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    Chapter 1   

 ER to Golgi-Dependent Protein Secretion: 
The Conventional Pathway                     

     Corrado     Viotti      

  Abstract 

   Secretion is the cellular process present in every organism that delivers soluble proteins and cargoes to the 
extracellular space. In eukaryotes, conventional protein secretion (CPS) is the traffi cking route that secre-
tory proteins undertake when are transported from the endoplasmic reticulum (ER) to the Golgi apparatus 
(GA), and subsequently to the plasma membrane (PM) via secretory vesicles or secretory granules. This 
book chapter recalls the fundamental steps in cell biology research contributing to the elucidation of CPS; 
it describes the most prominent examples of conventionally secreted proteins in eukaryotic cells and the 
molecular mechanisms necessary to regulate each step of this process.  
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1       Introduction 

 Cell secretion is a fundamental physiological process present both 
in prokaryotes and eukaryotes that delivers soluble proteins and 
cargoes to the outside. The need to expel substances to the extra-
cellular space is instructive for a multitude of purposes: growth, 
cell homeostasis,  cytokinesis        , defense, structural maintenance, 
hormone release, and neurotransmission among others. While 
prokaryotic cells excrete cellular waste and other substances 
through  translocons   localized to the limiting cell membranes and 
secrete effector molecules to other cells through dedicated organs 
[ 1 ], eukaryotes rely on different cellular mechanisms. Eukaryotic 
cells not only have the characteristic of enclosing the genetic 
information into a specialized compartment (the nucleus), but 
they also have the peculiarity of carrying several different organ-
elles across the cytoplasm which are functionally interconnected 
via a multitude of transport routes that constitute the secretory 
pathway. Selective cargo transport among compartments is medi-
ated by different vesicular carriers that bud from a donor 
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membrane and fuse with another [ 2 ]. Both soluble cargoes and 
membrane proteins are fi rstly translocated in the  endoplasmic 
reticulum (ER)   from where they are transported either to other 
organelles or secreted to the extracellular space [ 3 ,  4 ]. When we 
focus on the latter case, the best characterized mechanism of 
transport in eukaryotes is the conventional protein secretion 
(CPS): the transport route that delivers proteins from the ER to 
the Golgi apparatus (GA), then to the trans-Golgi network 
( TGN  )   , and subsequently to the  plasma membrane (PM)  . The 
 TGN   is the organelle where proteins destined to be secreted are 
segregated from lysosomal/vacuolar enzymes and sorted in bud-
ding  secretory vesicles   or  secretory granules   [ 5 ]. When secretory 
vesicles and granules are released from the tubular elements of the 
 TGN  , they are transported at different rates along the cytoskeletal 
fi laments and across the cytoplasm toward the plasma  membrane   
with which they fuse, discharging their content to the outside. 
Importantly, integral PM proteins are delivered and integrated to 
the plasma membrane through membrane fusion by the same traf-
fi cking route. Secretory vesicles and secretory granules are distinct 
vesicular carriers employed in constitutive and  regulated secre-
tion  , respectively. While constitutive secretion is constantly under-
going in every eukaryotic cell, regulated secretion is additionally 
present in special types of  animal cells   only (e.g., endocrine and 
exocrine cells, neurons), and it is exclusively triggered by extracel-
lular stimuli [ 5 ,  6 ]. Both constitutive and regulated secretion are 
included in the CPS, and for both these types of secretion the 
ER-Golgi- TGN         segment of the transport route is identical 
(Fig.  1 ). Although individual steps of CPS show a certain degree 
of variability among different organisms, the basic mechanisms 
hold true in every eukaryotic cell. The discovery of major princi-
ples of cell secretion started in the 1950s.

2        Conventional Protein Secretion: A Historic Perspective 

 The elucidation of cell secretion has been paved between the 
1940s and 1950s, when major advances in  electron microscopy   
were accomplished by Keith Porter, Albert Claude, and George 
Palade at the Rockefeller University. The discovery of the endo-
plasmic  reticulum   (initially called “lace-like reticulum”) in culture 
cells from chicken embryos [ 7 ], and the evidence that in cells syn-
thesizing secretory proteins the majority of the  ribosomes   is 
attached to the ER membrane [ 8 ,  9 ], led George Palade to set 
crucial experiments to investigate the meaning of the ER-ribosome 
interaction. In an elegant combination of  biochemistry  , cell frac-
tionation, and electron microscopy Palade and Philip Siekevitz 
showed that the microsomal fraction isolated from liver or pancre-
atic cells is almost homogeneously composed of ribosome-bound 
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  Fig. 1    Schematic representation of conventional protein secretion in eukaryotes. Secretory proteins are trans-
located in the ER upon (1) signal sequence recognition by the  signal recognition particle (SRP)  ; (2) SRP interac-
tion with its receptor SR; and (3) transport through the  translocon   and into the ER lumen. In the ER, the signal 
sequence is cleaved off, and proteins are folded by molecular chaperons (not shown), and packed in  COPII   
vesicles upon receptor-ligand interaction.  COPII   vesicles are delivered to the ERGIC (in animals) or to the  cis - 
Golgi (in yeasts and plants). Escaped ER luminal proteins are retrotransported from the ERGIC or from the 
 cis - Golgi to the ER via  COPI         vesicles. PM proteins and secreted proteins are transported via cisternal matura-
tion to the  TGN  , whereas integral Golgi proteins are retrieved via intra-Golgi  COPI  -mediated transport, although 
another model has been proposed. At the  TGN  , proteins destined to be secreted are sorted in  secretory vesicles 
(SVs)   or immature secretory granules (ISGs). SVs are constitutively delivered toward the  PM  , whereas ISGs 
accumulate in the cytoplasm. Upon the arrival of specifi c stimuli, ISGs form mature secretory granules (MSGs) 
that are transported to the PM       
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ER-membrane  vesicles [ 10 ,  11 ]. Because Palade recognized that 
exocrine pancreatic cells of guinea pig contain an exceptionally 
developed network of ER membranes and produce massive 
amounts of digestive enzymes at the same time, this system was 
used for following key experiments in which Palade and Siekevitz 
demonstrated that the ribosomes are the exclusive site of protein 
synthesis [ 12 ,  13 ]. Soon after, performing in vivo labeling with 
radioactive C 14 -leucine to track the subcellular localization of 
newly synthesized digestive enzymes, Palade and Siekevitz showed 
that the pancreatic enzyme chymotrypsin is primarily detected in 
the microsomal fraction and synthesized by ER-bound ribosomes 
[ 14 ,  15 ]. These results led Palade to hypothesize that nascent 
polypeptide chains are driven across the ER-limiting membrane 
and into its lumen, which was demonstrated few years later by 
Palade, Siekevitz, and Colvin Redman using a microsomal fraction 
prepared from pigeon pancreas. Using radioactive amino acids, 
they analyzed the subcellular localization of the secreted enzyme 
amylase, which was initially associated with the ER-bound ribo-
somes. After longer incubation, microsomes were treated with 
sodium deoxycholate (a compound capable to solubilize mem-
branes) and labeled amylase was detected in the soluble fraction, 
demonstrating that the newly synthesized enzyme was transported 
from the ribosomes into the microsomal lumen [ 16 ]. Similar 
results were obtained by Redman and David Sabatini using hepatic 
microsomes where secretory proteins were released upon puro-
mycin treatment [ 17 ], and thus the rough ER (RER) was ascer-
tained to be the site of secretory protein synthesis. 

 The functional link between the RER and the Golgi apparatus 
within the secretory pathway was demonstrated during the same 
years by Palade, Lucien Caro, and James Jamieson by using elec-
tron microscopic autoradiography and innovative pulse-chase 
experiments. These methods allowed the scientists to track in time 
and follow within cells the whole transport route of secretory pro-
teins. The autoradiographic images obtained by intravenous injec-
tions of H 3- leucine showed that after ~5 minutes the labeling was 
localized mostly to the endoplasmic  reticulum        , at ~20 minutes in 
the elements of the Golgi complex, and after one hour in the 
zymogen granules [ 18 ]. Moreover, the data highlighted that the 
zymogen granules were formed in the Golgi region by a progres-
sive concentration of secretory products [ 18 ] .  In order to better 
defi ne the role of the Golgi and its surrounding vesicular elements, 
Palade and Jamieson used pancreatic tissue slices incubated in vitro 
that allowed shorter pulse labeling and a better resolution with 
respect to the in vivo situation. By using isopycnic centrifugation 
in a linear sucrose density gradient smooth-surfaced microsomes 
(representing mostly the peripheral, vesicular elements of the Golgi 
complex) and zymogen granules were separated from the rough 
microsomes (consisting of RER membranes). Labeled proteins 
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appeared initially in the rough microsomes, but shortly after they 
were more abundantly detected to the smooth ones, reaching the 
peak of concentration in this fraction after 7 minutes chase incuba-
tion. Moreover, after 17 and 37 minutes the zymogen granules 
were half maximally and maximally labeled, respectively [ 19 – 21 ]. 
These results not only provided the fi rst indication that vesicles 
could have been the shuttling elements responsible for intracellular 
traffi cking among compartments, they additionally proved that the 
Golgi apparatus (discovered in 1898 by Camillo Golgi) was an 
authentic cell organelle, and not just an artifact produced by cell 
fi xation (an issue discussed at length at the time [ 22 ]), having a 
specifi c role in cell secretion. Thus, the major cellular structures 
involved in this process had been fi nally related to specifi c cellular 
functions, although the biochemical and molecular mechanisms 
underlying the individual steps where still unknown. 

 In 1971 Günter Blobel and David Sabatini postulated that 
protein translocation in the ER lumen was dependent on the pres-
ence of a specifi c amino acid sequence at the amino-terminal por-
tion of the nascent polypeptide chain. They also speculated that 
the putative “signal sequence” would have been capable to recruit 
a “binding factor” able to guide the  ribosome         to the ER mem-
brane [ 23 ]. Intriguing results were obtained in 1972 by the labo-
ratories of Philip Leder and Cesar Milstein using cell-free translation 
systems producing immunoglobulin light chains that were 6–8 
amino acids longer than the normal secreted version [ 24 ,  25 ], 
leading to hypothesizing the cleavage of the putative signal 
sequence after translation. The fi nal proof of the existence of the 
signal sequence (or “ signal peptide  ”) was provided few years later 
by Günter Blobel and Bernhard Dobberstein. Rough microsomes 
isolated from canine pancreatic cells were added to a cell-free 
protein- synthesizing mixture supplemented by exogenous mRNA 
of the immunoglobulin light chain. Subsequently,  ribosomes   were 
detached from the ER membranes with a detergent and collected. 
The isolated ribosomes, carrying unfi nished proteins, were trans-
ferred in a suitable media where they resumed synthesis of inter-
rupted polypeptide chains without starting new rounds of 
translation due to the presence of aurintricarboxylic acid (an inhib-
itor of initiation but not elongation of polypeptide synthesis). 
Initially the shorter, processed chains appeared, resulting from the 
completion of peptides in advanced stages of translation. However, 
few minutes later the in vitro-synthesizing system completed lon-
ger chains too, demonstrating that the enzyme responsible for the 
cleavage of the signal sequence resides in the ER [ 26 ]. When rough 
microsomes, producing only the short version of the protein, were 
treated with the proteolytic enzymes  trypsin   and chymotrypsin 
(which rarely enter the microsomes) the polypeptide chains were 
not digested, confi rming that the newly synthesized secretory pro-
teins are immediately sequestered and driven into the microsomal 
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lumen when translation starts. Instead, when the in vitro system 
was set to produce the non-secreted protein globin the digestion 
with trypsin and chymotrypsin occurred, indicating that this pro-
tein did not slip into the microsomes [ 27 ]. Moreover, when unpro-
cessed light chains were added after the microsomes, they did not 
lose the signal sequence, demonstrating that its removal occurs 
during translation and not afterwards [ 27 ]. These studies showed 
that secretory protein precursors enclose the information for their 
own translocation across the ER membrane. 

 Since translocation across lipid bilayers was abolished by 
extracting the microsomal membranes with high-ionic-strength 
buffers, and it was rescued by adding back the salt extract [ 28 ], it 
became clear that there was a cytosolic component playing a crucial 
role in the process of protein translocation. In 1980 the  signal rec-
ognition particle (SRP)         was discovered by Günter Blobel and Peter 
Walter from canine pancreatic cell microsomes. SRP, initially 
named “signal recognition protein,” was purifi ed from the salt 
extract using hydrophobic chromatography SDS-gel electrophore-
sis revealed that SRP is a multimeric complex formed by six sub-
units of 9, 14, 19, 54, 68, and 72 kDa, respectively [ 29 ]. Moreover, 
SRP was shown to selectively associate with ribosomes engaged in 
the synthesis of secretory proteins [ 30 ,  31 ]. The association occurs 
through the binding of the 54 kDa subunit to the  signal peptide   
(typically 7–12 hydrophobic amino acids) of nascent polypeptide 
chains emerging from the  ribosome  , which causes temporary arrest 
of translation [ 32 – 37 ]. In addition to the six different polypeptide 
components, SRP contains a 7S RNA molecule required for both 
structural and functional properties, that also represents the back-
bone to which the six subunits associate [ 38 ]. Thus, SRP was rec-
ognized to be a ribonucleoprotein (RNP) and was therefore 
renamed “signal  recognition  particle  ” [ 38 ]. 

 The ribosome attachment to the ER membrane is mediated by 
the interaction between SRP and an integral ER-membrane pro-
tein, the SRP-receptor (SR), fi rst found by Bernhard Dobberstein 
and David Meyer the same year of SRP discovery (i.e., 1980). 
Initially the cytosolic portion of SR was identifi ed [ 39 ,  40 ]; after-
wards the protein was intracellularly localized in vivo with a specifi c 
antibody via immunofl uorescence [ 41 ], and the apparent full size 
determined to be 72 kDa [ 41 – 44 ]. Few years later, it was shown 
that SR actually consists of two subunits, the previously identifi ed 
SRα of 72 kDa and SRβ of 30 kDa [ 45 ]. The interaction between 
SRP and SR is GTP dependent, and both SRP and SR are dis-
placed from the ribosome upon GTP hydrolysis. GTP hydrolysis is 
additionally required by the ribosome for chain elongation, but 
not for the polypeptide movement across the ER membrane. 
Remarkably, the SRP-dependent mechanism of protein targeting is 
present in all three kingdoms of life. Homologues of SRP and SR 
have been found also in prokaryotes, where they mediate protein 
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secretion to the periplasmic space through the  translocons   localized 
to the inner membrane [ 46 – 49 ]. 

 The vectorial transfer of secretory proteins into the ER lumen 
can proceed as a consequence of the positional shift of ribosomes 
on dedicated ER membrane sites [ 46 ,  50 – 52 ]. The existence of 
specifi c locations (“aqueous channels”) on the ER membrane 
through which secretory proteins enter the ER was already postu-
lated in 1975 by Blobel and Dobberstein [ 26 ]. In a review of 1986, 
about the mechanism of protein translocation across the ER mem-
brane, Walter and Lingappa coined the term “translocon” to iden-
tify the sites where polypeptide chains would have crossed the ER 
membrane to gain access to the lumen [ 53 ]. The existence of pro-
tein-conducting channels in the ER membrane was demonstrated 
by electrophysiological techniques. Rough microsomal vesicles 
were fused on one side ( cis ) of a planar lipid bilayer separating two 
aqueous chambers. At low puromycin concentration, single chan-
nels with a conductance of 220 picosiemens (pS) were observed. 
Increasing amounts of puromycin added to the  cis  side caused a 
large increase of membrane conductance, until it was abolished 
when salt concentration reached levels at which  ribosomes   detach 
from the vesicles, demonstrating that the ribosome attachment is 
required for the channel opening [ 54 ,  55 ]. The proteins that form 
the  translocon         were identifi ed by photocross- linking using photo-
reactive probes that were incorporated into nascent polypeptide 
chains of various lengths. The chains were synthesized by an 
in vitro translation system supplemented with truncated mRNAs. 
Upon photolysis, the nascent chain was photocross-linked to spe-
cifi c ER membrane proteins adjacent to the nascent chain through-
out translocation [ 56 – 59 ]. Afterwards, the translocon components 
that formed photoadducts with nascent chains were purifi ed, 
reconstituted into proteoliposomes, and shown to execute the 
transfer [ 60 – 63 ].  

3     Protein Translocation in the Endoplasmic  Reticulum   

 The channel of the translocon is formed by the Sec61 complex, 
consisting of the heterotrimer Sec61α, Sec61β, and Sec61γ in 
mammals [ 62 ,  63 ]. The prefi x “Sec” was chosen because the fi rst 
isolated component Sec61α is homologous to the budding yeast 
  Saccharomyces cerevisiae    Sec61p protein, which was identifi ed in a 
previous screening for  sec retory mutants that led to the isolation of 
23 fundamental genes of the secretory pathway [ 64 ,  65 ]. The α- 
and γ-subunits are highly conserved, and both are essential for the 
function of the channel and for cell viability, whereas the β-subunit 
is dispensable. The Sec61 complex is the essential element for 
protein translocation, and the α-subunit alone forms the pore [ 63 ]. 
The same holds true in yeast, where the homologous components 
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of the Sec61 complex are Sec61p, Sbh1p, and Sss1p [ 66 ], and in 
prokaryotes, where the bacterial heterotrimeric translocation pore 
complex (subunits SecY, SecE, and SecG) of  plasma membrane  
 translocons   mediates secretion of different substances to the 
periplasmic space [ 67 ,  68 ]. Several integral ER membrane proteins 
can associate to the Sec61 complex to perform translocation, 
although the function of some of them is not fully clarifi ed. In 
mammals, the associated proteins that mediate translocation are: 
(a) the  t ranslocation- a ssociated  m embrane protein (TRAM) 
[ 61 ]; (b) the  t ranslocon- a ssociated  p rotein complex TRAP, a 
heterotetramer consisting of subunits α, β, γ, δ [ 62 ,  69 ]; (c) the 
oligosaccharyl transferase complex (OST), responsible for 
N-glycosylation in the ER, whose core complex is a heterotetramer 
formed by ribophorin I (66 kDa), ribophorin II (63/64 kDa), 
OST48 (48 kDa), and DAD1 (10 kDa) [ 70 – 72 ]; (d) the signal 
peptidase complex (SPC), responsible for the cleavage of the signal 
sequence in the ER lumen, consisting of fi ve subunits, whose 
names SPC12, SPC18, SPC21, SPC22/23, and SPC25 indicate 
the respective molecular size [ 73 ]; and (e) the Sec62/Sec63 
complex [ 74 ,  75 ]. As well as in mammals, the function of Sec61, 
OST, and SP complexes has been well characterized in yeast [ 66 , 
 76 ,  77 ]. Depending on which associated components work in 
concert with the Sec61 complex, two different mechanisms of 
protein translocation in eukaryotes occur: co- or post-translationally. 
The co-translational mechanism is present in all cell types and 
occurs both for soluble and membrane proteins. The targeting 
phase requires the interaction of  SRP   with the signal sequence of a 
nascent polypeptide chain. Subsequently, the interaction between 
SRP and SR mediates the ribosome-channel alignment. During 
translocation of membrane proteins, specifi c polypeptide sequences 
do not enter the channel, but protrude from the ribosome-channel 
junction into the cytosol, generating a cytosolic domain [ 78 ]. In 
several, if not all organisms, some proteins are translocated after 
completion of their synthesis, therefore “post-translationally,” and 
they are not completely folded after their release from the ribosome 
[ 79 ]. Post-translational translocation is more frequently occurring 
in simpler organisms like bacteria and yeast. In  S.    cerevisiae          the 
heterotetrameric Sec62/Sec63 complex specifi cally mediates post-
translational translocation in concert with the cytosolic chaperon 
Hsp70, the Sec61 complex, and the luminal chaperone Kar2p/BiP 
in an ATP- dependent manner [ 79 – 84 ], Instead, the co-translational 
mechanism requires the function of the Sec61 complex only and it 
is instead GTP dependent [ 85 ]. Although in mammals  translocation 
seems to occur preferentially co- translationally [ 85 ,  86 ], posttrans-
lational mechanisms have been shown for specifi c kinds of proteins. 
In fact, the SRP-dependent pathway, although ubiquitous, is 
inaccessible for those proteins carrying a single transmembrane 
domain (TMD) on their C-terminal portion, because they are 
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released from the  ribosome   before the TMD emerges from the 
ribosomal tunnel. These peptides, called tail- anchored proteins 
(TA), are involved in a wide range of cellular processes and include 
the  SNAREs   (involved in vesicular traffi c), several  translocon   
components, structural Golgi proteins, and enzymes located in 
almost every membrane. Thus, TAs are inserted in the ER 
membrane post-translationally both in higher eukaryotes and 
yeast. Cross-linking experiments revealed that the cytosolic TMD 
recognition complex TRC40 (previously known as Asna-1) 
interacts post-translationally with TAs in a TMD-dependent 
manner and mediates their targeting to the ER membrane [ 87 , 
 88 ]. A conserved three-protein complex composed of Bat3, 
TRC35, and Ubl4A facilitates the TA protein capture by TRC40 
[ 90 ]. Homologues of TRC40 are conserved in many species, 
including  S.    cerevisiae    where it is termed Get3 [ 90 ]. TRC40 
delivers TAs to an ER receptor composed of the tryptophan-rich 
basic protein (WRB) [ 91 ] and the calcium-modulating cyclophilin 
ligand (CAML) [ 92 ], mammalian equivalents of the yeast 
components Get1 and Get2, respectively [ 86 ,  93 ].  

4     The  COPII  -Mediated ER Exit 

 Nascent secretory and membrane proteins are translocated or 
inserted at the ER, eventually glycosylated, and then folded 
through the action of a multitude of molecular chaperons and 
cofactors that ensure conformation quality and fi delity. When the 
protein-folding capacity of the ER is unable to sustain a suffi cient 
rate of folding, the accumulation of misfolded proteins triggers a 
multitude of signaling pathways collectively termed unfolded pro-
tein response (UPR) that increases the folding capacity. However, 
when problems persist, misfolded polypeptides are degraded 
through the action of the ER-associated degradation (ERAD)       
pathway, and the mutated and/or misfolded proteins are retro- 
translocated to the cytosol to be degraded by the 26S proteasome 
machinery [ 94 ,  95 ]. 

 When membrane and soluble proteins reach the correct con-
formation and are not ER-resident proteins, they exit the ER. In 
all eukaryotic cells, the best characterized mechanism of ER exit is 
the  COPII  -mediated transport, whose components were all identi-
fi ed after a screening for yeast secretory mutants [ 64 ]. The coat 
protein complex II ( COPII  )    assembles on specifi c locations of the 
ER membrane, called ER-exit sites (ERES), from which  COPII  - 
coated vesicles bud off [ 96 ]. ERES are also known as transitional 
elements (TEs) or transitional ER (tER). The number, size, and 
dynamics of ERES vary among cell types and organisms; however, 
these organized export sites are present in most eukaryotic cells 
[ 97 ]. The assembly of  COPII   starts with the recruitment of the 

Conventional Secretion in Eukaryotes



12

cytosolic small GTPase Sar1 (secretion-associated RAS-related 1) 
to the ER membrane [ 98 ,  99 ], where it is activated through the 
action of the guanine nucleotide exchange factor (GEF) Sec12, an 
integral ER membrane protein that catalyzes GDP/GTP exchange 
[ 100 ,  101 ]. An activated, GTP-bound Sar1 inserts its N-terminal 
helix into the ER membrane, inducing initial membrane curvature 
[ 102 – 104 ] alongside with the recruitment of the cytosolic Sec23/
Sec24 heterodimer [ 105 ]. The Sar1-Sec23-Sec24 complex is rec-
ognized and bound by the Sec13/Sec31 heterotetramer, which 
forms the outer layer of the  COPII   cage [ 106 – 109 ]. Transmembrane 
cargo proteins are recognized and bound by Sec24, whereas solu-
ble cargoes bind specifi c receptors that span the ER membrane. 
Multiple adjacent Sec13/Sec31 subcomplexes drive membrane 
bending and vesicle fi ssion using the energy of GTP hydrolysis 
[ 110 ,  111 ]. Sec23 serves as a bridge between Sar1 and Sec24 and 
is a GTPase-activating protein (GAP) that stimulates Sar1 GTP 
hydrolysis [ 99 ], which is additionally needed for vesicle uncoating 
after release [ 111 ]. There is evidence that Sec31 interacts directly 
with Sar1 to promote Sec23 GAP activity [ 112 ]. In addition to the 
six core  COPII   components, Sec16 is involved in ERES mainte-
nance and  COPII  - mediated ER export. Sec16 localizes to the 
ERES independent of Sec23/24 and Sec13/31, and its localiza-
tion depends on Sar1 activity [ 113 ]. Sec16 has been shown to bind 
several  COPII         components and seems to serve as scaffold protein 
that concentrates, organizes, and stabilizes  COPII   proteins [ 114 –
 116 ]. However, the precise Sec16 function is still not fully 
understood. 

 Since most  COPII   subunits have one or more paralogues 
[ 117 ], and since  COPII   transport is assisted by several different 
accessory proteins (e.g., 14-3-3, PX-RICS, Deshavelled) depend-
ing on the cell type [ 118 – 121 ], the result is a high number of 
molecularly different  COPII  -coated vesicles with tissue specifi cities 
and selectivity for different cargo molecules. The number and size 
of ERES, together with the expression levels of  COPII   compo-
nents, may play a major role in the secretion rate in different tis-
sues. One of the biggest open questions regarding  COPII  -mediated 
transport is how large-sized cargoes can be lodged inside vesicles 
which are typically of 60–100 nm in diameter. Procollagen fi brils 
(PC), composed of rigid triple helices of up to 400 nm in length, 
represent one of the most abundant secreted cargoes in  animal 
cells  , since collagen composes approximately 25 % of the  whole- body 
protein content, and is fundamental for almost all cell-cell interac-
tions [ 122 ]. There are several lines of evidence indicating that col-
lagen secretion is  COPII   dependent. Depletion of Sec13 [ 123 ], 
disruption of Sec24D [ 124 ], mutation of Sec23A [ 125 ], loss-of-
function of the Sedlin gene (a TRAPPI complex component inter-
acting with Sar1 at the ER-Golgi interface) [ 126 ], and depletion of 
Sar1A and Sar1B [ 127 ] all block collagen secretion, leading to 
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severe diseases. Cryomicroscopical data suggest a signifi cant level 
of fl exibility of the  COPII   cage, which in vitro can assemble on 
fl atter membranes, forming larger cages that could accommodate 
procollagen fi brils [ 128 ,  129 ]. Recently, a potential mechanism for 
giant  COPII-carriers  biogenesis has been proposed, which involves 
TANGO1-mediated packing. TANGO1/Mia3 is a transmembrane 
protein identifi ed from a screening for secretory mutants in 
 Drosophila  S2 cells, and shown to localize to early Golgi cisternae 
and to the ERES [ 130 ,  131 ]. Knockdown of TANGO1 with 
siRNA severely inhibits ER export of PC VII. TANGO1 interacts 
with Sec23A and Sec24C through its cytoplasmic proline-rich 
domain (PRD), and binds PC VII via its luminal SH3 domain 
[ 132 ]. cTAGE5 is the partner of TANGO1 in PC VII secretion; it 
is anchored to the ERES and interacts via its PRD with Sec23A, 
Sec24C, and Sec12 [ 133 ,  134 ]. Cullin3 (an E3 ligase), and its 
specifi c adaptor protein KLHL12, ubiquitinates SEC31. In mouse 
embryonic fi broblasts, Cul3 knockdown inhibits collagen IV secre-
tion, and overexpression of KLHL12 increases secretion of PC I in 
the human fi broblast cell line IMR-90. The model proposes that 
TANGO1-cTAGE5 pack collagens in ERES enriched with 
Sec23/24 to the inner coat shell, and Cul3-KLHL12 mediate the 
assembly of a large outer layer composed of Sec13/31-ubiquitin. 
The fi nal result would be the formation of a giant  COPII-carrier   
carrier for procollagen export from the ER [ 122 ]. However, the 
evidence that TANGO1 interacts with the conserved syntaxin 
5-binding protein Sly1, which in turn interacts with the ER-specifi c 
t-SNAREs syntaxin- 17 and syntaxin-18 (involved in membrane 
fusion), leads to formulate a second hypothesis: a membrane 
domain of the ERGIC (ER-Golgi-intermediate compartment) 
could be recruited to the ERES, and the resulting fusion would 
promote the elongation of the PC VII-enriched domain into a 
tubular uncoated bud, while the TANGO1-cTAGE5-Sec12-
Sec23/24 complex would remain at the neck [ 122 ].  

5     The ER-Golgi Interface and  COPI   Vesicles 

 Passive incorporation of soluble cargoes into  COPII         vesicles can 
occur [ 135 – 138 ], whereas membrane proteins and receptors 
require diacidic or dihydrophobic motifs in their cytosolic domains 
for effi cient transport through the interaction with multiple bind-
ing sites of Sec24 [ 139 – 142 ]. It is still unclear in mammals whether 
 COPII   vesicles are transported to the ERGIC along microtubules 
(from the plus- to minus-end), since contrasting results have been 
so far collected [ 117 ]. The directionality and fi delity of  COPII   
vesicle transport and fusion with either the ERGIC or the  cis -Golgi 
(depending on the organism) are mediated by the concerted action 
of RAB GTPases, tethering factors, and integral membrane  SNARE   
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proteins. In mammalian cells, RAB1 and the tethering factors 
p115, GM130, GRASP65, and the TRAPPI complex orchestrate 
the tethering [ 143 – 150 ]. TRAPPI- mediated RAB1 activation 
recruits p115, generating a localized signal to tether  COPII      vesi-
cles, and TRAPPI binds directly Sec23 [ 151 ,  152 ]. Fusion of 
 COPII  -tethered vesicles depends on a set of four SNAREs: syn-
taxin-5, membrin/GS27, BET1, and Sec22B [ 153 – 155 ]. 
Additionally, the syntaxin 5-binding protein Sly1 is required for 
this vesicle fusion step [ 156 ] and may serve to coordinate the ves-
icle tethering and fusion. All fusion events between membranes 
require the correct pairing of specifi c cognate SNAREs on the ves-
icle surface and on the acceptor membrane. SNAREs (soluble 
 N -ethylmaleimide-sensitive factor adaptor protein receptors) are 
tail-anchored proteins that contain a conserved membrane-proxi-
mal heptad repeat sequence known as the SNARE motif. The 
 trans -assembly of motifs into a four-helix bundle drives the fusion 
between lipid bilayers [ 157 – 161 ]. In mammals,  COPII   vesicles 
reach fi rst the ER-Golgi-intermediate compartment (ERGIC), 
alternatively termed vesicular tubular cluster (VTC), which is a dis-
tinct organelle respect to the Golgi and is absent in yeasts and 
plants [ 97 ]. While in animal cells the Golgi apparatus is a relatively 
stationary organelle, in plant cells the Golgi is instead highly mobile 
and moves with a speed of up to 4 µm/sec. [ 162 ]. Golgi stacks in 
plant cells move extensively along both the ER tubules and actin 
fi laments (which are aligned to each other) throughout the cyto-
plasm. The movement relies on actomyosin motors, and displays a 
distinctive stop-and-go pace [ 162 – 167 ]. The plant ER-Golgi 
interface is spatially reduced (around 500 nm), and the two com-
partments are tightly coupled, as demonstrated by using optical 
tweezers [ 168 ]. The plant Golgi receives budding  COPII   vesicles 
from the ERES in a cytoskeleton- independent manner [ 169 ] 
within the so called secretory unit model, in which the two com-
partments are embedded in a ribosome- free surrounding matrix 
[ 170 – 174 ]. While plant  COPI   vesicles (the retrograde Golgi-
to-ER carrier) have been biochemically isolated and localized in 
situ [ 175 ], visualization of  COPII         in  plant tissues   is rare (although 
observed) even when ultra-rapid cryofi xing techniques are 
employed [ 170 ,  176 – 178 ]. Thus, it is a matter of debate whether 
 COPII  -mediated transport in higher plants can additionally occur 
via coated-tubular connections [ 179 ]. 

  COPI   mediates retrograde transport of receptors and soluble 
proteins from the  cis -Golgi (from the ERGIC in mammals) back to 
the ER along microtubules. The coat protein complex I ( COPI  ), 
or “coatomer,” is a heptameric (α, β, β′, g, δ, ε, ζ) complex, where 
the γ-COP, δ-COP, ζ -COP, and β-COP subunits constitute the 
inner coat layer, and α-COP, β-COP, and ε-COP form the outer 
shell [ 180 – 182 ]. Upon activation by ADP- ribosylation factor gua-
nine nucleotide exchange factors (ARF- GEFs), the myristoylated 
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membrane-anchored ARF1 GTPase recruits the  COPI   subunits to 
the Golgi membranes [ 183 ,  184 ]. Subunits α-COP, β′-COP, 
γ-COP, and δ-COP recognize sorting motifs on the cytosolic 
domain of membrane cargoes and mediate the load of soluble pro-
teins into nascent  COPI   vesicles. ARF GTPase-activating proteins 
(GAPs) bind cytoplasmic signals on cargo proteins, γ-COP, 
β′-COP, and ARF1. Stimulation of the GTPase activity of ARF1 by 
GAPs leads to the release of ARF1 from the complex and to the 
dissociation of GAPs and the coat subunits [ 185 ].  COPI   vesicles 
deliver ER receptors (recycled for new rounds of transport) and 
luminal ER proteins that escape through bulk fl ow via  COPII   ves-
icles. Luminal ER proteins classically carry a KDEL motif (in ani-
mals and yeast) or an HDEL motif (in plants) within their 
C-terminal domain, which represent the retrograde sorting signals 
recognized by dedicated Golgi receptors (Erd2 in yeast and plants; 
KDELRs in mammals). Targeting of  COPI         vesicles to the ER 
requires the multisubunit DSL1 tethering complex, and the 
 SNARE   proteins syntaxin-18, Sec20, Slt1, and Sec22B [ 186 ,  187 ].  

6     The Golgi Apparatus, the  TGN  , and the Rab GTPase-Mediated  Secretory Vesicle   
Formation 

 In most eukaryotes the Golgi apparatus (or Golgi complex) con-
sists of a series of stacked cisternae, with a  cis  to  trans  polar ori-
entation. The cisternae are kept adjacent by structural proteins 
present in the surrounding ribosome-free matrix [ 188 ], and by 
heterotypic tubular connections [ 189 ,  190 ]. In mammals the 
Golgi includes 4-8 cisternae, each of them 0.7–1.1 μm wide and 
10–20 nm thick. Multiple Golgi stacks can be laterally intercon-
nected by tubules, forming the so-called Golgi ribbon. In several 
lower eukaryotes, like the budding yeasts  S.    cerevisiae    and   Pichia 
pastoris   , or in the fruit fl y  Drosophila melanogaster , the Golgi is 
formed by individual cisternae scattered throughout the cyto-
plasm, which can occasionally associate but do not form stacks, 
although polar features are maintained [ 188 ]. Single stacks are 
present both in higher plants (e.g.,   Arabidopsis thaliana   , tobacco), 
and algae (e.g.,  Chlamydomonas reinhardtii ). Depending on the 
enrichment of specifi c enzymes, three major regions can be rec-
ognized within one Golgi complex:  cis , medial, and  trans  [ 188 ]. 
Juxtaposed to the Golgi  trans -most cistemae, a pleiomorphic, 
tubular-vesicular compartment is present: the trans-Golgi-net-
work (TGN) [ 191 ,  192 ]. In plant cells the TGN has been shown 
to additionally hold the role of early endosome (EE, the fi rst 
compartment reached by endocytosed molecules) [ 193 – 195 ], 
whereas in animals the  TGN   and EE are distinct compartments. 
Two models have been proposed for secretory protein transport 
through the Golgi complex: (1) anterograde  COPI  -vesicular 
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transport between stable cisternae; and (2) cisternal progression/
maturation [ 196 ]. Detection of cargoes and bidirectional trans-
port by distinct populations for  COPI   vesicles support the fi rst 
scenario [ 196 ]; however, exclusive retrograde transport for  COPI         
is supported by the detection of the KDEL receptor, resident 
Golgi proteins, and glycosylation enzymes. The cisternal matura-
tion model is currently preferred because, among other reasons, 
it explains how transport of large cargoes is achieved [ 196 ]. In 
this view, the cisternae continuously mature from  cis -to-  trans , 
and secretory proteins are transported along the anterograde 
fl ow, and up to the  TGN  . The anterograde maturation is the net 
result from  COPII         vesicle entry and secretory vesicles exit on the 
respective  cis  and  trans  sides. Homotypic fusion of  COPII   vesi-
cles gives rise to newly formed  cis -cisternae, while the  trans -most 
cisternae mature into a  TGN  . Intra-Golgi retrieval of integral 
Golgi proteins from older to younger cisternae occurs via  COPI   
vesicles and through the heterotypic tubular connections. The 
Golgi is the organelle where  glycosylation   of soluble cargoes, 
membrane proteins, and lipids is completed, and where polysac-
charide synthesis occurs. The  cis -to- trans  polarity in the distribu-
tion of Golgi glycosylation enzymes was discovered by 
cytochemical staining based on different enzymatic activity 
among cisternae, and it refl ects the sequence of oligosaccharide 
processing reactions [ 188 ,  196 ,  197 ]. 

 At the  TGN  , proteins are sorted toward three different desti-
nations: PM, endosomes, and lytic compartments. These traffi ck-
ing routes differ in terms of adaptors, effector molecules, and 
sorting signals involved. Formation of secretory vesicles delivered 
to the  PM   is GTP dependent, requires either ARF GTPases or 
Rab GTPases, and may be mediated by clustering of specifi c lipids 
on  TGN   subdomains. However, the molecular mechanisms and 
the sorting signals for  TGN  -to-PM delivery are far less under-
stood in comparison to  COPII  -,  COPI  - and clathrin-mediated 
vesicle transports. 

 The heterotetrameric adaptor protein complexes (APs) are the 
most well-characterized cargo adaptors at the  TGN        . Five APs have 
been identifi ed in higher eukaryotes, and three of them (AP-1, 
AP-3, and AP-4) sort proteins at the  TGN  . APs bind membrane 
cargoes and receptors via their μ subunit, and contribute to form 
coated carriers. AP-1 and AP-3 interact with clathrin, whereas 
AP-4 does not [ 198 ]. While AP-3 is involved in lysosomal/vacu-
olar sorting and traffi c, AP-1 and AP-4 mediate polar transport of 
basolateral-located proteins in epithelial cells [ 199 ,  200 ], and both 
AP-1 and AP-4 require the function of ARF1. The PM of epithelial 
cells is polarized into apical and basolateral domains, and each of 
them contain distinct set of proteins carrying specifi c functions. 
Protein sorting at the  TGN   contributes to polar delivery of api-
cal/basolateral proteins, and to the asymmetric localization of 
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signaling receptors that determine planar cell polarity (PCP) of 
epithelia [ 201 ]. Tyrosine- based motifs and dileucine motifs at the 
C-terminal domain are canonical sorting signals for basolateral-
targeted proteins, whereas apical sorting determinants are diversi-
fi ed and vaguely defi ned [ 198 ,  201 ]. However, apical determinants 
promote partitioning into glycosphingolipid- and cholesterol-rich 
membrane microdomains (i.e., lipid rafts) at the  TGN        , from where 
carriers arise [ 201 – 203 ]. 

 In yeast, a unique adaptor complex, termed “exomer,” medi-
ates protein transport directly from the  TGN   to the PM. Exomer 
is a heterotetramer consisting of two copies of Chs5p and two cop-
ies of the ChAPs family proteins (Chs6, Bud7p, Bch1p, and 
Bch2p). Chs5p binds to the small GTPase Arf1, whereas the 
ChAPs are responsible for cargo binding and sorting [ 204 – 208 ]. 
Exomer regulates traffi cking of chitin synthase III (Chs3p) and 
Fus1p from the  TGN   to the PM [ 204 ,  205 ,  209 ,  210 ]. No known 
homologs of exomer have been found in metazoans as yet. 

 Secretory vesicles in yeast are transported to the cell surface 
through the function of the Sec4 GTPase [ 211 ], whose homolog 
in plants is RabE1 [ 212 ]. In plants, secretory vesicles deliver hemi-
celluloses and pectins to the plant apoplast from the  TGN  /EE 
[ 193 ], a transport route mediated by the protein ECHIDNA 
(ECH), which interacts with the Rab GTPases YIP4a and YIP4b 
[ 213 ,  214 ]. On the contrary, cellulose is synthesized by plasma 
membrane- localized cellulose synthase complexes [ 215 ]. ECH 
also specifi cally mediates the targeting of the auxin infl ux carrier 
AUX1 from the  TGN   to the PM, but not the transport of the 
auxin infl ux carriers LAX1-3 and of the effl ux carrier PIN3 [ 216 ]. 
In contrast to animals, secretion in plants is fundamental for  cyto-
kinesis  , since plants have evolved a unique mechanism of cell divi-
sion. Instead of forming a contractile ring that constricts the plasma 
membrane, dividing plant cells target secretory vesicles to the cen-
ter of the division plane, where they fuse with one another to form 
the cell plate. Afterwards, the cell plate fuses with the parental PM 
on both sides [ 217 ,  218 ]. This mechanism requires the targeting 
and function of the PM-located plant-specifi c syntaxin KNOLLE, 
the Sec1-like protein KEULE, and the t- SNARE            AtSNAP-33 
[ 219 – 222 ]. 

 After budding, vesicles are delivered to the PM by motor- 
mediated transport along a cytoskeletal track (microtubules or 
actin), in which kinesins have been shown to be implicated [ 203 , 
 223 ]. The tethering factor that mediates fusion of  secretory vesi-
cles   and  secretory granules   with the PM is the exocyst complex, 
formed by eight components: Sec3, Sec5, Sec6, Sec8, Sec10, 
Sec15, Exo70, and Exo84, whose functions are conserved among 
eukaryotes [ 224 – 226 ].  
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7      Secretory Granules      and Regulated Secretion 

  Animal cells   where regulated secretion is present include endocrine 
and exocrine cells, epithelial cells, mast cells, platelets, large granu-
lar lymphocytes, neutrophils, and neurons. Secretion of insulin 
from endocrine pancreatic β-cells, secretion of zymogen from exo-
crine pancreatic cells to digest food, secretion of growth hormone 
from GH cells of the pituitary gland, and the release of neurotrans-
mitters at the synapses are only few examples of regulated secre-
tion. Secretory granules contain massive amounts of cargoes, which 
accumulate fi rst in subdomains of the  TGN        , and are later released 
as immature secretory granules (ISGs) that accumulate in the cyto-
plasm. In endocrine cells the concentration factor from the ER to 
secretory granules may be as high as 200-fold, whereas in constitu-
tive secretory vesicles there is at most a 2-fold concentration of 
secretory products then in the ER [ 5 ]. Biogenesis of mature secre-
tory granules (MSGs) involves specifi c mechanisms of protein sort-
ing, pro-hormone processing, and vesicle fusion. Specifi c sorting 
signals and domains in regulated secretory proteins (RSPs) are 
needed to direct them into the regulated secretory pathway, and 
for their segregation from constitutive secreted proteins at the 
 TGN  . Cell-type-specifi c composition of RSPs in the  TGN   has an 
important role to determine how the RSPs are sorted into ISGs. 
Lipid rafts are implicated in RSP sorting at the  TGN   and specifi c 
SNAREs are required for either MSG formation and for their 
fusion with the  PM         [ 6 ,  227 ].     
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