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    Chapter 10   

 Role of Systems Biology in Brain Injury Biomarker 
Discovery: Neuroproteomics Application                     

     Zaynab     Jaber      ,     Patrick     Aouad    ,     Mohamad     Al     Medawar    ,     Hisham     Bahmad    , 
    Hussein     Abou-Abbass    ,     Hiba     Ghandour    ,     Stefania     Mondello    , 
and     Firas     Kobeissy       

  Abstract 

   Years of research in the fi eld of neurotrauma have led to the concept of applying systems biology as a tool 
for biomarker discovery in traumatic brain injury (TBI). Biomarkers may lead to understanding mecha-
nisms of injury and recovery in TBI and can be potential targets for wound healing, recovery, and increased 
survival with enhanced quality of life. The literature available on neurotrauma studies from both animal 
and clinical studies has provided rich insight on the molecular pathways and complex networks of TBI, 
elucidating the proteomics of this disease for the discovery of biomarkers. With such a plethora of informa-
tion available, the data from the studies require databases with tools to analyze and infer new patterns and 
associations. The role of different systems biology tools and their use in biomarker discovery in TBI are 
discussed in this chapter.  
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1      Introduction 

  As systems biology and the fi eld of proteomics continue to rapidly 
evolve, fundamental changes are being catalyzed toward the future 
of health care worldwide [ 1 ]. Research in these fi elds holds major 
implications in medicine, especially in enhancing the ability to 
improve diagnosis and treatment of diseases. We are currently wit-
nessing an increased interest in personalized medicine; therefore, 
bridging the gap between basic research and clinical applications 
becomes imperative. One research-based proteomic tool at the 
forefront of personalized medicine is biomarkers. Biomarkers are 
quantitative physiological indicators of a biological disease or 
injury state that allow for diagnosis and assessment of the disease 
process and help monitor the response to treatment [ 2 ]. In clinical 
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medicine, biomarkers have uses in diagnosis, prognosis, and 
 determination of physiological status. They can manifest through 
vital signs, X-rays, and other imaging modalities as well as through 
laboratory analysis of biological indicators such as ribonucleic acid 
(RNA), metabolites, lipids, peptides, proteins, or autoantibodies 
against proteins released from the diseased/injured tissue [ 3 ]. 
Interestingly, much of medical practice involves interpreting and 
 monitoring   biomarkers, the diagnostic accuracy of which is quan-
titatively denoted by sensitivity and specifi city. 

 Traumatic brain injury (TBI) is a neurotrauma caused by 
mechanical force applied to the head. It is of great concern since it 
is a leading cause of death worldwide [ 2 ,  4 ]. While traffi c accidents 
and assault are the main causes of TBIs in younger populations, 
falls are the predominant reason for TBIs in older individuals, fol-
lowed by traffi c accidents [ 5 – 7 ]. A subset of the adult population 
in the USA, deployed military servicemen and women, are particu-
larly vulnerable and are at high risk for TBI. They are often exposed 
to a variety of combat traumas. In fact, recent studies report that 
approximately 20 % of Operation Enduring Freedom/Operation 
Iraqi Freedom veterans have clinical diagnosis of TBI [ 8 ]. More 
than 30,000 military personnel suffered a TBI in 2012. Another 
13,000 or more people had a TBI in 2013 [ 9 ]. In addition, this 
population often exhibits comorbidities such as posttraumatic 
stress disorder (PTSD) or depression that can lead to an increased 
risk of misdiagnosis [ 10 – 14 ]. 

 TBI does not describe a physical injury to the head, such as 
laceration, contusion, or fracture, but rather the change in brain 
function as a result of damage from an external force to the brain. 
This can be caused by various ways. One example is the case of 
rapid backward and forward motion caused by rapid  acceleration   
and deceleration, such as that experienced during motor vehicle 
accidents or shaken-baby syndrome [ 15 ]. Another way is through 
impact due to falling, especially among the elderly, or caused by 
sporting injuries. TBIs can also result from blunt force trauma such 
as an assault or from exposure to blasts resulting in rapid changes 
in pressure. Penetration wounds to the head caused by high- 
velocity projectiles can also cause TBI [ 15 ,  16 ]. 

 TBI is heterogeneous, as it is highly variable and characterized 
by several severities (mild, moderate, severe) in addition to multiple 
injury types (concussive, nonpenetrating, penetrating). It occurs in 
two phases: fi rst as primary injury which then leads to secondary 
injury. Upon impact, primary injuries occur when there is deforma-
tion of the gray and  white matter   of the brain, causing a disruption 
of cell membranes and the release of intracellular contents [ 15 ]. 
Hours and days following the initial insult, secondary injuries occur 
as a result of brain edema, free radical formation, or the release of 
infl ammatory mediators. These secondary injuries may exacerbate 
the initial injury through the mediation of cell damage or death 
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resulting in a poor neurological outcome. Brain damage may 
include excessive neuronal activity caused by unregulated glutamate 
release, changes in neurotransmitter levels, hemorrhage, changes in 
cerebral blood fl ow, damage to axons, and/or disruptions to the 
 blood–brain barrier (BBB)   [ 16 ]. After the incidence of primary 
injuries, the focus of TBI patient management becomes prevention 
or reduction of the extent of secondary injuries. 

 The transfer of energy that occurs following the insult can 
cause structural, pathological, and functional changes in the 
brain that may yield neurological, cognitive, and behavioral 
symptoms that can be long lasting. Symptoms of TBI may 
include confusion, concussion or altered levels or loss of con-
sciousness, seizure, coma, focal sensory defi cits, or motor neuro-
logic defi cits. The long-term effects of TBI may include 
depression,  anxiety  , psychiatric disorders, memory loss, reduced 
motor function, reduced social functioning, impaired vision, 
insomnia, dizziness, mood disturbances, and defi cits in cogni-
tion. Moreover, substance abuse was found to be associated with 
individuals who have experienced a TBI, and for many patients, 
family life and relationships may be adversely affected [ 15 ]. 
Prominent neurological symptoms include headache, vomiting, 
nausea, imbalance, vision, dizziness, fatigue, drowsiness, sensi-
tivity to light or noise, and sleep disturbances. Of the cognitive 
symptoms, problems with attention, concentration, memory, 
processing speed, and executive functions (e.g., working mem-
ory and decision making) are most frequently reported. Existing 
literature indicates that in the majority of patients, these symp-
toms will resolve within 10 days to 2 weeks of the injury [ 17 ]. In 
more than 25 % of the cases, however, symptomology can con-
tinue long beyond this timeframe [ 18 – 20 ]. 

 In this book chapter, we will tackle the role of  systems biology 
tools  , bioinformatics, and biomarker research in the area of TBI. In 
particular, we will underline the need for biomarker discovery in 
TBI and how the major advances in the fi eld of proteomics will 
further aid this quest for enhanced TBI patient care management.  

2    Putting It All Together: Data Mining 

 Enormous amounts of data generated from high-throughput 
technologies require data mining tools to analyze data and visual-
ize patterns, which are otherwise tedious and sometimes impos-
sible to detect. An example of data mining methods is 
correspondence analysis which investigates the relation between 
features and data samples. Feature selection is another method 
that allows visualization and comprehension of data patterns. The 
use of these  methods in TBI biomarker discovery has been docu-
mented in several reports. 

Applications of Systems Biology in TBI
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 A Multiple Correspondence Analysis (MCA) can be used to 
detect relationship patterns in data collected on multiple variables 
pertaining to the participants. These data points and variables are 
projected on graphs known as principal components that help visu-
alize the clustering of data points and account for the highest 
amount of variance in the data. Points that cluster in proximity are 
indicated to have similarities while those that cluster further away 
from each other have more differences. Martinez et al. performed 
MCA on data collected from chronic TBI patients undergoing 
either cognitive training or a control program. The analysis was 
done by grouping the patients based on the type of head injury 
they suffered and the corresponding patterns in cognitive perfor-
mance including assessment of memory, attention, and task switch-
ing. The analysis yielded 53 % of variance detected by the fi rst 
principal component based on cognitive performance in all assess-
ments. The second principal component detected 8. 79 % of vari-
ance based on assessment of memory between the different injury 
types. Moreover, principal component projections for individuals 
with blast-related injuries were clustered in the low cognitive per-
formance side compared to projections of other injury types that 
were less clustered and more evenly distributed between high and 
low cognitive performances. This shows that MCA accurately clus-
tered  cognitive defi cits      detected in individuals suffering from blast- 
related injuries. This clustering is quite logical given the complex 
nature of this trauma that includes the initial shockwave followed 
by acceleration and deceleration shearing forces, and hence the 
devastating cognitive damage [ 21 ]. 

 Recently, Ou et al. analyzed microarray data previously pub-
lished by Shojo et al. [ 22 ] in Gene Expression Omnibus (GEO) 
database for differential gene expression profi les in rat models of 
TBI. After normalizing gene expression intensities with a robust 
multiarray average (RMA) algorithm, differentially expressed genes 
(DEGs) between control rats and those subjected to moderate 
fl uid percussion of different durations were identifi ed. This was 
done through implementing a  t -test to calculate the probability of 
DEGs between different groups and the respective  p -values. In 
turn, the  p -values were analyzed in R [ 23 ] using a  q -value package 
[ 24 ] to compute the false discovery rate. Signifi cant GEDs were 
chosen based on a  q -value < 5 %. In this study, microarray data was 
obtained on a TBI model from Gene Expression Omnibus (GEO) 
database and analysis of the altered gene expression profi le was 
conducted. Results suggested that gene expression profi les were 
signifi cantly altered in the late period after TBI. These altered 
genes were mainly involved in steroid biosynthesis, cell cycle, metal 
ion transport, infl ammation, and apoptosis [ 25 ]. 

 Given the enormity and heterogeneity of raw data generated 
from basic science research, there is a need to accelerate the transla-
tion of preclinical knowledge into clinical  therapeutics  . Accordingly, 
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Nielson et al. have recently developed a database for translational 
 neurotrauma   research dubbed Visualized Syndromic Information 
and  Outcomes   for Neurotrauma-SCI (VISION-SCI) [ 26 ]. In this 
study, syndromic analysis on data from several species published in 
the last two decades was collected, which allowed the identifi cation 
of conserved biological  mechanisms   of recovery that can be used in 
 monitoring   of therapy of neurotrauma patients.  

3    Deciphering Molecular Mechanisms of Neurotrauma Using Proteomics 

  Proteins are major effectors driving cell  behavior  . Accordingly, 
the fi eld of proteomics was established and devoted entirely to 
the systemic study of proteins [ 1 ]. The goal of proteomics 
research is to understand the expression and function of proteins 
on a global level which requires more than simply cataloguing the 
proteome; it involves the characterization of protein structure, 
function, and interaction in all its complexities. The ability to 
capture and compare all of this information between two cellular 
states is essential for understanding cellular responses [ 1 ]. Thus, 
proteomics is becoming a well-established approach for protein 
biomarkers discovery with the ability to identify proteome 
dynamics in response to experimental stimuli [ 27 ]. The collective 
number of published reports and citations utilizing proteomics in 
brain injuries is steadily increasing [ 9 ]. 

 TBI neuroproteomics studies have used biofl uids and injured 
tissue to identify clinical markers that may correlate with injury 
severity and may be able to determine therapeutic response [ 28 ]. 
In one study, altered differential proteins were evaluated in normal 
human postmortem cerebrospinal fl uid (CSF) [ 29 ]. Since post-
mortem CSF resembles a model of massive brain injury and cell 
death, its use could allow for identifi cation of protein markers of 
injury through comparison of the protein profi le of postmortem 
CSF with that of the CSF of individuals with brain injuries. In this 
study, 172 of the 229 proteins identifi ed were novel and not previ-
ously described. Postmortem CSF was thus used to evaluate altered 
protein levels similarly occurring after traumatic insult. Additionally, 
differential proteins of intracellular origin were identifi ed in the 
CSF. This corroborates the suggestion that protein leakage into 
the CSF occurs following brain injury [ 30 ,  31 ]. Since neuronal- 
specifi c proteins leak from injured brain directly to the CSF, this is 
crucial to identifying protein markers [ 27 ]. 

 CSF in a rat model of TBI was also evaluated in another 
proteomic study by Siman et al. [ 32 ] In this study, tau protein 
 fragment of 17 kDa, αII-spectrin breakdown product of 150 kDa, 
and collapsing response mediated protein-4 were released as a gen-
eral response to brain insult. The fi ndings from the experiments 
may suggest surrogate biomarkers for injury severity and may have 
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the potential for increasing our understanding of the mechanism of 
brain injury by shedding light on the process of how these proteins 
are observed in the CSF biofl uid at specifi c time points [ 32 ]. In 
another study, Waybright et al. [ 33 ] characterized the proteome of 
human ventricular CSF obtained from hydrocephalic patients. 
They were able to identify more than 1500 unique proteins which 
were then compared with the Human Proteome Organization 
serum proteome database. Human ventricular CSF was then con-
cluded to contain a large array of proteins unique to CSF [ 33 ]. 

 Studies undertaking the catalog of cellular elements under var-
ious conditions and in various organisms are well underway and 
becoming increasingly possible with the maturity of global tech-
nologies. This is where systems biology should rise to meet the 
demand of high-throughput data by helping understand how the 
elements discovered are coordinated to form functional biological 
systems. Though systems level integration of data is still in its 
infancy, a number of new concepts have emerged (such as those 
discussed earlier). The importance of this data integration is two-
fold: (1) it allows for minimization of noise inherent in data gener-
ated through the high-throughput biology and (2) it serves to 
reveal new biological phenomena not readily apparent from any 
single analysis [ 1 ]. Ultimately the goal is to characterize the infor-
mation fl ow through protein networks that refl ect the interconnec-
tion between the extracellular microenvironment and gene 
regulatory networks in response to effector functions of develop-
ment and physiological responses. 

 Studies conducted by Kobeissy et al. used Pathway Studio to 
construct a functional interaction map linking 59 proteins signifi -
cantly increased or decreased post-TBI [ 4 ,  34 ]. The altered path-
ways were found to be associated with infl ammation, cell survival/
proliferation, and synaptic plasticity. In another recent study by 
Feala et al. [ 35 ], around 32 TBI biomarker candidates from the 
literature were analyzed. These biomarkers’ associations with 
four KEGG pathways were found to be statistically signifi cant, 
three of the four of which (apoptosis pathway, amyotrophic lat-
eral sclerosis pathway, and Alzheimer’s disease pathway) were  rel-
evant   to TBI or the nervous system. By performing a PPI network 
analysis, they were able to show that the 32 TBI biomarker can-
didates were tightly connected to each other on a PPI network of 
over ten thousand proteins .  

4    Inferring Molecular Biomarkers in Neurotrauma 

 Systems biology study of neurotrauma is moving toward revealing 
the complex molecular processes induced by brain trauma [ 36 ]. 
The fi eld of proteomics serves as a powerful tool in this endeavor, 
showing great promise in the identifi cation of specifi c proteins 
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implicated in TBI. Proteomics can lead toward the discovery of 
many candidate biomarkers to help ascertain the  mechanisms   of 
TBI. Already biomarkers have demonstrated great success and reli-
ability in diagnosis of some diseases such as in cardiac injury. For 
instance, cardiac troponin proteins (T and I) and various forms of 
brain natriuretic peptide (BNP) are routinely used to facilitate 
accurate diagnosis of congestive heart failure and myocardial 
infarction in patients presenting with chest pain. 

 There is an increased recognition for the need of biomarker dis-
covery which has led to the Biomarkers Consortium launched in 
October of 2006 as a public–pharmaceutical industry partnership 
that includes the National Institutes of Health (NIH), the Food and 
Drug Administration (FDA), the Centers for Medicare and Medicaid 
Services, in addition to pharmaceutical industry representatives, 
nonprofi t organizations, and advocacy groups [ 37 ]. Importantly, an 
NIH workshop on improving diagnosis of TBI for targeting thera-
pies stressed the need for biomarker identifi cation [ 38 ]. 

 However, despite the efforts in brain injury research, there are 
no clinically validated biomarkers to diagnose TBI. The efforts to 
identify sensitive, universal, and specifi c biomarkers are hindered 
mainly by challenges such as  brain tissue   complexity and the het-
erogeneous nature of brain injury models [ 27 ,  39 ]. Even though 
extensive studies are being pursued to move protein biomarkers to 
clinical validation, the work is still under development. 

 Biomarkers can be discovered through traditional strategies such 
as knowledge-driven or discovery-driven methods, which are also 
called “top-down” and “bottom-up” methods [ 36 ]. While the 
knowledge-driven strategy infers biomarkers through understanding 
disease pathology and molecular  mechanism  , it is restricted by our 
knowledge of diseases. Due to the lack of understanding of the molec-
ular mechanisms of action of TBI, it is a less effective approach in the 
search for TBI biomarkers. On the other hand, the discovery-driven 
strategy employs high-throughput technologies to screen a large 
number of genes and proteins to determine those whose abundance 
change could indicate TBI. The limitations to this approach may be 
inherent noise and the semiquantifi cation nature of high-throughput 
technologies may lead to false positives passing the screening [ 36 ]. 

 In 2006, Kobeissy and colleagues identifi ed 59 proteins 48 h 
post-TBI using a rat model and they found that proteins that were 
decreased in abundance included CRMP-2, glyceraldehyde- 3- 
phosphate dehydrogenase, microtubule-associated proteins 
MAP2A/2B, and hexokinase [ 34 ]. Proteins that were upregulated 
included C-reactive proteins, transferrin, and breakdown products 
of CRMP-2, synaptotagmin, and αII-spectrin. The changes in 
these proteins were confi rmed by western blotting. This study gen-
erated candidate biomarkers that can aid in the evaluation of the 
severity and progression of injury as well as in the development of 
possible therapies. 

Applications of Systems Biology in TBI
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 The use of a systems biology-based approach to  drug discovery   
and development for TBI based on the advances in genomics, pro-
teomics, bioinformatic tools, and systems biology software has been 
shown [ 28 ]. In 2012, Boutte and colleagues conducted a proteomic 
analysis and brain specifi c systems biology in a rodent model of pen-
etrating ballistic-like brain injury (PBBI) where they used a combina-
tion of 2D-gel  electrophoresis   and  Mass Spectrometry (MS)   to screen 
for biomarkers. After identifying 321 upregulated and 65 downregu-
lated proteins 24 h post PBBI compared to sham controls,  pathway 
analysis   indicated that these proteins were involved in neurite out-
growth and cell differentiation. Among these proteins that indicated 
consistent increase in the  brain tissue   and CSF at several time points 
post PPBI were UCHL1, tyrosine hydroxylase, and syntaxin-6. 

 While systems biology is interested in complex biological pro-
cesses as they are governed by the interactions of multiple genes 
and proteins, it may seem that the intention to search for a TBI 
biomarker candidate from TBI-relevant pathways or interaction 
network is against the principle of systems biology. This is why a 
panel of biomolecules serving as TBI biomarker profi les should be 
suggested by systems biology [ 36 ]. In fact,  GFAP   and  UCHL1   
have been proposed together as TBI biomarkers [ 40 ]. There are 
huge numbers of possible combinations of multiple proteins in 
which systems biology will prove useful in identifying most effec-
tive combinations of proteins for TBI biomarker panels. 

 Soluble biomarkers ideal for use in the diagnosis of TBI should 
be absent in the peripheral tissue unless the  brain tissue   has been 
injured [ 10 ]. The ideal biomarker should be a small molecule that 
can be rapidly measured in the serum or CSF for a reasonable 
period after injury. Additionally, it would be ideal for the biomarker 
to have a level that corresponds to the degree of brain injury.  

5    Traumatic Brian Injury Candidate Biomarkers Identifi ed After Applying 
Systems Biology Concepts to Neuroproteomics 

 Listed below are examples of the most studied candidate protein 
biomarkers for TBI and have shown high sensitivity and specifi city 
in independent studies (Table  1 ).  UCHL1  ,  SBDPs  , and neuron- 
specifi c enolase (NSE)    are neuronal and axonal protein biomarkers 
whereas  GFAP   and  S100β   are glial-specifi c markers [ 41 ]. 
Combining neuroproteomic methods with relevant animal mod-
els, systematic assessments have been made to identify additional 
protein biomarkers for TBI [ 34 ,  42 – 45 ].

     UCHL1 is a cysteine protease of relatively small size (around 25 kDa 
and comprises 1–2 % of the total soluble protein in the brain) that is 
predominantly expressed in neurons, although it is also expressed in 
small amounts  in   neuroendocrine cells. UCHL1 is known to hydro-
lyze the C-terminal bond of ubiquitin or unfolded polypeptides [ 10 , 

5.1  Ubiquitin 
Carboxy- Terminal 
Hydrolase L1 Protein 
(UCHL1)

Zaynab Jaber et al.



165

 41 ,  46 ]. Mutations in UCHL1 may be associated with Parkinson’s 
disease and other neurodegenerative disorders [ 46 ]. Importantly, 
UCHL1 has previously been shown to be elevated in patients with 
severe TBI [ 10 ] and several publications have indicated that UCHL1 
can be a biomarker for TBI. UCH-L1 CSF and serum levels were 
found to be elevated in patients with severe TBI correlating with the 
severity and  outcome   of injury [ 15 ,  47 – 49 ]. 

 The elevation of levels of UCH- L1   post-TBI is proposed to be 
secondary to  BBB   dysfunction [ 50 ]. In addition, several recent 
studies also demonstrated the detectability of UCH-L1 in blood 
following mild TBI [ 51 – 53 ].  

   Among the novel biomarkers studied for their  clinical   relevance in 
TBI, alpha II-spectrin is a cytoskeletal protein primarily found in 
neurons and is concentrated in axons and presynaptic terminals 

5.2   α II-Spectrin 
Breakdown Products 
(SBDPs)

   Table 1  
  Putative biomarkers of traumatic brain injury   

 TBI 
biomarker 

 Source of 
sample  Origin cell type  Function  Use 

 UCHL1  Blood serum  Neurons  Ubiquitin  BBB 
disruption 

 Blood plasma  Neuroendocrine  Hydrolysis  Injury 
outcome  CSF  Tissue 

 SBDPs  Blood serum  Neuron axons  Activation of intracellular 
proteases 

 Axonal 
damage 

 Blood plasma  Presynaptic terminals  Injury severity 
 CSF 

 NSE  Blood serum  Neurons  Glycolytic pathway enzyme  Injury severity 
 Blood plasma  Oligodendrocyte 

 CSF 

 GFAP  Blood serum  Astroglia  Structural fi lament  Injury severity 

 Blood plasma  Outcomes 
 CSF 

 S100β  Blood serum  Glial cells  Intracellular signaling  BBB 
disruption 

 Blood plasma  Astrocytes  Calcium homeostasis  Injury severity 
 CSF 

   CSF  cerebrospinal fl uid,  BBB  blood–brain barrier,  NSE  neuron-specifi c enolase,  GFAP  glial fi brillary acidic protein, 
 UCHL - 1  ubiquitin carboxy-terminal hydrolase L1,  TBI  traumatic brain injury,  SBDP  Alfa II spectrin breakdown product  
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[ 41 ,  54 – 56 ]. Though alpha II-spectrin is present in various 
nucleated cells, and most tissues, its high abundance and enrich-
ment of brain qualifi es it as a candidate biomarker, especially if 
combined with another brain-specifi c marker [ 37 ]. 

 The breakdown products ( SBDPs)   of alpha II-spectrin is due 
to activation of intracellular proteases such as calpain and caspase 
in the brain after TBI, thus refl ecting axonal damage [ 10 ,  54 ,  57 ]. 
While SBDP150 (molecular weight 150 kDa) and SBDP145 
(molecular weight 145 kDa) are characteristics of calpain activa-
tion (associated in acute necrotic neuronal cell death), SBDP120 is 
produced by action of caspase-3 (associated with delayed apoptotic 
neuronal death) [ 10 ,  27 ]. Elevation levels of  SBDPs   in CSF were 
reported as a possible outcome predictor in patients with severe 
TBI, rather than mild TBI [ 54 ,  58 – 60 ]. Not only can  SBDPs   pro-
vide important information on severity of brain injury, but also on 
underlying pathophysiological  mechanisms   associated with necrotic 
and apoptotic cell death.  

   Highly expressed in  neuronal   cytoplasm, neuron-specifi c enolase 
(NSE) is a glycolytic pathway enzyme of different isoforms [ 10 , 
 54 ]. The gamma-gamma homodimer isoform is highly enriched in 
the neuronal cell body [ 61 ], but is present in multiple other cell 
types, such as erythrocytes, platelets neuroendocrine cells, and oli-
godendrocyte [ 62 ]. NSE has been shown to have the sensitivity 
and specifi city to detect neuronal cell death [ 63 ]. Increased CSF 
and serum levels of NSE have been reported after TBI, with levels 
that are detectable within six hours postinjury [ 2 ,  10 ]. Studies have 
also shown that NSE levels in CSF and serum correlate with sever-
ity of injury and clinical outcome [ 10 ,  41 ,  54 ,  64 ,  65 ]. However, 
the specifi city and sensitivity of NSE have been reported as unsat-
isfactory [ 66 – 71 ]. The limitations on NSE as a biomarker of TBI 
may be due to the high sensitivity of NSE to hemolysis [ 72 ]. 
Therefore, it has been proposed that NSE is not to be used as a 
standalone screening biomarker for brain injury [ 71 ].  

   Glial fi brillary acidic protein (GFAP) is an intermediate fi lament pro-
tein that forms networks that support the astroglial cells.  First   
reported in 1971, GFAP is found exclusively in the astroglial cyto-
skeleton [ 54 ,  61 ,  73 ]. Of the candidate biomarkers available for 
TBI, GFAP has been assessed in different studies of clinical studies 
[ 74 – 77 ]. Part of what makes this an ideal biomarker candidate for 
TBI is that this protein is not found outside the central nervous sys-
tem [ 78 ]. Even if the body is subjected to multiple forms of  trauma  , 
GFAP does not increase without brain injury [ 79 ,  80 ]. Thus, GFAP 
can be considered as a potential biomarker-specifi c glial injury. 

  GFAP   was studied in both CSF and sera of patients with TBI 
[ 56 ,  66 ,  81 – 83 ]. Upregulation of GFAP follows damage to the 
astroglial cells (astrogliosis) [ 10 ]. Astroglial cells react during 

5.3  Neuron-Specifi c 
Enolase (NSE)

5.4  Glial Fibrillary 
Acidic Protein (GFAP)
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injury by generating more GFAP. Evidence points to elevated 
serum GFAP levels in several types of brain damage, including TBI 
[ 79 ,  82 ,  84 ]. GFAP can also  predict   death or unfavorable out-
comes [ 83 ,  85 ] and validation studies in humans are already ongo-
ing [ 3 ] according to the proceedings of the military mild TBI 
diagnostic workshop [ 10 ].  

   One of the earliest and most  extensively   studied biomarkers of 
brain damage is S100β which belongs to a family of low molecular 
weight (9–13 kDa) calcium-binding S100 proteins important in 
intracellular calcium regulation [ 9 ,  86 ]. S100β is mainly found in 
astroglia and Schwann cells [ 87 ,  88 ]. S100β aids in cell homeosta-
sis and prevents neuronal death by increasing cellular calcium con-
centrations [ 89 ]. It also acts as a neurotrophic factor, promoting 
neurite outgrowth and astrocytic proliferation [ 2 ]. Its potential as 
a biomarker for TBI is found in its increased concentration in the 
CSF and serum after injury [ 90 ]. This protein is not infl uenced by 
hemolysis and has a biological half-life of two hours. Studies have 
correlated this biomarker with injury and outcome [ 91 – 94 ]. The 
fi rst study to emphasize the role of serum S100β in TBI patients 
was done by Ingebrigtsen et al. who showed that elevated serum 
S100β levels in patients with negative CT results are correlated 
with occurrence of postconcussive symptoms [ 95 ]. 

 Several other studies have investigated the clinical prognostic 
value of elevated serum S100β levels in TBI patients with confl ict-
ing evidence [ 80 ,  83 ,  94 ,  96 – 104 ]. Interestingly, in 2010 Unden 
and Romner did a meta-analysis of studies on mild head injury in 
which CT fi ndings and S100β were compared in the acute phase of 
injury [ 105 ]. In the 12 eligible articles (total 2466 patients) they 
discovered a high sensitivity of low levels of S100β in the predic-
tion of negative CT fi ndings. In fact, Unden and Romner sug-
gested that a low serum S100β level (<0.10 μg/L) in the fi rst three 
hours after injury has more than 90 % negative  predictive   value of 
the presence of clinically relevant CT fi ndings. These fi ndings are 
further confi rmed by other studies which also suggest the use of 
serum S100β as a substitute for CT in assessment of mTBI patients 
[ 106 ,  107 ]. S100β has also been studied as a useful indicator of 
patients with intracranial lesion [ 94 ]. 

 However, even if those studies demonstrate the sensitivity of 
the use of S100β, there are several limitations on this biomarker 
candidate. Since S100β is not specifi c to the brain, it can show up 
outside the central nervous system [ 9 ,  39 ,  61 ,  108 ,  109 ]. Therefore, 
general  trauma   without brain injury can increase levels of this pro-
tein [ 110 ]. In fact, S100β can be elevated in bone fractures with-
out head injury [ 111 – 113 ]. Despite the abundance of studies 
reporting serum S100β elevation, studies of CSF levels of S100β in 
TBI is still limited [ 56 ]. Additionally, elevated S100β occurs after 
 hemorrhagic   shock, correlating the concentration to shock severity 

5.5  S100β

Applications of Systems Biology in TBI



168

[ 91 ,  114 ,  115 ]. Because of this, S100β cannot be used as a single 
biomarker for TBI. The ratio of S100β against  GFAP   has been 
investigated, instead of S100β alone, and this was used to deter-
mine brain damage and prognosis [ 84 ].   

6    Conclusion 

 The short-term and long-term effects of TBI, in the absence of any 
FDA approved treatment [ 116 ], highlight the urgency for detec-
tion of biomarkers to improve the quality of life and decrease mor-
tality among  patients   with TBI. Multiple individual soluble 
biomarkers currently show promise in the diagnosis of brain injury, 
with the ability to predict degree of injury and clinical outcome. 
The breakdown products of α-II spectrin and the serum levels of 
UCH-L1 were found to change in a similar manner to that of  S100β   
and  GFAP   postinjury. Hence all these putative biomarkers can be 
used as important predictors of outcome in patients with moderate-
to-severe brain injury [ 55 ,  117 ]. Given the limitations in each bio-
marker, it is likely that no single biomarker will have adequate 
sensitivity and specifi city for accurate diagnosis of TBI. The better 
approach may be in using bioinformatics to discover and combine 
biomarkers in order to improve diagnostic accuracy. The fi eld of 
neuroproteomics is still in the developing stage and its full poten-
tial remains to be explored to reveal the integral molecular and 
cellular  mechanisms   of gene dynamics involved in brain injury.      
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