and valid results require 
knowledge beforehand of the optimal series of sizes, orientation, and box place-
ment for each image [45, 49, 51]. Manifold solutions are available in box-count-
ing software to address the problem, including sampling over multiple orientations 
and rotations and providing DBs for average, minimum, and maximum covers, 
controlling for density differences, empirically determining optimizing solutions, 
etc. [26, 47, 49, 64, 80]. The particular method to select depends on the research 
need. For instance, to generate a series of sizes, if the scaling is known ahead of 
time, a custom series can be calculated, as was done for Fig. 2.4a. For the more 
general case when scaling is not known, other strategies available in software 
include applying an arbitrary pattern such as a simple linear decrease (e.g., sub-
tracting 1 from each size), rational scaling (e.g., scaling by any fraction, such as 
1/2 or 8/3), and power increments (i.e., going upward, size(n+1) = (sizen)x). For all of 
these, the minimum and maximum sizes can be specified in pixels or as a percent 
of image size (e.g., empirically, for control images, results tend to fail as box sizes 
exceed roughly 45 % of the image size).

Optimizing solutions targeting bias with box position in FracLac, for example, 
oversample an image by selecting different grid locations and rotating the image, 
then extract an optimized grid series using methods to select minimum covers and 
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Fig. 2.5 Positive correlation between variation in the DB with digital rotation and ratio of maxi-
mum span to total area. (a) 310 binary outlines of astrocytoma nuclei. (b) 79 binary outlines of 
microglia Both samples were also positively correlated with pixel density (not shown: astrocytoma 
r2 = 0.7119 and microglia r2 = 0.5831) but not circularity (astrocytoma r2 = 0.0427 and microglia 
r2 = 0.0253)
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smoothest scaling patterns, including methods for automatically optimizing mini-
mum and maximum box sizes (see also Chap. 32). These methods generally yield 
accuracy from 0.00 % to 3.00 % from theoretical for certain fractals, non-fractals, 
and in silico biological models. Such outcomes notwithstanding, variation in box- 
counting results depends on the pattern and the method, so prudent application 
requires some preliminary work to establish the particulars for specific research 
questions [45, 47, 49].

2.4  Lacunarity

Lacunarity, complementary to the DB, is based on data that can normally be gath-
ered during typical box counting [85].

2.4.1  Calculating Lacunarity

Like the DB, lacunarity comes in various types that depend on the box-counting 
sampling method (e.g., “sliding box” and “fixed box” lacunarities) [54, 72]. 
Lacunarities calculated during box counting are often based on the mean mass per 
box at each sampling size, which results in a series of values, one for each size. 
Various strategies reduce this data to a single measure describing an entire pattern, 
such as taking the mean of the mean for all sizes, and further selecting a representa-
tive value for an image if multiple sampling positions are used. The type we discuss 
here, fixed grid, mass-based lacunarity (Λ) is based on the mean of all squared coef-
ficients of variation (standard deviation divided by the mean) [23, 66, 72, 73, 85]. 
Some ways to calculate lacunarity are redundant with the calculated DF because 
both depend on the same data; however, this is not the case with Λ and the DB 
because the mass from which Λ is calculated is independent of the count from 
which the DB is calculated [49, 54, 73, 85].

Lacunarity has been applied in several contexts in neuroscience [49, 54, 73, 85]. 
As one example, Λ based on binary patterns extracted from dynamic contrast- 
enhanced computed tomography of head and neck tumors, images that reflect both 
tumor blood supply and capillary permeability, has been used to answer questions 
about how blood flow patterns in tumors relate to patient outcomes, showing that 
lower Λ of the overall vascularization pattern is associated with better outcomes, 
suggesting a more heterogeneous tumor blood supply predicts worse outcomes [1].

Lacunarity
A measure of heterogeneity in patterns; characterized variously as “gappi-
ness,” rotational invariance, and visual impressions of patchiness in texture; 
typically calculated during box counting based on mass measures (i.e., the 
relative content of each sampling unit of a particular size) (see mass in Fig. 2.4).
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2.4.2  Understanding the DB and Λ

The DB and Λ work together to objectively quantify subtle differences in various 
phenomena, where patterns indistinguishable by their DB are often distinguishable 
by their mass-related Λ and vice versa [6, 29, 39, 40, 49, 52, 54, 73, 78, 85, 86, 91]. 
Both, for instance, are sensitive to subtle changes in branching brain cell morphol-
ogy that are not visually detectable yet have significant functional implications, but 
whereas the DB is more sensitive for branching, Λ is superior for particular features 
such as soma size relative to process length [6, 40, 52].

Section 2.4.1 outlined the computational basis of this complementary relation-
ship; Fig. 2.6 illustrates it. What the DB measures increases left to right, and Λ from 
bottom to top in the figure. To understand Λ, consider the column near 1.26, which 
has two images with similar calculated DBs but drastically differing Λs. Rotating the 
Koch Flake (KF), which has low Λ, affects it little; but rotating the Henon Map 
(HM), a canonical multifractal with higher Λ, affects that image markedly—it has a 
distinct orientation relative to its surroundings. In terms of gaps, KF has one large 
gap, but HM has many irregular gaps. Similarly, for QC and Mrf in the column from 
1.50 to 1.51, moving up (i.e., as Λ increases) Mrf depends more on orientation and 
is more heterogeneous in its gaps [49, 54, 73, 85].

2.4.2.1  Pattern Idiosyncrasies

The type of pattern selected can affect the results of box-counting fractal analy-
sis. In particular, binary silhouettes typically have higher DBs and Λ than do 
either outlined or skeletonized counterparts of the same image. For a typical 
branching structure, for instance, filled silhouettes and outlined contours bear 
information about changing branch diameter, but skeletonized patterns generally 
use a consistent (usually single pixel) diameter line so lose that information. The 
higher DB of filled patterns can be understood as the filled state resembling a 
filled plane (which has a theoretical DF = 2 as was noted in Sect. 2.2.1.2) more 
than does its outlined or skeletonized state. The higher Λ can be understood by 
considering silhouettes, contours, and skeletons as the same collection of con-
tainers in different states (e.g., the outlined circle in the lower left of Fig. 2.6 has 
one container and it is empty) where the outlined and skeletonized states have 
only empty or mostly identical containers but the silhouette has some filled and 
some empty, making it the more heterogeneous. In this regard, similar to the DB 
(see Sect. 2.2.1.2), Λ is moderately correlated, but not redundant, with density 
[49, 95, 96].

These trends are not strict rules. The astrocyte in Fig. 2.6 (Aho and Ahf), for 
instance, defies the trend; Λ is lower in the outlined state, Aho, as expected, but 
the DB is essentially the same in both. This relates to the containers (branches in 
this case) being narrow so that filling them does not substantially change the 
number of groups of pixels but does change the distribution, the variation in gap 
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size. The circle in Fig. 2.6 also challenges the trend; the filled state, FC, has a 
much higher calculated DB than the unfilled, OC, but barely higher calculated Λ. 
This is understandable when one considers that both are round, rotationally 
invariant containers each with only one container state therefore similar Λs, but 
the filled state is markedly closer to filling the plane therefore has a higher DB 
[23, 62]. Overall, the fractal analyst evaluating results or deciding what type of 
pattern to assess needs to be aware that these trends exist but cannot assume 
they are pertinent without investigating to what extent they actually affect 
results [43].

For each image, the top number is the 
DB and the bottom is Λ.

0.45

0.80
Λ

 

0.10

1.02 (OC ) 
0.19  
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 0.63   

1.27 (KF)  
0.30 
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 0.33 

1.50 (QC)
0.38 

1.48 (Mro)   
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 0.61 
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1.59 (Mhf) 
 0.49 

1.59 (Aho) 
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1.82(FC) 
 0.21

Multifractal 
strange attractor
1.65
3.12

DB

1.0 1.2 1.4 1.6 1.8

HM: Multifractal Henon Map = 1.26
KF: Koch Flake = ln 4/ln 3 = 1.26
QF: Quadric Flake = ln 3/ln 5(1/2) = 1.37
Q32: Quadric 32-Segment = ln 32/ln 8 = 1.67
QC: Quadric Cross = ln (10/3)/ln 5(1/2) = 1.50
OC: Outlined Circle  = 1.00 

Theoretical DFS for control images: Biological cell images:

Mrf: Microglia (ramified; filled)
Mro: Microglia (ramified; outlined)
Mhf: Microglia (hypertrophied: filled)

Ahf:  Astrocyte (hypertrophied; filled)
Aho: Astrocyte  (hypertrophied; outlined)

Fig. 2.6 Λ vs. DB for selected binary images of theoretical fractals and brain cells The vertical 
axis’s range is a limitation of the dataset, not of Λ per se, as indicated by the much higher Λ of the 
strange attractor at the top of the figure; that image is colored to emphasize the pattern, but the DB 
and Λ are for its binary silhouette. The biological cells shown are drawn at roughly the same size 
because Dfs are scale independent, but in reality, the astrocyte (Ahf and Aho) spans a broader area 
than both microglia and the ramified microglia (Mrf and Mro) a broader area than the hypertro-
phied microglia (Mhf). (DB and Λ calculated using FracLac for ImageJ [50]. QF generated with the 
Fractal Generator available from http://rsb.info.nih.gov/ij/plugins/fractal-generator.html; 
Multifractals generated with the Fractal Growth Models plugin available from http://rsb.info .nih.
gov/ij/plugins/fgm/index.html.)
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2.4.2.2  Applying Lacunarity

A practical example of the complementary relationship between the DB and Λ is 
found in work by Barreto et al. [6], who measured binary outlines of astrocytes to 
study how complexity and heterogeneity changed over the hours and weeks after 
ischemia induced by surgical middle cerebral artery occlusion in mice. Astrocyte 
complexity increased soon after injury, then slowly dropped back, whereas Λ gener-
ally decreased, but along a different schedule than the increase. Moreover, a neuro-
protective (heat shock protein 72) genotype decreased the effect on complexity, but 
not Λ [6, 54]. Barreto et al. attributed the difference in DB at least in part to redistri-
bution of normally varied morphologies astrocytes adopt even within one region, 
with a shift away from cells with lower complexity [6, 78]. They assumed Λ quanti-
fied initially large, irregular vacant spaces between processes (higher Λ) becoming 
filled more homogeneously with increasing numbers of radial processes (lower Λ).

These trends for astrocytes are intriguing when compared to what is known for 
microglia, which are pertinent to compare to astrocytes, both being peppered 
throughout the CNS, sharing the same basic microenvironment in time and space, 
thus potentially relevant to fractal analysis of that environment as a whole. Figure 2.7 
compares trends for astrocytes and microglia (the illustration does not compare 
them along the same time scale).

2.5  Grayscale Volumes and Box Counting

So far, this chapter has discussed box-counting analysis of binary images, but there are 
some differences that apply to analysis of grayscale images. In particular, the detail, N, for 
Eq. 2.1 measured in grayscale box-counting analysis is neither count nor mass related, 

Astrocytes

Bushy/hypertrophied

Microglia

Normal

Bushy/hypertrophied

Df decreased from
normal to responding

Df increased from
normal to responding

Lacunarity decreased
from 

normal to activated

Fig. 2.7 As microglia hypertrophy, they typically decrease in complexity overall, after poten-
tially a brief increase (not shown); astrocytes, in contrast, increase. Both generally decrease in 
lacunarity (see Chapter 6 for a more detailed discussion of nuances in the trends in microglial 
morphology)
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but pixel intensity based. This is because the restriction that limits pixel values to either 
foreground or background in binary images does not apply to grayscale images; rather, 
pixel values cover a range (e.g., from 0 to 255 in 8-bit grayscale images) [4, 12, 13, 51].

Grayscale analysis is generally pertinent when the questions are about texture 
rather than structure. Grayscale box counting has been used to investigate textures 
such as the fractal nature of whole brain structures, electron microscopy images 
[21], whole histological images where the environment cells are embedded in is 
important, and intracellular structures including nuclei [22]. Both texture and struc-
ture can be analyzed by either binary [71, 88] or grayscale methods, but, as illus-
trated in Fig. 2.8, each method is more suited to certain types of questions [22].

a b

c d

Fig. 2.8 Grayscale vs. binary analysis of a retinal fundus photo. (a) The entire retinal fundus 
photo. (b) ROIs (region of interest: a selection that isolates parts of an image) selecting vessels and 
part of the macular area. (c) The ROI from b extracted as grayscale information; the green back-
ground would not be processed when calculating the grayscale DB. (d) The ROI from c, with reti-
nal vessels converted to a binary skeleton and the macular area to a binary contour. In grayscale 
analysis, images are analyzed as textures over an entire image (a) or ROI (b, c). In both methods, 
all of the pixels within the image or ROI contribute to the grayscale DB. In binary analysis, in 
contrast, only the pixels of the extracted pattern (d) contribute
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One way box counting is implemented for grayscale images is by projecting the 
image into volumes after partitioning it into areas. Images are partitioned into 3D 
columns having a base determined the same as in binary box counting (i.e., a square 
or other shape with length S) and height determined as the difference, d, between the 
maximum and minimum pixel intensity (e.g., scaled to between 0 and 255) within 
the area (A) at the base of the column (see Fig. 2.9) [4, 51]. The measure of detail, 
N, is then based on the mean volume, which, depending on the method being used, 
is usually calculated as one of (i) d × A, (ii) (d + 1) × A, or (iii) (d + 1) [4, 12, 51]. 
Then, as usual, the DB is calculated from the slope of the regression line for the log-
log ratio of N vs. S [12, 50].

2.6  Multifractal Analysis

The fractal analysis described thus far here is sometimes called monofractal analy-
sis, to distinguish it from multifractal analysis, which identifies patterns character-
ized better by a spectrum of DFs than a single Df. The multifractal analysis process 
is analogous to applying warping filters to an image to exaggerate features that 
might otherwise be unnoticeable. Mono- and non-fractals are little or not affected 
by the distortions, but multifractals are affected in characteristic ways that are used 
to distinguish them from mono- and non-fractals.

609 pixels

783 pixels
783 pixels

96

40

96

40

a b c

Fig. 2.9 Grayscale surface plots illustrating the general idea of converting 2D grayscale images 
into 3D information, showing the same image partitioned using two different resolutions. (a) 
Higher resolution. (b) Lower resolution (larger and fewer slices). These simplified plots show 
rectangular slices across the image, but the partitions are usually symmetrical (e.g., arrays of 
square or cylindrical columns). (c) The inset shows the selection on the image from Fig. 2.8, from 
which the surface plots were made (surface plots generated in Fiji)
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The warp filters are a set of arbitrary exponents traditionally denoted by the sym-
bol Q. In fractal analysis software, the Q set is something the user typically manipu-
lates from a starting default set (e.g., bracketing 0 symmetrically such as −5 to 5) 
[14]. A generalized dimension (Dq) is determined for each Q, based on the mass 
dimension (DM). N from Eq. 2.1 for the DM is the mean of the probability distribution 
of all masses at one size, reflecting the density over the image (mass for binary box 
counting was illustrated in Fig. 2.4) [14]. For the Dq, each mass is distorted by being 
raised to Q, then NQ is the mean for this distorted density distribution for a size. 
Graphs are generated based on this data, having predictable features that distinguish 
amongst non-, mono-, and multi-fractal scaling and also quantify multifractal fea-
tures. Figure 2.10 shows two such graphs, the graph of Dq vs. Q and ƒ(αQ) vs. αQ, that 
are commonly used in multifractal analysis [14, 23, 66, 93, 101]. See also Chap. 4.

2.6.1  Reading the Dq Curve

The generalized dimension curve (Dq vs. Q) is typically decreasing, sigmoidally 
around Q = 0 for multifractals, but much flatter for mono- and non-fractals. Indeed, 
if it has essentially one value for all Qs, the pattern is not multifractal. As explained 
in Fig. 2.10a, at any scale, negative Qs amplify and positive shrink the pattern, 
affecting different densities nonlinearly. If distortion over all scales reveals notice-
able differences (i.e., the pattern has a set of unique Dqs), then the scaling is consid-
ered multifractal. The curve is measured objectively using a characteristic known as 
“dimensional ordering,” whereby D(0)≥D(1)≥D(2), which defines an interval used to 
assess the spectrum’s amplitude [23, 66, 93, 101].

As mentioned, software may let the researcher select values for Q, but it also often 
ensures that the Q set includes integer values for 0, 1, and 2 in order to assess the 
amplitude; however, there are some points to be aware of when interpreting those 
values. To elaborate, in multifractal analysis in general, D(0), D(1), and D(2) generally 
correspond to quantities known as, respectively, the “capacity dimension” (closely 
related to the DB), the “information dimension” (analogous to a quantity known as 
the Shannon entropy), and the “correlation dimension,” which can be calculated for 
different types of fractal patterns (i.e., including temporal) using different methods of 
fractal analysis. But there are practical issues affecting the actual values obtained for 
these by box counting. For example, in practice, the DB obtained from optimized box 
counting (Sect. 2.3.2.3) differs from D(0) obtained from optimized multifractal analy-
sis, owing to differences in optimizing methods. Similarly, the Shannon entropy for 
D(1) cannot be determined directly using standard box counting [18, 32].

Applying the basic rules for reading the Dq curve to Fig. 2.10a, one can see that 
the curve for the Henon multifractal is a typical multifractal curve showing consid-
erable heterogeneity in scaling, in contrast with the curve for the circle, which is 
flat, as is typical of homogeneous non-fractals. In keeping with the trends shown 
earlier in Fig. 2.6, increased heterogeneity with multifractal scaling is complemen-
tary with the heterogeneity of different types of lacunarity [40, 49].
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Fig. 2.10 Two graphs frequently used for multifractal analysis. (a) Generalized dimensions. 
The horizontal axis, Q, is an exponent and the vertical a probability-based DF that varies with Q. 
Being exponents applied to probabilities (i.e., between 0 and 1), negative Qs amplify and posi-
tive Qs shrink the value on the vertical axis, as is most clearly seen in the curve for the multifrac-
tal. Multifractals are characterized by generally steeper slopes around Q = 0. The flatter 
mono- and non-fractal curves stay close to one value for all Q. (b) ƒ(α) Multifractal spectra. The 
horizontal axis, α(Q), is a DF based on Q and the vertical a DF dependent on α(Q) and further modi-
fied by Q. Compared to mono- and non-fractals, multifractals are characterized by broader ƒ(α) 
spectra, which can be measured by their apertures (see legend) (graphs generated for Fig. 2.6’s 
images using FracLac)
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One can also apply the rules for reading multifractal curves to interpret the 
curves in Fig. 2.10 for microglia at different activation levels. The results shown 
are for two outlined patterns extracted from, respectively, the unactivated microg-
lial cell with DB = 1.48 from Fig. 2.6 (Mro) and the more activated microglial cell 
from Fig. 2.6 (Mhf) (for the outlined version of Mhf, not shown in Fig. 2.6, the 
calculated DB = 1.54). That the hypertrophied cell had a higher DB is evident from 
the portion of its curve slightly above that for the ramified cell. Their curves are 
both flat, neither suggesting multifractal scaling. These curves are similar to 
curves from images of comparable monofractals. The curve (not shown) for the 
32 segment quadric fractal from Fig. 2.6 (Q32), for instance, has a similar slope 
near Q = 0 but lies slightly above the cells (i.e., it is a monofractal with higher 
DB = 1.67) [14, 23, 50].

2.6.2  Reading the ƒ(α) Curve

The second commonly used graph discussed here, the ƒ(α) spectrum, is a typically 
convex curve opening downward as shown in Fig. 2.10b. Again, the shape distin-
guishes multifractals from other patterns, being (1) broader and (2) less convergent 
particularly on the left for multifractals than for mono- and non-fractals. One fea-
ture used to quantify ƒ(α) spectra is the aperture (illustrated for the Henon Map in 
Fig. 2.10b), defined by lines from Q = 1 to 0 to −1, and the total breadth from Q = 1 
to −1. The slopes and lengths of the aperture lines quantify the scaling regardless of 
any other values of Q used. Defining the aperture interval as from 1 to −1 seems 
reversed but can be understood knowing the variable along the horizontal axis, α(Q), 
itself decreases with Q [14, 23, 50].

2.6.3  Applying Multifractal Analysis

Multifractal analysis has been applied in novel ways in neuroscience. It has been 
used in hemodynamics, for example, showing in arteriovenous malformations cor-
relations of size and flow with D(0), D(1), and D(2) (these correlations are similar to 
although weaker than correlations of size and flow with the DB) [20, 27, 76, 90]. It 
has also revealed postmortem capillary distribution differences in Alzheimer’s dis-
ease, small vessel disease dementia, and control from three different brain regions 
[15]. In retinal pathology, it has been used to differentiate normal from pathological 
retina, DQ curves for binary vessel tracings extracted from normal retinal fundus 
photographs showing smaller amplitudes than those from pathological (diabetic 
macular edema), and ƒ(α) spectra showing distinctively different shapes and asym-
metry. Also of general import for the multifractal analyst, similar to the trends noted 
in Sect. 2.4.2.1, it has been shown that skeletonized retinal patterns have lower DQ 
spectra than filled [20, 27, 76, 90, 95].
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The sampling location bias discussed in Sect. 2.3.2.2 can invalidate multifractal 
analysis results in particular. A common problem in multifractal analysis is anoma-
lous spectra created from inappropriate sampling. Signs of this include that the left 
(Q >0) and right (Q <0) portions of the ƒ(α) spectra (Fig. 2.10b) fail to meet in a 
continuous curve, flip upwards, or cross over. This often means that an image has a 
density distribution with very small probabilities taking on inappropriately greater 
significance in some, but not all, grid positions [14, 47, 100].

Values of Q <0 are most relevant to this problem, so sometimes using a different 
range of Qs can fix the problem; similarly, sampling only above a certain density or 
limiting the smallest size can also sometimes fix this problem. If different settings 
are used for different samples within a dataset, these arbitrary solutions can alter the 
results in unexpected ways or make comparisons difficult, so a preferred alternative 
is to use the same density, Q, etc. but increase the sampling locations and rotation 
until normal results are obtained. As a practical illustration, the multifractal spectra 
in Fig. 2.10 were generated for the set of images from Fig. 2.6, using FracLac 
implementing the solutions suggested above including multiple grid locations. For 
most of the control images, normal multifractal curves appeared by 12 runs, but for 
the astrocytes and microglia, results could be read only after running 500 different 
sampling locations (taking roughly 1 min more per image) [14, 47, 100].

This has practical implications for fractal analysis in neuroscience. As an exam-
ple, microglia are known to scale as multifractals, but relatively rarely, less than 
10 % of cells, when in a hyper-ramified or transitional state between their normal/
ramified and pathological/hypertrophied states, and more often, for example, in 
elderly human brain [29, 49, 52]. An investigator formulating a question about 
hyper-ramification and multifractality then analyzing a sample using too few loca-
tions might see only unreadable multifractal spectra and consequently abandon their 
questions about multifractal scaling in these cells. Alternatively, being aware of 
what inadequate sampling looks like and that an extra minute of processing might 
solve the problem could inspire further curiosity.

2.7  Subscanning

Another method the prudent interpreter of box-counting fractal analysis should 
understand is subscanning analysis, used to investigate variation over space. 
Subscanning analyzes several independent domains that may or may not overlap in 
one image [50, 82]. Subscanning and multifractal analysis both reveal variation over 
a single information set; but multifractal analysis investigates one pattern as a whole 
and subscanning investigates local areas on one image independently of other areas 
and then presents the results so that the variation in the local DB can be compared 
and assessed. Figure 2.11 illustrates how subscanning using color coding can be 
used in general to investigate variation in the local DB.

The variation revealed by subscanning can be used to assess the process of box 
counting itself (e.g., applying it to a circle that yields a global Db of 1.04 identifies 
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areas ranging from 0.99 to 1.09, reflecting pixel effects as discussed in Sect. 2.3.2.2). 
In one study of astrocytes, subscanning showed that the DB was consistent (around 
1.7) from the perisomatic area to the most peripheral extent of a branch’s territory 
faithfully revealed by light microscopy, but rapidly dropped off at the tips of the 
processes. The variation, however, was attributable to the inability of light micros-
copy to resolve the finest processes at the ends, because when astrocytes were 
reconstructed via 3D modeling, the branching pattern at the ends was the same as 
everywhere else [82].

Transmission Electron Micrograph 
of Mouse Cerebellum; Post fixed in 
osmium tetroxide, stained with lead
and uranyl acetate; original 
magnification 12,000x.  
 

Scanned as grayscale in ImageJ:
1)  FracLac>Sub>ImageType>Gray1
2)  Method>Rectangles
3) Subscan size = 4%>OK
4) FracLac>Scan

Human Astrocytoma; H&E stained;
original magnification 40x.

Scanned as grayscale., nuclei auto-
segmented in ImageJ: 
1) Process>Binary>MakeBinary 
2) Analyze>Analyze Particles >Add to Manager
3) File>Revert (back to grayscale)
4) FracLac>BC>ImageType>Gray1>OK
5) FracLac>ROIs 

a

b

Fig. 2.11 Subscanning identifies local variation in the DB using color coding. (a) Structures within 
an area of mouse cerebellum differentiated by differences in the local DB (green vs yellow areas). 
(b) Variation in the local DB among several of the same structure (i.e., different colors of nuclei in 
a histopathology slide of astrocytoma)
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2.8  The Validity of 2D Patterns from 4-Dimensional Reality

An overarching issue anyone using or interpreting fractal analysis should become 
familiar with is the validity of 2D patterns. The images used for Figs. 2.3, 2.6, and 
2.10 are all 2D. Yet, biology is not. Microglia, for instance, play active roles in brain 
structure and function, in development, normal cognition, alcoholism, autism, chronic 
stress, pain mediation, Alzheimer’s disease, aging, etc. [9, 29, 44, 57, 63, 68, 74, 81, 
83, 91, 97–99, 102]. They are dynamic in space and time, in living, normal brains 
waving and winding their processes around neurons at speeds of roughly 1.5 μm/min, 
and in pathological or developing tissue, in vivo and in vitro, rapidly or sometimes 
more slowly migrating and phagocytosing [9, 29, 68, 89, 98]. When examining 
microglia intertwined and interacting with neurons within the CNS or even alone in a 
dish, the microgliologist realizes these are 3D biological phenomena, indeed, four-
dimensional phenomena changing over time, as are virtually all phenomena in neuro-
science. Nonetheless, we have discussed here fractal analysis of 2D, still images. A 
question often asked is how to resolve the discrepancy in dimensions.

One way is by appealing to an analogy in facial recognition software. To elabo-
rate, given an image, facial recognition software uses many features to identify a 
face within the image. Intriguingly, one such feature is the simple isosceles triangle 
that can be drawn on an image across the eyebrows with its vertex at the mouth [67]. 
Like cell profiles or black and white images of any structure, such drawings are 
2D. That is, a 2D pattern (the triangle) extracted from an image of a face serves to 
meaningfully identify an originally 3D biological structure that changes in space 
and time (the actual face).

A similar principle applies to fractal analysis of 2D patterns extracted from images 
representing 3D structures such as dynamic cells existing in the 3D space of the CNS 
or cell culture over the fourth dimension of time. In the same way that the triangle on 
the face is not the face, and the face is not a triangle, yet still the triangle is vital to 
recognizing the face within the software, the patterns extracted from images of cells 
are not the cells but hold the descriptors we are concerned with in fractal analysis. 
Indeed, in some cases, 2D representations convey 3D information that may be integral 
to a pattern, such as when vessel diameter or length is smaller for vessels farther away 
from the image plane, and this relative distance is itself what is being investigated. As 
such, a discerning approach acknowledges that 2D images are reasonable proxies for 
3D phenomena, subject to the limits that they are investigated within.

A further implication of this is that the DB calculated for a digital image is not 
necessarily the DF of the phenomenon as a whole; rather, it is always the DB of the 
pattern the researcher is interested in. Choosing a pattern type (e.g., grayscale area 
or binary silhouette, contour, or skeleton) and a method of extracting it depends on 
several factors, one of the foremost being the research question itself. Thus, it is 
important to be aware that different patterns may or may not generate different DBs 
even when extracted from the same image. This should be liberating to the  concerned 
researcher, who can be reassured that he or she is free to investigate fractal scaling 
in any phenomenon without having to first determine if the phenomenon itself is a 
“legitimate” fractal [35].
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2.8.1  Control and Calibration

Another issue to be aware of in box-counting fractal analysis is verifying the results. 
When possible, fractal analysis software should be calibrated using controls, such 
as the control images from Fig. 2.6. It is important to match benchmark images to 
the images being investigated (e.g., in size and number of foreground pixels) and to 
the goals of the research (e.g., mono- vs. multifractal images or in silico cell models 
created using known scaling parameters) and note deviations from theoretical and 
potential influences like rotation (Sect. 2.3.2.2) [38, 39, 76]. In multifractal analysis, 
control images are particularly useful for establishing parameters for dimensional 
ordering and the ƒ(α) aperture (see Sects. 2.6.1 and 2.6.2) [35].

2.9  Conclusion

In summary, this chapter has laid out elementary principles of fractal geometry and 
explained fractal analysis as a way of measuring phenomena when the details of 
design are as important as gross morphology. The chapter outlined how the details 
change with scale in theoretical and natural fractal patterns. It also grounded the 
reader in the basics of binary and grayscale box counting and explained trends and 
complementary relationships among the DB, Λ, and multifractal spectra with applica-
tion to topics in neuroscience in particular. It illustrated that although the tedium of 
fractal analysis can be left to the click of a button, prudent and defensible interpreta-
tion of it needs some regard for common pitfalls. Accordingly, it reviewed several 
methodological considerations, such as different types of pattern idiosyncrasies and 
sampling issues, and discussed practical methods of addressing them. Overall, this 
chapter prepares the fractal analyst to conscientiously and confidently use the ele-
gant, robust techniques of box counting to measure and interpret the DB, lacunarity, 
and multifractality of the exquisitely detailed fractal geometry of the brain.
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Chapter 3
Tenets and Methods of Fractal Analysis  
(1/f Noise)

Tatjana Stadnitski

Abstract This chapter deals with methodical challenges confronting researchers of 
the fractal phenomenon known as pink or 1/f noise. This chapter introduces  concepts 
and statistical techniques for identifying fractal patterns in empirical time series. It 
defines some basic statistical terms, describes two essential characteristics of pink 
noise (self-similarity and long memory), and outlines four parameters  representing 
theoretical properties of fractal processes: the Hurst coefficient (H), the scaling 
exponent (α), the power exponent (β), and the fractional differencing parameter (d) 
of the ARFIMA (autoregressive fractionally integrated moving average) method. 
Then, it compares and evaluates different approaches to estimating fractal parame-
ters from observed data and outlines advantages, disadvantages, and constraints of 
some popular estimators. The final section of this chapter answers the questions: 
Which strategy is appropriate for the identification of fractal noise in empirical 
 settings and how can it be applied to the data?

Keywords 1/f noise • Fractal parameters • ARFIMA • Long memory

3.1  Tenets and Methods of Fractal Analysis (1/f Noise)

Pink or 1/f noise is a well-studied fractal (i.e., self-similar) phenomenon. As will be 
explained here, the word “pink” in the name arises from its characteristically long 
“memory” being intermediate between that of white noise (no memory) and red or 
Brown noise (infinite memory). Pink noise serves as an adequate model for many 
biological processes because it exhibits both stability and adaptability, two proper-
ties typical of healthy complex systems [4]. Highly correlated fluctuations of pink 
noise are typical for neural dynamics. For instance, cognitive reactions generated in 
psychological experiments including mental rotation, lexical decision, shape and 
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color discrimination, and word naming demonstrated a 1/f noise character [17, 41, 
42]. Pink noise was also detected in visual perception [3], in rhythmic tasks requir-
ing coordination of motor and cognitive activities [8, 10], and in brain dynamics of 
electroencephalogram records [1, 2, 7, 24]. The oscillatory neural synchronization 
[29], the spontaneous phase-transition process of many interacting neurons [5], and 
the fit between the phase-transition conjecture and the criticality condition [43, 44] 
have been discussed as the cause for these observations in the recent neurophysio-
logic literature. Some researchers view 1/f noise as a communication channel for 
complex networks through which the brain influences complex processes and is 
influenced by them [e.g., 1]. Generally, it is thought that 1/f noise reflects the coor-
dinative, metastable basis of cognition [e.g., 22]. Brain dynamics have been investi-
gated statistically either by monofractal methods or by studying autocorrelation 
functions of the related time series. Another alternative for the statistical analysis of 
brain dynamics is to examine their spectral density functions and periodograms 
obtained by the Fast Fourier Transform algorithm. Different methodological 
approaches for the detection of 1/f noise and interrelations between them will be 
discussed in the following subchapters.

3.2  Statistical Terms: Parameter, Estimator, Estimate

To understand how pink noise is evaluated in fractal analysis, one should first know 
the differences among the following statistical concepts: “parameter,” “estimator,” 
and “estimate.” A parameter is a quantity that defines a particular system, such as 
the mean of the normal distribution. Strictly speaking, to obtain a population param-
eter, one must measure an entire population, which is mostly infeasible, so instead 
one generally uses estimators (rules or formulae) to infer population parameters 
from observed samples. For any parameter, there are usually multiple estimators 
with diverse statistical properties. As an example, suppose we have n observations 
of some phenomenon X; then we can estimate the population mean (μ) using two 

well-known estimators, the sample mean, mÙ1
1

1
=

=
ån X
i

n

i , and the median, mÙ 2 0 5= X . .   

In contrast to parameters, estimators are not numbers but functions characterized by 
their distributions, expectancy values, and variances, where the quantity to be esti-
mated generally differs from its estimation. Thus, because every estimation method 
involves some estimation error, the investigator must choose which method best 
suits the task at hand. Based on the above example, for instance, μ may differ from 
both mÙ1  and mÙ 2 , and an investigator might choose the former as the better estimator 
of μ if the phenomenon being investigated is better understood using a smaller vari-
ance and narrower confidence intervals. In fractal analysis, one way to decide which 
estimator to use is by means of Monte Carlo simulations. For instance, computa-
tional algorithms can generate a population with a known parameter value, and 
repeated samples of the same size can be drawn from this population, e.g., 1,000 
time series with T = 500, and then different estimators can be applied to the series, 

T. Stadnitski



47

yielding 1,000 estimates of the parameter per method. An estimate is a particular 
numerical value obtained by applying an estimator. Good estimators are unbiased, 
i.e., their means equal the true parameter value, and have small variability, i.e., their 
estimates do not differ strongly. Considering that just one estimate per method is 
available in a typical research situation, an estimator with a narrow range is usually 
better than one with a broad range.

3.3  Properties of 1/f Noise: Self-Similarity and Long 
Memory

Fractals are self-similar structures or processes where the whole has the same shape 
as its parts. The concept of self-similarity, as well as examples such as the Koch 
snowflake or the Sierpinski triangle, is covered in Chap. 2. To summarize here, there 
are two types of self-similarity: strict and statistical. Strictly self-similar geometri-
cal objects like the Koch snowflake are composed of exact copies of the whole 
object. Statistical fractals like Romanesco broccoli consist of sub-pieces that closely 
replicate the whole structure. Pink noise is statistically self-similar, meaning its 
smaller segments look like its larger segments, and all exhibit the same statistical 
properties as the overall process. It is also scale invariant, meaning its characteris-
tics remain similar when viewed at different scales of time or space.

These properties, self-similarity and scale invariance, can be modeled mathe-
matically by power laws. A power law is a functional relationship between two 
quantities, where one quantity varies as a power of another. For instance, the rela-
tion between external stimuli and internal sensation can be described by a power 
law proposed by the American psychologist Stevens: S = cIb, where S is sensation 
magnitude, I is stimulus intensity, c is an arbitrary constant to determine the scale 
unit, and b is the power exponent, which depends on the type of stimulation. This 
exponential function states that the perceived strength of subjective sensation 
increases proportionally with the intensity of the physical stimulus. Assuming c is 
positive, if the exponent b is zero, the graph of the function is a horizontal line; if b 
is one, the graph is a line of slope c; if b is greater than one, the line curves upward; 
and if b is between 1 and 0, it curves downward. Most relevant here, when the log 
is taken of both sides, power functions have the convenient feature of becoming 
linear, with a slope equal to the value of the exponent. For instance, the logarithmic 
form of Stevens’ power law is log(S) = log(c) + blog(I), i.e., a straight line with 
slope of b (Fig. 3.1). In general, multiplying the argument I of the Stevens’ or simi-
lar functions by a constant k causes proportional scaling of the function itself: f(kI) 
= c(kI)b = kbf(I) ∝ f(I). Therefore, the slope of the straight line on the log-log plot 
can be viewed as the signature of a power law, or, in fractal analysis parlance, a 
measure of fractality.

Power laws express self-similarity in fractal processes by demonstrating that the 
same principles hold for all segments of the process and on all scales. For instance, 
fractals are often described by a power law stating that the frequency of occurrence 
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(F) of an element of a given size is inversely proportional to some power of its size 
(Fs∝1/sizepower). Dividing a process into intervals of equal length n allows viewing it 
on different scales. Fluctuations (F) of fractal processes are proportional to n, i.e., 
they increase with growing interval length (Fn∝npower). Another power law assumes 
that the variance of fractal processes (S) is inversely proportional to their frequency 
(f) (Sf∝1/f power).

3.3.1  Memory

Pink noise is generally measured as a time series (i.e., as successive measurements 
made over a time interval). Self-similarity within a time series can be modeled by 
the autocorrelation function (ACF). The autocorrelation function describes the cor-
relation of a signal with itself at different lags. In other words, it reflects the similar-
ity between observations in reference to the amount of time between them. 
Informally, this relates to the notion of the “memory” of a process, which can range 
from no memory to infinite memory. To elaborate, white noise is a sequence of 
time-ordered, uncorrelated, random variables, sometimes called random shocks or 
innovations, and therefore is considered to have “no memory.” A process that can be 
predicted by its immediate past, although the autocorrelations decay quickly as the 
number of intervening observations increases, is considered to have a “short mem-
ory.” On the other end of the spectrum, red noise results from integrating white 
noise, so can be represented as the sum of random shocks such that the impact of a 
particular innovation never dissipates, which implies no decay in autocorrelation 
and infinite memory.

As was mentioned earlier, pink noise is intermediate between white and red. The 
self-similarity of pink noise manifests in a power-like decaying autocorrelation 
function. Pink noise possesses very slowly decaying autocorrelations reflecting sta-
tistical dependence between observations separated by a large number of time units. 
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This explains why pink noise can be viewed as intermediate between white noise 
with no correlation in time and red noise with no correlation between increments. 
Due to persistence of its autocorrelations, 1/f noise is also called a long-memory 
process or long-range-dependent process. The ACF of processes with different 
memory characteristics is compared in Fig. 3.2.

3.3.2  Stationarity

One of the most important concepts of time series analysis is stationarity. A process 
is said to be stationary if its mean, variance, and autocorrelations do not change over 
time; otherwise, it is non-stationary. Non-stationary behaviors can evolve from 
cycles and stochastic or deterministic trends. Changing data, as a rule, are unpre-
dictable and cannot be modeled or forecasted unless stabilized; therefore, non- 
stationary time series are usually transformed to make them stationary. White noise, 
also called Gaussian noise, is stationary with constant mean and variance, whereas 
red noise, also called Brownian motion, is non-stationary. Because summing 
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not self-similar
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Gaussian noise produces Brownian motion, differencing Brownian motion creates 
Gaussian noise, which means that increments of red noise are stationary. For this 
reason, red noise is sometimes termed difference stationary. As an intermediate 
between white and red noise, pink noise is both stationary and non-stationary, with 
slow fluctuations of its parameters. Due to this property, the 1/f process becomes 
both stable and adaptive.

Generally, there are two different classes of long-memory processes in fractal 
analysis: non-stationary fractional Brownian motions (fBm) and stationary frac-
tional Gaussian noises (fGn) [26, 27]. Mandelbrot and van Ness [26] introduced 
fBm as Brownian motion with correlated increments. A positive correlation implies 
that an increasing trend in the past is expected to be followed by an increasing trend 
in the future. Therefore, fBm with positive correlations of increments are called 
persistent. Fractional Brownian motions with negative correlations of increments are 
called anti-persistent because an increasing trend here is likely to be followed by a 
decrease in the future. Mandelbrot and Wallis [27] defined fractional Gaussian noise 
as a series of successive increments in an fBm. This means that each fBm is related 
to a specific fGn, and both are characterized by the same fractal dimension [25].

A fractal dimension (D) is an index of complexity of self-similar objects describ-
ing how details in a pattern change with the scale at which it is measured. Euclidean 
geometry is three dimensional: The dimension of a line is 1, of a square is 2, and of 
a cube is 3. According to the following power law NR∝RD, the number of self-sim-
ilar pieces into which the object may be broken (N) is proportional to some scaling 
factor (R). Hence, the fractal dimension can be calculated as D = (logN)/(logR). For 
example, a line is one dimensional because we can break it into N self-similar 
pieces, each is 1/N the length of the original (i.e., N = R). A square is two- dimensional 
because it consists of N2 self-similar copies of itself, each of which must be magni-
fied by a factor of N to yield the original figure (i.e., N = R2). For instance, we can 
decompose a square into 4 self-similar sub-squares with the scaling factor 2, or 9 
self-similar pieces with the scaling factor 3, or 16 self-similar pieces with the scal-
ing factor 4. For description of fractal images like the Koch snowflake, the Sierpinski 
triangle, or a piece of broccoli, the spaces of integer dimension are not enough. 
Figure 3.3 visualizes that the Koch snowflake is constructed by iteratively scaling a 
starting segment into four new pieces with the scaling factor 3: All original line seg-
ments are replaced with four, each a self-similar copy that is 1/3 the length of the 
original (i.e., N = 4, R = 3). In contrast to a line or a square, the Koch snowflake has 
non-integer dimension: D = (log4)/(log3) ≈ 1.26. Similarly, the Sierpinski triangle 
breaks into three self-similar pieces with the scaling factor 2 resulting in the non- 
integer dimension D = (log3)/(log2) ≈ 1.58. Fractal dimension can also be under-
stood as a measure of the space-filling capacity of an object. Hence, a square is 
larger than a line, while the Koch snowflake and the Sierpinski triangle take a posi-
tion between these two sets: The Koch snowflake is closer to a line and the Sierpinski 
triangle is closer to a square. For the same reason, jagged and irregular patterns of 
white and red noise yield a fractal dimension of 1.5. Successive observations of 
white noise and increments of red noise are independent of each other, so D = 1.5 
describes a random independent system. By contrast, fGn and fBm are correlated 
noises. The course of persistent series is smoother and closer to a line implying 
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lower fractal dimensions than that of uncorrelated noises. Being more jagged, 
 anti- persistent series occupy more space and have therefore higher fractal dimen-
sions closer to D = 2 (Fig. 3.3). Stationary fractional Gaussian noises and non- 
stationary fractional Brownian motions represent a continuum; pink noise marks the 
boundary between fGn and fBm. Successive observations of pink noise time series 
are positively correlated resulting in fractal dimensions near D = 1

3.4  Fractal Parameters

The extent of self-similarity and the memory properties of a process are often 
described using four fractal parameters: the Hurst coefficient (H), the scaling expo-
nent (α), the power exponent (β), and the fractional differencing parameter (d).

3.4.1  Hurst Coefficient

H expresses the probability that an event in a process is followed by a similar event. 
Investigating the behavior of the Nile River, Hurst [21] observed that wet years were 
often followed by wet years resulting in wet periods and dry years by dry producing 
droughts. This tendency to self-similarity, which is typical of many climatic 
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increments are independent

D>1.5
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D=1.5
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observations are independent

Dª1.26
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Fig. 3.3 Geometric objects and time series with different dimensions
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processes, is known as the Hurst phenomenon or Joseph effect [28]. As a probability 
measure, the Hurst coefficient ranges between 0 and 1, which corresponds to a fractal 
dimension between 1 and 2 (D = 2 − H). H = 0.5 for both white and red noise, because 
white noise is a sequence of independent innovations and red noise consists of uncor-
related increments. The Hurst coefficient of fractal processes deviates from 0.5, 
whereby H < 0.5 denotes anti-persistent and H > 0.5 positively persistent processes. 
Anti-persistence implies negative correlations between successive increments. Pink 
noise is characterized by H = 1. Recall that differencing Brownian motion creates 
Gaussian noise and summing Gaussian noise produces Brownian motion. Thus, 
related fGn and fBm are characterized by the same Hurst exponent (Fig. 3.3).

3.4.2  Scaling Exponent (α)

As described above, self-similarity can be modeled mathematically by power laws. 
If we divide a process into segments of equal length, n, we can effectively view it on 
different scales. The Detrended Fluctuation Analysis (DFA) proposed by Peng et al. 
[30] demonstrates that fluctuations (F) of fractal signals are related to the interval 
size (n) by the following power law:

 
F n n( ) µ a

 

For white noise, α = 0.5, and for red, α = 1.5 (Fig. 3.2). Fluctuations of pink noise are 
proportional to n, i.e., they increase with growing interval length which implies that 
α = 1. For stationary fractional Gaussian noises, α <1, and for non-stationary frac-
tional Brownian motions, α >1.

3.4.3  Power Spectra

For studying discrete-time processes, there are two major approaches: time-domain 
and frequency-domain analysis. Although time and frequency domains are mathe-
matically equivalent, they examine data from different perspectives and pursue dif-
ferent goals. In time domain analysis, the central concept is the memory of the 
process: To what extent is its present state predictable from its past? Therefore, 
statistical assessments are mostly based on autocorrelations. The main goal of 
frequency- domain analysis is to detect cycles in the data by identifying frequencies 
that explain variance in a time series. Here, the power spectrum and spectral density 
function serve as the most important statistical tools.

The power spectrum determines how much power (i.e., variance or amplitude) is 
accounted for by each frequency in a series. The term “frequency” describes how 
rapidly things repeat themselves. Thus, there exist fast and slow frequencies. For 
instance, a time series with T = 100 observations can be reconstructed by 50 periodic 
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or cyclic components (T/1, T/2, T/3,…, 2). The frequency is the reciprocal of the 
period and can be expressed in terms of number of cycles per observation. f = 0 
implies no repetition, f = 1/T the slowest, and f = 0.5 the fastest frequency. The spec-
tral density function gives the amount of variance accounted for by each frequency 
measured. Spectral analysis represents a special type of variance analysis (ANOVA) 
where the overall process variance is divided into components of independent cycles 
with different lengths. For nonperiodic processes like white noise, the variance is 
equally distributed across all possible frequencies. For cyclic processes, a few so- 
called major frequencies explain a great amount of the series’ variance (i.e., all of 
the series’ power is concentrated at one or a few frequencies).

3.4.4  Power Exponent

β quantifies the extent of self-similarity. Fractal processes have self-similar power 
spectra with a spectral density that is proportional to the reciprocal of the frequency 
and can be expressed by the following power law:

 
S f f( ) µ1/ b.

 

For white noise, the variance is distributed equally over the frequencies; thus β = 0 and 
the logarithmic power spectrum has a slope of 0. For red noise, power falls off rapidly 
with increasing frequency, i.e., low-frequency components predominate, β = 2, and 
the power spectrum has a slope of −2. For pink noise, β = 1 implying that its variance 
is inversely proportional to its frequency, and the power spectrum is a straight line 
with slope –1. This property becomes more vivid in the logarithmic expression: 
log(S)=−βlog(f). The power exponent of stationary fractional Gaussian noises can be 
any real value in the range [−1; 1] with –1< β <0 for anti-persistent and 0< β <1 for 
positively persistent signals. For non-stationary fractional Brownian motions, 1< β <2 
means anti-persistent and 2< β <3 positively persistent series. These power laws do 
not hold for short-memory autoregressive processes, the spectra of which are not 
straight lines. The linear relation between the power and the frequency of such pro-
cesses breaks down at the low frequencies where random variation appears. As a 
result, a flat plateau (the zero slope of white noise) dominates low frequencies in 
spectral plots. Figure 3.2 shows the power spectra of the discussed processes.

3.4.5  Differencing Parameter (d)

As described previously, one of the typical characteristics of pink noise is a power- 
like decaying autocorrelation function with a long memory. Granger et al. [18] and 
Hosking [20] demonstrated that memory properties of fractal time series can be 
parsimoniously modeled by the differencing parameter d of the Box-Jenkins 
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ARIMA (autoregressive integrated moving average) methodology [6] allowing it to 
take on continuous values.

In the time domain, each time series can be described by three types of mathe-
matical models: autoregressive (AR), moving average (MA), and integrated (I). In 
an AR model, the value of the current observation depends on the values of the 
previous observations,

 
Y Y Y ut t p t p t= +¼+ +- -f f1 1 ,

 

where ϕ quantifies the magnitude of the dependence, p specifies the order of the 
dependence, and ut is a sequence of purely independent and identically distributed 
innovations or white noise.

An MA process is described by:

 
Y u u ut t t q t q= - -¼-- -q q1 1 .

 

Here performance at time t depends on both the current and past error terms. A 
process containing both autoregressive and moving average components is called 
mixed. An integrated process is represented by the equation

 Y Y at t t= +-1 ,  

where the random part at can be generated by any ARMA process. Red noise is an 
integrated process with at = ut; therefore, it can be expressed as the sum of white 
noise. The term “integrated” implies that the impact of the random component in the 
series does not dissipate over time. As a result, integrated processes are non- 
stationary and show instability in level. That is why red noise is also called random 
walk. Differencing red noise produces stationary white noise:

 ∆Y Y Y ut t t t= − =−1 .  

The equation demonstrates that increments of red noise, ΔYt, are stationary. Integrated 
models are also known in the time series literature as unit root processes. A situation 
of non-stationarity is called the unit root problem when the regression coefficient of 
a first-order autoregressive model equals one. The name unit root is due to the fact 
that ϕ = 1. In this case, the autoregressive model can be written as 1-( ) =L Y ut t , 
where L is the lag operator: LY Y L Y Yt t t t= =- -1

2
2,  and so on. The term unit root 

refers to the root of the polynomial in the lag operator. If (1−L) = 0, we obtain L = 1.
The autoregressive integrated moving average (ARIMA) method describes pro-

cesses through the three parameters p, d, and q. For example, the following process

 Y Y u ut t t t= + +- -f q1 1 1 1  

is called ARMA (1, 1) because it contains one autoregressive (Yt-1) and one moving 
average term (ut-1). Therefore, the value of the autoregressive parameter p reflects 
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how many preceding observations influence the current observation. The value of 
the moving average term q describes how many previous random shocks must be 
taken into account when describing the dependency present in the time series. 
Within the Box-Jenkins ARIMA framework, d is a whole number and refers to the 
order of differencing that is necessary to make a process stationary (d = 0). Thus, the 
ARMA (1, 1) process can also be written as ARIMA (1, 0, 1). White noise is 
ARIMA (0, 0, 0). Models with d = 1 are called integrated of order 1. Red noise is 
ARIMA (0, 1, 0). Autoregressive fractionally integrated moving average (ARFIMA) 
modeling extends the traditional Box-Jenkins approach by allowing the differenc-
ing parameter d to take on non-integer values. This enables ARFIMA models to 
give parsimonious descriptions of any long-range dependencies in time series. Pink 
noise has a d of 0.5. Stationary fractal noises can be modeled with −0.5< d <0.5. 
Values of d in the interval [−0.5; 0] suggest anti-persistence. Processes with d > 0 are 
long-term persistent. Therefore, finite long memory can be modeled with 0< d <0.5. 
For 0.5≤ d ≤1.5, the process is non-stationary.

To summarize, there are different mathematical methods to express self-similar 
power law organization of fractal structures. Since fractal signals can be analyzed in 
both time and frequency domains, there are different fractal parameters like the 
Hurst coefficient, the scaling exponent α, the power exponent β of spectral analysis, 
or the differencing statistic d of the ARFIMA framework. It is crucial to understand 
that these parameters express exactly the same characteristics, which implies that 
each quantity can be converted to the other. For instance, interrelations between the 
parameters for stationary processes are H = (β + 1)/2, α = H = d + 0.5, and β = 2d. The 
expected theoretical values for 1/f noise are H = 1, α = 1, β = 1, and d = 0.5. Table 3.1 
outlines the relationship between the parameters and demonstrates how one quan-
tity can be transformed into the other (Table 3.1).

Table 3.1 Fractal parameters and relations between them

H α β d

White noise 0.5 0.5 0 0

Pink noise 1 1 1 0.5
Red noise 0.5 1.5 2 1
Stationary fGn [0; 1] [0; 1] [−1; 1] [−0.5; 0.5]
anti-persistent <0.5 <0.5 <0 <0
positively persistent >0.5 >0.5 >0 >0
Non-stationary fBm [0; 1] [1; 2] [1; 3] [0.5; 1.5]
anti-persistent <0.5 <1.5 <2 <1
positively persistent >0.5 <1.5 >2 >1
Relation to other 
parameters for fGn

H = α α = H β = 2H − 1 d = H − 0.5
H = (β + 1)/2 α = (β + 1)/2 β = 2α − 1 d = α − 0.5
H = d + 0.5 α = d + 0.5 β = 2d d = β/2

Relation to other 
parameters for fBm

H = α − 1 α = H + 1 β = 2H + 1 d = H + 0.5
H = (β − 1)/2 α = (β − 1)/2 + 1 β = 2(α − 1) + 1 d = α − 0.5
H = d − 0.5 α = d + 0.5 β = 2d d = β/2
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3.5  Estimators of Fractal Parameters

As noted previously, parameters are descriptive measures of a population that are 
usually unknown and therefore estimated from a sample. A sample is a limited sub-
set of a population, which can present a distorted image of the whole. Thus, the 
quality of inference depends on the properties of the observed sample. Fractal 
parameters are inferred from empirical time series, their autocorrelations, and esti-
mates of the spectral density function like a periodogram. Figure 3.4 demonstrates 
that independent samples (three time series with T = 200 observations) derived from 
the same pink noise population can produce rather different ACFs and periodo-
grams (Fig. 3.4). Furthermore, it illustrates that empirical power spectra and esti-
mated autocorrelation functions can deviate substantially from the theoretical 
pattern of the generating process depicted in Fig. 3.2.

Slow decaying autocorrelations and the straight line on the log-log periodogram 
plot are necessary but not sufficient conditions for fractal time series. In fact, there 
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are many ways to generate finite amounts of data that mimic the pink noise behavior. 
For instance, it is known that a combination of non-fractal signals like white noise 
and random walk can produce patterns similar to 1/f noise. Figure 3.5 shows that 
autoregressive (p ≠ 0, d = 0, q = 0) and integrated (p ≠ 0, d = 1, q ≠ 0) ARIMA models 
can imitate fractal structures. Thus, accurately inferring fractal parameters from 
empirical data is a challenging statistical issue. Estimating methods must be able to 
discern fractal behavior in the presence of non-fractal noise and to reliably distin-
guish between genuine fractals and fractal-like signals (Fig. 3.5).

Numerous procedures for measuring the fractal parameters β, α, H, and d have 
been developed in recent years. Generally, the estimation methods can be assigned 
to three categories: (1) exact or approximate maximum-likelihood or conditional 
sum of squares ARFIMA estimation of d like the exact method proposed by Sowell 
[32], the approximate algorithm (fracdiff) of Haslett et al. [19], and the conditional 
sum of squares approach introduced by Chung [9]; (2) fractal methods predicated 
on the relationship F(n) ∝ nα such as Detrended Fluctuation Analysis (DFA) of Peng 
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et al. [30] and Signal Summation Conversion (SSC) developed by Eke et al. [14]; 
(3) periodogram-based procedures like Power Spectral Density (PSD) method (e.g., 
[15]), Whittle (FDWhittle) [39], Sperio (fdSperio) [31], and Geweke-Porter-Hudak 
(fdGPH) [16]. Recall that a periodogram is an estimate of the spectral density func-
tion and the following power law relation is expected for fractal processes: S(f)∝ 
1/fβ. Table 3.2 contains estimators of the fractal parameters from the open source 
statistical software R (www.r-project.org). Because of its availability, R is increas-
ingly used in the neurosciences. As compared with other software tools, R has many 
further advantages: It provides a variety of statistical and graphical techniques and 
is highly extensible, allowing users to develop new computational routines by com-
bining the existing functions. Various packages are under constant development for 
R and cover a wide range of modern statistics (Table 3.2).

Due to the complexity of the fractal methods, it is not possible to compare them 
mathematically. Therefore, their properties (e.g., accuracy, variability) are exam-
ined by means of a Monte Carlo method. Figure 3.6 demonstrates findings obtained 
in one simulation study. The estimators are compared and evaluated using bias mod-
uli (|mean of estimates − true parameter|), standard errors of estimates, as well as the 
percentage of signal misclassifications employing the following rules: β <1 → fGn 
and β >1 → fBm, α <1 →fGn and α >1 → fBm, and d < 0.5 → fGn and d > 0.5 → 
fBm. Estimations are averaged for different sample sizes (128, 512, 1,024, 2,048) 
and parameterizations (e.g., H variations from 0.1 to 0.9) (Fig. 3.6).

ARFIMA algorithms were evaluated thoroughly by Stadnytska et al. [37] and 
Torre et al. [40]. The main advantage of the ARFIMA methods is the possibility of 
the joint estimation of the short-memory and long-memory parameters. This solves 
a potential finite-sample problem of biased overestimation of fractality in time 
series that contain both long-range and short-range components. Moreover, good-
ness of fit statistics based on the likelihood function, like the Akaike information 
criterion (AIC) or the Bayesian Information Criterion (BIC), allow determining the 
amount of “short-term contamination” and enabling a reliable discrimination 
between short- and long-memory processes. The greatest problem with ARFIMA 

Table 3.2 Estimators of fractal parameters available in the software package R

Procedure Outputs estimates of Can be applied to Available

DFA α fGn and fBm Library fractal

SSC α fGn and fBm [21]a

PSD β fGn and fBm [22]
lowPSDwe β fGn and fBm [22]a

HurstSpec α fGn and fBm Library fractal

fdGPH d fGn and fBm Library fracdiff

fdSperio d fGn and fBm Library fracdiff

FDWhittle d fGn and fBm Library fractal

fracdiff approximate ML d Only fGn Library fracdiff
aR-Codes for SSC und lowPSWwe estimations are available at http://www.psychologie.uni- 
heidelberg.de/projekte/zeitreihen/R_Code_Data_Files.html

T. Stadnitski
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estimators is that they only work for stationary series because their range is confined 
to [0; 0.5]. As a result, non-stationary fractional Brownian motions (0.5≤ d ≤1.5) 
tend to receive estimates of d close to 0.5. Consequently, such empirical series can 
easily be misclassified as 1/f noise. Hence, checking for stationarity is a necessary 
precondition for ARFIMA estimation which can be done using special procedures 
called unit root tests (see [35], for a comprehensive overview). The Augmented 
Dickey-Fuller test (ADF) [12], the most popular method, checks the null hypothesis 
“H0: d = 1, series has a unit root”; thus, the rejection of H0 implies that the series 
under study is probably stationary. Dolado et al. [13] developed a procedure that 
extends the Dickey-Fuller approach to fractionally integrated processes: Fractional 
Dickey-Fuller (FDF) test. In contrast, the Kwiatkowski-Phillips-Schmidt-Shin 
(KPSS) test [23] assumes that processes are stationary (H0: d = 0). Therefore, the 
properties of the series under study can be determined using a combination of both 
procedures: (1) if the ADF is significant and the KPSS is not, then the data are prob-
ably stationary with d∈[0; 0.5]; (2) in the Brown noise case, an insignificant ADF 
and a significant KPSS results are expected; (3) d∈]0; 1[, if both tests are 
significant.

Eke et al. [14], Delignières et al. [11], Stroe-Kunold et al. [38], Stadnytska et al. 
[36], and Stadnitski [33] systematically analyzed different power law-based meth-
ods. In contrast to ARFIMA procedures, these estimators can be applied directly to 
different classes of time series. Consequently, they represent adequate tools for 
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 distinguishing fGn and fBm signals. However, due to considerably larger biases and 
more pronounced standard errors, the precision of fractal and periodogram – based 
methods is distinctly inferior to that of the ARFIMA approaches. Moreover, algo-
rithms like PSD, DFA, or SSC use different data transformations like detrending or 
filtering. As a result, the performance of estimators strongly depends on the manip-
ulations employed. For instance, numerous modifications have been suggested to 
improve the PSD estimation. The method lowPSDwe consists of the following opera-
tions: (1) subtracting the mean of the series from each value, (2) applying a para-
bolic window to the data [w], (3) performing a bridge detrending [e], and (4) 
estimating β excluding 7/8 of high-frequency power estimates [low]. The estimator 
PSD is constructed without transformations. Simulation studies demonstrated that 
PSDs were more accurate for fGn noises, whereas lowPSDwe were accurate for fBm 
signals. The greatest disadvantage of fractal and periodogram-based methods is 
their poor performance for complex processes that combine long- and short-term 
components. For example, simulation studies demonstrated that FDWhittle, the best 
procedure for pure noises, showed the worst accuracy in complex cases.

3.6  Identification of Fractal Noise in Empirical Settings

The most important findings from the reported evaluations for researchers studying 
fractality can be summarized as follows. First, all estimators require at least 500 
observations for acceptable measurement accuracy. Further, it is essential to know 
that there exist different procedures with diverging characteristics. The central dif-
ficulty is that there is no clear winner among them: None of the procedures is supe-
rior to the other. As a result, the choice of the measurement method determines the 
outcome of fractal analyses. The performance of the methods strongly depends on 
aspects like the properties of the underlying process (e.g., stationary vs. non- 
stationary) or empirical context. For instance, Maximum Likelihood algorithms, the 
most accurate estimation techniques of the time domain, can only handle stationary 
data. Most estimators from the frequency domain can be applied to stationary and 
non-stationary time series directly; however, they are less precise than ARFIMA 
methods. Moreover, they tend to fail in empirical series that combine fractal and 
non-fractal dynamics. Hence, the key finding from simulation studies is that fractal 
estimators can produce erroneous results under disadvantageous conditions. Further, 
estimates from the same time series obtained from different methods can vary con-
siderably. Consequently, comparisons of results from studies in which fractality was 
determined with different measurement instruments are problematic and must be 
interpreted cautiously.

To emphasize the importance of the last conclusion, fractal parameters of the 
simulated time series presented in Fig. 3.5 are estimated with different methods. 
Table 3.3 shows the obtained point estimates. To make the comparisons more con-
venient, all measures are converted to d. The demonstration aims to point out that 
non-fractal series could be easily misclassified as fractal noises. It is even possible 
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to erroneously attribute the 1/f properties to autoregressive or integrated processes 
(Table 3.3).

Depending of the hypotheses of the research, diverse objectives of fractal time 
series analyses can be distinguished: to discriminate between fractal and non-fractal 
patterns for diagnostic purposes, to test for the effective presence of genuine persis-
tent correlations in the series, to provide an accurate estimation of the strength of 
these long-range dependencies, or to identify the short-term process that accompa-
nies a fractal pattern. Simulation studies demonstrated that the performance of frac-
tal methods strongly depends on aspects like the complexity of the underlying 
process or parameterizations. As a result, strategic approaches are necessary when 
analyzing fractals. Moreover, different objectives require distinct strategies. An 
example of such a strategic approach is described by Stadnytska et al. [36]. The 
algorithm presented in Fig. 3.7 allows an accurate estimate of the fractional differ-
encing parameter d by combining different tests and statistical techniques. 
Furthermore, it distinguishes between fractal and non-fractal empirical time series. 
For instance, the procedure will probably debunk autoregressive or integrated time 
series from Fig. 3.5 as non-fractal. Stadnitski [34] demonstrated the application of 
this strategy to an empirical time series using R (Fig. 3.7).

3.7  Summary

Self-similarity and long memory are essential characteristics of a fractal pattern. 
Slowly decaying autocorrelations and power laws reflect these properties in the 
parameters H, α, β, and d. These fractal parameters express exactly the same statisti-
cal characteristics; thus, each quantity can be converted to the other. The expected 
theoretical values of pink noise are H = 1, α = 1, β = 1, and d = 0.5. There are two 
major types of estimators for these parameters: ARFIMA algorithms and proce-
dures searching for power laws. The former are very accurate methods capable of 

Table 3.3 Point estimates of the fractal parameters obtained from different fractal methods

Procedure
Autoregressive process 
(dtrue = 0)

Pink noise process 
(dtrue = 0.5)

Integrated process 
(dtrue = 1)

DFA 0.65 0.43 0.33
SSC 0.40 0.36 0.61
PSD 0.64 0.21 0.05
HurstSpec 0.66 0.44 0.24
fdGPH 0.37 0.36 0.77
fdSperio 0.24 0.37 0.80
FDWhittle 0.71 0.24 0.24
fracdiff 0.50 0.24 0.23
Approximate ML (0)a (0.46)a (0.46)a

To make the comparisons more convenient, all measures are transformed to d
aJoint estimation of long-and short-memory components
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START
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Fig. 3.7 Strategy for estimating d proposed by Stadnytska et al. [36]
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measuring both long- and short-term dependencies, but they can only handle 
 stationary processes. The latter are adequate for stationary and non-stationary data; 
their precision, however, is distinctly inferior to that of the ARFIMA methods and 
they tend to overrate fractal parameters in series containing short-memory compo-
nents. The greatest problem is that no estimator is superior for a majority of theo-
retical series. Moreover, in a typical research situation, it is usually unclear what 
kind of process generated empirical data. Consequently, the estimation of fractality 
requires elaborate strategies. The estimation method proposed by Stadnytska et al. 
[36] represents an example of such a strategic approach.
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Chapter 4
Tenets, Methods, and Applications 
of Multifractal Analysis in Neurosciences

Renaud Lopes and Antoine Ayache

Abstract The characteristics of biomedical signals are not captured by conventional 
measures like the average amplitude of the signal. The methodologies derived from 
fractal geometry have been a very useful approach to study the degree of irregularity 
of a signal. The monofractal analysis of a signal is defined by a single power-law 
exponent in assuming a scale invariance in time and space. However, temporal and 
spatial variation in scale invariant structure of the biomedical signal often appears. In 
this case, the multifractal analysis is well suited because it is defined by a multifractal 
spectrum of power-law exponents. There are several approaches to the implementa-
tion of this analysis and there are numerous ways to present these.

In this chapter, we review the use of multifractal analysis for the purpose of 
characterizing signals in neurosciences. After describing the tenets of multifractal 
analysis, we present the several approaches to the estimation of the multifractal 
spectrum. Finally, we describe the application of this spectrum on biomedical sig-
nals in the characterization of several diseases in neurosciences.
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4.1  Introduction

The methodologies derived from fractal geometry have been a very useful approach 
to study the degree of fragmentation (or irregularity) in natural, artificial, and statis-
tical structures or processes [27]. Fractal structures are characterized by self- 
similarity, scaling independence, and a fractal dimension, an exponent obtained 
from a power or scaling law.

However, due to the complexity of some processes, one exponent may not be 
enough to characterize a complex phenomenon. Multifractal formalism allows 
using more exponents. In this case, the object of analysis is divided into several 
fractal sets, each generating a fractal dimension that is then translated into a con-
tinuous spectrum of exponents (the so-called spectrum of singularities or multifrac-
tal spectrum). Figure 4.1 shows an example of multifractal spectra for monofractal, 
multifractal, and white noise signals. The multifractality degree (MD) obtained 
from this continuous spectrum allows measuring the information content. 
Multifractal systems are common in nature, especially in geophysics. They include 
fully developed turbulence, stock market time series, heartbeat dynamics, human 
gait, and natural luminosity time series, among others.

In neurosciences, multifractal analysis has been a very useful approach to study-
ing problems related with neurodegenerative disease, epilepsy, schizophrenia, brain 
tumors, among others.

This chapter reports tenets, methods, and applications of multifractal analy-
sis in neurosciences. The purpose of this chapter is to provide a survey of mul-
tifractal analysis approaches and to discuss the main results in neurosciences. It 
is organized as follows: in the next section, we introduce more formally the 
tenets of multifractal analysis; Sect. 4.3 gives the survey of multifractal analysis 
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approaches, their principles, and limitations. Section 4.4 discusses the main 
applications of multifractals in the neurosciences applications and the methods 
used.

4.2  Tenets of Multifractal Analysis

Many signals, recorded from real data, exhibit a very irregular behavior (see, e.g., 
[23, 29, 31, 34]). They are rapidly varying on small intervals and display oscilla-
tions of different sizes. For instance, they can be time series of prices of financial 
assets, they can also be heartbeat time series, and so on. In the sequel, we denote by 
f one of these signals. Roughly speaking, the local roughness of f at some place, in 
other words the “typical” size of its oscillations in a neighborhood of some fixed 
point t0, provides relevant information on the signal f at this place. Also, it is crucial 
to wonder whether local roughness of f changes from place to place and in that situ-
ation to have a global and synthetic description of all of its values. This is the key-
stone of multifractal analysis (see, e.g., [23, 31]).

The main goal of this section is to explain some important notions, which for-
malize the ideas presented in the first paragraph.

First we define the notion of pointwise Hölder exponent, which provides a pre-
cise measure of the local roughness of a signal f at an arbitrary fixed point t0. Let α 
be any given nonnegative number; one says that f satisfies a Hölder condition of 
order α at t0, whenever there exists a polynomial P of degree less α, and there is a 
constant c, such that, for any t in the neighborhood of t0 (in other words, |t−t0|, the 
distance between t and t0 is small) one has

 
f t P t t c t t( ) - -( ) £ -0 0

a

 
(4.1)

Observe that P and c depend a priori on t0; in other words, one should expect that 
they change if t0 is replaced by another point t1. Also, observe that when α lies 
between 0 and 1, then P is always the constant polynomial equals to f(t0); thus, in 
this case, the inequality (4.1) reduces to f t f t c t t( ) - ( ) £ -0 0

a
. The pointwise 

Hölder exponent of f at t0 is denoted by αf(t0) and defined as the supremum of the 
numbers α satisfying (4.1).

The well-known Brownian motion and its most natural generalization called the 
fractional Brownian motion have traditionally been used in order to model rough 
signals. Maybe one can say that the Brownian motion is the keystone of classical 
mathematical finance; among many other things, the Brownian motion plays a key 
role in the very famous Black-Scholes model for pricing options on risky financial 
assets [4]. As regards the fractional Brownian motion, this self-similar Gaussian 
process with stationary increments was first introduced in 1941 by Kolmogorov 
[22] in order to model velocity of turbulence at intermediate scales (the inertial 
zone). Yet, its denomination “fractional Brownian motion” (fBm) only goes back to 
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the late sixties and was first used in the seminal article [29] by Mandelbrot and Van 
Ness. We mention that the fBm has been made to be known and adopted by a large 
audience, thanks to this seminal article and to several other works by Mandelbrot, 
which have followed it (see [27, 28]). The fBm is denoted by BH, since it mainly 
depends on the Hurst parameter H, which belongs to the interval (0,1). Up to a 
renormalization factor, BH can be defined as the centered Gaussian stochastic pro-
cess with covariance satisfying, for all t and s,

 
E B t B s t s s tH H

H H H( ) ( )éë ùû = + - -( ),
1

2
2 2 2

 

Observe that the fBm reduces to the Brownian motion in the particular case 
where H = 1/2. In all the other cases (that is H ≠ 1/2), the increments of BH are cor-
related, and they even display long-range dependence when H > 1/2. Surely, the 
additional degree of freedom provided by the Hurst parameter makes the fBm to 
be a considerable more flexible model than the Brownian motion. Yet, the fBm 
has to be abandoned as a model for velocity of turbulence. It is important for us to 
precisely explain the reasons for this abandonment. Indeed, by this way, we can 
clarify the differences between the so-called monofractal and multifractal 
signals.

Assume that f is an arbitrary rough signal. The so-called structure function of f is 
denoted by If, and defined, for all h and positive p, as

 
I h p f t h f t dtf

p
,( ) = +( ) - ( )ò  

(4.2)

We mention, in passing, that some important variants of the structure function can 
be defined in terms of wavelet coefficients, continuous wavelet transforms, and the 
so-called wavelet leaders (see, e.g., [23, 31]). Generally speaking (except in patho-
logical cases), if |h| is small, then the quantity If (h, p) behaves approximately as

 
I h p hf

pf,( ) ( )~
z

 
(4.3)

When f is a signal issued from velocity of a turbulent flow, various experiments, 
based on wind-tunnels measurements, have shown that there is no linear dependence 
between p and the exponent ζf(p). The situation is very different in the case where f 
is the fBm BH, because it can then be shown that the exponent z BH

p( )  satisfies 
z BH

p Hp( ) = , which clearly means that z BH
p( )  linearly depends on p. This linear 

dependence can be partially explained by the fact that the pointwise Hölder exponent 
of the fBM BH remains the same all along its sample path; more precisely, for all t, 
one has aBH

t H( ) = . In sharp contrast, for a signal f issued from velocity of a turbu-
lent flow, the pointwise Hölder exponent αf (t) keeps changing from point to point in 
an unpredictable and chaotic way. What are then the values that αf (t) is most likely 
to have? In order to answer to this question, it is useful to introduce the notions of 
iso-Hölder sets and of spectrum of singularities. To each fixed nonnegative number, 
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ρ is associated an iso-Hölder set Sf (ρ), defined as the set of all the points t such that 
a rf t( ) = . The Hausdorff dimension of Sf (ρ) is denoted by Df (ρ). The spectrum of 
singularities of f is defined as the whole collection of the values taken by Df (ρ), when 
ρ runs through the set of all the nonnegative numbers; therefore, this spectrum is 
denoted by Df. Observe that in the case of the fBM BH, the spectrum DBH

 is trivial, 
since it only consists in two values. It is for that reason that the fBm is called a mono-
factal signal. In sharp contrast, when a spectrum Df contains infinitely many different 
values (i.e., in practice, a great number of different values), then the corresponding f 
is called a multifractal signal. Notice that models for such signals can be obtained 
through multiplicative cascades (see, e.g., [23, 31]). We end this paragraph by 
emphasizing the fact that the spectrum of singularities Df provides a global and syn-
thetic geometrical description of all the values of the pointwise Hölder exponent of a 
multifractal signal f. Thus, Df contains relevant and useful information related with 
the roughness of f to which it is important to access. This leads us to the natural ques-
tion on how the spectrum of singularities Df can be explicitly obtained and deter-
mined in practice.

Trying to compute Df by using its very definition is definitively an impossible 
task, even to the most powerful computer. The first obstruction is that this task 
requires the calculation of the pointwise Hölder exponents of f at infinitely many 
points. The second obstruction is that calculating the Hausdorff dimension of a set, 
by using the very definition of this dimension, can very hardly be done in practice. 
Thus, it is a challenging issue to provide satisfactory answers to the fundamental 
question raised at the end of the last paragraph. In order to deal with this issue, mul-
tifractal analysis, and more particularly the so-called multifractal formalism, was 
introduced by the physicians Parisi and Frisch in [34]. Since almost three decades, 
multifractal analysis is a very active interdisciplinary research area where mathema-
ticians, physicians, and other scientists interact. It is worth mentioning that the main 
idea of the multifractal formalism, due to Parisi and Frisch, is that the exponent ζf(p), 
governing the local asymptotic behavior of the structure function (see (4.3) and 
(4.2)), can be obtained as the Legendre transform of the spectrum of singularities Df. 
That is one has

 
z r r

rf fp p D( ) = + - ( ){ }inf 1
 

(4.4)

As a consequence, Df (ρ) can be recovered through the Legendre inversion 
formula:

 
D p pf p fr r z( ) = + - ( ){ }inf 1

 
(4.5)

We conclude this section by stressing that the two crucial formulas (4.4) and (4.5) 
are among other things very useful for clinicians who want to obtain multifractal 
spectra through computations. Yet these two formulas are not always satisfied. The 
main preoccupation of multifractal analysis is to determine the weakest possible con-
ditions under which these they are valid (see, e.g., [23, 31]).
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4.3  Methods of Multifractal Analysis

The multifractal spectrum (also called spectrum of singularities) Df of a signal f can 
be estimated by two families of methods. The first one uses the “box-counting” 
approach, which is only based on time (for 1D signal) and space (for nD signal, 
n > 1) domain. The term “box counting” is used because the signal f is divided into 
boxes or segments in the computation of Df. The procedure is repeated with differ-
ent sizes of boxes. The second one uses time-frequency decomposition of the signal 
f for the estimation of Df. The wavelet theory is commonly used for the decomposi-
tion. In this case, the scale of the wavelet decomposition can be compared as the 
size of boxes in the first family of methods. The methods and their benefits and 
drawbacks are summarized in Table 4.1.

4.3.1  Time Domain Methods

4.3.1.1  Generalized Fractal Dimensions and Multifractal Spectrum

Standard box-counting techniques are used to analyze point’s sets. Each set is described 
by an infinite number of generalized dimensions, Dq, also called “Renyi’s dimension,” 
and by the multifractal spectrum (or spectrum of singularities) Df. The generalized 
dimensions Dq are computed as a function of the order of the probability moment q and 
then the multifractal spectrum can be obtained by Legendre transform.

The Legendre transform could lead to some errors [39]. In 1989, Chhabra and Jensen 
defined a method for the direct estimation of the multifractal spectrum [8]. This method 
is widely used [11, 41] but has the drawbacks of the box-counting methods.

Besides problems arising when the boxes contain few points, the algorithms are 
characterized by low statistics, emphasized by the negative exponents (q < 0); this, 
in turn, makes the measure to diverge exponentially [14].

4.3.1.2  The “Sandbox” or Cumulative Mass Method

The sandbox method, developed by [40], is useful for the assessment of the general-
ized fractal dimensions for both positive and negative moment orders, q, permitting 
the reconstruction of the complete multifractal spectrum.

This method consists in randomly selecting N points belonging to the structure 
and then counting, for each point i, the number of pixels Mi(r) that belong to the 
structure inside a disk of diameter r centered at this point. The generalized dimen-
sions Dq are obtained using the mean of Mi(r) for various r.

The advantage of this method is that the boxes are centered on the structure, so 
there are no boxes with too few elements (i.e., pixels) inside. Indeed, for q < 0, boxes 
that contain a small number of elements (because they barely overlap with the 
 cluster) give anomalously large contributions.
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The sandbox procedure represents a solution to the border effect problem (i.e., 
the presence of almost empty cells containing few points not centered in them), 
permitting the reconstruction of the multifractal spectrum also for negative q [12].

Finally, we can quote that this method has just been developed for binarized 
signals.

Table 4.1 Review of approaches to the estimation of multifractal spectrum

Name Pros Cons

Time domain methods
Generalized fractal 
dimensions and 
multifractal spectrum

Easy implementation Highly dependent to the box 
sizes

Development to 1D, 2D, or 3D 
signals

Problems arising when the 
boxes contain few points

Sandbox method Easy implementation Dependent to the box sizes
Development to 1D, 2D, or 3D 
signals

Only for binarized signals in the 
case of 2D or 3D signals

Boxes centered on the structure
The large-deviation 
multifractal spectrum

Not always a concave spectrum High computation cost
Difficult to apply in 2D and 3D

Multifractal detrended 
fluctuation analysis or 
multifractal detrended 
moving average

Easy implementation Dependent to the box sizes
Development to 1D, 2D, or 3D 
signals

Only for binarized signals in the 
case of 2D or 3D signals

Use of the “profile” of the signal
Robust even for signals of small 
lengths

Time-frequency domain methods
Wavelet transform 
modulus maxima

Less dependent to the wavelet 
and number of scales than 
“box-counting” methods

High computation cost

Development to 1D, 2D, or 3D 
signals

The continuous wavelet 
transform introduced some 
discontinuities at the endpoints 
of the signal
No mathematical background

Wavelet leaders-based 
multifractal analysis

Less dependent to the wavelet 
and number of scales than 
“box-counting” methods

Need large signals

Development to 1D, 2D, or 3D 
signals
Mathematical background
Robust to the estimation of the 
right part of spectrum

Multifractional Brownian 
motion

Estimation of the Hölder 
exponent to each point of the 
signal

Very few applications

Development to 1D, 2D, or 3D 
signals

Need large signals
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4.3.1.3  The Large-Deviation Multifractal Spectrum

When the multifractal spectrum is estimated using the abovementioned methods, its 
shape is always concave. The advantage of the large-deviation multifractal spec-
trum is that it will not always be concave and so less information loss will occur. 
However, much more numerical computation is required and the method becomes 
difficult to apply in two and three dimensions. Indeed, the algorithm necessitates the 
calculation of two limits, instead of just one as for the two previous methods.

In view of the high computation cost, this method is primarily used for 1D sig-
nals [6, 38]. This spectrum can also be applied to image segmentation [1].

4.3.1.4  Multifractal Detrended Fluctuation Analysis: MDFA

The detrended fluctuation analysis (DFA) method is a widely used technique for the 
quantification of monofractal properties. This method has the advantage to avoid spuri-
ous detection of correlations that are artifacts of nonstationarities in the time series and 
has successfully been applied in several fields such as neuron spiking [5] and DNA 
sequences [7]. In 2002, Kantelhardt et al. [18] proposed a generalization of the DFA 
method for the multifractal characterization of nonstationary time series and called it the 
multifractal detrended fluctuation analysis (MDFA) procedure. It consists of three main 
steps. Briefly, the first one is to construct the “profile” of the signal. The second one is to 
divide the profile into non-overlapping segments of equal length, and the third one is to 
calculate the local trend for each segment by a least-square fit of the data and calculate 
the variance. For more details of the MDFA method, see in Kantelhardt et al. [18].

This method is sensitive to the length of segments.

4.3.1.5  Multifractal Detrended Moving Average: MDMA

In 2010, Gu and Zhou [16] developed a similar approach than the MDFA procedure 
based on the moving average technique. They called it the multifractal detrended 
moving average (MDMA). Both methods rely on a measure of fluctuations but differ 
in calculating the moments of the fluctuation function. Indeed, in the MDMA 
approach, the signal is divided into segments after the calculation of the profile and the 
detrending step. For more details of the MDMA method, see in Gu and Zhou [16].

It has been shown that MDMA outperformed the MDFA in the estimation of 
scaling exponents [16].

4.3.2  Time-Frequency Domain Methods

The second class of methods is defined in time-frequency domain. All of the next 
approaches for the estimation of multifractal spectrum are based on the wavelet 
transform. The wavelet transform of a signal is used like an “oscillating” box to 
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represent its components. Some methods use the discrete wavelet transform and 
others are based on the continuous wavelet transform.

4.3.2.1  Wavelet Transform Modulus Maxima: WTMM

The wavelet transform modulus maxima (WTMM) method, originally developed 
by Muzy et al. [32], is based on the concept of wavelets in general and the use of the 
continuous wavelet transform in particular. It has been developed and used in one 
and two dimensions in several fields [3, 20, 21]. In [19], the method was applied in 
3D and the authors showed its robustness using simulated 3D multifractal models. 
In the WTMM method, the wavelet transform maxima are used to define a partition 
function whose power-law behavior is used for an estimation of the local exponents 
and to assess the dimension of the detected exponents. A matching set of fractal 
exponents and dimensions is used to obtain the multifractal spectrum.

The method presents some limits. It is more difficult to implement than the previ-
ous methods. It has some freedom degrees, like the wavelet choice and the scales 
number. Also, the continuous wavelet transform introduced some discontinuities at 
the endpoints of the signal, due to zero padding. It is necessary to define a cone of 
influence for the analysis and it is defined as the region of the wavelet spectrum, in 
which the decrease of the wavelet amplitude near the edges becomes significant. 
However, Kestener et al. [19] showed that it is more effective than the “box- 
counting” methods.

4.3.2.2  Wavelet Leaders-Based Multifractal Analysis: WLMA

The wavelet leaders-based multifractal analysis (WLMA) computes the scaling 
exponents by measuring how the absolute value of the wavelet coefficients changes 
as a function of scale. The data are transformed to the wavelet domain with a dis-
crete wavelet transform, and the wavelet leaders are calculated by finding the maxi-
mum wavelet coefficient among the adjacent wavelet coefficients for the current 
scale and all smaller scales. The estimated multifractal formalism has a mathemati-
cal validity and the right part of spectrum is valid (q < 0), meaning that the partition 
function (obtained by wavelet leaders) is also valid when q < 0 [43]. For more details 
of the WLMA, see in Wendt et al. [43].

4.3.2.3  Multifractional Brownian Motion: mBm

Based on multifractal modeling, Lopes et al. [25] introduced an extension of the 
fBm which overcomes some of its limitations. The proposed model is based on 
multifractional Brownian motion (mBm). The intuitive idea which leads to mBm 
consists in replacing the fBm Hurst parameter by a smooth function depending on 
the space variable t. Briefly, a signal is modeled by a mBm. The estimation proce-
dure of the Hölder exponent at each t was inspired both by the variance method and 
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by a method called the localized generalized quadratic variations method [2]. The 
novelty of the procedure is that the estimator was obtained through its wavelet coef-
ficients. The advantage in using wavelet coefficients is that they offer more numeri-
cal stability than sampled values; wavelet coefficients are less sensitive to 
perturbations by white noise than sampled values. For more details of the mBm 
procedure, see in Lopes et al. [25].

4.4  Applications of Multifractal Analysis

Over the last years, multifractal analysis has been applied extensively in neurosciences. 
In this section, the applications are grouped into three main domains: electroencepha-
logram (EEG) signal, blood oxygen level-dependent (BOLD) signal, and brain imag-
ing. The methods and their applications are summarized in Table 4.2.

4.4.1  Electroencephalogram Signal: EEG

The electroencephalogram (EEG) is a recording of the electrical activity of the brain 
from the scalp (see also Chap. 25). The recorded waveforms reflect the cortical 
electrical activity. Many studies in neuroscience have converged to raise the hypoth-
esis that the underlying pattern of neuronal activation from the EEG signals is non-
linear, with self-affine dynamics, while EEG signals themselves are nonstationary. 
Therefore, fractal analysis of EEG signals has shown scaling behaviors that may not 
be consistent with monofractal process. These signals may be better modeled as an 
underlying multifractal process. Several studies confirmed this hypothesis and are 
summarized below.

Gadhoumi et al. [15] used the WLMA approach for the prediction of seizure 
onset in epilepsy patients. The method was able to differentiate between the preictal 
and the interictal states with a sensitivity of 80 % and a specificity of 25 %.

Table 4.2 The methods for the estimation of multifractal spectrum and their applications in 
neurosciences

Methods

Applications

EEG fMRI Brain imaging

Fractal dimensions [35, 42] [33] [26, 37]
Sandbox
Large-deviation spectrum
MDFA or MDMA [24, 30, 45]
WTMM [45] [44]
WLMA [15] [9, 10]
mBm
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Liang et al. [24] showed that MDFA indices could track the changes in EEG 
 pattern during different anesthesia states. However, they compared these indices 
with other indices of entropy measures, and they found that some entropy features 
can obtain better performance.

Matic et al. [30] used MDFA metrics to distinguish different grades of abnormal-
ity in the background EEG activity in neonates after perinatal asphyxia.

Plonnikov et al. [35] analyzed normal and abnormal EEG development by means 
of measures regarding the EEG as a multifractal structure. Their goal was to check 
the stated hypothesis that during the brain maturation, the EEG signal goes over the 
stages of some types of noise not only in healthy subjects but also in patients with 
cerebral pathology. They used a different approach to measure the multifractal 
properties of the EEG signal, known as fractal dynamics. They divided the EEG 
signal into 1-s time segments and computed some fractal measures on each seg-
ment. They showed that during the brain maturation, the EEG signal goes over the 
stages of some types of noise.

Weiss et al. [42] used the range of multifractal spectrum, computed by the gen-
eralized fractal dimensions, to characterize the topography and the sleep stages on 
EEG recordings. They showed that brain EEG signals are more complex than they 
could be fully described by a single monofractal exponent, and therefore, a multi-
fractal approach may be more appropriate for modeling the fractal properties of 
brain dynamics. Moreover, the multifractal measure outperformed the relative band 
powers and the monofractal exponent in the overall sleep stage discrimination.

Zorick et al. [45] used MDFA approach to classify EEG signals from waking and 
different sleep stages and demonstrate its potential utility for automatic classifica-
tion of different states of consciousness. Also, they showed that MDFA approach 
had lower indices of variability when applied on EEG signals than WTMM 
approach.

4.4.2  Brain Imaging

Most of research protocols in neurosciences used brain imaging informations, such 
as magnetic resonance imaging (MRI), positron emission tomography (PET), or 
single-photon emission computed tomography (SPECT) (see also Chaps. 19, 20, 
and 21).

Functional MRI measures brain activity by detecting associated changes in blood 
flow through the BOLD signal. Several studies of the temporal scale free or fractal 
property in fMRI have demonstrated that this constitutes an intrinsic feature of 
ongoing brain activity [9, 17]. It was shown that the Hurst coefficient decreases dur-
ing task in activating and deactivating brain regions. However, using one scaling 
exponent assumes Gaussianity and self-similarity, while fMRI signals may signifi-
cantly depart from those either of those two assumptions [9]. To address this issue, 
the scaling properties of fMRI signals can be investigated using multifractal analy-
sis, thus measuring a collection of scaling exponents. Evidence for the presence of 
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multifractality in both resting-state and task-related fMRI signals has been demon-
strated in almost the whole brain. The studies reported below are the most recent 
publications in the field of multifractal analysis applied to fMRI signals.

Wink et al. [44] conducted multifractal analysis using WTMM on resting-state 
fMRI signals in the right inferior frontal cortex and revealed that the faster respond-
ing participants had wider multifractal spectrum.

Shimizu et al. [36] found multifractal structures in white and gray matter, and the 
significant differences in the singularity spectra between the activated and the non-
activated brain regions. They used WTMM approach to extract multifractal proper-
ties of fMRI signals.

Ciuciu et al. [10] studied the multifractal time dynamics of fMRI signals during 
rest and task. They used the WLMA approach to measure a collection of scaling 
exponents. They showed that most fMRI signals appear multifractal at rest except in 
non-cortical regions. Task-related modulation of multifractality appears only sig-
nificant in functional networks compared to artifacts.

The multifractal analysis can be used for the applications in control group versus 
patient group characterization. Ni et al. [33] studied the discriminating power of 
multifractal properties to detect Alzheimer disease patients from healthy volunteers, 
especially when combining with the traditional resting-state fMRI features.

There are fewer published works on multifractal analysis in other brain imaging 
modalities. Takahashi et al. [37] used the multifractal spectrum to quantitatively 
evaluate white matter hyperintensity on MR images. Lopes et al. [26] used a 3D 
adaptation of multifractal spectrum to characterize the local changes in homogene-
ity in brain SPECT images. There was a statistically significant difference between 
the control group and the pathological group.

4.5  Conclusion

A limitation with fractal analysis is to describe objects by a single fractal value, 
whereas they exhibit a multifractal behavior. Multifractal analysis is a response to 
this limit. It allows computing a spectrum or a set of fractal dimensions. Many 
 algorithms exist to evaluate the spectrum of singularities Df (the so-called multifrac-
tal spectrum) of a signal f and numerical differences between the methods appear. 
The choice of the method is not a trivial task because no “gold standard” approach 
exists. However, the advantages and limitations of each method have to be known in 
relation to input data.

About time domain approaches, MDFA and MDMA methods are computation-
ally more stable than others methods in terms of boxes (or segments) size. Moreover, 
they are the most used in the last studies. The choice between MDFA and MDMA 
is not trivial. Eke et al. [13] showed that MDFA is applicable for more types of sig-
nals than MDMA.

About time-frequency domain approaches, the WTMM method is the most 
used in the literature. However, WLMA overcomes major difficulties partially 

R. Lopes and A. Ayache



77

solved by WTMM such as no mathematical results are expected to hold for the 
WTMM method, the high computational cost of WTMM, and the easily theoreti-
cally and practically generalization to higher dimensions of WLMA [43]. For the 
mBm method, its low number of studies does not allow to conclude about its 
robustness.

There is no consensus on the choice between time or time-frequency domains 
approaches. The only strong result is that MDFA is more consistent than WTMM 
and WLMA methods for shorter signals (less than 7500 time points) [33, 45].

Most of applications of multifractal analysis in neurosciences are interested in 
1D signals, such as EEG and functional MRI signals. Evidence for the presence of 
multifractality in both EEG and fMRI signals has been largely demonstrated. The 
multifractal analysis is also able to discriminate two or more states in a signal or to 
characterize patients from healthy volunteers. Few studies are interested in the use 
of multifractal analysis in 2D or 3D brain images. First works were interesting, but 
they used “box-counting” methods; it will be interesting to see the influence of more 
robust methods, such as wavelet-based methods.
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    Chapter 5   
 Fractals in Neuroanatomy and Basic 
Neurosciences: An Overview                     

     Antonio     Di     Ieva     

    Abstract     The introduction of fractal geometry in the neurosciences has been a 
major paradigm shift over the last decades as it has helped overcome approxima-
tions and limitations that occur when Euclidean and reductionist approaches are 
used to analyze neurons or the entire brain. Fractal geometry allows for quantitative 
analysis and description of the geometric complexity of the brain, from its single 
units to the neuronal networks. 

 As illustrated in the second section of this book, fractal analysis provides a quan-
titative tool for the study of morphology of brain cells (i.e., neurons and microglia) 
and its components (e.g., dendritic trees, synapses) as well as the brain structure 
itself (cortex, functional modules, neuronal networks). The self-similar logic which 
generates and shapes the different hierarchical systems of the brain and even some 
structures related to its “container,” that is, the cranial sutures on the skull, is widely 
discussed in the following chapters, with a link between the applications of fractal 
analysis to the neuroanatomy and basic neurosciences to the clinical applications 
discussed in the third section.  
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   By echoing some concepts expressed by the seventeenth-century English scholar 
Richard Bentley, Benoit Mandelbrot expressed that “Clouds are not spheres, moun-
tains are not cones, coastlines are not circles, and bark is not smooth, nor does 
lightning travel in a straight line” [ 17 ]. 

5.1     What About the Brain? 

 Although Mandelbrot’s fractal geometry has often been seen as “mathematical eso-
terica,” candidly confessed by himself, the new model has been applied in the bio-
medical domain, including the neurosciences [ 6 ,  7 ,  15 ]. The natural complexity of 
the brain, its hierarchical structure, and the sophisticated topological architecture of 
the neurons organized in micro- and macro-networks can only roughly been 
described by means of Euclidean geometry and linear dynamics approaches [ 7 ]. 

 Regardless of the mathematical meaning of fractal geometry, it should be empha-
sized that in the context of neuroscience (and all the biomedical sciences), fractal 
geometry should not really be considered as a model or a theory but rather as a 
framework. It is a useful framework to describe the complexity of the brain func-
tional networks, in both its physiological and pathological states, in all its hierarchi-
cal structure, from protein/synapses networks to macroscopic organizations of 
neurons and other cells, as confi rmed by the small-world topologies seen in cellular 
as well as large-scale neuronal networks [ 9 ,  10 ].  

5.2     Fractals, Neurons, and Microglia 

 The adult human brain contains about 86 billion neurons and 85 billion nonneuronal 
cells (adult male with an average brain of 1.5 kg) [ 12 ]. It is now known that the 
complexity of brain function is not strictly related to such a high number of cells but 
rather to its network connectivity. 

 Fractal analysis provides a quantitative tool for the study of morphology of brain 
cells and its components (i.e., dendritic trees, synapses, etc.) as well as the brain 
structure itself as summarized below and in the entire second section of the book. 

 Fractal analysis has been proven to be useful in quantifying the cytoneuroarchi-
tecture, by providing a global estimate of axonal and dendritic branching, in dis-
criminating between certain functionally different neuronal types that are visually 
similar [ 3 – 5 ,  14 ,  18 ,  20 ,  21 ,  23 ,  24 ], as well as in following the change of dendritic 
complexity induced by drugs [ 1 ]. The fractal dimension of a neuron increases with 
the ruggedness of the cellular border, the degree and pattern of branching, and the 
space-fi lling capacity. The fractal-based neuronal and nonneuronal morphometry 
even allows the characterization of cells in pathological conditions, as demon-
strated, for example, by a lower complexity of the astrocytic cells’ borders in the 
brain cortex of babies, which becomes higher in healthy adults, and then again 
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smaller in aged subjects, and is signifi cantly reduced in subjects affected by 
dementia [ 22 ]. Inversely to the FD, lacunarity has been shown to increase with age, 
and the relationship between FD and lacunarity can be used for a holistic and 
dynamic representation of the neuroglial network over time, from the process of 
differentiation to the senescence of cells. As elucidated in Chap.   6     by  Audrey 
Karperien  and  Herbert Jelinek , together microglia and neurons contribute to the 
fractal topology of the brain that defi nes its computational capabilities. Methods, 
aims, and results to compute the fractal dimension of neurons are presented in 
Chap.   6    , as well as in Chap.   7     by  Nebojša Milošević . The fractal dynamics of the 
synapse formation process are illustrated by  Małgorzata Kołodziej  and  Przemysław 
Waliszewski  in Chap.   8    .  

5.3     Brains and Trees 

 It is not necessary to be a botanist to be able to distinguish a weeping willow from 
a pine. How? Both have a trunk, roots, and branches, but nonetheless they look very 
different. They share many specifi c qualities of trees; however, among other charac-
teristics, they each have a different geometrical shape, which is one reason why it is 
not diffi cult to distinguish them: the romantic weeping willow, with its crying leaves 
vs. the austere shape of a Scots pine! These two trees have different geometrical 
shapes, or better, they each fi ll the space differently. Considering that they could 
have the same Euclidean measures (e.g., height, width, and number of branches), 
they each own a distinctive fractal dimension for their peculiar geometrical com-
plexity in the three-dimensional space. 

 A systematic and exhaustive research about the specifi c fractal geometry of all 
trees has not been published yet, in spite of this simple and intuitive idea. 

 However, the literature is full of evidence about the existence of a geometrical 
fi ngerprint found in many biological systems: bronchial trees, vascular trees, neuro-
nal trees, and so on. Clearly nature follows specifi c rules, which are common for 
several distinct systems, and some morphological  generators  generate different 
hierarchical levels of anatomical systems. The use and abuse of the word “tree” in 
biomedical sciences are not a coincidence. Botanic and vascular trees have branches, 
bifurcations, and trunks, something that, in short, can be only roughly estimated by 
means of Euclidean approaches. Are trees fractal structures? The answer is contro-
versial; however, regardless of the fractal or quasi-fractal or semi-fractal nature of 
the trees, what is sure is that fractal analysis can help describe and quantify their 
geometrical complexity. The brain also shows many fractal treelike structures. Not 
by coincidence, the old anatomical books mention the  arbor vitae  (Latin word 
meaning “tree of life”), for example, in reference to the white matter of the cerebel-
lum; some researchers have confi rmed its fractal nature or at least used fractal anal-
ysis to differentiate some brain and cerebellar diseases. Fractal analysis has been 
used to successfully distinguish between the shapes of different classes of neurons 
with their specifi c dendritic arborizations, as previously written. Moreover, peculiar 
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vascular and microvascular networks characterize the brain and its pathological 
counterparts (e.g., brain tumors or cerebrovascular malformations, as discussed in 
the third section of this book).  

5.4     Increase of the Fractal Dimension from “Too Smooth 
to Too Folded” Human Brains 

 In 1991, Hofman showed that the whole brain cortex has a fractal structure [ 13 ], as 
confi rmed in following studies [ 8 ,  16 ], although, from the mathematical point of 
view, the brain is not strictly self-similar [ 26 ]. The fractality of the convoluted brain 
is based on the hypothesis that the convolutions are result of fractal folding and 
compartmentalization of neurons into modular circuits, governed by simple genera-
tive rules to generate the brain design [ 13 ]. The cerebral cortex is characterized “by 
the hierarchical organization of groups of neurons or, in terms of fractal geometry, 
infi nitely nesting clusters of neurons” [ 13 ]. Comparing several species and perform-
ing allometric analysis, Hofman showed that among mammals, there are two major 
groups: (1) species with smooth, non-convoluted brains where the cortical surface 
area increases as the two third power of brain volume; (2) species with convoluted 
brain, where the cortical morphology is described by more complex mathematical 
models, with a cutoff from the transition of a lissencephalic brain to a gyrencephalic 
one, as illustrated below. The FD of the human brain was computed to 2.70 ± 0.07, 
and the folding of the cortical surface to such a value and the compartmentalization 
of neurons into modular circuits were suggested to be the architectural reason of the 
high degree of parallel processing occurring in the cerebral cortex to maximize the 
processing of transfer of information [ 13 ]. The relationship between cortical surface 
and the square root of cortical thickness has implications regarding the origin of 
folding in evolutionary and developmental perspective, as well as in pathologies 
such as human lissencephaly, as recently reconfi rmed [ 19 ]. The calculated ~2.5 
fractal dimension value of gyrencephalic brains has intriguingly been found remark-
ably close to the value of crumpled sheets of paper [ 19 ]. 

 In human pathology, the term lissencephaly refers to “smooth brain” phenotypes 
present in a wide spectrum of malformations of the normal cortical folding, caused 
by dysfunction in the migration of neurons during the process of corticogenesis. 
The terms used for a complete lack of the gyri (agyria) or broad gyri (pachygyria) 
add a qualitative element to the description of the lissencelphalic patterns, although 
no objective quantitative indexes are in clinical use. On the other side of the spec-
trum of the abnormal cerebral gyrogenesis (process of formation of the gyri) and 
sulcogenesis (formation of the grooves) are lesions characterized by the brain cortex 
being “hyperfolded,” and/or more gyri are present (polymicrogyria). 

 Computational fractal-based analyses have proposed FD and further comple-
mentary indexes as objective parameters to estimate the topological complexity of 
natural objects, such as the brain cortex, as well as imaging markers of normal vs. 

A. Di Ieva



87

diseased human brains in a very wide range of neurological diseases (see third 
 section). In an unpublished exploratory analysis, we computed the folding of a few 
human lissencephalic vs. polymicrogyric brains, fi nding an average FD value of 
2.15 vs. 2.85, respectively. It is interesting to note that these values are at the extreme 
wings of a normal distribution of the patterns according to the increasing complex-
ity of the brain folding. Computational fractal-based analyses can add a computer- 
aided quantitative parameter to the qualitative (and often subjective) description of 
the brain structure performed by morphologists (e.g., neuroradiologists or neuro-
anatomists/pathologists).  

5.5     Neuronal Networks 

 The functional modularity of the brain shows self-similar features at each level of 
analysis, although such self-similarity is statistical rather than exact, like in many 
other biological systems. The fractal dimension has been shown as a valid parame-
ter to characterize the topological structure and space-fi lling properties of networks 
[ 11 ], including the neuronal ones [ 9 ]. 

 The brain and neuronal networks “self-similarity logic” is intriguingly intro-
duced by  Diego Guidolin, Cinzia Tortorella, Raffaele De Caro,  and  Luigi Agnati  in 
Chap.   9    . Interestingly enough, such logic can also be applied to the analysis of 
cranial sutures, as covered in Chap.   10     by  Takashi Miura . By means of a multifrac-
tal approach, it has been shown that the brain maintains a state of self-organized 
criticality [ 25 ]. Neural networks have been shown to use a self-similar branching 
structure of dendrites and downstream networks in interconnected reciprocal feed-
back loops: output from outer branch nodes of the network tree enters inner branch 
nodes of the dendritic tree in single neurons [ 2 ]. The recurrent fractal neural net-
works theory has been suggested to provide a strategy to understand the exchange 
of global and local information processing, in a holistic view of the translation from 
neuronal computation into conscious experience [ 2 ]. The topological concept of 
self-similar networks of the brain seems to reconcile the reductionistic approach to 
dissect the brain into single units (neurons, columns, modules, nuclei, and so on) in 
a broad highly connected network which gives the mind its unity. Small-world net-
works and scale-free topologies, observed on a subcellular, cellular, and in large- 
scale brain networks (as seen in functional magnetic resonance imaging, fMRI) [ 9 ], 
may be the anatomical and functional basis of the high effi ciency of information 
fl ow in the brain as well as of the emergence of consciousness. 

 In conclusion, the analysis of the self-similar patterns can suggest some opera-
tional modes and principles on which the brain architecture is shaped, from its ana-
tomical (i.e., brain design) to functional (i.e., information processing) spectrum; In 
this context, an evolutionary and comparative anatomy perspective is intriguingly 
and brightly presented by  Michel Hofman  in Chap.   11    . This holistic chapter on the 
fractal geometry of the brain links the section two to the next more clinically ori-
ented section of the book.     
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    Chapter 6   
 Morphology and Fractal-Based Classifi cations 
of Neurons and Microglia                     

     Audrey     L.     Karperien      and     Herbert     F.     Jelinek    

    Abstract     Microglia and neurons live physically intertwined, intimately related 
structurally and functionally in a dynamic relationship in which microglia change 
continuously over a much shorter timescale than neurons. Although microglia may 
unwind and depart from the neurons they attend under certain circumstances, in 
general, together both contribute to the fractal topology of the brain that defi nes its 
computational capabilities. Both neuronal and microglial morphologies are well 
described using fractal analysis complementary to more traditional measures. For 
neurons, the fractal dimension has proved valuable for classifying dendritic branch-
ing and other neuronal features relevant to pathology and development. For microg-
lia, fractal geometry has contributed substantially to classifying functional 
categories, where in general, the more pathological the biological status, the lower 
the fractal dimension for individual cells, with some exceptions including hyper- 
ramifi cation. Here we briefl y review the intimate relationships between neurons and 
microglia, and survey work applying fractal analysis to their respective morpholo-
gies, summarizing key results and highlighting methodological issues.  

  Keywords     Fractals   •   Fractal analysis   •   Microglia   •   Neuron   •   Theoretical Models   • 
  Box-counting   •   Dendritic spines  

6.1       A Brief Introduction to Neurons and Microglia 

 One can tell much from observing the general profi le of a cell under a microscope. 
Students of both neuroscience and hematology, for instance, are taught to predict the 
function, age, and location of a cell based on general morphological characteristics 
[ 22 ,  82 ]. Indeed, cell shape is a well-known feature upon which to make diagnostic 
and clinical decisions [ 15 ,  32 ,  36 ,  101 ]. Sometimes criteria that decisions can be 
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based on are readily apparent and easily quantifi ed, such as when the three- 
dimensional (3D) radius or two-dimensional (2D) diameter is used to classify red 
blood cells, but other times objectively measurable criteria are elusive. This is largely 
the case with the two brain cells this chapter focuses on, neurons, the relatively stable 
structural and functional units of physiological signaling, and neuroinfl ammatory 
microglia, the more dynamic attendants of those units. 

6.1.1     Neuronal and Microglial Morphology in Context 

 Microglia live closely intertwined with neurons in the complex 3D environment of 
the central nervous system (CNS). Both have characteristically radial structures 
with multiple ramifi ed processes. In both cells, the processes are usually relatively 
long compared to their essentially central cell bodies but come in varieties having 
specialized form and function [ 56 ,  65 ,  73 ,  74 ]. 

 Neuronal design includes centralizing somata of varying size and shape, richly 
branching, spine-encrusted dendritic arbors that bring in and integrate signals, and 
generally less branched and sometimes much longer axons that decide to send sig-
nals along to target tissues. Depending on where a neuron is and what its role is, its 
fundamental features are formed and arranged differently. Indeed, morphology is 
often all the information required to classify neurons, even deduce their location and 
function [ 1 ,  10 ,  11 ]. 

 Similar to neurons, microglia normally have a central although often elongated 
soma, highly ramifi ed processes specialized for such tasks as tending to dendritic 
spines and (at least in mice) a dedicated process that extends along the initial axon 
segment [ 3 ] (a neuronal part responsible for action potential initiation) [ 76 – 78 ,  84 , 
 87 ,  88 ,  90 ,  92 ]. One key difference between the morphologies of these interlinked 
cells is that in normal adult humans, microglia are usually considerably smaller than 
the neurons they attend, the total cell spanning an area comparable to the neuron’s 
soma. They are motile and distributed unevenly throughout the CNS, hovering 
nearer somata more in gray than white matter, generally inclined to stay near neuro-
nal processes, constantly and rapidly moving and waving their own processes in 
close proximity to the neuronal processes they attend [ 76 – 78 ,  84 ,  87 ,  88 ,  90 ,  92 ]. 
Another important morphological difference is that microglia periodically adopt a 
wholly unbranched morphology to perform some of their duties. Whereas they are 
capable of and perform phagocytosis in all their guises (e.g., in spine pruning), for 
mass phagocytosis and waste disposal, they can fully wind in their processes to 
adopt an amoeboid form able to migrate to sites of trauma [ 49 ,  76 – 78 ,  87 – 94 ]. 

 Like neuronal morphology, microglial morphology tells much about what a cell 
does, and many of the same factors that infl uence the changes in neuronal morphol-
ogy also affect microglial morphology at the same time that microglia are infl uenc-
ing neuronal morphology [ 3 ,  76 – 78 ,  88 ,  92 ]. An important difference, however, is 
that microglia change form and position much more quickly and dramatically in 
real time with important consequences. In normal adult brain, the microglial soma 
is essentially stationary, but processes move to contact both axonal boutons and 
dendritic spines in patterns that include distinct contact and rest intervals [ 95 ]. In 
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traumatized brain, the microglial process that contacts the initial axon segment, for 
instance, loses contact when microglia retract processes and adopt their amoeboid 
form [ 3 ,  76 – 78 ,  84 ,  87 ,  88 ,  90 ,  92 ]. 

 Being able to quantitatively assess these physically and functionally interlinked 
brain cell types is vital to many of the goals of neuroscience. But just what should 
one measure about a neuron with a dense dendritic arbor on one end and a relatively 
sparse but extremely much longer axon on the other? And how might one character-
ize and compare the multiple personalities of an individual microglial cell? Further, 
how might one quantitate the 3D intimacy between neurons and microglia? 
Neuroanatomical examples are many wherein traditional measures such as total cell 
area, branch length, number of branch points, and angle of branching could not dif-
ferentiate between visually subtle but important differences in populations of both 
cell types yet introducing fractal measures, alone or in conjunction with other mea-
sures, made it possible to draw distinctions [ 21 ,  26 ,  41 ]. 

 Thus, this chapter broadly surveys fractal approaches to classifying neurons 
and microglia and discusses interpretations and implications of such work for 
understanding the fractal geometry of the brain. This chapter reviews these topics 
separately, refl ecting the current dearth of studies comparing and assimilating 
results of fractal analysis of both. This chapter draws on key defi nitions, terminol-
ogy, and methodological considerations explained in the introductory chapters of 
this book.   

6.2     Fractal Analysis of Neurons 

 Table  6.1  lists a sample (from studies cited in the US National Institutes of Health’s 
PubMed database) of the methods and approaches that have contributed to the state 
of the art of neuronal classifi cation by fractal measures. To sum up the fi eld, the 
fractal dimension ( D   F  ) characterizes very well neuronal structure in terms of the 
dendritic arbor (see Sect.  6.2.1 ) and offers a basis for objectively distinguishing 
among several accepted neuroanatomical and functional categories of neuron. As 
Table  6.1  indicates, the  D   F   has further been used to draw distinctions between neu-
rons in pathological and nonpathological scenarios and has shown promise for 
gauging developmental stages. Whereas there is in place a solid basis for objectively 
quantifying several neuron types to sort and compare them using the  D   F  , direct cor-
relations between the  D   F   and neurophysiological events or overall function remain 
in the theoretical domain [ 4 ,  53 ].

6.2.1        Fractal Analysis of Dendritic Arbors 

 The 3D topology of the CNS underlies its computational capabilities, and evidence 
indicates that its functioning has fractal components [ 4 ,  12 ,  17 ,  19 ,  24 ,  51 ,  71 ,  75 , 
 85 ,  97 ,  98 ,  103 ]. Dendritic arbors are chiefl y the local signal-integrating wiring of 
that topology, and much of the work published classifying neurons using fractal 
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              Table 6.1    Selected sample of fractal analysis approaches to neuronal morphology cited in 
PubMed (August 2015; search terms “neuron” and “fractal”)   

 Topic and summary  Model  References  Analysis method 

 Neuroanatomy 
 (a) Higher  D   F   for 
apical dendritic 
branching pattern in 
superfi cial than deep 
pyramidal neurons 

 Rat  [ 102 ]  Modifi ed 
Richardson’s 
(1.030 ± 0.004 vs. 
1.010 ± 0.005; 
 p  < 0.008) 

 Cerebral cortex 

 Box counting 
(1.129 ± 0.014 vs. 
1.085 ± 0.012; 
 p  < 0.029) 

 2D binary skeletonized images 

 10 vs. 10 cells  Multiplane microphotography 
 Superfi cial pyramidal = soma 
in lamina II–III, apical 
dendrites terminating in layer 
I; deep = soma in lamina 
V–VI, apical dendrites 
terminating in layers III–IV 

 [ 57 ]  Box counting 
(1.33 ± 0.06 vs. 
1.24 ± 0.04; p  < 0.001) 
 15 vs. 15 cells 

 (b) Different  D   B  s 
between dendritic 
arbor of inner and 
outer sublaminae as 
four classes: simple 
inner and outer and 
complex inner and 
outer 

 Adult rat; both genders  [ 34 ]  Box counting 
 Retinal ganglion cells  Simple <1.39< 

complex 
 2D binary skeletons  27 vs. 32 cells 
 Scanned camera lucida 

 Pathology 
 (c) Lower  D   F   of 
Purkinje cell dendritic 
arbors in pathological 
model 

 Mouse (reeler mutation)  [ 45 ]  3D box counting and 
Sholl 

 Cerebellar cortex 
 3D images; synchrotron X-ray 
microscopy of Golgi staining 

 1.71 ± 0.03 vs. 
1.25 ± 0.02 

 Gait, posture, balance, tremor 
disorders 

 (d) Lower  D   F   of 
corneal nerve fi bers 
(also decreased length 
and increased 
tortuosity) in corneal 
small fi ber sensory 
neuropathy 

 Human  [ 16 ]  Box counting 
 Corneal small sensory fi bers 
 In vivo observation with corneal 
confocal microscopy 
 Amyotrophic lateral sclerosis 
(ALS) 

 Development 
 (e)  D   F   positively 
correlated with 
neuronal size and 
developmental 
changes in 
mathematical model 
of human fetal 
development 

 Human  [ 64 ]  Box counting and 
Sholl  Fetal dentate nucleus 

 Scanned camera lucida 
drawings of Golgi-
impregnated neurons 
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methods focuses on their  D   F   (i.e., a  D   F   for which somata and axons are ignored). 
This is not to say that the evidence for fractal scaling implicates the dendritic arbor 
to the exclusion of a neuron’s other parts or collections of other parts or that there is 
reason to reject the possibility of fractal scaling in the gross or fi ne structure of 
axons and somata. Indeed, there are specifi c reasons to explore those topics such as 
the intimate physical arrangement of axonal terminals relative to dendrites, sponta-
neous neurotransmitter release that has been shown to occur on a fractal schedule 
[ 51 ], and fractal features of axonal networks [ 19 ] and gross brain matter [ 14 ,  24 ,  46 , 
 61 ,  99 ]. 

 Rather, the reasons for classifying neurons based on their dendritic arbors are 
practical. At the tissue level, the different parts of a neuron often comprise seem-
ingly distinct compartments. For example, axons form tracts and local collections of 
somata or dendritic arbors form defi ning layers in various brain structures. Soma 
shape and branching within the dendritic arbor in particular are usually seen more 
completely under a microscope than are typically longer axons and are readily cap-
tured in the visual fi eld of imaging systems. On the basis of individual cells, the 
richly branching, signal-integrating dendritic arbor is visually suggestive of fractal 
scaling and itself comes in many morphological arrangements that have been used 
to characterize neurons descriptively and functionally [ 17 ,  32 ,  51 ,  60 ]. As Table  6.1 . 
illustrates, characterizing neurons by the  D   F   for dendritic branching alone has dem-
onstrated practical utility in objectively quantitating several heuristically defi ned 
functional and morphological categories of neuron. 

 That success notwithstanding, there are some key issues to note with respect to 
classifying neurons based on the  D   F   of the dendritic arbor. One general point is that 
there are differences among species in the  D   F   for dendritic branching in at least 
some categories of neuron [ 33 ]. This is especially important to bear in mind when 
applying fractal results based on animal models of disease such as the studies listed 
in Table  6.1  under  Pathology . 

 Another point to be aware of is what is meant by the dendritic arbor per se. Many 
studies calculate a  D   F   for binary skeletonized, single pixel wide patterns extracted 
from digital images, but this is not the only pattern that could be assessed; binary 
silhouettes, for instance, can also be extracted and assessed and for some fractal 
analysis methods; silhouettes tend to have higher  D   F  s than skeletons (see Chaps.   2     
and   32    ). Moreover, the level of resolution and the extent to which dendritic branch-
ing is captured can infl uence the result, refl ecting not differences in fundamental 
branching per se but methodological matters [ 27 ]. 

 Furthermore, the general dendritic branching pattern investigated by fractal anal-
ysis often discounts dendritic spines, as was done in the work listed in items  a  and 
 b  in Table  6.1 , for instance, which used binary skeletons devoid of spines and 
reduced to single pixel wide strands. In this respect, as explained in Fig.  6.1 , for in 
silico stellate neuron models, binary silhouettes extracted from models with spines 
have a higher average  D   F   than those without. The  D   F   used for measuring the mod-
eled spines was the box-counting dimension ( D   B  ), demonstrated to be robust and 
sensitive to neuronal and other cell morphology, including microglial (see Sect.  6.3 ) 
[ 32 ,  34 ,  68 ,  69 ].
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   The overall branching pattern defi nes one feature of the dendritic arbor, but 
spines are a morphological and functional feature that defi nes another element of 
neurophysiological signifi cance. Spines play important roles in both increasing the 
available surface area for and integrating information in neuron signaling. Moreover, 
from a structural perspective, they change over time. In addition to being modifi ed 
with learning and experience in general, they have been shown to retract and swell 
with experimental temperature manipulation and in rodent pyramidal cells to be lost 
toward distal aspects of the apical dendrite with chronic stress [ 1 ,  13 ,  47 ,  63 ,  81 ].  

6.2.2     Methodological Issues 

 That spines affect the  D   B   for models is just one part of the general consideration that 
method matters in fractal classifi cation of neurons. Methodological considerations 
include, in addition to the choice of which parts of a neuron to measure, the  D   F   type 

No spines
DB for 200 cells =  1.53 ± 0.01

P< 0.005

Spines
DB for 200 cells =  1.55 ± 0.01

a b

  Fig. 6.1    Greater  D   B   for simulated planar stellate dendritic arbor neurons with spines (200 cells 
modeled with and 200 without dendritic spines). ( a ) An example of the original model with no 
spines. ( b ) An example of the original model with spines modeled as “mushroom” shaped at a rate 
of 0.014, length = 2 × terminal diameter, spine diameter = 0.5 × terminal diameter, head diameter = 
3 × spine diameter, spine angle = 90°. The examples are representative of each set, both modeled 
using one set of base parameters with random variation to simulate natural variation (binary pat-
terns generated in  MicroMod2015  [ 40 ] based on built-in  Stellate  model)       
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and technique of determining it. Table  6.1  lists a representative but not comprehen-
sive selection of approaches and methods that have been used (e.g., other methods 
not listed include multifractal [ 32 ], local connected fractal dimension [ 25 ], and 
wavelet-based [ 35 ,  55 ] analysis). 

 That each method has its strengths and weaknesses can be appreciated by consid-
ering the studies in item  a  in Table  6.1 . Those studies compared cortical pyramidal 
neurons (a broad category having distinct apical and basal dendrites and branching 
axons) based on binary, skeletonized patterns derived from digital images of only 
the signature apical dendrites. Both studies showed that two subtypes, superfi cial 
and deep pyramidal cells, differed signifi cantly in the  D   F  , yet from one study to the 
next, the actual values differed substantially for the same neuroanatomical subcat-
egory of neuron. The important point to discern here is that this refl ects method-
ological differences, and the result to focus on is the relative difference when the 
same method is applied [ 27 ]. 

 With neurons in particular, the method matters. The fi rst study in item  a  in 
Table  6.1  used two types of  D   F  , one from a modifi ed Richardson’s method ( D   R  ) 
and one a type of  D   B  . As noted, both successfully differentiated between superfi -
cial and deep pyramidal cells, but the actual values obtained were notably higher 
for the  D   B  . 

 This is probably attributable to fundamental differences between these methods 
that can affect results for neurons. In essence, the  D   R   method uses a caliper to directly 
measure branching in radial patterns and as such would be expected to be very sensi-
tive to the patterns assessed in the study. In contrast, box counting uses grid-based 
sampling to estimate scaling and does not necessarily measure the same feature the 
 D   R   measures, even from the same pattern. The more general  D   B   is not restricted to 
nor specialized for skeletonized radial patterns in the way that the modifi ed  D   R   is, but 
the  D   B   has been used to successfully classify such patterns (e.g., see  p  < 0.001 in item 
 a  in Table  6.1 .) as well as space fi lling patterns such as detailed membrane features 
and mass distributions including branching cell processes where intracellular con-
tents are relevant (e.g., the spines in the models in Fig.  6.1 ) [ 1 ,  11 ,  50 ]. 

 Even within a method, issues particularly relevant to neurons may be important. 
Digital rotation, for instance, is a known issue that affects box counting and is espe-
cially pertinent if not addressed for patterns with the generally elongated shape 
spanned by the apical dendrite of pyramidal cells (reviewed in Chap.   32    ) [ 11 ]. One 
strategy (e.g., in item  a  in Table  6.1 ) partially addresses digital rotation effects by 
aligning the main trunk of each dendrite in the same orientation for all images being 
compared, but this strategy leaves the part of the pattern representing all sub-
branches uncompensated for. This is because subbranches in the dendritic arbor are 
not oriented in space the same as the main branch so neither is their pixel-related 
orientation in a digital image. As such, this type of correction renders comparisons 
of the main trunk, but not of subbranches more valid from one image to the next, 
leaving open the possibility of considerable inherent variation not being addressed 
if assessed using only one orientation. This sort of correction also ignores the 
broader issue of sampling location bias in general that affects box counting as 
explained in Chaps.   2     and   32    . 
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 An alternative that addresses both digital rotation and sampling location bias 
more comprehensively is to sample a broad range of digital rotations using multiple 
sampling locations. Figure  6.2  illustrates the effect of digital rotation for a set of 200 
branching structures modeled on manual measurements from digital images of 
pyramidal cells. The set models statistically equivalent versions of an apical den-
drite based on the fractal parameters listed in Fig.  6.2b . The fi gure suggests that 
variation in the  D   B   by digital rotation can be notable for structures such as apical 
dendrites but can be controlled by appropriate sampling. In general, the choice of 
method and the details of its implementation are relevant when interpreting  D   F  s but 
also when planning large-scale studies in particular (e.g., calculating a  D   R   is tedious, 
whereas validated free, open source box-counting software that automatically deals 
with digital rotation and sampling bias is currently available) [ 39 ].

1.45
1.44

1.45

1.45
1.441.45

1.45

1.45

1.45
1.44 - 10 rotations x 12 locations each 

             = 120 scans per original image
- DB grid = DB for one location on one rotation
- DB rot = Σ DB grid/12 = average for one rotation
- DB image = (Σ DB rot)/10 = 1.44 ± 0.026
                = (Σ DB grid)/120 = 1.44 ± 0.039

FracLac Parameters:
- 12 grid locations
- 10 rotations (36°)
   (120 scans per image)
- Max size = 45 %
- Box series = linear

Population = 200 simulations 
MicroMod parameters:  
- Sub-branch rate: 0.03 avg
- Main trunk units: 150  
- Sub-branch number: 4.5 
- Sub-branch length: 1/2.8
- Sub-branch type: not prorated
- Sub-branch angle = ±62°
- Main orientation = 90°:72°
- Taper: 1;  diameter: 1
- Tortuousity: random; 15° 
- Terminals = 4 x100; 23°

Mean DB rot per 36° rotation

Theoretical DF = ln 4.5/ln 2.8 = 1.46
Population DB = (Σ DB image)/200 = 1.44 ± 0.02
- Average r2 = 0.9928 ± 0.0024
- Range = 0.9756 to 0.9987

a

b

  Fig. 6.2    Box-counting dimension for simulated branching pattern for pyramidal cell apical den-
drites. ( a ) The clocklike fi gure shows the variation in the  D   B   with digital rotation for one sample 
model rotated in 36° increments (rotated each time from the starting orientation rather than by 
accumulating distortions) and how the  D   B   was calculated for each model, using 12 grid locations 
and 10 rotations for each. ( b ) A sample of binary contours from 200 simulations made using one 
set of parameters with average branching and random variation. Similar results were obtained for 
binary skeletons (not shown) (simulated using  MicroMod2015  for ImageJ;  D   B   determined using 
 FracLac2015  [ 40 ])       
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6.2.2.1       Complementary Methods 

 Fractal analysis can be a key part of broader characterizations of neuronal mor-
phology. The work on human fetuses listed in Table  6.1e  emphasizes this. The 
researchers in that study combined fractal analysis with other measures including 
another type of analysis called Sholl analysis. They measured several parameters 
and found that three were positively correlated with the growing size of neurons 
but at different rates over the gestational period in humans. The parameters were 
the global  D   F   and radius of the arbor and another measure of branching, the number 
of dendritic intersections. The researchers combined these parameters to develop a 
mathematical model describing prenatal development of the dendritic arbor of neu-
rons in the dentate nucleus, with potential for developing methods of monitoring 
developmental abnormalities [ 8 ,  64 ].  

6.2.2.2     3D Analysis 

 A fi nal issue to discuss before moving on to the topic of microglia is 3D analysis 
of neurons. In many neurons, the dendritic arbor is relatively symmetrical or essen-
tially “fl at” (contained within a relatively planar volume within the CNS), which is 
related to laminar organization at the tissue level and makes it possible to capture 
relevant detail in digital images from histological preparations. In the study listed 
in item  c  in Table  6.1 , researchers found that although the dendritic arbors of cer-
ebellar Purkinje neurons in normal mice were essentially planar and arranged par-
allel to each other, arbors in the mutated model depended on the visualizing 
orientation (i.e., were larger perpendicular to the sagittal plane and smaller in the 
same plane) [ 45 ]. The differences presumably relate to disrupted laminar organiza-
tion seen at the tissue level in the mutation mouse model. Whether the  D   F   differed 
by plane was not specifi ed. 

 This approach is applicable to the assumption of 2D analysis that 2D repre-
sentations adequately represent 3D structures. This means not that a 2D  D   F   is 
equivalent to a 3D  D   F  , similar to the way an area is not equivalent to a volume, 
but that it will consistently describe the part of the scaling in the underlying 3D 
structure that is being observed. The assumption is explained in detail in Chaps. 
  2     and   32    . The crux of the matter is that it is assumed that the salient scaling 
features of a dendrite are consistent thus will be captured in unbiased samples. 
The assumption is borne out for neurons in a general sense by fi ndings in the 
literature of reasonably small standard deviations in the  D   F   within populations 
of neurons, suggesting that, insofar as the plane for imaging has been varied in 
the published literature, plane does not affect the fractal dimension [ 32 ]. Such 
circumstantial evidence notwithstanding, it is important to be aware that  D   F  s 
calculated for dendritic arbors might differ by plane especially in pathological 
circumstances and may provide a means to quantify features of structural 
abnormalities.    
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6.3      Microglia 

 As with neurons, for microglia work has been published using fractal analysis to 
study and classify microglial morphology in neuroanatomy, pathology, and devel-
opment. Table  6.2  lists samples of that work in normal and pathological models, in 
2D and 3D, and using individual cellular branching patterns and other features.

   One difference between the two fi elds of fractal analysis of neurons and of 
microglia is that the  D   F   for microglia has been more clearly correlated with func-
tion. Using box counting, it has been shown that, basically, microglia in normal, 
healthy brain are highly ramifi ed with a relatively high  D   B   and that in response to 
certain stimuli such as chronic stress [ 20 ], they may hyper-ramify to a state with a 
slightly higher  D   B  , but when responding to fully noxious pathological events such 
as brain trauma, enter a cycle of deramifi cation with concomitantly decreasing  D   B  , 
to a rounded, amoeboid form with a very low  D   B  , and then return through a cycle of 
increasing re-ramifi cation and increasing  D   B   when resuming normal activity (see 
Fig.  6.3 ) [ 6 ,  29 ,  31 ,  38 ,  41 ,  43 ,  44 ,  58 ,  72 ,  92 ]. Different stages within the cycle 
shown in Fig.  6.3  are often classifi ed using categories that describe both form and 
function, and the  D   F   has been shown to objectively quantify these categories [ 41 ].

   Much of the fractal analysis work published for microglia has used box counting 
based on binary silhouettes or contours, a strong point being that this methodology 
is robust for all of the general morphological types, branched and unbranched, 
 facilitating comparisons such as in Fig.  6.3 . 

 Similar to what has been seen for neurons, the  D   F   is typically positively corre-
lated with increasing size of the span covered by a cell but measures features in 
addition to size. It has been shown to delineate microglia based on other categories 
such as age (see Table  6.2f, g ). Also similar to what has been found for neurons, the 
 D   F   for microglia objectively distinguishes cells in different pathological states 
(e.g., Alzheimer’s). One strength of this approach is that it differentiates differ-
ences that can refl ect important pathological events or other activities that are sub-
tle or undetectable visually [ 41 ,  44 ,  80 ]. In the work listed in Table  6.2d , for 
instance, the  D   F   was useful for quantitating not only gross pathological responses 
but also less easily observable responses over different brain regions after transient 
global ischemia [ 79 ,  80 ]. 

 This general capacity for quantifying subtleties of microglial morphology has 
important implications, because microglia are immunoinfl ammatory cells but also 
much more, having multiple roles in maintaining normal brain structure and func-
tion, interacting with all parts of the neuron [ 58 ,  88 ,  92 ]. They are involved in 
 pruning spines, facilitating synaptic transmission, interacting with extracellular 
matrix, and axonal excitability [ 3 ,  87 ]. They secrete growth factors and infl amma-
tory mediators and play major roles in dealing with stress at all levels from sleep 
deprivation [ 100 ] to subtle cognitive experience [ 21 ] to pain modulation [ 23 ] and 
severe trauma [ 2 ,  49 ,  62 ,  66 ,  83 ,  84 ]. In this respect, many roles of microglia in 
normal brain function and subtler dysfunction are currently being investigated sug-
gesting the  D   F   of microglia will have potential application in many fi elds (e.g., drug 

A.L. Karperien and H.F. Jelinek



101

      Table 6.2    Selected sample of fractal analysis approaches to microglial morphology cited in 
PubMed (August 2015; search terms “microglia” and “fractal”)   

 Topic and summary of 
classifi cation criterion  Model  References  Analysis method 

 Neuroanatomy 
 (a) Consistent  D   B   by 
location but substantial 
variability in hull size 
correlated with process 
size and complexity 

 Healthy adult rat  [ 48 ]  Box counting and 
Sholl 

 Prefrontal cortex  Convex hull 

 Pathology 
 (b)  D   B   defi nes activation- 
based cycle with two 
sides (higher D  B   = lower 
activation except 
transient peak of 
hyper-ramifi cation) 

 Multiple models  [ 41 ]  Box counting, 
lacunarity, and 
multifractal 

 (c) Hyper-ramifi cation in 
chronic stress increases 
 D   B   (peak of cycle before 
decrease to full 
activation); minocycline 
decreases  D   B  ; larger cells 
affected more than 
smaller 

 Adult male rats  [ 20 ]  Box counting, 
Sholl, and other 
morphometrics 

 Chronic stress induces 
hyper-ramifi cation coincident 
with increase in depression- 
like behaviors 
 Attenuated by minocycline 

 (d)  D   f   correlates with 
course and intensity of 
pyramidal cell 
degeneration but 
different dynamics in 
different brain regions 

 Adult (3 month) female rats  [ 79 ,  80 ]  Mass radius, 
dilation, and other 
morphometrics 

 Global ischemia (cardiac 
arrest) 
 Upper layer cerebral cortex, 
stratum radiatum of CA1, 
and hilus of dentate; no 
visible neurodegeneration but 
microglial reaction in upper 
layer of cerebral cortex, weak 
relative to hippocampal areas 

 (e) Decreased  D   B   (higher 
activation) with 
pathology and increased 
 D   f   (lower activation) 
with neuroprotectin D1 

 Mice  [ 72 ]  2D and 3D box 
counting  Laser-induced choroidal 

neovascularization 
 Attenuated by neuroprotectin 
D1 eye drops 

 Development 
 (f) Higher  D  B  (less 
activated) in young adult 
microglia compared to 
middle aged 

 Rats 3–5 and 15–19 months  [ 18 ]  Box counting 
 Dorsal root ganglia and 
lumbar spinal cord 

 (g)  D   f   increased over 
time but with different 
dynamics by brain region 

 Rat  [ 59 ]  Dilation 
 Developing cerebral 
hemisphere 

6 Morphology and Fractal-Based Classifi cations of Neurons and Microglia



102

monitoring, learning [ 76 ], stress [ 20 ], alcoholism [ 37 ], and schizophrenia [ 5 ]; see 
Table  6.2c, e ). 

 Along with the  D   F  , lacunarity and multifractal analysis have been used to classify 
microglial morphology. In particular, lacunarity has been used to objectively dis-
cern among very similar looking microglial morphologies within an activation cat-
egory and having the same   D   B     (e.g., more “rodlike” have higher Λ than more radial 
cells; rodlike forms appear when reacting microglia fuse but could also refl ect phys-
ical confi nes or active migration) [ 41 ,  42 ,  80 ,  84 ]. In silico modeling has shown that 
the  D   B   is more sensitive for branching structures, but lacunarity is for particular 
features that are not always visually recognized such as soma size relative to process 
length [ 30 ,  31 ,  38 ,  41 ]. Multifractal analysis has shown promise for identifying 
microglia particularly in transitional states [ 32 ,  41 ,  43 ].  

6.4     Future Directions 

 Whereas neurons are the critical structural and functional basis of signaling, microg-
lia are their dynamic, constant attendants, physicians, and undertakers. Being able 
to quantitatively assess both of these brain cell types is vital to the overall science of 
understanding, monitoring, and modifying nervous system function. This chapter 

Amoeboid/pathological

Ramified/normal            Hyper-ramified
DB

DB = 1.00

DB

DB = 2.00

-Acute/chronic stress
-Remodelling

-Synapse 
maintenance
-Remodelling

-Global ischemia
-Phagocytosis

  Fig. 6.3    Schematic showing cycle of microglial morphology, activation level, and  D   B  . Microglial 
complexity is highest in the ramifi ed ( top cells ) and lowest in the amoeboid ( bottom cell ) forms 
responding to severe compromise, where the  D   B   is close to 1.00 ( bottom red arrow ). The  D   B   gener-
ally corresponds to the level of re-ramifi cation or de-ramifi cation between the peak values. The  D   B   
objectively differentiates between gross differences separating morphological/functional catego-
ries but also between subtle differences within the cycle to quantitate subtle differences in activity. 
Using cell span, lacunarity, and multifractality (not shown) further differentiates between cells 
with similar  D   B  s       
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has outlined ways the  D   F   has been used to describe and categorize these two cell 
types in normal and pathological models, in 2 and 3 dimensions, using individual 
cellular branching patterns [ 25 ,  32 ,  52 ,  67 ], but also other features [ 28 ,  32 ,  35 ]. This 
chapter also explained that there are a variety of approaches, each with its strengths 
and weaknesses, making some preferred over others depending on the application. 
Box counting of silhouettes has particular promise for comparisons of neurons and 
microglia, in being able to capture features relevant to studies of both cell types in 
all potential forms. 

 The detailed designs of neurons and microglia are inherently related. The topo-
logical structure of neurons dictates the brain’s computational capacity, and also 
interacts reciprocally with the topological structure of microglia, in normal but 
also pathological states. Moreover, the fundamental features of neuronal mor-
phology change. Being part of a living system, neuronal morphology is recipro-
cally and profoundly infl uenced by the system it provides central communication 
and control for, and microglia are a major part of that plasticity [ 76 – 78 ,  84 ,  87 ,  88 , 
 90 ,  92 ]. In both cells, branching and other features of morphology change with 
experience and in the long term over time, with age, alcohol exposure, etc. [ 7 ,  47 , 
 63 ,  76 ,  86 ,  96 ]. 

 It is intriguing in this regard that despite such lifelong plasticity, the  D   f  s for 
neurons based on dendritic arbors and for microglia are stable for different neuro-
anatomical/functional categories. This brings up questions about the normal variety 
in the  D   F   that should be expected within a category and how that variety itself might 
be related to cognitive capacities, etc. In particular, it brings up questions about the 
 D   F   of neurons where spines are included and how studying microglial and neuronal 
function together including this feature might bring valuable insight. 

 In conclusion, the stage is set to draw these two fi elds closer, to use fractal mea-
sures of neuronal and microglial categories to investigate complex features and 
interactions such as signal integration, spine morphology, chemical mediators, net-
work effects, 3D orientation, etc. [ 9 ,  19 ,  54 ,  60 ,  61 ]. Classifying tissue using this 
type of approach offers a perspective on connectivity and synchronicity comple-
menting the perspective afforded by studying dendritic branching or microglial 
morphology alone [ 9 ,  70 ].     
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Chapter 7
The Morphology of the Brain Neurons:  
Box- Counting Method in Quantitative 
Analysis of 2D Image

Nebojša Milošević

Abstract This chapter calls attention to the difference among basic terms of fractal 
geometry and fractal analysis presented on 2D images of neurons from the human 
dentate nuclei. In further quantitative estimation, the most popular technique of 
fractal analysis, i.e., the “box-counting method,” was used. Image preprocessing 
was investigated, precisely how images at different sizes, resolutions, and rotation 
angles could influence in the magnitude of the box dimension. All preprocessing 
tasks were evaluated on 17 standardized images from the dentate nuclei, classified 
into three groups due to their width and height.

In addition, box-counting methodology was investigated to show how box 
dimension could estimate the shape of the neuron image, space-filling property, and 
the degree of dendrite aberrations, by using different processed images of the neu-
ron. As the results show difference image presentation between images of neurons 
with sparse or dense dendritic tree, along with small or large cell bodies, this chapter 
sums up investigation of 76 images from the adult human dentate nucleus quantify-
ing their three morphological properties, previously mentioned.

Keywords Box dimension • Fractal geometry • Fractal analysis • Image 
 preprocessing • Neuronal morphology • Self-similarity • Two-dimensional images

7.1  Introduction

Although standard quantitative methods in science are based on classical Euclidean 
geometry [15], fractal geometry is developed as a new geometry of nature [32]. 
Early investigations showed that the most common biological patterns can be char-
acterized by fractal geometry [7], and thus, concepts of fractal geometry are being 
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used in diverse research areas [7, 32], particularly are proven to be an increasingly 
useful tool in quantitative image analysis in medical science [21].

The fractal analysis is derived from fractal geometry [17], as a modern mathe-
matical method of measuring complexity of patterns in geometry and nature [32], 
using simple parameter [15]: the fractal dimension (FD). For example, FD is larger 
if the object’s border is more rugged, the branching pattern more abundant and lines 
more irregular and twisted [7, 17]. Generally, there is a link between FD and the 
topological dimension (DT)1: while DT is always an integer (two for object in plane 
and three for object in space), FD is decimal number [15], between one and two (for 
object in plane) or between two and three (for object in space).

The aim of this chapter is to explore the concept of fractal analysis and its applica-
tion on 2D images of neurons from the human dentate nuclei, using the most popular 
technique of fractal analysis: the “box-counting method” (BC). As such images can 
be characterized with global FD, or images can be termed as “monofractals” [25], the 
BC methodology and image preprocessing are presented and investigated.

7.2  Starting from the Fractal Geometry Toward the Fractal 
Analysis

7.2.1  Fractal Geometry in 2D Space

The basic idea (i.e., the starting point) of fractal geometry is the term fractal [17], 
which can be comprehended as a theoretical abstraction that cannot be defined ana-
lytically [15]. Two types of fractals are being used in quite different fields (a) math-
ematical (or geometrical in 2D space) and (b) natural (or statistical, empirical, etc.) 
[17]. The first group of fractals is mathematical constructions characterized by never-
ending cascades of similar structural details [15], while the other group is more 
restricted. Thus, each geometrical fractal should be considered as an infinite ordered 
set of fractal objects defined on a metric space, with four features [17]: (a) starting 
object (or the initiator), (b) recursion algorithm, (c) geometrical self- similarity, and 
(d) fractal dimension. Every single fractal starts with initiator [7, 17] and ends with 
the limit fractal [28]. Incomplete fractal constructs are called prefractals [7, 17, 28]. 
All of them represent the geometrical fractal set [17].

7.2.2  Self-Similarity and Scaling

Fractals, in general, possess two important properties – self-similarity and scaling 
[15]. As reported previously [20], there are strong equivalence between these two 
properties for mathematical fractals, particularly for geometrical fractals [28]. The 

1 Topological dimension of a space (or object) is the minimum number of coordinates needed to 
specify a position of any point within it.
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pieces of mathematical fractal are exact duplication of the whole object, and there-
fore it is commonly said that mathematical fractal is geometrically self-similar [15]. 
On the other hand, this definition has to be quantified when dealing with natural 
objects, because their pieces are rarely identical copies of the whole object [17].

Measuring a property on a piece of a natural object using high resolution usually 
shows that small portion of the object quantitatively resembles the whole object. This 
resemblance means that, for instance, the part fills space in the same way as the whole 
[20]. A more exact interpretation of this condition has been offered in [28] introducing 
a generating element of a generator, which is usually made up of straight-line seg-
ments. For example, two generating elements of two generators of a fractal set can be 
geometrically similar or not [28]. The segments of natural objects [23] are rarely exact 
reduced copies of the whole object; rather than being geometrically self-similar, they 
are statistically self-similar [17]. One reason for the occurrence of statistical self-
similarity is that computer reconstructions of geometrical objects are restricted to a set 
of scaling steps due to the resolution and size of the screen, whereas biological objects 
are self-limited in their scaling due to their functional requirements [17].

Statistical self-similarity implies that the measured property depends on the size 
(or resolution) of the scale which is used [2], i.e., the property scales with the mea-
sure. The self-similarity and scaling can be quantitatively estimated by the fractal 
dimension, as this measure describes the complexity of form and space-filling prop-
erty of an object. The rule that shows how the measured value depends on the reso-
lution of measurement is called the scaling relationship and the simplest relationship 
is given by power law scaling [2]:

 
A r B r D( ) = × ( )a ,

 
(7.1)

where A is a measured property of the object (such as length, area, or volume), B is 
a factor for the power law, r is the scale (resolution) at which it is measured, and 
α(D) is the scaling exponent, representing a simple function of the fractal dimension 
D of the object.2 Taking the logarithms of both sides of Eq. 7.1 yields

 
log log logA r D r B( ) = ( ) × +a .

 
(7.2)

Thus, power law scaling is revealed as a straight line when the logarithm of the measured 
property (A) is plotted against the logarithm of the scale (r) at which it is measured.

7.2.3  Fractal Analysis

Consequently to the fractal theory, fractal analysis could be thought as an experi-
mental technique which uses methodology of Mandelbrot’s fractal geometry and 
Euclid’s traditional geometry to investigate several properties of real objects [17]. 

2 This function depends of the Euclidean dimension (E) of the object embedded in space and is 
accepted to be α(D) = E–D.
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Previous work on fractal analysis represented traditionally a 2D analysis [4] 
focused mainly to the analysis of border’s outlines of natural objects [32]. These 
papers investigate mainly the object border, its complexity (or, simply, object’s 
structure) and function [32]. The problem is guided to the calculation of the fractal 
dimension and analysis of the meaning of the parameter value to the considered 
object [27].

By analogy with the investigation of a geometrical fractal set, the use of fractal 
analysis postulates the following attributes: (a) shape of a starting object (which 
corresponds to the initiator in fractal geometry), (b) algorithm (enabling its succes-
sive application to the starting object), (c) scaling (or statistical self-similarity), and 
(d) fractal dimension. The limit generator is the same as the starting object, while it 
was not changed during repeated application of the algorithm [7].

In fractal analysis there are two basic approaches to measure the fractal dimen-
sion of objects in a plane [32]. The first and most commonly used is length-related 
method comprising the classical Richardson’s coastline method [14], box-counting 
method [33], and dilation method [4]. The second method is mass-related method 
[32]. Using a different method of fractal analysis has led to difficulties in comparing 
the results, because each method of determination of the fractal dimension gives 
slightly different results when analyzing the same structure [4, 7]. It should be noted 
that the coastline method is equivalent to the box-counting method, only when one 
analyzes the border of a system [7]. There is still a problem to present, analyze, and 
compare different methods of measuring the fractal dimension [27].

7.3  Box-Counting Method

Segment-counting method [31], a version of Richardson’s method for measuring 
the length of any unformed line [26] and a type of fractal analysis methods, is 
robust (with very high correlation coefficients) but it is tedious and time consum-
ing [27]. Thus, the need for more handsome methods emerges, and conventional 
box- counting [32] appears to be the method which suitably measures fractal 
dimensions of real objects [3, 7, 9, 13, 22, 27, 32, 36]. This is very similar (some-
one would say equal) to the idea from traditional calculus, when the area of plane 
region within any closed unformed boundaries has to be measured [26]. Briefly, 
the area of such region is superimposed with a net of equivalent squares, or 
“boxes,” over this region [34].

Conventional box-counting method “covers” the object with rectangular coordi-
nate grid [32]. In the plane, image of the object is overlaid with a grid, and the 
number of boxes (intersected by the pattern and within it) is counted [21]. Each set 
of boxes is characterized by the square side r. The corresponding number of squares 
N necessary to cover the pattern is presented as a function of r. Fractal dimension 
(in further text, box dimension, DB) is determined as the slope of the log–log rela-
tionship between N and r. Strictly mathematically “speaking,” the lower and upper 
box dimensions of a subset F ⊂ Rn are, respectively, defined by
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and if lower and upper values are equal, then the common value is referred to as the 
box-counting dimension of F and is denoted by
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(7.4)

where Nδ(F) can be the smallest number of cubes of side δ (naturally, in 3D) that 
covers F or the largest number of disjoint cubes of side δ with centers in F [6].

7.3.1  Application on 2D Digital Image

When the box-counting method is applied on digitized images, it covers the image 
with a grid of square cells (with cell size r), where for binary images, the cell size is 
expressed as the number of pixels. The number of squares N(r) needed to cover the 
image is given by a power law:

 
N r r DB( ) = × -const ,

 
(7.5)

where DB is the box dimension, obtained as an absolute value of the slope of the 
log–log relationship between N(r) and r [18]. Figure 7.1 shows this procedure on 
2D neuronal image from the monkey dentate nucleus. The box size is progressively 
smaller (i.e., using geometric progression) where the sequence of box sizes is 
reduced by a factor 1/2n (n = 1, 2, 3 …) from one grid to the next. It is important to 
state here that the scaling factor is not known a priori and the choice of scaling fac-
tor can have a dramatic impact on the results. Thus, a scaling factor of 2 is appropri-
ate for box-counting procedure (Fig. 7.1).

Regardless from the fact that mathematical fractal requires infinite orders of 
magnitude of power law scaling and therefore is fractal over all scales, physical, 
biological, and other structures in nature have a finite number of decades between a 
high and a low cutoff scale. The scaling ranges of experimentally declared fractals 
are limited, often to five orders of magnitude or more [14]. Neuroscience shows an 
even more negative situation, as images span over a relatively small scaling range, 
mainly between 0.5 and 2 order of magnitude [7].

A previous research [20] promotes a hypothesis that the 2D neuronal images could 
be considered fractal over several decades of scale, if the box sizes are scaled as a 
power of 2. This sequence represents a finite increasing geometric progression {rn}, 
and, by definition, rn+1/rn = q for every n, where q is the constant common ratio [20]. 
As previous studies present results of box-counting method, using arithmetical, geo-
metrical, and random progression of box sizes, applied on various images of cells 
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from the rat spinal cord [20] and monkey cerebellum [17, 20], statistical evaluation of 
the correlation coefficient of fitted line has shown that it is different from zero with a 
very high significance (p < 0.0001). However, choosing the size of boxes as a finite 
increasing geometric progression represents better solution of fitting problem, because 
in this case, the starting object will fulfill all conditions of fractal analysis [17].

Finally, in performing box-counting method, the box sizes should be taken from 
20 to 2k pixel, where k is the value for which N is equal to one. In that case the rela-
tionship between log N and log r was linear on more than two decades of the range 
[17], when correlation coefficient of fitted line was statistically evaluated.

7.3.2  The Software for Box-Counting

At the time of writing this chapter (August 2015), a search on “fractal analysis soft-
ware” throughout World Wide Web yielded more than 600,000 results. Among 
them, there are three main programs (Benoit, Fractal.yse, and FracLab) which use 
box-counting, along with other fractal methods. In addition, there is a program 
which uses box-counting method only (Fractal Dimension Estimator), or there are 
appropriate plug-ins in main programs for image and signal analysis (MathLab, 
Image J, Fiji, etc.). Our further investigation will be restricted on Image J software 
(www.imagej.nih.gov/ij/) and appropriate plug-in (Analyze→Tools→Fractal Box 
Count) which emerge in FracLac (www.imagej.nih.gov/ij/plugins/fraclac/fraclac.
html), developed by Audrey Karperien [12].

This plug-in was initially developed as a part of a master’s at Charles Sturt 
University (Australia) and code from Thomas R. Roy, University of Alberta 

a b

Fig. 7.1 Application of the box-counting method to “black-and-white” image of a neuron from 
the monkey dentate nucleus: (a) the whole image is covered with a set of squares and squares in 
which cover dendrites (light gray color) are counted. (b) Log–log plot between numbers of squares 
(N) and square size (r) is fitted by a straight line. R is the corresponding correlation coefficient. The 
fractal dimension D is the negative value of the slope of fitted line (in this case 1.539)
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(Canada). As the first version was introduced in 2002, it continues to develop in 
response to many suggestions from users and includes inputs from the Image J, 
neuroscience, engineering, programming, etc. communities [12]. FracLac scans 
images with a shifting grid algorithm that can do multiple scans from different loca-
tions on each image, using either a nonoverlapping or an overlapping sliding box 
method. For details, see Chap. 32.

7.4  Material

A total of 77 Golgi-impregnated multipolar neurons of the rhesus monkey (M. 
mulatta) dentate nucleus have been analyzed. The drawings of these neurons have 
been taken from the experimental data published in an original book [5]. Information 
and detailed description of the histological procedures can be found here [5, 20].

In order to standardize the sample, four morphological parameters were calcu-
lated: the number of primary dendrites (Npd), area of the neuron (A), length of skele-
tonized image of the neuron (L), and the density of dendrites (Nm). Bearing in mind 
the width and height of the image, 17 images were selected for further analysis 
(Table 7.1). They were classified in such a way that five neurons were of type A (i.e., 
the central neurons, width ≈ height), six neurons of type B (i.e., asymmetrical 
neuron- type 1, width > height), and six neurons of type C (i.e., asymmetrical neuron- 
type 2, width < height). Their schematic representations are shown in Fig. 7.2.

7.5  Box-Counting Methodology

As biological image (i.e., image of neuron) does not reflect fractal, in theoretical or 
ideal sense, then interpreting the image using FD is meaningless [10]. But FD may 
still be useful as a quantitative parameter of neuronal images, since it indicates com-
plexity or the scale dependence of a pattern [1]. In addition, fractal analysis of bio-
logical images (particularly, images of neuron) is not intended to indicate that the 

Table 7.1 Morphological parameters of 17 multipolar neurons from the monkey dentate neurons, 
scanned at resolution of 100 dpi

Cell type A B C

Number of cells 5 6 6
Width (px) 340–470 520–700 400–430
Height (px) 320–460 250–520 550–610
Number of primary dendrites Npd 7.2 ± 0.8 6.6 ± 0.5 7.0 ± 0.6
Area of the neuron A (μm2) 3,165 ± 200 3,550 ± 300 4,310 ± 200
Total length L (μm) 1,250 ± 90 1,473 ± 100 1,783 ± 200
Dendritic density Nm 16.6 ± 0.4 16.5 ± 0.3 15.2 ± 0.3
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object is fractal [27]. Results have suggested that variations in sampling and prepar-
ing images for analysis, as well as analysis itself, can have nontrivial effects on the 
estimation and interpretation of FD [10].

7.5.1  Image Size and Resolution

Theoretically, images of identical objects at different sizes and same resolution 
should not influence the magnitude of FD, in this case the BD [10]. Following this 
idea, we analyzed three groups of neurons (A, B, and C) at three resolutions 
(300 dpi, 600 dpi, and 900 dpi). Thus, the size of the image was changed, while 
resolution was kept the same. Particularly, one primary distance was increased 
(width for groups A and B, and height for group C) through five values: from 300 
pixels (px) to 1,500 px (300 dpi), from 500 to 3,000 px (600 dpi), and from 1,000 to 

Fig. 7.2 Illustration of three groups of neurons from the monkey dentate nucleus: (a) width is 
approximately equal to the height, (b) width is higher than the height, and (c) width is lower than 
height (Original images can be found in Chan-Palay [5])
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5,000 px (900 dpi). Finally, the Spearman rank correlation analysis was used to 
investigate whether there was an influence in the BDs of each group of neuron 
images with the image size. Results are summarized in Table 7.2.

As can be seen, there was an increase in BD with the size of the neuronal image. 
Particularly, BDs of group A neuronal images statistically increase with the size 
(Table 7.2), as the level of significance increases with resolution (from p < 0.05 for 
300 dpi to p < 0.001 for 900 dpi). In contrast, BDs of group C neuronal images were 
not influenced with the size of the image. Finally, BDs of group B neuronal images 
significantly increase with the size only for 300 dpi. Bearing in mind the parameter 
a (i.e., the slope of the straight line), actually its minor value (for all groups this 
value is between 10−4 and 10−5), it could be stated that the size of the image does not 
influence BD value of the image.

Results of this analysis suggested that for our sample of images (particularly 
images with same width and height, group A) there was an increase in BDs with 
size, in strong mathematical sense, but in real situation, it could be stated that BD 
remains the same value, while the size of the image increases. In addition it has to 
be noted that the effect on FD associated with the resizing may not be related to the 
size per se but rather to the computer processing. As such, increasing the size of an 
image leads to insertion of interpolated (Euclidean) information along the boundar-
ies and therefore changes the value of FD [10].

Scanning the same cells at different resolutions returned different FD values, even 
when all other parameters are kept constant [7]. In their previous work, Jelinek et al. 
[10] have analyzed the FD at two different resolutions (72 dpi and 150 dpi) of a neu-
ronal image. They concluded that cells scanned at low resolution had higher values 
of FD than those obtained at high resolution [10]. In order to test this  hypothesis, we 
printed our sample of cells on A4 paper, keeping their size to A5 format, and each 
cell was scanned from resolution of 100 to 1,100 dpi. The choice of final resolution 
(1,100 dpi) was restricted by scanner (Mustek 1,200, Mustek Systems Inc., Taiwan). 
For each group of neurons, BD was calculated and their mean values were plotted 
against the resolution. The Spearman rank correlation was applied for each group in 
order to investigate the influence of image resolution on BDs. Plots of each group, 
along with results of correlation analysis, are presented on Fig. 7.3.

As it can be seen, there was an increase in BD with the resolution, in each group 
of neurons. Particularly, this trend of increasing BD was statistically very signifi-
cant, at least for p < 0.01 (Fig. 7.3). For all groups of neuronal images, the higher 
value of BDs was obtained using final resolution, what suggested that maximal 
resolution would maximize the resemblance between the digital and original draw-
ings. It seems likely that such images retain most of the neuronal details, enabling 
reduction of experimental errors in the fractal measurements [20].

Then again, the values of the slope (parameter a) suggest low increase of BD with 
resolution, and someone could state that the resolution does not influence on BD 
value of the image. This conclusion is very challenging, as it needs more data (higher 
resolution and/or other images) but another (maybe opposite) conclusion can be 
shown: for our sample of images, in order to calculate precise BD, more important is 
that all images are at the same resolution than the level of resolution per se.
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a

b

c

Fig. 7.3 Plots of mean 
BDs against the resolution 
for central (a), type 1 (b), 
and type 2 (c) 
asymmetrical neurons from 
the dentate nucleus. The 
mean BDs in each group 
was fitted with straight line 
(DB = (DB)0 + a⋅r, where r 
is the resolution). R2 is the 
coefficient of 
determination, t is 
calculated t-value, and p is 
level of significance

7 Box-Counting Analysis in Neuroscience



120

7.5.2  Image Rotation

It is well known that a picture exhibits rotational symmetry if rotation by a specific 
angle around some central axis point can return the picture to its original configura-
tion [29]. For instance, squares and hexagonal snowflakes are common examples of 
“ideal symmetry,” and it is reasonable to imagine that the BDs of such picture in 
these positions have the same value. The neurons which are homogeneously filling 
a spherical volume are termed stellate [8]: as their dendrites radiate in all directions 
from the cell bodies [29]. In contrast, neurons lacking strong radial symmetry can 
be termed non-stellate (such as, for instance, pyramidal, Purkinje, those with fusi-
form bodies, etc.). Thus, this section explores how the BD changes in the course of 
continuous rotation of non-stellate neurons between such extreme positions and 
offers a possible explanation for these findings.

In digital imaging a pixel is a physical point in a raster image, being the smallest 
controllable element of a picture on the screen. In computational methods, an image 
composed of many pixels is known as a bitmapped image [29]. A binary (or the 
“black-and-white”) image is a digital image that has only two possible values for 
each pixel. A special kind of binary pictures is a “binary-skeletonized” picture. This 
picture consists of one-pixel-wide lines. In a skeletonized line, on a screen, two 
adjacent pixels can be in touch either by their sides or by their vertices [30]. In the 
first case, the pixels can form horizontal or vertical lines, while in the second case, 
they form an oblique straight line with the angle between the horizontal and oblique 
line being 45°. Thus, it is acceptable that the BD of an asymmetrical oblique object 
is smaller than that of a horizontal or vertical object. For more details on this sub-
ject, the reader is referred to [29].

To demonstrate this effect on the BD, a sample of 17 images was continuously 
rotated from 0 to 360°, increasing the angle by 15°. The axis of rotation was created 
connecting two distant points of dendritic field area around the neuron [18]: briefly, 
after the convex polygon was formed by connecting the tips of the longest dendrites 
(Fig. 7.4a). The BD either increases or decreases (Fig. 7.4b) from 0 to 45° and after 
that angle BD decreases (i.e., increases) to 90°. The same procedure was repeated 
in the following intervals, 90–180°, 180–270°, and 270–360°, with the small devia-
tions, possibly as a consequence of the secondary branches which emanate from the 
longest primary dendrite [29]. The maximal (or minimal) BD was noticed in 45°, 
135°, 225°, and 315° (Fig. 7.4b), and final BD was calculated as the mean of these 
four values (Fig. 7.4).

To conclude, in order to apply this effect on the calculation, each image should 
be analyzed for symmetry: the axis should be constructed and the image should be 
rotated by four angles (45° + kπ/2, where k = 0, 1, 2, and 3) and apparent BD should 
be recorded. Accurate BD will be the mean of these values. Our sample of neurons 
has showed difference in BDs without and after rotation: the BD of initial image 
was either higher or lower than the same value after the image was rotated. The BDs 
of type B (Fig. 7.4c, right) and type C (Fig. 7.4c, left) neuronal images (a type of 
asymmetrical cells) were different than the initial value, from −6 to 6 %.
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a

c

b

Fig. 7.4 (a) The illustration of the dendritic field area and axis of rotation on the image of asym-
metrical neuron. (b) Plots of the BD against the angle when 17 images of the monkey dentate 
nucleus were continuously rotated from 0 to 360° and (c) two types of asymmetrical neurons from 
the monkey dentate nucleus. Initial value of the BD, (DB)0, the same value after rotation, (DB), and 
their difference (Δ) are shown for each type of cells
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7.5.3  Image Representation

When the box-counting method is applied to 2D image of the object, the FD depends 
on image presentation [7]. For instance, it has been reported previously that the box- 
counting method, applied to “binary-skeletonized” images of neurons, represents a 
robust technique for quantifying both the complexity of the neuronal dendritic tree 
and straightness of individual dendrites [17]. However, many researches use differ-
ent processed images [24, 33], including binary silhouettes [10] or “binary-outline” 
images [21]. In addition, Jelinek and Fernández investigated the effect of image 
presentation, and they concluded that “black-and-white” images [21] have showed 
higher values than outlined and skeletonized images [11]. Thus, when calculating 
FD using complete “black-and-white” images, there may be a space-filling effect 
that can lead to a higher value of the FD (or D = 2), depending on the relationship 
between the internal area and the contour [35].

Also this could be true for the box-counting method, as Fig. 7.5 provides an 
explanation how this method can estimate object’s projection in plane. Theoretically 
speaking, when filled square encompasses the image of the object and its size (r) is 
reduced by two (Fig. 7.5a), the number of boxes increases, concretely multiplying 
previous number by 4. Therefore, the slope of log–log relationship between N and r 
was equal to 2 with coefficient of determination (R2) equal to one (Fig. 7.5b). Thus, 
the slope of the relationship log (N) vs. log (r) could represent BD of the area [19], 
if the object is in 2D. It might be accurate to say that BD, in this case, estimates the 
space-filling property of object. Figure 7.5b, also, presents the value of BD and R2 
for irregular object, as shown in Fig. 7.5a, obtained in Image J.

Consequently, the command (Process→Binary→Outline) in Image J creates the 
border of “black-and-white” image, as shown in Fig. 5.3a, and another command 
(Process→Binary→Skeletonize) creates one-pixel-wide boundary. Such procedure 
creates “binary-outline” image of the object and calculated BD (i.e., the (DB)out) 
evaluates the irregularity in the shape of the image, or precisely the value of (DB)out 
shows how this value deviates from values of classic geometric figures (Fig. 7.5c).

In previous study [17], the difference between “black-and-white” and “binary- 
outline” images from Artiodactyla and mammalian spinal cords has been investi-
gated. Neuronal images from Artiodactyla spinal cord are examples of neurons with 
thin dendrites, sparsely covered with spines and small cell bodies. Hence, these 
images (and such type of cells) should be analyzed either as “black-and-white” or 
“binary-outline” images in order to calculate statistically the same box dimension 
[17]. On the other hand, neuronal images from rat’s and cat’s spinal cords represent 
neurons with thick dendrites and/or large cell bodies. For these images, results 
undoubtedly show that they should be investigated as “black-and-white” or “binary- 
outline” images in order to quantify their space filling or the shape [17].

Another study sums up investigation of 76 images from the adult human dentate 
nucleus using the box-counting method [16], which was used to quantify the space- 
filling property, shape, and dendritic irregularity of the neurons. Each of these prop-
erties are described with the corresponding quantity: BD of the “black-and-white” 

N. Milošević

http://dx.doi.org/10.1007/978-1-4939-3995-4_5


123

image (DB)bin, BD of the “binary-outline” image (DB)out, and BD of the “binary- 
skeleton” image (DB)skel. The (DB)bin was subjected to the size of the dendritic field 
(ADF) in order to resolve doubt that these parameters quantify the same property of 
neuronal morphology (Fig. 7.6). Consequently, the (DB)out was subjected to the cir-
cularity ratio (M) to make evident how these parameters quantify the same property 
of the neuron but using different methods (Fig. 7.6b). The results are consistent with 
previous data and improve them, having in mind the size of the sample (i.e., number 
of neurons) and the fact that box-counting parameters are more sensitive than the 
size of dendritic field and circularity ratio. Finally, authors claim that this study is 
the first that quantified the shape of the neuron using box-counting method of fractal 
analysis [16].

a

c

b

Fig. 7.5 (a) The image of the object (light gray color) encompassed by square (dark gray color) 
with demonstration the halving of the box sizes that overlay the image and square. (b) Log–log 
plot between numbers of squares (N) and square size (r) for the square (square points and straight 
line) and previous object (diamond points and dashed line). The DB is the absolute value of the 
slope of the regression line and R2 is the corresponding coefficient of determination. (c) Outline 
images of the circle, square, simple, and complex star (For qualitative presentation, the width of 
border was three pixels and value for the (DB)out is inscribed below the image)
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7.6  Discussion

The extension of the concepts of fractal geometry toward the biomedical sciences 
has led to significant progress in understanding complex functional properties and 
structural features [2]. Generally, various systems in nature, if they accomplish four 
properties (Sects. 2.1 and 2.3) during their construction or formation, can be thought 
either ideal or natural fractal objects [17]. On the other hand, fractal analysis is the 
estimation of fractal characteristics of data [7, 32]. It consists of several methods to 
assign a fractal dimension and other fractal characteristics to a dataset. According 
to the numerous authors, fractal analysis is derived from the fractal geometry [7], 
and it is used to describe the organization of objects found in nature, quantifying 
their complexity with a value of the fractal dimension [17].

In terms of fractal geometry, the simplest scaling relationship describing a prop-
erty of an object is an inverse power law scaling [17]. Generally, for real objects this 
law of scaling can be regarded as the polynomial scaling law [16], as it is character-
istic of geometrical and real objects in fractal analysis. In addition, in fractal analy-
sis, the measurement of the FD is usually not intended to indicate whether an object 
is a fractal or not but rather provides a measure of the complexity of scaling inherent 
in the object [7].

Once fractal geometry was formulated, many neuroscientists adopted fractal 
analysis as an appropriate method for objective quantitative analysis of neuronal 
structures. One of the advantages of using fractal analysis (i.e., fractal dimension) is 
its capacity to differentiate between neurons that differ in the complexity of their 
dendritic and axonal branching patterns [32]. This text calls attention to the meth-
odology issues of the most popular technique of fractal analysis, the box-counting 
method. Besides preprocessing tasks, such as image size, resolution, and rotation, 
this text shows significance of the BD calculated for different presentations of the 

a b

Fig. 7.6 (a) Plots of binary box dimension (DB)bin versus dendritic field area ADF for central (filled 
squares, straight line) and border (empty circles, dashed line) neurons. (b) Plots of outline box 
dimension (DB)out versus circularity ratio M for central (filled squares, straight line) and border 
(empty circles, dashed line) neurons. The coefficient of determination (R2), calculated t-value, and 
level of significance (p) are inscribed in upper side of the plot
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same neuronal image from the adult human dentate nuclei: precisely the space- 
filling property, perimeter of the neuron shape, and irregularity of dendrites.

In conclusion, to calculate the FD of an object, it is not necessary to investigate 
its main fractal properties (such as, the self-similarity, scaling, scale invariance, and 
space filling). Investigation of these properties is the main subject of the fractal 
geometry. The chief aim of the fractal analysis is to calculate the FD of an object 
and to ascertain the significance of the obtained value in terms of the complexity of 
the object.
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Chapter 8
Neuronal Fractal Dynamics

Małgorzata Kołodziej and Przemysław Waliszewski

Abstract Synapse formation is a unique biological phenomenon. The molecular 
biological perspective of this phenomenon is different from the fractal geometrical 
one. However, those perspectives are not mutually exclusive and supplement each 
other. A cornerstone of the first one is a chain of biochemical reactions with the 
Markov property, that is, a deterministic, conditional, memoryless process ordered 
in time and in space, in which the consecutive stages are determined by expression 
of some regulatory proteins. The coordination of molecular and cellular events lead-
ing to the synapse formation occurs in fractal time-space, that is, the time-space that 
is not only the arena of events but also influences those events actively. That time- 
space emerges owing to coupling of time and space through nonlinear dynamics. 
The process of synapse formation possesses fractal dynamics with non-Gaussian 
distribution of probability and a reduced number of molecular Markov chains ready 
for transfer of biologically relevant information.

Keywords Neurons • Synapse • Differentiation • Dynamics • Gompertz growth  
• Fractal • Fractal time-space • Complexity

8.1  Synapse Formation from the Perspective of Molecular 
and Cellular Biology

The word synapse originates from the Greek words “συν” (together) and “ἅπτειν” 
(to fasten). Indeed, a synapse enables a transfer of electrical or chemical impulses 
between neurons within the nervous system or from neurons to target cells, such as 
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muscle cells. The synapse is a complex molecular structure composed of an axon 
and the dendrites of an adjacent neuron. It possesses both a presynaptic and a post-
synaptic membrane. There is a synaptic cleft between them. In the fast electrical 
synapses, the presynaptic and postsynaptic membranes are connected by special 
molecular channels called gap junctions. Those channels enable a direct flow of 
electric current from the presynaptic membrane to the postsynaptic one. The slower 
chemical synapses use a number of neurotransmitters to regulate the function of the 
postsynaptic neurons. Those relatively simple chemical compounds are released 
from the axon membrane and bind to the specialized receptors in the postsynaptic 
membrane. In consequence, the postsynaptic neuron may change immediately its 
potential and initiate an electrical response. It may also activate some secondary 
molecular signaling pathways that inhibit or excite the postsynaptic neuron.

A neuromuscular junction is an example of a specialized synapse that not only 
transfers electrochemical impulses but also activates some molecular events leading 
to the muscle contraction. The neuromuscular junction consists of a motor neuron, 
a myofiber, and a Schwann cell. In this kind of a synapse, the impulse depolarizes 
the motor neuron by releasing the neurotransmitter, acetylcholine. Acetylcholine 
voyages crossways through the synaptic cleft and docks to its receptors in the sar-
colemma. The muscle contraction begins after opening of the receptor ion channels. 
The entire synapse is covered by a myelin sheath provided by the Schwann cell that 
protects the junction [12].

The formation of synapses is a complex process that starts during embryogenesis 
and continues in a lifetime. Cell types involved in the synapse formation originate 
from different regions of the growing embryo. The myoblasts originating from the 
mesoderm form a multinucleated myotube. During the myotube formation, moto-
neurons from the neural tube initiate preliminary contacts with the myotube. The 
Schwann cells that originate from the neural apex are directed by the axons to their 
targets. After the contact between Schwann cell and axon is established, both cells 
create a loose, unmyelinated covering over the axons [15].

In the central nervous system, astrocytes are nonneural cells that regulate a num-
ber of activities in the brain, such as synaptic transmission, neurometabolism, plas-
ticity of synapses, and cerebrovascular tone [15]. In particular, astrocytes secrete 
two protein factors that regulate the process of synapse formation [5]. The first one 
is known as thrombospondin (TSP). This factor determines the formation of mor-
phologically normal but functionally silent synapses. The second factor, which has 
not been isolated yet, converses those silent synapses into the fully functional ones 
[5]. In addition, the functional maturation of synapses is regulated directly by glia 
as “support cells.” TSP is also expressed in glia as extracellular matrix protein that 
binds heparin. It was also demonstrated that TSP affects the relocation of synaptic 
proteins to new synapses rather than induces their expression over there [5].

The specific patterning of synapse development at the neuromuscular junction 
shows that the majority of muscles are innervated at their centers. Although it may 
seem that the axons specifically target the midpoint of the myotube, a number of 
observations suggest that this is not a valid supposition. After the initial axonal 
contact, the newly formed myotube gates grow symmetrically from the point of 
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innervation. In combination with the fact that receptor mass is the result of axonal 
contact in its place of origin, the structural patterns of muscle fibers can be classified 
as both myotatic development and axonal innervation [15].

The first contact between motoneuron and myotube generates synaptic transmis-
sion but the signal is very weak. One week later, the fully functional synapse is 
formed. This synapse plays a role in the development of new axons [7]. To form a 
presynaptic terminal, molecular signaling must go through a number of subcellular 
sections. In the soma, presynaptic proteins need to be synthesized, packaged 
together, and attached to microtubule motors for delivery through the axon. Within 
the axon, transport of presynaptic packages is controlled to confirm that developing 
synapses achieve a sufficient volume of factors. At individual axonal sites, extracel-
lular interactions must be translated into intracellular signals that can incorporate 
mobile transport vesicles into the nascent presynaptic terminal. Even once the initial 
recruitment process is complete, the components and subsequent functionality of 
the presynaptic terminals are constantly altered. For example, the axon of motoneu-
ron releases arginine that binds to a muscle-specific kinase receptor in the postsyn-
aptic membrane. This binding induces the downstream activation of the cytoplasmatic 
protein rapsyn. Rapsyn contains a domain that is responsible for clustering of ace-
tylcholine receptors in the postsynaptic membrane [12]. The coordination of all 
those processes in time and in space is the most mysterious part of the process of 
synapse formation [3].

The competition between axons is an activity-dependent process. It is based on the 
synaptic pruning or synapse elimination. It has been suggested that a strong synapse, 
which produces enough action potential or exhibits strong activity to depolarize the 
postsynaptic membrane, wards off the weaker axons [12]. The most important conse-
quence of synaptogenesis is the ability of the motoneuron to discriminate between 
fast- and slow-twitch muscle fibers; fast-twitch muscle fibers are innervated by “fast” 
motoneurons, and slow-twitch muscle fibers are innervated by “slow” motoneurons. 
Here is to suppose that nonselective pathways indicate that the axons are led to their 
targets by the matrix through which they travel. Finally, the axons may innervate 
muscle fibers nonspecifically and cause that the muscles gain the characteristics of the 
axon that innervates them. In this path, a “fast” motoneuron can convert any muscle 
fiber into a fast-twitch muscle fiber [12]. Those changes in receptor subunits lead to 
the growth of the postsynaptic cluster size and cluster development [1].

The main transmitter in the peripheral synapses is acetylcholine. A counterpart of 
it in the central nervous system is glutamate and its receptors, especially the NMDA 
(N-methyl-D-aspartate) receptor. The activation of NMDA receptor induces synapto-
genesis over the activation of downstream products. The most important messenger in 
the brain and the spinal cord is glycine, which docks on glycine receptors. Glycine 
receptors play an important role in the excitability of the spinal cord and brain stem 
neurons [1]. Because of embryo development, some of receptor attributes undergo 
important modifications resulting in main variation of their physiological function like 
switching of receptor structures. The previous data have shown that the development 
is associated with the changes of the monomeric alpha or heteromic alpha 2 beta 
receptors in immature neurons to the alpha 1 beta receptors in mature neurons. 
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Together with those changes, the apparent receptor correspondence to glycine and 
strychnine, as well as that of Zn(2+) and ethanol, increases during the development 
process. The established receptor shows a slow desensitizing current and high sensi-
tivity to modulation by protein kinase C. The high level of glycinergic transmission in 
juvenile spinal neurons modulates neuronal excitability initiating membrane depolar-
ization and alterations in intracellular calcium, which leads to chronic inhibition of 
glycinergic transmission, initiate neurite outgrowth, and changes in the level of synap-
tic transmission induced by GABA(A) and AMPA receptors. The plasticity of juvenile 
glycerine receptors is associated with cytoskeleton dynamics [1].

The environment, in which the neurons are located, plays an important role dur-
ing the synaptogenesis. Brain-derived neurotrophic factor (BDNF), which is pro-
duced by the brain, regulates the process of synapse development, including 
synthesis of a transmitter, concentration of the transmitter in vesicles, and choles-
terol biosynthesis, which is important for the synaptogenesis. Indeed, the BDNF- 
null mutants show a defect in neuronal growth and formation of synapse [13]. The 
second important molecule is neuroligin, which plays a role in cell adhesion in the 
postsynaptic membrane. A defect in genes encoding neuroligin leads to mental 
retardation and autism [20]. However, many of the signaling processes regulating 
synaptogenesis in the central nervous system can also be regulated by matrix metal-
loproteinases (MMPs) [4]. An important component for the controlled actin assem-
bly, Abelson interacting protein-1 (Abi-1), was identified as a binding partner for 
the postsynaptic density (PSD) protein ProSAP2/Shank3. The dynamic and locally 
specific regulation of actin in cytoskeleton is critical for the emergence of synaptic 
plasticity [11]. It was demonstrated that the downregulation of Abi-1 by small inter-
fering RNA leads to the excessive dendrite branching and a reduction in a number 
of synapses. The overexpression of Abi-1 has the opposite consequence. Abi-1 can 
play a role as a specific synapto-nuclear messenger and is involved in dendrite and 
synapse formation [11]. Furthermore, filopodia (dendritic spines morphology) play 
a role in synaptogenesis by initiating of contact between axons of other neurons. It 
was reported that new neurons were contacted by axosomatic, axodendritic, and 
axospinous synapses. Dendritic spines primarily synapsed on multiple-synapse 
boutons already present in the synapse. The connectivity of new neurons continued 
to change until at least 2 months, long after the formation of the first dendritic pro-
trusions [14]. The brain stimulation following birth or after weaning or during 
adulthood leads to formation of numerous synapses [2]. It was also demonstrated 
that subcellular anatomical characteristics of astrocytes in the brain enabled them 
both identification and a response to changes in neuronal and synaptic activity [9].

8.2  Fractal Time-Space in the Dynamic Process of Synapse 
Formation

The explanation how all the above-outlined molecular and cellular phenomena span-
ning different levels of the complex, hierarchical, dynamic cellular system are coor-
dinated in time and in space is one of the greatest challenges of modern biological 
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sciences. The process of synapse formation is here an interesting experimental model 
that may also stimulate theoretical research [5]. Molecular biological models depict 
synapse formation as a kind of a Markov process, that is, a deterministic, conditional, 
memoryless process ordered in time and in space, in which the consecutive stages 
occur owing to a transition rule that depends only on the current state. Although 
those models are static, they suggest some important molecular events occur in neu-
rons in a collective manner, that is, a manner marked by similarity among or with the 
neurons of a given anatomical region.

The application of fractal calculus and principles of fractal geometry brings 
utterly different perspective. Cells represent supramolecular dynamic systems that 
grow and interact in both space and time [17–19]. Neuroanatomists found that mor-
phological irregularities in both neuron and neural network structure resulting from 
those interactions can be measured by the spatial fractal dimension [10]. The exis-
tence of the spatial fractal dimension indicates the existence of some underlying 
emergent molecular and electrochemical processes in neural tissue. In addition, 
experimental data obtained from the study of cellular system P19/RAC 65 show that 
dynamics of synapse formation in vitro can be described by a family of the sigmoi-
dal curves, such as the Gompertz one that is one of the solutions of Eq. (8.2) (see 
Appendix) [19]. This equation suggests that the process of synapse formation is a 
cooperative phenomenon, that is, the events occur not only in conjunction with oth-
ers but also facilitate the further evolution of the process. In this equation, dynamics 
of synapse formation, the function of probability distribution, and the anharmonic 
potential are coupled to each other. In the background, there is coupling of two 
fundamental dimensions that define time and space in which all events occur (see 
Appendix, Eqs. 8.1 and 8.6). It is worth to notice that the emerging time-space is not 
just an arena for events and processes. This time-space influences them actively. 
This fact is reflected by the presence of both temporal and spatial fractal dimensions 
in Eq. (8.6) (see Appendix).

Indeed, synapse formation requires long-range interactions and diffusion of 
some important gene products between neural cells. The interacting cells create first 
a dynamic system with its own attractor, i.e., a fragment of time and space where the 
dynamic processes occur and where no further evolution of the system is possible at 
all owing to the action of the intrasystemic forces (drift) unless some extrasystemic 
forces (diffusion) act upon it. The extrasystemic impulses and their interaction with 
a network of neurons assume further control of the process. In addition, cells dif-
ferentiate into neurons and create synapses with a conjugated probability and non- 
Gaussian distribution rather than with the classical probability and the Gaussian 
distribution (see Appendix, Eqs. 8.11, 8.12, 8.13, 8.14, and 8.15) [16]. In consequence 
of the Markovian nature of the molecular circuits, entropy of such chain of the 
coupled molecular reactions is always lower than entropy of the set of random and 
independent biochemical reactions (see Appendix, Eqs. 8.7, 8.8, 8.9, and 8.10). 
Also, a number of the molecular circuits that can transfer actively biologically 
relevant information in a given time are much lower than the total number of such 
circuits (Appendix, Eq. 8.16).

Benoit Mandelbrot was one of the first researchers who noticed that the ran-
dom walk model can describe a wide range of neuronal activity in terms of two 
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parameters [6]. Furthermore, the analysis of the inter-spike intervals of the firing 
cortex neurons reveals different non-Gaussian probability distributions, such as 
exponential, gamma, lognormal, and power-law one. The coexistence of so differ-
ent probability distributions unveils different stochastic processes including 
molecular ones that stand behind those distributions. Fractal scaling in dynamics 
of those intervals is correlated with the coupling between neuron firing and move-
ment of muscle groups. Those neuron firings reveal long-range temporal correla-
tions. The correlations are missing if the firings are not associated with some 
movements [8]. Fractal time-space is a prerequisite condition for the phenomenon 
of dynamic coalition of neurons. This coalition is based on the collective behavior 
of neurons that participate in generating of some muscular movements by enter-
ing the coalition and forming a network of firing neurons or leaving it for some 
time. In other words, the existence of fractal time-space enables both plasticity 
and adaptation of the neuronal network to different situations.

 Appendix

If one assumes that the spatial variable x and the temporal variable t are coupled to 
each other in a linear manner into a single, complex spatiotemporal variable θ

 q m= +x t,  (8.1)

then the Gompertz function, the function of probability distribution P(θ), the anhar-
monic potential U(θ), and the diffusion coefficient D are related each other through 
the one-dimensional differential operator (8.2). This operator contains the function 
of probability distribution [19]:
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This linear coupling of variables can also be defined as a function with both spa-
tial and temporal fractal dimension. It is known from experimental data from the 
in vitro cellular system of P19/RAC 65 that the number of cells (or their volume) 
also changes in time t according to the Gompertz function f(t) [17]. A volume of the 
spheroid V is given by equation:
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in which Vk is a mean volume of a single cell, n stands for a number of cells in the 
spheroid, and the Gompertz function can be fitted with the fractal function f(t) = atb 
with very high accuracy, a coefficient of nonlinear regression R >> 0.95 for n ≥ 100 
pairs of coordinates, in which a stands for a scaling coefficient, bt is a temporal 
fractal dimension, and t is scalar time.
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The volume V of the spheroid can also be expressed as a function of scalar geo-
metrical variable x (i.e., a radius of a family of the concentric spheres covering the 
entire spheroid) by Eq. (8.4):

 V a xbs= 1  (8.4)

in which a1 stands for a scaling coefficient, bs is a spatial fractal dimension after 
scalar time t1, and x is a scalar, geometrical variable, which locates an effect in 
space.

Hence, we get Eq. (8.5):

 V a x V at a x atb b b bs t s t= = =1 0 0
0

 (8.5)

in which a, a0, and a1 stand for the scaling coefficients, bt is the temporal fractal 
dimension, bs0 and bs are the spatial fractal dimensions after time t0 and t, respec-
tively, and x is a geometrical variable.

Finally, Eq. (8.6) relates space and time in which proliferation, differentiation, 
and synapse formation occurs. This equation defines the geometrical variable x as a 
function of the scalar time t and both temporal and spatial fractal dimension:
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in which t stands for scalar time, x is geometrical variable, bs is the spatial fractal 
dimension, and bt is the temporal fractal dimension.

8.2.1  Entropy and Dynamics of Synapse Formation in Fractal 
Time-Space

It is worth to notice that the assumed Markov model of molecular interactions 
within differentiating neurons implies at least three important consequences. First, 
entropy (i.e., missing information) HM of such the Markov chain of the coupled 
molecular reactions is always lower than entropy of the set of random and indepen-
dent biochemical reactions HR. Indeed, entropy is defined as the expected value of 
missing information Hp:
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in which p = (p1,p2,…pj), jε N, is a probability density function over a generic vari-
able X, and if pj = 0, then Hp = 0, log is a natural logarithm, providing a unit of 
measure.
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Hence, the conditional entropy H(Xk|Yk−1) of the Xk reaction stands for which 
conditional information is determined when the state Yk−1 = i is given by the follow-
ing equation:
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(8.8)

The conditional entropy of the Markov chain HC is given by (8.9):
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Finally, we get Eq. (8.10) for the n first steps of the Markov chain X1, X2,…, Xn 
from (8.7), (8.8), and (8.9), the principle of additivity of independent random events, 
and from the analog principle for the conditional probabilities:
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Second, Gompertz dynamics of molecular cellular growth can be normalized, 
i.e., growth dynamics of various tissue systems can be described by a single normal-
ized Gompertz function fN(t) (8.11). In fact, this normalized Gompertz function is 
both a dynamics function fN(t) and a probability function pN(t) (see for details [17]):
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Consider a coupling of probability function pN(t) and antiprobability function −
log pN(t), in which r = b:
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This equation defines a relationship between entropy H(t) and the normalized 
Gompertz dynamics of growth pN(t):
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Finally, from (8.11) and (8.12), we get (8.14):
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According to Shannon theorem, of all the continuous distribution densities for 
which the standard deviation exists and is fixed, the Gaussian (i.e., normal) distribu-
tion has the maximum value of entropy H:
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In the case of growing supramolecular cellular system such as neuron, entropy, or 
missing information, H(t) is a function of time related with dynamic function of 
growth in fractal space-time. For b = 1 both the normalized Gompertz function (8.11) 
and the entropy function (8.14) overlap each other. However, b<<1 for the majority 
of cellular systems. The distribution of probability is in those cases non-Gaussian.

Third, there is a relationship between the number of elements in the Markov 
chain and entropy. If Mp(n) stands for a number of the Markov chains of the length 
n with the total probability p, 0<p<1, there exists the same limit for each probability 
p that equals entropy H:
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If a total number of states of the supramolecular cellular system equal 2m, then the 
number of molecular reactions interconnected in the Markov chains of the length n 
is 2nm. It is clear from (8.16) that only 2nH molecular Markov chains with probability 
1−ε, ε>0 will be involved in transfer of biologically relevant information.
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    Chapter 9   
 Does a Self-Similarity Logic Shape 
the Organization of the Nervous System?                     

     Diego     Guidolin      ,     Cinzia     Tortorella    ,     Raffaele     De     Caro    , and     Luigi     F.     Agnati   

    Abstract     From the morphological point of view, the nervous system exhibits a 
fractal, self-similar geometry at various levels of observations, from single cells up 
to cell networks. From the functional point of view, it is characterized by a hierar-
chic organization in which self-similar structures (networks) of different miniatur-
izations are nested within each other. In particular, neuronal networks, interconnected 
to form neuronal systems, are formed by neurons, which operate thanks to their 
molecular networks, mainly having proteins as components that via protein–protein 
interactions can be assembled in multimeric complexes working as micro-devices. 
On this basis, the term “self-similarity logic” was introduced to describe a nested 
organization where at the various levels almost the same rules (logic) to perform 
operations are used. Self-similarity and self-similarity logic appear intimately 
linked to the biophysical evidence for the nervous system being a pattern-forming 
system that can switch fl exibly from one coherent state to another. Thus, they can 
represent key concepts to describe its complexity and its concerted, holistic 
behavior.  
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9.1       Introduction 

 According to Jacob [ 64 ], from a structural standpoint, living systems are character-
ized by a hierarchical pattern of organization in which structures are nested within 
one another. It has been also pointed out that this conceptual proposal by Jacob can 
be applied not only to the living individual but also, in a complex organism, to its 
main organs [ 2 ,  5 ]. In fact, as stated by Grizzi and Chiriva-Internati [ 47 ], all ana-
tomic systems exhibit the pivotal property to form multilevel structures each of 
which forms “a whole in relation to its parts and is simultaneously part of a larger 
whole” [ 47 ]. A key morphological consequence of this feature is that irregular and 
complex shapes in which structural detail increases (at least for a quite wide range 
of scales) with increasing magnifi cation or resolution [ 18 ] characterize biological 
structures (but, more in general, the majority of natural objects). Thus, the conven-
tional (Euclidean) view that natural structures have a well-defi ned form, which can 
be determined at some characteristic scale, appears just an approximation of the 
reality. The two related problems of defi ning the concept of “form” of a particular 
biological structure and that of providing its description in quantitative terms were 
deeply debated among morphologists since the classic work of Thompson [ 102 ] and 
are still under careful scrutiny. A breakthrough in this fi eld occurred with the devel-
opment of the “fractal geometry” by Benoit Mandelbrot [ 79 ,  80 ], based on previous 
mathematical achievements by Poincaré and Cantor. From a mathematical point of 
view, fractal objects are the result of iterative processes, a complex irregular shape 
characterizes them, and their measured properties depend on the scale at which they 
are measured. The most important and characterizing feature of fractal objects, 
however, is “self-similarity,” a term indicating that they are composed of parts that 
are smaller, exact duplications of the whole object over infi nity of length scales. In 
other words, geometrical confi gurations characterizing a fractal object can be found 
again and again as far as magnifi cation is increased (Fig.  9.1a ). For what it concerns 
biological morphology, this mathematical framework was of key importance for 
two reasons. From one side it provided a conceptual support to describe the com-
plexity of form exhibited by the biological objects. Of course, natural objects can at 
best be a quasi-fractal, exhibiting self-similarity only within a limited scale range 
and only statistically, since small details of a given anatomical system are rarely 
identical copies of the whole system. Nevertheless, they are often characterized by 
the same architectural scheme with the same structural complexity (Fig.  9.1b ). 
Examples include the bronchial tree, the ductal system of glands, the biliary tree of 
the liver, and the vascular system [ 28 ,  29 ,  54 ,  77 ]. From the other side, fractal geom-
etry also led to the defi nition of parameters allowing a quantitative characterization 
of complex shapes (see [ 37 ,  58 ,  94 ]). “Fractal dimension” (D), for instance, mea-
sures the rate of addition of structural details with increasing magnifi cation, scale, 
or resolution [ 32 ]. Thus, it represents an estimator of morphological complexity: the 
more irregular an object, the higher its D value [ 80 ]. It can be quite easily evaluated 
by a variety of methods, the “box-counting method” (see [ 17 ,  94 ]) being the most 
widely used in biological applications. The information provided by D is often 
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complemented by the measurement of another fractal parameter, called “lacunar-
ity.” In a general sense, this parameter can be considered as a measure of the non-
uniformity (heterogeneity) of a structure, potentially useful to characterize how it 
fi lls the available space [ 94 ]. Roughly speaking, lacunarity exhibits higher values 
when the analyzed structure has large gaps. Several further methods and parameters 
based on fractal geometry (such as Hurst coeffi cient and detrended fl uctuation anal-
ysis) have been proposed for the analysis of natural objects (see [ 40 ,  99 ]), and in the 
last decade, the use of fractal geometry-based tools has signifi cantly expanded to 

a

b

  Fig. 9.1    ( a ) A classical mathematical fractal, the Sierpinski triangle. As illustrated each part is the 
exact duplication of the whole object over infi nity of length scales. ( b ) A natural structure, the 
vascular network of the retina, exhibiting self-similarity. It can be considered a quasi-fractal: self- 
similarity only occurs within a limited scale range and only statistically since structural details are 
not identical copies of the whole system. Nevertheless, they are characterized by the same archi-
tectural scheme       
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describe the morphology of the biological structures and the changes they undergo 
under physiological or pathological processes. Examples include, among others, the 
application of fractal principles to measure irregular and complex membrane ultra-
structure of cells at specifi c functional and pathological stages [ 76 ,  78 ], the changes 
of the self-organization of endothelial cells in vitro induced by anti- or pro- 
angiogenic factors [ 50 ], the characterization of alveolar shape in normal lung and in 
emphysema [ 14 ], processes of vascular remodeling [ 49 ,  54 ], changes in the mor-
phology and spatial distribution of the connective tissue in human carotid body 
during aging [ 55 ], chromatin architecture [ 74 ], and the consequences of its changes 
in terms of chromosome alterations [ 41 ].

   Not only the morphology of living organisms, however, follows a nested organi-
zation, since a hierarchical scheme can also be recognized at the functional level, 
being each physiological function the combined result of processes occurring at 
system, tissue, cell, and molecular levels. In this respect, it has also been proposed 
that some auto similarity could prevail at each nested level [ 4 ], meaning that the 
different involved elements can interact, whatever their degree of miniaturization, 
according to similar rules. A well-known example is the feedback mechanism found 
in metabolic molecular networks where the amount of the fi nal product inhibits its 
further production by acting directly upon a certain rate-limiting step. Feedback, 
however, is also found at organ and system level, e.g., in the circuits which maintain 
muscle length, or in arterial blood pressure control. For this reason, the term “self- 
similarity logic” has been suggested to convey the concept of a multilevel structural 
organization in which very similar functional rules (logic) apply at each level [ 8 ]. 
This view is in agreement with the statement of Russell and Aloy [ 91 ] that a key 
concept in biological system design is modularity: Nature duplicates and reuses 
existing parts and design principles again and again. 

 The present essay illustrates the hypothesis that both the structural (geometrical) 
“self-similarity” concept and the broader “self-similarity logic” principle are par-
ticularly apparent in the nervous system, likely providing a unitary conceptual 
scheme to describe many aspects of its morphological and functional organization.  

9.2     Structural Self-Similarity of the Nervous System 

 As recently pointed out by Di Ieva et al. [ 34 ], the application of Euclidean geometry 
to neuroanatomy is strongly limited by several factors, such as the natural complex-
ity of the brain, its hierarchical structure, and the sophisticated topological architec-
ture of the neurons organized in micro and macro networks. For this reason, the 
introduction of new geometrical frameworks, such as the fractal geometry, and the 
tools they provided to quantitatively characterize the shape of the nervous structures 
led to a rapid increase of the amount of data supporting the prevalence of properties 
such as self-similarity in the brain at various levels of observation. They will be 
briefl y reviewed in the sections that follow. 
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9.2.1      Cell Level: Complex Geometry of Neurons 
and Glial Cells 

 As illustrated in Fig.  9.2a , neurons are characterized by a quite complex morphol-
ogy. In its foundational work  The Fractal Geometry of Nature , Mandelbrot [ 80 ] 
specifi cally mentioned the Purkinje neurons of the cerebellum and wrote “it would 
be nice if neurons turned out to be fractal.” Studies undertaken to test this hypothe-
sis were in general supportive (see [ 34 ,  109 ] for more comprehensive reviews, as 
well as Chaps.   6     and   7    ). Fractal shapes in the branching patterns of dendritic trees 
were identifi ed in retina neurons [ 25 ] and in thalamic neurons [ 70 ]. Fractal analysis 
allowed a distinct differentiation of neuron types in the different laminae [ 83 ] of the 
dorsal horn of the spinal cord, and variations in the fractal structure of the pyramidal 
neuron dendrite branching resulted associated with differences in functional capac-
ity among regions of the visual cortex [ 113 ]. Wen et al. [ 107 ] provided a clear-cut 
indication of self-similarity in neurons by examining the connectivity repertoire of 
basal dendrite arbors of more than 2000 pyramidal neurons. This study identifi ed a 
universal statistical process underlying the construction of dendrite arbors, which 
led to structures in which fragments of the arbor were statistically similar to the 
entire arbor, thus displaying self-similarity. Additional evidence came from image 
analysis and in particular from 3D reconstruction techniques using scanning elec-
tron microscopy or confocal microscopy [ 92 ].

   A morphology characterized by self-similarity properties, however, is not lim-
ited to neurons. Various mammalian astroglial cell types have been classifi ed by 
means of fractal analysis [ 87 ], and lacunarity and fractal dimension have been used 
to show the physiological changes of neuronal and astroglial structures in the pro-
cess of aging, whereby the fractal dimension decreases and lacunarity increases in 
neurons, while the contrary occurs for astrocytes [ 52 ,  100 ]. As far as other glial cell 
types are concerned, the sequence of oligodendrocyte developmental stages paral-
lels changes in fractal dimension [ 20 ], and fractal analysis of cell ramifi cation and 
space fi lling patterns differentiate microglia cells into two categories, depending on 
whether their fractal dimension did or did not increase after brain injury [ 95 ].  

9.2.2      Tissue Level 

9.2.2.1      Central Nervous System 

 The central nervous system (CNS) can be described as a huge network of cells 
interacting through communication pathways. It has been proposed that two main 
modes (see [ 9 ] for a review) of communication (wiring transmission (WT) and 
volume transmission (VT)) could be distinguished in the CNS. The fi rst is charac-
terized by a physical “wire” connecting the nodes of the network (as in the synaptic 
transmission between neurons), while the second concerns the three-dimensional 
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diffusion of signals in the extracellular space for a distance greater than the synap-
tic cleft. VT is characterized by a very high divergence, since one source usually 
gives signals to a great many targets, including not only neurons but also other 
types of cells in the CNS, such as astrocytes [ 101 ] and microglial cells [ 38 ]. This 
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  Fig. 9.2    ( a ) Golgi-stained hippocampal pyramidal neuron. As illustrated in the  right  panel, frag-
ments of the dendritic arbor are statistically similar to the entire arbor, thus displaying self- 
similarity. ( b ) Schematic representation of the two network architectures identifi ed in the CNS (see 
text).  Left  panel illustrates a “small-world network” and the right panel a “scale-free network.” In 
the latter some nodes (hubs of connectivity) have a high number of connections to other nodes, 
whereas most nodes have just few connections. More specifi cally, the distribution of the links 
among the nodes of the network follows a power law (shown in the  inset )       
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leads to the formation of “complex cellular networks,” exchanging signals in a 
certain volume of brain tissue and, due to this cross talk, integrating their activity 
[ 3 ]. In this context, the relationship between neurons and astrocytes is the best 
studied (see [ 39 ]), and recent fi ndings highlighted the involvement of “neuron–
astroglial interactions” in the higher brain functions. As a matter of fact, it has been 
introduced the concept of  tripartite synapse , since in most glutamatergic central 
synapses, the extremity of a protoplasmic astrocyte process wraps the synaptic 
cleft. It should be noted that astrocytes express membrane receptors to neurotrans-
mitters and can release their own chemical messengers (gliotransmitters). Thus, 
they establish a cross talk with both pre- and postsynaptic neurons. Several astro-
cytes participate in this functional organization, coupled with each other by gap 
junctions (see [ 24 ]) and communicating by “calcium waves” [ 85 ]. Thus, neuroas-
troglial networks do exist controlling not only dynamic glucose delivery [ 89 ] but 
also participating in cognitive functions [ 88 ]. 

 The architecture of the CNS extends over a range of up to fi ve orders of magni-
tude of scales: from microns for cell structures at one end to centimeters for inter- 
areal neuronal connections at the other. From the morphological point of view, the 
CNS appears strictly self-similar (i.e., a quasi-fractal) at low scale, as shown by 
studies on the shape of neuronal and glial elements (see Sect.  9.2.1 ). As far as the 
neuronal networks are concerned, the connections between different cortical areas 
were shown to possess an organization in the form of “small-world networks” [ 105 ], 
forming clusters of nearby cortical areas with short links, which in turn have long- 
range connections to other clusters [ 97 ,  98 ]. Within clusters, functional magnetic 
imaging identifi ed a network topology of the type called “scale-free” [ 35 ], in which 
some nodes (hubs of connectivity) have a high number of connections to other 
nodes, whereas most nodes have just a handful. Both these types of network organi-
zation (see Fig.  9.2b ) display a quite high level of geometrical self-similarity [ 96 ], 
suggesting that the CNS (at least for its neural component) can be considered self- 
similar over all its length scales.  

9.2.2.2     Peripheral Nervous System 

 No studies specifi cally aimed at analyzing the overall architecture of the peripheral 
nervous system (PNS) in terms of self-similarity and fractal properties are currently 
available. It should be outlined, however, that quite recent studies have highlighted 
a close structural and developmental relationship between blood vessels and nerves 
[ 23 ,  36 ,  65 ,  73 ]. This association seems of particular relevance in patterning the 
peripheral nervous system. The molecular mechanisms regulating common wiring 
of nerves and blood vessels have attracted considerable interest over the past decade. 
Some common morphogenic signals and mechanisms have been recognized that 
direct formation of either structures. Indeed, axon guidance molecules, such as 
semaphorins, ephrins, slits, and netrins, function also as angiogenic and vessel- 
guiding factors. Angiogenic growth factors, such as VEGF, express neurogenic 
potential as well. This assumption may explain why in peripheral tissues, blood 
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vessels are often aligned with nerves and display similar branching pattern [ 84 ]. On 
the one hand, endothelial cells produce signals, such as endothelin-3, artemin, and 
neurotrophin-3, which guide axons to track alongside developing vessels [ 62 ,  72 ]. 
On the other hand, nerves may also produce signals such as VEGF-A to attract 
blood vessels and stimulate endothelial cell surviving. 

 This mutual structural relationship between the two systems is of particular 
importance for our discussion. In fact, the question about whether vascular net-
works could be considered structures strictly self-similar was addressed by a quite 
large number of studies (see [ 54 ]). Recently, Lorthois and Cassot [ 75 ] provided a 
review of the published results, together with a new multi-scale analysis performed 
on high-resolution image data sets of vascular networks [ 26 ]. The work demon-
strated that the healthy vascular structures are a superposition of two components: 
at low scale, a non-fractal “mesh-like” capillary network which becomes homoge-
neous and space fi lling over a cutoff length of the order of its characteristic length 
(25–75 μm) and a “treelike” distribution network which can be demonstrated to be 
quasi-fractal (i.e., strictly auto-similar) for a quite wide range of length scales. Thus, 
the observed structural association between peripheral nerves and the “treelike” 
component of the vascular system legitimates the hypothesis of a self-similar archi-
tecture for the PNS as well.    

9.3     A Self-Similarity Logic Drives the Functional Features 
of the CNS 

 From a functional point of view, it has been observed that the CNS parenchyma 
self-organizes in functional units. The best-known examples are the cortical col-
umns (see [ 86 ]) consisting of an array of cooperating neuronal groups extending 
radially across the cortical cellular layers and representing units of operation. As far 
as the anatomical boundaries of these units are concerned, they appear loosely 
delimitated in morphological terms, since they are dynamic entities changing 
according to functional needs. A role in delimiting them is probably played by 
astrocytes, since the astroglial cells, especially in mammalian brains, defi ne the 
microarchitecture of the parenchyma by dividing the gray matter into relatively 
independent structural units through the process known as “tiling” [ 22 ]. 

 A further characteristic of these basic units, important for our discussion, is sug-
gested by a very simple observation. CNS functions (as, for instance, motor con-
trol) can indeed be studied either as the output of the entire system (e.g., by means 
of studies on refl ex responses) or of some of its regions (e.g., by extracellular 
electrophysiological recordings from the motor areas) or even at the level of single 
neurons (e.g., by intracellular electrophysiological recordings from spinal motor 
neurons). These different approaches are not simply a consequence of the increased 
analytical power of the experimental tools employed, but rather they depend on an 
intrinsic characteristic of the system. In fact, the CNS is the holistic assembly of a 
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multilevel functional organization. In other words, a hierarchic criterion holds 
meaning that system components of different miniaturizations not only can be 
arranged to work together either in parallel or in series but also nested within each 
other [ 30 ]. For this reason, a structure of multiple layers that encased one within 
the other like a “Russian doll” has been argued for the basic functional units, and 
the term “functional module” (FM) has been proposed to indicate them [ 8 ]. 

 In particular, it has been suggested [ 4 ,  104 ] that in each FM, at least macro-, 
meso- and microscale levels could be recognized (see Fig.  9.3 ):

•     The macroscale level, in which it is possible to recognize neuronal networks and 
complex cellular networks [ 3 ].  

•   The mesoscale level is the level of single neurons and, in particular, of the so- 
called synaptic clusters (SC), in which multiple synapses act cooperatively to 
modulate their strength [ 46 ,  93 ]. SC are often organized around the dendritic 
spines and partially isolated from the surrounding environment by glial cells 
[ 31 ,  46 ].  

•   At the microscale level are the molecular networks, made by molecules that 
function as a metabolic and/or regulatory signaling pathway in a cell [ 21 ]. Of 
particular interest are the “receptor mosaics,” i.e., macromolecular complexes 
formed at the membrane level by G protein-coupled receptors [ 42 ] as a conse-
quence of direct allosteric receptor–receptor interactions (see [ 56 ] for a review).    

  Fig. 9.3    Schematic representation of the hierarchic organization of the nervous system. The three 
main miniaturization levels, i.e., the macro-, meso-, and microscale, are illustrated       
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 As pointed out by some authors, the same principles could be applied across the 
different levels of organization to account for the fl ux of dynamically emergent 
macrostate brain confi gurations [ 8 ,  108 ]. More specifi cally, processes resulting in a 
“network dynamics” [ 66 ,  81 ] among interacting elements are operating at each level 
of organization, leading to the emergence of “self-similarity logic” as a characteris-
tic functional feature of the CNS. Furthermore, it is noteworthy that a common rule 
also seems to exist at all levels for what it concerns the remodeling processes in the 
CNS. It appears mainly based on the self-organization of the existing components 
to form a new complex capable of new “emergent” properties. These aspects will be 
discussed in the sections that follow. 

9.3.1     Interaction-Dominant Dynamics in the CNS 

 From a general point of view, the types of dynamics a biological system exhibits can 
be classifi ed into two broad classes [ 16 ]. In component-dominant dynamics, behav-
ior is the product of a rigidly delineated architecture of modules, each with predeter-
mined functions. On the contrary, interaction-dominant dynamics is crucially based 
on the plasticity of the system components and on the network of communication 
processes among these components. The nervous system can be better described as 
an interaction-dominant dynamics system where interaction processes alter the inte-
grative action of the single components and where it is diffi cult, and sometimes 
impossible, to assign tightly defi ned and unique roles to each specifi c component. 

 For what it concerns such a complex dynamics of the CNS, the best investigated 
level is the neural network level. Information handling by neural networks has a 
long story behind it. In this regard, it is enough to cite the classical article by 
McCulloch and Pitts [ 81 ] and the further development that followed (see [ 59 ] for a 
historical review), which established that from networks of abstract models of neu-
rons as switching devices, quite complex behavior can emerge. 

 In a network processing is carried out by a usually large number of simple pro-
cessing elements (called nodes), having a nonlinear response function [ 63 ]. Each 
node receives input (excitatory or inhibitory) from some number of other nodes, 
responds to that input according to its response function, and in turn excites or 
inhibits other nodes to which it is connected. Thus, every input to the network will 
result in a fl ow of collective confi gurations of the nodes often converging to some 
stable pattern (also called “attractor”) that represents the response of the network. 
There are some key characteristics worth noting. First, what such a system “knows” 
is essentially captured by the pattern of connections and the effi ciency associated 
with each of them [ 71 ]. Second, rather than using symbolic representations, the 
“vocabulary” of such a system consists of patterns of activation across different 
units. Furthermore, what made this type of dynamics so intriguing was the possibil-
ity of “learning procedures” [ 90 ], by which the network would adjust the connec-
tion effi ciencies in small incremental steps (for instance, based on examples of a 
target behavior) in such a way that over time the network’s response accuracy would 
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improve. Thus, the behavior emerging in a network relies on a distributed rather 
than a centralized control. 

 It has to be pointed out that the identifi cation of different classes of VT signals 
(see [ 9 ] for a review) including chemicals (such as neurotransmitters, ions, gases, 
and enzymes), as well as physical signals (such as electrotonic currents, tempera-
ture gradients, and pressure waves generated by arterial pulses), opens the possibil-
ity that the above described dynamics could not be limited to neural networks, but 
could also drive the behavior of the “complex cellular networks” (see Sect.  9.2.2.1 ) 
and, in particular, of the neuroastroglial networks [ 53 ]. In this context an organiza-
tional aspect deserving consideration concerns the possibility (see [ 3 ]) that the com-
munication pathway between a signal source and its targets could be modulated by 
a “modifi er” responding to teaching signals that could originate, for instance, from 
environmental inputs. Such a modifi er could be spatially situated along a VT diffu-
sion pathway and/or an astrocyte network [ 45 ]. 

 A network dynamics, however, also appears to characterize the meso- and 
microscale levels of brain organization. At the mesoscale level, the abovemen-
tioned synaptic clusters represent the functional bridge between the cellular net-
works and the molecular level. They have been shown to be very plastic entities 
from both the structural [ 61 ] and the functional [ 106 ] point of view. Notably, it has 
been reported that plastic changes induced by long-term potentiation (LTP) at one 
synaptic contact lower the threshold for the induction of LTP at neighboring syn-
apses at a stimulation strength that did not cause any plastic changes under control 
conditions [ 46 ]. Gally et al. [ 43 ] described a simple mechanism allowing such a 
temporal correlation between synaptic sites (see also [ 51 ]). It was based on a sim-
ple network dynamics in which the release from the depolarized postsynaptic spine 
of a diffusible substance (such as NO) was capable of acting as a signal returning 
from postsynaptic to both presynaptic and postsynaptic sites within some volume 
of tissue. The production of the diffusible substance at a particular time was a func-
tion of its activity at that time, and the movement of the substance by diffusion 
provided the possibility to establish temporal correlations between the activities of 
neighboring sites. For what it concerns the microscale level, in recent years, 
increasing experimental evidence supported the hypothesis that G protein-coupled 
receptors can form high- order receptor oligomers at the cell membrane (see [ 56 ] 
for a review). The existence of these supramolecular complexes is considered of 
particular importance because it allows the emergence of integrative functions per-
formed by a protein aggregate as a whole. In fact, owing to receptor–receptor inter-
actions in a suitable network dynamics, a confi guration change of a given receptor 
will transform the probability of changing the confi guration for the adjacent recep-
tors, and the effect will propagate throughout the cluster, leading to a complex 
collective behavior and to an integrated regulation of multiple effectors [ 6 ]. It was 
suggested that this molecular mechanism might also lead to a transient and/or per-
manent change of the synaptic effi cacy and then contribute to memory storage and 
engram formation (see [ 51 ] for a review). 

 Thus, network dynamics appears a characterizing feature of almost all the levels 
of the functional organization of the nervous system, providing a fi rst key element 
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of the “self-similarity logic” that shapes its design from the functional point of view. 
This point will be further illustrated in the next sections by taking into consideration 
some basic operations performed by CNS networks according to Charles 
Sherrington’s studies (see [ 7 ] for a review) and that can be realized at different min-
iaturization levels. 

9.3.1.1     The Concept of “Fringe” 

 A fringe is an area of overlap between two networks and can lead to facilitation. As 
shown in Fig.  9.4a , if neuron B has a low discharge rate, neuron B1 does not fi re, but 
if neuron A is fi ring at high frequency, neuron B1 excitability becomes increased, 
and it is easier for the activity of neuron B to excite B1. Neuron B1 is said to be in 
the subliminal facilitation fringe of A.

   As illustrated in Fig.  9.4b  for receptor complexes, the concept of fringe (as other 
classical types of controls such as feedback or feed-forward and spatial or temporal 
summation) can also be used to describe some signifi cant behavior of molecular 
networks. The concept of fringe is of particular importance since it can suggest 
mechanisms that at molecular network level regulate the cross talk between path-
ways allowing the production of complex cellular responses [ 3 ].  

9.3.1.2     The Concept of “Lateral Inhibition” 

 Figure  9.4c  illustrates a classical representation of lateral inhibition for neural cir-
cuits (see [ 19 ]) that can be transferred (Fig.  9.4d ) to molecular networks. Thus, 
beside “physical compartmentalization” that allows a very effi cient spatial segrega-
tion of signaling pathways, also a functional segregation, via lateral inhibition, can 
produce a similar effect. 

 The fact that a similar organization of the circuit, as in the case of fringe, can be 
recognized for lateral inhibition at neural network level as well as at molecular net-
work level underlines once again the potential heuristic value of “self-similarity 
logic.”   

9.3.2     Remodeling Processes in the Nervous System 

 The experience-based reshaping of the brain structures [ 82 ] is another general fea-
ture that deeply characterizes the nervous system, and a “self-similarity logic” prin-
ciple appears a useful descriptive concept for this aspect as well. 

 Cell networks can be redeployed (or reused) for multiple functions, as recently 
shown by Anderson [ 15 ] following a careful survey of neuroimaging data. In this 
context, it was pointed out, for instance, that the Broca area is involved in multiple 
functional cognitive tasks besides containing FM involved in the control of speech 
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[ 48 ]. Changes in connectivity between neurons can be obtained not only by estab-
lishing new connections (see, for instance, the neural circuitry responsible for sea-
sonal breading in several species [ 1 ]) but also by reactivating “silent” synapses 
when needed [ 68 ]. At the molecular level, the existence of receptor–receptor 
 interactions [ 10 ] can lead to the assembly of oligomeric receptor complexes with 
different properties even if formed by the same types of monomers [ 11 ]. 

 It is noteworthy that a common rule seems to exist at all levels. It is mainly based 
on the self-organization of existing components to form a new complex capable of 

a b

c d

  Fig. 9.4    ( a ) Schematic representation of the concept of fringe. Two input neurons,  A  and  B , 
directly acting on two output neurons ( A1  and  B1 ) are considered. It is surmised that only  A  gives 
an above threshold input to its target neuron ( upper panel ). However, if it fi res at a high frequency, 
it can lower the threshold for the fi ring of  B1  ( lower panel ). ( b ) The same basic scheme is applied 
at microscale to receptor mosaics formed by  A   2   A  and  D2  receptors with reciprocal inhibitory activ-
ity (see [ 56 ]). A low concentration of adenosine can activate only Gs-mediated signaling from  A   2   A  
homodimers ( upper panel ). However, high concentrations of adenosine can induce, via receptor–
receptor interactions, an inhibition of the  D2  receptor in the heterotrimer and its shift from Gi- to 
Gs-mediated signaling ( lower panel ). ( c ) Lateral inhibition mediated by interneurons ( In ) leads to 
focus the activity of a neural circuit in selected groups of neurons. ( d ) Possible lateral inhibition 
process at microscale level in a system involving  A   2   A^D   2   heterodimers and  A   2   A  homodimers. 
Activation of  D2  receptors by dopamine leads to a reduction in the affi nity of  A   2   A  receptors in the 
heterodimers, hence in a sharpening of the Gs-mediated signaling       
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“emergent” properties. “Proliferation” (production, generation) of new system com-
ponents seems to play a minor role in the remodeling processes occurring in the 
CNS. In this respect, the “self-similarity logic” driving the remodeling of the CNS 
appears to signifi cantly differ from that operating in other plastic systems, as, for 
instance, the vascular system (see [ 54 ]). To illustrate the concept, the sprouting 
phenomenon (occurring in both systems) can be considered. Sprouting of capillar-
ies involves the recruitment of many endothelial cells and the production of special-
ized endothelial cells called tip cells, which extending and retracting fi lopodia 
defi ne the direction in which the new vascular sprout grows. Thus, these cells per-
form an analogous function to growth cones of neurons [ 44 ]. The latter, however, 
are dynamic, actin-supported extensions of single developing axons. 

 By using a metaphor originally proposed by Agnati et al. [ 8 ], the “self-similarity 
logic” emerging in the CNS remodeling processes can be illustrated with the term 
“mosaic” as it is defi ned in fi gurative art, i.e., as the process of making pictures by 
inlaying small bits of colored stones ( tesserae ). Thus the term indicates how from a 
given set of elements it is possible to achieve different patterns endowed with differ-
ent emergent properties.   

9.4     Concluding Remarks: A Place for Self-Similarity 
in a Global Model of the Nervous System? 

 A quite large body of presently available data identifi ed self-similar structures at all 
levels of both the morphological and the functional organization of the nervous 
system. They appear almost embedded within one another, recalling the image of 
the Russian Matryoshka dolls [ 4 ,  8 ], with a “self-similarity logic” (i.e., a set of 
almost identical rules) operating at the successive levels of such a nested system. As 
pointed out by Werner [ 109 ], however, these observations remained largely islands 
in the otherwise rapidly advancing theoretical neuroscience with different priorities. 
Thus, a better integration of self-similarity with other insights into brain organiza-
tion and complexity would be needed. 

 In this respect, of substantial interest is the biophysical evidence for the brain 
being a complex system in a regime of criticality, as understood in statistical physics 
(see [ 27 ] and [ 109 ] for a review). In statistical physics, systems operating at the 
critical point of transition between ordered and random behavior are metastable 
with respect to a set of control parameters and are capable of rapid qualitative 
change in response to fl uctuations of external input. The important feature of the 
system organization following the critical transition is the formation of new objects 
with distinct properties. Typical physical examples are phase transitions, as, for 
instance, that from water to ice or from ferro- to paramagnetism. 

 For what it concerns the nervous system, criticality has a distinguished history. 
As early as 1950, Turing [ 103 ] postulated that the brain as a dynamical system 
would operate near a critical state as the prerequisite for instantaneous reaction to 
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novelty. A quite large body of experimental observations of sudden transitions 
between stable states was subsequently accumulated. Illustrative examples include 
the motor behavior [ 57 ,  67 ] and the visual system [ 60 ]. They were considered evi-
dence for the brain being a pattern-forming system that can switch fl exibly from one 
coherent state to another. 

 As far as the signifi cance of criticality is concerned, three attributes deserve 
consideration [ 109 ]. The fi rst is the just mentioned characteristic of critical tran-
sitions making them a universal mechanism for rapid switching between differ-
ent cooperative patterns of neuronal behavior. Furthermore, excitable systems at 
criticality were shown to exhibit an optimal dynamical range for information 
processing [ 69 ]. Finally, a model that reproduces the typical features of systems 
at a critical point can learn and remember complex logical rules [ 33 ]. According 
to Werner [ 109 ], these intriguing features of critical systems are at the basis of 
their current appeal as a general theoretical framework to describe the nervous 
system. 

 An important question for our discussion can now be raised. Is there any relation 
between the just briefl y summarized biophysical features of the nervous system and 
the self-similar organization it exhibits? Also documented by Aguirre et al. [ 13 ], the 
intimate relation between self-similar structures and nonlinear dynamics in dissipa-
tive systems is evident and well-substantiated, self-similarity, and self-similarity 
logic appearing basic design principles for complex systems. Two aspects, in par-
ticular, can be here emphasized. The fi rst point is of morphological nature. A self- 
similar structure, such as a network (see Sect.  9.2.2 ), is likely the most economic 
architecture supporting dynamic transitions associated with the formation and dis-
solution of attractors (see [ 112 ]). In addition, the fractal morphology of the ele-
ments forming the cell networks in the nervous system is consistent with the 
constraint that the time for propagating signals as well as the length of distribution 
pathways should be minimized [ 110 ]. The second point concerns dynamics. In fact, 
at critical transitions, a reordering process of a system is needed in which events at 
many scales make contributions of equal importance [ 111 ]. A hierarchical nesting 
of self-similar structures operating according to similar rules (“self-similarity 
logic”) could, therefore, well support a process of this type, representing a compact 
format to store a range of temporal and/or spatial stimulus parameters: the metaphor 
of a set of strings resonating to specifi c frequencies has been proposed [ 109 ] to 
illustrate this concept. Also from the point of view of the computational tasks the 
nervous system can perform [ 53 ], it is possible to appreciate the relevance of this 
“vertical” morphofunctional organization, since it allows an enormous number of 
possible confi gurations for each FM, providing it with an extraordinary potential 
capability to process and store information [ 12 ]. 

 In conclusion, although a great many questions concerning the dynamical prop-
erties of the nervous system as a hierarchic system of networks are still open, the 
self-similarity characterizing its structural and functional organization appears not 
only an effi cient design principle but also a unifying concept to describe its com-
plexity and its concerted, holistic behavior.     
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Chapter 10
Fractality of Cranial Sutures

Takashi Miura

Abstract It has long been known that skull suture has a typical fractal structure. 
Although the fractal dimensions have been measured, the generation mechanism of 
the fractal structure remains to be elucidated. Recent advances in the mathematical 
modeling of biological pattern formation have provided useful frameworks for 
understanding this mechanism. Applying a simple fractal principle, which the same 
rule appears on different scales, this chapter shows how various mechanisms lead to 
the formation of fractal structures in cranial sutures.

Keywords Suture fractal • Eden • Diffusion-limited aggregation

10.1  Biology of Skull Suture Development

Skull sutures, the structures between the several bones that make up the skull, are a 
well-known biological example of a fractal structure. At birth, sutures are relatively 
wide and straight (Fig. 10.1a, [40]). During development, they gradually wind and 
develop interdigitating patterns without changing their width (Fig. 10.1b, [7]). This 
winding structure sometimes becomes very complex and exhibits self-similarity 
(Fig. 10.1c, [9, 10, 17–20, 44]). After adolescence, the suture tissue gradually disap-
pears and the skull bones become fused [5].

Skull suture biology is an interdisciplinary field [5, 6]. The timing of skull fusion 
is clinically important because premature fusion of the skull causes a pathological 
state called craniosynostosis [15], which leads to a deformed skull. Several candi-
date genes for craniosynostosis, such as fibroblast growth factor receptors [42], 
transcription factor twist [14], and ephrins [41], have been cloned from craniosyn-
ostosis patients [5]. Developmental biology of the suture has been classically stud-
ied by morphometry and surgical operation [23–30]. Recent advances in transgenic 
technology enable us to assay the functions of various genes involved in suture 
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development. Suture development involves several transcription factors (TWIST 
[3], MSX2 [37], Alx4 [2], Foxc1 [38], RUNX2 [36], Dlx5 [11]), extracellular 
signaling molecules (TGF betas [39], FGFs and their receptors [12, 21], BMPs, and 
hedgehog family [16]), and extracellular matrices [35]. Anthropologists are more 
interested in the mechanical aspects of suturing. Suture interdigitation is thought to 
strengthen the mechanical connection between bones; this idea has been mechani-
cally tested [13]. The effect of external forces has also been investigated in artifi-
cially deformed skulls [1].

10.2  Fundamental Principle of Fractal Structure Formation: 
“The Same Rule Appears on Different Scales”

Models that generate fractal structures are based on a simple principle – “the same 
rule appears on different scales.” Fractal structures characteristically exhibit self- 
similarity, in which the same structure appears at different spatial scales. A structure 
generated by this principle is self-similar because the same structures on various 
spatial scales are simultaneously generated by the same rule.

A classic example of a fractal structure is the Koch curve (Fig. 10.2a). This struc-
ture is generated by repeated application of a specific rule to line segments at differ-
ent spatial scales. Initially, the line segment is divided into three subsegments, and 
the middle segment is reformed into an equilateral triangle. Repetition of this pro-
cess results in the Koch curve, a complex structure that is clearly self-similar, and 
obeys the above principle, the same rule appears on different scales.

Another class of models that generate fractal structure is the Eden front 
(Fig. 10.2b). Random addition of a lattice to the interface results in a rugged sur-
face, which is regarded as a fractal structure. This scheme was first proposed as a 
general growth model of cell colonies [8]. The model begins with an array of occu-
pied (black) and unoccupied (white) sites on a rectangular lattice. In each time step, 
a site adjacent to the preexisting occupied site (gray) is randomly chosen and con-
verted to an occupied site (Fig. 10.2b). Repetition of this process results establishes 

a b c

Fig. 10.1 Suture development. (a) Newborn suture is straight and relatively wide. (b) Adult suture 
is thin and interdigitated. (c) A lambda suture of the human skull. The suture can develop complex 
fractal patterns (From Miura et al. [22], repdroduced with permission of the publisher)
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the characteristic ragged surface. The perimeter of the structure is proportional to 
the cluster size on a log-log plot (i.e., is a power-law function of the cluster size). 
Like the Koch curve, this system typifies a fractal structure, and if we change the 
measurement length, a similar rule appears on different scales. To demonstrate this, 
we double the lattice size to ∆x = 2 in Fig. 10.2b. The conversion rule is that if any 
of the four small sites constituting a larger site is occupied, the large site is labeled 
as occupied. The larger system qualitatively displays the same rule on a longer tim-
escale, that is, one of the neighboring sites eventually becomes an occupied lattice. 
Therefore, this model also exemplifies the principle “the same rule appears on dif-
ferent scales.”

Diffusion-limited aggregation (DLA) is another class of models that generates 
fractal structures (Fig. 10.2c). In DLA, the original shape of the occupied region is 
defined on a square lattice. A particle is then released far from the edge of the region 
and moves randomly until it hits the occupied region. Here, we suppose that the 
occupied region is a bone structure. When the free particle encounters the bone, it is 
converted to bone, and another particle is released far from the bone-mesenchyme 

∆  = 1

∆  = 2

∆t = 1 ∆t = 10

∆t

∆t ∆t

∆t

1
3

1
3

1
3

1
3

2

3

4

Distribution probability of a particle

a

c

b

Fig. 10.2 Three models that generate fractal geometry. (a) Koch curve. A small structure is 
repeatedly added to the larger structure with spatial scale ∆x. The same rule is applied on different 
spatial scales ∆x. (b) Eden front. We define occupied sites (black) and unoccupied sites (gray and 
white) on a rectangular lattice. On the smaller spatial scale at ∆t = 1, an interface (gray) site is 
randomly chosen at each time step ∆t and turned black. Applying the same rule on a larger spatial 
scale ∆x = 2, the timescale is extended to 2∆t. (c) Diffusion-limited aggregation (DLA). In this 
model, the aggregation of randomly moving particles results in a ragged surface. The size of the 
generated structure is comparable to the diffusion length of the particles, that is, to the distribution 
probability of the particles, which depends on the timescale of diffusion ∆t
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boundary. Eventually, this process forms a ragged surface (Fig. 10.2c). Intuitively, 
this pattern formation can be understood from the protruded areas, which are more 
likely to capture moving particles (and hence expand) than the enclosed areas. The 
wavelength of the generated structure at a certain timescale ∆t depends on the 
diffusion length of the particles, which is determined by their diffusion coefficient 
du and timescale ∆t (Fig. 10.2c). Therefore, the size of the pattern changes over 
different timescales by the same principle, namely, “the same rule appears in differ-
ent scales.”

10.3  Models of Skull Suture Development

10.3.1  Eden Collision Model

To our knowledge, the first attempt to explain fractality in fractal sutures was the 
Eden-based model. Prof Miyajima of Chubu University [33, 34] modeled the 
suture pattern as two confronting Eden fronts (Fig. 10.3). These fronts proceed 
and collide, forming the ragged interfaces of two bones. Although Miyajima’s 
model is a pioneering work in fractal suturing, it has several shortcomings. First, 
the time course of suture interdigitation development appears to differ from exper-
imental observation. Real sutures become interdigitated after the approach of two 
osteogenic fronts (Fig. 10.1). In the Eden collision model, the two osteogenic 
fronts are ragged from the beginning, and the fractal dimension reduces after the 
collision. Second, the model cannot reproduce the maintenance of thin narrow 
suture tissue. This characteristic is clinically important for elucidating the mecha-
nism of craniosynostosis. Third, known molecular interactions are difficult to 
incorporate in this system. The model assumes stochastic growth of the front, that 
is, the probability of growth is invariant along the osteogenic front and indepen-
dent of the cell cycle. Whether the system actually obeys this rule is difficult to 
verify in experiments.

Fig. 10.3 Eden collision model of suture development [33, 34]. The model consists of two con-
fronting Eden fronts. The originally straight interface roughens to form the Eden front and two 
interfaces collide to form the interdigitated boundary of the bones
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10.3.2  Partial Differential Equation (PDE)-Based Model 
and the Koch Curve

Another class of models, based on partial differential equations (PDEs), was pro-
posed in 2009 [22]. The Miura model proposes two variables: the tissue differentia-
tion state u(x,y,t) and distribution of the substrate factor molecules v(x,y,t). The 
tissue differentiation state represents each point (x,y) at time t as bone (u = 1) or 
mesenchyme (u = −1). The tissue differentiation state influences the generation of 
substrate factors, which are diffusible signaling molecules (such as FGF18 and 
BMP4) produced by the mesenchyme. The substrate molecule v promotes osteo-
genic differentiation (Fig. 10.4a).

Mesenchyme

: Tissue
differentiation

State

: Substrate
molecule

Osteocyte

Spatial scale

Substrate molecule

Time

t

a b

c d

Fig. 10.4 PDE-based model of fractal structure generation. (a) Model definition. The model has 
two variables: the tissue differentiation state u(x,y,t) and the substrate molecule distribution v(x,y,t). 
u has two stable states, bone (u = 1) and mesenchyme (u = −1). Substrate molecules passively dif-
fuse from the mesenchyme tissue, promoting osteogenic differentiation. (b, c) Numerical simula-
tion results of the model. Although interdigitation develops in (b), we observe only two 
characteristic lengths (the width and curvature of the suture). Fractal structures are established in 
(c). (d) Intuitive explanation of fractal pattern formation. The pattern is formed similarly to the 
Koch curve (From Miura et al. [22], reproduced with permission of the publisher)
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By combining these two effects, this model reproduces the maintenance of nar-
row suture tissue and formation of interdigitation (Fig. 10.4a, b).

These behaviors are intuitively explained as follows: by default, the osteogenic 
front proceeds under the effect of substrate factors from the suture tissue. When two 
osteogenic fronts approach, the concentrations of the substrate factors decrease because 
their source (the mesenchyme tissue) is narrowed. Eventually, the osteogenic front 
progression is halted. If the suture tissue becomes too narrow, the substrate factor 
becomes so low that the osteogenic fronts retract. Consequently, this mechanism estab-
lishes an optimal width, maintaining a band-like region of mesenchyme. The optimal 
width of the suture tissue depends on the diffusion length of the substrate molecules.

We now consider the two-dimensional situation. When the band-like solution is 
slightly winding, the osteogenic front becomes slightly convex because the sur-
rounding region contains more mesenchyme tissue, and the local concentration of 
substrate molecules is high. Therefore, any initial slight perturbation is amplified, 
causing interdigitation of the narrow band-like structure. In a mathematical analysis 
of this system Ohta et al. [32], derived the wavelength of the interdigitation.

The above-described system has only two fixed characteristic lengths and cannot 
replicate the scaling behavior observed in fractal structures. However, the system is 
well understood, and the width of the suture tissue and characteristic length of the 
interdigitation can be mathematically determined [32]. To obtain fractal structures, 
we need an additional mechanism. We assume that the spatial effect (governed by 
the diffusion coefficients) in the system is gradually decreased. After implementing 
the time-dependent effect (Fig. 10.4c), the system tends to generate smaller struc-
tures at later time points. This process is qualitatively similar to the procedure that 
generates the Koch curve and exhibits similar scaling behavior under an appropri-
ately chosen growth function.

The Miura model has two major advantages. First, it includes a known molecular 
network; therefore, we can predict the effects of modifying a specific gene. Second, 
the model incorporates the maintenance of tissue width and thus handles the distinc-
tion between normal and craniosynostosis suture. However, the model does not 
seem to replicate the observed suture development, in which the rapid generation of 
larger structures is followed by the emergence of smaller structures [22].

10.3.3  Mechanics-Based Model and DLA

Another model [45] generates suture fractal patterns by mechanistic principles 
(Fig. 10.5). Zollikofer’s model first defines the boundary of two bones and then 
calculates the mechanical stress distribution φ inside the bone, assuming that this 
stress is balanced and static. Under such conditions, φ satisfies Laplace’s equation 
∆φ = 0. Next, the boundary is iteratively grown by a stochastic process. The proba-
bility of growth depends on φ. In addition, the boundary is smoothed by a surface 
tension term. This model reproduces the formation of interdigitated patterns 
(Fig. 10.5b).
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In fact, the mechanics-based and DLA models are equivalent. The distribution 
probability of randomly moving particles obeys Laplace’s equation. Therefore, the 
stochastic addition of particles to the interface is equivalent to DLA, which has a 
fractal dimension as discussed in the previous section.

Zollikofer’s model directly incorporates the mechanical aspect of bone growth. 
Mechanics is an important component of anthropological research, and this predicts 
the enhanced interdigitated structure under increased mechanical load [4]. However, 
the stable suture width does not naturally emerge from the model; instead, the width 
of the suture tissue is assumed a priori.

10.4  Future Directions

10.4.1  Other Classes of Models That Generate Fractal 
Structures

Fractal structures may form by mechanisms other than those discussed above. True 
fractal structures may require anomalous diffusion or stochasticity.

Anomalous diffusion is governed by the typical equation of fluid flow in porous 
media. Specifically, the distribution v of diffusible signaling molecules in a porous 

media obeys the equation 
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Fig. 10.5 Mechanics-based model of suture interdigitation formation. (a) The model defines two 
bones B1 and B2 with boundary S. The interface iteratively grows from both sides according to the 
stress distribution φ. (b) Suture pattern generated by the model (From [45], reproduced with 
 permission of the publisher)
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mathematically expressed as u u t t x x® ® ®l l la b g, , . When the scaling 
parameters α; β, and γ are related through a b a g- = -m 2 , the system generates 
fractal structures because the governing equation is unaltered by the scale change, 
hence satisfying our fundamental principle: the same rule appears on different 
scales.

White noise added to a system also exhibits fractal behavior (Fig. 10.6). In our 
preliminary results, adding white noise (random noise) to the PDE system increased 
the complexity of the fractal structure, probably because white noise is itself a frac-
tal phenomenon. Coarsening the white noise on spatial scale ∆x = 1 is equivalent to 
generating white noise on a larger spatial scale ∆x = 2 (Fig. 10.6b). Again, we find 
that the same rule appears on different scales.

10.4.2  Experimental Verification of Theoretical Models

These theoretical models must be verified in carefully designed experiments. In the 
model of [45], mechanical stress performs a similar role to the substrate factor in 
[22]. The stress distributions in an elastic body and the distribution of diffusible 
substances in an equilibrated solution both obey Laplace’s equation (∆u = 0); there-
fore, we cannot distinguish these two mechanisms by their model behaviors alone. 
In addition, the chemical and mechanical factors are interdependent in actual sutur-
ing; for instance, mechanical stress can alter the gene expression in suture tissue [43] 
and ongoing differentiation obviously affects the mechanical property of bone [4].

The measurement of model parameters remains technically challenging. The dif-
fusion coefficients of specific morphogens in the PDE model can be measured by 
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Fig. 10.6 White noise is a special type of fractal structure. (a) Addition of white noise to the PDE 
system results in a complex fractal structure. (b) If a white noise of small spatial scale (∆x = 1) is 
observed on a larger spatial scale (∆x = 2) by coarsening, we again obtain a white noise pattern
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imaging techniques such as fluorescence recovery after photobleaching and fluores-
cence correlation spectroscopy [31]. Unfortunately, we lack consensus on the single 
most important molecule in this system, so diffusible signaling molecules are 
treated collectively. New molecules that are crucial for pattern formation may be 
identified in the future. The mechanics model [45] requires the mechanical proper-
ties of suture tissue, which may be measurable using atomic force microscopy. At 
present, the mechanism of fractal pattern formation remains unclear and must be 
elucidated in further experimental study.

10.4.3  Fractal Suture Analysis and Craniosynostosis 
in a Clinical Setting

The relationship between fractal dimension and craniosynostosis can be determined 
in a PDE framework. In general, lowering the effect of the signaling molecule v 
promotes curvature in the PDE model. Conversely, increasing the effect of the sig-
naling molecule in the PDE model should induce craniosynostosis. Therefore, cra-
niosynostosis development may be negatively correlated with the degree of 
curvature. The degree of interdigitation can be estimated from the amplitude of the 
winding pattern. However, an easier approach is to measure the fractal dimension 
using the box count method. Therefore, the fractal dimension provides a simple 
diagnostic tool for craniosynostosis.
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Chapter 11
The Fractal Geometry of the Human Brain: 
An Evolutionary Perspective

Michel A. Hofman

Abstract The evolution of the brain in mammals is characterized by changes in 
size, architecture, and internal organization. Consequently, the geometry of the 
brain, and especially the size and shape of the cerebral cortex, has changed notably 
during evolution. Comparative studies of the cerebral cortex suggest that there are 
general architectural principles governing its growth and evolutionary development. 
In this chapter some of the design principles and operational modes that underlie the 
fractal geometry and information processing capacity of the cerebral cortex in pri-
mates, including humans, will be explored. It is shown that the development of the 
cortex coordinates folding with connectivity in a way that produces smaller and 
faster brains.

Keywords Brain design • Brain evolution • Cerebral cortex • Cortical folding • 
Fractal geometry • Human brain • Information processing • Primate neocortex • 
Neural wiring • Neural networks • Primates • Scaling

11.1  Introduction

During the past decades, considerable progress has been made in explaining the 
evolution of brain size in mammals in terms of physical and adaptive principles 
(see, e.g., [36, 47, 51, 61, 82]). In addition, a quantitative approach to the com-
parative morphology of the brain has made it possible to identify and formalize 
empirical regularities in the diversity of brain design, especially in the geometry 
of the cerebral cortex (e.g., [12, 13, 32, 35]). Though many aspects of brain 
evolution still remain unexplained, these comparative investigations, using scal-
ing methods and mathematical models, have provided new insights into the 
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evolutionary dynamics of the brain and its morphological constraints. The 
object of this chapter is to examine some of the design principles and opera-
tional modes that underlie the fractal geometry of the cerebral cortex in pri-
mates, including humans. It is shown that the development of the cortex 
coordinates folding with connectivity in a way that produces smaller and faster 
brains, and it will be argued that there are limits to information processing in a 
neuron-based system.

11.2  Principles of Brain Evolution

The evolution of the brain in mammals has been accompanied by an internal 
reorganization as a result of differential growth of its major parts. Consequently, 
the geometry of the brain, and especially the size and shape of the cerebral 
cortex, has changed notably since the late Cretaceous [40]. The evolutionary 
expansion of the cerebral cortex, indeed, is among the most distinctive mor-
phological features of mammalian brains. Particularly in species with large 
brains, and most notably in great apes and marine mammals, the brain becomes 
disproportionately composed of neocortex [1, 66, 67, 73] (see Fig. 11.1). The 
volume of cortical gray matter, for example, expressed as a percentage of total 
brain volume increases from about 25 % for insectivores to 50 % for humans 
[23, 31], whereas the relative size of the entire cerebral cortex (including white 
matter) goes from 40 % in mice to about 80 % in humans [2, 25, 26, 31]. The 
relative size of the cerebellum, on the other hand, remains constant across phy-
logenetic groups, occupying about 10–15 % of the total brain mass in different 
orders [29, 50, 71].

Fig. 11.1 Lateral views of the brains of some anthropoid primates showing the evolutionary 
expansion of the neocortex. Note the diverse configurations and gyral and sulcal patterns. Saimiri 
sciureus: E = 22 g; Macaca mulatta: E = 95 g; Pan troglodytes: E = 420 g; Homo sapiens: E = 1,350 g 
(Reproduced with permission from Hofman [36])
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11.2.1  Evolution of the Cerebral Cortex

It is now well established that the cerebral cortex forms as a smooth sheet populated 
by neurons that proliferate at the ventricular surface and migrate outwards along 
radial glial fibers (for reviews, see [16, 57]). Differences in the duration of neurogen-
esis, which increases more rapidly with brain size for the cerebral cortex than for 
subcortical areas [15, 22, 48], lead to a systematic increase in the ratio of the cortical 
to subcortical regions. Whereas in small-brained species, the cortical volume expands 
by virtue of a combined increase in surface area and cortical thickness; the increase 
of the cortical volume in species with a brain size of more than 3–4 cm3 is almost 
entirely due to a disproportionate expansion of the cortical surface area [32]. It is the 
increase of the cortical surface area beyond that expected for geometrically similar 
objects of different volumes which creates the need to cortical folding [32, 35].

Consequently, the brains of larger species, like primates, are not well described 
by the ideal constructs of Euclidean geometry. Mandelbrot [52] coined the word 
“fractal” to identify complex geometric forms and developed the concept of fractal 
scaling to describe their organized variability. An important feature of fractal objects 
is that they are invariant, in a statistical sense, over a wide range of scales, a property 
that is known as scaling (for a review, see [35]).

In mammals with convoluted brains, among which are almost all primates, the 
cortical surface area, rather than being proportional to the 2/3 power of geometric 
similarity, is nearly a linear function of brain volume [30, 31] (Fig. 11.2). It means 
that if a mouse brain (volume = 0.5 cm3) were scaled up as the 2/3 power to the size 
of the human brain (volume = 1,400 cm3) it would have a cortical surface of only 
about 480 cm2. The actual surface area of the human cortex, however, is about 
2,000 cm2, which is more than four times larger than would be predicted assuming 

Fig. 11.2 Total cortical 
surface area as a function of 
brain volume in terrestrial 
mammals. Logarithmic 
scale. The slope of the 
regression line is 
0.90 ± 0.012, representing 
the surface-volume 
relationship for convoluted 
brains. Note that the cortical 
surface area of species with 
convoluted brains (area 
>10 cm2) is nearly a linear 
function of brain volume, 
rather than being 
proportional to the 2/3 power 
of geometric similarity 
(Modified with permission 
from Hofman [33])
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geometric similarity, indicating that mammalian brains change their shape by 
becoming folded as they increase in size.

11.2.2  Mechanisms of Cortical Folding

Bok [5] was among the first comparative neuroanatomists who carefully observed 
and measured the folding of the human cortex. He cataloged possible geometrical 
deformations that could emerge in the folding of a layered system, having a radial 
structure which retained a constant volume during the folding process (Fig. 11.3). 
Since then several hypotheses about cortical folding have been developed, mainly 
emphasizing mechanisms intrinsic to the cortical gray matter (for reviews, see [3, 
32]). Later studies suggest that extrinsic factors are more important and that tension 
along axons in the white matter is the primary driving force for cortical folding [76]. 

a
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f

Fig. 11.3 Several ways for a simple pattern to change its intrinsic curvature, in which in each case 
different properties are maintained (after Bok 1929). In (b) the elements have kept their original 
form and surface area, in (c) their original arrangement and height, in (d) their original arrange-
ment and form, and in (e) their original arrangement and surface area. In (f), here added to Bok’s 
original series, the elements have kept their original arrangement and surface area, as in figure (e), 
but here the elements of the center row, instead of those of the inner row, have kept their original 
form. Although none of the patterns are found in the mammalian cortex sensu stricto, the pattern 
of (f) corresponds most with the transformations found in the geometry of the cerebral cortex dur-
ing folding (Reproduced with permission from Hofman [32])
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By keeping the aggregate length of axonal and dendritic wiring low, tension should 
contribute to the compactness of neural circuitry throughout the cortex.

Herculano-Houzel and colleagues have found that connectivity and cortical fold-
ing are directly related across species and that a simple model based on a white 
matter-based mechanism may account for increased cortical folding in the primate 
cerebral cortex [27, 28, 53, 58]. They argue that the mechanical tension generated 
by the pattern of connectivity of fiber bundles traveling through white matter may 
account for the observed pattern of cortical surface convolutions. The authors pro-
pose the degree of tension, taken as directly proportional to the morphological char-
acteristics of the fiber bundle (i.e., axonal length and average cross-sectional area, 
and the proportion of efferent neurons), determines how much the cortical surface 
folds inwards.

This model is used to explain how surface convolutions vary with brain size and 
how gray matter thickness varies. Thus, the local wiring and cortical folding is a 
simple strategy that helps to fit the large sheetlike cortex into a compact space and 
keeps cortical connections short. An important evolutionary advantage of this 
design principle is that it enables brains to be more compact and faster with increas-
ing size [24, 42].

Although the buckling and folding of curved multilayered surfaces, such as the 
cortical surface in mammals, has been characterized experimentally, the transitions 
in folding pattern cannot be reliably predicted by current theoretical models, owing 
to the nonlinearity of the underlying stretching and bending forces. Recently, Stoop 
and colleagues [72] presented a theory that builds on general differential-geometry 
principles and that describes the wrinkling morphology and pattern selection in 
curved multilayered surfaces. The framework developed in that study enables a sys-
tematic classification of wrinkling phenomena in complex geometries, by examin-
ing the symmetry properties of effective higher-order differential operators built 
from the surface metric and film-substrate coupling forces. A comparison to earlier 
experiments suggests that the theory is universally applicable to microscopic and 
macroscopic systems, and it therefore may help to contribute to a better understand-
ing of tissue mechanics and morphogenesis of multilayered tissues, including the 
development of brain convolutions.

11.2.3  Scaling of the Primate Neocortex

Analysis of the cerebral cortex in anthropoid primates revealed that the volume of 
the neocortex is highly predictable from absolute brain size [32, 35, 83]. The vol-
ume of the cortical gray matter, containing local networks of neurons that are wired 
by dendrites and mostly nonmyelinated axons, is basically a linear function of brain 
volume, whereas the mass of long-range axons, forming the underlying white mat-
ter volume, increases disproportionately with brain size (Fig. 11.4). As a result, the 
volume of gray matter expressed as a percentage of total brain volume is about the 
same for all anthropoid primates. The relative white matter volume, on the other 
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hand, increases with brain size, from 9 % in pygmy marmosets (Cebuella pygmaea) 
to about 35 % in humans, the highest value in primates [32, 36].

Volumetric measurements of gray and white matter in the neocortex of anthro-
poid primates, furthermore, have shown that the “universal scaling law” of neocorti-
cal gray to white matter applies separately for frontal and non-frontal lobes and that 
changes in the frontal (but not non-frontal) white matter volume are associated with 
changes in other parts of the brain, including the basal ganglia, a group of subcorti-
cal nuclei functionally linked to executive control [65, 68]. These comparative anal-
yses indicate that the evolutionary process of neocorticalization in primates is 
mainly due to the progressive expansion of the axonal mass that implement global 
communication, rather than to the increase in the number of cortical neurons and the 
importance of high neural connectivity in the evolution of brain size in anthropoid 
primates.

11.3  Fractal Geometry of Convoluted Brains

The principal idea underlying scaling is that, although biological systems may 
evolve by rules distinct from these governing the development of a physical system, 
they cannot violate basic physical principles. One of the standard problems of clas-
sical scaling is that for any series of similar objects the surface area is proportional 
to the square of a length dimension, whereas the volume is proportional to the cube. 
According to this geometric principle, also known as Galileo’s principle of 
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Fig. 11.4 Volumes of cerebral gray and white matter as a function of brain volume in anthropoid 
primates, including humans. Logarithmic scale. The slopes of the regression lines are 0.985 ± 0.009 
(gray matter) and 1.241 ± 0.020 (white matter). Note the difference in the rate of change between 
gray matter (neural elements) and white matter (neural connections) as brain size increases 
(Reproduced with permission from Hofman [34])
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“similitude,” surface area is proportional to the 2/3 power of volume, or in its gen-
eralized form

 
Area Volume= ( )k

D /3

 
(11.1)

where k is a scaling constant and D = 2, the topological or Euclidean dimension of 
geometric similarity.

To determine the surface dimension D for mammalian brains, the empirical 
exponents were related to the generalized surface-volume relation (Eq. 11.1). 
The allometric equations are given in Table 11.1. The surface dimension of 
nonconvoluted brains coincides with the Euclidean dimension [30], indicating 
that mammals with a smooth cerebral cortex satisfy the geometric scaling 
model, very similar to the spherical surface area of an Euclidean hemisphere, 
where area = 3.84 (volume)2/3 . Convoluted brains, on the other hand, with their 
surface dimension of D = 2.70 ± 0.07, have a fractal dimension far above the 
expected value of standard dimensional analysis (Table 11.2; see also [19, 20, 
33, 35]).

Most studies of the fractal properties of the cerebral cortex have focused on com-
puting whole-brain measures. Recently, King [43] was able to compute the local 
fractal dimension of the human cortex as extracted from high-resolution MRI scans. 
It turns out that the local fractal dimension values of the cerebral cortex vary roughly 
between 2.5 and 3.0, depending on the size of the region over which the counting 
was performed.

Table 11.1 Allometric scaling of the cerebral cortex against brain volume in mammals with 
convoluted brains

Covariate
(Sub)
orders Species

Intercept, 
b

Standard major 
axis, α (± SD) r

Outer cortical surface  
area (cm2)

7 18 4.47 0.726 ± 0.021 0.994

Total cortical surface  
area (cm2)

9 23 3.77 0.901 ± 0.022 0.994

Mean cortical thickness 
(cm)

7 16 0.106 0.129 ± 0.019 0.832

Cortical volume (gray 
matter, cm3)

7 16 0.520 0.982 ± 0.017 0.998

Cortical volume (white 
matter, cm3)

7 16 0.046 1.280 ± 0.045 0.991

Cortical volume (total, 
cm3)

9 21 0.396 1.099 ± 0.028 0.994

Reproduced with permission from Hofman [33]
The model is log log logy b x= +a , where x is the variate (i.e., brain volume in cubic centime-
ters), y is the covariate in centimeter units, log b is the log-y intercept at log x = 0, and α is the slope 
of the standard major axis. The strength of the relationship is reflected by Pearson’s correlation 
coefficient, r
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By Mandelbrot’s definition, a fractal is any object or process of which the dimen-
sion, given by the equation

 
D N r= ( )log / log /1

 
(11.2)

strictly exceeds its topological or Euclidean dimension. It means that every set with 
a non-integer D, as in convoluted brains, is a fractal. To derive this formula for 
dimension, consider a straight line of unit length divided into N segments of length 
r (r = ratio vector). By definition, N × r = 1 and so r = 1/N. Analogously, a unit square 
contains N pieces of edge length r in an area of 1, so r = 1/(N1/2) and a unit cube N 
pieces of edge length r in a volume of 1, so r = 1/(N1/3). Denoting dimension by D, 
the relationship can be generalized to r = 1/(N1/D), and the equation can be solved for 
the fractal dimension D. Dimension D is called the fractal dimension because it is 
not necessarily an integer.

In general, D is the number that tells us something about the overall structure and 
complexity of an object. The empirical area-volume relation, for example, found for 
convoluted brains indicates that the cortical surface is partly space filling and that its 
surface area fractally evolves into a volume, or that its volume, by fractal folding, 
attains the properties of an area [33].

11.3.1  Principles of Scaling

The central idea of the scaling principle is that many fractal forms can be generated 
by a procedure that replicates the same geometric configuration on every hierarchi-
cal level, a property that is known as self-similarity. In order for the exponent of 
self-similarity to have formal meaning, the sole requirement is that the shape be 
self-similar, i.e., the whole may be split up into N parts, obtainable from it by a simi-
larity of ratio r (cf. Eq. 11.2).

Table 11.2 The fractal geometry of convoluted brains

Cortical parameter Topological dimension
Empirical 
dimension

Difference 
(p-value)

Cortical thickness 1 0.39 ± 0.057 <0.001
Outer cortical surface 2 2.18 ± 0.062 <0.02
Total cortical surface 2 2.70 ± 0.065 <0.001
Cortical gray matter 3 2.95 ± 0.050 NS
Cortical white matter 3 3.84 ± 0.134 <0.001
Total cortical volume 3 3.30 ± 0.084 <0.01

Reproduced with permission from Hofman [33]
The model is based on the equation: y b xD= / ,3  where y is the cortical structure, x is brain volume, 
b is an allometric constant, and D is the topological (Euclidean), respectively, empirical (fractal) 
dimension of the structure. The fractal dimensions are given as mean ± standard deviation

NS not significant
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A number of linear fractals can be represented by an initial polygon (the 
initiator) and a polygon (the generator), which replaces the sides of the initia-
tor. Thus, a fractal structure could be generated, having the form and fractal 
dimension of a convoluted brain, by dividing the sides of a regular hexagon 
into N = 3 segments of length r = 4/9 (Fig. 11.5). The resulting similarity dimen-
sion, applying Eq. 11.2 gives D = ( )-log / log /3 4 9

1
, or a number equal to 

1.3548. A similar procedure in 3D space, with a decahedron as initiator, yields 
a fractal dimension of the surface area of 2.7095, a value which is almost iden-
tical to the empirical dimension, D = 2.70, for convoluted brains (see also [19, 
32, 44]).

It is clear that specific geometric production rules may lead to the generation 
of “objects” which show a high resemblance with natural phenomena. However, 
one cannot conclude that a series of objects with the same fractal dimension 
belongs to the same class, since several sets of instructions can lead to the same 
numerical value. In other words, many different objects may have an equal D, but 
have a completely different appearance. In the next section, some organizing prin-
ciples will be presented that may account for the fractal geometry of the mam-
malian brain.

a b c

Fig. 11.5 Fractal model of the mammalian cerebral cortex. (a) The form and fractal dimension 
of a convoluted brain can be generated by dividing the sides of a regular hexagon (initiator) into 
three segments of length r = 4/9. Continuing this procedure ad infinitum, it is obvious that the 
perimeter grows without bound. The resulting similarity dimension is not an integer but a num-
ber equal to 1.3548. For further details, see text. (b) The ultimate form cannot, of course, be 
depicted, but the smoothed third or fourth stage is a good approximation of the form of a highly 
convoluted brain with its rich pattern of gyri and sulci. (c) Cortical surface of a human hemi-
sphere as seen in a frontal section at the level of the anterior commissure (Reproduced with 
permission from Hofman [33])
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11.3.2  Fractal Scaling of the Neocortex

From anatomical studies we know that the primate neocortex is made up of distinct 
neural networks, which are organized in columnar arrays stretched out through the 
depth of the cortex [8, 11, 18, 38, 54, 55]. These modules, in turn, are linked together 
into larger neural networks by coalescing adjacent sets of columnar units. These 
networks, which also have a columnar arrangement, are found through the cerebral 
cortex [48, 57], so that we may consider columnar arrangements of neural elements 
as a general organizational framework of the primate cortex.

The arrangements of these clusters of neurons in vertical columns perpen-
dicular to the pial surface, however, leads to a geometric dilemma with the evo-
lutionary expansion of the brain. It is this dilemma – the requirement of the 
cortical surface area to keep abreast with the volumetric growth of the brain 
itself – which creates the need for cortical folding. Studies in mammals have 
shown that in species with convoluted brains the mass of interconnective nerve 
fibers, forming the underlying white matter, is proportional to the 1.28 power of 
brain volume [31, 33] (see also Table 11.1), meaning that the cortical white mat-
ter is a fractal system. As a result, the total cortical surface area (Scortex), includ-
ing all gyri and sulci, scales approximately as the 2/3 power of the white matter 
volume (Vwhite) or

 
S Vcortex white= ( )36 4

2 3
.

/

 
(11.3)

In other words, the surface area of the cerebral cortex, and with that the total number 
of neuronal columns, is geometrically similar with the amount of white matter, i.e., 
with the number and length of the interconnective nerve fibers. In small species with 
nonconvoluted brains, a similar relationship was found between the cortical surface 
area and the mass of myelinated nerve fibers [33].

Apparently, the fractal geometry of the mammalian brain is a consequence of the 
design of the cerebral cortex, in which each cortical module, containing a large num-
ber of neurons, is connected to its environment by a specific number of axons. Here 
we have an analogy to Rent’s rule for computer geometry [45], which says that the 
number of components (C) in each module of complex computer circuits is related to 
the number of terminals (T) according to T ~ CD/Dt, where D is the fractal dimension 
and DT is the Euclidean dimension. In a spatial circuit, where the components are 
organized in columnar units, while they are in contact with the outside by their sur-
faces, as in the cortex, DT = 3 and D is somewhere between 2 and 3. The ratio D/DT 
increases with the degree of parallelism that is present in the design [45, 52].

Therefore, a fractal dimension of D = 2.70, as found for convoluted brains, sug-
gests a high degree of parallel processing to take place in the cerebral cortex, espe-
cially in highly corticalized mammals, such as monkeys and apes. To reach the state 
of integral parallelism in which each neural component has its own terminal, the 
length and number of the interconnective axons must be reduced in order to set 
limits to the axonal mass.
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11.4  Fractal Principles of Neural Wiring

The most obvious problem imposed by large brains is increasing distances among 
the neuronal somata of functionally related regions and the inevitable lengthening 
of their essential communication lines, the axons. Importantly, the axonal length 
and volume increase much more rapidly than the number of neurons. Furthermore, 
a proportional increase of neurons and connections would inevitably lead to a rapid 
increase of synaptic path length, defined as the average number of monosynaptic 
connections in the shortest path between two neurons [9, 69, 79]. To limit the path 
length with increasing brain size shortcut connections can be inserted, resulting in 
small- world- and scale-free-type networks [7, 70].

Although such a solution can effectively decrease path length within the neocor-
tex, the increased lengths of the axons and the associated increased travel time of the 
action potentials still pose serious problems. As compensation for these excessive 
delays, axon caliber and myelination should be increased [39]. An indication that 
larger brains deploy both more shortcuts (long-range connections) and larger- caliber 
axons is that the volume of the white matter increased at 4/3 power of the volume of 
gray matter during the course of evolution.

Wen and Chklovskii [81] have shown that the competing requirements for high 
connectivity and short conduction delay may lead naturally to the observed archi-
tecture of the mammalian neocortex. Obviously, the brain functionally benefits 
from high synaptic connectivity and short conduction delays. A magnetic resonance 
imaging study, furthermore, focusing specifically on the prefrontal cortex, has 
shown that the volume of the white matter underlying prefrontal areas is dispropor-
tionately larger in humans than in other primates [63]. It suggests that the connec-
tional elaboration of the prefrontal cortex, which mediates such important behavioral 
domains as planning, aspects of language, attention, and social and temporal infor-
mation processing, has played a key role in human brain evolution.

Although the frontal lobe as a whole has not been differentially enlarged through-
out human evolution [64], there is increasing evidence for its reorganization, as 
some regions with known functional correlates are either bigger or smaller in the 
human brain than expected when compared with the same region in great apes. 
Comparative studies, for example, suggest that the human prefrontal cortex differs 
from that of closely related primate species less in relative size than it does in orga-
nization (for a review, see [74]).

Specific reorganizational events in neural circuitry may have taken place either 
as a consequence of adjusting to increases in size or as adaptive responses to spe-
cific selection pressures. It appears that the evolution of the human brain was 
accompanied by discrete modifications in local circuitry and interconnectivity of 
selected parts of the brain and that these species-specific adaptations may affect 
these parts differently [36, 37, 62, 73]. But the similarity in brain design among 
primates, including humans, indicates that brain systems among related species are 
internally constrained and that the primate brain could only evolve within the con-
text of a limited number of potential forms.

11 The Fractal Geometry of the Human Brain: An Evolutionary Perspective
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11.4.1  Neocortical Wiring

In the neocortex, billions of neurons are interconnected via a massive yet highly 
organized network of axonal and dendritic wiring. This wiring enables both near 
and distant neurons to coordinate their responses to external stimulation. Specific 
patterns of cortical activity generated within this network have been found to cor-
relate with cognitive and perceptual functions [77, 78]. Understanding the organiz-
ing principles of cortical wiring, therefore, represents a central goal toward 
explaining human cognition and perception in health and disease. Despite more 
than a century of endeavor, however, the organizing principles and function of corti-
cal connectivity are still not well understood (see e.g., [4, 6, 21]).

Recent network studies, using diffusion tensor imaging (DTI), have demon-
strated that not only the neurons in the neocortex are structurally and functionally 
highly organized, but that it also holds for the wiring of the entire brain [75, 80]. The 
interconnecting white matter axonal pathways are not a mass of tangled wires, as 
thought for a long time, but they form a rectilinear three-dimensional grid continu-
ous with the three principal axes of development. The topology of the brain’s long- 
range communication network looks like a 3D chessboard with a number of highly 
connected neocortical and subcortical hub regions. Structural connectivity net-
works, as defined by DTI, have identified a common hub in the medial parietal 
cortex of humans, chimpanzees, and macaque monkeys. However, the apparent lack 
of medial prefrontal hubs in humans that are present in chimpanzees and macaque 
monkeys, coupled with evidence of increased gyrification in human prefrontal cor-
tex, suggests important evolutionary changes in the connectivity of human prefron-
tal cortex ([49, 56], for a review, see [59]).

The competing requirements for high connectivity and short conduction delay 
may lead naturally to the observed architecture of the human neocortex. Obviously, 
the brain functionally benefits from high synaptic connectivity and short conduction 
delays. The design of the primate brain is such that it may perform a great number 
of complex functions with a minimum expenditure of energy and material both in 
the performance of the functions and in the construction of the system. In general, 
there will be a number of adequate designs for an object, which, for practical pur-
poses, will all be equivalent.

11.4.2  Neural Network Communication

We have shown that in species with convoluted brains, the fraction of mass devoted 
to wiring seems to increase much slower than that needed to maintain a high degree 
of connectivity between the neural networks [35]. These findings are in line with a 
model of neuronal connectivity, which says that as brain size increases there must 
be a corresponding fall in the fraction of neurons with which any neuron communi-
cates directly. The reason for this is that if a fixed percentage of interconnections is 
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maintained in the face of increased neuron number, then a large fraction of any brain 
size increase would be spent maintaining such degree of wiring, while the increas-
ing axon length would reduce neural computational speed [60]. The human brain, 
for example, has an estimated interconnectivity of the order of 103, based on data 
about the number of modular units and myelinated nerve fibers [35]. This implies 
that, on average, each cortical module is connected to a thousand other modules, 
and that the mean number of processing steps, or synapses, in the path interconnect-
ing these modules, is about two.

In a binary system, with an interconnectivity of I = 1, the growth of connections 
(C) is a linear function of the number of units (U), and in a fully connected network, 
where I = U, both variables are related according to the equation: C = U (U−1), 
which is nearly equivalent to C = U2. In such a system, the number of connections 
increases much faster than the number of units (Fig. 11.6). Generally, the growth of 
connections to units is a factorial function of the number of units in a fully con-
nected network and a linear function of the number of units in a minimally con-
nected network. The human cerebral cortex, with an estimated interconnectivity of 
about 103, lies somewhere between these extremes, and close to the line for I = U0.5. 
It implies that in humans the number of myelinated axons scales to the 1.5 power of 
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Fig. 11.6 The number of connections (C), cortical processing units (U), and level of interconnec-
tivity (I) in the primate neocortex as a function of brain size. Semilogarithmic scale. Values are 
normalized to one at a brain volume of 100 cm3, the size of a monkey brain. Note that the number 
of myelinated axons increases much faster than the number of cortical processing units. The human 
cerebrum, for example, contains six times more myelinated axons than that of a rhesus monkey, 
whereas the number of cortical processing units is only three times larger. Dashed lines show the 
potential evolutionary pathway of these neural network elements in primates with very large brains, 
i.e., beyond the hypothetical upper limit of the brain’s processing power (see text and Hofman [34, 
35]). Note that a further exponential growth in the number of cortical processing units, without an 
increase in the number of connections, will lead to a decrease in connectivity between these units 
and thus to more local wiring (Reproduced with permission from Hofman [35])
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the number of modular processing units, that is, a fourfold increase in modular units 
requires an eightfold increase in the number of nerve fibers [34, 35].

Herculano-Houzel et al. [28], furthermore, have shown that in primates the mass 
of the white matter scales linearly across species with its number of nonneuronal 
cells, which is expected to be proportional to the total length of myelinated axons in 
the white matter. Decreased connectivity in the brain is compatible with previous 
suggestions that neurons in the cerebral cortex are connected as small-world and 
scale-free networks which slow down the increase in global conduction delay in 
cortices with larger numbers of neurons [4, 69, 70, 78].

11.4.3  Limits to Information Processing

The primate cortex, as we have seen, has evolved from a set of underlying structures 
that constrain its size and the amount of information it can store and process. 
Therefore, the functional capacity of a neuronal structure is inherently limited by its 
neural architecture and signal processing time (see e.g., [14, 35, 46]).

The processing or transfer of information across cortical regions, rather than 
within regions, in large-brained species can be only achieved by reducing the length 
and number of the interconnective axons in order to set limits to the axonal mass. 
The number of fibers can be reduced by compartmentalization of neurons into mod-
ular circuits in which each module, containing a large number of neurons, is con-
nected to its neural environment by a small number of axons. The length of the 
fibers can be reduced by folding the cortical surface and thus shortening the radial 
and tangential distances between brain regions. Local wiring – preferential connec-
tivity between nearby areas of the cortex – is a simple strategy that helps keep corti-
cal connections short. In principle, efficient cortical folding could further reduce 
connection length, in turn, reducing white matter volume and conduction times [9, 
10, 17, 35]. Thus, the development of the cortex does seem to coordinate folding 
with connectivity in a way that could produce smaller and faster brains.

Once the brain has grown to a point where the bulk of its mass is in the form of 
connections, then further increases (as long as the same ratio in interconnectivity is 
maintained) will be unproductive. Increases in number of units will be balanced by 
decreased performance of those units due to the increased conduction time. Model 
studies of the neocortex growth in primates at different brain sizes, using a conser-
vative scenario, revealed that with a brain size of about 3,500 cm3 the total volume 
of the subcortical areas (i.e., cerebellum, brain stem, diencephalon, etc.) reaches a 
maximum value [34, 36]. Increasing the size of the brain beyond that point, follow-
ing the same design principle, would lead to a further increase in the size of the 
neocortex, but to a reduction of the subcortical volume. Consequently, primates 
with very large brains (e.g., over 5 kg) may have a declining capability for neuronal 
integration despite their larger number of cortical neurons.

This architectural dilemma explains why large-brained primates, in order to 
maintain processing capacity, tend to show more specialization in the  neocortex. 
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Indeed, an increase in the number of distinct cortical areas with increasing brain 
size has been reported [41, 73]. It may also explain why large-brained species 
may develop some degree of brain lateralization as a direct consequence of size. 
If there is evolutionary pressure on certain functions that require a high degree 
of local processing and sequential control, such as linguistic communication in 
human brains, these will have a strong tendency to develop in one hemisphere.

11.5  Concluding Remarks

The evolution of the cerebral cortex in mammals is mainly characterized by the 
development and multiplication of clusters of neurons which are strongly intercon-
nected and in physical proximity. Since these clusters of neurons are organized in 
vertical columns, an increase in the number and complexity of these neuronal net-
works will be reflected by an expansion of the cortical surface area beyond that 
expected for geometric similar brains. As a result, the cortical surface area fractally 
evolves into a volume with increasing brain size.

It appears that the potential for brain evolution results from the self-similar com-
partmentalization and hierarchical organization of neural circuits and from the 
invention of fractal folding, which reduces the interconnective axonal distances. 
The competing requirements for high connectivity and short conduction delay may 
lead naturally to the observed architecture of the brain. The similarity in brain 
design among mammals furthermore indicates that brain systems among related 
species are internally constrained and that the brain could only evolve within the 
context of a limited number of potential forms.
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    Chapter 12   
 Fractal Analysis in Clinical Neurosciences: 
An Overview                     

     Antonio     Di     Ieva     

    Abstract     Over the last years, fractals have entered into the realms of clinical neu-
rosciences. The whole brain and its components (i.e., neurons and microglia) have 
been studied as fractal objects, and even more relevant, the fractal-based quantifi ca-
tion of the geometrical complexity of histopathological and neuroradiological 
images as well as neurophysiopathological time series has suggested the existence 
of a gradient in the patterns representation of neurological diseases. Computational 
fractal-based parameters have been suggested as potential diagnostic and prognos-
tic biomarkers in different brain diseases, including brain tumors, neurodegenera-
tion, epilepsy, demyelinating diseases, cerebrovascular malformations, and 
psychiatric disorders as well. This chapter and the entire third section of this book 
are focused on practical applications of computational fractal-based analysis into 
the clinical neurosciences, namely, neurology and neuropsychiatry, neuroradiology 
and neurosurgery, neuropathology, neuro-oncology and neurorehabilitation, and 
neuro- ophthalmology and cognitive neurosciences, with special emphasis on the 
translation of the fractal dimension as clinical biomarker useful from bench to 
bedside.  
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    To see is to believe 

  Data on the specifi c fractal characteristics of distinct biological systems (in both 
physiological and pathological states) accumulate daily. The researches in the fi eld 
have two specifi c aims: (1) fi nding the geometrical fi ngerprint which characterizes 
each physical and biological system and (2) looking for the quantitative parameters 
which could be helpful to distinguish different physiopathological states (e.g., nor-
mal tissue versus cancer). 

 The greatest promise of fractal analysis is that it offers objective measures of 
seemingly random structures, and it is a tool for examining the mechanistic origins 
of pathological forms [ 1 ]. 

 Since the fi rst applications of fractal analysis to biological images [ 5 ,  6 ], it has 
been clear that such a computational-based method can help recognize and quantify 
patterns to suggest potential diagnostic and prognostic biomarkers. Fractal analysis 
has been shown to be able to characterize the complexity of images, or “more pre-
cisely their texture composition” [ 19 ]. The quantifi cation of the geometrical com-
plexity of histopathological and neuroradiological images as well as 
neurophysiopathological time series suggests the existence of a gradient in the pat-
tern’s representation and networks from those in the normal brain to those affected 
by pathologies (e.g., brain tumors, epilepsy, dementia). For such a reason, fractal 
analysis has found large applications in the clinical neurosciences, as briefl y sum-
marized in this chapter and illustrated in the following chapters of the third section 
of this book. Limitations of the translational applications of fractals into clinical 
practice are discussed at the end of this chapter. 

12.1     Clinical Neurology and Cerebrovascular System 

 The fractal dimension (FD) and other complementary parameters have been inves-
tigated to characterize the topological complexity of the brain in its entire physio-
pathological spectrum. 

 In Chap.   13    ,  Francisco Esteban ,  Leticia Beltrán , and  Antonio Di Ieva  review the 
main applications of the computational fractal-based analysis for the study of sev-
eral neurological conditions, with special emphasis on the diagnostic precision of 
the FD. In consideration of the close relationship of the eye to the brain and neuro-
logical diseases, a specifi c chapter is focused on the application of fractal analysis 
into neuro-ophthalmology (Chap.   28     by  Giorgio Bianciardi ,  Maria Latronico , and 
 Claudio Traversi ). 

 The fractal dimension has been proposed as a potential surrogate biomarker of 
the degree of brain damage in neurodegenerative diseases, and even in the normal 
cerebral aging process [ 7 ], as widely illustrated from the neuroimaging point of 
view by  Luduan Zhang  and  Guang Yue  in Chap.   14     and more from the neuropathol-
ogy perspective by  Daniel Pirici ,  Laurentiu Mogoanta ,  Daniela Ion , and  Samir 
Kumar - Singh  in Chap.   15    . 
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 The vascular tree of the brain has also been characterized by means of its fractal 
features, not only from its angiostructural point of view but also in its functionality. 
The spatiotemporal complexity of cerebral hemodynamics has in fact been studied 
by means of fractal characterization [ 4 ,  15 ,  20 ,  26 ,  28 ,  34 ]. Although there is specu-
lation about the fractality, pseudo-fractality, or multifractality of vascular trees [ 31 , 
 35 – 37 ], the fractal-based morphometrics of the vascular and microvascular net-
works of the brain has been used to fi nd morphometric image markers. The fractal- 
based analyses of the cerebrovascular system physiopathology are discussed by 
 Martin Soehle  in Chap.   16    , with special emphasis on the subarachnoid hemorrhage. 
In regard to cerebrovascular pathologies,  Gábor Závodszky ,  György Károlyi ,  István 
Szikora , and  György Paál  illustrate their intriguing researches on the fractality and 
chaotic patterns in the hemodynamics of intracranial aneurysms in Chap.   17    , while 
 Antonio Di Ieva  and  Gernot Reishofer  apply computational fractal-based modeling 
to the analysis of the brain arteriovenous malformations in Chap.   18    , proposing new 
image and prognostic biomarkers of such pathologies.  

12.2     Neuroimaging 

 Brain imaging was fi rst revolutionized by the clinical application of angiograms, ultra-
sound, and computed tomography (CT) followed by magnetic resonance imaging 
(MRI), positron emission tomography (PET), and single-photon emission computed 
tomography (SPECT) later on. MRI is the most widely used technique in neuroimaging 
to characterize the structure (structural imaging) and even the function (functional imag-
ing, by means of functional MRI, fMRI) of the nervous system, which completely revo-
lutionized the clinical neurosciences (e.g., neurology, psychiatry, and neurosurgery) for 
patient management. Different MR images can be obtained by selecting the pulse 
sequences (e.g., T1, T2, and proton density images), used to differentiate gray matter, 
white matter, and cerebrospinal fl uid, as well as the different pathological conditions. 
Fractal analysis has been shown to be appropriate for the analysis of MR images, includ-
ing fMRI biosignals. Functional MRI allows for investigation of the amplitude of activa-
tion in neural networks of brain, and the fractal-based time-series analysis is successfully 
used to identify the process of dysregulation of dynamic interactions between different 
brain regions in healthy adults versus pathological states [ 3 ,  25 ]. 

 In Chap.   19    ,  Salim Lahmiri ,  Mounir Boukadoum , and  Antonio Di Ieva  offer an 
excursus on the use of the fractal dimension and the related Hurst exponent in the 
characterization of several pathologies in neuroimaging, with special emphasis on 
the MR image classifi cation. The application of a relatively novel MR imaging 
sequence, the susceptibility-weighted imaging (SWI) into neuro-oncology (also 
with some perspectives in neurotraumatology), is then presented by  Antonio Di Ieva  
in Chap.   20    . The chapters regarding neuroimaging bridge the discussion toward the 
application of fractals to the analysis of brain tumors, as illustrated by  Syed Reza , 
 Atiq Islam ,  and Khan Iftekharuddin  in Chap.   21    , in which the fractal-based classifi -
cation and texture estimation for MRI brain tumors features are presented.  
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12.3     Neurohistology, Neuropathology, and Neuro-oncology 

 As stated by Baish and Jain in 2000, “By focusing on the irregularity of tumor 
growth rather than on a single measure of size such as diameter or volume, fractal 
geometry is well suited to quantify those morphological characteristics that patholo-
gists have long used in a qualitative sense to describe malignancies – their ragged 
border with the host tissue and their seemingly random patterns of vascular growth” 
[ 1 ]. Cancer has been often described as a complex, chaotic, and heterogeneous sys-
tem, emerging from the disruption of tissue architecture, which begs the question 
“If heterogeneous, how much?”; Fractal analysis responds by offering some param-
eters for the patterns quantifi cation. 

 The existence of a gradient in the geometrical complexity of histological 
texture or microvascular networks from those in the normal brain to those in 
malignant brain tumors has been speculated upon. The complex network 
dynamics and fractality of brain oncogenesis (i.e., development of brain 
tumors) are discussed by  Miguel Martín - Landrove ,  Antonio Brú ,  Antonio 
Rueda - Toicen , and  Francisco Torres - Hoyos  in Chap.   22    . The texture analysis 
of histological features of brain tumors (mainly meningiomas) is the topic of 
Chap.   23     by  Omar Al - Kadi  and  Antonio Di Ieva , while in Chap.   24    , the same 
authors present their findings on the analysis of the geometrical complexity of 
brain tumors’ (mainly gliomas) microvascular networks. Although translation 
of the concepts of “fractal tumors” or “fractal microvascularity” into clinical 
practice (“from bench to bedside”) still has some difficulties to overcome, 
future research in neuro-oncology should focus on finding new and reliable 
parameters correlated with biological and epidemiological characteristics. 
From this perspective, fractals and multi-parameter morphometric computer-
aided analyses could be of benefit in translational research and in the medical 
armamentarium as a conventional procedure to improve diagnostic capacity 
and accuracy. 

 Experimental studies have not only been focused on the geometrical complexity 
of the neoplastic cells but also on the fractal structure of the environment surround-
ing such cells [ 33 ]. 

 In summary, in histology and pathology, fractal analysis is used to quantitatively 
and objectively characterize cancer tissues in order to overcome the operator- 
dependent bias of classifi cation and categorization [ 1 ,  6 ,  9 ,  13 ,  16 ,  18 ,  21 ,  29 ]. 
Moreover, the fractal dimension has also been shown useful to quantify the response 
for cancer treatment, in animal models [ 32 ], as well as in neuroimaging of patients 
affected by brain tumors [ 8 ]. 

 Following the new paradigm which has shifted the reductionist approach to a 
systems biology approach [ 12 ,  24 ], cancer has been interpreted in its multilevel 
hierarchical system. Using an “ecological approach” [ 23 ], it has been shown that the 
spread of cancer cells (human glioma cells), like the spread of a specifi c tree species 
in a forest, have a specifi c “spatiotemporal signature,” characterized by a particular 
fractal geometry and scale invariance of the boundaries of the patterns generated in 
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the different physiopathological states [ 22 ]. Fractal analysis offers a common 
 language for the identifi cation of such spatiotemporal fi ngerprinting in different 
natural systems.  

12.4     Fractal-Based Time-Series Analysis in Neurosciences 

 As discussed in the fi rst section of this book, fractal and multifractal analysis can be 
applied to the study of the time-series biosignals. Examples of neurophysiological 
time series are the electroencephalographic (EEG), magnetoencephalographic 
(MEG), or electromyographic (EMG) records, and intracranial pressure (ICP) 
curves as well [ 11 ]. 

 According to the latest discoveries regarding the network connectivity of the 
human brain, it is very intriguing to note that brain function depends upon adaptive 
self-organization of large neural assemblies, and that the brain functional networks 
are characterized by small-world properties, implying a scale-invariant or fractal 
small-world topological organization [ 2 ] (see also Chap.   9    ). The fractal small-world 
connectivity of the brain, based on the connectivity of hubs and topologically piv-
otal nodes, is the anatomical and functional background of its architecture, in physi-
ological as well as pathological states [ 2 ,  27 ,  30 ]. EEG, MEG, fMRI, and other 
methods offer valid tools of analysis of such networks. 

 In Chap.   25    ,  Wlodzimierz Klonowski  provides answers for “everything you 
wanted to ask about fractals and EEG” [ 17 ]. Other types of time-series analyses are 
offered by  Lorenzo Livi , who in Chap.   26     discusses the multifractal detrended fl uc-
tuation analysis and multiscaling features found in patients affected by Parkinson’s 
disease, whereas in Chap.   27      Sridhar Arjunan  and  Dinesh Kumar  illustrate fractal 
approaches for extracting information from surface electromyograms, with applica-
tions in patients’ rehabilitation and monitoring of the age-related changes in the 
muscles’ properties.  

12.5     Cognitive Sciences, Neuropsychology, and Psychiatry 

 Abnormal fractal dynamics have been observed in several behavioral and psycho-
logical conditions as well as neuropsychiatric diseases, opening the venues to the 
applications of computational fractal-based analysis into the cognitive neurosci-
ences, neuropsychology, and psychiatry. 

 In Chap.   29    ,  Sergio Iglesias - Parro ,  Maria Soriano , and  Antonio Ibáñez - Molina  
provide a panoramic view on the application of nonlinear approaches to the study of 
mental disorders, including affective and anxiety disorders. 

 A complementary approach is intriguingly suggested in Chap.   30     by  Richard 
Taylor  and  Branka Spehar  who investigate the signifi cance of fractals for the human 
visual system and the clinical applications of such fi ndings in addressing 
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 stress- related illnesses, as well as introduce the topics related to the fascinating fi eld 
of neuroesthetics.  

12.6     Limitations of Application of Fractal Analysis 
into Clinical Neurosciences 

 The translation of fractal analysis into clinical practice still has some obstacles. 
 The fractal dimension is a geometrical feature of irregularly shaped objects, but 

it is not a magic number. It is a dimension, and as two different objects can have the 
same size (the same three different Euclidean dimensions of length, width, and 
height), two very different patterns can share the same fractal dimension, as dis-
cussed in Chap.   1    . This means that FD should be considered as a complementary 
method along with other parameters. 

 The fractal-based morphometric approach does not necessarily constitute a supe-
rior tool in comparison to other approaches. Different types of nonlinear analyses 
can be performed along and integrated into other approaches in order to achieve a 
holistic view of the same problem. 

 Despite of the diffi culty to discriminate between fractality and “apparent fractal-
ity originating from underlying randomness” [ 14 ], fractal analysis does not offer a 
mere mathematical theoretical model, because in clinical medicine it is aimed to 
fi nd reliable parameters such as diagnostic, prognostic, and therapeutic biomarkers. 
Although the universality of the fractal language, fractal geometry cannot be con-
sidered as a Rosetta stone for the interpretation of every phenomenon; this has to be 
clear to the clinician and neuroscientist applying computational models for the 
translation of data into clinical applications. 

12.6.1    The “Black Box” 

 Clinicians are not required to fully understand how fractal analysis and other com-
putational methods work, just as a person using a computer for various tasks does 
not necessarily have to understand how the computer works. Clinicians should 
rather understand the proper way to use computational methods, address a problem, 
understand the inputs which could be analyzed by means of different and less con-
ventional approaches, and correlate such fi ndings to clinical fi ndings, in order to 
make them useful in clinical perspective. 

 As discussed in several chapters, the computation and use of FD has pros and 
cons, and it should be understood that different values may be the result of “true 
differences in image texture or a result of certain arbitrary decisions made during 
the estimation process” [ 19 ]. The standardization of the technique as well as the 
delineation of the outcome assessment has to be clearly defi ned in order to guaran-
tee an internal and external validation of the method and to avoid the bias of 
operator- dependent variability. 
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 By using a concept from the artifi cial intelligence language, the concept of the 
black box will be used to explain this [ 9 ] (Fig.  12.1 ). The black box is substantially 
the machine, the computing algorithm. Although its way to function is not obscure 
to computer scientists and engineers, it may be “black” to clinicians, who eventually 
do not understand exactly what is happening inside of the machine. For example, 
clinicians and sometimes even radiologists do not fully understand the physics 
background of computed tomography and magnetic resonance imaging, but when 
specifi c algorithms transform the raw data into images they can interpret the mean-
ing of such images very well. In such example, the hardware and software trans-
forming the raw data into images are the “black box.” Different algorithms may run 
in the black box, e.g., the Fourier transform of the raw magnetic resonance signals, 
or the box-counting method for computing the fractal dimension of an image like a 
histological slide, the detrended fl uctuation analysis of a time series, etc. A specifi c 
task of the black box can be requested by a clinician for a specifi c application, but 
the competence to work “inside the black box” is still left to other kinds of special-
ists and technicians.

   The role of clinician is then to understand how that black box can be used, select-
ing the proper inputs to be analyzed. Examples of inputs could be microvessels or 

INPUT

Histological
Images

Radiological
Images

Time Series

Physicians
Biologists

Physicians
Statisticians
Epidemiologists

Computer scientists
Engineers
Mathematicians
Technicians

...

...

...

OUTPUT

  Fig. 12.1    The diagram shows the concept of the “black box” [ 38 ]. The black box is here repre-
sented by a funnel, where the data processing, by means of fractal analysis or other computational 
methods, occurs. The spheres are the data input to processing, which can be histological images 
(e.g., stained brain tumors, immunostained microvessels), radiological images (e.g., region of 
interests of brain tumors in MR or CT imaging) or times series (e.g., EEG, MEG, or intracranial 
pressure signals). The data are processed in the black box by means of standardized methods (e.g., 
box- counting method). The outputs are the results of the analysis, which are values useful for sta-
tistical analyses and epidemiological correlations, for example, or that can be validated as potential 
morphometric markers and/or diagnostic/prognostic biomarkers. The different professional fi gures 
involved in the process may be the ones quoted on the right of the fi gure       
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other features in histological samples, or specifi c radiological sequences. The clini-
cian, we defi ne here as the “operator”, has to choose not only the inputs, but also the 
methods to identify them (e.g., which kind of immunohistochemistry to detect endo-
thelium, the threshold to extract binarized images, the selection of region of interests 
in histological or radiological images, etc.). This is an essential task, because the lack 
of standardization of such a step would introduce a heterogeneous cohort of data into 
the black box, and the outputs, although computed in the same way, will be very 
heterogeneous as well (and therefore, useless). Therefore the operator provides the 
inputs to the black box, but he/she is still required for the interpretation of the out-
puts. The outputs are the data generated by the computational method working in the 
black box, and can be expressed in terms of morphometric parameters of angioarchi-
tecture, for example, or the index of complexity of a radiological image. These data 
have to be analyzed by the clinician again to be correlated to epidemiological fi nd-
ings, for example, or clinical features, in order to be demonstrated as potential bio-
markers, which might be useful in clinical practice. Although the different steps can 
be performed by different operators, the entire procedure should be carefully orches-
trated, otherwise the translation of results into clinical practice might be misleading. 
The literature is full of controversial results on the same topics, e.g., researches fi nd-
ing higher or lower values of FD in the same tissues. The heterogeneity of the results 
has likely been the main reason for the failure of widespread use of fractal geometry 
into biomedicine. For example, in a review we compared the results of the morpho-
metrics of the microvascularization in different subtypes of pituitary adenomas, fi nd-
ing completely different and noncomparable results [ 10 ]. By analyzing the reason of 
such discrepancies, it turned out that all of the authors chose different analytic meth-
ods and different antigens, which gave rise to a plethora of incomparable results due 
to their heterogeneity. The different inputs and outputs in the “black box” inevitably 
outputted completely different results, giving wrong and naïve conclusions on the 
role of the microvascularization of the pituitary tumors. The comparison of oranges 
and apples may lead to wrong conclusions. Every computational method applied into 
the biomedical sciences, and therefore into the clinical neurosciences, should be 
standardized and verifi ed in order to offer meaningful and useful results. This is 
essential to avoid the rejection a priori of a useful model!      
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    Chapter 13   
 Fractal Analysis in Neurological Diseases                     

     Francisco     J.     Esteban     ,     Leticia     Díaz-Beltrán    , and     Antonio     Di     Ieva    

    Abstract     Over the last decades, fractal analysis has been applied to the study of the 
spatial and temporal complexity of a wide range of objects in biology and medicine, 
including the irregular and complex patterns of the nervous system. In clinical neu-
rosciences, fractal geometry has emerged as a powerful tool to objectively analyze 
and quantify the intricate structures comprising the topological and functional com-
plexity of the human brain, shedding light on the understanding of the brain func-
tion at a systems level. The fractal approach has the potential to allow physicians 
and scientists to predict clinical outcomes, classifi cation between normal and patho-
logical states, and, ultimately, the identifi cation and diagnosis of certain neurologi-
cal conditions. In this chapter, the main applications of fractal analysis into clinical 
neurosciences are reviewed, with special emphasis on the diagnostic precision of 
the fractal dimension value in different neurological diseases.  

  Keywords     Brain   •   Clinical neurosciences   •   Fractal dimension   •   Fractal analysis   • 
  Magnetic resonance imaging   •   Neurology  

   In neurosciences, fractal analysis is used to measure the scaling inherent to neuro-
logical systems (from anatomic to histological structures), providing an index, the 
fractal dimension (FD), to estimate the topological complexity of the given object. 
Different types of neural structures, from neurons to complex networks, can be 
characterized as structural or dynamical fractals to quantify the intrinsic complexity. 
In this perspective, the spatial properties of the components of the nervous system, 
both at the macroscopic and microscopic levels, can be viewed as geometric 

        F.  J.   Esteban      (*)    L.   Díaz-Beltrán    
  Department of Experimental Biology ,  School of Sciences, University of Jaén ,   Jaén ,  Spain   
 e-mail: festeban@ujaen.es   

    A.   Di   Ieva ,  MD, PhD    (*)
  Neurosurgery Unit, Faculty of Medicine and Health Sciences ,  Macquarie University , 
  Sydney ,  NSW ,  Australia    

  Garvan Institute of Medical Research ,   Sydney ,  NSW ,  Australia    

  Medical University of Vienna ,   Vienna ,  Austria    

  University of Toronto ,   Toronto ,  ON ,  Canada   
 e-mail: diieva@hotmail.com  

mailto:festeban@ujaen.es
mailto:diieva@hotmail.com


200

fractals, while temporal properties of neurophysiological signals should be inter-
preted as dynamic fractals [ 15 ]. In this chapter, we review and describe different 
applications of “static” and “dynamic” fractal analysis in clinical neurology. 

13.1     Geometric Fractal Analysis Applied to Neuroscience 

 Due to its sensitivity in identifying brain structural changes the FD, the index of 
complexity that assesses a fractal invariant detail within a pattern has been consid-
ered as a possible representative marker of the degree of brain damage in numerous 
neurological and neuropsychiatric conditions, even those detected in normal and 
pathological cerebral aging. Thus, the FD of white matter (WM) segmented from 
brain MRI scans, and calculated by means of the box-counting method, turned out 
to be signifi cantly smaller in older subjects when compared to young adults, while 
conventional volumetric measurements for brain atrophy did not recognize WM 
changes with age [ 53 ]. Similarly, Mustafa et al. [ 40 ] pointed out individual differ-
ences in the FD of cerebral white matter that were signifi cantly related with non- 
disease- state life course cognitive changes, gender- and WM volume independent 
(Figs.  13.1  and  13.2 ). King et al. [ 33 ] developed a novel approach to estimate the 
FD of the cortical ribbon and showed considerable differences between healthy con-
trols and patients with mild Alzheimer’s disease (AD) in comparison with cortical 
thickness or gyrifi cation index estimations (see below and Chap.   14    ). A different 
fractal dimension approach was also described in a following paper by King et al. 
[ 32 ], whereby the author proposed a new method, the custom-written cube-counting 
algorithm, to compute the local FD of the human cerebral cortex extracted from 
high-resolution MRI scans. In such a study, the ability of the local FD to identify 
regional variation in the brain structure when comparing a healthy subject with a 
patient diagnosed with Alzheimer’s disease was demonstrated.

    Fractal analysis of brain MRI scans has also been used to identify morphological 
variations related to other cognitive and mental disorders. For example, Li et al. [ 35 ] 

a b c

  Fig. 13.1    ( a – c ) Example of the grid overlay in FD estimation for cerebral white matter using the 
box-counting method [ 40 ] (Reproduced under Creative Commons Attribution License (  http://cre-
ativecommons.org/licenses/by/2.0    ))       
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used a robust geometric estimator, the fractal information dimension (FID), to 
detect changes of prefrontal cortical gyrifi cation complexity in subjects diagnosed 
with attention defi cit hyperactivity disorder (ADHD). Their study revealed that FID 
values increased when the degree of cortical convolution complexity was high, 
showing that this scale-free measure eluded the brain size effect commonly associ-
ated to conventional geometric parameters like cortical volume and thickness. Other 
volumetric structural alterations have been recognized in both brain white and gray 
matter (GM) in dyslexic individuals by Sandu et al. [ 46 ]. These authors proposed 
parameters such as the GM-WM ratio and the FD of the GM-WM border as dys-
lexia vulnerability markers, since they identifi ed alterations in these measurements 
(notably in the left hemisphere). In a similar study with schizophrenia patients, 
some of these authors [ 45 ] also detected irregularities in the structural complexity 
of cortical folding, which were not found when applying conventional morphomet-
ric analysis techniques of MR images. 

 Additionally, fractal analysis has been extensively applied to study cerebral vas-
cularization in its complete physiopathological range. Thus, different authors 
applied fractal-based approaches to characterize the complex spatiotemporal prop-
erties of cerebral blood circulation [ 7 ,  8 ,  23 ,  25 ,  34 ,  39 ,  42 ]. Likewise, Reishofer 
et al. [ 43 ] and Di Ieva et al. [ 16 ] estimated the morphological vascular complexity 
of brain arteriovenous malformations (AVMs) on MRI scans by means of the FD. In 
such studies, the FD of the nidus AVM has been proposed as a robust image angio-
architectural parameter as well as potential prognostic surrogate biomarker in 
patients undergoing Gamma Knife radiosurgery (see Chap.   18    ). Fractal-based 
 analysis and novel automated methods have also been applied for the characteriza-
tion of retinal microvascular alterations of branching complexity and density as 
potential markers of stroke and in the wide spectrum of cerebrovascular diseases 
[ 10 – 12 ,  31 ,  41 ,  49 ] (see also Chap.   28    ). 

a b

  Fig. 13.2    ( a ,  b ) Examples of structural comparison between the low- and high fractal white matter 
in three different views; coronal, sagittal, and axial slices [ 40 ] (Reproduced under Creative 
Commons Attribution License (  http://creativecommons.org/licenses/by/2.0    ))       
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 In regard to other neurological diseases, fractal analysis of MRI scans has also 
offered promising parameters of potential clinical diagnostic relevance. Such is the 
case of multiple sclerosis (MS), where FD has been shown to be a potential early 
diagnostic estimator with a key role in clinical decision-making, since this parameter 
has been found to be able to detect and characterize changes in WM [ 20 ] and GM [ 19 ] 
in apparently normal MRI scans (those without visible MS cerebral lesions). 
Furthermore, Esteban et al. [ 18 ] applied fractal analysis to analyze the topological 
complexity of GM ad WM and were able to quantify subtle alterations in the brain of 
premature infants with a prenatal diagnosis of severe intrauterine growth restriction, 
when comparing this parameter value with those of healthy premature children and 
full-term newborns. They concluded that FD could be considered a powerful tool for 
quantitative investigation of child brain structure and obtained signifi cant results when 
they related the observed FD changes with neurodevelopmental functional disorders. 

 In regard to Parkinson’s disease and spinocerebellar ataxia, Manabe et al. have 
used FD to quantify the patterns of postural instability, showing higher values in 
patients with a more advanced stage of disease [ 37 ]. 

 Additionally, a recent study performed fractal analysis of human cerebellum 
regions in patients diagnosed with Chiari malformation type I syndrome (CM-I), a 
condition of the central nervous system (CNS) generally characterized by cerebellar 
tonsils herniation into the spinal canal [ 5 ]. This research showed that FD values of 
GM, WM, and cerebrospinal fl uid (CSF) (calculated using the box-counting 
method) were signifi cantly higher in CM-I subjects compared to those obtained 
from healthy controls. The authors suggested that FD measures of the human cere-
bellum might be considered a discriminative feature and a valuable image marker 
for the study of cerebellar anomalies of CM-I patients. Similarly, Wu et al. [ 50 ] also 
applied fractal analysis to investigate multiple system atrophy of the cerebellar type 
(MSA-C), a neurodegenerative disease of the CNS; they demonstrated that FD, also 
calculated using the box-counting method, was able to characterize the morphologi-
cal changes of cerebellar structural complexity. Their results showed that MSA-C 
subjects have signifi cantly smaller FD values in both cerebellar GM and WM when 
compared to normal individuals, revealing that this topological alteration in the WM 
controlled the structural degeneration of the cerebellum. Their research pointed out 
that the FD analysis strategy proves a more valuable method than traditional volu-
metric estimators when quantifying the morphological abnormalities of WM and 
GM, since it yields lower variances and less gender effect. 

 FD values of WM structure have also been quantifi ed in MRI brain anatomical 
scans and correlated with motor function in the upper extremity (UE) in individuals 
who had suffered a stroke. In their work, Zhang et al. [ 52 ] set out two premises, the 
fi rst one was that WM complexity would diminish after having a stroke, and the 
second one that WM complexity of unaffected areas of cortex would be associated 
to greater UE motor function. Their fi ndings detected lower FD measures in the 
stroke-affected hemisphere, while higher WM complexity was related to greater 
motility of the affected limb; as for assessment of motor function in association with 
lesion volume, no correlation was found. These authors also suggested that FD may 
be considered a powerful clinical estimator for monitoring the degree of residual 
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WM structural, or neural, plastic alterations in patients recovering from stroke, with 
the fi nal aim to guide forthcoming therapeutic strategies. 

 Finally, it is worth highlighting that the application of mono- and multi-fractal 
approaches to characterize neuronal, microglial, and immuno-infl ammatory cells 
may provide a meaningful contribution to future researches and applications of tis-
sue engineering and 3D modeling in neuroscience, as recently reviewed by 
Karperien and Jelinek [ 29 ].  

13.2     Use of Dynamic Fractal Analysis in Neurology 

 The distinct strategies used in the characterization of temporal fractals have been 
proven as valuable tools in estimating the dynamic properties of nervous signals and 
monitoring time series in an effort to discriminate between health status and dis-
ease. In this regard, promising results were obtained when applying FD to evaluate 
brain complexity and dynamic changes in patients with autism [ 4 ] and AD [ 3 ]. High 
accuracy values have been achieved in patients affected by autism and AD using 
Katz’s FD [ 30 ] of electroencephalogram (EEG) as a classifi er for discriminating 
between disease and healthy states, as described in more detail in the section below. 

 Linear and fractal measures have also been applied for discriminating autism from 
other behavioral and developmental disorders. Thus, Cusenza et al. [ 13 ] explored 
EEG features in the awake and sleep state of autistic children in comparison with 
children suffering from mental retardation. In this study, quantitative EEG was 
revealed as a powerful tool for early autism diagnosis, since signifi cant variations 
between autistic and mentally retarded EEG measures were found; specifi cally, autis-
tic individuals showed higher complexity patterns while awake, whereas increased 
delta and gamma activity were also detected in their sleep state. 

 Furthermore, Michail et al. [ 38 ] estimated the FD of EEG to characterize the 
impact of lorazepam, a psychoactive drug with anxiolytic and sedative effects, on 
brain activity. The authors found a relationship between this drug and EEG FD that 
affects α and β bands complexity; concretely, this property increased in α bands while 
diminished in β bands after treatment. Additionally, nonlinear analyses performed on 
actigraphy data revealed that Katz’s FD values were considerably smaller throughout 
the night in subjects with dementia (including AD patients) and aggressive behavior 
than those found in healthy controls, therefore, identifying alterations in the circadian 
rest-activity system motor in abnormal neurological conditions [ 6 ,  21 ]. 

 On the other hand, a novel method for automatic seizure detection in epilepsy 
was proposed by Yuan et al. [ 51 ]. The authors applied a differential box-counting- 
based approach to characterize multichannel long-term EEG signals, achieving 
extremely accurate results that yielded higher signifi cant sensitivity and specifi city 
values and a smaller false detection rate than other conventional techniques for EEG 
epileptic seizure detection. A different method for the estimation of FD of 
 multichannel EEG signals, based on the k-nearest neighbor algorithm [ 54 ,  55 ], has 
been also used to detect epileptic seizures (see below). 
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 Finally, a recent study carried out by Lopez de Ipiña et al. [ 36 ] proposed 
Higuchi’s, Katz’s, and Castiglioni’s [ 9 ] algorithms as the basis of new biomarkers 
derived from an automatic spontaneous speech analysis (ASSA). The authors quan-
tifi ed the FD and other parameters of speech waveforms time series to aid in 
Alzheimer’s disease diagnosis [ 36 ].  

13.3     Diagnostic Precision of Fractal Dimension 

 Several studies have been carried out using the FD as a parameter able to discrimi-
nate between healthy and disease states in clinical neurosciences, as described 
above and reviewed in [ 15 ,  17 ,  28 ]. In this scientifi c context, most of the obtained 
results have been described as signifi cant by considering the conventional p-values. 
However, it is well known that the validity of a parameter as a good biomarker or as 
a surrogate endpoint depends on its diagnostic precision described mainly in terms 
of accuracy, sensibility, and specifi city, among others, and independent of the level 
of signifi cance related to conventional statistics. In this section, we focus our atten-
tion on those studies in which the discriminant capability of the FD between differ-
ent neurological states was expressed in terms of diagnostic precision parameters 
(Table  13.1 ).

13.3.1       Depression and Schizophrenia 

 Depression, a mood disorder with prevalence in an 8–10 % range of general popula-
tion, has been detected through EEG signal analysis using 15 nonlinear features, 
including FD [ 2 ]. With the aim of real clinical application, Acharya et al. [ 2 ] devel-
oped a robust depression diagnostic system with a high classifi cation accuracy 
(98 %), sensitivity (97 %), and specifi city (98.5 %). Interestingly, this noninvasive 
diagnostic procedure has been fully automatized in software with easy installation 
for computers in EEG facilities in hospitals. Moreover, the authors also proposed a 
unique value, the so-called depression diagnosis index (DDI), which can measure 
the severity of depression. However, the limited size of the dataset (15 healthy con-
trols (HC) and 15 subjects with depression) requires further validation studies. 

 In a similar way, schizophrenia, a severe psychiatric disorder affecting around 
0.4–0.6 % of the world’s population, has been analyzed using EEG signals through 
a channel selection and feature-based classifi cation procedure, which also included 
FD parameterization [ 44 ]. In the best classifi er scenario, the authors obtained high 
accuracy (92 %), sensitivity (93 %), and specifi city (91 %), thus being able to dis-
criminate between normal participants and those with schizophrenia, and provided 
a useful complementary tool in the diagnosis of such psychiatric disease. This study 
was carried out on 20 patients and the same number of healthy controls, and it has 
not yet been validated with any other independent population.  
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13.3.2     Alzheimer’s Disease and Autism 

 Alzheimer’s disease is a devastating neurodegenerative disorder with a continuous 
increasing incidence associated to aging. Its defi nitive diagnosis is only confi rmed by 
histological postmortem analysis. Together with other attempts of noninvasive diagno-
sis based on cerebral resonance imaging or magnetoencephalography (see below), 
EEG nonlinear complexity characterization is becoming a promising fi eld to obtain 
potential markers in AD. Ahmadlou et al. [ 3 ] have obtained a robust classifi cation of 
AD patients and normal aging subjects using linear discriminant analysis on FD-related 
features. Interestingly, high accuracy (99.3 %), sensitivity (100 %), and specifi city 
(97.8 %) were obtained to classify the abovementioned groups, even though only 7 
aged HC and 20 AD patients were included in this study. In addition, and in an effort to 
detect dementia as a risk factor for developing Alzheimer’s disease, Henderson et al. 
[ 24 ] reported that FD analysis of EEG signals yield 67 % sensitivity and 99.9 % speci-
fi city. It is worth mentioning that the EEG signals analyzed by these authors were raw 
recordings without any preselection of components, making the procedure easy and 
quick to apply by a nonspecialist clinician within the growing population at risk. 

 On the other hand, FD computation has also been applied to the entire cerebral 
cortical ribbon obtained after the segmentation and processing of volumetric images 
from 35 HC and 35 subjects with mild Alzheimer’s disease [ 33 ]. This procedure pro-
vided a receiver-operating characteristic (ROC) curve with an area-under-the- ROC 
curve (AROC) value of 0.84, which is an acceptable diagnostic predictive result. 

 When magnetoencephalograms (MEGs) are used to measure the cerebral back-
ground activity from AD patients [ 22 ], the FD characterization of these recordings 
showed high AROC values at each brain region analyzed (anterior 0.86, central 
0.87, right lateral 0.89, posterior 0.89, left lateral 0.89). The highest AROC value 
(0.9) was obtained when the mean FD over all channels was calculated for the 20 
AD patients and the 21 related elderly HC, with high-related accuracy (87.8 %), 
sensitivity (80 %), and specifi city (95.2 %). 

 Finally, Katz’s FD of eyes-closed EEG data was proposed by Ahmadlou et al. [ 4 ] 
to characterize brain dynamical changes and complexity in nine autistic individuals 
in comparison with eight healthy subjects. The authors utilized a radial basis func-
tion classifi er that yielded a 90 % of accuracy for discriminating between the two 
groups, namely, the autistic and non-autistic children.  

13.3.3     Epilepsy 

 Epilepsy is a chronic neurological disorder affecting around 1 % of the world’s pop-
ulation. Automatic detection of seizures becomes crucial for epilepsy diagnosis and 
long-term EEG monitoring of patients, and several procedures have been devel-
oped, most of them including the characterization of nonlinear features of EEG 
signals, and with an accuracy ranging from 86 % to 100 % (reviewed in [ 1 ]). 
Recently, Zhang et al. presented a seizure detection method also based on the 
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nonlinear FD analysis of EEG signals [ 54 ]. Their method, which includes deep 
methodological refi nements when compared to the previous ones, was able to dis-
criminate between seizure or non-seizure status with high sensitivity (91 %), speci-
fi city (95.8 %), and recognition rate (95.8 %) on the epoch-based assessments in 21 
patients [ 55 ]. Moreover, when applied to seizure events (subsequent decisions of the 
same class, seizure or non-seizure, were grouped as an event) for clinical applica-
tion, a sensitivity of 94.1 % and a false detection rate of 0.27/h were obtained [ 55 ].  

13.3.4     Neural Loss in Retinal Tissue 

 Early neuronal loss in retinal tissue, which occurs in patients with diabetes or mul-
tiple sclerosis, can be characterized using structural information extracted from 
optical coherence tomography (OCT) images. From this point of view, Somfai et al. 
[ 48 ] computed the FD for the refl ectivity profi le of OCT images (Fig.  13.3 ) from 74 
HC eyes and 43 patients affected by type-1 diabetes mellitus with mild diabetic reti-
nopathy, after the automatic segmentation of the histological layers of the retina 
based on their optical densities. The highest FD discriminant (between healthy and 
disease groups) AROC value (0.96) obtained was related to the ganglion cell and 
inner plexiform layer (GCL + IPL) complex, with sensitivity of 98 % and specifi city 
of 88 %. Interestingly, these authors also calculated the positive likelihood ratio thus 
detecting, with this value for the GCL + IPL complex, an increase about 70 % in the 
probability of early retinopathy development [ 48 ]. See also Chap.   28    .

13.3.5        Brain Tumors 

 In a different context, fractal features have also been applied to automated brain 
tumor segmentation [ 26 ,  27 ]. The main procedure carried out by these authors 
was based on texture information, combining fractional Brownian motion (fBm) 
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  Fig. 13.3    Computation of the fractal dimension for the refl ectivity profi le of optical coherence 
tomography (OCT) images of the retinal layers [ 48 ] (Reproduced under Creative Commons 
Attribution License (  http://creativecommons.org/licenses/by/2.0    ))       
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and wavelet multiresolution analysis. ROC curves were obtained with the aim of 
evaluating tumor region performance, and the competence of the classifi er was a 
true positive value of 1.0, with only 0.16 of false positive value, for a total number 
of 50 pediatric T1 magnetic resonance (MR) images analyzed [ 27 ]. When the 
abovementioned texture-informed procedure was applied together with intensity 
in multimodal MR images (T1-gadolinium enhanced, T2 and fl uid attenuation 
inversion recovery [FLAIR] sequences), a true positive fraction value range 
between 0.75 and 1.0 (mean 0.9) was detected for the nine pediatric patients ana-
lyzed [ 26 ]. 

 Brain tumor characterization and grading are fundamental features to know in 
clinical practice, above all in brain gliomas due to the well-known grade- 
aggressiveness relationship. When MR FLAIR images were characterized using 
FD, 70.3 % sensitivity and 66.7 % specifi city diagnostic precision values were 
found related to the increase in the grade of glioma and discriminating most 
malignant ones [ 47 ]. FD has also been used to quantify the signal of MR 
susceptibility- weighted imaging (SWI) in patients affected by different types and 
grades of brain tumors, with a signifi cant discrimination among low- and high-
grade gliomas, lymphomas, metastasis, and meningiomas [ 14 ]. In the Di Ieva 
et al.’s study, a ROC analysis showed a cutoff FD value for differentiating low- 
from high-grade gliomas of 1.75, with a sensitivity 81 % and specifi city 89 %. The 
fractal dimension of neuroradiological features has since been introduced as a 
novel image biomarker for glioma grading and tumor characterization, opening 
new perspectives in the computational modeling aimed to improve diagnosis of 
brain tumors and therefore patients’ treatment and prognosis. For more details, 
see Chaps.   19    ,   20    ,   21    ,   22    ,   23    , and   24    .   

13.4     Conclusion and Future Perspectives 

 The computation of the fractal dimension of neuroradiological and/or clinical fea-
tures of neurological conditions (among others are cerebrovascular, oncological, 
and demyelinating pathologies) and the ability of FD to differentiate different states 
of disease further supports the transition of fractals from basic research to potential 
applications into neurology and clinical neurosciences. Fractal-based quantifi cation 
of features can help reduce intra- and interobserver variability for classifi cation and 
follow-up of neurological diseases, although it should be emphasized that the com-
putational modeling has to be standardized in order to reduce methodological het-
erogeneity (see the “Black Box” concept in Chap.   12    ). Clinical neuroscientists (e.g., 
neurologists, neuropathologists, neuroradiologists, neurosurgeons) will eventually 
benefi t from the use of fractal-based computational analyses for improving diagno-
sis and prognosis of patients, and eventually their therapeutical options as well as 
outcome.     
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    Chapter 14   
 Fractal Dimension Studies of the Brain Shape 
in Aging and Neurodegenerative Diseases                     

     Luduan     Zhang       and     Guang     H.     Yue     

    Abstract     The fractal dimension is a morphometric measure that has been used to 
investigate the changes of brain shape complexity in aging and neurodegenerative 
diseases. This chapter reviews fractal dimension studies in aging and neurodegen-
erative disorders in the literature. Research has shown that the fractal dimension of 
the left cerebral hemisphere increases until adolescence and then decreases with 
aging, while the fractal dimension of the right hemisphere continues to rise until 
adulthood. Studies in neurodegenerative diseases demonstrated a decline in the 
fractal dimension of the gray matter in Alzheimer’s and multiple system atrophy of 
the cerebellar type, and in the fractal dimension of the white matter in amyotrophic 
lateral sclerosis, epilepsy, multiple sclerosis, multiple system atrophy of the cere-
bellar type, and stroke. Conversely, the fractal dimension of the gray matter increases 
in multiple sclerosis. Associations were found between the fractal dimension and 
clinical scores, showing the potential of the fractal dimension as a marker to moni-
tor brain shape changes in normal or pathological processes and predict cognitive or 
motor function.  

  Keywords     Alzheimer’s   •   Amyotrophic lateral sclerosis   •   Aging   •   Epilepsy   •   Fractal 
dimension (FD)   •   Multiple sclerosis   •   Multiple system atrophy   •   Neurodegenerative 
disease   •   Shape complexity  

        L.   Zhang ,  PhD      (�)
  LZ Biomedical, LLC ,   280 E 1st Ave, #513 ,  Broomfi eld ,  CO   80038 ,  USA   
 e-mail: LZhang@lzbiomed.com   

    G.  H.   Yue ,  PhD      (�)
  Human Performance and Engineering Research ,  Kessler Foundation , 
  1199 Pleasant Valley way ,  West Orange ,  NJ   07052 ,  USA    

  Department of Physical Medicine and Rehabilitation ,  Rutgers New Jersey Medical School, 
Rutgers, The State University of New Jersey ,   Newark ,  NJ ,  USA   
 e-mail: GYue@kesslerfoundation.org  

mailto:LZhang@lzbiomed.com
mailto:GYue@kesslerfoundation.org


214

14.1       Introduction 

 Fractal analysis has been applied to the characterization of the nervous system, from 
simple cells to complex brain structures [ 7 ]. Studies have shown that fractal geom-
etry can be used to quantify shape complexity changes of the brain with age [ 3 ,  10 , 
 19 ,  23 ,  28 ,  36 ,  38 ,  42 ,  47 ,  50 ] and neurodegenerative diseases such as multiple 
sclerosis [ 8 ,  9 ], Alzheimer’s [ 20 ,  21 ], amyotrophic lateral sclerosis [ 35 ], multiple 
system atrophy [ 48 ], stroke [ 49 ], and epilepsy [ 4 ,  12 ,  25 ]. The term “fractal” was 
introduced by Mandelbrot [ 27 ] to describe the irregular but self-similar shapes of 
natural objects. It summarizes the structural details of the object in a range of spatial 
scales into a numerical value (fractal dimension [FD]), which can serve as an index 
of morphometric variability and complexity of the object. The more complex the 
object (e.g., a more convoluted cortical surface, a white matter [WM] structure with 
a more complicated branched pattern), the higher its FD value (Fig.  14.1 ). The FD 
is based on a logarithmic scale, and small changes in the FD correspond to large 
changes in complexity [ 43 ]. The fractal geometry of the brain was presented by 
Hofman using gross specimen data [ 15 ] and confi rmed by magnetic resonance 
imaging (MRI) studies [ 16 ,  22 ,  26 ,  51 ]. MRI has been frequently used to study brain 
shape. Besides a few specimen studies [ 15 ,  46 ], most fractal research has analyzed 
MRI data to evaluate brain shape complexity at macroscopic and microscopic scales 
using T1- [ 3 ,  4 ,  8 – 10 ,  12 ,  16 ,  19 – 26 ,  28 ,  35 ,  36 ,  38 ,  48 – 51 ] and T2-weighted mag-
netic resonance (MR) images [ 44 ], respectively.

   This chapter reviews MRI-based fractal studies of the brain shape in aging and 
neurodegenerative diseases. 

14.1.1     Anatomical Shape Features of Interest 

 Depending on the pathophysiological processes, FD values were computed on dif-
ferent shape features of the brain WM and gray matter (GM) to evaluate shape 
complexity changes with age or neurological diseases. Table  14.1  summarizes the 
shape features studied in the current literature. In general, three shape features were 
investigated in the WM fractal studies – interior (skeleton), surface (gray-white 
matter interface), and general structures (Fig.  14.1 ) [ 4 ,  8 ,  10 ,  12 ,  20 ,  26 ,  28 ,  35 ,  38 , 
 48 – 51 ]. The skeleton describes a thin line of an object that summarizes its shape, 
size, orientation, and connectivity [ 5 ]. It represents the interior shape and is the 
essential structure of the WM. The surface is a set of boundary voxels in WM 
images. The general structure is the whole set of WM voxels. Besides the macro-
scopic structures described above, a study examined the microstructure of the WM 
using T2-weighted MR images [ 44 ].

   In the GM fractal studies, the cortical surface was investigated because of the 
obvious fractal properties of the sulci-gyri convolution patterns. Specifi cally, pial 
surface (external cortical surface), gray-white matter interface (internal cortical 
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 surface), and cortical ribbon (the cortical surfaces and the structure between them) 
structures were examined to assess cortical complexity changes (Fig.  14.2 ) [ 3 ,  9 ,  16 , 
 19 – 25 ,  36 ,  42 ,  47 ,  48 ]. The gray-white matter interface may be considered as a 
shape feature of either the WM or the GM as it may refl ect the changes of either or 
both of the structures.

   Given that fractal properties arise secondary to gyrifi cation [ 15 ], the FD of the 
cortical surface measures the folding pattern. Two studies reported a strong associa-
tion between the FD of the pial surface and shape measures, such as folding area, 
sulcal depth, and curvature, and a weak association between the FD of the pial surface 
and cortical thickness [ 16 ,  18 ]. A recent study found strong positive correlations 
between the FD of the cortical ribbon and cortical thickness and between the FD of 

a b

c d

Low cortical complexity High cortical complexity

Low white matter complexity High white matter complexity

  Fig. 14.1    Representative examples of brain shape complexity. Low and high cortical complexity 
in inferior frontal regions is shown in a 6-year-old female ( a ) and a 16-year-old female ( b ), sepa-
rately. Low and high white matter complexity is demonstrated on a MR slice from an old subject 
( c ) and a young subject ( d ). Low complexity values indicate a fl at structure area with few second-
ary branches, while higher complexity values indicate a greater number of convolutions and more 
higher-order branches (( a ,  b ) Reprinted from Blanton et al. [ 3 ], images courtesy of Arthur W. Toga, 
PhD, USC Laboratory of Neuro Imaging, and ( c ,  d ) reprinted from Zhang et al. [ 50 ], with permis-
sion from the publishers)       
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the  cortical ribbon and gyrifi cation index [ 21 ]. Thus, in the neurodegenerative pro-
cess, the effect of the decrease in the cortical thickness is complementary with the 
impact of the reduction in the gyrifi cation index. Shape measurements such as thick-
ness, sulcal depth, and curvature represent local features of the cortex. The gyrifi ca-
tion index [ 52 ], a global descriptor of cortical complexity, is sensitive to the direction 
of the imaging slices [ 45 ]. These fi ndings suggest the FD is a superior global measure-
ment for the characterization of the folding pattern of the entire cortex. Figure  14.3  
demonstrates the effects of the cortical thickness and gyrifi cation index on the FD.

14.1.2        Fractal Dimension Methods 

 Several FD methods were used in the quantifi cation of brain shape complexity 
(Table  14.1 ), including box-counting [ 4 ,  16 ,  18 – 21 ,  23 ,  26 ,  28 ,  37 ,  38 ,  42 ,  47 – 51 ], 
surface-based [ 3 ,  12 ,  24 ,  45 ,  46 ], and fast Fourier transform-based methods [ 22 ]. 

a

d e

b c

  Fig. 14.2    Brain shape features on magnetic resonance imaging (MRI). ( a ) Illustration of the gray 
matter shape, including the pial surface, the gray-white matter interface, and the cortical ribbon. 
( b ) Lateral visualization of the pial surface. ( c ) Lateral visualization of the gray-white matter inter-
face (white matter surface) of the same subject demonstrated in ( b ). ( d ) 2D white matter skeleton 
of a MRI slice. (E) 3D white matter skeleton extracted from the same image shown in ( d ) (( a – c ) 
Modifi ed from Sandu et al. [ 36 ], images courtesy of Anca-Larisa Sandu, PhD, Aberdeen 
Biomedical Imaging Center, University of Aberdeen, UK, and ( d ,  e ) reprinted from Zhang et al. 
[ 51 ], with permission from the publishers)       
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Among them, box counting is the most widely used technique because it can evalu-
ate a fractal structure with or without strict self-similarity [ 51 ]. 

 In general, the box-counting method works by repeatedly covering fractal images 
using meshes with different-sized boxes ( r ) and then counting the number of boxes 
( N ) occupied by the studied structure [ 27 ]. The process results in a logarithmic 
function,  ln ln / lnN D r k( ) = × ( ) + ( )1

 
 . The slope of the function ( D ) is referred to 

as the FD. 
 The surface-based algorithm was used to evaluate cortical surface complexity. It 

estimates the FD using the slope of a regression line between the logarithmic least 
squares of the surface area and the logarithmic spatial frequency of the surface mesh 
that models the cortex [ 3 ]. A box-counting algorithm has been used recently to 
compute the FD of tessellated cortical surfaces extracted from MR images to evalu-
ate cortical complexity [ 16 ,  18 ,  20 ]. 

 The Fourier-based method was proposed to examine cortical ribbon complexity, 
and the FD is dependent on the Fourier function of the cortical shape [ 22 ]. 

 A multifractal analysis has been used to evaluate microstructural changes in the 
WM on T2-weighted MR images [ 44 ]. It divides an image into squares and the 
probability density of each square box is defi ned. The multifractal measure is 
 computed from a series of equations derived from the slope of a log-log plot of the 
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  Fig. 14.3    The effects of cortical thickness and gyrifi cation index on measured fractal dimension-
ality. A coronal slice from a control subject and its fractal dimension are seen in the box. The 
remaining cortical ribbons are artifi cial data demonstrating fractal dimension changes with varia-
tion in cortical thickness, gyrifi cation index, and the combination of the two. The fractal dimension 
of each slice is indicated by the number below the slice. Changes in the cortical thickness are seen 
on the horizontal axis with increasing thickness toward the right. Changes in the gyrifi cation index 
are seen on the vertical axis with values increasing upwards. Thinning of the cortical ribbon and 
lowering the gyrifi cation index both decrease fractal dimensionality (Reprinted from King et al. 
[ 21 ], with permission from the publisher)       
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probability and the size of the square [ 44 ]. Different from the conventional FD mea-
sure that evaluates macroscopic fractal structure, the multifractal index measures 
local microscopic shape changes by quantifying intensity fl uctuation.   

14.2     Fractal Dimension Studies of the Brain Shape 

14.2.1     Aging 

 The changes of brain shape complexity occur throughout life span with age, involv-
ing both GM and WM [ 3 ,  10 ,  19 ,  23 ,  28 ,  36 ,  38 ,  42 ,  44 ,  47 ,  50 ]. 

 The FD studies of GM structure have reported that cortical complexity increases 
in early fetal life [ 42 ,  47 ], from infancy (<1 year old) until puberty (15 years old) for 
the left hemisphere and until adulthood (>25 years old) for the right hemisphere [ 3 , 
 19 ], and then decreases with aging [ 23 ,  36 ]. Specifi cally, the FD of the cortical sur-
face was found to be relatively stable before 28 weeks of gestational age and 
increase rapidly afterwards [ 47 ]. Kalmanti and Maris measured the FD of the 
2D-skeletonized cerebral cortex in 93 healthy individuals (3 months–78 years; 
mean ± SD: 16.6 ± 16.6 years old) that were divided into four groups: infants 
(<1 year old), children (1–10 years old), peripubertals (10–15 years old), and adults 
(>25 years old) [ 19 ]. They found that basal ganglia development, mainly in the left 
hemisphere, was heavily dependent upon age until adolescence (15 years old). Both 
left and right cortical complexity was equally developed between the ages of 
1–15 years, while the right cortex continued to develop in adulthood. A smaller 
sample-size study ( n  = 24) compared the FD scores of the external cortical surface 
between 24 normal children (6–11 years old [ n  = 13]; mean ± SD: 9.23 ± 1.71 years 
old) and adolescents (12–16 years old [ n  = 11]; mean ± SD: 13.25 ± 1.14 years old) 
and found that cortical complexity increased in the left and right inferior frontal and 
the left superior frontal regions [ 3 ]. Sandu et al. [ 36 ] investigated postadolescent 
developmental changes in cortical complexity by comparing the FD values of ado-
lescents ( n  = 17; 13.3–14.4 years old; mean ± SD: 14.1 ± 0.27 years old) with those 
of adults ( n  = 14; 21-30.1 years old; mean ± SD: 24.24 ± 2.76 years old). They found 
signifi cant reductions in the FD of the cortical ribbons for the whole brain, left and 
right hemispheres, and frontal and parietal lobes for both genders and only for males 
in the left temporal lobe. Lee et al. [ 23 ] compared the FD values of skeletonized 
cortical ribbons between healthy young ( n  = 31; mean ± SD: 24.48 ± 5.02 years old) 
and old subjects ( n  = 31; mean ± SD: 63.23 ± 9.42 years old) and found decreased 
FD scores in the old group. Besides the cortical studies, one group investigated age- 
related changing patterns in the shape complexity of the anterior and posterior walls 
of the central sulcus (CS) in 295 healthy subjects (18–94 years old) [ 24 ]. The 
authors found signifi cant reductions in the FD of the posterior wall of the right CS 
and a trend of FD reduction in the anterior walls of the bilateral CS during normal 
aging. No age-related changes in the FD were observed for the posterior wall of the 
left CS. Research has shown that the complexity of the cortical surface has a 
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 signifi cant association with intelligence and education [ 16 ], which suggests that 
cortical complexity may serve as a biological marker of cognitive development. 

 Age-related WM FD changes throughout the adulthood (20–80 years old) dem-
onstrated an inverse U-shape pattern, with a gradual increase from young to mid- 
age and a sharp decrease to the old ( n  = 209) [ 10 ]. Specifi cally, the FD values of the 
WM general structure for the whole brain and each hemisphere increased until 
the late 40s and then decreased with age. The FD values of the WM skeletons for 
the whole brain and left hemisphere declined from the 20s to the age of 30, then rose 
until the age of 50, declined again to the age of 70, and then rose again. In contrast, 
the FD of the skeletons for the right hemisphere increased slightly until the 40s and 
reduced sharply afterwards. The FD reduction in aging was also observed in a 
smaller sample-size study (24 young subjects, 17–35 years old; mean ± SD, 
27.7 ± 4.4 years old; 12 old subjects, 72–80 years old; mean ± SD, 74.8 ± 2.6 years 
old) that reported signifi cant reductions in the FD of the WM skeleton of the whole 
brain and left hemisphere, and in that of the WM general structure of the whole 
brain [ 50 ]. This study also observed a nonuniform distributed pattern in the degen-
eration of WM complexity between the genders and across brain hemispheres, with 
a decreased WM interior shape complexity found in the left hemisphere in old men 
but in the right hemisphere in old women. Neither of the above two studies observed 
FD changes in the gray-white matter surface. A longitudinal study measured the FD 
of the WM general structure on 148 participants at ages 68 years and followed them 
until 73 years. The authors reported signifi cant FD reductions in the WM over the 
5-year period in late life [ 38 ]. These FD decreases were associated with cognitive 
function decline, specifi cally processing speed (Digital Symbol score), verbal mem-
ory (Auditory Verbal Learning Test), reasoning (Raven’s Standard Progressive 
Matrices), and general cognitive ability after adjustment for childhood mental abil-
ity. This is consistent with a study that reported signifi cant associations between the 
FD of brain WM structure and cognitive changes over the life course from age 11 to 
68 years [ 28 ]. Specifi cally, the FD was correlated positively with lifelong fl uid 
change, estimated by a standardized difference between Moray House Test (MHT) 
and Raven’s Standard Progressive Matrices test (RPM), and negatively with a 
decline in cognition in late life, estimated by a standardized difference between the 
National Adult Reading Test (NART) and RPM. No signifi cant correlations were 
found between fractal measures and the cognitive maturation from 11 years to 
adulthood, measured by the standardized difference between the MHT and 
NART. These results suggest that those with a greater brain WM structural FD had 
greater than expected fl uid abilities at age 68 years than predicted by their childhood 
intelligence and less cognitive decline at age 68 years. Takahashi et al. [ 44 ] per-
formed a multifractal study to examine age-related microstructural changes in the 
deep WM on T2-weighted MR images without visible abnormal intensities. They 
reported an increased multifractal measure in the frontal region, not in the parieto- 
occipital region, and a higher executive dysfunction score in healthy elderly sub-
jects compared to young healthy controls. The executive dysfunction score was 
found to be positively associated with the multifractal measure in the frontal region, 
but not in the parieto-occipital region. These fi ndings suggest that microstructural 
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changes in the WM preferentially occur in the frontal region during normal aging, 
and these changes are correlated with executive cognitive decline refl ective of 
frontal- subcortical dysfunction [ 44 ]. The above studies suggest that WM complex-
ity may predict retention of cognitive ability within late life.  

14.2.2     Alzheimer’s Disease 

 Alzheimer’s disease (AD) is an irreversible, progressive brain disorder in which 
amyloid plaques and tau tangles present throughout the brain, and neurons degener-
ate and die, causing problems with memory, thinking, and behavior [ 33 ]. FD studies 
have demonstrated a decrease in the shape complexity of the cerebral cortex in AD 
on structural MR images [ 20 ,  21 ]. 

 A decrease in the FD of the 2D cortical ribbon was found on the anterior tip of 
the temporal lobe, the mammillary bodies, the superior colliculus, the most poste-
rior edge of the corpus callosum, the inferior colliculus, and the massa intermedia 
of the thalamus in patients with AD [ 21 ]. A further study by the same group dem-
onstrated that the FD values of the 3D cortical ribbon and the gray-white matter 
surface were signifi cantly lower in patients with mild AD than controls, with highly 
signifi cant differences detected by the FD of the cortical ribbon [ 20 ]. Signifi cant 
correlations were found between the cortical gyrifi cation index and the FD scores of 
both the cortical ribbon and the gray-white matter surface. However, only the FD of 
the cortical ribbon had a signifi cant association with cortical thickness and the most 
commonly used neuropsychiatric assessment battery in AD clinical trials, AD 
Assessment Scale cognitive (ADAS-cog) score. This study showed that the FD of 
the cortical ribbon had the highest discrimination power in separating controls and 
mild AD patients among the studied matrices, including cortical thickness, the gyri-
fi cation index, and the FD measures of the gray-white matter surface and the pial 
surface. The FD of the pial surface was not recommended by the authors, since 
atrophic changes on the pial surface could either decrease or increase FD, depend-
ing on how the atrophy occurs. For example, two types of atrophic changes in the 
pial surface were observed in the brains used in the study: decreased folding area 
causing decreased complexity and increased sulcal depth leading to increased com-
plexity. These studies demonstrate the potential clinical application of the FD as a 
quantitative marker of cortical structure in AD.  

14.2.3     Amyotrophic Lateral Sclerosis 

 Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative dis-
ease that attacks motor neurons responsible for controlling voluntary muscle activi-
ties [ 29 ]. ALS patients with frontotemporal dementia (ALS-FTD) were reported to 
have the greatest degeneration in WM shape complexity among ALS patients with 
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different clinical signs [ 35 ]. Four ALS patients subgroups were included in this 
study, including ALS-FTD, upper motor neuron (UMN)-predominant ALS patients 
with corticospinal tract (CST) hyperintensity on T2/PD-weighted images (ALS- 
CST+), UMN-predominant ALS patients without CST hyperintensity identifi ed on 
T2/PD-weighted images (ALS-CST-), and ALS-classic patients (ALS-Cl). 
Specifi cally, the FD values of the whole brain WM skeletons, right-hemisphere 
skeletons, and whole brain general structure were signifi cantly reduced in the ALS- 
FTD patients when compared with the ALS-CST+ patients (Fig.  14.4 ). No signifi -
cant voxel-based morphometry changes were found between the controls and the 
ALS patients and among the ALS subgroups. These fi ndings may suggest that the 
FD is a more sensitive index of brain WM integrity than volumetric measurement in 
ALS population.

   ALS functional rating scale (ALSFRS-R) is a measure of daily functional activ-
ity impairment (e.g., speech, swallowing, and walking) and used for evaluating the 
functional status of patients with ALS. The signifi cant association between the FD 
and ALSFRS-R [ 35 ] indicates that WM shape complexity refl ects the functional 

ALS-FTD ALS-CST+ ALS-CST-

a b c

d e f

  Fig. 14.4    2D illustration of reduced complexity in the white matter skeleton and general structure 
on anatomical MR images. The complexity levels of the WM skeleton and general structure were 
reduced in an ALS-CST- patient ( c ,  f ) and an ALS-FTD patient ( a ,  d ) compared to an ALS-CST+ 
patient ( b ,  e ). ALS-FTD: ALS patients with frontotemporal dementia. ALS-CST+: Upper motor 
neuron (UMN)-predominant ALS patients with corticospinal tract (CST) hyperintensity on T2-/
PD-weighted images. ALS-CST-: UMN-predominant ALS patients without CST hyperintensity 
identifi ed on T2-/PD-weighted images (Reprinted from Rajagopalan et al. [ 35 ], with permission 
from the publisher)       
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status of ALS patients, and the FD could potentially serve as a biomarker of ALS 
pathophysiology.  

14.2.4     Epilepsy 

 Epilepsy is a neurological disorder in which nerve cell activity in the brain becomes 
disturbed, causing seizures and sometimes loss of consciousness [ 32 ]. Fractal stud-
ies have shown decreased cortical and WM complexity in epilepsy [ 4 ,  12 ,  25 ]. In the 
cortical complexity study, a decreased FD of the external cortical surface was found 
in all lobar regions except the right frontal region in patients with left mesial tempo-
ral lobe epilepsy [ 25 ]. In patients with right mesial temporal lobe epilepsy, decreased 
complexity was observed in the bilateral temporal, occipital, and left parietal 
regions. Cook, Free et al. investigated brain WM shape complexity in epilepsy by 
measuring the FD values of the 2D WM border and 3D WM surface on conven-
tional MR images [ 4 , 12 ]. FD reductions in the WM border (gray-white matter inter-
face) were found in more than half of the patients with frontal lobe epilepsy without 
identifi able lesions on structural MR images [ 4 ]. In the 3D study, abnormal FD 
scores of the WM surface were found in 8 out of 16 patients with cryptogenic epi-
lepsy and a gyral abnormality on MR images and in 9 out of 23 patients with epi-
lepsy and normal MR images [ 12 ]. These fi ndings suggest that the FD can be used 
to measure subtle cortical changes, and the disruption of the cortical ribbon appeared 
in many patients with epilepsy.  

14.2.5     Multiple Sclerosis 

 Multiple sclerosis (MS) is a chronic infl ammatory and neurodegenerative disease of 
the central nervous system in which axons have been denuded of the myelin sheaths 
that protect them and allow the conduction of nerve signals [ 17 ]. WM lesions are 
well recognized in MS [ 1 ], and extensive damage of GM has also been reported in 
recent studies [ 34 ,  53 ]. 

 Esteban et al. reported decreased WM FD values and increased GM FD mea-
sures in patients with MS [ 8 ,  9 ]. Such different abnormality patterns of the GM and 
WM indicate that different pathological processes occurred in each structure. 
Specifi cally, the FD measurements of the gray-white matter interface (WM borders) 
and WM internal structures (WM skeletons) decreased signifi cantly in patients with 
MS compared with healthy controls. The same FD decrease was found in all MS 
subtypes, including clinically isolated syndrome (CIS), relapsing-remitting MS 
(RRMS), secondary progressive MS (SPMS), and primary progressive MS (PPMS), 
for WM borders and in all subtypes except PPMS for WM skeletons. The decrease 
of the FD values in the WM borders was affected not only by the presence of MS 
plaques but also by changes in the non-visible WM abnormalities such as 
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 normal- appearing WM. For the WM skeletons, the decrease was only observed in 
MR slices with MS lesions. The FD of the WM skeletons was found to be correlated 
with both T1 and T2 lesion load. No associations were found between the WM FD 
and MS-related clinical disability scales such as Expanded Disability Status Scale 
(EDSS) and the MS Functional Composite (MSFC) score [ 8 ]. 

 The GM study focused on MS patients at the early to intermediate phases of the 
disease and found increased FD values in either fi rst attacks of MS (FAMS) or 
relapsing-remitting MS (RRMS) compared with healthy subjects [ 9 ]. The FD of the 
RRMS was signifi cantly higher than FAMS. These fi ndings suggest that GM shape 
complexity is abnormal in patients with MS and the FD changes occur in the early 
stage of the disease and increase with disease progression. However, the authors 
stated that the FD of the GM in the progressive patients was diffi cult to estimate 
since GM atrophy was highly prominent in this subgroup. For the brain-lesion load, 
the FD of the GM was found to be correlated with T1 and T2 WM lesion load, but 
not with the GM atrophy or the disability scores such as EDSS and MSFC. Several 
explanations were provided in the study: (1) GM atrophy is less pronounced in the 
early stages of the disease, and there may be lack of statistical power to detect an 
association. (2) GM atrophy might preclude GM tissue damage that has been asso-
ciated with the FD changes.  

14.2.6     Multiple System Atrophy 

 Multiple system atrophy (MSA) is a progressive neurodegenerative disease in which 
different types of nerve cells in the brain and spinal cord lose function and die, 
affecting both autonomic nervous system and movement [ 30 ]. Research has shown 
that the FD of the cerebellar WM and GM decreased signifi cantly in patients with 
MSA of the cerebellar type compared to controls. Such cerebellar degeneration was 
dominated by morphological changes in the cerebellar WM [ 48 ]. Although the FD 
was related to volumetric measurement in this study, it was suggested as a better 
index than the conventional volumetric measurement in assessing the shape changes 
of the WM and GM, since it generated smaller variances and less gender effects.  

14.2.7     Stroke 

 A stroke occurs when the blood supply to an area of the brain is interrupted or when 
a blood vessel in the brain bursts, spilling blood into the spaces surrounding brain 
cells [ 31 ]. Brain cells die when the brain is deprived of oxygen and nutrients or there 
is bleeding into or around the brain. 

 One study has shown a decreased FD in brain WM following stroke (Fig.  14.5 ) 
[ 49 ]. The FD was lower in the stroke-affected hemisphere, and the greater FD of the 
residual WM was associated with less impaired upper extremity motor function in 
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patients with left-subcortical or right-cortical lesions. This correlation was more 
robust in patients with right-hemisphere lesions. No signifi cant associations were 
found between lesion volume and motor function, suggesting that, at least in this 
study, the FD was more sensitive in predicting upper extremity motor function than 
volumetric measurements post stroke. The FD may potentially serve as a useful clini-
cal index to evaluate the level of residual WM structural changes following stroke or 
any accompanying brain plastic changes to guide future therapeutic interventions.

14.3         Discussion 

 FD studies have demonstrated that brain shape complexity changes with age 
throughout life and in neurodegenerative diseases (Table  14.2 ). In general, the FD 
of the GM increases in early fetal life [ 42 ,  47 ] and continues to develop equally in 
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  Fig. 14.5    Illustration of the fractal dimension (FD) values of the left and right white matter (WM) 
in eight horizontal slices from one subject with a right-hemisphere lesion (outlined in  red ). The FD 
values of the left hemisphere were smaller than those of the right hemisphere in slices without 
apparent lesions (slices #12, #13, #20, and #22). The FD values of the left hemisphere were greater 
than those of the right hemisphere in slices with a lesion (slices #14–#17). Images are displayed in 
neurological convention, with the left side corresponding to the left hemisphere. FD L , the FD of the 
left WM skeleton; FD R , the FD of the right WM skeleton. The colors were designated to illustrate 
regions of interest.  Blue , proximal region on the affected side;  red , proximal region on the unaf-
fected side;  green , distal region on the affected side;  yellow , distal region on the unaffected side. 
Note that proximal region indicates slices with lesion and distal region specifi es slices without 
lesion (Reprint from Zhang et al. [ 49 ], with permission from the publisher)       
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   Table 14.2    Fractal dimension changes of the brain shape with age and neurodegenerative diseases 
and their association with clinical scores and other morphometric measures   

 Pathology  Fractal dimension (FD)  Associations 

 Aging   ↑ FD of the external cortical surface 
in early fetal life [ 42 ,  47 ];  ↑ FD of 
the left cerebral cortex from 
infancy till adolescence 
(1–15 years old) and then  ↓  with 
aging;  ↑ FD of the right cortex till 
adulthood and then  ↓  with aging 
[ 3 ,  19 ,  23 ,  36 ] 

 FD of the cortical surface  ↔  
cortical thickness, folding area in 
both hemispheres and several lobe 
regions, sulcal depth only in the left 
temporal region, IQ, and number of 
years of education [ 16 ] 

 Inverse-U pattern on the FD of the 
white matter:  ↑ FD from young till 
mid-age then  ↓  to the old [ 10 ,  38 , 
 50 ] 

 FD of the white matter  ↔  
information processing speed 
(digital symbol score), verbal 
memory (auditory verbal learning 
test), reasoning (Raven’s standard 
progressive matrices), general 
cognitive ability in specifi c models 
(with adjustment for childhood 
mental ability), lifelong fl uid change 
(positive), and cognitive decline in 
late life (negative) [ 28 ,  38 ] 

 Alzheimer’s 
disease (AD) 

  ↓  FDs of the cortical ribbon and 
gray-white matter surface [ 20 ,  21 ] 

 FD of the cortical ribbon  ↔  AD 
assessment scale cognitive 
(ADAS-cog) score [ 20 ] 
 FDs of the cortical ribbon and 
gray-white matter surface  ↔  
cortical gyrifi cation index, cortical 
thickness [ 20 ,  21 ] 

 Amyotrophic 
lateral sclerosis 
(ALS) 

  ↓ FD of the white matter in patients 
with different clinical signs; 
greatest reductions in ALS patients 
with frontotemporal dementia [ 35 ] 

 FD of the white matter  ↔  ALS 
functional rating scale [ 35 ] 

 Epilepsy   ↓ FD of the external cortical surface 
in all lobar regions except the right 
frontal regions in patients with 
right mesial temporal lobe 
epilepsy;  ↓ FD of the external 
cortical surface in the bilateral 
temporal occipital, and left parietal 
regions in patients with right 
mesial temporal lobe epilepsy [ 25 ] 
  ↓ FD of the 2D WM contour in more 
than half of patients with frontal lobe 
epilepsy [ 4 ] 
 Abnormal FDs of WM surface in 
half of the patients with 
cryptogenic epilepsy and a gyral 
abnormality on MR images and 
9/23 patients with epilepsy and 
normal MR images [ 12 ] 

(continued)
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the left and right hemispheres between 1 and 15 years old. After adolescence, the 
FD of the left cortex deceases, while the FD of the right cortex continues to increase 
until adulthood then decreases with aging [ 3 ,  19 ,  23 ,  36 ]. The inverse-U pattern of 
the FD changes of the left cortex agrees with the changing pattern of a metabolism 
measure, entropy production, over the same time frames [ 2 ]. The FD of the WM 
increases from young until mid-age and then decreases with aging [ 10 ,  38 ,  50 ]. The 
reduction in the FD of the WM and GM in late life with aging parallels with the 
decrease in glucose metabolism [ 41 ]. In the fractal studies of neurodegenerative 
diseases, the FD was found to decline in the GM in AD [ 20 ,  21 ] and MSA of the 
cerebellar type [ 48 ], and in the WM in ALS [ 35 ], epilepsy [ 4 ,  12 ,  25 ], MS [ 8 ], MSA 
of the cerebellar type [ 48 ], and stroke [ 49 ]. Such a decreased pattern is consistent 
with the metabolic studies demonstrating a decline in glucose metabolism with dis-
eases [ 39 ]. An increased FD was found in the GM in MS [ 9 ] in which a rise in 
glucose metabolism was observed [ 39 ]. These fi ndings may suggest a link between 
FD-measured shape complexity and metabolism, supporting the association 
between brain shape and function.

   Besides the potential link between the FD and metabolism, the FD of brain 
shape has been found to be signifi cantly associated with common clinical func-
tional scores, such as AD Assessment Scale Cognitive Score [ 20 ], ALS Functional 
Rating Scale [ 35 ], and upper extremity motor function scores (Wolf Motor 
Function Test and Fugl-Meyer Motor Assessment Score) in stroke [ 49 ]. In addi-
tion, the changes of the WM FD with age match with the changing pattern of the 
cognitive abilities throughout the life [ 6 ,  28 ]. These studies suggest that the FD 
may be used as a quantitative index in the evaluation of the brain shape changes 
in aging, AD, ALS, or stroke. No associations were observed between the FD 

Table 14.2 (continued)

 Pathology  Fractal dimension (FD)  Associations 

 Multiple sclerosis 
(MS) 

  ↓  FD of the white matter border, 
skeleton in all MS and subtypes [ 8 ] 

 No associations between FDs of the 
white matter and gray matter and 
MS-related clinical disability scales 
(expanded disability status scale and 
MS functional composite score) [ 8 , 
 9 ] 

  ↑  FD of the gray matter at the early 
to intermediate phases of disease 
[ 9 ] 

 FDs of the white matter skeletons 
and gray matter  ↔  T1 and T2 WM 
lesion load [ 8 ,  9 ] 

 Multiple system 
atrophy of the 
cerebellar type 

  ↓ FD of 3D cerebellar white matter, 
cerebellar gray matter [ 48 ] 

 FD  ↔  volume [ 48 ] 

 Stroke   ↓ FD of the white matter in the 
stroke-affected hemisphere [ 49 ] 

 FD of the residual white matter  ↔  
upper extremity motor function 
(Wolf motor function test, 
Fugl-Meyer motor assessment 
score) [ 49 ] 

  ↓ decreased, ↑ increased, ↔ is associated with  
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and MS-related clinical  disability scales (EDSS and MSFC) [ 8 ,  9 ]. This might be 
due to the interaction between the FD abnormality in the GM and WM. In the 
two MS fractal studies, the association of the FD with functional scores was 
investigated in the GM and WM separately. Further study may be needed to 
examine the relationship between the clinical scores and the combination of the 
FD measurements of the GM and WM to assess the usefulness of the FD in 
MS. The fractal studies in epilepsy [ 4 ,  12 ,  25 ] and MSA of the cerebellar type 
[ 48 ] did not address the associations between the FD and clinical scores, which 
are needed in the future to investigate the potential applications of FD analysis in 
these clinical settings. 

 To the best of our knowledge, no studies have systematically examined the 
pathophysiological mechanism of the FD changes with age and in neurodegenera-
tive diseases. It is hypothesized that FD reductions in the brain WM could be due to 
axon loss, increased water content, decreased myelin content, and other infl amma-
tory events that may lead to a more amorphous tissue. The decrease of the WM 
border can be due to both juxtacortical WM lesions and GM abnormalities [ 8 ]. The 
FD increase may be due to infl ammatory component (i.e., microglial activation) and 
cellular changes (synapse pruning, demyelination, brain-blood barrier changes, 
etc.) [ 9 ]. 

 Shape analysis has been suggested to provide new information that is not acces-
sible by volumetric measurements [ 13 ]. Thus, the FD can be considered as an inde-
pendent morphometric measure, although some studies showed that the FD was 
associated with volumetric measurements [ 8 ,  9 ,  48 ]. Moreover, research has shown 
that the FD is a more sensitive morphometric measure than volumetric measures to 
detect subtle structural changes in the brain WM [ 35 ,  48 ,  50 ]. Besides FD analysis, 
different approaches were used for quantifying brain topological changes in aging 
and neurodegenerative disorders, such as magnetization transfer ratio (MTR) [ 11 , 
 40 ] or diffusion tensor imaging (DTI) [ 14 ]. These techniques may measure different 
morphological features due to different physical principles of each technique. No 
FD studies have addressed the relationship between the FD and MTR, DTI or mag-
netic resonance spectroscopy, which may be needed in the future to identify the 
biological usefulness of fractal analysis in aging and neurological disorders. 

 The FD measures of 2D and 3D shape features have been investigated in aging 
and diseases (Table  14.1 ). Although 3D measures are generally superior to 2D met-
rics, sometimes it is useful to evaluate local changes using 2D features [ 21 ,  49 ]. 
Studies may be needed in the future to extract local 3D shape features to assess local 
shape complexity changes. 

 In conclusion, a number of studies have shown the potential of the FD as a clini-
cal measure in the evaluation of brain shape changes in aging and neurodegenera-
tive diseases. In order for the FD technique to be more widely adopted in the clinical 
settings such as helping clinicians make more objective and accurate diagnosis of 
brain disease and injury, studies are needed in the future to investigate the associa-
tions between the FD measure and pathophysiological mechanism and to identify 
local shape features to assess changes in the region or regions to improve sensitivity 
and accuracy of the measurement.     
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    Chapter 15   
 Fractal Analysis in Neurodegenerative 
Diseases                     

     Daniel     Pirici      ,     Laurentiu     Mogoanta     ,     Daniela     Adriana     Ion     , 
and     Samir     Kumar-Singh    

    Abstract     Neurodegenerative diseases are defi ned by progressive nervous system 
dysfunction and death of neurons. The abnormal conformation and assembly of 
proteins is suggested to be the most probable cause for many of these neurodegen-
erative disorders, leading to the accumulation of abnormally aggregated proteins 
like, for example, amyloid-β (Aβ) (Alzheimer’s disease and vascular dementia), tau 
protein (Alzheimer’s disease and frontotemporal lobar degeneration), α-synuclein 
(Parkinson’s disease and Lewy body dementia), polyglutamine expansion 
(Huntington disease), or prion proteins (Creutzfeldt-Jakob’s disease). An aberrant 
gain-of-function mechanism toward excessive intraparenchymal accumulation thus 
represents a common pathogenic denominator in all these proteinopathies. 
Moreover, depending upon the predominant brain area involvement, these different 
neurodegenerative diseases lead to either movement disorders or dementia syn-
dromes, although the underlying mechanism(s) can sometimes be very similar, and 
at other occasions, clinically similar syndromes have quite distinct pathologies. 
Non-Euclidean image analysis approaches such as fractal dimension (FD) analysis 
have been applied extensively in quantifying highly variable morphopathological 
patterns, as well as many other connected biological processes; however, their 
application to understand and link abnormal proteinaceous depositions to other 
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clinical and pathological features composing these syndromes are yet to be clari-
fi ed. Thus, this chapter aims to present the most important applications of FD in 
investigating the clinical-pathological spectrum of neurodegenerative diseases.  

  Keywords     Fractal dimension   •   Amyloid plaques   •   Cortical atrophy   •   Cerebral 
blood fl ow   •   Electroencephalogram   •   Gait analysis   •   Demyelination  

15.1       Alzheimer’s Disease and Vascular Dementia 

 Alzheimer’s disease (AD) is the most frequent form of neurodegenerative brain 
disease, and leads to a progressive loss of memory and cognitive abilities. It is 
responsible for the cognitive decline in up to three-quarters of all patients with 
dementia [ 43 ]. Deposition of amyloid-β (Aβ) plaques and tau neurofi brillary tangles 
(NFT) in affected brain regions are the two pathological hallmarks of AD [ 2 ,  81 ]. 

 Amyloid plaques are extracellular insoluble protein aggregates composed of Aβ, 
a 40–43 amino acid peptide that results from abnormal processing of the amyloid 
precursor protein (APP) (Fig.  15.1 ). APP is a single transmembrane protein, and due 
to alternative splicing is expressed as 695, 751, and 770 amino acid long isoforms 
with APP695 being most abundantly expressed in neurons [ 42 ]. Constitutively, APP 
is processed by a series of proteases called α and γ secretases that cut the protein to 
generate extracellular soluble fragment (soluble-APPα) and an APP intracellular 
domain (AICD) fragment that bears multiple signaling roles, as well as N-truncated 
Aβ fragment called p3 [ 16 ,  74 ]. In the Aβ secretion pathway, however, APP is 
cleaved by β and γ secretases leading to secretion of the APP ectodomain (soluble-
APPβ), AICD, and Aβ fragments of 40 (Aβ40) or 42 (Aβ42) amino acids [ 74 ]. It is 
speculated that any remaining uncleaved APP holoprotein at the cell surface can be 
re-internalized via clathrin-coated pits and subsequently recycled through the endo-
somal system [ 67 ]. Some of those proteins will be recycled to the cell surface, while 
others will enter the endosomes and lysosomes and will be degraded. Aβ generated 
within the cells of the brain parenchyma (mostly but not exclusively neurons) is the 
probable source for the most Aβ in extracellular amyloid plaques [ 11 ]. A complete 
image of the cellular Aβ metabolism is still elusive; however, based on a number of 
in vitro experiments, it is believed that during the endosomal recycling, Aβ40 can be 
generated and released to the surface of the cells. Endoplasmic reticular (ER) vesi-
cles show considerable amount of Aβ42, whereas Golgi vesicles contain both Aβ40 
and Aβ42 [ 74 ]. Mutations in the genes encoding for APP and γ secretase-compo-
nents called presenilins ( PSEN 1 and 2) constitute an important cause of familial 
forms of AD, and the subsequent resulting phenotypes manifested as pure AD or 
associated with a predominant vascular pathology [ 31 ,  33 ,  83 ].

   As already stated, amyloid depositions are basically extracellular aggregates, 
extremely complex in their composition, morphology, and localization. They can be 
present almost anywhere in the brain parenchyma, ranging from a diffuse to a more 
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  Fig. 15.1    Schematic diagram of the amyloid precursor protein ( APP ) with pathogenic mutations 
and metabolic processing. ( a ) The amino acid sequence of Aβ fragment exhibits common patho-
genic amino acid substitutions. Sites of secretase cleavage points are indicated by  arrows  (position 
1, 17, and 40–42 for β-, α-, and γ-secretases). ( b ) The constitutive proteolytic cleavage by α- and 
γ-secretases leads to the formation of the short p3 peptide, and the alternative pathway leads to the 
formation of Aβ peptide; in both cases, with a consecutive release of a C-terminal APP intracyto-
plasmic domain (C83 and C99) and APPs soluble fractions. Aβ42 and Aβ40 diffuse in the paren-
chyma and precipitate as fi brillar aggregates or “plaques”       

 

15 Fractal Analysis in Neurodegenerative Diseases



236

dense texture, as well as in the walls of blood vessels, a feature known as cerebral 
amyloid angiopathy (CAA) [ 48 ,  80 ,  85 ]. Although numerous studies describe the 
overall diversity of all these depositions and their relation with the clinical evolu-
tion, there is also increasing evidence toward a close physiopathological connection 
between CAA, dense types of depositions, and the brain vasculature [ 50 ,  52 ]. Many 
lines of transgenic mice overexpressing mutant forms of APP and PSEN have been 
developed in an attempt to mimic the amyloid pathology observed in the brains of 
human AD patients [ 12 ,  28 ]. 

 In both human pathology and mouse models, it has been showed that this diver-
sity of plaques exhibits different affi nities for fi bril-binding dyes such as Congo red 
or Thiofl avin S (ThS), the more positive deposits being thus considered more “com-
pact” or “dense,” compared to the “diffuse” material negative for such fi bril-binding 
dyes [ 48 ,  80 ,  85 ]. Moreover, relative proportions of Aβ40 and Aβ42 have also been 
found to differ between these types of plaques, for instance, diffuse deposits are 
shown to be composed predominantly of Aβ42, while the compact plaques contain 
both Aβ42 and Aβ40 [ 21 ,  38 ]. Diffuse plaques are also considered to mature to 
compact plaques by co-depositing Aβ40; however, recent data suggest that diffuse 
and dense plaques might in fact develop on distinct pathways [ 48 ,  80 ]. 

 Subjective morphological classifi ers such as “dense,” “diffuse,” or “reticular” as 
well as objective Euclidean morphometric features like areas, diameters, or densities 
have had limited utility in describing and classifying the highly variable amyloid pat-
terns [ 48 ,  80 ,  85 ]. Complex and nonregular objects can be complementary described 
utilizing more objective, scale-invariant parameters, which are generally studied 
under the concept of fractal dimension (FD). FD of an object is a measure of the mor-
phological complexity of that object, the inner self-similarity as measured at different 
scales, or simply put, the effi ciency with which the object is fi lling the space it occu-
pies [ 54 ]. As already described before, this concept is now widely used in pathology 
to describe many highly irregular normal and pathologically occurring patterns and 
processes like changes in cerebral blood fl ow, tumor angiogenesis, and chromatin 
distribution in malignant cells [ 13 ,  53 ,  59 ]. Relatively recently, FD analysis has been 
introduced in studying AD for both pathology and brain-imaging studies. 

15.1.1     Fractal Dimension: A Classifi er for the AD Pathology 

 FD analysis has been utilized as a morphological classifi er to study amyloid plaques 
in human, monkey, camel, dog, and felines, and although such an initial study has 
been based on a low number of analyzed amyloid deposits, it showed that diffuse 
plaques had signifi cantly lower FD values compared to mature (dense or dense- 
core) plaques even when considering this across different species, a fact that showed 
support to the upcoming idea that these two types of deposits might form in differ-
ent ways [ 57 ,  62 ]. Indeed, while diffuse plaques seem most probably to originate in 
the neuropil following an imbalance between the diffusion of Aβ oligomers and 
fi brils with different precipitation properties (mainly dictated by the Aβ40/Aβ42 
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ratios) (reviewed in [ 48 ,  49 ]) and the catabolic properties of a plethora of enzymes 
and cellular key players, for dense plaques there have been postulated theories that 
place them both as the developmental successors of diffuse deposits and as separate 
entities occurring at sites of perivascular amyloid drainage failure along the Virchow 
Robin spaces [ 18 ,  52 ,  80 ,  87 ]. 

 A fractal analysis study assessing three most prominent types of plaques in 
human AD (diffuse, compact without a core, and dense core plaques), based on the 
box-counting algorithm applied on binarized images grabbed on slides after Aβ 
immunohistochemistry, showed important differences in the FD of these types of 
plaques [ 65 ]. This study involved studying more than 6,000 binarized images of 
amyloid plaques stained with Aβ40, Aβ42, and total Aβ immunohistochemistry 

  Fig. 15.2    Fractal analysis of the most prominent types of amyloid plaques in AD patients. Original 
immunohistochemistry images refl ect exemplary types of plaques as detected by anti-total Aβ, 
Aβ42, and Aβ40 antibodies, and the binary images below represent correspondent segmented data 
for FD analysis. Respective FD values are illustrated in each binarized image; scale bar is 25 μm 
(Reprinted from Pirici et al. [ 65 ], with permission of Elsevier)       
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(IHC) (Fig.  15.2 ) [ 65 ]. Presuming that the complexity of plaques increases over 
time, the diffuse type of depositions seem to be the earliest plaques and parallel 
studies showing that diffuse type of depositions are the fi rst type of plaques to 
appear in AD [ 80 ]. However, the different degrees of complexity also sustain an 
alternative hypothesis that the diffuse and compact plaques have different patterns 
of formation and evolution [ 62 ]. The evolutionary link between the coreless com-
pact and dense core plaques is even more elusive. It is very much possible that the 
central halo observed in IHC for amyloid core is a method-dependent artifact, where 
anti-Aβ antibodies are unable to bind to the most compact amyloid, and remains an 
unstained central region. On the other hand, knowing the close pathological associa-
tion of the dense core plaques with the vessels, it could also be that all three types 
of plaques follow a distinct pattern of evolution.

   Assessing the FD of Aβ40 component, the more soluble Aβ fraction responsible 
for the compactness of the plaques, could fi rst of all differentiate between deposi-
tions from AD patients and sporadic plaques found in aged individuals (Fig.  15.3 ). 
Moreover, Aβ40 FD values could also differentiate between the phenotypes induced 
by mutations that lead to different Aβ40/Aβ42 ratios and that for both human pathol-
ogy and mouse models bearing these mutations [ 35 ,  51 ,  65 ]. In this line, a similar 
pattern of mostly dense-core plaques had been documented for patients bearing the 
APP Flemish (A692G) mutation and the APP Swedish mutation (APPK670N/
M671)-bearing mouse model (or the Tg2576 line) [ 50 ,  52 ]. Although the sizes of 
plaques themselves differ grossly, they both showed a similar Aβ40 FD profi le, with 
data above the 95th percentile revealing almost identical values [ 65 ].

   It has been suggested that increasing the relative levels of secreted Aβ42 drives 
increasing burdens of parenchymal diffuse plaques [ 34 ,  52 ]. The Aβ42 fraction is 
less soluble compared to Aβ40, and this translates into less complex plaques’ archi-
tecture (lower values for Aβ42 FD) for PSEN1 mutation carriers and the corre-
sponding mouse models [ 65 ], and other studies of amyloid deposition in human and 
animal aging conditions also revealed higher FD values for Aβ40/dense plaques 
compared to Aβ42/diffuse depositions [ 57 ,  62 ]. The higher diffusibility of Aβ40 
and thus its longer availability to form more complex patterns are again in perfect 
agreement with the observed FD differences. 

 Finally, compact plaques could be readily distinguished from diffuse plaques for 
all Aβ species and for both human patients and mouse models utilized [ 65 ]. Although 
it can be conceived that dense-core plaques represent advanced stages of develop-
ment and compaction starting from diffuse plaques, or postproduction modulation, 
as microglia associate only with dense plaques and can phagocytize Aβ [ 17 ], it still 
remains to be shown that higher FD values truly refl ect an increased histopathologi-
cal modeling of the plaque. 

 Neurofi brillary tangles, the other pathological denominator of AD and other neu-
rodegenerative diseases, have not been evaluated yet from a non-Euclidean morpho-
logical point of view, but since cognitive defi cit is more strongly linked to NFT 
rather than amyloid plaques [ 9 ], this might be of interest in the future. 

 FD algorithms have also been used as a measure of complexity for dendritic 
neuronal arborization or glial cell meshwork [ 5 ,  56 ,  70 ,  72 ,  76 ]. The most abundant 
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cellular component of the central nervous system (CNS), astrocytes, reacts to 
chronic/acute brain injury, became activated, and undergo a series of morphological 
and functional changes. Acutely reactive astrocytes become swollen, eosinophilic, 
with enlarged and eccentrically located nuclei, and with blunt processes, while in 
time, reactive astrocytes exhibit long cytoplasmic extensions that fi nally intercalate 
as a dense network of processes, a state called astrogliosis. The abundance of their 
specifi c cytoskeleton protein, glial fi brillary acidic protein (GFAP), makes them 
extremely visible by immunohistochemistry. Although their morphology is evidently 
depending on the subsequent pathology and evolutionary stages, a study analyzing 
fi brous, protoplasmatic, and activated astrocytes pooled together from mild dementia 

  Fig. 15.3    Fractal analysis of the most prominent types of amyloid plaques in mouse models of 
amyloidosis. Original immunohistochemistry images refl ect exemplary types of plaques as 
detected by anti-total Aβ, Aβ42, and Aβ40 antibodies, and the binary images below represent cor-
respondent segmented data for FD analysis. Respective FD values are illustrated in each binarized 
image; scale bar is 25 μm (Reprinted from Pirici et al. [ 65 ], with permission of Elsevier)       
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and recent as well as lacunar/chronic ischemic stroke patients revealed that these cell 
types share common features among these pathologies [ 64 ]. Thus, after calculating 
individual FD values for binarized silhouettes and outline masks, protoplasmatic 
astrocytes had the smallest FD values (1.43 ± 0.04 for silhouettes/1.29 ± 0.03 for out-
lines), signifi cantly different from fi brous (1.46 ± 0.06/1.34 ± 0.02) and activated 
astrocytes (1.50 ± 0.05/1.35 ± 0.03), for both stroke and dementia patients (Fig.  15.4 ) 
[ 64 ]. Although there was enough variability among astrocytes pooled from frontal, 
temporal, and striatal areas that did not allow any clear-cut differentiation between 
these areas for the same pathological subgroup, sporadic AD cases showed the 
smallest calculated FD values between all pathological instances only the temporal 
lobe areas [ 64 ]. Silhouette binarizations were, as expected, more informative than 
outlines, probably due to the loss of lacunarity data for the second type of image 
processing.

   Astrocytic FD analysis could also combine functional data, as that it has been 
recently showed that, for example, water and glutamate buffering is done mostly by 
the same astrocytes showing a high degree of colocalization for aquaporin 4 (AQP4) 
and glutamate transporter 1 (GLT-1), the two main water and glutamate gates in the 

  Fig. 15.4    Fractal analysis of three different types of astrocytes. The fi rst row shows the original 
immunohistochemistry images, the second row shows the binary silhouette of the cells, and the last 
row shows the outline masks, each binarized image included the corresponding FD values 
(Reprinted from Pirici et al. [ 64 ], with permission of the Romanian Society of Morphology)       
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CNS [ 58 ]. Plausibly, FD analysis of astrocytes based on the immunohistochemistry 
expression patterns of these markers will shed more light into the behavior of differ-
ent astrocyte classes and their interplay with the neuropil and the blood vessels.  

15.1.2     Imaging and Fractal Analysis in AD 

  Quantitative brain MRI  studies have greatly contributed to the knowledge of in vivo 
anatomical changes related to aging, and volumetric analysis can now reliably dif-
ferentiate patients with AD from controls [ 15 ,  20 ,  22 ,  47 ,  63 ]. Moreover, the com-
plexity and foldings of the cerebral cortex, as well as the complicated organization 
of the white matter fi bers, have demonstrated that macroscopically the human brain 
exhibits fractal properties [ 23 ,  37 ,  46 ,  89 ]. In AD, loss of neurons and cerebral atro-
phy with widening of sulci and thinning and decreased folding of the cortical ribbon 
leads to a decreased complexity of the affected cortices [ 3 ]. 

 Segmentation of two-dimensional cortical ribbons from control subjects and 
patients with mild to moderate Alzheimer’s, followed by computation of the FD on 
the full thickness of the cortices using the box-counting algorithm revealed lower 
values for AD patients compared to age-matched controls (Fig.  15.5 ) [ 45 ]. This 
fi nding was evident especially in the medial temporal lobe, the superior and infe-
rior colliculus, the mammillary bodies, the corpus callosum, and the thalamus [ 45 ]. 
Although assessing the complete thickness of the ribbons was superior as discrimi-
nating value to the analysis of only the outline of the pial surface or of the gray/
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  Fig. 15.5    Example of two-dimensional segmentation for fractal analysis of cortical ribbons from 
a control case and a patient with Alzheimer’s disease. The  upper row  of images identifi es the sec-
tioning planes for seven different anatomical regions. The  middle  and  lower rows  display the corti-
cal ribbons segmented from the brains of a control individual and from Alzheimer’s disease patient 
brain, respectively, and extracted for analysis. Non-cortical areas (cerebellum, white matter, basal 
nuclei, and brain stem) were not considered for this analysis. The narrowing of the cortical ribbon 
and widened sulci are evidently leading to a less complex morphology and lower FD values for the 
FD patient (Reprinted from King et al. [ 45 ], with permission of Springer)       
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white matter junction, it was limited to the bidimensional sectioning of the corti-
ces, not being able to take into account the entire cortical surface [ 37 ,  40 ,  45 ]. A 
more recent imaging study from the same group utilized a three-dimensional 
approach to analyze the ruggedness of the cortical ribbon layer based on the data 
of 70 patients (35 control patients and 35 patients with mild AD) imaged with a 
high-contrast magnetic resonance imaging technique (three-dimensional magneti-
zation prepared rapid acquisition 3D inversion recovery or MP-RAGE) [ 44 ]. The 
pial surface, the gray/white matter boundary, and the total thickness of the cortex 
were segmented and analyzed based on a custom three-dimensional cube-counting 
fractal algorithm. The fractal dimensions of the total cortical ribbons was signifi -
cantly higher for control compared to AD subjects; the gray/white matter bound-
ary fractal dimension showed smaller but signifi cant differences between the two 
pathologies, while the analysis of the pial surface revealed no signifi cant differ-
ence between the two groups [ 44 ]. Only the total cortical thickness FD showed a 
signifi cant correlation with cortical thickness itself and with the cognitive decline.

    Single photon emission CT (SPECT)  of the cerebral blood fl ow (CBF) has been 
used to evaluate and compare the dynamics of cerebral circulation and brain metab-
olism in dementia [ 26 ,  55 ]. In AD and vascular dementia (VaD), blood fl ow is 
reduced in temporoparietal areas even before cerebral atrophy is noticeable, and 
with the progress of dementia, the metabolic defi cit extends toward the anterior 
areas of the brain [ 19 ,  25 ,  27 ,  39 ,  78 ]. Data suggest that reduced CBF in temporo-
parietal areas together with the atrophy of the medial temporal lobe are a feature of 
AD, and might be linked to the loss of entorhinal cortex neurons projecting toward 
the dentate gyrus of the hippocampus [ 41 ]. 

 In order to objectivize the evaluation of tomograms, heterogeneity of CBF was 
assessed as the three-dimensional FD of SPECT images threshold using an intensity- 
cutoff algorithm, which proved that higher FD values indicate uneven CBF SPECT 
imaging [ 59 ,  61 ,  88 ]. Applied to the whole brain, this approach revealed signifi -
cantly lower values for the control group compared to AD and VaD, and with no 
differences between AD and VaD [ 88 ]. When the authors looked individually at the 
anterior and posterior brain regions, for the AD patients, FD values were signifi -
cantly higher for posterior areas, while VaD patients had higher FD values for ante-
rior areas [ 88 ]. Moreover, posterior CBF heterogeneity was well correlated with the 
cognitive impairment in AD, being able to distinguish between mild stage AD and 
elderly controls [ 59 ,  61 ]. 

 Aside functional MRI, the analysis of the  electroencephalogram (EEG)  is cur-
rently used as a diagnostic tool in patients with cognitive dysfunction involving 
either a general or a localized decline of the brain functions. In AD patients, this 
results in a shift of the EEG spectrum toward lower frequencies and decreased 
coherence between interhemispheric signal sources [ 79 ]. Given the nonlinear nature 
of the neuronal activity, EEG pattern analysis seemed a good candidate for FD 
analysis. For multiple recording locations, full spectrum EEG revealed signifi cantly 
lower FD values for AD compared to age controls [ 6 ,  86 ]. In a more recent study, 
limited EEG in the β-band of the eyes-closed condition revealed an accuracy of 
99.3 %, with a sensitivity of 100 % and a specifi city of 97.8 %, in discriminating AD 
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patients from age controls [ 1 ]. It has also been showed that  magnetoencephalography 
recordings on 20 AD patients were signifi cantly less complex and more regular in 
AD for 71 out of 148 recording channels compared to 21 age-control patients [ 30 ].   

15.2     Other Neurodegenerative Diseases 

  Frontotemporal lobar degeneration (FTLD)  consists of a spectrum of clinical syn-
dromes exhibiting progressive degenerative changes in behavior, language, person-
ality, cognitive skills, and motor function and is characterized by selective frontal 
and temporal lobe atrophy. FDT cases account for up to 20 % of all cases of demen-
tia, having the same prevalence as AD in patients less than 65 years of age [ 69 ,  77 ]. 
Besides neuronal loss in the affected areas, there are fi ve recognized FTLD patho-
logical subtypes based on the immunoprofi les of a large spectrum of intraneuronal 
nuclear inclusions: (i) FTLD with tau-positive inclusions (tauopathies, or classi-
cally Pick’s disease), (ii) FTLD with TDP-43-positive intraneuronal inclusions, (iii) 
FTLD with FUS pathology, (iv) FTLD with ubiquitin-only inclusions, and (v) 
FTLD with no inclusions. In approximately 50 % of the patients with FTLD, there 
is an autosomal dominant pattern of inheritance, and recent advances identifi ed cul-
prit mutations in the genes coding for  microtubule - associated protein tau  ( MAPT ) 
 gene on chromosome 17q21 – 22  [ 36 ],  progranulin gene on chromosome 17q21 – 22  
[ 4 ,  14 ], valosin-containing protein gene on chromosome 9p21–p12 (VCP) [ 84 ], 
 TAR DNA - binding protein  (TDP-43) on chromosome 1p36 [ 8 ], or  charged multive-
sicular body protein 2B gene  ( CHMP2B )  on chromosome 3p13  [ 75 ]. 

 SPECT imaging studies assessing the heterogeneity of CBF have also been done 
for FTLD patients compared to AD and control patients. In a study involving 21 
FTLD patients and 21 AD patients in early stages of dementia, the authors utilized 
a derived FD function to assess technetium-99m hexamethylpropylene amine oxime 
SPECT scannings [ 60 ]. For heterogeneity analysis, SPECT imaging data were 
thresholded using a 35 % cutoff and a 50 % cutoff of the maximal voxel radioactiv-
ity, then FD values were calculated as the logarithms of the thresholds values and 
the remaining numbers of voxels for both anterior and posterior brain regions. 
While posterior FD values could not differentiate between FTLD and AD, anterior 
and anterior-to-posterior FD ratios showed signifi cantly higher values for FTLD 
cases compared to AD patients [ 60 ]. Increased heterogeneity and reduced CBF in 
frontal, anterior cingulate, temporal, orbitofrontal, and ventrolateral prefrontal cor-
tices had been already proved before in FTLD compared to AD, where this hetero-
geneity was more pronounced in parietal superior occipital and temporo-occipital 
cortices [ 82 ]. 

  Parkinson’s disease (PD)  is another common type of dementia/dementia syn-
drome clinically presenting with a combination of clinical rigidity, bradykinesia, 
and resting tremor, and in later stages dementia. This neurodegenerative disease 
results from the death of dopamine-secreting cells in the substantia nigra, with 
dopamine synthesis balance being important, among others, for lowering the 
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 inhibitory effect of basal ganglia over the motor system when voluntary movements 
are intended. This results in the overall reduction of the motor output, or bradykine-
sia [ 7 ]. As there are many causes and patterns of manifestation for movement disor-
ders, these apparently chaotic changes have been ideally investigated through 
nonlinear algorithms like FD analysis. After recording in dynamics the position of 
the body during walking using a triaxial accelerometry technique, a study on 11 PD 
patients and 10 healthy elderly controls found out that fractal patterns of the move-
ments were higher in PD patients for all three orthogonal axes compared to controls 
[ 73 ]. Moreover, it has been iterated that even normal gait has a stochastic fractal 
pattern which seems to be altered in PD to a point where it can be separated by 
machine learning and neural network classifi ers, although long time recordings 
from gait signal are still necessary to warranty this hypothesis [ 32 ,  71 ]. This pattern 
seems to be present even at the level of individual human pallidal neurons modu-
lated with dopamine; spike trains recorded from patients with PD during surgery for 
ablation of the globus pallidus lead to the conclusion that fractal dynamics may 
characterize the activity of single neurons in the CNS and act as an indicator of a 
dysfunctional CNS network [ 68 ]. 

  Multiple sclerosis (MS)  is the most common demyelinating disease of the human 
central nervous system leading initially to reversible neurological defi cits and, in 
time, to permanent disability [ 10 ]. Although the etiology and pathogenesis of MS is 
poorly understood, with both genetic and environmental factors being incriminated, 
damage to the white matter is mediated by autoimmune mechanisms, including T 
cell-mediated and antibody-mediated injuries [ 29 ]. On gross examination of the 
brain sections, areas of demyelination can be observed as sharply demarcated zones, 
or “plaques,” distributed predominantly in the white matter but may involve gray 
matter as well. On microscopic examination, plaques are composed of perivascular 
mononuclear cell infl ammatory infi ltrates, moderate gliosis, activated microglia, 
myelin loss, and axonal swelling [ 66 ]. 

 A study comparing control subjects with patients with MS on classical MR 
imaging revealed that skeletonized white matter had lower FD values for MS 
patients, for both visible and normal-appearing white matter, thus being able to 
detect changes even at an early phase of the disease [ 23 ]. Moreover, the same group 
showed that the FD of the segmented gray matter is increased in these patients com-
pared to healthy controls, and this did not correlate with gray matter atrophy or 
neurological disability, suggesting that these changes might appear very early in the 
course of the disease [ 24 ].  

15.3     Conclusion 

 The data presented in this chapter strongly suggest that FD analysis can be a valid 
tool not only for differentiating and grading pathological features in different types 
of neurodegenerative diseases based on histological texture analysis of specifi c pro-
teinaceous depositions, but it can also lead to genotype-phenotype correlations, as 
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is the case with familial forms of AD, making this classifi er both of a potential 
diagnostic aid and a tool for in depth investigation of the dynamic phenomena that 
lead to these distinct or overlapping syndromes.     
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Chapter 16
Fractal Analysis of the Cerebrovascular 
System Physiopathology

Martin Soehle

Abstract The cerebrovascular system is characterized by parameters such as arte-
rial blood pressure (ABP), cerebral perfusion pressure (CPP), and cerebral blood 
flow velocity (CBFV). These are regulated by interconnected feedback loops result-
ing in a fluctuating and complex time course. Moreover, they exhibit fractal charac-
teristics such as (statistical) self-similarity and scale invariance which could be 
quantified by fractal measures: These include the coefficient of variation, the Hurst 
coefficient H, or the spectral exponent α in the time domain, as well as the spectral 
index ß in the frequency domain. Prior to quantification, the time series has to be 
classified as either stationary or nonstationary, which determines the appropriate 
fractal analysis and measure for a given signal class. CBFV was characterized as a 
nonstationary (fractal Brownian motion) signal with spectral index ß between 2.0 
and 2.3. In the high-frequency range (>0.15 Hz), CBFV variability is mainly deter-
mined by the periodic ABP variability induced by heartbeat and respiration. 
However, most of the spectral power of CBFV is contained in the low-frequency 
range (<0.15 Hz), where cerebral autoregulation acts as a low-pass filter and where 
the fractal properties are found. Cerebral vasospasm, which is a complication of 
subarachnoid hemorrhage (SAH), is associated with an increase in ß denoting a less 
complex time course. According to the decomplexification theory of illness, such a 
diminished complexity could be explained by a restriction or even dropout of feed-
back loops caused by SAH.
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16.1  Introduction

Physiologic parameters such as arterial blood pressure (ABP) or cerebral blood flow 
(CBF) are not constant over time but fluctuate (Fig. 16.1). These fluctuations are 
either periodic, driven by an oscillatory process such as the heartbeat, or they are 
nonperiodic, for example, random or nonrandom. These nonperiodic fluctuations 
have been shown to contain valuable information recently [16]. A time series is 
regarded as fractal time series if it possesses the characteristics of self-similarity and 
scale invariance [12]. Fractal analysis allows to identify and quantify these 
characteristics.

16.2  Cerebral Autoregulation as a Feedback Loop

Cerebral perfusion pressure (CPP), which is calculated as the difference between 
mean arterial blood pressure (MAP) and intracranial pressure (ICP), is a major deter-
minant of cerebral blood flow (CBF) [11]. CBF would decrease whenever CPP 
declines, which is prevented by the mechanism of cerebral pressure autoregulation 
[19]: As CPP drops cerebral arterioles dilate until CBF is restored. In reverse, cerebral 
arterioles constrict when CPP increases. In terms of control theory, cerebral pressure 
autoregulation is a feedback loop with CPP as input and CBF as output. In addition, 
CBF is determined by arterial carbon dioxide partial pressure (paCO2) and cerebral 
metabolism as well [17, 23], which form two additional feedback loops that control 
CBF. In control theory, feedback loops are mathematically described by differential 
equations [9] which inherently exhibit a nonlinear behavior. This explains why the 
output parameter CBF shows nonlinear properties as will be discussed below. Many 
physiologic parameters, among others ABP, body temperature, arterial pH, and elec-
trolyte concentrations, are controlled by feedback loops as well which keep them in a 
physiologic range. Thus the organism maintains its interior milieu by regulatory 
mechanisms, a concept known as homeostasis [7].

16.3  Variability and Complexity

Despite cerebral autoregulation, CBF varies notably: Oscillations induced by 
heartbeat are observed, which are seen in ABP likewise (Fig. 16.1). These periodic 
changes occur in a frequency range above 0.5 Hz = 30/min, which is too fast for 
autoregulation to react [10]. In the frequency range below, CBF variations of 
5–10 % (coefficient of variation = standard deviation/mean) are observed despite 
autoregulation [21, 29], which are highly irregular and complex. A loss of fluctua-
tion might be of clinical relevance as it could be associated with increased morbid-
ity and mortality. This has been extensively investigated for a different parameter, 
namely, heart rate variability (HRV), where a reduction of HRV is associated with 
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Fig. 16.1 Upper part: Time series of arterial blood pressure (ABP, shown in red) and cerebral 
blood flow velocity (CBFV, illustrated in blue) in a 48-year-old woman suffering from subarach-
noid hemorrhage. The time course of CBFV follows that of its major determinant ABP. Lower 
part: The power spectral density of the ABP and CBFV time series shown above is presented at 
different frequencies. The peaks at 1.6 Hz (=96/min) and 3.2 Hz are caused by the fundamental 
frequency related to heartbeat (96/min) and its second harmonic, respectively. Likewise peaks at 
0.2 Hz (=12/min), 0.4 Hz, and 0.6 Hz are related to respiration (respiratory rate = 12/min) and its 
higher harmonics. The highest power spectral density is obtained for frequencies between 0 and 
0.15 Hz, a range where fractal characteristics were observed for both ABP and FV [29]
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Fig. 16.2 Fractal analysis of cerebral blood flow velocity by means of bridge-detrended scaled 
windowed variance (bdSWV) [6]. The variance, or mean standard deviation (mSD) to be more 
precise, is calculated (and shown as blue circles) for five different signal lengths t, starting with 
reference length t0. Both the variance mSD (ordinate) and the signal length t (abscissa) are dis-
played on a logarithmic scale. The slope of the linear regression line (shown as gray dashed line) 
is denoted as the Hurst coefficient HbdSWV. The correlation coefficient r2 indicates the strength of the 
relationship between log (variance) and log (time scale)

Fig. 16.3 Fractal analysis of cerebral blood flow velocity using the power spectral density method 
[13]. Both the power spectral density and the frequency are shown on a logarithmic scale. The peak at 
−0.63 (=log10 (0.23 Hz)) is caused by respiration. Only frequencies below −0.9 (=log10 (0.125 Hz)) 
are considered for further analysis (shown in blue): The negative slope of the linear regression line 
(shown as gray dashed line) of log (power spectral density) on log (frequency) is denoted as spectral 
index ßlow. The strength of the relationship is displayed as correlation coefficient r2
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poorer prognosis and/or increased mortality in patients suffering from coronary 
artery disease [27], dilated cardiomyopathy [32], congestive heart failure [25], and 
postinfarction patients [18]. CBF variability has been investigated in patients suf-
fering from subarachnoid hemorrhage (SAH), which is caused by a rupture of an 
aneurysm of a cerebral artery. SAH is associated with a high morbidity and mortal-
ity [8] not only due to the initial arterial hemorrhage but also due to the complica-
tion of cerebral vasospasm, which is characterized by a narrowing of cerebral 
arteries leading to cerebral ischemia [2].

16.4  Methodology of Variation and Fractal Analysis

Continuous CBF measurements are difficult in the clinical setting; therefore CBF 
velocity (CBFV) is assessed instead, which is a valid replacement as long as vessel 
diameter does not change during the measurement period [31]. To do so, transcra-
nial Doppler sonography (TCD) is performed which enables to record time series of 
CBFV with high temporal resolution and long duration [1]. Variation of a time 
series can be quantified by calculating its standard deviation (SD):

 
SD =

-( )
-

å x m

n

2

1  

where x denotes the data, m the mean, and n the number of samples. As the duration 
of a time series increases, its SD might either remain constant or vary which is 
denoted as stationary or nonstationary, respectively. The relative standard deviation 
or coefficient of variation CV is calculated as CV = SD/m.

For fractal analysis, the time series is investigated to possess fractal characteris-
tics, one of which is self-similarity: Segments of a fractal are similar to larger seg-
ments or the whole [13]. This could refer to geometrical self-similarity as known 
from the Mandelbrot set or to statistical self-similarity as for the case of fractal time 
series. Here, the segments of the time series have similar statistic properties (e.g., 
SD) as the entire time series. This statistical similarity is independent of the time 
scale chosen, a property known as scale invariance. Different parameters exist to 
quantify a fractal time series, one of which is the Hurst coefficient H.

16.5  Hurst Coefficient HbdSWV

HbdSWV is calculated in the time domain using the bridge-detrended scaled windowed 
variance (bdSWV) method: First, a given fractal time series is bridge detrended to 
remove linear trends [6]. Then the time series is divided into (nonoverlapping) win-
dows of length τ. The SD is calculated for each window and averaged yielding 
mSD(τ). This computation is repeated for a wide range of window sizes τ starting 
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with a reference window size τ0. Finally, mSD(τ)/mSD(τ0) is plotted versus τ/τ0 on a 
double-logarithmic scale, and the Hurst coefficient HbdSWV is estimated as the slope 
of the regression line [6, 20] (Fig. 16.2):

 

H
m m

bdSWV

SD SD
=

( ) ( )( )
( )

log /

log /

t t

t t
0

0  

HbdSWV is applicable to nonstationary time series only [12]. Therefore the parameter 
spectral index ß is calculated in the frequency domain, which differentiates between 
stationary and nonstationary time series.

16.6  Spectral Index ß

As a general principle, a Fourier analysis is performed to obtain the power spectral 
amplitude |A(f)|2 at frequency f [13]. According to the “1/f power law,” |A(f)|2 
decreases exponentially as frequency f increases in fractal time series [13] (Fig. 16.3):

 
A f cf( ) µ -2 ß

 

where c is a constant and ß is the spectral index, which is calculated as the negative 
slope of the linear regression line of log(|A(f)|2) on log(f). Fractal time series with 
1< ß <3 are characterized as nonstationary fractal Brownian motion (fBm) time 
series, whereas stationary fractal Gaussian noise (fGn) time series are having −1< ß 
<1 [12].

16.7  Spectral Exponent α

The spectral exponent α can be calculated in the time domain by detrended fluctua-
tion analysis (DFA) [24]: A given time series y(k) of length N is detrended by 
subtracting the local trend yn(k) and its root mean square fluctuation F(n) is 
 determined as:

 
F n

N
y k y k

k

N

n( ) = ( ) - ( )éë ùû
=
å1

1

2

 

This computation is repeated for different time scales n, providing a relationship 
between F(n) and n. The slope of the regression line of log[(F(n))] and log(n) is 
denoted as the scaling exponent α, with higher α values indicating a smoother time 
series.
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16.8  Fractal Analysis of Human CBF

So far, fractal analysis of human CBFV has been performed in few patient studies 
only (see Table 16.1). These include studies in which the cerebrovascular system is 
either directly altered by an intracranial disease such as subarachnoid hemorrhage 
[29] or indirectly affected by causes such as cardiogenic shock [4] or autonomic 
failure [5]. In addition, fractal parameters of CBFV have been analyzed in healthy 
volunteers [28, 33, 34]. All studies identified fractal properties in their CBFV time 
series, such as scale invariance and self-similarity. They all classified CBFV as frac-
tal Brownian motion (fBm), which is defined as having a spectral index 1< ß <3 
[12]. Hence, CBFV is nonstationary which means that its observed variance 
increases with the length of the observation period [12]. Eke et al. [12] have stressed 
the importance of classifying fractal time series according to the dichotomous fGn/
fBm model, as the signal class determines the appropriate method of quantifying its 
fractal properties. Values between 2.0 and 2.3 were observed for the fractal param-
eter ß both in patients [5, 29] and healthy volunteers [34] using the power spectral 
density (PSD) method. This PSD technique has been described as being appropriate 
for both fGn and fBm signals. In contrast, Rossitti and Stephensen [28] as well as 
West et al. [33] observed higher ß-values of 2.5 and 2.7, respectively, but they 
applied dispersional analysis, a method which should be used for fGn time series 
only [12]. Much lower ß-values between 0.7 and 0.9 were described by Bellapart 
et al. [4] in healthy volunteers and cardiogenic shock patients. They applied DFA, a 
method that allows signal classification as fGn/fBm either, but leaves some uncer-
tainty around α-values of 1.0. They reported an α between 0.86 and 0.97 which is in 
the area of uncertainty. Moreover, for DFA 215 = 32,768, samples are required to 
achieve a 95 % precision [13]; however 6,000 samples were analyzed only. Zhang 
et al. [34] and Reynolds et al. [26] observed a kink in their PSD data and conse-
quently calculated different ß-values for different frequency ranges: They reported 
low ß-values of 0.3 and 0.7 for the very low-frequency range 0.002–0.02 Hz [34] 
and 0.005–0.06 Hz [26], respectively. Many times higher ß-values of 2.3 and 1.6 
were calculated for the frequency range 0.02–0.5 Hz [34] and 0.06–0.5 Hz [26], 
respectively. Hence, CBFV might not only exhibit a monofractal, but probably a 
bifractal or even multifractal behavior.

Fractal parameters such as α, ß, and H give more precise estimates, that is, less 
mean squared error (MSE = variance + bias2), with increasing length of the time sig-
nal n. To obtain a detailed information in the low-frequency range (LF, <0.15 Hz), 
low sampling frequencies (<1 Hz) are desired which result in long recording times. 
However in clinical practice, long recording times (>30 min) are hardly feasible in 
TCD, which is susceptible to probe dislocation, and will be tolerated neither by 
patients nor nursing staff for long periods. Therefore using the analysis techniques 
with the highest precision at a given signal length is preferred. The spectral index ß 
obtained by power spectral density analysis reliably classifies a fractal time series as 
fGn or fBm, but gives imprecise estimates. Therefore, the Hurst exponent H is 
 calculated as a fractal parameter, which gives two magnitude higher precision 
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 estimates than PSD [12]. Depending on the fGn or fBm signal class, H is estimated 
using the dispersional or the bdSWV method, respectively [12]. Failure to match the 
fGn/fBm signal class with the appropriate method (dispersional/bdSWV method) 
results in serious error in estimating H [12]. A Hurst coefficient of 0.26 ± 0.13 was 
obtained for CBFV in SAH patients [29], which is similar to the value of 0.24 ± 0.02 
obtained in the rat cerebral microcirculation [12]. In both studies, the Hurst coeffi-
cient was unequal to 0.5 which means that the variations in CBF are not random. 
Moreover, the H value <0.5 indicates anticorrelation within the CBF time series, 
that is, increases of the signal in the past influence decreases at present. Hence a 
long-term memory [3, 13] was present in the CBF signal. In general, variability and 
fractal analysis provide complementary information: Whereas variation analysis 
investigates standard deviation on a single time scale only, bdSWV analyzes stan-
dard deviation over a wide range of time scales, and H quantifies the roughness of 
the time series on a time-invariant scale [3].

16.9  Decomplexification

Cerebral vasospasm, a complication of SAH which is characterized by a narrowing 
of cerebral arteries, is associated with a significant increase in the spectral index ß 
(Table 16.1) [29]. Likewise, SAH patients exhibit a significant higher ß on the side 
of vasospasm as compared to the contralateral non-vasospastic side [29]. Such an 
increase in ß is equivalent to a less complex time course or decomplexification of 
CBFV, which could be explained by the decomplexification theory of illness [15]: 
Parameters such as CBF are regulated by multiple interconnected feedback loops 
resulting in a highly complex time course. In illness such as cerebral vasospasm, 
these feedback loops are either restricted in their range of action or even out of order 
which causes a less complex time course. Decomplexification has been shown in 
Cheyne-Stokes respiration, parkinsonian gait, neutrophil count in leukemia, and 
fever in Hodgkin’s disease [15] as well as during intracranial hypertension follow-
ing traumatic brain injury [30].

16.10  Frequency-Dependent CBF Variability

CBFV analysis in the frequency domain exhibits peaks in power spectral density 
which are related to heartbeat (~80–120 min−1 = 1.3–2 Hz) and respiration (~8–
20 min−1 = 0.13–0.3 Hz) [29] (Fig. 16.1). Transfer function analysis reveals a high 
coherence between ABP and CFBV in the higher frequency range (HF, > 0.15 Hz), 
which indicates that a high proportion of CBF variability is explained by likewise 
heartbeat and respiration induced fluctuations in ABP [22]. One might assume that 
the fractal behavior of CBFV might be simply explained by the fractal properties of 
ABP, a theory which is refuted by cerebral autoregulation (CA). CA behaves like a 
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high-pass filter, which freely passes fast ABP changes (>0.15 Hz) but effectively 
attenuates low-frequency (LF, <0.15 Hz) oscillations [5, 14]. In fact, it has been 
shown that changes in cerebrovascular resistance due to CA contribute significantly 
to CBF variability in the LF range [21]. Moreover, the LF range contains most of the 
spectral power (or variability) of CBF [21], and hence patient studies have focused 
on the LF range [4, 29]. The feedback loops of CA with its inherent nonlinear 
behavior are active in the LF range and could explain the fractal properties of 
CBF. However, the current available techniques of fractal analysis quantify fractal 
properties but cannot prove a causal relationship. Therefore, it has not been proven 
that the fractal behavior of CBF is due to the fractal behavior of CA.

16.11  Conclusions

Time series of CBF (and its surrogate CBFV) possess fractal properties such as scale 
invariance and self-similarity. Fractal analysis allows to quantify these properties and 
give insights into the system of cerebrovascular system pathophysiology in general and 
of cerebral autoregulation in particular. At a given signal length, the Hurst coefficient 
provides a more precise estimation than other fractal parameters; however different 
methods exist to calculate it based on the signal classification as fGn or fBm. Therefore, 
a correct signal classification is required which is based on the robust method of estimat-
ing the spectral index ß by power spectral density analysis. Few studies have performed 
fractal analysis in patients with cerebrovascular system pathophysiology so far. Further 
studies are required to investigate the relationship between fractal analysis parameters 
and autoregulation impairment on the one side and patient outcome on the other side.

References

 1. Aaslid R. Developments and principles of transcranial Doppler. In: Newell DW, Aaslid R, edi-
tors. Transcranial Doppler. New York: Raven Press Ltd.; 1992. p. 1–8.

 2. Aaslid R. Hemodynamics of cerebrovascular spasm. Acta Neurochir Suppl. 1999;72:47–57.
 3. Bassingthwaighte JB, Liebovitch LS, West BJ. Fractal measures of heterogeneity and correla-

tion. In: Bassingthwaighte JB, Liebovitch LS, West BJ, editors. Fractal physiology. Oxford: 
Oxford University Press; 1994. p. 63–107.

 4. Bellapart J, Chan GS, Tzeng YC, Ainslie PN, Dunster KR, Barnett AG, Boots R, Fraser JF. The 
effect of ventricular assist devices on cerebral blood flow and blood pressure fractality. Physiol 
Meas. 2011;32(9):1361–72.

 5. Blaber AP, Bondar RL, Stein F, Dunphy PT, Moradshahi P, Kassam MS, Freeman R. Complexity 
of middle cerebral artery blood flow velocity: effects of tilt and autonomic failure. Am 
J Physiol. 1997;273(5 Pt 2):H2209–16.

 6. Cannon MJ, Percival DB, Caccia DC, Raymond GM, Bassingthwaighte JB. Evaluating scaled 
windowed variance methods for estimating the Hurst coefficient of time series. Physica A. 
1997;241(3–4):606–26.

 7. Cannon WB. The wisdom of the body. New York: Norton W. W.; 1932.

M. Soehle



261

 8. Chiang VL, Claus EB, Awad IA. Toward more rational prediction of outcome in patients with 
high-grade subarachnoid hemorrhage. Neurosurgery. 2000;46(1):28–35, discussion 35–26.

 9. Csete ME, Doyle JC. Reverse engineering of biological complexity. Science. 
2002;295(5560):1664–9.

 10. Czosnyka M, Brady K, Reinhard M, Smielewski P, Steiner LA. Monitoring of cerebrovascular 
autoregulation: facts, myths, and missing links. Neurocrit Care. 2009;10(3):373–86.

 11. Czosnyka M, Piechnik S, Richards HK, Kirkpatrick P, Smielewski P, Pickard JD. Contribution 
of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregula-
tion. J Neurol Neurosurg Psychiatry. 1997;63(6):721–31.

 12. Eke A, Herman P, Bassingthwaighte JB, Raymond GM, Percival DB, Cannon M, Balla I, 
Ikrenyi C. Physiological time series: distinguishing fractal noises from motions. Eur J Physiol. 
2000;439:403–15.

 13. Eke A, Herman P, Kocsis L, Kozak LR. Fractal characterization of complexity in temporal 
physiological signals. Physiol Meas. 2002;23:R1–38.

 14. Giller CA. The frequency-dependent behavior of cerebral autoregulation. Neurosurgery. 
1990;27(3):362–8.

 15. Goldberger AL. Fractal variability versus pathologic periodicity: complexity loss and stereo-
typy in disease. Perspect Biol Med. 1997;40(4):543–61.

 16. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov P, Peng CK, Stanley HE. Fractal dynamics 
in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A. 2002;99 Suppl 
1:2466–72.

 17. Harper AM, Glass HI. Effect of alterations in the arterial carbon dioxide tension on the blood 
flow through the cerebral cortex at normal and low arterial blood pressures. J Neurol Neurosurg 
Psychiatry. 1965;28(5):449–52.

 18. Kleiger RE, Miller JP, Bigger Jr JT, Moss AJ. Decreased heart rate variability and its associa-
tion with increased mortality after acute myocardial infarction. Am J Cardiol. 
1987;59(4):256–62.

 19. Lassen NA. Autoregulation of cerebral blood flow. Circ Res. 1964;15(Suppl):201–4.
 20. Mandelbrot BB. Self-affine fractals and fractal dimension. Phys Scr. 1985;32:257–60.
 21. Panerai RB. Complexity of the human cerebral circulation. Philos Trans A Math Phys Eng Sci. 

2009;367(1892):1319–36.
 22. Panerai RB, Eames PJ, Potter JF. Multiple coherence of cerebral blood flow velocity in 

humans. Am J Physiol Heart Circ Physiol. 2006;291(1):H251–9.
 23. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab 

Rev. 1990;2(2):161–92.
 24. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL. Mosaic organiza-

tion of DNA nucleotides. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 
1994;49(2):1685–9.

 25. Ponikowski P, Anker SD, Chua TP, Szelemej R, Piepoli M, Adamopoulos S, Webb-Peploe K, 
Harrington D, Banasiak W, Wrabec K, Coats AJ. Depressed heart rate variability as an inde-
pendent predictor of death in chronic congestive heart failure secondary to ischemic or idio-
pathic dilated cardiomyopathy. Am J Cardiol. 1997;79(12):1645–50.

 26. Reynolds KJ, Panerai RB, Kelsall AW, Rennie JM, Evans DH. Spectral pattern of neonatal 
cerebral blood flow velocity: comparison with spectra from blood pressure and heart rate. 
Pediatr Res. 1997;41(2):276–84.

 27. Rich MW, Saini JS, Kleiger RE, Carney RM, teVelde A, Freedland KE. Correlation of heart 
rate variability with clinical and angiographic variables and late mortality after coronary angi-
ography. Am J Cardiol. 1988;62(10 Pt 1):714–7.

 28. Rossitti S, Stephensen H. Temporal heterogeneity of the blood flow velocity at the middle 
cerebral artery in the normal human characterized by fractal analysis. Acta Physiol Scand. 
1994;151(2):191–8.

 29. Soehle M, Czosnyka M, Chatfield DA, Hoeft A, Pena A. Variability and fractal analysis of 
middle cerebral artery blood flow velocity and arterial blood pressure in subarachnoid hemor-
rhage. J Cereb Blood Flow Metab. 2008;28(1):64–73.

16 Fractal Analysis of the Cerebrovascular System Physiopathology



262

 30. Soehle M, Gies B, Smielewski P, Czosnyka M. Reduced complexity of intracranial pressure 
observed in short time series of intracranial hypertension following traumatic brain injury in 
adults. J Clin Monit Comput. 2013;27(4):395–403.

 31. Sorteberg W. Cerebral artery blood velocity and cerebral blood flow. In: Newell DW, Aaslid R, 
editors. Transcranial Doppler. New York: Raven Press Ltd.; 1992. p. 57–66.

 32. Tuininga YS, van Veldhuisen DJ, Brouwer J, Haaksma J, Crijns HJ, Man in’t Veld AJ, Lie 
KI. Heart rate variability in left ventricular dysfunction and heart failure: effects and implica-
tions of drug treatment. Br Heart J. 1994;72(6):509–13.

 33. West BJ, Zhang R, Sanders AW, Miniyar S, Zuckerman JH, Levine BD. Fractal fluctuations in 
transcranial Doppler signals. Phys Rev E. 1999;59(3):3492–8.

 34. Zhang R, Zuckerman JH, Levine BD. Spontaneous fluctuations in cerebral blood flow: insights 
from extended-duration recordings in humans. Am J Physiol Heart Circ Physiol. 
2000;278(6):H1848–55.

M. Soehle



263© Springer Science+Business Media New York 2016 
A. Di Ieva (ed.), The Fractal Geometry of the Brain, Springer Series in 
Computational Neuroscience, DOI 10.1007/978-1-4939-3995-4_17

Chapter 17
Fractals and Chaos in the Hemodynamics 
of Intracranial Aneurysms

Gábor Závodszky, György Károlyi, István Szikora, and György Paál

Abstract Computing the emerging flow in blood vessel sections by means of com-
putational fluid dynamics is an often applied practice in hemodynamics research. 
One particular area for such investigations is related to the cerebral aneurysms, 
since their formation, pathogenesis and the risk of a potential rupture may be flow- 
related. We present a study on the behavior of small advected particles in cerebral 
vessel sections in the presence of aneurysmal malformations. These malformations 
cause strong flow disturbances driving the system towards chaotic behavior. Within 
these flows the particle trajectories can form a fractal structure, the properties of 
which are measurable by quantitative techniques. The measurable quantities are 
well established chaotic properties, such as the Lyapunov exponent, escape rate and 
information dimension. Based on these findings, we propose that chaotic flow 
within blood vessels in the vicinity of the aneurysm might be relevant for the patho-
genesis and development of this malformation.
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17.1  Introduction

Intracranial aneurysms are focal dilatations of branches of the circle of Willis, most 
frequently involving bifurcation points. Intracranial aneurysms are mostly of the 
saccular type (“berry” aneurysms) and affect about 2–5 % of the population. The 
aneurysm rupture incidence is 6–10 per 100,000 inhabitants per year. About 45 % of 
the ruptures may lead to death or permanent disability during the first year [12, 16, 
32, 33]. Aneurysms are often incidentally found on imaging studies performed for 
different reasons. Neurosurgeons and neuro-interventionists often face the dilemma 
whether or not to treat unruptured aneurysms. Rupture can be catastrophic but the 
treatment risk itself is also non-negligible [12, 33].

The pathogenesis, growth and rupture of intracranial aneurysms is still not fully 
understood. It is likely a multifactorial disease, with genetic and hemodynamic fac-
tors, as well as life style and coexisting diseases playing a role. Recent research 
demonstrates a strong impact of hemodynamics on aneurysm initiation. Local 
changes of hemodynamics, particularly that of wall shear stress initiate focal vessel 
dilatation (vascular remodeling), that may result in unbalanced flow and further 
dilatation eventually resulting in aneurysm formation (see reviews and [13, 21]).

The treatment of intracranial aneurysms has undergone significant changes over 
the last few decades. Initially, open surgery was dominant during which a metallic 
clip was placed over the neck of the aneurysmal sac, thereby separating it from the 
blood flow in the parent artery. With the advent of less-invasive therapies, more and 
more aneurysms, particularly ruptured ones are treated by endovascular methods. In 
all these therapies the common goal is to reduce the blood flow in the aneurysmal sac 
and induce intrasaccular thrombosis leading to aneurysm occlusion. From a mechan-
ical point of view, the aneurysm occlusion reduces the pressure and wall shear stress 
load on the aneurysm walls, slowing down or stopping the degeneration process. 
One of these methods, coil embolization, is based on filling the sac with microcoils, 
thereby increasing the flow resistance within the aneurysm sac [6]. Another attempt 
was to fill the sac with polymer foam, but it did not gain wide acceptance. Nowadays, 
by far the most popular method is to use flow diverter (FD) devices that are also 
called stents [22]. They are similar in appearance to the more well-known coronary 
stents, but their function is different. They are implanted within the parent artery in 
front of the neck of the aneurysm and the struts of the stents provide flow resistance. 
This flow resistance reduces the communication between the flow in the parent 
artery and the aneurysm and thus leads to the reduction of flow velocity in the sac.

As described above, the analysis of the flow parameters (e.g., wall shear stress, 
pressure, oscillatory shear index) may play a critical role in understanding the for-
mation, growth and rupture of aneurysms. However, in vivo flow measurements 
using different imaging techniques do not provide the required spatial and temporal 
resolution. As a result, computational fluid dynamics (CFD) has been introduced 
into aneurysm research at an early stage. Using CFD, ex vivo numerical flow 
 simulation is feasible. An overview of the generally applied experimental and com-
putational methods is given in [24].
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Initially, idealized models were used in simulations (such as a sphere attached to 
a cylindrical tube), later real geometries have been simulated [15]. The images are 
extracted from medical imaging studies such as 3D rotational subtractional angiog-
raphy. Depending on the CFD method, the geometry is smoothed and remeshed or 
left in the original DICOM format.

Most of the commercial CFD codes use the so-called finite volume (FV) method, 
in which the investigated space domain is subdivided into small subvolumes and for 
each volume the discretized conservation equations are solved. This method needs 
smooth walls, and intermediate steps are required. An emerging other method to 
simulate flows is the so-called lattice Boltzmann method that uses simplified molec-
ular level collision statistics, which, on the macroscopic level, leads to the same 
conservation laws. This method needs a voxel mesh. Medical imaging using the 
DICOM standard produces exactly that file format.

We note that since the image recording takes several seconds to complete, the 
geometry used in the simulations effectively represents a time-averaged surface dur-
ing several cardiac cycles.

The flow simulation needs a lot of simplifying assumptions. First, that blood 
is assumed to be a Newtonian fluid. It is common consensus that the non-New-
tonian properties of blood exert their effect only in small blood vessels, in the 
sub- millimeter range. As arteries of the circle of Willis are well above this size, 
the assumption is justified. Detailed discussion of the importance of non-New-
tonian effects can be found in reviews [2, 3]. The second assumption is that the 
flow is laminar, incompressible. Considering the flow parameters, this is also 
reasonable. Third, the vessel walls are assumed to be rigid. Since the artery 
walls are flexible with a complicated material behavior, it is difficult to model 
them and compromises are necessary. In addition, little is known about the sur-
rounding tissues that support the artery from outside. It seems that if we com-
pare the elastic wall to the rigid wall case, in spite of some quantitative 
differences, the qualitative behavior of the flow is similar. Since brain arteries 
have little deformation during the cardiac cycle, for our purposes the rigid wall 
model is sufficient [14, 29].

A crucial point is the choice of the proper boundary conditions for the simula-
tions. Very often CFD-based researchers do not reveal any details about this. 
Sticking with the assumption of rigid walls, the inlet and outlet boundary conditions 
have to be determined at the beginning and the end cross sections of the investigated 
artery segment. It has been shown that the inlet boundary condition has a much 
larger influence on the flow in the interesting region than the outlet one [29]. The 
inlet boundary condition is usually given by a time-dependent flow rate or velocity, 
the outlet one is by pressure. It would be desirable if the flow rate or velocity curve 
were patient-specific but it is rarely possible. Therefore, general flow rate curves are 
often used [5, 15]. If velocity is given at the inlet, a spatial distribution has to be 
given that can be uniform or parabolic, or even better, the spatio-temporal Womersley 
distribution [29]. The pressure at the outlet is usually assumed to be constant. This 
is justified by the fact that at the peripheries, on the level of capillaries, the cyclic 
variation of the flow is negligible.

17 Fractals and Chaos in the Hemodynamics of Intracranial Aneurysms



266

Large amount of studies has been published in connection with flow simulation 
of intracranial aneurysms [3–5, 15]. Most of them aim at determining the temporal 
or spatial distribution of wall shear stress, or identify typical flow patterns [23]. It 
has become also possible to simulate treatments, in particular microcoils [30], or 
FD stents [31]. The development of CFD for intracranial aneurysms is progressing 
towards a semi-automatic easy-to-use CFD software with a few minutes of runtime 
for clinical applications.

For reasons provided later, the accuracy of the flow simulation is absolutely 
essential in this work. For this reason, we use an in-house lattice Boltzmann code. 
The detailed description of the code and the parameters can be found in [35]. In that 
work the code was validated against detailed velocity measurements in an aneurysm 
model.

In this chapter, the 2D geometries are idealized, artificial geometries, while the 
3D geometry is extracted from CT-angiography images. The 3D geometry is the 
same one validated in [35]. The inlet boundary condition is a laminar paraboloid 
inflow profile whereby the peak of the profile changes temporally according to a 
synthetic volumetric flow rate curve which bears the main properties of a real heart-
beat volume flow curve. This curve was used in several works, for example [15, 35]. 
The outlet boundary condition is constant pressure.

The accurate flow simulations provide a spatially and temporally well-resolved 
velocity field in and around the aneurysm. For the rest of this chapter, this velocity 
field will be considered as given and in this field a large number of individual par-
ticle paths are calculated. We describe how the time-varying flow field in and around 
an intracranial aneurysm results in the chaotic motion of particles transported by 
blood. We also show the fractal patterns traced out by these particles. For computa-
tional convenience, we use both a simple two-dimensional (2D) model for paramet-
ric studies, and also illustrate the generality of the phenomenon by using real, 
three-dimensional (3D) blood vessel geometries.

17.2  Fractal Patterns in Time-Dependent Flows

The motion of particles transported by moving fluid is known to be chaotic in many 
cases, a phenomenon called chaotic advection [1, 10]. Chaotic particle motion is 
associated with a sensitive dependence of particle paths on their initial position [27]. 
This means that particles that start near each other typically deviate rapidly from 
each other, the distance between the initially close particles typically diverges expo-
nentially with time. This very strong separation of particles leads to the observation 
that a patch of particles, like a blob of dye, rapidly forms long and curving fila-
ments. These filaments, formed by the stretching and folding action associated with 
chaos, form fractal structures that are hence traced out be ensembles of particles 
transported in the fluid.

In particular, motion of particles within blood vessels has been investigated from 
this point of view [17–19]. It has been found that a disruption of the flow, like a 
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branching, a narrowing or a bulge of the blood vessel can result in the chaotic 
motion of particles transported in the blood.

It has been speculated that the formation of fractal patterns by platelets has an 
important effect on platelet activation [17]. Similar effects were found previously in 
many situations ranging from microfluids through plankton blooms to environmen-
tal processes [26]. In cases when filamentary fractal patterns are generated in fluid 
flows, the underlying biological or chemical processes are enhanced by the large 
perimeter where the species can interact and by the strong chaotic mixing. This 
enhancement of processes manifests itself in a nontrivial, singular term in the chem-
ical rate equations [9, 11, 28] or in the population dynamical equations [8, 20]. 
Hence the formation of fractal patterns in fluid flows is expected to have very impor-
tant consequences on the underlying biochemical processes that take place in the 
blood as well [17, 34].

The simplest model to follow the motion of particles and to investigate their 
chaotic properties in a known flow field is to assume that the particles are very small 
and lack inertia. In this simplest approximation, the velocity of the particle coin-
cides with the instantaneous velocity of the fluid at the location of the particle. For 
a steady (time-independent) flow, this would imply that the particle follows the 
streamlines of the flow. If, however, the flow is non-steady, like in case of blood 
pulsating periodically, the particle trajectories deviate from the streamlines, and can 
become very complex, chaotic, even if the flow itself is simple [1, 10].

When the size and inertia of particles is neglected, the equation of motion for a 
particle can be written as d dt tr v r/ = ( ), , where r(t) is the position of the particle 
at time t, v(r,t) is the speed of the fluid at position r at time t. As discussed above, 
the right-hand side of this equation is known from numerical simulation. Hence this 
is a first-order, explicit differential equation for the particle position r(t). We solve 
this equation using the fourth order Runge-Kutta method [34]. Given an arbitrary 
initial position of a particle, we can follow its path along the blood vessel.

A few example particle paths are shown in Fig. 17.1 for a 3D aneurysm. Three 
particles were started from different but extremely close (within 1 μm) positions at 
the inlet of the shown segment, and their paths were traced numerically. For a while, 
the three particles moved along very similar paths, until they entered the aneurysm 
sac. There they spent very different times before leaving it, and both within the sac 
and after leaving it, they followed completely different paths. This picture illustrates 
the very sensitive dependence of the particle paths on their initial position, a unique 
sign of chaotic motion.

17.3  Basic Concepts Demonstrated on a Simplified 2D Case

The geometry of the surface of a real aneurysmal vessel section is rather intricate. 
Its shape is influenced by an immense number of factors. Thus, in order to be able 
to gain some general insight into the ongoing dynamics and the possible parameters 
driving it, a heavily simplified model was investigated first. This 2D model, shown 
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in Fig. 17.2a represents a synthetic cerebral aneurysmal case generated automati-
cally from a few well selected parameters.

The reduced number of parameters and degrees of freedom leads to a higher 
computational efficiency and makes parametric studies more feasible. Hence a 
simple study which might indicate local tendencies around a physiologically cor-
rect general set of parameters becomes possible. Apart from the geometric 

Fig. 17.1 Trajectories of three particles (red, green, blue) travelling through the transient flow 
field of a real aneurysm. Despite the small initial distance between the particles (within 1 μm) they 
travel along substantially different paths. The inlet is towards the bottom of the image, the three 
outlets are on the top and on the left side of the figure
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Fig. 17.2 (a) Synthetic aneurysm geometry automatically generated from the following parame-
ters: aneurysmal sac radius (r), aneurysmal neck arc length (L), parent artery diameter (D), parent 
artery curvature defined by its radius (R). The typical velocity streamline arrangement is also 
shown in the figure colored by a normalized logarithmic scale. (b) The parabolic inlet velocity 
profile (red) is also shown together with the residence time (light blue) as a function of the initial 
position. (c) The enlarged residence time function
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 properties, this set includes several quantities associated with the flow condition 
such as the average flow velocity or the heart beat frequency. In our case the former 
is expressed as the non-dimensional Reynolds number (Re) using the inlet vessel 
diameter and the average inlet velocity at the systolic peak, the latter is defined 
through the Womersley number (Wo) with the same inlet diameter and the fre-
quency of the heart beats. Applying the aforementioned numerical methods, this 
model yields a high resolution transient velocity field. The emergent flow field is 
smooth and laminar. Figure 17.2a displays a typical arrangement of streamlines 
within the computational domain. The qualitative picture of the flow remains the 
same under the effects of the different parameters. However, investigating the flow 
field from the viewpoint of tiny immersed particles, the picture varies 
substantially.

As we have seen in the previous section in the 3D case, the time it takes the 
particles to enter and leave the aneurysm sac may vary greatly as we change 
slightly their initial positions. The same behavior can be observed in the case of 
our simplified 2D model, as shown in Fig. 17.3a–d. Here, three particle paths are 
shown with a very small difference in their initial position (approximately 6 μm). 
The particles follow the same path until they reach the aneurysm, they penetrate 
it, and start to whirl around inside the sack. It is the particle with the green path 
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Fig. 17.3 (a–d) Sample of strongly deviating trajectories in the 2D flow. The three particles (red, 
green, blue) were started close to each other (a few μm), however, they spend significantly different 
amount of time in the central vortex. (e, f) Positions of one million tracer particles after 15 heart 
beat cycle (15 s) (e) initiated from a line segment across the inlet close to the wall and (f) initiated 
from within the aneurysmal sac using uniform spatial distribution
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that leaves the sac first, after about 11 s, that is, 11 heartbeat periods. Later, after 
about 22 s, the particle with blue path exits. However, the particle with the red 
path is still within the aneurysm after 60 s (that is, roughly after 60 heartbeats). 
This indicates that the residence time can be a quite irregular function of the 
initial conditions, as also shown in Fig. 17.2b, c. Here, as a function of the initial 
position, we can see in light blue the time it takes the particle to pass along the 
vessel segment. For particles in the center of the blood vessel, the residence time 
is short and is a regular function of the initial position: these particles do not 
enter the aneurysm, they just follow the undisturbed part of the flow. However, 
particles at the edge have a chance to enter the sac and to get trapped there for a 
long time. We see here that the residence time depends sensitively on the initial 
position of these particles. Particles initially close to each other can have very 
different residence times. The sensitive dependence on the initial position is, 
again, a unique sign of chaotic particle motion.

Residence times shown in Fig. 17.2b, c feature a large number of peaks, that is, 
many particles have anomalously long residence times (up to 15 heart beats in this 
case). In fact, in such flows it is known that there is an infinity of initial positions 
with infinitely long residence times [10]. These initial positions form a fractal set, 
and they all belong to particle paths that are trapped forever in the vessel segment 
shown in the figure.

To better understand what happens to those particles that are trapped within the 
aneurysm, we follow many particles from the vicinity of the wall initiated from a 
straight line. Figure 17.3e shows where these particles are to be found after 15 s. We 
see that the particles, originally along a straight line, either leave the vicinity of the 
aneurysm or spread along an intricate curve within the aneurysm. The particles that 
have not left the sack trace out a filamentary fractal pattern.

This intricate pattern is caused by the existence of a mathematical object called 
chaotic set within the aneurysm. The chaotic set is a union of all particle paths that 
eternally stay within the aneurysm. Neither in the future nor in the past they are to 
be found outside the aneurysm. Examples for such particles can be periodic particle 
paths that, after one or more periods of the flow, return to their previous position 
then follow the same path again and again. In typical chaotic systems, the number 
of such periodic particle paths increases exponentially with the length of the time 
period [10, 27]. That is, the number of periodic particle paths increases very strongly 
with the length of the period, the longer we wait the more periodic paths reveal 
themselves to an observer.

It is important to note that the chaotic set consists of infinitely many particle 
paths, but it is still exceptional that a particle path belongs to the chaotic set. In 
mathematical term, the chaotic set is a set of measure zero among all possible 
 particle paths, typically all particles leave the aneurysm sooner or later. Also, the 
particle paths that belong to the chaotic set are unstable in the sense that any small 
deviation from the particle path will result in a completely different path, leaving the 
aneurysm after some time.

Nevertheless, these trapped paths have a great effect on other particle paths. 
Whenever a particle gets close to a particle path that belongs to the chaotic set, like 
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those in Fig. 17.3e with long residence time, for a while it follows segments of 
 particle paths belonging to the set: the closer it gets to the chaotic set the longer it 
takes to leave its vicinity. This effect generates the peaks on the residence time plot 
shown in Fig. 17.2b, c: the high peaks correspond to particles that spend a long time 
wandering chaotically in the vicinity of the chaotic set. This implies that the parti-
cles trapped for a long time close to the chaotic set will eventually form the image 
shown in Fig. 17.3f.

The property that an unstable chaotic set governs the other particle paths forming 
a fractal pattern as shown in Fig. 17.3e is quite robust. For example, changing fine 
details of the shape of the aneurysm does not result in a qualitative change in the 
fractal pattern of particles.

17.4  Measuring Chaotic Quantities from Residence Times

A relatively simple technique to measure important quantities that characterize cha-
otic motion is the free energy formalism [25]. We initiate a large number of particles 
along a line segment of length L so that this segment contains at least some high 
peaks of the residence time, that is, it contains particle initial positions that approach 
the chaotic set. Then we measure the residence time for each particle, see Fig. 17.4a 
for an example, and count the number N(t) of intervals along L with residence time 
longer than t.
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Figure 17.4 (a) A typical residence time plot. (b) Enlarged region from the residence time plot 
from the green rectangle with the explanation of quantities for the computation of the bF(b) func-
tion. (c) Histogram of residence times, note the final peak which represents the particles still 
trapped after 20 s
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Let li(t), i=1…N(t) denote the length of these intervals along L, see Fig. 17.4b. 
For a large enough t the free energy function F(b) can be defined as in [25]:

 
e l tbF b

i

b- ( ) å ( )~ .
 

The important quantities describing chaotic advection can be derived from this 
function [25]. For instance, the fractal dimension D0 of the set of infinitely high 
peaks in Fig. 17.4a can be found as the b value at which bF(b) equals zero. In this 
case, it is more robust [34] to obtain the information dimension D1 of the same set, 
which usually is not far from D0.

Another important quantity is the average Lyapunov exponent, which is the aver-
age rate of exponential separation of initially close particles. This can also be 
obtained from F(b) as the slope of the bF(b) function at b = 1.

Also, the escape rate can be obtained from F(b). The escape rate is the exponen-
tial rate of decay of the number of particles still staying within the investigated seg-
ment of the blood vessel. It can be considered as the reciprocal of the average 
lifetime of chaotic motion within the vessel segment [27]. It is computed simply as 
the value of F(b) at b = 1 [25].

The study used a default parameter set (see Table 17.1 for details) as a basis 
for comparison. These parameters reflect a general realistic physiological case. 
In every additional sample, one parameter was either increased or decreased sig-
nificantly relative to these values. This change results in a modified flow field and 
consequently in modified paths for the tracer particles. The major question here 
is, how the changes in the parameters affect the chaotic behavior of the 
particles.

The answer can be extracted from the results of the numerical simulations. We 
compute the flow field, then follow many particle trajectories to generate the 
 residence times in each parameter set-up. Using the residence times, we derive 
chaotic quantities. The change in the obtained chaotic characteristic numbers, 
listed in Table 17.2, indicates the effects of local deviations from the default param-
eter set, and might give additional insight on what to expect in the 3D realistic 
cases.
Table 17.2 shows the change in the major measurable chaotic properties as a func-
tion of the change in the default parameter set. The table contains several intuitive 
and a few counter-intuitive results. Regarding the first group: one major separation 
point for the advected particles is the distal part of the neck of the aneurysm. In a 

Table 17.1 The default set of parameter  
values containing both the geometric and the  
flow parameters

Parameter Value

r 1.5 [mm]
R 3.5 [mm]
L 1 [mm]
D 1 [mm]
Re 100 [–]
Wo 1.36 [–]
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geometry with decreased bulge radius and maintained velocity the overturn time of 
the particles trapped in the vortex inside the aneurysm is shorter, thus the particles 
revisit this region of separation more often. This should result in an increased 
Lyapunov exponent, as well as an increased escape rate. Since the overturn fre-
quency strongly influences the stretching effect of the flow as well, the increase in 
the Lyapunov exponent is expected to be more dominant. Increasing the radius 
should produce the opposite results. This is well reflected in Table 17.2. The change 
in the flow velocity has a similar effect. Its increase will yield higher escape rates, 
since the average velocity increases throughout the domain, and also causes a higher 
vortex velocity, thus shorter overturn-times and an increased Lyapunov exponent. 
For the second group, where Table 17.2 gives less plausible results, an interesting 
example is the outcome of changing the heart beat frequency. The shorter cycle time 
increased and the longer cycle time strongly decreased the escape rate. This might 
not be directly obvious, since the average flow velocity remained the same. However, 
the increased frequency provides an increased excitation for the flow possibly driv-
ing it towards stronger chaotic behavior. Another example is the change in the width 
of the neck of the aneurysm. On the one hand, changing it modifies the escape rate 
significantly. The wider the neck is, the lower the escape rate becomes. On the other 
hand, it has only a moderate effect on the Lyapunov exponent. As a result, in accor-
dance with the Kantz-Grassberger relation [7], it modifies the fractal dimension of 
the particle trajectories. Increasing the neck width decreases the fractal dimension. 
Fractal dimension can be thought of as a measure of how densely the chaotic trajec-
tories are packed in space. Therefore, a higher D1 implies a stronger overall effect 
of the chaotic behavior on the flow.

Table 17.2 Results of the parametric study of the most important quantities characterizing the 
chaotic particle motion

The significant deviations from the default values are denoted by colored arrows
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17.5  Appearance of Chaotic Flow Inside Intracranial 
Aneurysms

The previous part of this chapter introduced some concepts on what might be 
expected in simplified cases based on some basic geometric and fluid flow properties. 
Comparing cases of real geometries, however, seems to be a more challenging task. 
Since every geometry is unique, the combined effects of the different parameters 
(which are naturally immensely more numerous than in our simplified case) yield a 
single result. This renders carrying out a parametric study nearly impossible. 
Nevertheless, we might showcase the effects of changing the Reynolds number with 
relative ease by changing the inlet flow velocity. Figure 17.5a, b shows the inlet cross 
section of the vessel geometry shown in Fig. 17.1, it is the same geometry used in 
[35] for code validation and in [34] for the exploration of fractal properties. The 
color of every point on the surface represents the residence time of a particle initiated 
from that particular point. Similarly to the simplified case, there are initial locations 
from where the particles take much more time to leave the investigated domain than 
one would expect based on the average flow velocity, for some examples see 
Fig. 17.1. Particles travelling these paths are usually trapped in some vortex residing 
mainly inside the aneurysmal sac or in some cases near vessel bifurcation points. On 
several occasions, the aneurysm displays a very intricate flow profile possibly incor-
porating multiple vortices enabling for even more intertwined particle paths. In the 
current case, the aneurysm has a single vortex core under the investigated boundary 
conditions. In Fig. 17.5a we present the residence times on the inlet cross section at 
a Reynolds number of 50. In Fig. 17.5b we present the same cross section with a dif-
ferent boundary condition: the Reynolds number was increased to 450. The differ-
ence is clearly visible. Increasing the flow velocity resulted in a richer, more complex 
pattern that displays the signs of the well-known ‘stretching and folding’ actions 
related to chaos. In our experience, based on ten different geometries, this phenom-
enon seems to be general, though different models are affected to a different extent.

17.6  Concluding Remarks

Some researchers believe that the rupture risk is associated with the irregularity of 
the flow pattern around the region of the aneurysm [5]. According to our findings, the 
emergent flow properties are in strong connection with the chaotic behavior of the 
advection in it. Thus, the measured quantities might be used as an indicator on the 
flow pattern complexity. Quantitative measures of the chaotic and fractal behavior 
for the same geometry, similarly to those for the 2D simplified geometry here, were 
computed in [34]. It was also discussed in [17] that chaotic advection is capable of 
influencing the ongoing biochemical reactions significantly. It can be speculated that 
this might induce a cascade of far ranging changes in the ongoing processes from 
endothelial functions to nutrition mechanisms leading to altered behavior in the wall 
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tissues. For example, the wall of these arteries are dependent on oxygenated blood 
for their metabolic needs. The presence of chaotic structures might alter the resi-
dence time and thus the level of deoxyhemoglobin present inside the aneurysm.

Therefore, using this study about the very fabric of the emergent flow structures, 
the chaotic quantities might turn out to be useful for characterizing cerebral 
 aneurysms as they might predict the biochemical behavior of the concerned vessel 
section.
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Fig. 17.5 Residence times of the particles initiated from the inlet cross section of the parent artery 
in case of (a) Re = 50 and (b) Re = 450. Note that the color scales are different due to the different 
average velocity
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    Chapter 18   
 Fractal-Based Analysis of Arteriovenous 
Malformations (AVMs)                     

     Antonio     Di     Ieva       and     Gernot     Reishofer   

    Abstract     Arteriovenous malformations (AVMs) are cerebrovascular lesions con-
sisting of a pathologic tangle of the vessels characterized by a core termed the nidus, 
which is the “nest” where the fi stulous connections occur. AVMs can cause head-
ache, stroke, and/or seizures. Their treatment can be challenging requiring surgery, 
endovascular embolization, and/or radiosurgery as well. AVMs’ morphology varies 
greatly among patients, and there is still a lack of standardization of angioarchitec-
tural parameters, which can be used as morphometric parameters as well as poten-
tial clinical biomarkers (e.g., related to prognosis). 

 In search of new diagnostic and prognostic neuroimaging biomarkers of AVMs, 
computational fractal-based models have been proposed for describing and quanti-
fying the angioarchitecture of the nidus. In fact, the fractal dimension (FD) can be 
used to quantify AVMs’ branching pattern. Higher FD values are related to AVMs 
characterized by an increased number and tortuosity of the intranidal vessels or to 
an increasing angioarchitectural complexity as a whole. Moreover, FD has been 
investigated in relation to the outcome after Gamma Knife radiosurgery, and an 
inverse relationship between FD and AVM obliteration was found. 

 Taken altogether, FD is able to quantify in a single and objective value what neuro-
radiologists describe in qualitative and/or semiquantitative way, thus confi rming FD as 
a reliable morphometric neuroimaging biomarker of AVMs and as a potential surro-
gate imaging biomarker. Moreover, computational fractal-based techniques are under 
investigation for the automatic segmentation and extraction of the edges of the nidus 
in neuroimaging, which can be relevant for surgery and/or radiosurgery planning.  
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ing   •   Fractal dimension   •   Gamma Knife radiosurgery   •   Minkowski dimension 
 •   Outcome  

18.1       Introduction 

 Arteriovenous malformations (AVMs) are vascular lesions of the brain and, more 
rarely, of the spinal cord, occurring with an incidence of 1/100,000/year and preva-
lence of 18/100,000/year [ 1 ]. In about 70 % of cases, AVMs present with hemor-
rhage, accounting for 2 % of all strokes, while in 20 % of patients, seizures are the 
fi rst presentation. In some cases, AVMs can be asymptomatic or can cause head-
ache, focal neurological defi cits, cognitive dysfunction, and pulsatile tinnitus. The 
combined rate of mortality and major morbidity related to untreated AVMs is of 
2.7 % per year [ 22 ]. 

 Morphologically, AVMs consist of a pathologic tangle of vessels, i.e., fi stulous 
connections of afferent arteries draining blood directly into dilated efferent draining 
veins without the interposition of the brain parenchyma (Fig.  18.1 ). The core of the 
AVMs is defi ned as the nidus, which is the nest where the pathologic connections 
occur. Their treatment can be challenging requiring surgery (by means of microneu-
rosurgery techniques), endovascular embolization or radiosurgery (e.g., Gamma 
Knife), or a combination of such modalities. The aim of the treatment is the removal 
and/or obliteration of the nidus in order to lower the risk of bleeding and/or seizures.

   Several systems have been proposed to classify AVMs, with the most used and 
clinically relevant being the Spetzler-Martin classifi cation system [ 28 ] and its subse-
quent modifi cation, the Spetzler-Ponce classifi cation system [ 27 ]. Both systems 
quantify specifi c features in a fi nal score, i.e., (a) the size of the nidus, (b) the func-
tional eloquence of the brain region where the AVM is located, and (c) the type of 
venous drainage. On one hand these systems are very relevant because they are related 
to outcome (prognostication) and therapy modality, but on the other hand no informa-
tion is added in regard to the angioarchitecture. AVMs with the same score can show 
completely different shapes, different number of vessels forming the nidus, peculiar 
branching patterns, and distinct geometrical complexity. To overcome this limitation, 
several methods have been proposed for the morphometric analysis of AVMs, includ-
ing a computational fractal-based approach, as discussed in this chapter.  

18.2     Neuroimaging of AVMs 

 The diagnosis of AVMs is based on multimodal imaging techniques, which encom-
pass various magnetic resonance imaging (MRI) techniques, computed tomography 
(CT), and catheter biplane digital subtraction angiography (DSA), which is still 
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b c

  Fig. 18.1    CTA and MRA for different patients with AVM. ( a ) DSA of the vertebral artery imaged 
in an earlier phase ( left ) giving more weight to the feeding arteries and imaged in a later phase 
( right ) giving a better contrast to the nidus. ( b ) CTA and ( c ) MRA of a unilateral AVM of two 
 different patients marked with a  white arrow        
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considered as the gold-standard technique [ 21 ] (Fig.  18.1 ). The high temporal reso-
lution of DSA allows the subsequent subtraction of a baseline image from contrast- 
enhanced images. Different states of contrast media uptake provide an excellent 
differentiation between the arteries, the veins, and the nidus. However, since this 
technique only generates 2D information from two orthogonal directions, the entire 
geometrical complexity of the nidus and the vascular system is not fully repre-
sented. Magnetic resonance angiography (MRA) and computed tomography angi-
ography (CTA) overcome this limitation and provide a 3D representation of the 
vasculature. In MRA, techniques with contrast media (CE-MRA) or without con-
trast media (TOF-MRA) can be used to visualize the vascular tree. A disadvantage 
of all standard 3D techniques utilizing contrast media (MRA and CTA) is given by 
the fact that generated images are snapshots of the contrast media fl owing through 
the vascular system. This means that imaging an early phase put stronger weights 
on the arterial system while imaging a later phase puts more weights on the venous 
system. The time between bolus injection and data acquisition is therefore crucial 
for the image quality and a challenging task. 4D techniques that are available for 
both MR and CT are able to measure sequential angiograms and allow analyzing the 
dynamics of the fl ow within the AVM. Dynamic CT angiography (dCTA) provides 
good spatial and temporal resolution but expose the patient to a high dose of ioniz-
ing radiation [ 20 ]. In MRI, dynamic contrast-enhanced sequences (DCE-MRI) 
based on T1-weighted MR scans are used to provide an overview about the AVM 
fl ow dynamics (Fig.  18.2 ), but this technique is limited in spatial and temporal reso-
lution. Recent developments in MR imaging utilize advanced imaging reconstruc-
tion techniques such as highly constrained back projection with phase contrast as a 
constrained (HYPR fl ow) to improve spatial and temporal resolution [ 29 ].

   For the optimal representation of the acquired data, several techniques exist for 
image fusion in multimodal imaging and 3D rendering of the AVM [ 29 ].  

18.3     AVMs’ Angioarchitecture Morphometrics 

 AVMs vary greatly among patients, and experts have attempted to classify them 
based on several angioarchitectural parameters, by looking for similar clinical pre-
sentation and posttreatment outcome. However, these parameters have not been 
standardized. 

 An objective morphostructural analysis of AVMs should provide useful informa-
tion for classifi cation, prognostication, therapeutic decisions and follow-up. 

 Several grading systems have been proposed, which generally take into account 
the number of feeding arteries from the different vascular territories, the size and 
location of the AVM, and other features, with the Spetzler-Martin (5-tiered score) 
and Spetzler-Ponce (3-tiered score) as the most clinically relevant and used ones, as 
previously quoted. By the way, such classifi cation systems do not take into account 
the morphological complexity of the nidus, referring to its geometry only in terms 
of the size. Of course, AVMs having the same Euclidean parameters (i.e., maximal 
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diameter and volume) may have a very different pattern of distribution of the vessels 
forming the nidus (e.g., different density, compactness, tortuosity of the vessels, in 
one word, different angioarchitecture). Moreover, the distribution of the vessels 
within the nidus can leave different grades of “gaps” among the vessels themselves. 
According to the nonlinearity of the AVM’s shape, “compactness” and “diffuse-
ness” of the nidus have been investigated as a better mean of quantifi cation; these 
parameters have been shown to be important factors in predicting the diffi culty to 
resect an AVM [ 11 ]. 

 Fractal analysis is a novel computer-aided mathematical model, which has also 
been shown to have several applications in clinical neurosciences, including neuro-
imaging [ 7 ]. Fractal dimension and lacunarity seem to offer valid tools to quantify 
AVM’s geometrical complexity, as presented hereinafter.  

18.4     Computational Fractal-Based Analyses of AVMs 

 Fractal analysis is a mathematical model that, among other parameters, offers the 
fractal dimension (FD) and lacunarity as measures of the roughness and/or geo-
metrical complexity of natural objects, including physiological and pathologic brain 

  Fig. 18.2    Maximum intensity projection of a 4D dynamic MRA with a temporal resolution of 
1.3 s (Images are displayed in inverted view)       
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structures in neuroimaging. As several natural objects characterized by a branching 
pattern, AVMs are suitable to fractal analysis as well. Computing FD of the nidus 
by means of the box-counting method, for example, adds an objective morphomet-
ric parameter to quantify the space-fi lling properties of the tangle itself, thus offer-
ing a potential morphometric biomarker, which could be added into the existing 
classifi cation systems. 

18.4.1     AVMs’ Fractal Dimension 

 The fi rst study that investigated AVMs by means of FD was published by Reishofer 
et al. in 2012 [ 25 ]. Given the fact that the direct observation of the nidus’ vascula-
ture using MRI angiography is not an easy task due to limited spatial resolution, the 
architecture of surrounding arteries was analyzed by means of different measures of 
FD. The nidus can be supplied by one or more feeding arteries that are directly con-
nected to draining veins leading to a vascular system with a higher geometrical 
complexity compared to a normal vascular system. The aim of this study was to 
investigate whether FD, obtained from 3D-time-of-fl ight (TOF) MR images, is a 
suitable biomarker to represent changes in the vascular geometry and furthermore 
whether FD is related to pathologic and physiological parameters such as the nidus 
size and vascular fl ow. 

 Ten patients with a unilateral supratentorial AVM and ten healthy controls par-
ticipated in this study. The patients and controls underwent a standard MR imaging 
protocol including T 1 - and T 2 -weighted sequences, 3D-TOF, and dynamic contrast- 
enhanced (DCE) MR imaging. 3D-TOF MR angiography is an imaging technique 
that allows the visualization of the cerebral arterial system with high accuracy up to 
small vessel diameters. The following parameters were used to visualize cerebral 
arteries covering the circle of Willis and vertebral-basilar arteries: TR = 22 ms, TE 
= 3.68 ms, fl ip angle = 18°, FOV = 200 mm, phase FOV = 75 %, image matrix = 
384 × 288, number of slabs = 3, slices/slab = 52, and slice thickness = 0.65 mm. 
DCE-MRI data were acquired to image the vascular fl ow using a 3D-FLASH 
sequence with the following parameters: TR = 2.67 ms, TE = 1.05 ms, fl ip angle = 
16°, FOV = 230 mm, image matrix = 320 × 320, number of slabs = 1, slices/slab = 
12, and slice thickness = 6 mm. A dose of 0.2 ml/kg body weight contrast agent 
(ProHance®, Bracco Diagnostics, Inc., Princeton, NJ, USA) was injected intrave-
nously via a power injector (Spectris; Medrad Inc., Indianola, PA, USA) at a fl ow 
rate of 3 ml/s. All measurements were carried out on a 3 T Tim Trio system (Siemens 
Medical Systems, Erlangen, Germany) using a 12-channel head coil. The following 
image processing steps have been applied in order to prepare 3D-TOF data for frac-
tal analysis (Fig.  18.3 ):

•     Normalization to the standard MNI space (Montreal Neurological Institute) by 
means of linear co-registration using FLIRT [ 16 ] from the FMRIB Software 
Library (FMRIB Centre, University of Oxford, UK;   http://www.fmrib.ox.ac.uk/
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fsl/fsl/downloading.html    ) to account for intersubject variability regarding head 
size and FOV positioning.  

•   Maximum intensity projection (MIP) was performed to generate a two- dimensional 
representation of the 3D-TOF data using MRIcro software (Chris Rorden, University 
of Nottingham, UK;   http://www.nitrc.org/frs/download.php/414/mrizip.zip    ).  

•   The background was separated from the vascular tree using a k-means clustering 
algorithm.  

•   Images were converted into binary images and skeletonized using the ImageJ 
software v.1.45 (Wayne Rasband, National Institutes of Health, USA;   http://
rsbweb.nih.gov/ij/download.html    ).  

•   To enable a statistical comparison between the hemisphere with AVM and the 
hemisphere without AVM for both, patients and controls, the images (364× 
pixel) were split into two halves (182 × 436 pixel) and analyzed separately.    

 The fractal dimension was approximated using the box-counting dimension ( D  b ) 
and the Minkowski dimension ( D  m ) [ 17 ]. All of the fractal measurements were eval-
uated for the whole brain in patients ( P  total ) and healthy controls (HC total ) and also for 
both hemispheres separately in patients ( P  AVM ,  P  no AVM ) and controls (HC left , HC righ ). 
A 2 × 2 mixed-design ANOVA test with a within-subject factor of hemisphere (for 
patients, AVM, no AVM; for healthy controls, left, right) and a between-subject fac-
tor of group ( P , HC) was applied to test for signifi cant differences. 

 Patients showed signifi cantly higher FD values for both methods in hemispheres 
with AVM compared with the hemispheres without AVM ( D  b ,  p  = 0.002;  D  m , 
 p  = 0.002). Controls had similar values for FD in both hemispheres with no 
 signifi cant differences in FD ( D  b ,  p  = 0.982; D m ,  p  = 0.892). No signifi cant differ-
ences were observed comparing the non-affected hemisphere of patients with 
healthy controls (HC left ,  D  b ,  p  = 0.574;  D  m ,  p  = 0.918; HC right ,  D  b ,  p  = 0.691;  D  m , 
 p  = 0.872) but signifi cant differences when comparing the patient’s hemisphere with 
AVM with the hemispheres of healthy controls (HC left ,  D  b ,  p  = 0.015;  D  m ,  p  = 0.020; 
HC right ,  D  b ,  p  = 0.010;  D  m ,  p  = 0.024) (Fig.  18.4 ).

  Fig. 18.3    Normalized 3D-TOF images ( a ) provide the basis for MIP images ( b ). FD evaluated 
from MIP images after the image processing step segmentation, binarization, and skeletonization 
( c ) (From Reishofer et al. [ 25 ])       
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   These results suggest that FD is a sensitive parameter able to detect changes in 
the geometrical complexity of the cerebral arterial system with high accuracy. 

 Values of FD are strongly correlated to physiological and pathologic parameters. 
This has been demonstrated by correlating FD with the maximum slope of contrast 
media transit obtained from dynamic contrast-enhanced (DCE) MRI data. A linear 
regression analysis showed a strong and positive linear correlation between FD of 
the affected hemisphere and the maximum slope of contrast media transit for  D  b  and 
 D  m  ( D  b ,  r  = 0.913;  p  < 0.0001;  D  m ,  r  = 0.926;  p  < 0.0001) (Fig.  18.5 ). Given the fact 
that the amount of arterial infl ow is related to the number of vessels feeding the 
nidus, this result was not unexpected. A strong correlation was also found between 
FD and the nidus size ( D  b ,  r  = 0.944;  p  < 0.0001;  D  m ,  r  = 0.963;  p  < 0.0001). The 
nidus size was estimated from DSA data. This strong correlation is not that obvious 
but suggests that there is a relation between vascular complexity and nidus size.

   It has to be noted that absolute values obtained from the box-counting method are 
dependent from the image matrix size [ 24 ]. Giving the fact that the box size is dou-
bled at each iteration step starting with the size of 1 pixel, a complete covering of the 
image is only possible if the dimensions of the image to be analyzed are given as a 
power of two. If this is not the case, FD is dependent from the initial location of the 
grid. To overcome these limitations in the box-counting method, extensions of this 
technique have been proposed [ 19 ] such as the sliding box-counting dimension. 
When using this technique, each box is slid over the image overlapping the previous 
box making this method independent from the initial state but at the cost of compu-
tational time. The assessment of FD by evaluating the Minkowski dimension uses a 
different concept in which the structure itself is covered through geometrical objects 
such as circles, triangles, or squares making this method independent from different 
image matrix sizes. Another limitation is given by the fact that an MIP of 3D-TOF 
MR images is only an approximate representation of the vascular system. Superimposed 

  Fig. 18.4    Mean values of  D  b  ( left side ) and  D  m  ( right side ) comparing patients ( P  total ) with healthy 
controls (HC total ) for the whole image, hemispheres of patients with AVM ( P  AVM ) compared to the 
hemisphere without AVM ( P  no AVM ), and comparison of the left and right hemispheres of healthy 
controls (HC left , HC right ).  Asterisks  indicate signifi cant differences in group comparisons: * p  < 0.05, 
** p  < 0.01       
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vessels cannot be discriminated for a fi xed projection plane, but since the projection 
of a fractal from an m-dimensional space into a (m-1) dimensional subspace is well 
defi ned [ 12 ], FD from MIP images is an acceptable approximation. However, FD 
analysis of the vascular cerebral system is a simple and robust technique that yields an 
objective measure and may assist neuroradiologists in the diagnosis of complex cere-
brovascular diseases.  

18.4.2     Fractal Dimension of the Nidus and Its Relevance 
in Radiosurgery 

 Di Ieva et al. investigated the applicability of FD as a potential neuroimaging bio-
marker of the AVMs’ angioarchitecture, especially in relation to the patients’ outcome 
and follow-up in radiosurgery [ 9 ]. The Gamma Knife (GK) radiosurgery treatment, as 
well as other radiosurgical modalities, is aimed to obliterate the fi stulous connections 
within the nidus, lowering the risk of bleeding. By means of specialized equipment, 
the stereotactic GK focuses multiple beams of radiation on the target (e.g., a brain 
tumor or AVM). The radiosurgical effect of obliteration of the vessels occurs over 
time, in general in 2–3 years; the 3-year obliteration rates following stereotactic 

  Fig. 18.5    Correlation between FD values ( D  b ,  D  m ) and the maximum slope of contrast media 
transit obtained from DCE-MRI data ( fi rst column ) and correlation between FD values ( D  b ,  D  m ) 
and the nidus size evaluated from X-ray angiography data ( second column )       
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radiosurgery range from 60 to 86.6 % [ 3 ,  13 ,  23 ]. The box- counting method was used 
for the FD computation in a retrospective case series of 54 patients affected by brain 
AVMs who underwent GK radiosurgery at the University of Toronto (Ontario, 
Canada) [ 9 ]. In this study, almost 54 % of patients presented with hemorrhage, 13 % 
only with headache, 9 % with seizures, while other patients were incidentally diag-
nosed or reported minor focal neurological defi cits. All of the patients underwent 
multimodal imaging, including CTA, MRA, and angiogram as well, but in order to 
standardize the image and the following fractal analysis, only MRA images performed 
on the same scanner with the same parameters were considered in the analysis. By 
means of such selection in the inputs (see the “black box” concept in Chap.   12    ), it was 
possible to obtain a homogeneous dataset for analysis. 3T GE Medical System Signa 
HDxt with an eight-channel head coil was used for all patients, with the following 
MRI parameters: axial 2D FRSE sequence with a rectangular matrix of 320, echo 
train length of 15, TR of 5,500 ms and TE of 91 ms, slice thickness of 2 mm without 
interslice gap, and with a rectangular fi eld of view of 20 cm resulting in plane resolu-
tion of 0.625 mm square. Images were transferred to the radiosurgery software, which 
is a modifi cation of CMI software (Montreal Stereotactic Planning System; CMI 
Services, Montreal, QC, Canada) [ 2 ] (see methods in [ 9 ]). A 4C GK radiosurgery 
system (Leksell Gamma Knife® Perfexion™, Sweden) was used for the stereotactic 
radiosurgery treatment. A standard dose of 25 Gray (Gy) for AVM volumes <4 cm 3  
and 20 Gy for volumes >4 cm 3  was administered (limiting to 15 Gy the dose to the 
nidus whether near to eloquent brain areas). Checking the imaging 3 years after the 
treatment, the outcome of radiosurgery was dichotomized as complete obliteration, 
defi ned as the total disappearance of the nidus on the MRA, no abnormal fl ow voids 
on MRI and no early draining vein on the angiogram. 

 The image analysis was based on the following steps (Fig.  18.6 ):

•     Selection of the MR sequences (FRFSE T2 post-gadolinium) and images con-
taining the nidus.  

•   Selection of the nidus itself (the “region of interest” (ROI)), according to the 
outline of the target zone for the radiosurgical procedure, as chosen by consensus 
of six experts (including neurosurgeons, neuroradiologist, radiation oncologist, 
and physicist).  

•   Normalization of the intensity of the pixels within the ROI, according to the 
Brightness Progressive Normalization (BPN) algorithm, introduced by C. Russo 
[ 26 ], which allows to use a single gray-scale threshold for the automatic segmen-
tation of the nidal vessels [ 10 ].  

•   Segmentation of the nidal vessels.  
•   Application of the box-counting method. A fractal window in a two-order scale 

was chosen, starting at the highest resolution of the MR images ( ε  min  = 
0.86 mm– ε  max  = 86 mm). Monofractal behavior was found in such range.    

 The obtained FD values were statistically compared to (a) several angioarchitec-
tural parameters, commonly used by the neuroradiologist for the qualitative descrip-
tion of the nidus (e.g., arterial enlargement, fl ow-related or intranidal aneurysms, 
fl ow pattern, neoangiogenesis, venous ectasia, nidus size, number of draining veins, 
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venous drainage type, presence of pseudo-phlebitic pattern, etc.) and (b) the radio-
surgical outcome, in terms of obliteration, 3 years after the treatment. 

 In regard to the angioarchitectural parameters, FD was strongly associated with 
volume and size of the nidus, and signifi cant associations were also found with 
several other indices (Table  18.1 ). These results suggested that FD is able to quan-
tify in a single and objective value what neuroradiologists otherwise describe in 
qualitative and/or semiquantitative way, confi rming FD as a reliable morphometric 
neuroimaging biomarker of AVMs. Higher FD values may signify that the AVM has 
more tortuous and compact vessels within the nidus, for example, with a higher 
grade of roughness.

   Regarding the outcome, only few morphometric parameters were signifi cantly 
associated with it, including the presence of sprouting angiogenesis, moderate-to- 
high fl ow pattern, and the presence of a venous pouch. Size and venous drainage 
were both strongly related to outcome, signifying that bigger AVMs (>3 cm of 
diameter) and/or with deep venous drainage are more related to incomplete oblitera-
tion, with a lower chance to be completely cured by means of GK radiosurgery 
alone. Although no statistical signifi cance was found, interestingly enough the 

  Fig. 18.6    Computation of FD on MR images of AVMs. The region of interest of the AVM is 
manually segmented on each slice, and an RGB threshold is used for the computer-aided segmen-
tation of the vessels forming the nidus. The box-counting method is then applied in the fractal 
window, and the results are plotted on a graph, the slope of which represents FD (From Di Ieva 
et al. [ 8 ], reprinted with Permission of the Publisher)       

  Table 
18.1    Angioarchitectural 
parameters associated with 
fractal dimension in brain 
AVMs  

 Angioarchitectural parameter 

 Arterial enlargement presence 
 Presence of non-sprouting angiogenesis 
 Presence of sprouting angiogenesis 
 Flow pattern 
 Venous ectasia 
 Presence of venous rerouting 
 Presence of pseudo-phlebitic pattern 
 Size 
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AVMs with higher FD values had a lower chance of complete obliteration at the 
follow-up (i.e., lower response to GK) (Fig.  18.7 ). Every increase in FD value by 
0.1 was associated to a 1.21 increase of odds to get an incomplete obliteration. This 
inverse relationship between FD and AVM obliteration should be further investi-
gated, but at least it would suggest that the fractal analysis may add some parame-
ters to the morphometric of AVMs to predict whether a patient will respond or not 
to radiosurgery alone and whether he/she will require alternative treatment or a 
combination of therapeutic modalities (e.g., embolization and/or surgery for “prun-
ing” the nidus, followed by radiosurgery to obliterate the remaining fi stulous ves-
sels). The potential of FD as clinical surrogate biomarker for prognosis should be 
further investigated in larger prospective studies.

   Moreover the technique could be extended to other neuroimaging modalities 
(e.g., DSAs), as well as to the same sequence imaged over time, in order to make a 
longitudinal analysis of FD during the patients’ follow-up. The longitudinal analy-
sis could offer some indices for prognostication too. For example, in a case in which 
an AVM is radiologically followed over time (e.g., every 6 months), if the FD values 
remain constant, it may signify that the patient most likely is a nonresponder to 

3

FD

2.5

2

1.5
Complete Obliteration Incomplete Obliteration

  Fig. 18.7    Relating between AVMs’ angioarchitecture (quantifi ed by means of FD) and radiosurgi-
cal outcome: the nidus with lower geometrical complexity (lower computed fractal dimension, on 
the  left ) might have higher chance to be completely obliterated after Gamma Knife radiosurgery 
treatment, while an incomplete obliteration could occur in a more geometrically complex nidus 
(higher FD, on the  right ) (From Di Ieva et al. [ 8 ], reprinted with Permission of the Publisher)       
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radiosurgery and may require further treatment (e.g., multimodal treatment with 
endovascular embolization and/or microneurosurgery). More studies are warranted 
to validate such computational methods for the assessment of the AVM angioarchi-
tecture in relation to the outcome.   

18.5     Limitations 

 As it may occur in several other neuroimaging analyses, the major limitation of the 
application of fractal analysis to AVMs’ morphometrics is related to the image anal-
ysis itself, i.e., to the choice of the ROI (the edges of the nidus). This procedure is 
in fact generally performed on a consensus of experts, who may introduce some 
intra- and interobserver variability; moreover, it is time-consuming too. The imag-
ing parameters, as well as the fractal analysis ones, have to be standardized in order 
to obtain a homogeneous dataset to be analyzed and a homogeneous series of output 
data, which can correctly be related to some clinical information. 

 Several techniques are under investigation for the automatic extraction of the 
ROI as well as for the standardization of the methods of segmentation of the intrani-
dal vessels, as summarized in the following paragraph.  

18.6     Computational Techniques for the Automatic Nidus 
Identifi cation 

 Several computational techniques are under investigation for the automatic extrac-
tion of the nidus’ edge from the neuroradiological images. The pixel profi ling tech-
nique is one of the most promising methods to classify and automatically extract the 
nidus’ edges, by means of a computerized analysis of the pixel intensity distribution 
inhomogeneity [ 5 ]. Threshold-based segmentation of the AVM’s vascular tree or 
voxel-wise support vector machine (SVM) and fuzzy logic have been proposed also 
as a novel and promising means for fast image extraction of the nidus and therapy 
planning [ 4 ,  14 ,  15 ]. 

 Computational fractal-based methods have been investigated as well for the 
computer-aided identifi cation of the nidus [ 8 ]. Lahmiri et al. recently computed FD 
of cerebral hemispheres via the scaling exponent of detrended fl uctuation analysis 
(DFA), using it in an SVM to differentiate the nonpathologic cerebral hemisphere 
from the one affected by an AVM, obtaining a perfect classifi cation accuracy [ 18 ] 
(see also Chap.   19    ). A further method for the automatic detection of AVMs in MR 
images was developed by computing several fractal-based parameters (including 
the Hurst exponent) into a supervised machine-learning algorithm, resulting in a 
computational method for the ROI detection as well as a further conformation of the 
fractal properties and scale-invariant structure of the AVMs (see methods in [ 18 ]). 
Moreover, assuming that the different pixel distribution within the nidus in MR 
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imaging may affect the variance (or clustering volatility) of the general pixel distri-
bution in images of normal brains, the generalized autoregressive conditional het-
eroskedasticity (GARCH) technique, initially proposed for clustering fi nancial time 
series data [ 6 ], was applied for quantifying such differences [ 8 ]. The GARCH tech-
nique was demonstrated to be potentially helpful in automatically detecting or char-
acterizing the AVMs’ nidus. 

 These computational methods seem to be promising for the automatic segmenta-
tion and features extraction of the AVMs, but should be tested on different images 
(different MRI sequences as well other modalities, including CTAs and DSAs) and 
on larger patients’ series.  

18.7     Conclusion 

 Fractal analysis is a novel approach to quantify the vascular complexity of the arte-
riovenous malformations. Higher FD values are related to AVMs characterized by 
an increased number and tortuosity of the intranidal vessels, or to an increasing 
angioarchitectural complexity as a whole, confi rming FD as a reliable computa-
tional morphometric neuroimaging biomarker. Moreover FD might be a potential 
surrogate biomarker for treatment response as well, relevant for prognostication. 
Fractal analysis can add some parameters, which could be added into a multipara-
metric morphometric analysis of the angioarchitecture of the nidus itself in relation 
to some relevant clinical information. The use of lacunarity should be also investi-
gated as angiostructural morphometric parameter. Further studies are required to 
extend the application of fractal analysis for the study of AVMs.     
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Chapter 19
Fractals in Neuroimaging

Salim Lahmiri, Mounir Boukadoum, and Antonio Di Ieva

Abstract Several natural phenomena can be described by studying their statistical 
scaling patterns, hence leading to simple geometrical interpretation. In this regard, 
fractal geometry is a powerful tool to describe the irregular or fragmented shape of 
natural features, using spatial or time-domain statistical scaling laws (power-law 
behavior) to characterize real-world physical systems. This chapter presents some 
recent works on the usefulness of fractal features, mainly the fractal dimension and 
the related Hurst exponent, in the characterization and identification of pathologies 
and radiological features in neuroimaging.

Keywords Computed tomography • Detrended fluctuation analysis • Fractal 
dimension • Hurst exponent • Magnetic resonance imaging • Neuroimaging 
• Classification • Statistical tests

S. Lahmiri, PhD (*)
Faculty of Engineering, Centre for Pattern Recognition and Machine Intelligence,  
Concordia University, Montreal, QC, Canada
e-mail: salim.lahmiri.1@ens.etsmtl.ca 

M. Boukadoum, PhD 
Department of Computer Science, University of Quebec at Montreal, Montreal, QC, Canada
e-mail: boukadoum.mounir@uqam.ca 

A. Di Ieva, MD, PhD (*)
Neurosurgery Unit, Faculty of Medicine and Health Sciences, Macquarie University,  
Sydney, NSW, Australia 

Garvan Institute of Medical Research, Sydney, NSW, Australia 

Medical University of Vienna, Vienna, Austria 

University of Toronto, Toronto, ON, Canada
e-mail: diieva@hotmail.com

mailto:salim.lahmiri.1@ens.etsmtl.ca
mailto:boukadoum.mounir@uqam.ca
mailto:diieva@hotmail.com


296

19.1  Introduction

Fractal analysis is becoming an attractive method in biomedical engineering to 
describe and quantify the morphological complexity in computed tomography (CT) 
and magnetic resonance imaging (MRI). In recent years, it has been applied in neu-
roimaging for automatic classification purposes, in the context of medical diagnosis 
and prognostication [21, 23–26]. Indeed, fractal features such as the fractal dimen-
sion have been found to be effective in describing the complex morphology of the 
cortex and hence suitable to distinguish between different physiopathological states 
in brain MR imaging [4].

Fractal analysis has been adopted in several studies on brain magnetic resonance 
image classification, thanks to the ability it provides to evaluate the self-affinity at 
different scales and the long-range correlations of an image [11, 34] and to use the 
results for discrimination. Recent works in the field have assumed high self-affinity 
and long-range correlation in normal brain MRI in comparison to those of some 
neurological diseases, based on the hypotheses that brain morphology is more regu-
lar in healthy subjects and that differences can be detected and quantified by means 
of fractal analysis [4, 21, 23–26].

This chapter reviews recent works related to the usefulness of fractal analysis to 
characterize MRI features, especially by means of the fractal dimension (FD) and 
Hurst exponent (HE) and therefore help detect neurological pathologies through the 
morphological changes they bring to a normal brain image. The chapter is organized 
as follows: Sect. 19.2 presents recent works on the classification of brain magnetic 
resonance images by using fractal metrics as the main features; Sect. 19.3 reviews 
other works with different application of fractals in neuroimaging. In Sect. 19.4 
some conclusions and future perspectives are summarized. A technical description 
of fractal analyses techniques used in brain magnetic resonance image classification 
is given in the appendix, including classic range-scale analysis, detrended fluctua-
tion analysis (DFA), and generalized Hurst exponent.

19.2  Fractals in Brain Magnetic Resonance Image 
Classification

A new MRI classification approach based on fractal geometry and the spectral 
energy distribution of edges in brain magnetic resonance images was proposed by 
Lahmiri and Boukadoum [26] to identify patients affected by Alzheimer’s disease 
(AD), brain tumors (e.g., gliomas), brain infections, as well as demyelinating dis-
eases such as multiple sclerosis (MS). Edges represent abrupt changes in image 
intensity, their distributions in normal and abnormal brain MR images can be differ-
ent, and thus the authors used morphological properties for distinguishing normal 
anatomical silhouettes from abnormal ones. The considered features were the frac-
tal dimension of edges after expressing the initial image as an analytic object and 
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the skewness (used to measure symmetry/asymmetry in the data distribution) and 
kurtosis (used to measure the degree of tailedness in the data distribution) of its 
energy distribution at different frequencies. More specifically, the Hilbert transform 
[14] was applied to the brain MR images in the first step, and the Sobel filter [33] 
was applied to the Hilbert-transformed image to detect strong edge strength at the 
brain boundaries affected by pathologies. Figure 19.1 shows an example of a normal 
MRI and its Sobel-filtered image in Hilbert domain. The extracted edges are ana-
lyzed for feature extraction by the box-counting method-based fractal [11, 15] and 
the Fourier power spectrum [12]. A feature vector was built with the obtained image 
fractal dimension and the skewness and kurtosis of the spectral energy distribution 
of the Sobel-processed image. Figure 19.2 provides an example of spectral energy 
distribution from which skewness and kurtosis were computed. Finally, the feature 
vector was fed to a backpropagation neural network [13] trained by the scaled con-
jugate numerical algorithm [13, 29] to perform classification. The proposed fractal 
dimension and spectral energy (FDSE) distribution system outperformed the popu-
lar discrete wavelet transform (DWT) and principal component analysis (PCA)-
based means of analysis [19]. Indeed, the approach based on the FD, skewness, and 
kurtosis of the edge spectrum energy distribution achieved 91.78 ± 0.0148 % correct 
classification rate of the normal against images in different pathological conditions 
(e.g., Alzheimer’s disease, gliomas and metastases, herpetic infections, and MS as 
well), while the conventional DWT-PCA-based approach achieved 82.69 ± 0.0796 % 
correct classification rate.

In a subsequent study, Lahmiri and Boukadoum [25] described a modification of 
the work in [26] that is suitable for pathologies such as gliomas and brain metasta-
ses. The brain MR images were converted to a one-dimensional signal by row con-
catenation to speed up feature extraction, and the skewness and kurtosis were 
replaced by additional geometrical features of the image. Detrended fluctuation 
analysis was adopted as an alternative method to determine the local trends in a 

Fig. 19.1 Normal MRI (left) and its Sobel-filtered image in Hilbert domain (right)
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biological signal and measure its level of persistence. It differs from the box- 
counting method to evaluate the fractal nature of an image by evaluating its stability 
in regard to trend removal. This in turn leads to a more robust estimate of the scaling 
properties in a nonstationary environment. In both cases, the fractal aspect of the 
processed image is evaluated with the Hurst exponent (see Appendix). In the new 
work, the feature vectors were composed of the box counting-based Hurst exponent, 
the DFA-based Hurst exponent, and the energy of the detrended fluctuations of the 
derived bio-signal. Figure 19.3 plots in log-log coordinates the relationship between 
the detrended fluctuation function and the granularity of analysis (number of bins 
per signal; see Eq. 19.7 in Appendix) for signals of healthy patients vs. AD ones, 
where the red curve is the empirical DFA and the blue line is the theoretical DFA for 
a random walk signal, for which the DFA is a straight line with a 45° slope. The 
support vector machine (SVM) with quadratic kernel was chosen as the main clas-
sifier, and it achieved 100 % detection accuracy of normal brain image against gli-
oma and metastatic bronchogenic carcinoma, regardless of whether the processed 
1D signal was obtained by concatenating the rows or columns of the MR image.

A potential improvement upon the basic Hurst exponent analysis to characterize 
the fractal feature of brain magnetic resonance images is multiscale analysis (MSA) 
[8]. Multiscale analysis uses the generalized Hurst exponent method, which deter-
mines the scaling properties of a signal by computing the qth-order moments of the 
distribution of the signal’s increments [8]. MSA can detect many types of signal 
dependencies with a high computational efficiency. Since each order q allows the 
estimation of a different Hurst exponent, varying this value allows obtaining the 
multifractal spectrum of the signal in a straightforward way. Furthermore, by using 
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MSA as an alternative for the box counting-based Hurst exponent and DFA-based 
exponent estimation, the feature extraction time is reduced considerably. In [25], 
MSA was investigated for the classification of normal against AD images. 
Figures 19.4 and 19.5 plots in log-log coordinates the obtained relationship between 
the generalized Hurst exponent H(q) and the time scale of analysis for different 
orders q (see Eq. 19.9 in Appendix) of normal brain images versus patients affected 
by Alzheimer’s disease. The extracted fractals were used as features to differentiate 
healthy brain MRI from those of AD by SVM classifier. The results indicated a 
99.18 ± 0.01 % classification accuracy, 100 % sensitivity, and 98.20 ± 0.02 % speci-
ficity. These results showed the potential of using multiscale fractal analysis to dif-
ferentiate healthy brain images from ones affected by Alzheimer’s disease in near 
real time as the MSA algorithm took only 5.64 s to analyze a brain MRI.

In a further work, Lahmiri and Boukadoum [22] extended the work in [25] to a 
multi-classification problem. They explored the effectiveness of classifying brain 
images of healthy subjects against those with AD or mild cognitive impairment 
(MCI) by using support vector machines. Three experiments were conducted: in the 
first one, the SVM was trained to classify AD against normal images. In the second 
experiment, the SVM was trained to classify AD against MCI, and, in the third 
experiment, a multiclass SVM was trained to simultaneously classify all three types 
of images. In order to statistically evaluate the discriminative power of the Hurst 
exponent, two statistical tests were performed. The first one tested the null hypoth-
esis of equal means for the HE values of healthy MCI and AD data based on the 
F-statistic of an analysis of variance (ANOVA) test. The second test checked the 
null hypothesis of equal distribution variances based on the Brown-Forsythe statis-
tic. The results from these statistical tests indicated rejection of the two hypotheses 
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at the 5 % level of significance for all scales of analysis (the obtained p-values were 
all <0.05). Therefore, it was concluded that the distributions of HEs between images 
of normal brain and images of patients affected by MCI and AD are statistically dif-
ferent. Thus, these fractal measures are potentially discriminative to distinguish nor-
mal MCI and AD images. Indeed, the classification results indicated that the SVM 
achieved 97.08 ± 0.05 % correct classification rate, 98.09 ± 0.04 % sensitivity, and 
96.07 ± 0.07 % specificity for the classification of healthy against MCI images, thus 
outperforming recent works found in the literature. For the classification of MCI 
against AD, the SVM achieved 97.5 ± 0.04 % correct classification rate, 100 % sen-
sitivity, and 94.93 ± 0.08 % specificity. The third experiment also showed that the 
multiclass SVM provided highly accurate classification results. The processing time 
for a given image was 25 s. From these findings, the authors concluded that this 
approach is efficient and may be promising for clinical applications.
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19.3  Other Applications of Fractal Analysis in Neuroimaging

In the context of brain tumor detection, the fractal dimension was found to be effec-
tive in distinguishing between tumor and nontumor regions in various imaging 
modalities. For instance, Zook and Iftekharuddin [36] used the analysis of variance 
(ANOVA) to test whether fractal dimension statistics in healthy subjects are signifi-
cantly different from those affected by brain tumors. They found that FD might be 
exploited successfully to determine the possible presence and location of brain 

Fig. 19.5 Multiscale analysis-based boxplots in brain imaging of patients affected by MCI (1), 
AD (2), vs. images of disease-free brains (3)
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tumors in MR and CT images. Wardlaw et al. [35] quantified the blood oxygen 
level-dependent (BOLD) signals’ temporal complexity using the fractal dimension 
with the purpose to allow maps to be generated that are physiologically distinctive 
in nature and allow potential insight into tumor microvasculature. In other words, 
they used fractal dimension mapping to identify physiological regions that are 
dominated by low-frequency vascular components or by high-frequency compo-
nents. They concluded that low fractal dimension regions are significant as they 
highlight probable regions of regularized tumor metabolism and microvascular pat-
terns. Iftekharuddin et al. [16] investigated the effectiveness of fusing two texture 
features along with intensity in multimodal magnetic resonance images for pediat-
ric brain tumor segmentation and classification. The two texture features were 
obtained with the piecewise-triangular-prism-surface-area (PTPSA) algorithm for 
fractal feature extraction and the fractional Brownian motion (fBm) framework, 
which combines both fractal and wavelet analyses, for fractal wavelet feature 
extraction. The ensuing tests were applied to MRI T1, T2, and fluid-attenuated 
inversion recovery (FLAIR) sequences, and the obtained experimental results 
showed that the fusion of fractal, fractal wavelet, and intensity features in multimo-
dality MR images offers better tumor segmentation results when compared to that 
of just fractal and intensity features in single modality MR images. Indeed, the 
segmentation accuracy was 100 %. In addition, the classification results obtained 
with a multilayer feedforward neural network with automated Bayesian regulariza-
tion to classify the tumor regions from nontumor regions indicated that the true-
positive fraction (TPF) values range from 75 to 100 % for different patients, with 
the average value of 90 %. Di Ieva et al. used fractal analysis to characterize MR 
susceptibility-weighted images and to differentiate types and grades of brain tumors 
[3, 6] (see Chap. 20).

Other studies [6, 7] have also focused on the role of fractal dimension in the 
characterization of brain images. In a recent work, Akar et al. [1] estimated the 
fractal dimension of the cerebellum in order to characterize Chiari malformation 
type I (CM-I). They calculated the areas of white matter (WM) and gray matter 
(GM) and computed the corresponding fractal dimension values by using the 2D 
box-counting method in healthy and CM-I patients’ magnetic resonance images. 
The obtained results indicated that CM-I patients had significantly higher fractal 
dimension values of GM and WM tissues compared to healthy patients. In addition, 
they found that the fractal dimension and area values of GM tissues in the patients 
group were correlated. They concluded that the fractal dimension values of the cer-
ebellum may be a useful marker for investigation of CM-I patients. Sandu et al. [32] 
used fractal dimension values to reveal brain structure irregularities in patients with 
schizophrenia as they allow quantifying the shape complexity of cortical folding of 
the human brain. They segmented magnetic resonance images and the calculated 
fractal dimension values for the gray/white matter boundary for the whole brain and 
the hemispheres separately by using the box-counting and Minkowski-Bouligand 
methods. The authors found that the patients affected by schizophrenia showed 
higher FD values than the healthy group, for the whole brain volume and right hemi-
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sphere. King et al. [20] computed the fractal dimension of the cortical ribbon to 
distinguish between normal controls and mild Alzheimer’s disease patients using a 
custom cube-counting triangle-intersection algorithm (Fig. 19.6). They found that 
the fractal dimension of the cortical ribbon showed statistically high differences 
between the control and Alzheimer’s disease subjects. It was concluded that the 
fractal dimension of the cerebral cortical ribbon is a useful quantitative marker of 
cerebral cortex structure in mild Alzheimer’s disease.

The fractal analysis has been shown also to be more accurate than other meth-
ods for the detection of changes in the brain white matter in diseases such as mul-
tiple sclerosis and amyotrophic lateral sclerosis (ALS) [9, 10, 31]. Esteban et al. 
[9, 10] investigated whether fractal dimension estimates of gray matter in T1 mag-
netic resonance imaging sequences can identify gray matter abnormalities in 
patients with multiple sclerosis in the early phase of the disease. First, the image 
was segmented by a voxel-based morphometric approach optimized for multiple 
sclerosis. Then, they estimated the three-dimensional FD of the gray matter in 
multiple sclerosis patients and healthy controls. They found that patients with 
multiple sclerosis had a significant increase in the fractal dimension of the gray 
matter in comparison to the images of the healthy group. Figure 19.7 shows exam-
ples of white matter skeleton images in healthy subjects vs. some pathological 
conditions.

The FD measures were also used in various other neuroimaging applications. 
Jayasuriya et al. [17] used FD estimates of the textures present on MR images to 
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detect the midsagittal plane (MSP) of the brain. They found that fractal dimension 
measures are robust in identifying this symmetry plane in three-dimensional brain 
magnetic resonance images. In addition, they were found to be robust with respect 
to strong noise and low resolution. An optimized vascular fractal tree models using 
the level set distance function was developed in [2] to construct a region of human 
cerebral vasculature, which is enclosed in a realistic brain envelope. The optimized 
vascular fractal tree model was found to be successful in producing a geometrically 
optimized model of the cerebral vasculature with the preferential distribution of 
large arteries on the brain cortex. Computational fractal-based models have also 
been applied for the characterization of water molecule diffusion in vivo on diffu-
sion tensor MR imaging [18].

A comprehensive survey on fractals in neuroimaging can be found in [4], as well 
as in Chaps. 13, 14, 18, 20, and 21.

a b

c d

Fig. 19.7 3D rendering of white matter skeleton image in a typical (a) control subject, (b) amyo-
trophic lateral sclerosis (ALS) patient with dementia, (c) ALS patient with corticospinal tract 
hyperintensity, and (d) ALS patient without corticospinal tract hyperintensity. The FD has been 
shown to be more sensitive than volumetric voxel-based morphometry in detecting changes of 
white matter (Reprinted from Rajagopalan et al. [31], with permission from the Publisher)
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19.4  Conclusion and Future Perspective

The efficacy of fractal-based features for the classification of brain magnetic resonance 
images is demonstrated through many recent studies in this area of biomedical engi-
neering. Range-scale analysis, detrended fluctuation analysis, and multiscale analysis 
based on the generalized Hurst exponent were adopted to estimate fractal features; arti-
ficial neural networks and support vector machines were employed to perform classifi-
cation. The performance of fractal-based features was compared to conventional 
methods. The results so far show the effectiveness of fractal features in classification of 
healthy against unhealthy images both in binary and multi- classification schemes.

For future works, several directions have been proposed in the literature. For 
instance, previous works [21, 23, 24] can be extended by focusing on the appropri-
ate selection of scale-based features and applying the fractal-based features to other 
brain imaging modalities such as functional magnetic resonance imaging, CT, and 
positron-emission tomography (PET). Zook and Iftekharuddin [36] suggested 
including examining the effects of tumor type and size as well as the effect of noise 
in fractal dimension analysis. Wardlaw et al. [35] recommended to effectively filter 
the cardiac and respiratory frequencies from the BOLD signal prior to generating 
fractal dimension maps so as to improve identification of regions of active metabo-
lism. Iftekharuddin et al. [16] suggested to direct future works to discriminate mul-
tiple types of brain tissues such as the white matter, gray matter, cerebrospinal fluid, 
and skull from solid tumor and edema. Akar et al. [1] recommended comparing the 
effectiveness of fractal dimension measures in detecting Chiari malformation type I 
anomaly with other disorders such as MS, fibromyalgia, migraine, spinal cord 
tumors, and Chiari Malformation type II. Jayasuriya et al. [17] suggested using the 
location of midsagittal plane for asymmetry analysis of pathological brains. The use 
of fractal analysis in aneurysms and arteriovenous malformations, aimed at identi-
fying new diagnostic and prognostic neuroimaging biomarkers of cerebrovascular 
diseases [5], are discussed in Chaps. 17 and 18, respectively.

In the connectomic era, new insights will be offered by the application of com-
putational fractal-based analyses into the studies of diffusion tensor imaging. 
Moreover, the application of fractal analysis to nuclear medicine tools (single- 
photon emission computed tomography (SPECT) and positron-emission tomogra-
phy (PET)) may offer new biomarkers useful in the clinical setting [28].

As can be seen from these potential perspectives, the field is still open for discov-
ery and improvement.

 Appendix: Fractal Analysis Techniques

In this appendix, we summarize fractal analyses techniques used in recent studies 
related to brain magnetic resonance image classification, including classic range- 
scale analysis, detrended fluctuation analysis, and generalized Hurst exponent.
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 Range-Scale-Based Hurst Exponent

The Hurst exponent H [15] characterizes the scaling behavior of the range of cumu-
lative deviations of a given signal y from its mean. The evaluation of Hurst exponent 
H following methodology of Mandelbrot and Wallis [27] and called range-scale 
(R/S) analysis uses the range of the partial sums of deviations of the signal y from 
its mean, rescaled by its standard deviation. The R/S statistic is given by:
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Where n is the length of the signal, y  is its mean and σ is its standard deviation 
given by:

 

s n
j

n

j nn
y y= -( )é

ë
ê

ù

û
ú

=
å1

1

2

1
2

 

(19.2)

Hurst [15] found that many natural signals can be empirically described by the 
following relation:
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The exponent H is estimated for the whole signal length n. Mandelbrot and 
Wallis [27] incorporated the ordinary least square regression to estimate it:
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where log (⋅) is the logarithmic operator, α is the constant term of the regression, and 
ε is the error term.

There exists a simple relationship between Hurst exponent and the fractal dimen-
sion D of the original signal. For instance, if the signal is self-similar and self-affine, 
the relationship is D = 2−H [11] Thus, Hurst exponent also measures the global 
fractal dimension or roughness of a one-dimensional signal.

 Detrended Fluctuation Analysis

Peng et al. [30] developed the detrended fluctuation analysis (DFA) to appropriately 
handle nonstationary data. Its main advantage is avoiding the spurious detection of 
long-range dependence due to nonstationary data. For a given signal y, the algo-
rithm is described as follows:
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 (a) Define the suite xn of the cumulative series of original signal yi fluctuations 
about its mean:
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 (b) Divide xn divided into boxes of equal length τ.
 (c) In each box, fit the local trend of xn by a polynomial P(τ,n) that represents the 

local trend of the box.
 (d) For the given τ box size, compute the root-mean-squared detrended fluctuation 

of the signal xn as:
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The last step is repeated for each of the available τ scales (box size) to obtain the 
empirical relationship between the overall fluctuation F(τ,n) and the box size τ:
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The scaling exponent α quantifies the empirical strength of the long-range power- 
law correlations of the signal. If the signal is not random, it is characterized by long- 
range correlation features.

 Generalized Hurst Exponent

Consider a signal s(t) defined at discrete time intervals t = v, 2v – T over a period T 
that is an integer multiple of v. Then, the qth-order moments of the distribution that 
characterize the statistical evolution of s(t) is defined as follows [8]:
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where d ∈ [v, dmax] is a time interval and dmax is its predetermined upper limit. The 
generalized Hurst exponent H(q) is defined from the scaling behavior of Kq(d) 
according to the following empirical relation [8]:
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If Kq(d) and d satisfy a linear relationship in log-log scale for a given order q, the 
Hurst exponent H(q) can be estimated by running a linear regression of log(Kq(d)) 
versus log(d). The generalized Hurst exponent H(q) describes the long-memory 
dependence or persistence in the signal s(t). The multiscaling structure of signal s(t) 
is related to the different orders q of H(q).

In general, when H(q) >0.5, the signal fluctuations related to order q are persis-
tent. When H(q) <0.5, the signal fluctuations related to order q are anti-persistent. 
Finally, the signal fluctuations are those of a random walk if H(q) = 0.5 [8]. Notice 
that H(q = 2) corresponds to the classic Hurst exponent.

In order to determine Hurst exponent, the original MRI is transformed first into 
a one-dimensional signal by row concatenation [21, 22, 25, 26]. Then, classic range- 
scale analysis, detrended fluctuation analysis, and generalized Hurst exponent are 
applied to the obtained one-dimensional signal.
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    Chapter 20   
 Computational Fractal-Based Analysis of MR 
Susceptibility-Weighted Imaging (SWI) 
in Neuro-oncology and Neurotraumatology                     

     Antonio     Di     Ieva     

    Abstract     Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging 
(MRI) technique able to depict the magnetic susceptibility produced by different 
substances, such as deoxyhemoglobin, calcium, and iron. The main application of 
SWI in clinical neuroimaging is detecting microbleedings and venous vasculature. 
Quantitative analyses of SWI have been developed over the last few years, aimed to 
offer new parameters, which could be used as neuroimaging biomarkers. Each tech-
nique has shown pros and cons, but no gold standard exists yet. The fractal dimen-
sion (FD) has been investigated as a novel potential objective parameter for 
monitoring intratumoral space-fi lling properties of SWI patterns. We showed that 
SWI patterns found in different tumors or different glioma grades can be represented 
by a gradient in the fractal dimension, thereby enabling each tumor to be assigned a 
specifi c SWI fi ngerprint. Such results were especially relevant in the differentiation 
of low-grade versus high-grade gliomas, as well as from malignant gliomas versus 
lymphomas. 

 Therefore FD has been suggested as a potential image biomarker to analyze intrin-
sic neoplastic architecture in order to improve the differential diagnosis within clini-
cal neuroimaging, determine appropriate therapy, and improve outcome in patients. 

 These promising preliminary fi ndings could be extended into the fi eld of neurotrau-
matology, by means of the application of computational fractal-based analyses for the 
qualitative and quantitative imaging of microbleedings in traumatic brain injury 
patients. In consideration of some evidences showing that SWI signals are correlated 
with trauma clinical severity, FD might offer some objective prognostic biomarkers. 
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 In conclusion, fractal-based morphometrics of SWI could be further investigated 
to be used in a complementary way with other techniques, in order to form a holistic 
understanding of the temporal evolution of brain tumors and follow-up response to 
treatment, with several further applications in other fi elds, such as neurotraumatol-
ogy and cerebrovascular neurosurgery as well.  

  Keywords     Brain tumors   •   Fractal dimension   •   SWI   •   Susceptibility-weighted 
imaging   •   Traumatic brain injury  

20.1       Introduction 

 Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) 
technique, introduced in the mid-1990s [ 31 ,  33 ]. SWI is able to depict the mag-
netic susceptibility produced by different substances, such as deoxyhemoglobin, 
calcium, and iron, with a high sensitivity, relative to other MRI sequences. SWI is 
mainly used to show vasculature (e.g., intratumoral microvasculature in brain 
tumors) and microhemorrhages, offering a valid tool to investigate several neuro-
logical diseases (e.g., multiple sclerosis) along with neurotrauma in traumatic 
brain injury (TBI) patients and grade tumors, and assist in determining treatment 
or prognosis. Several applications have been reviewed in the different fi elds of 
clinical neurosciences, namely, neurology, neuro-oncology, cerebrovascular dis-
eases, neurotraumatology, and functional neurosurgery (see [ 17 ]), summarized in 
Table  20.1 .

   Table 20.1    Synopsis of the applications of SWI in different fi elds of clinical neurosciences [ 17 ]   

 Applications of SWI in the clinical neurosciences 

 Neurology  Multiple sclerosis, amyotrophic lateral sclerosis 
 Iron deposits 
 Brain calcifi cations 
 Stroke 

 Neuro-oncology  Brain tumor architecture, vasculature, bleedings, necrosis 
 Brain tumor differential diagnosis (grading and histotypes) 
 Differential diagnosis between brain abscess and tumor 
 Brain tumor follow-up and/or response to treatment 

 Cerebrovascular  Thrombosis detection 
 Stroke 
 Vascular malformations 

 Neurotraumatology  Hemorrhage/microhemorrhage detection in TBI 
 Dichotomize hemorrhagic from nonhemorrhagic diffuse axonal 
injury (DAI) 

 Functional neurosurgery  Anatomical localization of veins and deep gray nuclei for targeting 
in deep brain stimulation and Gamma Knife Radiosurgery 
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20.2       Technical Aspects of SW Imaging 

 The signal intensity on the MR image is determined by three basic parameters: (1) 
proton density (PD), (2) T1 relaxation time, and (3) T2 relaxation time. The T1 (lon-
gitudinal) and T2 (transverse) relaxation times defi ne the way protons revert back to 
their resting states after the initial radio-frequency (RF) pulse. The transverse mag-
netization starts decreasing in magnitude immediately as protons start going out of 
phase. This process of dephasing and reduction in the amount of transverse magneti-
zation is called transverse relaxation. Spin-spin relaxation (T2) and local fi eld inho-
mogeneities (T2*) are the two mechanisms leading to dephasing and form the basis 
of transverse relaxation in gradient recalled echo (GRE) sequences [ 13 ]. Substances 
causing local fi eld inhomogeneities, and therefore T2* shortening, include deoxyhe-
moglobin, iron, calcium, metallic implants, paramagnetic contrast, and blood prod-
ucts (iron). As a result of T2* shortening, these substances cause signal loss on 
T2*-GRE images and produce areas of hypointensity, which can be detected. 

 A major limitation with GRE is the fact that T2* is a 2D sequence that produces 
thicker image slices if a long echo time (TE) is used [ 33 ], which causes smaller 
hemorrhages to not be depicted in T2* images [ 53 ]. The ability to employ a long TE 
while still preserving image quality can only be accomplished with 3D GRE [ 33 ]. 
This idea, initially developed by Reichenbach et al. [ 75 ], nonetheless exploits the 
blood-oxygen level-dependent (BOLD) effect and uses refi ned phase data for con-
trast enhancement in MR images [ 33 ]. 

 The SW sequence is a high-spatial resolution T2*-weighted sequence with addi-
tional post-processing using both the magnitude and phase information. To create 
SW images, a high-pass fi lter is used to develop a phase mask from MR phase 
images [ 33 ]. The fi ltered phase images are then multiplied with the magnitude 
images to enhance the conspicuity of smaller veins and other substances causing 
susceptibility effects [ 13 ]. By performing the aforementioned steps, SW phase 
images can be used for the differentiation between diamagnetic (i.e., calcium) and 
paramagnetic (i.e., deoxyhemoglobin, hemosiderin, and ferritin) substances [ 91 ]. 

 SW images can be further analyzed by determining the maximum intensity pro-
jection (MIP) and minimum intensity projection (mIP), which provide information 
on the voxels presenting with the maximum and minimum intensities, respectively. 
This information on MIP and mIP found via SW images is especially useful to visu-
alize the geometry of cerebral veins and deep gray matter structures, among other 
components in the brain. 

 SWI has been used in MR machines at different magnetic fi elds, including 1.5 
Tesla (T), 3 T (high magnetic fi eld), and 7 T (ultrahigh magnetic fi eld). The higher 
the magnetic fi eld, the higher signal-to-noise (SNR) ratio, thereby offering higher 
resolution of fi ne details in the brain structures, such as submillimeter-sized veins 
which are not possible to see by means of other neuroimaging techniques [ 23 ]. Very 
high fi eld strengths may cause distortion of some structures characterized by high 
iron or calcium concentration [ 59 ] and create susceptibility artifacts, especially in 
proximity of the bone.  
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20.3     SWI in Neuro-oncology 

 Several studies have shown the higher sensitivity of SWI in relation to other MRI 
techniques (such as T1, T2, contrast-enhanced T1, and FLAIR) to detect microvas-
culature and intratumoral microhemorrhages in brain tumors. Table  20.2  offers a 
synopsis of the current literature on SWI in neuro-oncology. As illustrated in Chap. 
  24    , microvasculature might be used to differentiate brain tumors of different histo-
logical grades, such as low-grade gliomas (grades I and II according to the World 
Health Organization, WHO 2007, classifi cation system 1 ) from high-grade gliomas 
(grades III and IV). Glioblastoma multiforme (grade IV) is among the most vascu-
larized human cancer [ 56 ] also showing a very high microvascular heterogeneity 
[ 22 ]. Moreover, its architectural heterogeneity ( multiforme , from Latin, means 
“multishapes”) is also shown by the presence of necrotic and/or hemorrhagic areas. 
Importantly, these differences can be clearly depicted in SW images (Fig.  20.1 ).

20.3.1        Morphometrics and Fractal-Based Analysis of SWI 
in Brain Tumors 

 Several morphometric techniques have been suggested to quantify the different pat-
terns shown in SW images in order to differentiate between tumor subtypes 
(Table  20.3 ). These techniques demonstrate the potential validity of SWI as an 
image biomarker useful in the differential diagnosis in neuroimaging. For example, 
hypointense spots on SWI images have been quantifi ed by the frequency and maxi-
mum diameter [ 93 ]. Furthermore, the hypointense dot-like or linear structures 
shown in SW imaging of brain tumors have been quantifi ed in terms of intratumoral 
susceptibility signals (ITSSs), by means of a semiquantitative method, which has 
been shown to be useful in differentiating cerebral lymphomas from high-grade 
gliomas. By means of this technique, GBM has been shown to have higher ITSSs 
scores compared to lymphomas. More specifi cally, GBMs typically elicit a much 
higher intratumoral SWI signal relative to lymphomas, which show very little, if 
any, intratumoral SWI signal [ 70 ,  72 ]. However, a major limitation of this technique 
pertains to the subjectivity of the measure since the computation of ITSSs is mainly 
operator-dependent. Hori et al. introduced a grading system based on the ratio of 
SWI hypointensity relative to the size of the tumor, which led to a more accurate 
correlation between score and tumoral grade being found, when compared to grad-
ing [ 37 ]. The susceptibility grading system ranges from 0 (no SWI hypointensity 
detectable) to 3 (presence of vascular structures alone), with grade I signifying 
hypointensity in less than half of the tumor (and, according to the authors, related to 
bleeding), while the minimum requirement for grade II is characterized by 

1   At the time of the chapter writing, the WHO classifi cation system for brain tumors published in 
2016 was not available yet. 
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   Table 20.2    Literature synopsis of applications on SWI in neuro-oncology   

 Author, year 
of publication, Ref  Main fi ndings 

  Studies supporting SWI usage  
 Baldawa et al., 2012 [ 5 ]  Blooming effects shown in SWI indicating intratumoral 

hemorrhage 
 Bian et al., 2014 [ 10 ]  7 T SWI is more effective in detecting number of CMBs from 

radiation injury involving the frontal lobe, parietal lobe, 
cerebellum, or brainstem; 7 T and 3 T SWI are equally sensitive 
in detecting amount of CMBs if radiotherapy applied to temporal 
lobe or basal ganglia 

 Ding et al., 2014 [ 24 ]  PCNSL has fewer intralesional vessels found on SWI relative to 
high-grade gliomas and brain metastases 

 Deistung et al., 2013 [ 16 ]  QSM, which uses SWI data, can differentiate intratumoral 
hemorrhagic components from calcifi cation in glioblastoma 

 Di Ieva et al., 2012 [ 21 ]  Fractal analysis applied in SW images effectively monitored 
changes in intratumoral microvasculature in patients undergoing 
antiangiogenic therapy 

 Di Ieva et al., 2013, 2016 
[ 18 ,  19 ] 

 Fractal analysis applied in SW images objectively determined 
tumor grades in gliomas and differentiated different brain tumor 
histotypes 

 Fellah et al., 2011 [ 25 ]  SWI can monitor changes in intratumoral microvasculature over 
time in patients undergoing antiangiogenic medication 

 Furtner et al., 2014 [ 27 ]  PCNSL can be differentiated from GBM based on ITSSs. A 
threshold of 1.5 ITSSs or higher is indicative of GBM, while an 
ITSS value less than 1.5 is suggestive of PCNSL 

 Grabner et al., 2012 [ 29 ]  SWI at 7 T depicts intratumoral microvasculature and 
microhemorrhages in patients taking antiangiogenic medication; 
SWI fi ndings correlate with histopathology 

 Hori et al., 2010 [ 37 ]  Ratio of hypointensity from SW images within tumor boundaries 
is the most objective measure in grading 

 Jurkiewicz et al., 2010 [ 45 ]  SWI detected hemosiderosis after tumor resection 
 Kim et al., 2009 [ 47 ]  ITSSs observed in SWI can differentiate high- and low-grade 

tumors 
 Li et al., 2010 [ 49 ]  SWI can clearly depict intratumoral hemorrhage and 

microvasculature; image fi ndings correlated with pathology 
 Li et al., 2015 [ 50 ]  Low-grade gliomas have less ITSSs compared to high-grade 

gliomas 
 Löbel et al., 2010 [ 53 ]  SWI detected more hemorrhages over time than T2* 
 Lou et al., 2009 [ 55 ]  SWI can clearly detect early BGG, tumor visibility on SWI 

poorer in late BGG 
 Lou et al., 2012 [ 54 ]  SWI can differentiate between intracranial ectopic germinoma 

from subacute lacunar infarct using hypointensity differences 
 Lupo et al., 2012 [ 58 ]  More CMBs discovered in the previous tumor region after 

radiation therapy using 7 T SWI 
 Lupo et al., 2013 [ 57 ]  Higher percent volume of hypointensity on SW image of a 

T1-weighted contrast-enhancing lesion best predicted patient 
response to concomitant therapy 

(continued)
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Table 20.2 (continued)

 Author, year 
of publication, Ref  Main fi ndings 

 Menon et al., 2009 [ 61 ]  SWI could detect calcifi cation in subfrontal gangliocytoma 
 Moenninghoff et al., 2010 
[ 63 ] 

 7 T SWI allowed intratumoral vessel branches 250 μm in size to 
be depicted 

 Nishiguchi et al., 2013 [ 65 ]  SW-PRESTO can assess ischemia before and after tumor 
embolization surgery 

 Nossek et al., 2009 [ 68 ]  SWI helped to determine tumor malignancy based on 
microvascular assessment 

 Park et al., 2009 [ 69 ]  Use ITSSs in SW images to objectively grade tumors; ITSS 
correlate with rCBVmax 

 Park et al., 2010 [ 70 ]  GBM distinguished from metastatic tumors using ITSSs in SW 
images 

 Peters et al., 2012 [ 72 ]  Glioblastoma correctly differentiated from lymphomas using 
ITSSs in SWI 

 Peters et al., 2013 [ 71 ]  SWI can detect lesions in medulloblastoma patients who 
underwent radiation therapy 

 Radbruch et al., 2012 [ 74 ]  PQ of ITSSs can distinguish between cerebral metastases 
originating from different sources (e.g., breast carcinoma and 
malignant melanoma); however, PQ could not differentiate 
between all metastases types (e.g., breast carcinoma and bronchial 
carcinoma) 

 Sehgal et al., 2006 [ 78 ]  SWI more sensitive than contrast-enhanced T1 and T2 in 
depicting tumor boundaries, intratumoral microvasculature, and 
internal architecture; vessel fi ndings in SWI correlate with 
histopathology 

 Toh et al., 2012 [ 82 ]  SWI can distinguish glioblastoma from brain abscess, 
unlike in T2 

 Vossough et al., 2012 [ 86 ]  Red nucleus degeneration seen in SWI after tumor resection in 
the posterior fossa 

 Wieczorek-Pastusiak et al., 
2013 [ 88 ] 

 “Vessel view” computer counting program found more vessels in 
SWI than contrast-enhanced T1 

 Wu et al., 2009 [ 90 ]  SWI found more (smaller) calcifi ed lesions than CT 
 Zeng et al., 2011 [ 92 ]  SWI can assess the extent of radiation injury based on the number 

of hemorrhagic lesions; fi ndings matched histopathology 
 Zhang, 2009 [ 30 ]  Small brain metastases less than 1 cm and CMBs found in SWI, 

but not seen in contrast-enhanced T1 and T2* 
 Zulfi qar et al., 2012 [ 96 ]  Greater number of calcium deposits found intratumorally when 

using SWI and conventional MRI together, compared to 
conventional MRI alone 

  Studies not supporting SWI usage  
 Gramsch et al., 2013 [ 30 ]  SWI lesions did not correlate with metastases transformation; 

abnormalities on contrast-enhanced T1 can detect metastases 

  Courtesy of Timothy Lam 
  CMBs  cerebral microbleeds,  PCNSL  primary central nervous system lymphomas,  QSM  quantita-
tive susceptibility mapping,  ITSSs  intratumoral susceptibility signals,  BGG  basal ganglia germi-
noma,  SW-PRESTO  SW principles of echo shifting with a train of observations,  rCBVmax  
maximum relative cerebral blood volume,  GBM  glioblastoma multiforme,  PQ  percentagewise 
quantifi cation  
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hypointensity found in more than half of the tumor in one or more SW images 
depicting linear and/or tortuous shapes (which is associated with bleeding and/or 
vascular structures). This technique offered advancement in the quantifi cation of the 
intratumoral SWI patterns, although still limited by some intra- and interobserver 
variability [ 19 ]. In order to overcome the subjectivity of the scoring systems, per-
centagewise quantifi cation (PQ) of the ITSSs has been suggested to be useful in 
characterizing brain metastases, although the technique focuses on quantitative 
aspects while neglecting the distribution and morphology of ITSS [ 74 ].

   Quantitative susceptibility mapping (QSM) offers a very promising mean for 
susceptibility quantifi cation of different brain structures [ 16 ,  32 ]. Specifi cally, QSM 
has the potential to produce lesion-specifi c susceptibility maps (derived from GRE 
phase data), which can provide more information on blood products and calcifi ca-
tion [ 15 ,  77 ]. The ability to detect calcifi cation in tumors can be useful for tumor 
grading and in deciding patient prognosis as calcifi cation in tumors have been found 
to be associated with longer patient survival compared to tumors without calcifi ca-
tion [ 44 ,  78 ]. 

 Finally, a computational fractal-based method to quantify the intratumoral SWI 
patterns was introduced by Di Ieva et al. in 2012 [ 19 ,  21 ]. The geometrical complex-

  Fig. 20.1    Examples of different tumors showing distinct SWI signal patterns, shown in minimal 
intensity projection. ( a ) Left frontal grade II glioma (FD SWI  = 1.25). ( b ) Right fronto-callosal grade 
III glioma (FD = 2.02). ( c ) Right temporal grade IV glioma (FD SWI  = 2.40). ( d ) Left temporal 
metastasis (FD SWI  = 2.10). ( e ) Left frontal meningioma (FD SWI  = 1.88). ( f ) Left frontal lymphoma 
(FD SWI  = 1.87) (Reproduced from Di Ieva, Le Reste et al. [ 18 ] with permission of the Publisher)       
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ity of the intratumoral SWI-related architecture, resulting from microbleedings, 
necrotic areas, and/or neoplastic microvasculature, was quantifi ed by means of the 
fractal dimension (FD). Most importantly, a relationship between FD of the SWI 
patterns (FD SWI ) and glioma grades was found [ 19 ]. FD was computed by means of 
the box-counting method. According to the principles of fractal geometry, higher 
values of FD signify higher space-fi lling properties of the intratumoral SWI pat-
terns, meaning a higher density and geometrical complexity of the microvasculature 
and/or microbleedings within the tumor. It should be emphasized that apparently 
small changes of FD correspond to a high increase of the space-fi lling properties of 
the SWI patterns, when considering a linear approximation in a small interval of the 
nonlinear FD parameter. For example, an increase of the FD value from 2.07 to 2.23 
corresponds to an increase of about 20 % of the geometrical complexity of the 
object. Computing the FD on the stacks of MR images (i.e., on the 3D reconstruc-
tions of the tumor) gives rise to fractal values, whose non-integer and nonlinear 
values are included in a 3D space, between 0 and 3. Figures  20.2  and  20.3  show the 
algorithm and technique for the computation of FD of SWI patterns.

   Table 20.3    Morphometric analyses used to quantify SWI in brain tumors   

 Technique  Description  Pros  Cons 

 Frequency and 
maximum 
diameter 

 Computer aided or 
manual count and 
measure of the 
hypointensity spots 

 Easy to be performed  It does not consider the 
morphology and 
distribution of the spots 

 ITSSs  Semiquantitative method 
to assess the morphology 
of the SWI signals 

 Useful for 
comparison among 
different tumors 

 Biased by operator- 
dependent variability 

 SWI/volume  Grading system based on 
the ratio of SWI 
hypointensity relative to 
the size of the tumor 

 Useful for 
comparison among 
different tumors 

 Limited by some 
intra- and interobserver 
variability 

 PQ  Quantifi cation of the 
percentage of ITSSs 

 Very useful for 
comparison and 
follow-up 

 Strictly quantitative with 
no consideration on the 
shape and distribution of 
ITSSs 

 QSM  Quantifi cation in ppm of 
the susceptibility of 
distinct anatomical and 
pathological regions of 
the brain 

 Very promising for 
precise susceptibility 
quantifi cation of 
different structures 

 Requires optimal 
post-processing 

 FD SWI   Fractal dimension 
computed by means of 
the box-counting method 
expressing the space- 
fi lling properties of the 
SWI pattern within the 
tumor 

 Single value able to 
give in a snapshot 
information on 
density, roughness, 
and geometrical 
complexity of the 
SWI pattern 

 Requires optimal 
computational 
processing. Not able to 
give information on the 
density alone, for 
example, but all the 
morphometric fi ndings 
as a whole 

   FD   SWI   SWI fractal dimension,  ITSSs  intratumoral susceptibility signals,  ppm  part per million,  PQ  
percentagewise quantifi cation,  QSM  quantitative susceptibility mapping  
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    When analyzing the SWI 7 T MR images of 36 patients affected by grades II–IV 
gliomas, we found a trend of higher FD values in higher-grade gliomas [ 19 ]. The 
mean FD value was 2.086 ± 0.413, with the FD values ranging from a mean value of 
1.682 ± 0.278 in grade II to 2.247 ± 0.358 in grade IV gliomas ( p  < 0.05) (Fig.  20.4 ). 
Figure  20.5  illustrates some examples of different intratumoral SWI patterns, which 
were found in the study.

    To this fi rst demonstration that fractal analysis in SW imaging can offer reliable 
and useful morphometric image biomarkers to distinguish between low- and high- 
grade gliomas, the application of the methods was extended further to other kinds of 
brain tumors, such as brain metastases, meningiomas, and lymphomas as well [ 18 ]. 
Moreover, considering that 7 T MR scanners are very expensive, not easily avail-
able, and are mostly used for research purposes, the study was performed at 3 T, to 
show the feasibility of this computational neuroimaging technique on more com-
monly available scanners. In this study, we considered 78 patients affected by brain 

· Selection of the 7T images to detect the intratumoral SWI patterns
Images

Threshold

Extraction

Box-
counting

FD
· Quantification of the space-filling properties of the SWI patterns by means of
  the fractal dimension

Pseudocode of the box-counting algorithm 

For Z=1 to (number of images of the 7T-MR stack)

FD=-[Slope of log(L) vs -log(n) graph]

while L<emax

L=emin

Array[Z]=Binarize (image[Z])

L=L*1.1

n[L]=count boxes on 3D grid of size L on Array

· Application of the algorithm (e.g., box-counting  algorithm), selection of the
  scaling window (delimitation of the upper and lower bounds covering at
  least two orders of magnitude) according to the curves

· Extraction of the SWI patterns, superimposition of the 3D grid

· Application of the BPN and selection of the threshold to segmentate the SWI
  patterns (binarization of the object)

  Fig. 20.2    Algorithm and pseudo-code used to measure the 3D fractal dimension of the SWI patterns on 
7 T MR images ( BPN  brightness progressive normalization [ 76 ]) (Reproduced from Di Ieva et al. [ 21 ] 
with permission of the Publisher. The same algorithm has been used also on 3 T MR images [ 18 ])       
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tumors of different histopathology (13 grade II gliomas, 11 grade III, and 25 grade 
IV gliomas; 15 metastases from different sources; 8 grade I meningiomas; and 6 
primary B-cell lymphomas), computing the FD SWI  as well as the volume fraction of 
the SWI signal within the tumors. Both values were able to differentiate low grade 
from grades III and IV gliomas, as well as metastases and meningiomas, although 
FD alone was statistically more signifi cant, even to differentiate lymphomas (mean 
FD SWI  = 1.69 ± 0.59) from GBM (mean FD SWI  = 2.03 ± 0.45,  p  < 0.05) (Fig.  20.1 ) 
[ 18 ]. These results confi rmed the fi ndings of the previous study performed at 
7 T. More importantly, these fi ndings demonstrate that the computational fractal- 
based analysis of the SWI patterns can help differentiate contrast-enhancing lesions, 
which often poses problems in the differential diagnosis for neuroimaging, such as 
between lymphomas and malignant gliomas. 

  Fig. 20.3    Method used for fractal analysis of 3 and 7 T MR-SW images. In the example, ( a ) axial, 
( b ) sagittal, and ( c ) coronal sections of 7 T MR images (Magnetom 7 T, Siemens Healthcare, 
Erlangen, Germany, performed at the Medical University of Vienna, Austria) centered on a recur-
rence of GBM (in the  insets ). In ( d ), the region of interest was extracted (i.e., the tumor), and ( e ) 
there were segmentation and subsequent binarization of the SWI patterns (in the fi gure, the signal 
has been inverted, i.e., the SWI black hypointensities appear here as  white ). ( f ) Superimposition of 
the grid of boxes of ε size. The Z-axis sequential sections for the 3D reconstruction are shown 
according to the algorithm in Fig.  20.2 . ( g ) Repetition of the algorithm with  ε  of different sizes in 
the scaling window ranging from  ε  min  = 0.23 to  ε  max  = 23 mm (10 % increment of the box size at 
each step until to reach  ε  max ). ( h ) Results plotted on a log-log graph ( x -axis,  ε , the side length of the 
box;  y -axis,  N ( ε ), on the grid, the number of boxes of  ε  side which cover completely the SWI pat-
terns). The slope of the graph of  log  [ N ( ε )] against log ( 1 / ε ) represents the fractal dimension. The 
software for the analysis was developed in visual C++ language by Carlo Russo (Reproduced from 
Di Ieva et al. [ 21 ] with permission of the Publisher)       
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 Taken together, our fi ndings showed that lower FD SWI  values are associated with 
tumoral vasculature, while higher values (signifying more space-fi lling objects) 
associated with intratumoral bleedings and/or necrotic areas, as previously indi-
cated in qualitative, semiquantitative, and quantitative studies [ 20 ,  29 ,  37 ]. FD swi  
appears to be a reliable morphometric parameter of the tumoral architecture, show-
ing a gradient of complexity among tumors of different histotype and demonstrating 
the ability to quantify the “architectural fi ngerprinting,” which has also been shown 
in the histological features and microvasculature of brain tumors as seen in histopa-
thology [ 20 ] (see Chaps.   23     and   24    ). 

 Besides the grading and differentiation of brain tumors ( diagnostic aim ), SWI 
has also been applied longitudinally in follow-up analyses of patients, in order to 
track tumor evolution and/or treatment response ( follow - up aim ). Different per-
centages of SWI hypointensity in brain tumors have in fact been correlated to dif-
ferent response to therapy in newly diagnosed GBM [ 57 ]. Antiangiogenic drugs 
(e.g., bevacizumab, an antibody targeted against the vascular endothelial growth 
factor (VEGF)) can be used in recurrences of malignant gliomas, having three 

  Fig. 20.4    Box plots showing the FD SWI  values for each histopathological group of gliomas. Four 
cases were histopathologically considered “ambiguous” and were put in the group “II–III” grades. 
The overall signifi cance was statistically signifi cant,  p  < 0.05, with the strongest signifi cance in the 
grade II versus grade IV gliomas ( p  = 0.013) (Reproduced from Di Ieva et al. [ 19 ] with permission 
of the Publisher)       
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fundamental effects: (1) inhibition of the neoplastic angiogenesis, (2) normaliza-
tion of the angioarchitecture (resulting in a more effi cient delivery of drugs and 
oxygen to the cancer cells) [ 43 ], and (3) reduction of the peritumoral edema [ 2 ,  26 , 
 67 ]. Intratumoral and/or brain bleedings are rare but known side effects of the 
treatment. SWI can be potentially used to assess whether antiangiogenic therapy is 
producing favorable effects (like decreased intratumoral microvasculature) or 
unfavorable results (increased intratumoral microvasculature in nonresponder 
patients and/or microbleedings). 

 We conducted a pilot study on the application of computational fractal-based 
analysis to quantify the changes of the intratumoral SWI patterns, visualized by 
means of ultrahigh fi eld (7 T) MRI, in four patients affected by malignant glioma 
recurrences undergoing second-line treatment with bevacizumab, and followed lon-
gitudinally [ 21 ]. The imaging was in fact performed at time  T   0   (before beginning the 
antiangiogenic treatment) and repeated 2 weeks ( T   1  ) and 4 weeks ( T   2  ) after therapy 
was initiated. In two patients (like in the case illustrated in Fig.  20.6 ), it was shown 
that the microvascular proliferation and eventually the intratumoral bleedings were 

  Fig. 20.5    Schema showing the correlation between the histological glioma grade and the FD SWI  
values. The intratumoral SWI patterns consist of vascular structures (linear structures in grade II 
tumors, increasing in tortuosity and density in higher-grade gliomas) and conglomerated dot 
shapes, which most likely indicate intralesional bleeding and/or necrotic areas (as evident in grades 
III and IV gliomas). It should be noted that the image and fractal analysis were performed on the 
3D volume of the reconstruction of the entire tumor in MRI, while the images showed here are 
selections of the axial sections taken from the whole stack (Reproduced from Di Ieva et al. [ 19 ] 
with permission of the Publisher)       
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increasing over time, as confi rmed by the increase of the value of FD from  T   0   to  T   1  . 
This means that, despite the antiangiogenic treatment, over a 1-month longitudinal 
follow-up, there was an increase in the intratumoral microvascularity and/or intra-
tumoral bleedings, thereby suggesting that the patient is nonresponsive and/or expe-
riencing side effects of the antiangiogenic treatment itself (like intratumoral 
bleeding). These morphological changes, qualitatively described by the neuroradi-
ologists and quantitatively shown by the morphometric fractal analysis, were 
 associated with a progressive neurological decline of the patients, who died within 
10 weeks. A third patient was shown to improve neurologically after the antiangio-
genic treatment. Although in this patient the neuroradiologist reported only a reduc-
tion of the peritumoral edema and no differences regarding the tumor itself, the 
computational analysis revealed a minimal decrease of FD over time (FD SWI  = 
2.34 in  T   0  , decreasing to 2.26 at  T   1   and  T   2  ). The fourth patient showed an improve-
ment in the peritumoral edema along with improvement in clinical and neurological 
status (albeit temporarily), without any differences in FD SWI  values (however, this is 
because the tumor mainly presented a large necrotic area, visualized in forms of a 
huge black spot in SWI).

  Fig. 20.6    Multiplanar reconstructions of the 7 T SWI MR images in time  T   0  , which were repeated 
serially after 2 ( T   1  ) and 4 weeks ( T   2  ) since the beginning of antiangiogenic treatment. The  white 
arrows  show the recurrence of the GBM, and from  T   0   to  T   2  , it is evident that there is an increase in 
the signal of the SWI patterns. The value of the fractal dimension of the intratumoral SWI patterns 
(FD SWI ), reported for each temporal sequence, increased over time (see text) (Reproduced from Di 
Ieva et al. [ 21 ] with permission of the Publisher)       
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   Although this was a limited study performed on a very small cohort of cases, 
it was the fi rst to introduce fractal analysis as a quantitative method for objec-
tively comparing sequential images taken during the neuroradiological follow-up 
of patients affected by brain cancer. Moreover, although such computational 
analysis can be performed on lower magnetic fi elds, it has been shown that 7 T 
MRI is also the best means to visualize the presumed intratumoral vascularity in 
gliomas [ 64 ]. 

 Nonetheless, it has to be emphasized that it is anatomically incorrect to speak 
about “microvascularity.” In fact the mean radius of capillaries is 5–10 μm, while 
even by means of 7 T MRI, the smallest detectable vessel diameter is about 0.3 mm. 
Therefore by means of neuroradiological imaging, it is not possible to visualize 
tiny angiogenic sprouts, for example, as it happens in histology. This is precisely 
the reason why we introduced the “microvascular fractal dimension” in histopa-
thology, but in neuroradiology such term was replaced with “FD of the SWI pat-
tern” [ 19 ,  20 ].   

20.4     Future Perspective of SWI in Neurotraumatology 

 Traumatic brain injury is a leading cause of death and disability worldwide. Efforts 
to develop better biomarkers of brain injury are important to improve diagnosis, 
treatment, and prognosis of these patients. Newer MRI techniques hold promise in 
providing such a biomarker. SWI is an effective imaging technique to detect micro-
bleedings in the white matter of patients after TBI [ 33 ]. Specifi cally, SWI is more 
sensitive in comparison to other techniques to detect very small cerebral micro-
bleedings in the brainstem and corpus callosum. This neuroradiological technique 
has been shown to be useful in dichotomizing diffuse axonal injury (DAI) patients 
as hemorrhagic and nonhemorrhagic, which is very useful in terms of a clinical 
perspective since treatment, outcome, and prognosis between these two groups of 
patients are quite different [ 85 ]. Table  20.4  summarizes selected literature on the 
application of SWI to TBI patients.

   Besides from differentiating between the subtypes of DAI, SWI can provide 
details on the clinical status of TBI patients. For example, the number and vol-
ume of SWI hypointensities in TBI patients have been correlated to the scores of 
the most used scale in neurotraumatology, the Glasgow Coma Scale (GCS) [ 3 , 
 15 ,  28 ,  69 ,  79 ,  81 ]. This means that SWI hypointensities are correlated with 
trauma clinical severity, and its quantifi cation can offer some prognostic indica-
tors ( prognostic surrogate biomarkers ). Furthermore, microbleeds can be quanti-
fi ed with the use of susceptibility maps [ 32 ]. Finally, the computational 
fractal-based analysis of SWI patterns holds promise in the quantifi cation and 
description of brain lesions in TBI patients, with higher FD SWI  associated with 
worse prognosis, especially with higher FD SWI  values in the brainstem [Di Ieva, 
unpublished data].  
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   Table 20.4    Literature synopsis of applications of SWI in neurotraumatology   

 Author, year 
of publication, Ref  Main fi ndings 

  Studies supporting SWI usage  
 Akiyama et al., 2009 [ 1 ]  SWI detected three times more lesions that T2* 
 Babikian et al., 2005 [ 4 ]  Lesions detected on the brainstem, thalamus, and basal ganglia 

offered the best prediction of neuropsychological outcome 
 Beauchamp et al., 2011 [ 8 ]  SWI found more lesions than CT and T2 MRI, even if MRI 

not performed until 2–8 weeks after TBI onset 
 Beauchamp et al., 2013 [ 7 ]  More lesions seen on SWI correlated with lower intellectual 

ability 
 Benson et al., 2012 [ 9 ]  Lesion volume in SWI could determine the severity of clinical 

outcome 
 Choi et al., 2014 [ 14 ]  Additional lesions found with SWI, but not FLAIR, were a 

good predictor of poor clinical outcome 
 Colbert et al., 2010 [ 15 ]  Presence of microhemorrhage was the best predictor of 

outcome in children with nonaccidental trauma 
 Geurts et al., 2012 [ 28 ]  SWI detected most lesions, especially in the brainstem and 

corpus callosum, compared with T2, T2*, and FLAIR 
 Hasiloglu et al., 2011 [ 34 ]  SWI found more lesions than T2 and T2*in amateur boxers 
 Helmer et al., 2014 [ 35 ]  SWI can detect changes in hypointensity of smaller (<5 mm) 

cerebral microbleeds over different time points in patients who 
had concussions 

 Henry et al., 2015 [ 36 ]  SWI could detect shearing of axons in the corpus callosum and 
prefrontal cortex 

 Huang et al., 2013 [ 38 ]  SWI lesions in the brainstem could differentiate DAI from 
cerebral fat embolism 

 Huang et al., 2015 [ 39 ]  The presence of cerebral microbleeds detected in SW images 
of mTBI patients was related to defi cits in short-term memory, 
as assessed by the digit span test 

 Iwamura et al., 2011 [ 41 ]  The number of lobes with grade III (supratentorial) 
hemorrhage seen in SW image correlated well with poor 
outcome and consciousness disturbance 

 Liu et al., 2015 [ 51 ]  Greater number of cerebral microbleeds was detected on SWI 
relative to T2* imaging in patients with mTBI. The number of 
microbleeds found on SW images could predict the incidence 
of post-concussive syndrome, whereby an increase in every 
microbleed would increase the risk of post-concussive 
syndrome by 1.5 times 

 Liu et al., 2016 [ 52 ]  Based on quantitative susceptibility mapping (QSM), the 
susceptibility- weighted imaging and mapping (SWIM) 
technique represents a novel method that could detect and 
differentiate between hemorrhage and deep veins in TBI 
patients with high sensitivity and specifi city 

 Moenninghoff et al., 2015 [ 62 ]  7 T SWI can detect greater numbers of cerebral microbleeds at 
a similar and higher spatial resolution compared to 3 T SWI 

(continued)
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20.5     Limitations 

 The methodological limitations pertaining to the application of fractal analysis to 
MR-SW imaging are related to the image resolution and intensity of the SWI signal, 
as already discussed above. Moreover, SWI requires post-processing computation, 
while the parameters as well as the number of multiplied phase masks should be 
standardized, in order to make the input data homogeneous (see Chap.   12    ). The 
choice of the threshold to segment and automatically extract the SWI hypointensi-
ties can be affected by an operator-dependent variability, and this can affect the 
fractal dimension computation as well. In order to solve the problem of different 
luminosities being found in different MR images, we introduced an algorithm for 
the progressive normalization of brightness, which normalizes the luminosity inten-
sity, thereby making it possible to use the same threshold to extract the SWI hypoin-
tensities from each image [ 21 ,  76 ]. 

Table 20.4 (continued)

 Author, year 
of publication, Ref  Main fi ndings 

 Niwa et al., 2011 [ 66 ]  Hypointensity changes in SW images indicate hemorrhage 
progression over long term 

 Park et al., 2009 [ 69 ]  CMBs in the frontal, occipital lobes, and brainstem seen only 
for TBI patients 

 Sigmund et al., 2007 [ 79 ]  SWI detects more lesions than T2 and FLAIR 
 Spitz et al., 2013 [ 81 ]  SWI is more sensitive than FLAIR to detect lesions from 

TBI, more lesions indicative of poorer neuropsychological 
outcome 

 Tong et al., 2003 [ 84 ]  SWI detected more lesions than T2-GRE, especially in the 
brainstem, corpus callosum, and cerebellum 

 Tong et al., 2004 [ 83 ]  Lesions found on SW images in 7 of 9 brain regions indicate 
higher likelihood of poor outcome 

 Toth et al., 2013 [ 85 ]  SWI can distinguish between mTBI with and without 
hemorrhage 

 Wang et al., 2011 [ 87 ]  SWI can detect hemorrhage in patients with acute cervical 
spinal cord injury 

 Wu et al., 2010 [ 89 ]  SWI effective in detecting intraventricular hemorrhage 
  Studies not supporting SWI usage  
 Chastain et al., 2009 [ 12 ]  Median lesion number or volume on SW image could not 

predict good and poor outcome 
 Keightley et al., 2012 [ 46 ]  SWI could not detect structural abnormalities after child 

concussion or mTBI 
 Maugans et al., 2012 [ 60 ]  Structural damage not observed in children with sports-related 

concussion 

  Courtesy of Timothy Lam 
  TBI  traumatic brain injury,  mTBI  mild traumatic brain injury  
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 As summarized in [ 21 ], further studies should be focused on the following 
objectives:

    1.    Decrease the operator-dependent variability in selecting the edges of the tumor 
by moving toward automatic detection of the tumor outline using fractal-based 
algorithms [ 40 ,  48 ,  95 ] (see also Chap.   19    ) or neural networks [ 6 ,  42 ,  94 ].   

   2.    Improve the imaging and post-processing parameters to standardize the methods 
and to reduce technical variability.   

   3.    Compare 3 and 7 T MR images to the histological fi ndings from brain tumors to 
defi nitively assess the signifi cance of SWI patterns, similar to studies that were 
performed with 3 T MRI [ 73 ].   

   4.    Combine the fractal analysis of SWI patterns at 7 T with some quantitative mea-
surements of vessel morphology, as defi ned by magnetic resonance angiography 
[ 11 ] or perfusion parameters [ 80 ] to fi nd valid and objective indexes for monitor-
ing patients affected by brain tumors.   

   5.    Associate the fractal quantifi cation of the SWI patterns with other neuroradiologi-
cal parameters, including (but not limited to) the volume of the tumor, peritumoral 
edema, or the histogram analysis of diffusion tensor imaging-derived maps.   

   6.    Look for any robust correlation of the neuroradiological morphometric fi ndings 
with clinical parameters, and subsequently test them as reliable predictive or 
prognostic biomarkers.    

  Due to high translationality of this fi eld of research, the solution of these problems 
requires a multidisciplinary collaboration of distinct specialists working together in 
different fi elds: points 1 and 2 should be investigated by computer scientists, techni-
cians, and engineers, for example, point 3, by neuroradiologists and neuropatholo-
gists and points 4–6, by a large group of different biomedical specialists, including 
neurosurgeons, biologists, epidemiologists, oncologists, and radiotherapists.  

20.6     Conclusion 

 SWI has been shown to offer some diagnostic and prognostic indexes, but it is of 
paramount importance to underline that it should be used in a complementary way 
with other techniques, such as perfusion and diffusion imaging, in order to get a 
holistic knowledge of the temporal evolution of brain tumors as well as to follow up 
response to treatment. SWI can still be developed, and several issues on processing 
procedures or correlation with neuroradiological results, for example, have yet to be 
explored and addressed, but here we focus on the fact that SWI research should also 
be aimed to decrease the reliance on intra- and interobserver variability in order to 
enhance the quantifi cation and objectivity of SWI. Fractal analysis can help in such 
aim, offering computational fractal-based parameters (e.g., FD of the SWI pattern) 
as potential neuroimaging biomarkers, in neuro-oncology as well as in neurotrau-
matology, although the fi eld could be expanded into other applications as well (e.g., 
follow-up of arteriovenous malformations or cavernomas).     
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Chapter 21
Texture Estimation for Abnormal Tissue 
Segmentation in Brain MRI

Syed M.S. Reza, Atiq Islam, and Khan M. Iftekharuddin

Abstract This chapter discusses multi-fractal texture estimation and characteriza-
tion of brain lesions (necrosis, edema, enhanced tumor, non-enhanced tumor, etc.) 
in magnetic resonance (MR) images. This work formulates the complex texture of 
tumor in MR images using a stochastic model known as multi- fractional Brownian 
motion (mBm). Mathematical derivations of the mBm model and corresponding 
algorithm to extract the spatially varying multi-fractal texture feature are discussed. 
Extracted multi-fractal texture feature is fused with other effective features to 
enhance the tissue characteristics. Segmentation of the tissues is performed by using 
a feature-based classification method. The efficacy of the mBm texture feature in 
segmenting different abnormal tissues is demonstrated using a large-scale publicly 
available clinical dataset. Experimental results and performance of the methods 
confirm the efficacy of the proposed technique in an automatic segmentation of 
abnormal tissues in multimodal (T1, T2, Flair, and T1contrast) brain MRIs.

Keywords Brain tumor • Segmentation • Texture feature • Lesion • Classification • 
Multi-modal MR.

21.1  Introduction

Brain tumor segmentation in MR image is clinically significant for tumor diagnosis 
and grading, therapy, medication dose selection, surgery, and patient follow-up. 
Manual delineation of lesions by radiologists for large volumes is tedious, error-prone, 
and often suffers from variability. Therefore, robust tumor volume segmentation as 
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well as classification of different tumor tissues such as active tumor (enhanced and 
non-enhanced), necrosis, and edema are required. However, automatic segmentation 
of brain tumor and other abnormal tissues is a challenging task in medical image 
analysis due to the unpredictable appearance of these different tissues and their abnor-
mal infiltrations among healthy tissues, variations in intensity, shape, size, and loca-
tion in the MRI. The problem is further complicated by the MR artifacts, for example, 
intensity inhomogeneity, bias in the magnetic field, and noise in the signals.

Many different automatic brain tumor segmentation techniques proposed in the 
literature are based on either features or atlas-dependent registration or a combina-
tion of both. Since our developed texture-based tumor segmentation method is a 
feature-based method [24], we briefly provide a literature review on recent feature- 
based techniques. Among the recent feature-based techniques, Lee et al. [11] pro-
pose support vector machine (SVM)-based discriminative random fields (DRFs) 
with a set of multi-scale image and spatial alignment-driven features, spatial prob-
abilities of normal tissues (white matter, gray matter, cerebrospinal fluid), spatial 
expected intensity maps, and left-to-right symmetry characteristics. However, the 
method does not allow training and inter-patient testing across the different patients. 
Corso et al. [5] use the conditional random field (CRF) to model cascade of boosted 
discriminative classifier. Popuri et al. [22] study Dirichlet-priors, Gabor-like texton 
[12], and the level set features to build statistical models for brain tissues. However, 
level sets techniques are very sensitive to initialization and tend to suffer from 
boundary leaking problems. Zikic et al. [27] use spatial nonlocal features and initial 
probabilities with the classification forest (CF) to segment the brain tumor. Bauer 
et al. [3] integrate random forest (RF) classification with hierarchical CRF regular-
ization in an energy minimization scheme. In [7], Geremia et al. introduce a sym-
metry feature and use discriminative random decision forest for voxel-wise 
classification of tumor voxels. Tustison et al. [26] use Gaussian mixture model 
(GMM) and maximum a priori estimation with Markov random fields (MAP-MRF) 
to generate connected component-based geometric features for brain tumor classifi-
cation. Meier et al. in [17] extend the discriminative model [3] to a generative- 
discriminative hybrid model which generates initial tissue probabilities for enhancing 
the classification and spatial regularization. The authors extract 44 features includ-
ing first-order texture, gradient information, symmetry features, and seven voxel-
wise tissue probabilities for brain tumor segmentation. Other important texture-based 
techniques are also found in the literature. Ghoneim et al. [15] have proposed a 3D 
co-occurrence matrix-based texture analysis to classify gliomas. However, they use 
a manually segmented volume of the region of interest. Pachai et al. [19] have shown 
a multi-resolution pyramid algorithm to segment multiple sclerosis lesions in brain 
MR image. Pitiot et al. [21] have presented a texture-based MR image segmentation 
approach with a novel combination of two-stage hybrid neural classifier.

However, none of the features used in the above techniques capture the multi- 
resolution spatially varying properties of the brain tissues. We argue that the com-
plex structure of brain tumor in MRI may be more amenable to multi-scale spatially 
variable texture analysis such as piecewise triangular prism surface area (PTPSA) 
[24] and mBm [24]. The detailed multi-resolution analysis of fractal feature such as 
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mBm [9] enables capturing the randomly varying spatial tumor texture at different 
scales. In our prior works [2, 9, 24], we study the effectiveness of these features and 
feature selection methods for segmenting posterior-fossa tumor. In [9], we show 
that fractal feature-based technique is also efficient in segmenting different types of 
tumor such as medulloblastoma, astrocytoma, and low-grade gliomas. In [23, 24], 
we use these sophisticated texture features, fractal PTPSA and mBm along with 
intensity and intensity differences among the modalities to analyze multimodal 
MRI for characterizing the different abnormal and normal brain tissues.

21.2  Background Review

Different techniques mentioned in the previous section clearly indicate that extract-
ing effective feature is one of the key factors for successful segmentation. Fractal- 
based spatially varying texture can be one of the effective features for the 
segmentation of abnormal brain tissues in MRI. This section briefly reviews rele-
vant background about our proposed fractal-based texture fractal-PTPSA [8] and 
multi-resolution mBm texture modeling [9] and feature extraction. The detailed 
mathematical derivations of mBm can be found in [8, 9].

21.2.1  Fractal (PTPSA) Texture Feature Extraction

A fractal is an irregular geometric object with infinite nesting of a self-similar struc-
ture at multiple scales. The concept of the fractal is first proposed by Mandelbrot [16] 
to describe the geometry of the natural objects. The fractal dimension (FD) feature is 
a non-integer real number that characterizes the texture of objects. In a prior work 
[8], we investigate statistically the effectiveness of PTPSA feature for brain tumor 
detection. In PTPSA, the image is divided into several equal sub- images. For each 
sub-images (Fig. 21.1), the intensities of the four corners (I1, I2, I3, I4) and their aver-
age (Ic) at the center pixel form four triangles (ABE, ADE, DCE, BCE).
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Fig. 21.1 Illustration  
of fractal PTPSA  
feature extraction for  
a sub-image [1]
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The FD is calculated by the slope of the log-log plot of the total surface areas of 
the four triangles vs. sub-image size.

21.2.2  Multi-fractal Brownian Motion (mBm) Process 
and Feature Extraction

The mBm is a nonstationary zero-mean Gaussian random process that corresponds 
to the generalization of fractional Brownian motion (fBm). The fBm is a part of the 
set 1/f process and considered to be homogeneous or mono-fractal. The Hurst index 
(Holder exponent), H in fBm process, is same at all-time instances. The value of 
H(0 < H < 1) determines the randomness of the fBm process, for example, if H = 0.01, 
the signal is very rough, while for H = 0.99, the signal is very smooth. Figure 21.2 
shows an example of a simulated 1-D fBm process vs. time plots for different H 
values. The figure confirms variation of signal roughness with the variation of H 
values. However, like many other natural signals, the roughness of the tumor texture 
varies in space; therefore tumor texture is more amenable to multi-fractal structure. 
Consequently this work attempts to estimate tumor texture using the mBm process. 
In mBm process the Hurst index, H, is a time-varying parameter, which effectively 
captures the spatially varying heterogeneous texture of brain tissues.
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Fig. 21.2 Simulated 1-D fBm process with different H values: (a) H = 0.01; (b) H = 0.5; (c) H = 0.99 [9]
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The mBm process is defined as x at a x tH t( ) = ( )( ) ,  where x(t) is the mBm pro-
cess with a scaling factor, a, and the time-varying Hurst index, H(t). The covariance 
function for a 2-D mBm process is given as
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where z u
( )  is the mBm process, 
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the process, s u

2  is the variance, and H u
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order to estimate H from multi-scales, multi-resolution wavelet decomposition is 
used. After series of mathematical derivations, the expectation of the squared mag-
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where a and b is the scaling factor and 2D translation vector of the wavelet basis. 
Here, N and M are the dimensions of the image. The Hurst index for 2D image is 
calculated as follows:
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Finally FD is obtained as

 
FD ,= + - ( )E H u1

 
(21.4)

where E is the Euclidean dimension (E = 2 for 2-D images).
For a given image we first divide the image into nonoverlapping blocks or sub- 

images and calculate the FD for that corresponding sub-image. The process is 
repeated for all the sub-images. The simplified algorithm for mBm texture feature 
extraction is shown in Fig. 21.3.

The detailed mathematical derivations of mBm and the description of the above 
algorithm shown in Fig. 21.3 for mBm texture feature can be found in [9].

21.3  Methodology

In this section, we describe our developed pipeline for abnormal brain tissue seg-
mentation from the 3D MRI volume images (T1, T2, T1c, and Flair). Figure 21.4 
shows the steps in the pipeline, which is the proposed method in our previous work 
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Algorithm 1: The mBm process computation for tissue texture extraction

MultiFD(image, block_size, wavelet, level)

image: N × M brain MRI

wavelet: Wavelet filter that verifies the usual admissibility criterion

level: The number of wavelet levels used to compute FD (level>1)

a.   For a in 1 to level

i.   Compute the wavelet coefficients at scale a.

as shown in (21.3).

FD = 2 + 1 – H (u
→

)

c.   Compute FD in each image block as shown in (21.4):

2.   end

ii.   Compute E {|Wz(b
→

,a)|2} as shown in  (21.2)

b.   Compute H (u
→

) from the linear regression of log (E {|Wz(b
→

,a)|2}) versus log(a)

1.   For each block of size block_size from image do

Fig. 21.3 Algorithm for mBm texture feature extraction [9]

Preprocessing

Online
Evaluation 3D

segmented
Predicted

label for each 
pixel

Trained
model

Training of RF
classifier

Feature images
Processed imagesMR input images

(T1, T2, FL, T1c)

Dice,
PPV,

Sensitivity

Morpholo-
gical

filtering

Stacking of the
segmented result

Prediction with
trained RF

model

Fused
feature of
test data

volume
image

Evaluated
Scores

Feature extraction
& fusion

Fused feature

Input parameters:
(mtry, ntree)

Non-tumor 0,
Necrosis-1, Edema-
2, non-enh tumor-

3, enh tumor-4.

Fig. 21.4 Generic flow diagram of the proposed method [24]

S.M.S. Reza et al.



339

[24]. The process starts with linear co-registration among the modalities, which 
reduces the alignment, rotation, and scaling mismatches. Then 2D MRI slices are 
obtained from 3D volume for subsequent processing. We briefly discuss each of the 
steps in Fig. 21.4 below.

21.3.1  Preprocessing

The preprocessing step involves aligning and co-registration among the channels, 
resampling, skull stripping, MR bias field, and intensity inhomogeneity correction. 
Co-registration is performed to correct the misalignment among the modalities and 
can be done with several tools such as SPM, ITK, and Slicer3D. MR bias field sig-
nal is a low-frequency and very smooth signal that blurs the image and reduces the 
high-frequency components from the images. Therefore, it is very important to 
reduce the bias field corrected and several techniques are found in literature. In this 
work, we perform MRI bias correction with N4ITK [25] MRI bias correction tool 
of Slicer3D. In order to minimize the intensity inhomogeneity of the MR image, 
intensity normalization is performed. The intensity normalization for MR images is 
very important because the intensity of the same tissue type can vary from patient to 
patient and even slice to slice of the same patient. Several MR intensity inhomoge-
neity correction techniques [10, 18] are available in literature. The intensity 
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inhomogeneity correction method in [18] is a two-step normalization method [18], 
where the image histograms are modified such that the histograms match a mean 
histogram obtained using the training data. After inhomogeneity correction, the 
intensity values for the same tissue in different MR images fall into a single range 
of the scale. The method in [10] also comprises two steps. In the first step, 10-point 
histogram matching is performed, where the reference images of four modalities are 
an arbitrary set from a single patient data. Intensity values below the mean of the 
input volume are considered as the background pixel and excluded from the histo-
gram matching process. Next step is normalizing all the intensity values around the 
mean intensity value of cerebrospinal fluid (CSF). In [10], two class classification 
(CSF vs. rest) is performed using the random forest to separate the CSF from the 
other tissues. We notice that simply threshold the intensity differences among the 
modalities gives a fair output to get the CSF mask. We take the histogram matched 
images, inhomogeneity corrected images, and this CSF mask as features. Figure 21.5 
shows example images of original and preprocessed images.

21.3.2  Feature Extraction, Fusion, Ranking, and Selection

For each slice of the input images, we extract two primary sets of features such as 
nonlocal and spatial/texture:

• Feature type 1 (nonlocal feature): The nonlocal features are the pixel intensities 
of four MRI modalities and corresponding differences of pixel intensities among 
the modalities. These features do not depend on the local texture patterns, and, 
thus, we named it as nonlocal features. We use the intensities (IT1, IT2, IFl, IT1c) and 
the intensity differences (d1 = IT1- IT2, d2 = IT2- IFl, d3 = IFl- IT1c) to capture the 
global characteristics of different tissues. This different features (d1, d2, d3) 
describe the amount of intensity variation at each pixel among the MR modali-
ties. It is instinctive that different tissues (WM, GM, CSF, tumor-core, necrosis, 
and edema) may display a different amount of intensity variation among the 
modalities. A similar type of difference features is also used in [27].

• Feature type 2 (spatial/texture feature): The spatial or texture features are those 
features that depend on the local texture pattern of an area. As the tumor is the 
uncontrolled growth of the tissues, it infiltrates into the surroundings and takes a 
different texture pattern which is expected to be different from the non-tumor 
region. In order to characterize the tumor surface variation, we employ our novel 
fractal texture features such as fractal PTPSA, mBm [1, 2, 9]. More details on 
our fractal texture features can be found in [2, 9]. We also use regular Gabor-like 
texton [12] since these features have an important association for image segmen-
tation. Texton features are useful to decompose an image into its constituent 
components and reduce the redundant information. In general total 48 filters 
including 3-scales, 6-orientations, 2-phases, and 8-center-surround derivatives 
are used in texton feature extraction process. Instead of using all 48 texton filter’s 
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outputs, we manually selected few filters which show visually significant differ-
ences among the abnormal and normal tissue regions.

• Feature fusion: After feature extraction from each corresponding slices, we per-
form feature domain fusion. Each row of resulting fused feature matrix repre-
sents all the feature values for a corresponding pixel location of the brain. To 
illustrate this fusion, let us consider each of the input image volumes are of size 
V(= X × Y × Z), where X, Y, and Z indicate the number of row, column, and slices 
of an input image, respectively. For Nf number of features extracted, the 3D fused 
feature matrix will be of size (Nr × Nf × Z), where Nr(= X × Y) is the number of 
rows in the feature matrix, Nf is the number of columns, and Z is the number of 
slices as usual.

• Feature ranking and selection: We know that all the features are not equally 
important and redundancy among the features degrades the classifier’s perfor-
mance. To identify the most useful features from the whole feature set, different 
feature ranking and selection methods are used. From the recent techniques, we 
use mutual information-based implementation of minimum redundancy maxi-
mum relevance (mRMR) [20] feature ranking technique. The method works in 
two steps. In the first step, it uses mutual information to search the maximum 
relevance between the individual feature and the class label. However, the fea-
tures selected with the maximum relevance could have high redundancy among 
them, and it is intuitive that combination of these redundant features may have 
poor class-discriminating power. Therefore, in the second step, the method uses 
the minimal redundancy to select the mutually exclusive features. In this work, 
we perform the feature ranking on the whole feature set and then heuristically 
select 19 top-ranked features out of 38 features. Among all the features we noticed 
that the intensity, intensity differences, and the mBm features are in the top rank-
ing list. This confirms the effectiveness of our novel texture features (mBm and 
PTPSA) in segmenting posterior-fossa brain tumor in our previous work [2, 9].

21.3.3  Classification with Random Forest

Random forest for classification which is also known as classification forest (CF) 
has a very fast and efficient multiclass handling capability. In this work, we use CF 
[4] for the tissue classification. The classification forests are ensembles of binary 
classification trees which are formed using randomly drawn data samples and fea-
tures/predictors. This random selection of data samples and also the subset of fea-
ture/predictors help CF to perform robust classification compared to other classifiers 
such as support vector machines and neural networks. In CF classification method, 
each tree offers a classification/vote and for prediction the class with the maximum 
votes is assigned as the final label. Instead of voting, class probability may also be 
used. In that case, at each node n, classification tree randomly takes a subset of 
training samples Xn and predicts a class probability, pt

n(Ωi|x), where pt is the proba-
bility of the sample x in class Ωi. Depending on the feature dimension, CF randomly 
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resamples the training dataset at every node and assigns the partitions XL and XR to 
the left/right nodes. Tree growing continues up to a certain tree depth (DT). In the 
testing phase, the overall probability is calculated as the average of all tree probabil-
ities. Finally, the class with the highest probability is assigned as the actual class. 
More details about CFs can be found in [6].

In general, the classical random forests algorithm for both classification and 
regression starts with drawing the Ntree bootstrap samples from the training dataset 
which is the number of trees necessary for good predictions. Next step is to grow the 
classification trees for each bootstrap data sample where at each node, randomly 
sampled mtry predictors are chosen and the best split searched from the chosen pre-
dictors. Finally, for a new data sample, the predictions of all Ntree classification trees 
are collected and averaged for final output. Usually the parameters Ntree and mtry are 
fixed heuristically for the best performance. In our case, we gradually increase Ntree 
and mtry each at a time and observed the overall classification performance. After 
extensive investigation, we set Ntree = 100 and mtry = 4 in this work. The detailed 
description of the RF classifier’s training and testing used in this work can be found 
in [13].

21.4  Results and Discussion

This section reports the segmentation results obtained from the predicted pixel 
labels of the RF classifier. These 2D abnormal tissue segments are then stacked to 
generate volume image. Figures 21.6 and 21.7 show example tissue segments using 
three slices taken from randomly chosen patients of training and test cases, 
respectively.

Evaluation: The following similarity coefficients are exploited to evaluate any of 
our segmentation performance:

 1. DiceCoefficient 2TP/(2TP+(FP+FN))=

 2. Sensitivity
TP

TP FN
=

+
where TP = true positive, FP = false positive, and FN = false negative. Three differ-
ent categories such as complete tumor, tumor core, and other tissues are considered 
for the evaluation. The details on these three categories are as follows: complete 
tumor (1-necrosis, 2-edema, 3-non-enhancing tumor, 4-enhanced tumor), tumor 
core (3-non-enhanced tumor, 4-enhanced tumor), and individual tissues.

Quantitative Evaluation: We evaluate our preliminary abnormal tissue segmenta-
tion results using the BRATS-2013 [13] and BRATS-2014 [14] clinical dataset. 
BRATS-2013 dataset consists of multi-contrast MR scans from 65 glioma patients 
with low-grade (astrocytoma or oligoastrocytomas) and high-grade (anaplastic 
astrocytoma and glioblastoma multiforme) tumors. Similarly, BRATS-2014 dataset 

S.M.S. Reza et al.



343

Fig. 21.6 Segmented tissues with corresponding input and ground-truth images of three training 
patients. Each column represents an example set of multimodality MRI slices. Input: T1, T2, Flair, 
T1contrast. Output: segmented image and ground-truth. Labels in the ground-truth: 1-necrosis, 
2-edema, 3-non-enhancing tumor, 4-enhancing tumor, 0-everything else

Example image 1 Example image 2 Example image 3

T1

T2

T1c

Flair
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consists of 400 patients’ images. We perform threefold within patient cross- 
validation on 213 training patients of BRATS-2014 dataset; the average scores 
using the proposed method are shown in Table 21.1. Our segmentation rate using 
threefold cross-validation varies: 73–87 % using Dice overlap metric for tumor core 
and complete tumor, respectively. In low standard deviation, 8–24 % indicates that 
the proposed method offers consistent results for different abnormal tissue 
segmentation.

The patient-wise cross-validation results using our algorithm in Table 21.1 sug-
gest that one may obtain reasonably good results for any representative patient data-
set. In order to measure the robustness of the method, we use the trained RF classifier 
with BRATS-2013 data and test on BRATS-2014 dataset. Quantitative scores of 213 
training patients of BRATS-2014 with the proposed method (Fig. 21.4) are shown 
in Table 21.2.

Results in Table 21.2 shows that the Dice score varies from 63 to 76 % using the 
proposed method, which is very promising. From the tissue-wise results, we notice 
that our texture-based method performs comparatively better for larger lesion size 
(edema and enhanced tumor), while for smaller lesions the performance is compro-
mised. We realize that the interpolation method in the texture feature extraction 
process penalizes the detail of the smaller lesions, and thus the classification perfor-
mance is less than satisfactory. Again from the patient-wise results, we notice that 
the proposed algorithm usually performs better for high-grade (HG) tumors than 
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Fig. 21.7 Segmented tissues with corresponding input and output images of three test patients. 
Each column represents an example set of multimodality MRI slices. Input: T1, T2, flair, 
T1contrast. Output: segmented image. Labels in the ground-truth: 1-necrosis, 2-edema, 3-non- 
enhancing tumor, 4-enhancing tumor, 0-everything else

Example image 1 Example image 2 Example image 3

T1

T2

T1c

Flair
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low-grade (LG) tumors. Therefore, we observe that the MRI containing HG tumor 
surface may contain higher randomness in texture. In summary, the results in these 
tables show that our proposed method is effective in segmenting different grades of 
glioma tumors.

21.5  Conclusion and Future Work

In this chapter, we propose novel texture feature estimation technique using the 
fractal nature of the brain tissues. The extracted texture features in the MRIs are 
shown to be effective in discriminating the abnormal and normal brain tissues. The 
developed feature-based segmentation method is evaluated using a large-scale pub-
licly available clinical dataset known as BRATS. Experimental results obtained 
with LG and HG patient data confirm the efficacy of our method for multiclass 
abnormal brain tissue segmentation. Our results also offer comparable brain tumor 
segmentation performance when compared to the other state-of-the-art works 
posted on the BRATS website [13]. The method offers comparatively higher Dice 
overlap score for larger size tumors in comparison with smaller ones. Further, sub-
stantial false positives in our detections and presence of anomaly in the segmented 
tumor core area compromise the overall performance. More investigation for the 
lesions with smaller size is required. Our future works include study of more effec-
tive features and sophisticated feature selection technique for improved brain tumor 
segmentation.
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Chapter 22
Tumor Growth in the Brain: Complexity 
and Fractality

Miguel Martín-Landrove, Antonio Brú, Antonio Rueda-Toicen, 
and Francisco Torres-Hoyos

Abstract Tumor growth is a complex process characterized by uncontrolled cell 
proliferation and invasion of neighboring tissues. The understanding of these phe-
nomena is of vital importance to establish appropriate diagnosis and therapy strate-
gies and starts with the evaluation of their complexity with suitable descriptors 
produced by scaling analysis. There has been considerable effort in the evaluation 
of fractal dimension as a suitable parameter to describe differences between normal 
and pathological tissues, and it has been used for brain tumor grading with great 
success. In the present work, several contributions, which exploit scaling analysis 
in the context of brain tumors, are reviewed. These include very promising results 
in tumor segmentation, grading, and therapy monitoring. Emphasis is done on scal-
ing analysis techniques applicable to multifractal systems, proposing new descrip-
tors to advance the understanding of tumor growth dynamics in brain. These 
techniques serve as a starting point to develop innovative practical growth models 
for therapy simulation and optimization, drug delivery, and the evaluation of related 
neurological disorders.
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22.1  Introduction

Tumors exhibit a complex and irregular geometry due to the uneven spatial distribu-
tion of their cells. This irregular geometry appears during their growth processes, 
and it is apparent in a tumor interface with its host, on a tumor vascular network, and 
even on a tumor’s spatial diffusion through time. Fractal geometry provides a notion 
of dimension that characterizes these complex and irregular objects. In the case of 
brain tumors, medical imaging technology has been fundamental for the geometri-
cal analysis and quantification of tumor lesions. Magnetic resonance imaging tech-
niques with standard contrast enhancement, dynamic contrast enhancement, and 
susceptibility weighting give detailed geometrical information with excellent spa-
tial resolution and quality. When applied to the central nervous system, the precise 
characterization of tumor geometry, in all of its complexity, makes an important 
contribution to the understanding of brain tumor pathology. This precise geometric 
characterization leads to new methods for tumor segmentation and tissue classifica-
tion in enhanced contrast MRI [22–24], tumor grading [17, 23], and therapy moni-
toring [15, 23]. Parameters extracted from the complex tumor growth dynamics 
[1–6, 38, 55] can be used to validate tumor growth models [9, 27, 39, 52] for therapy 
simulation and prognosis [53]. Also, brain tumor complexity and neural brain com-
plexities can be taken into account to produce models that estimate neurological 
implications of tumor resection [60] and neurological disorders [18, 21] due to the 
presence of brain tumors.

The sections in this document are organized as follows: first, we present a survey 
on the use of fractal capacity dimension, as estimated by the box-counting algorithm, 
to characterize tissue properties and assess tumor grading, perform therapy monitor-
ing, and segment MR images of pathological brain tissue using texture analysis. 
Next, we present the use of a scaling analysis approach to estimate growth parame-
ters extracted from tumor interface dynamics and their relation to fractal dimensions. 
Finally, some multifractal analysis techniques are discussed, e.g., a time-like series 
derived from a tumor interface’s rugosity and its associated  complex network analy-
sis, which we present as a natural way to describe a tumor’s complexity.

22.2  Fractal Dimension and Brain Tumors

Fractal dimension has been used to characterize morphological irregularities in can-
cer pathologies and to assess their grade and malignancy [50, 59]. In particular, it 
has been used to establish clear geometrical differences between normal, dysplastic, 
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and neoplastic tissues [32, 33]. In the case of brain tumors, fractal dimension, as 
box-counting or capacity dimension, has been used for tumor segmentation in brain 
images [22–24, 61], tumor grading [17, 23], and assessment of the effects of therapy 
[15, 23]. In these applications, magnetic resonance images with contrast enhance-
ment [23], susceptibility-weighted MRI (which are known as SWI [15, 17]), and 
histological brain tumor specimens [11–14, 16] have been evaluated. The magnetic 
resonance imaging modalities used in these studies have high spatial resolution and 
provide a proper rendering of tumor lesion features.

Di Ieva et al. [17] estimated fractal capacity dimension on 7 Tesla susceptibility- 
weighted magnetic resonance images, SWI-MRI, for glioma tumor grading. Their 
results show a significant increasing trend (p < 0.05) of intratumoral SWI-MRI 
fractal dimension with tumor grade, i.e., 1.682 ± 0.278 for grade II, 2.018 ± 0.517 
for grade III, and 2.247 ± 0.358 for grade IV gliomas with a statistical significance 
difference of p = 0.013 between grade II and grade IV gliomas (see Chap. 20). In 
a previous work [15], fractal capacity dimension was used to monitor the effects 
of antiangiogenic treatments. This was done on 7 T susceptibility-weighted mag-
netic resonance images, to evaluate in vivo the response to therapy. In this work, 
patients received antiangiogenic treatment with bevacizumab and recurrent 
lesions were tracked down during a 4-week period by estimating the fractal capac-
ity dimension. The cases that were analyzed in [15] include three glioblastomas 
multiforme and one anaplastic astrocytoma. In the cases where the antiangiogenic 
treatment was effective, the fractal dimension remains a constant 2.40 or went 
down slightly (2.34–2.26). On the other hand, the failure of treatment could be 
identified by a small increase in fractal dimension (2.23–2.26) in the case of an 
anaplastic astrocytoma, or a very large increase (2.06–2.23) for a glioblastoma 
multiforme. Fractal dimension variations indicate the partial success of antiangio-
genic therapy toward a normalization of tumor vasculature [26], i.e., a more 
ordered vascular state, or a failure, detected as an increment of the vascular disor-
der, expressed through this parameter. These results together [15, 17] suggest that 
fractal dimension estimation of 7 T SWI-MRI patterns can be used to qualitatively 
and quantitatively describe malignant brain tumors and their evolution during 
antiangiogenic therapy.

Fractal dimension was proposed by Gazit et al. [19] to account for a geometrical 
description of tumor vascular architecture [57] during tumor growth and regression. 
In a recent review, Di Ieva [11] proposed the use of different morphometric  parameters 
to characterize brain tumor vascularity, categorizing them as Euclidean or fractal, 
being fractal dimension a more objective parameter than Euclidean morphometric 
parameters to assess tumor microvascularity. Applied to histological specimens of 
pituitary adenomas [12, 13], the microvascular fractal dimension was estimated as 
1.42 ± 0.14, compared to the estimated value for pituitary gland of 1.58 ± 0.10. 
Furthermore, Di Ieva et al. [15] applied a fractal-based image analysis technique to 
quantify the microvascularity in histological specimens, which were classified 
according the World Health Organization, WHO [36], as grade II and III gliomas. 
The statistical analysis [16] showed the fractal-based indexes as the most discrimi-
nant parameters to describe the geometry of the microvessels. Box-counting 
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 dimension was calculated locally, lbcD, for a scale range from 1 to 1,000 μm. 
Additionally, the microvascular fractal dimension, mvFD, which is the fractal capac-
ity dimension of the microvascular pattern for the whole specimen, in a scale range 
from 50 to 2,000 μm, was used to characterize the fractal geometry of the vascular 
network. Particularly in [16], the authors established a correlation between the angio-
score assigned by a neuropathologist and the fractal-based variables, lbcD and mvFD, 
as a computer-assisted and fractal-based morphometric assessment of tumor micro-
vascularity. The correlation was established as follows: 0, no clusters, 1.28 ± 0.11; 1, 
presence of clusters, 1.43 ± 0.09; and 2, very prominent clusters, 1.60 ± 0.07 (see also 
Chap. 24). Furthermore, the microvascular network complexity, expressed as the 
fractal dimension parameter, is correlated to the uptake of (11) C-methionine (MET) 
assessed by PET in glioblastoma multiforme [14]. In this work, patients with a previ-
ous MET PET study underwent a total resection of the brain tumor, yielding histo-
logical specimens that were stained with hematoxylin/eosin and analyzed by two 
neuropathologists to assess a diagnosis of grade IV glioblastoma multiforme. 
Histological specimens were used to evaluate fractal dimension according to the 
methods proposed [11–13, 16]. Results indicate that fractal dimension ranged 
between 1.19 and 1.77, with a mean value of 1.415 ± 0.225, and the standardized 
uptake value for (11) C-methionine ranged between 1.30 and 5.30, with a statistically 
significant direct correlation (p = 0.02) between these parameters.

Risser et al. [47] studied normal and tumorous three-dimensional (3D) microvas-
cular networks in primate and rat brains and performed fractal and power spectrum 
analysis on high-resolution synchrotron tomography images. Scale invariant fractal 
properties appear in a range from 1.4 μm up to 40–65 μm for normal vascular net-
works. A wider range is expected for tumor vascular networks. Fractal dimension 
was estimated by two methods, box-counting and sandbox [54, 56]. In the sandbox 
method, N points are selected randomly over the structure, and for each point i the 
number of points inside a box of size r, Mi(r) is calculated. Afterwards, the relation-
ship between the average value of M(r) and r is used to estimate the fractal capacity 
dimension. Box-counting fractal dimension for normal vascular networks range 
from 1.55 to 1.7, while sandbox fractal dimension ranges from 1.55 to 1.9. In the 
case of tumor vascular networks, the ranges are 1.9 to 2.2 (box-counting method) 
and 1.9 to 2.4 (sandbox method), showing a clear difference between normal and 
tumor vascular networks.

Iftekharuddin et al. [22–24] and Zook et al. [61] proposed three modified box- 
counting algorithms for fractal geometry analysis on contrast-enhanced MRI images 
which have been widely used for brain tumor detection and fractal dimension esti-
mation. The most commonly used method, piecewise-threshold-box-counting 
(PTBC) [23], uses a threshold in the pixel intensity values. Other proposed methods 
are the improved piecewise-modified-box-counting (PMBC) and the piecewise- 
triangular- prism-surface-area (PTPSA) [23, 61]. In the proposed methods, pixel 
intensity is considered as a third dimension, making them very suitable for the frac-
tal analysis of texture. In [22, 24] the authors proposed the modeling of the irregu-
larities in the image texture through fractional Brownian motion, fBm, which was 
introduced by Mandelbrot et al. [37] and depends on a single parameter, the Hurst 
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exponent, H [37]. Once H is determined, fractal dimension can be easily estimated 
through the simple relationship D D Hf E= + -1 , where DE is the Euclidean dimen-
sion of the space where the fractal structure is contained. The fBm has proven to be 
successful in modeling a variety of physical phenomena and non-stationary pro-
cesses that share essential properties such as self-similarity, scale invariance, and 
fractal dimension. The authors [22, 24] developed a theoretical framework that 
combines wavelet analysis with multiresolution fBm to estimate fractal dimension. 
In [24] the authors proposed a feature extraction methodology based on the fusion, 
with a self-organizing map, of multiple fractal measures computed in the contrast- 
enhanced T1, T2, and FLAIR magnetic resonance imaging modalities. After this 
feature extraction, the authors use this information for the training of a supervised 
neural network that classifies image regions as tumorous or non-tumorous [24] (see 
also Chap. 21).

Fractal dimension can also be extracted from the tumor interface after perform-
ing an image segmentation process. Martín-Landrove et al. [38, 40], Pereira et al. 
[42], Quintana et al. [43], and Torres-Hoyos et al. [55] analyzed tumor interfaces 
extracted from contrast-enhanced magnetic resonance images and determined the 
fractal capacity dimension of the tumor interface. The analysis of a 3D tumor inter-
face in brain tumor data is shown in Table 22.1, which includes data from The 
Cancer Imaging Archive [8] for high-grade gliomas and image databases for menin-
giomas. The analysis shown in Table 22.1 yields the result that fractal capacity 
dimension for glioblastoma multiforme is 2.11 ± 0.08 and for meningioma, 
1.91 ± 0.06. Recently, Smitha et al. [51] analyzed fluid attenuation inversion recov-
ery (FLAIR) MR images and obtained variations in the fractal dimension of the 
tumor contours of low-grade gliomas, 1.243 ± 0.127, and of high-grade gliomas, 
1.338 ± 0.248, with a statistical significance level of p = 0.04.

Summarizing, the set of fractal dimensions, each one associated to a particular 
feature of the tumor lesion, e.g., contrast agent intensity, image texture, vascularity, 
and tumor interface, supply an adequate description to characterize the transitions 
from normal to dysplastic to neoplastic tissue [32, 33]. This description is of great 
help in diagnosis and therapy monitoring. Fractal capacity dimension is in general 
very easy to calculate by box-counting or sandbox algorithms, which makes it use-
ful for its extended use in clinical applications and computer-aided diagnosis. 
However, fractal capacity dimension alone does not adequately describe  multifractal 
systems [20, 34, 40, 54], so a more general approach to assess the complex behavior 
of cancer has to be addressed.

22.3  The Scaling Analysis Approach

Besides fractal dimension, there are other ways to describe the fractal geometry of 
a system. Many other exponents can be derived from the observed power-law 
behavior through scale transformations. Tumors are complex adaptive systems that 
can be characterized by dynamics similar to power-law behavior. The growth of 
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tumors, in both resected and in vitro samples, has been characterized using a 
 combination of fractal and scaling analysis techniques [2–5, 26]. These studies 
have shown that tumor contours exhibit super-rough scaling dynamics described by 
the Family-Vicsek ansatz [29] at the local as well as the global level. As a conse-
quence, the tumor interface can be parameterized by a local roughness exponent, 
αloc, and also by a global roughness exponent, α >1 [2–5]. The local roughness 
exponent relates the scale-averaged width of the interface between tumor and host 
to the scale of growth given by the arc length l, exhibiting power-law behavior 
 [2–5] for small l:

 
W l t l, loc( ) ~ a

 
(22.1)

with W given by [9]:
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where 〈ri〉l represents the average radius, measured from the tumor center, over an 
interface segment of arc length l, and {*}L represents the average over all realiza-
tions (all possible arcs of length l) in the interface perimeter L, as shown in Fig. 22.1.

In relation to brain tumors, Brú et al. [2] report in vitro results on cellular line C6 
of rat astrocyte glioma that yield the following set of exponents: a loc = ±0 87 0 05. . , 
a = ±1 5 0 1. . , z = ±4 0 0 2. . , b = ±0 375 0 03. . , and b * . .= ±0 15 0 05 . These results 
are consistent with a molecular beam epitaxy (MBE) growth model. The same fractal 
and scaling analysis has been applied to brain tumors in MRI with contrast enhance-
ment [38, 55], both with 2D slice images [38] and 3D volumetric [55] images. For 
each case, the distribution of contrast within the tumors exhibit a clearly different 

Table 22.1 In vivo results 
for the local roughness 
exponent, αloc

Type # Cases αloc

Glioblastomab 107 0.89 ± 0.08
Grade I gliomab 19 0.81 ± 0.08
Grade II gliomab 11 0.86 ± 0.07
Grade III gliomab 7 0.86 ± 0.10
Metastasisa 47 0.81 ± 0.11
Vestibular schwannomaa 64 0.74 ± 0.10
Meningiomaa 118 0.76 ± 0.08
Craniopharyngiomaa 1 0.71
Pituitary adenomaa 9 0.76 ± 0.08
Space-occupying lesiona 42 0.80 ± 0.09

aBenign tumor information was obtained by analyzing local image 
databases
bGlioma and glioblastoma information was obtained through the 
image analysis of The Cancer Imaging Archive, National Cancer 
Institute [7, 8]
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pattern for high-grade gliomas, such as glioblastomas, compared to benign tumors, 
e.g., acoustic neuroma (i.e., vestibular schwannomas), as depicted in Fig. 22.2.

Contrary to in vitro experiments, measurements in vivo for clinical applications 
can only yield a reduced set of exponents, due to missing information about the 
initial conditions of the tumor growth process. In this case, only αloc and possibly α 
can be determined. Scaling analysis can be performed either on tumor contours in 
2D slice images or tumor surfaces in 3D volumetric images. Scaling analysis of 
in vivo cases yields power-law behavior for small scale lengths (Fig. 22.3) similar 
to in vitro cases.

Moreover, if the growth process follows a dynamic scaling as described by the 
Family-Vicsek ansatz [29], fractal dimension and local roughness exponent are 
related in a general way [1, 29], i.e., their sum is equal to the embedding dimension 
of the shape, or Euclidean dimension:

 
a loc + =d df E  

(22.3)

This property provides a way of estimating the fractal dimension that doesn’t 
depend on box-counting algorithms. It can also be used to double check measure-
ments or even to discern the nature of the growth process, i.e., whether it follows the 
Family-Vicsek ansatz or not, suggesting a different kind of ansatz. Results from 
contrast-enhanced MRI obtained from multicenter databases are summarized in 
Table 22.1. In particular, big databases [41], such as The Cancer Imaging Archive 
[7, 8], allow for extensive statistical analysis. It is important to point out that the 
values of the local roughness exponent for Grade I through Grade III gliomas and 
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Fig. 22.1 (a) Average radii obtained over a tumor interface’s contour. (b) Arc length for different 
scales
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a b c

Fig. 22.2 Contrast distribution patterns: top, glioblastoma multiforme; bottom, vestibular schwan-
noma. (a) Contrast-enhanced MRI, (b) segmented image using the k-means clustering algorithm, 
showing original voxel intensity, and (c) binary image (mask) used for tumor interface delineation
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exponent αloc as the slope of the regression line, and the saturation values for large scale length, 
W(Σ) where Σ denotes the size of the tumor. (b) Power-law behavior for high-grade glioma data, 
in this case a glioblastoma multiforme
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glioblastoma are in correspondence to those obtained by Brú et al. [2] for the 
 cellular line C6 of rat astrocyte glioma; also there seems to be a slight dependence 
of the local roughness exponent on tumor grade, and a significant difference with 
benign tumors, such as meningiomas and schwannomas. Metastases, which 
exhibit a great variability, possibly dependent on histological properties of pri-
mary tumors, have a mean αloc similar to low-grade gliomas. Data in Table 22.1 
are particularly abundant for glioblastoma and meningioma, so it is possible to 
obtain distributions of αloc for these extreme types of brain tumors, as shown in 
Fig. 22.4. Also, the capacity or box-counting fractal dimension can be calculated 

to check if Eq. (22.3) holds. For the glioblastoma case, a loc = ±0 89 0 08. . , 

d f = ±2 11 0 08. . , and a loc + = ±d f 3 00 0 13. . , while the result for meningiomas is 

a loc = ±0 76 0 08. . , d f = ±1 91 0 06. . , and a loc + = ±d f 2 67 0 11. . . These results 
suggest that at least for these benign brain tumors, meningiomas, the dynamic 
scaling associated to the tumor growth process does not scale according to the 
Family-Vicsek ansatz, while definitively, glioblastomas do, a result consistent 
with what is qualitatively observed in the contrast distribution patterns shown in 
Fig. 22.2.

Also, from the analysis of Table 22.1, there is a correlation between tumor grade 
and local roughness exponent, αloc, which can be used as a measure to estimate 
degree of malignity. In the case of metastases, even though they are not primary 
brain tumors, the analysis of their growth parameters could help advance the under-
standing of primary tumor growth behavior.

It is possible to obtain the roughness exponent α, which is related to the interface 
width, W, through the power-law behavior [1, 5, 29]:

 
W R Rsat ( ) ~ a
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where R is the mean radius of the tumor as a measure of its size, and it is assumed 
that for in vivo tumors, the saturation condition is attained, i.e., that the lateral cor-
relation length for the interface fluctuations is comparable or larger than the size of 
the system [1, 29]. Results are shown in Fig. 22.5.

Summarizing, according to the results shown in Fig. 22.5, glioblastomas and 
metastases exhibit an exponent α > 1, which corresponds to a super-rough dynamics 
for the tumor growth process, denoting the highly invasive character that’s typical 
of malignant neoplastic tissue, which is characterized by high proliferation and dif-
fusion to the tumor interface. On the other hand, for benign tumors such as menin-
giomas and acoustic schwannomas, the fact that the condition stated in Eq. (22.3) is 
not fulfilled, i.e., the dynamic scaling for the growth process is not of the Family- 
Vicsek type, and that α < 1 indicates that the growth dynamics can be explained as a 
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bulk proliferative process, with no diffusion to the tumor interface. As a conclusion, 
the analysis of different geometrical and growth parameters and their relationships 
brings forth a clearer picture of the tumor growth model, even for single event data, 
which is the common clinical situation. The availability of imaging data at different 
times, which is present in common clinical therapy follow up protocols, allows for 
the quantification of changes based in this new set of parameters, changing the over-
all growth model for the untreated tumor. For example, Brú et al. [4] demonstrated 
how tumor growth exponents and growth models are modified, when an immune 
response is considered. The changes in growth exponents could be suitable descrip-
tors for therapy monitoring in radiotherapy, chemotherapy, or immunotherapy.

22.4  Data Time-Like Series, Visibility Graphs, and Complex 
Networks

Tumor classification has also been performed using more general definitions of the 
fractal dimension (such as the fractal correlation dimension) that are pertinent for 
multifractal systems [20, 34, 35, 54]. Multifractal analysis has established quantita-
tive differences between malignant and benign brain tumors [40, 42, 43]. In most of 
these studies, the tumor interface is extracted from image data, and synthetic “time” 
series are created; multifractal analysis is then applied on these series. Martín- 
Landrove et al. [40] estimated fractal correlation dimension assuming a time-like 
series codified by Freeman’s chain code, obtaining a significant difference between 
malignant (1.05 ± 0.02) and benign tumors (1.12 ± 0.04). Quintana et al. [43] 
extracted the tumor interface by methods of adaptive deformable models, or snakes, 
and used the energy density functional to codify the synthetic time series. The 
authors obtained a significant difference in fractal correlation dimension between 
malignant (1.22 ± 0.10) and benign (1.10 ± 0.07) tumors.

Multifractal analysis has been recently used to generate texture descriptors and 
perform image segmentation [25, 45, 46]. Reza et al. [45, 46] used multi-fractional 
Brownian motion, mBm [25], and multifractal detrended fluctuation analysis, 
MFDFA [28], to classify brain tumors either as high-grade or low-grade gliomas 
[45] and for brain tumor and edema segmentation.

Brú et al. [6] have established a link between the evolution of complex networks 
and the dynamical processes that produce rough and fractal-like interfaces. The 
degree of the nodes in these networks change through time as the interface evolves. 
The application of this network methodology enables the uncovering of so-called 
“scale-free” temporal and geometric features that remain invariant as the interface 
grows. This invariance is detected in the degree distribution of a visibility graph 
derived from the contour.

This approach could possibly be used to understand tumor interface dynamics. 
The data set, formed by the distance from the center of mass of the tumor interface 
points at a given time, can be transformed into a graph by applying the visibility algo-
rithm as defined by Lacasa et al. [30, 31]. The visibility graph seeks to capture the 

22 Tumor Growth in the Brain: Complexity and Fractality



362

geometrical correlations that exist among the discrete points that constitute the tumor 
interface. The general procedure is illustrated in Fig. 22.6. Initially, the cloud of points 
that belong to the tumor interface is determined by a segmentation algorithm. 
Afterwards, the radius for each interface point, as measured from the center of mass 
of the tumor lesion, is mapped on a two-dimensional array that registers the corre-
sponding slice and angular position. Synthetic one-dimensional “time series” are con-
structed from this dataset; each of the pixels in the tumor’s contour becomes a node 
on the associated visibility graph, where the properties of the contour are encoded.

Among these properties is the connectivity of the visibility graph. This connec-
tivity can be described by the simple counting of edges for each node in the net-
work, this count is defined as the degree of a node. The result of this computation 
for all the nodes in the network is a distribution of degrees. If one considers this 
distribution as a probability distribution, P(k), it represents how a particular node, i, 
selected randomly, is connected to exactly k nodes. Figure 22.7 shows preliminary 
results for P(k) obtained from visibility networks extracted from tumor interface of 
malignant and benign brain tumors.

Brú et al. [6] established P(k) for six different interface growth models, Edwards- 
Wilkinson (EW), Kardar-Parisi-Zhang (KPZ), random deposition (RD), random 
deposition with surface relaxation (RDSR), Eden, and molecular beam epitaxy 
(MBE), showing that the visibility network analysis leads to a fine discrimination of 

Fig. 22.6 (a) Cloud of points in the tumor interface. (b) Two-dimensional radii dataset. (c) One- 
dimensional “time series”. (d) Visibility graph. (e) Complex network analysis
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growth dynamics and allows to discern the most convenient model to describe them. 
Consequently, in the application of this formalism [6], the differences observed in 
Fig. 22.7 between meningioma and glioblastoma multiforme can be used not only 
to estimate a parameter difference between the two conditions, e.g., an exponent in 
a power-law behavior of P(k) but also to discriminate between different models that 
can be proposed for the tumor interface growth. Indeed, there are notorious differ-
ences for the exponent, i.e., −1.73 for benign brain tumors and −2.51 for glioblas-
toma multiforme, as can be seen by the average behavior in P(k), shown in Fig. 22.8.

Moreover, the study of the morphology of the visibility network [30, 31] can be 
used to establish further differences and correlations between different growth mod-
els of the tumor interface. Rueda-Toicen et al. [49] proposed a method based on the 
traveling salesman problem to obtain the visibility network and corresponding 
graph. An example of this approach is shown in Fig. 22.9, where the visibility 
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nent are available at [49]
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 network of the contour of a glioblastoma multiforme, a tumor with a characteristi-
cally high rugosity (Fig. 22.9c bottom), is shown next to the appreciably less com-
plex visibility network of a meningioma (Fig. 22.9c top), a tumor with a smoother 
contour. The analysis of the generated time-like series can also be used to estimate 
generalized fractal dimensions and singularity exponents [20, 44, 48, 56].

22.5  Conclusions and Future Prospects

Fractal analysis applied to brain tumor lesions has permitted quantitative tissue 
characterization, tumor grading, and the quantification of changes in vascularity 
associated to cancer pathologies. Nevertheless, in most of the known applications, 
fractal capacity dimension is the sole descriptor used to account for the complexity 
associated to the tumor lesion and is estimated by the box-counting algorithm or 
through a limited use of the sandbox algorithm. This analysis is usually performed 
in a scale range for which auto similar and auto affine scaling properties of the sys-
tem are evident [35]. Moreover, estimation of fractal dimensions depends strongly 
on the size and resolution of the data, restricting its application to particular image 
acquisition protocols of difficult implementation in clinical routine. In order to fur-
ther advance in the understanding of tumor complexity, it is necessary to study other 
possible descriptors, such as generalized fractal dimensions [44, 56] and singularity 
exponents [20, 48], and the corresponding relationships among them. To fulfill this 
task, cancer detection methods must use higher resolution medical images, to extend 
somewhat the scale range and size of the data. The definition of physical parame-
ters, obtained through the integration of information of different imaging modali-
ties, which could act as suitable biomarkers for fractal analysis, is also highly 
relevant. Even though the complex dynamics of tumor growth requires a profound 
and extensive analysis to describe them appropriately, fractal capacity dimension 
has proven to be a fine and effective descriptor to establish differences between tis-
sue properties through the transition from normal to neoplastic tissue, making it 
suitable to be incorporated in clinical protocols and medical decisions.

Cancer therapy often damages healthy cells and tissues and then side effects are 
common. The successful planning of treatments, like radiosurgery or chemotherapy 
with high precision and high sensitivity, has the benefit of reducing negative side 
effects on the patient, while producing the desirable outcome of eliminating as 
much of the neoplasm as possible. A correct characterization of tumors is essential 
to achieve optimal treatment planning. A pervasive problem in oncology is that 
traditional treatment planning disregards the individual evolution of a patient’s 
tumor, applying the maximum tolerable dose of radiation or chemotherapy on a 
fixed regular schedule. It has been shown that individualized treatment plans that 
consider the evolution of a patient’s tumor can help in the reduction of the dosage of 
radiation or chemicals and the application of “correct” models [9, 27, 39, 52, 53] 
(correct in the sense that these models have appropriate dynamical parameters and 
scaling behavior) is of major importance. Thus, the accurate modeling of tumor 
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growth can help in the production of clearer prognoses and better informed treat-
ment choices.

Finally, the proposal of new descriptive methods based on scaling and multifrac-
tal analysis, time-like series, and complex networks opens a vast set of future pos-
sibilities. As an example of this, the analysis of results in Table 22.1 suggests that a 
relationship between tumor grade and the local roughness exponent, αloc, can be 
established with potential applications in methods for tumor diagnosis and classifi-
cation. Also, the analysis of complex networks associated to time-like series derived 
from tumor features and shown in Figs. 22.7, 22.8, and 22.9 is very promising. As 
frequently occurs in natural phenomena, the geometrical nature of tumors is multi-
fractal. The scaling analysis performed on them must account for this fact and be 
done in a rigorous manner, to determine relevant fractal dimensions and power-law 
behaviors. Recently, the goodness of fit of power-law distributions to empirical data 
has been called into question [10, 58], and the use of modern statistical techniques 
has shown that many datasets commonly described as power laws are best fitted by 
log-normal or exponential distributions. Even though the scaling analysis tech-
niques mentioned in this survey have shown descriptive and discriminative power, 
the use of other probability distributions to describe and predict the growth of tumors 
in the brain must also be considered. Such an approach will benefit the understand-
ing of tumor growth and, as a consequence, improve diagnosis and therapy.
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Chapter 23
Histological Fractal-Based  
Classification of Brain Tumors

Omar S. Al-Kadi and Antonio Di Ieva

Abstract The structural complexity of brain tumor tissue represents a major chal-
lenge for effective histopathological diagnosis. Tumor vasculature is known to be 
heterogeneous and mixtures of patterns are usually present. Therefore, extracting 
key descriptive features for accurate quantification is not a straightforward task. 
Several steps are involved in the texture analysis process where tissue heterogeneity 
contributes to the variability of the results. One of the interesting aspects of the 
brain lies in its fractal nature. Many regions within the brain tissue yield similar 
statistical properties at different scales of magnification. Fractal-based analysis of 
the histological features of brain tumors can reveal the underlying complexity of 
tissue structure and angiostructure, also providing an indication of tissue abnormal-
ity development. It can further be used to quantify the chaotic signature of disease 
in order to distinguish between different temporal tumor stages and histopathologi-
cal grades.

Brain meningioma subtype classifications improvement from histopathological 
images is the main focus of this chapter. Meningioma tissue texture exhibits a wide 
range of histological patterns whereby a single slide may show a combination of 
multiple patterns. Distinctive fractal patterns quantified in a multiresolution manner 
would be for better spatial relationship representation. Fractal features extracted 
from textural tissue patterns can be useful in characterizing meningioma tumors in 
terms of subtype classification, a challenging problem compared to histological 
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grading, and furthermore can provide an objective measure for quantifying subtle 
features within subtypes that are hard to discriminate.

Keywords Fractal dimension • Texture analysis • Brain histopathology • 
Meningioma • Tissue characterization • Pattern classification

23.1  Introduction

Diagnosis of brain tumors is mainly based on visual examination of cell morphol-
ogy and tissue distribution. The accurate diagnosis of histopathological brain tissue 
is essential for selecting the appropriate treatment procedure. However, the various 
cellular arrangements and complex tissue vasculature renders the brain one of the 
most challenging and complex organs in the human body. Additionally, tumor 
angiogenesis further increases the heterogeneity of the complex cellular- and tissue- 
level spatial relationships.

The unique folding of brain tissue in a fractal-like geometry is an interesting 
characteristic that is worthy of attention. The development of consistent fractal pat-
terns in normal brain tissue acts as a sign of order and represents how well structured 
the patterns can be. The fractal characteristics of the brain reflect its complexity.

Fractal analysis in tissue characterization has been deployed in many useful 
applications in histopathological imaging [24]. The development of a computer- 
aided diagnostic system based on fractal-model design to assist in histological diag-
nosis of brain tumors is significant for effective management of disease. This could 
improve a pathologist’s ability to accurately detect and characterize subtle tissue 
abnormalities and hence lead toward a more reliable diagnosis and promoting better 
patient outcome.

Quantifying the fractal properties of pathological tissue and cellular properties 
by means of its textural patterns resembles how pathologists perceive and identify 
distinctive features of disease. A computer-aided diagnostic system can play the 
role of a visual perception function through mimicking the behavior of pathologists: 
firstly by perceiving the different unique patterns in an image (e.g., extracting frac-
tal features) and then by using past experience and experimental knowledge to link 
the perceived patterns and appropriate diagnosis (e.g., decision making-algorithms). 
This has an advantage over the classical visual diagnosis approach. Limitations due 
to subjective factors in the classical visual diagnosis approach like preconception, 
expectations, relying on diligence, and fatigue contribute to differences in image 
perception, which leads to inter- and intra-observer variability assessments. In con-
trast, an automated decision system can overcome such bias in diagnosis by main-
taining consistent perceived patterns. It would also enhance the ability to discriminate 
complex texture patterns that would otherwise be difficult via ordinary human 
vision. Computer-assisted tools can therefore help in offering objective diagnostic 
and prognostic image biomarkers to improve patients’ management.
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23.2  Fractal Morphometry of Tissue Complexity

The concept of fractality is used to: (a) analyze complex patterns that look the same 
across different scales of magnification, (b) describe the self-similarity of irregular 
and self-similar objects in nature, and (c) quantify the surface roughness and geo-
metrical complexity of objects [34]. Various researchers have been investigating the 
application of fractal analysis to imagery in a number of diverse fields including, but 
not limited to, physics [9], acoustics, geology [1], ecology [21], radiology [2], and 
fluid mechanics [36]. In histopathology, the fractal geometry has been used as a mea-
sure of morphological complexity of cells and tissues providing compact description 
of the textural characteristics for both normal and pathological cases [24].

Histopathological assessment is mainly based on the study of underlying bio-
logical features of disease for clinical diagnosis. Certain descriptive features can 
reveal more details when examined at increasing resolution. Many tissue patterns 
tend to exhibit statistically self-similar features at different levels and in different 
sizes. The assessment of the pattern irregularity at different scales could assist in 
better understanding tissue pathology and thus assist pathologists in identifying 
type and grade of disease. However, fractality in textural patterns of histopathologi-
cal tissue is considered quasi-fractal, as they scale in a statistical fashion. Biological 
tissues, like several natural objects, are fractals in a limited range of magnification 
(in the so-called “fractal window”). The resemblance between shapes seen at differ-
ent scales is usually approximate and is considered to be random rather than strictly 
self-similar. The exhibited geometrical variability mainly refers to deviations in cell 
structures and distributions over the tissue sample.

The application of the fractal approach in histopathology also has a potential role 
in characterizing the morphological information for deeper insight and understand-
ing the biology of tumor tissues. Tumor vasculature is spatially heterogeneous and 
does not have a clear hierarchical organization consisting of irregularly formed ves-
sels that are both leaky and often permeable. This heterogeneity in tissue texture 
calls for a method that can improve the capability of discriminating higher order 
statistical textural information, which would otherwise be difficult using classical 
examination approaches. The size and geometrical parameters of irregular and com-
plex structures in tumor tissue differ when examined at increasing resolution. Hence 
fractal geometry, which best characterizes non-Euclidean structures, can be used to 
measure topological and geometrical properties of irregular and complex structures 
in tumor tissue.

23.2.1  Fractal Dimension Estimation

Fractal pattern analysis has been applied to many of the physiological processes 
in biomedical research. Unlike Euclidean geometry that is best developed to mea-
sure regular structures, complex biological structures, which are known to be 
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irregular, could be best quantified based on the principles of fractal geometry. The 
fractal dimension (FD) and other related dimensional parameters provide a com-
pact representation of the complexity of the biological patterns. Nevertheless, the 
accuracy of FD estimation depends on the precision of the input shape descrip-
tion, and therefore several estimation methods have been developed for this 
purpose.

FD is widely used as a tool to quantify the geometrical complexity of a structure 
by means of its space filling properties. There are several methods used to inspect 
self-similarity and dedicated to providing a reliable estimate of the FD. The most 
well-known methods are briefly discussed below:

• Fractional Brownian motion (fBm): The fBm is a non-stationary model known 
for its capability to describe random phenomena [37]. It is a generalization of the 
Brownian motion where the increments of the process are normally distributed 
but not independent [34]. The correlation of a random process B(t) can be repre-
sented as the expected value E(B) of the product of non-overlapping increments 
of the fBm process:

 
E B t B B t h B t t h t h

H H H( )( - ( )( ) × +( ) - ( )( )) = +( ) - -( )0 2
2 2 2 /

 
(23.1)

where the Hurst index, H, is a real number in the range (0, 1) and describes the 
roughness of the motion, with a higher value leading to a smoother motion [33]. 
The value of H determines the process of the fBm, such that when H > 1/2 indi-
cates a positive correlation between the increments. A Brownian motion is 
achieved for the special case H = 1/2, and the increments are negatively corre-
lated when H < 1/2. For an image, H is practically estimated by plotting the mean 
absolute difference of pixel pairs as a function of scale on a log-log scale (see 
Fig. 23.1), where H will represent the slope of the curve that is used to estimate 
the FD as: FD = -2 H .

• Box-counting: Is a recursive method that involves covering the contour lines with 
a grid of n-dimensional boxes having a side-length δ and counting the number of 
non-empty boxes N(δ). An overlaying grid approximates each contour line and 
then the number of boxes or cells intersections is counted. The smaller the size 
of the boxes becomes, the larger the length estimate as finer details are captured. 
The technique is performed recursively with different box sizes covering the 
contour lines.
For a one-dimensional curve having a length L, the relation can be expressed as 

[34, 50]: N
L

d
d

( ) » . Then the generalized form of the slope of the logarithmic 

plot of the number of boxes against their size would represent the FD (see 
Fig. 23.2):
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Also based on the same principle but with a different shape, prism-counting was 
introduced [12], where the combined area of four-sided triangular prisms defined 
by the corner points is computed and summed over the surface. Similarly, the 
iterative Epsilon-Blanket method computes the FD of a scale-varying curve (or 
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Fig. 23.1 Mean absolute difference versus pixel pair distances in log-log coordinates for a transi-
tional meningioma histopathological image in Fig. 23.4 (Image reproduced from [6])
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(FD = 1.81). [left] Histopathological image and corresponding segmented cell nuclei image cov-
ered with a set of squares, where the squares covering the cell nuclei are iteratively counted; [right] 
estimating the FD from the slope of the linear regression line of the log-log plot between number 
of squares N(δ) and square size δ
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surface) based on the corresponding area (or volume) [39]. The set of points that 
lie at a certain distance ε from the curve are used in forming a blanket having a 
strip of width of 2ε covering the curve, and for different values of ε. The FD for 
a curve can be calculated using the relation L e e( ) µ -1 FD , where L(ε) is the 
curve length defined from the blanket area A(ε) as L Ae e e( ) = ( ) / 2 . For the 
case of a surface, the blanket is formed from a set of points in the three- 
dimensional space, which are also ε far from the surface and having a width of 
2ε. The surface area is defined as A Ve e e( ) = ( ) / 2 , and the FD is estimated 
from the relation A e e( ) = -2 FD .

• Walking divider: This method uses a ruler or a chord length acting as a step size 
and then measures the number of steps or length required to cover the fractal 
curve, which can be represented as [34] L Kd d( ) = -1 FD , where L(δ) is length of 
trail, δ is the step size, and K is a constant. The method operates by iteratively 
walking the divider along the curve and then counting the number of steps 
required to cover the curve for each case. This process is repeated at different 
resolutions, and the FD, which is the relation between the step size and chord 
length, can be estimated.

• Power spectrum: Given a signal f Ni = ¼1 2, , ,  (where N has the power of 2), the 
Fourier power spectrum can be used to estimate the FD as P c ki i

Ù
= -b

, where c 
is a constant and the spectral exponent β, which relates to the FD, can be esti-
mated by fitting the least squares error line to the data. Also, since the Fourier 
transform of the autocorrelation function is the power spectrum of the function 
[40], the autocorrelation function ρ as a function of the shifting distance a 
expressed as r a a( ) µ -2FD  can also be used to estimate the FD.

• Area/perimeter relationship: In this approach, the FD is estimated based on the 
power law relationship, where the areas and the respective perimeters of the dif-
ferent curves of a group are measured [51]. The boundary perimeter P is related 
to the enclosed area (A) by A kP= FD/2  for 1 < FD < 2, where k is a constant for 
a given shape (e.g., 4 for square and 2 p  for a circle, etc.)

• Pixel dilation: This method relates the FD to the curve border length. The dila-
tion operation is performed by convolving various filters having different diam-
eters with the curve border. The computed area would be divided by the size of 
the kernel, and a log-log plot would be used to determine the slope of the linear 
regression line S; and hence the FD =1- S .

23.2.2  Related Work

Significant progress has been made to understand how irregular shapes and struc-
tures relate to the analysis of morphological complexity of tumor cells and tissues. 
A number of research studies have been applied to histopathological images for 
different tumors in an attempt to automate the diagnosis procedure. Some relied on 
a single texture measure for feature extraction, such as extraction of wavelet-based 
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features [28, 41, 46], or employing other measures like the gray-level co-occur-
rence matrix or color space features for classification [8, 45]. Multiple measures 
for classification have been applied as well, such as using spatial and frequency 
texture features for classification by regression trees analysis [52]. Topological 
properties of the brain histopathological tissue were also extracted by a graph-
based representation through probabilistically assigning a link between a pair of 
cells [14]. Morphological characteristics for feature extraction was applied in [48, 
54], while others focused more on classifier improvement [19, 44]. However, the 
complexity and hierarchical structures of the vascular histopathological patterns in 
the brain are technically challenging to characterize [31]. The spatial resolution is 
also not sufficient to resolve the complex structure of capillary vessels [22] and to 
reliably collect morphometric data from histopathological tissue at high resolu-
tions [11, 25]. Therefore, the fractal characteristics of the pathologic vascular net-
works was exploited to resolve structure complexity and to derive meaningful 
features that could assist in the diagnosis and/or staging of tumors. Fractal geom-
etry was introduced as a better mean of quantifying the microvasculature of normal 
pituitary glands and pituitary adenomas, and it was found that the use of the sur-
face FD is more appropriate than microvessel density estimates [15]. Also in 
another work, statistical analysis was performed to study the fractal microvascu-
larity and provide a quantitative assessment of grade complexity for WHO grade II 
and III gliomas [18]. The angioarchitecture heterogeneity of gliomas was shown to 
be able to distinguish the tissue variability between the different grades and can be 
used to differentiate low-grade from malignant tumors in histological specimens 
[16, 17].

In regard to brain meningiomas, Table 23.1 lists work recently performed for the 
purpose of automated histopathological subtype classification. All approaches 
developed in Table 23.1 were applied to the same meningioma dataset, which facili-
tates the comparison between the different classification results. This thereby 
avoided possible deformation in tissue appearance due to variation in tissue sample 
preparation/protocol or inconsistency attributed to stain reactivity from different 
manufacturers or using different microscopic scanners. This would be useful in pre-
venting such variation effects on subsequent quantitative analysis. Moreover, 
Table 23.1 shows that the highest classification accuracy was achieved once the 
fractal analysis was performed in a multiresolution manner. The FD measure can 
breakdown the complexity of tumor heterogeneity and hence better discern the 
pathological patterns between the different subtypes.

The way the FD meaningfully relates to underlying physiology, in terms of quan-
tifying tumor texture heterogeneity – as the rougher the surface the more chaotic the 
tissue structure [4–6] – explains the better performance of the fractal-based method 
compared to other texture analysis methods, hence providing a reliable character-
ization for diagnostic interpretation of histopathological images. The general design 
of a computer-aided diagnosis system and the effectiveness of histological fractal- 
based analysis in quantifying spatial heterogeneity in meningioma brain tumor sub-
types are discussed next.
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23.3  Automated Histopathological Image Analysis

General model design for automated histopathological tissue characterization and 
classification, which is also applicable to brain tumor subtype classification, is 
briefly discussed below:

23.3.1  Image Preparation

A tissue specimen runs through several basic preparation steps before it is ready for 
image texture analysis. This includes chemical fixation for cell/tissue preserving, 
tissue dehydration processing for replacing with an embedding medium, wax 
embedding, sectioning of samples so the microstructure can be clearly observed, 
and hematoxylin and eosin (H&E) staining – or using any other suitable stains – to 
increase tissue contrast and highlight cell nuclei features. Once the tissue samples 
are treated with the appropriate histology stain, images are acquired at a certain 
magnification level via microscopic imaging and made ready for histopathological 
analysis. Figure 23.3 illustrates a typical computer-aided diagnosis system, which 
can be used to implement histopathological diagnosis.

Table 23.1 Different texture analysis methods for histopathological brain meningioma 
classification

Reference Features Classification
Cross-
validation

Accuracy 
(%)

Lessmann et al. 
[28]

Color transforms and 
wavelet transform

Self-organizing 
map

Unsupervised 
(clustering)

79.00

Wirjadi et al. 
[53]

Gray-level and color 
features

Classification and 
regression trees

Hold-out 83.40

Qureshi et al. 
[43]

Wavelet packet and 
Local binary patterns

Support vector 
machine

5-fold 80.00

Qureshi et al. 
[42]

Wavelet packet and 
gray-level 
co-occurrence

Support vector 
machine

5-fold 82.10

Fatima et al. 
[20]

Morphological and 
gray-level 
co-occurrence features

Multilayer 
perceptron neural 
network

Leave-one- 
patient-out

92.50

Zeng et al. [55] Morphological and 
color features

K-Nearest 
neighbor

Leave-one-out 85.00

Strange and 
Zwiggelaar [47]

Morphological 
features

Random forest 10-fold 91.25

Al-Kadi [4, 5] Fractal dimension and 
wavelet packets

Bayesian Hold-out 92.50

Al-Kadi [6] Fractal dimension, 
lacunarity, and 
wavelet packets

Support vector 
machine

Leave-one- 
patient-out

94.12
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23.3.2  Pre-processing and Focal Regions Segmentation

Pre-processing is associated with improving the features of interest that assist in 
determining the pathology. Particular image structures are enhanced for simultane-
ous visualization of the feature and image space, providing a method for exploration 
of correlations of texture patterns in the feature space to histological image 
characteristics.

Image regions having certain textural properties considered essential in the diag-
nosis process can be highlighted by different pre-processing approaches such as 
color normalization and separation to overcome stain artifacts; subsampling while 
preserving the minimum sampling rate (i.e., Nyquist rate); smoothing and denoising 
by simple Gaussian/median filtering or by employing adaptive filtering techniques 
that could reduce local tissue deformation while preserving edges and fine struc-
tures; contrast stretching and histogram equalization; or by other image enhance-
ment techniques (e.g., dynamic range compression operations). Segmentation and 
delineation techniques such as nonlinear thresholding, edge detection, active con-
tours, labeling, or clustering can follow the pre-processing stage for separating the 
foreground focal regions from the image background.

H&E stained
images

Image pre-
processing

Image post-
processing

Disease
detection &

classification

Disease
identification &
grading results

Optimal
feature

selection

Segmentation
& delineation

Feature
extraction

Fig. 23.3 A typical computer-aided diagnosis system for classification and grading of histopatho-
logical images
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23.3.3  Feature Extraction and Classification

This stage is considered the heart of the computer-aided diagnosis system. Tissue 
patterns’ characteristics are quantitatively captured for classification based on tex-
tural, spectral, morphometric, or color space features and could be performed at 
different resolution levels. This is followed by feature reduction, providing an 
effective way to select the most relevant features for alleviating the curse of dimen-
sionality and achieving more accurate classification. The features can be refined 
using linear methods such as principle component analysis and linear discriminant 
analysis or by nonlinear methods via mapping to higher dimensional feature space. 
The cost of prediction errors can be considered in the following stage of disease 
detection and classification by means of machine learning (i.e., supervised classi-
fication, similarity function) or statistical tests. Then efficiency is assessed by the 
accuracy of the quantitative representation to classify patterns. Gaining significant 
acceptance by pathologists usually relies on achieving effective diagnostic perfor-
mance while maintaining a certain degree of simplicity, i.e., avoiding behaving 
like a black-box. Accuracy can be improved either by developing an effective fea-
ture extraction algorithm, which can provide high quality features, or by designing 
a sophisticated classifier that can deal with nonlinear and high dimensional fea-
tures; the main focus of this chapter will be on the former problem.

23.3.4  Qualitative Enhancement and Grading Results

Pathologist may choose to add complementary pathological guided post-processing 
operations (e.g., morphological operations, shape extraction, annotation, etc.) to 
further “qualitatively” refine the results to be optimized for visual appearance. The 
system terminates with the disease identification and grading results stage, provid-
ing a complementary “second opinion” to pathologists in the diagnosis process.

23.4  Characterizing Tissue via Fractal Properties

Large numbers of cell nuclei are expected to set the structure of the tissue patterns 
at low magnification levels and few cell nuclei at medium and high magnifications. 
However, images of tissue texture usually tend to have a composite of multi- patterns. 
The different patches encountered within these patterns can be exploited to analyze 
the fractality or statistical scale invariance of tissue and hence the possibility of 
characterizing tumor features, e.g., its microvascularization [26]. The appearance of 
tissue patterns can reflect its abnormality in a sense that more chaotic vasculature 
means a “rougher” texture surface and hence a higher FD [3]. The development of 
a tumor alters the structure of the tissue in a disorganized fashion, thus tissue 
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patterns are not identical in all image samples and a certain degree of variation 
exists within and between image samples. Tissue heterogeneity places tissue pat-
terns commonly in the category of stochastic textures that can exhibit quasi of frac-
tal-like characteristics over several scales of magnification.

Pathologists usually look for several discriminative features that are indicative of 
tumor cells, e.g., abnormal size, shape, color, and arrangement. As an example of 
histological brain tumors, Fig. 23.4 shows four subtypes of grade I meningioma tis-
sue biopsies distinguished according to the World Health Organization grading sys-
tem [32]. Meningiomas exhibit a wide range of histological patterns and a single 
meningioma may show a combination of patterns. Patterns of tissue textures rang-
ing from fine (micro-scale) to coarse (macro-scale) are encountered therein. An 
example of the former is the arrangement of fibroblastic and transitional cells in a 
concentric circle or whirlpool shape, while the large round nuclei in the meningo-
thelial and the many cystic spaces in the psammomatous bodies contribute to the 
coarseness of the latter texture pattern. The histopathological features as an indica-
tion of tumor subtype are summarized in Table 23.2.

From a texture analysis perspective, the descriptive fractal features should char-
acterize the qualitative characteristics used in clinical practice. This would assist in 
discarding irrelevant details and improve tissue classification of the different 
 subtypes. More precisely, the subtle tissue distribution and the prominent cell nuclei 
arrangements in the coarse texture can be simultaneously localized and hence used 
for tumor subtypes differentiation. As for the tissue stochastic texture where it does 
not usually have a repetitive pattern but homogeneous statistical properties, the 

Fig. 23.4 Four types of grade I meningioma, from left to right (fibroblastic, meningothelial, tran-
sitional, and psammomatous)

Table 23.2 Main histological textural features for the four grade I meningioma subtype images 
shown in Fig. 23.4

Subtype Characteristics

Fibroblastic Spindle-shaped cells resembling fibroblasts in appearance, with abundant 
amounts of pericellular collagen

Meningothelial Broad sheets or lobules of fairly uniform cells with round or oval nuclei
Psammomatous A variant of transitional meningiomas with abundant psammoma bodies 

and many cystic spaces
Transitional Contains whorls, few psammoma bodies, and cells having some 

fibroblastic features (i.e., spindle-shaped cells)
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directionality and density of the discontinuities in the texture’s surface help locate 
changes in the pathological state of tissue. Moreover, tissue with a large amount of 
edges is considered rich with features, which will make the feature extraction algo-
rithm more capable of delivering a better characterization.

23.5  Quasi-fractal Texture Representation

Tumors tend to introduce irregularity into tissue pattern structure and cause devia-
tions in cell nuclei distribution. This disorder increases the surface roughness of the 
examined texture pattern and affects pattern fractality. Regarding histopathological 
patterns, not all parts show self-similarity at different scales due to the inherent vari-
ability and effect of disease. A FD estimation method that can give an accurate 
estimation of the quasi-fractal texture patterns would be required. The box-counting 
and fBm algorithms are widely used for FD estimation as they can be applied to 
patterns that are not self-similar (nonlinear fractal images) and are relatively easy 
for empirical estimation [38]. Therefore a comparison is made between the two 
methods when applied to histopathological images of brain meningioma (see 
Fig. 23.5). Examining the output FD texture images, the fBm generates more visible 
discontinuities compared to the box-counting method. More discontinuities in the 
absence of significant tissue deformation would mean a texture with richer informa-
tion and hence a more reliable estimation of the roughness of the image surface. 
Thus, we can say that the fBm is better suited to represent textures with textures 
having fine structures, as the case with histopathological images.

23.6  Multi-fractality Analysis

Histopathological tissue properties of brain tumors can be investigated at different 
levels of resolution. This is essential to determine the grading of tumor progression, 
as fine fractal structures within the tumor tissue could be subtle or not easy to dis-
cern. The cell nuclei texture, shape, orientation, intensity, and denseness are differ-
ent from one subtype to another and sometimes within the same subtype. The fine 
fractal structures having low contrast would be best characterized at higher resolu-
tion levels, and vice versa. Therefore an integrated approach that incorporates both 
low and high levels of resolution can better account for morphological variability.

Advanced fractal analysis of tissue texture could be performed by estimating the 
FD and corresponding lacunarity measures at different levels of resolutions. The 
employment of fractal analysis in a multiresolution approach facilitates revealing 
many of the fine cellular and tissue details and in a sense assessing tissue irregulari-
ties at multiple scales of different resolutions. A wavelet packet – which is a gener-
alized multiresolution approach – can decompose the complexity of the texture 
pattern into different frequency subbands, giving the opportunity to characterize the 
texture structure at the appropriate frequency channel. A Daubechies wavelet, which 
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is widely used in characterizing signals exhibiting fractal patterns [13], can be used 
to obtain the wavelet packet subbands. Each subband is analyzed using its associ-
ated FD instead of energy, which has the advantage of being less sensitive to linear 
transformations of image intensity and abrupt changes in tissue texture [6, 7]. Then 

Fig. 23.5 First column represents the blue channel image for meningioma fibroblastic, meningo-
thelial, psammomatous, and transitional subtypes, whereas the second and third columns are their 
corresponding fractal dimension images computed using the fractional Brownian motion and the 
differential box-counting algorithm, respectively
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the subband with the highest FD would be chosen for further decomposition in a 
tree-structured approach [4]. This facilitates the investigation of the possibility of 
higher frequency channels to provide significant information on tumor vasculariza-
tion. Figure 23.6 supports this trend where the middle and high wavelet packet sub-
bands for the first level of decomposition had a stronger power spectrum – the 
distribution of image power at a certain spatial frequency – as compared to the low 
frequency channels. This indicates that the multiresolution fractal analysis can bet-
ter detect the fractal characteristics inherent in meningioma tissue texture.

23.6.1  Assessing Fractal Texture Heterogeneity

In order to differentiate between two textures if they have identical FD values, even 
though the two textures might not look similar, the lacunarity – which is a measure 
of deviation from scale translation invariance of the FD texture – can assist in quan-
tifying aspects of patterns that exhibit scale-dependent changes in structure [23, 30, 
34]. Namely, lacunarity measures the “lumpiness” of the fractal data, providing 
meta-information about the dimension of the fractal texture. The lower the lacunar-
ity value, the more heterogeneous the examined fractal area, and vice versa. Given 
a fractal image IFD, the lacunarity (L) can be defined in terms of the ratio of the vari-
ance over the mean value as in (4), where M and N represent the size of IFD [40]:
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Fig. 23.6 Example of fibroblastic meningioma power spectrum of low-low, low-high, high-low, 
and high-high wavelet packet subbands for the first (upper row) and third (lower row) levels of 
resolution (Image reproduced from Al-Kadi [6])
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To practically represent how lacunarity can further differentiate between two or 
more texture patterns that may exhibit similar dimensions, different texture images 
representing meningioma grade I patterns were used. After generating pixel-by- 
pixel FD images from each of the meningioma patterns, some of the textural pat-
terns, although different, had their FD values similar as shown in Table 23.3. 
Therefore computing corresponding lacunarity can add another dimension for dis-
crimination between FD-alike textures. The spatial scale invariance that the FD 
exhibits can be complemented with the property of translation invariance of the 
lacunarity measure, hence providing a rich description of pattern texture. For exam-
ple, in Table 23.3, FD values of 1.77 and 1.75 were recorded for image textures 2 
and 4 and 1 and 4 corresponding to the fibroblastic and meningothelial and menin-
gothelial and transitional tumor subtypes of grade I meningiomas, respectively. This 
also reflects on the complementary relation between FD and lacunarity, where the 
many cystic spaces represented as large gaps between the psammoma bodies in the 
psammomatous subtype contribute to a higher lacunarity value. At the same time, 
this means less tissue heterogeneity, i.e., low FD value, as the associated structure 
sparsity can cause fewer occurrences of sudden perturbations within the fractal tex-
ture. Thus the size distribution of the gaps within the fractal texture can act as 
another dimension to quantify the spatial heterogeneity and further differentiate 
between fractal textures having similar dimensions, but with different appearance.

23.6.2  Performance Under Tissue Distribution Variation

Varying amounts and types of noise are inevitable during histological processing 
that affect the accuracy of the estimated texture measures. Natural variation in cell 
structures and distribution of cells in histological tissue contributes to texture com-
plexity, while induced noise (i.e., color variations in tissue appearance) would 
increase disorder and reduce the quality of the extracted features. An intuitive 
approach would be to mitigate the impact of noise before reaching the feature 
extraction stage and then leaving the task of quantifying texture complexity to the 
feature extraction methods to deal with.

Variations in the staining conditions of histopathological samples may arise due to 
different factors. Examples of major sources of noise that can affect tissue biopsies, 

Table 23.3 Fractal dimension (FD) and its corresponding lacunarity (L) for each of the 
histopathological patterns I shown in Fig. 23.3

Fibroblastic Meningothelial Transitional Psammomatous

I FD L I FD L I FD L I FD L

1 1.73 0.034 1 1.75 0.036 1 1.80 0.025 1 1.70 0.042
2 1.77 0.029 2 1.76 0.033 2 1.81 0.025 2 1.67 0.046
3 1.79 0.031 3 1.76 0.032 3 1.80 0.024 3 1.68 0.041
4 1.74 0.033 4 1.77 0.034 4 1.75 0.031 4 1.69 0.042
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but not limited to, include uneven distribution of staining, poor contrast between 
H&E stains, nuclear staining errors, appearance of reddish-brown nuclei, dark pre-
cipitate on slides, and white patches on slides after deparaffinization step. A number 
of color normalization methods have been developed to deal with the issue of color 
variation in histopathology images caused by inconsistent biopsy staining [10, 27, 29, 
35, 56]. However, the capability of the texture analysis method to accurately charac-
terize tumor heterogeneity relies on how well it will perform under inter- and intra-
subtype variability. Distinctive textural characteristics related to each subtype could 
be obscured and would vary from one sample to another when extracted from a single 
patient (see Fig. 23.7); also samples extracted from different patients within a subtype 
would vary as well (see Fig. 23.8). This renders the characterization of the different 
discriminating textural histological features even more challenging, given that this 
inherent variation would reduce the separability between the subtype classes as illus-
trated in Fig. 23.8. For instance, the fibroblastic subtype is harder to differentiate, as 
it can be easily misclassified to transitional or meningothelial subtypes due to the 
heterogeneity of the tissue cell nuclei [49].

Practically, different images for certain meningioma subtypes do not necessarily 
have an identical structure or the same number of cells. The diverse texture mea-
sures attempt to effectively quantify the structural complexity despite the uncer-
tainty associated with the image texture surface. Therefore the performance of 
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Fig. 23.7 Four different histopathological samples from four different patients showing the 
meningioma image texture behavior heterogeneity within the same tissue case (patient)
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statistical and model-based texture analysis methods was investigated under differ-
ent cell tissue density conditions in [5]. It was found that texture analysis perfor-
mance based on FD method was more stable in medium cell density and was less 
susceptible to tissue heterogeneity in sparse image structures (i.e., tissue with low 
cell nuclei density). Overall, the histological fractal-based features showed signifi-
cantly improved classification performance as compared to other well-known statis-
tical and model-based texture analysis methods [6].

23.7  Diagnostic Challenges and Future Perspectives

Thus far, histological fractal-based analyses of brain tumors have shown that they can 
effectively describe tissue complexity and irregularity. Nevertheless, time has come 
to assess how reliable the developed algorithms and techniques are under different 
variability conditions. An extensive application of these fractal analysis techniques to 
a wider patient population will assist in gaining wider acceptance in the clinical 

Patient (P)

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

fi
b

ro
b

la
st

ic
M

en
in

g
o

th
el

ia
l

T
ra

n
si

ti
o

n
al

P
sa

m
m

o
m

at
o

u
s

M
en

in
g

eo
m

a 
su

b
ty

p
e

Fig. 23.8 Histopathological image samples extracted from 16 different patients referring to 4 dif-
ferent subtypes. The first row shows four different samples from four patients having a meningi-
oma fibroblastic subtype; similarly for the rest of the cases. The different samples show that the 
simple observation of separation between the different subtypes is generally difficult to capture in 
an analytic solution
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practice as an essential tool for diagnosis that complements the pathologists’ percep-
tive abilities. This includes having a large unified and publicly available dataset of 
brain histopathological images for various grades and subtypes. The database should 
simulate the diverse tissue variation and artifacts encountered in pathological diagno-
sis; whether it was due to human interaction (i.e., user or protocol variation), stain 
reactivity from different providers, or use of microscopic scanners from different 
manufacturers with different parameters of digitalization. Moreover, to assure clini-
cal significance, other implementation issues related to how the developed methods 
are relatively easy for empirical estimation and how computationally complex in 
respect to running time and memory usage should be evaluated as well. Hence the 
robustness of the methods developed by investigators can be justifiably compared.

23.8  Conclusion

The aim of this chapter was to provide insight on the usefulness of the FD for clas-
sifying brain histopathology images. In particular, the employment of fractal analy-
sis in a multiresolution approach for an improved tissue texture characterization. 
Combining the FD with the lacunarity measure can provide a good synergy for 
enhancing the capability for recognizing textural patterns exhibiting scale- and 
translation-invariant properties (i.e., characterizing the complexity and homogene-
ity, respectively).

Computer-aided diagnosis for histopathological image analysis has become 
essential in tumor grading and classification. This is attributed to the advances of 
algorithms and methodologies in tumor tissue characterization that allows for faster 
and more accurate clinical decision-making. However, due to the large variations 
and complexity in tumor tissue, differences among subtypes could be subtle, as 
brain meningiomas exhibit a wide range of histological patterns and a single 
 meningioma may show a composite of multi-patterns. A wise approach is to relate 
the extracted features with the geometrical properties of irregular and complex 
structures in tumor tissue, hence exploiting the fractality characteristics of brain tis-
sue can better represent tissue complexity and heterogeneity of textural patterns. 
Currently, histological fractal-based methods are expected to play a promising role 
as tumor-grading tools that are minimally operator dependent to reduce variability 
associated with the manual grading system and thereby reducing uncertainty that 
may impact patient outcome.
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    Chapter 24   
 Computational Fractal-Based Analysis 
of Brain Tumor Microvascular Networks                     

     Antonio     Di     Ieva       and     Omar     S.     Al-Kadi   

    Abstract     Brain parenchyma microvasculature is set in disarray in the presence of 
tumors, and malignant brain tumors are among the most vascularized neoplasms in 
humans. As microvessels can be easily identifi ed in histologic specimens, quantifi -
cation of microvascularity can be used alone or in combination with other histologi-
cal features to increase the understanding of the dynamic behavior, diagnosis, and 
prognosis of brain tumors. Different brain tumors, and even subtypes of the same 
tumor, show specifi c microvascular patterns, as a kind of “microvascular fi nger-
print,” which is particular to each histotype. Reliable morphometric parameters are 
required for the qualitative and quantitative characterization of the neoplastic angio-
architecture, although the lack of standardization of a technique able to quantify the 
microvascular patterns in an objective way has limited the “morphometric approach” 
in neuro-oncology. 

 In this chapter we focus on the importance of the computational-based morpho-
metrics, for the objective description of the tumoral microvascular fi ngerprinting. 
By also introducing the concept of “angio-space,” which is the tumoral space occu-
pied by the microvessels, we here present fractal analysis as the most reliable com-
putational tool able to offer objective parameters for the description of the 
microvascular networks. 
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 The spectrum of different angioarchitectural confi gurations can be quantifi ed by 
means of Euclidean and fractal-based parameters in a multiparametric analysis, 
aimed to offer surrogate biomarkers of cancer. Such parameters are here described 
from the methodological point of view (i.e., feature extraction) as well as from the 
clinical perspective (i.e., relation to underlying physiology), in order to offer new 
computational parameters to the clinicians with the fi nal goal of improving diagnos-
tic and prognostic power of patients affected by brain tumors.  

  Keywords     Angioarchitecture   •   Brain tumor   •   Fractal dimension   •   Fractal analysis   
•   Glioblastoma multiforme   •   Microvascularity  

24.1       Introduction 

 The brain is among the most perfused organs of the human body, and in order to 
meet its high metabolic demand, it has one of the most complex vascular and micro-
vascular systems. Different regions of the brain are characterized by specifi c micro-
vascular networks [ 8 ,  22 – 24 ,  38 ] whose level of complexity most likely refl ects the 
function related to that specifi c area [ 11 ]. Since tumors are supported by different 
patterns of vascularization [ 34 ], it is possible to speculate that tumorigenesis (i.e., 
the sequential accumulation of mutations within tissue cells) is related to the disar-
ray of the physiological microvascular bed or even related to a programmed rear-
rangement of a new and specifi c microvascular network. The study of the neoplastic 
angioarchitecture seems to be of paramount importance not only for research pur-
poses but for clinical applications as well since it has been shown that the “normal-
ization” of the abnormal microvascular architecture of tumors by means of 
anti-angiogenic agents, for example, can reduce regional hypoxia and eventually 
increase the effi cacy of therapies [ 32 ,  33 ]. According to this model, the imbalance 
between pro- and anti-angiogenic factors in a tumor disorganizes the angioarchitec-
ture, which might be brought back from its irregular pathological state to a physio-
logic state and then “normalized.” Fractal analysis offers several tools for the 
quantifi cation and temporal follow-up of such angiostructural changes [ 25 ,  44 ].  

24.2     Brain Tumors and Vascularization 

 The latest available World Health Organization (WHO 2007 1 ) grading system clas-
sifi es brain tumors according to histological features in a sort of benign-to- malignant 
gradient (from grade I to grade IV, with grade IV being the most malignant) [ 41 ]. 

1   At the time of the chapter writing, the WHO classifi cation system for brain tumors published in 
2016 was not available yet. 
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The grading has diagnostic, prognostic, and therapeutic value, considering that 
grade I lesions have low proliferative and infi ltrative potential, and can be virtually 
cured by means of surgery and/or radiosurgery alone, while grade IV cancer requires 
multimodal approaches (i.e., surgery followed by radio-chemotherapy) and has fatal 
prognosis. 

 Malignant brain tumors are among the most vascularized tumors in humans [ 41 ]. 
As microvessels can be easily identifi ed in biopsy specimens, it has been suggested 
that quantifi cation of microvascularity might be used alone or in combination with 
other histological features to increase the understanding of the dynamic behavior and 
prognosis of brain tumors, as well as for diagnostic purposes. However, microvascu-
larity is not always considered a feature related to brain tumor grading. Microvascular 
proliferation is considered a histopathological hallmark of glioblastoma multiforme 
(GBM) [ 41 ], which is the most frequent and malignant glioma (WHO grade IV), but 
the differences in microvascularity between grade II and III gliomas, for example, are 
less clear and not used for grading. Also, meningiomas of different grades, as well as 
meningiomas in comparison to hemangiopericytomas, clearly display different vas-
cular patterns (see Table  24.1 ), but other features are still used to differentiate the 
different grades and/or tumors [ 2 ]. This is also related to the lack of standardization 
of a technique able to quantify the microvascular patterns in an objective way.

   The vascularization of malignant brain tumors is the target for anti-angiogenic 
treatment (such as bevacizumab), providing reasoning on the importance of the dif-
ferent methods in quantifying and assessing the changes in tumor microvascularity. 
On one hand, it is true that different brain tumors show different angiogenic pat-
terns, but on the other it seems that single histotypes, such as GBM, show a very 
highly heterogeneous microangioarchitecture [ 5 ,  17 ,  18 ,  45 ]. We here summarize 
the concepts and methods related to microvascular detection and image analysis for 
the following morphometric analyses. 

24.2.1     Immunohistochemistry (IHC) 

 In histological specimens, microvessels can be detected by means of IHC. Several 
antibodies have been described for the immunodetection of the endothelium, each 
one with its own pros and cons, summarized in Table  24.2 . The most commonly 

   Table 24.1    Examples of brain tumors showing peculiar microvasculatures   

 Different brain tumors  Same brain tumors of different grades 

 Gliomas, gliosarcomas, metastases, 
lymphomas 

 Gliomas: grades I to IV 

 Meningiomas vs. 
hemangiopericytomas 

 Meningiomas: grades I to III 

 Pituitary adenomas vs. normal 
pituitary gland 
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used are CD34 and CD31 (CD refers to “cluster of differentiation”), which are con-
sidered pan-endothelial markers, while CD105 and Endocan are more commonly 
used for newly formed vessels (i.e., in the process of angiogenesis). Factor VIII and 
Ulex europeus agglutinin I (UEAI) have almost fallen into disuse due to their mul-
tiple limitations. The ratios of CD34:CD105, CD34:Endocan, or CD31:Endocan 
immunoreactive vessels can provide the “angiogenic fraction” of the tumor [Di 
Ieva, unpublished results].

24.3         Morphometrics of Microvascularity 

 Qualitative rather than quantitative analyses have generally been used to describe 
the differences in the vascularization of the normal brain vs. brain tumors. 

   Table 24.2    Vascular markers commonly used in immunohistochemistry   

 Antibody  Description  Pros  Cons 

 CD31  Also known as platelet- 
endothelial cell adhesion 
molecule (PECAM-1); 
membrane-bound 
glycoprotein and member 
of the immunoglobulin 
family 

 Stains vessels in both 
neoplastic and healthy 
tissue; suffi cient 
sensitivity for blood 
vessels of all sizes 

 Frequent antigen loss during 
retrieval 

 CD34  Endothelial membrane- 
bound glycoprotein 

 Stains blood vessels 
of all sizes 

 Pan-endothelial: stains 
newly formed as well as 
preexisting vessels, making 
it ineffective for visualizing 
only angiogenesis. May lack 
sensitivity in some tissues 

 CD105  Endothelial membrane- 
bound glycoprotein; 
essential for angiogenesis. 
Also called endoglin 

 Stains only newly- 
formed blood vessels 
during tumorigenesis; 
good for visualizing 
angiogenesis 

 Ineffective as pan- 
endothelial marker; weak or 
no staining in normal tissue 

 Factor 
VIII 

 Glycoprotein polymer 
involved in platelet 
aggregation; comprised of 
von Willebrand factor and 
smaller antihemophilic 
factor 

 Effective for larger 
vessels staining 

 Lacks sensitivity for smaller 
vessels in comparison of 
other antibodies 

 Endocan  Cell-specifi c-molecule-1, 
proteoglycan secreted by 
endothelial cells; regulated 
by vascular endothelial 
growth factor and related to 
angiogenesis 

 Marker of small and 
large neoangiogenic 
vessels 

 Scattered immunostaining of 
vessels; generally not 
expressed in non-tumoral 
tissues 

  See review in Di Ieva et al. [ 21 ]  
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 It has been suggested that vessel quantifi cation can be added into the tumor clas-
sifi cation system for grading as well as for prognostication. If the aim is to provide 
a morphometric biomarker (i.e., predicting patient prognosis, treatment response, 
etc.), the limitations are due to the lack of standardization of the proposed parame-
ters. Morphometrics aims to reduce shapes to numbers, offering a reductionist 
approach to describe the geometrical complexity of natural objects. In pathology, 
morphometric analyses add a quantitative element to the qualitative description of 
the tissue [ 11 ], generating continuous variables, which can be used for statistical 
comparison. 

 Defi ning the “tumor-space” as the neoplastic volume, the “angio-space” refers to 
the proportion of microvessels fi lling such volume, not just in terms of quantity but 
also in terms of size, shape, and pattern of distribution [ 11 ]. 

 Pathologists recognize distinct vascular angiogenic subtypes, described as pali-
sades, glomeruloid vascular proliferation, vascular garlands, vascular clusters, and 
microvascular sprouting, and may also use semiquantitative scores to quantify the 
level of “clusterization” of the microvessels [ 20 ] (see Table  24.3 ). This seems to be 
relevant, especially when considering the relationship between vascular patterns 
and clinical outcomes, as different angiogenic protein expression associated with 
different angioarchitecture can respond in different ways to chemotherapy [ 5 ]. 
These descriptions lack standardization and some intra- and interobserver variabil-
ity may be present.

   Since the introduction of the use of the vessel density in 1972 [ 6 ], several other 
parameters have been proposed as potential “quantitators” of the microvascular sys-
tem, used to quantify the angio-space (Tables  24.3  and  24.4 ).

   We here classify these morphometric parameters in “Euclidean-based” and 
“fractal-based” parameters. 

     Table 24.3    Morphometric parameters used to quantify the angio-space   

 Euclidean-based parameters  Fractal-based parameters 
   Microvessel density (MVD)    Fractal dimension (FD), 

microvascular fractal dimension 
(mvFD) 

   Density/number of vessels    Local box-counting dimension 
   Total vascular area (TVA)    Tortuosity 
   Local vascular area (in the hot spot)    Lacunarity 
   Perimeter    Representative elementary volume 

(REV) length scale 
   Mean diameter of the microvessels    Hurst exponent 
   Branching count 
   Major and minor axis length 
 Pathologist-based analysis  Other non-Euclidean parameters 
   Semiquantitative scoring systems, that is, 0 (no 

clusters), 1 (clusters), 2 (very prominent clusters) 
   Compactness 
   Shape factor 
   Distance maps 
   Microvascular structural entropy 
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24.3.1     Euclidean-Based Parameters 

 One of the most used parameters is the microvessel density (MVD), based on the 
measure of the number of immunostained microvessels per square millimeter in the 
most densely vascularized area of the histological specimen (termed “hot spot”). 
Different techniques have been proposed for the MVD calculation, and several sem-
inal papers have investigated its role in every human tumor (see review in [ 14 ]), 
including the brain and pituitary tumors (reviews in [ 13 ,  14 ]), but in conclusion it 
has been shown that it is not a valid measure for guiding and/or evaluating anti- 
angiogenic treatment [ 31 ], nor for distinguishing different grades of brain tumors. 
All the histological analyses are limited by the sampling, especially in GBMs, 
which show a very high histologic heterogeneity. The greatest limitation of the use 
of the MVD is the choice of the hot spot, due to (a) high inter- and intra-observer 
variability in its selection, (b) potential lack of representativity of the whole speci-
men, and (c) potential lack of representation of a complex 3D structure, such as the 
microvascular tree, in a 2D histological area [ 15 ,  18 ,  43 ]. 

 Other Euclidean parameters can be computed on the histological specimens of 
brain tumors (see Table  24.3 ). Multiparametric analyses of combinations of such 
indices have shown microvascular morphometrics as a valid tool to differentiate 
different grades of brain tumors [ 18 ,  37 ,  45 ]. 

 The greatest limitation of the described parameters is that Euclidean geometry 
can only quantify regular and smooth objects, and therefore can only offer approxi-
mations of the roughness expressed by natural objects, such as the microvascular 
trees. The complexity of vascular systems depends on (a) the number of vessels, (b) 
their size and shape, and (c) the pattern of the vessel distribution and the nonlinear, 
temporal, and spatial advance of the promotion, progress, mediation, and inhibition 

     Table 24.4    Morphometric parameters used to quantify the microvascular pattern identifi ed in 
histological specimens of grade II and III gliomas   

 Angioarchitectural morphometric parameters 

 A Tum   Area covered by the specimen of brain tumor on the histological section 
 TVA  Total vascular area, the area of the microvessels of the whole specimen 
 A%  Ratio between TVA and A Tum  
 MVs/mm 2   Microvascular density expressed as the mean number of microvessels per mm 2  
 Hot spot  1 mm 2  area of the specimen having the highest local A(%) 
 Local A(%)  The % vascular area in the hot spot 
 mvFD  Microvascular fractal dimension: monofractal dimension of the microvascular 

pattern of the whole specimen (in a pre-determined scaling window) 
 loc mvFD  Local mvFD: monofractal dimension of the microvascular pattern expressed in 

the hot spot area (scaling window,  ε  min  = 1 μm;  ε  max  = 100 μm) 
 loc bcD  Local box-counting dimension: value of fractal dimension estimated by the 

box-counting method in a non-monofractal range (scaling window,  ε  min  = 1 μm; 
 ε  max  = 1,000 μm) 

  From Di Ieva et al. [ 20 ]  
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of angiogenesis generating the complex ramifi ed network irregularly fi lling the 
environment surrounding the tumor, which can be described by Euclidean geometry 
only with great approximation [ 28 ]. 

 Fractal geometry overcomes the limits of Euclidean parameters. The fractal- 
based parameters are described next.  

24.3.2     Image Analysis 

 The fi rst step to apply any morphometric analyses on the neoplastic angio-space is 
the choice of the technique to visualize the microvessels and the following image 
analysis, which should be standardized (see Chap.   12    ) (Fig.  24.1 ).

   When the target of analysis is the microvascular network, several issues have to be 
considered, for example, whether the analysis is performed on the basis of the space-
fi lling area of the vessels or on skeletonized representations of the microvessels. 

 In the image analysis, eventual artifacts related to the segmentation of immuno-
reactive vessels have to be considered. For example, nonspecifi c immunoreactivity 
can limit the automatic detection of the vessels, as in the case when antigens diffuse 
to other compartments (e.g., CD34 antigens which immunostain cell nuclei or 
necrotic areas rather than endothelial cells). In such cases, a pathologist is still 
required to identify any artifacts, which should be eliminated from the analysis. 

 Other digital image acquisition calibration parameters should be standardized as 
well, in terms of regulating the light intensity of the microscope, maintaining the 
same resolution over the whole series, and using an identical threshold to extract the 

Specimen

• Selection of the immunostaining technique to detect microvasculature (e.g.,
CD34 immunohistochemistry)

Threshold
• Selection of the Red-Green-Blue threshold to segmentate the microvessels

Extraction
• Extraction of the microvessels, creation of the microvascular catalogue 

Analysis

• Morphometric analyses of the microvessels (e.g., computation of Euclidean
and/or fractal-based parameters)

Indexes

• Quantification of the space-filling properties of the microvascular network
by means of the mvFD, local bcD, or other parameters. 

• Statistical analysis.

  Fig. 24.1    Flowchart used for image and morphometric analyses of microvasculature in histologi-
cal specimens       
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immunoreactive vessels. A virtual microscope can be used to digitize the entire 
specimen rather than few areas selected manually. The vessels can be extracted as a 
whole from the specimen and organized in a vascular catalog, giving a snapshot on 
the number and shape of the microvessels within the specimen (Fig.  24.2 ).

24.4         Fractal-Based Morphometric Analyses of Microvessels 

 Fractal geometry provides a computer-aided method to describe and quantify the 
roughness and geometrical complexity of the microvessels distributed within the 
tumor, as it has been shown in a vast variety of neoplasia, including prostate, kidney, 
lung, colon, skin, and brain tumors as well. By concentrating on the irregularity of 
tumor growth rather than individual measure of size (such as diameter and volume 
or other Euclidean parameters), fractal geometry is well suited to quantify the mor-
phological features that pathologists have long used to describe malignancies in a 
qualitative way (i.e., wrinkled borders within the host tissue, random microvascular 
patterns, etc.) [ 4 ]. Several researchers have demonstrated the fractality (or “semi- 
fractality”) and multifractality of the vascular and microvascular trees of many tis-
sues and organs, in physiologic as well as pathologic states, including the human 
brain [ 1 ,  2 ,  4 ,  8 – 10 ,  26 ,  27 ,  29 ,  35 ,  40 ,  44 ,  47 ]. 

 The main aim of computational fractal-based analysis of the microvascular pat-
terns is the quantifi cation of parameters, which can be used as surrogate 
biomarkers. 

24.4.1     Microvascular Fractal Dimension (mvFD) 

 The most widely used parameter in fractal geometry is the fractal dimension (FD 
or  D  F ), which describes the space-fi lling properties of irregularly shaped objects 
[ 3 ,  9 ,  10 ,  26 ]. FD has been shown to be the most robust estimator of vascular net-
works [ 36 ,  49 ]. Extending the use of FD to the quantifi cation of microvessels, the 
microvascular fractal dimension (mvFD) quantifi es the space-fi lling properties of 
the microvessels within a tissue; in the case of a tumor, mvFD quantifi es the level 
of geometrical complexity of the microvessels embedded within the tumor. The 
mvFD adds a qualitative component to the parameterization of the angio-space, 
trying to answer the following question: assuming an equal number of vessels, 
what can be said about their shape, size, and pattern of distribution? This means 
that histological specimens of similar or different tissues can show the same value 
of MVD or total vascular area, for example, but a very different pattern of distri-
bution, with different values of mvFD. Of course, it can also happen that histo-
logical tissues with same mvFD values differ for the Euclidean parameters, 
making the approaches complementary methods of quantifi cation. Therefore, 
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mvFD offers useful information about the tumoral space fi lled by microvessels. 
The parameter is computer aided, and its objective measure makes it a comparable 
parameter among different operators. If it is important to analyze the distribution 
of the vessels within the tissue, by means of FD, for example, it is equally impor-
tant to analyze complementary parameters, the “vascular gappiness,” that is, the 
avascular spaces, by means of the lacunarity or other methods, like the distance 
maps [ 44 ]. 

 In a 2D histological specimen, mvFD ranges from 0 to 2. For example, a tumor 
with a hypothetical mvFD value of 1.95 owns a microvascular network almost fi ll-
ing its area, like the Peano’s curve, with a very complex geometric and highly 
space-fi lling microvascular pattern (Fig.  24.3 ). This microvascular pattern virtually 
fi lls the whole tissue in which it is embedded, reducing the avascular spaces to the 
minimum (therefore increasing the lacunarity) [ 3 ] (Fig.  24.4 ). In the 3D space, such 

  Fig. 24.2    Example of a vascular catalog (in this case, of a glioblastoma multiforme, GBM, with 
magnifi cation of the vessels in the  inset ). The catalogs give information at a glance on number and 
shapes of all the microvessels extracted from the entire specimen       
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as in electron microscopy reconstructions of the microvascular trees in the 3D vol-
ume, FD trends toward a maximal value of 3 [ 44 ,  47 ].

    In several kinds of tissues, it has been shown that FD and lacunarity values dif-
fer in the physiological and pathological vascular networks [ 3 ,  19 ,  25 ]. This means 
that the disarray of the microvascular network, which extends from the normal 
tissue (e.g., the brain) to the tumor, can be quantifi ed by means of fractal analysis, 
in a kind of gradient of morphometric differences between tissues. Based on the 
evidence that the neoplastic microvascular network is abnormal, it has been exper-
imentally shown that the “normalization” of such disarray can be used for thera-
peutic purposes, as previously quoted, and the FD can be used as a surrogate 
biomarker for diagnosis and/or treatment follow-up [ 3 ,  25 ]. By means of 2D and 
3D analyses, FD values of normal brain microvasculature have been found to be 
higher than that of neoplastic regions, meaning that the normal brain is better 
suited to more space- occupying microvasculature [ 3 ,  25 ,  47 ]. However, due to the 

  Fig. 24.3    Values of the fractal dimension (FD) on a 2D plane, comparing two fractal objects with 
the microvasculature (endothelial CD34 immunostaining) of a pituitary adenoma ( lower image ) 
with the specimen of a normal pituitary gland. The  lower image on the left  shows the Koch’s curve 
(“snowfl ake”), with FD = 1.26. FD increases in more space-fi lling objects, namely, in the Peano’s 
curve ( higher image on the left , with FD ≈ 2) and in the microvasculature of the normal pituitary 
gland, which is more homogeneously distributed within the parenchyma of the gland       
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use of different methods and techniques, these results are controversial. For exam-
ple, in one experimental study, the vascular FD values of primate and rat brain 
tumors have been found to be higher than those of normal brain parenchyma, thus 
indicating a greater metabolic supply and bigger surface area for gas exchange 
within the tumors [ 44 ]. In numerical terms, fractal-based demonstration that 
tumoral and normal vascular networks are intrinsically different; Baish et al. intro-
duced a complementary metric to the FD, the tortuosity, defi ned as the ratio 
between the minimum vascular path joining two points and their geometric dis-
tance from each other [ 3 ]. A greater tortuosity has been correlated with a worse 
response to drugs, confi rming again the importance of the analysis of the angio-
structure from the therapeutic perspective. 

 Among several reasons, including their relative simplicity and the speed to be 
computed, the most used methods to compute mvFD are the box-counting and the 
sandbox methods (see Chap.   2    ). These methods have been applied to whole histo-
logical specimens of brain tumors as well as on selected spots. The choice of the 
“hot spot” can be performed manually (i.e., the pathologist chooses the area subjec-
tively considered to be the most vascularized and representative of the microvascu-
lar network of the tumor) or by computer-aided methods (e.g., the spot with the 
highest vascular area, as calculated by the computer). The fi rst method is biased by 
the introduction of the operator-dependent choice of the hot spot, while the second 
method can be biased by the operator-dependent choice of the threshold to auto-
matically extract the immunoreactive vessels from the specimen or from manually 

TVA
mvFD

Loc bcD
Tortuosity

Compactness
Lacunarity

  Fig. 24.4    Specimens of three cases of GBM, showing different microvasculature (microvessels 
detected by using antibodies raised against CD34 with brown coloration). The angio-space of each 
tumor can be described by means of several parameters ( TVA  total vascular area,  mvFD  microvas-
cular fractal dimension,  loc bcD  local box-counting dimension. See Table  24.4 )       
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erasing artifacts outside the region of interest. An ideal method should be objective 
and reproducible, without any operator-dependent biases. Moreover, as it often 
happens in pathology, the analysis can be biased by the choice of the specimen itself 
(the problem of sampling, which could not be representative of the whole tumor, 
like a sample resembling a WHO grade II glioma within a grade III tumor). To limit 
this problem, other parameters have been introduced.  

24.4.2     Local Fractal Dimension and Local Box-Counting 
Dimension 

 In order to avoid the sampling of nonrepresentative areas of the tumors such as 
necrotic areas, the local fractal dimension considers FD in the hot spot. The subjec-
tive selection of the hot spot would limit the objective reproducibility of such 
parameters in the same way as with the MVD. In order to avoid such limitations, the 
hot spot can be automatically chosen, for example, by computing the vascular area 
for each 1 mm 2  area on a grid drawn on the specimen (Fig.  24.5 ) and extracting the 
spot with the highest ratio (immunoreactive surface of vessels/tumoral area). Once 
selected, the 1 mm 2  spot with the highest vascular area becomes the hot spot for the 
following analysis (Figs.  24.5  and  24.6 ). On such a spot, the local mvFD can be 
computed. A previous analysis showed that a monofractal behavior was found con-
sidering a two orders of magnitude window, that is, between 1 and 100 μm [ 20 ]. 
Assuming an average microvessel diameter between 5 and 10 μm, such a fractal 
window considers the smallest features of the microvessels (i.e., the roughness of 
the outline), as well as the agglomerate of micro-clusters of vessels (at the magni-
tude of 100 μm). As shown, this was considered insuffi cient to cover the entirety of 
the histopathological features of the microvessels, such as the macro-agglomerates 
in large clusters (like the garland-like vascular structures). A fractal window rang-
ing between 1 μm and 1 mm, that is, covering three orders of magnitude, was con-
sidered signifi cant to cover all of the mean histopathological characteristics of the 
microvessels, including the intrinsic morphologic features and their clustering prop-
erties. Applying the box-counting method in such a range, a monofractal behavior 
was not confi rmed (see Fig.  24.6 ), although a similar slope of the curve was found 
across all the analyzed specimens. The several power laws showed that glioma 
microvascularity clearly demonstrates a multifractal distribution of geometrical 
complexity of the glioma’s microvessels when observed at various scales of magni-
fi cation. The slope of a straight line interpolating the points on the log-log graphs 
was considered as the mean value expressing the space-fi lling properties of the 
microvessels in the hot spot, and the value was indicated as the local box-counting 
dimension (local bcD) [ 20 ]. Both mvFD and local bcD express, in a single variable, 
the ability of the microvessels to fi ll the space in which they are embedded (i.e., the 
tumor), which is a characteristic intrinsically correlated to their number, size, shape, 
and distribution pattern.
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24.5          Fractal-Based Analysis of the Angio-Space in Brain 
Pathology 

 We defi ne the concept of “angio-space” as the set of parameters quantifying the 
microvasculature within a tumor or the tumoral space occupied by its own angioar-
chitecture (Di Ieva [ 19 ] and unpublished data). According to the speculation that 
different tumors, or even different subtypes of the same tumor have a specifi c 
“microvascular fi ngerprint” [ 19 ], it has been speculated that a gradient of geometri-
cal representation (and then of fractal angioarchitectural parameters, including FD) 
exists between physiological and pathological tissues, as well as different states of 
the same tissues. The pituitary gland is an exemplary model: Euclidean-based 
approaches (i.e., vascular area and MVD) and fractal-based analyses have clearly 
shown that it is not only more vascularized but also exhibits a higher microvascular 
heterogeneity and geometrical complexity in the comparison of the pituitary adeno-
mas [ 13 ,  16 ,  21 ]. Regarding the different subtypes of pituitary adenomas, analyses 
of the MVD have shown very discordant results [ 13 ], with some preliminary fractal-
based analyses not showing any statistically signifi cant differences in the angioar-
chitecture of micro- vs. macro-adenomas, for example [Di Ieva, unpublished 
results]. The pituitary gland is a simple model from which to extend the fractal 
analysis of the microvasculature to the study of brain tumors, by analyzing histo-
logical specimens treated with antibodies raised against the endothelium (in the 
whole specimen and/or hot spots), or volumetric reconstructions of histological 

  Fig. 24.5    Microvascular map for the automatic selection of the hot spot. Over-imposing a grid of 
1 mm 2  boxes on the entire specimen, the vascular area can be computed on each box and a color 
map can be associated to the different ratios. In this example, the yellow boxes represent the 
regions of the specimen with the highest vascular area. Raw data show also the value of the vascu-
lar area for each box, and the one with the highest value is automatically chosen as hot spot for the 
following computational analyses (software by Carlo Russo)       
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tissues and/or radiological images (see Chaps.   19    ,   20    ,   21    ,   22    , and   23    ). If the pitu-
itary gland shows a relatively low variability of the microvascular patterns (meaning 
that the vascular network is quite homogeneous) [ 12 ], malignant brain tumors show 
very high microvascular heterogeneity. By analyzing 114 GBM specimens, a mean 
mvFD value of about 1.44 (ranging 1.06–1.87) was found, with a coeffi cient of 
variation (CV, standard deviation divided by the mean) of 44 % [ 18 ]. For compari-
son, the CV of pituitary adenomas was found less than 10 % [ 12 ]. This very high 
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  Fig. 24.6    Computer-aided technique for fractal analysis of the microvasculature in histological 
specimens. Estimation of the morphometric fractal parameter in the whole section and in the hot 
spot region of specimens of brain gliomas; detection of microvessels using antibodies raised 
against CD34. The extraction of the whole specimen and the segmentation of the immunoreactive 
vessels ( a, b ) allow the automatic measurement of the morphometric parameters listed in 
Table  24.4 . Moreover, a grid of boxes measuring 1 mm to a side length is superimposed on the 
whole histological section. For each box, the ratio between the local vascular area and the local 
neoplastic area is calculated [ local A (%)]; the box with the highest  local A (%) is automatically 
selected and extracted to be used as the “hot spot” representative of the whole specimen ( c ). ( d ) 
Hot spot of the specimen, automatically extracted. ( e ) Selection of the RGB threshold to automati-
cally extract the CD34+ vessels. ( f ) Box-counting method: superimposition on the image of grids 
with boxes of different lengths, from a minimum size ( ε   min  ) to a maximum size ( ε   max  ), in the prese-
lected scaling window. ( g ) A monofractal behavior was found by limiting the scaling window to a 
range of two orders of magnitude ( ε   min    = 1  μm –  ε   max    =  100 μm). The slope of the obtained curve is 
the microvascular fractal dimension (mvFD) [Axes of the log-log graph (box-counting method): 
 X -axis = Box size (mm);  Y -axis =  N  Boxes] .  ( h ) Considering that a maximum size of the box of 
100 μm does not cover the complete hot spot, a wider scaling window was also applied (Reproduced 
from Di Ieva et al. [ 20 ])       

 

A. Di Ieva and O.S. Al-Kadi

http://dx.doi.org/10.1007/978-1-4939-3995-4_19
http://dx.doi.org/10.1007/978-1-4939-3995-4_20
http://dx.doi.org/10.1007/978-1-4939-3995-4_21
http://dx.doi.org/10.1007/978-1-4939-3995-4_22
http://dx.doi.org/10.1007/978-1-4939-3995-4_23


407

variability in the space-fi lling properties of microvascularity of GBM refl ects the 
very high angioarchitectural heterogeneity shown by this malignant tumor. The 
microvascular networks of GBM can be represented in a very broad and continuous 
spectrum of possible geometric confi gurations; this was the fi rst mathematical dem-
onstration that GBM is  multiforme  (from the Latin meaning “multi- shapes”) also in 
relation to its microvascularity [ 18 ]. 

 Morphometric and computational fractal-based analyses also showed that grade 
II gliomas have different angio-spaces in comparison to grade III gliomas (Fig.  24.7 ). 
Among several morphometric parameters, the local mvFD and especially the local 
bcD were shown to be the most reliable quantitative indicators of the neoplastic 
microvasculature, making them potential surrogate biomarkers [ 20 ]. The histopath-
ological grading of gliomas can be challenging in some cases, especially in grade II 
vs. grade III gliomas, and the erroneous diagnosis can result in patients’ over- or 
undertreatment [ 48 ]. For this reason, computational methods, which can help in dif-
ferential diagnosis, are more than welcome to be added in the pathologists’ and 
clinicians’ armamentarium.

  Fig. 24.7    Correlation between the fractal angiomorphometric parameters and the level of cluster-
ing of the microvessels. Schema showing the correlation between the angioscore assigned by the 
neuropathologist to each specimen and the fractal-based variables [local box-counting dimension 
(loc bcD) and microvascular fractal dimension (mvFD)]. The value reported for each angioarchi-
tectural group is the mean value of loc bcD ± standard deviation. The yellow line indicates the 
increasing grade of malignancy of the tumor. The fractal parameters assigned nearly 75 % of the 
gliomas to the correct histological grade and angioscore (Reproduced from Di Ieva et al. [ 20 ])       
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24.6        Limitations 

 If fractal-based angioarchitectural classifi cation of brain tumors can be useful for 
diagnostic and prognostic purposes, there are still some limitations to acknowledge. 
For a description of the limitation of image and fractal analysis, see Chaps.   1     and 
  12    . Below, we summarize some main points. First of all, according to the basic 
principles of fractal geometry, it does not mean that objects owning the same mvFD, 
for example, show the same microvascular pattern. As previously stated, this means 
that fractal indexes should be analyzed as complementary to other morphometric 
parameters in a multiparametric analysis. 

 When the analysis is performed on histological specimens, the sampling prob-
lem can limit its benefi t. The analysis of the whole specimen or of the computation-
ally chosen most representative spot of the specimen tends to decrease the limitations 
of other analyses, like the MVD-based ones, but a histological sample still often 
does not represent anything more than a very small fraction of the whole tumor, and 
this should be taken into consideration. The estimation of a 2D representation of the 
microvascular tree could not refl ect the real 3D complexity of the microvascular 
network, because 2D methods performed on histological specimens are length 
related rather than mass related, and this can underestimate the true 3D complexity 
of the tree in the space [ 7 ,  42 ]. This issue can be limited by using volumetric analy-
ses and 3D reconstructions of tissues. The effect of geometrical deformation (e.g., 
cracks) during the process of sample preparations, and other artifacts such as 
 nonhomogeneity of staining, may also have some impact on the accuracy of the 
fractal analysis. For this reason, also the sampling, immunostaining and preparation 
of the histological specimen should be standardized. 

 Moreover, the histological section represents a “snapshot” in time, a “frozen 
photo” of the tumor at the moment of the surgical operation, and each quantifi cation 
refers to that specifi c moment, not taking in account the dynamic process on the 
temporal trend of the tumor. For this reason, the temporal changes of tumors should 
also be considered by means of neuroradiological and/or nuclear medicine fi ndings 
over time (such as perfusion parameters or methionine uptake in PET, positron 
emission tomography) [ 17 ]. 

 As previously stated, the value of FD and other fractal-based parameters is highly 
dependent on the image analysis parameters (and “pixel related”, according to the 
resolution). Several research inquiries have considered different tissues (brain cor-
tex, tumors) in different models (humans, rats), visualized in different ways after 
undergoing different treatments. When comparing the several values found in the 
published research, a plethora of results show contrasting fi ndings, and this could be 
avoided only by a standardization of techniques, materials, and methods. 

 The standardization ought to be done also in the analytical analysis of the fractal 
parameters. It is in fact known that biological fractals, such as microvascular net-
works, are statistically self-similar only within a specifi c scaling window (i.e., cov-
ering at least two orders of magnitude) [ 40 ]. The choice of different windows may 
give different results, and such choice should be standardized as well or at least 
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justifi ed: if a window ranging 1–100 μm, for example, considers a FD that refl ects 
the organization of the vessels in micro-clusters and their roughness, on the other 
hand, a range of 100–10,000 μm does not take into account the roughness of the 
single vessels but rather the distribution of vascular clusters on a larger scale [ 14 ]. 
The lack of standardization of all these elements could produce results no more 
comparable between different laboratories. Last but not least, microvessels cannot 
be real fractals, as pointed out, and the “fractalization” of such natural objects can 
be a mathematical idealization limited by computational manipulation. In order to 
avoid the several defi nitions expressed in the very thick related literature on fractal-
ity, quasi-fractality, pseudo-fractality, or multifractality of microvessels [ 27 ,  39 ,  46 , 
 50 ,  51 ], it is here enough to say that fractal analysis, far from being an infallible and 
universal method, is still able to offer several reliable parameters for an objective, 
reproducible, and realistic description and quantifi cation of the microvascularity in 
normal as well as pathological tissues.  

24.7     Future Perspectives and Conclusion 

 As the architectural pattern of each tumor seems to be its specifi c microvascular fi n-
gerprinting, objective and reproducible morphometric biomarkers are required to 
describe and quantify the so-called angio-space. Such indexes should be (a) able to 
quantify what pathologists describe in a qualitative way on the histological specimens 
of tumors, (b) objective, that is, not affected by intra- and interobserver variability, 
and (c) clinically meaningful, having prognostic and/or predictive value [ 20 ]. Fractal 
analysis offers several parameters that are promising candidates for such purposes. 

 In addition, the methodological phase of testing morphometric parameters should 
be followed by clinically oriented research; to be tested as a potential biomarker, in 
fact, the morphometric fractal-based parameters should be analyzed in the same 
way that new oncologic therapies are introduced into clinical practice, in step-by- 
step successive phases of study [ 30 ]. Although the translation of the concept of 
“fractal microvascularity” into clinical practice (i.e., from “bench to bedside”) is 
still diffi cult to be realized [ 11 ], it should be emphasized that the research in the 
fi eld of microvessel morphometrics should run alongside research focused on 
tumoral angiogenesis (research on molecular biomarkers, such as vascular endothe-
lial growth factor, hypoxia-induced factor, etc.), in order to offer a holistic view on 
the effects of structure and function on the environment and viability of brain 
tumors. This means that the morphometric analyses should run alongside the bio-
logical approach. Moreover, morphometric analyses should be integrated into 
in vivo techniques (neuroimaging and nuclear medicine methods) to follow-up 
brain tumors and response to treatment. 

 In light of the speculations and fi ndings that have been illustrated in this chapter, 
computational fractal-based and multiparameter morphometric analyses will ulti-
mately fi nd its place in the oncologist’s toolbox as a conventional diagnostic 
procedure.     
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    Chapter 25   
 Fractal Analysis of Electroencephalographic 
Time Series (EEG Signals)                     

     Wlodzimierz     Klonowski     

    Abstract     Nonlinear methods are better suited for analysis of EEG signals than so- 
called linear methods like fast Fourier transform (FFT). In this chapter, we illustrate 
the use of the Higuchi’s fractal dimension method. We present several examples of 
the usefulness of this method in application to sleep-EEG analysis, revealing infl u-
ence of electromagnetic fi elds, monitoring anesthesia, and assessing bright light 
therapy (BLT) and electroconvulsive therapy (ECT). We conclude that Higuchi’s 
fractal dimension method is very useful in the analysis of EEG signals.  

  Keywords     Fractal dimension   •   Time series   •   Biosignal   •   EEG   •   Electroencephalogram  

25.1       Introduction 

 In 1875 Richard Caton (1842–1926), a medical doctor from Liverpool, published in 
British Medical Journal his research that demonstrated electrical activity of the 
brains of the rabbit and the monkey [ 5 ]. He is cited in multiple scientifi c papers, but 
not many researchers have really read it (Fig.  25.1 ). It looks like a contemporary 
brief abstract: length of 10 sentences, 239 words.

   It is often said that the fi rst human EEG signals were registered by German psy-
chiatrist Hans Berger (1873–1941) from Jena [ 4 ] who fi rst succeeded in recording  
brain electrical activity through the scalp, using a vacuum tube as an amplifi er and 
a double-coil galvanometer. By the way, EEG was registered already in 1890 by 
Polish scientists from Jagiellonian University in Cracow – Adolph Beck (1863–
1942) and Napoleon Nikodem Cybulski (1854–1919) [ 3 ,  7 ]. 

 Electromagnetic activity of the brain fascinated not only medical doctors. One 
can fi nd EEG shown even on postal stamps, like that Italian stamp of 1988  showing 
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a representation of an epileptic EEG and St. Valentine who is patron saint of both 
lovers and epileptics (Fig.  25.2 ).

   Application of EEG in clinical medicine increased tremendously in the second 
half of the twentieth century. The EEG “bible”  Electroencephalography  appeared in 
1981; its 5th edition has already more than 1,300 double-column pages and it weights 
more than 3 kg [ 29 ]. What a difference when compared with that fi rst paper by Caton! 

 Despite a century of clinical use, the underlying origins of EEG rhythms have 
remained a mystery. Hameroff and Penrose [ 11 ] suggested that EEG rhythms as 
well as consciousness derive from “quantum vibrations in microtubules, protein 
polymers inside brain neurons, which both govern neuronal and synaptic function, 
and connect brain processes to self-organizing processes in the fi ne scale” and that 
from a practical standpoint, treating brain microtubule vibrations could benefi t a 
host of mental, neurological, and cognitive conditions. 

 Until the 1990s EEG signals were registered with analog recorders – ink pens 
writing on a paper tape – and were considered to be continuous. The development 
of personal computers made possible digitalization of recording process [ 34 ] – sig-
nals are probed with some frequency and subsequent probes are saved in computer 
memory as series of discrete numbers and not as continuous functions of time. And 
for the analysis of these signals computerized methods of time series analysis are 
used, leading to semiautomatic EEG interpretation. 

 However, when using the analog EEG equipment, doctors get accustomed to 
interpret EEG signals in terms of superposition of continuous waves of some char-
acteristic frequencies. Most often paper tape was moving 3 cm per second and on 
the tape there were vertical lines each 3 cm. If the doctor counted 12 maxima 
between such two vertical lines, it was interpreted as presence of waves of fre-
quency 12 Hz, which was called alpha rhythm. Since the introduction of digital 
EEG recorders, the most often applied algorithm for EEG signal analysis has been 
the fast Fourier transform (FFT) (more precisely – its discrete version) that is 
 supposed to enable to decompose the signal into a linear combination of simple 
sinusoidal waves of different frequencies, so it is called spectral analysis.  

  Fig. 25.2    Italian postal 
stamp (1988) depicting 
epileptic EEG and St. 
Valentine – patron of 
epileptics. The text reads: 
“Di epilessia si può 
guarire” ( You can be cured 
of epilepsy ) (cf. [ 10 ])       
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25.2     Nonlinearity and Nonstationarity 

 It is often forgotten that analysis of signals produced by a system is done not for 
characterizing just these signals but for characterizing the system itself – its states 
and dynamics [ 27 ,  28 ] what in engineering is called  system identifi cation . It is often 
quite a complicated task because biological systems are  nonlinear  and  nonstation-
ary . And so are  biosignals , i.e. signals generated by biological systems and  time 
series  representing biosignals. 

 A vast majority of analytical methods that were developed before the introduc-
tion of computers was applicable in principle only to so-called linear systems. An 
ideal linear system is one whose reaction is simply proportional to the applied input 
signal (stimulus); more precisely, when the input is a linear combination (i.e. a sum 
with constant coeffi cients) of some component signals, the output is the same linear 
combination of individual outputs that would be produced by each input component 
separately (the so-called superposition principle). When observing outputs of a lin-
ear system for different inputs, one may deduce a lot about the system itself. In a 
case of nonlinear system, it is much more complicated. “(Non)linearity of signals” 
most often means (non)linearity of the systems that produce these signals. Moreover, 
signals produced by nonlinear systems are often highly nonstationary. A stationary 
time series is one whose statistical description is invariant with respect to time ori-
gin or time shifts; nonstationary time series is one whose average value is not con-
stant but exhibits abrupt discontinuities of trends either one whose correlation or 
covariance structure changes with time. 

 For nonlinear and nonstationary systems, results of FFT analysis of output sig-
nals are not related in a simple way to the input signals and to the state of the system 
itself. The same concerns WT (wavelet transform), MP (matching pursuit), and 
other  linear methods  that in theory fulfi ll superposition principle. Linear methods 
decompose analyzed signal into a linear combination of components from a given 
“vocabulary set.” In fact, there always exists infi nite number of such “good” linear 
combinations, and additional discretionary assumptions are needed to choose one 
that is “just right.” 

 Even in simple cases, linear methods may give misleading results (Fig.  25.3 ) and 
also may fail to provide the exact location of “events” along time axis. One often 
forgets that linear methods are in principle applicable only to stationary signals 
(Fig.  25.4 ). Routine artifacts’ correction in EEG signals may lead to nonstationari-
ties and so to unreliable results of Fourier analysis.

25.3         Fractal Analysis of EEG 

 The human brain is a nonlinear system; it is probably the most complex system ever 
known. So, application of linear methods to EEG signals generated under different 
input conditions – with eyes open and closed as well as using photostimulation or 
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hyperventilation (these conditions are usually used in all routine EEG registrations), 
during sleep, under anesthesia, under pulsed electromagnetic fi eld, etc. – may lead 
to unreliable results. Multichannel EEG contains information about changes in 
activity of different parts of the brain due to physiological and pathological pro-
cesses, but using linear methods of EEG analysis it is often not easy to draw conclu-
sions about brain states and dynamics. 

 Nonlinear methods, like fractal analysis [ 1 ,  26 ], are better suited for this purpose, 
but they still bring a lot of confusion. Fractal methods characterize signals by the 
quantity called  fractal dimension ,  FD . Unfortunately, what in scientifi c literature is 
called  fractal dimension  has many different meanings.  FD  of a time series may be 
calculated directly in time domain. It is a measure of  complexity  of the signal repre-
sented by analyzed time series. 

 Despite of the fact that frequency and phase-space methods are often used in 
biomedical research [ 32 ,  35 ,  37 ], it seems that time domain-based  FD  algorithms 
are more effective than the frequency domain-based algorithms [ 31 ]. There exist 
several algorithms of calculating  FD  of a time series in time domain. We have cho-
sen Higuchi’s method [ 12 ,  13 ,  15 ] because of its simplicity. Below, when we use the 
term fractal dimension, we will mean  Higuchi ’ s fractal dimension , denoted as  D   f  .  D   f   
has obvious lower and upper limits, equal, respectively, 1 and 2, since ( D   f  – 1 )* 100  
shows what is the percentage of 2D plane that is “occupied” by the curve represent-
ing the given time series as the function of time; simple curves have Euclidean 
dimension equal 1 and so  D   f   =  1 , while a curve representing pure noise “fi lls up” 
practically 100 % of the plane and so its  D   f   =  2 . 

 Any time series may be characterized by its  D   f  ,  1 <  D   f   < 2 . It is not necessary to 
make surrogate data test before applying Higuchi’s fractal dimension algorithm 
because  it does not matter if the analyzed signal is really chaotic  – it may be 
deterministic, stochastic, nonstationary, and noisy. Moreover, generation of sur-
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  Fig. 25.3    Fourier decomposition of a signal of frequency 12 Hz with the amplitude modulated 
with frequency 1 Hz ( upper)  results in two harmonic signals – one with frequency 11 Hz and 
another with frequency 13 Hz; the basic frequency 12 Hz completely disappears [ 23 ]       
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rogate data often applies linear transformations like FFT and reverse FFT that 
may show serious shortcomings (Fig.  25.4 ). 

  Running Higuchi ’ s fractal dimension ,  D   f   ( t ), may be calculated using a moving 
window as short as 70–100 data points. Using artifi cially generated signals consist-
ing of stitched fragments of different so-called Weierstrass functions, we have dem-
onstrated that running fractal dimension well detects changes of signal’s stationarity 
[ 22 ]. That is exactly why it can be applied to nonstationary signals. 

 One may fi nd opinions that nonlinear methods are very sensitive to noise and 
also that to use these methods, one needs very long epochs of analyzed signals. The 
truth is often exactly opposite [ 23 ]. For example, the method of the so-called cor-
relation dimension (of an attractor eventually observed when EEG time series are 
embedded in a phase space) needs signals of thousand points to be applied [ 17 ,  32 ]; 
Higuchi’s fractal dimension may be calculated for a short signal containing as few 
as 100 points. Fractal dimension  D   f   ( t ) is quite insensitive to noise – adding artifi cial 
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  Fig. 25.4    FFT applied to two similar signals – stationary ( upper left ,  a ) and nonstationary ( lower 
left ,  b ) give dramatically different results ( right ,  c ,  d ). The stationary signal ( a ) was generated by 
adding fi ve harmonic waves of different frequencies that are well seen in its Fourier spectrum ( c ); 
then randomly chosen small segments were removed from this stationary signal, so forming a 
nonstationary signal ( b ). Decomposition of this nonstationary signal using FFT leads to a very 
“rich” spectrum of frequencies ( d ), so that it is impossible to recognize fi ve original frequencies. 
On the other hand, application of Higuchi’s algorithm gives similar values of average fractal 
dimension,  D   f  , for both signals [ 23 ]       
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noise to the signal does not change characteristic qualitative features of the trans-
formed signal,  D   f   ( t ), and changes fractal dimension values only slightly (Fig.  25.5 ).

   Calculation of  D   f   ( t ) may be considered as a transformation of the analyzed sig-
nal in time domain, transformation that compresses the data. So, it is much easier to 
observe qualitative changes of the analyzed signal while just looking at the graph of 
its  D   f   ( t ) than while looking at graph of the time series itself. While changes in the 
analyzed EEG signal may be barely noticed, just a visual inspection of its  D   f   ( t ) may 
clearly demonstrate changes evoked by the external stimulus. For example, changes 
of  D   f   ( t ) due to photostimulation that is routinely used in EEG registration proce-
dures show that the brain reaction is the most intensive when a healthy person is 
stimulated with light fl ashing with frequency of 18 Hz (Fig.  25.6 ). In some neuro-
logical diseases, sensitivity to light may be changed.

   It is important that there do not exist “normal values” of  D   f   . One should compare 
 D   f   for the given subject in different moments (“before” and “after,” [ 9 ]) rather than 
compare  D   f   of different subjects at the given moment. Averaging individual  D   f   val-
ues over a group of subject may lead to unreliable results. Therapy of some patho-
logical states is based on controlling chaos in the brain by chemical drugs or by 
physical fi elds. So, changes in EEG signal complexity measured by Higuchi’s frac-
tal dimension may be used for the assessment of the applied therapy. 

 For those who become attached to Fourier analysis, it is of importance that there 
exist simple relation between  D   f   ( t ) and results of spectral analysis. Namely, when 
during some time interval  D   f   ( t ) increases, then in the spectrum of the analyzed sig-
nal power of higher frequencies also increases (Fig.  25.7 ).

  Fig. 25.5    Fractal dimension a short epoch of EEG data compared with fractal dimension calcu-
lated for the same data with artifi cially added noise. When signal-to-noise ratio is 21 dB, there is 
practically no difference with the fractal dimension for raw data; when signal-to-noise ratio is 
7 dB, the differences are still small and the “tooth” is still preserved [ 17 ]       
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25.4        Examples of Application of Fractal Analysis 
to EEG Signals 

 We have applied fractal analysis of EEG signals to several biomedical issues [ 20 , 
 25 ] such as monitoring the depth of anesthesia, sleep staging, seasonal affective 
disorder (SAD), and infl uence of electromagnetic fi elds generated by cellular 
phones. 

  Fig. 25.6    Changes in fractal dimension of EEG signal (T6-O2) of a healthy person evoked by 
photostimulation during routine EEG examination [ 20 ]       

a b c d

  Fig. 25.7    Fractal dimension of EEG signal correlates with the spectrum of the signal. ( a ) Fractal 
dimension for 80 s. EEG epoch; ( b – d ) FFT analysis for 10 s intervals of the same EEG-epoch: ( b ) 
for the interval 1–10 s, for which fractal dimension is around average; ( c ) for the interval 40–50 s, 
for which fractal dimension is above average; ( d ) for the interval 54–64 s, for which fractal dimen-
sion is below average [ 15 ]       
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25.4.1     Seasonal Affective Disorder: Artifacts in EEG May 
Be Important for Diagnosis 

 Routinely the changes in EEG signals due to eye blinking are considered to be arti-
facts and are eliminated from the signal before its spectral analysis. By applying 
fractal analysis, we have found that analysis of short time EEG signal intervals 
around the moments of eyes-opening/eyes-closing may serve as an important tool in 
assessing infl uence of bright light therapy (BLT) in patients with seasonal affective 
disorder (SAD) [ 6 ]. Fractal analysis shows that when an eyes-opening event occurs, 
fractal dimension grows from 1.1–1.3 to 1.5–1.6 in the occipital channels and even 
to 1.8 in the frontal channels; when the eyes remain open fractal dimension dimin-
ishes, to rise again when an eyes-closing event occurs (Fig.  25.8 ).

   We found that in patients suffering from SAD the “relaxation” of  D   f   after eyes- 
opening/eyes-closing is slower than in healthy subjects [ 6 ], but after BLT speed of 
relaxation becomes much closer to that of healthy persons. It suggests that adapta-
tion to the environment is much slower in persons with SAD and that BLT causes 
the adaptation to be quicker. We also introduced a parameter characterizing changes 
of the fractal dimension of EEG signal during eyes-opening and subsequent eyes- 
closing –  open -/ closed - eyes ratio  ( FD - ratio ). We observed that in healthy subjects, 
this ratio is close to 1.0. For SAD patients the  FD - ratio  highly correlates with 
patients’ assessment based on psychological Hamilton Depression Rating Scale 
(HDRS). In patients high on HDRS,  FD - ratio  differs from 1.0, but after photother-
apy the FD-ratio “normalizes” – it becomes closer to 1.0. Fractal analysis of epochs 
in EEG signal containing eye blinking “artifacts” may help doctors in diagnosis of 
SAD and in assessing BLT therapy impact on the patient. 

 We have also demonstrated that in patients suffering from SAD the mean  D   f   of 
EEG signal is smaller than in healthy subjects and that BLT makes the mean value 
of  D   f   in those suffering with SAD to increase. But application of  D   f  ( t ) for assessing 
therapy of persons with SAD is interesting also because it illustrates the fact that the 
speed of changing of  D   f   may be of greater importance than the specifi c values of  D   f  . 
Any short-lasting disturbance of a sensory stimuli causes changes in EEG signal, 
but shortly after it “relaxation” occurs and the state that was before the disturbance 
is regained more or less rapidly.  
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25.4.2     Sleep Staging: One May Analyze Raw EEG Data 
Without Artifact Elimination 

 Unlike in the case of BLT, sleep staging requires very long, whole night acquisition 
of EEG signals. So it is important to propose quick semiautomatic method for anal-
ysis of these records for sleep diagnostics. And our method is also based on fractal 
analysis [ 18 ]. 

 It is possible to determine ranges of  D   f    corresponding to wakefulness and differ-
ent sleep stages. Clinicians have suggested using for this purpose current source den-
sity (CSD) signals, i.e. from EEG signal at given electrode, the mean of the signals on 
four neighbor electrodes is subtracted; for example, C3_CSD signal is calculated as

  
C CSD F C T C P C Cz C .3 3 3 3 3 3 3 3 4_ /= -( ) + -( ) + -( ) + -( )éë ùû    

CSD signal is the fi rst approximation of the surface Laplacian. 
 For C3_CSD signals using clinician-made hypnograms of 15 healthy subjects, 

we have found the following ranges of  D   f   [ 16 ] (Fig.  25.9 ):

    Awake:     1.6 ≤  D   f    
  Stage 1:   1.525 ≤  D   f   <1.6  
  REM:    1.475 ≤  D   f   <1.525  
  Stage 2: 1.385 ≤  D   f   <1.475  
  Stage 3: 1.305 ≤  D   f   <1.385  
  Stage 4:      D   f   <1.305    

 If the intervals are chosen, then a very quick sleep stager based on  D   f  ( t ) may easily be 
constructed. And the agreement of hypnograms obtained by this computerized method 
with the hypnograms obtained by the human scorer is about 70 %. Computerized methods 
that are based on comparison of automatic classifi cation of sleep stages (in our case based 
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on fractal dimension of EEG signal) and automatic classifi cation will not be better than 
classifi cations made by human scorers that had been used “to instruct” the algorithm. By 
the way, human scorers can have an inter- scorer (human-human) agreement of much less 
than 70 %. Visual evaluation of sleep stages according to Rechtschaffen and Kales [ 33 ] 
has rather limited inter-rater reliability as demonstrated in the experiment made by physi-
cists on physicians [ 30 ] – hypnograms constructed by several sleep specialists based on 
the same EEG record turned out to be extremely different. Our sleep stager may be indi-
vidualized by the user – clinician can introduce ranges of  D   f   for different sleep stages 
based on his/her own data and even correct them for individual patients if necessary. 

 It is important that if one combine stage 1 and REM as well as stage 3 and stage 
4, one gets practically the same results in staging while analyzing raw EEG signal 
as while analyzing the same signal without artifacts [ 14 ] (Fig.  25.10 ). Such a quick 
analysis of raw data may be useful in health screening.

25.4.3        Infl uence of Electromagnetic Fields: Comparing 
Qualitative Features of  D   f  ( t ) 

 The infl uence of external electromagnetic fi elds (EMF) on the human brain is not 
fully understood, because it depends on so many individual characteristics of the 
brain at the given moment as well as on several characteristics of applied fi eld 
and its changes in time. Comparing fractal dimension of EEG signal registered 
under the infl uence of EMF, e.g. when the patient is lying down on a so-called 
magnetic mattress when the intensity of the applied fi eld has different values, we 
may point at persons who are hypersensitive to applied EMF [ 15 ,  21 ] (Fig.  25.11 ).

   We have compared results of linear Fourier analysis of EEG signals with those 
obtained by fractal analysis using Higuchi’s method while analyzing the infl uence 
of cellular phones [ 8 ]. Why spectral analysis seemed to demonstrate usefulness of 
so-called neutralizing protective devices (NPDs) for all users, fractal analysis shown 
that such devices may probably be useful only for about 15 % of population – those 
who may really belong to a  high - risk  ( hypersensitive ) group of cellular phone users. 

900
a b

800

700

600

500
400

300

200

co
u

n
ts

100

1 1.1 1.2 1.3 1.4 1.5
Df

with artifacts

Df = 1.40 + -0.07

Df = 1.48 + -0.07

REM or stage=1

stage=2

stage=3 or 4

Df = 1.28 + -0.06

1.6 1.7 1.8 1.9 2
0

900

800

700

600

500
400

300

200

co
u

n
ts

100

1 1.1 1.2 1.3 1.4 1.5
Df

without artifacts

Df = 1.39 + -0.06

Df = 1.48 + -0.06

REM or stage=1

stage=2

stage=3 or 4

Df = 1.28 + -0.06

1.6 1.7 1.8 1.9 2
0

  Fig. 25.10    Comparison of  D   f   distributions during stage 3/4, stage 2, and stage1/REM, calculated 
from the same EEG signal of a healthy person C3_CSD, sampling frequency 128 Hz, 4 s window 
= 1 “count”): raw signal (with artifacts,  a ) and after removing of artifacts by a specialists (without 
artifacts,  b ). Mean fractal dimension is insensitive to artifacts – numbers of counts are smaller in 
the second case, but  D   f   remains the same in both cases [ 14 ]       

 

25 Fractal Analysis of Electroencephalographic Time Series (EEG Signals)



424

 Our fractal method may serve for quick and easy assessment of  individual sus-
ceptibility  to EMF used in mobile communication as well as for testing of different 
cellular phone models for their certifi cation by the appropriate institutions. So-called 
norms of exposure to EMF mislead even medical doctors. They are based only on 
 thermal interactions  as characterized by the so-called specifi c absorption rate (SAR) 
while they completely neglect  informational interactions  [ 24 ] that show much more 
complicated dependence on interpersonal differences.  

25.4.4     Epileptic Seizures and Epileptic-Like Seizures 
in Economic Organisms 

 During epileptic seizure chaos in the brain diminishes, neurons start fi ring in coor-
dinated manner, and fractal dimension of EEG signal suddenly drops down 
(Fig.  25.12a ).  Yes ,  it is healthy to be chaotic ! It is very interesting that in an “eco-
nomic organism” (and economists do like such personifi cations) one may observe 
very similar phenomena, usually named “fi nancial crisis” [ 10 ]. The possibility of 
prediction of epileptic seizures based on  D   f  ( t ) of EEG signal as well as the possibil-
ity of predicting economic failure based on fractal analysis of economic indices like 
Dow Jones needs further intensive investigations.
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25.4.5        Psychiatry: Assessing Effects of Electroconvulsive 
Therapy 

  Electroconvulsive therapy  ( ECT ) (also known as  electroshocks ) is a successful treat-
ment for depression and other mental disorders. We have analyzed nonstationary 
EEG signals measured on frontal electrodes of patients who have received ECT. The 
effects of ECT on the patients are monitored with EEG. EEG evoked by ECT (ECT- 
EEG) exhibits specifi c patterns with four phases, but there are differences between 
individuals.  D   f  ( t ) may be a help for clinicians to simplify analysis of ECT-EEG 
(Fig.  25.13 ) and to fi nd new properties not identifi ed by other methods. For exam-
ple, it was found that psychotic depressed patients show higher increase of  D   f  ( t ) in 
phase 4. in comparison with bipolar depressed patients, so indicating a difference in 
neurodynamics between two groups.

25.4.6        Anesthesiology: Monitoring the Depth of Anesthesia 

 The so-called bispectral index (BIS) used in the BIS Monitors (Aspect Medical 
Systems, Newton, MA, USA) is commonly accepted as a measure of the depth of 
anesthesia, but the algorithms used in BIS Monitors are not in public domain. We 
have proposed a new method of monitoring the depth of anesthesia by assessing 
complexity of EEG signal based on Higuchi’s fractal dimension [ 2 ,  19 ]. 
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  Fig. 25.12    Diminishing of  D   f   calculated from EEG registered during epileptic seizure ( upper left ), 
means diminishing of chaos in the human brain. During epileptic seizure ( a ), diminishing of  D   f   
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striking similarity with epileptic seizure, despite of the huge difference in time scales. It does jus-
tify the concept of “epileptic seizures in economic organisms” ( b ) [ 20 ]       

 

25 Fractal Analysis of Electroencephalographic Time Series (EEG Signals)



426

 In addition to registration of EEG signal and BIS, the depth of anesthesia was 
continuously tested and classifi ed by a specialist-anesthesiologist to six OAA/S lev-
els ( Observer ’ s Assessment of Alertness and Sedation ); patients were judged to be 
conscious if the OAA/S score was between 3 and 5 and unconscious if the OAA/S 
score was less than 3. Example of our results is shown on Fig.  25.14 . It seems that 
 D   f   ( t ) of EEG signal despite of its simplicity is even better suited for monitoring of 
the depth of anesthesia and sedation than BIS index.
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  Fig. 25.13     D   f  ( t ) of ECT-EEG on Fp1 clearly indicates transition from phase 3. to phase 4. not 
easily identifi ed in the signal itself nor by other methods of analysis [ 36 ]       

0:02

F
on

ta
ny

l: 
0.

1m
g 

   
M

id
az

ol
am

: 1
m

g
P

ro
po

fo
l: 

40
m

g
P

ro
po

fo
l: 

20
m

g

P
ro

po
fo

l: 
20

m
g

P
ro

po
fo

l: 
20

m
g

P
ro

po
fo

l: 
20

m
g

P
ro

po
fo

l: 
20

m
g

P
ro

po
fo

l: 
40

m
g

100

80

60

40

20

0
0:07 0:12 0:17 0:22 0:27 0:32 0:37 0:42 0:47 0:52 0:57

5

4

3

2

1

0
OAA/S

O
A

A
/S

BIS

(Df-1)*100

  Fig. 25.14    Anesthesia was controlled according to BIS (target BIS value between 60 and 80) with 
intermittent boluses of propofol. At 16. and 27. min, sedation was lightened to level 3 in OAA/S 
score ( black step curve ,  right-side scale ). At those moments fractal dimension of EEG ( lower 
light-gray curve ) drawn here as ( D   f   - 1 )* 100  to be easily compared with BIS index ( upper dark- 
gray curve ) (cf.  left-side scale ), rose rapidly to rich the highest value. BIS increased only once (at 
27. min), while at 16 min it remained practically unchanged. Awakening during surgical procedure 
and at the end of it can be predicted by rise of ( D   f   - 1 )* 100  toward its highest value       
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25.5         Conclusions 

 Any biosignal used in clinical setting has to be appropriately processed and visual-
ized. EEG signal is used for monitoring the state of the brain. We have performed 
translational researches regarding the representation and analysis of the EEG signal 
complexity based on Higuchi’s algorithm, and we have drawn multidisciplinary 
applications. 

 Our methods of EEG signal analysis are based on Higuchi’s algorithm [ 8 ]. Higuchi’s 
fractal dimension is a quantifi er that can be evaluated directly in time domain without 
reconstruction of a strange attractor in a multidimensional phase space. The algorithm 
is easy and fast in comparison with other methods and gives compression of informa-
tion. The algorithm is also very quick and maybe implemented in real time even on a 
PC. Contrary to other methods (such as the correlation dimension), it requires only 
short time intervals – a window containing 100 data point is enough to calculate one 
value of Higuchi’s fractal dimension. 

 The algorithm is also highly insensitive to noise. These properties are very 
important since EEG signal is very noisy and remains stationary only during short 
intervals. One often forgets that linear methods like FFT or wavelet transform work 
properly only for stationary signals. 

 Nonlinearity in the brain is observed even at the neuronal level since the dynami-
cal behavior of individual neurons is governed by threshold and saturation phenom-
ena. It is obvious for any physicist that human organism is a highly complex 
nonlinear system. Development of personal computers enables wider and wider 
application of nonlinear methods, but linear methods are still in use because of the 
long-time tradition since they could have been applied using just pen and paper. 
Fractal dimension method may be very useful for medical assessment and diagnosis, 
in particular when combined with new nanosensors used for biosignal registration.     
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Chapter 26
On Multiscaling of Parkinsonian Rest Tremor 
Signals and Their Classification

Lorenzo Livi

Abstract Self-similar stochastic processes and broad probability distributions are 
ubiquitous in Nature and in many man-made systems. The brain is a particularly 
interesting example of (natural) complex system where those features play a pivotal 
role. In fact, the controversial yet experimentally validated “criticality hypothesis” 
explaining the functioning of the brain implies the presence of scaling laws for cor-
relations. Recently, we have analyzed a collection of rest tremor velocity signals 
recorded from patients affected by Parkinson’s disease, with the aim of determining 
and hence exploiting the presence of scaling laws. Our results show that multiple 
scaling laws are required in order to describe the dynamics of such signals, stressing 
the complexity of the underlying generating mechanism. We successively extracted 
numeric features by using the multifractal detrended fluctuation analysis procedure. 
We found that such features can be effective for discriminating classes of signals 
recorded in different experimental conditions. Notably, we show that the use of 
medication (L-DOPA) can be recognized with high accuracy.

Keywords Scaling • Fluctuation analysis • Parkinsonian rest tremors • Deep brain 
stimulation • Classification

26.1  Introduction

Memory is one of the most interesting aspects characterizing many natural, social, and 
financial processes [6, 17, 23]. Memory can be quantified in different ways, depending 
on the particular features and effects that one wants to highlight. One of the most com-
mon approaches in the study of real-valued time series is the analysis of the autocor-
relation function. However, autocorrelation captures only linear contributions of the 
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past on future events. A more general setting is offered by measures based on mutual 
information, such as excess entropy and related quantities [9, 13, 56]. In the linear set-
ting provided by the study of the autocorrelation function, the memory extent can be 
quantified as the characteristic time scales defining the decay of the autocorrelation. A 
time series possesses short memory when such decay is consistent with an exponential 
functional form, meaning that the influence of the past to the current state is limited in 
time. On the other hand, when the decay follows a power law, the time series is said to 
manifest long-term correlations (LTC), and the strength of such correlations is referred 
to as the degree of persistence of the generating stochastic process. Persistence of a 
(stationary) stochastic process [46] is quantified by the self-similarity coefficient, 
called Hurst exponent H∈[0,1]. In practice, when the process corresponds to uncor-
related noise, we obtain H = 0.5; if the process is persistent (correlated) or anti-persis-
tent (anti-correlated), H will be greater than and less than 0.5, respectively.

Several methods have been proposed to extract and analyze the fluctuations of the 
stationary component of a time series [2, 22, 45, 54], including the well-known 
detrended fluctuation analysis (DFA). DFA has been shown to be successful in a broad 
range of applications [30, 34, 49]. The DFA procedure has been generalized [5, 12, 31, 
41] in order to account for multiscaling, implying the use of several scaling exponents 
each one tailored for a different magnification level of the fluctuations. A time series 
is called fractal or multifractal whether a single or multiple scaling exponents are nec-
essary in order to characterize the fluctuations. Multifractal time series are also char-
acterized by a nontrivial multifractal spectrum, also called singularity spectrum, which 
provides a synthetic description of the process complexity. Multifractality could 
emerge also a by-product of an underlying heavy- tailed distribution of the data [18]. 
Two prototypical examples of self-similar processes are fractional Brownian motion 
and fractional Lévy stable motion [23]. Both families of processes are characterized by 
stationary increments. In the first case, the increments follow a Gaussian distribution, 
while in the latter increments are distributed according to an α-stable distribution, 
accounting thus also for heavy tails – the latter is in fact a generalization of the former 
since a Gaussian distribution is a particular example of α-stable distribution.

Fractal and multifractal analysis of time series plays a pivotal role in many scien-
tific contexts, including neuroscience and medicine in general [15, 16, 44, 55]. Typical 
examples of applications are human gait analysis [19], background neuronal noise-like 
activity in the human and mouse hippocampus [48], analysis of cervical tissue samples 
[21], MRIs for tumor characterization [29], EEG signals [33], protein contact net-
works [37], and electromyograms for the diagnosis of neuromuscular diseases [52].

Parkinson’s disease (PD) is a neurodegenerative disorder that targets the central 
nervous system. Such a disease is characterized by the progressive loss of dopami-
nergic neurons in the substantia nigra of the midbrain. The most evident symptoms 
associated with PD are tremors, bradykinesia, rigidity, and postural instability, 
while in more advanced stages of the disease, other factors might be present, such 
as different types of cognitive impairments (e.g., dementia) and changes in behavior 
and/or emotional states [8, 25]. The causes of PD are, however, still largely unknown. 
This has led to multidisciplinary research involving, for instance, the use of artificial 
neural networks for the purpose of prediction of related signals [20, 57] and mutual 
information-based methods for detecting upper limb motor dysfunction [14]. Deep 
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brain stimulation [38, 39, 42, 51] is a neurosurgical procedure that involves a surgi-
cal intervention to implant electrodes in brain areas suitable for receiving electrical 
impulses [3]. DBS proved to be effective in the treatment of PD and other diseases, 
such as obsessive-compulsive disorders [10].

In our recent study [35], we have analyzed 48 signals recorded from 12 distinct 
subjects affected by PD [8, 24, 53]. Tremor signals were recorded by means of a 
velocity laser pointed to the patients’ index finger. For each subject, signal recording 
was performed in four different settings, given by the combination of the use of DBS 
and l-DOPA medication. Using the same data, Yulmetyev et al. [58] performed a 
comprehensive analysis by using the statistical theory of non-Markov processes and 
flicker-noise spectroscopy. In addition, the attenuation effects of DBS on locomotion 
and tremor over different time scales were further investigated by Beuter and Modolo 
[7], who developed a computational model of biological neural networks.

In our work [35], we have analyzed such data by focusing on LTC and multifractal 
signatures, both used for the purpose of representation (e.g., feature extraction) and 
further discriminative analyses. In order to obtain a baseline for comparison, the 
developed feature-based representation (FBR) was compared with the one offered by 
the power spectra. Our results showed that such rest tremor signals present a clear 
multifractal signature and different forms of LTC. Notably, the effect of medication 
was clearly recognizable in the signals, suggesting also a qualitative change of LTC 
from anti-persistent to persistent. We successively tested several instances of the two 
FBRs of the signals in the setting of supervised classification and (nonlinear) feature 
transformation. We considered three different classification problems involving the 
recognition of (i) the presence of medication, (ii) the use of DBS, and (iii) the high- 
and low-amplitude tremor groups. Classification results showed that the use of medi-
cation can be discriminated with higher accuracy. In particular, results with the highest 
accuracy were obtained with a parsimonious, two- dimensional representation encod-
ing only the magnitude of the LTC and multifractality present in the signals.

Experimental evidence suggests that such a two-dimensional time series repre-
sentation could play an important role in clinical applications involving the study of 
Parkinsonian rest tremors. In addition, our results reconfirmed the (already well- 
known) usefulness of fractal analysis in the analysis biomedical signals.

The structure of this chapter is as follows. In Sect. 26.2 we provide the details of 
multifractal detrended fluctuation analysis (MFDFA), the procedure used to calculate 
LTC and MFS. In Sect. 26.3 we describe the results presented in Livi et al. (2016). 
Finally, in Sect. 26.4 we offer concluding remarks and discuss future directions.

26.2  Multifractal Detrended Fluctuation Analysis 
for Nonstationary Time Series

Conventional methods employed to analyze the LTC properties of a time series 
(e.g., fluctuation, spectra, and R/S analysis [4, 47, 49]) could be misleading when 
such time series are affected by non-stationarities [11, 30]. In many cases a process 
is driven by an underlying trend [27], which operates at specific time scales, like 
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seasons in the analysis of data related to a natural phenomenon and days in financial 
market analysis. Usually, when investigating memory properties of a process, one is 
interested in the fractal properties pertaining the intrinsic fluctuations of the pro-
cess. Several methods have been proposed to extract and analyze the fluctuations of 
the stationary component of a time series, such as DFA, detrended moving average 
[2], wavelet leaders [1, 54], adaptive fractal analysis [45], and the so-called 
geometric- based approaches [22]. The DFA procedure has been generalized in the 
so-called multifractal detrended fluctuation analysis (MFDFA) [5, 12, 31, 41], 
which accounts also for multiscaling thus implying the possibility to characterize a 
time series from a multilevel perspective.

In the following, we provide the essential technical details regarding MFDFA 
[31]. A very useful and hands-on guide discussing the details of MFDFA has been 
recently published by Ihlen [28], which includes also a link to a ready-to-use 
MATLAB® toolbox.

Given a time series x of length N, the following steps are performed in order to 
estimate the LTC and multifractal properties of x. MFDFA operates by analyzing 
the profile Y(i), which is obtained by integrating x(j), with j=1,2…,i. Y is then 
divided in nonoverlapping segments of equal length s. Since N might not be a mul-
tiple of s, the operation is repeated by starting from the opposite end, obtaining thus 
a total of segments. Successively, a local detrending operation is executed by calcu-
lating a polynomial function on each of the segments. Computing a local fit helps 
removing non-stationarities compatible with trends that are well modeled by poly-
nomial functions. The degree of the fitting polynomial has to be tuned according to 
the expected trending order of the time series. For instance, by choosing a quadratic 
function, it would be possible to remove quadratic trends in Y and, accordingly, 
linear trends in the original time series, x. However, periodic or fast-changing trends 
require different and more advanced methods of detrending [36].

The procedure then computes the local variance, denoted as F2(v, s), for each 
segment v = 1, …, 2Ns. The qth-order moment of the local variance over all seg-
ments is evaluated as
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with q∈R. The q-dependence of the fluctuation function (26.1) allows to highlight 
the contributions of both high and low fluctuation magnitudes. Hence, the q param-
eter serves as a sort of lens in order to inspect the time series at different resolutions. 
Notably, for q > 0 large fluctuations have higher impact in Eq. 26.1; conversely, for 
q < 0 the impact of the smaller fluctuations is enhanced. The case q = 0 cannot be 
computed by means of Eq. 26.1 and so a logarithmic form has to be used [31]. In 
order to check if the scaling of the variance is self-similar, the last steps are repeated 
for different scales s of increasing size.

The self-similarity exponent characterizing the scaling of the fluctuations can be 
determined by computing the slope of the doubly logarithmic plot of Fq (s) versus s, 
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computed for each value of q. If the series x is long-term correlated, then Fq (s) is 
well approximated – for large values of s – by the power law form:
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(26.2)

The H(q) exponent is the generalization of the Hurst exponent; the original DFA 
formulation is obtained setting q = 2. When H(2) >1/2 the time series possesses long-
term, positive correlations; for H(2) <1/2 the series is anti-correlated; and H(2) = 1/2 
indicates that the series is compatible with uncorrelated noise – e.g., white Gaussian 
noise. A homogeneous scaling over all fluctuation magnitudes indicates that H(q) is 
independent from q, suggesting that the series is monofractal. For instance, mono-
fractal time series can be obtained by exploiting the fractional Brownian motion 
model. On the other hand, when the small fluctuations scale differently from the 
large ones, then the series could be considered as multifractal. Many real-world time 
series posses multifractal properties. Synthetic examples can be easily obtained as 
well by exploiting the α-stable distributions proper of the Lévy motion.

The self-similarity exponent, H(q), can be used to bridge time series with the 
conventional fractal and multifractal analysis of measures [26]. This is performed 
by exploiting the concept of generalized partition function, Zq (s). Starting from 
Eq. 26.1 and using Eq. 26.2, it is possible to define

 
Z s F v s sq

q

v

N s q( ) = ( ) =
( )∑ , ,

1

/ ∼ t

 
(26.3)

where τ(q) = qH(q) − 1 is the q-order mass exponent (also called Rényi scaling expo-
nent) of the generalized partition function. The multifractal spectrum, denoted as 
f(α), provides a compact description of the multifractal character of the time series. 
It can be obtained via the Legendre transform of τ(q):

 
f q qa a t( ) = - ( ) ,  (26.4)

where α is equal to the derivative of τ(q) with respect to q. It is worth noting that f(α) 
corresponds to the Hausdorff dimension of a subset of the input data where the 
Hölder exponent is equal to α. Using τ(q) it is possible to express the generalized 
Hurst exponent, H(q), directly in terms of α and f(α), and vice versa:
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The multifractal spectrum (26.5) encodes important information regarding the 
degree of multifractality and the peculiar sensitivity of the time series to fluctuations 
with high/low magnitudes. The width of the support of f(α), shortened in the follow-
ing as MFSW, is defined as
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(26.6)

MFSW offers an important quantitative indicator of the multifractal signature 
that is present in the data. The higher the width, the higher the complexity of the 
time series. In Eq. 26.6, qmin and qmax represent the lower and upper values adopted 
for the q range, respectively.

26.3  Evidence of Multiscaling in Parkinsonian Rest Tremor 
Velocity Signals

In the following, we use the quantities introduced above in order to characterize 
time series representing rest tremor velocity signals recorded from patients affected 
by Parkinson’s disease.

Figure 26.1 offers a visual representation of the statistics for H and MFSW for 
the three different categorizations of the data. LTC properties of the signals yield 
statistically significant differences only when considering the impact of medica-
tions. It can be observed that the use of l-DOPA changes the signal LTC properties 
toward the positively correlated pole, while in the absence of medication, the signals 
are clearly anti-correlated (upper panels). In our opinion, this is an interesting aspect 
that stresses the need for further developments in future research studies. All signals 
are multifractal with a relevant multifractal signature quantified by the MFSW 
(middle panels). It is worth noting that the multifractal signature is sufficiently 
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 preserved after shuffling the time series (lower panels), suggesting that LTC are not 
the only source for the observed multifractality. In fact, shuffling the time series 
destroys LTC and any deterministic trend that might influence the actual degree of 
multifractality present in the data. As discussed in Ref. [31], multifractality could be 
observed as consequence of LTC, a broad probability density function of the data, 
or as a combination of both cases.

Let us focus now on a specific patient. We take into account the effect of using the 
medication on the resulting LTC and multifractal properties. Figure 26.2 shows four 
plots depicting the scaling of the fluctuations (Fig. 26.2a), the generalized Hurst 
exponents (Fig. 26.2b) while varying q, the q-order mass exponents (Fig. 26.2c), and 
finally the MFS (Fig. 26.2d). As it is possible to observe, the use of medication (indi-
cated as med-On) yields a persistent signal (H(2) = 0.67), while without medication 
we obtain anti-persistence (H(2) = 0.38). This is an important qualitative difference 
noted in the data. In addition, we notice that the use of medication produces a signal 
with a narrower MFS than considering the signal recorded without the medication 
effect (Δα = 0.64 vs. Δα = 0.85). This suggests that the absence of medication pro-
duces a tremor velocity signal with a richer and hence more complex structure, i.e., 
more heterogeneous in terms of scaling. The negative correlation dimension 
(τ(2) = −0.26) for the med-Off case is a direct consequence of the anti-persistence. 
Finally, as previously mentioned, shuffling the time series does not entirely destroy 
the multifractality of the signals. Table 26.1 summarizes all relevant quantities.

Let us now turn our attention to the problem of classifying such signals. Automatic 
classification of rest tremor signals is an important and useful research objective.

A first step in this direction when processing time series consists in reducing the 
dimensionality of the extracted features. To this end, we have used principal com-
ponent analysis (PCA) and its nonlinear version called kernel-PCA (kPCA) [50]. In 
order to provide evidence for the effectiveness of the developed FBR using LTC and 
MFSW, in the following we report the results obtained on three different classifica-
tion problems conceived on the same dataset. Notably, we face the problem of dis-
criminating between the two groups (high- and low-amplitude tremors) and 
recognizing the use of both medications and DBS.

We have selected the well-known support vector machine (SVM) as supervised 
classification system [50], which is configured with a Gaussian kernel. Notably, we 
used a version known as C-SVM, where C is a hyper-parameter controlling the com-
plexity of the resulting model; in SVM the structural complexity of the model is 
measured by considering the number of SVs computed during the training stage. 
SVM offers an efficient and fast solution for classification problems, even when deal-
ing with a dataset of limited size (as in our case). Both hyper-parameters, i.e., C and 
the width of the Gaussian kernel, are determined by preliminary tests using a grid 
search scheme. Since our dataset, regardless of the adopted FBR, is limited to 48 pat-
terns, we tested the recognition capability of C-SVM according to the leave- one- out 
setting: each pattern is tested on one pattern at a time by learning a C-SVM model on 
the remaining 47 patterns. We report the number of errors (for each class), AUC, and 
the average number of SVs as an indicator of C-SVM model structural complexity.

Table 26.2 summarizes the results for the three classification problems presented 
in [35]. For each classification problem, we report the results obtained on the five 
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Table 26.1 Summary of 
results shown in Fig. 26.2

med-
Off med-On

H(2) 0.38 0.67
τ(2) −0.26 0.35
Δα 0.85 0.64
Δα (shuffled) 0.47 0.49

Table 26.2 Classification results

Representation Dimension Errors AUC SVs

med-Off/med-On

H-MFSW 2 7 (5/24, 2/24) 0.85 35.2
MFS-PCA 4 16 (8/24, 8/24) 0.67 44.2
MFS-kPCA 4 16 (10/24, 6/24) 0.67 31.6
POWER-PCA 2 22 (22/24, 0/24) 0.54 46.0
POWER-PCA 3 22 (22/24, 0/24) 0.54 46.5
POWER-PCA 4 23 (23/24, 0/24) 0.52 46.5
POWER-kPCA 2 13 (13/24, 0/24) 0.73 31.5
POWER-kPCA 3 9 (9/24, 0/24) 0.81 31.1
POWER-kPCA 4 8 (8/24, 0/24) 0.83 31.1
DBS-Off/DBS-On

H-MFSW 2 48 (24/24, 24/24) 0.00 47.0
MFS-PCA 4 29 (14/24, 15/24) 0.40 47.0
MFS-kPCA 4 26 (8/24, 18/24) 0.46 44.6
POWER-PCA 2 48 (24/24, 24/24) 0.00 46.9
POWER-PCA 3 48 (24/24, 24/24) 0.00 46.9
POWER-PCA 4 48 (24/24, 24/24) 0.00 46.9
POWER-kPCA 2 23 (3/24, 21/24) 0.52 45.2
POWER-kPCA 3 23 (3/24, 21/24) 0.52 45.3
POWER-kPCA 4 23 (3/24, 21/24) 0.52 45.9
High-tremor/low-tremor

H-MFSW 2 16 (16/16, 0/32) 0.50 32.7
MFS-PCA 4 21 (14/16, 7/32) 0.45 39.2
MFS-kPCA 4 15 (12/16, 3/32) 0.58 32.2
POWER-PCA 2 16 (16/16, 0/32) 0.50 31.3
POWER-PCA 3 16 (16/16, 0/32) 0.50 31.5
POWER-PCA 4 16 (16/16, 0/32) 0.50 32.2
POWER-kPCA 2 13 (12/16, 1/32) 0.61 29.2
POWER-kPCA 3 14 (13/16, 1/32) 0.58 30.2
POWER-kPCA 4 14 (13/16, 1/32) 0.58 28.9

Taken from Livi et al. [35]
Three different classification problems are faced by considering several feature-based, low- 
dimensional representations: recognition of (i) medication Off–On, (ii) DBS Off–On, and (iii) 
high–low amplitude tremor
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FBRs under consideration. For POWER-PCA and POWER-kPCA we use, in both 
cases, the first two, three, and four principal components in order to evaluate the 
performances by varying the dimensionality of the representation space given by 
the Fourier power spectrum. Results show that the effect of medication allows for a 
more accurate classification. We note that the best result (achieving AUC equal to 
0.85) is obtained with the parsimonious, two-dimensional representation denoted as 
H-MFSW. The per-class errors are also more balanced with respect to the results 
obtained with the two-dimensional version of POWER-kPCA. In general, results 
for the last two problems, namely, “DBS-Off/DBS-On” and “high-tremor/low- 
tremor,” are not convincing – we obtain results compatible with a random classifier. 
This fact suggests that the effect of medication on the 48 subjects seems to be more 
characterizing, allowing for an effective classification regardless of the use of DBS 
or the membership to the high- or low-amplitude rest tremor groups.

26.4  Concluding Remarks and Future Research Perspectives

Methods for analyzing the (multi)fractal properties of time series are instrumental for 
investigating the nonlinearity of biomedical signals recorded from the brain. Here we 
discussed recent results [35] obtained on a collection of signals recorded from 
patients affected by Parkinson’s disease. We have shown that the analysis on long-
term correlations and multifractal properties allows to deduce important insights on 
such signals. Our results show that use of medication (l-DOPA) can be recognized 
with high accuracy. A result of notable interest is the fact that the use of medication 
implies a qualitative change in long-term correlation features with statistically sig-
nificant differences. In fact, experimental conditions involving the use of medication 
produce signals with positive correlations; the absence of medication produces sig-
nals having negative self-similar correlations. Successively, we have exploited fea-
tures of correlations and multifractality for the purpose of developing feature-based 
representations of the original time series. Classification results show that the use of 
medication can be recognized with higher accuracy. Notably, best results have been 
obtained by means of a parsimonious, two-dimensional representation of the original 
time series. Such representation encodes only the Hurst exponent and a signature of 
complexity as expressed by the width of the multifractal spectrum.

Future research directions include the possibility to exploit the so-called local 
Hurst exponent [40] and a direct estimation of the multifractal spectrum [12], which 
proved to be effective also with time series of limited length. Another future direc-
tion could be the analysis of the (multi)scaling of the cross-correlation [32, 43]. In 
such a scenario, the idea is to perform a multilevel analysis of pairs of signals in 
order to characterize the complexity of their coupling over time.

We believe that the presented results could be potentially useful to neuroscien-
tists, suggesting the relevance of using long-term correlations and multifractal 
 signatures for the analysis Parkinsonian rest tremor velocity signals. The developed 
two-dimensional representation provides a parsimonious and cost-effective 

L. Livi



441

 description for rest tremor signals. We suggest that it could be adopted in different 
 real- world clinical settings, even by considering resource-constrained scenarios 
(e.g., on hardware having a limited computational capability).
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Chapter 27
Fractals and Electromyograms

Sridhar Poosapadi Arjunan and Dinesh Kant Kumar

Abstract The complexity nature of the physiological time series can be analysed 
using fractal theory. The nonlinearity of physiological systems have important rel-
evance in modelling complicated surface electromyogram (sEMG) where the inter-
actions and crosstalk occur over a wide range of temporal and spatial scales. Fractal 
theory-based analysis is one of the most promising new approaches for extracting 
such hidden interactions from physiological time series signal like sEMG, which 
can provide information regarding the characteristic temporal scales and the adapt-
ability of muscle activity response. This chapter investigates the use of fractal the-
ory for analysis of sEMG signal for applications in rehabilitation and age-related 
changes in the muscle properties and contraction.

Keywords Fractal • Surface electromyogram • Fractal dimension • Complexity

27.1  Introduction

Fractals refer to objects or signal patterns that have fractional dimension. These 
objects exhibit self-similarity. This defines that the objects or patterns on any level 
of magnification will yield a structure that resembles the larger structure in com-
plexity [32]. The measured property of the fractal objects is scale dependant and has 
self-similar variations in different time scales. Fractal dimension of a process mea-
sures its complexity, its spatial extent or its space filling capacity and is related to 
shape and dimensionality of the process [17]. The concept of fractal can be applied 
to physiological process that is self-similar over multiple scales in time and has 
broadband frequency spectrum. Fractals manifest a high degree of visual complex-
ity [20].

Biosignals such as sEMG are a result of the summation of identical motor units 
that travel through tissues and undergo spectral and magnitude compression. SEMG 
signal in time has the property that patterns (Motor unit action potentials) observed 
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at one sampling rate are statistically similar to the patterns observed at lower sam-
pling rates. These statistically similar patterns suggest that sEMG has self-similarity 
property [2]. Researchers have studied fractal properties of physiological signals to 
characterize normal and pathological signals [1]. To better represent the properties 
of sEMG signal, fractal dimension (FD) of sEMG has been investigated in various 
studies [2, 22, 37].

Several studies [2–4, 8, 17, 20, 22] have reported the use of fractal theory to 
analyse sEMG. These studies determined that fractal dimension can be used to 
quantify the complexity of motor unit recruitment patterns. They also demonstrated 
that the fractal dimension of sEMG signal is correlated with force of contraction.

Fractal dimension represents the scale invariant nonlinear property of the source 
of the signal and is an index for describing the irregularity of a time series. FD 
describes the space filling properties of the object or the curve [7], and in the case 
of sEMG signal, it shows the property of the muscle based on the motor unit recruit-
ment and synchronization. It should be a measure of the muscle complexity to per-
form a particular movement or contraction and not a measure of the level of muscle 
activity.

Study by Basmajian and De Luca [6] has indicated that for low level of isometric 
muscle contraction, there is no change in the size of the muscle while there is mea-
surable change in the muscle dimension during higher levels of muscle contractions 
and during non-isometric contraction.

27.2  Surface Electromyogram (sEMG)

Surface electromyography (sEMG) is the recording of the muscle’s electrical activ-
ity from the surface of the skin. In clinical application, sEMG is used for the diag-
nosis of neuromuscular disorder and for rehabilitation. It is also used for device 
control applications where the signal is used for controlling devices such as pros-
thetic devices, robots and human-machine interface.

The advantage of sEMG is due to its non-invasive recording technique, and it 
provides a safe and easy recording method. The underlying mechanism of sEMG is 
very complex [18] because there are number of factors such as neuron discharge 
rates, motor unit recruitment and the anatomy of the muscles and surrounding tis-
sues that contribute to the signal and its recording. In this chapter, basic concepts of 
generation of sEMG signals and its application will be described.

27.2.1  Generation of sEMG

SEMG signal is generated by the electrical activity of the muscle fibres active dur-
ing a contraction. The signal sources located at the depolarized zones of the muscle 
fibres are separated from the recording electrodes by muscle tissues, which act as 
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spatial low-pass filters on the (spatial) potential distribution. It is closely related to 
the muscle activity, muscle size and a measure of the functional state of muscle 
fibres [6].

27.2.2  Factors That Influence sEMG

The action potentials recorded in sEMG signals are generated by the electrical 
activities in the muscle (Fig. 27.1). The signal contains information related to mus-
cle contraction and condition. Therefore, it is useful to analyse the signal to reveal 
the information without the need to intervene the muscle. The information in sEMG 
signal is related to the following factors that influence the signal.

• Level of contraction
• Localized muscle fatigue
• The thickness of body tissue
• The interelectrode distance
• The artefacts and noises
• Crosstalk muscle signals
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Fig. 27.1 Simulated motor unit action potential (Source: Arjunan and Kumar [3])
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27.3  Fractal Analysis of sEMG

Rehabilitation process, clinical diagnosis and basic investigations are critically 
dependent on the ability to record and analyse physiological signals like ECG, EEG 
and EMG. However, the traditional analyses of these signals have not kept pace with 
major advances in technology that allow for recording and storage of massive datas-
ets of continuously fluctuating signals. Although these complex signals have recently 
been shown to represent processes that are nonlinear and nonstationary in nature, the 
methods used to analyse these data often assume to be linear and stationary. Such 
conventional techniques include analysis of means, standard deviations and other 
features of histograms, along with classical power spectrum analysis [12, 18, 23].

Studies have shown that sEMG signals may contain hidden information that is 
not extractable with conventional methods of analysis [12, 19, 23, 28]. Such hidden 
information promises to be of clinical value as well as to relate to basic mechanisms 
of muscle property and activity function. Fractal-based analysis is one of the most 
promising new approaches for extracting such hidden information from physiologi-
cal time series signal like sEMG, which can provide information regarding the char-
acteristic temporal scales and the adaptability of muscle activity response [7–9, 31].

27.3.1  Self-Similarity of sEMG

In complex biosignals like sEMG, there exists self-similarity phenomenon, in which 
there is a small structure (motor unit) that statistically resembles the larger structure. 
The source of sEMG is a set of similar action potentials originating from different loca-
tions in the muscles. Because of the self-similarity of the action potentials that are the 
source of the sEMG recordings over a range of scales, sEMG has fractal properties.

The self-similarity property of sEMG was tested using the following procedure 
mentioned in the study by Kalden and Ibrahim [24].

• If y(k) be a time series signal, then ym (k) is the aggregated process with nonover-
lapping blocks of size ‘m’ such that
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(27.1)

• For the signal or process, y (k) to be self-similar, the variance of the aggregated 
process decays slowly with m, and this self-similarity is measurable by H, that is,

 
Var y mm( ) -( ) » b

 
(27.2)

• with 0 1< <b  and

 H = -1 2b /  (27.3)
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where H expresses the degree of self-similarity; large values indicate stronger 
self-similarity.

27.4  Method to Determine Fractal Dimension

Fractal dimension (FD) analysis is frequently used in physiological signal process-
ing like sEMG, EEG and ECG [14, 20, 34]. Applications of FD in these physiologi-
cal signals include two types of approaches [15]:

 1.  Signals in the time domain
This approach estimates the FD directly in the time domain or original wave-
form domain, where the waveform or original signal is considered a geometric 
figure.

 2.  Signals in the phase space domain
Phase space approaches estimate the FD of an attractor in state space domain. 
Calculating the FD of waveforms is useful for transient detection, with the addi-
tional advantage of fast computation. It consists of estimating the dimension of 
a time-varying signal directly in the time domain, which allows significant 
reduction in program runtime [15]. Fractal dimension of sEMG is calculated to 
determine the transients in sEMG that is related to the overall complexity of the 
muscle properties.

Three of the most following prominent methods for computing the FD of a wave-
form [21, 25, 35] have been applied to the analysis of signals and a variety of engi-
neering systems:

• Higuchi’s algorithm [21]
• Katz’s algorithm [25]
• Petrosian’s algorithm [35]

Studies by Esteller et al. [15] have shown that Higuchi’s algorithm provides the 
most accurate estimates of the FD. Katz’s method was found to be less linear and its 
calculated FD was exponentially related to the known FD, whereas Petrosian’s 
algorithm was found to be relatively linear and demonstrated the least dynamic 
range for the estimated FD. Based on this, Higuchi’s algorithm was considered for 
the computation of FD of sEMG in this study.

27.5  Computation of Fractal Dimension Using Higuchi’s 
Algorithm

FD was calculated using Higuchi’s algorithm [15, 21], for non-periodic and irregu-
lar time series. This algorithm yields a more accurate and consistent estimation of 
FD for physiological signals than other algorithms [15].
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The first step for computing the FD requires the computation of the length of the 
curve, Xk

m, for a time signal sampled at a fixed sampling rate, 
x n X X X X N( ) = ( ) ( ) ( ) ¼¼ ( )1 2 3, , , ,  as follows:
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 represents the normalization factor for the curve length of 

subset time series. The length of the curve for the time interval k, 〈L(k)〉 is defined 
as the average value over k sets of Lm(k). If L k k D( ) µ - , then the curve is fractal 
with the dimension D.

27.6  Relation of FD to sEMG

Fractal dimension of sEMG has been found sensitive to magnitude and rate of mus-
cle force generated. The fractal dimension is introduced as the index for describing 
the irregularity of a time series in place of the power law index. Studies [2–4, 20, 22] 
have demonstrated that fractal information of sEMG is useful for characterizing the 
signal and identifying the complexity in the patterns of the signal.

Anmuth et al. [2] determined that there was a small change of the fractal dimen-
sion of the EMG signal and this was linearly related to the activation of the muscle 
measured as a fraction of maximum voluntary contraction. They also observed a 
linear relationship between the fractal dimension and the flexion-extension speeds 
and load. FD of a structure measures its complexity, spatial extent or its space filling 
capacity and is related to shape and dimensionality of the process [7]. Complexity 
here refers to the change in detail with respect to change in scale.

The most important inherent properties of muscle include muscle dimensions 
and its capacity to produce and maintain force. These properties may change with 
the change in shape and contraction of the muscle and presence of other simultane-
ously active muscles. In order to test the complexity of the muscle activation, the 
authors reported a study [3, 29] on determining the fractal features from sEMG 
signal during four different wrist and finger flexion.

SEMG signals were recorded from four recording locations in the surface of the 
forearm as shown in Fig. 27.2. The fractal features were computed to observe the 
change in the complexity and strength in muscle activation during different finger 
and wrist flexions. Figure 27.3 shows the plot of the fractal features: maximum 
fractal length and fractal dimension for four different flexions. Maximum fractal 
length is denoted as the length of the fractal object at the lowest scale [3]. Based on 
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the complexity and strength of muscle contraction, the four different finger move-
ments can be differentiated using these features. It is observed that the fractal 
dimension reflects the change in the complexity in muscle activity pattern recorded 
from different muscles while performing particular movement.

27.7  Age-Related Decrease in Fractal Dimension of Surface 
Electromyogram

One of the changes that have been observed and widely accepted is that with ageing, 
there is a reduction in muscle control and increase in variation in force of muscle 
contraction [5, 16, 33, 37] and is one of the causes of injuries and falls among the 
elderly [27]. The study by Lipsitz and Goldberger [30] has observed a reduction in 

1 cm
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a

b
1 mm

Channel 1

Channel 2

Channel 4

Channel 3

Ground

Fig. 27.2 Four recording locations in the surface of the forearm (Source: Arjunan[29] and Arjunan 
and Kumar [3])
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the complexity of a physiological or behavioural control system with age and dis-
ease. Their research reported that the reduced complexity reflects the underlying 
structural and functional changes in the organization of the system. A loss in system 
complexity is reflected by the loss or impairment of functional components and/or 
due to altered nonlinear coupling between the components. This loss in turn is 
observed as the reduction in the complexities at the structural and functional levels 
in the brain, skin, eye and cardiac cycle [4, 10, 11, 26, 36].

The study by Arjunan and Kumar [36] has established the association of ageing 
with the reduction in the fractal dimension of surface electromyogram. Figure 27.4 
shows the change in the complexity (fractal dimension) of sEMG signal recorded 
from biceps muscle of the people aged 20–69 years while performing a certain iso-
metric muscle contraction. The results show that the FD reduces with the progress 
of age. The reduction in FD could indicate a reduction in the number of motor unit 
and may indicate the increase in the motor unit density. This is consistent with the 
findings by other researchers who have studied the change in FD due to the changes 
in different organs and tissues with age. Studies have reported the reduction in FD 
with age for the skin texture, pigmentation and vascularity [30], the retina vessels 
[11, 26] and the loss of neuron ramification [7]. Fractal dimension of sEMG has also 
been used for analysis of muscle fatigue and to investigate the changes in the muscle 
properties due to this condition [8].
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Fig. 27.3 Scatter plot of fractal features (maximum fractal length (MFL) and fractal dimension 
(FD)) for four different flexions: F1, all fingers and wrist flexion; F2, index and middle finger 
flexion; F3, wrist flexion towards little finger; and F4, little and ring finger flexion (Source: 
Arjunan and Kumar [3])
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27.8  Summary

Clinical diagnosis and medical investigations are critically dependent on the ability 
to record and analyse physiological signals like ECG, EEG and EMG. However, the 
traditional analyses of these signals are currently not suitable with major advances 
in technology that allow for recording and storage of massive datasets of continu-
ously fluctuating signals. Although these typically complex signals have recently 
been shown to represent processes that are nonlinear, nonstationary and non- 
equilibrium in nature, the methods used to analyse these data often assume linearity, 
stationary and equilibrium-like conditions. In particular, studies have shown that 
sEMG signals may contain hidden information that is not extractable with conven-
tional methods of analysis [4, 11, 13, 15]. Such hidden information will provide 
important and critical information to be of clinical value as well as to relate to basic 
mechanisms of muscle property and activity function.
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    Chapter 28   
 Fractal Analysis in Neuro-ophthalmology                     

     Giorgio     Bianciardi      ,     Maria     Eugenia     Latronico     , and     Claudio     Traversi    

    Abstract     Fractal analysis has been proven useful in diagnosis and prognosis of the 
patient in several neuro-ophthalmological disorders. In our experience, entropy was 
able to differentiate optic neuritis and nonarteritic anterior ischemic optic neuropa-
thy and geometric complexity to objectively quantize the alteration of corneal inner-
vation in Sjogren’s syndrome patients.  

  Keywords     Entropy   •   Geometrical complexity   •   Sjogren’s syndrome   •   Optic neuritis   
•   Nonarteritic anterior ischemic optic neuropathy   •   Differential diagnosis  

28.1       Eye and Nervous System 

 The eye gives organism the ability to process visual detail, detecting visible light in 
order to build a representation of the surrounding environment at the cerebral cortex 
level as well as enabling several nonimage functions. 

 The eye is one of the most complex and important sensory organs in the human 
body. It provides the ability to see in both bright and dim light as well as to focus on 
near and far objects and to distinguish millions of colors. 

 A complex innervation is present: the retina, the fi rst neural structure of the eye, 
from which the optic nerve departs electric signals toward the cerebral cortex; the 
infraorbital, lacrimal, lingual, nasociliary, and supraorbital nerves; as well as the 
corneal nerve plexus. Nerves and plexi need microvascular support. The complex 
appearance of microvascular networks and nervous plexi are microscopic features 
where fractal analysis reveals its powerful ability to discriminate among health and 
pathology.  

        G.   Bianciardi ,  MS, MD, PhD      (*) 
  Department of Medical Biotechnologies ,  University of Siena ,   Siena ,  Italy   
 e-mail: giorgio.bianciardi@unisi.it   

    M.  E.   Latronico ,  MD    •    C.   Traversi ,  MD    
  Department of Medical Sciences, Surgery and Neurosciences ,  University of Siena , 
  Siena ,  Italy    

mailto:giorgio.bianciardi@unisi.it


458

28.2     Retinal Microvascular Networks and Ophthalmopathies 

 Several works have used fractal geometry to study the retinal microvascular net-
work [ 4 ,  23 ,  31 ,  32 ,  38 ]. In these works, the fractal dimension of the retinal micro-
vascularity has been used as a statistical descriptor able to support the diagnosis of 
several diseases, also revealing the status of other vascular districts [ 29 ]. 

 It has been shown that the retinal vascular network in health condition has a 
fractal dimension, D0 (geometric complexity) close to the value of a diffusion- 
limited aggregation (DLA) process (D ≈ 1.70) [ 23 ,  32 ], while in pathologic condi-
tion that value may change. Doubal et al. [ 21 ] have found a low value of fractal 
dimension of retinal vessels, associated to the lacunar stroke. Cavallari et al. [ 15 ] 
found a low value in fractal dimension related to the reduction in complexity of reti-
nal vessels, refl ecting the alteration of the brain microvessels in patients with 
CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy). In these works, fractal analysis has been demonstrated as a 
sensitive tool to assess changes of retinal vessel branching, able to refl ect the early 
brain microvessel alterations. 

 Another fractal parameter, lacunarity, has been applied to characterize diseases, 
helping in differential diagnosis. Lacunarity may be considered a measure of het-
erogeneity, as well as the degree of invariance to change of the fractal object. 
Whereas the fractal dimension (geometric complexity) indicates how much space is 
fi lled by the object, lacunarity describes the distribution of the sizes of gaps or lacu-
nae surrounding the object within the image, describing the empty space around the 
object [ 25 ]. This parameter, which has the capacity to recognize different fractal 
structures owning the same fractal dimension, was employed to discover alterations 
in the arteries and retinal veins [ 26 ], as well as to diagnose retinas with amblyopia 
[ 44 ]. 

 The retina vessel network, described by generalized dimensions and singularity 
spectrum, has a multifractal structure (an object having different fractal properties 
in its different region) [ 41 ]. These multifractal approaches were able to characterize 
the retinal vascular architecture disorder in several diseases [ 43 – 45 ]. 

 Particularly, in diabetes mellitus, fractal analysis has been applied in several 
works to describe its secondary microvascular complications. The diabetic retinopa-
thy is a severe condition, one of the causes of vision impairment and blindness, 
where the secondary microvascular complication occurs [ 1 ]. It is caused by hyper-
glycemia that promotes structural/functional alterations of retinal capillaries [ 19 ]. 
The early stage of retinopathy is termed as non-proliferative diabetic retinopathy 
(NPDR), a disease characterized by microaneurysms, hemorrhages, and capillary 
closures [ 4 ,  16 ,  19 ]. The subsequent stage, or proliferative phase, is characterized by 
neovascularization with an increase of the ischemic regions, hemorrhages in the 
vitreous cavity, and tractional retinal detachment [ 19 ,  47 ]. Vision impairment, at 
fi rst, and, thereafter, blindness are the fi nal consequence. 

 At the beginning, fractal analysis gave rise to contradictory results, at least appar-
ently [ 24 ]. Avakian et al. [ 3 ] observed a reduction of the density of vessel complexity in 
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the retinal macular region in patients with NPDR, in comparison to the normal retina 
macular region. On the other side, Cheung et al. [ 17 ] reported increase of the retinal 
vasculature fractal dimension associated with early NPDR signs in young individuals 
with type 1 diabetes, consequential to the development of the diabetic retinopathy [ 28 ]. 
In a more recent clinic-based prospective study of 172 participants, the fractal dimen-
sion of the retinal microvascularity in healthy subjects resulted slightly lower than the 
corresponding value of mild NPDR patients, but higher than the corresponding value of 
moderate NPDR subjects. Severe NPDR presented the lowest value of fractal dimen-
sion. In this work, the fractal parameter permitted a more complete understanding of the 
early pathophysiological mechanism of diabetes [ 45 ].  

28.3     Our Experience: Neuro-ophthalmological Disorders 

 In our experience, fractal approaches clearly distinguished among diagnostic 
classes, revealing its ability to help clinicians to identify neuro-ophthalmopathies 
and to improve treatments [ 11 ,  12 ] . Below, we show that fractal analysis of the reti-
nal microvascularity is able to differentiate optic neuritis and nonarteritic anterior 
ischemic optic neuropathy: the two most prevalent non-glaucomatous optic neu-
ropathies [ 18 ]. Furthermore, fractal analysis of corneal nerve plexus was able to 
objectively characterize aspects of the Sjogren’s syndrome. 

28.3.1     Optic Neuritis Versus Nonarteritic Anterior Ischemic 
Optic Neuropathy: Retinal Microvascularity 

 Recovery of visual function, visual-fi eld testing abnormalities, pain induced by ocu-
lar movements, cup-to-disk ratio, presence and/or distribution of optic disk edema, 
and fl uorescein angiography together with age at diagnosis may help to differentiate 
optic neuritis (ON) and nonarteritic anterior ischemic optic neuropathy (NAION) 
[ 2 ,  18 ]. However, even by using several different approaches, ON and NAION fre-
quently present overlapping clinical profi les and sometimes appear diffi cult to dis-
tinguish on clinical grounds at initial presentation [ 51 ]. It is fundamental to establish 
an early differential diagnosis, having the ON patient a clear tendency to develop 
multiple sclerosis [ 5 ,  7 ,  8 ]. 

 To facilitate early diagnosis, researchers have focused on objective morphologi-
cal analysis of the retrobulbar tract and the head of the optic nerve, in order to 
reduce the bias caused by subjective medical interpretations [ 14 ]. Optic nerve anal-
yses by means of magnetic resonance imaging, digital stereoscopy, and Heidelberg 
retina tomography are some examples of how new technologies can quantitatively 
document peculiar clinical fi ndings in ON, NAION, and other optic nerve diseases 
[ 20 ,  35 ,  40 ]. Furthermore, the study of optic nerve head circulation by means of 
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laser-based blood fl ow measuring techniques has quantitatively demonstrated optic 
nerve head circulatory abnormalities in patients with ON and NAION [ 27 ]. In 
effect, in the multifactorial etiology of NAION and ON, optic nerve infl ammation 
and optic nerve head ischemia, respectively, play important roles [ 50 ]. 

 In order to verify whether the fractal analysis of the optic nerve head vascularity 
could help in the differential diagnosis between NAION and ON, we have evaluated 
the information dimension (entropy) of the optic nerve head vascular patterns, as 
observed by fl uorescein angiography. 

28.3.1.1     Patients 

 The criteria for patients’ admittance with NAION to the study were unilateral disk 
swelling with clinical features consistent with NAION, no recovery of visual function 
in the fi rst month of follow-up, exclusion of arteritic anterior ischemic optic neuropa-
thy either on clinical grounds or following a negative temporal artery biopsy, negative 
magnetic resonance imaging of the brain and orbits, no other ocular pathology, and no 
neurological diseases that might infl uence or explain the patient’s visual symptoms. 
The patient admittance criteria with ON were unilateral visual impairment associated 
with impaired color vision and visual-fi eld loss, presence of disk edema or absence of 
disk edema, young age (≤35 years), ocular pain associated with eye movements, 
recovery of visual function in the fi rst month of follow-up, no other ocular pathology, 
and no neurological diseases that might infl uence or explain the patient’s visual symp-
toms; history or detection of multiple sclerosis confi rmed the diagnosis [ 8 ]. 

 Ten cases of NAION and ten cases of ON with presence of disk edema were 
studied. The unaffected eye of the patient was used as control. All patients were 
examined using a fl uorescein angiogram within the fi rst 2 weeks after they reported 
the fi rst symptoms and before treatments; all patients gave informed consent. The 
protocol for this research project was approved by the Ethics Committee of the 
University of Siena, and it conforms to the provisions of the Declaration of Helsinki, 
1955 (as revised, Edinburgh, 2000).  

28.3.1.2     Image Analysis 

 Static fl uorescein angiogram was performed (IMAGEnet 2000, v.2.0,Topcon). The 
early, intermediate, and late phases of the angiogram were studied. Images of the 
early venous phase of the angiogram (around 20 s) gave the best visualization of the 
optic disk vessels and were saved. The same magnifi cation was used for every 
patient (Fig.  28.1 ).

   A manual outline of the trajectories of the two-dimensional microvascular net-
work was performed down to microvessels of 20 μ of diameter, processed to thresh-
old the vessel network without background interference and converted into an outline 
of 1 pixel by means of Jmicrovision,   http://www.jmicrovision.com    , and Image 
Analyzer,   http://www.fosshub.com/Image-Analyzer.html    , softwares (Fig.  28.2 ).
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     Entropy, D1 

 The images were represented on a graphic window of 501 × 429 pixels (1 pixel = 
4 μm). To evaluate the information present in the pattern, information dimension 
(entropy, D1), a robust estimate from a fi nite amount of data that gives the prob-
ability of fi nding a point in the image [ 34 ,  39 ], was calculated. Briefl y, the set 
was covered with boxes of linear size, d, keeping track of the mass, mi (the 
amount of pixels), in each box (from 10 to 100 pixels), and the local information 
entropy, I(d), was calculated (summation of the number of points in the i-th box 
divided by the total number of points in the set, multiplied for its logarithm) [ 22 ]. 
A log-log plot was performed (I(d) against d). The plot of the logarithm of I(d) 
against the logarithm of d was a straight line with a negative slope equal to –D1 
(Fig.  28.3 ).

   The method was implemented using Benoit 1.3 software (TruSoft Int’l Inc, 
  http://trusoft-international.com/benoit.html    ) and validated by computer-generated 
Euclidean and fractal shapes of known information dimensions. Inter- and intra- 
observers errors were <3 %.   

28.3.1.3     Statistical Analysis 

 Mann-Whitney test was used to ascertain the signifi cance among the groups; regres-
sion analysis was used to ascertain the log-log plot linearity.  

28.3.1.4     Results 

 Fractal analysis showed that the optic nerve head microvascularity was fractal (log- 
log plot,  r  >0.99, Fig.  28.3 ). 

  Fig. 28.1    Fluorescein 
angiogram. Unaffected eye 
(control)       
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 ON and NAION cases presented higher entropy values of the optic nerve head 
vascular pattern than controls. Entropy statistically distinguished among the three 
classes (healthy subjects vs. NAION vs. ON patients) ( p  < 0.01;  p  < 0.01) (Table  28.1 ).

28.3.2         Sjogren’s Syndrome: Corneal Nerve Plexus 

 Among the many causes of dry eye diseases, Sjogren’s syndrome (SS) is a multifacto-
rial disorder mainly affecting the salivary and lacrimal glands with an autoimmune 
basis [ 13 ]. The peak incidence is in the fourth and fi fth decades of life, with a female 
to male ratio of 9:1. The incidence of primary SS reported in literature varies between 

  Fig. 28.2    Trajectories of the optic nerve head microvascularity. Control eye ( top ,  left ); nonarteritic 
anterior ischemic optic neuropathy (NAION,  top ,  right ), optic neuritis with optic disk edema (ON, 
 bottom )       
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3/100,000 and 5/100,000 [ 36 ]. One of its main clinical manifestations is the keratocon-
junctivitis sicca (KCS) [ 33 ]. In primary SS (SSI), the presence of specifi c antibodies 
(SSA, SSB, ANA, ENA), signs of mononuclear cells infi ltration in the exocrine glands, 
and reduced tear and saliva secretions are described. In secondary SS (SSII), the typi-
cal symptoms of the primary form are coupled by other well- defi ned autoimmune 
disorders (rheumatoid arthritis, systemic lupus erythematosus, scleroderma) [ 6 ,  9 ]. 
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  Fig. 28.3    Log-log plots. The exponent is the local information dimension, or entropy of the image 
(the same of Fig.  28.2 ). Control eye ( top ,  left ), NAION ( top ,  right ), ON ( bottom )       
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 The ocular surface is considered a morphofunctional unit comprising lachry-
mal fi lm, cornea, limbus, conjunctiva, mucoepidermal junction, accessory lach-
rymal glands, meibomian gland, and innervation. The alteration of only one of 
those components is followed by pathologic events that extend to the other 
structures. In SS, KCS is the primitive disease of the ocular structure, presum-
ably [ 33 ]. Surface morphologic changes, including the presence of infl ammatory 
cells and the expression of histocompatibility antigens (HLA-DR), suggest the 
participation of the epithelium and subepithelium innervation, with a conse-
quent reduction of corneal sensitivity [ 36 ]. Thus, it is necessary to study the 
modifi cation of the corneal surface and of its innervation for better understand-
ing the physiopathology of SS and also in order to choose the right therapeutic 
treatments [ 9 ,  37 ]. 

 The use of the in vivo confocal microscopy permits the study of the microscopic 
morphology of the cornea with a resolution comparable to the histologic examina-
tion and without invasivity [ 48 ,  49 ,  54 ]. In order to obtain diagnostic data related to 
the corneal microstructure in Sjogren’s syndrome, we have evaluated the geometric 
complexity of the corneal nerve fi ber distribution observed by confocal 
microscopy. 

28.3.2.1     Patients 

 Diagnosis of SSI or SSII was made according to the Japanese consensus criteria 
(biopsy of salivary glands and blood tests). Informed consent was obtained from all 
the subjects. Examination procedures were board reviewed, and the study was con-
ducted in accordance with the tenets of the Declaration of Helsinki, 1955 (as revised, 
Edinburgh, 2000). 

 Twenty patients (4 men and 16 women) with SSI and 10 sex- and age-matched 
controls were studied. None of the patients had a history of Steven Johnson syn-
drome, lymphoma, AIDS, corneal dystrophy, infl ammation, therapies with anti-
glaucoma drugs or steroids, and use of contact lenses. The results were compared 
with the ones of healthy control subjects.  

  Table 28.1    Entropy, D1, of 
the optic nerve head 
vascularization, cases vs. 
control (mean ± standard 
deviation)  

 Subjects  D1 (SD) 

 ON a  with optic disk edema  1.74 (0.025)*,** 
 NAION b   1.63 (0.02)* 
 Controls  1.53 (0.02) 

  Entropy of the optic nerve head vascularization distin-
guishes among ON, NAION and healthy subjects: **ON 
with optic disk edema vs. control,  p  < 0.001;*ON with 
optic disk edema vs. NAION,  p  < 0.01; *NAION vs. con-
trol,  p  < 0.01 
  a Optic neuritis 

  b Nonarteritic anterior ischemic optic neuropathy  
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28.3.2.2     Image Analysis 

 In vivo laser confocal microscopy (670 nm red wavelength, helium neon diode laser 
source) was performed on the subjects by a HRT II Rostock Corneal Module 
(Heidelberg Engineering GmbH, Dossenheim, Germany). A drop of anesthetic 
(oxybuprocaine chloride 0.4 %) was instilled in the lower conjunctival fornix before 
examination. During the test, the microscope object lens was covered with a gel 
(hydroxypropyl methylcellulose) and placed in direct contact with the corneal sur-
face. Proper alignment and position of the head was maintained with the help of a 
dedicated target mobile red fi xation light for the contralateral eye. A digital camera 
mounted on a side arm provided to monitor the position of the objective lens on the 
eye surface. A scan of the full thickness of the cornea was automatically performed 
for each participant, in order to identify the corneal nerve plexus (Fig.  28.4 ).

   Single-pixel contours of the images were automatically extracted by a Canny 
edge fi lter (Digital Image Magnifi er software by Strikos Nikolaos,   http://www.soft-
oxi.com/digital-image-magnifi er.html    ) (Fig.  28.5 ).

     Geometric Complexity, D0 

 The images were represented on a graphic window of 500 × 500 pixels (1 pixel = 
1 μm). The box-counting local fractal dimension of the image was measured [ 22 , 
 52 ]. Briefl y, the image was covered with boxes of linear size, d (from 10 to 100 pix-
els), and the amount of boxes containing any part of the outline,  N ( d ), was counted. 

  Fig. 28.4    Image of the 
corneal nerve fi bers after 
in vivo laser confocal 
microscopy in a healthy 
subject       
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The plot of the logarithm of  N ( d ) against the logarithm of d was a straight line with 
a negative slope equal to –D0 (Fig.  28.6 ).

   The method was implemented using Benoit 1.3 software (TruSoft Int’l Inc, 
  http://trusoft-international.com/benoit.html    ) and validated by computer-generated 

  Fig. 28.5    Single-pixel contours of the corneal nerve fi bers images extracted by a Canny edge fi lter. 
Healthy subject ( left ), Sjogren’s syndrome patient ( right ). The skeletonized images were submitted 
to the fractal analysis in order to evaluate the geometric complexity of the nerve fi bers distribution       
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  Fig. 28.6    Log-log plots. The exponent is the geometric complexity of the image (the same of 
Fig.  28.5 ). The healthy subject shows a multifractal aspect ( left ), while in the Sjogren’s syndrome 
patient, one line only is detected ( right ) (note also that the geometric complexity is decreased in 
the patient)       
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Euclidean and fractal shapes of known fractal dimensions. Inter- and intra-observer 
errors were <3 %.   

28.3.2.3     Statistical Tests 

 Mann-Whitney test was used to ascertain the signifi cance between the groups; 
regression analysis was used to ascertain the log-log plot linearity.  

28.3.2.4     Results 

 Fractal analysis showed that the corneal nerve distribution was fractal (log-log plot, 
 r  > 0.99, Fig.  28.6 ). 

 In healthy subjects, the local fractal dimension was close to the value of the 
diffusion- limited aggregation process, a typical value of geometric complexity in nor-
mal individuals (Table  28.2 ) [ 10 ,  53 ], with a multifractal aspect (Fig.  28.6 , left) [ 30 ]. 
In SS patients, D0 values decreased and the multifractal aspect was lost (Fig.  28.6 , 
right).

28.4          Discussion 

 We have reviewed papers where fractal analysis has proven to be a useful tool in 
diagnosis and prognosis of the patient in several neuro-ophthalmological disorders, 
and we have presented our experience in the fi eld. We have presented the entropy 
evaluation of the retinal microvascularity in optic neuritis vs. nonarteritic anterior 
ischemic optic neuropathy and healthy condition and the geometric complexity 
evaluation of the corneal nerve plexus in Sjogren’s syndrome patients vs. healthy 
subjects. In both, fractal parameters were able to distinguish among diagnostic 
classes and to objectively quantify the optic nerve head microvascularity or the 
corneal nerve plexus distribution. These results add new information to previous 
data obtained by us [ 11 ,  12 ,  46 ].     

  Table 28.2    Geometric 
complexity, D0, of the 
corneal nerve plexus, case vs. 
control (mean ± standard 
deviation)  

 Subjects  D0 (SD) 

 Sjogren’s 
syndrome 

 1.17 (0.03) *** 

 Healthy controls  1.64 (0.05) 

  Geometric complexity of the corneal nerve fi ber 
distribution in Sjogren’s syndrome patients is 
lower than in healthy subjects. Healthy individuals 
show geometric complexity values close to the 
diffusion-limited aggregation process 
 ***  p  <  0.001   
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    Chapter 29   
 Fractals in Affective and Anxiety Disorders                     

     Sergio     Iglesias-Parro      ,     Maria     Felipa     Soriano     , and     Antonio     José     Ibáñez-Molina     

    Abstract     In this chapter, we review the research that has applied fractal measures 
to the study of the most common psychological disorders, that is, affective and anxi-
ety disorders. Early studies focused on heart rate, but diverse measures have also 
been examined, from variations in subjective mood, or hand movements, to electro-
encephalogram or magnetoencephalogram data. In general, abnormal fractal 
dynamics in different physiological and behavioural outcomes have been observed 
in mental disorders. Despite the disparity of variables measured, fractal analysis has 
shown high sensitivity discriminating patients from healthy controls. However, and 
because of this heterogeneity in measures, the results are not straightforward, and 
more studies are needed in this promising line.  

  Keywords     Fractal   •   Affective disorder   •   Anxiety   •   Complexity  

29.1       Introduction 

 It has recently been stated that chaos is inherent to natural systems [ 34 ]. For exam-
ple, a healthy heart shows some form of chaotic rate, whereas low variability in the 
heart rate is a pathological sign [ 16 ]. Chaos has the characteristic of appearing ran-
dom and unpredictable at certain scales but retains a highly defi ned and overall 
predictable form. Chaos and fractals are two central concepts within nonlinear 
dynamics. Nonlinear approaches can provide valuable insights into complex human 
behaviours and, subsequently, into dysfunctions of human behaviours such as men-
tal disorders. 
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 In this chapter, we will review the research that has applied fractal measures to 
the study of the most common mental disorders, that is, affective and anxiety disor-
ders. Early studies focused on heart rate, but diverse variables have also been exam-
ined, from subjective mood, to hand movements. Recent studies have mostly 
implemented fractal measures to neurophysiological data, such as electroencepha-
logram (EEG) or magnetoencephalogram (MEG). In general, there is growing evi-
dence about abnormal fractal dynamics in different physiological and behavioural 
measures in mental disorders [ 41 ].  

29.2     Fractals and Affective Disorders 

 Affective disorders include mainly depressive (unipolar) disorders and bipolar dis-
orders. Depression is one of the most prevalent mental diseases, and the fi rst cause 
of major disability in the world, according to the World Health Organisation. People 
suffering depression experience low mood but also loss of interest and pleasure, 
poor concentration, feeling of worthlessness and, occasionally, self-harm ideation 
that can lead to suicide. Patients with bipolar disorders shift between depressive 
episodes and manic episodes, when they feel unusually euphoric, full of energy, and 
show an infl ated self-esteem. 

 Some authors have proposed that patients with affective disorders suffer an alter-
ation of the fractal organisation of their biological rhythms [ 3 ]. Among these bio-
logical rhythms, heart rate, gait temporal patterns, or even mood temporal 
fl uctuations, have been studied. For example, Kojima et al. [ 24 ] have shown that 
patients with depression have reduced heart rate variability and low fractal dynam-
ics of heart rate. Decreased heart rate variability may be one of the causes of 
increased cardiovascular mortality in depressed patients. Comparable results have 
been obtained for patients with bipolar disorder [ 29 ]. These authors found that the 
heart rate’s regularity (refl ected in a decrease in entropy) correlated with the severity 
of depressive and anxiety symptoms. 

 Fractal analyses have also been applied to movement patterns in depression. 
Aybek et al. [ 3 ] evaluated the stride interval in human gait in ten depressed patients 
and ten healthy controls. The temporal organisation of the stride interval is thought 
to be neither random nor regular but to have a complex fractal-like structure charac-
terised by self-similarity over multiple time scales. The authors compared stride 
patterns in patients with major depression and healthy participants through a system 
of sensors attached to each wrist. They found that fl uctuations of activity in both 
hands displayed a fractal pattern in healthy controls. Importantly, the stride pattern 
of depressed participants showed higher fractal values than controls. These results 
point to an alteration of the fractal organisation of motor activity in depression. 
Moreover, the nonlinear measures of movement patterns were similar in both 
groups; therefore, fractal analysis discriminates better between depressive and con-
trol groups. As we mentioned previously, the fractal organisation of biological 
rhythms is thought to correspond to an ideal homeostatic regulation and more prone 
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to respond to sudden changes than a regular organisation. Altered fractal pattern of 
activity in depressed patients might render movements less able to adapt to change; 
and this could lead to an increased risk of fall [ 3 ]. 

 Another interesting line of research has applied nonlinear analyses to the study 
of variations of mood. In a pioneering work [ 17 ], Gottschalk et al. employed daily 
mood records from patients with bipolar disorder and healthy participants over a 
time course of 1–2.5 years in order to examine temporal fl uctuations of mood in 
bipolar disorders. They evaluated the obtained time series to identify whether the 
temporal pattern of mood originated from a periodic, a random, or a deterministic 
source. Results indicated that the correlation dimension, a nonlinear measure, could 
account for self-rated mood in patients. Mood in patients was signifi cantly more 
organised than mood in normal participants, and it could be characterised as a low- 
dimensional chaotic process rather than as a random process. Following this line, 
Woyshville et al. [ 40 ] analysed the time course of self-rated mood from 36 patients 
with affective instability and 27 controls. They asked participants to rate their daily 
mood in a visual analogue scale for 90 days. Time series were analysed with the 
mean squared successive difference (MSSD), power spectral density (PSD), and 
fractal dimension (FD). The authors found that patients demonstrated substantially 
more variability than controls on the MSSD, but less complexity as measured by the 
FD. In sum, despite the chaotic and irregular mood variability of patients, affective 
variations were less complex, in patients than in controls. 

 These results were replicated in some subsequent studies [ 19 ]; however, they 
have been recently questioned [ 31 ]. Specifi cally Moore et al. [ 3 ] examined mood 
time series from eight patients with bipolar disorder, over a time period of 5 years. 
They concluded that nonlinear methods have no advantage over linear methods in 
accounting for variations of mood in bipolar disorders. Clearly more studies, ideally 
with larger samples, are necessary to elucidate whether mood variations in bipolar 
patients are better described by linear or nonlinear analyses. 

 Previously described studies are based on the observation that some clinical 
features of affective disorders repeat over a range of time scales. Nonlinear 
approaches to sequential observational data (in this case, self-rated mood) can pro-
vide new insights about the underlying processes that generate the observable 
patterns. 

 Finally, most studies involving fractal analyses in affective disorders have 
focused on electroencephalographic signals (EEG). As brain behaves as a complex 
nonlinear system, it has been proposed that nonlinear methods for analyses of the 
EEG signal provide more reliable information about brain functioning, compared to 
linear methods. In this line, Klonowsky et al. [ 23 ] analysed the FD of EEGs from 
patients with affective disorders, with the Higuchi’s algorithm (HFD). They calcu-
lated FD-ratio, based on differences of FD between eyes-open EEGs and eyes- 
closed EEGs; and they found that FD-ratio was highly correlated with depressive 
symptoms. The following study [ 6 ] examined the FD of the EEG in bipolar patients 
with a manic episode and found that EEG FD was signifi cantly increased in these 
patients relative to healthy controls. As we mentioned previously, Higuchi’s FD is a 
measure of complexity of a time series. As applied to EEGs, HFD seems to indicate 
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the level of complexity on which brain regions function or interact, on a scale rang-
ing from fully deterministic to fully random. 

 In another study, Ahmadlou et al. [ 2 ] evaluated the complexity of EEGs from 
patients with major depressive disorders, with Katz’s FD (KFD) and HFD. Results 
showed higher HFD in frontal lobes of the brain of patients compared to controls, in 
beta and gamma sub-bands. Additionally, the authors found an accuracy of 91.3 % 
in the classifi cation of patients and controls based on HFD of frontal beta sub-band, 
whereas KFD revealed no differences between frontal EEGs from depressive and 
control participants. 

 Since then, some efforts have been made to improve detection of people with 
depression on the basis of nonlinear features from the EEG. Thus, Hosseinifard 
et al. [ 21 ] analysed EEGs from 45 depressed patients and 45 normal participants, 
with different nonlinear measures (detrended fl uctuation analysis, HFD, correlation 
dimension and Lyapunov exponents). They found that the highest classifi cation 
accuracy (83.3 %) was obtained with the correlation dimension. However, when all 
nonlinear features were combined, a classifi cation accuracy of 90 % was reached. 
Similarly, Bachamn et al. [ 4 ] compared spectral asymmetry index and HFD for dis-
crimination between depressive and control participants. They analysed eyes closed 
EEGs data and found an increase of HFD in depressed participants in all EEG chan-
nels. HFD provided the true detection rate of 94 % in the depressive group and 76 % 
in the control group. 

 The fi nding of a greater complexity in the EEG from depressed patients has been 
replicated with other nonlinear non-fractal measures. For example, Li et al. [ 26 ] 
registered EEG from 62 schizophrenic patients, 48 depressed patients, and 26 con-
trols, at rest and while performing mental arithmetic tasks. They analysed the com-
plexity of the EEG signal with the Lempel-Ziv complexity (LZC) algorithm. LZC 
is a nonparametric metric that assesses the number of distinct substrings and their 
rate of recurrence along the time series, assigning higher values to more complex 
data. Obtained results showed that both groups of patients had a higher LZC than 
the control group. Surprisingly, depressed patients showed a higher LZC than 
patients with schizophrenia, both at rest and during the mental arithmetic task. A 
later study by Mendez et al. [ 27 ] provided further evidence. They applied LZC anal-
ysis to magnetoencephalography (MEG) data from 20 patients with a major depres-
sive disorder and 19 healthy controls. They detected that LZC was higher in patients 
than in controls. More interestingly, complexity values in patients decreased after 
6 months of pharmacological treatment; and this reduction in complexity with treat-
ment correlated with the degree of clinical symptom remission. 

 In sum, evidence points to a greater complexity in the EEG of patients with 
depression. This is congruent with fi ndings with other mental disorders, such as 
schizophrenia [ 10 ]. Although the interpretation of these fi ndings should be cautious, 
one possible meaning of brain complexity is that it refl ects the system’s ability to 
adapt quickly and effi ciently in a changing environment. According to this idea, 
affective disorders might be characterised by a poorer capacity (at different biologi-
cal levels) to respond to environmental changes.  
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29.3     Fractals and Anxiety Disorders 

 Anxiety is a feeling that usually arises when a person feels threatened. It is charac-
terised by feelings of worry, ruminations, and unpleasant physical sensations. 
Anxiety can be, at certain levels, useful in some situations. However, when this 
emotion is extremely intense, whereby it becomes the usual response in most inof-
fensive situations or it affects most domains in a person’s daily life, it is then con-
sidered a disorder. The distinction between normal anxiety and a clinical disorder is 
not always clear. There are a wide variety of anxiety disorders, including gener-
alised anxiety disorder, panic disorder, obsessive-compulsive disorder (OCD), post-
traumatic stress disorder (PTSD), or phobic disorders, among others. 

 Although anxiety disorders are the most common mental disorders, literature on 
the fractal properties of its structural or functional states is scarce. Still, some evi-
dence has found that estimators as the fractal dimension can contribute to the under-
standing of neural basis of anxiety disorders. 

 One clear relationship between anxiety and fractality in the signals from the 
brain was provided by [ 15 ]. They explored the HFD in neurotic EEG participants 
while they were undertaking a simple auditory oddball task. In this task, participants 
are presented with sequences of two types of tones that they need to detect or just 
listen to passively. The authors registered the EEG of a large group of participants 
that were divided into two groups, neurotic and stable participants, according to the 
Eysenck Personality Questionnaire (EPQ). When the authors compared the HFD of 
the neurotic group with the HFD of the stable group, they did not fi nd signifi cant 
differences in the HFD of the basal EEG (before stimulation); however, and more 
interestingly, the HFD was higher for the neurotic group 0–100 ms after stimuli 
presentation. This result indicated that the structural properties of the EEGs in the 
case of neurotics were more complex only when they were processing the tones. In 
order to understand why complexity is higher for neurotics only during stimuli pro-
cessing, we need to consider that, for all participants, the HFD after stimuli presen-
tation is widely reduced in the time range of 0–400 ms. From a physiological point 
of view, it corresponds to a synchronic cortical response directed to process and 
become aware of the externally presented stimulus. Then, it can be inferred that 
neurotics, when compared with stable participants, tend to reduce the processing of 
external and salient events. Hence, it is reasonable to think that the characteristics of 
neuroticism as negative thoughts, anxiety, and anger tend to maintain a high level of 
EEG complexity due to a reduced external focus of attention. 

 Although Georgiev et al. [ 15 ] did not fi nd fractal changes in the resting condition 
for participants with neurotic traits of personality, there is some evidence indicating 
that, indeed, the resting brain of patients with anxious symptoms exhibits distinct 
fractal properties. One example is provided by Chae et al. [ 7 ] in a study designed to 
measure the correlation dimension (D2) of patients with PTSD. In their study, Chae 
et al. recorded the EEGs with 82 s length from 16 electrodes during a resting state 
period and found that D2 was signifi cantly lower in the PTSD group than in the 
healthy group. Because this difference was consistent all across the scalp, it can be 
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concluded that PTSD deviates the by-default processing of the waking brain toward 
a less complex functional regime. This decrement in complexity might refl ect that 
cortical activation becomes simpler with recurrent evocation of traumatic stimuli. In 
other words, it might be possible that PTSD patients show a reduced by-default 
functional repertoire of the resting brain that mostly represents rehearsals of the 
same traumatic events. 

 In a recent study [ 14 ], Gentili et al. also tested the hypothesis that anxiety modu-
lates the resting brain. In an fMRI study, they measured the Hurst exponent to 
healthy participants. Although there was no anxious stimulation during the experi-
mental session, participants showed a positive correlation between the Hurst expo-
nent and the low fl uctuation of the BOLD (blood oxygen level dependent) activity 
in posterior cingulate/precuneus, inferior parietal sulci, and the parahippocampus 
areas of the brain. As these regions are mostly related with the by-default function 
of the brain, it can be suggested that social anxiety traits shapes the global brain 
activity and might trigger nonadaptive reactions in social situations. 

 From the already explained results, it might be concluded that anxiety has an 
infl uence in the complexity of the brain signals, as the EEGs, both during reac-
tions to stimuli and the resting state. However, it is well known that conventional 
fractal analyses are not sensitive to time fl uctuations in the complexity of the 
signal [ 43 ]. In many cases, different scaling exponents are required for different 
parts of the time series (e.g. [ 22 ]); that is, non-stationary signals, as, for example, 
EEGs, may have a non-single scaling in different segments of the series. Hence, 
non-stationary EEG series can be characterised as multifractals with a variety of 
scaling behaviours. As a consequence, it would be possible that the multifractality 
of brain signals from anxiety patients or participants with anxiety traits differ 
from those of the reference groups. In this line, Dik et al. [ 9 ] investigated the 
multifractality of the EEGs from patients with anxious phobic disorders. They 
explored changes in the EEG responses during psychogenic pain before and after 
a psychorelaxation treatment. Multifractal characteristics can be detected in time 
series by estimating local changes of the scaling properties in short segments of 
the signal. Hence, it is sensitive to structural changes in time that corresponds to 
different fractal properties. In this study, the degree of multifractality was esti-
mated to EEG recordings during perception of psychogenic pain in the case of 
patients, and tactile evoked pain in the case of healthy participants. Multifractality 
of the EEG during pain perception was different in both groups, suggesting that 
the cortical generation of pain in patients was different in space and time than the 
cortical pattern that gives rise to pain in healthy participants. Interestingly, when 
a psychorelaxation technique was applied to the clinical group, the width of the 
scaling behaviour was reduced to approach the values of the healthy group. In 
other words, after psychorelaxation, the range of exponents that characterise the 
multifractal structure of the EEG in the clinical group was similar to the one in the 
healthy group. This result suggests that anxiety enhances pain perception by 
increasing the rate of change in the cortical patterns of activation. This dynamical 
process is refl ected in the EEGs as a multifractal with a wide range of scaling 
exponents. 
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 Finally, it is noteworthy that anxiety symptoms are related not only with the 
characteristics of brain function; structural properties of the brain in patients with 
anxiety symptoms might present a reduced FD. In this line, Ha et al. [ 18 ] calculated 
the three-dimensional FD of cerebral cortical surface measured with MRI to patients 
with OCD and schizophrenia. Their results indicated that schizophrenic patients 
exhibited lower FD than OCD patients and controls. Interestingly, OCD patients 
showed lower FD than controls indicating that their cortical surface was less folded 
than the healthy group. This is a very relevant fi nding, and we believe that its clini-
cal implications should be explored in further experiments.  

29.4     Fractals in Affective and Anxiety Disorders Treatments 

 Treatment of mental disorders has taken many forms, from the use of electroconvul-
sive therapy to hypnosis or meditation through the use of psychotropic drugs. In this 
section, we will briefl y review the studies that have addressed the study of mental 
disorders treatment from a nonlinear perspective. 

 The analysis of FD concerning the treatment of mental disorders dates back the 
beginning of the nineties. In 1996, [ 35 ] already pointed out the importance of ana-
lysing the EEG characteristics associated with the electroconvulsive therapy (ECT) 
in order to predict its effi cacy in the treatment of severe depression. Specifi cally, 
they found a signifi cant positive relationship between degree of postictal suppres-
sion and the remission depressive symptoms. Following that work, Gangadhar et al. 
[ 13 ], using the Katz algorithm, computed the FD for early-, mid-, and post-seizure 
phases of ictal EEG after 4 weeks of either once per week or three times per week 
of ECT treatment. Depression severity was measured by the 21 items of Hamilton 
Rating Scale for Depression. They found that, apart from the number of ECT ses-
sions per week (one or three), the only signifi cant predictor of clinical remission 
was the post-seizure FD of EEG. Specifi cally, Gangadhar et al. found lower values 
of FD during the period immediately following electrically induced seizure only in 
the participants who showed later a remission. According to the authors, reduced 
post-seizure FD could refl ect postictal suppression, which in turn could indicate a 
greater brain response. 

 In the study of nonlinear systems, transitions between chaotic dynamics to peri-
odic ones (or vice versa) are called bifurcations. These bifurcations have been pro-
posed as useful tools in modelling the transitions that occur from healthy to 
pathological states [ 26 ]. However, because the empirical study of transitions from a 
healthy brain to a pathological one is not always possible, some authors have con-
sidered the reverse transition, namely, the clinical improvement due to treatment 
[ 37 ], as a valid strategy to understand mental illness. In this vein, Thomasson et al. 
[ 37 ] recorded the electrical brain activity on 31 scalp regions in 3 clinically depressed 
participants and 1 healthy control. At each of the 31 EEG channels, local measures 
of entropy were estimated as well as a measure of global entropy for the global EEG 
averaged over the 31 channels. The participants’ EEG was recorded every 2 days for 
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2 or 3 weeks. Additionally, in order to study fl uctuations of mood, rating scales of 
depression were collected during treatment. Measures of global entropy decreased 
along treatment and showed a signifi cant correlation with the score on global rating 
scales of depression. Regarding the healthy control participant, entropy increased 
along recording sessions and did not covary with self-assessments of depression. 

 Treatment of mental disorders often involves the use of psychotropic drugs. These 
substances seem to have a specifi c effect in brain functioning, their own ‘EEG por-
traits’, according to Fingelkurts et al. [ 12 ]. Thus, classical spectral analysis shows 
that barbiturates induce bursts in EEG signal [ 32 ], whereas benzodiazepines seem to 
produce an increase in slow (delta and theta) and fast (beta) rhythms (although see 
[ 12 ]) while reducing power in the alpha range [ 11 ]. FD has also been studied in rela-
tion with psychotropic drugs. In this regard, Chouvarda et al. [ 8 ] analysed the FD 
dynamics after benzodiazepines (lorazepam) intake. Lorazepam is a benzodiazepine 
drug with short to medium duration of action. It has anxiolytic, sedative/hypnotic, 
anticonvulsant and muscle relaxant effects by slowing down the central nervous sys-
tem. Fourteen participants took 2.5 mg of verum/placebo, and their EEG was 
recorded at resting state, for 3 min each hour during 24 h. FD was signifi cantly 
higher in almost all channels in the verum than in the placebo condition, although 
these differences diminished with time. Participants that received placebo did not 
exhibit any signifi cant variation in FD values with time. A follow- up study with the 
same dataset [ 28 ] compared the effect of lorazepam across frequency bands on 
Higuchi FD [ 20 ] 1 h before and 2 h after drug intake. Results showed that FD signifi -
cantly increased 2 h after drug intake compared to baseline. Moreover, alpha band 
after drug intake was signifi cantly lower than at baseline, but beta band was signifi -
cantly higher after drug intake than at baseline. The authors proposed that, since beta 
band contains high-frequency components, its increase contributes to the complexity 
of the EEG signal, which in turns leads to a subsequent increase of FD. 

 In a study conducted by Mendez et al. [ 29 ], the complex brain pattern associated 
to antidepressant intake was analysed. Twenty participants, moderately to severely 
depressed, completed a minimum 3-week medication washout before the fi rst base-
line pretreatment MEG scan. After the fi rst scan, participants begun antidepressant 
intake (mirtazapine, 30 mg once per day). After 6 months of treatment, participants 
received a second resting-state 5 min MEG scan. Depression improvement was 
evaluated with the Hamilton Rating Scale for Depression. After treatment, a signifi -
cant reduction in the depression questionnaire scores was observed. When baseline 
MEG was compared with posttreatment MEG scan, a signifi cant reduction in 
Lempel-Ziv complexity in anterior regions was observed, but only for young 
patients (<47 years). These results indicating a reduction in brain complexity fol-
lowing treatment of depression are in accordance with the aforementioned results 
obtained by [ 37 ]. 

 Hypnosis and meditation procedures are often successfully used to facilitate 
treatments in stress-dependent disorders, such as anxiety, depression or dependen-
cies, or pain relief in patients with hypertensive disorders, burn injury, arthritis, 
cancer or chronic back problems [ 30 ,  39 ]. Hypnosis is an altered state of 
 consciousness that is considered to involve high attentional resources. Various 
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attempts have been made in order to characterise the therapeutic effect of hypnosis. 
In this vein Solhjoo et al. [ 33 ] analysed the EEG recordings of fi ve highly hypnoti-
sable participants, according to the Stanford Hypnotic Clinical Scale. Participants 
were asked to engage in two experimental tasks (relaxation and imagination) during 
normal and hypnotic states. In each condition, 1 m length EEG segments were 
obtained. Each segment was then divided in 12 segments of 5 s length each. 
Frequency (power spectral density components) and chaotic (Petrosian and Higuchi 
FD) features were extracted from segments and submitted to a Hidden Markov 
Model classifi er. All measures discriminated between mental states, but the nonlin-
ear ones (specifi cally, the Higuchi FD) showed a better behaviour of classifying 
mental states than frequency- based features. 

 Yargholi and Nasrabadi [ 42 ] conducted a study in order to fi nd out the impact of the 
depth of hypnosis on EEG signals recorded, while the individuals were performing 
mental tasks. EEG signals from 33 participants were recorded in an eyes-closed relax-
ation state and under hypnosis, and Higuchi FD was obtained for each recording chan-
nel. During hypnosis, participants had to perform different tasks, and this performance 
was used as an index of the depth of hypnosis. According with their performance, 
participants were classifi ed in three groups: low, medium and highly hypnotisable. The 
results of the study showed that chaotic characteristics of some channels could serve to 
discriminate among participants depending on their hypnotisability. 

 Meditation has been proposed as a technique to increase focused internalised 
attention. Empirical evidence has supported the effi cacy of meditation in the treat-
ment of mental disorders [ 5 ]. Research has tried to characterise the brain signature 
of meditation from a nonlinear point of view. Thus, Aftanas and Golocheikine [ 1 ] 
studied how the dynamically changing inner experience during meditation could be 
indexed by the nonlinear dimensional complexity of EEG, compared with a more 
traditional frequency-based analysis. EEG was recorded at rest with eyes closed and 
during meditation in 20 experienced meditators. The EEG was segmented in 8.192 s. 
length epochs, and frequency band power analysis and nonlinear analysis (point 
correlation dimension) were conducted. Obtained results revealed a signifi cant 
decrease of point correlation dimension over anterior-frontal and centro-frontal 
regions, suggesting that controlled allocation of attention resources was required for 
the maintenance of the meditative state. On the other hand, linear measures analysis 
revealed theta power increase over anterior electrodes and alpha power decrease in 
meditation state when compared with baseline. 

 Another study compared complexity measures of the EEG signal in experienced 
meditators before and during meditation [ 38 ]. Each 1 of the 22 participants under-
went 5 meditation phases that were monitored using an EEG scanner. Among the 
fi ve experimental phases, participants underwent a 10 m baseline without medita-
tion, a 30 m of calming meditation and a 30 m phase of insight meditation. FD as 
well as permutation entropy were obtained from EEG. For both types of meditation, 
global permutation entropy decreased, although not signifi cantly. In contrast, the 
FD for both types of meditation increased. This increase was signifi cant only in 
calming meditation.  
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29.5     Conclusions 

 Fractal analysis can be a valuable tool in the evaluation of mental diseases or treat-
ment outcomes. As we have reviewed, mental complexity refl ects a system’s ability 
to adapt to a constantly changing environment. Such adaptation capacity is often 
impaired in patients with mental illnesses. 

 The studies that we have reviewed suggest that fractal dimension is increased in 
brain signals of patients with an affective disorder. Moreover, successful antidepres-
sant treatments (such as ECT or antidepressant drugs) usually diminish fractal 
dimension restoring it to healthy levels. Studies have also shown an altered fractal 
dynamic in the heart rate, subjective mood variability, or even the temporal pattern 
of movements, in affective patients. Fewer studies have focused on patients with 
anxiety disorders, and evidence is not so clear. It seems that the fractal dimension of 
the EEG is decreased in patients with anxiety disorders and that anxiolytic drugs 
increase EEG complexity. 

 Therefore, complexity (and fractal dimension) is up or down in affective and 
anxiety disorders. This divergence of results can be observed in other mental disor-
ders; for example, both increased and decreased complexities in the EEGs from 
schizophrenic patients have been reported. The inconsistency can result from differ-
ent sources. First, the biological signal evaluated (ECG, EEG, daily self-rated 
mood) and complexity measures vary considerably across studies. Second, mental 
disorders are heterogeneous in their clinical presentation and in the pathological 
mechanisms responsible of their apparition. Finally, as Takahashi highlighted [ 36 ], 
age-related complexity changes must be considered when investigating pathologi-
cal brain, because typical brain complexity is not constant across the vital cycle. 
Evidence points clearly that, in different mental disorders, the normal organisation 
that characterises a healthy functioning deteriorates, and it is replaced by abnormal 
dynamics. 

 On the other hand, the interpretation of the scarce results we have summed is not 
straightforward. We believe that an interesting interpretation about complexity and 
mental illness is the one put forward by Yan and Tsai [ 41 ]. According to these 
authors (see Fig.  29.1 ), healthy mental function is complex in an optimal degree, 
and it can deteriorate into two distinct pathological paths: order and randomness. 
For example, patients with mania exhibit behaviours that seem to have an extreme 
randomness (word salad, loosening of associations, impulsive behaviour), while 
patients with an obsessive-compulsive disorder perform actions that seem extremely 
rigid and repetitive. These macroscopic observations of psychopathology should be 
linked to microscopic phenomenon, such as heart or brain activity. The brain’s abil-
ity to adapt to the environment depends on the underlying neuronal functioning, 
which can be measured by complexity analysis at the microscopic level. The authors 
propose that mental illness is characterised by a loss of brain complexity. This brain 
dysfunction gives rise to altered dynamics in cognition, emotion, and behaviour, 
where we can observe either extremely ordered or extremely random patterns.
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   Future research should evaluate whether it is possible to relate pathological 
behaviours with microscopic changes in the neuronal dynamics of the brain. 
Furthermore, more studies are needed about the relationship between complexity 
measures and symptomatology. Implications of this line of research are of great 
relevance in the clinical practice. Nowadays, the diagnosis of a mental illness is 
based on the subjective appreciation of the clinician; despite numerous efforts, 
objective markers of mental diagnoses have not been found so far. The evaluation of 
the treatment effects also relies on the subjectivity of the clinician. Fractal measures 
could be a useful tool in the diagnosis, outcome prediction and treatment evaluation 
in affective and anxiety disorders.     
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    Chapter 30   
 Fractal Fluency: An Intimate Relationship 
Between the Brain and Processing 
of Fractal Stimuli                     

     Richard     P.     Taylor      and     Branka     Spehar    

    Abstract     Humans are continually exposed to the rich visual complexity generated 
by the repetition of fractal patterns at different size scales. Fractals are prevalent in 
natural scenery and in patterns generated by artists and mathematicians. In this 
chapter, we will investigate the powerful signifi cance of fractals for the human 
visual system. In particular, we propose that fractals with midrange complexity 
( D  = 1.3–1.5 measured on a scale between  D  = 1.1 for low complexity and  D  = 1.9 
for high complexity) play a unique role in our visual experiences because the visual 
system has adapted to these prevalent natural patterns. This adaption is evident at 
multiple stages of the visual system, ranging from data acquisition by the eye to 
processing of this data in the higher visual areas of the brain. For example, eye- 
movement studies show that the eye traces out mid- D  fractal trajectories that facili-
tate visual searches through fractal scenery. Furthermore, quantitative 
electroencephalography (qEEG) and preliminary fMRI investigations demonstrate 
that mid- D  fractals induce distinctly different neurophysiological responses than 
less prevalent fractals. Based on these results, we will discuss a fl uency model in 
which the visual system processes mid- D  fractals with relative ease. This fl uency 
optimizes the observer’s capabilities (such as enhanced attention and pattern recog-
nition) and generates an aesthetic experience accompanied by a reduction in the 
observer’s physiological stress levels. In addition to exploring the fundamental sci-
ence of our visual system, the results have important practical consequences. For 
example, mid- D  fractals have the potential to address stress-related illnesses.  
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30.1       Introduction: The Complexity of Biophilic Fractals 

 Fractal patterns are prevalent throughout nature. Examples include lightning, 
clouds, trees, rivers, and mountains. Furthermore, they have permeated cultures 
spanning across many centuries and continents, ranging from Hellenic friezes (300 
BC) to Jackson Pollock’s poured paintings (1950s) [ 20 ,  21 ]. From the 1860s onward, 
their visual properties have also been explored by mathematicians. Consequently, 
fractals constitute a central component of our daily experiences. In Fig.  30.1 , we use 
a coastline to demonstrate their intrinsic visual properties. As shown in the left col-
umn, fractals can be divided into two categories – “exact” (top image) and “statisti-
cal” (bottom image). Whereas exact fractals are built by repeating a pattern at 
different magnifi cations, “statistical” fractals introduce randomness into their con-
struction. This disrupts the precise repetition so that only the pattern’s statistical 

  Fig. 30.1     Left column : A computer-generated coastline based on exact fractals ( top ) is morphed 
into a statistical fractal coastline ( bottom ) by introducing randomness. For the top fractal, all of the 
headlands point upward. For the bottom fractal, half point downward and the positions of the up 
and down headlands are randomized. Note the  D  value (1.24) is preserved for all three patterns 
( top, middle, and bottom ).  Right column : The effect of increasing  D  is shown for fi ve exact coast-
lines. Each of the coastlines is built using the same coarse-scale pattern. Increasing the contribu-
tions of the fi ne-scale patterns causes the coastlines to occupy more of the two-dimensional plane, 
thus raising their  D  values: 1.1 ( top ), 1.3, 1.5, 1.7, and 1.9 ( bottom )       
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qualities (e.g., density, roughness, complexity) repeat. Consequently, statistical 
fractals simply look similar at different size scales. Whereas exact fractals display 
the cleanliness of artifi cial shapes, statistical fractals capture the “organic” signature 
of natural objects.

   Statistical fractals are highly topical in the fi eld of “bio-inspiration,” in which 
scientists investigate the favorable functionality of natural systems and apply their 
fi ndings to artifi cial systems. For example, the ability of fractal coastlines to effi -
ciently disperse wave energy reduces erosion, inspiring fractal storm barriers. The 
growing role of fractals in art suggests that the repeating patterns might serve 
another bio-inspired function beyond the scientifi c realm – an aesthetic quality. 
Previous studies have shown that exposure to natural scenery can have dramatic, 
positive consequences for the observer [ 24 – 26 ]. In particular, Ulrich and colleagues 
showed that patients recover more rapidly from surgery in hospital rooms with win-
dows overlooking nature. Although groundbreaking, these demonstrations of “bio-
philic” (nature-loving) responses employed vague descriptions for nature’s visual 
properties. Our research builds on these studies by testing a highly specifi c hypoth-
esis – that the statistical fractals inherent in natural objects are inducing these 
remarkable effects [ 22 ]. 

 To quantify the rich visual intricacy of the statistical fractals, we adopt a tradi-
tional measure employed by mathematicians – the pattern’s fractal dimension  D  [ 4 ]. 
This parameter describes how the patterns occurring at different magnifi cations 
combine to build the resulting fractal shape. For a smooth line (containing no fractal 
structure),  D  has a value of 1, while for a completely fi lled area (again containing no 
fractal structure), its value is 2. However, the repeating patterns of the fractal line 
cause the line to begin to occupy space. As a consequence, its  D  value lies between 
1 and 2. By increasing the amount of fi ne structure in the fractal mix of repeating 
patterns, the line spreads even further across the two-dimensional plane (see the 
right column of Fig.  30.1 ) and its  D  value therefore moves closer to 2. Figure  30.2  
demonstrates how a statistical fractal’s  D  value has a profound effect on the visual 
appearance of fractal patterns found in nature, art, and mathematics. Clearly, for 
fractals described by low  D  values, the small content of fi ne structure builds a very 
smooth sparse shape. However, for fractals with  D  values closer to 2, the larger 
amount of fi ne structure builds a shape full of intricate, detailed structure. More 
specifi cally, because the  D  value charts the ratio of coarse to fi ne structure, it is 
expected that  D  will serve as a convenient measure of the visual complexity gener-
ated by the repeating patterns. Behavioral research by Cutting and Garvin confi rms 
that the complexity perceived by observers does indeed increase with  D  [ 3 ].

   Our initial investigations used three distinct categories of stimuli summarized in 
Fig.  30.2 : natural fractals (using photographs of clouds, trees, mountains, etc.), 
artistic fractals (paintings generated by Jackson Pollock using his famous pouring 
technique), and mathematics (computer-generated images) [ 14 ]. Our current studies 
focus exclusively on computer-generated fractals due to their advantageous proper-
ties [ 15 ]. Firstly, the  D  values of the images are known precisely because they are 
input parameters for the computer-generation process. Secondly, the greater control 
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offered by computers allows the separation of different visual characteristics. For 
example, whereas density and  D  are intrinsically linked in Pollock’s paintings (as 
seen in Fig.  30.2 ), he raised the painting’s  D  value by adding more paint which in 
turn inevitably raised the density [ 20 ]); these two parameters can be adjusted inde-
pendently using computer-generated images. Thirdly, the images are purely abstract. 
Consequently, responses are not contaminated by associations with recognizable 
objects such as trees and clouds. 

 Figure  30.3  shows examples of our current stimuli, which are generated by 
Fourier spectrum or midpoint displacement methods [ 4 ]. For the far left image, the 
computer has generated a geographical terrain (in this case viewed from above) and 
this serves as the source to generate other images. To obtain the second image, a 
horizontal slice is taken through the terrain at a selected height. Then all of the ter-
rain below this height is colored black and all of the terrain above is colored white. 
Referred to as the coastline pattern (black being the water), this image is used to 
generate the third image by highlighting the coastline edges in white. The forth 
image is created by taking a vertical slice through the terrain to create a mountain 
profi le. Finally, the grayscale image is generated by assigning grayscale values (on 
a scale from 0 to 255) to the heights of the terrain. Taken together, these fi ve families 
of fractals are powerful stimuli for examining people’s responses because, although 
superfi cially quite different in appearance, they all possess identical scaling 
properties.

  Fig. 30.2    Fractal complexity in nature, art, and mathematics. The  left column  shows clouds with 
 D  = 1.3 ( top ) and a forest with  D  = 1.9 ( bottom ). The  middle column  shows Jackson Pollock’s 
 Untitled 1945  with  D  = 1.1 ( top ) and  Untitled 1950  with  D  = 1.89 ( bottom ). The  right column  shows 
computer-generated fractals with  D  = 1.2 ( top ) and  D  = 1.8 ( bottom )       
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30.2        Fractal Fluency 

 The physical processes that form nature’s fractals determine their  D  values. For 
example, wave erosion generates the low complexity ( D  = 1.1) of the Australian 
coastline while ice erosion results in the high complexity ( D  = 1.5) of the Norwegian 
fi ords. Signifi cantly, although all  D  values between 1.1 <  D  < 1.9 appear in natural 
scenes, the most prevalent fractals lie in the narrower range of 1.3–1.5. For example, 
many examples of clouds, trees, and mountains lie in this range. We therefore pro-
posed a fl uency model in which the human visual system has adapted to effi ciently 
process the mid-complexity patterns of these prevalent  D  = 1.3–1.5 fractals [ 22 ]. We 
expect this adaption to be evident at multiple levels of the visual system, ranging 
from data acquisition by the eye to processing of this data in the higher visual areas 
of the brain. Based on the phenomenon of synesthesia, in which sensations are 
transferred between the senses, it is possible that mid-complexity fractals might also 
hold special signifi cance for tactile and auditory experiences in addition to visual 
ones. This could be tested in the future using 3D printers to generate physical ver-
sions of the terrains shown in Fig.  30.3  and to use computers to convert visual 
stimuli into the sonic equivalents. This includes plans to convert the fractals in 
Pollock paintings into music and compare people’s responses to these equivalent 
visual and sonic fractals. 

 Our studies of fractal fl uency commenced with the eye-movement studies 
shown in Fig.  30.4  [ 4 ,  22 ]. The eye-tracking system (Fig.  30.4a ) integrates infra-

  Fig. 30.3    Computer-generated fractal stimuli. From left to right: terrains, coastlines, edges, 
mountains, and grayscale patterns       
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red and visual camera techniques to determine the eye’s gaze to an accuracy of 
4 pixels when looking at a 1,024 by 1,024 pixel pattern presented on the computer 
monitor. During the 60 s observation period, participants were instructed to mem-
orize the pattern in order to induce “free-viewing” activity. Figure  30.4b  shows a 
section of the spatial pattern traced out by the eye’s gaze as it moves across the 
monitor. As expected, the pattern is composed of long saccade trajectories as the 
eye jumps between the locations of interest and smaller micro-saccades that occur 
during the dwell periods. These periods of relative motionless can also be seen in 
the associated temporal trace of Fig.  30.4c . Details of the fractal measurement 
technique applied to the eye’s spatial and temporal patterns are reported elsewhere 
[ 4 ,  12 ,  13 ,  22 ]. The results show that the saccade trajectories trace out fractal pat-
terns with  D  values that are insensitive to the  D  value of the fractal pattern being 
observed: the saccade pattern is quantifi ed by  D  = 1.4, even though the underlying 
pattern varied over a large range from 1.1 to 1.9. This mid- D  saccade pattern was 
confi rmed for viewing computer-generated, natural, and Pollock fractals. 
Furthermore, participants with Alzheimer disease, frontal and anterior temporal 

a

c

b

  Fig. 30.4    ( a ) A photograph of the eye-tracking apparatus and ( b ) the spatial pattern of the eye 
tracks ( light gray ) plotted in the x ( horizontal ) and y ( vertical ) directions. The eye track is overlaid 
on the observed fractal pattern ( black and white ) and ( c ) the equivalent time series data which plots 
x versus time       
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lobe degeneration, and progressive supranuclear palsy all exhibited the same frac-
tal gaze dynamics as healthy participants, indicating that it is fundamental to eye-
movement behavior and that it is not modifi ed by processing in the higher levels 
of the visual system [ 12 ].

   We propose that the purpose of the eye’s search through fractal scenery is to 
confi rm its fractal character (e.g., the ability to confi rm that a forest features only 
fractal trees and no predators would promote survival). If the gaze is directed at just 
one location, the peripheral vision only has suffi cient resolution to detect coarse 
patterns. Therefore, the gaze shifts position to allow the fovea to detect the fi ne- 
scale patterns at multiple locations. This allows the eye to experience the coarse and 
fi ne-scale patterns necessary for confi rmation of fractal character. Why, though, 
does the eye adopt a fractal trajectory when performing this task? A possible answer 
can be found in the fractal motions of animals when they forage for food [ 27 ]. The 
short trajectories allow the animal to look for food in a small region and then to 
travel to neighboring regions and then onto regions even further away, allowing 
searches across multiple size scales. Signifi cantly, such fractal motion has an 
“enhanced diffusion” compared to the equivalent random motion of Brownian 
motion. The amount of space covered by the fractal search is therefore larger. This 
might explain why it is adopted for both animal searches for food and the eye’s 
search for visual information [ 4 ]. The mid- D  saccade is optimal for this fractal 
search because it matches the  D  values found in prevalent fractal scenery – the sac-
cades then have the same amounts of coarse and fi ne structure as the observed stim-
ulus, allowing the eye to sift through the visual information effi ciently. 

 We expect that strategies for effi ciently processing mid- D  fractals will also be 
evident at higher levels in the visual system. In the 1990s, Field and others pre-
sented a neural model featuring virtual “pathways” used for processing scenic infor-
mation in the visual cortex of the brain [ 5 ,  10 ]. Some pathways are dedicated to 
analyzing large structures in nature’s environment and others to small structures. He 
proposed that these pathways have evolved to accommodate our fractal view of 
nature as follows: the number of pathways dedicated to each structure size is pro-
portional to the number of structures of that size appearing in the scene. In other 
words, the distribution of processing pathways matches the  D  values that dominate 
the viewed environment. In other early studies, Geake and Landini proposed that 
fractal processing utilizes images stored in memory [ 6 ]. Their experiments showed 
that people who displayed a superior ability to distinguish between fractals with 
different  D  values were found to also excel in mental tasks involving simultaneous 
synthesis (an ability to combine current perceptual information with data from long- 
term memory). Modern neurophysiological measurement techniques such as quan-
titative EEG (qEEG) and functional MRI (fMRI) now offer the potential for 
researchers to refi ne these preliminary ideas of how the brain processes fractal 
stimuli. 

 EEG is a well-established measure of cortical arousal. While the alpha frequen-
cies (9–12 Hz) indicate a wakefully relaxed state, the beta frequencies (18–24 Hz) 
are associated with external focus, attention, and an alert state [ 11 ]. Previous record-
ings by Ulrich and colleagues revealed that people are more wakefully relaxed 
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 during exposure to natural landscapes than to townscapes, and studies of wall art 
found that images with natural content have positive effects on anxiety and stress 
[ 24 ,  25 ]. In our studies, participants’ responses were continuously monitored using 
a digital EEG recorder while they viewed fractal “mountain” stimuli (Fig.  30.3 ) 
with different  D  values [ 8 ]. The images were viewed for 1 min each and interspaced 
by a neutral gray picture for 30 s. This exposure period was chosen to ensure that a 
relaxation effect in the subjects could occur. Three regions of the brain – frontal, 
parietal, and temporal – were chosen because processes in these associational zones 
are known to be complementary [ 11 ]. The results showed that fractal images quanti-
fi ed by  D  = 1.3 induce the largest changes in participants’ alpha and beta responses 
[ 8 ]. Intriguingly, these responses were dampened when the images were morphed 
from the statistical to exact versions (Fig.  30.1 ), emphasizing the adaption of pro-
cessing fl uency to nature’s biophilic fractals [ 7 ]. Our preliminary studies using the 
fMRI technique further indicate that mid- D  fractals induce distinct responses when 
compared to those of low or high  D  equivalent images. Although requiring further 
study, they suggest that mid- D  fractals preferentially activate specifi c regions such 
as the ventral visual stream (including the ventrolateral temporal cortex), the para-
hippocampal region, and the dorsolateral parietal cortex [ 22 ].  

30.3     Enhanced Performance and Fractal Aesthetics 

 The fl uency model predicts that the increased processing capabilities should result 
in enhanced performances of visual tasks when viewing mid- D  fractals. Indeed, our 
recent behavioral studies demonstrate participants’ heightened sensitivity to mid- D  
fractals [ 16 ]. Using grayscale fractal images displayed on a computer monitor 
(Fig.  30.3 ), the contrast in the patterns was gradually reduced until the monitor dis-
played uniform mean luminance. Participants were able to detect the mid- D  fractals 
for much lower contrast conditions than the low and high  D  fractals [ 16 ]. Similarly, 
participants displayed a superior ability to distinguish between fractals with differ-
ent  D  values in the mid- D  range [ 16 ]. The increased beta response in the qEEG 
studies suggests a heightened ability to concentrate when viewing mid- D  range [ 8 ]. 
There is also anecdotal evidence to suggest that pattern recognition capabilities 
increase for mid- D  fractals. We are all familiar with percepts induced by cumulus 
clouds (Fig.  30.5 , top). A possible explanation is that our pattern recognition pro-
cesses are so enhanced by these  D  = 1.3 clouds that the visual system becomes “trig-
ger happy” and consequently we see patterns that aren’t actually there.

   Does fractal fl uency create a unique aesthetic quality because we fi nd them rela-
tively easy to process and comprehend? Perhaps this “aesthetic resonance” for 
 D  = 1.3–1.5 fractals induces the state of relaxation indicated by the peak in alpha 
response in the qEEG studies. Our earlier skin conductance measurements similarly 
demonstrated that mid- D  fractals are stress reducing [ 8 ,  18 ]. The question of fractal 
aesthetics holds special signifi cance for the fi eld of experimental aesthetics. One of its 
early pioneers, George Birkhoff, introduced “aesthetic measure” in the 1930s – the 
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idea that aesthetics could be linked to measureable mathematical properties of the 
observed images. Visual complexity was a central parameter in his proposals [ 2 ]. In 
1993, RPT conducted the fi rst aesthetics experiments on fractals, showing that 95 % 
of observers preferred complex fractal images over simple Euclidean ones [ 17 ]. Soon 
after, Sprott employed computer-generated fractals to show that mid- D  fractals were 
preferred over low and high  D  fractals [ 1 ]. 

 Over the past two decades, fractal aesthetics experiments performed by ourselves 
and other groups have shown that preference for mid- D  fractals is universal rather 
than dependent on specifi c details of how the fractals are generated. We showed that 
preference for mid- D  patterns occurred for fractals generated by mathematics, art, 
and nature [ 9 ,  14 ]. Whereas this experiment featured relatively simple natural 
images such as a tree or a cloud, this was soon broadened to include more complex 
natural scenes featuring many fractals [ 1 ]. Figure  30.5  shows example results for 
computer- generated stimuli [ 22 ]. The panels are for four different “confi gurations” 
(i.e., the computer uses four different seed patterns). The peak preference shows 
remarkable consistency despite superfi cial variations in the four families of fractals. 
More recently, our experiments demonstrated a direct correlation between prefer-
ence and the observer’s enhanced capabilities (based on their abilities to detect and 
discriminate fractals) [ 16 ]. In addition to these laboratory-based behavioral experi-
ments, a computer server has been used to send screen savers to a large audience of 
5,000 people. New fractals were generated by an interactive process between the 
server and the audience, in which users voted electronically for the images they 
preferred [ 23 ]. In this way, the parameters generating the fractal screen savers 
evolved with time, much like a genome, to create the most aesthetically preferred 
fractals. The results reenforced the preference for mid- D  fractals found in the labo-
ratory-based experiments.  

30.4     Conclusion: The Brave New World of Neuro-Aesthetics 

 Behavioral experiments, coupled with qEEG and fMRI techniques, might initially 
appear to be highly unusual tools for judging art and aesthetics. The history of 
neuro-aesthetics can be viewed as an epic battle fought between scientists and art 
theorists since the days of surrealism and Freudian psychology [ 19 ]. This deep clash 
between art and science is fueled by a fundamental concern: To what extent is art 
appreciation driven by the automatic responses of human neurophysiology and biol-
ogy versus the intellectual and emotional deliberations of the culture-infl uenced 
observer? Consider the neurophysiological responses to Pollock’s paintings as an 
example. Can an appreciation of his paintings be likened to the way a frog continues 
to twitch when its head is cut off? After all, our results indicate that both are auto-
matic responses. Such a comparison seems simplistic, but it does refl ect the wide-
spread fear of the “neurophysiology is destiny” approach to art. Equally, the “culture 
is destiny” supporters cannot distance art from neurophysiology. Pollock’s col-
league, Willem de Kooning, serves as a dramatic example of how drastically his 
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artistry changed as his Alzheimer’s disease progressed. The reality of aesthetics will 
almost certainly prove to be “neurophysiology and culture are destiny.” Its founda-
tion is set by the observer’s neurophysiology, which is then modifi ed by intellectual 
and emotional deliberations. 

 The neuro-aesthetics debate is also fueled by Zeki’s use of fMRI to catalog art 
based on the regions of the observer’s brain that are activated [ 28 ]. Imagine taking 
Zeki’s vision one step further – if we can identify the region that is activated when 
looking at a Pollock, then might we replace the original artwork with technology 
that allows us to stimulate this region directly? Though effi cient, this radical and 
controversial approach would dishearten the art lovers who frequent galleries and 

  Fig. 30.5     Top : A perceived image of a dog drawn on a  D  = 1.3 cloud.  Bottom : Visual preference 
for computer-generated fractal patterns. For each of the four panels,  D  is plotted along the  x -axis 
and the preference on a scale 0–100 is plotted along the  y -axis. Each of the four panels uses a dif-
ferent fractal confi guration to investigate preference. The fractal images are shown as  insets  in each 
panel       
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museums. In reality, it is doubtful that we will ever master a technology suffi ciently 
subtle to stimulate the same fMRI pattern that a Pollock painting does. 

 Despite these and similar concerns, the interplay between art and the brain will 
be crucial for our future understanding of humanity. Novel measurement technol-
ogy is destined to play an increasing role. Our results follow a long tradition of 
experimental aesthetics and the use of modern tools for analyzing human response 
to art works. They provide a fascinating insight into the impact that art might have 
on the observer’s perceptual, physiological, and neurological condition. Our studies 
have only started to probe the neurophysiological origin of fractal aesthetics. It 
might well turn out that there is a deep resonance between the observed fractal 
stimuli and the fractal properties of the brain. In addition to exploring the funda-
mental science of our visual system, our fractal studies have important practical 
consequences. Mid- D  fractals have the potential to address stress-related illnesses, 
which currently cost countries such as the USA over $300 billion annually.     
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    Chapter 31   
 Computational Fractal-Based Neurosciences: 
An Overview                     

     Antonio     Di     Ieva    

    Abstract     After the section “Fractals: What and Why?”, the last section of this 
book covers the software tools necessary to perform computational fractal-based 
analysis, with special emphasis on its applications into the neurosciences. The use 
of  ImageJ  and MATLAB, as well as other software packages, is reviewed. The cur-
rent and future applications of fractal modelling in bioengineering and biotechnol-
ogy are discussed as well. Perspectives on the translation of merging fractals with 
artifi cial intelligence-based methods with the fi nal aim of pattern discrimination in 
neurological diseases by means of a unifi ed fractal model of the brain are also given.  

  Keywords     Artifi cial intelligence   •   Computation   •   Fractal   •   ImageJ   •   MATLAB   • 
  Modelling   •   Patterns recognition  

     What we observe is not nature itself, but nature exposed to our method of questioning. 
(Werner Heisenberg, 1958) 

   From the previous chapters of this book, it is clear that computational fractal- 
based analysis has found and still fi nds large applications in the basic as well as 
clinical neurosciences, offering quantitative and quantitative parameters for the 
study of cellular and subcellular components of brain cells as well as the whole 
brain itself. Moreover, fractal analysis offers potential image and prognostic bio-
markers useful in clinical medicine. After having reviewed such applications, the 
reader may be interested in the methods and software to perform computational 
fractal-based analysis. Part IV of this book is focused on the software tools to 
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 compute the fractal dimension and other complementary parameters. This section 
may be of interest to the neophyte approaching computational methods as well as 
for the computer science expert who would like to review the state-of-the-art meth-
ods or obtain new inputs. 

 Moreover, some computer science and engineering-based perspectives (actual 
and future) are offered in the last two chapters. 

31.1     How to Compute Fractals in Clinical Neurosciences 

 The previous sections of this book dealt with the questions “Fractals in Neurosciences: 
What and Why?”. The key question of this section is: “How?” 

 Several software packages are available for the fractal analysis of images (i.e. 
radiological and histological images) and times series. Many researchers use 
software programmed ad hoc by computer scientists for specifi c tasks. 
Nonetheless, one of the most used toolsets for computing fractal parameters in 
neurosciences has been, and currently is, the open-source image analysis soft-
ware named  ImageJ , which supports functions to compute the fractal dimension, 
lacunarity and other parameters. In Chap.   32    , two pioneers of the application of 
 ImageJ  for fractal analysis in the neurosciences,  Audrey Karperien and Herbert 
Jelinek , who also introduced the plug-in  FracLac  for  ImageJ , illustrate its use for 
pattern extraction and translational research, which was aimed at translating the 
fractal geometry of the brain into clinical applications. MATLAB and other soft-
ware platforms and tools online can be used as well, as illustrated in Chap.   33     by 
 Juan de Miras.  In the latter two chapters, some practical examples of applica-
tions in the neurosciences are illustrated. Moreover, in order to avoid the time-
consuming process of computing the fractal dimension, a method to increase 
processor computational speed is presented by  Juan de Miras and Jesús Ibáñez  
in Chap.   34    .  

31.2     Fractals in Bioengineering and Artifi cial Intelligence 

 Leaping into the realms of bio-engineering and biotechnology, in Chap.   35      William 
Watterson, Saba Moslehi, Julian Smith, Rick Montgomery and Richard Taylor  intro-
duce the reader to a fractal fabric for the construction of bio-inspired fractal inter-
connects to interface the body and brain elements (e.g. neurons) in order to restore 
damaged functions. 

 In the last chapter of this book,  Lorenzo Livi, Alireza Sadeghian and Antonio Di 
Ieva  suggest some intriguing future perspectives in the fi eld on the merging of frac-
tal analysis with computational intelligence methods for pattern identifi cation and 
extraction.  
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31.3     Conclusive Remarks: Towards a Unifi ed Fractal Model 
of the Brain? 

 The Heisenberg’s quote at the beginning of this short chapter subtends a key concept 
of fractal analysis as well as every kind of analysis applied to scientifi c research, 
including biomedical sciences and neurosciences: that our observation of natural 
phenomena is fi ltered by the lens of the applied methodology. For example, in neu-
roradiology what we see is not the brain itself but pixels showing specifi c features of 
the brain. Similarly, in digital pathology, what we see of histological slides of brain 
tumors are two-dimensional images of the tumors as revealed by specifi c histological 
and/or immunohistochemistry techniques. Aware of such method-related limitations, 
we are still able to use such information to our benefi t, despite the fact that we are 
observing the natural phenomenon fi ltered by a methodological “Veil of Maya”. This 
is often forgotten by neophytes, and even by the more experienced researcher. As 
widely expressed in Chaps.   1     and   12    , fractal geometry is a model, with its advantages 
and intrinsic limits. Fractal geometry represents a universal language to translate 
natural phenomena, but the limits of the model itself do not qualify it to be a Rosetta 
stone that is able to interpret every natural object, as fractals are not a panacea. 

 The value of fractal dimension can change according to several different factors: 
different computational methods, preprocessing tools, different scale windows, etc. 
The same structure can show different values depending upon “the angles of view”. 
The methodological differences give rise to a heterogeneous dataset of results, and 
the clinical signifi cance of the fractal dimension as biomarker becomes controversial 
in the absence of a well-standardized computational procedure. Being aware of such 
limitations of fractal geometry as a model, there are still several aspects that make this 
analysis such a powerful tool to analyze natural phenomena, including the complexity 
of the human brain in its entire physiopathologic spectrum. As introduced in Chap.   1    , 
this book has not shown the existence of the fractal geometry of the brain as a pure 
mathematical model, rather it has suggested that computational fractal-based analysis 
be used for pattern recognition in the basic and clinical neurosciences. The fractal 
approach has been shown suited to automatic image analysis (e.g., in neuroradiology 
as well as neuropathology), extraction of features in images as well as in time series, 
and identifi cation and classifi cation of types and subtypes of states within the wide 
spectrum of the normal to the pathological brain. In sum, there exist a host of fractal-
based morphometrics of biodata in the clinical neurosciences that are  objective, real-
istic, reproducible, and potentially prognostic and predictive biomarkers  with much 
promise for use in clinical practice. 

 As suggested by  Audrey Karperien and Herbert Jelinek  at the end of Chap.   32    , 
“We hope [that this book] has further inspired the reader to continue to demystify 
fractal analysis, to explore new fractal possibilities, to develop pattern extraction 
methods for new perspectives and especially for databases, […] to bring the multi-
ple levels of the fractal geometry of the brain to the fore, not just as a wonder of the 
digital age but as a clinical reality”. 
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 As illustrated in Chap.   36    , computational intelligence methods are aimed at 
 recognition, discrimination and prediction in the analysis of complex patterns. The 
future of this fi eld may be a computational fractal-artifi cial intelligence-based anal-
ysis, which, associated with further analyses, might offer, in a multiparametric way, 
a computer-aided, objective and reproducible categorization of the different pathol-
ogies. By this way, the clinicians’ armamentarium will be enriched by new diagnos-
tic, prognostic and eventually therapeutic biomarkers as well.    

A. Di Ieva

http://dx.doi.org/10.1007/978-1-4939-3995-4_36


503© Springer Science+Business Media New York 2016 
A. Di Ieva (ed.), The Fractal Geometry of the Brain, Springer Series in 
Computational Neuroscience, DOI 10.1007/978-1-4939-3995-4_32

    Chapter 32   
  ImageJ  in Computational Fractal-Based 
Neuroscience: Pattern Extraction 
and Translational Research                     

     Audrey     L.     Karperien      and     Herbert     F.     Jelinek    

    Abstract     To explore questions asked in neuroscience, neuroscientists rely heavily on 
the tools available. One such toolset is  ImageJ , open-source, free, biological digital 
image analysis software. Open-source software has matured alongside of fractal anal-
ysis in neuroscience, and today  ImageJ  is not a niche but a foundation relied on by a 
substantial number of neuroscientists for work in diverse fi elds including fractal anal-
ysis. This is largely owing to two features of open-source software leveraged in  ImageJ  
and vital to vigorous neuroscience: customizability and collaboration. With those 
notions in mind, this chapter’s aim is threefold: (1) it introduces  ImageJ , (2) it outlines 
ways this software tool has infl uenced fractal analysis in neuroscience and shaped the 
questions researchers devote time to, and (3) it reviews a few examples of ways inves-
tigators have developed and used  ImageJ  for pattern extraction in fractal analysis. 
Throughout this chapter, the focus is on fostering a collaborative and creative mindset 
for translating knowledge of the fractal geometry of the brain into clinical reality.  

  Keywords     Computer-assisted impage processing   •   Fractals   •   Box counting   • 
  ImageJ   •   FracLac   •   Microglia   •   Neurons   •   Theoretical models   

32.1        Introduction 

 Imagine opening the screen on a cell phone and showing a patient a fractal dimen-
sion displayed overtop of the large vessels in the vicinity of their brain tumor and 
then zooming in to the gross overall outline and texture of their biopsy, through 
microvasculature and intertwining neuronal and other brain cell processes, all the 
way down to that one unusually complex astrocyte, and then its nucleus, fractal 
dimension displaying on the screen at each level—and patient and clinician alike 
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understanding. This is the vision and mindset of fractal-based neuroscience for the 
near future that  ImageJ  supports. 

 The topic of fractal analysis is decades old, in its infancy within the millennia of 
science that human history holds, but of age in today’s digital revolution. It is underlain 
by a set of tools developing in the context of unprecedented technological advances 
and global collaboration. Generally, the path any tool develops along follows the ques-
tions being asked in the workshop and world served by that workshop, and those ques-
tions in turn develop within the questioner’s expectations of how well their question 
might even begin to be explored. This chapter delineates the place of one tool,  ImageJ  
( IJ ), in infl uencing the imaginations of the people asking questions in the global com-
munity of fractal-based neuroscience and in making the topic generally accessible. 

 First, this chapter answers two questions, “What is  IJ ?” (Sect.  32.2 ) and “Where 
does it fi t in fractal-based neuroscience today?” (Sect.  32.3 ). As the anatomical fl y- 
through thought exercise in the introductory paragraph suggests, this chapter’s scope is 
limited to fractal analysis of digital images. In particular, bridging the gap between 
tumor and fractal dimension, vasculature and fractal dimension, neuropil and fractal 
dimension, etc., lies a substantial part of the realm of fractal analysis of digital images—
pattern extraction. Thus, the chapter also reviews some ways investigators have used  IJ  
to creatively answer questions about fractal analysis pattern extraction (Sect.  32.4 ).  

32.2      What Is  ImageJ ? 

32.2.1       Removing Barriers with Free, Open-Source Software 

 To some people,  IJ  is one of many user-friendly photo fi ltering “apps”—to others, a 
powerful lab tool. At its simplest, it is computationally powerful [ 33 ], open-source 
software for digital image processing and analysis. At its broadest, it was designed 
with a mindset to meet four freedoms of open-source software quoted below: 

 Freedom:

    1.     To run the program ,  for any purpose ,   
   2.     To study how the program works ,  and change it to make it do what you wish ,   
   3.     To redistribute copies so you can help your neighbor ,   
   4.     To improve the program ,  and release your improvements to the public ,  so that the 

whole community benefi ts  [ 67 ].     

  IJ  was created by Wayne Rasband at the US National Institutes of Health (NIH). 
First released in 1997, it was based on an existing computer program,  NIH Image , 
but written in the then new Java programming language (hence the “J”) [ 75 ]. The 
signifi cance of this is that it made  IJ  independent of computer architecture, owing 
to Java’s then revolutionary philosophy of “write once, run anywhere.”  IJ  was at the 
outset and remains easily installed on most computer operating systems, making it 
a tool that diminishes barriers to collaboration that different operating systems can 
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pose. This is important today, but was perhaps more important when the program 
was fi rst made available, a time when, more than today, having incompatible com-
puter operating systems rendered many forms of collaboration very time consuming 
or impossible.  IJ  reduced other barriers, too, making it popular in many fi elds, by 
being freeware [ 1 ,  26 ,  75 ].  IJ  was and remains available for anyone to download 
from the NIH’s public website (  http://imagej.nih.gov/ij/download.html    ).  

32.2.2     Shaping Computational Fractal-Based Neuroscience 

32.2.2.1     Making Fractal Analysis Accessible and Customizable 

 Among many image-processing and analysis functions,  IJ  included fractal analysis 
methods early on. In particular, it included a fractal dimension-determining func-
tion, a basic binary box counting tool, founded on existing code written for  NIH 
Image  by Tom Smith, a pioneer in determining the fractal dimensions of neurons 
and other brain cells [ 77 ,  78 ]. Making fractal analysis even easier,  IJ  also included 
the basic pattern extraction methods required to use that binary box counting func-
tion (see Fig.  32.1 ) [ 77 ,  78 ].

   Thus, it was possible for someone with basic digital image processing skills and 
no computer programming knowledge to use  IJ  to open digital images, decide on 
the type of patterns to extract, extract them, and obtain and compare fractal dimen-
sions. This was, albeit, a rudimentary approach (Chap.   2     discusses box counting 
fractal analysis in detail and highlights this approach’s limitations), but the point 
here is that the combination of these fundamental fractal analysis tools with the 
features of being platform independent, available, and free offered a timely oppor-
tunity for scientists with or without programming experience to personally explore 
their own questions about the growing fi eld of fractal analysis. 

 In addition to demystifying and helping establish fractal analysis as an accessible 
method for the neuroscientist or clinician,  IJ  played an important role in encouraging 
the fi eld to grow. Carrying forward basics from its predecessor program, it provided:

•    Built-in functions to record and save macros (sequences of commands to repeat 
tasks and potentially apply them to batches of stored images or the same image 
with multiple modifi ers)  

•   Plug-in capability (a plug-in is software that can be shared and quickly installed 
to make  IJ  able to do new tasks)  

•   Opportunity to shape the core software [ 56 ]    

 These features, which are applications of the freedoms underlining the  IJ  mind-
set (Sect.  32.2.1 ), were especially relevant at the time because the methods of fractal 
analysis in neuroscience were just beginning to be developed [ 49 ]. They let people 
go beyond the basic box counting function to experiment with, customize, and hone 
fractal analysis methods; formulate and test questions; dynamically answer queries 
about multiple, changing nuances; rapidly process large numbers of images; etc. 
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  IJ  in general tapped into a growing scientifi c resource, and researchers and pro-
grammers soon produced a wide-ranging list of plug-ins, online guides, and tutori-
als in many fi elds (see   http://rsb.info.nih.gov/ij/plugins/    ). Many of these resources 
supported fractal analysis to varying degrees, and many were created by or for both 
theoretical and clinical researchers to answer questions in fi elds such as microscopy, 
radiography, and brain morphology. They offered in one toolset a free, accessible, 
fl exible, and user-friendly compendium of ways for non-programmers and pro-
grammers to do several types of fractal analysis (e.g., dilation, mass vs. radius [ 38 ], 
local connected fractal dimension [ 41 ,  45 ], grayscale analysis, and multifractal 

  Fig. 32.1    Examples of patterns suitable for box counting fractal analysis extracted from retina 
using basic  IJ  functions.  (a ) A binary silhouette ( right ) showing only the pattern of the vasculature, 
extracted from a retinal fundus photo, using background subtraction, smoothing, auto-selection, 
and binarizing. ( b ) Grayscale and binary textures extracted from a digital microphotograph of reti-
nal layers on an HE-stained histological slide of retina; extracted by converting to grayscale, using 
background subtraction to remove ganglion and other cell body interiors and other undesired infor-
mation, binarizing, and outlining       

1.27

1.31

1.36

1.26

1.28

a

b
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analysis) as well as related required pattern extraction tasks [ 15 ,  20 ,  31 ,  39 ,  48 ,  64 , 
 68 ,  70 ,  75 ]. While these were certainly not the only means available to the research 
community for applying fractal analysis, they did create a common ground and 
foster a collaborative approach.    

32.3      Where Does  IJ  Fit in Fractal-Based Neuroscience 
Today? 

  IJ  plays a major part in both neuroscience and fractal analysis today. As illustrated 
in Fig.  32.2 , one outcome of the resources described in the previous section and 
their continued development is that  IJ  today has a presence in published work link-
ing the two fi elds [ 1 ,  15 ,  75 ].

   Furthermore,  IJ  has become an image-processing model itself. It is now used as 
an applet in webpages and is available in a limited form for the Android operating 
system (e.g., for tablets and cell phones) [ 12 ,  72 – 74 ]. Today,  IJ  and  Fiji , an  IJ  dis-
tribution developed to accommodate increasingly complicated plug-ins and data 
formats including “Digital Imaging and Communications in Medicine” (DICOM) 
and complex 3-dimensional (3D) data, are neuroscience industry standards. (Still 
straightforward software, “Fiji” is an acronym for “Fiji is Just  ImageJ. ”)  IJ  can 
communicate bidirectionally with many other types of software (e.g., MatLab) and 
is used as a software library in many applications including commercial applica-
tions used in neuroscience. Indeed, neuroscience labs today hire dedicated  IJ  pro-
grammers [ 3 ,  5 ,  7 ,  9 ,  10 ,  14 ,  18 ,  19 ,  50 ,  57 ,  71 ,  73 ]. 

  IJ  is also relevant in today’s changing science education environment and plays 
roles in translational research.  IJ  is being used increasingly in higher education, for 
instance, as digital pathology is now a reality, and virtual microscopy is becoming 
the norm for teaching medical histology [ 8 ,  43 ,  60 ]. Moreover, it is used to teach 
youth in high schools, including for teaching youth participating in science fairs and 
at science camps, how to do and understand fractal analysis of brain cells and how 
to evaluate heart rate variability using fractal measures (see Fig.  32.3 ) [ 16 ,  36 ].

   A key element of this widespread presence is that despite that  IJ  has evolved into 
a highly respected programming library and gained increasingly complex and spe-
cialized functions and uses, its main software interface has remained straightfor-
ward.  IJ  remains a potent tool that the programmer and nonprogrammer alike can 
easily use on its own or with other software, at home and at work, to investigate, 
collaborate on, and explore new questions. 

 In fact, in many labs, for collaborating with colleagues on digital imaging fractal 
analysis questions,  IJ  is a preferred tool that equalizes differences in resources 
because it can be shared and customized as rapidly as the questions being asked 
change their nuances (e.g., by emailing images, macros, plug-ins, and results). To 
illustrate, a regular part of our work is adding features to or customizing the plug-in 
 FracLac for ImageJ , which was developed in our lab to overcome many pitfalls of 
fractal analysis (see Chap.   2    ) and has been used to publish in neuroscience and other 
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Search Results for PubMedCentral

(July 2015)

“Fractal”, not “ImageJ”
6376 papers

95%

 “Brain” 
102 papers

31% (2% of total)

231 
not “Brain” 

69% (3% of total)
“Fractal” and “ImageJ”

333
5% 

“Fractal” 
6709 papers 

c

 “Fractal”, not “Brain”
4308 papers

64%
not “ImageJ”
2299 papers

96% (32% of total)

“ImageJ” 
102 papers

4% (2% of total)

b

“Fractal” and “Brain”
2401 papers

36%

not “Brain”
42,000 papers

63%

3.5 million papers
in entire database

“ImageJ”
67,000 papers

2% of entire database

“Brain”
25,000 papers

37%

a

  Fig. 32.2     IJ  is referenced substantially in published articles indexed in PubMedCentral relevant to 
fractal analysis in neuroscience.  (a )  IJ  is cited or otherwise referenced in 67,000 papers in the 
PubMedCentral database [ 57 ] and around a third of those are relevant to neuroscience (i.e., are also 
indexed under the term “brain”). ( b ) 36 % of all articles relevant to fractal analysis (i.e., indexed 
under “fractal”) in the database are relevant to neuroscience and about 4 % of those cite or other-
wise reference  IJ . ( c ) 5 % of the database articles relevant to fractal analysis cite or otherwise refer-
ence  IJ ; about a third of those are relevant to neuroscience (Data based on a search of the US 
National Library of Medicine’s PubMedCentral in August 2015. Note that publication data gener-
ally underrepresent  IJ ’ s  use because authors do not always credit it when they use it for scientifi c 
publications [ 1 ,  75 ])       

 

A.L. Karperien and H.F. Jelinek



509

fi elds (see   http://rsbweb.nih.gov/ij/plugins/fraclac/FLHelp/FLCitations.htm     for 73 
recent publications citing it) [ 4 ,  17 ,  21 ,  28 ,  30 ,  42 ,  82 ].  FracLac  is an ongoing col-
laborative freeware project including a suite of tools for fractal analysis (including 
monofractal, lacunarity, multifractal, mass vs. distance, and local connected dimen-
sion analyses) and fractal bio-modeling (see Sect.  32.4 ). It was initially developed 
to answer basic questions about the fractal dimension of microglial brain cells and, 
as an open-source plug-in adhering to the  IJ  mindset, continues to develop based on 
our own evolving research needs and requests from users [ 2 ,  11 ,  27 ,  29 ,  40 ,  41 ,  45 , 
 51 ,  79 ,  80 ].  

32.4       Pattern Extraction 

 As was discussed in conjunction with the thought exercise that started this chapter 
(Sect.  32.1 ), fractal analysis of the geometry of the brain depends on bridging the 
gap between digital images and structural information (i.e., numerical coordinates 
in space). Today,  IJ  has centralized much effort spent toward solving one well- 
known and vexing burr in neuroscience that is doubly vexing in fractal-based neu-
roscience—the information problem [ 54 ,  65 ]. To elaborate, the scientifi c and 
medical worlds no longer face archival problems of too little cabinet space to store 
every x-ray and photograph, but of inadequate methods to analyze and manage rap-
idly amassing 3D data sets, videos, and still digital image information. Testifying to 
the signifi cance of the problem, cash rewards are being offered for innovative con-
tributions to the solution [ 37 ,  54 ,  58 ,  65 ,  66 ]. 

  Fig. 32.3     ImageJ  is used to teach young people about fractal analysis in neuroscience and leave 
them with the skills and tools (e.g., a youth-focused plug-in) to explore their own basic fractal 
analysis questions. (Panels are from presentations delivered to youth at a summer science camp in 
Bonnyville, Alberta, Canada, 2010)       
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32.4.1      Pattern Types 

 Turning original digital images into patterns for fractal analysis is called “pattern 
extraction,” “segmentation,” or “preprocessing” and generally entails extracting 
some variation or combination of binary, grayscale, and 3D (e.g., voxel-based) data. 
The usual product of pattern extraction is itself another digital image, generally one 
of three basic types: 

 Contour  Gross outline with no fi ll (e.g., the outline of a hemisphere or 
tumor, a cell membrane, a nuclear membrane, the outer edges of 
branches, and the structures they radiate from such as a vessel or 
microglial cell); typically for binary analysis 

 Skeleton  The basic path of a branching structure excluding diameter 
changes (e.g., the path of an axonal tree or vasculature pattern); 
usually one pixel wide, typically for binary analysis 

 Silhouette 
or area 

 The texture within an area (e.g., the mass inside a hemisphere, 
tumor, cell, or nucleus), which may include a branching structure 
that may or may not have diameter changes and has diameters 
greater than a single pixel (e.g., vasculature; the area within the 
contour of a microglial cell); for either binary (fi lled with one 
color) or grayscale (fi lled with multiple possible colors) analysis 

32.4.2        Extraction Methods 

 In general, published fractal analysis pattern extraction methods range from simple 
to elaborate. In terms of  IJ , there are numerous free, open-source segmentation 
plug-ins including methods that can be trained and methods that can be adapted to 
work with entire databases [ 12 ,  24 ,  31 ,  32 ,  44 ,  48 ]. This section outlines built-in 
functions (Sect.  32.4.2.1 ), tracing plug-ins (Sect.  32.4.2.2 ), thresholding 
(Sect.  32.4.2.3 ), and customized methods (Sect.  32.4.2.4 ) relevant to fractal analysis 
in neuroscience using  IJ . 

 There is an important caveat to this section, based on two general points. First, 
reading a signal, such as by extracting to a binary format, choosing the part of a 
grayscale image to analyze, reconstructing 3D data, etc., is always idiosyncratic, 
and, in the end, what is considered signal and what noise, even within one image 
being investigated in more than one way, is limited only by the questions one 
chooses to ask. Second, all means of imaging are subject to confounders such as 
variation in lighting, contrast agent, intra- and interoperator variability, and a host of 
others pertinent to specifi c image acquisition protocols such as retinal photography, 
microscopy, radiography, etc. [ 61 ,  62 ]. These two points are common to all forms of 
image analysis, computer-aided or not, in science and medicine. 
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 Accordingly, selecting a pattern extraction method requires many steps including 
testing that proposed methods (even automated) work in the way desired for a pro-
posed dataset, reducing confounders, using control images, documenting anomalies 
and deviations, and, if the images are not in a previously acquired dataset, maximiz-
ing acquisition protocols in the fi rst place (e.g., using staining, lighting, etc., appro-
priate to the question). Thus, whereas this section surveys options, it does not 
authoritatively prescribe how to extract patterns. 

32.4.2.1      Built-in Functions 

 Fractal pattern extraction from images typically involves two fundamental tech-
niques—tracing and thresholding. Tracing can be done manually, automatically, or 
semiautomatically and is usually the slower of the two. Thresholding means choos-
ing for grayscale or color images a range of pixel values defi ning which pixels to 
keep (called foreground) and which to ignore (background). Sometimes pattern 
extraction combines the two processes.  IJ  includes a variety of functions for doing 
both and fi lters that enhance them, such as automated background subtraction, 
smoothing, etc. In labs with computer programming expertise, these basic methods 
are often modifi ed and incorporated into macros and plug-ins to address specifi c 
issues pertinent to a set of images (discussed in Sect.  32.4.2.4 ). Table  32.1  outlines 
some basic functions for tracing and thresholding and Table  32.2  outlines some 
basic fi lters used in conjunction with those functions.

     IJ ’s built-in functions are not necessarily original, insofar as commercial applica-
tions include many similar functions, and it is possible with some commercial appli-
cations to combine functions in macros and plug-ins as can be done with  IJ . The 
unique value, however, inheres in features of  IJ  outlined in Sect.  32.2.1 . From a lab 
perspective, for example, licensing restrictions can limit the number of people 
working with software at one time, giving free, open-source software an advantage 
for time-consuming tasks in particular. Moreover, basic extraction methods support 
informal or pilot level enquiry and are adequate for some images, but do not neces-
sarily work for every type of fractal enquiry. The generally greater freedom to write 
macros and customized computer code with  IJ  can be essential for unusual images, 
large jobs with often changing parameters, and the ability to look at images cre-
atively [ 23 ,  46 ,  52 – 54 ].  

32.4.2.2       Tracing Plug-Ins 

 Although using the unaided tracing methods from Table  32.1  can be quick for some 
images, it often becomes labor intensive (e.g., it may take hours to manually recon-
struct the most complicated branching cells in  IJ  and similar computer software). To 
deal with this, several  IJ  developers have created tracing plug-ins that make the 
process easier and potentially less subjective. Three examples of such plug-ins are 
 NeuronJ  [ 55 ],  Neuron _ Morpho  [ 15 ], and the  Simple Neurite Tracer  [ 48 ] (see 
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Fig.  32.4 ). These plug-ins can be used to obtain branching structure information in 
all three of the basic pattern types from Sect.  32.4.1 ;  Neuron Morpho  and the  Simple 
Neurite Tracer  can also be used for 3D reconstructions. Although the developers 

     Table 32.1    Basic built-in functions for fractal analysis pattern extraction by tracing and 
thresholding   

 Pattern  Function  Implementation 

 Contour  Draw  Select area with selection tools or other method then: 
    Edit>Draw  
 Optionally:  Image>Adjust>Line width  

 Binary outline  Select area with selection tools or other method then: 
    Process>Binary>Make Binary  
    Process>Binary>Fill  

 Particle 
analyzer 

  Process>Binary>Make Binary  
  Analyze>Analyze Particles  
 Check  Show Outlines  then  OK  
 To make a selection to analyze: 
    Edit>Selection>Create Selection  

 ROI manager   Analyze>Tools>ROI Manager  
 Select area with selection tools or other method then: 
    ROI Manager>Add  to add each to Manager 
    ROI Manager>More>Draw  

 Skeleton  Skeletonize  Select area with selection tools or other method then: 
    Process>Binary>Make Binary  
    Process>Binary>Skeletonize  
 Select area with selection tools or other method then: 
    Process>Binary>Make Binary  
    Process>Binary>Erode  (repeat) 

 Silhouette or 
area 

 Fill  Select area with selection tools or other method then: 
    Edit>Fill  

 Binary fi ll  Select area with selection tools or other method then: 
    Process>Binary>Make Binary  
    Process>Binary>Fill  

 Threshold   Image>Adjust>Threshold  
 Particle 
analyzer 

  Process>Binary>Make Binary  
  Analyze>Analyze Particles  
 Check  Show Masks  then OK 

 Grayscale  Select area with selection tools or other method then: 
    Edit>Copy  
   Or  Edit>Clear Outside  
   Or  Image>Crop  

 ROI manager   Analyze>Tools>ROI Manager  
 Select area with selection tools or other method then: 
    ROI Manager>Add  to add each to Manager 
    ROI Manager>More>Fill  
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originally created and tested these to answer questions about the structure of neu-
rons, researchers have used them for related structures such as vasculature [ 81 ].

32.4.2.3         Thresholding 

 Like most segmentation methods, the tracing plug-ins described in Sect.  32.4.2.2  
work better for images such as the in silico image illustrated in Fig.  32.4  and images 
from biological imaging modalities with similarly stark contrast. This can be a 
severe limitation for images with less contrast or signifi cant background variation. 
As an example, it is much more diffi cult and ambiguous to extract vessel and neu-
ronal patterns from grayscale versions of the retinal images from Fig.  32.1  than the 
in silico cell in Fig.  32.4 . This is part of a broader issue. The last decade has seen 
mammoth effort put into developing automated pattern extraction methods, but 
there remain two intertwined issues computer programmers, macro writers, and 
generally anyone in neuroscience or any other fi eld reliant on pattern extraction 
continue to spend their time on: background subtraction and auto-thresholding. 
These are signifi cant barriers to pattern extraction for fractal analysis. 

 One major problem complicating general background subtraction and threshold-
ing is that whatever is decided upon as “noise” or “background” is not necessarily 
the same over all parts of an image. Some methods have been developed that account 

   Table 32.2    Methods for fi ltering images   

 Method  Implementation 

 Auto-selection  Choose  Wand (tracing) tool  
 Click on image to select a single or shift-click for a 
composite area 

 Subtract background   Process>Subtract Background  
 Filter   Process>Smooth  or 

  Process>Filter  or 
  Image>Color>Adjust LUT  or 
  Image>Color>Split Channels  

 Paintbrush   Image>Overlay>Add Overlay  
  Choose Paintbrush Tool from main 
interface  
 Optionally set width (e.g., edge or branch diameter): 
   Highlight edge 
    Analyze>Measure  then note and set size: 
    Choose Image>Overlay>Overlay Options  
  Or Paintbrush Tool>Brush Width  
   Type in noted size 
 Manually trace features of interest then: 
    Image>Overlay>To ROI Manager  
 Reselect on original image by selecting ROI in  ROI  list 
 Extract patterns using methods in Table  32.1  
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a

Tracing Branching Patterns for Fractal Analysis
Simple Neurite Tracer

b

d

c

  Fig. 32.4    Extracting branching patterns for fractal analysis in  IJ  ( a ) The green tracing is a path 
generated by the  Simple Neurite Tracer  [ 48 ]. The user clicks on points successively along a tortu-
ous and branched structure (e.g., vessels or branched cells) and the plug-in automatically segments 
a basic skeleton. ( Upper right ) Original grayscale image of a modeled microglial cell. ( b ) Final 
skeleton generated by the plug-in. ( c ) Grayscale structure with background and unrelated cell parts 
removed automatically by the plug-in, based on the skeleton and parameters for fi lling in the area. 
( d ) Binary silhouette generated by the plug-in from the grayscale trace and skeleton. (Cell model 
with stark background contrast generated with  MicroMod for IJ , a plug-in for fractal modeling of 
biological cells [ 35 ])       
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for local variation within one image or in a stack or other set of images with the 
result that patterns can sometimes be extracted automatically or with very little 
intervention, but this is not the general case with most medical images [ 44 ]. There 
are many, many sophisticated segmentation algorithms available, each with its 
strengths and weaknesses. Recognizing this, Gabriel Landini, a researcher and  IJ  
developer [ 44 ], has added to the core  IJ  software a built-in function that tests several 
algorithms at once and lets the investigator select a method for the work at hand. 

 This built-in function highlights an important point relevant to fractal analysis. If 
multiple patterns can be extracted from one image, that means investigation is 
required to test how different patterns translate to fractal dimensions [ 32 ,  44 ]. It also 
means automatic segmentation has a precarious side. To elaborate,  FracLac  and 
many related plug-ins such as the  Sholl Analysis  plug-in have options to automati-
cally threshold [ 25 ,  34 ], but the option in  FracLac , for instance, is a pilot testing 
convenience rather than a recommended strategy. It is vital to be aware that fully 
automatic thresholding cannot work on all original images simply because any 
automated segmentation method has a baseline whereby the programmer decides 
what is noise and what is signal, which may not agree with what the researcher 
decides is noise and signal. Even when looking at one image, an investigator’s ques-
tions may be pertinent to different features and need two different thresholding 
methods to extract two different types of information (e.g., the overall tissue texture 
vs. individual cells in Fig.  32.1 ) [ 22 ].  

32.4.2.4       Customized Pattern Extraction Methods 

 Much of the research done in fractal analysis of digital images in neuroscience 
involves custom pattern extraction methods involving variations on tracing and 
thresholding, but there are other, novel approaches. Wave data, for instance (mean-
ing any sequence of values, such as EEG signals, sound, or other temporal data), can 
be converted to binary digital images for box counting analysis using the  Wave  
command in  FracLac  [ 39 ]. Table  32.3  summarizes and compares some ways  IJ  has 
been used alone and with other means to inspire creative thinking in fractal-based 
neuroscience.

   One particular example from Table  32.3d  [ 13 ] succinctly illustrates a vital fea-
ture of  IJ  and similar open-source software in general. In that example, researchers 
asked how retinal microvessel complexity measured by the box-counting dimension 
( D  B ) might be proxy for cerebral microcirculation pathology in CADASIL, a 
 disorder having grave consequences including dementia. Working with retinal pho-
tographs obtained using a digital fundus camera, they found the mean  D  B  was sig-
nifi cantly lower in patients than controls (1.426 vs. 1.506), suggesting that altered 
retinal vessel complexity might be a practical, noninvasive window into and early 
indicator of pathology in CADASIL. To come to that conclusion, they extracted 
patterns through the following summarized fi ve steps using  IJ  functions:
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    Table 32.3    Examples of pattern extraction and fractal analysis methods implemented in  ImageJ    

 Basic topic and model  Pattern extraction  Fractal dimension 

 (a) White matter 
  Texture  [ 59 ] 
 Corpus callosum 
 Anterior cingulum 
 Digital micrographs 
 Rat 

 Grayscale tiff of white mass  Box count: FracLac (texture) 
 Discriminates adjacent white 
mass structures 

  Multiple sclerosis  [ 22 ] 
 Voxel-based slices 
 Conventional MRI 
 Human 

 Threshold slice, extract 2 
binary patterns: 
  1.  Skeleton of gyri within 

mass in IJ 
  2.  Outline of entire mass in 

other software 

 Box count: HarFA [ 83 ] 
 Identifi es early brain changes 
in MS 

 (b) Cerebral arteries 
  Arteriovenous malformation  [ 69 ] 
 Maximum intensity 
projections 
 Time-of-fl ight MRI 
 Human 

 Extract vessels and remove 
background with k-means 
clustering 
 Binary skeleton in IJ 

 Box count: in-house 
 Multifractal: FracLac 
 Correlates with fl ow and size 

  3-D reconstruction  [ 81 ]: 
 Human 
 Methods originally for 
neurons 

 Neuron Morpho [ 15 ]  Branching: L-Measure [ 63 ] 
 Reconstructions now on free 
database 

 (c) Axonal architecture 
  Autism-related mutations  [ 29 ] 
 Cells in culture 
 Axon trajectories 
 Rat 

 Binary network; white 
background; no somata or 
other structures; long and 
short, curved black lines of 
consistent diameter 
 In-house software 

 Box count: FracLac 
 Lacunarity: FracLac 
 Mutations alter network 
architecture and synchrony 

 (d) Eye 
 Cerebral autosomal dominant 
arteriopathy with subcortical 
infarcts and 
leukoencephalopathy 
(CADASIL) [ 13 ] 
 Cerebral microcirculation 
 Retinal fundus photographs 
 Human 

 Binary contours 
 Automated in IJ 

 Box count: FracLac 
 Vessel complexity identifi es 
early pathology 

  Diabetic retinopathy  [ 41 ] 
 Nonproliferative vs. 
proliferative 
 Retinal digital images 
 Fluorescein 
 Human 

 Extract vasculature tree from 
2 methods, then skeletonize 
in IJ 
  1.  Automated continuous 

wavelet transform with 
supervised classifi cation 

  2. Manual tracing 

 Box count: FracLac 
 Local connected: FracLac 
 Correlation: other 
 Progress on automated, 
objective screening 
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    1.    Split color channels using green fi ltering: Image>Color>Split Channels.   
   2.    Select an ROI 3.5 times the optic disk radius and centered on it.   
   3.    Subtract background using the mean optical density from four arbitrarily 

selected, vessel-free areas.   
   4.    Convert to binary, automatically trace vessels:  Process>Binary>Outline.    
   5.    Manually remove artifacts if present [ 13 ].    

  The above description has pedagogical value beyond the method per se. With free, 
open-source software, methods such as this can be easily shared and reproduced, 
improved, or modifi ed for related data sets. Being able to convey detailed steps of a 
method so that researchers can easily reproduce them, so that differences in lab 
resources are not a barrier to reproducing them, is an important feature of  IJ  that has 
the potential to signifi cantly infl uence fractal-based neuroscience. It provides a level 
of continuity to enhance timely scientifi c development and advancement.    

32.5     Conclusion 

 In conclusion, let us recap the answers to the questions posed at the beginning of 
this chapter (Sect.  32.1 ). The fi rst question was “What is  IJ ?” The answer is that, 
substantially more than powerful, open-source image analysis software,  IJ  is both 
bio-tool and mindset. It removes barriers and promotes vigorous, collaborative neu-
roscience. It has matured alongside of and contributed to the presently materializing 
fi eld of fractal-based neuroscience. It is a global project, an emergent feature of 
which is potential for inspiring creativity, and a platform for collaboration [ 15 ,  47 , 
 70 ] especially useful now when information is amassing ahead of our ability to 
analyze it [ 40 ,  66 ]. Researchers working with  IJ  are not bound by existing methods 
of analysis but are instead able to rapidly customize and repeatedly hone solutions 
and therefore formulate questions creatively using it. 

 The second question was: “Where does  IJ  fi t in fractal-based neuroscience 
today?” It occupies a prominent role in the published work of computational fractal- 
based neuroscience and multifarious collaborative roles in diverse areas relevant to 
the topic including industry and education.  IJ  has become a highly accessible ave-
nue for researchers with and without computer programming background to join 
forces and fashion the tools they envision to answer questions about the fractal 
geometry of the brain at all levels, from gross to fi ne. 

 Basic topic and model  Pattern extraction  Fractal dimension 

  Choroid  [ 76 ] 
 Neovascularization 
 Microglial ramifi cation 
 Neuroprotectin D1(NPD1) 
 Mice 

 3-D reconstruction from laser 
confocal microscopy 
 Fiji and other 

 3-D: Shape and Fractal 
Count [ 6 ] 
 Microglia are potential targets 
of NPD1 

Table 32.3 (continued)
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 Moreover, despite becoming very powerful and being integrated in commercial 
applications, the main software itself remains practical and accessible, a bridge for 
sharing ideas and results with the nonexpert in many venues including the clinical 
picture of patient communication painted at the beginning of this chapter. 

 We hope this chapter has further inspired the reader to continue to demystify 
fractal analysis, to explore new fractal possibilities, to develop pattern extraction 
methods for new perspectives and especially for databases, to build that fl y-through 
cell phone app, or to otherwise use the tools or embrace the mindset characteristic 
of  IJ  to bring the multiple levels of the fractal geometry of the brain to the fore, not 
just as a wonder of the digital age but as a clinical reality.     
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    Chapter 33   
 Fractal Analysis in MATLAB: A Tutorial 
for Neuroscientists                     

     Juan     Ruiz de Miras    

    Abstract     MATLAB is one of the software platforms most widely used for scien-
tifi c computation. MATLAB includes a large set of functions, packages, and tool-
boxes that make it simple and fast to obtain complex mathematical and statistical 
computations for many applications. In this chapter, we review some tools available 
in MATLAB for performing fractal analyses on typical neuroscientifi c data in a 
practical way. We provide detailed examples of how to calculate the fractal dimen-
sion of 1D, 2D, and 3D data in MATLAB. Furthermore, we review other software 
packages and several online tools available for fractal analysis.  

  Keywords     Fractal analysis   •   Fractal dimension   •   MATLAB  

33.1        MATLAB Packages and Toolboxes for Fractal Analysis 

  Boxcount  [ 19 ] is one of the fi rst MATLAB scripts developed for computing the 
fractal dimension (FD) of 1D, 2D, or 3D sets. As its name indicates,  Boxcount  esti-
mates the FD of a set by using the box-counting method [ 18 ]. It can be only used 
with binary datasets (for an RGB image, for example, a previous summation of the 
three components is performed) and the box sizes used to estimate the fractal dimen-
sion must be power of two.  Boxcount  is a MATLAB function that must be integrated 
into other MATLAB scripts in order to be executed. 

  FracLab  [ 14 ] is veteran MATLAB software that allows fractal analysis of 1D 
signals and 2D images, but analysis of 3D sets is not supported. All the functionality 
of  FracLab  is accessible through a graphical interface, so no direct MATLAB pro-
gramming is needed.  FracLab  allows the user to calculate not only the fractal 
dimension of the set but also parameters like the Hölder exponent or multifractal 
spectra. 
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 For the case of 1D signals, the FD is commonly estimated by using Higuchi’s 
algorithm [ 12 ], and there are several MATLAB implementations of this algorithm 
[ 23 ,  26 ]. Another well-known technique for estimating the FD of a 1D signal is 
Katz’s algorithm [ 17 ]. In [ 20 ] a MATLAB implementation of this algorithm is pro-
vided. Unlike Higuchi’s algorithm, which needs a manual-set parameter in order to 
establish the maximum size of the intervals to consider for approximating the 1D 
signal, Katz’s algorithm can calculate the fractal dimension automatically without 
needing manual-set parameters. Some studies [ 8 ] have proven that Higuchi’s algo-
rithm is more accurate but also more noise sensitive than Katz’s algorithm. 

 The FD value is associated to static structures; nevertheless, the multifractal 
spectrum [ 1 ] is a useful parameter in the fractal analysis of structures that present 
spatial and temporal variations. A detailed description and the related MATLAB 
scripts used to calculate the multifractal spectrum of biomedical time series can be 
found in [ 13 ,  28 ].  

33.2     MATLAB Examples: Fractal Dimension Computation 
for 1D, 2D, and 3D Sets 

 The FD is the most commonly used parameter in fractal analysis. A recent review of 
applications of the FD parameter in the neuroscience fi eld can be found in [ 7 ]. In this 
section, we show several step-by-step practical examples of how the FD parameter 
can be computed in MATLAB for typical neuroscientifi c data in 1D, 2D, and 3D. 

33.2.1     EEG Fractal Dimension 

 In this fi rst example, we describe how to estimate the FD of an electroencephalograph 
(EEG), a unidimensional signal commonly used in neuroscience. For this purpose, we 
use two different MATLAB implementations of FD: Higuchi’s algorithm provided in 
[ 23 ] and Katz’s algorithm provided in [ 20 ]. Figure  33.1  shows the signals of the same 
electrode for two different EEGs and the results of the two FD estimations for them. 
The MATLAB script that generates these results is shown in Listing  33.1 .

    In Listing  33.1 , the EEG data is provided in European Data Format (EDF), a 
format for the exchange and storage of multichannel biological and physical sig-
nals. EDF fi les in Listing  33.1  are read by using the function  edfread() , avail-
able from [ 25 ]. It is easy to import or export EEG data to EDF format through 
well-known MATLAB toolboxes like EEGLAB [ 6 ]. Katz’s algorithm does not have 
any parameter to set. However, Higuchi’s function  hfd()  needs to establish the 
parameter  kmax , indicating the maximum value for  k  in Higuchi’s algorithm [ 12 ].  
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  Fig. 33.1    Two EEG signals and their Higuchi’s and Katz’s FD values       

  Listing 33.1    MATLAB code used to calculate the FD of an EEG by using both Higuchi’s and 
Katz’s algorithms       
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33.2.2     Brain MRI Fractal Dimension of the Gray Matter 
with FracLab 

 In this example, it is shown how to calculate the FD value of a 2D image of the gray 
matter from a slice of an MR image of the human brain. First, we have to segment 
the original MR to extract the gray matter by using, for example, the SPM (statisti-
cal parametric mapping) toolbox [ 2 ] for MATLAB. The next step consists of select-
ing one slice of the segmented 3D image and extracting it to a single fi le in BMP 
format. This task can be easily performed with the software MRICron [ 21 ]. Then 
we load the BMP fi le of the slice into  FracLab  and execute the  box method  for 
binary data. Several parameters allow us to confi gure the box sizes and the type of 
linear regression used to estimate the FD. Figure  33.2a  shows an example of the 
values used to calculate the fractal dimension of the gray matter slice of size 
189 × 157 shown in Fig.  33.2b . Finally, the interval of box sizes used to perform the 
linear regression is manually selected (red dots) as shown in Fig.  33.2c , obtaining a 
fractal dimension value of 1.839 for this example.
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  Fig. 33.2    Fractal dimension computation with  FracLab . ( a ) Parameter selection for the box- 
counting method. ( b ) The gray matter slice to be processed. ( c ) Selection of the interval of box 
sizes to calculate the linear regression for estimating the fractal dimension value       

 

J. Ruiz de Miras



527

33.2.3        Fractal Dimension Computation of an MRI Volume 
of the Brain White Matter with a Boxcount-Based 
MATLAB Script 

 In the last example, we show how to calculate the FD of a 3D volume representing 
the brain white matter. The main MATLAB function that we use for this process is 
 Boxcount . The fi rst step is the same as in the previous section; we have to segment 
the white matter of the original 3D MR image. This task can be performed with the 
toolbox SPM, as previously described. The segmented volume of the white matter 
is obtained from SPM in ANALYZE format (HDR and IMG fi les), although another 
usual fi le format for dealing with MRI data is the NIfTI format. We have several 
choices for loading this kind of 3D image into MATLAB: (1) we can extract the 
BMP fi le for each slice of the 3D image with MRICron software and then load all 
the individual BMPs into a single 3D MATLAB matrix through a loop where the 
MATLAB function  imread()  loads each individual BMP into the corresponding 
layer of the 3D matrix; (2) we can load an  analyze  fi le directly into a MATLAB 
matrix by using the function  analyze75read() ; (3) NIfTI fi les are not directly 
supported by MATLAB functions, but there exist MATLAB toolboxes, such as the 
one in [ 24 ], allowing us to manage them. We can load a NIfTI image into MATLAB 
by using the function  load_nii() . The 3D representation of the brain white mat-
ter that we use through this section is shown in Fig.  33.3 .

   The next step consists of performing the box counting of the 3D image. In this 
example, we use the  Boxcount  function introduced in Sect.  33.1 . This function 
returns two arrays: an array ( r ) containing the incremental sizes of the boxes used to 
cover the 3D image and another array ( n ) containing the number of boxes of each 
size in  r  covered or partially covered by the 3D image. For our 3D white matter 
representation in Fig.  33.3 , the arrays have these values:

•     r  = [1; 2; 4; 8; 16; 32; 64; 128; 256]  
•    n  = [1138742; 171868; 26976; 4141; 667; 121; 25; 7; 1]    

 From these data, we can easily calculate the fractal dimension by computing the 
slope of the linear regression of the log-log plot of 1/ r  versus  n . Least-squares linear 
regression in MATLAB can be obtained with the\operator (equivalent to the  mldi-
vide()  function). Figure  33.4a  shows the log-log plot, the regression line, and the 
fi nal fractal dimension value calculated for our 3D image. In order to select the 
linear range of the regression line, we have selected the range of box sizes from 1 to 
4. This selection was based on the plot provided by the function  boxcount(img, 
‘slope’) , shown in Fig.  33.4b ; this plot provides us with the evolution of the 
exponent  D  = − d  ln( n ) / ln( r ) for all the box sizes in  r . As you can see in Fig.  33.4b , 
this exponent (local dimension) is almost constant (around 2.7) in the range 1–4. 
Finally, the full MATLAB script used to obtain the fractal dimension from a 3D 
image is shown in Listing  33.2 .
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33.3          Other Software and Online Resources for Fractal 
Analysis 

 If you do not have access to MATLAB software or prefer to perform fractal analysis 
using stand-alone software through a graphic user interface, then you have some 
choices on your hands:  BENOIT  [ 3 ] is paid software from TruSoft Inc that allows 
the FD and hurst exponent of 1D, 2D, and 3D data sets to be measured using a set 
of methods. BENOIT only runs on Windows operating systems, but a MATLAB 

  Fig. 33.3    3D MR imaging 
of the brain white matter 
(example described in the 
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version of BENOIT is also available. FDC [ 4 ] is another MAC OS paid software for 
computing the FD of a black and white image.  Fractalyse  [ 27 ] is a computer pro-
gram running on Windows and Linux that estimates the FD of binary images by 
using several algorithms. The FD value of grayscale images can be computed using 
the Windows program  Fdim  [ 9 ]. A Visual BASIC software for estimating the FD of 
grayscale objects of up to 4D on the Windows platform was presented in [ 10 ]. Two 
popular programs for analyzing 2D images are  ImageJ  [ 22 ] and  HarFa  [ 11 ]. Fractal 
analysis in  ImageJ  can be performed through the plug-in  FracLac  [ 16 ] (see Chap. 
  32    ).  ImageJ  is written in Java, so it can be executed in any platform supporting Java. 
 HarFa  is a Windows program specifi cally designed to perform harmonic and fractal 
analysis on images.  ImageJ  and  HarFa  estimate the fractal dimension by using the 
box-counting method. 

 There are also several online tools for performing fractal analysis on a Web 
browser. A Java applet that estimates the FD value of an image by means of the box- 
counting algorithm is available from [ 5 ]. In [ 15 ] a Web platform for calculating and 
visualizing the FD of MRI data is presented. This platform calculates the fractal 
dimension of 3D MRI volumes by using the box-counting method and allows an 
interactive comparison of the results obtained for a set of images.  

  Listing 33.2    MATLAB code used to calculate the fractal dimension of a 3D image       
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33.4     Conclusions 

 In this chapter we have reviewed several MATLAB packages and toolboxes, as well 
as other software and online resources, used to perform fractal analysis on 1D, 2D, 
and 3D data sets. We have provided practical examples on how to compute the frac-
tal dimension in MATLAB for typical neurological signals and images. To summa-
rize, Table  33.1  shows a comparative synopsis of all the software reviewed.

        Acknowledgments   This work has been partially supported by the University of Jaén, the Caja 
Rural de Jaén, the Ministry of Economy and Competitiveness, and the European Union (via ERDF 
funds) through the research projects UJA2013/12/04, UJA2013/08/35, TIN2014-58218-R, and 
MTM2014-61312-EXP.  

   Table 33.1    Summary of fractal analysis software   

 Software  Platforms  Algorithms  Data  Commercial  Reference 

  Boxcount()   MATLAB  FD (box 
counting) 

 1D, 2D, 3D 
binary 

 No  [ 19 ] 

 FracLab  MATLAB  FD, holder 
exponent, 
multifractal 
analysis 

 1D, 2D  No  [ 14 ] 

  hfd()   MATLAB  FD (Higuchi)  1D  No  [ 23 ] 
  HFDCALC()   MATLAB  FD (Higuchi)  1D  No  [ 26 ] 
  Katz_FD()   MATLAB  FD (Katz)  1D  No  [ 20 ] 
 WLBMF  MATLAB  Multifractal 

analysis 
 1D, 2D  No  [ 28 ] 

 BENOIT  Windows  FD, Hurst 
exponent 

 1D, 2D, 3D  Yes  [ 3 ] 

 FDC  MAC  FD  2D binary  Yes  [ 4 ] 
 Fractalyse  Windows, 

Linux 
 FD  2D binary  No  [ 27 ] 

 FDim  Windows  FD  2D grayscale  No  [ 9 ] 
 Fractal 
Analysis v3 

 Windows  FD  1D, 2D, 3D, 
4D grayscale 

 No  [ 10 ] 

 ImageJ  Java  FD, 
multifractal 
analysis 

 2D  No  [ 22 ] 

 HarFa  Windows  FD (box 
counting) 

 2D  No  [ 11 ] 

   http://www.
stevec.org/
fracdim     

 Web  FD (box 
counting) 

 2D binary  No  [ 5 ] 

   http://3dfd.
ujaen.es     

 Web  FD (box 
counting) 

 3D binary  Yes  [ 15 ] 
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    Chapter 34   
 Methodology to Increase the Computational 
Speed to Obtain the Fractal Dimension Using 
GPU Programming                     

     Juan     Ruiz de Miras      and     Jesús     Jiménez Ibáñez   

    Abstract     Computing the fractal dimension (FD) can be a very time-consuming 
process. Nowadays, the data precision or resolution of many sensors is increas-
ingly high (magnetic resonance, ultrasounds, microcomputed tomography, etc.) 
and, furthermore, some applications require 3D data post-processing. The pro-
cessing of large data sets is also very common in several analyses and applica-
tions. Therefore, fast algorithms for computing the FD are required, above all for 
interactive applications. Graphics processing unit (GPU) programming has 
become a standard tool for optimizing certain sorts of time-consuming algorithms. 
If the problem fi ts the GPU programming model well, high speedups can be 
achieved. CUDA and OpenCL are two of the most popular GPU technologies 
since they do not require special knowledge of computer graphics programming. 
In this chapter, we present our experience optimizing the processing time of the 
classic box-counting algorithm to compute the FD by means of CUDA and 
OpenCL GPU programming. Speedups of up to 28× (CUDA) and 6.3× (OpenCL) 
against the single-thread CPU version of the algorithm have been obtained. CUDA 
results are better because the box-counting algorithm has a strong dependency on 
sorting, and the OpenCL implementations of the best sorting algorithms are not as 
effi cient as the CUDA ones.  
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34.1       An Introduction to GPU Programming 

 GPU programming has become a standard technique for optimizing highly time- 
consuming algorithms, especially within the biomedical fi eld. As reviewed in 
[ 9 ,  31 ], there are several applications of GPU computing used to accelerate com-
putationally demanding algorithms for medical imaging. 

 Not only is GPU computing power constantly increasing, but GPUs are also 
much cheaper than traditional parallel computers. These are the main reasons why 
GPU programming is a very interesting solution for optimizing those  time- consuming 
algorithms, which can be parallelized. However, using the GPU to code algorithms 
for general purposes (not related to graphics visualization) can be slightly diffi cult, 
since a deep knowledge of the graphic pipeline and its specifi c data structures is 
required. Several innovative technologies have been developed in order to overcome 
these diffi culties, such as CUDA [ 24 ] for NVIDIA GPUs and OpenCL [ 17 ] for 
GPUs and multi-core CPUs. CUDA and OpenCL do not require the programmers 
to know the graphic pipeline of the GPU because these technologies are simple 
extensions of well-known programming languages like C/C++, CUDA and OpenCL 
are very similar technologies. Both technologies are based on providing access to 
hundreds of processing cores through the parallel execution of thousands of  threads , 
i.e., pieces of the same code that are concurrently executed. The main difference 
between the two technologies is that OpenCL is cross-platform, meaning that the 
same OpenCL program can be executed in any GPU or multi-core CPU that sup-
ports OpenCL, regardless of their manufacturer. On the other hand, CUDA can be 
executed only on NVIDIA GPUs. Below we briefl y show the main features of 
CUDA and OpenCL. 

34.1.1     NVIDIA CUDA 

 CUDA application program interface (API) allows programmers to place data in the 
GPU memory and execute  kernels  to process this data. A  kernel  is a GPU program 
that is called as many times as threads are needed to process the data. Therefore, 
each kernel applies the same operations on each data element. This is known as 
single instruction multiple data (SIMD) processing. Threads, which execute the ker-
nel, are grouped into 1D, 2D, or 3D structures called  thread blocks  or simply  blocks . 
In the same way, these blocks can also be grouped into 1D, 2D, or, from CUDA 
version 4.4, 3D structures called  grids . This hierarchy allows the programmer to set 
the kernel execution in the way that best fi ts the structure or organization of the data 
to process. Figure  34.1  shows the GPU execution hierarchy based on threads, 
blocks, and grids. The threads in each block are executed in groups of 32, called 
 warps . Many blocks are simultaneously executed. The exact number of blocks exe-
cuting at the same time depends on the available resources of the GPU (number of 
cores, amount of memory, registers, etc.).

J. Ruiz de Miras and J. Jiménez Ibáñez



535

   In general terms, the software architecture of CUDA consists of a single-thread 
 host  program, which is executed in the CPU, and a kernel launched by the host 
program that is executed in parallel by means of thousands of threads in the 
GPU. The control fl ow is returned to the host program (CPU) when all threads have 
ended their execution; and then the host program can launch other kernels into the 
GPU [ 16 ]. This way, the sequential parts of the algorithm are executed in CPU, 
while the parts of the algorithm that can be parallelized are executed as kernels in 
GPU. Figure  34.2  shows the graphical representation of the execution of a host 
program with two CUDA kernels. From version 5.0 of CUDA, and requiring 
NVIDIA Kepler architecture, it is also possible that a GPU kernel launches other 
kernels, what is called  dynamic parallelism .

   A common CUDA program usually follows the following steps:

    1.    Allocation of memory in GPU   
   2.    Transferring data to be processed from CPU to GPU   
   3.    Setting up the parameters for the execution in GPU, such as the number of 

threads per block, number of blocks, dimensionality in thread-block-grid struc-
ture, etc.   

   4.    Execution of the kernel, storing the results in the GPU memory   
   5.    Transferring of results from GPU to the RAM memory in CPU     

 Regarding the hardware architecture, a CUDA GPU is composed of a set of 
  multiprocessors  (MP) each one containing a set of  scalar processors  (SP). Each SP 

  Fig. 34.1    CUDA grid-block-thread organization. A 2D grid with 3 × 2 blocks. Blocks have 4 × 2 
threads each       
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has a local memory and a set of registers. On the other hand, each MP has its own 
memory, called  shared memory , which is accessible from all SPs in the same MP. 
MPs can access the main memory of the GPU, called  global memory , and also two 
other types of memory:  constant memory  and  texture memory . 

 Constant memory, texture memory, registers, and shared memory have very 
low access latencies, and therefore data stored in these memories can be accessed 
very fast. However, global and local memories have very high latencies; as a 
result, storing and accessing data in these types of memory must be avoided. 
Since the release of  Fermi  architecture [ 35 ], NVIDIA GPUs have incorporated 
a two-level cache hierarchy completely transparent to programmers. This cache 
memory considerably reduces the access time to global memory. Figure  34.3  
shows a representation of the different types of memory in CUDA and their 

  Fig. 34.2    Execution of a program in CUDA        
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relationship with threads and blocks. Note that L1 cache and shared memory 
share the space, and the programmer can select the amount of memory assigned 
for each type.

   The CUDA software-programming model has a direct matching with the hard-
ware architecture. By this way, a grid of blocks is assigned to a GPU device, each 
block is assigned to an MP, and each thread is assigned to an SP. Threads in the 
same block can share data through the shared memory of the MP. Threads in differ-
ent blocks can share data only through the global memory of the device 
(see Fig.  34.3 ). The CUDA hierarchy based on grids, blocks, and threads allows the 
 scalability of the programs and their automatic adaptation to different devices with 
different numbers of MPs and SPs.  

34.1.2     OpenCL 

 CUDA and OpenCL are almost identical technologies. The CUDA concepts 
explained previously are exactly the same in OpenCL, with only a few changes of 
terminology (see Table  34.1 ).

  Fig. 34.3    CUDA memory architecture       
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   Even though OpenCL is a recent technology, many studies have already been 
published with very good results in optimizing the computation time of different 
kinds of algorithms. For example, some applications in the medical imaging fi eld 
have been described, such as for segmentation of blood vessels [ 30 ] or for image 
classifi cation in Alzheimer’s disease [ 27 ]. Unlike CUDA, OpenCL is cross- platform; 
therefore, an OpenCL program can be run on GPUs from different manufacturers 
and on multi-core CPUs. Although the same program can be run on both GPU and 
CPU, since GPUs and CPUs have different architectures and they present different 
types of parallelism, specifi c confi gurations and optimizations must be carried out 
in the programs to gain the best results from each platform.   

34.2     Previous Work 

 A very effi cient algorithm to estimate FD using the box-counting method was 
 proposed by Hou et al. [ 11 ] as an optimization of the box-counting algorithm origi-
nally proposed by Liebotich et al. [ 19 ]. There are some studies addressing the prob-
lem of improving the effi ciency of Hou’s box-counting algorithm, like those 
presented in [ 18 ,  32 ]. However, these tried to improve the algorithm by using only 
a single thread of the CPU (a sequential program), and nowadays this type of imple-
mentation is no longer considered competitive against GPU or multi-core CPU 
algorithms, as shown in Sect.  34.5 . 

 The fi rst attempt to optimize the computational cost of the box-counting algo-
rithm through parallel computing is found in [ 5 ]. In this study the authors propose a 
parallel implementation of the differential box-counting algorithm (DBC) presented 
in [ 28 ]. This approach is based on a SIMD array processor implementation, although 
only a theoretical computational complexity study was presented and no practical 
timings were shown. This study revealed that SIMD processing, the one that GPUs 
have, was a promising technique for improving the effi ciency of the box-counting 
algorithm, but until now the only optimization of the DBC algorithm has been a 
multi-core CPU implementation presented in [ 34 ]. A recent study [ 22 ] presented 
two OpenCL kernels to calculate the box counting of 2D images. These algorithms 
obtain good results (speedups of up to 35×) comparable to the best ones we achieved, 
but these algorithms depend on additional GPU data structures that may cause 
memory overfl ow for large 3D data. 

   Table 34.1    CUDA and OpenCL terminology correspondence   

 Concept  CUDA  OpenCL 

 Multiprocessor  Multiprocessor (MP)  Compute unit (CU) 
 Scalar processor  Streaming processor (SP)  Processing element (PE) 
 Single unit of execution  Thread  Work item 
 Groups  Block  Work group 
 Shared memory of multiprocessor  Shared memory  Local memory 
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 The emergence of Web applications [ 15 ,  20 ] that offer image-analysis algo-
rithms, like FD computation, in an online environment implies the new challenge of 
providing the interactive computation times that these platforms require. With this 
goal in mind, two studies presented the fi rst results on parallelization and optimiza-
tion of Hou’s box-counting algorithm by using both GPU platforms CUDA and 
OpenCL [ 13 ,  14 ]. Here we analyze, compare, and integrate the methodologies, 
techniques, and results of these two previous studies. 

 The next section illustrates that one of the steps in the box-counting algorithm is 
to sort a large set of elements. In fact, as analyzed below in Sect.  34.5 , this is the 
most time-consuming step of the algorithm. Therefore, highly optimized sorting 
algorithms are required to perform a fast box-counting algorithm processing. There 
are many studies addressing the problem of developing fast parallel sorting algo-
rithms in GPU. According to our tests, the radix-sort algorithm [ 21 ] implemented in 
the thrust library [ 10 ] is the one providing the fastest performance for the CUDA 
platform. There are also several parallel OpenCL implementations of sorting algo-
rithms [ 3 ,  7 ,  25 ], but some of them have limitations regarding the number of ele-
ments to be sorted [ 3 ]. This infl uences the fi nal selection of the algorithm to be used, 
as discussed in Sect.  34.4 . The OpenCL sorting algorithm presented in [ 25 ] seems 
to be a very promising solution comparable to the CUDA sorting algorithm present 
in the thrust library. Unfortunately, the code provided by the authors did not work 
properly in our tests, and it was impossible for us to obtain their sorting algorithm 
code in order to test it in our OpenCL box-counting implementation. Other recent 
studies have presented new advanced implementations of different sorting algo-
rithms [ 4 ,  29 ]. None of these interesting and recent approaches adapt well to our 
problem, due to the fact that they are focused on distributed supercomputers [ 29 ] or 
hybrid platforms [ 4 ].  

34.3     Box-Counting Algorithm 

 The  box - counting  algorithm [ 26 ] is one of the most widely used methods to approx-
imate the FD value, because (a) it is quite simple; (b) it provides a good approxima-
tion; and (c) it is valid for statistically self-similar models [ 23 ]. 

 In this part we focus on optimizing the computation time of 3D fractal dimension 
(3DFD). The box-counting algorithm consists of dividing the space containing the 
object under investigation into boxes of the same size  l , where  l  is the size in voxels 
of the edge of the box. Each box of size  l  is classifi ed as  black ,  gray , or  white  
depending on how the object covers the box. A box is black if the object fi lls all its 
voxels. A box is labeled gray if it is partially fi lled by the object. Finally, those 
boxes covering parts of the space where the object is not present are classifi ed as 
white boxes. Once all boxes are classifi ed, the number of boxes of each type is 
counted. This process of generating, classifying, and counting boxes is repeated for 
different box sizes (different values of  l ). Figure  34.4  shows this process in a graphic 
way. Values of 2, 4, and 8 for the box size ( l ) are used in Fig.  34.4b–d , respectively. 
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All these counts at different resolutions (box sizes) are the fi nal result of the box- 
counting algorithm.

   The estimation of the FD value for a selected type of voxel (white, gray, black, 
or black + gray) is calculated through a log-log linear regression, where the  X  coor-
dinate represents the inverse of the box size (1/ l ) and the Y coordinate represents the 
number of boxes for that type of voxel ( N ( l )). The FD value corresponds to the slope 
of the linear regression: FD = − ((ln  N ( l ))/(ln  l )). 

 As previously shown, there are two widely used box-counting algorithms. The 
fi rst one is Liebotich’s algorithm [ 19 ], improved later in [ 11 ] by Hou et al. This 
algorithm has a time complexity of O(N*ln(N)), is valid for binary images, and is 
the method that we have implemented in GPU in this study. The other box-counting 

a

c d

b

  Fig. 34.4    An example of the box-counting algorithm. ( a ) Original image. ( b – d ) show different 
divisions of the space in boxes size 2, 4, and 8, respectively, and their classifi cation as  black, gray , 
or  white        
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algorithm is the differential box-counting (DBC) presented in [ 28 ]. The DBC algo-
rithm is based on grey level images, which falls outside the scope of this study. 

 For a 3D sample, Hou’s box-counting algorithm represents the coordinates of the 
voxels of the object by using a binary representation of  k  bits. Therefore, 2  k   repre-
sents the number of voxels of the edge of the box that completely covers the object. 
This representation allows the algorithm to directly locate the box that contains each 
voxel. To perform the box-counting process, the algorithm generates a set of grids 
of boxes with incremental edge size  l  = 2  m  , where 0 ≤  m  ≤  k . As a result, if  n  is the 
number of voxels of the object contained in a box, this box is classifi ed as black if 
 n  = (2  m  ) 3 , it is classifi ed as gray if 0 ≤  n  ≤ (2  m  ) 3 , and it is classifi ed as white if  n  = 0. 
Hou’s algorithm follows these steps [ 11 ]:

    1.    Coordinates  x ,  y , and  z  of each voxel are considered as binary numbers of  k  bits, 
with values from 0 to 2  k   −1. Therefore, the position of a voxel is represented as 
( x   k −1  …  x  2  x  1  x  0 ,  y   k −1  …  y  2  y  1  y  0 ,  z   k −1  …  z  2  z  1  z  0 ).   

   2.    The binary coordinates of each voxel of the object are intercalated and combined 
in a string of 3  k  bits as follows:  x   k −1  y   k −1  z   k −1  · · ·  x  2  y  2  z  2  x  1  y  1  x  1  x  0  y  0  z  0 . In this way, a 
list of bit strings is obtained. Each bit string in this list uniquely identifi es a voxel 
of the object.   

   3.    The list of bit strings is sorted using the value of each bit string.   
   4.    The last step consists of masking to 0 the 3 m  bits on the right of each bit string, 

where 2  m   is the edge size of the boxes. In this way, the resulting masked bit 
strings have a value of 0 in their last 3 m  bits. The key of this algorithm is that 
those masked bit strings with the same value are contained in the same box of 
edge size 2  m  . Therefore, the number of boxes (black and gray boxes) that covers 
the object corresponds to the number of distinct values in the list of masked bit 
strings. A black box must have (2  m  ) 3  masked bit strings in the list, and the exact 
number of black and gray boxes is calculated. The number of white boxes is 
trivially obtained from the total number of voxels in the grid. This step is repeated 
with  m  ≤  k .    

  Once these steps have been executed for all grids of box size 2  m   with 0 ≤  m  ≤ 
 k , the number of black, gray, and white boxes for each box size 2  m   is obtained and 
therefore the box counting is computed. Figure  34.5  shows a graphic representa-
tion of the different steps of Hou’s algorithm. For the sake of clarity, a 2D exam-
ple is shown in this fi gure. The example represents an object composed of eight 
voxels whose coordinates are represented with 2 bits ( k ). Step 4 of the algorithm 
is shown only for  m  = 1 (boxes with edge size of 2 1  voxels). Due to the fact that 
this is a 2D example, the bit strings in step 4 are masked to 0 in their 2  m  bits on 
the right.

   As previously shown, this algorithm has several optimized implementations in 
CPU for 2D objects [ 18 ,  32 ]. In the next section, we describe our approach for 
obtaining two very fast GPU implementations of Hou’s box-counting algorithm in 
3D based on CUDA and OpenCL technologies.  
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34.4      GPU Implementation 

 We have developed two optimized GPU implementations of Hou’s box-counting 
algorithm: a CUDA implementation for NVIDIA GPUs and a cross-platform 
OpenCL implementation optimized for GPUs. Figure  34.6  shows the main modules 
and the data fl ow of both implementations. Since CUDA and OpenCL are very 

  Fig. 34.5    Steps in Hou’s box-counting algorithm       
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similar technologies, both implementations are almost the same but have important 
differences that affect the fi nal speedup achieved.

   Light blue shaded functions in Fig.  34.6  are executed in the GPU. As a fi rst step, 
due to the cross-platform nature of OpenCL, the OpenCL context and the target 
device need to be initialized at runtime. Based on the target device (GPU or CPU) 
and its platform (NVIDIA, AMD, or Intel) the OpenCL kernels are compiled in 
execution time. This process is not needed for the CUDA version. As in any GPU 
algorithm, the fi rst stage is transferring the data from the RAM of the CPU to the 
global memory of the GPU (“host to device” function in Fig.  34.6 ). In our case, data 
is composed of an array of 0s and 1s representing the 3D voxelization of the object. 
Note that voxels not containing the object are also stored with a 0 value. Once data 
is in the GPU, kernels can operate on it. 

 The fi rst kernel is called  bit intercalate . Each thread of this kernel accesses to one 
different voxel. If the voxel is part of the object (it has a value of 1), the thread per-
forms steps 1 and 2 of Hou’s algorithm described in the previous section. That is, 
the thread creates the binary representation for the coordinates of the voxel, interca-
lates them, and stores a new bit string in a bit string array in the global memory. If 
the voxel does not belong to the object (it has a value of 0), a value of (2  k  ) 3  (the 
greatest possible value) is stored in the bit string array position for that voxel. This 
ensures that voxels not belonging to the object will be placed at the end of the bit 
string list when this list is sorted. After the execution of all the threads, the array 

  Fig. 34.6    Flow charts for CUDA and OpenCL GPU implementations of Hou’s box-counting 
algorithm       
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with the entire bit string list is completely generated in the global memory of the 
GPU. The confi guration used for launching the bit intercalate kernel consists of a 
block size of 8 × 8 × 8 threads. This 3D confi guration of blocks fi ts the 3D structure 
of our data very well, which helps to improve the kernel performance. 

 Once the intercalated bit string list has been generated, the next step in the pro-
cess consists of sorting the list by using the kernel called  sort  in Fig.  34.6 . Sorting 
is a basic operation in computer programming, and for this reason there are many 
studies devoted to obtaining fast GPU implementations of several sorting  algorithms. 
CUDA implementations are more advanced than OpenCL at the moment, and this 
fact has a large impact on the fi nal speedup achieved in our GPU box- counting 
algorithms, as we will see in the next section. The best CUDA sorting algorithm we 
found was the one present in the  thrust library  [ 10 ] based on the radix- sort algo-
rithm developed in [ 21 ]. This library is included in the CUDA toolkit since version 
4.0. For the case of OpenCL, we tested three different implementations: two based 
on bitonic sorting, one developed by Bainville [ 3 ] and the one included in the 
NVIDIA OpenCL SDK, and one based on the radix-sort algorithm [ 7 ]. The perfor-
mances of the two implementations of bitonic sorting are better than the radix-sort 
performance in [ 7 ], but they decrease for objects with a large amount of voxels. 
Another limitation of bitonic sort algorithms is that they only work with a number 
of elements to sort power of two. A key feature of our GPU box-counting imple-
mentation is that the sort kernel can be replaced in the future with any improved new 
GPU sorting algorithm. As we will show in the next section, the sort kernel con-
sumes the longest time in the box-counting process; therefore, any further improve-
ment of the sorting algorithm will have a deep impact on the overall performance of 
our algorithm. 

 After executing the sort kernel, we obtain a sorted bit string list in ascending 
order. The bit strings corresponding to voxels that do not belong to the object have 
the maximum value possible and therefore are placed at the end of the list. For the 
case of the CUDA implementation, an intermediate kernel is now executed, called 
 count voxels  in Fig.  34.6 . This kernel counts the number of voxels of the object. 
This value corresponds to the number of black voxels of the box counting for  m  = 0. 
This value also allows the algorithm to deal only with those voxels belonging to the 
object in the following steps of the process, avoiding the necessity to launch threads 
for empty voxels. This count is performed very effi ciently through the CUDA thrust 
library. However, such an effi cient function for the OpenCL case does not exist. 
This is the reason why our OpenCL implementation does not have an equivalent 
GPU kernel for this purpose. Instead, the OpenCL version performs this count pre-
viously in the CPU side of the algorithm. 

 The next step is the main loop of the algorithm, consisting of masking and count-
ing the black, gray. and white voxels for boxes of edge size 2  m  , with 1≤  m  ≤  k . These 
two processes are performed through the GPU kernels  mask bit strings  and  check 
boxes . Both kernels use the sorted bit string list as input data. Owing to these input 
data, the launch confi guration for both kernels is simple and consists of a 2D grid of 
1D blocks with 512 threads each. The total number of threads launched equals the 
number of voxels of the object, and therefore the empty voxels, whose bit strings are 
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placed at the end of the list, do not have to be processed. The mask bit string kernel 
simply sets to 0 the 3 m  bits on the right of the bit string. When all threads execute 
this kernel, the result is a masked bit string list as shown in Fig.  34.5 . The check box 
kernel works on this masked list in order to determine the number of black and gray 
boxes (see last step in Fig.  34.5 ). Each thread reads its corresponding bit string ( v ) 
and the previous one in the list. If these two bit strings are the same, then the bit 
string  v  is not the fi rst occurrence of a series, and this thread does nothing else. On 
the contrary, if the two bit strings are different, then the bit string  v  is the fi rst 
 occurrence of a set of values, and the next step is to check if this set contains all the 
voxels of the box (black box) or not (gray box). To do this, the thread reads the bit 
string located (2  m  ) 3 −1 positions from  v  (this is the maximum number of voxels for a 
box of size 2  m  ). If that bit string is the same as  v , then the box is black, otherwise the 
box is gray. Finally, this type of box has to be counted. To avoid problems with 
concurrent accesses to the memory positions that store black and gray counters, the 
check box kernel fi rst stores the thread result in the shared memory of the thread, 
and when all threads in the same block have fi nished their execution, the partial sum 
of each block is stored in the global memory of the GPU. From this point, again, a 
different processing is performed on our two implementations, as can be seen in 
Fig.  34.6 . For the CUDA case, the partial sums stored in the global memory are 
added onto the GPU by using the CUDA thrust library. However, for the OpenCL 
case, since we do not have a similar function as effi cient as the one provided in the 
CUDA thrust library, the partial sums are transferred to the host and the fi nal sum is 
performed in the CPU side and the box counting for an edge size of 2  m   is obtained. 
The whole box-counting process is fi nished when these two kernels, mask bit strings 
and check boxes, are executed for all values of  m , with 1≤  m  ≤  k .  

34.5       Results 

 In this section, we show a performance analysis of our two GPU implementations 
of Hou’s box-counting algorithm. Both the CUDA and the OpenCL algorithms are 
compared against the single-thread CPU implementations of Hou’s algorithm and, 
to make the comparison as fair as possible, against two different multi-core CPU 
implementations. 

34.5.1     Hardware and Test Models 

 Our test system was composed of a NVIDIA GeForce GTX 580 GPU and a two 
Intel Xeon E5620 at 2.40 GHz CPU. We used the NVIDIA driver version 275.33 
and the CUDA driver version 4.1 with our GPU. This GPU has GF100 architecture, 
called Fermi, consisting of 16 MPs with 32 SPs each; therefore, we counted on a 
total of 512 SPs. In this GPU, each MP can manage a total of 1,536 threads and can 
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allocate up to 8 thread blocks simultaneously. Each thread block can manage 1,024 
threads. The memory of this GPU is composed of 32 K 32-bit registers, a shared 
memory of 48 KB + 16 KB of cache memory, a constant memory of 64 KB, and 
1,536 MB of slow global memory. Regarding the CPU, each Intel Xeon has four 
cores. The RAM memory of the system has 12 GB and we use Windows 7 as our 
operating system. 

 To test the algorithms, we used a set of six standard 3D voxelized models 
extracted from public 3D repositories [ 1 ,  2 ,  33 ]. Each model was used with 
 resolutions ranging from 128 × 128 × 128 to 512 × 512 × 512 voxels. The models 
were selected to have different shapes and topologies in order to test the algorithms 
properly. 

 We coded three CPU versions of Hou’s algorithm to compare them with the GPU 
implementations: one single-thread version and two parallel multi-core versions. 
The fi rst parallel implementation was coded in C language using the  process.h  
library [ 8 ] for multi-threading. The second multi-core CPU algorithm was coded in 
OpenCL, optimizing our GPU OpenCL code to take advantage of the intrinsic char-
acteristics of parallel processing in multi-core CPUs. Both implementations launch 
eight threads in order to use all the cores available in our CPU. The sort method in 
these two multi-core algorithms was the parallel implementation of the classic quick 
sort algorithm included in the Intel Threading Building Blocks library (TBB) [ 12 ]. 
This sort algorithm was the most effi cient we found for use in multi-core CPU sys-
tems. For the single-thread codifi cation of Hou’s algorithm, we also used the quick 
sort method.  

34.5.2     Implementation Results 

  Table  34.2  shows the computation times for all our implementations of Hou’s box- 
counting algorithm. The execution times shown in this table are the average value 
obtained for the six test models for each different resolution. Note that computation 
times for the GPU algorithms include the time needed for transferring data from CPU 
to GPU and vice versa. Figure  34.7  shows a graphic representation of the data in 
Table  34.2 . Average speedups of up to 28.5× (CUDA GPU) and 6.32× (OpenCL GPU) 
were achieved against the CPU implementation of Hou’s box-counting algorithm.

   We also measured the computation time of each individual kernel in the GPU algo-
rithms. For the CUDA case, each processing element has the following percentage of 
the total processing time of the algorithm: sort, 42 %; GPU idle waiting for CPU, 24 %; 
CPU-GPU data transfers, 19 %; check boxes, 6 %; bit intercalate, 4 %; mask bit strings, 
3 %; and count voxels, 2 %. These results clearly show that the sort function is the most 
time-consuming process in the CUDA GPU algorithm. For the case of the OpenCL 
GPU algorithm, the sort kernel requires even more computation time, reaching average 
percentages of more than 60 % of the global processing time. Therefore, if new and 
faster parallel sort algorithms are developed in the future, including them in our GPU 
box-counting implementations will imply a large improvement. 
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 Table  34.2  shows the average computation times and speedups achieved by the 
CPU multi-core and the GPU implementations of the box-counting algorithm 
against the CPU single-thread version. In the columns corresponding to GPU 
CUDA and GPU OpenCL, speedup 1 and speedup 2 refer to the speedup regarding 
the CPU single-thread and the CPU multi-core C algorithms, respectively. 

 Since we have not found any other GPU implementation of Hou’s box-counting 
algorithm, we have compared our GPU results with the most recent non-GPU 
implementation of that algorithm, corresponding to the Matlab program presented 
in [ 32 ]. In this study a computation time of 16.49 seconds was required to compute 
the box counting of the classic fractal called  Menger sponge  with a size of 
243 × 243 × 243 on an Intel Xeon 3.2 GHz CPU, a CPU very similar to ours. In our 
case, the CUDA algorithm needed only 0.087 s to calculate the box counting of that 
Menger sponge. On the other hand, this processing took our OpenCL algorithm 
0.153 s. Therefore, the CUDA and OpenCL algorithms achieved impressive speed-
ups of 189.54× and 107.77×, respectively, which situate our GPU implementations 
as two very interesting approaches for dealing with high-resolution objects or per-
forming repeated box-counting computations. 

 As a fi nal test for our fastest GPU algorithm in the biomedical context, we performed 
an analysis of the 3D FD of three brain-related structures, i.e., cerebral blood vessels 
(cerebral veins and dural sinuses), the skull, and gray matter (including the cortex and 
subcortical structures). The voxel representations were constructed from 20 sets of sim-
ulated MR images obtained from [ 6 ]. The size of these models is 434 × 362 × 362 voxels 
and the average number of nonempty voxels is 194,300 for blood vessel models, 
1,473,129 for skull models, and 7,906,182 for gray matter models. Figure  34.8  shows 

  Fig. 34.7    Computation times and speedups achieved by the CPU and GPU implementations of the 
box-counting algorithm. Execution times and speedups are the average values for the six test 
objects, with sizes from 128 × 128 × 128 voxels to 512 × 512 × 512 voxels       
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one example of each type of model. We measured the computation time of Hou’s box-
counting algorithm for our implementations on CPU and CUDA. The 3D FD was also 
calculated for each model (obviously, the 3D FD value obtained is the same regardless 
of the implementation used). The results showed average speedups of 22.01× (blood 
vessels), 22.83× (skull), and 26.4× (gray matter). These speedups are similar to those 
obtained for the six test objects. Moreover, these results manifest the characteristic of 
our GPU algorithm of being faster when the object has more nonempty voxels. Regarding 
the 3D FD values obtained, the average values were 1.530 (blood vessels), 2.008 (skull), 
and 2.413 (gray matter). These results are the ones expected according to how each type 
of brain tissue occupies the space.

34.6         Discussion, Conclusions, and Future Work 

 In this chapter we have presented a methodology based on GPU programming to 
increase the performance of Hou’s box-counting algorithm, one of the most widely 
used algorithms to calculate the fractal dimension of an object. The box-counting 
computation time could be very high, especially in 3D objects with a large number 
of voxels or when there is a large amount of objects to be analyzed. Our approach 
provides two main solutions: The fi rst one is a highly effi cient solution based on 
CUDA technology for NVIDIA GPUs, allowing the algorithm to increase its com-
putational performance with speedups of up to 28×; the second one is an effi cient 
OpenCL cross-platform solution that achieves speedups of up to 6.32× for GPUs 
and 3.9× for multi-core CPUs. In this way our approach covers a wide range of 
modern computing platforms. 

 The most remarkable results are:

•    The CUDA algorithm is the fastest one, largely outperforming not only the CPU 
algorithm but also the OpenCL GPU implementation. The GPU CUDA imple-
mentation is much better than the OpenCL one due to the fact that CUDA is a 
more established technology, having libraries with highly optimized basic algo-
rithms. The CUDA thrust library provides very effi cient algorithms for sorting 

  Fig. 34.8    Representation of the cerebrovascular system, skull, and gray matter at a size of 
434 × 362 × 362 voxels       
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and for counting. These algorithms have a great infl uence on the fi nal perfor-
mance of the box-counting algorithm, and there are no similar counterparts in 
any OpenCL library. According to our tests, the sort algorithm of the CUDA 
thrust library is three to fi ve times faster than the best one for OpenCL.  

•   When the object resolution increases, CPU single-thread times grow very 
quickly, while GPU times grow much slower, especially in the case of the CUDA 
version. This is a very desirable characteristic for scaling purposes: the greater 
the object is, the better the GPU speedup obtained.  

•   The multi-core CPU implementations achieve speedups of between 3× and 5.7× 
against the CPU single-thread algorithm. Taking into account that our CPU has 
eight cores, the speedups achieved are not close to what was expected theoreti-
cally. A detailed analysis of the computation cost of each part of the multi-core 
CPU algorithms was performed, and it revealed two main factors involved: (1) a 
relevant percentage of nonparallelizable sequential code in the algorithm and (2) 
an unbalanced thread workload due to the empty voxels present in the objects. 
The location of empty voxels is unpredictable when no prior information about 
the shape of the objects is available.    

 As future work, efforts will be focused on obtaining a fast GPU implementation of 
the differential box-counting algorithm. This box-counting algorithm deals with gray-
scale images, and only an optimization based on multi-core CPU programming has 
been proposed until now. Other interesting work related to GPU programming would 
be to study the application of the new features of the latest NVIDIA GPU architectures 
in our algorithms. Dynamic parallelism and atomic operations are two of these charac-
teristics that could improve the performance of the GPU box- counting algorithm.     
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Rural de Jaén, the Ministry of Economy and Competitiveness, and the European Union (via 
ERDF funds) through the research projects UJA2013/12/04, UJA2013/08/35, and 
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    Chapter 35   
 Fractal Electronics as a Generic 
Interface to Neurons                     

     William     J.     Watterson    ,     Saba     M.     Moslehi    ,     Julian     H.     Smith    , 
    Rick     D.     Montgomery    , and     Richard     P.     Taylor    

    Abstract     Imagine a world in which damaged parts of the body – an arm, or an eye, 
and ultimately a region of the brain – can be replaced by artifi cial implants capable 
of restoring or even enhancing human performance. The associated improvements 
in the quality of human life would revolutionise the medical world and produce 
sweeping changes across society. Biotechnology has the potential to transform this 
imagined world from science fi ction into science fact. The use of implants to inter-
face with the body is growing rapidly and represents the brave new world of elec-
tronics. However, today’s electronic implants are based on the commercial 
electronics employed in computers and communications technology. Consequently, 
their performance is limited severely by the interface between the artifi cial and bio-
logical systems. In this chapter, we will discuss the optimal solution of establishing 
a bio-inspired interface using ‘interconnects’ that mimic the biological circuitry 
employed by the body – neurons. Neurons are fractal, featuring dendritic branches 
that repeat at increasingly fi ne sizes. We will discuss the construction of fractal 
interconnects and their fundamental functions – inducing and detecting electrical 
signals in the neurons. We will outline their enhanced performance, which includes 
their electrical, optical and physical properties.  

  Keywords     Fractals   •   Bio-inspiration   •   Human implants   •   Electronics   •   Neurons  

35.1       Introduction 

 In 1752, Benjamin Franklin attached a metal key to the bottom of a dampened kite 
string and then fl ew the kite in a storm. It didn’t take long to go from his simple 
demonstration of harnessing electricity to applying it to living bodies. In 1764, phy-
sician Charles Le Roy applied electricity to patients’ eyes, causing them to see 
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fl ashes of light. In 1791,   Luigi Galvani     did the same to the muscles of frog legs, 
causing them to twitch. Since then, two centuries of rapid development have led to 
today’s commercial electronics industry. Miniaturisation has been the main driver 
of improvements. In addition to faster operation, the evolution from microelectron-
ics to nano-electronics facilitates novel methods for manipulating the fl ow of elec-
tricity. For example, our research group has investigated ballistic electronics [ 33 ], 
quantum electronics [ 26 ], spin electronics [ 31 ] and coulomb blockade [ 37 ]. 
However, developments such as these target the computing and communications 
industry rather than electronic interfaces with biological systems. 

 Miniaturisation offers surgeons the opportunity to implant devices in humans rather 
than relying on the crude external wires used by Le Roy and Galvani. For example, 
electronic devices have been implanted into human retinas in the hope of restoring vision 
to victims of retinitis pigmentosa and macular degeneration [ 39 ]. More than 80,000 
Americans have brain implants designed to combat neurological disorders such as 
Parkinson’s disease [ 23 ]. However, in each case the implant’s functionality is limited by 
conventional designs inherited from the commercial electronics industry. For example, 
today’s retinal implants could in principle deliver 20/80 vision and yet they only achieve 
20/1260 vision, suggesting that they communicate effectively with less than 10 % of the 
targeted neurons [ 36 ]. Similarly, although research programmes such as the White 
House BRAIN Initiative call for future electronics that simultaneously measure at least 
10,000 neuronal signals, today’s implants typically track less than 100 at a time [ 1 ]. 

 Figure  35.1  highlights the fundamental mismatch between today’s implants and 
the neurons that they interact with. Neurons are described by fractal geometry, fea-
turing dendritic branches that repeat at increasingly fi ne size scales (Fig.  35.1a, b ). 
In contrast, the active area of the implant is based on the smooth lines inherent in 
Euclidean geometry (e.g., the grey square shape shown in Fig.  35.1c ). Adopting the 
principle of bio-inspiration, we will describe the use of fractal interconnects to 
establish a ‘biophilic’ interface for the implants (Fig.  35.1d ). In effect, the biophilic 
interface convinces nearby neurons that they are interacting with other neurons 
rather than an artifi cial device. We will consider implants with two distinct func-
tions – stimulators (which induce electrical signals in the neurons) and sensors 
(which then detect and track these signals as they pass through the body’s neural 
network). The superior electrical, optical and physical properties of the fractal inter-
connects are expected to be generic. Future applications could therefore include 
interaction with neurons in the brain, retina and limbs.

35.2        Fabrication of the Fractal Interconnects 

 When neurons interact with each other, they do so by exploiting both their physical 
and chemical environments. Our interconnects will do the same. In addition to 
adopting the physical geometry of the neurons, our project builds on previous inves-
tigations of materials known to establish favourable chemical environments for the 
neurons. Accordingly, our fabrication methods exploit two established 
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materials – TiN and carbon nanotubes (CNTs). TiN research demonstrates its stabil-
ity over long periods of electronic operation both  in vitro  and  in vivo  [ 18 ].  In vitro  
neuron cultures on TiN reveal that it is also non-cytotoxic [ 16 ]. Furthermore, TiN 
retinal implants have been implanted in human patients for more than a year without 
negative reaction [ 34 ]. Similarly, the unique properties of CNTs make them ideal 
for bioelectronics. They have excellent electrical current capacity (1,000 times 
greater than copper) and superior electron mobilities to silicon. They are also incred-
ibly strong (100 times stronger than steel) yet mechanically fl exible [ 20 ]. 
Furthermore, CNTs adhere well to substrates (with binding energies of a few eV/Å) 
[ 19 ] and living cells [ 12 ] and can be synthesised to be nontoxic [ 22 ]. For both mate-
rial systems, we will adapt their surfaces to improve adhesion and the survival rate 
of the neurons. These procedures include using nanowire textures [ 17 ], homopoly-
mer poly-L- lysine for TiN [ 18 ] and pyrene for the nanotubes [ 5 ].

a

c d

b

  Fig. 35.1    ( a ) In collaboration with B. Harland and J. Dalrymple-Alford (University of Canterbury, 
New Zealand), we use scanning confocal microscopy to image a stack of 200 μm by 200 μm hori-
zontal sections (with vertical separations of 2 μm) of Golgi-Cox-stained neurons. ( b ) These sec-
tions are then computer assembled into three-dimensional images for pattern analysis. A neuron’s 
basal dendrites from a rat’s hippocampus are shown for demonstration. ( c ) A schematic showing 
the square-shaped active area ( grey ) of a conventional implant. ( d ) For our bio-inspired implants, 
the active area features branched patterns that repeat at different size scales       
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   Two novel fabrication techniques are being developed, each designed to 
match the fractal characteristics of the interconnects to those of the neurons. For 
each technique, the interconnects’ smallest branches measure down to 50 nm, 
and the largest branches are designed to match the spread of the neuron 
branches – approximately 500 μm for the brain and 20 μm for the retina. Whereas 
all fractals exhibit repetition of patterns at multiple size scales, fractals can be 
grouped into two categories based on how the patterns repeat. For fractals preva-
lent in the body (e.g. neurons, veins and bronchial trees), the statistical qualities 
of the patterns repeat at different scales. In contrast, the patterns of mathemati-
cally generated ‘exact’ fractals repeat exactly at different scales. Consequently, 
whereas exact fractals look precisely the same at increasingly fi ne scales, ‘sta-
tistical’ fractals simply look similar at different scales [ 9 ]. One of our fabrica-
tion techniques exploits the precision and control associated with the clean 
geometry of exact fractals. The other harnesses natural growth processes to gen-
erate statistical fractals similar to neurons. Fractal dimension D is a central 
parameter for quantifying both types of fractal. This describes how the patterns 
occurring at different scales combine to build the resulting fractal shape [ 9 ]. For 
Euclidean shapes, dimension is described by familiar integer values – for a 
smooth line  D  = 1, while for a completely fi lled area  D  = 2. However, the repeat-
ing patterns of a fractal line cause the line to begin to occupy more space. 
Consequently, its D value lies between 1 and 2. Figure  35.2a, b  shows the result 
of adjusting D for the branches of our fractal interconnects. For each fabrication 
method, D can be adjusted along with the number of repeating iterations  I  to 
investigate the impact of these fractal parameters on the interconnects’ 
properties.

      The exact fractal interconnects (Fig.  35.2 ) are fabricated using electron-beam 
lithography [ 35 ] to generate patterns in two biocompatible resists (SU-8 and 
HafSOx). For the SU-8 method, this pattern can then be transferred to a TiN pattern 
using electron-beam evaporation and a ‘lift-off’ technique. For the HafSOx method, 
the exposed HafSOx acts as a mask for an electron milling process that defi nes the 
pattern in an underlying TiN layer. 

 Fabricated using novel self-assembly growth processes, the statistical fractal 
interconnects look strikingly similar to neurons (Fig.  35.3 ). Using this technique, a 
beam of metallic clusters (each with a diameter of ~50 nm) is deposited on a sub-
strate in an ultrahigh vacuum chamber. These clusters then grow into fractal islands 
called nanofl owers by diffusion-limited aggregation [ 8 ]. Figure  35.3a  charts this 
growth process, showing the small ellipsoidal islands that initially form (plotted on 
the graph’s left side) and the islands with fractal branches that they grow into (right 
side). The islands’ fractal morphology can be adjusted by varying deposition condi-
tions such as temperature, deposition rate and fl ux (Fig.  35.5b–d ). Fortuitously, 
neighbouring islands naturally self-avoid rather than merge (Fig.  35.5c ), allowing 
arrays of fractal interconnects to be grown effi ciently.

   Figure  35.3e  shows statistical fractals formed from CNTs that spread both 
parallel and perpendicular to the implant’s surface with thicknesses of ~1 μm. 
Both single and multiwalled varieties of the nanotubes are synthesised using 
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chemical vapour deposition. In this process, substrates are metallised with thin (a 
few Å) layers of a catalyst (e.g. Fe, Co) that form a network of metallic islands. 
These islands then serve as seeds for nanotube growth, allowing them to connect 
to multiple catalyst islands and form a large network called a CNT ‘mat’. These 
growth conditions are being manipulated to generate statistical fractal intercon-
nects. To achieve higher degrees of fractal quality of the CNT networks, the cata-
lyst islands can be patterned using optical or electron-beam lithography, or the 
mat can be patterned post-synthesis by etching away selected regions. An alter-
native approach for etching will be pursued using atomic force microscopy 
(AFM). The sharp tip of the AFM will be scanned across the nanotube network 
while applying an electrical bias to the probe tip, which will cut the network into 
the desired fractal pattern. Both approaches can achieve features with 10 nm 
resolution.  

35.3     Functionality of the Fractal Interconnects 

 Our implants are designed to serve two distinct electronic functions – inducing and 
detecting electrical signals in the neurons. For both functionalities, it is crucial to 
consider the impact of the fractal design on the mechanical, optical, electrical and 
physical (adhesive) properties of the neuron-implant interface. Adopting the phi-
losophy that the implant is only as strong as its weakest link, we are targeting the 
fundamental science that emerges when all of these properties are considered in 
unison. In terms of their mechanical properties, fractal circuits were recently pro-
posed for stretchable electronics [ 11 ] – the associated fl exibility will therefore allow 
our interconnects to be conformal to the regions in which they are implanted. In 
terms of optics, the surface coverage of the fractal interconnects is considerably less 
than the equivalent squares due to the multitude of gaps between the branches 
(Fig.  35.1c, d ). This suggests that light can be easily transmitted through the fractal 

a b c d

  Fig. 35.2    ( a ,  b ) Schematic demonstrations of  D’s  impact on the scaling properties of an exact 
interconnect in which an ‘H’ pattern repeats. Three iterations of repetition are shown. Note how the 
H’s size decreases at a higher rate between iterations for  D  = 1.1 (shown in  a ) than for  D  = 1.9 
(shown in  b ). ( c ,  d ) Scanning electron micrographs (SEMs) of interconnects featuring  D  = 1.5 
branches made in collaboration with K. Fairley and  D . Johnson (University of Oregon, USA). The 
branches span from 500 μm down to 2 μm in ( c ). In ( d ), the widths of the smallest branches are 
~10 nm       
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  Fig. 35.3    ( a ) A plot of log (island perimeter  P ) versus log (island area  A ), as measured from a 
digital SEM image. Each data point represents an individual island. The dotted line is a guide to 
the eye, showing the behaviour expected for purely ellipsoidal (i.e. non-fractal) islands. The criti-
cal radius ( r   c  ) represents the point at which the data deviates from this behaviour, indicating the 
formation of fractal branches. ( b ,  c ) Images of fractal interconnects demonstrating that their fractal 
morphology can be controlled by the growth conditions. The interconnects in ( b ,  c ) are 10 μm 
wide. In  (d ), fractal features span a remarkable 2.5 orders of magnitude down to 90 nm. The inter-
connects shown in ( a – d ) are fabricated in collaboration with S. Brown (University of Canterbury, 
New Zealand). ( e ) A SEM showing a 5 μm section of a network of CNT branches fabricated in 
collaboration with B. Alemán (University of Oregon, USA)       

interconnect. This will be advantageous for future brain implants that utilise both 
optical and electrical stimulation [ 38 ]. Furthermore, the ability to shine light through 
the interconnects is crucial for the operation of retinal implants [ 39 ]. In addition to 
minimising coverage, some of the fractal branches are comparable to, or smaller 
than, the light’s wavelength. This raises the possibility of manipulating feature sizes 
to tune the light transmission using diffractive and plasmonic effects. This idea is 
inspired by recent experiments (unrelated to implants) demonstrating that fractal 
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branches effi ciently fi lter light based on its wavelength [ 2 ]. The fractal intercon-
nects could therefore potentially serve as colour fi lters, allowing them to receive 
white light and then selectively transmit red, green and blue light. As an example of 
applications, this ‘RGB’ sensitivity could be used to build the fi rst colour vision 
implants (today’s retinal implants generate monochromatic vision). 

 The interconnects’ electrical properties are crucial to the operation of both stimula-
tors and sensors. Electronic stimulation dates back to the pioneering  in vivo  studies of 
Le Roy and Galvani. The electrical fi elds from their electrodes set up potential differ-
ences across the neuron membrane, inducing ion fl ows that triggered a signal along 
the axon [ 6 ]. In Le Roy’s experiment, for example, this process induced signals in the 
retinal neurons that the brain interpreted as originating from the retina’s photorecep-
tors. The positive impact of adopting the fractal geometry becomes clear by returning 
to the schematic of Fig.  35.1c, d  in which the grey interconnect serves as the stimulat-
ing electrode. For the same surface coverage, the fractal geometry spreads out further 
across the implant’s surface than for the conventional square design (i.e. its bounding 
perimeter is larger). Consequently, the voltages induced by the interconnect extend 
further from the implant surface into the neural layer, and these larger distances rap-
idly increase the likelihood of stimulation. The precise extent to which the fractal 
interconnect outperforms the square will depend on its  D  value (Fig.  35.2a, b ). 

 In terms of electronic sensors, today’s conventional implants employ either 
multiple electrode arrays (MEAs) or multiple transistor arrays (MTAs) to measure 
the electrical potentials generated by neuron signals. However, the simultaneous 
occurrence of many neuronal signals makes tracking individual signals extremely 
diffi cult. This problem is analogous to the ‘cocktail party problem’ when the lis-
tener tries to focus on a specifi c conversation among the background ‘chatter’ from 
many guests. To accomplish this task, recordings from the conventional sensors are 
analysed using waveform analysis or triangulation to determine signal location. 
Waveform analysis relies on a priori information about signals’ temporal 
 characteristics (their waveforms) to identify unique signatures of individual neu-
rons.  In vivo , this is limited by (1) isolating thousands of signals, (2) waveform 
variability within each neuron and (3) electrode drift with time [ 7 ]. Triangulation 
works by measuring the waveform variation between different sensors in the array. 
However, errors in uniquely identifying thousands of signals present critical 
 problems for triangulation algorithms [ 4 ]. Despite the clear need to develop 
 nonsubjective measures of signals with quantifi ed errors, different laboratories still 
can’t objectively compare data. Our fractal sensor avoids all of the above limita-
tions by uniquely identifying neuronal signals without post-measurement analysis 
and its reliance on  a priori  information about waveforms. Our probe achieves this 
by adopting the MTA approach but taking the vital step of incorporating a fractal 
conduction network. 

 For the conventional MTA, each fi eld effect transistor (FET) in the array features 
a silicon channel (light grey) which conducts electricity between source (white) and 
drain (dark grey) terminals (Fig.  35.4a, b ). The electric potential generated by neuron 
signals depletes electrons in the channel, leading to a measurable resistance change. 
Unfortunately, this traditional design offers little fl exibility for improvement. For 
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example, gains in measurement resolution by reducing device size are inevitably 
coupled with larger measurement noise due to increased resistance. Our bio-inspired 
design is shown in Fig.  35.4d . Current is passed from each of the source terminals 
(white) to each of the drains (dark grey) through a fractal distribution of conducting 
channels (light grey lines). Depletion of a local region of this network will induce a 
rearrangement of current through the network. The non-linear signature of this rear-
rangement produces an exponential sensitivity of the measured resistance to the 
location of the depletion region [ 8 ] and hence to the neuronal signal. To detect the 
non-linear signature, the number of measurement terminals per transistor is increased 
from 2 for the conventional FET (Fig.  35.4a, b ) to 16 (Fig.  35.4d ). These combine to 
create an emergent knowledge greater than the sum of the individual measurements. 
This is achieved through a calibration library that, in real time, converts the multiple 
resistance values into unique values for position and size of each signal’s depletion 
pattern. The library is generated by a systematic series of tests which establish the 

a

b

c

d

  Fig. 35.4    ( a ) A  side  view of a FET sensor. The neurons ( outlined in white ) generate signals that 
are detected by measuring the electricity fl owing through the channel ( light grey ) between the 
source ( white ) and drain ( dark grey ) terminals. ( b ) A  top  view of the FET. The neuron signal 
depletes electrons in the channel regions ( dark ) directly below the neurons, thus reducing the mea-
sured current fl ow. ( c ) A modifi ed FET using multiple (16) source and drain terminals. ( d ) A FET 
based on a statistical fractal network of CNTs ( light grey lines )       
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unique multi-resistance signatures of different neuron signal positions. Returning to 
the cocktail party analogy, the resulting enhanced sensitivity is equivalent to giving 
the party guests hearing aids. The calibration library is equivalent to the guests work-
ing as a team, comparing notes about previous parties.

35.4        The Biophilic Interface 

 Building on the advantageous mechanical, optical and electrical properties outlined 
so far, the fractal network also provides a crucial bio-inspired function by establish-
ing a physical fractal pattern in the implant surface. This encourages neurons to stay 
close to the surface, enhancing stimulation and detection of their signals. This is 
analogous to attracting the party guests that you want to listen and talk to. Previous 
experiments have shown that surface topologies that are not smooth encourage neu-
ron adhesion, e.g. [ 10 ,  14 ,  17 ,  25 ,  30 ], and that topological factors are more impor-
tant than the chemical environment established by the materials used [ 15 ]. Only 
10 % of neurons adhere to smooth metallic interconnects [ 34 ], while experiments on 
textured metallic interconnects indicate 50 % [ 32 ]. None of the previous studies 
took the vital step of introducing surface patterns that match the neurons’ fractal 
branches to improve adhesion. 

 In addition, smooth surfaces are known to trigger an accumulation of glial cells 
into a protective layer called a glial scar [ 3 ]. Whereas the presence of individual 
glial cells is a signature of health (because they serve as the neuron’s life-support 
system), the scar pushes the neurons away from the smooth surface of conventional 
implants reducing their ability to stimulate or sense the neurons. Based on these 
fi ndings, our  in vitro  experiments (Fig.  35.5 ) are designed to test our hypothesis that 
(1) neurons will adhere to the physical patterns established by the fractal distribu-
tion of channels (i.e. the pattern of lines in Fig.  35.4d ); (2) to maintain health, these 
neurons might be accompanied by individual glial cells; and (3) glial cells will 
accumulate in the smooth regions established by the larger gaps (i.e. black regions) 
in Fig.  35.4d . Thus, even if this accumulation eventually forms a scar, it will not 
form on the lines (conducting channels).

   In the  in vitro  experiments, implants are lowered into a retinal culture and fl uo-
rescence microscopy is used to image cells as they interact with the interconnects 
[ 27 ]. To prepare the culture, the retina is fi rst removed from the outer epithelium of 
neonatal mice and placed in a culture medium, which is then mechanically agitated 
to separate the retinal cells. Staining allows the various retinal cells to be analysed 
separately. DAPI (blue) fi xes to both glial and neuron cell nuclei (allowing a total 
cell count), GFAP (green) attaches to glial cells and β-tubulin III (red) binds to neu-
ron microtubules. A simple test geometry, consisting of rows of 100 μm-wide tex-
tured regions separated by rows of smooth surface, confi rmed expectations that 
neurons predominantly adhere to the textured regions and glial cells accumulate in 
the smooth gaps [ 28 ]. Furthermore, immunohistochemistry confi rmed that markers 
expressed by healthy neurons were present. The microscopy was performed after 
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18 days (this is close to the maximum period for  in vitro  studies). This time frame 
is signifi cantly longer than on-sets of scar formation in previous  in vitro  experi-
ments (2 days) [ 21 ] and is of the order of scar formation in  in vivo  experiments 
(2–3 weeks) [ 29 ]. Thus, any detrimental developments would have emerged by day 
18. Furthermore, there were no signifi cant changes between days 8 and 18, suggest-
ing that the experiment captured long-term behaviour and that the observed positive 
effects will persist indefi nitely. 

 Figure  35.5a  shows an image of glial cells (green) accumulating on a smooth 
surface and forming a scar. We are developing novel pattern analysis techniques to 
characterise this process and to quantify the scar’s growth rate and size. The image 
in Fig.  35.5b  shows a neuron (red) extending along a test interconnect with a zigzag 
shape. These test patterns show that neurons can follow interconnect branches for 
more than 200 μm and can turn through angles sharper than 90°. The image in 
Fig.  35.5c  shows a neuron located in a gap within one of our fractal ‘H-tree’ designs. 
Images such as this are being used to quantify how far neuron dendrites can extend 
in order to adhere to the interconnect branches. The interconnect’s fractal geometry 
amplifi es the effects revealed in Fig.  35.5a–c  because it maximises the combination 
of patterned lines and smooth gaps within a given region. Indeed, positive effects 

a b c
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  Fig. 35.5    Images from the  in vitro  fl uorescence microscopy experiments. ( a ) A 300 μm-wide glial 
scar ( green ) forming on a smooth surface. ( b ) A neuron ( red ) extending along a test interconnect 
with a 200 μm long ‘zigzag’ shape. ( c ) A neuron ( red ) located in a 100 μm gap within one of our 
fractal ‘H-tree’ designs. ( d ) Individual neuron dendrites (highlighted with  yellow  edges) attach to 
fractal interconnect branches ( white  edges) (image width = 60 μm). The images in ( e ) and ( f ) dem-
onstrate how individual neurons ( red ) and glial cells ( green ) adhere to the same interconnect region 
(image widths = 150 μm) (All images are taken in collaboration with M.T. Perez (Lund University, 
Sweden))       
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are already evident after 3 days in culture: the zoom-in of Fig.  35.5d  shows adhesion 
of neural dendrites to the fractal lines of the interconnect. This picture is further 
supported by Fig.  35.5e, f  which shows that an attached neuron is accompanied by 
an individual glial cell. 

 Based on the above preliminary research, our long-term aim is for each neuron 
dendrite to automatically seek out and adhere to a fractal branch of the interconnect. 
Consequently, this ‘one-to-one’ adhesion could generate unprecedented stimulation 
and sensing. We also aim for ‘selective’ adhesion, whereby targeted types of neuron 
will adhere to specifi c interconnects. We hope to achieve selective adhesion (and 
consequently selective stimulation and sensing) by matching the specifi c fractal 
properties of the interconnects to those of the target neurons. Analysing the neuron 
shapes is vital for understanding the neuron-interconnect interface. Previous 
research of neuron geometry used fractal analysis simply as a tool for quantifying 
their structural complexity. In contrast, we are using confocal microscopy to con-
struct three-dimensional images of neurons, allowing the fi rst investigation of the 
origin of neurons’ fractal character (Fig.  35.1a, b ). Strikingly, this character origi-
nates from the way dendrites ‘weave’ though space. This has crucial consequences 
because adhesion experiments reveal that this weave is forced to change as neurons 
interact with surfaces. Our hypothesis predicts superior adhesion when the fractal 
characteristics (in particular  D  and branch orientation (Fig.  35.2 )) of the intercon-
nect and neuron are matched. This will occur because the dendrites can connect 
without having to adjust their fractal characteristics. This effect is an example of 
‘fractal geometric resonance’ in which interface properties are enhanced by match-
ing the geometric properties of two fractals. Because different neuron types are 
expected to have specifi c weaves [ 24 ], selective adhesion should be possible – 
whereby specifi c neurons adhere to targeted interconnects based on their precise 
fractal characteristics. This novel capability offers the possibility of revolutionising 
applications of human implants. Considering the eye as an example, the retina fea-
tures fi ve types of neuron. Successful implants will need to select which neuron 
types to stimulate and sense. Similarly, brain implants will also be able to target 
selected neuron types.  

35.5     Conclusions 

 Fractal implants that stimulate or sense neuronal signals in the brain could be used 
to address a number of pathological conditions including Parkinson’s disease. In 
addition, they could also radically improve other stimulation techniques to improve 
learning and cognition, visual perception, working memory and motor control [ 13 ]. 
The long-term potential impact of fractal interconnects stretches well beyond 
improving implants designed to interact with the human brain, retina and limbs. In 
addition to stimulating and sensing naturally occurring neurons, they could be 
applied to retinal stem cells in  in vitro  and  in vivo  investigations.     
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    Chapter 36   
 Fractal Geometry Meets 
Computational Intelligence: 
Future Perspectives                     

     Lorenzo     Livi      ,     Alireza     Sadeghian      , and     Antonio     Di     Ieva    

    Abstract     Characterizations in terms of fractals are typically employed for systems 
with complex and multi-scale descriptions. A prominent example of such systems 
is provided by the human brain, which can be idealized as a complex dynamical 
system made of many interacting subunits. The human brain can be modeled in 
terms of observable variables together with their spatio-temporal-functional rela-
tions. Computational Intelligence is a research fi eld bridging many nature-inspired 
computational methods, such as artifi cial neural networks, fuzzy systems, and evo-
lutionary and swarm intelligence optimization techniques. Typical problems faced 
by means of Computational Intelligence methods include those of recognition, such 
as classifi cation and prediction. Although historically conceived to operate in some 
vector space, such methods have been recently extended to the so-called non-geo-
metric spaces, considering labeled graphs as the most general example of such pat-
terns. Here we suggest that fractal analysis and Computational Intelligence methods 
can be exploited together in neuroscience research. Fractal characterizations can be 
used to (i) assess scale-invariant properties and to (ii) offer numeric, feature-based 
representations to complement the usually more complex pattern structures encoun-
tered in neurosciences. Computational Intelligence methods could be used to exploit 
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such fractal characterizations, considering also the possibility to perform  data-driven 
analysis of non-geometric input spaces, hence overcoming the intrinsic limits 
related to Euclidean geometry.  

  Keywords     Computational intelligence   •   Complex systems   •   Analysis of non- 
geometric input spaces   •   Fractal analysis   •   Brain research  

36.1       Introduction 

 The analysis of complex systems [ 16 ,  31 ,  43 ] is rapidly expanding with the develop-
ment of novel theoretical and computational tools designed to tackle the problem of 
disentangling the interactions among different parts of a complex process/system. The 
human brain is a natural and important example of complex systems made of many 
interacting parts. The rich complexity of the brain along with its multilevel, time-vary-
ing, and intricate topological organization of neurons suggests to look beyond explana-
tions driven by classical Euclidean geometry and linear dynamics [ 21 – 23 ]. Mathematical 
tools from fractal geometry offer a means to perform quantitative analysis and descrip-
tion of the complexity of natural, social, and artifi cial systems. It is a fact that modern 
neurosciences admit the prevalence of fractal properties in the brain at various levels of 
observation and in different contexts. In general, the brain can be analytically or com-
putationally studied by (i) focusing on a specifi c subunit (i.e., a specifi c aspect) and/or 
(ii) by taking into account (time- dependent) interactions between such units. In the fi rst 
case, usually one resorts to the study of a series of suitable observable variable recorder 
over some time span – usually named time series. In the literature, there are many 
approaches to study the peculiarities of the systems underlying the observed time 
series. Such methods include causality analysis [ 1 ] and directional transfer of informa-
tion [ 41 ,  68 ,  69 ], memory effects and predictability in stochastic systems [ 17 ,  55 ], 
clustering [ 91 ], and recurrence plots [ 57 ]. In the latter case, instead, the graph-theoretic 
framework and its modern revival as the science of complex networks play a pivotal 
role in the characterization of brain structures along with its dynamical and functional 
aspects [ 9 ,  19 ,  27 ,  35 ,  64 ,  78 ,  85 ,  89 ]. Graph characterizations, in terms of both static 
and dynamic measures of complexity, are also popular in describing complex systems 
and their functions [ 3 ,  15 ,  20 ,  24 ,  26 ,  34 ,  47 ,  51 ,  54 ,  72 ,  94 ]. 

 The fi eld of Computational Intelligence (CI) is founded on data-driven methods, 
which take inspiration from natural systems. Examples of such systems include arti-
fi cial neural networks, kernel methods, fuzzy systems, and evolutionary and swarm 
intelligence optimization techniques as well [ 25 ]. Typical tasks tackled by means of 
Computational Intelligence methods include recognition problems (e.g., classifi ca-
tion, clustering, and function approximation) and those of adaptive control (e.g., 
fuzzy control and data-driven optimization via neural networks). Intelligent systems 
operating through data analysis come with various connotations and usually imply 
different interpretations. In spite of the existing diversities, it is possible to recognize 
several features that are profoundly visible across a broad spectrum of those  systems. 
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An intelligent system should be adaptable, meaning that it should come with a para-
metric mathematical model. Adaptation is typically implemented via the learning-
from-examples paradigm by using suitably error criteria and update mechanisms. 
Another important aspect characterizing intelligent systems is the capability to gen-
eralize with accuracy under uncertainty or when dealing with unseen data. The spec-
trum of successful applications of Computational Intelligence methods is rapidly 
expanding. Far from being exhaustive, it is worth to cite few related applications in 
biomedical and particularly in the brain science context: classifi cation of brain injury 
[ 67 ], seizure recognition in intracranial EEG [ 97 ], feature transformation and clus-
tering on fMRI data [ 96 ], and data selection for EEG signal classifi cation [ 88 ]. 

 Here in this chapter we hypothesize that an interplay between fractal analysis and 
Computational Intelligence methods could offer a compelling tool of analysis in 
neuroscience. Fractal characterizations can be used to (i) assess scale-invariant prop-
erties and to (ii) offer numeric, feature-based representations to complement the usu-
ally more complex pattern structures encountered in brain research. Computational 
Intelligence methods could be used to exploit such fractal characterizations, consid-
ering also the possibility to perform data-driven analysis of non- geometric input 
spaces, hence overcoming the limits related to Euclidean geometry-based approaches. 

 The remainder of this chapter is structured as follows. Section  36.2  offers a brief 
overview of fractal analysis and its impact in neuroscience. In Sect.  36.3 , we intro-
duce the Computational Intelligence research context; we discuss also the more 
recent research endeavor in processing non-geometric data by using conventional 
Computational Intelligence methods. Section  36.4  provides a conceptual bridge 
between fractal analysis and Computational Intelligence methods, highlighting 
their possible interplay in future researches. Finally, Sect.  36.5  concludes this chap-
ter offering future perspectives for interdisciplinary research in brain science.  

36.2      Fractal Analysis and Brain Complexity 

 Fractal and multifractal analysis play a pivotal role in several scientifi c fi elds. Notably, 
neuroscience [ 28 ,  29 ,  63 ] and physiology in general [ 92 ,  93 ] are two important exam-
ples. Characterizations in terms of fractal scaling are typically used for the purpose 
of describing the complexity of systems following a multiscale paradigm. Fractal 
analysis formalisms have been developed for image analysis, discrete- time signals 
(i.e., time series), and complex networks analysis as well. Considering the former, a 
large body of applications exists, including neuronal spike trains [ 70 ], background 
neuronal noise-like activity underlying epileptiform transitions in human and mouse 
hippocampus [ 82 ], and EEG signals analysis [ 6 ,  42 ,  81 ,  95 ], for instance. The appli-
cation of fractal geometry to the analysis of complex networks is a novel research 
approach [ 18 ,  33 ,  44 ,  46 ,  56 ,  76 ,  84 ]. As suggested by Song et al. [ 84 ], fractal scaling 
in complex networks emerges as a particular combination of a disassortative degree 
mixing – repulsion between hub and weakly connected vertices. The renormalization 
group approach [ 76 ] is a well-known approach to evaluate the fractality of a network 
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underlying dynamical changes. The method consists in compressing the network in 
clusters by considering a characteristic (topological) length scale. If the network 
compression adheres to a specifi c power-law scaling, then the network can be consid-
ered as fractal. It is worth stressing that the renormalization group approach provided 
a way to explain the coexistence of otherwise confl icting features, such as fractal and 
small-world properties of networks. Li et al. [ 44 ] recently proposed a generalization 
of the box-counting method in order to perform multifractal analysis on complex 
networks. A novel perspective for multifractal analysis of complex networks has 
been recently proposed by Maiorino et al. [ 56 ]. Time series of vertex observables, 
such as degree, clustering coeffi cient, and closeness centrality, can be formed via 
(stationary) random walks on the network. Fractal and multifractal analysis can then 
be performed by making use of the more consolidated time series framework. The 
fractal structure of brain networks is typically related to its highly modular topology 
[ 32 ,  65 ], which contributes the compartmentalization of brain functions. However, 
brain networks, as well as other complex biophysical systems, exhibit also the cele-
brated small-world feature [ 9 ], implying that effi ciency of long-range connections is 
something that is optimized taking care of the related (energetic) costs.  

36.3      Computational Intelligence Methods and the Challenge 
of Processing Non-geometric Input Spaces 

 Computational Intelligence (CI) is a research fi eld bringing together many nature- 
inspired computational methods, such as artifi cial neural networks, fuzzy systems, 
and evolutionary and swarm intelligence optimization techniques [ 25 ]. In Table  36.1  
we report some of the most common terminology, methods, and techniques that are 
encountered in the CI research fi eld. It is worth noting that CI is closely related to 
soft computing, which is a toolbox of techniques, conceived to provide solutions for 
modeling and computational problems casted in an intrinsically uncertain and com-
plex setting. Bonissone [ 7 ] defi nes the boundary of the soft computing context by 
stating “The term Soft Computing (SC) represents the combination of emerging 
problem-solving technologies such as Fuzzy Logic, Probabilistic Reasoning, Neural 
Networks, and Genetic Algorithms. Each of these technologies provide us with 
complementary reasoning and searching methods to solve complex, real-world 
problems.”

   Typical problems faced by means of CI methods include recognition problems 
(e.g., classifi cation, clustering, and function approximation [ 12 ,  39 ,  45 ,  50 ,  58 , 
 59 ,  61 ,  62 ,  86 ,  90 ,  98 ]) and those of adaptive control (e.g., fuzzy control and data-
driven optimization via neural networks [ 40 ,  60 ]). Focusing on recognition prob-
lems [ 38 ,  87 ], the concept of pattern, plays an important role. Patterns can be 
discovered virtually everywhere: in climate science, geophysics, rare catastrophic 
events, complex biochemical processes in living beings and ecosystems, clinical 
diagnostics,  fi nancial market trends, and social network evolution. Formally 
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speaking, a pattern is a form of experimental evidence gathered from a data-gen-
erating process,  P . A process  P :  X  →  Y  is the idealization of a system, either 
abstract or physical, which generates outputs according to input patterns.  X  is 
referred to as the input space (or data domain, representation space), where the 
patterns are represented according to some suitable formalism.  Y , instead, is the 
output space, providing a way to learn how to recognize patterns according to 
their description. In pattern recognition the closed-form, analytical expression of 
 P  is unknown. The problem typically is reduced to determine the parameters of a 
suitably mathematical model of  P , e.g.,  M , by analyzing a fi nite dataset  S . The 

   Table 36.1    Typical terminology and methods used in the Computational Intelligence fi eld (sorted 
in alphabetic order)   

 Terminology  Defi nition 

 Artifi cial neural 
networks 

 Adaptive system comprised of nodes and connections in an 
organization similar to the central nervous system. Neural networks are 
capable of dealing with complex systems by adapting the model during 
the learning phase 

 Back propagation 
algorithm 

 Learning algorithm for neural networks 

 Data mining  Techniques used to analyze and discover knowledge and relationships 
in data 

 Evolutionary 
algorithm 

 Global optimization method inspired by evolution biological systems. 
Important concepts include fi tness function, natural selection, 
mutation, recombination, and crossover 

 Expert system  Computer technique that aims to simulate a human expert in order to 
provide support and advices to humans 

 Fuzzy logic  A multivalued logic in which the degree of truth of statement ranges in 
the unit interval 

 Hidden Markov model  Statistical model used to characterize and predict sequences of 
observable variables without inspecting directly the underlying 
system’s state 

 K-nearest neighbor  Classifi cation method that categorizes data according to their 
proximity in a given representation space 

 Machine learning  Computer algorithms designed to learn complex relationships, rules, 
and patterns from empirical data in order to perform inductive 
inference 

 Representation space  Mathematical formalization of the input space where the data is 
represented 

 Self-organizing 
feature map 

 Unsupervised learning mechanism that can be used for either 
clustering and classifi cation 

 Supervised learning  Methods of machine learning that requires knowledge of the classes 
during the training of the model 

 Support vector 
machines 

 Flexible method for linear and nonlinear classifi cation based on the 
concept of separating hyperplane and convex optimization 

 Unsupervised learning  Machine learning techniques that do not require knowledge of the 
classes during the training 
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objective is to obtain a model that is able to generalize over pattern instances dif-
ferent from those in  S . Three categories of problems in pattern recognition can 
then be distinguished:

    1.     Classifi cation . In classifi cation,  Y  is fi nite set of classes (a fi nite nominal set of 
labels) that is completely – or, in some variations, partially – known a priori.  X  
contains pattern instances that are (correctly) labeled with respect to  Y . 
Classifi cation is also referred to as discrimination, since in fact the problem con-
sists of learning a model that is able to correctly label patterns.   

   2.     Clustering . In clustering,  X  contains unlabeled pattern instances, and therefore 
the defi nition of  Y  is not available as a priori; there is no supervision. The goal is 
to determine the hidden structure of the data by relying on some measure of simi-
larity among the patterns.   

   3.     Function approximation . In function approximation (also known as regression), 
 Y  is a normed space, usually a continuous interval in ℝ. As the name suggests, 
the goal is learn a (nonlinear) function by using labeled training patterns in  X . In 
the case of multidimensional outputs, i.e., when the problem is generalized to 
learning a mapping.    

  Practically, a mathematical model  M  must be tuned to the problem at hand. 
Learning (or synthesizing) a model  M  from the available dataset  S  consists in opti-
mizing some criterion, i.e., a performance measure that allows adjusting the model 
parameters according to suitable training dataset. Two principal schools of pattern 
recognition exist: the one including discriminative methods (such as support vector 
machines [ 80 ] and many neural network models [ 38 ]) and the one exploiting gen-
erative models (such as the well-known hidden Markov model [ 5 ] and several ver-
sions of the recently developed deep convolutional neural network model [ 79 ]). 

 CI methods are typically designed based on the assumption that the input space, 
 X , is essentially a subset of ℝ  d  . When departing from the ℝ  d   vector-based pattern 
representation, many theoretical and practical problems arise, which are mostly 
due to the absence of an intuitive geometric interpretation of the data. 
Notwithstanding, the availability of datasets of non-geometric data motivated the 
development of pattern recognition and soft computing techniques on such domains 
[ 2 ,  4 ,  14 ,  30 ,  49 ,  52 ,  53 ,  66 ,  73 – 75 ,  99 ,  100 ]. Non-geometric patterns include data 
which are characterized by pairwise dissimilarities that are not metric; therefore, 
they cannot be straightforwardly represented in a Euclidean space [ 36 ,  52 ,  66 ]. 
A particularly interesting instance of such non-geometric data is constituted by 
structured patterns. A structured pattern is conceived to include in the structure the 
information regarding the relations and, at the same time, attributes describing the 
pattern itself. A labeled graph is the most prominent example of structured pattern 
that is conceivable. In fact, a graph can be used to characterize a pattern by describ-
ing the topological structure of its constituting elements (by means of the vertices) 
through their relations (the edges) [ 11 ,  37 ,  48 ]. Both vertices and edges can be 
equipped with suitable labels, i.e., the specifi c attributes characterizing the elements 
and their relations. Sequences of generic objects, trees, and automata can be thought 
of as particular instances of labeled graphs. Labeled graphs are used to represent 
data and systems in many different contexts, such as document analysis [ 10 ], 

L. Livi et al.



573

 solubility of the  Escherichia coli  proteome [ 54 ], brain functional networks [ 71 ], 
biomolecule recognition [ 13 ,  77 ], digital images [ 83 ], and scene understanding [ 8 ]. 

 Figure  36.1  offers a schematic, visual representation of the typical stages involved 
in the use of CI methods to address recognition problems. By means of a training set 
(Tr in the fi gures), a model is synthesized and then used during the testing stage using 
unseen data (denoted as Ts). This high-level overview is valid for both ℝ  d   (1(a)) and 
non-geometric (1(b)) data. However, in order to make proper use of CI methods, in 
the case of non-geometric data, the input space must be processed with particular 
care. Notably, three mainstream approaches can be pursued [ 52 ,  66 ]: (i) using a suit-
able dissimilarity measure operating in the input space, (ii) using positive defi nite 
(PD) kernel functions, and (iii) designing an embedding to map the input in ℝ  n  . The 
choice depends on the particular data-driven system adopted for the task at hand and 
on other factors, typically related to the particular application context. The fi rst case 
is the most straightforward one, but its use is legitimate only if the data-driven system 
does not require a specifi c geometrical structure of the input space. In fact, a dissimi-
larity measure might not be metric, therefore not Euclidean either. A fi rst example in 
this direction could be provided by citing the well-known  k -nearest neighbor rule, 
which process the input patterns by relying only on their topological similarity. The 
second scenario is a typical choice in the case of kernel methods. However, positive 
defi nite kernels can be obtained only if the underlying geometry is Euclidean. 
Nonetheless, if such a requirement is not satisfi ed at fi rst, correction techniques could 

a

b
Performance

Performance

  Fig. 36.1    Schematic 
representations of a 
data-driven inference 
system operating in ℝ  d   ( a ) 
and considering non- 
geometric data ( b ), 
respectively       
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be used for this purpose to “rectify” the data domain [ 52 ]. The last approach consists 
of mapping (i.e., embedding) the input space to a vector space, typically ℝ  n  . By this 
way, conventional CI methods can be used without alterations since in fact the prob-
lem is reduced to processing conventional patterns represented as numeric vectors.

36.4         On the Interplay Between Fractal Analysis and CI Methods 

 As mentioned before, from a computational viewpoint, the human brain can be 
studied by considering measurements targeted to specifi c regions together with their 
spatial, temporal, and functional relations. A systemic view of such measurements 
gives rise to complex data patterns, providing structured and potentially heteroge-
neous dataset of information to be processed. CI techniques, with particular interest 
in those for non-geometric data, could be used to tackle data-driven problems in 
such a context [ 71 ]. 

 Let us elaborate further on this idea by describing a hypothetical case study. Let 
us assume that we are interested in modeling each particular state of the conscious 
mind as a graph – a network of activated brain regions. Furthermore, typically we 
would be interested in correlating such states with the execution of task; therefore, 
we assume to have collected such states during the execution of a specifi c task over 
time. A graph would provide a way to encode the time-varying relations among the 
active brain regions, together with suitable, problem-dependent descriptive attri-
butes. Such attributes can be associated to both vertices and edges, describing in 
principles any type of data (signals, vectors, sequences). In order to infer insights on 
structure–function relationships from the experiment, the collection of graphs 
recorded over time could be analyzed with conventional graph-theoretical methods. 
For example, it could be benefi cial to study the variation of structural and dynamical 
properties elaborated from such graphs, including their fractal dimension – for 
instance, as a measure of complexity. However, it could also be interesting to con-
ceive problems of automatic classifi cation (discrimination) of such states, dealing 
with the classifi cation problem directly in the space of graphs, i.e., states of the 
conscious mind in our example. This might be of interest to a neuroscientist, since 
representing a neurological state as a graph has signifi cantly more representational 
power than using a vector of numeric values. Notably, it could be interpreted more 
easily, and hence the discrimination process could be explained in a language closer 
to human reasoning. The interpretability issue of CI methods is a well-known 
research endeavor; researchers usually refer to such a problem with the expression 
“opening the black-box.” In fact, most the CI methods operate without providing 
information intelligible to humans. Of course, this is not an issue when the task at 
hand is purely technological – problem-solving oriented. However, when scientifi c 
knowledge has to be extracted from a data-driven process, then interpretability of 
the data and the inference mechanism itself assumes critical importance. 

 We hypothesize here that the interplay of fractal analysis and Computational 
Intelligence methods could offer a compelling tool of analysis in the context of 
brain research. Fractal characterizations can be used to assess scale-invariant 
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 properties and offer numeric, feature-based representations to complement the oth-
erwise more complex patterns usually encountered in brain research. Computational 
Intelligence methods, especially those for non-geometric spaces, could be used to 
face specifi c recognition problems exploiting such information, without limiting the 
problem defi nition to conventional Euclidean spaces.  

36.5      Future Perspectives and Concluding Remarks 

 The human brain is a complex dynamical system made of many units (neurons) that 
interact over time, space, and/or by considering specifi c functions. The hierarchical 
organization of the brain connections calls for advanced computational techniques 
of analysis, including those based on graph-theoretical methods and time series 
analysis. The intricate shape of the brain is better described in terms of fractal 
geometry and related mathematical and computational tools. The fi eld of 
Computational Intelligence research is founded on data-driven methods, which take 
inspiration from natural systems. Examples of such systems include artifi cial neural 
networks, fuzzy systems, and evolutionary and swarm intelligence optimization 
techniques. We discussed also the more recently developed methods for analyzing 
non-geometric spaces, which allow to depart from the assumption of an underlying 
Euclidean geometry for the input space. 

 In this chapter, we fi rst described graph-based and time series analysis methods 
exploiting fractal analysis concepts. Such methods play an important role in neuro-
sciences, since in fact the types of data that are encountered in such a context require 
complex characterizations that typically go beyond the usual vector-based represen-
tation. Successively, we suggested a possible interplay between fractal analysis and 
Computational Intelligence methods, especially considering methods for non- 
geometric spaces. Computational Intelligence methods (such as classifi ers and pre-
diction systems) are already highly exploited in related contexts, such as biomedical 
signals and diagnostic medicine. However, the full potential of an interplay between 
the two disciplines still needs to be discovered. 

 In the following, we provide a list of possible applications in which Computational 
Intelligence methods and fractal analysis could be used by neuroscientists:

•    Time series in physiological as well as pathological states, e.g., intracranial pres-
sure trends to predict patients’ outcome following traumatic brain injury and/or 
bleeding  

•   EEG analysis for seizure prediction, MEG (magnetoencephalography) time 
series analysis for analysis of cognitive states, EMG (electromyography) time 
series analysis for the study of neuromuscular disorders, fMRI analysis of brain 
oscillation in physiopathological states  

•   Image analysis for characterization of brain tumor features (e.g., distribution of 
the microvessels, roughness of the tumors’ edges, architectural pattern, etc.) for 
automatic classifi cation (histotype and/or grading) and follow-up. Machine 
learning algorithms for the classifi cation of brain diseases according to neurora-
diological features (e.g., spectroscopy) and for the connectomics analysis  
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•   Training machines for automatic segmentation of region of interests, such as 
brain tumors and/or arteriovenous malformations, for surgical and/or radiosurgi-
cal planning  

•   Neural networks and similar CI methods for the analysis of gene expression pat-
terns in neurological diseases  

•   Computational quantitative analysis for the study of brain cells and receptors.        
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