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Chapter 8

Ensemble and Single Quantum Dot Fluorescence Methods 
in Neurotransmitter Transporter Research

Oleg Kovtun and Sandra J. Rosenthal

Abstract

Subcellular localization and trafficking of neurotransmitter transporter (NTT) proteins is increasingly 
recognized to play a critical role in transporter-mediated neurotransmitter signaling and its regulation. To 
fully understand the molecular mechanisms underlying transporter regulation, it is essential to be able to 
visualize NTTs both at the population and single-molecule levels using advanced imaging techniques. 
Here, we describe three fluorescence-based methods that have been successfully applied to measure spa-
tiotemporal changes in NTT localization and to establish dynamic imaging of individual NTT molecules 
using the ligand-conjugated quantum dot (QD) approach. First, we discuss how to label and image mem-
brane NTTs in live cells using QD probes in conjunction with ensemble fluorescence microscopy. Second, 
we present a more quantitative, flow cytometry-based approach, particularly useful for assessing trans-
porter internalization and recycling. Third, we describe a single-molecule microscopy labeling protocol for 
determining the mobility of QD-bound transporters at the plasma membrane of live cells.

Key words Quantum dot, Biological labeling, Neurotransmitter transporter, Confocal fluorescence 
microscopy, Flow cytometry, Biotinylated ligand, Single-molecule imaging

1 Introduction

Traditional biochemical and genetic approaches have contributed 
the majority of the existing research knowledge on NTT structure, 
function, and regulation. It is now apparent that NTT function is 
tightly regulated through multiple posttranslational mechanisms 
including interactions with a plethora of kinases, receptors, and 
scaffolding elements [1–5]. Consequent dynamic changes in NTT 
subcellular localization fundamentally impact the amplitude, dura-
tion, and specificity of NTT-mediated neurotransmitter signaling. 
Therefore, the ability to “see” NTTs with subcellular resolution 
and to monitor dynamic trafficking pathways involved in NTT 
regulation becomes a critical tool in advancing our understanding 
of the molecular mechanisms underlying NTT signaling network.
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Recent advances in fluorescence-based techniques for 
molecular biology permitted investigation of cellular signal 
transduction cascades with unprecedented spatiotemporal reso-
lution [6, 7]. Currently, there are several classes of fluorescent 
probes available to investigators. Among these, the most preva-
lent fluorophores are organic dyes, genetically encoded fluores-
cent proteins, and semiconductor nanocrystals, colloquially 
known as quantum dots (QDs) [8–15]. General properties, 
advantages, and drawbacks of the aforementioned fluorophores 
are summarized in Table 1. Our group is primarily focused on 
exploiting the unique photophysical properties of QDs (excel-
lent brightness, narrow emission spectra, broad excitation spec-
tra, and superior photostability) to study subcellular distribution 
and dynamic regulation of NTTs [16–24].

There are several methodological approaches to enable specific 
targeting of membrane proteins in live cells with the aforemen-
tioned fluorescent probes (Table 2). Most commonly, (1) a fluo-
rescent protein (e.g., EGFP) is fused to the terminus of the target 
protein and expressed in the cell of interest, or (2) a fluorophore is 
attached to an antibody targeting the extracellular domain of the 
target protein. Unfortunately, limited availability of such extracel-
lular antibodies for NTTs and lack of suitable extracellular epitopes 
within the NTT structure have significantly hampered fluorescence- 
based investigation of NTT localization and regulation, particu-
larly in endogenous systems. To this end, we pioneered a 
ligand-conjugated QD-based approach that utilizes a transporter- 
specific organic ligand composed of (1) a high-affinity parent drug 
that enables recognition of specific binding sites within the 

Table 1  
Comparison of commonly encountered fluorescent probes

Property Cy5 EGFP QD655

Size ~0.5 nm; 792 Da ~5 nm; ~27 kDa 15–25 nm; >1000 kDa

Quantum yield 0.3 0.6 0.5

Molar absorption 
coefficient

2.5 × 105 M−1 cm−1 5.6 × 104 M−1 cm−1 >2 × 106 M−1 cm−1

Excitation/emission 
maxima

649/670 nm 488/509 nm Steady increase toward UV 
wavelengths starting from 
absorption onset; emission 
max at 655 nm, with 
FWHM ~30 nm

Photostability 5–10 s 5–10 s Minutes

Applicability to single- 
molecule imaging

Moderate; limited 
by poor 
photostability

Moderate; limited 
by poor 
photostability

Excellent; complicated by 
blinking
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transporter structure and facilitates pseudo-irreversible binding, 
(2) a hydrophobic alkyl spacer which permits sufficient flexibility 
and provides a hydrophobic interface for a successful drug-binding 
pocket interaction, (3) a PEG polymer that aids in aqueous solubil-
ity and abolishes possible nonspecific interactions with the plasma 
membrane, and (4) a biotin moiety that allows subsequent 
streptavidin- conjugated QD recognition upon the transporter 
binding event (Fig. 1) [16–24].

Table 2  
Methodological approaches that enable specific targeting of neurotransmitter transporters

Approach Advantages\disadvantages References

Genetic fusion (XFP; 
hemagglutinin fusion 
peptide)

Pros: perfect specificity, biocompatibility, retention of the 
XFP-target protein construct

[25–31]

Cons: incompatibility with endogenous expression systems, 
misfolding, failure to localize properly, altered activity 
compared to the wild-type protein

Antibody Pros: excellent specificity, biocompatibility, low cytotoxicity, 
compatibility with endogenous expression systems

[32]

Cons: lack of efficient external antibodies, large size, prone to 
chemical degradation

Organic ligand Pros: targeting specificity and selectivity, binding stability, 
compatibility with endogenous expression systems, 
biological activity

[16–24, 
33–36]

Cons: sophisticated organic chemistry and rigorous analytical 
characterization required for preparation, primary binding 
site occupied

Covalent modification Pros: excellent selectivity, possibility of an inert functional 
tag, small size

[37, 38]

Cons: potentially deleterious effects on protein structure and 
function, organic chemistry knowledge required

Fig. 1 Structure schematic of tailored organic ligands targeting plasma membrane monoamine transporters. 
Reprinted with permission from ref. 21. Copyright 2011 American Chemical Society
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In this chapter, we outline three fluorescence-based techniques 
that have been successfully applied to measure spatiotemporal 
changes in NTT localization and to establish dynamic imaging of 
individual NTT molecules using our ligand-conjugated QD 
approach. First, we discuss how to label and image membrane NTTs 
in live cells using QD probes in conjunction with ensemble fluores-
cence microscopy. Second, we present a more quantitative, flow 
cytometry-based protocol, particularly useful for assessing trans-
porter internalization and recycling. Third, as dynamic trafficking of 
NTTs in the plasma membrane appears to be an important post-
translational regulatory mechanism, we describe a single-molecule 
microscopy labeling protocol for determining the mobility of 
QD-bound transporters in the plasma membrane of live cells.

2 Materials

 1. DMEM medium (Gibco, Invitrogen Life Science, Bethesda, MD).
 2. Phenol Red-free DMEM medium (Gibco, Invitrogen Life 

Science, Bethesda, MD).
 3. Fetal bovine serum (FBS) (Gemini Bio-Products, West 

Sacramento, CA).
 4. 0.05 % Trypsin/EDTA (Cellgro, Mediatech).
 5. l-Glutamine (Gibco, Invitrogen Life Science, Bethesda, MD).
 6. T25/T75 flasks; 24-well or 96-well culture plates (BD 

Biosciences, Falcon).
 7. Penicillin (10,000 U/mL) and streptomycin (10 mg/mL) 

solutions are frozen at −20 °C (Gibco, Invitrogen Life Science); 
5 mL is added to 0.5 L of DMEM complete culture medium.

 8. Cell line: HEK293 cells transiently or stably expressing NTT 
of interest.

 9. 0.1 mg/mL poly-d-lysine solution in sterile H2O.
 10. Lab-Tek chambered #1.0 borosilicate coverglass (eight-well 

chamber).
 11. Biotinylated ligand (1 mM stock solution in sterile H2O stored 

dessicated at −20 °C).
 12. Bovine serum albumin (BSA).
 13. Streptavidin-conjugated quantum dots (SavQD605), with the 

emission maximum at 605 nm (Invitrogen Life Science, 
Bethesda, MD). Optimal filter is HQ 605/20 emission for 
QD605. QDs can be excited at any wavelengths, but 488 nm 
is a commonly utilized excitation line to minimize photodam-
age, QD blinking, and spectral cross-talk.

 14. Cell Stripper, nonenzymatic dissociation buffer (Gibco, 
Invitrogen Life Science, Bethesda, MD).

2.1 HEK293 Cell 
Culture and Reagents
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 15. Cell culture incubator, 37 °C, 5 % CO2.
 16. Vacuum pump for cell washes.

 1. LSM 510 (Carl Zeiss) or LSM 710 (Carl Zeiss) equipped with a 
63× 1.4 NA Apochromat oil-immersion objective lens and a 
488-nm excitation line (Ar laser or solid-state diode laser); LSM 
510/710 image acquisition/analysis software or ImageJ (NIH 
image analysis freeware) to process time-lapse and z-stack fluo-
rescence images; microscope-mounted environmental chamber.

 2. 3- or 5-laser Becton-Dickinson (BD Biosciences, San Jose, 
CA) bench-top flow cytometer equipped with a multiwall plate 
sample cube; 12 × 75 mm polystyrene flow cytometry tubes 
(BD Biosciences, San Jose, CA); FlowJo flow cytometry data 
analysis package (TreeStar, Ashland, OR).

 3. High-speed, line-scanning Zeiss 5 Live confocal microscope 
equipped with a 63× 1.4 NA oil-immersion objective lens and 
a 488-nm 100-mW solid-state diode laser; microscope-
mounted environmental chamber; Zeiss LSM Image Examiner 
software; MatLab or IDL-based programming routines for 
analysis of real-time QD trajectory data.

 4. Imaging medium: phenol red-free DMEM supplemented with 
1 % BSA.

3 Methods

For the purpose of this chapter, it is assumed that the NTT of 
interest is expressed in HEK293 cells; however, the general prin-
ciples and protocols described below remain valid for any expres-
sion system being used.

 1. HEK293 cells are cultured in DMEM supplemented with 10 % 
FBS, 2 mM l-glutamine, 100 units/mL penicillin, and 
100 mg/mL streptomycin and maintained at 37 °C with 5 % 
CO2. For ensemble imaging, cells are plated in poly-d-lysine-
treated (1 h at 37 °C) eight-well Lab-Tek chambered cover-
glass at a density of 1 × 105 to 1 × 106 cells/mL and cultured for 
24 h prior to imaging.

 2. Prior to labeling, wash the cells gently three times with warm 
phenol red-free culture medium.

 3. Incubate cells with a biotinylated ligand (0.1–1 μM) in phenol 
red-free DMEM for 5–20 min at 37 °C. In the meantime, pre-
pare a SavQD605 labeling by diluting SavQD605 stock solu-
tion in warm imaging buffer to reach a desired concentration 
of (0.5–2 nM) and incubate it in a 37 °C water bath for 10 min.

 4. Wash the cells three times with warm phenol red-free DMEM.

2.2 Equipment, 
Software, 
and Accessories

3.1 Ensemble 
Microscopy Protocol
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 5. Incubate the cells with SavQD605 solution for 5 min at 37 °C 
and wash at least three times with warm imaging buffer.

 6. Immediately post-labeling, place the chambered coverglass on 
the microscope with the mounted environmental chamber.

 7. Acquire fluorescent images at 37 °C. Example data are shown 
in Fig. 2.

 1. Cells are plated in a poly-d-lysine-treated (1 h at 37 °C) 
24-well/96-well culture plate at a density of 1–5 × 105 cells/
mL 48 h prior to the flow cytometry assay.

 2. Prior to QD conjugate labeling, wash the cells three times with 
warm DMEM and incubate with a drug for 10–30 min in 
complete culture medium at 37 °C and 5 % CO2. Parallel con-
trol wells are incubated with either drug-free complete culture 
medium (positive control) or in the presence of a high-affinity 
transporter inhibitor (negative control).

 3. Wash the cells three times with warm phenol red-free DMEM 
and incubate with biotinylated ligand (0.1–1 μM)/drug mix-
ture for 10 min at 37 °C in warm phenol red-free DMEM.

 4. Wash the cells three times with ice-cold imaging buffer and 
incubate with previously prepared SavQD605 labeling solu-
tion in ice-cold imaging buffer.

 5. Wash the cells gently three times with the ice-cold imaging buffer 
and add Cell Stripper solution. Incubate for 5–10 min at 37 °C.

3.2 Flow Cytometry 
Protocol

Fig. 2 Labeling of dopamine transporter (DAT) with ligand-conjugated QDots in live cells. (left) Streptavidin- 
conjugated QDots were used to label DATs previously exposed to a biotinylated, PEGylated cocaine analog. (a1) 
QD labeling of membrane DATs in a live HeLa cell. (b1) QD-bound DATs underwent acute redistribution from 
the plasma membrane to intracellular compartments as a result of protein kinase C (PKC) activation. Reprinted 
with permission from ref. 20. Copyright 2011 American Chemical Society
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 6. Analyze cell QD fluorescence using a flow cytometer.
 7. Data are typically collected from >10,000 cells per sample, 

with median fluorescence intensity as one of the recorded fluo-
rescent signal parameters.

 8. By utilizing median fluorescence intensity (MFI) parameter 
obtained from control cell populations, it is possible to com-
pute the percentage of DAT molecules unavailable for binding 
(PI, percent inhibition) according to the equation below:

 
PI

MFI MFI

MFI MFI
pos treated

pos neg

=
-

-
´100 %

 

where MFIpos is MFI of a positive control (QD-ligand-labeled 
cells), MFIneg is MFI of a negative control (QD only-labeled 
cells), and MFItreated is MFI of a cell population incubated with 
a certain DAT modulator dose and subsequently labeled with 
ligand-conjugated QDs [23]. Example data are shown in Fig. 3.

 1. Cells are plated in poly-d-lysine-treated (1 h at 37 °C) eight- 
well Lab-Tek chambered coverglass at a density of 1–5 × 104 
cells/mL and cultured for 24 h prior to imaging.

 2. Prior to labeling, wash the cells gently three times with warm 
phenol red-free culture medium.

 3. Incubate cells with a biotinylated ligand (1–100 nM) in phenol 
red-free DMEM for 5–20 min at 37 °C. In the meantime, pre-
pare a SavQD605 labeling by diluting SavQD605 stock solu-
tion in warm imaging buffer to reach a desired concentration of 
(0.01–0.5 nM) and incubate it in a 37 °C water bath for 10 min.

 4. Wash the cells three times with warm phenol red-free DMEM.
 5. Incubate the cells with SavQD605 solution for 5 min at 37 °C 

and wash thoroughly at least three times with warm imaging 
buffer to remove unbound QDs.

 6. Immediately post-labeling, place the chambered coverglass on 
the microscope with the mounted environmental chamber.

 7. Acquire time-lapse fluorescent images at 37 °C immediately 
after the final wash step. Typically, the final wash step is carried 
in the immediate vicinity of the imaging system.

 8. Live imaging should not exceed 30 min at 37 °C for cell sur-
vival and is optimally carried out within the initial 10–15 min 
to limit turnover of QD-bound membrane NTT molecules.

 9. Real-time, time-lapse image recording is obtained with an 
integration time of 25–100 ms for at least 500 consecutive 
frames. Example series are shown in Fig. 4.

3.3 Single-Molecule 
Microscopy Protocol

Ensemble and Single Quantum Dot Fluorescence Methods in Neurotransmitter…
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 10. Real-time trajectory data is subsequently obtained from the 
recorded time-lapse image series and analyzed using custom 
programs written in Matlab or IDL programming software. 
Tracking analysis sequence is illustrated in Fig. 5.

Fig. 3 Flow cytometry-based screening of the inhibitory activity of GBR12909, a high-affinity DAT antagonist, 
using antagonist-conjugated Qdots. DAT-expressing HEK cells were treated with five- or tenfold dilutions of 
GBR12909. Percent inhibition at increasing doses of GBR12909 is represented as a heat map (top left) and 
representative histogram plots of the effects of increasing GBR12909 doses (top right) on QD conjugate bind-
ing are shown. The heat map and IC50 curve (bottom) were generated using median QD fluorescence intensity 
values. Reprinted with permission from ref. 23. Copyright 2012 Royal Chemical Society
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Fig. 4 Time-lapse image series depicting movement of cell surface QD-bound transporters

Fig. 5 Schematic illustrating trajectory data analysis in a typical single-QD tracking experiment. (a) Example of 
QD-DAT trajectories on the surface of transfected HEK293 cells. Scale: 1 pixel = 200 nm. (b) A histogram showing 
diffusion coefficients determined for the trajectories in a. (c) Averaged mean square displacement (MSD)-time plot 
of QD trajectories. Ensemble diffusion coefficient is estimated via the linear fit of 2–5 MSD-time plot data points

4 Notes

 1. Optimal plating density and cell health are critical to keep 
weakly adherent cells, such as HEK293, from detaching off the 
Lab-Tek chambered coverglass throughout the protocol. 
Treatment of the chambered coverglass with poly-d-lysine 
solution is a necessary step to ensure the cells remain adhered 
to the glass bottom through the extensive series of incubation 
and wash steps. Also, it is of utmost importance that one care-
fully examines cell morphology and overall cell health prior to 
acquiring fluorescence data.

Ensemble and Single Quantum Dot Fluorescence Methods in Neurotransmitter…
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 2. One of the most important variables for a successful experi-
ment is adequate quality and quantity of washings after drug, 
biotinylated ligand, and QD incubation. One must wash 
extensively after each separate step to remove excess, unbound 
probes, as they have the potential to interfere with subsequent 
recognition events and ultimately affect the specificity of QD 
labeling. Additionally, it is imperative that one always prepares 
fresh working solutions the day of the experiment.

 3. The most critical determinant of experimental success is the 
specificity of biotinylated ligand binding. One must find 
optimal ligand concentration and incubation time to maxi-
mize specific binding. In our experience, 0.1–1 μM and 
5–20 min ranges for ligand dose and incubation time respec-
tively are typically a good starting point. In all cases, one 
must run parallel control samples to ensure labeling specific-
ity. The control samples usually are to (1) apply the same 
labeling conditions to parental cells not expressing the 
transporter of interest, (2) include a high-affinity inhibitor 
to block the specific binding site during the labeling proto-
col, and (3) label transporter-expressing cells with only the 
QD probes to assess the degree of nonspecific QD binding 
and the effectiveness of wash steps.

 4. Another important aspect of assuring labeling specificity is the 
addition of a common blocking agent, such as BSA, to the QD 
solution and the imaging buffer. QD nonspecific binding varies 
significantly among cell types, and one must take great care to 
optimize the blocking conditions (Fig. 6). Common blocking 
reagents are BSA, FBS, horse serum, gelatin, and nonfat dry milk.

 5. As QD-bound NTTs are subject to dynamic protein turnover, 
fluorescence data acquisition must be conducted immedi-
ately after the final wash step, especially in the case of single-

Fig. 6 Comparison of nonspecific cell surface binding of 50 nM AMP™ Dots (a1–f1) and PEGylated AMP™ 
Dots (a2–f2). Nonspecific binding was found to be dependent upon the cell type, and conjugation of methoxy- 
terminated PEG2000 to the surface of AMP™ Dots resulted in significant reduction of nonspecific cellular 
binding. Figure reproduced with permission from ref. 40. Copyright 2005 American Chemical Society
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molecule experiments. This helps prevent transporter 
endocytosis and allows adequate visualization of membrane-
restricted signaling events.

 6. An important consideration is controlling the valency of the 
binding. This is a particularly critical parameter in single- 
molecule experiments, as multivalent QD labeling leads to 
protein cross-linking that may inadvertently trigger down-
stream signal transduction cascades. To this end, there are 
two common solutions. One involves preincubation of 
SavQDs with the biotinylated ligand at ~1:1 ratio in a borate 
buffer (pH ~8.5) for 0.5–24 h at room temperature with 
constant stirring; the other involves a two-step labeling pro-
tocol as described above and the use of ~equimolar doses of 
biotinylated ligand and SavQDs. In the case of endogenous 
expression systems, this requirement can be relaxed, as the 
low surface density of transporters is the primary determinant 
of monovalent labeling.

 7. QD density must be adjusted accordingly to ensure maximum 
signal-to-noise ratio in ensemble imaging and permit obser-
vation of 10–20 individual QDs on the cell surface in a single- 
molecule experiment. This is achieved via titrating the QD 
concentration while keeping the concentration of biotinyl-
ated ligand constant.

 8. Table 3 provides a set of troubleshooting instructions for a 
typical single-molecule experiment [39].

Table 3 

Troubleshooting a single-QD imaging experiment

Problem Cause Solution

Low or excessive QD 
label density

Inappropriate biotinylated 
ligand concentration

Optimize ligand concentrations for labeling

Poor or excessive 
transporter expression

Check whether the transporter is delivered to the 
surface. Optimize protein expression level

QD aggregation Prepare fresh QD dilution and store for no 
longer than a few hours

Poor ligand affinity Check ligand affinity via transport uptake assay

Nonspecific labeling Excessive ligand or QD 
concentration

Reduce and optimize ligand and QD 
concentrations

Excessive QD 
blinking

Excessive excitation 
duration or intensity

Minimize excitation intensity, use longer 
wavelengths, and reduce the excitation 
duration

Ensemble and Single Quantum Dot Fluorescence Methods in Neurotransmitter…
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