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    Chapter 5   

 Tailor-Made Protein Tyrosine Phosphatases: 
In Vitro Site- Directed Mutagenesis of PTEN and PTPRZ-B                     

     Sandra     Luna    ,     Janire     Mingo    ,     Olaia     Aurtenetxe    ,     Lorena     Blanco    , 
    Laura     Amo    ,     Jan     Schepens    ,     Wiljan     J.     Hendriks    , and     Rafael     Pulido      

  Abstract 

   In vitro site-directed mutagenesis (SDM) of protein tyrosine phosphatases (PTPs) is a commonly used 
approach to experimentally analyze PTP functions at the molecular and cellular level and to establish func-
tional correlations with PTP alterations found in human disease. Here, using the tumor-suppressor PTEN 
and the receptor-type PTPRZ-B (short isoform from  PTPRZ1  gene) phosphatases as examples, we provide 
a brief insight into the utility of specifi c mutations in the experimental analysis of PTP functions. We describe 
a standardized, rapid, and simple method of mutagenesis to perform single and multiple amino acid substitu-
tions, as well as deletions of short nucleotide sequences, based on one-step inverse PCR and DpnI restriction 
enzyme treatment. This method of SDM is generally applicable to any other protein of interest.  

  Key words     Site-directed mutagenesis  ,   PCR  ,   Protein tyrosine phosphatase  ,   PTEN  ,   PTPRZ-B  , 
  PTPRZ1  

1      Introduction 

  The directed  alteration   of cDNA sequences to modulate protein 
function in in vitro or in vivo experimental settings constitutes one 
of the basic approaches to establish, at the molecular and cellular 
level, protein structure-activity relationships governing biological 
processes. Together with structural and functional studies, SDM 
applied to relevant proteins has emerged as an indispensable tech-
nique to test and validate experimental hypothesis and to charac-
terize intrinsic protein biological activities, as well as to defi ne the 
mechanism of action of specifi c drugs. Site-directed mutagenesis is 
especially well suited for studying the biological activities of 
enzymes, since protocols for the readout of activity are usually 
available. In the case of PTPs, different experimental approaches 
exist to study in vitro PTP biological properties, including catalytic 
activity towards different substrates, sensitivity to inhibitors or 
 redox   regulatory agents, and binding to ligands, substrates, and 
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regulatory proteins, among others [ 1 – 9 ]. In this regard, mutations 
at the PTP active site have been used to engineer binding sites for 
specifi c inhibitors [ 10 ], as well as to obtain antibodies that specifi -
cally recognize the oxidized conformation of the PTP and keep the 
enzyme in its inactive state [ 11 ]. 

 All Cys-based PTPs follow a two-step enzymatic mechanism 
that starts with a nucleophilic attack on the phospho-substrate by 
the catalytic Cys (located on the CxxxxxR signature motif- 
 containing   catalytic P-loop), which is aided by a general acid 
donating-proton residue, generally an Asp (located in the WPD- 
loop), to release the dephosphorylated substrate. This generates a 
characteristic phospho-enzyme intermediate. In a second step, a 
water molecule is deprotonated by the catalytic Asp (which now 
acts as a general base) and the remaining hydroxyl group attacks 
the P-O thiol-phosphate bond from the phospho-enzyme interme-
diate, releasing the phosphate moiety [ 12 – 16 ]. The conservative 
substitution of the catalytic Cys by a Ser (C/S mutation) is the 
standard enzyme-inactivating mutation used in PTP studies [ 17 ]. 
Importantly, C/S PTP mutations may act as  dominant negative   
PTP variants, likely by binding to substrates (without dephosphor-
ylating them) or by competing with effectors [ 18 – 22 ]. The substi-
tution of the catalytic Asp by an Ala (D/A mutation) renders an 
enzyme with very low activity, which usually binds to substrates 
with higher affi nity than the C/S mutation, being referred as a 
 substrate-trapping   mutation [ 23 ].  Substrate-trapping   D/A muta-
tions have been used successfully to identify  bona fi de  substrates of 
different PTPs, alone [ 24 – 28 ] or in combination with the C/S 
mutation [ 29 ]. A list of residues important for  catalysis   of PTPs, 
using PTPN1/ PTP1B   as a model, is provided in reference [ 30 ]. 

  Protein-protein interactions   constitute a major regulatory 
mechanism in the control of PTP biological activity, not only by 
conferring substrate specifi city but also by regulating the compart-
mentalization and subcellular location of PTPs. This is aided by the 
existence of a domain modular organization on many PTPs that 
specifi cally orchestrate their differential binding to effectors and 
regulators [ 31 – 33 ]. In addition, linear C-terminal amino acid 
motifs that represent canonical binding sites for PDZ protein 
domains are present in some PTPs, including PTEN (-Thr-Lys- Val; 
-TKV motif) and PTPRZ-B (-Ser-Leu-Val; -SLV motif), as well as 
in some  myotubularins.   PDZ domains exist in many scaffolding and 
regulatory proteins, and are considered as major elements in the 
compartmentalization of the cell at the molecular level, with impor-
tant implications in human disease [ 34 ,  35 ]. PDZ-domain binding 
to protein partners can be experimentally manipulated by PDZ-
domain rearrangements, as well as by  mutation of the residues from 
the PDZ-binding motif on the protein partners [ 36 ,  37 ]. 

 PTEN is a lipid- and protein-phosphatase that controls cell 
homeostasis. PTEN behaves as a major tumor-suppressor protein 
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in humans by dephosphorylating PIP3, the product of the  onco-
genic   PI3K, and PTEN functional alterations are strongly associ-
ated with human disease, especially cancer.  PTEN  gene is a frequent 
target of mutations in human tumors, and patients with PTEN 
hamartoma tumor syndrome (PHTS) or with autism spectrum dis-
orders (ASD) carry  PTEN  germ-line mutations [ 38 – 42 ]. Thus, the 
potential to introduce PTEN mutations for experimental purposes 
is required to study PTEN functionality or effects of PTEN disease- 
associated mutations [ 43 ,  44 ]. PTPRZ-B is a receptor-type PTP 
that is encoded by gene   PTPRZ1    and that is mainly (but not exclu-
sively) expressed in the nervous system.   PTPRZ1 -encoded   protein 
isoforms are involved in the regulation of cell-cell and cell- 
extracellular matrix interactions, and display both tumor suppres-
sive and oncogenic properties [ 45 – 50 ]. In addition,     PTPRZ1  
isoforms are involved in myelination processes [ 51 – 53 ], and they 
have been proposed as a target for Parkinson’s disease and schizo-
phrenia [ 54 ,  55 ]. Both PTEN and PTPRZ-B bind PDZ domains 
through their C-terminal PDZ-binding motifs, which impacts on 
their stability, subcellular location, and function [ 36 ,  56 – 59 ]. 

 Mutations useful to study the functions of PTEN and PTPRZ-B 
in any cell system or experimental setting are illustrated in Table  1 . 
These include specifi c mutations affecting the  catalysis   or the binding 
to PDZ domains of PTEN and PTPRZ-B, and may be extended to 
other PTPs. Using PTEN and PTPRZ-B cDNAs in different plas-
mid backgrounds, we describe a standardized, rapid, and simple 
mutagenesis method to obtain single and multiple  amino acid sub-
stitutions  , as well as short-length nucleotide deletions. The method 
is based on one-step inverse PCR followed by DpnI restriction 
enzyme treatment and direct  E. coli   transformation  , and can poten-
tially be applied to any other cDNA of interest.

   Table 1  
   Amino acid substitution   mutations of utility to study PTEN and PTPRZ-B function   

 Mutation  Location  Functional consequence  References 

 PTEN a  
 C124S  PTP  domain   (P-loop)  Catalytically inactive (full)  [ 61 – 63 ] 
 G129E  PTP domain (P-loop)  Loss of  lipid phosphatase   activity  [ 64 ] 
 Y138L  PTP domain  Loss of  protein   phosphatase activity  [ 65 ] 
 D90A  PTP domain (WPD-loop)  Catalytically inactive;  substrate trapping    [ 66 ] 
 V403A  C-terminal tail  Loss of PDZ-domain binding  [ 59 ] 

 PTPRZ-B b  
 C1073S  PTP D1 domain (P-loop)  Catalytically inactive (full)  [ 57 ,  67 ] 
 D1041A  PTP D1 domain (WPD-loop)  Catalytically inactive; substrate trapping  [ 68 ] 
 S1453A  C-terminal tail  Loss of PDZ-domain binding  [ 58 ] 
 V1455A  C-terminal tail  Loss of PDZ-domain binding  Predicted 

   a Amino acid numbering corresponds to the major human PTEN isoform (NP_000305) 
  b Amino acid numbering corresponds to the short human PTPRZ-B isoform (NP_001193767)  
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2       Materials 

 All solutions are prepared in double-distilled, RNase-free water. 
Plasticware is autoclaved or sterilized by ethylene oxide. 

       1.    Plasmid containing the PTP cDNA to be mutagenized ( see  
 Note    1  ).   

   2.    Mutagenic  oligonucleotide primers   ( see   Note    2  ).   
   3.    High-fi delity DNA polymerase and dNTPs ( see   Note    3  ).   
   4.    DpnI restriction enzyme (target sequence 5′-Gm 6 ATC-3′) 

( see   Note    4  ).   
   5.     E. coli  competent cells ( see   Note    5  ).   
   6.    TNE buffer: 50 mM Tris–HCl pH 7.5, 100 mM NaCl, 5 mM 

EDTA.   
   7.    10× TCM buffer: 100 mM Tris–HCl pH 7.5, 100 mM CaCl 2 , 

100 mM MgCl 2 .   
   8.    LB medium: 1 % Tryptone, 0.5 %  yeast   extract, and 1 % NaCl.   
   9.    LB-Ampicillin (LB-Amp) plates: 1 % Tryptone, 0.5 %  yeast 

  extract, 1 % NaCl, 0.01 % NaOH, 1.5 % agar, and 100 μg/ml 
ampicillin.   

   10.    Plasmid DNA purifi cation kit.   
   11.    Agarose gel electrophoresis and DNA visualization reagents.   
   12.    Thermocycler.   
   13.    Shaking incubator.   
   14.    Ultraviolet light detection system.       

3    Methods 

 This  mutagenesis   method is based on the QuikChange™ Site- 
Directed  Mutagenesis   procedure, which consists of one-step 
inverse PCR from a methylated double-stranded DNA (dsDNA) 
plasmid followed by DpnI restriction enzyme treatment, eliminat-
ing the need for subcloning and single-stranded DNA (ssDNA) 
rescue. Our procedure utilizes a supercoiled dsDNA vector with 
the insert of interest, and synthetic oligonucleotide  mutagenic 
primers   with a standardized predesigned length (see below). 
The  oligonucleotide primers   are extended during temperature 
cycling by a high-fi delity DNA polymerase, which generates a non- 
methylated mutated nicked plasmid. The  PCR   product is directly 
treated with DpnI endonuclease to digest the parental methylated 
DNA template, followed by  transformation   into competent bacteria. 
Examples are provided for single- amino acid substitutions   and 

2.1  Site-Directed 
Mutagenesis of PTPs
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deletions on human PTEN (1.2 kb cDNA; NM_000314, 
NP_000305) (Figs.  1  and  2 , Table  2 ) and for single and multiple- 
 amino acid substitutions   on human PTPRZ-B (4.3 kb cDNA; 
NM_001206838, NP_001193767) (Fig.  3 ). Note that for both 
single and multiple mutations we run a single  PCR  .

Mutagenesis 
conditions 

Template 
plasmid 

Number of 
colonies 

Mutagenesis 
efficiency 

+ Pwo + DpnI 
pRK5-PTEN 198 3/3 

pYES2-PTEN 115 3/3 

+ Pwo - DpnI 
pRK5-PTEN 231 0/3 

pYES2-PTEN 172 0/3 

-Pwo + DpnI 
pRK5-PTEN 0 -- 

pYES2-PTEN 0 -- 

 

 

  

(+) 5’-TGGATTCGACTTAGGCTTGACCTATATTT-3’
(-) 5’-AAATATAGGTCAAGCCTAAGTCGAATCCA-3’

PTEN D24G: GAC → GGC 

           +    +     +    +     +     +     -     -    -      -     -     -   
Pwo 
DpnI 

pRK5 pRK5 pYES2 pYES2 

PTEN D24G 

         +    +     +    +     +     +    +    +    +     +    +    + 

1      2      3      4      5      6     7      8      9     10    11    12    13 

←1.2 kb 

4.8 kb 
5.9 kb 

          +      +     +     +      -      -   
          +      +     -       -     +     +  

PTEN D24G 

Pwo 
DpnI 

1       2       3       4       5       6       7 

   6 kb 
7.1 kb 

a

b

d

c

  Fig. 1    Monitoring of standardized site-directed  mutagenesis   using a PTEN  amino acid substitution   as an exam-
ple. ( a )  Mutagenic primers   of 29-mer predefi ned length (13 +  3  + 13, codon substituted  underlined ). The  amino 
acid substitution   (D24G) is indicated using the amino acid one-letter code. +, forward primer; −, reverse primer. 
( b ) Linear DNA obtained on the mutagenic  PCR  , as resolved by 1 % agarose gel electrophoresis. pRK5 PTEN is 
6 kb size, whereas pYES2 PTEN is 7.1 kb size. The parental circular DNA is in low amount and not visualized. 
Note the lack of  PCR   product in the absence of DNA polymerase ( lanes 6  and  7 ). ( c ) Control restriction enzyme 
digestions (XbaI + SalI, cutting out the 1.2 kb PTEN insert) of plasmid DNA obtained from bacteria transformed 
with the mutagenic  PCR   product. Three colonies were analyzed from each condition. In  lanes 1  from ( b ) and ( c ), 
molecular markers (BstEII digestion of λ phage) are shown. ( d ) Effi ciency of bacteria  transformation   with the 
mutagenic  PCR   product (number of bacteria colonies after  transformation   with the DpnI-treated  PCR   product) 
and  mutagenesis   effi ciency (number of mutated samples with respect to the number of samples sequenced) 
achieved from each condition are indicated. Note that in the absence of DpnI, the parental template plasmid 
gives a background of non-mutated samples. In the absence of DNA polymerase (but presence of DpnI) no 
colonies should be obtained, as an indication of the effi ciency of DpnI digestion       
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            1.    Design the mutagenic  oligonucleotide primers  . In our protocol 
for  amino acid substitutions  , the  mutagenic primers   are two 
fully complementary primers of standardized predefi ned length 
(usually 29-mer), with the mutated codon in the center 
(Fig.  1a ) ( see   Note    2  ) (Mingo et al., submitted). For deletions 
of short sequences of nucleotides, the design of  mutagenic 
primers   follows similar rules, with the junction of the deleted 
sequence in the center (Fig.  2a ).   

3.1  Site-Directed 
Mutagenesis of PTPs

PTEN

a

b

c

d

1                 2        3       4      5  

←6 kb

PTEN 
E307K ΔI33 M198I-T202

(26)
M198I-T202

(30)

1       2       3       4       5      6      7       8       9     10      11     12    13

←1.2 kb

←4.8 kb

(+) 5’-TTATCCAAACATTGCTATGGGATTTC-3’(26)
(-) 5’-GAAATCCCATAGCAATGTTTGGATAA-3’

PTEN ΔI33: ATTATTGCT → ATTGCT PTEN M198I-T202: GATGATGTTTGAAAAC → GATAAC 
(+) 5’-TGTTTCACAAGATAACTATTCCAATG-3’(26)
(-) 5’-CATTGGAATAGTTATCTTGTGAAACA-3’

(+) 5’-GTTGTTTCACAAGATAACTATTCCAATGTT-3’(30)
(-) 5’-AACATTGGAATAGTTATCTTGTGAAACAAC-3’

Mutation
Length of
mutagenic

primers

Number of
colonies

Mutagenesis
efficiency

E307K 29 252 3/3

ΔI33 26 296 3/3

M198I-T202 26 3 2/3

M198I-T202 30 64 2/3

  Fig. 2    Monitoring of standardized site-directed  mutagenesis   using PTEN  amino acid substitution   and nucleo-
tide deletions as examples. ( a )  Mutagenic primers   of 26-mer or 30-mer predefi ned length (13 +  0  + 13 or 
15 +  0  + 15, respectively, where  0  indicates the  underlined  deleted nucleotides). The  arrows  indicate the nucle-
otide junction after the deletion. The amino acid changes after the nucleotide deletion are indicated as follows: 
ΔI33, deletion of I33; M198I-T202, M198I substitution plus deletion of residues 199–201. +, forward primer; −, 
reverse primer. ( b ) Linear DNA obtained on the mutagenic  PCR   (pRK5 PTEN as template plasmid), as resolved 
by 1 % agarose gel electrophoresis. The E307K amino acid substitution (29-mer mutagenic primers) was 
included for comparison. ( c ) Control restriction enzyme digestions (XbaI + SalI, cutting out the 1.2 kb PTEN 
insert) of plasmid DNA obtained from bacteria transformed with the mutagenic  PCR   product. Three colonies 
were analyzed from each condition. In  lanes 1  from ( b ) and ( c ), molecular markers (BstEII digestion of λ phage) 
are shown. ( d ) Effi ciency of bacteria  transformation   with the DpnI-treated  PCR   product, and  mutagenesis 
  effi ciency are indicated. Note that two different set of primers (26-mer or 30-mer) were used for the M198I-T202 
 mutagenesis  . Note that sometimes the amplifi ed  PCR   product is barely detected [see  lanes 4  and  5  from panel 
( b )], but it is enough to obtain colonies with the desired mutation       
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     Table 2  
  Effi ciency of  amino acid substitution  -standardized  mutagenesis   of PTEN a    

 Mutation b   GC content (%)  Tm c   Number of colonies   Mutagenesis   effi ciency 

 M1I (ATG → ATA)  48  75  22  1/1 

 K6E d  (AAA → GAA)  48  75  12  1/1 

 K6I d  (AAA → ATA)  45  74  8  1/1 

 N12T e  (AAC → ACC)  41  72  12  1/1 

 R14G d  (AGG → GGG)  41  72  20  1/2 

 D24G (GAC → GGC)  38  71  58  1/1 

 E43G (GAA → GGA)  48  75  11  1/1 

 I50T (ATT → ACT)  31  68  19  1/1 

 Y65C e  (TAC → TGC)  34  69.5  8  1/1 

 Y68N e  (TAC → AAC)  34  69.5  9  2/3 

 Y68H e  (TAC → CAC)  38  71  15  1/1 

 Y68C e  (TAC → TGC)  38  71  32  1/1 

 L70P e  (CTT → CCT)  38  71  14  1/1 

 K80E d  (AAA → GAA)  41  72  5  1/1 

 I101T d  (ATC → ACC)  41  72  20  1/1 

 D107G d  (GAT → GGT)  48  75  10  1/1 

 L112P (CTA → CCA)  45  74  10  1/1 

 H123R (CAC → CGC)  45  74  25  1/1 

 R130L (CGA → CTA)  45  74  38  1/1 

 G132D d  (GGT → GAT)  38  71  32  1/2 

 R142P (CGG → CCG)  24  65  44  1/1 

 R159G d  (AGG → GGG)  48  75  39  1/1 

 Q171E (CAG → GAG)  48  75  15  1/2 

 M205V (ATG → GTG)  45  74  19  1/1 

 D252V (GAT → GTT)  41  72  55  1/1 

 K254T e  (AAA → ACA)  45  74  26  1/1 

 V255A (GTA → GCA)  41  72  100  1/1 

   a  Mutagenesis   was performed using the plasmid pYES2 PTEN as the template, and 29-mer-length  mutagenic primers  , 
as shown in Fig.  1a  
  b The nucleotide substitutions and the resulting amino acid changes (one-letter amino acid code) are indicated 
  c Tm was calculated according to the QuikChangeTM manual (Agilent Technologies) 
  d One of the primers from the mutagenic  primer   pair has G or C in 3′ position 
  e Both primers from the mutagenic  primer   pair have G or C in 3′ position 
 Data are shown as in Fig.  1d   
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   2.    Prepare the mutagenic  PCR   mix (25 μl): 14.25 μl H 2 O, 5 μl 
template plasmid (at 5 ng/μl) ( see   Note    1  ), 1.25 μl dNTP mix 
(at 4 × 2.5 mM), 2.5 μl buffer Pwo 10× (Roche), 0.1 μl DNA 
polymerase Pwo (at 5 U/μl; Roche), and, in the case of a sin-
gle mutation (one primer pair), 1 μl of each mutagenic  primer 
  (at 10 μM). In the case of multiple mutations (one primer 
pair/mutation), we keep constant the fi nal concentration of 
primers preparing a mix of primer pairs from the 10 μM primer 
stocks (same volume each primer) and adding 2 μl of the mix 
to the mutagenic  PCR   mix.   

Mutation Number of
colonies

Mutagenesis
efficiency

C1073S 13 2/2

D978A 50 1/2

R1112I 37 2/2

F992V 8 2/2

Q911P 15 2/2

V1455A 16 1/2

L1454A 37 2/2

PTPRZ-B

2 3 4 5 6 7 81

← 3.5 kb
← 6.5 kb

PTPRZ-B

1 2 3 4 5 6 7 8

← 10 kb

Mutation Number of
colonies

Mutagenesis efficiency

D��8A C����S D��8A/
C����S

D978A/
C1073S 10 4/6 0/6 2/6

a

b

c

  Fig. 3    Monitoring of standardized site-directed  mutagenesis   using PTPRZ-B  amino acid substitutions   as exam-
ples. ( a ) Linear DNA obtained on the mutagenic  PCR   (pCDNA3 PTPRZ-B as template plasmid, 10 kb size), as 
resolved by 1 % agarose gel electrophoresis. The  amino acid substitutions   are indicated using the amino acid 
one-letter code. ( b ) Control restriction enzyme digestions (XbaI, cutting out a 3.5 kb fragment of PTPRZ-B 
insert) of plasmid DNA obtained from bacteria transformed with the mutagenic  PCR   product. Two colonies 
were analyzed from each condition (see  left panel  c; digestion is only shown for one colony each). In  lanes 1  
from ( a ) and ( b ), molecular markers (BstEII digestion of λ phage) are shown. ( c ) In the  left panel , the effi ciency 
of bacteria  transformation   with the DpnI-treated  PCR   product and  mutagenesis   effi ciency are indicated, cor-
responding to the  mutagenesis   shown in ( a ). Note that sometimes the amplifi ed  PCR   product is barely detected 
[see  lane 5  from panel ( a )], but it is enough to obtain colonies with the desired mutation. In the  right panel , data 
are shown for the simultaneous obtaining of two mutations at two distinct target sites, running a single  PCR 
  reaction with a mix of two pairs of  mutagenic primers         
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   3.    Run the mutagenic  PCR  , using the following cycling conditions 
( see   Note    6  ):

 ●    For PTEN  mutagenesis  : 1 min at 95 °C, followed by 18 
cycles of 50 s at 95 °C (denaturation), 50 s at 60 °C (anneal-
ing), and 5 min at 68 °C (extension), and followed by a 
fi nal 7-min extension at 68 °C and cooling at 4 °C.  

 ●   For PTPRZ-B  mutagenesis  : 1 min at 95 °C, followed by 
18 cycles of 50 s at 95 °C (denaturation), 50 s at 60 °C 
(annealing), and 7 min at 68 °C (extension), and followed 
by a fi nal 7-min extension at 68 °C and cooling at 4 °C.      

   4.    Transfer 10 μl of the  PCR   product to a new Eppendorf tube 
and add 0.15 μl of the DpnI restriction enzyme (20 U/μl) 
( see   Note    4  ). Mix carefully the solution and incubate at 37 °C 
for 2–3 h ( see   Note    7  ). For long-term storage, keep the 
undigested  PCR   product at 4 °C, and the DpnI-digested  PCR 
  product at −20 °C ( see   Note    8  ).   

   5.     Optional : Run 5–10 μl of the undigested  PCR   product on 1 % 
agarose gel to monitor the effi ciency of the  PCR   amplifi cation. 
A linear DNA migrating as the size of the template should be 
detected ( see   Note    9  ).   

   6.    Transform bacteria: Mix, in a 14 ml polypropylene round- 
bottom tube, 10 μl of TCM 10×, 10 μl of TNE, and 2 μl of the 
DpnI-treated  PCR   product ( see   Note    10  ). Keep on ice for 
5 min; then, add 20 μl  E. coli  competent cells ( see   Note    5  ) and 
incubate on ice for 15–30 min. Heat-shock the mix by incu-
bating the tube in a 42 °C water bath for 90 s, followed by 
incubation at 20 °C for 10 min. Add 300 μl of LB medium, 
and incubate under shaking at 37 °C for 80 min.   

   7.    Plate the  transformation   mix on LB-ampicillin agar plates, air- dry, 
and incubate inverted at 37 °C for 16 h ( see   Note    11  ).   

   8.    Pick individual colonies to inoculate 3 ml of LB-ampicillin and 
grow for 16 h at 37 °C under constant shaking.   

   9.    Purify the plasmid DNA according to standard procedures and 
check the resulting plasmid for the presence of the desired 
mutation by restriction enzyme and DNA  sequencing   analysis 
( see   Notes    12   and   13  ).     

 An example of an  amino acid substitution    mutagenesis   on 
PTEN, using different template plasmids and a pair of 29-mer pre-
defi ned length  mutagenic primers  , is provided in Fig.  1 . These 
experiments illustrate the monitoring of the  mutagenesis   by ana-
lyzing the effi ciency of the  PCR   (amount of amplicon and number 
of bacteria colonies after  transformation)   and of the  mutagenesis 
  (number of  sequencing  -confi rmed mutated samples per number of 
samples sequenced). Examples of  mutagenesis   results obtained 
using different template plasmids (different vectors with PTEN 
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and PTPRZ-B cDNA inserts) and  mutagenic primers   are shown in 
Figs.  2  and  3 . In all cases, the  PCR   product resolved by agarose gel 
electrophoresis is shown. Note that the amount of this amplifi ed 
linear DNA correlates with the number of bacteria colonies 
obtained after  transformation   with the DpnI-digested  PCR   product. 
Data on the  mutagenesis   effi ciency are also provided. In addition, 
an example of the simultaneous incorporation of two separate 
mutations in the PTPRZ-B cDNA (resulting in two different 
 amino acid substitutions)   is provided in Fig.  3c . Finally, examples 
from an extensive  mutagenesis   of PTEN are also given in Table  2 .   

4                          Notes 

     1.     Mutagenesis   protocols coupled to digestion with DpnI 
restriction enzyme (target sequence 5′-Gm 6 ATC-3′) require a 
Dam- methylated DNA plasmid template, which is produced 
by most of laboratory cloning  E. coli  strains ( dam +).   

   2.    In our standardized protocol, we use  mutagenic primers   of 
predefi ned length, irrespective of their Tm, GC content, and 
GC localization (Table  2 ) (Mingo et al., submitted). As a gen-
eral rule, for single- amino acid substitutions  , we use 29-mer 
 mutagenic primers   (13 +  3  + 13; 13 nucleotides fl anking each 
side of the codon to be changed [underlined]). For deletion of 
one amino acid, we use 26-mer primers (13 +  0  + 13; where 0 
indicates the deleted nucleotides). For larger nucleotide dele-
tions we increase the length of the  mutagenic primers 
  (15 +  0  + 15) (see an example in Fig.  2 ). It is possible that for 
templates diffi cult to amplify, the design of the  mutagenic 
primers   needs further optimization. For simultaneous  muta-
genesis   of several target sequences (multiple  mutagenesis  ), we 
prepare a mix of all the mutagenic  primer   pairs and use the 
same fi nal amount of total primers than for a single  mutagen-
esis  . In our experience, double and triple mutations are easily 
obtained by this procedure in a single  PCR   reaction.   

   3.    High-fi delity thermostable DNA polymerases are required to 
avoid incorporation of undesired mutations. In addition, some 
thermostable DNA polymerases, such as Taq polymerase, add 
undesired “A-tails” in the  PCR   product. The examples shown 
here have been performed using Pwo DNA polymerase 
(Roche), but many other high-fi delity thermostable DNA 
polymerases are suitable.   

   4.    The effi ciency of the digestion of the  PCR   product with the 
DpnI restriction enzyme determines the amount of undesired 
parental plasmid that is transformed into bacteria, which pro-
duces wild-type (parental plasmid) colonies. This constitutes 
one of the key parameters of the  mutagenesis   effi ciency. 
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Examples of control experiments to test DpnI effi ciency are 
shown in Fig.  1 . Note that in the absence of DNA polymerase 
no colonies should be obtained if the DpnI enzyme is fully 
effi cient. The examples shown have been performed using 
DpnI from New England Biolabs, but many other DpnI 
enzymes are suitable.   

   5.    We routinely use CaCl 2 -competent DH5α  E. coli  cells [ 60 ] for 
direct  transformation   of the DpnI-digested  PCR   product. To 
make a stock of competent bacteria from 50 ml culture, we 
resuspend the fi nal bacteria pellet in a volume of 2 ml CaCl 2  
0.1 M, and keep frozen at −80 °C in aliquots of 50 μl. 
Commercial ultra-competent bacteria, available from different 
vendors, are also suitable.   

   6.    Optimization of  PCR   cycling conditions may be necessary if 
the template plasmid is of large size or diffi cult to amplify. As a 
general rule, 1 min of extension is recommended per kb of 
template size. Number of cycles can be increased, although 
this may raise the frequency of undesired mutations. In addi-
tion, the amount of parental template plasmid can be increased, 
although this may result (depending on the DpnI effi ciency) in 
higher background from the parental plasmid (the  transforma-
tion   effi ciency of the circular parental plasmid exceeds that of 
the linear  PCR   product) ( see  also  Note    7  ).   

   7.    It is advisable to test the effi ciency of the DpnI digestion with 
different incubation times, taking into consideration the 
amount of template plasmid used ( see  Fig.  1 ). For convenience 
with time distribution, overnight digestion with DpnI can be 
performed, although nonspecifi c digestion will decrease the 
 mutagenesis   effi ciency.   

   8.    If required, the  PCR   product can be stored at 4 or −20 °C for 
some time before being treated with DpnI. Similarly, the 
DpnI-digested  PCR   product may be stored for longer periods 
at −20 °C before the  transformation   of bacteria is taken up.   

   9.    In general, the number of colonies obtained from the  muta-
genesis   is proportional to the amount of amplifi ed DNA from 
the mutagenic  PCR   (monitored by agarose gel electrophoresis 
in  step 5 ; the parental template plasmid is not detectable at 
these amounts). It is recommended to transform bacteria with 
the DpnI-digested  PCR   product even when the amplicon is 
not detectable on gel, since a small number of colonies is 
enough to obtain the desired mutation ( see  Figs.  2  and  3 ).   

   10.    The amount of DpnI-digested  PCR   product to transform bac-
teria can be increased, although this may increase background 
due to the parental plasmid (depending on the DpnI effi ciency; 
 see  also  Note    7  ).   
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   11.    Our routine  mutagenesis   experiments yield 20–200 colonies 
after  transformation   with 2 μl of DpnI-digested  PCR   product. 
If no colonies are obtained,  see   Notes    2  ,   6  , and   10  .   

   12.    Before  sequencing  , we routinely check by restriction analysis 
that the amplifi ed DNA corresponds to the template plasmid.   

   13.    The mutation effi ciency under our standardized  mutagenesis 
  conditions is about 85 %.  Sequencing   of one to three colonies 
should be enough to obtain the desired mutation from a single 
 mutagenesis   experiment. In the case of multiple  mutagenesis  , 
take into consideration that a mix of individual and multiple 
mutations is likely to be obtained, necessitating the analysis of 
a larger number of colonies ( see  Fig.  3c , right panel).          
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