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 Differential Regulation of IGF-1 and Insulin 
Signaling by GRKs                     

     Leonard     Girnita      ,     Ada     Girnita    , and     Caitrin     Crudden     

  Abstract 

   Textbooks depict box-to-box signaling schematics downstream of G-protein-coupled receptors (GPCRs) 
and receptor tyrosine kinases (RTKs), yet it is now widely accepted that cellular signaling is much more 
web-like than linear, and the nodes of crosstalk between pathways and receptors increase in complexity and 
intricacy with each additional study. A complex network involving bidirectional crosstalk between GPCRs 
and RTKs is emerging, and this phenomenon is commonly termed “transactivation.” In this process, RTKs 
or components of RTK pathways are utilized by GPCRs or, conversely, components of classical GPCRs 
such as G proteins, GRKs, and β-arrestins are recruited downstream of activated RTKs. This chapter aims 
to summarize the emerging evidence of RTKs utilizing GPCR components, thus blurring the boundaries 
we have given them. In particular, we will follow how all of the functional components of the GPCR sys-
tem have been described for the insulin receptor (IR) and the insulin-like growth factor type 1 receptor 
(IGF-1R) and hence the rationale behind the development of a functional RTK/GPCR hybrid model. 
Given the IGF-1R’s important role in the development and maintenance of a malignant phenotype, GPCR 
components, such as the GRK/β-arrestin system, may yield important future targets in anti-IGF-1R 
therapeutics.  
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1      Introduction 

 Shakespeare’s famous line  “That which we call a rose, by any other 
name, would smell as sweet , ”  aimed to remind us that it does not 
matter what names or categories we choose to give to things, it does 
not change what they truly are or how things truly exist. In that 
respect, the naming of RTKs solely on their tyrosine kinase activity 
masks the fact that they can also work completely independent of 
their kinase domain and outside of the “group” characteristics we 
have given them. Indeed, it is now clear that RTKs can utilize all 
components of the GPCR machinery, giving rise to new perspec-
tives on functional classifi cations. In this chapter, we describe 
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the IR/IGF-1R signaling from the GPCR-paradigm  perspective, 
focusing specifi cally on the roles played in this process by GRKs and 
β-arrestins. 

   Second to the GPCRs, the RTKs represent another major  cell sur-
face receptor family  , containing around 60 members, subdivided 
into at least 13 families [ 1 ,  2 ]. RTKs are structurally defi ned by the 
presence of a  tyrosine kinase domain  . In most cases this is joined to 
the extracellular ligand binding domain via a single transmembrane 
anchor [ 3 ]. RTKs are traditionally defi ned by their ligands and 
hence the ligand binding domains vary between receptors to 
encode specifi city. In addition, there are also signifi cant differences 
in terms of cytoplasmic kinase regions, juxtamembrane domain 
and carboxyl (C)-terminal tail among members of the same family 
and these differences are often even more important between dif-
ferent RTK classes. 

 The canonical  signaling activation model   describes the major-
ity of RTKs as an “OFF/ON” system. The  “switch-ON” mecha-
nism   is a two-step process: binding of their respective ligand 
induces the formation of receptor dimers which initiate conforma-
tional changes within intracellular domains, and secondly, trans- 
autophosphorylation of tyrosine residues within the kinase domain 
stabilizes this “ON” state [ 4 ,  5 ]. Dimerization can take place 
between two identical receptors (homodimerization), between dif-
ferent members of the same receptor family (heterodimerization), 
or in some cases, between a receptor and an accessory protein [ 6 , 
 7 ]. Autophosphorylation of adjacent receptors results in an expo-
nential increase in kinase activity and subsequent activation of 
intracellular signaling pathways [ 8 ]. The main two signaling cas-
cades emanating from RTKs are MAPK/ERK and PI3K/Akt, 
which culminate in biological effects on cell survival, cell cycle pro-
gression, proliferation, and metabolism [ 9 ]. 

 Over the last few decades, RTKs have received particular atten-
tion, not only as essential regulators of normal cellular processes 
but also as key factors involved in the development and  progres-
sion of human cancers  . In 1983, two groups published their obser-
vations of sequence homology between an oncogene and an RTK, 
namely the simian sarcoma virus oncogene  v-sis  and the platelet- 
derived growth factor (PDGF) [ 10 ,  11 ]. A year later came the fi rst 
description of a mutated RTK in cancer [ 12 ], and the list of growth 
factors, RTKs, or molecules within their signaling cascade which 
contribute to transformation and malignancy began to grow. 
Clinical data supported the fact that RTKs were intimately linked 
to  tumorigenesis   through various mechanisms: gene amplifi cation, 
overexpression, mutation, or autocrine growth factor loops [ 13 ]. 
As such, RTK therapeutic exploration has been a large research 
focus, and many strategies targeting RTKs have been developed 
and successfully translated into clinic, e.g. trastuzumab (Herceptin), 

1.1  RTK Classical 
Paradigm
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an anti-HER2 antibody used in the treatment of breast cancers [ 14 ], 
PDGFR inhibitors for gastrointestinal cancers [ 15 ], and c-KIT tar-
geting in cancers containing these oncogenic mutations [ 16 ].  

   Among RTKs, the IGF system of ligands, receptors, and binding 
proteins is undoubtedly a major player in normal cellular growth 
and differentiation, as well as in aberrant growth or metabolic dys-
regulation such as in cancer or diabetes. The IGF system is orga-
nized on three distinct levels: (1) the input layer of ligands, 
receptors, and regulatory proteins of  ligand–receptor interaction  ; 
(2) the second layer, transmission, is orchestrated by adaptors and 
enzymes of the signaling cascades, directing the information 
toward the (3) output layer of effectors through transcription fac-
tors, ultimately controlling the biological responses (Fig.  1 ). The 
input layer is represented by three ligands: insulin, IGF-1, and 
IGF-2, and although some cross activation can occur at supra- 
physiological concentrations [ 17 ], the receptors bind to their 
respective ligands with by far the greatest affi nity. IGF ligand avail-
ability is controlled by  insulin-like growth factor binding proteins 
(IGFBPs)   of which at least 7 are described [ 18 ]. The cell mem-
brane receptor members are the IR, the IGF-1R, and the 
IGF-2R. Both the IR and the IGF-1R consist of two α and two β 
subunits linked together by disulfi de bonds. Overall there is high 
sequence homology (≈70 %) between the IGF-1R and the IR [ 19 ], 
each domain to different degrees: TK domain ≈84 %, juxtamem-
brane domain ≈61 %, C-terminal domain ≈44 % [ 9 ]. Recent work 
has extended the family with additional members, including the 
antimicrobial peptide LL-37 [ 20 ], the orphan insulin-related 
receptor (IRR) [ 21 ], and the insulin-IGF-1R hybrid receptor [ 22 ].

   Whilst two-step  ligand-induced dimerization and kinase acti-
vation   is the RTK rule, the IR and the IGF-1R are the major excep-
tions. The IGF-1R and the IR both exist within the cell membrane 
as preformed dimers. Much like GPCRs, these receptors are already 
expressed as fully assembled functional units, and ligand binding 
triggers the second step only: conformational changes within the 
receptor that trans-activates the kinases located on the β-subunits. 
In an unphosphorylated state, the kinase activity is kept very low 
by the inhibitory conformation of an activation loop (A-loop) 
within the kinase region that interferes with ATP-binding [ 23 ]. 
Once agonist activated, receptor-kinase-dependent autophosphor-
ylation of tyrosine residues within this A-loop; 1131, 1135, and 
1136 in the IGF-1R and 1161, 1165, and 1166 in the IR, expo-
nentially increase the receptor kinase effi ciency. This activation in 
turn phosphorylates other residues within the β subunit that  creates 
docking sites for the signal transduction molecules of the second 
layer, including insulin receptor substrates (IRSs) and the src 
homology 2 (SH2)-domain containing transforming protein 1 
(Shc) [ 9 ]. These molecules set up the transmission of two main 

1.2  IGF-1R and IR
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signaling cascades: RAS/RAF/ERK and PI3K/Akt. The IRS family 
consists of 4 proteins, and IRS1 and IRS2 are well known to play 
important roles in  IGF’s metabolic effects  . IRS binding reaches 
maximum 1–2 min after phosphorylation of the tyrosine residues. 
The C-terminal domain of IRS contains multiple phosphorylation 
sites, which bind with high affi nity to SH2 domain- containing pro-
teins, guided by the specifi c phosphorylation tyrosine motif [ 9 ]. 
IRS interaction with a p85 subunit of PI3K leads to its activation 
and induces phospholipid activation of the downstream signaling 
pathway. The second major pathway begins with the binding of 
Shc, reaching maximal phosphorylation 5–10 min after IGF-1 
stimulation. Shc family consists of four members (A, B, C, and D), 
which contain a PTB domain and an SH2 domain at the N-terminal 

  Fig. 1    Classical RTK and GPCR  pathways  . The canonical IGF system can be categorized into three distinct lay-
ers. The input layer (1) is made up of ligands (insulin, IGF-1, IGF-2), IGFBPs, and surface receptors. Upon stimu-
lation, entry into layer (2) (the signaling cascade) is initiated by two main adaptor proteins: Shc and the IRSs 
(1–4). Through stepwise enzymatic activation the signal cascade is set up, following two main routes: the 
mitogen-activated protein kinase (MAPK) route and the phosphoinositide 3-kinase (PI3K) route. The signaling 
cascade arms culminate in the activation of transcription factors in layer (3), which control site-specifi c tran-
scription and generate the resulting biological effects. ( a ,  b ) GPCR functional classifi cation is based on: (1) 
ligand-induced receptor activation leading to the activation of heterotrimeric G proteins. (2) Subsequent GRK- 
dependent phosphorylation of C-terminal serine and/or threonine residues allowing β-arrestin binding to these 
specifi c phosphorylated residues with (3) β-arrestin recruitment. (4) Subsequent signaling desensitization, (5) 
activation of a β-arrestin-dependent second signaling wave, and (6) receptor endocytosis with the β-arrestin/
GRK isoform determining receptor degradation or recycling       
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and C-terminal regions respectively. Either Shc or IRS can mediate 
the activation of the MAPK cascade via Grb2 interaction. Grb2 
acts as an adaptor protein, bringing son of sevenless (sos), a gua-
nine nucleotide exchange protein that promotes the release of 
GDP and binding of GTP to the membrane bound Ras protein. 
Ras then sets up a phosphorylation cascade through Raf and the 
MAPKs pathway. Both signals culminate in nuclear translocation 
of transcription factors such as STAT3, CREB, and ElK1 orches-
trating the output later through various biological activities such as 
cell growth, proliferation, survival, and metabolism (Fig.  1 ). 

 Despite their similarities in structure and signaling, the 
IGF-1R and the IR have distinct  biological roles  . The IR is a key 
regulator of metabolic processes such as  glucose transport   and 
 biosysnthesis of fat and glycogen  , whereas the IGF-1R functions 
primarily in cell growth, proliferation, and differentiation. Mice 
with the IGF-1R gene knocked out (−/−) die at birth of respira-
tory failure and display a generalized growth defi ciency (≈50 % of 
normal size) [ 24 ]. Mice lacking IR are born almost phenotypically 
normal (≈10 % growth retardation), but develop early postnatal 
diabetes and die from ketoacidosis [ 25 ]. Interestingly, combined 
abolition of both IGF-1R and IR results in a more severe growth 
phenotype (≈30 % normal size) highlighting the redundancy of 
the two systems [ 26 ]. 

 In addition to its physiological role in normal cell  growth  , the 
IGF-1R turned out to be an important player in  cancer develop-
ment  . The fundamental evidence for this was the demonstration 
that IGF-1R knock-out mouse embryonic cells are refractory to 
transformation by several oncogenes, viruses, or overexpression of 
other RTKs [ 27 ]. Cells from wild-type littermates, as well as these 
knockout cells (R-) with the IGF-1R reinserted were readily trans-
formed. Subsequently, IGF-1R has been demonstrated to regulate 
multiple cellular functions that are intrinsically essential for the 
malignant phenotype, e.g. proliferation, survival, anchorage- 
independent growth, tumor neovascularization, migration, and 
invasion [ 28 ,  29 ]. 

 Accumulating new data suggest that insulin also plays a key 
role in tumorigenesis, both in the fact that it can act in a redun-
dant manner when the IGF-1R is inhibited, and in the formation 
of hybrid receptors. In a transgenic mouse model of  pancreatic 
β-cell neuroendocrine tumor  , upregulating IGF-1R accelerates 
 tumorigenesis  , however, antibody inhibition of IGF-1R alone had 
only modest effects on tumor growth. Notably, only combined 
IGF-1R and IR blockage signifi cantly hindered tumor growth 
[ 30 ]. In addition to their structural similarity, it has been shown 
in multiple studies that the IGF-1R and the IR can heterodimer-
ize to form IGF-1R/IR hybrid receptors [ 22 ,  31 ,  32 ]. The role of 
hybrid receptors is not clear, but some studies suggest that they 
may be expressed by cancer cells to make use of additional ligands 
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for signaling activation [ 33 ]. There are studies that show that one 
of the two IR isoforms (IR-A) is especially overexpressed in cancer. 
IR-A is the fetal isoform and importantly can bind IGF-2 as well 
as insulin [ 34 ].  Epidemiology   also supports their interaction, as 
several types of cancer (including liver, breast, colorectal, urinary 
tract, and female reproductive organs) are increased in diabetic 
patients, both in terms of incidence and mortality [ 35 ]. 

 Lending support to the  cell transformation studies  , a wide 
range of experimental data clearly demonstrate that inhibition of 
IGF-1R would be benefi cial for cancer  treatmen  t [ 36 – 39 ]. In vivo 
and in vitro studies targeting IGF-1R, including antibodies, small 
molecule inhibitors, and antisense technology, have shown that 
IGF-1R is functionally essential for tumor cell growth and prolif-
eration [ 40 ,  41 ]. However, unlike other RTKs, no clear mecha-
nism of aberrant IGF-1R can be recognized: IGF-1 or IGF-1R 
overexpression is not a general rule [ 42 ], nor does the receptor 
show intrinsic abnormalities [ 43 ]. Altogether, this suggests that 
other regulatory pathways and as yet unappreciated changes are 
likely to be involved. One recently recognized characteristic is the 
GPCR-like capabilities of the IR and the IGF-1R.   

2    IR/IGF-1R Utilize  GPCR Component  s 

   The term G-protein-coupled receptor was selected to highlight the 
main functional characteristic of the cell surface receptors that cou-
ple to and activate heterotrimeric G protein signaling and this term 
was used mainly for the seven-transmembrane receptors (7TMRs). 
Yet, the 7TMRs are not the only receptor family initiating G pro-
tein signaling and a major advancement in RTK biology is their 
recognition as activators of G-protein-mediated  signalin  g [ 9 ,  44 ]. 
At least two mechanisms were described for the G-protein signal-
ing activation downstream of RTKs: direct recruitment and activa-
tion of heterotrimeric G protein or transactivation of a 7TMR by 
an RTK or its ligands [ 45 ]. In the case of the IR family, over two 
decades ago, Luttrell et al. reported that IR was sensitive to pertus-
sis toxin [ 46 ], a toxin that uncouples the G protein subunit Gαi 
from an activated receptor. IR subjected to pertussis toxin showed 
decreased insulin-induced inhibition of adenylyl cyclase in isolated 
hepatocytes [ 47 ], which lead to altered insulin-mediated biological 
outcomes [ 48 ]. In addition, Imamura et al. found that insulin 
stimulation lead to tyrosine phosphorylation of Gα q/11  and anti-
bodies against this form inhibited insulin-stimulated translocation 
of the GLUT4 glucose transporter. Overexpression of a constitu-
tively active form of Gα q/11 , in the absence of insulin, stimulated 
glucose uptake and GLUT4 translocation to 70 % of an insulin- 
stimulated effect [ 49 ]. Given their high degree of similarity, it may 
be not surprising that the pertussis toxin sensitivity was also 

2.1  G-Protein 
Signaling Activation

Leonard Girnita et al.



157

described to occur at the IGF-1R. Lefkowitz’s laboratory reported 
that IGF-1R activation of the MAPK pathway was sensitive to both 
pertussis toxin and sequestration of the G protein βγ subunits [ 50 ]. 
In rat fi broblasts, stimulation of MAPK via the IGF-1R was also 
demonstrated to be sensitive to cellular expression of a specifi c 
Gβγ-binding peptide [ 50 ]. This study clearly demonstrated that in 
addition to kinase signaling, the IGF-1R employs a GPCR-like 
mechanism for activation of  mitogenic signaling  . Strengthening 
this fi nding, subsequent studies went on to demonstrate the asso-
ciation of Gαi and Gβ with the IGF-1R in rat neuronal cells and 
mouse fi broblasts [ 51 ,  52 ]. Importantly, Gαi inhibition (pertussis 
toxin) or Gβγ sequestration selectively inhibited IGF-1-induced 
proliferation with no effect on EGFR or insulin action [ 52 ]. 

 The IGF-1R and the IR are not the only RTKs employing G 
proteins for downstream signaling activation. In an excellent 
review, Waters et al. [ 53 ] described the state of results by which 
many RTKs, such as PDGFR, EGFR, and VEGFR, can use proxi-
mal heterotrimeric G proteins to exert their biological activities. In 
addition, signaling downstream of several RTKs (e.g. TRK A, the 
receptor for the  neuronal growth factor neurotrophin (NGF)),   is 
pertussis toxin-sensitive, suggesting the involvement of G proteins 
[ 53 ,  54 ]. The authors postulate the existence of what they term 
“RTK-GPCR signaling platforms” which come about due to close 
receptor proximity and allow sharing of signaling components 
[ 55 ]. Most, if not all, RTKs either directly associate with the het-
erotrimeric G proteins or “hijack” them from neighboring GPCRs 
(Table  1 ). Yet, in addition to G-protein signaling activation, as a 
distinctive functional hallmark, GPCRs employ the  GRK/arrestin 
system   to control the intensity and duration of the signals as well 
as receptor traffi cking. Thus, a key question arises in how the IR/
IGF-1R and other RTKs fi t within this paradigm?

        The IGF-1R is probably the fi rst acknowledged case of an RTK 
engaging β-arrestins [ 56 ]. Following the discovery of Gβγ- 
mediated MAPK activation by a ligand-occupied IGF-1R [ 50 ], it 
has been recognized that both β-arrestin isoforms are recruited by 
the IGF-1R in a ligand-dependent manner [ 56 ]. In line with this, 
β-arrestins were found to orchestrate receptor endocytosis and a 
dominant negative β-arrestin1 mutant was shown to impair 
IGF-1R internalization [ 56 ]. Classically, IGF-1R internalization 
was known to be ubiquitin-dependent, through both clathrin and 
caveolin routes [ 57 – 60 ]. Following endocytosis, the receptor 
either follows a degradation or recycling route, and the balance 
between the two can be manipulated in different instances [ 60 ]. 
The mechanism was further elucidated by a distinct line of research 
investigating IGF-1R traffi cking [ 42 ], identifying MDM2 as a 
ubiquitin ligase for the IGF-1R [ 60 ]. Subsequent studies revealed that 
both β-arrestins isoforms mediate MDM2/IGF-1R interaction as 

2.2  IGF-1R/IR 
Engage the β-Arrestin/
GRK System

2.2.1   β-Arrestin 
and IGF- 1R   Traffi cking
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    Table 1  
   RTKs   utilize GPCR components   

 G-protein activation  GRK recruitment 
 β-Arrestin 
recruitment/signaling 

 β-Arrestin- 
mediated receptor 
degradation 

 IGF-1R  Sensitive to G-protein 
toxin [ 50 ] 

 Ligand-dependent 
phosphorylation of 
G-protein subunit 
[ 51 ] 

 GRK2 and GRK6 
phosphorylation 
(also possibly 
GRK3 and 
GRK5) [ 66 ] 

 β-Arrestin binding [ 52 ] 
 IGF-1R MAPK 

signaling through 
β-arrestin [ 63 ] 

 Ubiquitination and 
downregulation 
of IGF-1R 
dependent on 
β-arrestin [ 61 ] 

 IR  Sensitive to G-protein 
toxin [ 46 ] 

 Ligand-dependent 
phosphorylation of 
G-protein subunit 
[ 49 ] 

 GRK2 inhibits the 
G-protein 
signaling [ 81 ] 
(kinase 
independent) 

 PDGFR  Sensitive to G-protein 
toxin [ 102 ] 

 GRK2 
phosphorylates 
PDGF for 
desensitization 
[ 85 ] 

 PDGFβ-R 
internalization via 
GRK2/β-arrestin 
[ 83 ] possibly 
indirect through 
S1P (GPCR) 

 EGFR  Sensitivity to G-protein 
toxin [ 103 ] 

 Ligand promotes G 
subunit associated 
with receptor [ 104 ] 

 GRK2 serine 
phosphorylation 
[ 85 ] (but does 
not desensitize)    

 VEGFR  G-protein utilization 
for MAPK activation 
[ 105 ] 

 β-Arrestin2 controls 
VE-cadherin 
endocytosis after 
VEGF stimulation 
[ 106 ] (indirect) 

 TRK A  Sensitive to G-protein 
toxin—possibly 
indirect through 
GPCR LPA [ 54 ] 

 GRK2 promotes 
β-arrestin 
binding [ 54 ] 

 Overexpression of 
β-arrestin increased 
NGF-dependent 
ERK activation [ 83 ] 

 FGFR  FGF-2 migration 
sensitive  to   
G-protein toxin 
[ 107 ], proliferation 
not [ 108 ] 

  Summary of receptor tyrosine kinase members and the experimental evidence of their use of GPCR pathway compo-
nents. RTKs stated are the insulin-like growth factor type 1 receptor (IGF-1R), insulin receptor (IR), platelet derived 
growth factor receptor (PDGFR), epidermal growth factor receptor (EGFR), vascular endothelial growth factor recep-
tor (VEGFR), nerve growth factor receptor (TRK A), and fi broblast growth factor receptor (FGFR)  
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MDM2 and β-arrestins co-immunoprecipitated with the IGF-1R. 
Both in vitro and in vivo, β-arrestins enhanced MDM2- mediated 
ligand-dependent IGF-1R ubiquitination [ 61 ] and degradation, 
yet the β-arrestin isoform 1 appeared to be more strongly associ-
ated with receptor downregulation than isoform 2. Altogether, 
β-arrestin 1 was demonstrated to act as an essential component in 
the ubiquitination and endocytosis of the IGF-1R [ 61 ].  

   Whilst initially categorized  as   GPCR’s desensitization route, 
β-arrestin is now understood to be a multi-task protein. Integral to 
retaining receptor sensitivity, β-arrestin uncouples G proteins from 
an activated receptor and internalizes the receptor via clathrin- 
mediated endocytosis, for degradation or recycling. In addition, 
β-arrestin activates a second wave of signaling, independent of G 
proteins by acting as a scaffold to the MAPK components [ 62 ]. At 
least three lines of evidence indicate that the IGF-1R/β-arrestin 
interaction follows this model. Firstly, IGF-1R’s mitogenic signal-
ing is sensitive to β-arrestin1 inhibition, demonstrated through 
microinjection of a β-arrestin1-specifi c antibody [ 52 ]. Secondly, it 
was shown that IGF-1R stimulation leads to the ubiquitination of 
β-arrestin1, which regulates vesicular traffi cking and activation of 
ERK1/2. This β-arrestin1-dependent ERK activity occurred even 
when the classical tyrosine kinase signaling was impaired. Through 
siRNA suppression of β-arrestin1, this ERK signaling was shown to 
contribute to cell cycle progression, and thus is an integral part of 
IGF-1R’s mitogenic signaling [ 63 ]. The  corollary   of these studies 
is that in addition to kinase-mediated signaling, the IGF-1R acti-
vates MAPK through G proteins and β-arrestin1 (Fig.  2 ). Yet, a key 
question to be answered is whether the latter are mutually exclusive 
thus supporting the desensitizing paradigm. For an RTK, due to 
the intrinsic kinase activity, separating different branches of MAPK 
activation is more complicated than for a prototypical GPCR. 
Nevertheless, the third line of evidence supports a β-arrestin-
desenzitization model for the IGF-1R. Experimental models pro-
moting a IGF-1R/β-arrestin association, without kinase activation, 
revealed the tendency for unbalanced IGF-1- induced MAPK sig-
naling with a decreased early (G-protein) and enhanced late 
(β-arrestin) component, supporting a desensitizing role for the 
β-arrestin [ 63 – 65 ]. Moreover, identifi cation of the GRKs, as medi-
ators of β-arrestin recruitment to an activated IGF-1R, further sup-
ports a GPCR-like mechanism (see below and [ 9 ,  44 ,  66 ]).

   There are different ways by which β-arrestin mediates signaling 
downstream of the IGF-1R. Signaling mediation can be through 
β-arrestin’s control of  IGF-1R endocytosis  . It has been shown 
that IGF-1-mediated Shc phosophorylation and p42/44 activa-
tion rely on endocytosis of the IGF-1R [ 56 ], as demonstrated by 
using low temperature and dansylcadaverine (chemical inhibitor 
of endocytosis) [ 67 ]. In addition, β-arrestin regulates IGF-1R 

2.2.2   β-Arrestin 
and IGF-1R Signaling
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endocytosis by controlling its ubiquitination [ 61 ]. While not yet 
studied directly in the case of the IGF-1R, it is well documented 
in the GPCR fi eld, as well as for IR (see below), that β-arrestin 
acts as a scaffold for the components of the MAPK pathway [ 68 ]. 
By acting as a physical scaffold β-arrestin can create functional 
signaling modules that control MAPK signal specifi city [ 69 ,  70 ]. 
In the case of the IGF-1R, β-arrestin is also required for an anti-
apoptotic response through Akt activation and this action is inde-
pendent of G proteins and ERK activity [ 71 ].  

   The IR, like most receptors, undergoes degradation upon persis-
tent ligand stimulation. The IR shares 85 % sequence homology 
with the IGF-1R, yet their C-terminal (β-arrestin binding domain) 
tails are less conserved (44 %) explaining why the two receptors 
respond differently to β-arrestin perturbations [ 1 ]. The IR has 
been shown to bind β-arrestin1 in a ligand-dependent manner 
[ 52 ] with similar kinetics to IGF-1R, however, IR traffi cking is not 
modifi ed by β-arrestin alterations. Nevertheless, in the case of IR, 

2.2.3   β-Arrestin and IR 
Traffi cking and  Signalin  g

  Fig. 2    RTK/GPCR hybrid  model  . Experimental evidence has shown that in addition to the prototypical kinase 
signaling, the IGF-1R (in a ligand-dependent fashion) (1) leads to the activation of heterotrimeric G proteins, (2) 
subsequent GRK-dependent phosphorylation of C-terminal serine residues which leads to (3) β-arrestin 
recruitment, (4) subsequent signaling desensitization, (5) activation of a β-arrestin-dependent second signal-
ing wave followed by (6) receptor degradation or recycling. Altogether it is concluded that by all functional defi -
nitions the IGF-1R can act as a GPCR       
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β-arrestins recruitment has a major impact on IR biological activities 
by controlling the signaling pathways downstream of an activated 
receptor. Upon insulin stimulation, the major IR substrate (IRS-1) 
is ubiquitinated [ 72 ,  73 ] by the same E3 ligase as IGF-1R, MDM2. 
Usui et al. demonstrated that MDM2 associates with IRS-1 in a 
ligand-dependent manner and is targeting IRS-1 for proteasomal 
degradation. This process was demonstrated to be dependent on 
β-arrestin1, yet in the opposite way to IGF-1R. Overexpressing 
β-arrestin1 prevented insulin-induced IRS-1 ubiquitination, and 
β-arrestin1 downregulation enhanced IRS-1 degradation. One 
possible scenario is that IRS-1 and IGF-1R compete for the same 
ligase, while β-arrestin1 directs MDM2 toward either substrate. 
Another possibility is that IGF-1R and IR preferentially utilize dif-
ferent arrestin isoform and the competition is at this level. This 
scenario is supported by the studies investigating the effects of 
β-arrestin1-mediated signaling downstream of IR. β-arrestin1 inhi-
bition, which impaired IGF-1 signaling, had no effect on insulin 
mediated metabolic (GLUT4 translocation, glucose uptake) or 
mitogenic effects (ERK phosphorylation, DNA synthesis, or ERK-
mediated transcriptional activity) [ 52 ,  74 ]. On the other hand, a 
crucial role has been reported for β-arrestin2 in controlling IR 
metabolic effects [ 75 ]. Insulin resistance, a hallmark of type 2 
diabetes, includes a defective IR that is less responsive to insulin 
stimulation. Diabetic mouse models show decreased expression of 
β-arrestin2. In addition, knockdown of β-arrestin2 exacerbates 
insulin resistance, whereas administration of β-arrestin2 restores 
insulin sensitivity by scaffolding Akt and Src to the IR [ 75 ]. 
Increasing the complexity of the system, competition between 
IGF-1R and IR for β-arrestins was demonstrated by heterologous 
desensitization of IGF-1R (and adrenergic receptor) following 
prolonged IR stimulation. Insulin treatment for 12 h reduced 
IGF-1R mitogenic signaling ability, by inducing ≈50 % decrease in 
cellular β-arrestin levels [ 74 ]. In contrast to utilizing it for signal-
ing activation, IR activation leads to β-arrestin ubiquitination and 
proteasome-mediated degradation, impairing both IGF-1R and 
GPCR signaling. 

 Through numerous studies, the IR’s use of β- arrestin   is being 
built. It is clear that although both the IR and the IGF-1R utilize 
β-arrestin, their exact mechanisms differ. At multiple points, use of 
the same substrate infers points of competition and crosstalk 
between the closely related receptors.  

   In the case of the IGF-1R, β-arrestins play a dual regulatory role; 
 receptor downregulation   (with subsequent kinase and possible 
G-protein signaling attenuation), and a new wave of  β-arrestin- 
dependent signaling activation  . This model fully resembles the 
β-arrestin paradigm for the larger GPCR family; while internalizing 
the GPCR and ending G-protein signaling, β-arrestins activate the 

2.2.4   GRKs   and IGF-1R/
IR Signaling
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MAPK pathway [ 62 ,  76 ,  77 ]. The next logical question is whether 
the mechanism of GRK-dependent serine phosphorylation to cre-
ate β-arrestins binding sites [ 62 ,  78 ,  79 ] is conserved in the case of 
IGF-1R. 

 Investigating this scenario we uncovered that an activated 
IGF-1R allows recruitment of GRK proteins, specifi cally with bal-
ancing effects between GRK2 and GRK6 [ 66 ]. The GRK isoform 
employed, as well as phosphorylated serine residue, confer specifi c-
ity for the β-arrestin action by controlling the duration and strength 
of its interaction with the IGF-1R [ 49 ]. GRK2 and GRK6 co- 
immunoprecipitate with the IGF-1R and increase IGF-1R serine 
phosphorylation, promoting β-arrestin1 association. By suppress-
ing GRK expression with siRNA, we found that GRK5/6 inhibi-
tion mitigates IGF-1-mediated ERK and AKT activation, whereas 
GRK2 inhibition has opposing effects on ERK signaling. 
Conversely, β-arrestin-mediated ERK activation is enhanced by 
overexpression of GRK6 and diminished by GRK2. The same bal-
ancing effects of GRK2 and GRK6 were observed for IGF-1R 
downregulation: GRK2 decreases whereas GRK6 enhances ligand- 
induced degradation. Mutation analysis identifi ed serine 1248 and 
1291 as the major serine phosphorylation sites and potential 
β-arrestin binding sites of the IGF-1R. Targeted mutation of 
S1248 recapitulates GRK2 modulation, promoting a transient 
receptor/arrestin interaction whereas S1291 mutation resembles 
GRK6 effects and a stable IGF-1R/arrestin association with 
enhanced receptor degradation and signaling activation. The cor-
ollary of this study is that GRK2 or GRK5/6-dependent phos-
phorylation of IGF-1R C-terminal serine residues 1248 or 1291, 
respectively, allows β-arrestin1 recruitment, with the residue that is 
 phosphorylated   controlling the duration and strength of the 
β-arrestin/IGF-1R association.  

   Building on the fi ndings that an activated IR can phosphorylate 
the heterotrimeric protein component Gαq/11 with downstream 
glucose transport stimulation [ 49 ,  80 ] and taking into consider-
ation the GRK2 specifi city for Gαq/11, Olefsky et al. investigated 
the G-protein signaling desensitization by GRK2. Confi rming the 
working hypothesis, inhibition of GRK2 by antibody microinjec-
tion, dominant-negative GRK2 expression, or siRNA-mediated 
GRK2 knockdown enhanced 3T3-L1 adipocytes response to insu-
lin stimulation in terms of GLUT4 translocation and activation of 
glucose transport [ 81 ]. Conversely, in the rescue experiments, 
overexpression of GRK2 inhibits insulin-stimulated glucose trans-
port, validating GRK2 as an endogenous protein inhibitor of insu-
lin signaling and glucose uptake [ 81 ]. Yet, the GRK2 desensitizing 
effects on Gαq/11 signaling downstream of IR is not completely 
equivalent to the GPCR paradigm as expression of a kinase- 
defective GRK2 mutant showed increased glucose uptake, sug-

2.2.5   GRKs   and IR 
Signaling
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gesting a kinase-independent mechanism. As endogenous GRK2 
co-precipitates with Gαq/11 in an insulin-dependent manner, 
further experiments demonstrated that the amino (N′)-termini of 
GRKs that contain an RGS-like domain are necessary for the 
inhibitory function of GRK2 on insulin-stimulated GLUT4 
translocation.  

   Clearly, the  GRK/β-arrestin system   modulates signaling and bio-
logical activities downstream of the IGF-1R and IR. In addition, 
the activity of several other RTKs is also controlled by different 
GRK isoforms, either alone or in a β-arrestin-dependent manner 
(for extensive review see [ 1 ] and Table  1 ). EGFR and its cognate 
ligand EGF have been shown to recruit β-arrestin1 in a ligand- 
dependent manner [ 52 ] and a C-terminal β-arrestin1 fragment 
which cannot direct receptor endocytosis, impairs EGF-induced 
MAPK activation, suggesting β-arrestin1’s signaling involvement. 
There are also other studies indicating that inhibition of β-arrestin1 
had no effect on MAPK activation [ 12 ,  49 ]. However, ligand- 
activated EGFR led to translocation of GRK2 to the plasma mem-
brane in a Gβγ subunit-dependent manner and increased p42/44 
phosphorylation [ 1 ,  82 ]. 

 Similarly, in the platelet-derived growth factor (PDGF) system, 
β-arrestin1 and GRK2 were associated with the receptor in a 
ligand-dependent manner [ 83 ], however this association depends 
upon the formation of a complex between the PDGFR and a 
GPCR, the endothelial differentiation gene 1 receptor (EDG-1R). 
PDGF binds to its receptor, the PDGFR trans-activates the 
EDG-1R, which causes β-arrestin1 translocation to the plasma 
membrane and subsequent complex internalization via clathrin- 
mediated endocytosis [ 84 ]. GRK2 recruitment to PDGFR was 
demonstrated to increase the phosphorylation of PDGFR serines 
and initiate a ligand-dependent inhibitory feedback on the recep-
tor kinase activity and its downstream signaling [ 1 ]. Reciprocally, 
GRK2 was also shown to be activated following interaction with an 
activated PDGFR. In a similar manner to IGF-1R [ 66 ], ligand- 
induced ubiquitination of the PDGFR was enhanced in cells over-
expressing GRK2 without increasing its downregulation [ 85 ]. 
More importantly, this study suggested that specifi city of GRK2 
for RTKs may be controlled by the ability to recruit and activate 
the G-protein signaling.   

   Whilst recognizing RTK’s essential role in initiating, maintaining, 
and promoting the malignant  phenotype  , and secondly, identifying 
GRK’s role in routing downstream signaling, one must question 
what the GRK’s roles are in cancer, and whether they may provide 
a suitable therapeutic target. 

 It is becoming increasingly clear that GRK’s cellular role is by 
no means limited to promoting β-arrestin binding to activated 

2.2.6   GRK/β-Arrestin 
System   and Other RTKs
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GPCRs. Instead, GRKs are multi-domain proteins with diverse 
cellular functions, and in particular, GRK2 is being recognized as a 
key node in signal transduction pathways [ 86 ] downstream of both 
GPCRs and RTKs. Emerging evidence points at GRK2 as an 
important cell cycle regulator. GRK2 knockout mice are embry-
onic lethal [ 87 ] and the mechanism goes beyond cardiac-specifi c 
abnormalities, as the complete GRK2 KO embryos display gener-
alized growth retardation as well as some other developmental 
abnormalities as opposed to the viable and normal growth pheno-
type of the GRK2 cardiac-specifi c deletion [ 88 ]. The growth retar-
dation of GRK2 KO embryos strongly suggests that the protein 
plays a role in basic cellular functions such as growth, proliferation, 
and differentiation [ 86 ]. Of note, zebrafi sh models using knock-
down of the GRK2 ortholog that have shown a similar develop-
mental growth arrest to murine models can be partially restored by 
expression of a kinase-inactive GRK2 mutant [ 89 ], reinforcing the 
important GRK2 roles on the growth phenotype, both kinase 
dependent and independent. In a HEK293T system, response to 
EGF relied on GRK2 to potentiate MAPK activation [ 90 ], as in 
normal osteoblasts; a dominant negative GRK2 mutant (K220R) 
reduced MAPK activation in response to IGF-1 and EGF, which 
translated into a blunted cellular proliferation [ 91 ]. 

 There are a few studies investigating GRK expression and func-
tion in the context of cancer [ 92 ]. King et al. reported an increased 
expression of GRK2 protein in a malignant human ovarian granu-
losa tumor cell line as well as in patient-derived tissue samples. 
These tumor cells express signifi cantly less GRK4 α/β protein and 
higher levels of GRK2 and GRK4 γ/δ protein as compared to non-
malignant human granulosa cells [ 93 ]. Likewise, increased GRK2 
was observed in differentiated thyroid carcinoma (DTC), with a 
signifi cant decrease in GRK5 expression [ 94 ]. Functional studies 
demonstrated that growth of prostate tumor xenografts were 
retarded in mice following GRK2 inhibition by GRK2ct [ 95 ]. 
GRK2 acts to inhibit TGF-mediated growth arrest and apoptosis 
in human hepatocarcinoma cells [ 96 ], however this action is likely 
to be cell type specifi c as GRK2 seems to reduce PDGF-induced 
proliferation of thyroid cancer cell lines [ 97 ]. 

 GRKs are also emerging as important nodes in modulation of 
signaling controlling cell migration. GRK2 can play a role in the 
organization of  actin and microtubule networks   and in adhesion 
dynamics, through interaction with substrates such as the GIT1 
scaffold or the cytoplasmic α-tubulin deacetylase histone deacety-
lase 6 (HDAC6). Overall the emerging effect of GRK2 modula-
tion on cell migration is not straightforward, and seems to depend 
upon cell type and physiological context (for review see [ 98 ]). In a 
physiologically normal context, GRK2 was demonstrated to pro-
mote migration toward fi bronectin in numerous epithelial cell lines 
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and fi broblasts, in a kinase-independent fashion [ 99 ]. In contrast, in 
mesenchymal-derived cells such as immune T cells, GRK2 silenc-
ing increases chemotaxis and signaling in response to CCL4 [ 100 ]. 
In this context, GRK2 plays a role more intuitive of GPCR desen-
sitization, in the integral turnover of GPCR chemokine receptors 
at the leading edge of a migrating cell [ 86 ,  101 ]. The role GRKs 
play in migration is clearly very context-dependent; however their 
clear upregulation in certain malignant cancers warrants explora-
tion of their potential in metastatic control.  

   The instances examined  here   account for two separate processes. 
First, transactivation or receptor crosstalk is an indirect method by 
which an RTK can utilize GPCR components. Many of the RTKs 
use this platform, whereby their ligand-induced activation can in 
turn activate a GPCR or vice versa. The second scenario, high-
lighted in this chapter for the case of the IGF-1R, is the direct 
utilization of GPCR components by an RTK, completely indepen-
dent of a GPCR. In this respect, in addition to its classical kinase 
activity, the IGF-1R has been recognized to operate as a prototypi-
cal GPCR with all functional characteristics: (1) G-protein signal-
ing activation [ 50 ,  52 ], (2) GRK-dependent phosphorylation of 
the receptor serine residues [ 66 ], (3) β-arrestin binding to the 
phosphorylated serine residues [ 61 ,  63 ,  66 ], (4) desensitization of 
G-protein signaling, (5) activation of the second signaling wave, 
originating from β-arrestins [ 63 ,  66 ], and (6) receptor endocytosis 
with subsequent recycling or degradation [ 61 ,  66 ]. Altogether this 
strongly supports the updating of the IGF-1R from a prototypical 
RTK to an RTK/GPCR functional hybrid. This model takes into 
consideration that the IGF-1R can initiate both G-protein signal-
ing and classical kinase signaling. In this scenario, the regulatory 
role of β-arrestin, on receptor signaling activation [ 63 ] could be 
interpreted as desenzitization of the G-protein signaling, kinase 
signaling attenuation through endocytosis in connection with a 
new wave of β-arrestin-dependent MAPK activation [ 62 ,  76 ,  77 ]. 
This paradigm is endorsed by the key mechanism switching 
between downstream signaling pathways as well as between traf-
fi cking routes: phosphorylation of specifi c serine residues by the 
GRKs [ 62 ,  78 ,  79 ] (Fig.  2 ). 

 Featuring a GPCR-like pattern within the  RTK   perspective 
could explain the impossible behavior of the “kinase-only” IGF-1R, 
such as kinase-independent signaling or kinase-independent down-
regulation. Far from being simply a theoretical exercise, such an 
updating would have at least two major implications. First, high-
lighting the evidence of non-tyrosine-kinase signaling, so far 
neglected in targeting strategies, reveals the shortcomings of a 
kinase inhibitor in this system as well as strategies to counteract 
them (for review see [ 44 ]). On the bright side, this also points to 

2.4  RTK/GPCR 
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new possibilities in anti-IGF-1R therapeutic strategies. In the 
model, we propose that the receptor conformation that activates 
the kinase cascade can be distinct from that which interacts with 
β-arrestins, thus indicating that IGF-1R signaling could be acti-
vated and/or downregulated in a “biased manner” via β-arrestins, 
even by IGF-1R inhibitors or GRK modulators. In addition, rec-
ognizing the β-arrestin/GRK system as a central modulator of the 
intracellular signaling may open new perspectives in the search for 
molecular-designed treatments of cancer. In particular, proteins 
that modify IGF-1R (as well as other major RTKs) function have 
potential as biomarkers in diagnosis and in evaluating the outcome 
of therapy. Such proteins also have potential to be new targets and 
may ultimately be better targets than the IGF-1R itself.   

3    Conclusions 

 Today, targeting the IGF-1R and components of its signaling path-
way in different forms of cancer is a major research area. Although 
clearly insuffi cient to explain the complexities of IGF-1R signaling, 
the classical RTK “kinase only” paradigm has been used thus far in 
selecting anti-IGF-1R agents. The present review highlights the 
facts that in addition to the classical kinase pathway, IGF-1R activ-
ity and its biological effects are controlled by the prototypical com-
ponents of the GPCR signaling pathway including the  GRK/
arrestin system. In this context, the complexity of IGF-1R behav-
ior following exposure to agonists or inhibitors reinforces the need 
to understand the relationships between different signaling path-
ways and between signaling and biological effects. Only an updat-
ing of the working model and a true appreciation of signaling 
complexities across receptor subfamilies, can unearth an effective 
anti-IGF-1R therapeutic and make use of these crucial GPCR 
“borrowed” components. This stands true not only for the IGF-1R 
but also for other RTKs, whose aberrant activity is associated with 
ageing, diabetes, metabolic syndrome, cancer, and Alzheimer’s dis-
ease, to name but a few, and therefore such an updating cannot be 
underappreciated in drug development.     
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