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Preface

Proteostasis or protein homeostasis is the process by which cells control the abundance and
folding of the proteome. Proteostasis appears to be involved in many diseases and aging.
For example, retinal dystrophies, neurodegenerative diseases, inflammatory diseases, infec-
tious diseases, and cancer are broad categories of diseases already linked to proteostasis. For
instance, several genes related to the ubiquitin pathway are implicated in retinal dystro-
phies. Retinal dystrophies are a group of rare diseases that affect individuals worldwide.
Protein misfolding, aggregation, and accumulation are a common hallmark in various neu-
rodegenerative diseases. The autophagy-lysosomal pathway and the ubiquitin-proteasome
system, the two main intracellular degradation machineries, are essential for cell survival
under stress conditions, for clearance of intracellular pathogens, for the maintenance of cel-
lular homeostasis and play an essential role in cancer survival upon drug treatment. In addi-
tion, proteasome inhibitors, which typically target protease subunits of the proteasome,
have been shown to reverse liver cancers in xenograft models and prolong time of survival
of patients with certain blood cancers (e.g., multiple myeloma and multiple cell
lymphoma).

The importance of proteostasis in diseases has fostered the development of a large
number of technologies to obtain deep insight into the underlining mechanistic events.
The technologies are based on fluorescence /confocal microscopy, expression arrays, mass
spectrometry, and diverse range of transfection models combined with biochemical assays.
The methodologies target the proteins in a stationary quantitative way but also protein
turnover rate can be estimated in vivo by pulsed labeling and novel technologies like bioor-
thogonal click chemistry. Protein homeostasis is regulated by a broad range of posttransla-
tional modifications of which ubiquitin and SUMO are the most frequently studied.
Posttranslational modifications of human proteins do not exclusively influence human
health. For example, proteins from pathogens can also be heavily ubiquitinated and thereby
targeted for degradation. Furthermore, interaction between the adenoviral capsid protein
VI and Nedd4.2, a cellular ubiquitin ligase, is essential for virus infection highlighting the
role of proteostasis in host—pathogen interactions.

This book highlights the role of proteostasis in human health and associated disease
model systems. It provides state-of-the-art protocols to study and target proteostasis for
therapeutics. This book is designed and written mainly by proteostasis experts with the
ambitious aim to become the future reference book on proteostasis in human health.

I acknowledge the great enthusiasm of the Proteostasis COST action members in sup-
porting the realization of the book. Chapters were delivered on time and it has been a true
pleasure to work with the authors. Special thanks go to Dr. R. Menezes, Dr. Gemma
Martfany, and Dr. Gustavo J. Gutierrez who provided assistance in reviewing chapters.

The left part of the cover image depicts the ubiquitin coating of Salmonella bacteria
inside an infected epithelial cell (as part of the autophagy process). Bacteria are in red, ubiq-
uitin in green, nuclei of infected cells in blue (image kindly provided by Professor Rudi
Beyaert). Center image displays the structure of ubiquitin (kindly provided by Simona Polo).



vi Preface

Top right depicts Human ARPE-19 cells transfected with the human deubiquitinating
enzyme ATXN3. Green: ATXN3, Red: Actin fillaments stained with phalloidin, Cyan: acety-
lated alpha-tubulin. Nuclei are stained with DAPI (Photo by Vasileios Toulis from Gemma
Marfany’s group).

Lisboa, Portugal Rune Matthiesen
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Chapter 1

UPS Activation in the Battle Against Aging
and Aggregation-Related Diseases: An Extended Review

Nikoletta Papaevgeniou and Niki Chondrogianni

Abstract

Aging is a biological process accompanied by gradual increase of damage in all cellular macromolecules,
i.e., nucleic acids, lipids, and proteins. When the proteostasis network (chaperones and proteolytic sys-
tems) cannot reverse the damage load due to its excess as compared to cellular repair/regeneration capac-
ity, failure of homeostasis is established. This failure is a major hallmark of aging and /or aggregation-related
diseases. Dysfunction of the major cellular proteolytic machineries, namely the proteasome and the lyso-
some, has been reported during the progression of aging and aggregation-prone diseases. Therefore,
activation of these pathways is considered as a possible preventive or therapeutic approach against the
progression of these processes. This chapter focuses on UPS activation studies in cellular and organismal
models and the effects of such activation on aging, longevity and disease prevention or reversal.

Key words Ubiquitin-proteasome system, Aging, Longevity, Aggregation-related diseases,
Proteostasis, Proteasome activation

1 Aging and Aggregation-Related Diseases

1.1 Aging/Models Aging is a multifactorial, natural process leading to gradual
of Aging functional deterioration, continuing decline of self-defensive
mechanisms, reduced homeostatic capacity of all tissues and an
exponential accumulation of damage (in nucleic acids, proteins,
and lipids) that leads to increased death incidence. The progression
of'aging is dynamically affected by both genetic and environmental
factors. As long as equilibrium between cellular insults (mediated
by stressors both from the micro- but also the macro-environment)
and cellular repair/regeneration capacity is conserved, the cell/
organism overcomes the damage that is produced without any fatal
alterations in its phenotype and its physiology. However, once this
balance is disturbed, the damaged molecules accumulate fast and
multiple vicious circles of additional insults commence. As a result,
an irreversible failure of homeostasis with compromised molecular
pathways occurs. This failure eventually leads to aging and increased
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rates of morbidity and mortality [1, 2]. Given the effects of aging
on a pleiad of key pathways, it is logical that it constitutes a major
risk factor for several pathologies including aggregation-related
disorders [ 3, 4].

The establishment of several short-lived model organisms,
such as yeast, nematode worms, flies and rodents along with the
use of primary mammalian cell cultures as well as the use of isolated
tissues from donors of different ages are the main tools to investi-
gate the aging process and to decipher its regulation. More specifi-
cally, the cellular and organismal models that are most commonly
used in aging studies are:

The replicative senescence model is until now the most
accepted cellular model to study human aging. The model is based
on the notion that normal human fibroblasts may undergo a lim-
ited number of divisions in culture before they gradually reach a
state of irreversible growth arrest. This process is termed as replica-
tive senescence or Hayflick limit and it is believed to recapitulate
most of the human aging features [5].

Sacchavomyces cevevisine (S. cerevisine) is often used in the study
of various molecular pathways that govern the aging progression.
There are two types of life-span that can be dissected in this model,
namely the replicative and the chronological. The replicative
(mitotic) life-span is defined by the number of daughter cells that a
single mother yeast cell produces, whereas chronological life-span or
stationary phase (post-mitotic) is defined by the time period during
which the nondividing yeast cells can remain viable. Given those two
types of life-span, it is suggested that S. cerevisiae is an attractive
model to study the life-span of various human cell types, and thus
mitotically active types but also post-mitotic types [6].

The soil nematode Caenovhabditis elegans (C. clegans) is a
post-mitotic multicellular eukaryotic model organism that due to
its advantages is heavily used to study aging. C. elegans shares many
fundamental cellular/molecular structures and biological proper-
ties with more advanced organisms (including humans with which
C. elegans shares 40 % homology), characteristics that nominate the
nematode as an ideal model organism. Moreover, it is the first mul-
ticellular organism with known cell lineage and completely
sequenced genome.

The fruit fly Drosophila melanogaster (D. melanogaster) has
been used as a model organism for nearly a century. It is mostly
composed of post-mitotic cells, it has a short life cycle/span and
shows gradual aging. There is a 60 % conservation of genes between
flies and humans [7] while 77 % of all known human disease genes
have fly homologues [8]. Consequently, this insect is frequently
used as a model organism in aging studies.

Rodents are frequently used in animal testing with mice and
rats being the most used ones. The high degree of gene conserva-
tion between rodents and humans (i.e., humans share over 90%
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homology with mice into corresponding regions of conserved
synteny; [9]), the possibilities of genetic manipulation of their
genomes but also their relative short life expectancy are few of the
advantages in using those animals as models to study aging. On
top of that, the so far obtained results from studies on caloric
restriction (CR) and pharmacological anti-aging/prolongevity
treatments that have revealed increased relevance to humans fur-
ther advocate for the use of those animals in aging studies [10].

Using the abovementioned models, numerous genes, proteins,
and functional networks have been identified so far, thus permit-
ting to establish the current known hallmarks of aging [2].

In general, most of the misfolded and /or aggregated proteins are
subjected to degradation by the cellular proteolytic machineries.
However, there are few proteins (native and mutant) that are resis-
tant to the degradation systems due to their tendency to form
B-sheet-enriched oligomers that are finally packed into inclusion
bodies or extracellular plaques. This characteristic accumulation of
protease-resistant aggregated proteins is a common feature in pro-
tein misfolding disorders, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), amyo-
trophic lateral sclerosis (ALS), and prion diseases (PrD).

AD is the most known and common cause of dementia worldwide
representing 65-75% of all dementia cases [11]. It is a poly-
genic disorder that is characterized by loss of synaptic connec-
tions, extensive neurodegeneration and brain atrophy. AD
patients can have an early onset mainly due to genetic mutations
or a late onset, the latter being the most common case. The key
hallmarks of AD are the deposition of intracellular, filamentous
aggregates that consist of hyper-phosphorylated Tau protein
(intracellular neurofibrillary tangles; NFTs) and amyloid-f (Ap)
extracellular plaques [12-14]. AP is produced through the pre-
senilin-mediated cleavage of a transmembrane protein that nor-
mally regulates the synaptic function, namely Amyloid Precursor
Protein (APP). Early onset of AD is characterized by the expres-
sion of both mutant APP (mAPP) and presenilin 1 and 2, which
are required for the active function of y-secretase to produce the
AP peptide through APP breakdown [15-17]. Late onset of AD
is induced by genetic and environmental factors with aging
being one of the main risk factors. Mutation in the apolipopro-
tein E 4 allele represents one pivotal genetic factor involved in
this sporadic AD form [18]. Various other genes have been
implicated to the sporadic late onset of AD as CLU, CR1, and
PICALM [19]. The consecutive neurodegenerative alterations
lead to a gradual decline in cognitive functions, especially in
memory and visual-spatial orientation ending up to the indi-
vidual’s incapability to live functionally.
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1.2.2 Parkinson’s
Disease

Most of the therapeutic approaches have focused so far on Ap
production, degradation, and prevention of its toxicity, on Tau for-
mation and on general neuroprotection [20]. Various in vitro and
in vivo models of the disease like neuroblastoma cell lines, mam-
mals, Aplysia, zebra fish, fruit fly, and nematode mutant strains
expressing the human AP peptide have been exploited [21, 22].
Here we summarize data regarding UPS activation as a promising
therapeutic approach against AD.

PD is the second most common neurodegenerative disease
characterized by muscular rigidity, bradykinesia, and uncontrol-
lable tremor that worsen gradually in severity. The main patholo-
goanatomical feature of PD is the loss of a large portion of
substantia nigra dopaminergic neurons [23, 24]. The gradual
accumulation of inclusion bodies in the neuronal cytoplasm that
consists of a-synuclein, parkin, UHC-L1, ubiquitin, and neuro-
filaments, namely Lewy bodies leads to irreversible
neurodegeneration.

a-Synuclein is a 14 kDa protein that normally regulates vesicle
trafficking during neurotransmission signaling through a chaperone-
like activity [24]. Oligomeric and fibrillar conformations of a-synuclein
(that polymerizes into fibrils in vitro) induce toxicity through (a)
impairment of the function of several organelles, (b) alterations of the
proper signal transmission through synapses, and (¢) inhibition of the
proteostasis mechanisms [24].

Parkin is the second important protein that exerts a distinct
role on PD pathology while it is also responsible for autosomal
recessive juvenile parkinsonism. It is a RING-domain E3 ligase
that under normal conditions regulates the degradation of synaptic
transmission-associated proteins and prevents the creation of
aggregates while it is also essential for the regulation of mitophagy
and mitochondrial equilibrium [25, 26]. Parkin mutations may
lead to substrate recognition impairment and prevent the interac-
tion with E2 enzymes. Lewy body inclusions in turn affect the
normal function of Parkin by interfering to its normal ability to
regulate degradation, thus leading to high toxicity [27].

Other molecules that have been identified to play a critical role
in PD onset and progression are UCH-L1, PINKI, and D]J-1.
UCH-L1 is a deubiquitinase, PINKI is a serine/threonine kinase
that acts protectively under conditions of proteasome inhibition,
while DJ-1 has been shown to exert chaperone activity and prote-
ase activity both resulting in prevention of a-synuclein accumula-
tion and aggregation [28]. It is obvious that the gene products
targeted in familial PD are somehow associated to the UPS; either
as UPS substrates (a-synuclein, parkin, synphilin-1, mutated DJ-1)
or as components of the degradation pathway (parkin, ubiquitin,
C-terminal hydrolase L1; [29]).
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HD is an autosomal dominant neurodegenerative disorder which is
characterized by gradual degeneration of striatum neurons, affects
muscle coordination, and causes mental decline and psychopatho-
logical problems [30]. Huntingtin (HTT) is the key protein
involved in HD pathogenesis. More specifically, wild type (wt) hun-
tingtin gene (htt) bears 6-35 CAG repeats in the N-terminus pro-
ducing a polyglutamine (polyQ) tract. In contrast, in mutated htt
gene the CAG triplet repeat stretch overpasses 36 repeats promot-
ing a toxic gain of function, a feature that coincides with the onset
of HD pathology [31]. The onset, progression, as well as severity of
the disease are directly affected by the polyQ length. HD is a pro-
teinopathy mainly characterized by intracellular inclusions bodies
(IBs) formed by mutant HTT (mHTT) aggregates [32]. These IBs
are gradually increasing in number and size thus impeding the nor-
mal function of neurons. Several studies have suggested that mHTT
is cleaved to produce a shorter N-terminal fragment containing the
polyQ expansion that eventually induces the protein fragment to
misfold and form aggregates. Neurotoxicity has been linked to
cither the soluble and/or the aggregated form of the misfolded
protein as well as to the aggregation process itself. The various
forms of mHTT protein have been suggested to affect transcrip-
tional regulation through the interaction with various transcription
cofactors (activators or repressors), to promote apoptosis, to
enhance the intracellular production of reactive oxygen species, to
affect caspase activation, and to inhibit proteasome function.

ALS is a motor neuron degenerative disorder with severe symp-
toms and an expeditious progress from symptoms onset, ending to
muscular atrophy, weakness, and eventually death due to degen-
eration of the respiratory muscles. The main cells that are affected
are the pyramidal Betz cells in the motor cortex, the large anterior
horn cells of the spinal cord, and the lower cranial motor nuclei of
the brainstem [33]. ALS is mainly a sporadic disease but 10% of
ALS cases are familial [34]. The pathologoanatomical signature of
the disease is the accumulation of insoluble proteins that form
intracellular aggregates (Skein-like inclusions, SLIs) as found in
samples from human patients and animal models of ALS [35, 36].

Superoxide dismutase 1 (SOD1) missense mutations play a dis-
tinct role to most cases of the familial onset of the disease [37].
Toxic gain of function is believed to occur while increased levels of
intracellular protein aggregates of mutant SOD1 (mSOD1) that
disturb the unfolded protein response (UPR) and mitochondrial
functionality are also revealed [38]. Several other proteins have
been also implicated to ALS, including ALSIN, TDP-43, nuclear
protein FUS, ubiquilin 2, p62, optineurin, and valosin-containing
protein [39]. The causes are basically unknown in the absence of
tamily history (sporadic ALS). C9ORF72 is one of the locuses on
chromosome 9p identified to be involved in the sporadic ALS onset
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1.2.5 Prion Diseases

together with UNC13A, a presynaptic protein that normally acts in
the neurotransmission signaling procedure [34]. It was recently
pointed that most of the involved proteins in both sporadic and
familial ALS share aggregation-prone properties that may ultimately
act toxically and inhibitory to the proteostasis network.

PrDs, also known as transmissible spongiform encephalopathies,
are infectious neurodegenerative disorders with acute and severe
symptoms including memory and movement control problems,
visual dysfunction and cognitive inability [40, 41 ]. Severe neuronal
loss in prion-affected sections leads to the development of a
“spongy” architecture which is the main anatomical characteristic
of the disease. The most known PrDs are divided into three groups:
the sporadic group including Jakob-Creutzfeldt disease (JCD); the
genetic group including genetic JCD, Gerstmann-Striussler-
Snecaker disease, and fatal familial insomnia; and the infectious
group including Kuru, variant JCD, and iatrogenic JCD.

All known mammalian PrDs are caused by the scrapie prion pro-
tein (PrP%) an abnormal form of the naturally occurring protein
PrP¢, a cell surface membrane [42]. The role of PrP¢ is not yet fully
elucidated. PrP knockout mice exhibit only minor abnormalities but
more recently, it was shown that that neuronal expression and regu-
lated proteolysis of PrP¢ are essential for myelin maintenance [43].
Moreover, mice devoid of PrP¢ exhibit an altered hippocampal long-
term potentiation [44 | while it was also suggested that PrPe is neces-
sary for the self-renewal of long-term hematopoietic stem cells [45].

PrPS is a B-sheet-enriched isoform [46] able to self-propagate
and fold in a variety of distinct ways [47]. This self-replication
mechanism leads to the formation of spontaneous extracellular
aggregates (prion deposits; [48]). Prions are at least partially
protease-resistant proteins and therefore they tend to constantly
accumulate. Moreover, PrP% has the ability to interact with PrP¢
and change its conformation into the infectious isoform, thus ini-
tiating a vicious cycle that potentiates the disease progression. Even
a small quantity of PrP* is enough to trigger the conversion of
PrP€ to PrPS¢ as shown in vitro [49] but also in vivo [50].

Apart from the PrP, additional proteins have been shown to
share prion-like domains. These domains endow the proteins with
the self-replicating ability that is necessary for the formation of
amyloid-like deposits. For example, it has been shown that TDP-
43 mutations facilitate the conversion of misfolded proteins to
aggregation-prone prion-like conformation, resulting in the ALS-
related aggregates found in many familial ALS cases [51]. The lat-
ter case is the so-called prion paradigm, where otherwise harmless
proteins can be converted to a pathogenic form by a small number
of misfolded, nucleating proteins [52]. Nevertheless, cautiousness
should be attributed since with the exception of PrD, the rest of the
aggregation-prone proteins are not infectious agents.
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1.3 Proteostasis The proteome is challenged constantly and proteome integrity
in Normal Aging (proteostasis) is one of the nodal points that needs to be preserved
and Aggregation- in order to maintain organismal homeostasis. Therefore, it is not
Related Diseases surprising that a group of specific molecules is dedicated to preserve

the cellular protein load and therefore the cellular proteostasis. A
complicated surveillance network of cellular mechanisms that
inspect every aspect of protein biology from synthesis and folding
to trafficking and clearance is set as responsible for proteostasis
[53]. One primary arsenal of this network is constituted by chaper-
ones that assure the correct folding/function of proteins and their
maintenance in a correctly folded /functional mode. If however this
arm of the proteostasis network fails, the secondary arsenal takes
over to degrade the damaged, unfolded, aggregated and in general
unwanted proteins. This arm includes the ubiquitin-proteasome
system (UPS; which is the theme of this chapter) and the autoph-
agy-lysosome system (for a recent review refer to [54, 55]). Upon
failure of all surveillance systems, failure of proteostasis occurs with
detrimental effects on the cellular physiology and life. It is not thus
astonishing that the loss of proteostasis is considered as one of the
hallmarks of aging [2] and that this loss is strongly related to the
onset and progression of aging and aggregation-related diseases.

2 Introduction: The Ubiquitin System

Ubiquitin is a highly conserved protein that covalently modifies
proteins through the ubiquitination process. There are three main
steps that are gradually followed in order for an ubiquitin moiety
to be added on a protein. These three steps are characterized by
the action of three different types of ligases, namely E1 (ubiquitin-
activating enzymes), E2 (ubiquitin-conjugating enzymes), and E3
(ubiquitin-ligase enzymes). The cycles of ubiquitination for a given
protein can occur once thus leading to mono-ubiquitination or can
be repeated several times on the same lysine thus leading to polyu-
biquitination. Depending on the moieties of ubiquitin added on a
protein along with the lysine residues used for this binding, the
localization /intracellular trafficking, activity, protein-protein inter-
actions, participation in different signaling pathways, and degrada-
tion either by the 26S proteasome or by autophagy-lysosome
system can be signaled [56, 57]. Polyubiquitin chains with at least
four moieties constitute the signal for the 26S proteasome-
mediated recognition and degradation of the protein substrate
with the most frequent signal being the K48-linked ubiquitin chain
[58]. To prevent energy loss, once the tagged substrate is recog-
nized by the proteasome for degradation, specific deubiquitinases
(DUBs) remove the polyubiquitin chains; those ubiquitin mole-
cules can be reused [59]. The abovementioned proteins constitute
the UPS (Fig. 1).
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Fig. 1 The ubiquitin-proteasome system (UPS). (a) Ubiquitin activation through ubiquitin-activating enzyme (E1).
(b) Activated ubiquitin is transferred to ubiquitin-conjugating enzyme (E2). (c) RING domain ligase: the ubiquitin-
charged E2 binds to the E3 ligase that carries the substrate for degradation and ubiquitin is directly transferred
to the substrate. HECT domain ligase: ubiquitin is firstly transferred from E2 to the E3 ligase that carries the
substrate for degradation and then to the substrate. All three steps are repeated to result in substrate polyubig-
uitination. (d) Ubiquitinated protein is recognized by the proteasome, captured and processed for degradation.
Short peptides (3—22 aa) are released at the end of the process. (e) Following substrate recognition, polyubig-
uitin chain is cleaved off through deubiquitinases (DUB) and free ubiquitin is released in order to be reused. (f)
26S proteasome structure; the constituent subunits appear for each subcomplex. In the case of 20S protea-
some, p1, p2, and B5 subunits are the catalytic centers of the complex, whereas in the case of i20S these
subunits are de novo substituted by $1i, 2i, and 5i subunits. (g) Proteasome assembly-dedicated chaperones
(or assisting factors in the case of lid assembly). (h) Major proteasome activators that can be located on the top
of 20S complex. (i) The various proteasome complexes are involved in multiple cellular pathways/processes
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The first two-step reaction in the ubiquitination process is catalyzed
by the ubiquitin-activating enzymes (E1), in an ATP-dependent
process that results in an activated ubiquitin molecule. More spe-
cifically, the E1 enzyme binds ATP and ubiquitin and catalyzes
ubiquitin C-terminal acyl-adenylation. Ubiquitin is then trans-
ferred to the catalytic cysteine of the E1 enzyme producing a high-
energy thioester bond and forming ubiquitin-E1 complex [60].
There are two human genes that have been so far identified to
produce Els, namely Ubal and Uba6 [61, 62]. As expected, Els
can collaborate with multiple E2s.

The ubiquitin-conjugating enzymes (E2) catalyze the transfer
of the activated ubiquitin from E1 to its own catalytic cysteine resi-
due where a thioester bond is formed. So far, 35 E2 enzymes have
been identified in humans while in other eukaryotes the number
ranges between 16 and 35 [63]. Each E2 can activate a palette of
E3 ligases in an hierarchical manner thus producing multiple dif-
ferent but specific E2-E3 combinations.

The final step of ubiquitination is catalyzed by E3 ligases form-
ing an isopeptide bond between the C-terminal glycine of ubiquitin
and a lysine of the target protein. The two main classes of E3 ligases
(classified according to the domain that they possess) are the
homologous to the E6-AP carboxyl terminus (HECT) domain pro-
teins and the really interesting new gene (RING) domain proteins
where one can find monomeric and multisubunit RING finger
ligases [64]. The RING group of E3s along with the RING-related
E3s, such as members of the U-box family, the plant homeodomain
(PHD), and leukemia-associated protein (LAP) finger proteins, is
the largest group of E3 ligases [65]. HECT-domain E3s firstly
accept through a thioester linkage the ubiquitin moiety and then
they transfer it to the protein substrate, whereas RING-domains
E3s bind the cooperating E2 and they mediate the direct transfer of
ubiquitin from E2 to the target protein [64] (Fig. 1). More than
600 E3 ligases have been annotated in humans [66] from which
~30 are HECT-domain E3 ligases. Most of the multisubunit RING
E3s belong to the cullin RING ligase (CRL) superfamily [67] with
SCF complex (consisting of S-phase phase kinase-associated protein
1/Skpl, cullin, and F-box protein) and anaphase-promoting com-
plex (APC/C) being the most known complexes. Both complexes
assure the correct cell cycle progression [68].

Ubiquitination can be reversed through the act of specific prote-
ases, namely deubiquitinating enzymes (DUBs; also known as deu-
biquitinases, deubiquitinating peptidases, ubiquitin isopeptidases,
deubiquitinating isopeptidases, ubiquitin proteases, and ubiquitin
hydrolases; [69]). DUBs cleave ubiquitin from protein substrates
and other molecules and thus they act antagonistically to the ubiq-
uitination process. Apart from their role in protein degradation
they have been also implicated in several other pathways including
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cell growth and differentiation, membrane protein trafficking,
development, neuronal diseases, and transcriptional regulation
while they are also responsible for ubiquitin activation and recy-
cling [70, 71]. Approximately 100 DUBs have been annotated in
humans, grouped into two classes: cysteine proteases and zinc-
dependent metalloproteases. Cysteine proteases include ubiquitin-
specific proteases (USPs), ovarian-tumor (OTU) domain proteases,
ubiquitin C-terminal hydrolases (UCHs), and Machado-Josephin
domain proteases (M]JDs) while metalloproteases contain a Jabl/
MPN metalloenzyme (JAMM) domain [69, 70].

3 Introduction: The Proteasome System

3.1 20S Core
Proteasome: Structure,
Assembly,

and Localization

3.1.1 Structure

3.1.2 Assembly

The proteasome is a large multisubunit enzyme complex hosting
multiple catalytic centers and is responsible for the clearance of
short-lived normal, regulatory proteins but also for the elimination
of unwanted (misfolded, damaged, or in any way abnormal) pro-
teins [72, 73]. The 208 core proteasome (CP) is the main complex
that hosts the catalytic activities of the multienzyme while various
regulators can be attached in either one or both ends of the 208,
giving rise to supra-proteasome complexes with 19§ regulatory
particle (RP) being the most common. The various proteasome
complexes are thus engaged in the regulation of numerous bio-
logical processes including signal transduction, cell cycle control,
cell differentiation, stress response, quality control, antigen presen-
tation, and cellular detoxification [74].

The 20S CP is a barrel-like structure composed of 28 subunits (14
a-type and 14 p-type) arranged in four seven-membered rings with
a molecular weight of 700 kDa and a diameter of 120-160 A
(Fig. 1). The a-type subunits form the two external rings and cre-
ate an aperture of 10-15 A through which the protein substrate
enters to reach the three catalytic centers of the CP that are located
in the inner p-rings. More specifically, p1, p2, and f5 subunits pos-
sess the caspase-like (C-L or PGPH), the trypsin-like (T-L), and
chymotrypsin-like (CT-L) activities, respectively. The a-subunits
also offer the matrix for the binding of the various regulators that
modify the specific activity of the CP [74].

The assembly of the eukaryotic 20S CP is highly orchestrated,
assisted by several proteasome-dedicated chaperones. This assem-
bly initiates with the a-ring formation that it then serves as a tem-
plate for the incorporation of the f-subunits. Up to now, four
different proteasome assembling chaperons (PACs), namely
PACI1-PAC4 (Pbal-4 in yeast; [75]) and the proteasome matura-
tion factor POMP (Umpl in yeast; [76-78]) have been isolated.
PACI1-PAC2 heterodimer is responsible for the a-ring formation
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as well as for the prevention of incorrect dimerization. PAC3-PAC4
heterodimer assists the incorporation of pro-p2 subunit that is fol-
lowed by the incorporation of B3, p4, pro-p5, pro-po6, pro-p1, and
pro-p7 subunits. PAC3-PAC4 gets displaced once p4 and
hUMP1,/POMP join the complex. A UMP1/POMP then assists
the serial incorporation of the rest p subunits [79]. The two half-
CP are dimerized with the help of Hsc73 which is then released,
the B-propeptides are self-cleaved, and UMP1 /POMP is the first
substrate of the newly assembled CP [80]. CP maturation induces
an affinity switch mechanism that reduces its affinity for PACI1-
PAC2 and thus enables the RP to dislocate the dimer and to get
attached on the CP [81].

Intracellular proteasomes localize in the cytoplasm, the nucleus
and the ER and can constitute approximately up to 5% of the total
cellular protein content depending on the cell type [82]. However,
the 208 core proteasome has been identified to get attached to the
plasma membrane thus suggesting its potential release in the extra-
cellular space, e.g., in the alveolar lining fluid, epididymal fluid and
possibly during the acrosome reaction. Moreover, active (reported
as circulating) proteasomes have been detected in normal human
plasma but also in plasma from patients suffering from various
forms of malignancies, autoimmune diseases, sepsis, and trauma
[83]. It was lately shown that activated immune cells can export
assembled proteasomes (fully functional) as microparticles, thus
possibly revealing the mode of extracellular proteasomes generation.
Moreover, 19S particles as well as the PA28 activator were also
detected in these microparticles [84].

One or two RP may bind in the CP ends; the RP-CP configuration
is termed as 26S complex whereas the RP-CP-RP configuration is
termed as 30S complex. The RP is responsible for the substrate
recognition, unfolding, deubiquitination, and translocation. It is
subdivided into two smaller complexes, namely the base and the lid
[85, 86]. The base is composed of six AAA-ATPases (Rptl-6)
along with three non-ATPases namely Rpnl, Rpn2, and Rpnl3.
The ATPases are responsible for the unfolding of the protein sub-
strate, the opening of the a-gated channel on the CP, and the
translocation of the unfolded protein towards the inner proteolytic
cavity of the proteasome. Both Rpnl-Rpn2 and the ATPases are
necessary for substrate translocation and gating of the proteolytic
channel [87], while Rpnl3 together with RpnlO act as integral
ubiquitin receptors thus recognizing the tagged substrates [88,
89]. Moreover, Rpnl0 acts as a “bridge” subunit that connects the
base and the lid. The lid is composed by 9 Rpn subunits namely
Rpn3, 5-9, 11, 12, and 15. Rpnll serves as a deubiquitinating
enzyme [90] while it stabilizes the otherwise weak interaction
between the CP and the RP [91].
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3.2.2 Assembly

3.3 Various
Proteasome Forms

3.3.1  Immuno-
proteasome

3.3.2  Hybrid
Proteasomes

3.3.3 Thymo-
proteasomes

The incorporation of the base subunits is the first step in the RP
assembly. Rpnl14, Nas6, Nas2, and Hsm3 (PAAF1, gankyrin/p28,
p27, and S5b in human, respectively) are the yeast 19S-specific
assembly factors assisting the RP assembly and not found on the
mature 26S proteasome [92, 93]. These four factors can be also
found named as RAC (RP assembling chaperones) 1, 2, 3, and 4,
respectively [94]. Three intermediates are produced, namely
RPNI-RPT2-RPT1-Hsm3, Nas6-RPT3-RPT6-RPN14, and
Nas2-RPT5-RPT4. These intermediates form the base complex
and Rpn2 and Rpnl3 are finally added to give rise to the final base
complex that will be bound to the lid through Rpnl0. Following
Rpnl0 binding, the chaperones are detached from the base.

The lid assembly is not fully elucidated. Recent studies suggest
that Rpn5, 6, 8, and 11 form an initial stable module where Rpn3, 7,
and 15 then bind and the full lid is formed through the addition of
Rpnl2 [95]. Hsp90 [96] and Yin6 (ortholog of the mammalian Int6)
[97] are two assisting factors identified in the lid formation in yeast.

Upon interferon y (IFNy) stimulation, the constitutively expressed
catalytic subunits are de novo replaced by their cytokine inducible
counterparts, namely pli (LPM2 or PSMB9), p2i (MECL-1 or
PSMB10), and 51 (LPM7 or PSMBS8), thus giving rise to the
immunoproteasome or i20S [98]. Immunoproteasomes exhibit
increased CT-L activity and decreased C-L activity, thus facilitating
antigen presentation due to the generation of antigenic peptides
with increased affinity for MHC class I clefts. Mice lacking immu-
noproteasomes display major alterations in antigen presentation
[99]. Despite this particular role, increasing number of studies
implicate immunoproteasomes in processes irrelevant to antigen
presentation like the adaptive response of the cells to oxidative
stressors in order to preserve homeostasis [ 100], aging [101, 102],
and longevity [103].

The activities of the immunoproteasome can be altered
through the binding of various activators like the RP but also the
11S complex (also known as PA28/REG/PA26), a heptameric
IENy-inducible protein that induces the degradation of short pep-
tides in an ATP-independent manner [104]. There are three 11S
isoforms in higher eukaryotes, namely PA28a, f, and y (or REGa,
B, and y; [105]).

Upon binding of an RP in one end of the CP and an 118 in the
other end, hybrid proteasomes are produced [106]. It is believed
that the RP serves at the substrate recognition while the 11S com-
plex alters the proteolytic potential of the CP.

A specific catalytic 85 subunit has been isolated in mouse cortical
thymic epithelial cells, namely 5t [107]. A similar subunit with
thymus-specific expression was then revealed in humans as well
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[108]. More specifically, 5i subunit is substituted by the proteolytic
active subunit p5t in the relative tissue, thus giving rise to the thy-
moproteasomes. Thymoproteasomes contain fli and f2i along
with f5t, but notably not the constitutive f subunits [108]. In
contrast to B5i incorporation, B5t insertion leads to markedly
decreased CT-L activity, a feature that was shown to be necessary
for the positive selection of developing thymocytes [107, 109].

An additional tissue-specific subunit has been identified in D. mela-
nogaster where Prosalpha6 subunit is replaced by the testis-specific
subunit Prosalpha6T. It is suggested that this substitution is neces-
sary for spermatogenesis [110, 111].

Finally, PA200/BIm10 (human/S. cerevisiae) is another acti-
vator that similarly to the 118§ induces peptides degradation by the
CP in an ATP-independent manner [112]. This activator has been
implicated so far in various processes ranging from proteasome
assembly [112] and inhibition [113], to DNA repair [114] and
mitochondrial checkpoint regulation [115].

Although the proteasome structure and function is extensively stud-
ied, the transcriptional regulation of the proteasome genes is still not
fully elucidated. Rpn4 is a yeast transcription factor controlling the
expression levels of the proteasomal genes bearing the proteasome-
associated control element (PACE) in their promoters [116]. Rpn4
controls proteasome expression under both normal and stress condi-
tions including proteasome inhibition and DNA damage [117].
Recently, a minimal hexamer “PACE-core” sequence that is respon-
sive to Rpn4 was identified. These PACE-cores are present in many
genes related to proteasome function (including the proteasome
assembly chaperones), although they cannot substitute for the
known PACE of the subunits [ 118]. Nevertheless, no human homo-
logue of RPN4 has been identified thus far.

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcrip-
tion factor that has been implicated in the regulation of proteasome
genes in mammals. Nrf2 is the main responsible for the expression
of various antioxidant enzymes [ 119], including several components
of the proteostasis network namely, chaperons and proteasome sub-
units under specific conditions [120]. Nrf2 belongs to the family of
Cap‘n’collar (Cnc) transcription factors. It is responsible for the cel-
lular transcriptional response to oxidative stressors and electrophilic
xenobiotics thus being nominated as the central mediator of a prom-
inent antioxidant response system. Kelch-like ECH-associated pro-
tein 1 (Keapl) is the main regulator that keeps Nrf2 in the cytoplasm
and mediates its proteasomal degradation [121]. Upon a stimulus,
Nrf2 may become phosphorylated and/or Keapl may be modified,
resulting in the disruption of the Keapl-Nrf2 complex and the
nuclear translocation of Nrf2 [122]. In the nucleus, Nrf2 heterodi-
merizes with small musculo-aponeurotic fibrosarcoma (Maf)



14 Nikoletta Papaevgeniou and Niki Chondrogianni

3.4.2 Posttranslational
Modifications

proteins and recognizes a cis-acting DNA element namely antioxidant
response element (ARE) or electrophile responsive element (EpRE;
5-TGA[C/TINNNGC-3’) on its target genes, thereby conducting
their transcription [123-125]. Several studies have reported the
Nrf2-mediated proteasome induction as it will be discussed in vari-
ous sections below. The nematode ortholog, SKN-1 has been also
implicated in the regulation of proteasome genes. More specifically,
depending on the redox conditions, proteasomal genes have been
shown to be regulated by SKN-1 [126]. SKN-1 has been shown to
exert pivotal role in longevity [126, 127] and resistance to oxidative
stress. Moreover, it has been shown that proteasome deregulation/
inhibition imposes SKN-1 translocation to the nucleus and pro-
motes proteasome subunits upregulation [128-131]. We have also
found that proteasome activation through the overexpression of pbs-
5 proteasome subunit and the consequent life-span extension is at
least partially SKN-1-dependent [132].

Nuclear factor erythroid-derived 2-related factor 1 (Nrfl, also
known as NFE2L1 /LLCRF1 /TCF11) is also a member of the CNC
family [133]. NFE2LI gene encodes two main isoforms [ 134]: Nrfl
(a short isoform) and TCF11 (a long isoform). TCF11 was shown to
regulate the induction of proteasome genes, rather than Nrf2, after
proteasome inhibition via an ERAD-dependent feedback loop [135,
136]. It was further elucidated that in normal conditions, protea-
somes are active and they degrade Nrfl. In contrast, when there is a
partial proteasome inhibition, proteasomes proceed to limited prote-
olysis thus releasing the processed Nrfl (lacking its N-terminal
region) from the ER which is also the active Nrfl form that promotes
gene expression [ 137]. Interestingly, if Nrfl expression is lost in the
brain, various proteasome subunits get downregulated and it was
suggested that Nrfl perturbations may be at least partially responsi-
ble for neurodegenerative diseases progression [59]. Given the inter-
play between Nrfl and the proteasome, such possibility could also
implicate the proteasome in this Nrfl-dependent process.

Finally, it was recently shown that the expression of p catalytic
subunits and especially f5 subunit in mammals is regulated by consti-
tutively activated signal transducer and activator of transcription 3
(STAT3; [138]). There is more available data for the transcription
factors of the immunosubunits. More specifically, interferon regula-
tory factor-1 (IRF-1) has been suggested to be the master regulator
for the concerted expression of immunoproteasome subunits [139,
140]. More recently, the transcription factor PU.1 was shown to
bind and transactivate PSMBS8, PSMB9 and PSMB10 (immunosub-
units) promoters. Furthermore, PU.1-dependent transactivation and
PU.1 expression were shown to be repressed by PML/RARa [141].

The various proteasome regulators (RP/19S, PA28/11S and
PA200,/Blm10) that have been described above alter drastically the
proteasome activities. Apart from this kind of proteasome activity
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regulation, several posttranslational modifications (PTMs) such as
oxidation, phosphorylation, ubiquitination, O-linked addition of
N-acetylglucosamine, glycosylation, N-acetylation, and lipid per-
oxidation may also have an impact on proteasome function.

Rpt3 and Rpt5 are two subunits that have been shown to be
carbonylated (oxidized) in human end-stage heart failure and
experimental myocardial ischemia [142, 143]. In both cases, this
oxidation leads to proteasome activities compromise.

Phosphorylation is one of the most frequent PTMs that have
been detected in several CP and RP subunits. Two CP subunits
namely, a7 and a3 subunits were initially identified to be phos-
phorylated and proteasomes with o7 phosphorylated subunit have
elevated activity levels [144]. It was additionally found that a7
phosphorylation stabilizes 26S proteasomes and upon IFNy treat-
ment, 268 proteasomes are destabilized due to a7 dephosphoryla-
tion [145]. Caseine kinase II was identified to be the kinase
responsible for this phosphorylation [146]. Calcium/calmodulin-
dependent protein kinase II (CaMKII) and polo-like kinase (Plk)
were also identified as proteasome-phosphorylating kinases. More
specifically, CaMKII phosphorylates Rpt6 both in vitro and in vivo
and consequently stimulates proteasome activity and plays a regula-
tory role in remodeling of synaptic connections [147]. Plk was
found to interact with all a subunits but o2 and p1, p2, p3, p5, and
7 subunits, to phosphorylate a3 and a7 subunits in vivo and to
enhance proteasome activities [ 148]. Using MS/MS, Kikuchi et al.
[149] identified 33 Ser/Thr phosphorylation sites in 15 subunits of
the yeast proteasome and showed that dephosphorylation of the
198 RP results in a 30% decrease in ATPase activity. Other groups
have found additional subunits subjected to phosphorylation (al,
a2, a7, and f6 in mammalian proteasomes [150, 151]. In contrast
to the abovementioned activating properties of the phosphoryla-
tion of proteasome subunits, diminished 26S activity in failing
human hearts is suggested to be related to the impaired docking of
the RP to the CP as a result of decreased Rpt subunit ATPase activ-
ity and o7 phosphorylation [152]. DNA damage induces phos-
phorylation of several a-subunits (a5, a6, o7), thus probably
affecting protein-protein interactions and gate opening due to the
increased net negative charge given by the phosphate groups [153].

Ubiquitinated forms of a5, a6, o7, and p5 have been identified
following doxorubicin treatment. Ubiquitination of proteasome sub-
units inhibits CT-L and C-L activities in vitro while in vivo doxorubi-
cin treatment enhances proteasome activities in parallel to the
decreased levels of ubiquitination thus suggesting that the proteasome
activities upon DNA damage are regulated by ubiquitination [153].

O-Linked addition of the monosaccharide N-acetylglucosamine
(O-GlcNACc) has been shown to inhibit the 268 proteolytic activi-
ties but not the 208 activities. It was further shown that the ATPase
activity is inhibited and Rpt2 is identified as a substrate for this
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3.5 Elimination
of Proteasomes

kind of PMT [154]. It was also suggested that the O-GlcNAc
system may participate in neurodegeneration and this is at least
partially linked with the inhibition of the proteasome [155]. In
addition, O-GlcNAc-sites have been identified in CP subunits,
namely al (Ser5), a4 (Serl130), a5 (Serl98), and a6 (Ser110) and
the p subunit p6 (Ser57 and Ser208; [156]).

Subunits al, a2, a3, p4, p5, and p6 of the murine cardiac 20S
proteasome were identified to be glycosylated without however
revealing whether this has a positive or a negative effect on protea-
some activities [ 150].

N-Acetylation was also shown to affect proteasome subunits.
More specifically, all a-type subunits and p3 and 4 subunits were
found acetylated in yeast and CT-L activity was shown to be ele-
vated in a mutant that cannot perform N-acetylation [157]. Rpt4,
Rpt5, Rpt6, Rpn2, Rpn3, Rpn5, Rpn6, Rpn8, Rpt3, and Rpnll
were also found acetylated in yeast but nevertheless, the activities
were not altered [158] whereas Rpt3 and 6 and Rpnl, 5 and 6
were found acetylated in murine proteasomes [150].

Proteasome subunits can also be subjected to modification by
the lipid peroxidation product 4-hydroxy-2-nonenal (HNE). HNE
modification of al, a2, and a4 subunits during cardiac ischemia/
reperfusion results in reduced peptidase activities [159, 160]. A
similar decrease was also found in epidermis samples from old
donors and HNE-modification of certain a-subunits was involved
in the age-related decline of the proteasome function [161].
Accordingly, HNE modification promoted proteasome activity
decline in neural PC6 cells [162].

Finally, other types of PMTs like N-myristoylation [158],
S-glutathionylation [163], and nitrosylation [150] have also been
identified. N-myristoylation of Rpt2 does not alter proteasome
activities but it controls proteasome localization [164].
S-glutathionylation of o5 subunit promotes gate opening and
therefore stimulation of 208 activity while the effects of nitrosyl-
ation are not yet elucidated. Despite the abovementioned changes
of proteasome activity, several PTMs have been shown to indirectly
alter the function of the proteasome through alterations in the
ability of various RP subunits to directly interact with protein sub-
strates (e.g., autoubiquitination of Rpnl3; [165], monoubiquiti-
nation of Rpnl0; [166], in situ ubiquitination of Rpnl0 (S5a),
Rpt5, and Uch37DUB; [167]).

Proteasomes are degraded through the lysosomal machinery. They
have been found in autophagic vacuoles, thus suggesting that they
follow the pathway of nonselective autophagy. Nevertheless, under
starvation conditions, they follow the heat-shock cognate protein
of 73 kDa (hsc73)-mediated transport [ 168].
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4 Proteasome Status During Aging/Senescence in Cellular and Organismal

Models

4.1 Cellular
Senescence

4.2 Model
Organisms

4.2.1 Saccharomyces
cerevisiae

4.2.2 Caenorhabditis
elegans

Proteasome activities diminish upon progression of senescence of
human fibroblasts [169]. Moreover, partial inhibition of the pro-
teasome by 50% in young cells (in levels analogous to the levels
normally found in senescent cells) elicits a premature senescence
phenotype [170] in a p53-dependent process [171]. Elaborate
analysis of the expression of the various proteasome subunits dur-
ing the senescence progression has revealed the critical role of the
pB-catalytic subunits that have been suggested to act as the rate-
limiting factors in the proteasome assembly pathway [169].
Additionally, senescent cells exhibit a reduced response to IFNy,
thus resulting in lower expression levels of immunosubunits [172].
Apart from expression and assembly alterations during senescence,
the proteasomal function is also affected by the accumulation of
damaged, aggregated, and cross-linked proteins as shown by the
negative effect of lipofuscin on proteasome activities [ 173].

In contrast to senescent fibroblasts, fibroblasts derived from
healthy centenarians exhibit proteasome activities similar to the
ones exhibited by cells derived from younger donors. Both of these
cultures differ significantly in terms of proteasome potential with
the cultures derived from older donors that are not centenarians
[174]. These results further advocate for the pivotal role of protea-
some in cellular senescence and aging.

Proteasomal function has been reported to deteriorate during sta-
tionary phase conditions [175] and the decreased proteolysis has
been correlated with increased rates of 26S proteasomes disassem-
bly [176]. Recently, the important role of Cdc48-Vmsl complex in
the preservation of the 26S proteasome assembly was revealed
[177]. Upon starvation, a relocalization of the proteasome subunits
from the nucleus into cytoplasmic structures termed as proteasome
storage granules (PSGs) occurs [178]. The nuclear-to-cytosolic
proteasome relocalization upon starvation is affected by chrono-
logical aging since young cells efficiently relocalize the proteasomes
and form PSGs in contrast to the old cells. This process is depen-
dent on two of the three N-acetylation complexes [179]. PSG for-
mation requires fully assembled 26S proteasomes and Rpnll
proteasome subunit is crucial for both PSGs formation and cell sur-
vival during stationary phase [180]. Finally, 20S core sequestration
into PSGs is mediated by Blm10 whereas upon resumption of cell
growth Blm10 facilitates nuclear import of the 208 particles [181].

Cell-specific photoconvertible reporters assaying proteasome activ-
ity in the nematodes have revealed an impaired UPS function in
the dorsorectal neurons of 7-day-old worms as compared to the
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4.2.3 Drosophila
melanogaster

4.2.4 Rodents

4.2.5 Homo sapiens

one found in young adults. In contrast, no alterations are scored in
body-wall muscle cells thus suggesting a cell type-specific decline
of the proteasome in nematodes [182]. The pivotal role of the
proteasome in the aging procedure of the animal is exhibited by
the fact that deletion/knockdown of various 19§ and 20S protea-
some subunits elicited premature aging and shortened life-span
[132, 183, 184]. Finally, increased ROS levels (that are strongly
related to chronological age) are linked with impaired UPS activity
and this in turn may potentiate disease progression [185].

During the progression of aging, the proteasome function becomes
gradually impaired in D. melanogaster fruits flies. More specifically,
the 26S proteasome assembly has been shown to be impaired dur-
ing aging. This impairment is also accompanied by a significant
reduction of the endogenous ATP levels. In bright contrast, the
20S proteasome function is slightly increased, thus suggesting a
possible compensatory mechanism in response to loss of 26S integ-
rity [ 186]. Other studies have shown that the proteasome function
is decreased in the somatic tissues upon the aging progression but
however elevated proteasome activities are maintained in the
gonads and the eggs of the aged flies [187].

Proteasome activity and /or expression are compromised in various
tissues in mice and rats including adipose [ 188], retina [ 189, 1901,
liver [191-193], lung [191], muscle [194], brain [192], spinal
cord [162], heart [195, 196], hippocampus, and cortex [162]. On
the other hand, increased levels of immunosubunit-containing
proteasomes are usually detected in aging tissues [194, 197].
Nevertheless, several controversial results have been reported sug-
gesting that proteasomal activity alterations in brain differ between
species and brain regions [162, 198, 199]. In bright contrast,
enhanced proteasome activity levels were found in the longest-
living rodents, namely the naked mole rats [200].

A transgenic p5t-overexpressing mouse has decreased CT-L
activity and eventually exhibits a premature senescent phenotype
that leads to shortened life-span. Moreover, the animals accumu-
late polyubiquitinated and oxidized proteins while they are more
prone to age-associated metabolic disorders [201]. Similar results
were obtained in LMP2 (B1i) knockout mice [202]. Accordingly,
PA28y-deficient mice age prematurely [203]. Finally, CT-L pro-
teasome activity is lower in the senescence-accelerated mouse
prone 8 (SAMPS8) as compared to the relative control SAMRI that
exhibits normal aging phenotype [204].

Decreased levels of proteasome expression and/or function has
been revealed during the progression of aging in several human
tissues including lymphocytes [205, 206], lens [207], skeletal
muscle [208 ], and epidermis [161, 209], with controversial results
for few tissues [210-212]. Additionally, compositional but not
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functional alterations have been also suggested for tissues like liver
[213]. In bright contrast, proteasome function is maintained in
fibroblasts derived from healthy centenarians [174]. The effects of
aging and cellular senescence on the various levels of proteasome
regulation are summarized in Fig. 2.

5 Proteasome Impairment During Aggregation-Related Diseases

5.1 Alzheimer’s
Disease

5.2 Parkinson’s
Disease

The link between UPS and the AD onset and progression was ini-
tially suggested when senile plaques were stained positively for
ubiquitin [214] while elevated levels of UBB*! (a mutated ubiqui-
tin form) were detected in sporadic and familial AD [215]. When
proteasome activities of different parts of the brains of AD patients
were tested, diminished levels were detected, thus verifying the
link between dysfunctional UPS and AD [216, 217]. A vicious
circle exists since AP, paired helical filament-tau and the UBB*! are
all identified as inhibitors of the proteasome function [218-220]
and this inhibition further leads to f-amyloid precursor protein
(ABPP), AP, and tau accumulation [219, 221]. ER stress is induced
in activated astrocytes from AD brains and autophagy is increased
[222]. Nevertheless, marked inhibition of proteasome activities
and impairment in the autophagic flux is monitored in cells over-
expressing APPP mutant isoform thus suggesting that the whole
proteolysis network is affected during AD [223]. Finally, several
E3 ligases such as parkin [224], HRD1 [225], and UCHL-1 [226]
are downregulated in AD while E2-25K, a nontraditional ubiquitin-
conjugating enzyme is accumulated in AD samples [227].

Aggregated and monomeric a-synuclein is deleterious for neurons
viability due to its inhibitory role on both 20S and 26S proteasome
activities. It was additionally shown that aggregated a-synuclein
directly interacts with Rpt5 subunit [228]. In mutant a-synuclein
transgenic mice a remarkable downregulation of proteasome activ-
ityisrecorded [229]. Nevertheless, it was suggested that a-synuclein
expression levels per se do not significantly affect proteasome activ-
ities, subunit expression, assembly, and function but additional
mechanisms contributing to a-synuclein aggregation are central
players in the deterioration of the UPS during PD [230].

Parkin has been identified as an interacting protein of various
proteasome subunits such as a4 [231], Rpt6 [232], and Rpnl0
[233]. Wild-type parkin has been shown to activate the 26S pro-
teasome (see in Subheading 6.2.2) in contrast to PD-linked parkin
mutants that lose this ability, thus impairing the 26S proteasome
assembly [234]. In accordance, parkin knockout mice and flies
exhibit reduced proteasome activity [234].

The 20S [235] but also the 26S [236] proteasome activities
are diminished in the substantia nigra of PD patients while reduced
levels of a-subunits, RP and 11S complexes have been revealed in
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Fig. 2 The effects of aging on the various levels of proteasome regulation. Proteasomes can be found in the
nucleus (nuclear), in the cytosol (cytosolic), attached to the endoplasmic reticulum mediating the ERAD
(ER-associated) as well as in the extracellular space (named as extracellular or circulating). 30S complex appears
in the various compartments in the figure for the scope of presentation but various complexes have been detected
in the different compartments in vivo. However, so far only circulating 20S complexes have been isolated although
19S and 11S complexes have been also detected in various somatic fluids. The supra-complexes that constitute
the proteasome potential include the constitutive proteasome (20S) and the immunoproteasome (i20S), the 26S
and 30S complexes, the hybrid proteasomes, the i20S:11S as well as the 20S:PA200 complexes as shown in the
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brain samples from sporadic PD patients [237, 238]. Finally,
reduced proteasome activities are also detected in peripheral blood
lymphocytes of patients with PD thus paving the way to the devel-
opment of a potential peripheral biomarker of PD [239].

5.3 Huntington’s As in all proteinopathies, the accumulation of aggregated proteins

Disease suggest a failure of the proteostasis network per se. PolyQ aggre-
gates and ubiquitin co-localize in brain samples from HD patients
[32], while mutant ubiquitin (UBB*!) has been also detected in IBs
[240]. Numerous studies have shown that mHTT inhibits protea-
some function in cellular models as well as in vivo in animal models
or patients thus suggesting choking or clogging of the proteasome
by mHTT aggregates [241-244]. In an attempt to find the bio-
chemical cause of proteasome inhibition, polyQ-containing proteins
were shown to get kinetically trapped within proteasomes, thus
inhibiting them [245, 246]. A selective inhibition of 26S protea-
some but not 208 complex is also suggested and this is related to the
interaction of HTT filaments with the 198 particles [247] as well as
to ATP depletion due to the HD-induced dysfunction of mitochon-
dria [248]. However, an indirect proteasome inhibition has been
also suggested [249], while efficient degradation of expanded polyQ
sequences without inhibitory effects on the proteasome has also
been shown [250]. The abovementioned studies verify the contra-
dictory results regarding UPS function and HD onset and progres-
sion. Furthermore, studies in HD mouse models challenge the
concept of proteasome impairment during HD. Bett et al. [251]
have revealed that overall proteasome function is not impaired by
trapped mutant polyQ in R6/2 HD mice, while Maynard et al.
[252] reported that although expression of N-mHtt caused a gen-
eral UPS inhibition in PC12 cells, no inhibition was detected in the
brains of R6/2 and R6,/1 mice. Finally, dynamic recruitment of fully
active proteasomes into IBs has been also suggested [253].

Fig. 2 (continued) inserted square. As potentially all proteins, the proteasome expression and function may be
regulated in the following levels: transcriptional, posttranscriptional, translational, and posttranslational level. The
two additional levels that appear in the figure, namely the assembly and the proteolysis level, constitute parts of
post-regulation but given their importance in proteasome biology, we have included them here as additional regu-
latory levels. Multiple studies have already revealed an effect on proteasome expression and/or function/activity
in several of those levels [e.g. identified transcription factors that regulate proteasomal RNA expression, regulative
conditions for the shift between the expression of constitutive proteasome subunits or immunosubunits, chaper-
ones that regulate its assembly, various PTMs (X in the figure represents the various groups that can be added or
altered on the various proteasome subunits), association with different activators, alterations by aggregated mate-
rial or alterations due to the energetic status of the cell]. During the progression of aging and senescence in
organisms and cell cultures respectively, several of these regulatory levels are affected. The red arrows indicate
decrease/downregulation and the blue arrows indicate increase/upregulation of pathways that have been shown
to eventually affect the proteasome content and/or function during aging and senescence. Some of these regula-
tory levels affect mainly the proteasome content, some affect the proteasome activity without altering the content
and some affect both as shown by the lines on the left of the figure. For more details, please refer to the text
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5.4 Amyotrophic
Lateral Sclerosis

5.5 Prion Diseases

The detection of ubiquitin and ubiquitin ligases within the ALS-
related protein aggregates in ALS mutant mice [254] and in
samples from ALS patients [255-257] indicates the possible
involvement of UPS in ALS pathophysiology. Deposition of
TDP-43 protein aggregates leads to proteasome inhibition
[258]. Nevertheless inclusion bodies have been suggested to
exert a possible neuroprotective role, given that monomeric and
oligomeric misfolded ALS proteins are the actual toxic molecules
in motor neurons [259]. Motor neuron-specific knockout mice
for Rpt3 198 subunit possess inclusions with ALS-related pro-
teins such as optineurin, ubiquilin 2, FUS, and TDP-43, thus
indicating that decreased proteasome activity may result in ALS
phenotype [260]. Accordingly, cells from rat spinal cords treated
with lactacystin possess reduced proteasome activity and accu-
mulate neurofilaments [261]. In line with these results, the UPS
is found inhibited in terms of activity and/or expression in neu-
ronal cell lines overexpressing human mSODI1 [262], in
SOD19%34 transgenic mice [263, 264 ], as well as in samples from
ALS patients [265-267]. Finally, upregulation of immunosub-
units [268], PA28y [268 ], and PA28af [269] occur in the motor
neurons of SOD1%%34 transgenic mice.

Accumulation and aggregation of prion and prion-like proteins
in intracellular inclusions and extracellular plaques have been
reported to impair protein homeostasis and to provoke cellular
stress [270]. Prions cause severe ER stress [271] accompanied
by the consequent downregulation of protein translation
through chronic eIF2a phosphorylation [272] and impairment
of ER protein translocation [273]. The above observations may
link the proteolytic pathways to PrD. In addition, abnormal lev-
els of ubiquitin and ubiquitinated proteins have been detected
in intracellular inclusions located in the brain tissue, while PrPS
specifically inhibits the pB-type proteasome subunits in two dif-
ferent neuronal cell lines and prion-infected mouse brain.
Immunoblot analysis revealed no loss of subunits, while oligo-
meric inhibitory PrP species directly inhibit the activities of the
20S particle without affecting the 26S assembly. Collectively,
the loss of proteolytic activity results from an inhibitory effect
on the proteasome [274]. More recently, it was suggested that
PrP aggregates inhibit the proteasome by stabilizing the closed
conformation of the 20S proteasome and therefore obstruct the
entry of the substrate [275]. Table 1 summarizes the proteosta-
sis factors that have been found to be atfected upon the progres-
sion of aggregation-related diseases.
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6 Proteasome Activation During Aging

6.1 Saccharomyces
cerevisiae

6.1.1 20Sand 19S
Proteasome Subunits
and Other Proteasome
Activators

6.1.2 E1,E2 and E3
Ligases

6.1.3 Deubiquitinases

Manipulation of several UPS-related factors in various cellular and
organismal models results in an increase of the proteasome/UPS
function with various effects in the cellular/animals life-span and
stress resistance. The so far revealed factors include 20S and 19S
proteasome subunits, other proteasome activators, E2 and E3 ligases
and deubiquitinases. Moreover, the proteasome has been shown to
get activated under various conditions and through several molecu-
lar pathways while there are also few compounds that have been
shown to promote its activation. These factors/conditions/path-
ways in the various cellular and animal models that ultimately affect
aging, longevity, and stress resistance are summarized below.

The yeast orthologs for o- and p-type proteasome subunits are
PRE5/6/8/9/10, PUP2, SCL1 and PRE1/2/3/4/7, PUP1/3,
respectively. Accordingly, the yeast 19S complex ATPases and non-
ATPases are termed RPT1-6 and RPN1-12, respectively (Table 2).

20S proteasome activity gets elevated upon oS5 subunit
S-glutathionylation and the consequent gate opening which results in
increased ability of the yeast cells to degrade oxidized proteins [163].

Blm10 is an alternative proteasome activator identified in S.
cevevisine [276]. Enhanced degradation of peptide substrates is
scored upon binding of Blm10 on the 208 core particle through a
gate opening strategy [277].

The Mubl/Ubr2 ubiquitin ligase complex is responsible for
Rpn4 (the yeast transcription factor controlling the expression
of proteasome genes) tagging for proteasomal degradation
[278, 279]. Loss of UBR2 and MUBI results in stabilization
and increase of Rpn4 levels and a consequent induction of 208
and 26S subunits expression levels. The elevated protein levels
are accompanied by enhanced activity levels that eventually lead
to life-span extension. This extension is exclusively related to
the increased proteasome function and the downstream degra-
dation of unstable proteins [280].

Low ubiquitin levels in yeast are sensed and trigger the expres-
sion of Ubp6, a proteasome-associated DUB. As a consequence,
increased numbers of proteasomes loaded with Ubp6 are moni-
tored with parallel alterations in proteasome function and ulti-
mately, the restoration of the ubiquitin pool [281]. More
recently, it was shown that the ubiquitin chain of ubiquitinated
proteins is bound to the 26S-associated DUB, Ubp6, and this
interaction promotes ATP hydrolysis and enhancement of their
own degradation [282].
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and Compounds

6.2 CGCaenorhabditis
elegans
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Ubp3 is a conserved DUB that suppresses accelerated
replicative aging and heat-stress sensitivity through the induction
of proteasome-mediated degradation of cytotoxic proteins or
(depending on the stage at which the damaged protein is commit-
ted for destruction) through their rescue from destruction [283].

Umpl is a proteasome-dedicated assembly chaperone in yeast.
Upon its overexpression, yeast cells exhibit increased resistance to
various oxidative stressors, enhanced degradation rates of oxidized
proteins, and elongated chronological life-span. All those effects
are positively correlated with the elevated levels of CT-L activity
exhibited by the overexpressors [229]. In accordance, deletion of
UMPI gene results in increased levels of protein oxidation and
reduced survival during stationary phase [175].

Overexpression of the heat-shock protein Hsp104 drives to ele-
vated levels of disaggregase activity resulting in lower levels of protein
aggregates and importantly in restored levels of UPS activity in aged
yeast cells. Nevertheless, under those conditions the proteasome lev-
els are unaffected and the cellular life-span is not altered [284].

PAP1 peptide (proteasome-activating peptide 1) activates the
20S proteasome activity through a-gate opening. Yeast cells are
then able to effectuate more sufficient clearance of the oxidized
proteins and therefore to exhibit an increased resistance to oxida-
tive stress [285].

CR extends the replicative and chronological life-span [286,
287]. Increased levels of CT-L activity are scored in CR yeast cells
accompanied by decreased levels of oxidized/ carbonylated pro-
teins. Young CR yeast cells carry lower amounts of ubiquitinated
proteins as compared to the control cells while CR preserves the
ubiquitinylating ability of aged yeast cells, thus resulting in
increased viability of the CR cells [288].

Adcl7 is a newly identified chaperone that has been suggested
to adjust proteasome assembly upon increased demand. It interacts
with Rpt6 subunit (without being part of the proteasome) to assist
an early step during proteasome assembly in yeast and it is induced
upon conditions of proteasomes deficiency. As a result, Adcl7 is
important for biogenesis of adequate proteasome levels during
stress and consequently for cell viability [289].

Finally, it was recently shown that the proteasome-mediated life-
span extension is partially correlated to the deregulation of the AMPK
signaling pathway. More specifically, increased proteasome activity is
linked to premature activation of respiration that induces a mitohor-
metic response with beneficial impact on yeast life-span [290].

The nematode orthologs for a- and B-type proteasome subunits
are PAS1-7 and PBS1-7, respectively. Accordingly, the nematode
19§ complex ATPases and non-ATPases are termed RPT1-6 and
RPN1-12, respectively (Table 2).
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6.2.1 20Sand 19S
Proteasome Subunits

6.2.2 E1,E2 and E3
Ligases

We have recently shown that overexpression of pbs-5 catalytic
subunit results in proteasome activation in terms of both content
and activity. As a result, pbs-5-overexpressing animals exhibit
extended life-span and ameliorated healthspan while they are more
resistant to oxidative stress [132]. A similar phenotype has been
achieved through the overexpression of'a 19S subunit, namely 7pzn-
6. Transgenic nematodes possess elevated proteasome activities
that lead to increased survival to oxidative and mild heat stress and
ameliorated response to proteotoxicity [291]. This particular sub-
unit has been correlated with the increased proteasome activity
that is detected in the long-lived glp-1 mutants. Interestingly, pbs-5
subunit is the only other proteasome subunit that is moderately
increased in those animals [291]. A similar induction is also
observed for the ortholog of 7pn-6, namely PSMDI11, and the
ortholog of pbs-5, namely p5, in human embryonic stem cells [292 ]
and in human embryonic fibroblasts [293], respectively, as
described in Subheading 6.5.1.

AIP-1 (homologue of mammalian AIRAP) is a non-constitutive
198 proteasome subunit that is induced following exposure to arse-
nite. Upon aip-1 overexpression, the nematodes conduct a more
effective degradation of damaged proteins in stress response condi-
tions, e.g., following arsenic treatment, and fumarylacetoacetate or
maleylacetoacetate treatment [294, 295]. In contrast, silencing of
ap-1 results in shorter life-span [184]. As described in Subheading
6.5.1, its mammalian homologue, AIRAP, promotes 20S protea-
some activation that enables the cells to cope with proteotoxic stress
induced by an environmental toxin like arsenite [296].

Modulation of several E3 ligases has been shown to result in life-
span extension mainly through the enhanced degradation of key
components for longevity and stress resistance. For example, the
conserved insulin /IGE-1 signaling (IIS) pathway is a major path-
way that governs the nematodes growth and differentiation [297 ]
with DAF-16 (transcription factor of the FOXO family that is the
downstream regulator of the IIS pathway) being the central player
[298]. The results regarding DAF-16 effects on proteasome activi-
ties per se are controversial. The wt form of the main IIS receptor,
DAF-2, has been shown to positively affect the activities of the
proteasome since daf-2 mutants (where daf-16 expression is ele-
vated), possess lower proteasomal activity [299]. In contrast,
Vilchez et al. [291] have suggested that in glp-I mutants CT-L
proteasome activity is increased through DAF-16 activation while
we have also revealed a DAF-16 positive dependence in the pbs-5-
overexpressing nematodes [132]. A similar positive dependence
was also suggested by Holmberg’s group using an in vivo reporter
system for UPS activity [300].

EGF pathway has been also implicated with the UPS. A posi-
tive regulation of the UPS activity via Ras-MAPK pathway and the
EOR-1 and EOR-2 transcription factors has been suggested [301].
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This increase is correlated with SKR-5, a Skp-1-like protein, upon
the loss of which, no UPS activation is observed while shorter life-
span is monitored [301].

Proteasome subunit expression is induced through SKN-1
upon proteasome deregulation or inhibition [128-131]. H,O,
pretreatment of nematodes leads to SKN-1-mediated 20S protea-
some activity elevation but notably not to alteration of the 268
activity [302, 303]. Moreover, it has been shown that IIS affects
proteasome activity in a SKN-1-dependent manner [304]. Loss
of a WD40 repeat protein, namely WDR-23, is accompanied by
accumulation of SKN-1 in the nucleus and subsequent extension
of life-span and increased resistance to stress. WDR-23 interacts
with CUL4/DDB-1 ubiquitin ligase in order to target SKN-1 for
degradation [128]. It is however noteworthy that UPS-
independent regulation of SKN-1 through WDR-23 has been
also suggested [305].

Elevated levels of proteasome activity accompanied by increased
levels of various proteasome subunits have been also revealed in
various dietary restriction (DR) nematode models [291, 306].
WWP-1 is a HECT E3 ligase that has been shown to be indispens-
able for the DR-mediated life-span extension [307]. Moreover, its
overexpression in ad libitum-fed nematodes promotes a moderate
but still significant 20% life-span extension in a FOXA transcrip-
tion factor pha-4-dependent way. Ubiquitination of specific sub-
strates that are pivotal for DR-related longevity has been suggested
as the mode of action of WWP-1 and the crucial E2 ligase that
collaborates with WWP-1, namely UBC-18 has been also identi-
fied [307]. In agreement, overexpression of the human WWP1
delays the progression of cellular senescence in human fibroblasts,
while irreversible premature senescence is established upon its
knockdown [308] (see Subheading 6.5.1).

Modulation of UBH-4 DUB in C. elegans has been implicated
with alterations in proteasome activities and with notable effects
in stress/proteotoxicity resistance and longevity. More specifi-
cally, ubh-4 silencing results in proteasome activity induction
without alterations of the relative expression levels. Ubh-4 was
identified as a DAF-16 target gene that may slightly affect life-
span of wt animals with no effects on animals with suppressed I1S
pathway [300]. Accordingly, when #chl5, the human ortholog of
ubh-4, is knocked down, increased UPS activity is monitored
[309] (see Subheading 6.5.1).

Stress adaptation has been shown to occur in nematodes follow-
ing repeated exposure to mild heat shock or mild doses of oxi-
dants and this hormetic effect has been linked to enhanced
longevity [310, 311]. More recently, it was revealed that the mild
adaptive stress induced by exposure to H,0O, results in elevated
proteasome activity [302].
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6.3 Drosophila
melanogaster

Exposure of nematodes to UV increases UPS function via the
activation of the innate immune system with a consequent increased
proteostasis and systemic stress resistance [312].

Protein aggregation has been also shown to affect proteasome
function and activity. Increased RNA expression levels of key UPS-
relevant genes (i.e., pdr-1, ubc-7, pas-5, pbs-4, rpt-2, and psmd9) are
detected in transgenic animals overexpressing A53T human synu-
clein, an aggregation-prone protein found in cellular inclusions in
PD, Lewy body dementia, and multiple system atrophy [313].

Although several compounds have been described to promote
proteasome activation in cells in vitro [314], only few of them have
been examined for their proteasome-activating properties in C. ele-
yoans and their downstream effects in life-span. Quercetin, a known
polyphenolic compound, induces proteasome activation and conse-
quently inhibits Af;_4,-induced paralysis in nematodes [315]. Given
that quercetin is a life-span-extending compound [316], one cannot
rule out the possibility that this is also related to the induced protea-
some activation. Several plant extracts were recently tested in C.
elegans subjected to high glucose levels for reversal of the glucose-
induced survival reduction. Extracts from hibiscus, elderberries,
jlaogulan, and blackberries leaves have been identified as potent res-
cuers while they also promote proteasome activation thus suggesting
an efficient degradation of glucose-impaired proteins [317].
Additionally, quercetin prevents glucose-induced reduction of sur-
vival through SIR-2.1, DAF-12, and MDT-15 that activate UPR
and proteasomal degradation [318]. More recently, a catechin-
enriched green tea extract was shown to completely reverse the glu-
cose-induced decrease of life-span. Furthermore, it was shown that
the recorded survival extension was dependent on si»-2.1 and most
importantly on #ba-1 that encodes for the unique El-ubiquitin-
activating enzyme in C. elegans. This extract stimulates the protea-
some activities and thus reverses the glucose-mediated damage
through the activation of adaptive responses that include protea-
somal degradation [319]. Enhanced activity accompanied by ele-
vated levels of 7pn-5 is monitored following treatment with
acetylcorynoline, a Chinese herb-derived alkaloid component [320].
We have also recently shown that feeding of wt C. elegans with
18a-glycyrrhetinic acid, a triterpenoid, promotes life-span extension
that is dependent on proteasome activation [321]. Finally, osmotic
stress caused by NaCl treatment, leads to elevated levels of protea-
some degradation as a protective action against stress-induced accu-
mulation of damaged proteins [322].

The fly orthologs for a- and B-type proteasome subunits are
Prosalphal-7 and Prosbetal-7, respectively. Accordingly, the
Drosophila 19S complex ATPases and non-ATPases are termed
RPTI1-6 and RPNI1-12, respectively (Table 2).



6.3.1 20Sand 19S
Proteasome Subunits

6.3.2 E1,E2 and E3
Ligases

6.3.3 Deubiquitinases

6.3.4 Other Conditions
and Compounds

UPS Activation in Anti-Aging and Aggregation-Related Diseases 31

Ectopic overexpression of Rpnll 19S complex subunit attenuates
the age-related decline of proteasome activities. As a consequence,
the flies exhibit an elongated life-span [323].

Loss-of-function mutations of the Drosophila Ubiquitin Activating
Enzyme, Ubal results in reduced life-span and in severe motility
defects. Even loss of one of the two alleles results in a significant
life-span reduction [324]. Parkin is an E3 ubiquitin ligase that dic-
tates the degradation of various proteins via the UPS [325] while
parkin mutations are involved in autosomal-recessive PD [326].
Overexpression of parkin in flies is accompanied by increased levels
of proteasome activity [234], in accordance with in vitro results
[231, 234, 327]. This parkin-mediated proteasome activation is
independent of parkin’s E3 ligase activity. The proteasome function
enhancement is related to parkin-mediated enhanced interactions
between the 19S complex subunits. In accordance, parkin-null
Drosophila exhibit decreased proteasome activity [234]. A more
recent study has revealed that both ubiquitous and neuron-specific
parkin overexpression results in elongated mean as well as maximum
life-span. Moreover, those long-lived flies also exhibit decreased
protein aggregation levels during the progression of aging [328].

The DUB Leon/USP5 is essential for viability and tissue mainte-
nance during Drosophila development. Leon mutants exhibit abnor-
mal ubiquitin homeostasis, characterized by increased tissue disorder
and augmented death incidents. Notably in those mutants, protein
expression levels of proteasome subunits along with the relative enzy-
matic activities are elevated as a compensation mechanism in response
to aberrant ubiquitin homeostasis [329]. Nevertheless, impaired
degradation levels of ubiquitinated substrates are monitored.

USP2 DUB prevents uncontrollable activation of the fly
immune response in unchallenged conditions by controlling the
proteasomal degradation of Imd, an NF-kB-like Drosophila factor.
Apart from the obvious action of USP2 related to the K48-
ubiquitin chain cleavage from Imd, a synergistic binding of USP2
and Imd on the proteasome further alters proteasome-mediated
Imd degradation [330].

DmPI31 is the Drosophila homolog of the mammalian PI31, a
known inhibitor of the 20S proteasome [331, 332]. As opposed to
the mammalian homolog, DmPI31 functions as an activator of 26S
proteasomes in vitro but also in vivo, since its overexpression in flies
suppresses the phenotypes that are caused by dominant tempera-
ture-sensitive proteasome alleles (rough eye phenotype; [333]).
Basic leucine zipper protein CncC has been shown to be a
transcriptional regulator of the Drosophila 26S proteasome [334].
Impaired proteasome function triggers a CncC-mediated upregu-
lation of the proteasome subunits. Conversely, induction of CncC
leads to elevated proteasome expression and activity. Nevertheless,
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6.4 Rodents

6.4.1 20Sand 195
Proteasome Subunits

and Other Proteasome
Activators and Components

6.4.2 Other Conditions
and Compounds

prolonged CncC overexpression results in shorter life-span [335].
Exposure of female flies to low H,O, doses promotes increase of
proteasome activity and 20S proteasome expression in a CncC-
dependent manner [302].

Finally, several proteasome subunits have been shown to be
induced upon exposure of flies to low doses of y-irradiation and to
lead to life-span extension [336, 337].

The rodent orthologs for a- and p-type proteasome subunits are
Psmal-7 and Psmbl-7, respectively. Accordingly, the rodent 19S
complex ATPases and non-ATPases are termed Psmcl-6 and
Psmdl-14, respectively (Table 2).

PA28a is the only proteasome component that has been so far
manipulated. More specifically, transgenic mice with cardiomyocyte-
restricted PA28a overexpression exhibit diminished aberrant pro-
tein aggregation in their hearts. This results in decreased levels of
cardiac hypertrophy and consequently, in increased life-span.
Therefore, PA28a overexpression may promote protection from
cardiac proteinopathy following ischemia [338].

The naked mole rat (Heterocephalus glaber) is a nice model of
exceptional life-span since it is the longest-living rodent known
(~31 years maximum life-span). The proteasomal activities of this
rodent are 1.5-fold higher than the ones exhibited by the “nor-
mal” mice while they are also maintained in high levels upon the
progression of aging. Moreover, they exhibit attenuated age-
dependent accumulation of ubiquitinated proteins and cysteine
oxidation [200]. In the liver of these animals, more active 20S and
26S proteasomes accompanied by an enhanced proportion of
immunoproteasomes are scored [103]. A cytosolic protein factor
was shown to interact with the proteasome and to stimulate its
activity. Heat shock proteins 72 and 40 were identified as some of
the constituents of the unknown factor which however is still not
totally characterized. Upon exposure of proteasomes isolated from
yeast, mouse and human samples to the cytosolic proteasome-
depleted fractions from the naked-mole rat, induction of protea-
some activity occurs, thus suggesting a conserved action of this
factor across species [339]. A theory that long-lived species may
have superior mechanisms to ensure protein quality has been also
suggested recently following analysis of protein quality control
players in rodents, marsupials and bats [340].

High levels of 20S and 26S proteasome activities are scored in
the frontal cortex of transgenic mice overproducing IGF-1 with
PI3-kinase/mTOR signaling being involved. The same stimula-
tion is also detected in cell cultures upon IGF-1 stimulation [341].

Late-onset DR in mice and rats is beneficial since it promotes
restoration of proteasome activation and reduction of oxidative
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damage [342]. In other tissues like the rat spleen, DR does not
induce proteasome activity but nevertheless, in the same samples,
DR leads to decreased levels of ubiquitinated proteins [343].
Lifelong CR induces T-L proteasome activity but not CT-L and this
increase is suggested to be related to the elevated levels of Hsp90
that are revealed in CR animals [344]. Mild CR counteracts the
age-related decrease of proteasome activity in rats liver [ 345 ] while
increased proteasome biogenesis occurs in the same tissue in
response to DR [192]. Short-term food deprivation induces UPS
function through induced expression of E3 ubiquitin ligases, mus-
cle RING-finger protein-1 (Murfl), and muscle atrophy F-box
protein or Atrogin-1 (Fbx032) [346]. Treatment of rats with T3
induces the expression of Atrogin-1 and MuRF1 and enhances the
proteasome activities by ~40% whereas the UPS remains activated
during extended periods of untreated hyperthyroidism [347].
Finally, gene expression analysis in mice subjected to DR revealed
the induction of Psmc3 19S subunit and PA28a [ 348].

Sulforaphane and 3H-1,2-dithiole-3-thione (D3T) are natural
compounds that are capable of activating genes that bear the anti-
oxidant response element (ARE) in their promoters through Nrf2
induction [123, 349]. Nineteen proteasome subunits are upregu-
lated by D3T in wt mice as opposed to n7f2-disrupted mice. This
upregulation is followed by increased proteasome activities [120]
and is tissue-specific [350]. 26S /208 proteasome subunits, includ-
ing PSMB5, the subunit that is responsible for the CT-L protea-
some activity are identified among the gene clusters that are under
the Nrf2-mediated regulation [351]. Several additional com-
pounds have been shown to alter proteasome activities in mouse
models for various diseases. These compounds will be presented in
the relative sections. Finally, proteolysis-inducing factor (PIF) is a
glycoprotein firstly identified in cancer patients that acts as an
enhancer of the proteasome subunits expression and activities in
skeletal muscle in vivo [352].

Since B5 catalytic subunit is the catalytic center for the CT-L activ-
ity, many groups have attempted its overexpression in several cell
lines. In the stable transfectants, enhanced proteasome activities
and/or expression and/or assembly are monitored. Furthermore,
B5 overexpression (a) in WI-38/T and IMR90 human fibroblast
cell lines and in HL-60 human promyelocytic leukemia cells endows
cells with an increased capacity to cope with various oxidants
(EtOH, tBHP, H,0,, and FeCl;) while human primary cells over-
expressing p5 subunit exhibit a ~15-20% life-span extension [293],
(b) in dermal fibroblasts from elderly donors results in diminished
levels of aging markers such as oxidized and ubiquitinated proteins,
SA-pB-galactosidase activity and p21 content [353], (¢) in lens epi-
thelial cells leads to increased capacity to cope with oxidative stress
[354], (d) in human bone marrow stromal cells restores their
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capacity for growth while they remain pluripotent for longer [355],
and (e) in murine neuroblastoma leads to increased resistance
against H,O, toxicity and protein oxidation [350]. Similar results
were also obtained upon overexpression of f1 subunit which is the
catalytic center for C-L activity [293, 353 ], while p1 overexpression
in human bronchial epithelial cells promotes a protection from cig-
arette smoke-induced ER stress through enhanced proteasome
activities [ 356]. Accordingly, 51 immunosubunit overexpression in
lymphoblasts and HeLa cells leads to elevated CT-L and T-L activi-
ties [ 357 ], while T-L activity is induced following overexpression of
the pli immunosubunit [358].

With regard to 19S proteasome subunits, human embryonic
stem cells (hESCs) overexpressing the 19S PSMD11 subunit have
more 268S proteasomes with potential effects in their pluripotency
and differentiation capacity [291]. Overexpression of AIRAP, an
inducible 19S subunit, promotes proteasome activation upon
exposure to an environmental toxic factor, namely arsenite and
confers protection in primary mouse embryonic fibroblasts (MEFs)
and primary cells of the murine proximal tubule epithelia [359].
AIRAP association on the 19S cap promotes changes in the assem-
bly of the various proteasome complexes favoring the stability of
hybrid proteasomes [296]. A similar protection is observed in
nematodes by overexpression of its homologue, AIP-1, as described
in Subheading 6.2.1.

The association of PA28 activator with the proteasome has
been shown to play a role in antigen presentation. Nevertheless, it
was recently shown that PA28a overexpression in rat cardiomyo-
cytes results in stabilization and increase of 11S proteasomes that
leads to increased resistance to oxidative stress [338].

Finally, proteasome activation has been achieved in human
fibroblasts through overexpression of hUMP1/POMP protea-
some assembly chaperone. More specifically, overexpression of
hUMP1/POMP in WI-38/T fibroblasts leads to enhanced pro-
teasome activities and assembly that ultimately lead to resistance to
oxidative stressors [360].

Several E3 ligases have been modulated in various cell lines and
have been shown to exert pro-longevity effects, mainly through
the induced degradation of their target proteins that inhibit cell
growth. Nevertheless, there are no reports showing a simultaneous
modulation of proteasome activity. We will just report here the
overexpression of two ubiquitin ligases that have been correlated
with aging and proteasome degradation: WWDP1 and CHIP ligase.
We refer to the human WW domain-containing E3 ubiquitin pro-
tein ligase 1 (WWP1) as (a) it is implicated in cellular senescence
[308], (b) its nematode ortholog has been shown to be essential
for the DR-mediated life-span extension [307], and (c¢) DR has
been shown to induce proteasome expression and activities [ 344,
348]. Therefore, there is a potential link between WWP1 with the
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proteasome activities that is however still unrevealed. WWP1 over-
expression delays cellular senescence in human diploid fibroblasts
through the enhanced degradation of p27(Kipl) while its knock-
down leads to premature senescence [308].

The ubiquitin ligase CHIP (carboxyl terminus of HSP70-
interacting protein) has been shown to regulate protein quality con-
trol and to affect longevity. More specifically, it has been shown that
CHIP-deficient mice possess lower levels of proteasome activities
and increased levels of oligomerized proteins that eventually lead to
reduced life-span and premature aging phenotypes [361]. It was
recently revealed that CHIP saves SirT6 (a lysine deacetylase /ADR
ribosylase, member of the sirtuin family) from degradation through
noncanonical ubiquitination. CHIP overexpression leads to SirT6
stabilization that endows cells with resistance to cellular stress and
elevated DNA repair capacity [362]. CHIP overexpression remains
to be shown if it may induce proteasome activities/function.

Knockdown of UCHL5 (UCH37) promotes the clearance of
aggregation-prone proteins in human U-20S osteosarcoma cells
through increased UPS function similarly to its nematode ortho-
log UBH-4 [300]. A similar effect is observed upon silencing of
UCHLS5 in HeLa cells where increased degradation rates of ubiq-
uitinated proteins are scored but notably not enhanced hydrolytic
proteasome capacity [309]. Given that silencing of its ortholog in
nematodes promotes life-span extension, it would be interesting to
see whether modulation of UCHLS5 has the same effects in cells
and higher eukaryotes.

USP14, another DUB, inhibits the degradation of ubiquiti-
nated proteins both in vitro and in vivo. In agreement with the
results from UCHLS5 silencing, treatment of MEFs with a selective
and reversible inhibitor of USP14, namely IU1, accelerates the
degradation of ubiquitinated or oxidized proteins through protea-
some activation [363].

It was recently shown that occupancy of Usp14 (a DUB revers-
ibly associated with 26S proteasomes; [309]) or Uch37 (a consti-
tutive DUB of the 26S proteasomes; [309]) by the polyubiquitin
chains of tagged proteins leads to enhanced degradation of these
substrates through stimulation of ATP hydrolysis [282].

Several natural or synthetic compounds have been shown to
stimulate proteasome activities and function in mammalian cell
cultures. Oleuropein, the most abundant constituent found in
Olea europen leaves, olives, and olive oil, has been shown to stimu-
late the proteasome activities and function in various human
embryonic fibroblasts. This induction is accompanied by reduced
levels of oxidized proteins, while long-term treatment promotes
cellular life-span extension [364]. Various phenolic and flavonoid
constituents of the bee pollen induce CT-L proteasome activity in
HFL-1 human fibroblasts [ 365 ]. Curcumin is a natural phenol that
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positively alters proteasome activities in human keratinocytes
[366]. An algae extract protects human keratinocytes from the
UV-mediated proteasome inactivation [195]. More recently, the
synthetic peptide, PAP1 was shown to stimulate CT-L activity in
fibroblasts and consequently to protect from oxidative damage and
protein aggregation [367].

D3T activates Nrf2 and leads to induction of proteasome sub-
unit protein levels and activity in wt MEFs. This induction is lost
upon Nrf2 knockout [120]. A similar enhancement was revealed
upon treatment of murine neuroblastoma cells with sulforaphane, a
bioactive molecule within the isothiocyanate group of organosulfur
compounds [350] as well as in HelLa cells [ 368 ]. We have also iden-
tified a proteasome-activating compound, namely the triterpenoid
18a-glycyrrhetinic acid [369]. Long-term treatment of human
fibroblasts with this compound results in stimulation of the protea-
some activities/assembly and function and ultimately in cellular
life-span extension and increased resistance to oxidative stress. A
similar phenotype was revealed upon chronic treatment of human
fibroblasts with the flavonoid quercetin [370]. Although we have
not checked whether this proteasome activation is Nrf2-dependent,
this possibility cannot be excluded given that quercetin is a known
Nrf2 activator [371]. Proteasome activation has been also achieved
in Hepalclc7 mouse hepatocytes by zerumbone (a sesquiterpene
isolated from the plant Zingiber zerumbet; [372]). Finally, Nrf2 and
proteasome have been shown to be key mediators of human embry-
onic stem cells (hESCs) physiology. Nrf2 expression decreases upon
differentiation while Nrf2 activation delays it through regulation of
the proteasome activity. Accordingly, treatment of hESCs with
t-BHQ or sulforaphane results in Nrf2-dependent increase of pro-
teasome activities and in delayed differentiation and preservation of
cellular pluripotency for longer [373].

Various cardiovascular diseases are characterized by protea-
some functional insufficiency and protein control failure. Elevated
levels of cGMP along with the downstream activation of cGMP-
dependent protein kinase (PKG) have been demonstrated to pre-
vent and reverse already existing hypertrophy and to inhibit the
pathways related to hypertrophy [374]. Therefore, while seeking
for a potential link between PKG and the UPS pathway, it was
shown that overexpression of the protein kinase G (PKG) in rat
ventricular myocytes induces proteasome activities resulting in
enhanced clearance of misfolded proteins, thus protecting from
cardiac proteinopathies [375].

208 levels and activity are augmented upon calpain-mediated
processing of the 26S subunit Rpnl0. More specifically, upon mito-
chondrial impairment, Rpnl0 is cleaved by calpain, thus resulting
in 26S disassembly with a concurrent increase of 208 levels [376].

Treatment of cells with IGF-1 results in elevated levels of CT-L
activity in rat glioblastoma cells and WI38 human fibroblasts with an
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initial peak at 15 min of stimulation. Activities remain elevated for
24 h following IGF-1 addition but no quantitative alterations are
observed with the exception of a slight increase of B5 expression.
This induction is abolished in knockout cells for IGF-1 receptor.
Accordingly, the Akt/PI3-kinase/mTOR cascade signaling is also
involved given that in the presence of the relative inhibitors, protea-
some activation by IGF-1 is significantly reduced [341]. Finally, PIF
was also shown to enhance the proteasome potential in murine myo-
blasts in vitro through the induction of NF-kB [352, 377].

The human orthologs for a- and p-type proteasome subunits are
PSMA1-7 and PSMBI1-7, respectively. Accordingly, the human
19§ complex ATPases and non-ATPases are termed PSMC1-6 and
PSMD1-14, respectively (Table 2).

There are so far no population studies examining the possibility of
proteasome activation. The only report comes from a study where
volunteers were supplemented with zinc. More specifically, zinc
supplementation for 7 weeks promoted the stimulation of both
CT-L proteasome activity and MSR (methionine sulfoxide reduc-
tase) activity. In accordance, zinc supplemented donors exhibited
reduced levels of oxidized protein thus suggesting the possible role
of proteasome activation as an anti-aging strategy in vivo [378].
The various means of proteasome activation in cellular and organ-
ismal models are summarized in Fig. 3.

7 Proteasome Activation During Aggregation-Related Diseases

7.1 Alzheimer’s
Disease (AD)

7.1.1 20S and 19S
Proteasome Subunits

Proteasome activation has been attempted in several cellular and
organismal models of aggregation-related diseases. Table 1 summa-
rizes the proteostasis factors that have been subjected to various types
of manipulation in the context of a potential therapeutic strategy.

Given that UPS regulates the presynaptic protein turnover in the
nervous system [379], it is not surprising that proteasome inhibi-
tion severely affects AD progression and normal synaptic function
[22]. It is not additionally unexpected to attempt UPS activation
as a therapeutic approach for AD.

Using a temperature-inducible C. elegans strain that expresses
human A, 4, in muscle cells and that eventually is driven to paraly-
sis [380], we have shown that pbs-5 overexpression results in
proteasome-mediated decreased levels of total but also oligomeric
AP. This decrease is accompanied by significantly lower paralysis
rates [132]. In the same nematode AD model, AIP-1 overexpres-
sion (an inducible 198 subunit) results in reduced Ap levels, aggre-
gation, and toxicity [295].
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UPS activation during AD has been attempted through the induc-
tion/overexpression ofkey ligases. More specifically, co-transfection
of APP and HRDI1 (an ubiquitin ligase that induces proteasome-
mediated degradation of ubiquitinated APP) results in reduced Ap
levels and aggregation in HEK293 cells [381]. Overexpression of
Fbx2 (an SCF(Fbx2)-E3 ligase) in the primary cortical and hip-
pocampal neurons of transgenic mice overexpressing mAPP
(Tg2576), reduces the levels of BACEL, the p-secretase that
induces P-amyloidogenesis, and consequently the AP levels and
ameliorates the synaptic function in vivo [382]. CHIP E3 ligase
also drives BACE] to proteasome-dependent degradation and in
parallel regulates p53-mediated trans-repression of BACEL at both
transcriptional and posttranslational level. As a result, reduced Ap
levels are monitored [383]. In an AD model of C. elegans, loss of
VHL-1 (Hippel-Lindau tumor-suppressor homolog; an E3 ligase
for HIF-1 transcription factor) results in delayed paralysis rates and
resistance to AP proteotoxicity [384].

Inhibition of USP14 DUB by the specific inhibitor IU1, an active-
site-directed thiol protease inhibitor, leads to enhanced tau degra-
dation via increased proteasome activities [363].

CNB-001 is a 5-lipoxygenase (5-LOX) inhibitor. Treatment of
APP/PS1 AD transgenic mice with CNB-001 activates the eIF2a/
ATF4 arm of the UPR that eventually activates both proteasome
and autophagic flux and eventually promotes increased rates of Ap
clearance, thus resulting in ameliorated memory function [385].
Treatment of AD transgenic mice with a dopamine receptor ago-
nist, namely apomorphine results in stimulation of proteasome activi-
ties and enhanced removal of Ap and hyper-phosphorylated tau. As a
consequence, ameliorated memory function is observed [386].
Quercetin is a proteasome activator and treatment of a trans-
genic nematode AD model with this polyphenol results in lower
levels of AP aggregates and to decelerated paralysis rates [315].
Another polyphenol, namely resveratrol also reduces Af levels

Fig. 3 (continued) such as B-type 20S subunits, 19S subunits, immunosubunits, PA28 activator, various E1, E2,
and E3 ligases or knockdown (or compound-mediated inhibition) of UPS components such as DUBs. (0
Enhancement of proteasome assembly through manipulation of proteasome-dedicated chaperones. (D)
Enhancement of proteasome activity through various PTMs (Xin the figure represents the various groups that can
be added or altered on the various proteasome subunits; please refer to the text for details). (E) Direct allosteric
alterations of the proteasome structure through the direct binding/interaction of specific natural or chemical
compounds. (F) Activation of specific pathways that ultimately affect UPS content and/or function such as IGF-1,
NF-kB or EGF. (G) Exposure to low doses of stress such as UV, oxidants, or heat stress that promote hormetic
response that may finally promote UPS activation. (H) Effects of dietary protocols such as dietary restriction. ()
Cellular energy alterations that ultimately affect: (a) ATP hydrolysis and thus proteasome activity or, (b) proteases
that are responsive to energy alterations and may regulate proteasome assembly/activity/function
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[387]. Given that red grapes and red wine are characterized by
increased resveratrol concentrations, these results coincide with epi-
demiological studies suggesting a reverse correlation between red
wine intake and AD incidence [388]. More recently, we have also
shown that constant feeding of various AD nematode models with
the triterpenoid 18a-glycyrrhetinic acid (a previously identified pro-
teasome activator) confers lower paralysis rates accompanied by
decreased AP deposits, thus ultimately leading to deceleration of the
AD phenotype progression. More importantly, similar positive out-
comes were also scored in human and murine cells of nervous ori-
gin that were subjected to 18a-glycyrrhetinic acid treatment [321].

Rasagiline is an inhibitor of cholinesterase and MAO-A and B
that has been shown to stimulate the proteasome activities. Its
derivative, namely TV3326 was shown to be neuroprotective and
anti-apoptotic in SH-SY5Y and PC-12 cells treated with exoge-
nous AP peptide. One cannot rule out the possibility of a link
between these positive outcomes and proteasome stimulation
[389, 390]. Thioflavin T (ThT) has been shown to reduce AP
aggregation in vivo in nematodes and this anti-aggregation activity
was related to alterations in proteasome function, autophagy and
molecular chaperones [391]. Methylene blue, a member of pheno-
thiazines family enhances CT-L and T-L proteasome activities in
the brain. This increased proteasome function was linked to the
reduced AP levels in transgenic mice under chronic methylene blue
supplementation and the downstream improved learning and
memory functions [ 392]. Treatment of cells expressing the double
truncated Tau,s;_39; wWith geldamycin, a natural inhibitor of HSP90,
results in decreased Tau,s; 30, half-life due to enhanced proteasome
degradation [393]. Finally, cellular treatment with polysaccharide
PS5 derived from Rubia cordifolin and the organic compound
ganoderic acid DM leads to an enhanced proteasome-mediated
clearance of the intracellular Ap aggregates [394].

Acetylcholinesterase (AChE) is an enzyme that inactivates ace-
tylcholine at synapses and neuromuscular junctions and is down-
regulated in AD brains but notably it is still present and activated
in amyloid plaques and tangle formations. Cell treatment with
lithium results in rapid enhancement of synaptic AChE proteasome-
mediated degradation [395].

Given the link between all the PD-associated genes with the UPS
in one or the other way, UPS activation may serve as a potential
anti-PD approach.

Overexpression of either 20S or 19S proteasome subunits has not
been investigated so far in relation to PD progression. However, the
importance of the proper proteasome function in PD was exhibited
when upon conditional overexpression of mutated Rpt2 subunit in
mice 26S proteasome malfunction occurs and ultimately formation
of Lewy-like inclusions and neurodegeneration are established [ 396].
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Wt parkin (a key E3 ligase in PD) has been shown to activate the 268
proteasome in an E3 ligase activity-independent manner with an
N-terminal ubiquitin-like domain within parkin being critical for
this activation through enhancement of the interaction between 19S
proteasomal subunits. As a result, wt parkin accelerates the assembly
of the 198 RP and thus proteasome activity [234]. In accordance,
parkin overexpression in neuroepithelioma cells has been shown to
enhance proteasome activity [327] while 26S proteasome activity is
upregulated in transgenic flies overexpressing wt parkin or any other
form of parkin that possesses the N-terminal parkin fragment con-
taining the necessary for activation UBL domain [234]. Upregulation
of wt parkin extends the flies’ life-span through decreased levels of
protein aggregates, increased levels of K48-linked polyubiquitin and
increased turnover of mitofusin (a mitochondrial fusion-promoting
factor) followed by changes in mitochondrial morphology and an
increase in mitochondrial activity [328].

In a PD Drosophila model that overexpresses wt a-synuclein in
the eye [397], co-expression of wt Ub protects against a-synuclein-
induced toxicity (eye degeneration, locomotor dysfunction, and
dopaminergic neurodegeneration) in a K48-polyubiquitin linkage-
dependent manner [398], thus suggesting that UPS upregulation
might be an attractive anti-PD strategy.

Upregulation of heat-shock proteins protects neuroblastoma cells
from the 1-methyl-4-phenylpyridinium ion (MPP*)-induced neu-
rotoxicity through inhibition of a-synuclein expression and UPS
activation in terms of both ubiquitination rates and proteasome
activities [399]. In an attempt to elucidate the molecular mecha-
nism of MPP+ toxicity, Shang et al. [400] revealed that overex-
pression of neuronal nitric oxide synthase (nNOS) significantly
enhances proteasome activity with a consequent reduction of
apoptosis rates. In the same study, sepiapterin treatment resulted
to nNOS activity restoration (that is negatively affected upon
MPP+-induced oxidative stress) with the downstream inhibition of
superoxide formation, the enhancement of proteasome activity
accompanied by decreased levels of ubiquitinated proteins and the
attenuation of apoptosis in MPP+-treated cells [400]. Using the
same PD model, pretreatment with pueranin results in attenuation
of the MPP(+)-induced dysfunction of the proteasome with a con-
sequent delay of apoptosis [401].

Using a PD C. elegans model (a-synuclein overexpression in
muscle cells), Fu et al. [320, 402] have shown that treatment with
n-butylidenephthalide (a naturally occurring component derived
from the chloroform extract of Angelica sinensis; [402]) or treat-
ment with acetylcorynoline (the major alkaloid component derived
from the traditional Chinese medical herb Corydalis bungeana;
[320]) decreases 6-hydroxydopamine-mediated dopaminergic
neuron degeneration, prevents a-synuclein aggregation, recovers
lipid content, restores food-sensing behavior and dopamine levels,
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and prolongs life-span. In both treatments, proteasome activity
enhancement is suggested through the upregulation of 7pn-6
[402] and 7pn-5 [320], respectively. Rasagiline, the inhibitor of
monoamine oxidase MAO-B, is a phase 3 anti-PD drug that has
been shown to improve pathology symptoms like motor dysfunc-
tion [403]. Rasagiline enhances proteasome activity levels in neu-
roblastoma cells, thus leading to high anti-apoptotic activity [390].
DNA array studies indicate that rasagiline increases the expression
of the genes coding mitochondrial energy synthesis, inhibitors of
apoptosis, transcription factors, kinases and UPS, sequentially in a
time-dependent way [404].

Systemic administration of proteasome inhibitors in the brain
of rats or mice results in progressive PD development and has been
suggested to constitute an appropriate model of the PD onset and
progression [405, 406]). Apomorphine has been found to amelio-
rate motor activity probably through rescuing proteasome-mediated
degradation in mice treated with lactacystin [235]. Pramipexole
alleviates lactacystin-mediated proteasome dysfunction resulting in
attenuation of the dopaminergic neuronal death in lactacystin-
treated mice [407]. Pretreatment with the D3 receptor-preferring
agonist D-264 totally blocks the proteasome inhibition and microg-
lial activation in the substantia nigra thus improving behavioral per-
formance and attenuating both MPTP- and lactacystin-induced DA
neuron loss [408]. A similar protection was also revealed for rasagi-
line [409] and for coenzyme Q10 (that protects against proteasome
impairment through induction of ATP production and therefore
through enhancement of UPS function; [410]).

In a conditional mouse model of HD, reversal of neuropathology
and motor dysfunction was exhibited with a disappearance of inclu-
sions upon blockade of the constant influx of the mHTT [411].
Therefore, HD pathology might be reversible and a link with the
proteostasis network is revealed suggesting that UPS activation
could be a potential anti-HD approach.

Upregulation of pbs-5 subunit in C. elegans leads to enhanced pro-
teasome activities and in turn to reduced polyQ toxicity and
improved motility in transgenic worms expressing Q35 in body
wall muscle cells or Q40 in neurons [132]. Accordingly, overex-
pression of 7pn-6.1 19S subunit results in reduced polyQ toxicity
and aggregates levels [291]. Overexpression of PA28y in HD cells
results in recovered proteasome function and in improved cell via-
bility. However, overexpression of 7pn-10 did not result in either
proteasome activation or neuroprotection [412]. Ectopic overex-
pression of a 19§ complex subunit, namely Rpnll, was shown to
attenuate the age-related decline of the proteasome activity in
Drosophila. As a consequence, the flies exhibit an elongated life-
span. Accordingly, Rpnll overexpression leads to decreased
polyQ-induced toxicity and neurodegeneration [323].
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E6-AP E3 ubiquitin ligase promotes the degradation of misfolded
polyQ proteins resulting in a suppression of aggregate formation
and cell death in cellular HD model [413]. CHIP overexpression
suppresses the formation of insoluble aggregates by mutant polyQ
proteins in differentiated neuronal cells as well as in an HD zebraf-
ish model [414]. Hrdl is an endoplasmic reticulum (ER) mem-
brane-E3 ligase with its catalytic active RING finger facing the
cytosol that is upregulated in cells overexpressing the N-terminal
fragment of htt containing an expanded polyQ tract (httN).
Enhanced expression of Hrd1 results in increased degradation of
httN and in decreased levels of httN-induced cell death [415].
Similar results are obtained upon overexpression of Parkin [232].
In an HD C. ¢legans model, loss of VHL-1 (a HIF E3 ligase)
results in elevated resistance to polyQ toxicity with concomitant
decreased paralysis rates [ 384 ]. Accordingly, increased resistance to
proteotoxic stress is also observed upon loss of Mub1 /Ubr2 ubig-
uitin ligase complex that results in Rpn4 stabilization [280].

Overexpression of the USP14 DUB in mHTT-expressing cells
leads to diminished levels of cellular aggregates mainly via the
UPS. Specifically, the serine-threonine kinase IRE] is an ER stress-
associated protein that is activated during mHTT toxicity. USP14
overexpression counteracts the IREI activation thus leading to
reduced rates of cell degeneration [416].

Activation of protein kinase A (PKA) confers Rpt6 phosphorylation
that in turn results in increased proteasome activity, reduced mHTT
aggregates and improved motor capacity of an HD mouse model
[203]. Proteasome impairment through HTT aggregates has been
shown to be alleviated by Akt kinase [417] as well as by brain-type
creatine kinase (CKB) [203]. Inhibition of Rho-associated kinases
(ROCK:Ss) in cellular models of HD reduces the aggregation levels
of mHT'T via activation of the UPS and macroautophagy [418].

Ubiquilins are proteins that are speculated to function as shuttle
factors to transfer misfolded proteins to the proteasome since they
have the ability to bind ubiquitin moieties conjugated onto proteins
via their UBA domain and subunits of the proteasome via their UBL
domain [419]. Overexpression of ubiquilin-1 suppresses polyQ tox-
icity in cell culture and C. elegans models of HD [420], as well as in
an HD mouse model where extension of life-span, delayed htt inclu-
sions formation and attenuated ER stress in the hippocampus are
scored. Nevertheless, motor defects are not ameliorated [421].
Overexpression of NUB1, a negative regulator of ubiquitin-like pro-
tein 1 results in elevated degradation rates of mHTT and thus in
lower levels of aggregates and neuronal survival [422].

Various compounds have been identified to alleviate the
mHTT-related proteasome impairment like an agonist of the
A(2A) adenosine receptor (A(2A) receptor), namely CGS21680
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7.4 Amyotrophic
Lateral Sclerosis (ALS)

7.4.1 E1,E2 and E3
Ligases

7.4.2  Other Conditions
and Compounds

[423], benzamil, an amiloride derivative [424 ], baclofen, a GABA;
receptor agonist [425], and scyllo-inositol [426]. Finally, sulfora-
phane, a natural compound derived from broccoli and other veg-
etables, is a potent activator of both proteasome and autophagy in
mice. Sulforaphane treatment enhances the proteasomal degrada-
tion of mHTT and induces cell survival in HD cell models [427].
A similar increase in proteasome activity accompanied by more effi-
cient degradation of pathologic polyQ variants is also exerted by
the antioxidant Ginkgo biloba extract EGb 761 [428].

Given the link between UPS and ALS onset and progression, pro-
teasome activation could be an ALS-targeted therapeutic strategy.

Overexpression of various E3 ligases that target mSODI1 for
degradation has shown promising results as potential targets for
ALS therapy. More specifically, overexpression of dorphin (iden-
tified to promote the proteasome-mediated degradation of
mSODI1 and to prevent neurotoxicity; [429]) ameliorates the
ALS phenotype in the relevant transgenic mice [430].
Accordingly, overexpression of the ERAD E3 ubiquitin ligase
Gp78 targets mSOD1 for ERAD resulting in increased cell via-
bility and reduced SODI1 aggregation levels [431]. Finally, a
mitochondrial ubiquitin ligase, namely MITOL, interacts with
ubiquitinated mSOD1 but not wt SOD1 and its overexpression
results in the enhanced clearance of mSOD1 and in the suppres-
sion of mitochondrial accumulation of mSOD1 [432].

Activation of UPR has been shown to be beneficial in conditions
of ALS pathology. TorsinA is an AAA+ family member with
molecular chaperone-like activity. TorsinA overexpression rescues
an ALS C. elegans model from the mSOD1-specific ER stress
increase and restores normal neuronal function. These positive
effects are mediated through enhanced mSODI1 targeting for
proteasome degradation [433]. Accordingly, overexpression of
the ER-resident factor Derlin-1 results in suppression of the acti-
vation of ER stress and in increased proteasomal and autophago-
somal turnover of mSOD1 [434].

Overexpression of p62 (sequestosome 1), an adaptor protein
for the autophagy pathway, reduces TDP-43 aggregates through
enhanced proteasome and autophagy function [435].

Treatment of human neuroblastoma SODI1%%34 cells with
the synthetic peptide PAP1 leads to decreased levels of mSOD1
aggregates and enhanced cytoprotection through the enhanced
proteasome activities mediated via conformational alterations
of the proteasome gate [367]. Two proteasome subunits
(PSMCI1 and PSMC4) have been identified as target proteins
of pyrazolone (a five-membered-ring lactam). Treatment of
PC12-SOD19%34 cells with pyrazolone results in proteasome
activation and the downstream delay of ALS progression [436].
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Bee venom and its anti-inflammatory component, melittin,
alleviate proteasome activity impairment in human SOD185-
expressing NSC34 motor neuron cells and in human ALS
SOD1%34 mouse model, respectively [437,438]. Similar results
are obtained following treatment of mouse N2A cells
overexpressing mutant SIGMARI (a gene involved in familial
ALS; [439]) with methyl pyruvate, a mitochondrial TCA cycle
substrate. The proteasome activity is restored, mitochondrial
ATP production is enhanced and aggregation-prone TDP-43
mislocalization is prevented [440].

Malfunction of Nrf2 pathway has been revealed in few ALS
patients [441] and in cultures of SOD1%%34 motor neurons from
the relevant transgenic mice [442]. Use of an Nrf2 activator,
namely CDDO trifluoroethylamide (CDDO-TFEA), results in
activation of Nrf2 and in deceleration of neurodegeneration
[443]. Given that proteasome genes are Nrf2 target genes [120],
one cannot rule out the possibility that proteasome activation
might also occur and contribute to this neuroprotection.

Prion clearance and the relative proteolytic pathways may consti-
tute a potential therapeutic target for PrDs given that (a) the
pathogenesis of the disease is directly related to constant PrPS¢
aggregation [444 ] and (b) diminished PrP%¢ levels result in rever-
sal of cognitive deficits and neurophysiological dysfunction of
prion-infected mice [445, 446]. The so far collected data sug-
gest that both lysosomal and proteasomal degradation may play
significant roles in prion degradation [447]. Nevertheless, scarce
data exist regarding the modulation of UPS as an anti-prion
therapeutic approach.

The responsible E3 ligase for the unglycosylated PrP (ugPrP) has
been identified: Hrd1-Hrd3 in yeast [448] and Gp78 in mamma-
lian cells [449]. Although overexpression of either of those ligases
has not been attempted in relation to PrD progression, potential
positive results may be expected similarly to what has been shown
in ALS with Gp78 (see above).

Congo red derivatives WSP774 and WSP677 have been shown to
enhance the proteasome-mediated degradation of PrP% in infected
cells and thus to alleviate the inhibitory effect of PrP% on protea-
some function [450]. The efficacy of other proteasome activating
compounds like sulforaphane, quercetin, the DUB inhibitor TU1
and all the other molecules that have been so far investigated in
various aggregation-prone diseases as mentioned above, remain
untested in relation to PrD. Therefore, one cannot rule out the
possibility that they could be potential anti-prion candidates. The
effects of aggregation-related diseases on the proteasome and the
outcome of UPS activation are summarized in Fig. 4.
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Fig. 4 The effects of aggregation-related diseases on the proteasome and the outcome of UPS activation.
Aggregation-related diseases are characterized by increased amount of protease-resistant misfolded/aggre-
gated proteins. (4) In neuronal cells from organisms suffering from an aggregation-related disease, aggregated
material induces (among others) transcriptional deregulation, inhibition of several key enzymes including nNOS
and the proteasome, defects in mitochondria that lead to decreased ATP production that further affects UPS
function and ER stress due to the enhanced aggregate load and the inhibition of the normal proteasome func-
tion. These defects initiate a vicious circle of constant accumulation of aggregates, additional proteasome
inhibition, and constant oxidative stress. The autophagy-lysosome system is induced to compensate for the
reduced UPS activity but the end result includes neurodegeneration, cell death and decreased life-span. (B) UPS
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8 Concluding Remarks

<<

Life is linked to conditions of increased stress (e.g., oxidative stress
due to respiration, UV stress by sun exposure). Nevertheless,
excessive stress is not compatible with survival. Therefore, proteo-
stasis mechanisms (with proteolytic modules forming the ultimate
arsenal) have been evolved to assure the balance between the inevi-
table stress conditions and cellular/organismal homeostasis. Upon
malfunction of these mechanisms due to intrinsic (e.g., mutations,
loss- or gain-of-function alterations) or extrinsic (e.g., environ-
mental stress factors) causes, this balance is destroyed. Therefore,
the preservation or even the enhancement of proteostasis mecha-
nisms function seems to be beneficial for cellular survival. This is
further supported by the fact that most of the pro-longevity factors
and pathways enhance the function of proteolysis modules leading
to extended life-span, ameliorated response to stress and alleviation
of aggregation-related disease phenotypes. Most of these studies
have been performed in lower eukaryotes. Therefore additional
studies in higher eukaryotes followed by human population studies
(wherever possible) are necessary. These studies will finally validate
the correlation between aging/aggregation-related diseases and
enhanced proteostasis mechanisms.

In the case of the UPS and its potential enhancement, further
studies are needed to fully elucidate the regulatory mechanisms
behind such activation. For example, although genetic and
compound-mediated UPS activation has been successful, the
molecular mechanisms behind such modulation are not fully inves-
tigated. Questions that remain to be elucidated include regulation
of transcription, assembly, trafficking, and elimination as well as
posttranslational regulation of the various UPS components. The
same mechanisms should be then thoroughly examined in the
context of aging or a given aggregation-related disease as age- or
disease-specific alterations might be expected. Given that overacti-
vation might also prove to be detrimental, highly orchestrated
UPS activation is necessary in order to be able to suggest a manip-
ulation as an anti-aging/anti-aggregation preventive/therapeutic
strategy. In the case of activating compounds, one should be very
cautious with the translation of results, considering the possible
(but still uncovered) side targets of a given molecule. Identification
of activating molecules that are constituents of human regular diet
should be also explored since they provide extra advantages;

Fig. 4 (continued) activation has been achieved in cellular and organismal models of aggregation-related dis-
eases through the genetic manipulation of several UPS constituents, through treatment with natural or chemical
compounds as well as through alterations of specific molecular pathways (please refer to text for details). (C)
The abovementioned manipulations result in alleviated proteasome inhibition, ER stress rescue and restoration
of (a) ATP production, (b) transcriptional activity, (c) lysosomal activity, and (d) UPS activity, among others. The
cellular aggregate load decreases promoting normal neuronal function and increased survival/life-span



48 Nikoletta Papaevgeniou and Niki Chondrogianni

beneficial UPS activation or preservation should probably
commence before heavily aggregated proteins get established in
the cellular milieu thus in a young age before we can even detect
such alterations. Therefore, diet constituents might be ideal for
such approach. Addressing these questions will further pave the
way to the establishment of therapeutic but also preventive strate-
gies in the battle against aging and age-related diseases.
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Chapter 2

Review and Literature Mining on Proteostasis Factors
and Cancer

Ana Sofia Carvalho, Manuel S. Rodriguez, and Rune Matthiesen

Abstract

Automatic analysis of increasingly growing literature repositories including data integration to other data-
bases is a powerful tool to propose hypothesis that can be used to plan experiments to validate or disprove
the hypothesis. Furthermore, it provides means to evaluate the redundancy of research line in comparison
to the published literature. This is potentially beneficial for those developing research in a specific disease
which are interested in exploring a particular pathway or set of genes/proteins. In the scope of the inte-
grating book a case will be made addressing proteostasis factors in cancer. The maintenance of proteome
homeostasis, known as proteostasis, is a process by which cells regulate protein translation, degradation,
subcellular localization, and protein folding and consists of an integrated network of proteins. The ubiq-
uitin-proteasome system plays a key role in essential biological processes such as cell cycle, DNA damage
repair, membrane trafficking, and maintaining protein homeostasis. Cells maintain proteostasis by regulat-
ing protein translation, degradation, subcellular localization, and protein folding. Aberrant proteostasis
leads to loss-of-function diseases (cystic fibrosis) and gain-of-toxic-function diseases (Alzheimer’s,
Parkinson’s, and Huntington’s disease). Cancer therapy on the other hand explores inhibition of proteos-
tasis factors to trigger endoplasmic reticulum stress with subsequent apoptosis. Alternatively therapies
target deubiquitinases and thereby regulate tumor promoters or suppressors. Furthermore, mutations in
specific proteostasis factors are associated with higher risk for specific cancers, e.g., BRCA mutations in
breast cancer. This chapter discusses proteostasis protein factors’ association with cancer from a literature
mining perspective.

Key words Proteostasis, Cancer, Text mining, Wordcloud

1 Introduction

The vast number of scientific publications (25 million citations
in PubMed) provides an extremely valuable resource for research-
ers if approached by an automated analysis of the information.
The background knowledge integrated with annotated content
in biological databases (such as proteins in UniProt) or reposito-
ries of genes function or protein-protein interactions is funda-
mental for hypothesis generation. A highly comprehensive review
on the latest advances on automated literature analysis for

Rune Matthiesen (ed.), Proteostasis: Methods and Protocols, Methods in Molecular Biology, vol. 1449,
DOI 10.1007/978-1-4939-3756-1_2, © Springer Science+Business Media New York 2016
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biomedical research can be found here [1]. Our goal is to apply
text mining for hypothesis generation in the case study of pro-
teostasis and cancer.

Ubiquitin modifies proteins which target them to new cellular
localization such as for example the proteasome for degradation.
E1 ubiquitin activating enzymes (two in the human genome), E2
ubiquitin conjugating enzymes (~30 in the human genome), and
finally E3 ubiquitin ligases (~600 in the human genome) conjugate
ubiquitin through sequential actions [2—4]. Specificity is mainly
provided by the E3 ubiquitin ligases which likely explain the
association of specific E3 ligases with diseases. E3 ligases are
both suggested as biomarkers and targets for cancer therapy [5].
Deubiquitinases (DUBs), ~100 in the human genome, cleave off
ubiquitin from modified proteins [3]. DUBs like E3 ligases have
also been suggested as both biomarkers and targets for cancer ther-
apy [5]. DUBs can regulate both oncogenes and tumor suppres-
sors. Aberrant DUBs activity, both gain and loss of function by
mutation and/or altered expression, can promote cancer. DUBs
associated with cancer have been described as specific for targeting
proteins. Evidence suggests that DUBs specificity may depend on
tissue types and stage of malignancy, thereby making it difficult to
access the general role of DUBs in tumorigenesis.

The success of bortezomib (Velcade™), a proteasome inhibi-
tor, used for the treatment of relapse or refractory patients with
multiple myeloma focuses the attention of cancer biologists on
potential cancer treatment strategies that target proteostasis.
Examples of such strategies are listed below.

1. When the production of misfolded proteins exceeds degrada-
tion, as often occurs in damaged or aging cells, or in cells
exposed to chemical agents that perturb protein folding or the
endoplasmic reticulum (ER) quality control (ERQC) pathway,
the ER-associated degradation (ERAD) is elicited. There are
two types of molecules that affect ERQC pathway which can
be used to modulate ER stress and trigger apoptosis: (a) small
molecules can enhance proteostasis by binding to and stabiliz-
ing specific proteins (pharmacologic chaperones) increasing
the proteostasis network capacity (proteostasis regulators) or
(b) by regulating proteostasis.

Certain cancer cells with high secretory capacities and
basal levels of ER stress have been shown to be more sensitive
to ER stress-induced cell death (e.g., multiple myeloma) [6,
7]. Bortezomib, a proteasome inhibitor, inhibits the chymo-
trypsin activity of the proteasome is approved for the treatment
of mantle cell lymphoma and relapse or refractory multiple
myeloma [8, 9]. The effect of bortezomib involves many path-
ways of which some are linked to the unfolded protein response
[10-13] and others to protein factors such as p53 [14, 15] and
NFkB [16].
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2.

3.

4.

Inhibition of p97 ATPase for ER membrane extraction and for
subsequent transfer to the proteasome by the drug Eeyarestatin
I can induce cell death in hematologic cancer cells [17].
Eeyarestatin 1 affects similar factors as bortezomib such as
accumulation of polyubiquitinated proteins, ER stress causing
downregulation of histone H2A ubiquitination with subse-
quent Noxa activation, and cell death [1].

Alternatively DUBs can also be targeted and some cancer cells
are more susceptible to specific DUB inhibition than non
cancer cells. This is also referred to as synthetic lethality. They
may regulate the stability of key oncogenes, exemplified by
USP28 stabilization of c-Myc. Alternatively DUBs can nega-
tively regulate ubiquitin-dependent signaling cascades such as
the NF-kB activation pathway [18].

Aberrant regulation of some E3 ligases is associated with can-
cer development [5]. Furthermore, cancer cells frequently
overexpress E3 ligases and this correlates with increased che-
moresistance and poor prognosis. E3 ligases are “drugable”
and therefore potential cancer targets. Additionally, E3 ligases
serve as cancer biomarkers. For example, germline mutations
in the E3 ligase BRCALI increase the predisposition for breast
cancer [19]. Another example is MDM2 which targets the
tumor suppressor p53 for degradation [20, 21].

In conclusion, proteostasis proteins are found to be aberrantly

regulated at the expression level and mutated in cancer cells.
Furthermore, proteostasis proteins are being targeted for cancer
therapies. We therefore perform text mining on abstracts in
PubMed to provide an overview of the most studied protein factors
in connection with different cancer types.

2 Materials

The data mining was performed using the statistical programming
language R. The libraries listed below were used:

1.

Package “RISmed” for PubMed search.

2. Package “tm” for text mining.
3.
4

. Names of frequently studied proteins of the ubiquitin system

Package “wordcloud” for graphical display.

were extracted from http://www.sabiosciences.com/rt_pcr_
product/HTML/PAHS-3079Z.html.

. Names of proteasome factors and DUBs were downloaded

from the online database HUGO.

. Disease-gene associations list was obtained from the DISEASES

resource available at http://diseases.jensenlab.org/ [22].


http://www.sabiosciences.com/rt_pcr_product/HTML/PAHS-3079Z.html
http://www.sabiosciences.com/rt_pcr_product/HTML/PAHS-3079Z.html
http://diseases.jensenlab.org/
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3 Methods

3.1 Obtaining Text
Gorpus from PubMed

3.2 Wordclouds

The aim of the computer-assisted text mining approach here pre-
sented is to obtain a quick overview of the factors in the ubiquitin-
proteasome system and their association with cancer (se¢ Note 1).
Furthermore, the generated wordclouds are useful to display the
most important word terms related to specific ubiquitin protea-
some factors. We do not provide detailed steps for the analysis
since this will quickly be outdated and the manual of described
software tools would always be the best source of details for com-
putational steps.

1. Use PubMed directly, eUtils or the R package “RISmed” to
download abstracts for each of the ubiquitin and proteoasome
factors of interest. We used the search term “XXX AND (leu-
kemia OR cancer OR lymphoma)” for the analysis presented
here. Where XXX is replaced with one of the ubiquitin and
proteasome factors, e.g., “BRCA1 AND (leukemia OR cancer
OR lymphoma)” (se¢e Notes 2—4).

2. Use the R command grep to filter the retrieved PubMed
abstracts (use the R command “’grep” to obtain the grep
manual). We chose to maintain only entries that contain the
ubiquitin and proteasome factors in either abstracts or title.
More sensitivity can be obtained by also including abstracts
having ubiquitin and proteasome factors as keyword. However,
the context of ubiquitin and proteasome factors in relation to
cancer becomes obscure without having access to the full
paper text.

Figure 1 displays, based on the above retrieved text corpus, the
association between ubiquitin ligase complexes, DUBs, and pro-
teasome factors to different cancer types. This plot was created
with the R graphical command barplot but could also be plotted in
Excel or other software tool. We infer from Fig. 1 that BRCAI and
BRCA2 are the most described factors in ubiquitin ligase com-
plexes and mainly associated with breast, ovarian, and prostate can-
cer. We further see that different factors in ligase complexes, DUBs,
and proteasome factors are associated with different cancer types.

Wordclouds are useful to obtain a visual overview of the most
important terms in a text corpus. The wordclouds in Figs. 2 and 3
were created using the R packages “tm” and “wordcloud” by run-
ning the following steps.

1. myCorpus=Corpus(VectorSource(TextBRCAL)) # (see Note 5).

2. myCorpus=tm_map(myCorpus, removeWords, stopwords
(“english™)) # (sec Note 6).

3. myCorpus =tm_map(myCorpus, removePunctuation).
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Fig. 1 Text mining inferred association between different factors in ligase complexes (a), Deubiquitinases
(DUBSs) (b), and proteasome factors (c) to different cancer types

4. myDTM =TermDocumentMatrix(myCorpus, control=list
(minWordLength = 3)).

m=as.matrix(myDTM).
5. v=sort(rowSums(m), decreasing=TRUE).

6. wordcloud(names(v),v, scale =¢(5,0.5), max.words=200, ran-
dom.order=FALSE, rot.per=0.35, use.r.layout=FALSE, col-
ors=brewer.pal(8, "Dark2")).

The resulting wordclouds may contain duplicates such as
“mutation” and “mutations”. This can be resolved by using the
command: “myCorpus =tm_map(myCorpus, stemDocument)”.
We find that the command “myCorpus=tm_map(myCorpus,
removeNumbers)” has the unwanted site effect of removing all
numbers resulting in BRCA1 becomes BRCA. However, for
the two provided examples there was no need to remove
numbers.

It is reassuring to see that the text mining and wordcloud for
BRCAL display terms like breast, ovarian, mutations, and genetic.
Directly providing the valuable information that BRCALI is associ-
ated with breast and ovarian cancers and its association to genetic
predisposition. The association to other proteins such as BRCA2,
p53, PARP and ATM is also informative.
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Fig. 2 Wordcloud for the search term “BRCA1”

3.3 Gene
Associations
with Diseases

Figure 3 shows the wordcloud for MDM2. We observe that
MDM?2 is associated to protein factors such as p53,/TP53, bcl2,
p21, nutlin3, cdk4, and HDM2. Furthermore, the more general
protein families such as kinases and cyclins appear and the term
apoptosis is more abundant than in the above analysis for BRCA1
(compare Figs. 2 and 3).

We next address more rigorous approaches regarding extracting
text for a corpus. We reuse the DISEASES resource which lists
disease-gene associations (http://diseases.jensenlab.org/). The
disease-gene associations are calculated by a scoring scheme that
simultaneously takes into account co-occurrences at the level of
abstracts as well as individual sentences [22]. In contrast to the
analysis above, we here analyzed gene association of a larger set of
annotated diseases.
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Fig. 3 Wordcloud for the search term “MDM2”

Figure 4 shows the top factors in ubiquitin ligase complexes’
association with diseases by using the DISEASES resource. The
height of the bars corresponds to the counts in the unfiltered
text mining matrix (human_disease_textmining_full.tsv) and
the subdivision is made by normalizing with each disease confi-
dence for a specific protein factor as reported in filtered text
mining matrix (human_disease_textmining_filtered.tsv). It is
evident that a large number of diseases have been associated
with factors in ubiquitin ligase complexes and clearly cancer
ranks as the most confident associated disease to the top factors
in ubiquitin ligase complexes.
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Fig. 4 Top factors in ubiquitin ligase complexes’ association with diseases by using the DISEASES resource

3.4 Discussion
of Results

A similar analysis for DUBs revealed that they are associated
with many diseases as well where cognitive disease, inflamma-
tory diseases, and cancer are among the most strongly associ-
ated with DUBs (Fig. 5).

The top ten proteasome factors were found to be associated
with mainly infectious disease, cancer, and vascular diseases (Fig. 6).

The strongest association between the chosen genes in this analy-
sis and a specific type of cancer was found for BRCA1’s association
with breast and ovarian cancers (Fig. 1). Mutations in BRCAL
increase susceptibility to breast and ovarian cancers reflecting the
predominance of citations associating these two types of cancer to
BRCAI1 (Figs. 1 and 2). BRCAI participates in the cellular
response to DNA damage as a sensor molecule and as an effector
by transcriptional regulation of genes [23]. E3 ligase activity of
BRACI is achieved by heterodimerization through its amino-ter-
minal (really interesting new gene) RING domain with a RING
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Fig. 5 Top deubiquitinases (DUBs) association with diseases by using the DISEASES resource

partner, BARD1 [24]. We do not observe BARDI in the word-
cloud presented in Fig. 2 suggesting that few studies have focused
on the role of BARDI1 on the E3 ubiquitin ligase activity of
BRCAI. A specific mechanism of DNA damage response of
BRCALI involves ubiquitinylation of claspin, an essential activator
of the CHKI checkpoint kinase, by BRCA1 triggering homology-
directed DNA repair [25]. Despite the similarities between the
phenotypes induced by disruption of BRCA1 or BRCA2, they
play a role in distinct functions in the biological response to DNA
damage [23]. BRCA2 is a mediator of recombinase RAD51 and
their role in DNA damage response is mechanistically distinct
from BRCAl. MDM?2 is an E3 ubiquitin-protein ligase of the
RING finger class that mediates ubiquitination of the tumor sup-
pressor p53/TP53, regulating its stability and activity [26-28].
MDM2 was the next E3 ligase, after BRCAI and BRCA2, regis-
tering a high number of co-occurrences in the retrieved PubMed
abstracts in relation with cancer, largely due to MDM2’s role in
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Fig. 6 Top proteasome factors’ association with diseases by using the DISEASES resource

the regulation of p53 (Figs. 1 and 3). Inactivating p53 mutations
occur in more than 50% of human tumors. Variations in Mdm2
due to single nucleotide polymorphism, overexpression, or ampli-
fication impact the ubiquitination levels of p53 and consequently
p53 degradation. Such variations are therefore tumor-prone phe-
notypes. Several compounds have been designed to inhibit MDM?2
E3 ubiquitin ligase such as nutlin-3. In fact an analog of nutiln-3
is in phase I trials in patients with solid tumors or leukemia [29].
MDM2-p53 interaction illustrates how targeting the ubiquitin
system and its factors can potentially succeed in drug development
against cancer. Another interactor of p53 is promyelocytic leuke-
mia (PML) tumor suppressor protein, a central regulator of cell
proliferation and apoptosis. PML configures as one of the top ten
factors in E3 ligase complexes associated with different types of
cancer (Fig. la). PML protects p53 from Mdm2-mediated ubig-
uitination and degradation, and from inhibition of apoptosis [30].
A group of other protein factors containing a RING finger domain
such as the X-linked inhibitor of apoptosis (XIAP) and the Casitas
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B-lineage Lymphoma (CBL) protein family are among the top
factors in E3 ligase complexes associated with cancer (Fig. la).
XTIAP inhibits the activity of the cell death proteases, caspase-3, -7,
and -9, and promotes the degradation of active-form caspase-3
mediated by its RING finger domain acting as an E3 ubiquitin
ligase [31]. XIAP mediates an oncogenic signaling by the ubiqui-
tination of TGF-beta-activated kinase 1 (TAKI) enabling TGEF-
beta to activate p65/RelA and to induce the expression of
prometastatic and prosurvival genes in 4T1 breast cancer cells
[32]. CBL small family of Cbl ubiquitin E3 ligases, c-Cbl, Cbl-b,
and Cbl-c, regulates signaling through its N-terminal tyrosine-
kinase-binding (TKB) domain composed of three different sub-
domains: a four-helix bundle (4H), a calcium-binding EF hand,
and a divergent SH2 domain, which is followed by a RING finger
and a proline-rich domain inducing a myriad of interactions [33].
Cbl proteins interact with tyrosine kinases through its TKB
domain such as v-src oncogene, a preferential target of Cbl-c for
degradation [34], inhibiting its oncogenic activity. Indeed Cbl-b
predicts better prognosis in RANK-expressing breast cancer
patients [35]. The following two examples, Von Hippel-Lindau
(VHL) disease tumor suppressor gene and gigaxonin (GAN),
constitute elements in ubiquitylation complexes acting upon key
players in cancer-driven mechanisms. VHL is found mutated in a
variety of tumors including clear cell carcinomas of the kidney,
pheochromocytomas, and vascular tumors of the central nervous
system and retina [36]. Under hypoxia conditions hydroxylated
hypoxia-inducible factor (HIF) is recruited by the von Hippel-
Lindau ubiquitination complex, leading to its ubiquitination and
degradation [37]. GAN, an ubiquitin E3 ligase adaptor, and p16
protein expression contributed to senescence of cisplatin treated
cells through NFkB ubiquitination. The increased nuclear pl6
expression correlates with enhanced survival of head and neck
cancer patients [38]. The manual validation of the text mining
performed on proteostasis factors and cancer reassures the effec-
tiveness of these approaches for assessing in an organized and
nondisperse manner the vast literature on a specific subject.

4 Notes

1. We apply a text mining approach which means that the results
presented are obtained semi-automatically. That is we have not
extensively manually validated the extracted words for every
abstract. This means that a few terms are likely to be extracted
in the wrong context. Nevertheless, we are only interested in
the most abundant terms so few errors are unlikely to corrupt
the overall picture. However, we have performed basic valida-
tion as mentioned in the following notes.
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2. We applied directly the official protein names for proteostasis fac-
tors. More sophisticated approaches could be taken to include
also description of a protein and synonym protein names.

3. The keyword “AND” is very important. If not included then
all abstracts with cancer, leukemia, and lymphoma will always
be targeted. The key word “cancer” captures a large group of
cancers such as lung cancer, stomach cancer, and breast cancer.
We choose for simplicity here to only include “leukemia and
lymphoma” as additional cancer types but in principle the list
of cancer keywords could be longer.

4. The search terms described will also hit matches in keywords
and authors fields. The hits on keywords provide more sensi-
tivity but the hits on author fields give false matches. We there-
fore subsequently use the grep command to filter this first text
corpus. An alternative approach could be to use the PubMed
filter “[ Text + Words]” to avoid matches on authors. For exam-
ple, the ubiquitin E3 ligase adaptor “GAN” matches many
abstracts with this author name.

5. Running the command “typeof” on the text “TextBRCA1”
should give the output: "character".

6. The wordcloud still contains some noninformative words such
as: use, can, and one (see Fig. 2). These can be filtered away by
using the command: myCorpus =tm_map(myCorpus, remove-

Words, ¢("use", "can

non

,"one")).
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Chapter 3

Combining Zebrafish and Mouse Models to Test
the Function of Deubiquitinating Enzyme (Dubs) Genes
in Development: Role of USP45 in the Retina

Vasileios Toulis, Alejandro Garanto, and Gemma Marfany

Abstract

Ubiquitination is a dynamic and reversible posttranslational modification. Much effort has been devoted
to characterize the function of ubiquitin pathway genes in the cell context, but much less is known on their
functional role in the development and maintenance of organs and tissues in the organism. In fact, several
ubiquitin ligases and deubiquitinating enzymes (DUBs) are implicated in human pathological disorders,
from cancer to neurodegeneration. The aim of our work is to explore the relevance of DUBs in retinal
function in health and disease, particularly since some genes related to the ubiquitin or SUMO pathways
cause retinal dystrophies, a group of rare discases that affect 1:3000 individuals worldwide. We propose
zebrafish as an extremely useful and informative genetic model to characterize the function of any particu-
lar gene in the retina, and thus complement the expression data from mouse. A preliminary characteriza-
tion of gene expression in mouse retinas (RT-PCR and in situ hybridization) was performed to select
particularly interesting genes, and we later replicated the experiments in zebrafish. As a proof of concept,
we selected ups45 to be knocked down by morpholino injection in zebrafish embryos. Morphant phenotypic
analysis showed moderate to severe eye morphological defects, with a defective formation of the retinal
structures, therefore supporting the relevance of DUBs in the formation and differentiation of the verte-
brate retina, and suggesting that genes encoding ubiquitin pathway enzymes are good candidates for caus-
ing hereditary retinal dystrophies.

Key words Deubiquitinating enzymes, USP45, Retina, Morpholino knockdown, Zebrafish Animal
Model, Neurodegeneration

1 Introduction

More than 200 genes have been associated with different types of
hereditary retinal degeneration (RetNet: https://sph.uth.edu/
retnet/). Among them, mutations in genes directly involved in
ubiquitin and SUMO pathways, such as KLHL7 and TOPORS,
have been identified. Despite the increase in the number of caus-
ative genes and mutations, the main challenge in the field is to
assess their function in the retina.
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Animal models have played an essential crucial role to dis-
cover gene function and test therapeutic approaches for retinal
dystrophy genes [1]. The mouse (Mus musculus) has been the
model per excellence for years because of the easy genetic manip-
ulation, housing and handling, and the conservation of ortholo-
gous genes compared to humans [2]. However, the generation
of a genetically modified mouse model is rather costly in terms
of effort, time, and budget, and there is always the risk that the
model does not mimic the human phenotype, as shown for sev-
eral genes [3—6]. In the last decade, zebrafish (Danio rerio) has
emerged as an extremely useful tool to rapidly assess candidate
genes and mutations at the morphological level, particularly in
genes that are involved in organ/tissue development [7], using
large numbers of animals that enable confident statistical analy-
ses. Besides, the cone-rich retina of zebrafish is similar to the
human retina, and photoreceptor function and phototransduc-
tion pathways are highly conserved.

Here we describe some standard techniques to perform an easy
and rapid screening of gene expression in the retina of mouse and
zebrafish. The information gathered using both models might be
extremely useful not only to identify new candidate genes and
pathogenic mutations in human but also to evaluate the possibility
of generating a costly modified animal model for long-term in vivo
studies, ensuring that the gene is expressed in the correct tissue/
cell type and shows an altered phenotype.

We have explored the possible role of two DUB genes ( Usp45
and Usp53) in the mouse retina, by quantification of the expres-
sion levels by real-time reverse-transcriptase PCR (qRT-PCR),
determination of their spatial expression pattern by mRNA in
situ hybridization in mouse as well as in zebrafish retinas, and
finally, by phenotype analysis of gene knockdown in zebrafish
embryos. As a proof of principle we focused on usp45, whose
morphant (morpholino knockdown) resulted in disruption of
the normal development of the retina, but also showed a severe
reduction of the body size, with an anomalous development of
the notochord and nervous system. Therefore, USP45 may be
required for the normal development of the nervous system and,
particularly, for retinal development.

Overall, this type of complementary phenotypic analysis
combining several animal models can shed light on the physi-
ological function of the ubiquitin/proteasome and other post-
translational modification (sumoylation) pathways in health
and disease.
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2 Materials and Solutions

2.1 Dissection

of Mouse Retinas

and Preparation

of Mouse Eye Sections

2.2 RNA Isolation,
cDNA Synthesis, qPCR,
and PCR

2.3 InSitu
Hybridization

on Mouse

and Zebrafish Retinal
Cryosections

2.4 Zebrafish
Embryo Collection,
Handling and Fixation,
and Morpholino
Microinjection

2.5 Solutions

Razor blades, scissors, and forceps.
Stereomicroscope.

Cryostat.

Poly-lysine treated slides.

Petri dishes (for acrylamide embedding).

Polytron or similar blender for tissue samples.
Agarose and electrophoresis system.

LightCycler® 480 SYBR green (Roche Diagnostics,
Indianapolis, IN) or similar.

96 or 384 well plates.
Thermocycler.
Image] /Fiji software.

Thermocycler.

LB agar plates with 100 pg/ml ampicillin, 0.1 mM IPTG, and
40 pg/ml X-GAL.

LB liquid medium.

Mini-quick spin columns (Roche Diagnostics, Indianapolis, IN).
Heat incubators at 68, 55, and 37 °C.

Shaker.

Microscope and camera.

A nontransparent box to create the wet chamber for
hybridizations.

Hydrophobic pen, special for high temperatures.

Adult male and female fish.

Fish tank with plastic separators.

Petri dishes.

Heat Incubator at 28 °C.

Plastic mold.

Microinjection equipment, needles, microscope.
Mineral oil and micrometer.

Morpholino antisense oligonucleotide (MO).

Acrylamide monomer solution (for 50 ml): 4.2 g Acrylamide,
0.007 g Bis-acrylamide, 350 pl TEMED, 5 ml 10x PBS, dou-
ble distilled H2O up to 50 ml.
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Acrylamide embedding solution: 50 pl of 10% APS in H,O
added to 10 ml of acrylamide monomer solution.
50x Denhardt’s solution: 1% (w/v) Ficoll 400, 1% (w/v)

Polyvinylpyrrolidone, 1% (w/v) Bovine serum albumin
(Fraction V). Dissolved in DEPC-H,O0.

Prehybridization solution for mouse cryosections: 42 % (v/V)
Formamide, 10% (w/v) Dextran sulfate, 1x Denhardt’s
Solution, 0.9 M NaCl, 0.1 M Tris-HCI (pH 8.0), 5 mM
EDTA (pH 8.0), 10 mM NaH,PO,, 1 mg/ml yeast tRNA in
DEPC-treated double distilled water.

20x SSC: 3 M NaCl, 300 mM Sodium Citrate, 800 ml of dou-
ble distilled H,O. Adjust pH to 7.0 using HCI. Adjust volume
to 1 1 with double distilled H,O. Autoclave.

NTE: 0.5 M NaCl, 10 mM Tris-HCI (pH 8.0), 5 mM EDTA
(pH 8.0) for this and the next buffers, (se¢ Note 1).

Buffer 1: 100 mM Tris—-HCI (pH 7.5), 150 mM NaCl.

Buffer 2: 100 mM Tris (pH 9.5), 100 mM NaCl.

Buffer 3: 100 mM Tris (pH 9.5), 100 mM NaCl, 50 mM MgCl,.

E3 medinm: 300 mM NaCl, 10 mM KCI, 20 mM CaCl,,
20 mM MgSOy in distilled water.

Hybridization solution for zebrafish cryosections: 50% for-
mamide, 1x Denhardt’s solution, 10% dextran sulfate, 0.9 M
NaCl, 100 mM Tris—HCI (pH 8.0), 5 mM EDTA (pH 8.0),
10 mM NaH,PO,, 1 mg/ml yeast tRNA.

Wash solution: 50 % formamide, 1x SSC, 0.1 % Tween-20.

MABT solution: 100 mM C,H,O,4 (pH 7.5), 150 mM NaCl,
0.1% Tween-20.

Blocking Buffer: 100 mM Tris—-HCI (pH 7.5), 150 mM NaCl,
1% BSA, 0.1% Triton X-100.

Alkaline phosphatase staining solution: 100 mM Tris—HCI
(pH 9.5), 150 mM NaCl, 50 mM MgCl,, 0.1 % Tween-20.

Hematoxylin stock solution: 1% w/v in alcohol 99%. Let it rest
(slow oxidation) during 2 weeks before use. Before use, dilute
1:1 in distilled water and filter (paper filter) to avoid precipitates.

Eosin solution: 1% w/v in distilled water. Filter (paper filter)
before use.

3 Methods

3.1 Dissection 1.
of Mouse Retinas
for RNA Isolation

Sacrifice the number of P60 adult mice required (60 post-
natal days is a standard age for fully differentiated retina)
(see Note 2).
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2. Hold the whole eye with the forceps, make a small cut on the
cornea with a razor blade and remove the lens (Fig. 1a).

3. Pull out the neural retina (pink tissue) trying to leave the reti-
nal pigmented epithelium (RPE) out (Fig. 1a), and transfer the
retina to a 1.5 ml tube (two retinas per tube, use different
tubes for different animals) and freeze immediately in liquid
nitrogen. Keep them at -80 °C until use.

4. To obtain the retinal RNA, disrupt and homogenize the tissue
in the buffer provided in the kit for tissue RNA isolation, using
a polytron or a similar electronic blender.

5. Run 2-3 plin a 1% w/v agarose/TBE gel to assess RNA quality.

6. Perform the cDNA synthesis reaction, 1 pg of RNA per tube,
using a kit that allows to mix an oligodT primer and random
hexamers or decamers to ensure the complete coverage of the
gene of interest (strongly suggested for large genes).

7. Depending on the protocol and the initial mRNA purity and
concentration, the cDNA should be diluted between 1:2 and
1:10 times in H,O before the qPCR.

8. Prepare the qPCR reaction following the manufacturer’s
instructions (e.g., Lightcycler® 480 SYBR Green Master
protocol) (see Note 3).

o neuroretina

Fig. 1 Procedure for the dissection of the mouse neuroretina and eyecup. (a) Images illustrating four steps
during the dissection of the mouse neuroretina for the purification of retinal RNA (see Subheading 3.1 for a
complete description). (b) Images illustrating the dissection of the whole eyecup for the embedding and obten-
tion of retina slides (see Subheading 3.2 for a complete description)
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3.2 Dissection 1.

of Mouse Retinas

for Cryosections 2
3

Enucleate the eye (Fig. 1b) and transfer it to a Petri dish with
some drops of 4% PFA in 1x PBS.

. Perform a small hole or cut in the cornea with a needle (Fig. 1b)

to allow the PFA enter into the eye for 10 min.

. Under the stereomicroscope and using the iridectomy scissors

and forceps, cut around the iris to remove the cornea (Fig. 1b).

4. Fix the eyecups for 2 h in 4% PFA at RT.

5
6
3.2.1 Sucrose .
Embedding
[ ]
(]
3.2.2 Acrylamide °
Embedding .
[ ]
[ ]
7
8
3.3 Cloning 1.
of the Riboprobe

. Wash three times in 1x PBS for 15 min each at RT.

. Embed the eyecups to avoid crystal formation (using either

sucrose or acrylamide embedding).

Transfer the eyecup to a tube containing a 10% w/v sucrose
solution in PBS for 15 min or until the eyecup reaches the
bottom at 4 °C. Repeat this step twice.

Continue the cryoprotection by moving the eyecup to a
20% w /v sucrose solution in PBS for 15 min or until the
eyecup settles down at 4 °C. Repeat this step twice.

Finally, place the eyecup in a tube with 30% w/v sucrose
solution in PBS and incubate it 0/n at 4 °C.

Proceed to step 7.

Infiltrate the eyecup in acrylamide monomer o/n at 4 °C.

Polymerize 0.5 ml of fresh prepared acrylamide monomer in
a 1.5 ml tube.

Transfer the infiltrated eyecup on the acrylamide pad of the
previous step (one eyecup per tube) and fill the tube with
fresh embedding solution.

Allow the polymerization of the acrylamide in ice (approx:
40-50 min).
Under a stereomicroscope, remove the acrylamide surround-

ing the eyecup using a razor blade and iridectomy scissors on
a Petri dish with double distilled H,O.

Proceed to step 7.

- Cast the embedded tissue in a cryostat mold with OCT and

freeze slowly in liquid nitrogen.

- Using a cryostat, cut the blocks into 10-20 pm sections at

-17 °C/-20 °C and place them on poly-lysine treated glass
slides. Keep at —80 °C until used.

Amplify with a standard Taq pol the desired region (between
400 and 800 bp in size) using gDNA or cDNA, depending on
whether multiple exons are included. Check the PCR by gel
electrophoresis and purify.
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3.4 Generation
of the Riboprobe

3.5 InSitu
Hybridization
on Mouse
Cryosections

351 Dayi

2.

Ligate the fragment into the pGEM®-T vector following the
manufacturer’s protocol, and transform by heat shock in
DHb5a E. coli cells.

. Plate onto LB supplemented with ampicillin/IPTG,/XGal plates

and incubate overnight at 37 °C for antibiotic and color selection

. Pick six white colonies and grow o/n in 3 ml LB containing

ampicillin (100 pg/ml) (see Notes 4 and 5).

. Perform colony screening by plasmid minipreparation using

1.5 ml of the culture. Analyze if the plasmids are recombinant
by restriction digestion.

. Dilute the plasmid DNA down to 10 ng/pl. Use 1 pl to per-

form the PCR (final volume 50 pl) using the M13 primer
(GTAAAACGACGGCCAGT) combined with the forward or
reverse primer used in step 1 (for each miniprep) (see Note 6).

. Select two clones (one in the antisense and the other in the sense

direction) for each gene, and sequence them for verification.

From this step onwards all the reagents must be RNase-free (see
Note 7).

1.

If PCRs from step 7 (Subheading 3.3) produced a good yield,
the PCR reaction could be directly used for the generation of
the riboprobes.

. Mix 12 pl of the PCR product with 2 pl of T7 RNA poly-

merase, 2 pl of INTP mix labeled with digoxigenin, 1 pl DTT
(0.1 M), 1 pl RNase Inhibitor, and 2 pl of the T7 pol buffer.
Incubate 2-3 h at 37 °C.

. Add 2 pl of DNAsel and incubate 20 min at 37 °C. Separate

1 pl of the reaction for control.

. Purity the riboprobe using mini-quick speed columns (Roche)

following the manufacturer’s protocol. Approximately
25-30 pl will be collected.

. Test 1 pl of steps 3 and 4 ina 1% w/v agarose/TBE gel.

. If the test shows clear riboprobe production and recovery,

dilute the riboprobe in 100% formamide (1:1 v/v), final con-
centration 50 % formamide.

. Thaw the cryosections kept at -80 °C (step 8, Subheading 3.2)

at RT for 1 h.

. Use the hydrophobic pen (special for in situ hybridization) to

surround each retina.

. Remove OCT by washing the slides three times for 10 min in

1x PBS.

. Incubate retinas in 2 pg/ml Proteinase Kin PBS, for 20 min at

37 °C.
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10.

11.

12.

. Rinse sections twice in 1x PBS for 5 min.
. Fix retinas in 4% PFA in PBS for 20 min at RT.
. Wash with 1x PBS.

. Incubate 5 min in 0.1 M triethanolamine with 0.25% acetic

anhydride (in PBS) at RT, followed by 5 min in 0.1 M trietha-
nolamine with 0.5 % acetic anhydride (in PBS) at RT.

. Wash 5 min in 1x PBS at RT. Check that the hydrophobic

circle drawn in step 2 is still in a good condition. Otherwise
redraw the circle.

Perform a prehybridization step by incubating 2—4 h in prehy-
bridization solution at 55 °C in a nontransparent wet chamber
(to avoid evaporation) (Notes 8 and 9).

Mix 150 pl of prehybridization solution with 5-10 pl of ribo-
probe (this is the hybridization solution).

Remove carefully prehybridization solution and substitute by
the hybridization solution. Incubate slides o/n at 55 °C in the
wet chamber.

From this step onwards RNase-free conditions are not strictly
required.

13.

14.

15.
16.
17.
18.

19.
20.
21.

22.

23.

24.

25.

Warm 2x SSC and 2x SSC/42% formamide at 55 °C, and
warm NTE, some 2x SSC and 0.2x SSC at 37 °C.

Wash slides 20 min in 2x SSC at 55 °C, and twice for 5 min in
2x SSC/42 % formamide at 55 °C.

Wash three times for 5 min in NTE at 37 °C.
Incubate 30 min in 10 pg/ml RNaseA (in NTE) at 37 °C.
Rinse 15 min in NTE at 37 °C.

Wash twice for 15 min in 2x SSC at 37 °C, and twice for
15 min in 0.2x SSC at 37 °C.

Incubate 5 min in Buffer 1 at RT.
Block 1 hin 1% BSA+0.1% Triton X-100 in Buffer I at RT.

Incubate sections o/n in Buffer I containing anti-DIG-AP
(1:1000) at 4 °C.

Wash twice for 15 min in Buffer 1 at RT, 5 min in Buffer 2 at
RT, and 5 min in Buffer 3 at RT.

Add the BMP substrate on each slide and incubate at RT in the
dark (see Note 10).

After 30 min, check regularly the sections under the micro-
scope (see Note 11).

Stop reaction by washing with PBS, and mount using Fluoprep
and a coverslide (Fig. 2, positive mRNA localization is
detected in blue).
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3.6 Zebrafish
Embryo Collection,
Handling and Fixation

mouse Usp45

zebrafish usp45

L4

< |PL ———

b

Fig. 2 Comparative Usp45 in situ hybridizations in P60 mouse and 7 days zebraf-
ish retinal cryosections, showing a strong correspondence of the mRNA localiza-
tion in the retina of the two animal models. Of note, usp45 mRNA is found in the
inner segment of the photoreceptors but also in the outer and inner plexiform
layers, where most synapses occur, suggesting a role in the signal transduction
pathway or in the regulation of the synaptic signal transmission rather than in
photoreceptor differentiation fate. PhAR photoreceptor cell layer, ONL outer
nuclear layer, OPL outer plexiform layer, /PL inner plexiform layer

1. Place several pairs of one male and one female adult zebrafish
in a fish tank prepared for fish egg laying, but the male and
female of each mating pair should be set close but separated
with a plastic separator. Set a cycle of 14-h light/10-h dark
cycle room for 24 h (see Note 12).

2. Next day remove the separator and allow the pair to mate.
After fertilization, collect the eggs with a plastic pipette and
allow them to develop in a Petri dish with 1x E3 medium.

3. Breed the eggs in an incubator at 28 °C until they reach the
desired developmental stages (we obtained embryos at 12 h,
24 h, 36 h, 48 h and 72 hpt.) (see Note 13) [8].

4. Transfer the selected embryos in an Eppendorf tube. Fixation
is performed with a 4% Paraformaldehyde (PFA) solution
(w/v) in PBS for 2 h at room temperature.

5. Wash three times with PBS 1x for 10 min each.

6. Immerse successively the fixated embryos into 20 and 30%
sucrose in PBS (w/v) solutions for 30 min each at room tem-
perature. Finally, immerse the embryos o/n in 40% sucrose
w/v at 4 °C.

7. Embed the embryos in OCT for 1 h, freeze them in liquid
nitrogen, and store them at -80 °C.
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3.7 Semi-

Quantitative PCR

3.8 In Situ

Hybridization
on Zebrafish Retinal

Sections

Table 1

Sequences and characteristics of the primer pairs used in semi-quantitative PCR
and in-situ hybridizations

. Add the components of the PCR to a 50 pl final volume reaction

(standard reactions contain: 0.2 pM of each primer, 1.5 mM
MgCl,, 0.2 mM dNTPs, Taq Buffer 1x, and 1 U Tag DNA
Polymerase). The sequences of the primer pairs used, including
those of f-actin, a normalization control are listed in Table 1.

. Mix gently the reaction components and set the tubes into a

thermocycler. The standard PCR conditions used are shown
in Table 2.

. After agarose gel electrophoresis, the amplified bands are visu-

alized and quantified using appropriate software (e.g., Image]J /
Fiji) to allow comparison between genes and developmental

stages (Fig. 3).

1. Thaw the retinal sections stored at —-80 °C, and let them air dry

for 1 h at room temperature (RT).

2. Rinse them three times for 10 min with 1x PBS.

Real-Time qPCR (mouse retinas)

Gene Orientation Sequence (5'-3') Tm (°C)
Usp45 Forward AGCCTCACTGACGGCAGCG 71.5
Reverse AGGCTGCTTGGAAGCGATC 66.8
Usp53 Forward GGAGTCCATGCATGACCCAGG 71.1
Reverse TGAACAACTGGACGGGTAGCTG 68.3
Gapdh Forward TGACAATGAATACGGCTACAGCAA 67.2
Reverse TACTCCTTGGAGGCCATGTAGG 66.1
Rho Forward GCCCTTCTCCAACGTCACAG 67.1
Reverse GCAGCTTCTTGTGCTGTACGG 67.1
In-situ Hybridization (mouse retinal cryosections)
Gene Orientation Sequence (5'-3') Tm (°C)
Usp45 Forward AGCCTCACTGACGGCAGCG 71.5
Reverse GACAGGACTGGACTGAGCAT 62
Usp53 Forward CATCTGTGAGAACTGCTGGGCT 67.9
Reverse TGAACAACTGGACGGGTAGCTG 68.3
Rho Forward GCCCTTCTCCAACGTCACAG 67.1
Reverse GCAGCTTCTTGTGCTGTACGG 67.1

(continued)



Combining Zebrafish and Mouse Models to Test the Function of Deubiquitinating... 95

Table 1
(continued)
Semi-quantitative PCR (zebrafish embryos)

Gene Orientation Sequence (5'-3') Tm (°C)

usp45 Forward CAGTCAGGAATTGCTGCATTACC 66.6
Reverse TGGGCAGCTAATGAGTCATCATG 68.1

usp53a Forward CTGACGCCTGCACGTCCAAG 71.6
Reverse AGTGAGGTCGGACTGCTCCGA 70.8

usp53b  Forward GTCTCATGGATGATGCAGCGGA 71.7
Reverse TTGATACTCTGCCCACAGTTAC 60.6

P-actin Forward CTACAACGAGCTGCGTGTTGC 68.1
Reverse CGGTCAGGATCTTCATGAGGT 65.3

In-situ Hybridization (zebrafish retinal cryosections)

Gene Orientation Sequence (5'-3') Tm (°C)

usp45 Forward TCTCAGACCCACATGCTGAATG 67.4
Reverse GTCCACTGAGCCTCCTGCTGT 68.2

crx Forward CCTTCCCGAGTCCAGAGTTC 65.1
Reverse AAGAGCCATAGCCCTGGCTG 67.6

Control of knockdown

Gene Orientation Sequence (5'-3') Tm (°C)

usp45 Forward TCTCAGACCCACATGCTGAATG 67 .4
Reverse CCTCCACTCTCATAGAGTCCAG 61.8

|\f-actin was used as a normalization control

Table 2

Semi-quantitative PCR conditions

Step Temperature (°C) Time

Hot start 94 3 min

Denaturation 94 10s %35
Annealing 58 30s

Elongation 72 25s

Stop 12 )
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Fig.
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3 Semi-quantitative expression analysis during embryonic development in

zebrafish. Expression levels of (a) three studied genes, usp45, usp53a, and
usp53b. There is a single usp45 gene in zebrafish, which is expressed in the five
studied embryonic developmental stages at a high level of expression. usp53
has two highly similar paralogues in zebrafish, usp53a and usp53b. Note that
usp53a is expressed at lower levels than usp53b, at the analyzed stages; (b)
-actin, used for normalization

3.9 Morpholino 1.

Microinjection
in Zebrafish Embryos

. Denature the riboprobes (antisense and sense) for 5 min at

68 °C and add 0.1-1 pg/ml of each one to their correspond-
ing in situ hybridization solution. (Riboprobes are prepared as
in Subheadings 3.3 and 3.4). Incubate overnight (at least 16 h)
at 68 °C in a wet chamber protected from light.

. After hybridization, wash the slides thrice for 30 min each at

68 °C in wash solution, and thrice for 30 min at RT in MABT.

. Block them in blocking bufter for 4 h at RT.

. Incubate o/n at 4 °C with an anti-digoxigenin-AP conjugate

antibody (dilution 1:1000) in Blocking Buffer.

. Wash the sections once in MABT for 30 min at RT, and twice for

10 min each in staining solution of alkaline phosphatase, in a shaker.

. Incubate with freshly filtered BMP and allow the reaction to

develop until a clear expression signal is obtained in the anti-
sense hybridized sections or if staining appears in the sense
sections. The reaction is stopped by washing in 1x PBS.

. Mount the sections in fluoprep before making photographs

with a camera attached to a light microscope (Fig. 2, positive
mRNA localization is detected in blue).

Collect the embryos as described above, and place the embryos
in chambers and align them in the same direction. To prepare
the chambers set a plastic mold into a Petri dish containing
1.5% (w/v) liquid agarose with 1x E3 medium. Once the aga-
rose is gelified, remove the plastic mold and keep it at 4 °C.

. Turn on the air source and the microinjector and insert the

needle. Pinch off the needle at the point of interest using a
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microscope and a pair of sharp forceps. To calculate the vol-
ume of each microinjection, use a drop of mineral oil on a
micrometer (see Note 14).

3. Mix the morpholino antisense oligonucleotide (MO) of inter-
est (designed and synthesized by Gene Tools, see Note 15)
with 0.5 % phenol red, which serves as a visible marker for the
injection of the solution into the embryo.

4. Microinject the MO of interest and the standard scrambled MO
(negative control) into the yolk of the aligned 1- to 4-cell stage

Table 3
Injected volumes and final concentrations of MO-USP45

MO MO injected volumes (pl) MO final concentration (juM)
MO-USP45 (1) 65 0.036
MO-USP45 (2) 100 0.29
MO-USP45 (3) 150 1

a MO

9 10 11
— “—
b WT coMO MO-USP45 (1)  MO-USP45(2) MO-USP45 (3) ol
— — - -

usp45 “

B-actin . G A S e

Fig. 4 Knockdown of usp45 in zebrafish by morpholino microinjection. (a) The position of the morpholino in the
unprocessed RNA and the primers used for PCR test are indicated. The MO targeted the acceptor splice site of
intron 9 and the beginning of exon 10 of usp45 (MO-USP45: 5'-AATGCGCTGTCAGTGAAAACACAAT-3'). A
scrambled MO was used as negative control (coMO: 5'-CCTCTTACCTCAGTTACAATTTATA-3'); (b) Effects of the
morpholino knockdown on the transcription of usp45 detected by semi-quantitative RT-PCR, showing inhibi-
tion of intron 9 splicing (causing the introduction of a STOP codon, which in turn would result in a premature
protein truncation and probably, non-sense-mediated decay of the misprocessed mRNA). Several morpholino
concentrations were tested. The lowest tested concentration (0.036 uM) was the most efficient, as it knocked
down usp45 expression to 51.5% while still being compatible with viability. g-Actin was used for normaliza-
tion. coMO: control standard scramble MO; MO-USP45 (1): 0.036 pM; MO-USP45 (2): 0.29 uM; MO-USP45
(3): 1 uM. The arrow indicates the band produced when exon 10 is skipped by the morpholino action
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coMO

MO-USP45

coMO MO-USP45

Fig. 5 (a) Morphant phenotypes observed in 72 hpf embryos after MO microinjection in eggs (0.036 pM). The
main traits are: eye size reduction, small body size with small or no tail, and disruption in the formation of
notochord (mild phenotype). 6 % of the embryos show a very severe phenotype with no eyes; (b) Hematoxylin
and eosin stained eye sections in coMO (control embryos, injected with a standard scramble morpholino) and
MO-USP45 injected embryos (72 hpf). MO-USP45 injected morphants show defects in eye formation and the
lamination of the retina, with no distinguishable photoreceptors or plexiform layers (IPL and OPL) and with
smaller retinas (low number of neurons), compared with the coMO retinas

embryos [9] (see Note 16). The volumes and inferred final con-
centrations of injected MO-USP45 are shown in Table 3.

5. Move the injected embryos to a Petri dish with 1x E3 medium
and let them develop in an incubator at 28 °C until they reach
the desired developmental stage (e.g., 72 h). Every day, the
dead embryos should be removed and the E3 medium changed.

6. At the stage(s) of interest (e.g., 72 h), observe the morphant
phenotype with a microscope. Anesthetize the embryos by
immersion in a tricaine solution (4.2% v/v in 1x E3 medium)
and photograph them with a camera attached to a light micro-
scope (Fig. 5a). After setting them back to 1x E3 medium, the
embryos recover from the anesthesia.

7. Select half of the animals to perform a semi-quantitative RT-PCR
assay to evaluate the knockdown effect of the usp45 MO (Fig. 4).

8. Fix the other half of the embryos for histological morphologi-
cal analysis, as described in the step 4 (Subheading 3.6), and
obtain retinal cryosections (14-16 pm width).
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3.10 Hematoxylin/
Eosin Staining

of Zebrafish Retinal
Sections

1.

[\

Thaw the retinal sections (14-16 pm width) stored at -80 °C,
and let them air dry for 1 h at room temperature (RT).

. Rinse retinal sections with 1x PBS for 10 min.

. Stain with freshly diluted and filtered hematoxylin solution for

90 s, and wash with distilled H,O for 10 min.

. Stain with freshly filtered eosin solution for 4 min and 30 s,

and wash quickly with distilled H,O.

. Mount the sections with fluoprep and take photographs with a

camera attached to a light microscope.

. Compare the phenotype qualitatively between scramble and

morpholino injected animals (Fig. 5b).

. Count and compare the number of nuclei rows in the OPL

with the help of Image], and compare the relative width of the
retina, the outer photoreceptor segment, and the outer plexi-
torm layers (see Note 17).

4 Notes

. The pH of Tris bufters of these protocols must be accurate to

obtain good results.

. Due to the inter-individual differences in transcription, we

suggest 3—6 animals, depending on the amount of genes to
be screened and the number of replicates required for statis-
tical significance.

. For the qPCR, oligonucleotides to amplify fragments of around

100 bp (preferably, primers should map at different exons to
prevent amplification due to genomic contamination) should
be used. The annealing (melting) temperature should be close
to or higher than 60 °C. Primers of control genes to normalize
expression values should be also designed. All primers should
be checked first to assess that they amplify a single amplicon.

. For each gene two riboprobes, sense (negative control) and

antisense (assay), are required.

. Fragments shorter or equal to 300 bp may result in light blue

or blue colonies if they are in frame.

. This will allow the identification of the direction of the probe. Ifa

band with the correct size is observed using the M13 and forward
primers the probe is cloned in the antisense direction, while ampli-
fication using the M13 and reverse primers indicates sense probes.

. Before starting, all tubes and stable solutions must be auto-

claved twice. Bench must be clean and RNase /DNase-free fil-
ter tips are recommended. Non-autoclavable solutions must be
freshly prepared and filtered (@ 22 pm), and only used for
RNA-related purposes.
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10.

11.

12.

13.

14.

15.

16.

17.

. As a wet chamber, use a nontransparent flat box, with the bot-
tom covered by a wet paper filter. Place the slides on top, reti-
nas facing up.

. Never apply any solution directly on the tissue section, mor-
phology might be damaged or the retina section might detach.

Use a freshly clarified BM Purple AP (BMP) substrate, either
by filtering through a 0.45 pm filter or by centrifuging at maxi-
mum speed for 5 min.

This step might take from minutes to hours. Replace every 2 h
the BMP solution to avoid precipitation. The reaction is faster
at RT, but it can also proceed more slowly by incubating at
4 °C using longer incubation times.

Three days before mating and egg laying, zebrafish animals
should be fed with dry Artemia salina pellets to increase the
metabolism and favor egg production. Animals should be
young and well fed to lay eggs. If the mating pairs do not lay
eggs, or the eggs are too fragile and do not survive microinjec-
tion, buy fresh younger animals.

Several embryonic developmental stages should be analyzed to
assess the expression of our genes of interest. Although adulthood
and sexual maturity is reached at 90 days, most tissues and organs
are developed during the first 72 h of the larval development.

For instance, an oil drop of (@ 100 pm contains 520 pl of injec-
tion material.

Many efficient morpholinos are directed against splice acceptor
or donor sites, so that they inhibit proper mRNA splicing.

Several concentrations of MO-USP45 (different volumes)
were microinjected in order to find the more efficient in knock-
ing down usp45 (the concentration is calculated as the final
DNA amount per embryo).

Additionally, confocal microscopy for immunodetection of
specific proteins and retinal markers (e.g., rhodopsin for rod
photoreceptors) could also be performed for detailed analysis.
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Chapter 4

Immunodepletion and Immunopurification as Approaches
for CSN Research

Amnon Golan, Ning Wei, and Elah Pick

Abstract

The COP9 signalosome (CSN) is an evolutionary conserved complex that is found in all eukaryotes, and
implicated in regulating the activity of Cullin-RING ubiquitin Ligases (CRLs). Activity of CRLs is
highly regulated; complexes are active when the cullin subunit is covalently attached to the ubiquitin like
modifier, Nedd8. Neddylation/deneddylation cycles are required for proper CRLs activity, and dened-
dylation is performed by the CSN complex.

We describe here a method utilizing resin-coupled antibodies to deplete the CSN from human cell
extracts, and to obtain endogenous CSN complexes by immunopurification. In the first step, the cross-linked
primary antibodies recognize endogenous CSN complexes, and deplete them from cell extract as the extract
passes through the immunoaffinity column. The resulting “CSN-depleted extract” (CDP) is rich in ned-
dylated cullins that can be used as a substrate for cullin-deneddylation assay for CSN complexes purified from
various eukaryotes. Consequently, regeneration of the column results in dissociation of a highly purified CSN
complex, together with its associated proteins. Immunopurification of the CSN from various human tissues
or experimental conditions is advantageous for the generation of numerous CSN-interaction maps.

Key words Nedd8, COP9 signalosome, Cullin-RING ubiquitin ligase, Immunodepletion,
Immunopurification

1 Introduction

The COP9 signalosome (CSN) is an evolutionary conserved
8-subunit (Csnl-8) complex [1]. Classic CSNs (with eight sub-
units) are found in most eukaryotes and have been shown to regu-
late the activity of cullin-RING ubiquitin Ligases (CRLs). CRLs
are the largest family of ubiquitin E3 ligases, responsible for fifth of
all ubiquitinated substrates within a cell in human [2]. CRLs are
modular complexes represented by the archetypical Skpl-Cullinl-
F-box (SCF) complex [3, 4]. The SCF consists of a Cullin-1 scaf-
fold subunit that interacts with the RING domain protein Rbx1 via
its C-terminus, and with the cullin-specific adaptor protein (Skpl)
via its N-terminus. Skpl binds to an F-box protein (FBP) that
serves as a substrate receptor (SR), which in turn recruits

Rune Matthiesen (ed.), Proteostasis: Methods and Protocols, Methods in Molecular Biology, vol. 1449,
DOI 10.1007/978-1-4939-3756-1_4, © Springer Science+Business Media New York 2016
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substrates, for ubiquitination (Fig. 1) [3, 4]. Activity of CRLs is
highly regulated; complexes are active when the cullin subunit is
covalently attached by the ubiquitin-related modifier, Nedd8
(a.k.a. neddylation) [5-7]. Removal of Nedd8 is carried out by the
CSN (a.k.a. deneddylation). Neddylation/deneddylation cycles
are required for the dynamic regulation of CRLs function in vivo
(Fig. 1) [2, 8, 9].

Deneddylation of cullins by the CSN depends on the metal-
binding MPN*/JAMM metalloprotease motif harbored in the fifth
subunit Csnb, which is active only when integrated in the CSN
holoenzyme [6, 10, 11]. CRL-free CSN complex is kept inactive,
while the CSN-CRL interactions result in a substantial rearrange-
ment that triggers a cascade of conformational changes, leading to
the activation of Csn5 [12]. The CSN also controls CRL activity in
a nonenzymatic manner by steric effects, possibly by preventing
interactions between the substrate and SR, and between Rbx1 and
the E2 [13-15]. In all studied multicellular organisms, CSN sub-
units are required for viability; and loss-of-function mutants dis-
play critical pleiotropic defects such as abnormal response to DNA
damage, defects in cell cycle progression or in development [1,
16-19]. CSN deficiency is also associated with altered half-life of
many transcription factors (TFs), suggesting a role in regulating
gene expression [20, 21]. In addition, increased expression of sev-
eral CRLs and CSN subunits is correlated with various tumors [9,
22-32]. As aresult, CSN, CRLs, and the Nedd8 conjugation path-
way have recently emerged as drug targets for cancer chemother-
apy [31, 33, 34].

We describe here a powerful set of resin-coupled antibodies,
which are suitable for immunodepletion and immunoaffinity

o 0
J

2® & I
WbN

Active SCF Inactive SCF

Fig. 1 Inactivation of the SCF by the CSN complex. CRLs are represented by the archetypical Skp1-Cullin1-F-
box (SCF) complex. The Fbox protein (Fbx) is a substrate receptor that recognizes a specific substrate (S). The
E2 enzyme is attached to the E3 subunit Rbx1 and donates ubiquitin (U) to the substrate (/eff). CRLs are active
when the cullin scaffold subunit is covalently attached to Nedd8 (N). The eight-subunit CSN complex inacti-
vates the SCF through enzymatic hydrolysis of Nedd8 and through steric clashes between Fbx and substrate
and between Rbx1 and the E2 (right)
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purification of the CSN complex. The method involves
cross-linking of primary antibodies against CSN subunits to
sepharose resin, producing CSN immunoaffinity columns.
These antibody columns can be used to generate “CSN-depleted
extract” (CDP). The antibodies recognize endogenous CSN
assemblages and deplete them.

The following step regenerates the column, which includes thor-
ough washing of the column, together with its associated proteins.

The CDP produced by this method is enriched in endogenous
Nedd8-cullin conjugates in a most natural but cell-free state, and
is suitable for deneddylation activity assay (Fig. 2, I). The method
also enables elution of the immunoaffinity purified CSN complex
that can be used to study the interactome of endogenous CSN,
using various conditions or treatments (Fig. 2, II). Notably, using
this method, we have been able to deplete CSN, and approach cul-
lins for deneddylation activity [35-37]. This has proven that the
method is valuable for CSN functional studies.

I Immunodepletion " Immunopurification
= (CSN binding) = (CSN elution)

{—O.IM Glycine pH2.7
/i

- Assessing Protein-Protein
interactions

See Figure 4.

Deneddylation assay

See Figure 3.

Fig. 2 lllustration of CSN immunodepletion and immunoaffinity purification. () A selective removal of the
CSN from total cells’ extract by immunodepletion. CSN-depleted extract can be approached to determine
deneddylation activity of CSN complexes purified from various eukaryotes. (/) Immunoaffinity purification
of the CSN and associated proteins is accessible for CSN studies using various conditions, treatments, or
human cell types
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2 Materials

2.1 Production
of Immunoaffinity
Columns

2.2 Cells and TCE
Preparation

2.3 Preparation
of CDP

2.4 Eluting
the Immunoaffinity
Purified CSN Gomplex

. HiTrap NHS-Activated HP, # 17-0716-01, GE Healthcare.

2. AKTA Protein Purification Systems, GE Healthcare.

Ul ok WD - W
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. Anti-Csnl and anti-Csn2 antibodies, as described in Wei et al. [ 38].

. Hek293 cells—293T (ATCC® CRL-3216™).

. CO, incubator, temperature setting 37 °C incubator with 5% CO,.
. DMEM media.

. Heat inactivated Fetal Bovine serum (HI FBS).

. Sterile PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na,HPO,,

2 mM KH,PO,, pH adjusted to 7.4).

. 150 cm? cell culture plastic dishes.
. Single-Edge Blades.
. Lysis buffer (0.5% NP-40, 50 mM Tris (pH 7.4), 150 Mm

NaCl). Add to the buffer immediately before use: Protease
Inhibitor Cocktail (EDTA-Free, B14001, Sigma), PhosSTOP
(#04906845001, Roche).

. Dounce homogenizer, 10 ml.
10.
11.
12.
13.
14.
15.

15, 50 ml Conical plastic tubes.

15 ml Centrifuge tubes.

1.5 ml microcentrifuge tubes.

10 ml Syringe.

Nonsterile Syringe Filters; 0.22 uM filter.

5x Laemmli sample bufter (375 mM Tris (pH 6.8), 50% glyc-
erol, 350 mM SDS, 250 mM DTT, 0.1 % Bromophenol Blue).

. 95 °C dry block heater for microcentrifuge tubes.

. EtOH 20% (HPLC grade)—minimum 1 1.

. MQ (ultrapure water)—minimum 1 I.

. AKTA Protein Purification Systems, GE Healthcare.

. Buffer A (0.05% NP-40, 50 mM Tris (pH 7.4), 150 mM NaCl).
. Buffer B (50 mM Tris (pH 7.4), 150 mM NaCl).

. 10 ml loop, or two loops of 5 ml connected to each other.

. Microcentrifuge tubes.

. 15, 50 ml Conical plastic tubes.

. Liquid nitrogen tank.

. Tris—-HCI bufter 1 M pH 8.5.
. Elution buffer (100 mM Glycine (pH 2.7)).
. Buffer C (50 mM Tris (pH 11), 150 mM NaCl).
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4. Buffer D (50 mM Tris (pH 7.4), 150 mM NaCl, 0.02 % NaN3;).

5. 5x Laemmli sample buffer (375 mM Tris (pH 6.8), 50% glyc-
erol, 350 mM SDS, 250 mM DTT, 0.1 % Bromophenol Blue).

6. 95 °C dry block heater for microcentrifuge tubes.

1. 20% EtOH (HPLC grade)—minimum 1 1.

. MQ (ultrapure water)—minimum 1 1.

8]

. Csnl, Csn2 antibody, as described by Wei et al. [38].

. Csn3 antibody (Santa Cruz Biotechnology (RR12):s¢c-100693).
. Cullin 4a and Ddb] antibodies, as described by Pick et al. [39].
. Cullin 1 antibody (Santa Cruz Biotechnology (H-213):sc-11384).
. Cullin 2 antibody (Santa Cruz Biotechnology (N-19): sc-8554).

. Cullin 3 antibody(Santa Cruz Biotechnology, UL-3 (C-18):
sc-8556).

(@) WS 2 UV GRS T NS I ]

. Liquid nitrogen.
. (=80 °C) Freezer.
. BSA (Bovine Serum Albumin) 0.4 pg/pl.

. Purified CSN isolated from human erythrocytes (Enzo Life
Sciences Cat.# BML-PW9425-0020; LifeSensors Cat.#: CP009).

5. 5x Laemmli sample buffer (375 mM Tris (pH 6.8), 50% glyc-
erol, 350 mM SDS, 250 mM DTT, 0.1 % Bromophenol Blue).

6. 30, 95 °C dry block heater for microcentrifuge tubes.

[ O I S R

3 Methods

3.1 The Production
of Affinity GColumns

Herein, we describe a protocol for CSN immunodepletion
(Subheading 3.2) followed by its immunoaffinity purification
(Subheading 3.3). Next, we will illustrate the use of these tech-
niques for CSN research by describing deneddylation activity assay
(Subheading 3.7) and the analysis of CSN interactions with associ-
ated proteins (Subheading 3.8).

The immunoaffinity columns containing immobilized antibody
against CSN subunits are required in this method. Here, you will
prepare two columns, by covalent coupling of 3 mg of affinity puri-
fied anti-Csnl or anti-Csn2 antibodies, to a prepacked ready-to-
use column of activated sepharose resin (HiTrap NHS-Activated
HP, # 17-0716-01, GE Healthcare).

1. Perform antibody coupling precisely as detailed by the manu-
facturer  (https://www.gelifesciences.com/gehcls_images/
GELS /Related%20Content/Files /1335359522418 /lit-
doc18113480_20120425152132.pdf).


https://www.gelifesciences.com/gehcls_images/GELS/Related Content/Files/1335359522418/litdoc18113480_20120425152132.pdf
https://www.gelifesciences.com/gehcls_images/GELS/Related Content/Files/1335359522418/litdoc18113480_20120425152132.pdf
https://www.gelifesciences.com/gehcls_images/GELS/Related Content/Files/1335359522418/litdoc18113480_20120425152132.pdf
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3.2 Preparation of
TCE

This method enables preparation of TCE out of any mammalian
cells or tissues, but we frequently used the Hek293 cells—293T
(ATCC® CRL-3216™), which were often approached for CRLs-
CSN studies [5, 39-42].

1.

N O\ Ut

11.

12.

13.

14.

15.
16.
17.
18.

19.

Split 90% confluent cells culture in 1:10 ratio, and seed five
dishes of 150 cm? with Hek293 cells in Dulbecco’s Modified
Eagle’s Medium (DMEM), supplemented with 10 % heat inac-
tivated Fetal Bovine serum, 2 mM r-Glutamine, 50 pg/ml of
Penicillin Streptomycin mixture.

. Culture cells at 37 °C with 5% CO, until 80% confluence

(approximately 3 days),

. Wash gently the culture dishes with 10 ml ofice-cold Phosphate

Butffer Saline (PBS), by pipetting the bufter slowly on the dish
walls, and not directly on cells.

. Tilt the plate gently to wash the cells.

. Pump off used PBS and add 10 ml of fresh buffer.

. Harvest cells by releasing them with Single edge safety razor blades.
. Collect cells and buffer with 5 ml sterile pipettes into prechilled

15 ml falcon tubes.

. From this point, carry out all procedures at 4 °C, unless other-

wise stated.

. Centrifuge 5 min, at 4000 x g at 4 °C.
10.

Draw out the buffer, and keep the pellet on ice. It is possible
to stop here, and freeze down the pellet in liquid nitrogen;
keep at -80 °C.

By gentle pipetting, resuspend cell pellet into 9 ml of lysis
buffer complemented with PhosSTOP, EDTA-free protease
inhibitors.

Transfer the suspension into a prechilled 10 ml Dounce
homogenizer.

Homogenize in Dounce homogenizer 25-30 times, avoiding
the generation of foam, which can cause denaturation of pro-
teins (the chromatin should be visualized).

Take the pistil oft the homogenizer and keep the extract on ice
for 10 min.

Repeat steps 13-14 one more time.
Transfer the cells extract into prechilled 15 ml centrifuge tubes.
Centrifuge at 10,000 x4 for 20 min at 4 °C.

Collect the clear lysate and transfer to new (or recycled) coni-
cal tubes.

Keep the pellet for Subheading 3.2, step 26.
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20.

21.

22.

23.

24.

25.

26.
27.

28.
29.
30.
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Filter the clear lysate by a syringe filter, pore size 0.22 pM into
a 50 ml conical plastic tube. This step is to prevent obstruction
of a high pressure FPLC system (Subheading 3.3).

Keep the lysate tube on ice. This is your untreated (UT) sample.
Transfer 100 pl of the UT sample to a prechilled microcentri-
fuge tube.

Add 25 pl of 5x Laemmli sample buffer.

Heat to 95 °C for 5 min. Mark the tube with UT. This will be

used later on to compare with the CDP by immunoblotting
analysis.

Make ten additional aliquots of 50 pl UT of step 21 of
Subheading 3.2 in prechilled microcentrifuge tubes, mark all
of them as “UT,” freeze down in liquid nitrogen, and keep at
-80 °C freezer. You will use them later as controls for dened-
dylation assay in Subheading 3.4.

Keep the rest of UT on ice; you will use it in Subheading 3.3.

To prepare a sample of the pellet for immunoblotting, resus-
pend the pellet of step 19 of Subheading 3.2 in the initial vol-
ume of 10 ml with the hypotonic buffer.

Take a sample of 100 pl and transfer to microcentrifuge tubes.
Add 25 pl of 5x Laemmli sample buffer.

Mark the tube with “P” for pellet, and heat to 95 °C for 5 min
in a test tube dry heater.

A typical laboratory Fast Performance Liquid Chromatography
(FPLC) used for protein purification is commonly refrigerated.
Otherwise, keep the column area and the buffers chilled. Always
degas and filter all FPLC bufters.

To start the procedure you first need to wash the system from

previous users, and to make sure that the flow pressure is lower
than 0.3 MPa.

1.

Start a manual run to wash the system from 20 % Ethanol with
MQ water in a flow rate of 0.5 ml/min. Make sure to turn on
both pump “A” and pump “B.”

. Transfer the pump filters from MQ to appropriate buffer “A”

bottle and buffer “B” bottle.

. Wash pump “A” with buffer “A.”

4. Wash pump “B” with bufter “B.”

. Pre-equilibrate the system with buffer “A” using pump-wash

basic program and run for 10 min.

. Connect a 10 ml loop via ports 2 and 6 on injection valve of

your FPLC system.

. Set injection valve to the “LOAD” position.
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8.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

Connect round-tip needle to the syringe and wash the loop
with buffer A. This also frees the trapped bubbles in the injec-
tion port, and releases them directly to the waste.

. Connect the columns:

(a) Connect first the bottom of the anti-Csn2 column and
keep the drip of buffer on the top of the column in a flow
rate of 0.5 ml/min.

(b) Connect the bottom of the anti-Csnl column to the top
of the anti-Csn2 column while dripping on the top of
anti-Csnl column to avoid bubbles.

(c) Connect the top of the anti-Csnl column to the tube.

(d) If no bubbles appeared, and the columns are well con-
nected, change the flow rate to 1 ml/min.

Wash column with 10 column volumes (CV) of buffer “A” (or
continue to wash the column until the UV is <5 mAu and
constant).

Wash manually the syringe and the injection loop with buffer
“A” too.

Change the Flow Path of your FPLC to “inject,” using injec-
tion rate of 0.5 ml/min with a 0.3 MPa of pressure alarm.

Load UT supernatant from step 21 of Subheading 3.2 onto
the loop.

During injection of UT, collect the buffer from the loop,
which goes to the waste tube (flow through is kept only to
avoid the loss of UT sample because of an unexpected working
mistake).

To load the sample on the column change the Flow Path from
“LOAD” to “INJECT,” using injection rate of 0.5 ml/min
with a 0.3 MPa of pressure alarm.

Hold a clean 50 ml conical tube at the waste to collect 10 ml
of the unbound (UB) lysate. To prevent dilution of UB, it is
possible to follow after the UV curve, and stop collecting the
sample as soon as UV is <5 mAu and constant.

Seal your UB tube and keep on ice.

Keep washing the column with additional 20 CV of buffer “A”
(40 ml).

Repeat steps 13-18 of Subheading 3.3 three more times, by
reloading the UB fraction again and again in order to deplete
most of the CSN (see Fig. 4a).

Keep the latest UB fraction. This is your CDP.

Aliquot your CDP into 500 pl fractions, and keep in prechilled
microcentrifuge tubes.
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22. Mark the tubes as “CDPl1” with date and volume
notification.

23. Freeze down CDPI aliquots with liquid nitrogen, and keep
frozen in -80 °C until use.

At this point, immunodepletion is completed (Fig. 2, I), and you
are starting the immunopurification part (Fig. 2, II). The set of
columns is still connected to the FPLC, and is unwashed. In gen-
eral, antibody-antigen binding is most effective in aqueous buffers
at physiological pH. Accordingly, elution often occurs by raising/
lowering the pH to disturb this interaction. The most widely uti-
lized elution buffer for immunoaffinity purification is 0.1 M
Glycine-HCI, pH 2.5-3.0. This buffer effectively dissociates most
antibody-antigen interactions.

Wash the column with 20 CV of buffer “A,” or until UV is
<5 mAu and constant. Use flow rate of 1 ml/min and a “LOAD”
flow path.

1. Switch to pump “B” and wash the column with 10 CV of buf-
fer “B” with a flow rate of 1 ml/min. This step is necessary if
you plan to analyze your CSN sample by mass spectrometry.

2. Wash the pump filters “A” and “B” from the buffers, and
transfer them into the Elution buffer (Pump “A”), and buftfer
C‘C’? (Pump CLB?7>.

3. Wash the pumps with the corresponding buffers.

4. Before eluting the CSN, set 20 microcentrifuge tubes on the
fraction collection system, and each of them includes 100 pl
of 1 M Tris—HCI buffer (pH 8.5) (to prevent acidic hydroly-
sis of the eluted proteins).

5. Set the elution size to 0.5 CV (1 ml).
6. Elute the CSN into the tubes.

7. To avoid damage to the cross-linked antibodies, you need to
wash away the acidic buffer with 10 CV (20 ml) of alkaline
Tris—HCI buffer (Buffer “C”) immediately after elution.

8. Wash pump “A” with buffer “D.” Buffer “D” is similar to
Buffer “A,” but includes also azide.

9. Prepare 100 pl of samples for immunoblotting, by taking a
sample of 100 pl from each of the elution fractions, and add
25 pl of 5x Laemmli sample bufter.

10. Heat to 95 °C for 10 min in a dry block heater.

11. The rest of your elution sample will be restored at -80 °C until
you identify peak of CSN (Fig. 4).

1. Disconnect and recap the columns.

2. Label column’s last day of use and store in 4 °C for the next use.
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3.6 Evaluating CSN
Immunodepletion

3.7 Deneddylation
Activity Assay

3. Replace line to port using “drop-to-drop” connection.
4. Pump-wash the system with DDW in a flow rate of 1 ml/min.

5. Pump-wash the system with 20% Ethanol in a flow rate of
1 ml/min. Make sure that Ethanol is not flowing through the
columns, since it could destroy antibody function.

Approach the UT and P samples from steps 21 and 19 of
Subheading 3.2 for immunoblotting with CSN antibodies to
evaluate depletion levels, and with antibodies recognizing cull-
ins, to evaluate the high accumulation of neddylated cullins in
CDP (Fig. 3).

1. Accordingly, you can move to Subheading 3.7.

The CSN/cullin enzyme-substrate interplay is highly conserved
between yeast and mammals [ 35], and deneddylation of mammalian
cullins can be carried out by the most diverged CSN complex, such

CSN - - - ¢t
BSA - - - -

1B: Anti cull
-Nedd8-Cull
-Cull

Anti cul2 g |
e wee " -Nedds-Cul2
— - -Cul2

i —
. . _Nedds-Cul3
- =5 - Cul3

Anti cul3

Anti culda

-Nedd8-Culda
Culda

Anti Csnl
Csnl

Fig. 3 CSN deneddylation assay. CSN activity assays were performed using CSN-
depleted cell extracts as a source of neddylated cullin substrates (lanes 2—4).
CSN isolated from human erythrocytes was tested for deneddylation activity
(lane 4). Both untreated extract (UT) that was taken before CSN depletion (/ane
1), and BSA (/ane 3) served as negative controls. Neddylation levels of Cul4a and
Cul1-3 were examined by immunoblotting with respective antibodies. Depletion
had confirmed by immunoblotting with anti-Csn1
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as the CSN of §. cerevisine. This suggests that human Nedd8-CRL
conjugates may be used as an efficient substrate to study mechanistic
aspects of CSNs purified from any eukaryotic organism.

1.

10.

Purified CSN isolated from human erythrocytes (Enzo Life
Sciences Cat.# BML-PW9425-0020; LifeSensors Cat.#: CP009).

. Thaw a tube of 500 pl of CDP from step 19 of Subheading 3.3,

and aliquot it into ten microcentrifuge tubes, 50 pl in each.

. Use three aliquots from the previous step for the experiment,

mark the remaining tubes, and freeze back with liquid nitro-
gen and keep in -80 °C.

. Add 1 pl of 0.4 pg/pl purified CSN complex to one of the

50 pl CDP tubes.

. In parallel, 0.4 pg of a control protein in the same concentra-

tion (BSA or any recombinant protein you may have available
in your lab).

. To the third tube add 1 pl of buffer A.
. Transfer the three tubes to 30 °C for 20 min.
. After 10 min add 15 pl of 5x Laemmli sample buffer and heat

to 95 °C for 10 min in a dry block heater.

. Use the samples for immunoblotting with CSN cullins anti-

bodies to confirm CSN existence in the deneddylation activity
assay (Fig. 3).

As for a control, load on the gel also a sample of UT (Fig. 3).

Immunopurification of endogenous CSNs could be also a useful
approach allowing the isolation of CSN complex out of variety of
experimental conditions such as stress, treatments with drugs, dif-
ferent cell types, etc.). Combining immunopurification with
advanced mass spectrometry based proteomics could assess the
dynamics of CSN interaction map and regulation of CRLs activ-
ity /integrity, and help pinpoint the involved mechanism.

1.

To find fractions that include the CSN complex and interact-
ing proteins, assess each of the elution fractions (Subheading 3.4,
step 7) by immunoblotting with CSN antibodies, as well as by
silver staining (Fig. 4).

. Fractions that include the peak of CSN could be further ana-

lyzed by mass spectrometry.

4 Notes

1.

Always set your bufter pH at 4 °C, since the pH value of Tris—
HCI buffer changes.
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Fig. 4 Immunoaffinity purification of the CSN complex. (@) FPLC chromatogram displaying the immunoaffinity
purification of CSN from Hek293 cells. CSN-containing fractions are enlarged below. SDS-PAGE followed by
either silver staining (b), or western blot (c) of CSN-containing fractions is also shown

2. If the capacity of the column is not enough for immunodeple-
tion, it is possible to repeat immunodepletion (Subheading 3.3)
and column regeneration (Subheading 3.4), to deplete the
remaining CSN complex from the first CDP. It is required to
repeat this procedure up to three times in cell lines with high
CSN expression. For that reason it is better to keep CDP
refrigerated until you confirmed depletion and aliquot it only
after completing the western blot.

. Avoid using CDP lysate that froze /thawed more than twice.

4. Itis important to notice that the eluted CSN complex is inactive.

. Reducing agents (such as DTT or 2-mercaptoethanol) will

destroy the columns and must be avoided.

. Extremes in pH and excessive detergent concentrations can

interfere with the antibody-antigen interaction.

. At 34 .4, before elution with 0.1 M Glycine (pH 2.7), it is

suggested to re-estimate how much Tris (pH 8.5) will be
required to neutralize your fractions.
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Chapter 5

Studying Protein Ubiquitylation in Yeast

Junie Hovsepian, Michel Becuwe, Oded Kleifeld, Michael H. Glickman,
and Sébastien Léon

Abstract

Ubiquitylation is a reversible posttranslational modification that is critical for most, if not all, cellular pro-
cesses and essential for viability. Ubiquitin conjugates to substrate proteins either as a single moiety
(monoubiquitylation) or as polymers composed of ubiquitin molecules linked to each other with various
topologies and structures (polyubiquitylation). This contributes to an elaborate ubiquitin code that is
decrypted by specific ubiquitin-binding proteins. Indeed, these different types of ubiquitylation have dif-
ferent functional outcomes, notably affecting the stability of the substrate, its interactions, its activity, or
its subcellular localization. In this chapter, we describe protocols to determine whether a protein is ubiq-
uitylated, to identify the site that is ubiquitylated, and provide direction to study the topology of the
ubiquitin modification, in the yeast Saccharomyces cerevisine.

Key words Yeast, Ubiquitin, Histidine-tagged ubiquitin purification, Immunoprecipitation in dena-
turing conditions, Ubiquitylation site mapping, Ubiquitin chain topology

1 Introduction

The conjugation of ubiquitin (hereafter referred to as
“ubiquitylation”) is a complex modification that can alter a pro-
tein’s ability to interact with other proteins, and as such impacts on
its stability, localization, or function [1]. Ubiquitin is generally
conjugated on the e-amino group of lysine residues of the target
substrates, also called monoubiquitylation. However, ubiquitin
possesses itself 8 amino groups (N-terminal + 7 lysines) that can be
used for ubiquitin conjugation, thereby generating a polyubiquitin
chain (polyubiquitylation). Hence, several factors will contribute
to the signal generated by ubiquitylation, such as the identity of
the residue targeted by ubiquitin on the substrate, the type of
modification: mono- vs. polyubiquitylation, and in the latter case,
the topology of the chain (i.e., which lysine residue of ubiquitin is used
for chain elongation) and its length [1]. Various ubiquitin-binding
domains contribute to the decoding of this modification [2].
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Consequently, different types of ubiquitylation create a wide range
of molecular signals that can lead to various functional outcomes,
and altogether ubiquitylation contributes to many, if not all, cel-
lular pathways.

Ubiquitin is best known for its role as a signal for the recog-
nition and subsequent degradation of target proteins by the
proteasome, which is mainly mediated by K48-linked polyubiq-
uitin chains. However, chains of all ubiquitin linkages have been
identified and the study of their structure and function is still
undergoing [3]. K63-linked polyubiquitylation is notably well
known for its role in DNA repair [4-6], the regulation of signal-
ing pathways [7], or membrane trafficking [8, 9]. Although
K48-linked polyubiquitylation represents only a fraction of the
possible combinations of the ubiquitin code, it is the most
abundant in all cells studied to date [10-14]. This type of ubiq-
uitylation is often a transient event in the cell, occurring before
the target protein is degraded, and can therefore be difficult to
detect experimentally.

Furthermore, ubiquitylation is a reversible modification.
Several family of proteases act as ubiquitin isopeptidases that
cleave ubiquitin off substrates and process ubiquitin chains,
allowing a fine regulation of the ubiquitylation signal [15].
Therefore, another technical problem when studying protein
ubiquitylation is due to the activity of these enzymes when pre-
paring a protein extract in native conditions (e.g., during an
immunoprecipitation).

Here, we describe a protocol that allows the identification of
ubiquitylated proteins in denaturing conditions in yeast. This is
based on a construct allowing the expression of polyhistidine-
tagged ubiquitin, which allows the purification of ubiquitylated
proteins in denaturing conditions by immobilized metal-ion affin-
ity chromatography (IMAC).

Evidence that a protein is ubiquitylated can also be obtained
by performing the reverse experiment, in which a protein of inter-
est is immunoprecipitated and the resulting sample is blotted with
anti-ubiquitin antibodies. In this type of experiment, the immu-
noprecipitation should be performed on denatured samples, to
ensure that the ubiquitylation signal detected originates from the
protein considered, and not from its potential interactants.
Therefore, we describe another protocol to achieve immunopre-
cipitation in denaturing conditions.

The identification of ubiquitylated sites on a protein of
interest is often instrumental to understand the functional
contribution of this modification. We describe two possible
approaches that can lead to the identification of the ubiquity-
lation site on a protein. The first approach is a tandem purifi-
cation procedure to purify the protein of interest in denaturing
conditions. This may be helpful to identify ubiquitylation
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sites by mass spectrometry. We also describe a general,
truncation-based genetic method to identify the ubiquitylated
sites on a protein.

Finally, we will discuss on the possibilities offered to define
the topology of ubiquitin modification (linkage used within an
ubiquitin chain on a substrate) and will provide an example using

a set of yeast strains carrying ubiquitin mutations, developed in
the Finley lab [5].

2 Materials

2.1 Components
Required

for the Visualization
of Ubiquitylation

on Crude Extracts
(Subheading 3.1)

Prepare all solutions using ultrapure water (prepared by purifying
deionized water to attain a sensitivity of 18 MQ cm at 25 °C) and
analytical grade reagents. Prepare and store all reagents at room
temperature (unless indicated otherwise).

1. Yeast culture medium (synthetic complete medium, SC):
1.7 g/L yeast nitrogen base, 5 g/1. ammonium sulfate, 20 g/L
glucose. Autoclave. Add sterile-filtered amino acid solution as
required (e.g., dropout bases from Elis Solutions, Erpent,
Belgium).

2. Plasmid encoding His-tagged ubiquitin (see Subheading 3.1).

3. 100% TCA (Trichloroacetic acid) solution (w/v, i.e., 6.1 M).
Store at 4 °C.

4. 10% TCA (Trichloroacetic acid) solution (w/v, i.e., 0.61 M).
Store at 4 °C.

5. Vortex equipped with a microtube foam insert (placed in a

cold room).

6. Glass beads: 0.4-0.6 mm (BBI-8541701, Sartorius
Mechatronics).

7. Needles: 23 Gx1"—0.6 x25 mm (Terumo Medical
Corporation).

8. 5x Sample buffer (250 mM Tris—HCI pH 6.8, 500 mM dithio-
threitol, 10% SDS, 0.01% bromophenol blue, 50% glycerol).
Store at -20 °C.

9. 1 M Tris-base: 1 M Tris, non-buffered, in water.

10. 1x Sample buffer for TCA precipitates: 1 vol. of 5x Sample
buffer, 1 vol. of Tris-base, and 3 vol. water. Store at -20 °C.

11. General equipment for SDS-PAGE and western blotting (gel
casting, solutions, tanks for migration/transfer, nitrocellulose
membrane etc.).

12. Antibody directed against the protein of interest (or its tag if
applicable).



120 Junie Hovsepian et al.

2.2 Components
Required

for the Purification
of Ubiquitin
Conjugates Using
PolyHis-Tagged
Ubiquitin
(Subheading 3.2)

1.

Yeast culture medium (synthetic complete medium, SC):
1.7 g/L vyeast nitrogen base, 5 g/l. ammonium sulfate,
20 g/L glucose. Autoclave. Add sterile-filtered amino acid
solution as required (e.g., dropout bases from Elis Solutions,
Erpent, Belgium).

. Plasmid encoding His-tagged ubiquitin (see Subheading 3.1).

3. 100% TCA (Trichloroacetic acid) solution (w/v, i.e., 6.1 M).

Store at 4 °C.

. 10% TCA (Trichloroacetic acid) solution (w/v, i.e., 0.61 M).

Keep at 4 °C.

. Glassbeads: 0.4-0.6 mm (BBI-8541701, Sartorius Mechatronics).

. Vortex equipped with a microtube foam insert (placed in a

cold room).

. Needles: 23 Gx1"—0.6x25 mm (Terumo Medical

Corporation).

. 1 M Tris-base: 1 M Tris, non-buffered, in water.

9. Buffer A: 6 M guanidinium-HCI, 20 mM Tris pH 8.0, 100 mM

10.
11.
12.

13.

14.

15.

16.
17.

18.

19.

K,HPO,, 10 mM imidazole, 100 mM NaCl, 0.1% Triton
X-100 (v/v).

Ni-NTA superflow (Qiagen).

Micro Bio-Spin™ Chromatography Column (Bio-Rad).
Wash1 bufter: 20 mM Tris pH 8.0, 100 mM K,HPO,, 20 mM
imidazole, 100 mM NaCl, 0.1 % Triton X-100 (v/v).

Wash2 buffer: 20 mM Tris pH 8.0, 100 mM K,HPO,, 10 mM
imidazole, 1 M NaCl, 0.1 % Triton X-100 (v/v).

Elution buffer: 20 mM Tris pH 8.0, 100 mM K,HPO,,
500 mM imidazole, 100 mM NaCl. Store at 4 °C for no lon-
ger than a month.

5x Sample buffer: Tris-HCl 250 mM pH 6.8, dithiothreitol
500 mM, SDS 10 %, bromophenol blue 0.01 %, glycerol 50 %.
Store at -20 °C.

100% acetone, ice-cold.

Ponceau S solution: 0.2% ponceau S (w/v), 3% TCA (w/V).
Store at 4 °C.

General equipment for SDS-PAGE and western blotting (gel
casting, solutions, tanks for migration/transfer, nitrocellulose
membrane etc.).

Antibody directed against ubiquitin (e.g., mouse monoclonal
P4D1 antibody: sc-8017, Santa Cruz Biotech; use at
1,/10,000) and the protein of interest (or its tag if applicable).
Store at 4 or -20 °C.



2.3 Components
Required for Immuno-
precipitation in
Denaturing Conditions
(Subheading 3.3)
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. Yeast culture medium (synthetic complete medium, SC): yeast

nitrogen base 1.7 g/L, ammonium sulfate 5 g/L, glucose
2% w/v. Autoclave. Add sterile-filtered amino acid solution as
required (e.g., dropout bases from Elis Solutions, Erpent,
Belgium).

. 10% TCA (Trichloroacetic acid) solution (w/v, i.e., 0.61 M).

Keep at 4 °C.

. Vortex equipped with a microtube foam insert (placed in a

cold room).

4. Glassbeads: 0.4-0.6 mm (BBI-8541701, Sartorius Mechatronics).

. Needles: 23 Gx1"—0.6x25 mm (Terumo Medical

Corporation).

. Protein-G-coupled Sepharose (e.g., GammaBind™ G sepha-

rose™, GE Healthcare), or if using an HA-tag, anti-HA affinity
matrix (Roche).

. IP dilution buffer: 50 mM Tris pH 7.5, 2 mM EDTA, 100 mM

NaCl, 1.2 % Triton X-100, 0.5 % Bovine Serum Albumin, yeast
protease inhibitor cocktail (e.g., Sigma P821520, diluted
1:100), 20 mM N-ethylmaleimide. Store at 4 °C for no more
than a week.

. Buffer BO: SDS 2% (w/v), bromophenol blue 0.05% (w/v).

9. Buffer B1: 50 mM Tris pH 7.5, 2 mM EDTA, 100 mM NaCl,

10.

11.

12.

13.

14.

15.

16.

17.

1% Triton X-100, 0.2 % SDS. Store at 4 °C.

Buffer B2: 50 mM Tris pH 7.5, 2 mM EDTA, 100 mM NaCl,
0.1% Triton X-100, 0.5% SDS, 0.5% Na-deoxycholate. Store
at 4 °C.

Buffer B3: 50 mM Tris pH 7.5, 2 mM EDTA, 500 mM NaCl,
0.1% Triton X-100. Store at 4 °C.

Buffer B4: 50 mM Tris pH 7.5, 2 mM EDTA, 100 mM NacCl.
Store at 4 °C.

5x Sample bufter: Tris-HCI 250 mM pH 6.8, dithiothreitol
500 mM, SDS 10%, bromophenol blue 0.01 %, glycerol 50 %.
Store at -20 °C.

100 % acetone, ice-cold.

1x Sample bufter: 1 vol. 5x Sample butffer, 4 vol. water. Store
at =20 °C.

General equipment for SDS-PAGE and western blotting (gel
casting, solutions, tanks for migration/transfer, nitrocellulose
membrane etc.).

Antibody directed against the protein of interest (or its tag if appli-
cable) and against ubiquitin (e.g., mouse monoclonal P4D1 anti-
body: sc-8017, Santa Cruz Biotech; use at 1,/10,000; or sc-8017
HRP, Santa Cruz Biotech; use at 1,/2000). Store at 4 or -20 °C.
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2.4 Components
Required

for the Tandem
Purification

of a Protein

in Denaturing
Conditions

for the Identification
of Ubiquitin-
Conjugated Sites
(Subheading 3.4)

1.

10.

11.

12.

13.

14.
15.

16.

17.

Yeast culture medium: synthetic complete medium (SC): yeast
nitrogen base 1.7 g/L, ammonium sulfate 5 g/L, glucose
2% w/v. Autoclave. Add required amino acid as sterile-filtered
solutions (e.g., CSM-Ura dropout, Elis Solutions, Erpent,
Belgium).

. Yeast culture medium: synthetic complete raffinose medium:

yeast nitrogen base 1.7 g/L, ammonium sulfate 5 g/L, ratf-
nose (2% w/v), 0.02% glucose (w/V) (see Note 1).

. Galactose solution, 20 % (w/v), sterile-filtered.
. pPBG1805-based plasmid containing the protein of interest

(commercially available at OpenBiosystems/GE Healthcare
Dharmacon).

. Protein-G-coupled Sepharose (e.g., GammaBind™ G sepha-

rose™, GE Healthcare).

. IP lysis buffer: 50 mM HEPES-KOH pH 7.5, 0.25 M NaCl,

10% glycerol, 1 mM EDTA. Filter sterilize and store at 4 °C.

. Protease inhibitors: yeast protease inhibitor cocktail (Sigma

P821520; use at 1:100 dilution, store at =20 °C), phenylmeth-
anesulfonyl fluoride (PMSF) (100 mM stock in EtOH; store at
-80 °C), N-ethylmaleimide (NEM) (1 M stock in EtOH; store
at —80 °C), and MG-132 (Enzo Life Sciences; 100 mM stock
in DMSO; store at —-80 °C).

. Antibodies directed against the HA tag (e.g., mouse monoclo-

nal F7 antibody: sc-7392, Santa Cruz Biotech). Store at 4 or
-20 °C.

. Glass Dbeads: 0.4-0.6 mm (BBI-8541701, Sartorius

Mechatronics).

Vortex equipped with a microtube foam insert (placed in a
cold room).

Needles: 23 Gx1"—0.6x25 mm (Terumo Medical
Corporation).

Triton X-100 solution: 25 % (v/v) in water.

Urea buffer: urea 8 M, 10 mM Tris pH 6.3; 5 mM imidazole,
10 mM beta-mercaptoethanol, 10 mM N-ethylmaleimide,
100 pM MG-132.

Ni-NTA superflow (Qiagen).

5x Sample bufter: 250 mM Tris—-HCI pH 6.8, 500 mM dithio-

threitol, 10% SDS, 0.01% bromophenol blue, 50% glycerol.
Store at -20 °C.

Urea elution buffer: 8 M urea, 10 mM Tris pH 6.3, 600 mM
imidazole. Store at 4 °C.

General equipment for SDS-PAGE and western blotting (gel
casting, solutions, tanks for migration/transfer, nitrocellulose
membrane etc.).
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18. Antibodies directed against ubiquitin (e.g., mouse monoclonal
P4D1 antibody: sc-8017, Santa Cruz Biotech; use at 1 /10,000;
or sc-8017 HRP, Santa Cruz Biotech; use at 1,/2000). Store at
4 or -20 °C.

3 Methods

3.1 Obtaining
Evidence

of Ubiquitylation
on Crude Extracts

When detecting the protein of interest by western blot, higher
molecular weight species are sometimes observed, which may be
caused by posttranslational modifications such as ubiquitylation.
The expression of a tagged (i.¢., heavier) ubiquitin causes a shift in
all ubiquitin-conjugated species, which can sometimes be sufficient
to obtain a first indication that a given protein is ubiquitylated.
Several plasmids available for this application have been described
in the literature, driving the expression of His-tagged ubiquitin
under the control of either a copper inducible promoter (pJD421,
pYEp96-6His-Ub) [16, 17] or the strong ADHI promoter
(m886) [11]. Note that His-tagged ubiquitin was previously
shown to be functionally comparable to non-tagged ubiquitin
[18]. For expression of His-tagged ubiquitin driven by the CUPI
promoter, we noticed that the traces of copper in the synthetic
medium (DO) are sufficient to drive the expression of His-Ub to a
level comparable as endogenous Ub and therefore we recommend
not to add extra copper in the medium to avoid potential artifacts
that may be due to a massive ubiquitin overexpression.

Therefore, this protocol describes a classical method to prepare
crude extracts from cells expressing tagged ubiquitin or not that
may allow to determine whether a shift in molecular weight is due
to ubiquitylation. The example of a result is illustrated in Fig. 1.

1. DAY I. In the morning, inoculate freshly streaked yeast cells in
synthetic medium (SC) medium supplemented with the
required amino acids (preculture). Use a strain expressing your
protein of interest together with His-tagged ubiquitin, and as
a control, use the same strain but that does not contain the
His-tagged ubiquitin plasmid.

2. In the evening, measure the ODyg of the cultures and inocu-
late yeast cells in 5 mL SC medium, at ODgpo=0.001. Grow
overnight under agitation (200 rpm) at 30 °C.

3. DAY 2. Measure the ODy, of the cultures. The cultures should
have reached an ODgg of ~0.3-0.5 (see Notes 2 and 3).

. Take 1 mL of culture and place in a 1.5-mL tube.
. Add 100 pL of'a 100% (w/v) TCA solution.

. Incubate on ice for 10 min.

N O\ Ul W

. Spin down the cells by centrifugation for 1 min at 13,000 x g at
room temperature.
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3.2 Purification
of Ubiquitin
Conjugates Using
PolyHis-Tagged
Ubiquitin

WT + Ear1-mCh

+Ub  +His-Ub
90 kDa - <Ear1-His-Ub
Ear1-mCh —| S e | cari-Ub
o-DsRed

Fig. 1 Obtaining evidence of ubiquitylation on crude extracts. Protein extracts
from wild-type (BY4741) cells expressing the protein Ear1 tagged with mCherry
(pSL22) [39] together with either pCUP1:Ub (pRS426-based plasmid: pRHT79;
left) or pCUP1-His-Ub (pJD421; right) [16] were prepared as described in the
text, electrophoresed on SDS-PAGE and blotted with monoclonal anti-DsRed
antibodies (Clontech). The upper band observed on top of Ear1-mCh (gray arrow-
head) is shifted up in apparent size when expressing His-tagged ubiquitin (black
arrowhead)

8. Discard the supernatant.
9. Resuspend yeast cells in 100 pL of'a 10% TCA solution.
10. Add glass beads up to 1-2 mm below the meniscus.

11. Lyse cells on a vortex equipped with a microtube foam insert
for 10 min at 4 °C.

12. After lysis, open the tube, poke a small hole at the bottom of the
tube using a needle (Terumo 23 Gx1"—0.6x25 mm), place
into a clean 1.5-mL tube to collect the lysate, and close the cap.

13. Centrifuge for a few seconds on a mini-centrifuge to collect
the lysate and leave the beads in the upper tube. Discard the
tube with the beads (they should be dry).

14. Centrifuge the lysate for 1 min at 13,000 x 4 at RT.

15. Remove as much supernatant as possible.

16. Resuspend the pellet in 1x Laemmli bufter for TCA precipitates,
considering that 1 ODygg unit should be resuspended in 50 pL.

17. Denature at the desired temperature (37-95 °C) for 5-10 min.
18. Use 7 pL for SDS-PAGE and transfer onto nitrocellulose
membrane.

19. Blot with antibodies directed against the protein of interest.

In this protocol, total ubiquitin conjugates from cells will be puri-
fied by immobilized metal-ion affinity chromatography. The pres-
ence of the protein of interest in this fraction is addressed using a
specific antibody (against the protein of interest or a tag). The
advantage of this purification is that it does not involve antibodies
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during the purification procedure, which may interfere when
revealing the presence of the protein of interest by western blot-
ting. It is also amenable to proteome-wide, mass spectrometry-
based studies either alone [11, 19] or in combination with
additional purification procedures [20-22].

This protocol (based on [11], and slightly modified in [23])
requires the prior transformation of the yeast strain with a plasmid
expressing His-tagged ubiquitin, described in the previous section.
Other protocols using slightly different procedures have been
described in the past [24, 25]. Please note that this technique is
not suitable to study the ubiquitylation of proteins that contains an
endogenous His-stretch, as their purification on the Ni-NTA col-
umn will not depend on their ubiquitylation. A list of the S. cerevi-
sime proteins containing endogenous polyhistidine (>5) stretches is
displayed in Table 1. Of note, Fig. 2 shows the purification of one
of these proteins, Snfl, on Ni-NTA beads even in the absence of
His-tagged ubiquitin.

1. DAY 1. Preculture: inoculate freshly streaked yeast cells in
synthetic medium (DO) supplemented with the required
amino acids in the morning. Use a strain expressing your pro-
tein of interest together with His-tagged ubiquitin, and as a
control, use the same strain but that does not contain the
His-tagged ubiquitin plasmid.

2. In the evening, measure the ODyg of the cultures and inocu-
late yeast cells in 100 mL DO medium, at ODgy=0.001.
Grow overnight under agitation (200 rpm) at 30 °C.

3. DAY 2. Measure the ODgy of the cultures. The cultures
should have reached an ODygy of ~0.3-0.5 (see Note 2). Spin
down the cells in 2x50-mL tubes (3000x g, 3 min), remove
the supernatant, place on ice.

4. Resuspend each pelletin 500 pL 10% TCA (w/v;i.e., 0.61 N),
pool into a 1.5-mL tube.

5. Leave on ice for at least 10 min (up to a few days).

6. Pellet cells: 1 min, 13,000 x g at room temperature.

7. Resuspend the precipitated cells with 100 pL of 10% TCA by
pipetting.

8. Add glass beads up to 1-2 mm below the meniscus.

9. Lyse cells on a vortex equipped with a microtube foam insert
for 20 min at 4 °C.

10. After lysis, open the cap, poke a small hole at the bottom of the
tube using a needle, place into a clean 1.5-mL tube to collect
the lysate, and close the cap.

11. Centrifuge for a few seconds on a mini-centrifuge to collect
the lysate and leave the beads in the upper tube. Discard the
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List of S. cerevisiae proteins containing endogenous polyhistidine (>5) stretches

ORF Protein  Sequence Locus Information

TYBR0OS6C 1IST2 892-ATQPHHHHHHHRHRD-906 Involved in ER-plasma
membrane tethering

TBR129C OPY1 48-PQGYHHHHHHHRHILW-62 Protein of unknown
function

TYDL025C RTK1 251-YHDNHHHHHHHNRGS-263 Putative protein kinase

YDR475C JIP4 759-QQQQHHHHHHRDTD-771 Protein of unknown
function

YDR477W SNF1 18- ANSSHHHHHHHHHHHHH AMP-activated serine/

GHGG-34 threonine protein kinase

YER132C PMDI1 319-KLPKHHHHHHGDILK-327 Protein with an N-terminal
kelch-like domain

YGR237C YGR237C 724-QRKAHHHHHHHNHVS-738 Putative protein of
unknown function

YJLO42W  MHP1 124-ADSGHHHHHRHHHHTEDA-141 Protein involved in
microtubule
organization

YJLO83W  TAX4 393-LPFPHHHHHHHQILHN-407 EH domain-containing
protein

YKR075C YKRO75C 251-DIQHSRHHRRHHRRHHHHHH Protein of unknown

QNSS-273 function

YKR098C UBP11 553-SKSPHHHHHHHHSSDD-568 Ubiquitin-specific protease

YLR328W NMAI 57-KHPKHHHHHHHSRKE-71 Nicotinic acid
mononucleotide
adenylyltransferase

YLR37IW ROM2 325-FSDPHHHHHHHHSSNS-340 GDP/GTP exchange
factor (GEF) for Rholp
and Rho2p

YMR070W MOT3 236-PGPPHHHHHHSNTH-249 Transcriptional regulator
with two C2H2 zinc
fingers

YOL087C DUF1 360-FKPDHHHHHHHHHEHEE-376 Ubiquitin-binding protein
of unknown function

YOR134W BAG7 315-NFTTHHHHHHHHALFP-330 Rho GTPase activating

protein (RhoGAP)
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Fig. 2 Purification of the endogenously, polyhistidine-tagged protein Snfl on
Ni-NTA column in the absence of His-tagged ubiquitin. Proteins from a WT strain
(BY4741) expressing Snf1-HA from a plasmid (pSL204) were prepared as described
and purified on Ni-NTA resin in the absence of His-tagged ubiquitin. Equal amounts
of extract (input, first lane) and unbound fraction (second lane) were loaded, show-
ing the total depletion of Snf1, which is recovered in the eluate (third lane).
Phosphoglycerate kinase (PGK) is used as a control and does not bind to the beads.
Other proteins that may show a similar behavior are displayed in Table 1

12.
13.
14.

15.

16.
17.

18.
19.

20.

21.

22.

tube with the beads (they should be dry). For complete
recovery, the glass beads can be washed with 200 pL of cold
10% TCA if necessary, in this case, repeat the spin and pool
with the first lysate.

Centrifuge the lysate for 10 min at 13,000 x g at 4 °C.
Remove as much supernatant as possible.

Wash the pellet with 100% ice-cold acetone, and centrifuge
again for 10 min at 13,000 x g at 4 °C.

Neutralize the residual TCA present in the pellet by adding
30 pL of 1 M Tris (non-buftfered) to the pellet (see Note 4).
Add 200 pl of buffer A.

Resuspend the pellet. Add a few glass beads that will help to
break the pellet, and vortex (see Note 5).

Add 800 pL buffer A to the resuspended pellet.

Let solubilize further by rotating for 1 h at room temperature.
Resuspension should be complete.

Transfer the lysate to a new tube and centrifuge for 10 min at
13,000 x g, at room temperature (see Note 6).

During the centrifugation, prepare Ni-NTA beads (Qiagen):
transfer 200 pL slurry to 2-mL tubes, wash the beads twice
with 1.8 mL buffer A. Centrifuge for 1 min at 1000 x g between
each wash (see Note 7).

From the centrifugation (step 20), keep the supernatant,
which corresponds to the solubilized lysate, and transfer to a
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23.

24.

25.
26.

27.
28.
29.
30.

31.

32.
33.
34.

35.

36.

37.

38.
39.

40.

4].

42.

new tube. Keep 25 pL aside, at room temperature, for TCA
precipitation (“input fraction™) (see step 35).

Add the remaining sample to the tube containing the washed
beads (see step 21), and rotate for 2 h at RT.

Centrifuge for 30 s at 500 x g to spin down the beads. Collect
25 pL of unbound fraction and keep at room temperature for
TCA precipitation (“Unbound fraction”) (see step 35).
Discard remaining supernatant.

Resuspend the beads in 1.8 mL buffer A.

Transfer to a micro-chromatography column placed in a tube
holder (e.g., floating foam rack placed on top of a beaker), and
let the wash solution drop by gravity.

Wash again with 1.8 mL buffer A, twice.

Wash with 1.8 mL Wash1 buffer, three times.

Wash with 1.8 mL. Wash2 buffer, three times.

Place the micro-chromatography column in a 1.5-mL tube,
centrifuge for 10 s at 1000 x g.

Place the micro-chromatography column in a clean 1.5-mL
tube, and add 100 pL elution buffer to the beads.

Incubate for 5 min at RT.
Spin down eluate for 1 min at 1000 x g, at room temperature.

Add 25 pL of 5x SDS sample bufter and denature at the desired
temperature (37-95 °C) for 5-10 min.

To prepare the “input” (see step 22) and “unbound” (see step 24)
fraction, proceed as follows. Dilute the 25 pL samples with 1.8 mL
water, add 200 pL of 100% TCA, and keep on ice for 10 min.

Spin down for 10 min at 13,000 x g, at 4 °C.

Discard supernatant. Wash the pellet with 1 mL ice-cold ace-
tone (100%).

Spin down for 1 min at 13,000x g, at 4 °C.

Discard supernatant. Let at room temperature with cap open
until acetone has evaporated completely.

Resuspend in 25 pL of sample buffer for TCA precipitates and
denature at the desired temperature (37-95 °C) for 5-10 min.

For SDS-PAGE, use 4 pL of input/unbound fractions as pre-
pared above, and 3-7 pL of the cluate (depending on the
expression level of the protein and its rate of ubiquitylation)
(see Notes 8 and 9).

Transfer on nitrocellulose membrane. After transfer, perform-
ing a staining of the transferred proteins with a Ponceau S
solution should allow to see His-Ub and a ladder of ubiquity-
lated proteins (Fig. 3a).
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Fig. 3 Purification of ubiquitin conjugates using polyHis-tagged ubiquitin. Protein extracts from WT cells
(BY4741) expressing either Ub or His-tagged Ub (see Fig. 1) were prepared and treated as described for the
purification of His-tagged ubiquitin. (@) Ponceau S staining of the nitrocellulose membrane after transfer of the
indicated sample, showing the purification of His-Ub in the eluate fraction (El) (arrow). (b) Western blot using
anti-ubiquitin antibodies on a similar experiment. The gel shows ubiquitin dimers (Ub,) in both cell types, and
His-Ub + Ub dimers in cells expressing His-Ub. G. Example of a purification of His-tagged ubiquitin from yeast
cells grown either in lactate or glucose medium and expressing the arrestin-related protein Rod1 tagged with
GFP. Displayed are the “input” (Inp) and eluate fractions (El.). Rod1 is phosphorylated in lactate medium (aster-
isk) and becomes ubiquitylated rapidly after glucose addition (black circle) (see also [23])

3.3 Assessment of
Protein Ubiquitylation
After Immuno-
precipitation in
Denaturing Conditions

43. Blot with the antibody used to detect the protein of interest
and with anti-Ubiquitin antibodies (e.g., mouse monoclonal
P4D1 antibody: sc-8017, Santa Cruz Biotech; 1,/10,000) to
reveal Ub conjugates.

The previous method involves the expression of tagged ubiquitin
and the affinity purification of ubiquitin conjugates, prior to
detecting the presence of the protein of interest within this frac-
tion. Performing the opposite experiment, i.e., by immunoprecipi-
tating the protein of interest and studying the presence of ubiquitin
in the immunoprecipitate, can also provide evidence of the ubiqui-
tylation of a given protein. A main caveat of this approach is the
fact that the ubiquitin signal detected in the immunoprecipitated
sample may either be due to the protein that was immunoprecipi-
tated or to potential interactants that were co-immunoprecipitated.
Therefore, we provide a protocol that allows the immunoprecipita-
tion of proteins in denaturing conditions, which was successfully
used in the past [26, 27]. These immunoprecipitates can be used
to reveal the ubiquitylation of the protein of interest.
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An advantage of this technique is that is does not involve the

use of overexpressed tagged ubiquitin, and as such may be more
physiologically relevant. However, it depends on the use of anti-
ubiquitin antibodies, which also have their limits since some are
specific of the topology of the ubiquitin modification. We routinely
use the P4D1 monoclonal antibody, which is a good compromise
for the detection of both mono- and polyubiquitin modifications,
although the monoubiquitylation signal is sometimes weak (see for
instance [28]).

1.

10.
11.

12.

13.

DAY 1. Preculture: inoculate freshly streaked yeast cells in syn-
thetic medium (DO) supplemented with the required amino
acids in the morning. As a control, use a strain which does not
express the tagged protein, to confirm that the ubiquitin signal
observed after the immunoprecipitation is specific for the pres-
ence of the tagged protein.

. In the evening, measure the ODyy, of the cultures and inocu-

late the yeast cells in 100 mL DO medium, at ODy=0.001.
Grow overnight under agitation (200 rpm) at 30 °C.

. DAY 2. Measure the ODgy of the cultures. The cultures

should have reached an ODyg of ~0.3-0.5 (se¢ Note 2). Spin
down the cells in 2 x50-mL tubes (3000 x4, 3 min), remove
the supernatant, place on ice.

. Resuspend each pellet in 500 pLL 10 % TCA (w/v;i.e.,0.61 N),

pool into a 1.5-mL tube.

. Leave on ice for at least 10 min (up to a few days).

. Prepare antibody-coupled beads for the immunoprecipitation.

Take 50 pL of Protein-G-coupled Sepharose slurry (see Note
10), wash in 1 mL IP dilution butffer, resuspend in 1 mL IP
dilution buffer, and use the appropriate amount of antibodies
required for immunoprecipitation. Incubate for >1 h at 4 °C
on a rotating wheel.

. Pool the precipitated cells into one single 1.5-mL tube.
. Pellet the precipitated cells: 1 min, 13,000xg at room

temperature.

. Resuspend the precipitated cells with 100 pL of 10% TCA by

pipetting up and down.
Add glass beads up to 1-2 mm below the meniscus.

Lyse cells on a vortex equipped with a microtube foam insert
for 20 min at 4 °C.

After lysis, open the cap, poke a small hole at the bottom of the
tube using a needle, place into a clean 1.5-mL tube to collect
the lysate, and close the cap.

Centrifuge for a few seconds on a mini-centrifuge to collect
the lysate and leave the beads in the upper tube. Discard the
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tube with the beads (they should be dry). The glass beads can
be washed with 200 pL of cold 10% TCA if necessary, in this
case, repeat the spin and pool with the first lysate.

Centrifuge the lysate for 1 min at 13,000 x4 at RT.

Remove as much supernatant as possible.

Wash the pellet with 1 mL ice-cold acetone (100%) (see Note 11).
Spin down for 1 min at 13,000 x4, at 4 °C.

Discard supernatant. Let at room temperature with cap open
until acetone has evaporated completely.

Resuspend in 100 pL buffer BO. Make sure that the sample is blue
(i.e., sample is not acidic). If the sample is yellow, add increments
of 1 L Tris-HCI 1 M pH 7.5 until the pH is neutralized.

Denature the sample at the desired temperature (37-95 °C)
for 5-10 min in a thermomixer.

Spin down unsolubilized material by centrifuging for 5 min at
16,000 x g, at room temperature.

Transfer the supernatant to a clean tube.
Add 400 pL of IP dilution buffer.
Keep 50 pL aside for the “input” fraction; keep on ice.

Spin down the antibody-coated beads (see step 6) for 1 min at
300x 4 (4 °C) and remove the supernatant.

Add the protein sample prepared in step 23 to the antibody-
coated beads.

Incubate on a rotating wheel at 4 °C for 2 h.
Spin down the beads for 1 min at 300 xg (4 °C).

Take 50 pL of the supernatant and keep 50 pL aside for the
“unbound” fraction; keep on ice.

Caretully remove and discard remaining supernatant.

First wash: Resuspend the beads in 1 mL buffer B1, and spin
down the beads for 1 min at 300x 4 (4 °C).

Repeat the first wash.

Second wash: Resuspend the beads in 1 mL buffer B2 and spin
down the beads for 1 min at 300x 4 (4 °C).

Repeat the second wash.

Third wash: Resuspend the beads in 1 mL buffer B3 and spin
down the beads for 1 min at 300x 4 (4 °C).

Repeat the third wash.

Last wash: Resuspend the beads in 1 mL buffer B4, and spin
down the beads for 1 min at 300x 4 (4 °C).

Repeat the last wash, and remove as much supernatant as
possible.
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3.4 Tandem
Purification

of a Protein

in Denaturing
Conditions

for the Identification
of Ubiquitin-
Conjugated Sites

39. Add 50 pL of 1x sample buffer to the beads.

40. To the “input” and “unbound” fractions, add 12.5 pL of 5x
Laemmli sample bufter.

41. Denature at the desired temperature (37-95 °C) for 5-10 min.

42. Load 7 pL of input/unbound fractions as prepared above, and
3-7 pL of the eluate (depending on the expression level of the
protein and its rate of ubiquitylation).

43. Blot with the antibody against the protein of interest or its
epitope, to evaluate the efficiency of the immunoprecipitation,
and with anti-Ubiquitin antibodies (1,/10,000 mouse mono-
clonal P4D1 antibody: sc-8017, Santa Cruz Biotech) to reveal
UDb conjugates (see Note 12).

Once ubiquitylation of a protein has been documented, a tradi-
tional approach to understand the consequences of this modifica-
tion resides in identifying the sites targeted for ubiquitylation,
followed by their mutation to evaluate the outcome of the lack of
ubiquitylation on the protein’s stability or function.

This protocol is based on a two-step purification. It involves the
use of pBG1805-derived constructs (URA3-based) [29], in which
all yeast genes have been cloned and that are commercially avail-
able. This allows the galactose-driven expression of the protein of
interest tagged at its C-terminus with multiple epitopes: 6xHis,
HA, and a ProtA (ZZ domains) preceded by a Protease 3C cleavage
site (the size of the tagis 19 kDa). The first step is a regular immu-
noprecipitation in native conditions using anti-HA antibodies, fol-
lowed by a Ni-NTA-based purification of the His-tag in denaturing
conditions. It allows to purify the protein (both ubiquitylated and
non-ubiquitylated, see Fig. 4) for further, mass spectrometry-based,
identification of the ubiquitylation sites (se¢ Note 13). Note that
Protein A itself can be ubiquitylated in yeast cells (S. Léon, unpub-
lished results). It is therefore necessary to identify the ubiquitylated
sites by mass spectrometry to make sure that ubiquitin is carried on
the substrate, and not the tag. Consequently, this protocol should
merely be used to identify the ubiquitylation sites, and not to prove
that a protein is ubiquitylated.

DAY 1. Preculture: in the morning, inoculate freshly streaked
yeast cells in 10 mL synthetic glucose medium lacking uracil.

1. In the evening, measure the ODy of the cultures and inoculate the
yeast cells in 180 mL synthetic raffinose medium, at ODgy=0.004.
Grow overnight under agitation (200 rpm) at 30 °C.

2. DAY 2. Measure the ODgy of the cultures. The cultures
should have reached an ODy, of ~0.3-0.5.

3. Add galactose (2% final) in the medium for the desired amount
of time (se¢ Note 14).
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Fig. 4 Tandem purification of a protein in denaturing conditions for the identification of ubiquitin-conjugated
sites. (@) WT cells (BY4741) expressing the galactose-inducible Ear1-Hisg-HA-ProtA construct were subjected
to a double purification as described. First, an immunoprecipitation using anti-HA antibodies was performed
on a crude extract in native conditions (input 1 and unbound 1). The eluate of this immunoprecipitation was
used as the input fraction (input 2) for the second, Ni-NTA based purification of the protein in denaturing condi-
tions (unbound 2 and final eluate). A western blot using anti-HA antibodies allows to evaluate the purification
procedure. (b) From the same fraction, 1 or 25 pL of eluate was loaded on the same gel. The gel was cut, and
the left part was subjected to a western blot using anti-HA antibodies, whereas the right part was used for
colloidal blue staining, showing the purity of the protein obtained

4. Measure the OD of the culture (se¢ Note 2).

ul

O 0 NN O

10.

11.

. Spin down the equivalent of 150 OD units of cells at 3000 x g,

3 min at room temperature.

. Remove the supernatant, resuspend the pellet in 10 mL cold water.
. Spin down for 30 s at 13,000 x4, 4 °C.
. Discard supernatant and keep the pellet on ice.

. Prepare antibody-coupled beads for the immunoprecipitation

(see step 23). Take 200 pL of Protein-G-coupled Sepharose
slurry, wash in 1 mL IP lysis buffer, resuspend in 1 mL IP lysis
buffer, and use the appropriate amount of antibodies required
for immunoprecipitation (e.g., 10 pL. of mouse monoclonal F7
antibody: sc-7392 from Santa Cruz Biotech). Incubate for
>1 h at 4 °C on a rotating wheel.

Resuspend the pellet in 2.5 mL IP lysis buffer containing pro-
tease inhibitors (yeast protease inhibitor cocktail, 1 mM PMSEF,
10 mM N-ethylmaleimide, 100 pM MG-132).

Dispatch the resuspended pellet in 5x600 pL fractions, in
1.5-mL tubes.
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12.

13.

14.

15.

16.
17.

18.
19.
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21.
22.

23.
24.
25.
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27.

28.
29.
30.
31.
32.

33.
34.
35.

36.

37.

Add glass beads (0.4-0.6 mm) up to 1-2 mm below the

meniscus.

Lyse cells on a vortex equipped with a microtube foam insert
for 4x 30 s at 4 °C (cold room), with 1 min incubation on ice
between each pulse.

After lysis, in the cold room, open the tubes, poke a small hole
at the bottom using a needle, place into a clean 1.5-mL tube
to collect the lysate, and close the cap.

In the cold room, centrifuge for a few seconds on a mini-
centrifuge to collect the lysate and leave the beads in the upper
tube. Discard the tube with the beads (they should be dry).

Pool lysates in a clean, cold centrifugation tube.

To the lysate, add 100 pL of a 25 % solution of Triton X-100,
and invert to mix (see Note 15).

Let solubilize on ice for 10 min.

Centrifuge the lysate for 5 min at 3000 x 4 at 4 °C.

Transfer supernatant to a clean, cold 15-mL tube and keep on ice.
Keep 100 pL aside for the “input 1” fraction, keep on ice.

Spin down the beads coupled to antibodies (step 10) for 30 s
at 1000 x4, 4 °C.

Discard the beads’ supernatant.

Add the beads to the lysate.

Incubate on a rotating wheel at 4 °C for 3 h.
Spin down the beads for 30 s at 1000 x4, 4 °C.

Keep 100 pL of the supernatant aside for the “unbound 1”
fraction, keep on ice.

Discard remaining supernatant.

Add 1 mL of IP lysis buffer to the beads
Transfer to a cold, 1.5-mL tube

Incubate on a rotating wheel at 4 °C for 10 min.

Spin down the beads for 30 s at 1000xyg, 4 °C. Discard
supernatant.

Repeat the wash twice and carefully remove supernatant.
Add 1 mL of urea buffer.

Incubate for 5 min at room temperature under agitation (e.g.,
in a thermomixer, 1000 rpm).

Open the tube, poke a small hole at the bottom of the tube
using a needle, place into a clean 1.5-mL tube to collect the
sample, and close the cap.

Centrifuge for a few seconds on a mini-centrifuge to collect
the eluate and leave the beads in the upper tube. Discard the
tube with the beads (they should be dry).
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Keep 30 pL of the eluate aside for the “input 2” fraction, keep
on ice.

To the remaining sample, add 500 pL Ni-NTA beads pre-
washed in urea buffer.
Incubate overnight on a rotating wheel at 4 °C.

To the “Input 1,” “Unbound 1” and “Input 2” fractions
(steps 21, 27, and 38), add 1/5 volume of 5x sample buffer,
denature all samples at 55 °C for 10 min, and store at -20 °C.

DAY 3. Spin down the beads (see step 40) for 30 s at 1000x 4,4 °C.
Keep 30 pL aside for the “unbound 2” fraction, keep on ice.
Discard remaining supernatant.

Add 2.5 mL of Urea buffer to the beads, incubate on a rotat-
ing wheel at 4 °C for 10 min.

Spin down the beads for 30 s at 1000xg, 4 °C. Discard
supernatant.

Repeat steps 45—46 and carefully remove supernatant.

Add 1 mL of Urea buffer to the beads, and transfer to a 1.5-
mL tube.

Incubate on a rotating wheel at 4 °C for 10 min.

Spin down the beads for 30 s at 1000x g, 4 °C. Discard as
much supernatant as possible.

Add 100 pL of Urea elution buftfer.

Incubate for 5 min at room temperature under agitation (e.g.,
in a thermomixer, 1000 rpm).

Open the tube, poke a small hole at the bottom of the tube
using a needle, place into a clean 1.5-mL tube to collect the
eluate, and close the cap.

Centrifuge for a few seconds on a mini-centrifuge to collect
the sample and leave the beads in the upper tube. Discard the
tube with the beads (they should be dry).

The total volume of the eluate (incl. the bed volume of the
beads) should be approximately 175 pL.

To the “unbound 2” and the “eluate” samples (steps 43 and
55), add 1/5 volume of 5x sample buffer.

Denature all samples (input 1, output 1, input 2, output 2,
eluate) at 55 °C for 10 min.

Load 5 pL of input 1, output 1, input 2, output 2 and 10 pL
of the final elution onto an SDS-PAGE gel.

Blot with the antibody against your protein of interest or its
epitope, to evaluate the purification procedure, and with anti-
Ubiquitin antibodies (1,/10,000 mouse monoclonal P4D1 anti-
body: sc-8017, Santa Cruz Biotech) to reveal Ub conjugates.
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3.5 Identification

of Ubiquitylated Sites
Within a Protein

of Interest

by a Genetic Approach

Ubiquitin conjugation can occur at defined sites within a protein,
and the identification of those sites (e.g., using the approach
described in the above section) can help to generate non-
ubiquitylatable mutants after its/their mutation. However, the
mutation of the target lysine is sometimes compensated by the
ubiquitylation of yet another site, because ubiquitylation can show
little specificity towards the sites targeted [30]. Therefore, we
describe a mutant-based approach that should lead to a construct
that is not ubiquitylatable, regardless of the prior identification of
the ubiquitylation sites, that we successfully used in the past [23].
This is based on a synthetic version of the ORFs encoding your
protein of interest, in which all lysine residues have been substituted
to arginine (KO construct) (Fig. 5a). Then, endogenous restriction
sites can be used to construct chimeras. If no restriction sites are
available, silent restriction sites should be introduced at various
places within the sequence when designing the construct for gene
synthesis, in which case a synthetic WT ORF must also be ordered,
with the same restriction sites. The ubiquitylation of the resulting
chimeras can be evaluated individually, to narrow down to the
region and/or sites that are targeted by ubiquitylation (Fig. 5b).

Although it involves several cloning steps, this approach is still
fairly efficient when dealing with proteins carrying many lysines.
Note that this approach requires that the ubiquitylated site(s) lie(s)
within a defined region of the primary structure of a protein.
Below, we provide the general directions to properly map the ubiq-
uitylated site(s) using this approach.

1. Order synthetic gene versions encoding the protein of interest:
WT and KO. Consider adding silent restriction sites within the
sequence that are not present on the plasmid in which these
synthetic genes will be cloned.

2. Clone the synthetic genes in the plasmid of interest. It is advisable
to use a plasmid allowing the expression of epitope-tagged protein,
even if antibodies directed against the protein are available, because
the KR mutations may affect the antigenicity of the protein.

3. Assay for the ubiquitylation of the WT construct and the KO
mutant. The KO should have lost all traces of ubiquitylation, if
ubiquitin is conjugated on a lysine.

4. Construct chimeras (Nt-WT/Ct-KO and Nt-KO/Ct-WT) and
assay again the ubiquitylation of the chimeric proteins. The
disappearance of ubiquitylated species for one of these con-
structs indicates that the target lysine(s) are contained within
those that have been mutated (see Note 16).

5. Prepare additional chimeras to narrow down to the minimal region.

6. If the density of lysines within the initial sequence is such that
the final construct still bears several lysine residues, then site-
directed mutagenesis can be used to further discriminate
between each of those.
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Fig. 5 Identification of ubiquitylated sites within a protein of interest by a genetic approach. (a) Example of the

method: identification of the
construct in which all lysines

ubiquitylated region within the arrestin-related protein, Rod1, using a synthetic
have been mutated (K0) and its derived chimeric constructs [23]. (b) Western blot

showing the ubiquitylation status of several of the chimeric constructs depicted in (a). The asterisk indicates

phosphorylated Rod1, which

is only observed when yeast cells are grown in the absence of glucose, such as

in lactate medium (Lac) [23]. The black circles indicate Rod1 ubiquitylation, which occurs only after glucose
exposure and for constructs in which the ubiquitylation site is still intact. PGK is used as a loading control

3.6 Studying
the Topology
of Ubiquitin
Modification

When dealing with a polyubiquitylated substrate, it may be
interesting to determine the topology of the ubiquitin chain,
because the various structures obtained through various ubiquitin
linkages will lead to various functional outcomes.

Various tools have been developed to do so, such as antibodies
directed against the most abundant polyubiquitin chain linkages,
namely K48- and K63-linked polyubiquitin, whose use has already
been described [31]. The development of tandem ubiquitin-
binding entities (TUBEs) [32, 33] and other sensor proteins [ 34],
consisting of multiple ubiquitin-binding domains, also allows the
purification of substrates that are polyubiquitylated with various
topologies and are commercially available.

An alternative approach consists in using ubiquitin mutants in
which either of the ubiquitin lysine residues has been mutated into
an arginine, to hamper the ability to make a chain. These
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chain-terminating mutants can be individually overexpressed in the
context of a wild-type strain in which these mutants will act as domi-
nant negatives, as previously described [24]. Instead, here, we pro-
vide an example of the use of a set of yeast strains (“SUB” strains)
engineered by the Finley lab, in which all endogenous ubiquitin
genes have been disrupted and complemented with a plasmid encod-
ing either WT or lysine point mutants of ubiquitin [5]. Below are
guidelines on how to use these strains to determine ubiquitin link-
age. Note that this approach is limited to the study of non-K48-
based polyubiquitin chain substrates, because the expression of a
K48R mutant in yeast as a sole source of ubiquitin is not viable [35].
For this specific case, the overexpression of Ub-K48R mutant in the
context of a wild-type strain is therefore preferable [24]. Also,
because the ubiquitin is not tagged in these strains, it cannot be
purified by Ni-NTA based purification. Therefore, the analysis relies
on the ability to see protein ubiquitylation on a crude extract
(Subheading 3.1) (Fig. 6). Alternatively, the protein may be purified
from each of these strains by denaturing IP, followed by a western
blot using anti-ubiquitin antibodies as described in Subheading 3.3.

1. Transform the SUB strains with an URA3-based plasmid
expressing a tagged version of the protein of interest using
standard yeast transformation procedure. These includes
SUB280 (WT ubiquitin), SUB515 (K6R Ub), SUB516
(K11R), SUB517 (K27R), SUB518 (K29R), SUB519
(K33R), and SUB413 (K63 Ub) [5] (see Note 17).

2. Grow cells as described in Subheading 3.1 (for crude extracts)
or in Subheading 3.3 (for denaturing IPs), in synthetic medium
lacking wuracil, starting at OD=0.010 for SUB280 and
OD=0.020 for the mutants.

Strain: SUB280 SUBS515 SUB515 SUB515 SUB515 SUBS515 SUB413 gy

Ubiquitin: ~ WT K6R K11R K27R K29R K33R K63R (kDa)
115

E—= - — -
Ea”-mChAf— T S — — .
-50

Fig. 6 Studying the topology of ubiquitin modification. An example of the use of the SUB strains (which express
K-to-R ubiquitin mutants) to gain information on the topology of the ubiquitin modification on a substrate (here,
the endosomal Rsp5 adaptor protein, Ear1). Black arrowheads: Ear1 ubiquitylated adducts. White arrow: the
ubiquitin modification appears as a single band in the SUB413 strain, suggesting that Ear1 is polyubiquitylated
with a short K63 chain (for more details, see also [40]). PGK is used as a loading control
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. For each strain, perform either a crude extract as described in

Subheading 3.1, oradenaturing IP asdescribed in Subheading 3.3.

4. Load samples on SDS-PAGE.

. Blot with the antibodies used to detect the protein of interest.

4 Notes

10.

. The presence of 0.02% glucose allows a faster initiation of

growth in raffinose medium.

. Cells will not lyse efficiently if they are not in exponential

phase. We advise never to reach an OD>1.0.

. For proteins suspected to be modified by a K48-linked polyu-

biquitin chain, and/or to be proteasomal substrates, the treat-
ment of cells with a proteasome inhibitor (e.g., MG132,
100 pM final) prior harvest can lead to their stabilization,
sometimes in its ubiquitylated form (although this is usually
counteracted by the presence of endogenous ubiquitin isopep-
tidases). However, the use of MG132 in yeast cultures at this
concentration is only efficient in strains in which either PDR5
or ERG6 is disrupted, leading to an increased permeability to
various drugs [ 36, 37]. An alternative method to promote the
efficiency of MG-132 in WT yeast strains has been described
and is based on the use of a different culture medium [38].

. This step is essential, because His-tagged proteins will not

bind to Ni-NTA beads in acidic conditions.

. A pipette tip can be used too, but we advise not to pipette up

and down because the pellet is sticky.

. The guanidine-HCI in buffer A may precipitate upon sample

cooling.

. Do not incubate the beads with buffer A for too long, because

they will titrate the imidazole in buffer A, which may hinder
their ability to bind to His-tagged proteins later on.

. Preferentially use precast gradient gels (e.g., NuPAGE®4-12 %,

Bis-Tris, Life Technologies).

. Make sure that samples do not run out of the gel, because His-

tagged ubiquitin is about 10 kDa and will be used as a purifica-
tion control.

It is advised to use Protein G- rather than Protein A-coupled
beads except when the source of the antibody is guinea pig.
Neither Protein Anor Protein G binds chicken IgY. Alternatively,
when using HA-tagged proteins, use the ready-to-use anti-HA
affinity matrix (Roche): use 30 pL, resuspend in 1 mL IP dilu-
tion buffer, and keep on ice.
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11.

12.

13.

14.

15.

16.

The use of a water bath sonicator to resuspend the pellet helps
for the final solubilization of the sample.

Because of the presence of antibodies in the immunoprecipi-
tate, we advise to use antibodies to ubiquitin that are directly
coupled to HRP to avoid the use of a secondary antibody (e.g.,
mouse monoclonal P4D1 antibody: sc-8017 HRP, Santa Cruz
Biotech; use at 1,/2000).

Identifying posttranslational modification sites by mass spec-
trometry can be hindered by the spacing of Arg/Lys resi-
dues, at which the cleavage with trypsin occurs within the
protein of interest. Tryptic fragments that are either too long
or too short will not be analyzed, leading to a poor coverage
and eventually, the inability to detect the posttranslational
modification. The coverage of a given protein by mass spec-
trometry can be visualized in repository databases, such as
the Global Proteome Machine Database (http://gpmdb.
thegpm.org). In this case, other proteases than trypsin should
be considered prior to MS analysis.

The plasmid used is a 2p-based (high-copy) plasmid, and the
expression of the protein is driven by the strong galactose-
inducible promoter. This can lead to a massive overexpression
of the protein, and the ubiquitylation detected may not be
physiologically relevant. To circumvent this problem, the
expression level of the protein at various times after galactose
induction can be checked and compared with endogenous
protein level. Protein expression can usually be observed within
15 min of galactose induction.

Steps 17 and 18 are dispensable if dealing with a soluble pro-
tein. Adding TX-100 may lead to smears when visualizing the
protein of interest by western blot. Note that 1 % TX-100 solu-
bilizes many membrane proteins, but not all, so this should be
checked prior to the experiment.

If both chimeric proteins appear ubiquitylated, then it is likely
that the protein is ubiquitylated on multiple sites throughout
the primary structure of the protein, or that ubiquitylation can
occur on any of those sites. In both cases, this approach should
be discontinued, and we advise to initiate a mapping of the
ubiquitylated lysines using biochemical purification and mass
spectrometry (se¢ Subheading 3.4).

17. Note that only the URA3 gene can be used for selection of

transformants in the SUB strains genetic backgrounds.
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Chapter 6

Strategies to Detect Endogenous Ubiquitination
of a Target Mammalian Protein

Sara Sigismund and Simona Polo

Abstract

Different biochemical techniques are well established to investigate target’s ubiquitination in mammals
without overexpressing a tagged version of ubiquitin (Ub). The simplest and more direct approach is to
immunoprecipitate (IP) your target protein from cell lysate (stimulated and/or properly treated), fol-
lowed by western blot analysis utilizing specific antibodies against Ub (see Subheading 3.1). This approach
requires a good antibody against the target working in IP; alternatively, one could express a tagged version
of the protein, possibly at the endogenous level. Another approach consists in IP ubiquitinated proteins
from total cell lysate followed by detection with the antibody against the protein of interest. This second
method relies on the availability of specific and very efficient antibodies against Ub (see Subheading 3.2).
A more quantitative approach is the DELFIA assay (Perkin Elmer), an ELISA-based assay, which allows
comparing more samples and conditions (see Subheading 3.3). Cross-validation with more than one
approach is usually recommended in order to prove that your protein is modified by ubiquitin.

Here we will use the EGFR as model system but protocols can be easily modified according to the
protein of interest.

Key words Endogenous ubiquitination, Immunoprecipitation, Western blot, ELISA, EGFR,
Endocytosis

1 Introduction

Most proteins—if not all—are regulated by the ubiquitin pathway.
The abundance of ubiquitinated proteins is often low in cells; thus
an essential step for their analysis is represented by a pre-enrichment
of the ubiquitinated species. Many affinity approaches have been
tested to isolate Ub conjugates under native and denaturing condi-
tions, including ubiquitin antibodies, ubiquitin-binding proteins,
and epitope-tagged ubiquitin. Ubiquitin overexpression often ren-
ders ubiquitination a constitutive process that, at least in some
cases, could be a disadvantage for the analysis (se¢e Note 1). In
addition, antibodies recognizing the Ub-modified peptides (anti-
GlyGly antibodies) can be employed to facilitate the identification
of Ub acceptor sites by mass spectrometry analysis. These repre-
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sent complementary approaches in addition to the ones described
in this chapter, to confirm that your protein of interest is indeed
ubiquitinated in vivo.

Ligand-induced trafficking of the EGFR is one of the best
characterized examples of how the regulation of receptor turnover
is modulated by the Ub signal. EGFR-Ub occurs at the plasma
membrane (PM) and is catalyzed by the E3 ligase Cbl in complex
with the adaptor molecule Grb2, recruited to the phosphorylated /
active receptor [1, 2]. It is regulated by ligand concentration,
being sharply activated at high dose of EGF [3]. Importantly,
EGFR-Ub proceeds all along the endocytic pathway since Cbl
remains bound to the EGFR after internalization [4]. Mass-
spectrometry analysis has revealed that EGFR is both mono- and
polyubiquitinated through Lys63-linked chains [5]. Whether these
two types of Ub modifications may act at different steps and/or
have different impact on EGFR fate is currently still unknown.
EGFR ubiquitination is a reversible modification, being regulated
by several deubiquitinating enzymes (DUBs). Up to now, several
DUBs acting on the EGFR pathway have been identified. They act
downstream the internalization step, at the level of endosomes and
MVB:s sorting stations [6].

Ub plays a pivotal role in determining the fate and the signal-
ing ability of the EGFR thanks to the accurate recognition exerted
by UBD-containing endocytic “route controllers” that inexorably
ferry the internalized receptor towards a degradative fate in lyso-
somes and away from a recycling pathway. As such, the Ub signal
is relevant at multiple endocytic stations and on different targets.
At the PM, receptor ubiquitination is essential for internalization
of EGFR via non-clathrin endocytosis (NCE). NCE is activated at
high dose of ligand and targets the majority of EGFRs to degra-
dation [7, 8]. In clathrin-mediated endocytosis (CME) EGFR-Ub
is not essential [8, 9]; however, it may participate with other
internalization signals to render the system more robust [10]. At
the endosomal level, EGFR ubiquitination is critical to target
receptor to the ESCRT complex, destining it to intraluminal ves-
icles of MVBs and, finally, to lysosomal degradation. This last step
leads to signal extinction that is the final goal of EGFR ubiquiti-
nation [11, 12].

2 Materials

2.1 Buffers
and Solutions

1. RIPA lysis buffer: 50 mM Tris-HCI, 150 mM NaCl, 1 mM
EDTA, 1% triton, 1% Na deoxycholate, 0.1% SDS (or 1% see
Note 2), supplemented with a cocktail of proteases, phospha-
tases, and DUB inhibitors [ phosphatases, proteases, and DUB
inhibitors were freshly added to the buffer prior to lysis: 20 mM
Na pyrophosphate pH 7.5, protease cocktail CALBIOCHEM
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(200x), 50 mM NaF, 2 mM PMSF, 10 mM Na vanadate in
HEPES pH 7.5 (see Note 3), 5 mM NEM or 25 uM PR619].

2. Laemmli buffer: before loading on SDS-PAGE gel, samples are
resuspended in 2x Laemmli buffer [4 % SDS, 125 mM Tris pH
6.8, 20% glycerol, 0.002 % saturated bromophenol blue, 10%
(v/v) p-mercaptoethanol (14 M)].

3. Denaturing solution: 6 M Guanidinium chloride, 20 mM
Tris pH 7.5, and, freshly added, 1 mM PMSF and 5 mM
f-mercaptoethanol.

Mouse monoclonal anti-Ub antibodies: P4D1 (Santa Cruz) and
FK2 (EnzoLifescience or MBL); anti-EGFR antibodies: rabbit
polyclonal anti-EGFR, against a 1172-1186 of human EGFR
(EGFR inTra, Eurogentech), and mouse monoclonal anti-EGFR
(m108 hybridoma, directed against the extracellular domain of
human EGFR, EGFR exTra, ATCC, [13]); mouse monoclonal
anti-p-catenin (BD); anti-eps15 (homemade monoclonal antibody
directed against EH domain); protein G-conjugated sepharose
beads (Zymed).

DELFIA kit includes microwell plates, wash bufter, assay buffer,
Europium-labeled secondary antibodies, and enhancement
solution.

Plate coating buffer: 3.03 g NaCO;, 6.0 g NaHCO; pH 9.6
dissolved in 1 1 of H,O.

Instrument

(Perkin Elmer)

3 Methods

3.1 Analysis by IP For this experiment, HeLa cells (10 cm plate for each condition,
of a Specific Substrate 70 % of confluence) are serum starved for 16 h and then stimulated
(i.e., EGFR) with 100 ng/ml of EGF for 0, 2, 10, 30, and 120 min. Ligand
and Western Blot stimulation induces the rapid ubiquitination of the EGFR (peak at

Anti-ubiquitin

2 min) followed by its endocytosis and lysosomal degradation.
A trick to block receptor degradation and to accumulate ubiqui-
nated EGFR species is to treat cells with chloroquine (100 pM,
pretreatment of 1 h and kept during all experiment) or NH,CI
(20 mM, pretreatment of 1 h and kept during all experiment),
both affecting lysosomal acidification and function. Cell lysates are
subjected to IP anti-EGFR and western blot anti-Ub and anti-
EGEFR, to check for IP efficiency. In case of target proteins degraded
by the proteasome, treatment with MG132 inhibitor can be used
to improve the signal. Dose and time depend on the protein of
interest and on cell type (you can start testing 3—6 h at 5 uM).
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3.1.1 Cell Lysis and IP
Reaction

3.1.2 Western Blot
Anti-Ub

To control for the specificity of the anti-Ub signal, a parallel IP

with lysates of cell knockdown for the protein of interest (e.g.,
Hela cell knockdown for the EGFR) should be performed. In
addition, an IP with an unrelated antibody of the same specie and
isotype of the antibody against your protein of interest is also
recommended.

1.

Cells are washed twice in cold PBS. Remove accurately PBS
from plates by letting them tilted for 2 /3 min.

. Cell lysis is performed directly on the plate by scraping in RIPA

bufter, plus inhibitors, 150-200 pl/plate (Subheading 2.1). In
case of RIPA w/1 % SDS (see Note 2) use the minimal amount
of buffer required to cover the plate (<80-100 pl/plate).

. Lysates are let on ice for 10 min and, then, spin at 16,000 x4

for 15 min at 4 °C (standard RIPA) or subjected to ultracentri-
fugation (RIPA 1% SDS) at 45,000 x4 for 45 min at 4 °C.

. Supernatants are collected and protein content was determined

by Bradford protein assay (not ideal due to the presence of
SDS) or BCA (see Note 4).

. Incubate 250 pg of lysates for each condition (IP volume of

around 250 pl, 1 pg/ml) in the presence of anti-EGFR intra-
polyclonal antibody.

. Incubate the samples with gentle agitation at 4 °C for 2 h.
. Add 30 pl of 50 % slurry Protein G-conjugated sepharose beads

and incubate at 4 °C for additional 2 h.

. Wash the beads four times with 0.5 ml of RIPA buffer/each,

through centrifugation for 1 min at 400 x 4.

. Add 20 pl 2x Laemmli buffer to the beads (previously dried),

boil for 5 min at 95 °C, and spin for 1 min at 13,000 rpm.
Samples are ready to be loaded on SDS-PAGE gel.

. Keep 1/10 of the immunopurified samples to perform direct

western blot anti-EGER (MW of ~180 kDa) by loading on 7%
acrylamide gels, transferring on nitrocellulose filter, and per-
forming anti-EGFR western blot by standard procedure ([14]
and Note 5).

. The remaining 9/10 of the samples are loaded on 7% acryl-

amide gels in order to probe for the presence of ubiquitinated
EGEFR by western blot anti-Ub.

. Transfer proteins to polyvinylidene fluoride (PVDF) mem-

brane previously activated by incubation in 100% MeOH for
5 min at RT (see Note 6), followed by extensive washing in
TBS-T bufter (TBS, 0.1 % tween).

. After transfer (see Note 7), treat the filters in denaturing solu-

tion (Subheading 2.1) for 30 min at 4 °C.
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5. After extensive washing in TBS-T, incubate the filters overnight
at4 °Cin 5% BSA (in TBS-T).

6. Incubate the filters with anti-Ub antibody: P4D1 antibody
diluted 1:1000 in TBS-T 5% BSA and incubated for 1 h at

room temperature.

7. After three washes of 10 min each in TBS-T, incubate the filters

with the anti-mouse horseradish peroxidase-conjugated sec-
ondary antibody diluted in TBS-T 3% BSA for 30 min at RT.

8. Wash the filters three times in TBS-T (5 min each). The bound
secondary antibody is revealed using the enhanced chemilumi-
nescence (ECL) method (Amersham).

For this experiment, growing Hela cells (10 cm plate for each con-
dition, 70 % of confluence) are treated as in Subheading 3.1. Cells
are then lysed in RIPA buffer supplemented with a cocktail of pro-
tease, phosphatase, and DUB inhibitors as previously described
(Subheading 2.1). Lysates are subjected to IP with FK2 mono-
clonal anti-Ub antibody. Western blot anti-EGFR and epsl5 are
performed on the IP as controls for EGF-induced Ub. For MG132-
treated samples, anti-Bcatenin can be used as internal control.

As a control for unspecific binding of your protein to FK2/
Protein G-sepharose beads, a parallel IP with an unrelated anti-
body of the same specie and isotype of FK2 antibody (mouse
IgGl) is recommended.

1. Incubate 500 pg of lysates for each condition (EGF, MG132,
or other) in the presence of 10 pg of anti-FK2 monoclonal
antibody for 1 h at 4 °C.

2. Add 30 pl of 50 % slurry protein G-conjugated sepharose beads
and incubate for an additional hour at 4 °C.

3. Wash the beads four times with 0.5 ml of RIPA buffer
(Subheading 2.1), through centrifugation for 1 min at 400 x g.

4. Add 20 pl 2x Laemmli buffer to the dried beads
(Subheading 2.1), boil for 5 min at 95 °C, and spin for 1 min
at 16,000 x g.

5. Samples are ready to be loaded on SDS-PAGE gel.

6. IP are transferred to nitrocellulose, for western blot anti-eps15
(150 kDa), anti-EGFR intra (180 kDa), or anti-B-catenin
(90 kDa).

For this assay, the dissociation-enhanced lanthanide fluoroimmuno-
assay (DELFIA) technology from Perkin Elmer is employed [3]. It
is based on sandwich recognition of a target protein by a capture
antibody and a detection antibody. The capture antibody is immo-
bilized on a solid surface (microwells) directly through non-covalent
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3.3.1 Plate Coating,
Incubation, and Detection

Table 1

bonds. After the addition of the analyte (cell lysate), the detection
of signals relies on a lanthanide (Europium)-conjugated antibody
that is able to produce a fluorescent signal upon enhancement with
acidic enhancement buffer. Lanthanide ions are released in solution
at low pH and they rapidly form new, highly stable fluorescent che-
lates. The fluorescence of the lanthanide chelate is amplified one to
ten million times by this enhancement step and it develops a signal
in 5 min that is stable for up to 8 h.

As specificity control, incubation of the antibody-coated plate
with lysates of cell knockdown for the protein of interest (e.g.,
HeLa cell knockdown for the EGFR), followed by the detection
step, is recommended.

1. Microwell plates are coated with the capturing antibody diluted
in coating buffer (Subheading 2.3). See Table 1 for antibody
concentration.

2. Blocking is performed for 2 h with BSA 2% in PBS.

3. 25-50 pg of lysates from HeLa cells, stimulated with the
indicated concentration of EGF, are incubated overnight at
4 °C. Lysates are prepared in RIPA w/1% SDS buffer and
diluted to 0.2% SDS before incubation step (Subheading 2.1
and Notes 2 and 4).

4. After three washes, wells are incubated with primary antibod-
ies, diluted at 1 pg/ml in assay buffer (provided in the DELFIA
kit), for 1 h at RT.

5. After three washes, anti-mouse or rabbit Europium-labeled
secondary antibodies (1 pg/ml in assay buftfer) are added for
an additional hour.

6. After three washes and treatment with enhancement solution
for 15 min at RT, fluorescence is measured with EnVision
instrument (excitation at 340 nm and emission at 615 nm).

Capturing and detecting antibodies differ depending on
whether a forward or reverse approach is performed (see also Fig. 1
for a scheme of the two procedures). Note that in the case of the
EGEFR substrate the reverse approach is more sensitive.

Antibodies’ scheme for the ELISA

Capturing antibodies Detecting antibodies
Forward Rabbit anti-EGFR intra (5 pg/ml) Mouse monoclonal antibodies against
ELISA Ub (FK2) or EGFR extra (both
diluted at 1 pg/ml)
Reverse Monoclonal antibodies against Ub (FK2, Rabbit anti-EGFR intra (1 pg/ml)

ELISA 5 pg/ml) or EGFR extra (1 pg/ml)
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a FORWARD ELISA
(2)
/ anti-EGFR extra
Eu-labelled /
secondary Ab

REVERSE ELISA

Eu-labelled

E secondary Ab
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anti-Ub

(1)
ti-EGFR int
_ anti intra

E / S

S
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secondary Ab
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(2)

Fig. 1 Scheme of the ELISA assay. (a) In the “forward” approach, microwell plates are coated with a polyclonal
anti-EGFR intra, which captures the receptor from the lysate (1). Detection of Ub-EGFR or total EGFR (to nor-
malize) is performed with primary monoclonal antibodies directed against Ub (FK2, 1) or EGFR extra (2),
respectively, followed by Europium (Eu)-labeled secondary antibodies. (b) In the reverse approach, microwell
plates are coated with monoclonal antibodies directed against Ub (FK2, 1) or EGFR extra (2) that capture
Ub-EGFR (1) or total EGFR (2), respectively. Detection is performed with anti-EGFR intra followed by a Eu-labeled

secondary antibody

4 Notes

1. Ectopically expressed epitope-tagged forms of Ub (HA, FLAG,
Myc-tagged; single Ub or in tandem) can be used. Although it
is not easy to overexpress Ub compared to the endogenous
level (cellular Ub level are homeostatically regulated), the
tagged Ub are well incorporated into proteins and may be
useful to get an initial idea if Ub modifies a specific protein.
A major caveat is that Ub overexpression often renders ubiqui-
tination a constitutive process. This could be an advantage if
there are no clues on the signal regulating the process but it is
not recommended to study the physiological role of the Ub
modification of a given target. In principle, target’s ubiquitina-
tion should always be validated with endogenous ubiquitin.
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2. In order to eliminate interacting proteins, lysates prepared in
modified RIPA buffer containing 1 % of SDS are recommended.
Lysates are subjected to ultracentrifugation (1% SDS) at
45,000 x g for 45 min at 4 °C and supernatants are collected.
Dilution to reach 0.2% SDS (using RIPA buffer w/o SDS) is
performed prior to quantification (see also Note 4) and IP reac-
tion. Performance of target’s antibody in this condition should
be set before proceeding.

3. To prepare 0.5 M Na vanadate stock, dissolve the powder in
1 M Hepes pH 7.5 and boil for 2 min at 95 °C.

4. In the case of RIPA with 1% SDS, Bradford protein assay
quantitation method is not ideal. We recommend to use BCA
method and to dilute the lysate to a final concentration of 0.2 %
SDS prior to quantification.

5. For western blot anti-EGFR, we know that our antibody
perform better with nitrocellulose than with PVDE, but this
should be verified case by case. Instead for anti-Ub, PVDF

membrane is required.

6. Staining the filter with Ponceau solution is not recommended,
as this might interfere with antibody recognition. Pre-stained
molecular weight markers are used to check the transferring
efficiency.

7. It is particularly important to avoid drying the membrane dur-
ing these treatments. In case of drying it is possible to hydrate
PVDF membrane again using MeOH for 2 min followed by
extensive washing in TBS-T buffer.
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Chapter 7

In Vitro Ubiquitination: Self-Ubiquitination, Chain
Formation, and Substrate Ubiquitination Assays

Elena Maspero and Simona Polo

Abstract

Ubiquitination of proteins in vitro has evolved as an indispensable tool for the functional analysis of this
posttranslational modification. In vitro ubiquitination is particularly helpful to study conjugation mecha-
nisms. The efficiency of the ubiquitination reaction depends in part on the quality of the enzymes utilized.
Here we introduce the assay developed in our lab to study HECT E3 ligases. It involves bacterially
expressed E1, His-tagged Ube2D3 (also called UbcHb5c, the best E2 for Nedd4), untagged Nedd4, and
untagged ubiquitin (Ub). As tags may impair specific activity of the enzymes or even interfere with the
enzymatic reaction, they should be avoided, removed, or kept to a minimal size whenever possible, unless
proven to be without consequence. The protocol described here is suitable for other E3 ligases capable of
forming Ub chains as pseudo-product of the enzyme reaction. It is also adapted to include substrates. In
this case, substrates should be tagged and purified after the reaction is completed to allow the detection of
the ubiquitinated products.

Key words Ubiquitination, In vitro assay, E3 ligase, Nedd4

1 Introduction

The development of in vitro system with purified proteins allows a
direct analysis of the molecular mechanisms regulating ubiquitina-
tion of a specific protein. We developed such a system to study our
favorite E3, Nedd4, an HECT ligase responsible for the ubiquitina-
tion of several endocytic proteins including epsl5 and epsin [1, 2].

HECT ligases are directly involved in the substrate ubiquitina-
tion and form an intermediate thioester bond with their active Cys,
before catalyzing the covalent attachment of ubiquitin to its spe-
cific substrate. The Nedd4 family comprises one member in yeast
(Rsp5) and nine in humans (Nedd4, Nedd4-2, Itch, Smurfl,
Smurf2, Wwpl, Wwp2, HECW1, and HECW2) [3-5]. Despite
having different functions, these proteins share similar domain
architecture, containing an N-terminus C2 domain, responsible
for membrane binding and two to four WW domains that mediate
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protein-protein interactions with substrates containing a PPxY
motif, and the HECT domain at the C-terminus [3-5]. From the
biological point of view, Nedd4 members are involved in cell sig-
naling pathways that regulate cell growth and proliferation and
have emerged as key regulators in several diseases from cancer to
neurodegenerative disorders [3-5]. From the catalytic point of
view, the majority of Nedd4 family members are K63-specific
enzymes (thus not involved in proteasomal degradation) and use a
sequential addition mechanism to build a chain on a substrate [6,
7]. Their enzymatic activity is tightly controlled through an auto-
inhibitory interaction of the C2 with the HECT domain [8, 9]. We
recently provided evidence that, in Nedd4, this inhibitory close
conformation can be released upon Tyr phosphorylation occurring
at the C2 and at the HECT domain [10].

This chapter describes the strategies and the methods developed
to study ubiquitination of Nedd4 and its activity in terms of specific-
ity. Thanks to these assays, using a panel of Ub mutants in which
lysine residues are mutated into arginine, we provided evidence that
the Nedd4 family members are all K63-specific enzymes [6] that we
then validated using wild-type Ub and absolute quantitation of the
Ub chain types with the AQUA proteomic method [7].

2 Materials

2.1 Buffers
and Solutions

1. 1 M IPTG stock solution: Dissolve IPTG in H,O, sterile filter,
and store aliquots at -20 °C.

2. 1 M Imidazole stock solution: Dissolve imidazole in H,O and
store aliquots at 4 °C.

3. 1 M DTT stock solution: Dissolve DTT in H,O and store ali-
quots at =20 °C.

4. 0.1 M ATP stock solution: Dissolve ATP in H,O, adjust the
pH to 7.0, and store aliquots at =20 °C.

5. GST lysis buffer: 50 mM Na-HEPES, pH 7.5, 200 mM NaCl,
1 mM EDTA, 0.1% NP40, 5% glycerol, Protease Inhibitor
Cocktail set ITT (Calbiochem).

6. Bufter A: 50 mM NaH,PO, pH 7.8, 300 mM NaCl, 10% glyc-
erol, 10 mM imidazole, and protease inhibitors.

7. Ub lysis buffer: 25 mM Ammonium acetate, 10 mM
f-mercaptoethanol, 10% glycerol, and protease inhibitors, pH 7.0.

8. PreScission Cleavage Buffer: 50 mM Tris-HCI, pH 7.4,
100 mM NaCl, 1 mM EDTA, 1 mM DTT, 5% glycerol.

9. Size exclusion buffer: 20 mM Tris—-HCl, pH 8.0, 200 mM
NaCl, ] mM EDTA, 1 mM DTT, 5% glycerol.

10. Ubiquitination buffer: The bufter required to drive the reaction
is prepared 10x concentrated and contains 250 mM Tris—HCI
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pH 7.6, 50 mM MgCl,, and 1 M NaCl. To the final mix freshly
prepared ATP 2 mM (Sigma) and DTT 0.2 pM were added.

11. Denaturing solution: 6 M Guanidinium chloride, 20 mM Tris
pH 7.5, and freshly added 1 mM PMSF and 5 mM
B-mercaptoethanol.

12. RIPA buffer: 50 mM Tris-HCI, 150 mM NaCl, 1 mM EDTA,
1% Triton, 1% Na deoxycholate, 0.1 % SDS.

13. Laemmli buffer: Before loading on SDS-PAGE gel, samples
are resuspended in 2x Laemmli buffer: 4% SDS, 125 mM Tris
pH 6.8, 20% glycerol, 0.002 % saturated bromophenol blue,
10% (v/v) 8-mercaptoethanol (14 M).

14. TBS-T: TBS, 0.1% Tween 20.

BL21 (DE3) pLysS and Rosetta™ (DE3) pLysS cells are from
Novagen.

Glutathione Sepharose™ 4B and PreScission protease are from GE
Healthcare. HisPur™ Ni-NTA Resin and Imperial Protein Stain
from Life Technologies. Imidazole, DTT, and ATP from Sigma.
Anti-Ub P4D1 antibody from Santa Cruz Biotechnology.

3 Methods

3.1 Protein
Production

3.1.1  GST Fusion Protein

3.1.2  His-Fusion Protein
Production

GST fusion proteins were expressed in BL21 at 18 °C for 16 h after
induction with 500 uM IPTG at an ODyg of 0.5. Cell pellets were
resuspended in GST lysis buffer. Sonicated lysates were cleared by
centrifugation at 20,000 rpm = 45,000 x g for 45 min. Supernatants
were incubated with 1 ml of glutathione-Sepharose beads per liter
of bacterial culture. After 4 h at 4 °C, beads were washed with PBS
and equilibrated in PreScission cleavage buffer. For GST-HECTNed#
production, to cleave off the GST tag, 10 units of PreScission pro-
tease per mg of substrate were incubated for 16 h at 4 °C (sec Note
1). The cleaved HECT™¢ was purified onto a Superdex 200 size-
exclusion chromatography column (GE Healthcare, Fig. 1).

His-tagged E1 enzyme Ubal (Addgene clone #34965) was pro-
duced in Rosetta cells according to the protocol described in [11]
(see Note 2).

His-tagged E2 enzyme Ube2D3 (UBCHS5c) was expressed
in BL21 at 18 °C for 16 h after induction with 1 mM IPTG at an
ODyggg of 0.6. Cell pellets were resuspended in Buffer A and lysed
by sonication. Cell debris was removed by centrifugation and the
supernatant incubated with 1 ml of HisPur Ni-NTA resin, previ-
ously washed three times with Buffer A. After 2 h at 4 °C beads
were then washed three times with Buffer A, Buffer A with 1 M
NaCl, and Buffer A containing 20 mM imidazole. His-fusion
proteins were eluted in Buffer A containing 300 mM imidazole.
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Fig. 1 Purification of GST-HECT"e*, (a) PreScission cleavage of GST-HECT"¢®* was controlled by loading ali-
quots of beads before (b) and after cleavage (b post-PreScission) and of the eluate (EL). (b) Chromatogram of
a typical size-exclusion purification on Superdex 200 column of cleaved HECT Mo purity of the protein con-
taining fractions was assessed by SDS-PAGE and Coomassie staining

3.1.3 Untagged Ub
Production

3.2 Protein
Purification

After overnight dialysis in size-exclusion buffer, Ube2D3 was
purified onto a Superdex 75 size-exclusion chromatography col-
umn (GE Healthcare).

Untagged Ub WT (or mutant) was expressed in Rosetta at 18 °C
for 16 h after induction with 1 mM IPTG at an ODgyo of 0.5. Cell
pellets were resuspended in Ub lysis buffer and lysed by sonication.
Cell debris was removed by centrifugation and the supernatant
adjusted to pH 4.5-5.0 with concentrated acetic acid. Precipitated
proteins were removed by centrifugation and the supernatant con-
taining the ubiquitin monomers was passed through a 0.45 mm
PES filter. After dialysis Ub was purified onto a Superdex 75 size-
exclusion chromatography column.

All the proteins used during enzymatic reaction studies were puri-
fied by size-exclusion chromatography. Prior to run on a Superdex
75 or Superdex 200 size-exclusion column, the samples were con-
centrated using Vivaspin (of different dimension and different
molecular weight cutoff according to the protein of interest) and
centrifuging at 6000 x4 in a 45 °C fixed angle rotor, at 4 °C. The
concentrated sample was run onto a Superdex 75 or 200 column
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3.3.1 Self-Ubiquitination
Assay and Ub Chains
Formation
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according to the dimension of protein to be purified; typically
§200 was used for HECT protein and S75 for E2 and Ub. Gel
filtration is carried out using size-exclusion buffer. The desired
protein was eluted in a clear, well-isolated, peak according to its
size and shape. Purity of the peak can be assayed by SDS-PAGE
gel. The desired fractions were collected, pooled, and concentrated
as needed using Vivaspin tubes.

We describe here two different conditions for in vitro ubiquiti-
nation assay. The first protocol is a self-ubiquitination assay in
which it is possible to detect the E3 ligase activity directly on the
enzyme itself or through the formation of polyubiquitin chains.
It is the method of choice when specific substrate of your E3
ligase is not known. The second protocol is designed in order to
investigate the activity of the E3 ligase of choice on a specific
substrate. Once a robust in vitro system has been set up for the
study of your E3 ligase of choice it would be possible to get
information about the specificity of the enzyme introducing Ub
mutant in the analysis.

Self-ubiquitination assay required E1 enzyme, E2 Ube2D3, HECT
domain of Nedd4 produced as GST fusion protein, and Ub.

GST-HECT domain of Nedd4 not only gets ubiquitinated during
the assay, but it is also able to generate free polyUb chains as pseudo-
product of the enzymatic reaction. In order to investigate the nature of
the UDb chain formed during the reaction ubiquitin mutants Ub can be
used. Two set of mutants are available; in the first set each Lys is
mutated to Arg with the exception of one position (K-only mutant),
and in the second set a single Lys is substituted with Arg (K-R mutant).

Ubiquitination assay is performed in 50 pl reaction. Calculate
the volume of protein stock solution needed for the assay and if
necessary dilute enzymes in the ubiquitination buffer. A general
protocol for self-ubiquitination assay is as follows.

1. Mix 20 nM E1, 250 nM GST-HECT™ on beads, 2 mM
ATP, 0.2 pM DTT, and 10x ubiquitination buffer.

2. Transfer 50 pl of the common mix in a separate tube and add
1 pM Ub WT. Incubate at 37 °C for 30 min; this represents
the negative control of the reaction.

3. Add to the common mix 250 nM of purified His6-tagged
Ube2D3/UbcHb5c¢ and aliquot in four different tubes, each of
them containing 1 pM of the different Ub mutant (i.e.,. WT,
Ko63R). Incubate samples at 37 °C for 30 min.

4. After incubation at 37 °C for 30 min, the reaction is immedi-
ately transferred on ice and centrifuged (refrigerated) to sepa-
rate the pellet containing ubiquitinated GST-HECT from free
Ub chains in the supernatant.
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3.3.2 Western Blot
Anti-Ub

3.3.3 Substrate
Ubiquitination

5.

Take 15 pl of the supernatant and add 2x Laemmli buffer. Run
the sample on 4-20 % gradient gel in order to separate the lad-
der of polyUb chains that are formed during the reaction.

. Wash the pellet four times in RIPA buffer (see Note 3) before

addition of 2x Laemmli buffer, heating, and loading on 8%
SDS-PAGE gel. The modification by a single Ub results in
8 kDa shift in apparent molecular mass of GST-HECT. Multiple
or poly-ubiquitination results in a smear higher than that.

. Detection is performed by western blot anti-Ub (see

Subheading 3.3.2).

. Coomassie-stained membrane is used to show GST-fusion pro-

tein loading after western blot (see Note 4).

. Transfer proteins on a polyvinylidene fluoride (PVDF) mem-

brane (Immobilion P, Millipore), previously activated by incu-
bation in 100% MeOH for 5 min at RT (se¢ Note 5).

. After transfer (see Note 6), treat the filters in denaturing solu-

tion for 30 min at 4 °C.

. After extensive washing in TBS-T butffer, incubate the filters

overnight at 4 °C in 5% BSA (in TBS-T).

. Incubate the filters with anti-Ub antibody diluted in TBS-T

5% BSA for 1 h at room temperature.

. After three washes of 10 min each in TBS-T, incubate the filters

with the anti-mouse horseradish peroxidase-conjugated sec-
ondary antibody diluted in TBS-T 3% BSA for 30 min at RT.

. Wash the filters three times in TBS-T (5 min each). The bound

secondary antibody is revealed using the enhanced chemilumi-
nescence (ECL) method (Amersham).

Substrate ubiquitination assay required E1 enzyme, E2 enzyme
Ube2D3, HECT domain of Nedd4 cleaved from the GST and
purified, Ub, and GST fusion of the substrate of interest.
Ubiquitination assay is performed in 50 pl reaction.

1.

3.

4.

Mix 20 nM E1, 250 nM HECT®N4* 300 nM GST-substrate
(gamma-EnaC), 2 mM ATP, 0.2 pM DTT, 1 pM Ub WT, and
10x ubiquitination bufter.

. Transfer 50 pl of the common mix in a separate tube and add

1 pM Ub WT. Incubate at 37 °C for 30 min; this represents
the negative control of the reaction.

Add to the common mix 250 nM of purified His6-tagged
Ube2D3,/UbcH5c¢ and incubate samples at 37 °C for 10, 30,
and 60 min.

After incubation at 37 °C for the indicated time, the reaction
is immediately transferred on ice and centrifuged (refriger-
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ated) to separate to separate the pellet containing ubiquitinated
GST-substrate from free Ub chains and enzymes present in
the supernatant.

. Discard the supernatant and wash the pellet four times in RIPA

buffer (see Note 3) before addition of 2x Laemmli buffer,
heating, and loading on 8% SDS-PAGE gel. The modification

by Ub results in 8 kDa shift in apparent molecular mass of
GST-gamma EnaC.

. Detection is performed by western blot anti-Ub (see

Subheading 3.3.2).

. Coomassie-stained membrane is used to show GST-fusion pro-

tein loading after western blot (see Note 4).

4 Notes

. PreScission protease contains a noncleavable GST-tag; there-

fore it remains bound to the glutathione-Sepharose 4B resin.

. We produce and purify recombinant E1 enzyme from E. cols

[11]; alternatively E1 is commercially available from differ-
ent sources.

. If pellet is not clearly visible after centrifugation, additional

GSH beads can be added to facilitate the washing step
procedure.

. Membrane is stained with Imperial Protein Stain for 30 min at

room temperature. After extensive washing with water, the
membrane is dried and proteins became visible.

. Staining the filter with Ponceau solution is not recom-

mended, as this might interfere with antibody recognition.
Pre-stained molecular weight markers are used to check the
transferring efficiency.

. It is particularly important to avoid drying the membrane dur-

ing these treatments. In case of drying it is possible to hydrate
PVDF membrane again using MeOH for 2 min followed by
extensive washing in TBS-T buffer.
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Chapter 8

Isolation of the Ubiquitin-Proteome from Tumor Cell Lines
and Primary Cells Using TUBEs

Wendy Xolalpa, Lydia Mata-Cantero, Fabienne Aillet,
and Manuel S. Rodriguez

Abstract

Tandem ubiquitin-binding entities (TUBEs) act as molecular traps to isolate polyubiquitylated proteins
facilitating the study of this highly reversible posttranslational modification. We provide here sample prepa-
ration and adaptations required for TUBE-based enrichment of the ubiquitin proteome from tumor cell
lines or primary cells. Our protocol is suitable to identify ubiquitin substrates, enzymes involved in the
ubiquitin proteasome pathway, as well as proteasome subunits by mass spectrometry. This protocol was
adapted to prepare affinity columns, reduce background, and improve the protein recovery depending on
the sample source and necessities.

Key words TUBEs, Ubiquitylation, Isolation, Purification, Posttranslational modifications

1 Introduction

One of the most critical steps of the entire proteomic analysis
procedure is sample preparation. Obtaining a 100 % representation
of proteins from a biological sample certainly does not occur in
practice but the most efficient methods display a high number of
representative cellular proteins. Preservation of posttranslational
modifications (PTMs) of proteins such as phosphorylation, ubiqui-
tylation, or SUMOylation adds another level of complexity to the
sample preparation process due to the transient and labile nature of
these PTMs. The covalent attachment of one or more ubiquitin
moieties to a protein substrate (known as protein ubiquitylation)
implies a great diversity of conjugating and de-conjugating enzymes
[1, 2], resulting in a vast repertoire of ubiquitin chains on the tar-
get proteins [ 3]. Consequently, this PTM is involved in numerous
and crucial cellular processes [4, 5]. Different strategies have been
developed to face the challenging steps of enrichment and identifi-
cation of endogenous ubiquitylated proteins (including histidine
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pull-down and immunoaffinity purification) [6-8]. Tandem
Ubiquitin Binding Entities are versatile research tools for the sur-
vey of the ubiquitin-proteasome pathway that have been success-
fully applied for the isolation and enrichment of polyubiquitylated
proteins [9-11]. The fusion to a GST-tag allows a conventional
affinity purification step by pull-down using glutathione-coupled
beads. TUBEs have been demonstrated to be useful for isolation of
ubiquitylated proteins from different biological sources such as cell
lines, tissues, and organs [10]. Scaling up the pull-down protocol
allowed the enrichment of protein samples for the study of global
ubiquitylation events by mass spectrometry (MS) [12—-14]. Besides
the enrichment of ubiquitylated proteins in large scale, the pull-
down protocol can also be suitable for the isolation of ubiquitin-
interacting partners to provide a more complete view of the
ubiquitin proteome.

The method described here is adapted for the isolation and
identification of the ubiquitin proteome by MS. TUBEs are pre-
pared in columns to be used as affinity matrix for capturing
ubiquitin-modified proteins and interacting partners. Binding,
washing, and elution steps are checked to optimize the enrich-
ment of ubiquitylated proteins. Specific and background pro-
teins are controlled at each step by Western blot (WB) analysis
using an anti-ubiquitin antibody or gel staining in order to opti-
mize protein recovery. The protocol should be adapted accord-
ing to the source/type of biological sample since background
can be increased by the presence of very abundant proteins in
specific cell systems. If the aim is to isolate only ubiquitylated
proteins, more stringent conditions and /or number of washes
should be increased before elution to reduce the binding of
nonspecific proteins. With the method described below, we have
successfully isolated ubiquitylated proteins together with ubiq-
uitin-interacting partners from tumor cell lines or primary cells
such as mantle cell lymphoma (MCL) cells or red blood cells
(RBCs), respectively [15]. The abundance of hemoglobin in
RBCs requires specific adaptations to remove this sticky protein
(indicated in detail in Subheading 4). As TUBEs are GST-fusion
proteins, a GST control should be included in parallel with each
sample to discriminate background from specific proteins.

The method is divided into four sections: (1) coupling
TUBEs/GST to glutathione beads, (2) cell lysis and sample clear-
ance, (3) capturing and elution of proteins, and (4) sample con-
centration and gel electrophoresis. Figures 1 and 2 show a scheme
of the general workflow.
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1. COUPLING OF TUBEs TO GSH BEADS: COVALENT CROSSLINKING

GST-TUBEs

GST-Control
Gutathione | 1.1.GSH/GSTBINDING | Giutathione

agarose beads agarose beads

W -— % G 0.N|.14°c és _ @@&wﬁ’w

b + 1 Boogamn T o _
. - o ‘"\‘:{‘ 1] —_\:\..__1‘-
© @«
I 1.2. CROSSLINKING: DMP |
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v "

1. WASHING

2X PBS — ¢ 500g 3min

¥

2. EQUILIBRATION

Coupling buffer (2 Vol): (G 2X 10 min RT — * 500g 3min
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cofim)  onim ]
u{'\?)\_}
Crosslinking solution:

1X 10 min RT (1 Vol) — £ 500g 3min
G 1X 30 min RT (2 Vol) — % 500g 3min , SO

Coupling buffer: 2X wash — #. 500g 3min

| i

4. BLOCKING

Blocking buffer (2 Vol):
1X wash — e 500g 3min
G IX1hRT  — % 500g 3min
2X PBS wash — e 500g 3min

v

5. WASHING™®

Wash buffer 1 (2 Vol):
Cx 2X5minRT  — # 500g 3min (G Rotating

2XPBSwash — % 500g 3min e
> Centrifuge

Wash buffer 2 (2 Vol):
2X wash buffer2 — * 500g 3min X Repetitions
1XPBSwash — % 500g 3min
1X wash buffer 2 — Hf 500g 3min
2XPBSwash — M 500g 3min

¥

6. TRANSFERENCE TO COLUMNS

ol
e 1X Wash buffer 2 (5 Vol) 3 min - ' AN
w - 2X PBS (5 Vol) ! )

. 7. EQUILIBRATION
TUBEs buffer (10 vol)
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Fig. 1 Procedure to couple TUBES/GST to GSH-agarose beads. Before covalent cross-linking using DMP,
molecular traps were bound to agarose beads. After blocking active groups with ethanolamine, several washes
are applied to eliminate unbound molecular traps and non-covalent interactions. Superscript numbers are
associated to Subheading 4



164 Wendy Xolalpa et al.

2. CELL LYSIS AND SAMPLE CLEARANCE
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Fig. 2 Isolation of ubiquitylated proteins for MS analysis using TUBEs. After lysis of biological samples, ubiqui-
tylated proteins and associated factors are captured, eluted, and concentrated following the illustrated proce-
dure (Captured and eluted proteins are monitored by Western blot with an anti-ubiquitin antibody). Superscript

numbers are associated to Subheading 4
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2 Materials

2.1 Coupling TUBEs/
GST to Glutathione
Beads

Prepare all solutions using ultrapure water (18 M Q cm at 25 °C)
and analytical grade reagents. Solutions are filtered and stored at
4 °C (unless indicated otherwise). Filtering should be done inside
a hood to avoid contaminations. Diligently follow all waste disposal
regulations when disposing waste materials. Sodium azide is not
added to the reagents; therefore solutions should be prepared as
fresh as possible.

1.

10.
11.

12.
13.

Glutathione beads (Biontex, Germany): Beads are previously
washed twice with cold PBS and centrifuged at 2000 rpm dur-
ing 15 min after each wash and kept at 4 °C until use.

. Autoclaved PBS.
. TUBEs and GST proteins are produced in Escherichia coli

(C41-DE3) using a standard protocol for recombinant protein
production [9] or can also be purchased through Life-Sensors
Inc (Malvern, PA, USA).

. Coupling buffer: 200 mM Borate bufter containing 3 M NaCl,

pH 9. Boric acid (Sigma) is adjusted with NaOH, filtered by
0.22 pm membrane, and kept at room temperature. Do not
store longer than a week as it precipitates.

. Cross-linking solution: 50 mM Solution of dimethyl pimelimi-

date (DMP, Fluka) is prepared just before use. Dissolve DMP
directly in coupling buffer at room temperature (RT).

. Blocking buffer: 200 mM Ethanolamine (Sigma), pH 8.2.

Carefully adjust pH with HCI in a fume hood. Filter and
keep at 4 °C avoiding exposition to light by covering with
aluminum foil.

. TUBEs buffer: 20 mM Phosphate buffer pH 7.5 (Na,HPO,,

NaH,PO, from Sigma) containing 1 % Igepal (Calbiochem),
2 mM EDTA (Sigma), 50 mM sodium fluoride (Sigma),
5 mM tetra-sodium pyro-phosphate (Sigma), and 10 mM
B-glycerol-2-phosphate (Sigma). Filter through 0.22 pm
membrane and store at 4 °C.

. Washing buffer 1: TUBEs buffer containing 1 M NaCl.
. Washing buffer 2: 200 mM Glycine (Sigma) pH 2.5. Filter and

store at 4 °C.

PBS-Tween 0.05% (Tween 20, Sigma).

Empty Poly-Prep® Chromatography Columns 9 cm height
(BioRad).

Rotating wheel for Eppendorf tubes (tube rotator).

Refrigerated centrifuge for Eppendort tubes (swing rotor is
optimal).
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2.2 Cell Lysis
and Sample Clearance

2.3 Capturing
and Elution of Proteins

2.4 Sample
Goncentration and Gel
Electrophoresis

1.

Tumor cell lines or primary cells are grown in appropriate
medium. For MCL cells RPMI-1640 medium containing 10%
fetal bovine serum, 2 mM L-glutamine, and 50 pg/mL
penicillin-streptomycin were used.

2. Cold sterile PBS.

. TUBEs lysis buffer: Supplement just before use TUBEs buffer

with 1 mM PMSF (Sigma), complete mini-EDTA-free prote-
ase inhibitor cocktail (Roche), 50 pM DUB inhibitor PR-619
(Calbiochem), and 200 nM proteasome inhibitor (Bortezomib,
Velcade) (see Note 1). Keep on ice until needed.

. Round-bottom sterile polypropylene tubes (13-15 mL) suit-

able for sonication.

. Sonicator probe.

6. Cold centrifuge (4 °C).

. Wet ice.

. Gravity columns pre-packed with TUBEs cross-linked beads

(described in Subheading 3.1).

. TUBESs bufter (described in Subheading 2.1).
. Washing bufter 1: TUBEs buffer containing 1 M NaCl (pre-

pared in Subheading 2.1).

4. PBS-Tween 0.05 % (prepared in Subheading 2.1).

O 0 NN N Ut A W N~

—
—— O

. Elution buffer 1: 200 mM Glycine pH 2.5 (same as washing

buffer 2 in Subheading 2.1).

. Elution buffer 2: 1% SDS (Sigma) prepared in PBS and warmed

at 60 °C before use.

. 1.5 M Tris-HCI, pH 8.8 (filter and store at RT).
. Rotating wheel.

. 2D-Clean up Kit (GE Healthcare).

. Ultrapure H,O.

. Lyophilizer.

. Parafilm.

. Vortex.

. Bath sonicator.

. Aspiration pump.

. Loading buffer (Laemmli bufter).

. Reagents and buffers for SDS-PAGE.

. Pre-cast acrylamide mini gel (1.5 mm thick) and 5-well comb.

. Fixing solution: 10 % Acetic acid and 30 % ethanol. Prepared

in fresh.
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12. Destaining solution: 7% Acetic acid, 10% ethanol. Prepared in fresh.

13. Sypro-Ruby protein gel stain (Invitrogen).
14. Wipe Tissue (Kimberly-Clark Professional).

15.

Gel imager.

3 Methods

3.1 Goupling TUBEs/
GST to Glutathione
Beads: Covalent
Cross-Linking

In order to reduce contaminants, affinity chromatography is per-
formed within a clean hood using gloves during all the procedure.
The method is divided into four sections:

1.

This step takes 2 days to be performed. If commercial TUBEs
(Lifesensors) are already coupled to glutathione beads, start
this procedure directly from Subheading 3.2. Never let the
beads dry during any protocol step. Allow TUBEs or GST
(control) binding to glutathione beads overnight (O/N)
(Fig. 1). For a large-scale purification, incubate 600-700 pg of
TUBE:s (see Note 2) with 600-700 pL of PBS-washed gluta-
thione beads in a 2 mL Eppendorf tube (e.g., prepare 1300 pL.
of a 50% slurry glutathione-beads) (se¢ Note 3). Adjust vol-
ume to submaximal tube capacity with PBS and incubate O /N
at 4 °C using a wheel for rotating incubation.

. After TUBEs or GST incubation with glutathione beads, cen-

triftuge at 500 xg for 3 min at 4 °C and remove supernatant
(see Note 4).

. Wash beads twice with PBS and centrifuge for 3 min at 500 x 4.

Discard supernatant by aspirating or remove carefully using a
pipette to avoid losing beads.

. Equilibrate beads by adding approximately 2 packed beads-

volumes (Vol) of coupling buffer. Centrifuge and discard
supernatant. Add 2 Vol of coupling buffer and incubate beads
for 10 min by rotating at RT.

. Before cross-linking step, centrifuge as previously, discard

supernatant, and add 1 Vol of fresh 50 mM DMP dissolved in
coupling buffer (cross-linking solution). Incubate for 10 min
at RT, centrifuge, discard supernatant and replace by 2 Vol. of
cross-linking solution. Incubate for additional 30 min by rotat-
ing at RT.

. Wash twice with coupling buffer to remove DMP. Centrifuge

and discard supernatant as previously indicated.

. To block active amino groups, wash beads with 2 Vol of block-

ing buffer, centrifuge, and discard supernatant. Add another
2 Vol of blocking buffer and incubate for 1 h rotating at RT.

. Wash twice with cold PBS.
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3.2 Cell Lysis
and Sample Clearance

9. To remove non-coupled proteins, wash cross-linked beads
twice with 2 Vol washing cold buffer 1. Incubate beads in each
washing step 5 min by rotating at RT.

10. Wash with cold PBS twice.

11. Continue removing non-coupled protein by washing twice
with 2 Vol of washing buffer 2. Do not incubate; only wash by
inverting tube (see Note 5).

12. Wash once with PBS and once more with washing bufter 2.

13. Wash twice again with PBS and then transfer the cross-linked
TUBESs beads to an empty polypropylene column. (If the pro-
cedure does not continue on the same day, keep beads in PBS
at 4 °C in the Eppendorftube). Coupled TUBEs beads should
be used as fresh as possible.

14. For the affinity chromatography step, all procedures should be
done in a cold room or in a cold cupboard to ensure that all
materials, buffers, and beads stay cold. Wash the beads inside
the column with 5 Vol of washing buffer 2. Close column
(bottom cap). Wait for 3 min and then open the bottom cap to
discard the flow-through (FT).

15. Wash beads twice with 5 Vol of cold PBS (see Note 6).

16. Equilibrate beads into the column with 10 Vol of cold TUBEs
buffer. Column is ready to use immediately with the lysed sam-
ple. (To check cross-linking efficacy, a sample of 10-20 pL of
cross-linked beads may be analyzed by SDS-PAGE or WB anti-
GST or anti-SV5) [9].

Cell lysis should be done on ice to avoid loss of protein modification
and prevent other enzymatic activities. The time between the lysis
and the incubation with the affinity column should be as short as pos-
sible. The following protocol has been performed with tumor cell
lines or primary cells taking into account that the sample does not
saturate the capacity of the coupled TUBEs beads to capture more
than 80-90% of all ubiquitylated proteins present in the sample.

1. Cell culture maintenance: Mantle cell lymphoma (MCL) cells
Z-138 are grown in suspension at 37 °C and 5% CO, humidity
atmosphere. For protein extraction, around 50x 10° cells are
used for each condition or point (consider GST-bead control)
(see Note 7). For a better manipulation and efficient cell lysis,
each sample is splitted in two 13 mL round sterile tubes
(25x10° cells each). Samples will be pooled later.

2. Cells are pelleted by 5-min centrifugation 300 x gat RT. Wash
cell pellet twice with 5 mL of cold PBS. Centrifuge and dis-
card supernatant by aspiration (eliminate residual PBS as
much as possible). Keep cell pellets on ice while performing
lysis step.
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3. Cell lysis (Fig. 2): Prepare supplemented TUBE:s lysis buffer
just before use. Add 1 mL of TUBEs lysis buffer to each
25x10° cell pellet (see Note 8). While keeping samples on
ice, disrupt cell pellet by three pulse sonication of 30 s each,
and let cool between each pulse. The lysis step should be
done as quickly as possible (see Note 9). Transfer the lysates
to Eppendorf tubes and clarify sample by centrifuging at
20,000 xg during 10 min at 4 °C. Recover and pool super-
natants to evaluate the input for each experimental condition.
Keep a small sample for protein quantification. (Usually a
lysate from 25 x 10® MCL Z-138 cell pellet resuspended in
1 mL contains about %2 mg,/mL of total protein concentra-
tion, measured at Ajgo.m.) Therefore, approximately 4 mg of
total protein is applied to the TUBEs or GST columns (see
Note 10).

Ubiquitylated proteins are often interacting with other protein
factors, which could increase background level. For MS purposes,
longer incubation times (>1 h) increase the presence of back-
ground proteins in the sample. Due to the high TUBEs affinity
for poly-ubiquitin molecules (low nanomolar range) [9], the cap-
ture of ubiquitylated proteins is very efficient in a short time
(30 min or less). According to the abundance of ubiquitylated
proteins in the sample, the incubation time must be optimized to
preserve specific proteins and discard nonspecific ones, also pres-
ent in the GST control.

1. Before starting the chromatography, do not forget to keep
50 pL of sample (input), mix with Laemmli buffer, and store at
-20 °C. Analyze total ubiquitylated proteins by WB using anti-
ubiquitin antibody.

2. Binding proteins to TUBEs column (Fig. 2): Apply clarified
lysates directly to respective column, TUBEs or GST-control,
and be sure to close bottom cap before adding the lysate. Close
also top cap and allow binding of ubiquitylated proteins to the
beads. Incubate during 15-30 min at 4 °C (see Note 11). For
a better capture, use a wheel to keep column in rotation.

3. After the binding step, set the column into a support. To
collect the flow-through fraction (FT), open first top cap
and then bottom cap before collection. Keep a FT sample
and mix with Laemmli buffer as it was done with the input.
Keep FT fraction for WB analysis to verify that TUBEs are
not saturated and ubiquitylated proteins are not being lost
(see Note 12).

4. Washing unbound proteins (Fig. 2): Wash column three times
with 10 Vol of TUBEs butffer. Close both sides of the column
and mix by inversion. Set column in its support and discard
wash flow (see Note 13).
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5. Wash three times with 10 Vol PBS-Tween 0.05 %, close column,
and wash as in the previous step (see Note 14).

6. Eliminating nonspecific proteins: Before elution, wash beads
twice with 10 Vol of washing bufter 1 (see Note 15).

7. Eluting proteins from column (Fig. 2): Elution is performed
in a sequential step: first, elute proteins with 1 Vol of elution
buffer 1. Close the column, mix by flicking (do not invert),
and wait for 5 min. Place column again in the support, open
top and bottom caps, and collect the elution sample in a
15 mL tube (keep tube on ice to avoid ubiquitin de-
conjugation). Add again 1 Vol of elution buffer 1 to rinse
column walls, and collect on the same tube. Add immedi-
ately to the eluted fraction 0.1 Vol of Tris 1.5 M, pH 8.8 to
neutralize pH. Repeat this step once with elution buffer 1,
collect and keep fraction on ice.

8. Second elution step using elution buffer 2 (pre-warmed at
60 °C): Add 1 Vol of elution buffer 2 and wait for 5 min
mixing by flicking. Collect and apply 1 more Vol and col-
lect in the same tube containing the previous eluted frac-
tion. Repeat this step to recover tightly bound proteins (see
Note 16). Neutralize eluted sample by adding Tris 1.5 M
pH 8.8. Take care that the final Tris concentration does not
exceed 100 mM.

9. Mix tube to homogenize eluted fractions and freeze immedi-
ately at -80 °C (see Note 17). Eluted samples can be stored at
-80 °C until required MS analysis.

10. When optimizing your protocol, check also ubiquitylated pro-
teins remaining on the beads by WB analysis. Transfer beads
from column to Eppendorf tubes (with 1 Vol PBS). Drain PBS
and add 300 pL of 3x Laemmli buffer.

3.4 Sample 1. Lyophilization and re-constitution of samples (Fig. 2): Keep
Concentration and Gel the sample frozen until lyophilization starts. Make holes in the
Electrophoresis tube caps or replace caps with parafilm (with holes) before

lyophilization. To preserve frozen samples during the lyophili-
zation process, freeze them before in liquid nitrogen (NO,,.
Lyophilize samples overnight (se¢ Note 18).

2. Re-constitute sample in 500 pL ultrapure H,O. To avoid
ubiquitin deconjugation events, sample can be supplemented
with proteasome and de-ubiquitylase inhibitors, 20 pM
MG132 and 50 pM PR619, respectively. Mix samples by
vortexing for 15 s and/or sonicate for 5 min in a sonicator
bath (see Note 19).

3. Sample cleanup: Distribute sample in 100 pL aliquots (see
Note 20). Add to each aliquot 450 pL of precipitant from
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2D-clean up kit and incubate tube on ice for 15 min. Add
450 pL of co-precipitant, mix the content by vortexing for
10 s, and centrifuge tubes at 15,000 x 4 for 5 min (se¢ Note
21). A pellet should be visible in the bottom of the tube (see
Note 22). Carefully aspirate the supernatant with 1 mL
blue tip. Briefly spin down the tubes and aspirate remaining
liquid with a 200 pL yellow tip. Add 20 pL of H,O over the
pellet followed by 1 mL of chilled wash buffer and 5 pL of
wash additive. Vortex until the pellet gets in solution (see
Note 23). Keep samples at -20 °C, mix tubes for 30 s, and
incubate again at -20 °C. Repeat this action three times,
incubate for 10-15 min between each vortex pulse, and
keep samples O/N at -20 °C. Centrifuge for 5 min at
15,000 x g. Aspirate supernatant with a 1 mL blue tip. Spin
down the tubes and aspirate the remaining liquid with a
200 pL yellow tip. Leave the pellet to dry out for 30 s keep-
ing tubes with open caps; do not overdry pellet.

. Resuspend the pellet in loading buffer. Add 80 pL of 1x

Laemmli buffer to the first tube aliquot and pipet up and down
ten times. Take the liquid and transfer it to the next tube;
repeat this procedure with all the tubes to pool into one sam-
ple. Then, apply additional 50 pL of loading buffer and repeat
sample transfer. The final sample volume should be of approxi-
mately 130 pL.

. Mix protein sample by vortexing for 15 s and then boil during

5 min (repeat this twice). Keep 13 pL of sample for WB analy-
sis; the remaining material is loaded in an SDS-PAGE gel for
MS analysis. Figure 3 shows typical results from MCL in A and
B or P. fulciparum-intected red blood cells (iIRBC) in C and D.

. SDS-PAGE for mass spectrometry (Fig. 3a, ¢): Buy or cast gel

according to the required percentage of acrylamide:bisacry-
lamide. After boiling samples, load the total volume of samples
immediately. Load molecular weight markers leaving a well
space between samples to avoid contaminations (sec Note 24 ).
Run the gel at 80 V for 10-15 min to let samples get into the
stacking gel. Then increase the voltage to 125 V| for 10% gel
run for about 30-60 min (see Note 25).

. After gel electrophoresis, pry open the gel plates with the use

of a clean spatula. Rinse the gel with pure MilliQ water and
transfer carefully to a large glass petri dish.

. Stain gel with Sypro-Ruby according to the manufacturer’s

instructions.

. Perform de-staining step until a clean background is observed.
10.

Document gel image in a digital imager.
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Fig. 3 Proteins captured by TUBEs for MS analysis. (a) SYPRO-stained gel, 10% acrylamide (90 % of total
sample from MCL cells). (b) WB detection of total ubiquitylated proteins (10 % of total sample from MCL cells).
(c) SYPRO-stained gel, 10% acrylamide (90 % of total sample from non-infected RBCs and RBCs infected
(iRBC) with Plasmodium falciparum). (d) WB detection of total ubiquitylated proteins (10 % of total sample from
RBC and iRBC). GST-coupled beads were used as control

4 Notes

1. Other proteasome inhibitors such as MG132 (20 pM) can be
used instead of bortezomib.

2. The amount of TUBESs required to capture ubiquitylated pro-
tein from a given number of cells should be set up to avoid
TUBES saturation.
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. Add a slight excess of beads before the coupling step since after

several washes a considerable amount of beads is lost.

. During settings conditions, keep unbound fraction for WB anal-

ysis to verify that most ubiquitylated proteins were captured.

. The pH of washing bufter 2 could alter GST binding capacity,

so it is important to control incubation time with this solution.

. Extra washes can be performed with SDS 1% preheated at

60 °C (elution buffer 2) to remove non-cross-linked proteins.
It depends on the elution stringency that will be used to elute
the sample.

. Manipulate and scale the culture according to the biological

sample since culture conditions are different for other cell
types. The amount of cells used to isolate ubiquitylated pro-
teins depends on the relative abundance of these proteins that
will allow their optimal MS/MS detection. For example,
around 2 x 10° RBCs are needed to capture ubiquitylated pro-
teins with 700 pg of TUBEs. The number of cells should be
adjusted until no ubiquitylated proteins are detected in the
flow-through for a fixed amount of TUBE:s.

. During the sonication procedure, use 13 or 15 mL round-

bottom tubes to avoid overflow and cell extract warming.
13 mL tubes adjust much better into sonication tip allowing an
efficient lysis. Do not forget to keep tubes on ice.

. Lysis conditions should be set up for each biological sample.

By reducing the lysis time ubiquitin de-conjugation/protea-
somal degradation can be limited. No more than 15 min
should be used.

There is not a direct correlation between total protein concen-
tration and abundance of ubiquitylated proteins. Ubiquitylation
can be altered according to stimuli, cellular process, or pathol-
ogy. For instance, cells treated with proteasome inhibitors can
accumulate ubiquitylated proteins. If protein quantification is
not possible, refer to cell number and set condition controlling
by WB using anti-ubiquitin antibodies. This is the case for
RBC lysates where hemoglobin interferes with standard tech-
niques used to quantify protein concentration.

Do not incubate samples with beads for more than 15-30 min;
otherwise the background (nonspecific proteins) will increase.
Be sure to close the column tightly in both sides to avoid
spills.

Flow-through can be passed through a new TUBEs column to
avoid losing ubiquitylated proteins with weaker TUBEs
affinity.
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13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. If desired, keep all washes to concentrate them by TCA/DOC
precipitation and control unbound ubiquitylated proteins by
WB analysis.

The number of washes and volumes may differ depending on
the sample. For example higher number of washes are required
when working with RBCs due to the hemoglobin content.

For a RBC sample, the elution step started with the washing
buffer 1. After a last wash with TUBEs bufter (10 Vol), add
1 Vol of washing buffer 1 (in this case this step is considered as
elution). Close the column, mix, and wait for 5 min. Open
column and collect the fraction. Add 1 more Vol of washing
buffer 1 and collect the elution again.

During elution step, the number of repetitions or rounds using
elution buffer 1 and 2 can be increased to recover tightly
bound proteins. For example, the elution stringency is higher
for RBCs. To detach ubiquitylated proteins, 2 elution rounds
with washing buffer 1, 6 rounds with elution buffer 1, and 4
rounds with elution buffer 2 are required. To set up the num-
ber of rounds required to recover most ubiquitylated proteins,
all fractions are analyzed by WB anti-ubiquitin.

The final elution volume is around 5 mL for MCL cells. To
recover most ubiquitylated proteins 2 rounds with elution
buffer 1 and 2 rounds with elution buffer 2 are required. Each
round includes 2 Vol of approximately 600 microlitres ul/Vol.

Avoid large volumes or if necessary split sample before freez-
ing. If needed, allow samples to dry out for more than a night.

Final suspension volume could be 500 pL to maintain a limited
number of aliquots for the cleanup step.

If you plan to use a kit for cleanup, scale the sample according
to the manufacturer’s instructions.

Large quantities of interfering substances can compromise
protein precipitation in the sample. Therefore, precipitant and
co-precipitant solutions are added in larger volumes than rec-
ommended by the kit manufacturer.

Sometimesthe protein gets strongly attached to the Eppendorf
wall and thus a pellet is not easily visible. Proceed with the
cleanup protocol even if the pellet is not visible after the first
centrifugation.

If precipitated protein sticks to the tube after washing buffer
addition, carefully scratch the tube wall with a 200 pL tip. If
the proteins are not well detached, final precipitation will fail.

Separation between samples and markers is essential to avoid
protein contamination when cutting gel slides.

Running time may change depending on the sample, buffer,
size of the gel, etc. Check that no protein runs out of the gel
by following the gel migration blue front.
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Chapter 9

TUBEs-Mass Spectrometry for Identification and Analysis
of the Ubiquitin-Proteome

Mikel Azkargorta, Iraide Escobes, Felix Elortza, Rune Matthiesen,
and Manuel S. Rodriguez

Abstract

Mass spectrometry (MS) has become the method of choice for the large-scale analysis of protein
ubiquitylation. There exist a number of proposed methods for mapping ubiquitin sites, each with different
pros and cons. We present here a protocol for the MS analysis of the ubiquitin-proteome captured by
TUBEs and subsequent data analysis. Using dedicated software and algorithms, specific information on
the presence of ubiquitylated peptides can be obtained from the MS search results. In addition, a quantita-
tive and functional analysis of the ubiquitylated proteins and their interacting partners helps to unravel the
biological and molecular processes they are involved in.

Key words Ubiquitin, Tandem Ubiquitin Binding Entities (TUBEs), Posttranslational modification
(PTM), Collision induced dissociation (CID), Mass spectrometry (MS), Gene Ontology (GO),
Todoacetamide (IAA), Chloroacetamide (CAA)

1

Introduction

Protein ubiquitylation is of paramount importance for the proper
function and development of multiple cellular processes including
proteolyisis, endocytosis, DNA repair, cellular localization, or acti-
vation of protein kinases [ 1, 2]. Its deregulation has been shown to
be involved in a number of diseases, such as cancer, neurodegen-
erative and cardiovascular diseases, and immunological disorders,
among others [ 3, 4].

The ubiquitin-proteome is integrated by the total ubiquity-
lated proteins present in the cell and their interacting partners
(ubiquitin-interactome). The ubiquitin-interactome allows regu-
lation and connection of ubiquitylated proteins with the effector
functions. Large-scale analysis of protein ubiquitylation by MS has
become one of the most valuable techniques to elucidate its role
in physiology and pathology. However, the analysis of ubiquity-
lated proteins can be a daunting task because of their low
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stoichiometry and their short life-span due to the action of
deubiquitylation enzymes (DUBs) [5]. Therefore, protection and
enrichment methods are mandatory for their analysis. A number
of specific isolation methods have been developed in the last years,
including the use of tandem ubiquitin-binding entities (TUBEs)
[6-9], the expression of tagged ubiquitin molecules [10, 11], or
even the development of anti-ubiquitin antibodies in order to pick
ubiquitylated peptides [12—-14].

The identification and analysis of ubiquitylated proteins by
mass spectrometry involves the in vitro enzymatic digestion of the
proteins of interest and the analysis of the generated peptides.
Information on the mass of the peptides and their corresponding
fragments is collected and contrasted with the information com-
piled in databases using dedicated software and algorithms (Fig. 1).
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Fig. 1 Schematic overview of MS sample preparation. Processing starts from the SDS-PAGE run of the samples
(a), followed by gel cutting and in-gel digestion of the obtained slices (b). The resulting peptides (¢) are sub-
jected to nLC-MS/MS analysis (d), where analysis of the peptides masses (e) and fragmentation patterns (f) is
compiled. The RAW files containing this information (g) are loaded into the search engine (h), and a list of the
identified proteins is obtained (i). Specific enrichment analysis can be carried out over this dataset, keeping
only those proteins reliably enriched by TUBEs. Furthermore, this list can be compared with other datasets or
subjected to functional analysis through the use of different bioinformatics tools, such as Gene Ontology (GO).
Finally, modification site in a subset of identified proteins can be obtained (j). Manual inspection of spectra
assignments is recommended in order to avoid false-positive assignments
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Results provide direct information on the modified amino acids
of the proteins through the identification of the GG ubiquitin
signature. The tryptic cleavage of the ubiquitin sequence leaves
a GG adduct attached to the substrate, increasing the mass of
the peptide with 114.043 Da[15]. Due to incomplete digestion
of the ubiquitin, trypsin may also leave a bigger tag comprised
of LRGG, increasing the mass of the peptide with 383.228 Da
[16] (Fig. 2). These mass shifts are indicative of ubiquitylation
events, and are therefore used for the detection of the modified
peptides in the data search step. However, identification of
ubiquitylated peptides presents some drawbacks, since they are
scarce in opposition to the non-modified tryptic peptides com-
ing from the digestion of the modified protein, and are usually
larger and get more charges than regular tryptic peptides [17],
lowering the chances for their proper fragmentation and subse-
quent identification.

The experiments are typically done with at least three bio-
logical replicas, and negative controls are included for each pull
down. For example, when using TUBEs pull down, beads cross-
linked with GST can be used as a control. Using these negative
controls, unspecifically enriched proteins can be discarded from
the dataset and only those proteins more likely to be ubiquity-
lated (and their interacting partners) are considered for further
analysis. As a starting point, this enriched dataset can be com-
pared with other well-characterized datasets, and its functions
can be outlined via a Gene Ontology term-enrichment analysis.
Thus, a landscape of the molecular and biological processes these
proteins are involved in can be obtained.

"l"lz"GG?ﬁ
d | ~R-NH;
Ub (-RLRGG™®) § coon -K Signature peptide
K"R 114.043 tag
’ =)
» K NH,
& hl"'z'l—RGG?6
COOH I R-NHZ
cooH-K

Signature peptide
383.228tag

Fig. 2 Trypsin digestion of ubiquitylated proteins. Trypsin cleaves the protein sequence after K or R residues.
The presence of an ubiquitin moiety attached to a K in the protein sequence usually hampers tryptic cleavage.
Trypsin will cleave the available K and R in the sequence of both the protein and the ubiquitin attached to it,
leaving a GG residue attached to the e-NH2 group of the ubiquitylated K. This tag can become an LRGG when
trypsin fails to cut the ubiquitin sequence at the last R residue
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2 Materials

2.1 Sypro Ruby Gel
Staining and Image
Acquisition

2.2 Digestion

2.3 MS Analysis

10.
11.
12.
13.
14.

15.

B W N

. Fixing solution: 10 % Acetic acid and 30 % ethanol. Mix 100 mL

acetic acid and 300 mL ethanol in a test tube, and make up to
1 L with Milli-Q water. Prepare it fresh.

. Destaining solution: 7% Acetic acid, 10% ethanol. Mix 70 mL

acetic acid and 100 mL ethanol in a test tube, and make up to
1 L with Milli-Q water. Prepare it fresh.

. Wipe tissue: Precision Wipes Tissue Wipers.
. Sypro Ruby protein gel stain, 1 L (Invitrogen).
. Typhoon Trio Scanner, Variable Mode (GE Healthcare).

. 1 M Ammonium bicarbonate (AMBIC): Use Milli-Q water

and store at —20 °C in 0.5 mL aliquots.

. 100 mM AMBIC: Dilute a 0.5 mL aliquot of 1 M AMBIC to

5 mL with Milli-Q water. Prepare it fresh.

. 50 mM AMBIC: Dilute a 0.5 mL aliquot of 1 M AMBIC to

10 mL with Milli-Q water. Prepare it fresh.

.1 M DTT stock: Dissolve DTT in Milli-Q water. Store at

-20 °Cin 10 pL aliquots.

. 10 mM DTT: Dilute a 10 pL aliquot of 1 M DTT with 990 pL.

AMBIC 100 mM. Prepare it fresh.

. 55 mM CAA: Dissolve CAA in AMBIC 100 mM. Prepare it fresh.
. Trypsin Gold-Mass Spectrometry Grade 100 pg (Promega).
. 1 pg/pL Trypsin Gold stock: Dissolve a vial of 100 pg trypsin

gold in 0.1 ml of 50 mM acetic acid (see Note 1). Aliquots
(15 pL) can be stored at =20 °C for at least 1 month.

. 0.0125 pg/pl Trypsin Gold: Dilute the 15 pL aliquot of

1 pg/pL Trypsin Gold with 105 pL. 50 mM AMBIC.
Trifluoroacetic acid (TFA) (Pierce).

0.1% TFA: Dissolve 0.1 mL TFA in 99.9 ml Milli-Q water.
Acetonitrile (ACN) (Symta).

Speed Vac: Rotational-Vacuum-Concentrator RVC 2-25 (Christ).

50 mM Acetic acid: Dissolve 71.5 pL acetic acid in 24.28 mL
Milli-Q water.

E. coli protein sample: ReadyPrep ™ E. coli Protein Sample
2.7 mg (Bio-Rad).

. Formic acid (FA) (Pierce).

. 0.1% FA: Dissolve 0.1 mL FA in 99.9 ml Milli-Q water.
. Acetonitrile (ACN) (Symta).

. Vials combination package (glass vial Type I) (Waters).
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5.

NanoAcquity UPLC System (Waters)

6. BEH C18 nanoACQUITY Column, 1.7 pm, 75 pm x 200 mm

10.

(Waters).

. Symmetry C18 Trap Column, 5 pm, 180 pm x 20 mm (Waters).
. Stainless steel emitters (Thermo Scientific).

. Mass spectrometer for large-scale proteomics such as LTQ

Orbitrap XL ETD Mass Spectrometer (Thermo Scientific).
Ultrasonic cleaning bath “Ultrasons” 6 L (J.P. Selecta).

3 Methods

3.1 Gel Staining
and Image Acquisition

Prepare all solutions using Milli-Q water (8§ MQ cm at 25 °C) and
analytical grade reagents. Proceed with great care in order to avoid
keratin contamination (se¢ Note 2). Prepare and store all reagents
at 4 °C (unless indicated otherwise) and follow all waste disposal
regulations when disposing waste material.

1.

Following electrophoresis, pry the gel plates open with the use
of a spatula. The gel remains on one of the glass plates. Rinse
the gel with water and transfer carefully to a glass petri dish.

. Fix the protein by the addition of 100 mL of fixing solution.

Incubate for 30 min under gentle agitation, discard the solu-
tion and add 100 mL of SYPRO RUBY. Incubate overnight
under agitation and in the dark (see Note 3).

. Add 100 mL destaining solution and incubate under agitation

for 30 min. Repeat this operation once. Replace the solution by
100 mL Milli-Q water, incubate for 10 min and replace the
solution by 100 mL of fresh Milli-Q water and proceed to the
image acquisition. Sypro Ruby images are acquired in the
Typhoon Trio scanner-Variable Mode imager (GE Healthcare)
using the program Typhoon scanner control v 5.0 (see Note 4).

. Wash the scanner surface with ethanol and dry it with a wipe

tissue before acquisition. Add Milli-Q water over the scanner’s
surface and put the gel over the water carefully.

. The parameters used for the acquisition are the following:

e Acquisition mode: Fluorescence
e Setup:
— 610 BP 30 Deep Purple, Sypro Ruby
—  PMT: 535 V (see Note 5).
— Laser: Blue (488) (sec Note 6).
—  Sensitivity: Normal
*  Orientation: R

e Focal plate: Platen
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3.2 GelCut
and Digestion
of the Gel Slices

Markerilh  TuBes | | C)
e e ‘-—i-v-l-J 1

6. Acquire a preliminary image with a pixel size of 1000 pm and

check that the selected area and laser voltage are suitable for
the acquisition (see Note 7). Once the parameters are fine-
tuned, acquire the image with a pixel size of 100 pm.

. Save the image in TiFF format.

. Once the image is acquired, remove the gel from the scanner

and carefully bring it back to the Petri dish. Gels can be stored
in Milli-Q water at 4 °C for at least 1 month. Clean the scanner
surface with ethanol, and dry it with a wipe tissue.

Great care must be taken to avoid keratin contamination of the
samples during the digestion step (se¢ Note 2). The use of CAA
instead of TAA as alkylating agent is recommended in order to
avoid the generation of ubiquitylation-false positives [18].

1. Prepare a template for cutting the gel (see Note 8). Try to iso-

late clear bands in independent slices and keep the total num-
ber of slices limited to 10 (see Note 9) (Fig. 3a, b).

. Print the gel image with the template at 100 % of the gel image

size. Put this image behind a clean glass plate, and put the gel
in the upper part of this glass so that it fits the image behind it.
Cut the gel following the template (see Note 10) (Fig. 3c).

. Cut each gel slice into small pieces of approximately 1 mm?

with a clean scalpel, and put them in a new identified Eppendorf
tube with Milli-Q water (see Note 11).

Fig. 3 Template and gel cutting. Once the gel image is acquired (a), a template for gel cutting can be created
using different programs, such as Microsoft Powerpoint (b). Try to follow the band pattern of the gel and cut
both the control and the sample following the same criteria to avoid variations in the pattern. Then, the tem-
plate is printed at the gel size and placed behind the gel that is going to be cut (). Cut the gel following the
template and keep gel pieces in individual Eppendorf tubes
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4.

10.

Discard Milli-Q water and add 50 pL of 50 mM AMBIC, vor-
tex, incubate for 5 min, and discard supernatant. Repeat the
procedure with 100 pL ACN (see Note 12).

. Add 100 pL of a solution containing 10 mM DTT in 100 mM

AMBIC, and incubate for 20 min at 56 °C under agitation. Discard
the solution and add 55mM CAA in 100 mM AMBIC (se¢ Note
13). Incubate at room temperature for 30 min in the dark.

. Wash the gel pieces adding ACN, vortex, incubate for 5 min,

and discard supernatant.

. Cover the gel with 50 pL 0.0125 pg/pL trypsin in 50 mM

AMBIC. Allow the gel pieces to swell in ice for 30 min. If the
gel dries out add more trypsin, and cover the gel gently.

. Discard the trypsin supernatant and add 50 pL of

AMBIC. Incubate at 37 °C overnight.

. Add 100 pL of ACN, vortex, and incubate for 5-10 min. Put

supernatants in a new microtube (one microtube per gel slice)
(see Note 14).

Add 50 pL of 0.1% TFA in water, vortex, and incubate for
5-10 min. Add 100 pL of ACN, vortex, and incubate for
5-10 min (se¢ Note 14). Add the supernatants corresponding
to each sample in the previously identified microtubes, and dry
vacuum them in the Speed-Vac (se¢ Notes 15 and 16).

. Resuspend the samples in 10 pL 0.1% FA, sonicate 5 min in

the ultrasonic cleaning bath.

. Put the resuspended samples on a vial and load the sample into

the mass spectrometer (se¢ Note 17).

. Peptides are separated using a BEH130 C18 column,

75 pmx200 mm, 1.7 pm coupled to a Symmetry 300 C18
UPLC Trap column, 180 pmx20 mm, 5 pm (Waters) on a
nanoACQUITY UPLC system (Waters).

. The recommended chromatographic gradient includes the fol-

lowing steps (sec Note 18):

Time (min)

A% B% Flow

0

60
61
70
72
90

97 3} 0.3 mL/min
60 40

15 85

15 85

97 3

97 3

A:FA 0.1% in H,O
B: FA 0.1% in ACN
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3.4 MS Data
Analysis

5. The MS acquisition method in the LTQ Orbitrap XL ETD
includes the following parameters (se¢ Note 19):

e Full MS survey spectra (m/z 400-2000) are acquired in
the orbitrap with 30,000 resolution at #,/z 400.

e Fragmentation of the six most intense precursors, with
charge states equal to or greater than 2, by CID in the
linear ion trap (see Note 20). Analyzed peptides are
excluded from further analysis during 30 s using dynamic
exclusion lists.

As mentioned, protein identification and peptide modification
assignment are carried out by searching the acquired peptide spec-
tra in databases, such as UniProt or NCBI. Database search is car-
ried out using different search engines, that is, algorithms that
attempt to identify peptide sequences from the fragment ion spec-
tra of the peptides in the dataset [19]. Mascot, Sequest, OMSSA,
or VEMS, among others, are examples of search engines used for
protein identification [20, 21]. Typical ubiquitylation tags
(114.043 Da for GG, 383.228 Da for LRGG) must be considered
when searching the spectra in order to find modified peptides.
Furthermore, the tag LRGG gives the diagnostic ions 270.1925
(b2) and 384.2354 (b4) in MSMS which can be used to fish out
potential MSMS spectra from ubiquitin modified peptides. The
diagnostic ions are especially useful it MSMS spectra with high
mass accuracy is available (<10 ppm).

1. Once the acquisition has ended, the generated unprocessed
data are loaded into the search engine in order to identify the
detected peptides and proteins.

2. Recommended search parameters include the following:

e Carbamidomethylation of cysteines as fixed modification.
Oxidation of methionines, GG (+114.043 Da) and LRGG
(+383.228) modification of lysines, and protein N-terminal
acetylation as variable modifications (see¢ Note 21).

e DPeptide mass tolerance of 10 ppm and 0.5 Da fragment
mass tolerance, and four missed cleavages allowed (see
Note 22).

3. A decoy search is recommended in order to estimate the false
discovery rate (FDR) for the samples. Once identified, selected
proteins can be subjected to the functional analysis step (see
Note 23).

4. Information on the presence of ubiquitylated peptides among
the identified proteins can specifically be obtained by looking
for those peptides carrying typical ubiquitin-modification (GG
+114.043, LRGG +328.228) (see Note 24) (Fig. 4).
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Fig. 4 Ubiquitylated peptide spectra examples. Two spectra for the ubiquitylated form of the peptide
TLTGKTITLDVEPSDTIENVK, corresponding to K48 chains from polyubiquitin C (UBC_HUMAN) are provided, car-
rying the GG tag (a) or the LRGG tag (b) characteristic of ubiquitylation

3.5 Statistical
Analysis

Once proteins are identified in both the TUBEs and negative
controls (GST), it is necessary to discard unspecifically bound
proteins and keep only the ubiquitylated proteins and their part-
ners. In the example provided in this chapter, taken from Lopitz-
Otsoa [22], a direct subtraction was performed. MCEF7 cells
treated with adriamycin were used for the characterization of the
global ubiquitylation events in these cells, with the aim of pin-
pointing potential biomarkers and drug targets. Proteins identi-
fied in the GST controls were directly discarded from the dataset,
giving a total of 643 proteins specifically bound to TUBEs. Of
these, 269 were proteins consistently present in the replicates.
This was the set of proteins considered as reliably enriched, and
therefore further characterized in this work.

In addition to the direct subtraction of the identified pro-
teins, relative quantitation of peptides and proteins can be car-
ried out in order to make a more comprehensive enrichment
analysis. The quantitative values can be obtained using experi-
mental methods such as SILAC, stable isotope dimethyl label-
ing, tandem tags, area under the ion counts in the survey scans
(XIC), or spectral counting. Matthiesen et al. [23] provides a
review dealing with different MS-based quantitative methods.
Then, multivariate analysis can be done in several software such
as Excel, the statistical programming language R or Matlab.
Below is a possible outline of the steps included in the multivari-
ate analysis of the results.
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3.6 Meta-Analysis

1. Log transformation of the quantitative values. This will make
the values normally distributed and lead to smaller p-values if a
t-test is subsequently performed.

2. Optional normalization of the values across samples. For
example, the R package “limma” supports a number of nor-
malization procedures. References Kroll et al. and Bolstad
et al. [24, 25] provide comprehensive overviews of different
normalization procedures.

3. Subtraction of background values obtained from the control
experiments, e.g., spectral counts from GST beads.

4. Calculate log ratios and p values to define difference in the level
of ubiquitin modifications between experimental conditions
(see Note 25). If the experiment has multiple conditions then
ANOVA can be performed followed by a post-hoc test to lower
the number of statistical tests.

Frequently meta-analysis in proteomics starts out by comparing the
identified proteins with proteins identified under different condi-
tions or experimental settings. For example, in the work published
by Lopitz-Otsoa et al. the set of enriched proteins was compared
with the results obtained by other methods for the isolation and
analysis of ubiquitylated proteins. Comparative analysis can also be
done with well-known data databases such as UniProt or PhosphoSite.
In this example, the Venn diagram in Fig. 5 compares TUBE-
enriched proteins from Lopitz-Otsoa [22] against all O-GlcNAc-,
SUMO-, and ubiquitin-annotated proteins in PhosphoSite (made
with the R package “VennDiagram” which can plot Venn diagrams
with up to five groups). The crosstalk between ubiquitin and differ-
ent PTMs is the next level of complexity in the molecular regulation
of multiple biological processes. SUMOylation and O-GlcNAcylation
are known to be connected to ubiquitylation for the regulation of
different functions [26-28]. Additionally, O-GlcNacylation and
SUMOylation have been described to control transcription in the
nucleus. In this context, the analysis of their correlation within the
dataset enriched in the present analysis may be of great interest for a
further characterization of these proteins.

Furthermore, proteins that are defined as significantly enriched
in Subheading 3.5 above can be subjected to a functional enrich-
ment analysis. A simple way to perform enrichment analysis is to
submit the enriched protein IDs (see Note 26) to DAVID bioin-
formatics server [29, 30] and then export the result as text tables.
The tab delimited text tables can then directly be imported in to R
or Excel to produce summary graphics. For example, in Fig. 6 the
ten most significant biological process categories were displayed
for TUBE-enriched proteins and O-GIcNAc- and SUMO-
annotated proteins in PhosphoSite.
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Fig. 5 Comparing all 0-GIcNAc-, ubiquitin-, and SUMO-annotated proteins from PhosphoSite (Date 14-4-2015)
with proteins reproducibly enriched by TUBEs and LC-MS identified by Lopitz-Otsoa et al. [22]
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Fig. 6 Functional enrichment analysis by DAVID of the TUBEs-enriched proteins, and the SUMO- and 0-GIcNAc-
annotated proteins from PhosphoSite. Minus log of the FDR corrected significance of enrichment is indicated
on the y-axis. The numbers on top of each bar indicate the number of proteins identified for each category
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4 Notes

10.

11.

. Resuspension in acid pH is necessary for the storage of trypsin,

given that it prevents self-digestion events taking place in basic
pH. However, if the whole aliquot is going to be used, the
trypsin vial can be resuspended directly in 1 mL 50 mM
AMBIC and then diluted to 8 mL with AMBIC 50 mM to
achieve a final concentration of 0.0125 pg/pL. Use the trypsin
immediately after resuspension and discard remnants, it any.

. The use of a clean lab coat, disposable over-sleeves, and a cap

is strongly recommended throughout the whole process in
order to avoid keratin contamination. All digestion steps must
be carried out in an isolated room. Clean all material with etha-
nol before use.

. A few hours may be enough for protein detection, but over-

night incubation of the gel in SYPRO is recommended for
maximum sensitivity.

. Switch the scanner on at least 30 min before image acquisition

in order to warm up the system. The use of alternative up-to-
date systems, such as the Versadoc Molecular Imager (Bio-
Rad) is also a viable option for the image acquisition.

. Laser gain values are illustrative. This value can be increased

when the signal is weak, or decreased when saturated images
are obtained, but it can be considered as a starting point.

. The laser and filter setup used for this acquisition do not match

with the default setup considered by the system. Therefore, a
warning advice may appear when setting up the parameters.
Ignore this advice and proceed with the acquisition.

. Avoid saturation of the image and make sure that all the inter-

esting parts of the gel are scanned before acquiring the image
at high resolution. Low-resolution scans are much faster than
high resolution, and therefore more suitable for the optimiza-
tion of the image acquisition.

. We used Microsoft Powerpoint, but programs intended for

similar purposes can be used.

. The number of slices may change depending on the pattern of

the lane. However, keeping a reduced number of slices is a
good idea in order not to increase too much the effort in the
LC-MS side.

For a more dedicated cut, a UV transilluminator can be used.
Otherwise, the entire gel lane can be cut in equal consecutive
slices but the explained methodology is recommended.

Gel slices of a total E. coli extract processed in a similar way can
be used in order to check the digestion process. These slices
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12.

13.

14.
15.

16.

17.
18.

19.

20.

21.

22.

23.

should have a similar volume as the slices under analysis in the
experiment.

The volumes provided are illustrative, and bigger or smaller
volumes may be added. Use a volume that allows full coverage
of the gel pieces.

Avoid the use of Iodoacetamide (IAA). IAA can artificially
modity lysines with the addition of two acetamide moieties,
which has the same molecular weight and chemical formula as
the diglycine modification, and is completely undistinguish-
able by MS [18]. CAA does not provoke this effect, and there-
fore it is more suitable for this analysis.

Incubate the gel slices in ACN until they get white opaque.

Switch the Speed-Vac on at least 20 min before use in order to
cold-up the trap.

Complete dryness is not recommended. Special care must be
taken not overdrying the samples for a good sample recovery.

Sample resuspension and load may depend on the starting amount.

The columns and gradient are illustrative. However, a linear
gradient followed by a washing step and an equilibration step
are needed as part of the protocol. Length of each phase may
depend on sample load, sample complexity, and/or column
length among others. Adaptation to the system and optimiza-
tion are therefore needed.

The parameters for the chromatography and the MS acquisi-
tion are illustrative. Dedicated methods and parameter optimi-
zation may be necessary for the acquisition with different
equipment and samples.

The use of different fragmentation methods, such as ETD, has
been shown to be a good alternative to CID, providing alter-
native fragmentation patterns. However, the method of choice
for general purposes is still CID due to its ease of use and frag-
mentation capacity, and therefore its use is recommended.

If the presence of any other modification is suspected, con-
sider it as part of the search, taking into account that it may
increase search time and modify search space.

The parameters are typical for searching LTQ Orbitrap data.
However, they should be adapted to the specific needs and
characteristics of the equipment used. Four missed cleavages
are allowed since the presence of ubiquitin moieties attached
to the proteins is known to hamper tryptic cleavage of such
residues, and therefore a high number of missed cleavages can
be expected for highly modified peptides.

Decoy searches are recommended for complex samples. When
sample complexity is low, however, its use is not recommended,



190 Mikel Azkargorta et al.

24.

25.

26.

since FDR calculations might not be accurate. The threshold
for protein selection may change depending on the sample.
Selection of proteins with at least two peptides with a FDR<5%
(or a Mascot p-value <0.05 in the absence of an FDR estima-
tion) or selection of the proteins with at least one peptide with
a FDR<1% (or a Mascot p-value<0.01 in the absence of an
FDR estimation) are commonly used thresholds.

As mentioned, careful inspection of the spectra is recommended
for avoiding false-positive assignments. The selection of spectra
with the presence of fragments covering most of the peptide
sequence and clearly assigning the modification site is recom-
mended. Overcoming false positives is still one of the major
issues when analyzing ubiquitylated proteins and peptides. The
mass shift provoked by the GG addition is isobaric to many
other chemical modifications, such as hydroxypropylation,
asparagylation, or aspartylation, among others [17], and may
therefore give rise to the detection of false positives. In addi-
tion, IAA can introduce false positives, as mentioned before.
The use of high-accuracy mass spectrometers, such as the LTQ-
Orbitrap XL ETD used in our approach, and the use of chloro-
acetamide (CAA) instead of TAA as alkylating agent during the
protein digestion significantly reduce the number of false-posi-
tive assignments. However, most search engines lack robust
enough tools for the unsupervised analysis and assignment of
PTMs and therefore careful examination of the spectra is neces-
sary to provide a reliable dataset of ubiquitylated peptides.

Published studies frequently do not provide p-values of enriched
ubiquitin peptides because of high variance between samples.
Frequently arbitrary thresholds are defined such as 1.5-2-fold
enriched in a minimum number of biological replicas followed
by for example validation by Western blot.

We find that DAVID provides a better mapping if the protein
IDs and accession numbers are trimmed for version numbers.
Furthermore, downloading the latest version of Gene Ontology
annotation for the species of interest, and then manually map
the enriched genes/proteins to Gene Ontology followed by
enrichment statistics provides an even better mapping and
more accurate results.
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