
333

Srinivas S. Somanchi (ed.), Natural Killer Cells: Methods and Protocols, Methods in Molecular Biology, vol. 1441,
DOI 10.1007/978-1-4939-3684-7_28, © Springer Science+Business Media New York 2016

    Chapter 28   

 Generation of BiKEs and TriKEs to Improve 
NK Cell- Mediated Targeting of Tumor Cells                     

     Martin     Felices    ,     Todd     R.     Lenvik    ,     Zachary     B.     Davis    ,     Jeffrey     S.     Miller     , 
and     Daniel     A.     Vallera     

  Abstract 

   Cancer immunotherapies have gained signifi cant momentum over the past decade, particularly with the 
advent of checkpoint inhibitors and CAR T-cells. While the latter personalized targeted immunotherapy 
has revolutionized the fi eld, a need for off-the-shelf therapies remains. The ability of NK cells to quickly 
lyse antibody-coated tumors and potently secrete cytokines without prior priming has made NK cells ideal 
candidates for antigen-specifi c immunotherapy. NK cells have been targeted to tumors through two main 
strategies: mono-specifi c antibodies and bi/tri-specifi c antibodies. Mono-specifi c antibodies drive NK cell 
antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells. Bi/tri-specifi c antibodies drive 
re- directed lysis of tumor cells through binding of a tumor antigen and direct binding and crosslinking of 
the CD16 receptor on NK cells, thus bypassing the need for binding of the Fc portion of mono-specifi c 
antibodies. This chapter focuses on the generation of bi- and tri-specifi c killer engagers (BiKEs and TriKEs) 
meant to target NK cells to tumors. BiKEs and TriKEs are smaller molecules composed of 2–3 variable 
portions of antibodies with different specifi cities, and represent a novel and more versatile strategy com-
pared to traditional bi- and tri-specifi c antibody platforms.  
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1      Overview 

 Targeted cancer  immunoth  erapies  are         currently a subject of great 
clinical interest and potential [ 1 ]. While a great deal of interest has 
recently been placed upon generation of  chimeric antigen receptor 
(CAR)   expressing T cells from monoclonal antibodies shown to 
target  human   malignancies [ 2 ], and even more recently upon gen-
eration of CAR-expressing natural killer (NK) cells [ 3 ,  4 ], these 
approaches require a personalized approach that is expensive, time 
consuming, and diffi cult to apply on a large scale. There is a clear 
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need for targeted off-the-shelf therapies that augment the current 
monoclonal antibody approach. This chapter focuses on generation 
of bi- and  tri-specifi c   killer engagers (BiKEs and TriKEs) meant to 
target NK cells to the tumor synapse and induce their  activation   at 
that site (Fig.  1 ). Unlike full-length bi- and tri-specifi c antibodies, 
BiKEs and TriKEs are small molecules containing two (BiKE) or 
three (TriKE) single chain variable fragments (scFv) from antibod-
ies of different specifi city.

     NK cells are ideal candidates for immune cell-targeted therapies 
because they do not require prior sensitization to lyse tumor tar-
gets and to release pro-infl ammatory cytokines, are not HLA- 
restricted, and can mediate graft-versus-leukemia (or tumor) 
without inducing graft-versus-host disease [ 5 ,  6 ]. Although NK 
cells possess a variety of activating  receptors         and can mediate 

1.1  Mediation of NK 
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  Fig. 1    Structure and function of BiKEs and TriKEs. ( a ) BiKEs and TriKEs are constructed from a single heavy (V H ) 
and light (V L ) chain of the variable region of each antibody of interest. V H  and V L  domains are joined by a short 
fl exible polypeptide linker to prevent dissociation. Shown here is a BiKE constructed from the variable regions of 
anti-CD16 and anti-CD19 and a TriKE constructed from the variable regions of anti-CD16, anti-CD19, and anti-
CD22. ( b ) BiKE and TriKE binding to NK cells and their targets result in the formation of an immunological synapse 
and triggers NK killing of the target  c  ell through  activation   of the low affi nity Fc receptor, CD16, on NK cells. The 
CD16 × CD19 × CD22 TriKE can recognize targets expressing CD19 ( green receptors  ), CD22 ( red receptors  ) or 
both receptors simultaneously allowing for more versatile target recognition than the CD16 × CD19 BiKE       
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 function in several different ways, their role in antibody-dependent 
cell-mediated  cytotoxicity   (ADCC) is of particular relevance in this 
chapter. ADCC is mediated by CD16 (FcγRIII), the low affi nity 
receptor for IgG Fc [ 7 ]. Two isoforms of CD16 exist in humans, 
CD16A and CD16B [ 8 ]. CD16A is expressed in NK cells, macro-
phages, and placental trophoblasts as a polypeptide-anchored 
transmembrane protein while CD16B is expressed in neutrophils 
in a GPI-anchored form [ 9 – 12 ]. Although the extracellular por-
tion of CD16A and CD16B share a high level of homology (95–
97 %), CD16A can trigger killing of tumor targets and cytokine    
production while CD16B cannot [ 9 ,  13 – 15 ]. 

 In  human   NK cells, CD16 is mostly expressed in the CD56dim 
subset, although populations of CD56bright CD16+ NK cells 
have been observed after transplant [ 16 ,  17 ]. Engagement of 
CD16 through encounter with the Fc portion of antibodies or 
direct crosslinking by anti-CD16 antibody results in signals 
through the immunoreceptor tyrosine-based  activation   motif 
(ITAM) of the associated FcεRIγ and CD3ζ chain subunits, lead-
ing to cytokine and cytotoxic responses [ 18 – 20 ]. Unlike other 
activating receptors present in human NK cells, CD16 can robustly 
mediate activation without the need for co-engagement of other 
receptors [ 21 ]. These  signaling   properties allow for NK CD16- 
mediated targeting of antibody-coated cells in natural settings of 
viral infection, autoimmunity and the onset of some forms of 
tumors [ 22 – 24 ]. The latter has been exploited in the clinic by gen-
erating monoclonal antibodies (mAbs) targeting specifi c tumor 
antigens to drive  ADCC   against those tumors [ 25 – 29 ].  

   Driving ADCC through mAbs has resulted in signifi cant clinical 
success. Specifi c targeting of tumors with BiKEs and TriKEs has 
the potential to build upon this success and improve effi cacy. 
Binding affi nity appears to be an important component of 
ADCC. This impression is supported by increased rituximab- 
driven  cytotoxicity   of B cell tumors mediated by NK cells contain-
ing the CD16A-158VV or VF allotypes which, when compared to 
the CD16A-158FF allotype, display decreased affi nity for the Fc 
portions of antibodies [ 30 ]. Therefore, BiKEs and TriKEs might 
improve NK  cell         function by generating a stronger interaction 
through binding with anti-CD16 than that produced by binding 
of CD16 to the natural Fc portion of antibodies. This increase in 
affi nity and  cytotoxicity   was demonstrated in a study comparing 
natural binding of CD16 to the Fc portion of an anti-HER2 anti-
body versus binding of CD16 through an anti-HER2 x anti-CD16 
 bi-specifi c   antibody. Data showed a 3.4 fold increase in affi nity in 
the bi-specifi c antibody versus binding of the native anti-HER2 Fc 
[ 31 ]. The effi cacy of therapeutic mAbs in vivo, in contrast to their 
high ADCC effi cacy in vitro, is further attenuated by the presence 
of physiologic serum IgG levels in plasma. In the in vivo setting, 
ADCC potency is diminished by saturation of CD16 receptors, 
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thus competing for binding with the therapeutic mAb [ 32 ]. Such 
competition for binding of the Fc portion of therapeutic antibod-
ies requires high serum levels of the mAb to be sustained over 
several months of treatment in order to achieve in vivo effi cacy [ 33 , 
 34 ]. BiKEs and TriKEs bypass this obstacle by binding the CD16 
receptor directly. An additional benefi t that BiKEs and TriKEs may 
have over mAbs is superior biodistribution as a consequence of 
their smaller size, particularly in the treatment of solid tumors [ 35 –
 37 ]. In addition to these advantages, BiKEs and TriKEs are non- 
immunogenic, have quick clearance properties and can be 
engineered quickly to target known tumor antigens. These attri-
butes make them an ideal pharmaceutical platform for potentiated 
NK cell-based  immunotherapies  .  

   Over the past two decades multivalent antibodies, and more recently 
BiKEs and TriKEs, have been used to target tumor antigens and 
CD16 on NK cells [ 38 ]. While approaches for assembly of multiva-
lent antibodies and the current  methodology         for BiKE and TriKE 
engineering has evolved, the function of these reagents remains 
unchanged.  Bi-specifi c   and Tri-specifi c reagents have been gener-
ated to engage CD16 on the NK cell and the following tumor anti-
gens: CD20 and CD19 on B cell non-Hodgkin’s lymphomas 
[ 39 – 47 ], CD19 and CD33 on mixed lineage leukemia [ 48 ], CD33 
or CD33 and CD123 on acute myelogenous leukemia (AML) [ 49 –
 51 ], HLA Class II on lymphoma [ 52 ], CD30 on Hodgkin’s disease 
[ 53 – 62 ], EGF-R on EGF-R+ tumors [ 63 ,  64 ], HER2/neu on met-
astatic breast cancer and other HER2 expressing tumors [ 31 ,  65 –
 71 ], and MOV19 on  ovarian cancer   [ 72 ]. Our group has contributed 
to the fi eld through generation and testing of BiKEs and TriKEs 
that target CD16 and CD19/CD22 on B cell non-Hodgkin’s lym-
phomas [ 73 ], CD33 on AML [ 74 ] and MDS/MDSCs [ 75 ], and 
EpCAM on prostate, breast, colon, head, and neck carcinomas [ 76 ]. 
 Activation   through the BiKEs and TriKEs elicited potent  cytotoxic-
ity   and cytokine secretion. In the case of the CD16 × CD19 × CD22 
TriKE, the CD107a response to primary CLL and ALL exceeded 
that of rituximab. The CD16 × CD33 BiKE was capable of overcom-
ing HLA-mediated inhibition with primary refractory AML blasts 
and restored function of NK cells from MDS patients. Encouraged 
by their translational potential, we are currently producing some 
versions of  these   reagents for clinical use. Basic reagent production 
methods are described in the next section.   

2    Methodology 

   BiKE design is a complex process. This section provides an over-
view of the entire methodology (summarized in Fig.  2 ). Once a 
target of interest has been defi ned, the fi rst step in the design of 
BiKEs requires selection of a source for the variable fragments. 

1.3  Bi- and 
 Tri-specifi c   Reagents 
Targeting NK Cells and 
Tumors
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  Fig. 2    Workfl ow for generation of BiKEs and TriKEs. In the left ( green  ) are the four steps necessary for 
generation and validation of the BiKE/TriKE constructs. In the right ( yellow  ) are possible options for each 
of the steps. CHO: Chinese hamster ovary cells. IMAC: immobilized metal affi nity chromatography. RE: 
restriction enzyme       
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Sequences for relevant fragments can be obtained from published 
work, hybridomas, B cells from immunized animals, phage display 
and other such display technology. For bacterial expression sys-
tems, phage display is ideal because the constructs are selected in 
bacteria, essentially pre-screening their function in the system of 
expression. The next step involves selection of a proper linker. 
BiKEs combine two different antigen-binding sites with a short 
fl exible linker. The antigen-binding domains are single-chain vari-
able fragments (scFv), which consist of heavy and light variable 
domains, also fused with a fl exible linker (V H -linker-V L ) [ 35 ]. The 
main  linker         design is important to the function of the BiKE by 
allowing separation of the functional domains as well as providing 
fl exibility to bind the two (or three in the case of the TriKE) epit-
opes on the different targeted cells [ 77 ]. The (SGGG)4 linker is 
one of the fi rst fl exible linkers used in the construction of single- 
chain variable fragments (scFv) [ 78 ]. Another commonly used 
linker, the 218s linker (GSTSGSGKPGSGEGSTKG), is reported 
to improve proteolytic stability and reduce aggregation [ 79 ]. To 
reduce immunogenicity, our group utilized an HMA linker 
(PSGQAGAAASESLFVSNHAY) between the antiCD16 and the 
tumor antigen scFv [ 76 ].

      Once the components of the BiKE have been determined, selection 
of an appropriate vector for expression follows. We and other inves-
tigators focus on plasmid expression systems in bacteria and mam-
malian cells to create BiKEs, but there are other less utilized 
expression systems, such as lentivirus or sleeping beauty, which will 
not be discussed in this section. For bacterial expression systems, 
the pET vector is the system most commonly used in conjunction 
with the Rosetta 2(DE3) host cells (Novagen). The Rosetta 2(DE3) 
cells contain an IPTG- inducible T7 RNA polymerase, which is 
compatible with the pET vectors. Another feature of this strain is 
that it has been engineered to express a “universal” set of transfer 
RNAs as a way to mitigate the need for codon optimization. For 
transient mammalian expression systems, the pTT5 vector can be 
utilized in conjunction with the HEK293-E6 suspension cells or 
the pcDNA3.1 system can be used with the HEK293 Freestyle cells 
(Invitrogen). Reported yields have been higher in the HEK293-E6 
system [ 80 ]. These cells express a truncated variant of the Epstein 
Barr virus (EBV) for which pTT5 vector contains the short EBV 
oriP for episomal replication. These two systems display advantages 
in yields and ease of use but a number of other systems utilizing 
different vectors can also be applied [ 80 ,  81 ].  

   Upon selection of a vector, one can begin cloning the BiKE com-
ponents into the vector backbone. Signifi cant advances have been 
made in the recombination technique. While there are several ways 
to clone DNA fragments into the vector backbone, we and others 
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favor Gibson assembly because it is cost and time effi cient [ 82 ]. 
Gibson assembly utilizes in vitro homologous recombination 
through insertion of a DNA fragment into a vector, where inser-
tion  is         directed by homologous regions that are present at the end 
of the insert DNA and the linearized vector DNA [ 83 ]. An advan-
tage of Gibson assembly over standard restriction cloning is that it 
requires little to no restriction enzyme utilization and multiple 
pieces can be cloned in one reaction. With the advent of this 
method, together with recent access to inexpensive high-fi delity 
synthetic DNA, it is now possible to construct BiKE expression 
plasmids in a few days of labor.  

   Following preparation, the BiKE expression vector can then be 
chemically transduced into E. coli or transfected into mammalian 
cells through lipid or chemical means and, to a lesser extent, 
through  electroporation  . The advantage of E. coli versus the mam-
malian system is that it allows for quick, easy, robust, and inexpen-
sive expression of the BiKEs [ 84 ]. An important difference between 
the bacterial and mammalian systems is that in the mammalian sys-
tem, fully functional proteins are secreted and can be harvested 
from the supernatant. A disadvantage of bacteria is that most 
recombinant proteins are found in an insoluble form, termed an 
inclusion body [ 85 ]. To resolve this problem, lysis of the bacteria 
and isolation of the inclusion bodies through centrifugation fol-
lowed by solubilization with strong denaturing reagents is required. 
The protein then must be refolded. Refolding is carried out at low 
protein concentrations. Conditions for refolding of the recombi-
nant protein must be optimized (i.e., pH, ionic strength, tempera-
ture, and redox environment). The protein can then be isolated 
through size exclusion chromatography or through the use of an 
affi nity tag, such as histidine-tags [ 85 ,  86 ]. As discussed, both sys-
tems have advantages and disadvantages. While the bacterial sys-
tem is quick, easy, and robust, the mammalian system does not 
require re-folding and can be utilized to generate smaller amounts 
of functional protein quickly for initial screening. Another consid-
eration possibly favoring the mammalian approach is that most 
therapeutic recombinant proteins gaining FDA approval are made 
in Chinese hamster ovary (CHO) cells [ 87 ].  

    Flow cytometry   is used to evaluate binding of the constructs to 
their respective targets. Prior to incorporation into the full bi- or 
 tri-specifi c   constructs containing the anti-CD16 variable portion 
and the linker/s, individual variable portions containing a His-tag 
or similar small tag are incubated with cells expressing the antigen 
of interest or cells expressing an irrelevant antigen, to evaluate 
non-specifi c binding. A biotinylated anti-His antibody is then used 
to recognize the His-tag on the  variable         portion, followed by addi-
tion of fl uorescently labeled streptavidin to attain fl uorescent 
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conjugation. To ensure that the variable fragment is binding to the 
desired antigen, binding is then compared to fl uorescently labeled 
commercial antibodies to the antigen of choice. Alternatively, the 
variable portion can be biotinylated or fl uorescently labeled 
directly. However, this approach may increase risk of altering bind-
ing to the antigen. If the variable construct is designed from a 
known antibody for which fl uorescently labeled forms already 
exist, the construct can be tested in a competition assay. In such 
assays, increasing concentrations of construct are bound to the 
cells expressing the specifi c antigen prior to addition of the known 
fl uorescently labeled antibody. Specifi c binding is then measured 
by a decrease in binding of the fl uorescently labeled full antibody 
form, indicating binding of the variable fragment to the antigen. 

 Once specifi c binding has been confi rmed, the variable portion 
is incorporated into a full BiKE or TriKE construct and the func-
tional activity of the construct is evaluated by two different meth-
ods. First, the ability of NK cells to degranulate in response to 
targets coated in the construct is assessed by a  redirected lysis assay  . 
Peripheral blood mononuclear cells (PBMCs) or purifi ed NK cells 
are co-cultured with targets at a range of effector to target (E:T) 
ratios (1:1 to 20:1) in the presence or absence of a saturating con-
centration of the BiKE/TriKE of interest. Higher ratios are 
required for PMBCs when compared to purifi ed NK cells. Effectors, 
targets, and constructs are incubated together for several hours 
(usually 4) and then surface LAMP-1 (CD107a), used to evaluate 
degranulation, and intracellular IFN-γ and TNF-α, used to evalu-
ate cytokine secretion, are assessed on the NK cells by  fl ow cytom-
etry  . Irrelevant targets are used as a negative control in this assay, 
while full length antibodies that  direct   ADCC towards the antigen 
of choice are used as a positive/comparative control. 

 While this assay determines the level to which NK cells are acti-
vated, it does not refl ect the level of target cell killing in response to 
the NK cell  activation  . To evaluate target cell killing a  cytotoxicity   
assay, such as a chromium release assay, is performed. In this assay, 
target cells are labeled with radioactive Chromium-51 ( 51 Cr) prior to 
co-culture with PBMCs or purifi ed NK cells and the BiKE/
TriKE. E:T ratios in this assay range from 20:1 to 0.625:1. Wells 
containing targets without NK cells are plated for use as maximum 
(10 % SDS mediated lysis) and minimum (no treatment) release 
groups. These groups are used for the calculation of percent targets 
killed. During the incubation, as target cells are killed they release 
 51 Cr into the supernatant while the targets that remain alive keep the 
 51 Cr sequestered inside the cell.   51         Cr release is then assessed on a 
gamma counter and the percent of targets killed is calculated. 
Controls similar to those mentioned in the fl ow-based assay are also 
included. Once the specifi city and effi cacy of the BiKEs/TriKEs has 
been determined, the constructs can now be tested with clinical sam-
ples and/or in more complex in vivo killing assays utilizing NSG 
mice, engrafted xenogeneic tumors, and transferred  human   NK cells.   
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3    Future Directions 

 Although current BiKE and TriKE constructs display great transla-
tional potential, efforts are currently underway to further improve 
their effi cacy. One obstacle that could limit the effi cacy of BiKEs 
and TriKEs, as well as all other antibody therapy mediated through 
NK cells, is CD16 expression. NK cell- mediated   ADCC by thera-
peutic antibodies depends on ligation of CD16, on the NK cell, 
with the Fc portion of the antibody [ 88 ]. BiKEs and TriKEs, as 
well as other formats of bi- and  tri-specifi c   antibodies, mediate 
 redirected lysis   of the target and NK cell function through direct 
binding and crosslinking of the CD16 receptor. This bears rele-
vance because CD16 is rapidly clipped from the surface of NK cells 
activated through CD16 by matrix metalloproteinases (MMPs), in 
particular ADAM-17 [ 89 – 92 ].  Activation   through cytokines can 
also result in the clipping of CD16 [ 93 ]. Loss of surface CD16 
expression on activated NK likely results in a diminished capacity 
to mediate subsequent rounds of ADCC. To address this concern, 
we and others are currently evaluating MMP-specifi c inhibitors as 
a means to prevent CD16 clipping during NK cell  activation   [ 94 , 
 95 ]. We have demonstrated that inhibition of ADAM-17 results in 
superior function post CD16 crosslinking and can potentiate 
rituximab- mediated responses in vitro. We have also shown that 
ADAM-17 inhibition can enhance BiKE mediated killing against 
myeloid targets in vitro [ 74 ]. These results indicate that co- 
treatment with ADAM-17 inhibitor may be a good strategy to 
enhance BiKE/TriKE function in the clinic. 

 A different approach to circumvent the CD16 problem is to 
target other receptors on the NK cells with the BiKEs and TriKEs. 
CD16 was originally selected owing to its ability to potently acti-
vate NK cells and overcome inhibitory signaling [ 21 ]. This was 
highlighted in the BiKE system showing that the CD16 × CD33 
BiKE could overcome HLA-mediated inhibition in primary AML 
blasts and could restore NK cell function from MDS patients, 
whose natural  cytotoxicity   is thought to be impaired [ 74 ,  75 ]. 
However, co-engagement of other receptors, particularly NKG2D 
and 2B4, has been shown to induce  activation   similar to that pro-
vided by CD16 alone [ 21 ].          There is also potential for TriKEs 
engaging CD16, a tumor antigen, and another NK cell activating 
or co-stimulatory receptor. For instance, co-engagement of CD16 
with DNAM-1, CD2, or 2B4 was shown to potentiate function in 
NK cells from MDS patients [ 75 ]. Co-administration of cytokines 
may also enhance BiKE mediated NK cell function. Several cyto-
kines,    including IL-15, IL-2, IL-21, and IL-12 have prominent 
roles in NK cell development, proliferation, survival, and/or  acti-
vation  . Encouraged by these attributes, trials are underway to 
implement them in the clinic [ 96 ]. Besides the aforementioned 
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attributes, some of these cytokines have been shown to also  poten-
tiate   ADCC, making them an interesting co-therapeutic approach. 

 While personalized CAR-T cell therapies have recently enjoyed 
a great deal of clinical success [ 2 ], there remains a clear need for 
off-the shelf reagents that enhance targeting of the immune system 
to tumor antigens. Directing targeting of NK cells is a compelling 
therapeutic approach on the basis of their ability to quickly kill 
tumors and secrete cytokines without prior priming [ 5 ]. BiKEs and 
TriKEs are an important conduit for achieving this since they are 
relatively easy to produce, drive potent NK cell  activation   through 
CD16 crosslinking, and can be utilized to target almost any tumor 
antigen for which an antibody has been designed. This is true 
regardless of whether the antibody displays activating properties 
because the activation is driven through the CD16 scFv. To date 
our group has primarily focused on non-Hodgkin’s lymphoma 
(through CD19 and CD22), AML and MDS (through CD33), 
and breast, colon, and lung carcinomas (through EpCAM) [ 73 –
 76 ]. Notably, there are an abundance of promising tumor antigens 
for which therapeutic antibodies have been designed that could be 
incorporated into BiKE and TriKE platforms [ 37 ]. These include 
CD30 (Hodgkin’s lymphoma), CD52 (CLL), CEA (breast, colon, 
and lung), gpA33 (colorectal), CAIX (renal cell), Mucins (breast, 
colon, lung, and ovarian), PSMA (prostate), VEGFR (epithelium- 
derived solid tumors), VEGF and Integrins αVβ3 and α5β1 (tumor 
vasculature), EGFR (breast, lung, colon, glioma, and head and 
neck), and ERBB2 and ERBB3 (breast, lung, colon,          ovarian, and 
prostate). This list, by no means comprehensive, enumerates sev-
eral important hematological and solid tumors that potentially 
could be targeted through the powerful BiKE platform.     
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