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    Chapter 5   

 SNP Discovery Using Next Generation Transcriptomic 
Sequencing                     

     Pierre     De     Wit      

  Abstract 

   In this chapter, I will guide the user through methods to fi nd new SNP markers from expressed sequence 
(RNA-Seq) data, focusing on the sample preparation and also on the bioinformatic analyses needed to sort 
through the immense fl ood of data from high-throughput sequencing machines. The general steps 
included are as follows: sample preparation, sequencing, quality control of data, assembly, mapping, SNP 
discovery, fi ltering, validation. The fi rst few steps are traditional laboratory protocols, whereas steps follow-
ing the sequencing are of bioinformatic nature. The bioinformatics described herein are by no means 
exhaustive, rather they serve as one example of a simple way of analyzing high-throughput sequence data 
to fi nd SNP markers. Ideally, one would like to run through this protocol several times with a new dataset, 
while varying software parameters slightly, in order to determine the robustness of the results. The fi nal 
validation step, although not described in much detail here, is also quite critical as that will be the fi nal test 
of the accuracy of the assumptions made in silico .  

 There is a plethora of downstream applications of a SNP dataset, not covered in this chapter. For an 
example of a more thorough protocol also including differential gene expression and functional enrich-
ment analyses, BLAST annotation and downstream applications of SNP markers, a good starting point 
could be the “Simple Fool’s Guide to population genomics via RNA-Seq,” which is available at   http://
sfg.stanford.edu    .  

  Key words     RNA-Seq  ,   SNP  ,   Transcriptome assembly  ,   Bioinformatics  ,   Alignment  ,   Population genom-
ics  ,   NGS  ,   Illumina  

1      Introduction 

    Since the  advent      of DNA  sequencing   methods, and the discovery 
of genetic variation [ 1 ], there has been an interest in using this 
variation to understand evolutionary processes such as genetic 
drift, natural selection, and the formation of new  species  . Early on, 
gel electrophoretic markers such as AFLPs [ 2 ] and allozymes [ 3 ] 
provided some interesting insights into the genetic structures of 
populations. Later, the development of microsatellite markers fur-
ther improved our understanding of neutral genetic variation in 
natural populations [ 4 ]. However, these markers are usually few 

1.1  Historical 
Background: 
From Sanger 
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and it cannot be known if they are representative of the genome as 
a whole. In addition, they are generally assumed to not be under 
any selection pressure [ 5 ]. Only recently, with the advent of high- 
throughput DNA  sequencing   methods, have we begun to gain 
insights into the genome-wide distribution of polymorphisms and 
the effects of natural selection on genome architecture.  

   Even with the latest DNA  sequencing   technologies, putting 
together a genome sequence into full-length chromosomes from 
short read data is very diffi cult. The number of available genome 
sequences is ever increasing, but the list of well-assembled (“com-
plete”) genomes is to date still restricted to a few model taxa. Thus, 
it is many times desirable to focus on parts of the genome that 
contain the information of interest. There are many methods to do 
this, but they all fall within two categories: random and targeted 
methods. An example of a random method is RAD sequencing 
[ 6 ], in which the genomic DNA is fragmented using a restriction 
enzyme and regions fl anking the restriction site are sequenced. 
These types of methods are useful for studying genome-wide dis-
tributions of genetic variation or for fi nding loci exhibiting inter-
esting patterns. However, unless there is a well-annotated genome 
of the  species   of interest, it can be very diffi cult to gain an under-
standing of the function of the observed pattern. An example of a 
targeted method is  RNA-Seq   [ 7 ], whereby mature mRNAs are iso-
lated and sequenced, usually with a poly-A binding method. While 
this method does not provide genome-wide observations, it focuses 
on the part of the genome that contains a large proportion of the 
functionally relevant information (how much is still an active 
debate, however). One might also argue that protein-coding 
sequences also have a larger chance of being affected by natural 
selection (both balancing and disruptive), while third codon posi-
tions and UTRs could be freer to evolve neutrally. 

 One very useful aspect of expressed sequence data is the relative 
ease of functional annotation due to the very conserved nature of pro-
tein evolution—by BLASTing to public  databases   one can in many 
cases gain an understanding of the function of an unknown sequence 
even in nonmodel systems where no genome sequence is available.  

   While characterizing the genetic variation present in and around 
protein coding regions allows for studies of natural selection and 
population genetics, there are some issues to keep in mind. First, the 
potential for background stabilizing selection can pose problems 
(even in UTRs and third codon positions linked to selected loci), as 
this process tends to disguise weak population structure [ 8 ]. Also, 
the assumptions of outlier analyses might be violated if most of the 
loci used in an analysis are under stabilizing selection [ 9 ]. Second, 
the very nature of mRNA can pose problems as there is great varia-
tion in transcript abundance, so in low-frequency transcripts it can 
be hard to separate sequencing errors from true SNPs [ 10 ]. In 

1.2  Why Focus 
on the Transcriptome?

1.3  Issues 
with Transcriptomic 
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addition, patterns of allele-specifi c expression (ASE) can bias allele 
frequency estimates on pooled samples [ 11 ], or even cause incorrect 
 genotyping   if the difference in expression between alleles is too high 
[ 12 ]. It can also be diffi cult to separate out different isoforms of the 
same transcript from transcripts from paralog genes [ 13 ].   

2    Materials 

       1.     Solution  for   RNA stabilization and storage or liquid nitrogen 
for tissue preservation.   

   2.    1.5 ml Eppendorf tubes.   
   3.    Trizol.   
   4.    Chloroform.   
   5.    Ball bearing beads.   
   6.    100 % isopropanol.   
   7.    High salt buffer: 0.8 M Na citrate and 1.2 M Na chloride.   
   8.    75 % ethanol.   
   9.    4 °C centrifuge.   
   10.    55 °C heat block.   
   11.    Tissue lyser or vortex mixer.       

       1.     Illumina       TruSeq    RNA   sample preparation kit.   
   2.    Magnetic beads for DNA purifi cation (also called SPRI beads 

for solid-phase reversible immobilization).   
   3.    Magnetic 96-well plate.   
   4.    Reverse transcriptase.   
   5.    Agilent Bioanalyzer or TapeStation.   
   6.    QuBit high-sensitivity DNA assay.      

       1.    A sequencing facility with access to  Illumina   sequencing 
machines.      

       1.    Computer (Mac/Linux) with software  installed  : fastx toolkit, 
trinity, bwa, samtools (or access to a remote server with this 
software installed). Custom-made Python and bash scripts, 
GATK v 2.5 and Picard MarkDuplicates available on GitHub at: 
(  https://github.com/DeWitP/SFG/tree/master/scripts/    ).      

       1.     Primer   3 software.   
   2.    PCR reagents: Oligonucleotides, dNTPs, BSA, MgCl 2 , Water, 

Taq polymerase.   
   3.    A sequencing facility for Sanger sequencing.       

2.1  RNA Extraction 
Using Phenol/
Chloroform

2.2  cDNA Library 
Preparation Using 
Illumina’s TruSeq RNA 
Sample Prep Kit

2.3  Sequencing

2.4  Bioinformatics

2.5  Validation
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3    Methods 

    All  Trizol   steps should be done in a fume hood.

    1.    Thaw tissue (should be fl ash-frozen at time of  sampling   and 
stored at −80 °C, alternatively stored in  RNA   stabilization 
solution at −20 °C) on ice.   

   2.    Cut tissue into small pieces with a clean razor blade, blot with 
tissue paper, and place in a 1.5 ml Eppendorf tube ( see   Note    1  ).   

   3.    Add ball bearing beads, then 1 ml Trizol (in fume hood). 
Shake in a Tissue lyser (or Vortex on high speed) for 2 min 
until tissue has been homogenized.   

   4.    Incubate at room temperature for 5 min.   
   5.    Spin for 10 min at 12,000 ×  g , 4 °C. Transfer liquid to clean tube.   
   6.    Add 200 μl chloroform and shake vigorously for 15 s by hand.   
   7.    Incubate for 2–3 min at room temperature.   
   8.    Spin for 15 min at 12,000 ×  g , 4 °C, then transfer the top phase 

( RNA  ) to a clean tube. DNA and proteins are in the bottom 
phase and can be stored at −20 °C until validation of markers 
is required.   

   9.    If contamination occurs (part of the inter- or bottom phase are 
transferred), add 100 μl chloroform, shake for 15 s by hand, 
then repeat  step 8 .   

   10.    Add 250 μl 100 % isopropanol and 250 μl high salt buffer, 
shake.   

   11.    Precipitate at room temp for 5–10 min.   
   12.    Spin for 10 min at 12,000 ×  g , 4 °C, then discard supernatant.   
   13.    Wash pellet in 1 ml 75 % ethanol. Spin for 5 min at 7500 ×  g , 4 °C.   
   14.    Discard supernatant, air dry for 5–10 min (30 s on 55 °C heat 

block).   
   15.    Resuspend in nuclease-free water (12 μl) and incubate for 

10 min at 55–60 °C. 1 μl can be used for QuBit concentration 
measurement and to examine  RNA   integrity ( see   Note    2  ).   

   16.    Flash freeze in liquid nitrogen and store at −80 °C overnight, 
or continue directly with Subheading   3.2 .    

          1.      Standardize   the amount of starting material, usually about 
1 μg of total  RNA   produces good results.   

   2.    Follow exactly the manual of the  TruSeq   kit ( see   Note    3  ).   
   3.    Determine the fragment size distributions in the samples with 

an Agilent Bioanalyzer or TapeStation.   
   4.    Measure the DNA concentration using a QuBit high-sensitivity 

DNA assay (the TapeStation measurements are usually not 
accurate enough).   

3.1  RNA Extraction

3.2  cDNA 
Library Prep
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   5.    The molarity can then be calculated as follows: 
 Molarity = Concentration (ng/ml)/(0.66 × mean fragment 

length (bp)).   
   6.    Pool the samples equimolarly by calculating the required vol-

ume of each sample required so that the number of moles in 
each sample is identical.  Illumina   sequencing machines typi-
cally require a pool DNA molarity of 2–10 nM. The fi nal pool 
volume should ideally be at least 20 μl ( see   Note     4  ).      

       1.    Choose a sequencing center ( see   Note    5  ).   
   2.    Send samples on ice, providing the center with information on 

DNA concentration and fragment size distribution.      

       1.    Make a safety backup of the data, and upload the data to the 
location where you will be doing the analyses. This can either 
be on your local computer if it has enough capacity or prefer-
ably on a remote computer cluster.   

   2.    Once the data is located in the right place, we want to control 
the quality ( see   Note    6  ). In this chapter, we assume that you 
are working in your home folder and have your data located in 
a subfolder called “data” and the Python scripts in a subfolder 
called “scripts.” If you change this, please adjust the following 
instructions accordingly.   

   3.    Move into the “data” folder: 
  cd ~/data  
  ls    

   4.    Execute the bash script TrimClip.sh ( see   Note    7  ) by typing: 
  sh ../scripts/TrimClip.sh  
 while in the folder containing your data. Make note of how 
many reads are being trimmed and clipped through the screen 
output.   

   5.    Calculate the fraction of duplicate and  singleton   reads, using 
the bash script CollapseDuplicateCount.sh ( see   Note    8  ), by 
typing: 
  sh ../scripts/CollapseDuplicateCount.sh  
 while in the folder containing your data. Results will be located 
in text fi les named with your original fi le name with  .duplicate-
count.txt  appended.   

   6.    Summarize quality score and nucleotide distribution data, then 
plot, by typing: 
  sh ../scripts/QualityStats.sh  

 in order to summarize your data fi les. Then execute the plot-
ting software by typing: 
  sh ../scripts/Boxplots.sh  

3.3  Sequencing

3.4  Data 
Download and QC
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 the software creates individual .png fi les for each sample, then 
combines them into one fi le called “Boxplots.pdf” ( see   Note    9  ).      

       1.    Concatenate the sample fi les into one, using the cat 
command: 
  cat *.trimmed.clipped.fastq > assembly_
ready.fastq    

   2.    Run Trinity to create a  de novo assembly   ( see   Note    11  ): 
  Trinity.pl --seqType fq --JM 1G \  
  --single assembly_ready.fastq --output as-
sembly    

   3.    Summarize the statistics of the assembly, using the count_fasta.
pl script, by typing: 
  ../scripts/count_fasta.pl ./assembly/
Trinity.fasta \ > assembly/trinityStats.txt    

   4.    Examine the statistics of the assembly ( see   Notes    12   and   13  ) 
by typing: 
  nano assemblyTest/trinityStats.txt       

       1.    Open the BWAaln.sh script in nano, by typing: 
  nano ../scripts/BWAaln.sh  

 The default parameters are currently set as: 
 −n .01 −k 5 −l 30 −t 2 

 You can change them to something else if you like ( see   Note    15  ).   
   2.    Execute the BWAaln.sh script ( see   Note    16  ) by typing: 

  sh ../scripts/BWAaln.sh    

   3.    Convert your .sam fi les to .bam ( see   Note    17  ), sort and remove 
duplicate reads, by executing the script convert_to_bam_and_
dedup.sh ( see   Note    18  ). Type: 
  sh ../scripts/convert_to_bam_and_dedup.sh       

       1.     Create a tab-delimited text fi le called rg.txt, which is located 
along with your data fi les.    This fi le provides critical informa-
tion for GATK to keep the individuals apart in the merged fi le 
( see   Note    21  ). It should be formatted like this (new line for 
each sample): 
 @RG    ID:READ_GROUP    SM:SAMPLE_
NAME    PL:Illumina   

   2.    Merge your deduplicated .bam fi les: 
  samtools merge -h rg.txt merged.bam *dedup.
bam    

3.5  Assembly ( See  
 Note    10  )

3.6  Mapping ( See  
 Note    14  )

3.7  SNP Detection 
and Filtering ( See  
 Notes    19   and   20  )
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   3.    Index your merged .bam fi le so that GATK will be able to 
search through it: 
  samtools index merged.bam    

   4.    Realign around InDels using GATK, by typing ( see   Note    22  ): 
  sh ../scripts/realigner.sh    

   5.    Detect variant sites, using the script SNP-detection.sh, by typ-
ing ( see   Note    23  ):   

        sh ../scripts/SNP_detection.sh    
   6.    Recalibrate the SNPs, using the GATK VQSR algorithm, by 

typing ( see   Note    24  ):   
        sh ../scripts/VQSR.sh  ( see   Note    25  )   
   7.    Extract genotypes of all individuals at all variable sites from the 

.vcf fi le into a format useable by Microsoft Excel, using a geno-
type quality threshold, by typing ( see   Note    26  ): 
  python ../scripts/getgenosfromvcf.py VQSR_
PASS_SNPS.vcf \ Genotypes.txt rows 20    

   8.    Use the bash command ‘grep’ to create a new fi le with only 
SNPs with high-quality genotypes for all samples: 
  grep -v "\." Genotypes.txt > genotypes_
shared_by_all.txt        

       1.    Test for deviations from Hardy–Weinberg equilibrium, 
 especially for cases where all individuals are heterozygotes 
( see   Note    27  ).   

   2.    Another way is to use phase information to examine contigs for 
linkage disequilibrium—long linked stretches with fi xed nucle-
otide differences could be signs of paralogous genes (but could 
also be a sign of a selective sweep).      

       1.    Design primers by copy- pasting   your protein-coding DNA 
sequence into the online portal Primer3 (  http://bioinfo.ut.
ee/primer3-0.4.0/    ) ( see   Note    29  ).   

   2.    Make sure that the primer binding site does not contain any 
nucleotide variation.   

   3.    Once you have sequences, you can easily order  primers   online.   
   4.    Conduct a PCR using the annealing temperature specifi ed by 

Primer3 ( see   Note    30  ) (Table  1 ).
       5.    Send off the PCR product to a sequencing facility for Sanger 

sequencing.   
   6.    Confi rm the genotypes using the Sanger chromatograms.       

3.8  In Silico 
Validation

3.9  Validation: 
Designing Primers, 
Sanger Sequencing 
( See   Note    28  )

SNP Discovery Using Next Generation Transcriptomic Sequencing
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4                                   Notes 

     1.    Make sure that the lab space used is very clean. It is good to 
wash benches with RNAse-away or a similar RNAse remover 
beforehand.   

   2.    Integrity of the  RNA   can be determined using denaturing 
MOPS agarose gels or a Bioanalyzer.   

   3.    The  Illumina    TruSeq   kits come with positive controls, which 
can be used to investigate where things have gone wrong dur-
ing library preparation. These known sequences, if used, will 
have to be removed bioinformatically postsequencing.   

   4.    Depending on the desired sequencing depth per sample, samples 
can in most cases be combined in one sequencing reaction. In this 
case, it is essential to use the barcoded adapters provided with the 
kit, and to not mix two samples with the same barcode.   

   5.     Illumina   sequencing is with few exceptions conducted by a 
sequencing center. When choosing which sequencing center to 
use, there are three important considerations: (a) 
Communication—do the technical staff answer to emails 
within a reasonable time? (b) Queue—how long will it take 
before your data will be available? (c) Price—is the sequencing 
possible considering the available budget?   

   6.    There are many different potential quality control  protocols  , but 
the most important is to examine the distribution of base call 
qualities along the short  Illumina   reads, and to remove any arti-
facts from the sample preparation procedure. Artifacts can con-
sist of either remains of adapter sequences or as PCR duplicates. 

   Table 1  
  Example of enzyme amounts to use for a 20 μl PCR reaction   

 Reagent  ×1  ×4 

 ddH 2 O  9.8  39.2 

 10× buffer (comes with Taq)  2  8 

 BSA  2  8 

 MgCl 2   1.6  6.4 

 F primer  1  4 

 R primer  1  4 

 dNTPs  0.4  1.6 

 Taq polymerase  0.2  0.8 

 Template DNA  2  8 

 Total  20  80 

Pierre De Wit
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The objectives of this section are to (a) remove all bases with a 
Phred quality score of less than 20, (b) remove any adapter 
sequences present in the data, (c) graph the distributions of 
quality scores and nucleotides, and (d) calculate the fractions of 
duplicate and  singleton   reads in the data.   

   7.    The bash script TrimClip.sh fi rst invokes the quality trimmer, 
which scans through all reads, and when it encounters a base 
with a quality score of less than 20, trims off the rest of the 
read and then subsequently removes reads shorter than 20 
bases. A temporary fi le is created, which is then used as an 
input fi le for the adapter clipper. The clipper removes any read 
ends that match the defi ned adapter sequences and then 
removes reads that after clipping are shorter than 20 bases.   

   8.    The bash script CollapseDuplicateCount.sh fi rst uses fastx_col-
lapser to combine and count all identical reads. A temporary 
FASTA-formatted fi le called YOURFILE_collapsed.txt is cre-
ated, which is then used as an input fi le for a python script 
(fastqduplicatecounter.py) that calculates the fractions of 
duplicate reads and  singletons  . This fi le is removed at the end 
of the program since it was just an intermediate step.   

   9.    The easiest way to view the plots is by copying this fi le to your 
local drive and opening it there. The plots should look something 
like Fig.  1a, b . If the mean quality scores are low throughout or if 
the nucleotides are nonrandomly distributed, something could 
have gone wrong during sample preparation or sequencing.

       10.     RNA-Seq   reads represent short pieces of all the mRNA present in 
the tissue at the time of  sampling  . In order to be useful, the reads 
need to be combined—assembled—into larger fragments, each 
representing an mRNA transcript. These combined sequences are 
called “contigs,” which is short for “contiguous sequences.” A de 
novo assembly joins reads that overlap into contigs without any 
template (i.e., no reference  genome/transcriptome).   

   11.    Building a  de novo assembly   is a very memory-intensive pro-
cess. There are many programs for this, some of which are listed 
later. We are using Trinity [ 14 ] in this section, an assembler that 
is thought to work very well for  transcriptomes  , as opposed to 
others that are optimized for genome assembly. Trinity uses  De 
Bruijn graphs  to join reads together ( see  Fig.  2a ). De Bruijn 
graphs summarize sequence variation in a very cost-effective 
way, speeding up the assembly process. Nevertheless, it is a very 
memory-intensive step, and having access to a computer cluster 
might be necessary if the number of reads is high.

       12.    When comparing the lengths and numbers of contigs acquired 
from de novo assemblies to the predicted number of transcripts 
from genome projects, the de novo contigs typically are shorter 
and more numerous. This is because the assembler cannot join 
contigs together unless there is enough overlap and coverage 
in the reads, so that several different contigs will match one 
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mRNA transcript. Biologically, alternative splicing of tran-
scripts also infl ates the number of contigs when compared to 
predictive data from genome projects. This is important to 
keep in mind, especially when analyzing gene expression data 
based on mapping to a  de novo assembly  . To minimize this 
issue, we want to use as many reads as possible in the assembly 

  Fig. 1    ( a ) Quality score boxplot of 50-bp  Illumina   reads (after quality trimming,  Q  < 20), summarized by read 
position. Lower scores at the beginning of the reads are due to an artifact of the software used to calculate 
base quality scores. ( b ) Nucleotide distribution chart of 50-bp  Illumina   reads, summarized by read position. A 
nonrandom distribution in the fi rst 12 bases is common and is thought to be an artifact of the random hexamer 
priming during sample preparation       

 

Pierre De Wit



91

to maximize the coverage level. We therefore pool the reads 
from all our samples, which means that no information about 
the individual samples can be extracted from the assembly. In 
order to get sample-specifi c information, we need to map our 
reads from each sample individually to the assembly once it has 
been created (next section).   

   13.    There are several parameters one can vary when assembling a 
transcriptome or genome. Perhaps the most important one is 
the k-mer (word) length of the De Bruijn graphs. Longer 
k-mers can help resolve repeat regions in genome assemblies 
and can be useful to resolve homeolog genes in polyploid  spe-
cies,   whereas shorter one can increase performance in poly-
morphic sequences ( see  Fig.  2b ). As Trinity focuses on 
 transcriptome assembly  , the k-mer length is preset to 25. In 
other assemblers, it can vary considerably.   

   14.    Mapping refers to the process of aligning short reads to a refer-
ence sequence, whether the reference is a complete genome, 
transcriptome, or a de novo genome/ transcriptome assembly  . 
The program that we will utilize is called BWA [ 15 ], which uses 
a Burrow’s Wheeler Transform method, with the goal of creat-
ing an alignment fi le also known as a Sequence/ Alignment   Map 
(SAM) fi le for each of your samples. This SAM fi le will contain 
one line for each of the reads in your sample denoting the refer-
ence sequence (genes, contigs, or gene regions) to which it 
maps, the position in the reference sequence, and a Phred-scaled 
quality score of the mapping, among other details [ 16 ].   

   15.    There are several parameters that can be defi ned for the  align-
ment   process, including: the number of differences allowed 
between reference and query (−n), the length (−l) and number 
of differences allowed in the seed (−k), the number allowed 
and penalty for gap openings (−o, −O), and the number and 
penalty for gap extensions (−e, −E). Changing these parame-
ters will change the number and quality of reads that map to 
reference and the time it takes to complete mapping a sample. 
For a complete list of the parameters and their default values, 
go to   http://bio-bwa.sourceforge.net/bwa.shtml    .   

AATCGTGCATGGGACT ATCGTGCATGGGACTT TCGTGCATGGGACTTA
CGTGCATGGGACTTAT

CGTGCATGGGACTTAC GTGCATGGGACTTACC

GTGCATGGGACTTATA

TCGTGCATGGGACTTA
CGTGCATGGGACTTATGTGGAATGCTGATGGCATAC

CGTGCATGGGACTTA

a

b CGTGGTATGCTGATGGCATAC

ATGCTGATGGCATACC

  Fig. 2    ( a ) An example De Bruijn graph with k-mer size 16 and 5 nodes. ( b ) A bubble caused by two SNPs or 
sequencing errors. Shorter k-mers will decrease bubble size, but could increase fragmentation if coverage is 
not high enough       
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   16.    We will map the reads from each of your trimmed and clipped 
FASTQ fi les to the de novo reference assembly that you created 
in the previous section. Specifi cally, we will (a) create an index 
for the reference assembly (just once), which will help the 
aligner (and other downstream software) to quickly scan the 
reference; (b) for each sample, map reads to the reference 
assembly; and (c) convert the resulting fi le into the SAM fi le 
format and append “read group” names to the SAM fi le for 
each sample. Steps b and c are “piped,” or put together feeding 
the output of one program in as the input for the next program. 
The read groups, which can have the same names as your sam-
ple names, will be appended to each fi le and will become critical 
for the downstream SNP  detection   step. The read group name 
in each SAM fi le will connect the reads back to individual sam-
ples after fi les have been merged for SNP  detection  . All of the 
earlier steps for all samples can be “batch” processed at once by 
editing the bash script BWAaln.sh. We then want to remove all 
duplicate reads, for which we need to use the MarkDuplicates 
program from the software package “Picard.” Picard uses the 
binary equivalent of SAM fi les, BAM, as input, so fi rst we need 
to convert the fi les using SAMtools. These steps are performed 
by the convert_to_BAM_and_dedup.sh bash script.   

   17.    From now on, we will work with the binary equivalent of the 
SAM fi le format: BAM. BAM fi les take up less place on a hard 
drive and can be processed faster. Most SNP  detection   soft-
ware are made to process BAM fi les. The drawback is that they 
cannot be examined directly in a text editor. Our fi rst task is to 
remove any duplicate reads from the  alignments  , for which we 
also need to sort our aligned reads by alignment position. 
Identical, duplicate reads can be a result of biology and repre-
sent highly expressed transcripts. However, they are also quite 
likely to be an artifact of the PCR step in the sample prepara-
tion procedure. Artifactual duplicates can skew genotype esti-
mates so they must be identifi ed for SNP estimation.   

   18.    The convert_to_bam_and_dedup.sh script has two elements: 
(a) It converts the .sam fi le to a binary bam fi le and sorts the 
reads within it. (b) It marks and removes duplicate reads using 
the MarkDuplicates program from the Picard package.   

   19.    For all the data processing steps within this section, I have 
chosen to follow the recommendations of the Broad Institute, 
created for the Genome Analysis Toolkit (GATK):   http://
www.broadinstitute.org/gatk/guide/topic?name=best- 
practices     [ 17 ]. I highly recommend keeping an eye on the 
instructions of this site for more information and updated  pro-
tocols  . They also have an excellent forum for posting technical 
questions. The only step in their protocol that we do not use is 
the Base Quality Score recalibration, as this step requires a list 
of known variant sites as input. If you do have access to this 
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type of data, it is highly recommended to follow the instruc-
tions on the GATK site.   

   20.    The objectives of this section are to (1) merge your  alignment   
fi les and realign poorly mapped regions, (2) detect variant sites 
and fi lter out true sites from false positives, (3) extract geno-
type information for all individuals at all variant sites.   

   21.    There are three major steps to this section of the  protocol  . First, 
we need to process our  alignment   fi les slightly. We start by merg-
ing all the deduplicated .bam fi les from Subheading  4  into one 
fi le called merged.bam, which will be our base for SNP discovery. 
At this step, it is crucial that the “read group” headings for your 
samples (which we specifi ed in the previous section) are correct, 
as they will be used to keep track of the samples within the 
merged .bam fi le. We then index our merged .bam fi le and search 
through the fi le for areas containing indels, where the initial 
mapping might be of poor quality. By using information from all 
samples in the merged fi le in a realignment step, we improve our 
chances of correctly aligning these regions. The merged realigned 
.bam fi le is what we will use in the next step, variant (SNP)  detec-
tion   and  genotyping  . An initial search for only very high-quality 
variant sites outputs a .vcf fi le, which is a list of all variant sites and 
the genotypes of all individuals for those sites. For information 
about the vcf fi le format,  see    http://www.1000genomes.org/
node/101    . We will consider the high-quality variants “true” sites 
for further processing. An additional search for variant sites, now 
with a lower quality threshold, is then conducted and by using 
our “true” variant sites from the fi rst search we can build a 
Gaussian mixture model to separate true variants from false posi-
tives using a log-odds ratio (VQSLOD) of a variant being true vs. 
being false: (  http://www.broadinstitute.org/gatk/gatkdocs/
org_broadinstitute_sting_gatk_walkers_variantrecalibration_
VariantRecalibrator.html    ). Following this, we can extract the 
genotype information for each individual from the .vcf fi le, while 
specifying a genotype quality threshold, and use this information 
to calculate allele and genotype frequencies. For simplicity we 
will use  Q  = 20 ( p  = 0.99) as a threshold.   

   22.    There are two parts to the realigner.sh script: (a) call on 
RealignerTargetCreator to search for poorly mapped regions 
near indels and save those intervals in an output.intervals fi le. 
(b) Call on IndelRealigner to realign the intervals specifi ed in 
step 1, and save the realigned fi le as merged_realigned.bam.   

   23.    The SNP_detection.sh script has three elements: It calls on the 
GATK HaplotypeCaller to only call variant sites with a Phred scale 
quality of more than 20 (probability of being a true variant site 
>0.99). This will be used as a set of “true” variant sites to train the 
Gaussian mixture model used by the Variant Quality Score 
Recalibrator (VQSR) in the next step. The VQSR depends on a 
set of true variant sites, so if you are working with an organism for 

SNP Discovery Using Next Generation Transcriptomic Sequencing

http://www.1000genomes.org/node/101
http://www.1000genomes.org/node/101
http://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_sting_gatk_walkers_variantrecalibration_VariantRecalibrator.html
http://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_sting_gatk_walkers_variantrecalibration_VariantRecalibrator.html
http://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_sting_gatk_walkers_variantrecalibration_VariantRecalibrator.html


94

which a validated set of variants exist, it is recommended to use 
that data here. However, as we are working with nonmodel 
organisms, we cannot assume that this data will always be avail-
able so let’s assume that we have no prior knowledge in this case. 
You will want the quality threshold to be as high as possible at 
this point, but with out limited dataset, we will have to settle for 
 Q  = 20 as a threshold. The script then calls on the HaplotypeCaller 
to call SNPs with a threshold that is largely determined by the 
sequencing depth. As we have low coverage due to our truncated 
fastq fi les, we will use a low-quality threshold here ( Q  = 3). In 
reality, you would want to maximize this to reduce the chance of 
false positives. Finally, the script uses the VariantAnnotator to add 
annotations to the .vcf fi le output. The high-quality variant sites 
are stored in a fi le called: raw_snps_indels_Q20.vcf, while the 
variants that should be used for the fi nal call set are in a fi le called: 
raw_snps_indels_Q3_annotated.vcf.   

   24.    The VQSR.sh script has fi ve elements: (a) It uses the high- 
quality SNP dataset to train a model that can be used for fi lter-
ing the true SNPs from false positives in our call dataset. (b) It 
uses the high-quality InDel dataset to train a model that can be 
used for fi ltering the true InDels from false positives in our call 
dataset. (c) It applies the SNP model to the call data and fl ags 
all SNPs failing the fi lter. (d) It applies the InDel model and 
fl ags all InDels failing the fi lter. (e) It saves only the variant 
sites that have passed the VQSR into a new fi le called VQSR_
PASS_SNPS.vcf.   

   25.    If you get an error message when running the VQSR.sh script, 
try changing the settings for -percentBad, -minNumBad, and 
--maxGaussians in the fi rst two commands of VQSR.sh using 
nano, then resaving and rerunning the script.   

   26.    The fi nal argument of the getgenosfromvcf.py script specifi es a 
genotype Phred quality score cutoff of 20 (99 % probability of 
being true). This parameter can be changed according to your 
needs. The “rows” argument specifi es that SNPs will be output 
in rows, with two columns per individual, one for each allele 
(specifying “cols” would return the same output, but with 
SNPs as columns, two columns per SNP).   

   27.    There are many different software and methods to do this, so 
I will not go into much detail here.   

   28.    The true test of a putative SNP is whether it can be validated 
using different methods. There are a variety of methods avail-
able for this, but we will focus on a traditional way, which is to 
design  primers   and to amplify and sequence fragments using 
PCR and Sanger sequencing.   

   29.    Design  primers  :  RNA-Seq   data does unfortunately not contain 
any information about intron–exon boundaries, so the safest 
place to design  primers   is within the coding regions. It is also 
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possible to do this outside of coding frames, but in this case it 
can be nice to have access to a genome of a closely related  spe-
cies  , in order to minimize the risk of designing  primers   that 
span over an intron.   

   30.    Choosing samples for Sanger sequencing validation: Use DNA 
preferably from individuals indicated as homozygotes for the 
reference and alternative alleles at the SNP site of interest. It is 
possible to use heterozygotes as well, with an expectation of a 
double peak in the Sanger chromatogram, but PCR artifacts 
can potentially obscure this pattern.          
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