
Chapter 9
Reed Instruments

Jean Kergomard

Abstract This chapter deals with self-sustained oscillations created by reed
instruments. Single, double, and lip-reed instruments (lip reeds are encountered
in brass instruments) are presented. A basic model is proposed, the reed being
regarded as a single-degree-of-freedom oscillator. Single and double reeds are
shown to be inward-striking reed, while for the simplest model of lips the reeds
are striking outward. The consequences of this difference are analyzed at the
end of the chapter, when the effects of the reed dynamics, especially the role of
the reed damping, are investigated. Because these effects are complicated, focus
is given to the oscillation threshold (frequency and mouth-pressure thresholds).
However, for single and double reed instruments, many useful results can be
obtained with a simpler model, by ignoring the reed dynamics, i.e., equating the
reed with a spring without mass. A large part of the chapter is devoted to this
model. This is relevant because the resonance frequency of the resonator, and
therefore the playing frequency, is much smaller than that of the reed. The different
regimes for cylindrical and conical resonators are analyzed, with the nature of
bifurcations. Playing frequencies, amplitudes, and spectra are found to depend on
the excitation parameters, which are mainly the mouth pressure, the reed opening at
rest and the reed compliance. In order to obtain insights in the behaviors, cylindrical
resonators with single reed can be simplified to archetypes of nonlinear systems,
either iterated map systems or Van der Pol oscillators. Simple conclusions can
be drawn. Unfortunately, this is not possible for a lip-reed instruments because,
for outward-striking reeds, the playing frequency is slightly higher than the reed
resonance frequency.

This chapter deals with reed instruments. Single, double, and lip-reed instru-
ments (lip reeds are encountered in brass instruments) are presented. This
chapter and the following chapter, dedicated to flutes, will therefore encompass
most types of wind instruments.
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9.1 Background on Self-Sustained Oscillations

The first study related to wind instruments was carried out by Mersenne [80] and
Bernoulli [15] who focused on the resonance frequencies of the tube. This topic,
which is still being investigated nowadays, led to a fundamental understanding of
several manufacturing parameters related to the resonator: cross-section variations,
location and diameter of the toneholes, height of the chimney, etc. This was
developed in detail in Chap. 7. For bowed-string instruments, a seminal work was
also carried out by Mersenne. Following Mersenne’s work, the next step was to
understand the excitation of the system. The first attempts appeared at the end of the
nineteenth century (Helmholtz [68] and Rayleigh [93]) and were further investigated
during the twentieth century. Today, many questions remain open concerning this
complex subject.

Self-sustained oscillations were introduced in Chap. 8. They are encountered in
three kinds of instruments: reed instruments (including brass instruments), flutes,
and bowed-string instruments. It is noteworthy that the last family can also produce
sound with free oscillations (pizzicati). The fundamental research question is the
understanding of the sound production, and therefore the oscillation regimes, as
well as the conditions at which they can be obtained. For wind instruments, it is
well known that several regimes with different frequencies can be obtained for a
given fingering.

The study of musical instruments does not deal only with the conditions for
oscillations to emerge, but deal mainly with the kind of oscillation which can
exist. This differs from problems of practical interest such as Larsen effect, or
oscillations of piping systems: the problem is not to product these oscillations, but to
prevent them. Self-sustained oscillations are produced by an energy source, which
is continuous, or rather slowly varying, a linear resonator, such as a tube or a string,
and a feedback mechanism (Fig. 9.1). The feedback is very rapid, because it happens
at the playing frequency, which in general is related to the reflections in the resonator
(if no reflections occur in the resonator, the playing frequency cannot be related to
the resonator length). The feedback mechanism is therefore much more rapid than
the control loop of the energy source by the instrumentalist, via the force feedback
and the sound hearing.

Fig. 9.1 Elementary block
diagram of the loop of a
self-sustained oscillation
instrument

Energy source
Nonlinear
element

Linear, passive
resonator
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The simplest models assume that the nonlinearity, which is essential for the
conversion of a continuous excitation into steady oscillations, is localized at the
input of the resonator. This input is the entry of the tube for reed instruments,
and the contact between the string and the bow for bowed-string instruments. This
assumption markedly simplifies the analysis. In a well-known 1983 paper, Mc Intyre
et al. [79] attempted to unify the three kinds of self-sustained instruments by using
two elements only: the localized nonlinearity and the resonator. Obviously this
assumption implies some simplifications (and is questionable for flute-like instru-
ments), but provides initial elements of understanding. The authors demonstrated in
particular the utility of the reflection function instead of the impulse response (which
corresponds in the frequency domain to the input admittance or impedance of the
resonator, see Chap. 4). However, for certain purposes, it is necessary to consider
a non-localized nonlinearity. Moreover the models describing the transients can
slightly differ from the models for the steady-state regime: this remark demonstrates
the complexity of the phenomena. The following three chapters are of unequal
length: a “preferential” treatment has been given to reed instruments, because today
we have a model both simple and rather reliable. This allows presenting different
approaches, in both time and frequency domains, for both transient and steady-state
regimes. These methods help explain how the sound is produced, even if several
problems remain open. Some analogies given by the table of Chap. 1 can sometimes
be used, but obviously this is not always possible, because important differences
exist between the nonlinearities.1 The physics of reed instruments is based on the
effect of a valve, which is a solid element (of the wall) modulating a flow, and the
playing frequencies are close to the maxima of the input impedance. On the contrary
the sound production of flute-like instruments is based on the instability of an air
jet, without significant wall vibration, and the playing frequencies correspond to the
maxima of the input admittance. In addition a significant broadband noise due to
turbulence exists in flue instruments.

The outline of the present chapter is as follows: the models are first described
in Sect. 9.2. Models without reed dynamics are then explored in Sects. 9.3 and 9.4
with a focus on emergence and stability of regimes. Finally the effect of the reed
dynamics is investigated in Sect. 9.5.

1The bowed-string instruments can be compared to cylindrical reed instruments with an excitation
at a certain distance of the extremities; it is well known that the harmonics whose number is
multiple of n disappear in the spectrum when the string is excited at a distance equal to the nth part
of the length. The clarinet is equivalent to the string bowed at its middle: the two parts of the string
play the same role, and are equivalent to a unique string, with a double characteristic impedance.
The excitation parameters can also be compared: the bow velocity is equivalent to the mouth
pressure, while the bow force is equivalent to the reed-mouthpiece parameter defined hereafter.
Nevertheless the nonlinearity of reed instruments and bowed strings is extremely different, and
that of the bowed string poses very difficult problems concerning stability.
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9.2 Reed Instruments Models

9.2.1 Introduction

A reed is a type of valve, capable of modulating the air flow rate produced by
a pressure difference between the upstream (the instrumentalist mouth) and the
downstream (the instrument mouthpiece). This principle is common to all kinds of
reed instruments, either with a (single or double) cane reed, a metallic reed, or a lip
reed. The main distinction between this different instruments is based on the shape
of the resonator, and the ratio between the natural frequencies of the reed and those
of the resonator. Similar types of sources can be found in an industrial setting, such
as electro-pneumatic loudspeakers with an electrically controlled valve. Their main
advantage lies in the capacity to produce very loud sounds. Converting a static (dc)
pressure into an alternating (ac) one with the same energy can produce extremely
loud sounds, which are difficult to generate with linear sources.

In the case of reed instruments, the energy source is the flow itself, and
the measurement of acoustic pressures within the mouthpiece requires particular
microphones (170 dB is rather usual!). Fortunately the radiation has a very low
efficiency and cannot damage our ear. The external sound is much less loud, because
of the strong reflection at the end of the tube (which allows the sound production).
A reed can be modeled as a flexible structure, such as an elastic beam, with a
pressure difference acting of the two faces. The real boundary conditions can be
rather complicated. As a first approximation, the beam can be considered as a
cantilever beam with one fixed end and one free end, but its displacement can be
limited by another reed (for double reeds) or by the mouthpiece (for single reeds).
This kind of boundary conditions exists also for stringed instruments: it is called
“conditional” [111], and produces strong nonlinearities. When the reed closes the
mouthpiece, it is called a “beating reed.” When no obstacle stops the displacement,
the reed is “free”; it is the case of the accordion and harmonica. For cane reed,
the lips strongly damp the reed vibration, and limit the amplitude of the vibration
between lip and the ligature (but this amplitude does not vanish). In Chap. 5 an
example of localized damping has been studied; to produce an accurate model for
the reed is not easy. In particular the lips have complex geometrical and mechanical
characteristics. For organ reeds, the tuning wire plays the role of the lower lip of the
clarinettist. Its position allows the tuning of the pipe, and this fact demonstrates the
weak coupling between reed and pipe in reed organs.

Some instruments have (single or double) reeds which are encapsulated and this
causes difficulties in playing: the damping and vibrating length of the reed cannot
be controlled during playing. This is the case of crumhorns and bagpipes. The
difficulty of creating a model is even greater for lip reeds. Often a simple, global
model is used, based on an experimental modal expansion of the reed vibration. To
take into account one vibration mode only gives very useful information, even if it
is not sufficient at higher frequencies (some authors proposed more precise models
[5, 40, 44]). In what follows, we consider a single mechanical reed oscillation mode.
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In order to understand the fundamental physical features, which are essentially
nonlinear, it is necessary to introduce major simplifications, even if details related to
sound quality are lost. For single reed instruments, we therefore first assume that the
reed is a spring without dynamics (without neither mass nor damping), and obtain
first results concerning the sound production.

9.2.2 Mechanical Response of a Reed: Experimental Data

9.2.2.1 General Considerations

A major obstacle to the study of the characteristics of a reed instrument is the
number of parameters that influence sound production. Moreover when carrying
out a measurement involving an instrumentalist, it is not easy to be sure that he
or she does not influence, either consciously or not, the result of a given task. For
this reason, the artificial mouth is a very useful device: it acts as a good surrogate
for an instrumentalist.2 Using artificial blowing it is possible to measure the reed
mechanics in the form of a mechanical response to a pressure excitation (see, e.g.,
[47]). If this pressure is assumed to be almost uniform on each of the two sides of
the reed (see discussion hereafter), the frequency response is defined as follows:

Hmr.!/ D Y .!/

�P.!/
, (9.1)

where Y .!/ is the reed displacement at low excitation level and �P.!/ the pressure
difference across the reed. The subscript m stands for mechanical, and the subscript
r for reed. Obviously the reed displacement is not uniform, thus the response
measurement should be completed by the measurement of the reed deformation.
However, we assume that the displacement of the reed extremity represents the
reed displacement, at least when the reed does not beat. Another difficulty of
the measurement lies in the control of the pressure difference �P.!/ (see [29]).
Figures 9.2 and 9.3 show two examples of responses for a single reed and lips,
respectively.

Concerning a single reed, the support of the lip plays a significant role for
reducing the vibrating length of the reed, and mainly a role of reed damping. For
the example shown in Fig. 9.2, it can be seen that the first reed resonance lies close
to 2000 Hz. The response argument is C�=2 at the resonance; this is evident in
particular for the reed without lip of Fig. 9.2. Consequences will be analyzed in
Sect. 9.2.3.2. For the lips of a trombonist, a precise analysis of the figure shows the

2This kind of device is based upon an old idea. For instance during the eighteenth century the
Kempelen machine imitated the voice. There are also numerous more recent works: we cite [6, 70,
109] for the clarinet, and [58, 114] for brass instruments. The organ obviously is a kind of artificial
mouth!
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Fig. 9.2 Response of a single clarinet-like reed of to an oscillating pressure differences: without
support of the lip (gray curve) and for two lip forces pressing on the reed (black curves). The
amplitude scale is arbitrary, the argument is in radians (after [66])
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Fig. 9.3 Mechanical response of human lips (modulus and argument) to an oscillating pressure
difference for three different notes of a tenor trombone: Bflat1 is the “pedal” tone. Its harmonics
correspond to a series of impedance peaks, but the fundamental of the note does not correspond
to a peak. The playing frequency is noted with a small vertical dash on the amplitude curve. For
clarity the amplitude curves of the two highest pitches are shifted by 3 dB and 6 dB, respectively.
The amplitude scale is arbitrary. The two horizontal lines on the argument curve at ˙90ı indicate
the resonances (after [88])

existence of two resonances which are close together. The argument is ��=2 for the
first one while for the second, which is strongly damped, it is C�=2.
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9.2.2.2 Single Reed of Clarinet–Reed Kind

The response shown in Fig. 9.2 corresponds to a given “embouchure” of the player.
What we call embouchure corresponds to a particular setting of both the lip position
and the force applied by the lips on the reed. Several resonances appear. Recent
theoretical or experimental works analyzed these resonances, either without or with
lip [92, 102, 106, 112]. From the first resonance of the response, it is possible to
extract several parameters, which will be important for our simple model: (1) the
static stiffness (per unit area), Ks, depending of the reed “hardness” (reeds are
commonly classified using a single parameter, the “hardness,” given by the reed
makers); (2) the first resonance frequency, fr, which allows deducing the modal
mass (per unit area) of the first mode, ms D Ks=!2

r (see Chap. 3, Sect. 3.3.1). So
we obtain a single-degree-of-freedom model:

d2y

dt2
C qr!r

dy

dt
C !2

r y D fs
ms

, (9.2)

where y.t/ is the tip displacement of the reed (at low excitation level), the origin
being the value of y at rest (when fs D 0), qr!r is the damping coefficient, qr D 1=Qr

is the inverse of the quality factor of the reed, which depends on the positioning
of the lips (qr is equal to 2�0, as defined in Chap. 2). !r is the resonance angular
frequency and fs.t/ is the force per unit area due to the acoustic pressure. For a
clarinet reed, this force can be written as:

fs D ��p, where �p D pm � p: (9.3)

�p is the difference of the pressure applied on the two faces (pm is the mouth
pressure, p is the pressure on the other face). The minus sign is explained as follows:
if �p increases, the reed will be closed (see Fig. 9.4).

The fundamental frequency of the played notes is assumed to be very close to the
natural frequencies of the resonator and much lower than the resonance frequency of
the reed, fr. This is not true for very high notes and even wrong for the squeaks, but
this assumption allows large simplifications for the study of this kind of instruments.
Ignoring the reed dynamics leads to the simple equation:

Ksy D ��p: (9.4)

The quantity Ks can be measured, via the measurement of the ratio �p=y.
The “closure pressure” pM , is the mouth pressure for which the reed remains
closed in the static regime (then y D �H, and the mouthpiece pressure vanishes)3:

pM D KsH: (9.5)

3The stiffness of the reed depends on the closure of the reed, and therefore varies with the pressure
difference, because of the curvature of the mouthpiece lay. However, the closure pressure pM varies
very little [30].
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Fig. 9.4 Schematic representation of a clarinet mouthpiece with a single reed, and choice of
orientations. The lower lip restricts the vibrating length and provides its damping. The model
assumes a two-dimensional geometry, with a rectangular reed of width w. The definition of the
flow rates is given in Sect. 9.2.4

Figure 9.5 shows simultaneous signals for the mouthpiece pressure and the reed
displacement. On the left part, it is observed that the two signals are in phase and
almost proportional: this justifies the assumption (9.4). Nevertheless an asymmetry
is more noticeable for the displacement signal than for the pressure one. This
indicates the presence of even harmonics. Here the spectra are not shown, but they
exhibit a maximum of the response close to the harmonic 21, i.e., 2800 Hz: this
frequency is the first resonance of the reed. On the right part of the figure, a limit
of the displacement can be seen: it corresponds to the beating state of the reed. This
is a nonlinear phenomenon. The linear frequency response (9.1) loses significance,
because Eq. (9.2) needs to be completed by the following nonlinear condition:

y > �H: (9.6)

9.2.2.3 Lip Reed

For instruments with a cane reed, the playing frequency is mainly controlled by
one of the natural frequencies of the resonator, and the influence of the reed is
small. This is different for lip-reed instruments. The lip resonances of a “brass”
instrument player are crucial in order to obtain correct playing frequencies, which
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Fig. 9.5 Reed displacement (gray curve) and mouthpiece pressure (black curve) for a non-beating
reed (on the left) and for a beating reed (on the right): for the latter case, a plateau of the
displacement signal is visible, when the reed closes the mouthpiece. The scale is arbitrary. The
instrument is a cylindrical tube with a clarinet mouthpiece (From [89])

are also related to the resonator natural frequencies. As a consequence, the coupling
between reed and resonator is strong. The instrumentalist has to learn the control
of his lips to get the correct mechanical resonance frequency which allows using
a given resonance of the resonator. Thus the learning curve to obtain a “correct
sound” is arduous. It requires a significant muscular training. Some instruments
have a range of four octaves! In contrast to skilled players, the artificial mouths are
similar to a beginner: it is difficult to dynamically control the artificial lip tension,
and the compass is limited to two octaves.

It is therefore impossible to ignore the lip dynamic when trying to explain the
brass instrument properties. Equation (9.2) with one reed mode is the simplest model
and allows obtaining rather realistic synthesized sounds [64, 116]. Nevertheless it is
sometimes better to take two modes into account, by using the so-called two-mass
model. This is often done for the modeling of the vocal folds (the main difference
between brass instruments and the voice lies in the degree of coupling between
the “lips” and the resonator; the coupling between the folds and the vocal tract is
weak).4 Figure 9.3 shows that the two-mode model probably is more realistic for
brass instruments, because two resonances appear: they are close together, with a
strong attenuation for the second one. These twin resonances can be sharper with an
artificial mouth, as reported in [88].

4In singing it is possible to continuously change in notes without changing the length and the shape
of the vocal tract. The skilled brass instrument players can also play without instrument, but the
timbre is strongly modified.
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9.2.3 Dynamic of the Fluid Passing the Reed

9.2.3.1 Pressure Field, Flow Separation, Valve Effect (Single Reed)

Now we need to find a relationship between the pressure and velocity of the fluid,
by investigating the properties of the flow which enters the resonator. Figure 9.4
shows a schematic representation of the mouthpiece of a single reed instrument.
We remark the localized constriction at the extremity of the reed. Its length has an
order of magnitude of 1 mm. The constriction can be regarded as a channel located
between a “pressure reservoir” (i.e., the player mouth) and the entry of the clarinet
mouthpiece (for lip-reed instruments, the channel consists of the space between the
lips of the musician). The cross section of the channel is time-varying, and it is
controlled by the reed (or lips) position during an oscillation. The flow at the entry
of the instrument has the form of a jet at the channel exit: for a detailed description
of the jet and the underlying hypotheses, the reader is referred to the Chap. 10 about
flute-like instruments (see Sect. 10.3.1). The main result is that for �p > 0 the
velocity vj at the end of the constriction (i.e., of the channel) is given by:

vj D
p

2�p=�: (9.7)

�p is defined by Eq. (9.3). The pressure at the instrument inlet is assumed to
be equal to that in the channel. The above result is based upon a very simplified
description of the flow separation, which is assumed to be localized at the channel
exit. However, the precise determination of the separation point is not easy. It
depends on the detail of geometry of the channel exit, i.e., on the channel flare and
on the flow rate. The higher are the flare and the flow rate, the more upwards is the
separation point (see [43, 69], pp. 311 and the following). An air jet is intrinsically
unstable (see Sect. 10.3.2 in Chap. 10 on flutes), and becomes turbulent. Turbulence
implies a fast mixing of the jet with the surrounding air, and consequently an abrupt
deceleration happens without pressure recovery at the mouthpiece inlet. Without
dissipation, it could be possible to apply the Bernoulli law, and a pressure increase
would result from the velocity decrease. Actually dissipation “compensates” for the
non-recovery of pressure in the mixing zone. When the turbulent mixing is over,
the decelerated flow is assumed to be spread over the complete cross section of the
mouthpiece (typically 15 mm in diameter) and to be almost uniform. Finally the
nature of the acoustic source in reed instruments can be summarized as follows: it
is a flow source using the valve effect. The fluctuating volume flow entering the
instrument is the product of a velocity and a fluctuating cross-section area. The flow
rate is mainly controlled by the pressure difference �p, and the cross-section area
by that of the channel exit.

Each quantity is the sum of an average part (over time) and a fluctuating part.
The mouth pressure is assumed to be constant, i.e., the input impedance of the vocal
tract at non-zero frequencies is negligible compared to that of the instrument. This
will be discussed in Sect. 9.4.7 of this chapter. Conversely, the time-average static
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pressure at the inlet of the instrument is assumed to be negligible compared to the
mouth pressure. In other words the input impedance of the resonator is very small
at zero frequency. Indeed an order of magnitude of the time-average flow resistance
of the pipe can be estimated by ignoring the inflow effect and assuming a Poiseuille
flow [Eq. (5.115)]. It is found to be less than 1 % of the characteristic impedance of
the clarinet tube at the playing frequency [73, p. 251]. Concerning the estimation
of the flow velocity at the inlet of the tube, the use of the previous model leads to
a Mach number (the ratio of the velocity to the sound speed) significantly lower
than 1 %: Such a value for the Mach number allows neglecting convective effects on
wave propagation. This is valid as long as nonlinear propagation is not considered
(see Chap. 8).

9.2.3.2 Inward- and Outward-Striking Reeds

For the last two centuries many authors have tried to characterize the reeds according
to the effect of the pressure difference across the reed. For inward-striking reeds
an increase in the pressure difference �p tends to close the reed channel, while
for outward-striking reeds, it tends to open the reed channel. The behavior of the
two kinds of reeds is very different, as demonstrated by the differences in playing
frequencies. This will be explained in Sect. 9.5 of this chapter. Figure 9.6 gives
a schematic representation of this difference [50]. The clarinet reed therefore is an
inward-striking reed, and is described by Eq. (9.3): for a positive pressure difference,
the force is exerted upward5 (see Fig. 9.4). Fletcher [49] proposed a finer distinction
for the reeds, by distinguishing the mean pressure on the two faces of the reed. We
do not go further on this difficult subject.

Fig. 9.6 Principle of an
inward-striking reed (a) and
an outward-striking reed; (b)
after Fletcher [50]. A positive
pressure difference
�p D pm � p tends to close
the reed for the case (a) and to
open the reed for the case (b)

pm p

pm p

a

b

5This is consistent with the value of the response argument Hmr.!/ around the resonance, as given
by Eq. (9.1). We saw that it is equal to C�=2: using Eq. (9.2), the argument of the ratio Y .!/=F.!/

is ��=2, thus that of the ratio Y .!/=�p.!/ is C�=2.
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Fig. 9.7 Lip reed seen as a swinging door. The two lips are assumed to be symmetrical. The point
y D �H corresponds to the closure of the lips

9.2.3.3 The Case of the Lip Reed

The case of the lip reed is more complicated than that of the single reed with
a mouthpiece. The geometry and the mechanical structure of the lips and their
surrounding (the “embouchure”) are complex. A drastically simplified geometry is
often considered in order to describe the valve effect. It is possible to use a model of
a “swinging door” (see Fig. 9.7), for each lip, assuming a perfect symmetry between
the two lips.

The lips are again approximated by a one-degree-of-freedom oscillator: a rotation
abound an equilibrium position defined by an angle � , with respect to the vertical
axis [1]. For this simplified geometry, there is a localized constriction at the end
of the lip, and it is possible to apply the air flow description used for cane reeds.
We assume rather arbitrarily that flow separation occurs at the neck of the channel
formed between the lips, with a jet velocity given by Eq. (9.7). After a certain
distance into the mouthpiece, the jet rapidly expands and produces a zone of
turbulent mixing. After this zone, the velocity field is supposed to be uniform over
a cross section of the mouthpiece, and the pressure in the lip channel is equal to
the pressure in the mouthpiece. For a trombone, the diameter of the mouthpiece is
around 30 mm, and it is much larger than the lip opening.

Therefore at the extremity of the lip, the upstream pressure is the mouth pressure,
pm, and the downstream pressure is the mouthpiece pressure. Thus it is reasonable
to consider that the force exerted on the lip is proportional to the pressure difference,
�p. With this model, the lip enters the mouthpiece for an increasing pressure
difference, and this corresponds to an outward-striking reed. With an orientation
convention similar to that used for the clarinet reed, the force projection on the axis
can now be written as:

fs D C�p: (9.8)



9 Reed Instruments 481

There is a great similarity with the model of a clarinet reed, but the force is
given by the previous equation. Figure 9.7 depicts a very simplified schematic
representation. A static closure pressure can again be defined, but it is now negative,
because we should inhale to close the lips. For the sake of simplicity, the closure
pressure will be denoted �pM , where pM is given again by Eq. (9.5).

Other models can be found in the literature. Some of them take into account both
the vertical and the horizontal movements of the lips. A review is given in [24], with
a discussion of the link to the models of singing voice and speech. Some models can
also consider an inward-striking behavior under certain conditions.

Figure 9.8 shows an example of lip movement [22, 23]. We will not go further in
the discussion of the model. We conclude that it is difficult to develop an accurate
and reliable model. In fact the first resonance probably corresponds to a mode of an
outward-striking reed. In this chapter, we limit our study to the latter case.

Fig. 9.8 Movement of the
upper lip during one period
[21]
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9.2.4 Reed Opening Area and Flow Rate

9.2.4.1 Outgoing Channel Flow Rate

Let us first estimate the flow rate u entering the resonator. The jet velocity is assumed
to be equal to that at the output of the reed channel. The flow rate can therefore be
simply expressed with respect to the cross-section area of the jet Sj, i.e., that of the
reed channel:

u D vjSj: (9.9)

Sj plays a major role for the control of the flow valve effect. In a two-dimensional
flow, we get a very simple linear relation between the opening area and the channel
height:

Sj D .y C H/w, (9.10)

where w is the effective width (see Fig. 9.4 for the definition of y and H). This
linearity was experimentally verified by Dalmont et al. [34]. However, Backus [7]
experimentally found an area depending on the height with a power q, Sj / .yCH/q,
where q D 4=3, and this dependence has been used by many authors. For reasons
that will be explained soon, we keep the linear dependence for the single reed.

A similar debate exists for the double reed. If the shape to the reed end is seen as
two circle arcs, it should be found a power q D 1:5 or more (see [8]), but authors
found [117] a linear dependence on the reed opening. For lip reeds, many authors
investigated this issue, and they found a power between 1 and 2, for instance, by
graphical inspection (see, e.g., Fig. 9.8).

9.2.4.2 Flow Rate Due to the Reed and Total Flow

Equation (9.9) gives the flow rate passing through the reed channel. However,
another source of flow, of secondary importance, exists: it is the flow produced by
the reed vibration, which is similar to the flow produced by any vibrating surface,
such as a loudspeaker membrane. The reed pushes and pulls out air inducing a flow
rate ur equal to:

ur D �Sr
dy

dt
; (9.11)

where Sr is the effective area of the reed. The sign � comes from the orientation
choice in Fig. 9.4: the reed produces a flow entering the resonator when y decreases
(in the figure it is not obvious that this displacement flow enters the resonator,
however, it might be clearer that an equivalent flow induced by the top of the reed
“leaves” the mouth, which surrounds the mouthpiece! There is actually no creation
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of volume by the reed movement). The total flow rate entering the instrument is
therefore:

uin D u C ur. (9.12)

If plane waves are assumed at the instrument inlet, this flow rate is related to the
input impedance, or, in time domain, to the impulse response h.t/, which is the
inverse Fourier Transform of the input admittance (this has been largely studied in
Part II):

uin.t/ D Œh � p� .t/:

It is often convenient to choose the flow passing through the channel as the
unknown u, which is related to the impulse response h.t/ by the following equation:

u D Œh � p� .t/ C Sr
dy

dt
: (9.13)

The flow created by the reed movement is responsible for the added term. The
effect of this term was studied in [86]. For frequencies much lower than the reed
resonance, there is a simple interpretation to this term. The reed stiffness Ks is
equivalent to a small volume Veq added at the input of the instrument. For a constant
mouth pressure pm and a non-beating reed:

dy

dt
D � 1

Ks

d.�p/

dt
D 1

Ks

dp

dt
D H

pM

dp

dt
: (9.14)

Combining Eqs. (9.11) and (9.14):

ur D � Veq

�c2

dp

dt
where Veq D �c2

pM
SrH; (9.15)

u D uin C Veq

�c2

dp

dt
: (9.16)

Thus the flow due to the reed is equivalent to adding a compliance in parallel to
the pipe input impedance, Veq. It is that of an air volume localized at the instrument
input if the frequency is sufficiently low [see Chap. 1 Sect. 1.5, Eq. (1.154)].6 In
general it is easy to correct the mouthpiece volume by the volume Veq: This
correction is independent of the fingering, and can be measured.

6Veq differs from the air volume displaced by the reed, SrH. Furthermore this description assumes
that the stiffness by unit area Ks does not vary with the pressure level. In practice when the reed
progressively closes the mouthpiece, the stiffness varies, as well as Veq, and consequently the
playing frequency.
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If the mouthpiece is almost cylindrical, the addition of a closed volume in parallel
with the pipe input impedance implies a shift of the impedance maxima which
corresponds to an extension of the cylinder by a length �`. This length is defined
such as Veq D S�`, where S is the cross-section area of the tube, therefore:

�` D �c2

pM

Sr

S
H: (9.17)

Measurement results give a length of about 10 mm added to that of a clarinet
mouthpiece [32].

9.2.5 Basic Model (Clarinet-Like Reed)

9.2.5.1 Three-Equation Model

By gathering the different equations discussed above one obtains a basic model. We
use the length correction defined by Eq. (9.17).7 in the general Eq. (9.13):

u D Œh � p� .t/ C S�`

H

pM

�c2

dy

dt
: (9.18)

When using the closure pressure pM , Eq. (9.2) becomes

d2y

dt2
C qr!r

dy

dt
C !2

r y D �H!2
r

�p

pM
: (9.19)

Now we can suppose that the flow separation situation is reversible when the
pressure difference is inverted,8 and that the area of the reed channel depends
linearly on its height. Equations (9.7) and (9.10) yield

u D uA

�
1 C y

H

�
s

j�pj
pM

sign.�p/ if y > �H (9.20)

and u D 0 if y < �H (beating reed), (9.21)

7Here it is a notation only, because the interpretation as a length correction is limited to low
frequencies and cylindrical mouthpieces.
8All above-mentioned hypotheses are satisfied again, but in the reverse sense: the cross section of
the tube is much larger than that of the reed channel, then there is a jet formation at the output
of the channel (in the mouth), and there is no pressure recovery. This is somewhat arbitrary, but
the situation with a flow entering the mouth seems to be quite extreme, and was never observed
experimentally.
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where the flow rate uA is given by:

uA D wH

s
2

�
pM D wH3=2

s
2

�
Ks: (9.22)

Equations (9.18)–(9.20) form a system of three equations with three unknowns,
u, the flow rate going out to the channel into the resonator p, the pressure at the input
of the resonator and y the vertical displacement of the reed. The two first equations
are linear, and can be described in the frequency domain, while the third is nonlinear
(remember that a necessary condition for the production of steady self-sustained
oscillations is the existence of a nonlinearity which limits the amplitude).

9.2.5.2 Simplified Two-Equation Model

A useful approximation consists in approximating the reed with a simple static
spring. This is a good approximation when the natural angular frequency !r is
much higher than the (angular) playing frequency. In this case y D �H�p=pM ,
and Eq. (9.19) can be eliminated together with the unknown y:

u D uA

�
1 � �p

pM

� s
j�pj
pM

sign.�p/: (9.23)

For a non-beating reed, the condition (9.6) needs to be added. This condition can be
also written as: �p < pM . For a beating reed, when the channel is closed, the flow
rate vanishes

u D 0 if �p > pM: (9.24)

Such a model is not completely satisfactory because it implies a discontinuity of
the flow rate derivative. It should be completed by a transition with a very narrow
channel and, for instance, a Poiseuille flow [115]. The curvature of the mouthpiece
lay should be also taken into account. These subtle phenomena are not investigated
in this book. Furthermore the discontinuity in derivative yields difficulties in the
numerical treatment [16, 72].

These simplifications lead to a characteristic function u.�p/, which has been
measured for a stationary flow [34], with positive pressure differences only.
Figure 9.9 shows the result, which is perfectly in accordance with the law (9.23),
except for the highest pressures. For these pressures, there is no abrupt transition
to a beating reed, and the flow does not vanish completely, because the reed does
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Fig. 9.9 Nonlinear
characteristic measured (thick
line) and calculated (thin line)
based on (9.23) and (9.51).
The increasing portion of the
curve is close to a square root
of the pressure difference,
because the displacement of
the reed is very small. In the
decreasing portion the
progressive closure of the
reed becomes dominant. The
experiments do not exhibit
any beating of the reed,
because the flow does non
vanish for large pressure
differences
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not entirely closes the mouthpiece.9 The measurement of the characteristic function
leads to the values of two essential excitation parameters, pM and uA: however, their
values obviously cannot satisfy all our hypotheses. As an example, if the jet cross
section is not strictly equal to that of the reed channel, the formula (9.23) remains
identical, but the value of uA can be changed based on experiments.10

The global shape of the curve is rather intuitive: the flow rate first increases
when the pressure difference increases, but it is expected to almost vanish for
high pressure differences. Hence a saturation occurs, then a decrease. If the mouth
pressure pm does not depend on time, it is possible to write a function u D
F.p/ which does not depend on the parameter pm, deduced from the function

9In the two-dimensional model we ignored that the air can pass through the sides of the reed,
because the mouthpiece lay is curved, and the reed does not perfectly wrap the lay. Moreover
the extremity of the mouthpiece is not planar. The air can also flow between the reed and the
mouthpiece; the reed does not remain perfectly planar, and twisting can occur. For a double reed,
such as a bassoon reed, the way the reed is pressed by the fingers at its extremity is a quality
criterion for instrumentalists, which are sanding their reed. When the reed closes linearly (the
sides are closed simultaneously with the center), the closure is rather sudden, and the spectrum
is rich in harmonics; on the contrary if the sides are closed before the center, the closure is more
progressive, and the spectrum is poorer [67].
10A validation of the dynamic model can be obtained from a simultaneous measurement of the
flow rate and the pressure. For instance it has not been proved that taking into account an unsteady
term in the Bernoulli equation would improve the model; however, because of the effect of the reed
dynamic, such a simultaneous measurement cannot give a quasi-static curve, as shown by Meynial
[81]. He compared experiment and theory by measuring the velocity with a hot wire anemometer at
several places in order to deduce the flow rate, and by measuring the pressure with a microphone.
Another method could consist in measuring the pressure at several places in the tube, then deducing
the input quantities from the knowledge of theoretical transfer functions. Similar ideas have been
utilized for bowed strings [123], but it is tedious for a reed instrument, because the input impedance
for the even harmonics is highly sensitive to the mouthpiece shape.
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u.�p/ (9.23): the modification of pm leads to a simple translation of the curve. The
other parameter of the function, uA, which is a composite parameter, characterizes
the amplitude of the curve. It depends on both the reed opening, that the musician
can adjust when playing, and the reed stiffness, which is chosen a priori by the
musician. This parameter is related to the maximum flow rate that can enter the
tube: the maximum of the function u.�p/, obtained for �p D pM=3, is

umax D uA
2

3
p

3
: (9.25)

Experiments compare very well with the model for the non-beating reed of
a clarinet [30]. For an oboe reed, there is a significant difference between
measurement and model, because the increase of the curve at low �p is steeper.
This observation was related to the jet behavior in the conical part which is the
channel output of the double reed [3, 34, 61].

9.2.5.3 Dimensionless Equations

In order to draw general conclusions, it is convenient to make the three basic
equations dimensionless. It is logical to divide the reed displacement by the height
of the opening at rest, H, and the pressures by the closure pressure pM . The flow rates
are divided by pM=Zc, where Zc D �c=S is the characteristic impedance of the tube.
Thus the following definitions are chosen for the unknowns and the parameters:

Qy D y=H; Qp D p=pM; Qu D uZC=pM; x D Qy C �

� D pm

pM
; � D Zc

uA

pM
D ZcwH

s
2

�pM
D wH

S

s

2
Cp

Cv

p0

pM
:

In the last expression of �, the compressibility 1=�c2 has been replaced by its
value with respect to the atmospheric pressure p0 [see Eq. (1.98)]. Typical values
of the reed parameter � are of the order of 0:3–0:4 [52, 89]: it will be seen that
this parameter has a strong influence on the attack transients, while the mouth
pressure dictates the amplitude and the spectrum of the sound. The input admittance,
and therefore the function h.t/, is multiplied by Zc. Introducing dimensionless
variables and removing the superscripts (for the sake of simplicity), Eqs. (9.18)–
(9.20) become

u D Œh � p� C �`

c

dx

dt
; (9.26)

1

!2
r

d2x

dt2
C qr

!r

dx

dt
C x D p; (9.27)
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u D �.1 C x � �/
p

� � p if 1 C x � � � 0 , or (9.28)

u D 0 if 1 C x � � � 0: (9.29)

(One can assume that �p is positive, because in practice the mouth pressure is
almost always higher than the mouthpiece pressure, at least for quasi-cylindrical
instruments). Using this hypothesis the two-equation model (9.23) is given by:

u D F.p/, where (9.30)

F.p/ D �.1 � � C p/
p

� � p if � � p � 1I (9.31)

F.p/ D 0 if � � p � 1. (9.32)

9.2.6 Basic Model (Lip Reed)

9.2.6.1 Three-Equation Model

The basic model for a lip reed (or more precisely for an outward-striking reed) is
now given. Obviously we cannot reduce the 3-equation model to 2-equation model,
because the reed dynamics play an essential role.

u D Œh � p� .t/ C S�`

H

pM

�c2

dy

dt
; (9.33)

d2y

dt2
C qr!r

dy

dt
C !2

r y D H!2
r

�p

pM
; (9.34)

u D uA

�
1 C y

H

�
s

j�pj
pM

sign.�p/, (9.35)

where the coefficient uA is given by:

uA D wH

s
2

�
pM D wH3=2

s
2

�
Ks: (9.36)

9.2.6.2 Dimensionless Equations

All dimensionless parameters are defined in the same way. Nonetheless here the
closure pressure is negative, equal to �pM , and we write

x D y � �:
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This yields

u D Œh � p� .t/ C �`

c

dx

dt
; (9.37)

1

!2
r

d2x

dt2
C qr

!r

dx

dt
C x D �p; (9.38)

u D �.1 C x C �/
p

� � p: (9.39)

Here the flow rate is assumed to always enter the resonator. Moreover, the reed
is assumed to be not beating, because this would imply that the mouth pressure �

should be negative (more exactly � C x < �1/. Brass instruments are played by
blowing and not by inhaling!

9.3 Behavior of the Two-Equation Model (Regimes,
Existence and Stability, Transients) Without
Reed Dynamics

9.3.1 Introduction

For a reed instrument such as a clarinet or a saxophone, the playing frequencies and
their first harmonics are lower than the first reed resonance frequency, except for
the highest notes. This allows using the two-equation model. This approximation is
considered to be valid in Sects. 9.3 and 9.4, and its limitations will be discussed in
Sect. 9.5. Moreover, we assume that the reed displacement yields a simple correction
to the length of the resonator, included in the total length, as well as the radiation
length correction. The equation to be solved is Eq. (9.26) with �` D 0:

u D Œh � p� .t/ or (9.40)

U.!/ D Y.!/P.!/: (9.41)

With Eq. (9.30), this is the two-equation model. Figure 9.10 shows the nonlinear
function (9.30) for several values of the mouth pressure � . For some approaches,
we will further simplify this function. Several versions of the model of resonator
can exhibit different aspects of the main phenomena. In some calculations, it will
be assumed to be purely cylindrical, for other purposes it will be sufficient that it
is quasi-cylindrical; for certain calculations, losses will be taken into account, but
not always. Starting from the two-equation model, we first solve a system for the
input variables only, then investigate the transfer functions, which allow deducing all
quantities in the tube and outside. In the present analysis the control parameters are
supposed to be time-independent: this obviously is far form real playing conditions,
when the player modify these parameters at every time for expression purposes.
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Fig. 9.10 Examples of flow curves [Eq. (9.30)] with respect to the pressure p in the mouthpiece for
three values of the static pressure in the mouth. The variables are dimensionless: from left to right
�=0.22; 0.42; 0.62. When the pressure p is very low (and negative), the reed closes the mouthpiece.
The limit points of the lossless approximation correspond to the two states of the square signal (see
Sect. 9.3.3); they are denoted by circles. For the static regime, they coincide. The regime is static
for � D 0:22, while it is oscillating and non-beating for � D 0:42, and oscillating and beating for
� D 0:62, with a zero flow rate. Here the flow rate has been divided by �, and the maximum value
is 2=.3

p
3/

9.3.2 Static Regime and “Ab Initio” Method

9.3.2.1 Static Regime

A trivial solution for the system of Eqs. (9.40) and (9.30) can be found for the static
regime, when the unknowns do not depend on time. If the pipe input impedance is
assumed to be zero at zero frequency, the input pressure is zero as well at every time
t, and the flow rate is F0 D F.0/ D �.1 � �/

p
� . For this situation, no sound is

produced (when the reed closes the mouthpiece, if � > 1, F0 D 0). However, even
for this regime, a transient exists if the mouthpiece pressure is not zero when the
musician blows. Moreover the excitation pressure � does not change instantaneously
from 0 to a finite, stable value. After the transient, if the input pressure converges to
0, the regime is stable. In order to study the stability, one can imagine a deviation
from the equilibrium, which yields a variation of the acoustic quantities. The outline
of the study is as follows: if we are searching for a periodic steady-state regime,
which is called “limit cycle” for dynamical systems (for the static regime the limit
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cycle is a fixed point), the problem can be greatly simplified, e.g., by the use of the
Fourier series. However, if we are searching for either the shape of a transient or the
stability of the regime, the problem is much more complicated. In what follows, we
present the most general method for solving the problem, including the transient;
the solution is called “ab initio” and depends on known initial conditions.

9.3.2.2 “Ab Initio” General Method of Calculation

The system of Eqs. (9.30) and (9.40) can be solved by starting from the initial
conditions. The impulse response h.t/ can be used, but its duration is very long,
as explained in Chap. 4. It is better to modify the system, choosing as variables the
outgoing and incoming pressure waves instead of the pressure and flow rate [99].
Using dimensionless variables, in the case of a perfect cylinder we have

p D pC C p� ; u D pC � p� with (9.42)

pC D 1

2
.p C u/ ; p� D 1

2
.p � u/: (9.43)

One can relate pC and p� through a nonlinear function G:

pC D G Œ�p�� : (9.44)

It is obtained by a rotation of the function F by 45ı (see [78] and Fig. 9.11).
Equations (9.40) and (9.41) become, respectively:

p�.t/ D �
r � pC�

.t/

P�.!/ D R.!/PC.!/, (9.45)

where R.!/ is the classical reflection coefficient and r.t/ is the reflection function
defined in Chap. 4. This formulation is possible whatever the shape of the resonator:
the reflection function r.t/ is in general much shorter than the impulse response
h.t/, and it can be used also for a numerical computation. Starting from Eqs. (9.43)
and (9.45), the following useful equation is obtained

p.t/ D u.t/CŒr � .p C u/� .t/ D u.t/C
Z t

0

r.t0/
�
p.t � t0/ C u.t � t0/

�
dt0: (9.46)

The integral corresponds to the past time, which is known, and the use of
the nonlinear equation (9.30) leads to the variables p.t/ and u.t/ when the initial
conditions are defined. The integral is limited to 0 and t because the functions r.t/,
p.t/, and u.t/ are causal. In general, in order to solve Eq. (9.46), time needs to be
discretized.
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Fig. 9.11 The function G [see Eq. (9.44)] links the outgoing and incoming waves. The figure
shows the principle of the iterative calculation of an ab initio solution when no losses are taken
into account. Circles are the limit points. The values of the parameters are: � D 0:6; � D 0:42.
Signals of pressure and flow rate are shown in Fig. 9.13a

Fig. 9.12 Periodic signal for
the internal pressure of a
clarinet note, and its
approximation by a square
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The problem can be simplified, considering two types of approximations for the
resonator: (1) the lossless approximation, (see Sect. 9.3.3), which leads to square
signals for a cylinder (the pressure oscillates between two values, called “states”),
and (2) the one-mode approximation for the resonator (Sect. 9.3.4), which leads to a
Van der Pol equation. These approximations do not give all useful information: for
instance, the spectrum of a square signal is not realistic compared to a real spectrum
(Fig. 9.12). Nevertheless, essential conclusions related to sound production are
reached.



9 Reed Instruments 493

9.3.3 Lossless Approximation for a Cylinder:
Helmholtz Motion

9.3.3.1 Ab Initio Solution

For a perfect cylinder, the reflection function has a very short duration, because it
corresponds to a simple delay of one round trip in the tube, with a convolution due
to the visco-thermal losses and radiation effect. As a first approximation the latter is
reduced to a change in sign and losses are ignored:

r.t/ D �ı.t � 	/, (9.47)

where 	 D 2`=c is the time of a round trip in the tube. Therefore:

p�.t/ D �pC.t � 	/. (9.48)

Equation (9.46) can now be written in the form:

p.t/ D u.t/ � p.t � 	/ � u.t � 	/: (9.49)

If the pressure pC deviates from 0 at t D 0 and has the value pC.0/ D pC
0 ;

the problem is that of a sequence of unknowns when the time is discretized by
intervals 	 . Denoting for each variable p.n	/ D pn, the following system is obtained

p�
n D �pC

n�1I (9.50)

pC
n D G.�p�

n / D G.pC
n�1/: (9.51)

This very simple sequence allows determining the solution at each time step n	 .
It corresponds to an elementary dynamical system called “iterated map.” Each value
of the sequence is obtained from the previous one by the iteration of a function. This
implies that pC suddenly deviates from 0 at a point instant, because we consider
a discrete time. This is not realistic, but allows finding basic solutions, with a
steady-state regime having two states.11 This shape is a particular case of the so-
called Helmholtz motion, which was discovered experimentally by Helmholtz in the
context of the bowed string, and will be discussed in Sect. 9.4.8.3. Notice that during
the first round trip, from 0 to 	 , the incoming wave is necessarily zero, because no
wave comes back faster than the speed of sound. The solution of Eq. (9.51) can
be found using a graphical method [78], as shown in Fig. 9.11. Starting from the

11In this section we implicitly assume that the mouth pressure suddenly goes from 0 to a non-
zero value, then remains constant: p D pC

0 until 	 > t. Thus the mouthpiece pressure is
constant during the first round trip, and consequently, constant as well during every successive
half-periods, resulting in a square signal shape, with two states. Other kind of initial conditions
will be investigated further.
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value p�
0 D 0, the value of pC

0 corresponding to the imposed control parameters
is deduced using Eq. (9.44). The next value �p�

1 D pC
0 is determined, then the

nonlinear function is applied, and so on. After a transient, the signal converges to
two limit points, opposite in sign, which are the values of the two states of the
square signal. Figure 9.13 shows the corresponding signals p.t/ and u.t/, as well
as the result for other values of the parameters: the convergence can occur to the
static regime (a unique limit point), or even to other regimes. This is studied in the
following sections.
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Fig. 9.13 Transients in square signals for two values of the reed parameter and the mouth pressure.
In gray, the pressure; in black, the flow rate. (a) � D 0:6, � D 0:42; (b) � D 0:6, � D 0:2; (c)
� D 0:2, � D 0:42; (d) � D 0:2, � D 0:2. The larger is the parameter �, the shorter is the transient.
When � is small, the signal converges to the static regime
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9.3.3.2 Stability of the Static Regime; Start of the Transient

We continue the analysis of the solutions, and examine the stability of the regimes,
the transients and the steady-state regime. Consider first an idealized attack, when
the mouth pressure suddenly jumps from zero to a finite value, � . Starting from the
static regime, the pressure p.t/ remains small for the first time intervals and it is
possible to linearize [Eq. (9.30)]:

un D F0 C Apn ; with F0 D �.1 � �/
p

�; A D �
3� � 1

2
p

�
: (9.52)

where F0 D F.0/ and A D dF=dp at p D 0: Equation (9.49) gives

pn � un D �.pn�1 C un�1/. (9.53)

It is the equation of the resonator, and it yields:

pn D �pn�1

1 C A

1 � A
; pn D p0.�1/n

�
1 C A

1 � A

	n

, (9.54)

where p0 D pC
0 D F0=.1�A/. Expression (9.54) is obtained from Eq. (9.52) because

p�
0 D 0:

If the factor raised to the power n is smaller than unity, the pressure pn tends to
0 when n increases, otherwise it increases exponentially. The two cases correspond
to a coefficient A which is negative or positive, respectively. If A is negative, the
pressure converges to the static regime, which is stable; otherwise the static regime
is unstable, see Fig. 9.13, and the pressure grows exponentially. Maybe the nonlinear
terms of the function will produce a saturation to a stable oscillating solution. Given
the expression of A, the threshold corresponds to a mouth pressure � D 1=3. The
larger is the reed parameter � (i.e., the wider is the reed opening at rest, or the
smaller is the reed stiffness), the faster is the transient. From the perception point
of view, this is an important characteristic of the sound.12 Considering variables
with dimensions, it can be shown that this linear problem up to a factor F0=c stated
corresponds for the tube to the calculation of the Green’s function with an input
admittance boundary condition: Y D �AS=�c, which is real. If the admittance Y
is positive (negative A), the boundary is absorbing and the signal decreases, while
if it is negative, the boundary is active and acts as a source, and the oscillation can
start. Thus the problem involves a resistive termination, added to dissipation during
propagation. The modal expansion shows that the complex natural frequencies are
such that their real part, which is the instantaneous frequency during the transient, is
higher than the frequency of the steady-state regime, which will be further studied.
Thus there is a shift of the instantaneous frequency during the transient [36].

12For large values of �, and therefore for large pressure p0, the validity of the expansion to the first
order (9.52) is limited to the first values of the pressure, see, e.g., Fig. 9.13a
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9.3.3.3 Simplified Model for the Non-beating Reed

For the sake of simplicity, we assume again that the pressure p does not deviate
too much from the zero value (and we still assume Z.0/ D 0; the more general
case was investigated in [73]). We assume a non-beating reed which is typically
obtained for a mouth pressure � that is lower than 0:5, (see Sect. 9.4.6). A third
order approximation of the flow rate gives (see [60, 124]):

u D F.p/ ' F0 C Ap C Bp2 C Cp3, where (9.55)

F0 D �.1 � �/
p

�; A D �
3� � 1

2
p

�
; B D ��

3� C 1

8�3=2
C D ��

� C 1

16�5=2
.

(9.56)

In the normal range of variation for the parameter � , the variation of the
coefficient A is mainly due to the numerator, which varies almost linearly, while
the parameters B and C only slightly vary. The parameters B and C are negative;
this property will be shown to be essential in order for the oscillation to be saturated
after the initial grow. All coefficients are proportional to the “reed opening” �; we
conclude that A varies almost linearly with the mouth pressure; the other parameters
are almost constant and negative. The series expansion allows simplifying calcula-
tions, but limits the validity of the results. However, the polynomial model can be
used for a wide class of physical problems.

9.3.3.4 Existence of the Periodic Steady-State Regime

The steady-state can now be investigated if we assume a periodic behavior. The
period is unknown, therefore it will be empirically determined (more straightfor-
ward methods will be further explained). It is first assumed to be equal to the round
trip duration, 	 D 2`=c. Thus the variables are equal at times t and t � 	 :

p.t/ D pC.t/ C p�.t/ D pC.t/ � pC.t � 	/ D 0.

With this assumption, there is no non-zero periodic solution. This can be easily
interpreted as follows: if a flow rate at the input of the instrument produces a positive
pressure in the mouthpiece, this pressure travels to the end, then changes in sign and
cannot recover the initial value after a single round trip.13 It is easy to imagine that

13This kind of reasoning requires some care. For instance, why can’t the same reasoning be valid
for a flute-like instrument (see Chap. 10)? The reason lies in the nature of the source: for a flute,
pressure and flow rate have to be inverted at the open end, and the flow-rate wave is reflected
without change in sign at the end: thus the period 2`=c is possible. On the contrary a closed flute
is similar to a clarinet.
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with two round trips, a periodic regime is possible: if we search for a period equal
to 2	 , the variables are equal at times t C 	 and t � 	 , thus:

p.t C 	/ D pC.t C 	/ � pC.t/ ; p.t/ D pC.t/ � pC.t � 	/: (9.57)

Therefore p.t/ D �p.t C 	/: (9.58)

A two-state signal is obtained, and the two values are opposite in sign. Thus the
period 2	 is a solution. In order to find the two values, it is noticed that the flow rate
is periodic with the period 	 , because:

u.t C 	/ D pC.t C 	/ C pC.t/ D pC.t � 	/ C pC.t/ D u.t/: (9.59)

In steady-state regime, the flow rate is constant, as shown in Fig. 9.13. The limit
points ˙p1 are solutions of:

F.p1/ D F.�p1/, thus A C Cp21 D 0; and: (9.60)

p1 D ˙
r

� A

C
: (9.61)

If C is negative, this oscillating solution exists for positive A, when the static
regime becomes unstable. If C were positive (it is not the case of the present
model), solutions would exist when A is negative, i.e., when the static regime is
stable. It is possible to theoretically show that in general the oscillating regime
would be unstable, using either a perturbation method [71] or the theory of the
topological degree [96]. A proof will be provided for our case in the following
section. Concerning the square shape of the pressure signal and the constant value
of the flow rate, it is possible to link these results to a reasoning in terms of input
impedance. For a lossless cylindrical resonator open at the end, the input impedance
has infinite maxima for frequencies which are odd multiple of the frequency c=4`,
which corresponds to the period 2	 , and zero minima for frequencies which are even
harmonics of this frequency. Consequently the pressure involves odd harmonics
only, while the flow rate involves even harmonics only. Moreover the studied signals
are constant during one half-period (see Sect. 9.3.3.1). Therefore during the steady-
state regime, the flow rate can involve odd harmonics only, and a continuous
component; finally it is constant, with neither odd nor even harmonics! These
calculations can be easily generalized to the nonlinear function (9.30) [73, 76]; the
two values of the pressure remain opposite, and the flow rate is constant. Figure 9.10
shows the limit(s) point(s) for three values of the pressure �: The result is written as:

p1 D ˙ Œ.3� � 1/.1 � �/�1=2 if � < 1=2;

p1 D ˙� if � > 1=2: (9.62)
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9.3.3.5 Stability of the Periodic Oscillation Regime

How can be investigated the stability of the periodic oscillation regime? Similarly
to what we did for the static regime [see Eq. (9.54)], the function F is linearized
around the limit points. This time there are two limit points:

un D F.p1/ C .pn � p1/F0C

unC1 D F.�p1/ C .pnC1 C p1/F0�,

where F0˙ is the derivative of F at ˙p1. Using the equation of the resonator (9.53),
we deduce

.1 � F0�/.pnC1 C p1/ D �.pn � p1/.1 C F0C/, and

.1 � F0C/.pnC2 � p1/ D �.pnC1 C p1/.1 C F0�/,

then

.pnC2 � p1/ D .pn � p1/
.1 C F0�/.1 C F0C/

.1 � F0�/.1 � F0C/
: (9.63)

Stability is ensured if the factor multiplying .pn �p1/ has an absolute value smaller
than unity. Squaring this factor, we obtain

.F0C C F0�/.1 C F0CF0�/ < 0: (9.64)

And using Eq. (9.61):

A
�
1 C 4A.B2=C C A/

�
> 0: (9.65)

When A is small, the stability condition A > 0 is opposite to that of the static
regime, QED. If A increases, considering the first order term in A in the bracket, it
can be seen that:

– either C is negative, and the sign of the bracket can change for a non-zero,
positive value of A. Beyond this threshold, it can be shown that a periodic regime
exists with a double period. This kind of regimes is discussed hereafter. The most
important result is that the bifurcation is direct. As a consequence the clarinet
can play pianissimo. We already considered bifurcations for free oscillations
(see Sect. 8.5 of Chap. 8); “direct”14 means that after a threshold, A D 0, there

14In the literature the adjectives “normal” or “overcritical” or “supercritical” can be found instead
of “direct.” The contrary is “inverse,” or “undercritical,” and implies a discontinuity between two
regimes, with a hysteresis, as it will be seen hereafter.
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A

p  C < 0

A

C > 0p

0

0

Fig. 9.14 Schematic bifurcation diagram in A D 0 for the two cases positive C (inverse
bifurcation) or negative C (direct bifurcation). Solid, black line: limit values of stable regimes,
either static .p1 D 0/, or oscillating (the positive value only is indicated). Dotted, black line:
unstable regimes. Beyond the cases of calculation that are presented by the inequality (9.65), the
hypotheses are as follows: for C > O, the unstable oscillation regime becomes stable, and for
C < 0, there is a new bifurcation to a stable regime with four values (lower octave)

is continuity from a stable regime (here the static one) to another (here the
oscillating one), when the control parameter (here A, or more precisely the mouth
pressure) increases.

– or C is positive (this is not the case of the present model), and the solution of
Eq. (9.61) exists for negative A only. It is unstable for small values of A. For
a non-zero, negative value of A, it is possible to find a new periodic, stable
regime, and the bifurcation is said “inverse.” Figure 9.14 shows the two cases.
No investigation concerning phenomena far from A D 0 is presented yet.

9.3.3.6 Period Doubling and Chaos: Discussion

What happens when the condition (9.65) is not fulfilled? It is possible to investigate
the case when the bracket in Eq. (9.65) is negative: (1) either by computing the
solution ab initio (stable regimes are obtained, but it is not sure that they are all
possible regimes, because they depend on initial conditions, which are certainly not
unique); (2) or by calculating the periodic steady-state regimes with a pre-supposed
frequency, as above explained (but it is not possible to know whether these regimes
are stable!). It is possible to try a period double, 4	 , and to confirm that the threshold
of existence for the solutions is A

�
1 C 4A.B2=C C A/

� D 0, but the calculation is
tedious. For the model (9.30), without series expansion around the static solution,
the ab initio study, which corresponds to the graphical solution of Fig. 9.11, was
done in [73, 105]. Frequency divisions by 2, 4; 6, 12,. . . are obtained, and the
thresholds appearing for the mouth pressure (� ) depend of the reed parameter �.
The weaker is the reed (large �), the earlier these regimes appear. When � continues
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to raise, the solution comes back to the “normal” frequency for � D 1=2. This
will be studied when looking at the beating reed behavior. For a fixed value of � , it
was possible to obtain with the same model, a complete scheme of period doubling
toward a chaotic signal [77]. This scheme is called “subharmonic cascade,” and
was already studied for the case of a clarinet [20, 70, 78, 104, 105]. The chaos
is a non-periodic regime (we could say with an infinite period), and it is called
“deterministic chaos” because it is solution of a deterministic equation, while it is
extremely sensitive to the initial conditions and for this reason it is unpredictable.
This concept was presented in Chap. 8.

The reader can be surprised by this result of a frequency division, because this
phenomenon is not common, while the frequency multiplication by a factor 3 is.
This issue is treated hereafter. Actually, if realistic losses are taken into account in
the model, the period doubling can disappear [35]. However, period doubling can be
encountered for other reed instruments, such as the crumhorn or the bassoon [55]:
the notes of a contrabassoon can be played with a bassoon.15

9.3.3.7 Other Types of Regimes: Twelfths

This section investigates regimes with triple frequency, also known as twelfth
regimes. Equations (9.50) and (9.51) do not make any assumption concerning the
variation of the signals during the time 	 D 2`=c. If the frequency is an odd multiple
of f1 D c=4`, which corresponds to the period 2	 (see the previous paragraphs),
it is easy to find Helmholtz regimes (two-state signals) which satisfy Eqs. (9.58)–
(9.61). It is sufficient to choose different initial conditions in order to initiate the
triple frequency: we impose a non-zero value to the outgoing wave pC not only at
t D 0, but also at t D 2	=3, and a zero-value at t D 	=3. Therefore this regime
has the same threshold than the “fundamental” regime. When it is reached it is
not more difficult to sustain than the fundamental regime. A practical solution for
imposing these initial conditions is easy: a small “register hole,” located at the third
of the length is opened, and allows emitting the twelfth. If we ignore the losses, after
initialization, when closing this hole, the twelfth regime should remain stable.16

15In practice the frequency division is possible for very narrow ranges of parameters (� or �/,
especially when approaching the chaotic regime. Consequently it is easy for an instrument maker
to avoid these phenomena.
16In practice this is not always possible when playing a clarinet, because when closing the register
hole, it is also possible to retrieve the fundamental regime. The reason is not simple. We will see
that when losses are taken into account, the threshold pressure for the triple frequency is higher than
that for f1. This is not a sufficient reason, because beyond the threshold for the triple frequency, both
regimes should be reachable by choosing the appropriate initial conditions. Notice that for other
instruments, such as a flute or a bassoon, it is often easy to play the higher registers even without
the opening of a register hole. Moreover baroque oboes have no register holes for overblowing.
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9.3.4 One-Mode Approximation

The Helmholtz motion is an interesting approximation for the study of the transients,
the regime stability, their frequency and their amplitude, but do not give insights
into the real shape of the signal, i.e., of the spectrum: fortunately the signal is
not perfectly square. In the next section (Sect. 9.4) the steady-state regime will
be examined, taking losses into account. But beforehand it is interesting to make
a study similar to the previous one for another approximation of the resonator,
when this response is reduced to that of a single mode. This is also a rough
approximation of the resonator, but it allows considering realistic losses and their
frequency dependence.17 In contrast, the previous model, “lossless model,” took into
account an infinity of modes with harmonically related frequencies.

9.3.4.1 Differential Equation for the Mouthpiece Pressure

In the second part of the book, the modal expansion of the dimensionless input
impedance was obtained [see in particular Eq. (7.19)]:

Z.!/ D j!
X

n

Fn

!2
n � !2 C j!!n=Qn

, (9.66)

where !n is the frequency of the nth resonance, Qn is the quality factor, and Fn

the modal factor. The value of the (real) maximum of the impedance modulus is
ZMn D FnQn=!n.18 For a cylinder Fn D 2c=` and ZMn D 2cQn=.`!n/ D kn=2˛

(in dimensionless quantities) when radiation losses are ignored and ˛ is given by
Eq. (5.147). A great simplification is obtained by truncating the series after the
first mode. For a cylinder, using a first order approximation of the losses, this is
allowable near the resonance !1: starting from expression Z.!/ D j tan.k � j˛/`,
the following equation is exact: Z.!1/ D .˛`/�1 D 2Q1=k1` (for the study of
a resonance peak, see Chap. 2). However, far from the resonances, the truncation
strongly modifies the predicted response of the resonator. For the first register of the
clarinet, the truncation is not as consequential as for conical instruments, because the
second resonance frequency is far from the first one, and the first peak is dominant.
Nevertheless one should not expect correct results for the spectrum.

17Meynial [81] studied a “monochromatic” resonator, by considering a tube with axial chimney,
so that all the resonances, but the first, are strongly attenuated. Also the frequencies of the higher
order modes are not multiple of the frequency of the first mode. The present model is close to
this experimental realization, which produced a spectrum dominated by a single frequency, even at
higher levels.
18We used Eq. (5.183) in dimensionless quantities, simplifying it by including the radiation length
correction into the length `.
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Using Eq. (9.66), and truncating it to the first mode, we obtain

.!2
1 � !2 C j!!1=Q1/P.!/ D j!F1U.!/:

Its inverse Fourier Transform is written as:

d2

dt2
p.t/ C !1

Q1

d

dt
p.t/ C !2

1p.t/ D F1

d

dt
u.t/, (9.67)

or, after the attack, if Eq. (9.55) is used

d2

dt2
p.t/ C F1

d

dt

�
.Ym1 � A/p.t/ � Bp2.t/ � Cp3.t/

� C !2
1p.t/ D 0. (9.68)

Ym1 D 1=ZM1 is the value of the (real) minimum of the admittance. This equation
is a Van der Pol equation. It is now possible to consider the successive steps of
the study of the Helmholtz motion (see Sect. 9.3.3). For the transient, approximate
solutions of the Van der Pol equation can be found in the literature (see, e.g., [36]),
but are not simple. We limit this section to the stability of the static regime, the early
transient, and the existence of the periodic regime.

The solution of Eq. (9.68) is not sinusoidal, because of the nonlinear terms. The
modal method can be generalized to an arbitrary number of modes in order to solve
the exact problem; a system of nonlinear, ordinary differential equations has to be
solved, and numerical methods are available for this purpose. This method is an
alternative solution to the ab initio method [9, 36].

9.3.4.2 Stability of the Static Regime, Early Transient

A trivial solution is the static regime p.t/ D 0. In order to study its stability,
we linearize Eq. (9.68), by ignoring the terms with B and C. This equation becomes
the equation of a linear oscillator with one degree of freedom. The damping
can be negative, if A is larger than Ym1. For A smaller than Ym1, the oscillation
is exponentially damped, and the oscillator returns to the static regime. On the
contrary, the oscillation can grow exponentially, and the nonlinear terms will allow
the saturation of the amplitude. This study of stability is similar to the one that leads
to Eq. (9.54). The instability threshold of the static regime is now given by: A D Ym1,
instead of A D 0. In order to produce a sound, it is necessary to blow sufficiently
hard to compensating for the losses. Notice that radiation losses have been neglected
compared to the visco-thermal losses: but if they are large, the threshold is high.
Paradoxically the radiation of a self-sustained oscillation instrument should not to
be too efficient in order for the sound to exist (see also Chap. 7, Sect. 7.5.1).

• In the case of a cylindrical tube, by using the value of A given by Eq. (9.56),
a simple result can be obtained. We simply consider that the perturbation due to
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the losses is small, and replace � by 1=3 in the denominator of A. This yields the
pressure threshold:

�th D 1

3
C ˛`

�

2

3
p

3
: (9.69)

A typical order of magnitude for this threshold is 0:38: It is possible to derive
the solution of the linearized equation (9.67), by assuming19 p.t/ D 0 at t � 0,
and u.t/ D F0H.t/ C Ap.t/:

p.t/ D 4

�
F0H.t/e�˛ot sin !1t where ˛0 D .Ym1 � A/c=`: (9.70)

in the classical hypothesis of an oscillator which is either weakly damped of
weakly excited, satisfying jYm1 � Aj << !1`=c (see Chap. 2). If losses are
ignored, this solution can be compared to that in square signals (9.54), and the
two agree in both amplitude and phase.

• For a tube with an arbitrary profile, two observations can be made when looking
at Eq. (9.68):

• The general expression of the modal expansion obtained in Chap. 7 [Eq. (7.38)]
shows that the modal factor F1 satisfies

F1 D cS.0/
˚2

1 .0/


1

where 
1 D
Z `

0

S.x/˚2
1 .x/dx:

It depends on the geometry only, and is independent of losses. As a consequence,
for a non-cylindrical instrument, it can strongly vary with frequency. Beyond the
threshold, the amplification factor is the product of the modal factor by A [see
Eq. (9.68)], and does not depend on losses. On the contrary, for free oscillations,
the duration of the transient is determined by the quality factor (see Chap. 2).
Similarly it is possible to show that the extinction transient when the mouth
pressure decreases is not primarily linked to losses.

• The relevant quantity for the determination of the threshold is the minimum Ym1,
which is inversely proportional to the quality factor, but is also proportional to
the modal factor. Consequently if the geometry imposes a very large impedance,
it is possible to diminish the minimum Ym1 and therefore to lower the threshold
without reduction of losses, by using the reactive effects due to reflections at
cross-section changes. Thus the threshold is not only linked to losses, but mainly
to the height of the impedance peak. This explains why the mouthpiece of brass
instruments makes the attacks easier without reducing losses (this sentence is a

19The solution satisfies p.t/ D p.t/H.t/, and the flow rate u D H.t/ ŒF0 C Ap.t/� hence u D
F0H.t/ C Ap.t/: Thus it exists a source term in Eq. (9.68), which is equal to 2c`�1F0ı.t/: The
solution is proportional to the Green’s function of this equation, which was studied in Chap. 2, see
Eq. (2.14).
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simplified explanation, because it ignores the reed dynamic, essential for these
instruments). These remarks fully justifies the importance that Benade [10] gave
to the height of the impedance peaks (see Chap. 7 of the present book for a
detailed study of the role of the brass instrument mouthpiece).

9.3.4.3 Negative Resistance and Energy

The term �A in Eq. (9.68) can be interpreted as the energy source of the self-
oscillating system: it corresponds to a negative resistance when sound is produced,
i.e., when its absolute value is large enough to overcome the positive resistance of
term Ym1 (A is the first derivative of the nonlinear function du=dp near p D 0).
Figure 9.10 shows that for values of � larger than 1=3, the slope of the curve is
negative and an oscillation regime with two states exists, while for � D 0:22, the
slope is negative.20

Extending this idea to the nonlinear operation range, we can rewrite the time
derivative term of Eq. (9.68), up to the factor !1ZM1=Q1:

dp

dt

�
Ym1 � A � 2Bp � 3Cp2

�
:

Thus the source resistance is R D �.A C 2Bp C 3Cp2/. Its instantaneous value
oscillates because of the term Bp, but its absolute value diminishes with increasing
p because the coefficient C is negative. Intuitively we understand that the oscillation
does not continue to grow exponentially, but saturates and converges to a stable
amplitude in the steady-state regime.

9.3.4.4 Existence of the Periodic Regime

In order to obtain an analytical expression for the periodic regime, we can seek
an approximated solution of the nonlinear equation. To assume that the solution
is sinusoidal is not rigorous, but often gives very good results. This is the simplest
application of the harmonic balance technique (see the next paragraph). The result is

p.t/ D 2

r
1

3

Ym1 � A

C
cos.!1t C '/: (9.71)

20The previous comment comes from the study of the function F.p/, where pm (�) is a parameter.
Another way of thinking [50] considers the function F.�p/ (see Fig. 9.9), with the following
property: .du=dp/pD0 D �.du=d�p/�pDpm . This curve demonstrates that the oscillation threshold
is obtained at the maximum of the curve, and that the increasing and decreasing parts of the curve
correspond to a stable and an unstable static regime, respectively.
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The phase ' of the oscillating factor is unimportant in a periodic, steady-state
regime. The existence of this solution is ensured under the same condition as the
instability of the static regime, A > Ym1, because the coefficient C is negative. This
confirms the direct behavior of the bifurcation. This solution can be compared to that
of the lossless model, when Ym1 D 0. Starting from the square signal solution (9.61),
the amplitude of the first harmonic of a square signal is calculated and the same
result is obtained, up to the factor 2

p
3=� . This explanation will be detailed further.

Let us summarize the present section. We compared the robustness of two
approximated models: the lossless resonator and the one-mode resonator. This was
easy for several features of the behavior of reed instruments, but the calculation of
the stability of the oscillation regime leads to an intricate computation for the latter
model [113] and is not presented here.

9.4 Away from the Reed Resonance (Two-Equation Model):
Steady-State Regimes

9.4.1 Principle of the Harmonic Balance Method: First
Harmonic Approximation

In order to study the spectra, we need to take into account the losses, which depend
on frequency. The ab initio method (see Sect. 9.3.2.2) allows solving the problem
numerically. Nevertheless another method, called “harmonic balance,” is possible,
at least for the steady-state regime. It was already presented in Chap. 8. It can be
used numerically, but very useful analytical approximations can also be obtained. It
is based upon the periodicity of the signal, which implies that it can be written in
the form of a Fourier series:

p.t/ D
nDC1X

nD�1
Pnejn!1t; (9.72)

where P�n D P�
n since the signal is real, and !1 is the fundamental frequency,

which is a priori unknown. P1 can be chosen for instance as a positive, real quantity,
because the phase of the signal has no significance in the steady-state regime. As
a matter of fact, the relative phases are to be determined for the harmonics only
(a periodic signal is invariant with respect to a temporal translation). The d.c.
component P0 is real as well. With this choice, the square signal ˙p1 has the
following spectrum:

P2�C1 D 2.�1/�p1
.2� C 1/�

; P2� D 0: (9.73)
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The even harmonics are zero, while the phase of the odd harmonics is alternately
0 and � . For the Helmholtz motion, the spectrum of the mouthpiece pressure is that
of a square signal, and therefore it decreases with increasing frequency. When losses
are taken into account, this spectrum decreases as well, but more rapidly, especially
near the oscillation threshold. This allows seeking simple approximations. The
simplest one is the so-called first harmonic approximation (also called in textbooks
on dynamical systems the “describing function” method), for which the series (9.72)
is truncated to n D ˙1. Using this, we can investigate the existence of solutions,
their frequency and their amplitude, by solving Eqs. (9.41) and (9.55):

u D F0 C Ap C Bp2 C Cp3; (9.74)

U.!/ D Y.!/P.!/: (9.75)

The reed is assumed not to beat. The flow rate is also expanded in harmonics, and
their amplitudes are YnPn, where the Yn are the values of the input admittance Y.!/

for the frequencies which are multiple of the frequency !1 (remember that this
frequency is unknown). In Eq. (9.55), we keep the terms of frequency !1 only. The
term of order 0 (a constant) and the term of order 2 of the polynomial cannot involve
terms with frequency !1. Notice that the calculation of the powers in the polynomial
is much easier with complex exponential than with trigonometric functions. If we
“balance” the terms of frequency !1 on the left and the right of the nonlinear
equation, we get

Y1P1 D AP1 C 3CP2
1P�

1 D AP1 C 3CP3
1: (9.76)

The balance for the frequency �!1 would not give any supplementary information,
because we would obtain the complex conjugate equation. A trivial solution is P1 D
0; it is the static regime. The other solution is

P2
1 D 1

3

Y1 � A

C
: (9.77)

• P1 is chosen as a real quantity, therefore the imaginary part of this equation
yields: =m.Y1/ D 0. Solutions exist if Y1 is real, therefore the oscillation
frequency can be calculated from =m.Y1/ D 0. As a first approximation (if
the influence of visco-thermal effects on the sound speed is ignored), the first
possible playing frequency for an open cylinder is f1 D c=4`. A result of
great musical importance is that the playing frequency does not depend on the
amplitude. If higher harmonics are taken into account, this result is marginally
modified, as explained further.21

21The oscillation condition is not given by the maximum of the input impedance modulus, but by
the zero value of the imaginary part of the admittance. In Chap. 2 the difference between these two
conditions was shown to be very small.
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Fig. 9.15 Experimental bifurcation scheme (with artificial mouth) for a clarinet note, for two
values of the reed parameter �. The ordinate is the root mean square (RMS) pressure. The
bifurcation at the oscillation threshold is direct for both curves, while at the extinction threshold,
it is inverse for the black curve (normal reed opening �), and direct for the gray curve (small �):
beyond a certain value, which is called the “closure” pressure, there is no more oscillation, because
the reed eventually closes the mouthpiece. This will be explained in Sect. 9.4.6, when studying the
beating reed

• The real part of Eq. (9.77) gives the solution for the other unknown of the
problem, i.e., the amplitude of the first harmonic. Replacing Y1 by Ym1, which
is the real part of Y1 at frequency !1, we found the result (9.71). Because C is
negative, the solution exists only if A is larger than Ym1. It is the same threshold
as the instability threshold of the static regime. A diagram showing the measured
amplitude for a clarinet-like instrument can be seen in Fig. 9.15: for rather weak
amplitudes, the curve is similar to a square root curve. Notice that it is very
delicate to measure small amplitudes near the threshold. At moderately high
amplitudes, the reed begins to beat: this will be investigated in Sect. 9.4.6.

If we consider the case Ym1 D 0, we can compare the amplitude with that of a
square signal [Eq. (9.61)]. The two values differ slightly. Indeed if the Eqs. (9.61)
and (9.73) are combined, the following value is obtained for the Helmholtz motion:
P2

1 D � A
C

4
�2 : The ratio between these two values is 2

p
3=�; or 1:102 (i.e., less

than 1 dB). The error is due to the truncation of the series of harmonics, and can be
accepted for most applications.22

22This feature is related to the modulus of the input impedance for the different harmonics: for
a cylinder, when losses are taken into account, the input impedance for the harmonic 2 is very
small, and for the harmonic 3, it is approximately

p
3 times smaller than that of the fundamental.
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9.4.2 Characteristic Equation and Instability Threshold of the
Static Regime

For square signals, the instability threshold of the static regime and the threshold of
the oscillation regime (stable or not) were distinguished. With the harmonic balance
method, or more precisely with Eq. (9.77), the existence threshold of the oscillation
regime was found. It is characterized by specific values of the frequency and of the
excitation parameter A. More generally several oscillating solutions can be found:
they cancel the imaginary part of Y1.!/. For small amplitudes, Eq. (9.76) implies
Y1P1 D AP1; thus:

Y.!/ D A or AZ.!/ D 1: (9.78)

This is the so-called characteristic equation, which is the equation of the
linearized system. It is obtained when the nonlinear equation is linearized around
the static solution. The solution of this equation is sinusoidal (but for degenerate
cases, it can be a square signal [60]). This justifies the writing without the subscript
1, because there is no ambiguity. In the case of a one-mode truncation, the stability
of the static regime (see Sect. 9.3.4.2) was deduced. The solution of the equation
was sought in the form of a complex exponential (9.70), i.e., an exponentially
increasing or decreasing sinusoid, according to the parameters of the problem. When
the exponent has a zero real part, the (in)stability threshold of the static regime is
found, but the existence threshold of the oscillation regime cannot be found by using
the linearized equation. How is it possible to generalize this search for the instability
threshold to Eq. (9.78)? We have to search for all (complex) zeros of the equation
and to see if they correspond to growing exponentials or not. If all exponentials are
decreasing, then the static regime is stable; if any exponential is growing, the static
regime is unstable, and the solution of the nonlinear problem can be expected to
be oscillating.23 When a parameter varies and one decreasing solution switches to

This is very different for other types of instruments, such as conical instruments. This reasoning
implies that losses are accounted for, because when losses are ignored, the impedance ratios are
unknown (the impedance is infinite for the maxima and zero for the minima): the system is called
“degenerate.” In practice we have to consider losses, and make them tend to zero [60].
23For a more general system, the Nyquist criterion can be used: it is based on the location of the
poles of the characteristic equation in the complex plane. Using the terminology of the control
system theory [85], Eqs. (9.74) and (9.75) are typical of a (nonlinear) feedback loop system,
functioning in free oscillations. For most industrial applications the aim is to push further the
instability ranges of the feedback system, on the contrary the instrument maker and the player
attempt to make the system unstable in order to produce self-sustained oscillations (see, e.g.,
[11, 41, 48]). The analysis of linear stability starts with the linearization of the nonlinear element
of the feedback loop system (for us u D F0 C Ap). In the linearized system this element is
replaced by a quantity whose dimension is an admittance (the coefficient A in our equations, which
is the derivative of the nonlinear function with respect to the acoustic pressure, when the latter is
calculated at the operating point, i.e., at the equilibrium position of the system). Then the instability
threshold is calculated by using an equation that is formally identical to Eq. (9.78).
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an increasing solution, we get the instability threshold of the static regime. Exactly
at the threshold, the exponent of the exponential is purely imaginary, because its
real part vanishes. Therefore solving the characteristic equation for real frequencies
provides the thresholds. As an example, using Eq. (9.68), it can be written as:
!2

1 � !2 C j!!1ZM1Q�1
1 .Ym1 � A/ D 0: Because ! is real, this equation yields

! D !1, and Ym1 D A, i.e., the frequency and excitation pressure thresholds.

• Another, equivalent, formulation is often used for the study of dynamical system.
Let us suppose that it is possible to write the equations of the linearized problem
in the following form:

d

dt
V D MV,

where V is a vector involving the physical variables of the problem, and M is a
matrix involving the parameters of the problem.24

If all eigenvalues of the matrix M have a negative real part, the static regime
is stable. If the real part of one of the eigenvalues becomes positive, this regime
becomes unstable (notice that because M is real, the eigenvalue pairs are complex
conjugate). The threshold value is given by the zero of the real part of an eigenvalue
pair. This technique can be easily applied to Eq. (9.68), confirming the conclusions
of Sect. 3.4.2. by writing the following relationship:

V D
�

p
dp=dt

	
and M D

�
0 1

�!2
1 F1.A � Ym1/

	
:

9.4.3 The Harmonic Balance Method: An Overview

If we wish to go beyond the first harmonic approximation in order to solve
Eqs. (9.55) and (9.41), we can truncate the series (9.72) to N harmonics, and increase
N to infinity. When we fill the truncated series in Eq. (9.55), we obtain a set of
equations corresponding to the first N harmonics. We obtain a system of nonlinear
complex equations with N complex unknowns, Pn. Moreover a real equation has to
be added for the d.c. component, with the real unknown P0: Therefore the system of
2N C 1 nonlinear real equations has 2N C 1 real unknowns. The “balance” seems to
be satisfactory. However, there is a supplementary unknown, the playing frequency,

24More generally, it can be written before the linearization:

d

dt
V D F.V/

where the components of the vector function F.V/ are nonlinear functions of the components of
the vector V: The matrix M; already encountered in Chap. 8, is called “jacobian” of the function F:
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and it is solved by the possibility to impose a real P1! In order to solve the problem
numerically, the continuation method can be used: starting from a known solution,
the parameters are slightly changed, and the equations linearized around the known
solution. More specifically: Eq. (9.55) is treated in the time domain, while Eq. (9.41)
is treated in the frequency domain, and the passage to one domain to the other is
done alternately by summation and by Fourier Transform. In principle this method
allows following all regimes when the parameters change, e.g., the mouth pressure
� , whatever stability of the regime is [46, 57, 98]. A free software, Harmbal, permits
solving this type of problems, including the reed modes [45].

We will now investigate new simplifications, beyond the first harmonic approxi-
mation, yielding analytical results.

9.4.4 The Variable Truncation Method, and Its Application
to Clarinet-Like Instruments

9.4.4.1 Odd Harmonics

Because the clarinet profile is mainly cylindrical, the even harmonics in the
mouthpiece can be assumed to be much weaker than the odd ones. Thus it is
interesting to split the pressure and the flow rate into a part involving even harmonics
only (subscript s) and a part involving odd harmonics only (subscript a). The
functions with subscript s satisfy: fs.t C T=4/ D fs.t � T=4/ at every t, where
T D 2�=!1 is the period. The functions with subscript a satisfy: fa.t C T=4/ D
�fa.t � T=4/. For the product of two functions of one or another type, the following
rules are applied: fsgs and faga are of type s, while fsga is of type a.25 For the pressure,
it can be assumed that ps << pa: Using a perturbation method, the calculation starts
by ignoring the part ps; the nonlinear equation is split into two equations:

us D F0 C Bp2
a; (9.79)

ua D Apa C Cp3
a: (9.80)

The second equation involves odd harmonics only, and is solved first, thanks to
Eq. (9.75). The first equation gives the even harmonics of the flow rate from the odd
harmonics of the pressure. Using Eq. (9.75), we finally deduce the even harmonics
of the pressure, as explained hereafter. Here we solve Eq. (9.80) by truncating it
to two harmonics, the first and the third. Bringing the series with terms �3, �1,
1, and 3 and equating the terms of frequency !1 (which is unknown) and 3!1, we
obtain the equations:

25These rules are identical to the rules for even and odd functions. Notwithstanding the two types
are not even and odd functions, in contradiction with what is written in [76]. It is possible to show
that this could be true in the following case only: when the even harmonics have real coefficients
Pn, and the odd harmonics have imaginary coefficients Pn. This can be checked by the reader.
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Y1 � A

C
P1 D 3.P2

1P�
1 C P�2

1 P3 C 2P3P�
3 P1/; (9.81)

Y3 � A

C
P3 D P3

1 C 3.P2
3P�

3 C 2P1P�
1 P3/: (9.82)

Rejecting the solution P1 D 0,26 using the assumption that P1 is real, Eq. (9.81) can
be rewritten as:

Y1 � A

C
D 3P2

1.1 C P3=P1 C 2 jP3=P1j2/: (9.83)

• Let us seek a solution to the equations, supposing that we are close to the
threshold defined by Eq. (9.77). It is consistent to consider that P1 is small,
and following Eq. (9.82), P3 is of order 3 in P1. This solution is called “small
oscillation solution.” The harmonic n can be shown to be of order n in P1. This
power law for the harmonics near the threshold is very general (see [2]) and it is
often called “Worman theorem” in musical acoustics (see [60, 94, 124]).27

• Another approximation is consistent with the previous one, but it is valid in a
much wider range of pressures. It is called “Variable truncation method”: the
first harmonic is assumed not to be influenced by the third one, thus Eq. (9.83)
is simplified into Eq. (9.77), and both the frequency and the amplitude can be
determined. Consequently P3 is deduced from Eq. (9.82) using the values of P1

and !1. The higher harmonics can be successively found, and the approximation,
whose accuracy decreases with the harmonic number, is very satisfactory for
a clarinet-like instrument. For instance, for the lossless case, the error is 10 %
for the harmonic 5 (0.8 dB) and 21 % the harmonic 11 (1.7 dB) [76]: this is
due to the decrease of the spectrum of the lossless solution at high frequencies
[see Eq.(9.73)] (the decrease is much more rapid when losses are introduced).
For sake of simplicity, the cubic term P2

3P�
3 is ignored, and the calculation yields

26What is this solution? Eq. (9.82) becomes: .Y3 � A/P3=C D P2
3P�

3 , and is nothing else than
Eq. (9.76) written for the frequency 3!1. Two solutions are deduced: the static regime P3 D 0,
and the oscillating (sinusoidal) regime of frequency 3!1. The threshold for the latter is higher
than that for the fundamental regime with frequency !1, because as a first approximation the
admittances increase as the square root of frequency. As a consequence losses allow discriminating
the threshold of the oscillation regimes: in order to reach the twelfth, it is required to blow harder.
However, we had to avoid the fundamental regime during the attack, and this is possible thanks to
the register hole, which strongly lowers the first resonance and shifts its frequency.
27This law also applies to the even harmonics: there is a minor difficulty, because according to the
law, the second harmonic should be larger than the third, but this situation occurs for values of the
mouth pressure which are extremely close to the oscillation threshold. Thus we consider that this
result is not in contradiction with the ignoring of the even harmonics in Eq. (9.80) (see [76]).
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P3

P1

D �1

3

A � Y1

.A � Y1/ C .Y3 � Y1/
: (9.84)

• Several conclusions can be drawn:
• Because Eq. (9.77) is assumed to be valid, Y1 D Ym1 is real and the frequency

does not depend on Y3: When the second resonance is a perfect harmonic of the
first, Y3 also is real, but this is not the general case. For the different notes of
a clarinet the inharmonicity of the resonances has been studied in detail (see,
e.g., [32, 37, 86]). It is not large, because the various causes of inharmonicity
are partially mutually compensating. As a reminder the following factors are
influential: dispersion due to visco-thermal effects, temperature gradient, closed
or open tone holes, non-uniformity of the cross section, etc. The effect of
inharmonicity will be examined in Sect. 9.4.5.

• When the loss limit is approached, the admittances Y1 and Y3 vanish, and the
Helmholtz motion is reached [see Eq. (9.73)]; this is true also when losses are
independent of frequency (Y1 D Y3/:

• When the amplitude becomes large (A becomes large compared to Y1/, the
amplitude ratio converges to the result for the Helmholtz motion as well, because
the admittances Y1 and Y3 have the same order of magnitude. As a consequence,
the details of either the tube shape or the losses, i.e., the details of the pipe input
admittance have a minor influence far from the threshold.

• Near the threshold, the denominator is almost equal to Y3 � Y1 (the reader can
check that this is consistent with the power law, i.e., that P3 is proportional to
P3

1), and all details have a significant influence. For instance, the visco-thermal
dispersion leads to a complex Y3, thus the phase of P3=P1 is not � , as for the
Helmholtz motion.28

• The effective loss parameter is the ratio of the loss coefficient to the reed
parameter �, because A is proportional to the latter. If � is small (small reed
opening, stiff reed), the effect of losses, which increases with frequency, is
significant. Therefore there are few higher harmonics, in contrast to the case of
large �. This parameter has an effect on both the rapidity of the attacks (via the
coefficient A), and the spectrum.

28When Y3 is slightly larger than Y1, the relative amplitude of the third harmonic is approximately:

P3

P1

' � 1

3
.A � Y1/Z3:

So it is nearly proportional to Z3, which is small. For instance it is the case of a one-mode resonator:
its spectrum remains close to that of a sinusoid even at high levels [82]. Nevertheless even if the
conclusion were correct, the calculation would be inconsistent, because the even harmonics have
been assumed to be small compared to the odd ones. Here this is not true, for example, for the
second harmonic compared to the first one.
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• Another important aspect of the result (9.84) is that it does not depend on the
cubic coefficient of the nonlinearity. As a matter of fact it can be rigorously
proved from Eq. (9.80) that the shape of the signal, which depends on ratios
Pn=P1 only, as well as the playing frequency, depend on the coefficient A and
of admittances Yn only. This relativizes the importance of the accuracy of the
nonlinear model, except obviously for the amplitude, which crucially depends
on the coefficient C. This simplicity stems from ignoring the terms of degree
two (which are proportional to B) or higher in the polynomial F.p/: Yet this
approximation is rather good for a clarinet, at least when the reed does not beat.

9.4.4.2 Even Harmonics

Even harmonics remain to be calculated. They are very weak in the mouthpiece, but
relatively much stronger in the radiated sound field. After some calculation (details
are not given here), the solution of Eq. (9.79) is obtained

P2 D BZ2.P2
1 C 2P1P3 C � � � /: (9.85)

Notice that at the threshold the power law is satisfied. As expected, the amplitude is
proportional to the coefficient B of the quadratic term in the expansion (9.55) [76].
The nonlinearity plays an important role, as well as the input impedance near the
dips, and therefore as the shape of the mouthpiece is also influential.

9.4.4.3 Application to a Perfectly Cylindrical Tube

In what follows we apply the previous formulas to a perfectly cylindrical tube.
The coefficients A and C are written with respect to the excitation parameters �

and � [see Eq. (9.55)], and a model of losses is added. The threshold pressure �th

is known, thanks to Eq. (9.69): because ˛ is proportional to the square root of
the frequency, which is inversely proportional to the pipe length, the correction
factor in comparison to the lossless case (1=3) is proportional to the square root
of the length. This implies that if the tube length increases, the pressure threshold
increases. We need to blow harder in order to obtain a sound. Another reasoning is
the following: for a given mouth pressure � , a length threshold exists, beyond which
no oscillations are possible. Losses need to be diminished, by choosing a wider tube.
This is one reason explaining why bass instruments require wider diameter. This
issue was discussed in Chap. 5, Sect. 5.5.3.3. Concerning the amplitude of the first
harmonic, a similar calculation can be made. Because Ym1 D Ath, it is found that
Ym1 � A D 3

p
3�.�th � �/=2 and:

P2
1 ' 2

3
.� � �th/: (9.86)
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For the third harmonic, by writing Y3 D Ym1

p
3, the following result is obtained.

P3

P1

' �1

3

� � �th

� � �th C 0:28˛`=�
: (9.87)

Finally, for the second harmonic, the impedance Z2 D ˛.2!1/` is very small,
because it is at a minimum, and we get

P2

P1

D �Z2�
3

2
p

2

p
� � �th

�
1 C 2

P3

P1

C � � �
	

: (9.88)

Here the losses involve the product of ˛ and �, and not their ratio as for the
harmonic 3. Figure 9.16 shows experimental results in two forms, and exhibits the
two ranges of amplitude for the odd harmonics. In the first range, their amplitude
compared to that of the first harmonic grows according to the power law, while in
the second range the amplitude is almost constant. For the harmonic 3, Eq. (9.87) is
qualitatively verified. Many similar results can be found in [10]. Notice that at high
level, the reed beats and the previous calculations are no longer valid.
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Fig. 9.16 Experimental results for a cylinder (four first odd harmonics) [89]. The left plot shows
the amplitude ratios P2nC1=P1 as a function of the excitation pressure. The stabilization of the
amplitude occurs at an amplitude level which is lower than that for a square signal, which would
be 1=.2n C 1/ (i.e., in dB �9:5, �14, �17, �19, respectively). The scale for the mouth pressure
pm is in mbar. The right plot is an equivalent representation of the same results, which uses as an
abscissa the amplitude (in dB) of the first harmonic. This representation is due to Benade [10], and
provides a clear representation of the power law near the threshold
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9.4.4.4 External Spectrum: Some Simple Consequences for a Cylinder
at Low Frequencies

Lossless Model

At low frequencies the far-field radiated pressure pext is obtained by using a simple
formula which will be detailed in the fourth part. We examine the case of a
cylindrical open pipe without toneholes, which radiates in an omnidirectional way,
i.e., as a monopole. The pressure pext is proportional to the time derivative of the flow
rate at the output, with a delay of D=c, if D is the distance of the considered point
to the tube output. According to the lossless model we used (square signals), the
output pressure is zero, therefore pC

` D �p�̀, and the output flow rate is u` D 2pC
` :

Knowing how to calculate the outgoing wave at the input, we simply translate it by
`=c to obtain it at the output. Because the outgoing wave at the input is the half-sum
of the pressure and the flow rate, the output flow rate is

u`.t/ D p.t � `=c/ C u.t � `=c/,

and, because in the lossless model the input flow rate is a constant, the external
pressure is deduced as follows:

pext / du`

dt
D dp.t � `=c/

dt
:

The interpretation of this result is easy, because for a plane wave the density of total
acoustic energy in a slice of air does not depend on x: because there is no potential
energy at the output and no kinetic (acoustic) energy at the input, the output flow
rate is proportional to the pipe inlet pressure. Instead of a square signal, the far-field
radiated pressure signal is a series of Dirac peaks which are alternately positive
and negative. This is shown in Fig. 9.17. Concerning its spectrum, the ratio of the
complex amplitude of the harmonics to that of the first one is Pext;2�C1=Pext;1 D 1,
instead of .�1/�=.2 � C 1/ [see Eq. (9.73)] for the internal spectrum.29

Model with Losses

When losses are taken into account (but not the dispersion), the transfer function
is U`.!/=P.!/ D 1=j sin.k � j˛/` [see, e.g., the matrix given by Eq. (4.28)]. The
external pressure is proportional to !P.!/= sin.k � j˛/`; a delay function apart.

29This result is obtained for pext which is proportional to du`=dt: However, because of the delay due
to the distance from the tube, the relative phase varies, and therefore the main conclusion concerns
the real amplitude (i.e., the modulus of the complex amplitude): the ratio of the real amplitudes is
1 instead of 1=.2� C 1/: Notice that the Fourier Transform of ı.t � `=c/ is exp.�j!`=c/, thus for
! D .2� C 1/!1; it is .�1/�:
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Fig. 9.17 Sound of a cylindrical tube with a clarinet mouthpiece: the internal pressure (on the
left) is a rounded square signal (see also Fig. 9.12), the radiated pressure (on the right) is roughly
the derivative of the previous one, because the monopole radiation at the end of the tube implies
a derivative of the output flow rate, and because the latter signal is a square signal (in the
lossless approximation). The time-frequency spectrograms (bottom figures) show that the first
harmonic appears first, and confirm that the external sound is much richer in harmonics than the
internal sound. The weakness of the even harmonics is also clear. Notice that the duration of the
spectrogram is much longer than that of the signal

For odd harmonics H2�C1, we write sin k` D .�1/� . Thus by neglecting the terms
of order 2 in ˛`, the complex amplitude with respect to that of the first harmonic is
found to be equal to unity. Finally the expression (9.87) has to be multiplied by 3

and the modulus gives the result for the external pressure. For even harmonics, the
situation is slightly more complicated (remind that their amplitudes are zero when
losses are ignored). Limiting the calculation to the second harmonic:

ˇ̌
ˇ̌Pext;2

Pext;1

ˇ̌
ˇ̌ D 3p

2
�
p

� � �th

�
1 C 2

P3

P1

C � � �
�

: (9.89)

Compared to the internal spectrum, the value given by Eq. (9.88) is divided by Z2=2:

Curiously the harmonics 2 seems not to vanish with vanishing losses! In fact the
factor in bracket is an infinite series depending on the odd harmonics of the internal
spectrum, and we need to consider more and more terms when going far from the
threshold. . . or when losses tend to zero. The Helmholtz motion in square signal
does not produce even harmonics, but inversely if a signal is poor in harmonics, the
even harmonics are relatively strong, as shown in Fig. 9.18.
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Fig. 9.18 Spectrogram of a clarinet chromatic scale (external pressure). The quasi absence of even
harmonics is observed for lower notes. For higher notes their appearance is linked to the fact that
the signal becomes less rich in harmonics, therefore differs from a square signal [see Eq. (9.89)].
One observes that frequencies below 1800 Hz are globally stronger than above this frequency.
This corresponds to what Benade [10] called the cutoff frequency, due to the tonehole lattice (see
Chap. 7)

9.4.5 Variation of the Playing Frequency
with the Excitation Level

With the lossless model, the frequency is independent of the excitation level. In
practice, it slightly varies. There are several causes, such as the reed dynamic, the
flow rate due to the reed displacement, the effect of the vocal tract. This allows the
player adapting the tuning with respect to what he hears, in a more or less efficient
way. In this section a single cause is treated, the inharmonicity of the resonance
frequencies. We limit the study to the steady-state regime. For this purpose we use
the relationship obtained by Boutillon [18], which is related to the reactive power. It
assumes that a nonlinear, quasi-static relationship exists between the input pressure
and flow rate. Thus the reed is assumed to be without dynamic, like a massless
spring, according to the model used since Sect. 9.3. In the steady-state regime, with
a period T , it can be written as:

Z tCT

t
udp D

Z tCT

t
F.p/

dp

dt
dt D �

F.�1/.p/
�p.tCT/

p.t/ D 0, (9.90)

where F.�1/.p/ is the integral of F.p/: If !p is the playing frequency, by using
the expansion (9.72) and calculating the average of the product of two complex
quantities (see Sect. 1.3 of Chap. 1), the following result is found:

Z
udp D 4�

X

n>0

n jPnj2 =m.Yn/: (9.91)
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This quantity is related to the reactive power [see Eq. (1.129)], i.e., to the derivative
of the fluctuating power with respect to frequency. Therefore:

=m.Y1/ C 3

ˇ
ˇ̌
ˇ
P3

P1

ˇ
ˇ̌
ˇ

2

=m.Y3/ C 5

ˇ
ˇ̌
ˇ
P5

P1

ˇ
ˇ̌
ˇ

2

=m.Y5/ C � � � D 0: (9.92)

The advantage of this equation30 is to provide a relation between frequency variation
and the spectrum.

Denoting !1 the frequency of the first impedance peak, the other peaks are
assumed to be at frequency !n D n!1.1C�n/, where �n measures the inharmonicity.
The playing frequency is sought in the form: !p D !1.1 C "/: The input admittance
is given by Eq. (9.66). We assume that for a frequency !n close to a resonance a
single peak intervenes, thus for ! close to !n [see Eq. (2.39)]:

=m.Y/ D 2
! � !n

Fn
, with Fn D !nZMn=Qn: (9.93)

For the frequencies !p and n!p, at the first order in " and �n, we obtain

=m.Y1/ D 2"!1=F1 ; =m.Yn/ D 2n!1." � �n/=Fn: (9.94)

For a perfect cylinder, the modal coefficients Fn D 2c=` are independent of n. If the
cylinder is not perfect, the coefficients are assumed to remain independent of n at
the first order of the perturbation. Using Eq. (9.92), we obtain

" D 

1 C  0 where  D
X

n�3

n2�n

ˇ̌
ˇ̌Pn

P1

ˇ̌
ˇ̌
2

and  0 D
X

n�3

n2

ˇ̌
ˇ̌Pn

P1

ˇ̌
ˇ̌
2

: (9.95)

Near the threshold, Pn=P1 is very small, and " vanishes. On the other hand,
when we move away from the threshold, the influence of inharmonicity becomes
significant. Let us consider the harmonics 1 and 3 only. In the extreme case where
jP3=P1j D 1=3, the result would be the following:

" D �=2: (9.96)

This result provides an order of magnitude of the effect of inharmonicity, but
obviously it is an approximation, because the harmonics of order higher than 3

are ignored. This is correct near the threshold only. Moreover the ratio 1=3 was
not observed for a cylindrical pipe. For jP3=P1j D 0:2; (this value seems to be
encountered in practice), the result is " D 0:26�3: As a conclusion, if the second

30This equation is not an extra equation in addition to the equations harmonic balancing. The reader
can check that, when limited to harmonics 1 and 3; it directly comes from Eqs. (9.81) and (9.82).



9 Reed Instruments 519

resonance frequency is 20 cents31 too high (resp. too low) with respect to the
first one, the frequency increases (resp. decreases) by around 10 cents during a
crescendo. This order of magnitude is roughly confirmed by experiment, especially
for a perfect cylinder, where inharmonicity is due to visco-thermal dispersion: the
playing frequency increases with the excitation level. However, very close to the
threshold the reed damping plays a predominant role and the frequency starts by
decreasing, then increases [75, 89].

• Inharmonicity influences the playing frequency and more generally the self-
sustained oscillation [87]. Benade [10] cited Bouasse [17, p. 91], who correctly
felt the nonlinear character of the oscillation: “the sustaining of the wave is
made easier by the coincidence of the harmonic q of the pressure system due
to the puffs with the partial N D qn of the tube. Correlatively the puffs become
more intense and regular: the reed is stabilized for the frequency n.” Harmonicity
ensures the stability of the frequency when the level is changed, and if the
peaks are of similar height, a too strong inharmonicity can lead to quasi periodic
regimes (see, e.g., [56]). This phenomenon is a cause of the “wolf note” for the
cellos (see Chap. 11). For the instrumentalist the quality of the different notes
appear to be unequal. It is furthermore probable that harmonicity is an important
element of the ease of playing.

In particular a periodic sound can be produced with a very low input impedance
at the playing frequency, when the harmonics correspond to impedance peaks. Some
specific cases are particularly interesting: the “pedal” sounds of brass instruments
(their first harmonic is shifted with respect to the other harmonics, see Chap. 7).
It is possible to produce a sound the frequency of which is the half of that of the
second peak, because the resonance frequencies 3, 4, 5, etc., are harmonics of this
frequency. More generally periodic “multiphonic” sounds can be produced: their
frequency is generally very low, because it is the highest common factor when it
exists [25]. For the point of view of perception, some sounds can have an almost
vanishing at the fundamental frequency and many harmonics, and the perceived
pitch corresponds to the inverse of the period. Furthermore various multiphonic
regimes can be obtained on wind instruments, such as quasi-periodic, or chaotic
regimes (as already mentioned) [38, 39, 107].

9.4.6 Beating Reed and Sound Extinction

9.4.6.1 Lossless Model (Steady-State Regime)

Up to now we considered that the reed does not beat, thus we supposed that the
nonlinear function (9.30) is limited to low pressures. We used Eq. (9.31), or its
simplified version (9.55). If the reed is allowed to beat, Eq. (9.32) needs to be used as

31The cent is the hundredth of a semi-tone. The latter corresponds to a frequency ratio of 21=12 D
1:05946; therefore the cent is a difference of 0:06 % in frequency.
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well. This beating-reed model (see Sect. 9.2.5.2) is a rough approximation because
in practice the closure is not sudden and the non-beating range becomes larger.
Nevertheless it gives interesting results when they are compared to experiments.
If it is assumed that a clarinettist plays as often with a non-beating reed as with a
beating reed (see for a discussion [12]), the reader may be surprised by the treatment
imbalance for these two types of functioning. A lot of work remains to do in order
to understand the beating reed oscillation. It is actually the main operating mode
of conical reed instruments (this will be seen hereafter). For a beating reed, all the
analysis of small oscillations becomes useless.

We limit the analysis to the two-state approach for the steady-state regime,
considering first a lossless resonator, then discussing a more general model with
frequency-independent losses. We consider first the static regime: it occurs for p D 0

because the input impedance at zero frequency is assumed to be zero, and this
implies � > 1 for the dimensionless mouth pressure. For a mouth pressure higher
than the closure pressure, the reed closes the mouthpiece: it is our definition of the
closure pressure pM . The stability of this regime is not discussed here, because the
discussion should be rather long and the stability is intuitively understood. Now we
search for the oscillation regime in the same way as in Sect. 9.3.3.4: because the
mean pressure is zero, we search again for two opposite values of the two states:
˙p1, with constant flow rate. If the reed beats for p D �p1, the flow rate vanishes
and, following Eq. (9.32), this implies

p1 � 1 � �: (9.97)

Equation (9.60) shows that the flow rate is constant, thus it also vanishes while the
reed is open. If the reed was beating for both p D p1 and p D �p1, the regime
would be the static regime). Thus, after Eq. (9.31):

p1 D �: (9.98)

So the reed does not close for the positive mouthpiece pressure and beats for the
negative one, because of the large pressure difference pm �p between the mouth and
the mouthpiece. The condition for this regime is given by Eq. (9.97):

� > 1=2:

This solution32 is illustrated in Fig. 9.19. This extremely simplified functioning
can be described as follows: during one half-period, the mouthpiece pressure is
opposite to the mouth pressure and the reed is closed, while during the other half-

32This solution can be easily shown to be stable whatever the value of � is [91]. So, if the pressure
increases with a non-beating reed, yielding several frequency divisions (see Sect. 9.3.3.6), then
frequency multiplications occur in order to retrieve the normal frequency when the reed starts to
beat (see [73]).
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Fig. 9.19 Bifurcation schemes for the Raman model. Top: ˇ1 D 0:1, inverse bifurcation at the
extinction; bottom: ˇ1 D 0:5 (very small reed opening), direct bifurcation. The reader can compare
with Fig. 9.15 (experimental result)

period, it is equal to the mouth pressure and the flow rate vanishes (no pressure
difference). This behavior can produce large sound levels in the mouthpiece, as
explained in the introduction (Sect. 9.2.1).
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9.4.6.2 “Raman Model” with Losses

A major drawback of the lossless model lies in the infinite increase of the acoustic
pressure when the blowing pressure increases [see Eq. (9.98)]. A simple model can
remedy this difficulty [35]: considering frequency-independent losses keeps square
signals but allows finding a good agreement between experiment and model for
the bifurcation schemes. This model is called “Raman model” by analogy with
the model of bowed strings which was studied by the great Indian physicist at the
beginning of the twentieth century. Writing the solution of the wave equation with
damping in the form:

P D PCe�˛xe�jk` C P�e˛xejk`,

and assuming a zero pressure at the output, it is found that the reflection coefficient
at the input is R D P�=PC D �e�2˛xe�2jk`. The input impedance reduced by the
characteristic impedance Zc is given by:

Z D j tan.k � j˛/`: (9.99)

Resonance frequencies are unchanged by damping and all input impedance maxima
are equal to Zmax D 1= tanh ˛`, while minima are Zmin D tanh ˛`: The modal
expansion (9.66) remains valid. It is possible to generalize the previous study of
square signals, including the graphical method for building the solution. Exact
calculations, which generalize the approach of Sect. 9.3.3, are tedious [35]. A sig-
nificant simplification is obtained when the input impedance at zero frequency is
assumed to be zero (instead of Zmin). Then the static regime remains p D 0. For
the instability threshold, it is not useful to make the calculation because the formula
A D Y1 given by the one-mode approximation remains valid, as well as Eq. (9.69).
This is actually valid whatever the frequency dependence of the damping ˛ is.
When the blowing pressure increases the threshold of period doubling can be found;
however, for a significant damping this threshold is larger than that of beating reed
for the oscillation regime. As a consequence the rather large losses in real cylindrical
instruments explains why it is very difficult to produce a period doubling.

• Now we consider the behavior of the Raman model when the reed beats. In
steady-state regime, because Z.0/ D 0, the two states (i.e., open reed and closed
reed) are opposite. We write them again: ˙p1 and expand the square signal into
(odd) harmonics. For each of them the corresponding flow rate is deduced from
the admittance 1=Zmax; then the oscillating part is ˙p1=Zmax. A constant (dc)
flow rate denoted u0 has to be added. Using Eq. (9.30), if �p D � � p1, we find
the steady-state regime:

u0 C p1=Zmax D �.1 � �p/
p

�p with 0 < �p < 1;

u0 � p1=Zmax D 0 with 1 � � � p1 < 0 or �p � 2� � 1: (9.100)
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Hence:

2ˇ1.� � �p/ D .1 � �p/
p

�p, (9.101)

with ˇ1 D tanh ˛`=� ' ˛`=�: (9.102)

We confirm that the loss parameter intervenes via the ratio ˛=�. The threshold
of beating reed is given by �p D 2� � 1, therefore � D .1 C ˇ2

1/=2. It is slightly
modified by the losses if ˇ1 is small. Moreover by solving33 Eq. (9.101), it can be
shown that: if � is lower than 1, there is always a unique solution, and it can be
proved to be stable. But if if � is higher than 1 when the mouth pressure is large,
there are two possible cases:

• either ˇ1 <
1

2
: there are two solutions, one is stable, and the other one is unstable

if � is lower than the extinction threshold given by �extinc ' 1
3

h
1 C 1

ˇ1

p
3

i
, while

there is no solution if � > �extinc (as expected this threshold tends to infinity
when losses tend to 0).

• or ˇ1 >
1

2
: there is no solution.

Figure 9.19 shows the two cases: the first one corresponds to an inverse bifurca-
tion at extinction, with hysteresis. For � > 1, when forcing the breath, the pressure
increases following the (stable) upper branch, then diminishes. Then the oscillating
solution disappears abruptly and the static solution is retrieved. When the breath is
diminished anew, the static solution is kept up to � D 1, where there is a jump to the
upper oscillating branch. The maximum pressure, or saturation pressure is obtained

for �sat ' 1
3

h
1 C 1

ˇ13
p

3

i
: It is undoubtedly the most usual case.

The second case shows a direct bifurcation at extinction, which is a remarkable
result: it is possible to play pianissimo at extinction also, by pinching strongly the
reed! This technique is used by some instrumentalists, who reduce the reed opening
and therefore the parameter �. Comparisons with experiment give excellent results
[30], especially when nonlinear losses are taken into account at the various openings
(see Chap. 8, Sect. 8.4.5), by using cd as a fitting parameter. As a conclusion, the
Raman model gives very interesting results, although the pressure signals are square
signals.

9.4.7 Miscellaneous Considerations About
Clarinet-Like Instruments

In the present chapter we did not treat the reality of the resonator geometry, with
toneholes, changes in cross section, etc. As noted earlier, there is an average

33Equation (9.101) can be graphically solved, by seeking the intersection of the straight line
corresponding to the left term with the function defined on the right-hand side and depicted
in Fig. 9.9.
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compensation of the action of the different elements resulting in a reduction of
inharmonicity [32, 37]. When toneholes are open, one could think that the existence
of cutoff frequency hampers the oscillations because the higher order peaks become
low. The reduction of the compass is effective because it is difficult for the
fundamental frequencies to be higher than the cutoff (from experience, players know
that it is easy to obtain higher order regimes for the note with all holes closed,
while it is more difficult for the other notes). But the dominant feature is that at low
frequencies the effective length of the tube is shorter when opening the toneholes,
thus the threshold diminishes and the oscillations become easier.

Another possibility for easing the oscillations is the use of the vocal tract: the
two resonators are in series. If the player manages to have resonances of the vocal
tract at medium frequencies, he can act on the tuning and tone color. Moreover
he can reinforce the even harmonics of the sound, which do no longer correspond
to impedance minima and can have an effect on the playing frequency (via the
inharmonicity). This topic was recently investigated, and some aspects remain open.
So a difficult question can be asked: what physical quantity can be regarded as a
source, e.g., as imposed by the player? Up to now we assumed that it is the mouth
pressure, assumed to be uniform. On this topic, we refer to the following references
[26, 27, 52, 53, 63, 65, 97, 103, 120]. Another important subject is the role of the
reed dynamics, that we have completely ignored up to now. We will include it in
Sect. 9.5.

Finally we mention the problem of the measurement of the input impedance,
considering the complicated geometry of the mouthpiece. The matching between a
turbulent jet and an acoustic field is extremely complicated (see, e.g., [100]). Even
when exciting the mouthpiece by an acoustic source at its output, the acoustic field
is not planar, and cannot be characterized by a unique quantity such as the input
impedance. Moreover the reed excite the mouthpiece on its side, therefore produces
evanescent modes. The general solution chosen by several authors is to replace the
mouthpiece by a cylindrical tube having the same volume, with a cross section are
equal to that of the mouthpiece output. The first advantage is to be able to compare
with plane-wave models of the input impedance. The second advantage is that near
the first impedance maximum, the effect of the mouthpiece depends on its volume
only, thus the results of the theoretical models of the nonlinear coupled system
can be rather reliable. However, this is not true for the impedance minima, and
more generally at higher frequencies, when the mouthpiece cannot be regarded as
a lumped element. Notice that this difficulty can be anyway of minor importance
when compared to the effect of the vocal tract. Remember that a one-dimensional
model is a great simplification.

9.4.8 Conical Reed Instruments

The resonator of conical reed instruments such as the saxophone has been studied
in Chap. 7. They are truncated cones, and have a mouthpiece similar to that of a
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clarinet, but their resonators are very different from an acoustical point of view.
Oboes and bassoons have a double reed with a nonlinear characteristic which
slightly differs from that of single reeds (see Sect. 9.2.5.2), but what follows deals
with both single and double reed instruments. Indeed it appears that the shape of
the resonator plays a predominant role. As an illustration it is possible to buy a
mouthpiece of sopranino saxophone type adapted to the bassoon, and it is noticeable
that the sounds are rather similar to those normally obtained with a double reed [61].
For the lowest notes of a conical pipe, the first impedance peak is lower than the
second. Furthermore the second peak corresponds more or less to the octave instead
to the twelfth.

The resonance frequencies are approximately a complete series of harmonics (see
Chap. 7). The Helmholtz motion (HM) is also for conical instruments an interesting
approximation of the pressure signal (except near the oscillation threshold). We will
see that the signal is a “rectangle signal,” with a duration ratio of the two states equal
to the length ratio of the missing cone (due to the truncation) and the truncated cone
(see Fig. 9.20).

In comparison with cylindrical instruments, one supplementary parameter is
needed, e.g., the apex angle, which makes the problem far more difficult. The
approach without losses leading to two-state signals implies one more approxima-
tion: the length of the missing cone needs to be much smaller than the wavelength.
This hypothesis is paradoxical for a rectangle signal which is rich in high harmonics!
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Fig. 9.20 Periodic signal of barytone saxophone, and the approximation by a rectangle signal.
The signal is the internal pressure for two notes, which are the lowest and the highest of the first
register. The state of negative pressure, which corresponds to a beating-reed, is common to the two
notes
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Moreover the “small oscillation” approach as well as the variable truncation method
is not of much interest because the bifurcation at low mouth pressure is inverse. This
remarks explain why many problems remain open.

9.4.8.1 Small Oscillation Solution (with Losses)

At the instability threshold of the static solution, it has been seen that oscillations
can start (linearly) and are quasi sinusoidal. If the impedance of the second peak is
higher than that of the first, the first oscillation threshold is that of the octave regime,
not that of the fundamental one. This explains why it is difficult for beginners
to play the fundamental regimes. Going further, we consider the nonlinearities in
steady-state regime, using the harmonic balance for small oscillations in order to
find the existence threshold of the oscillating solution [we refer to the explanation
accompanying Eq. (9.83)]. Equations (9.74) and (9.75) have to be solved without
hypothesis with respect to even and odd harmonics. The “small oscillation” solution
is written as34 [60]:

P2
1 D Y1 � A

3C C 2B2

Y2�A

D .Y1 � A/.Y2 � A/

3C.Y2 � A/ C 2B2
(9.103)

P2 D BP2
1

Y2 � A
: (9.104)

For the clarinet, Y2 is very large, Y2 > Y1, and the result (9.77) is obtained, as well
as Eq. (9.85) for small oscillations.

We start the investigation with a case simpler than that of the lowest notes: the
case of higher notes for which the second peak is smaller than the first, but has
the same order of magnitude. Now Y2 is larger than Y1; but remains small: the
second term of the denominator of Eq. (9.103) is the larger term (the term in C
can be ignored). In order to find a solution, it is necessary for P2

1 to be positive.
Thus A needs to be either smaller than Y1 or larger than Y2 (here we assume that
the two resonance frequencies are harmonic, therefore the two admittances are real
for the playing frequency). Starting away from the oscillation threshold A D Y1, the
solution P2

1 only exists if A < Y1. The case is similar to the case of a clarinet for
which C would be positive, implying an inverse bifurcation (see Fig. 9.14). Close
to the threshold, the oscillating solution is unstable. The existence of a subcritical
threshold can be shown. Above this threshold the oscillation becomes stable (an
example is shown in Fig. 9.21). When the blowing pressure (like A) increases from
0, there is a jump at the threshold A D Y1 to a finite value of the amplitude, while
when the blowing pressure decreases, the player can reach the subcritical threshold,
where he jumps back to the static regime.

34The series is truncated to harmonics 1 and 2 (and �1 and �2), and the harmonic 0 (dc
component) is negligible because the input impedance at zero frequency is very small. For small
amplitudes the influence of the higher harmonics is of higher order in P1:
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Fig. 9.21 Helmholtz motion for a cylindrical saxophone. The right plot shows for different values
of ˇ the values of the pressure during the long state pL with respect to the mouth pressure �: The
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N is related to ˇ by ˇ D 1=.1 C N/. The asterisk indicates the beating thresholds. The left plot
depicts a zoomed view for N D 1 and 2: the bifurcation is direct for N D 1 and inverse for N D 2.
The arrow indicates the subcritical threshold at � D 0:28

Therefore there is a hysteresis. It is not possible to play pianissimo, and it is easier
to play with a low amplitude, when playing decrescendo than playing crescendo (if
it is assumed that the player modifies the mouth pressure only). Figure 9.21 (left)
shows an example of inverse bifurcation for a cylindrical saxophone, treated in the
next sections.

In the case where the admittance Y2 is smaller than the admittance Y1; which
is the general case for lower notes, the fundamental regime can exist with small
oscillations only if A < Y2, and it is still unstable (but the octave regime can
exist and be stable), or if A > Y1: however, for the latter case it can be shown
that the regime is the inverse HM, discussed in the next section. The important
feature is that the octave regime is favored. The previous discussion analyzed the
phenomena occurring when there is a maximum input impedance at the double
frequency, instead of a minimum as for the case of a clarinet.

9.4.8.2 “Cylindrical Saxophone”, Statement of the Problem

Coming back to the lossless approximation, it is possible to go slightly further. On
the one hand if losses are ignored, the two thresholds A D Y1 or Y2 are equal
[see Eq. (9.103)], and information is lost; on the other hand, if a supplementary
approximation is added, results about the amplitude can be found. Figure 9.20 shows
that the internal sound of a saxophone can be loosely approximated by a rectangle
signal, and this gives the idea to seek an analogy with the bowed string, which is
studied in Chap. 11. For that purpose, it was seen in Chap. 7 that considering the
natural frequencies, an approximation of the diverging cone is a cylinder of length
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` C x1 open at the two ends, called “cylindrical saxophone”. x1 is the distance of
the input of the truncated cone to its apex, and it is assumed to be small compared
to the wavelength [see Eq. (7.88), and Fig. 7.10]. So, when losses are ignored, the
input admittance is written as:

Y D S1

�c

�
1

jkx1

C 1

j tan k`

�
or (9.105)

Y ' S1

�c

�
1

j tan kx1

C 1

j tan k`

�
: (9.106)

Formula (9.106) is analogous to the mechanical impedance of a string at the
location of the bow (see the table of Sect. 1.6 of Chap. 1). The two ends of the
string are in series, with the same velocity at the bow position. For the cylindrical
saxophone, the two ends, of length ` and x1, are in parallel, with the same pressure
at their input, where the reed is located. As a first approximation, this equivalence
between a conical tube and a cylindrical one remains valid for any length `, and
for any effective length when holes are open. In what follows, we make an analysis
similar to the one we have made for the clarinet in Sect. 9.3.3. As far for the clarinet,
we will not obtain much information about the spectrum, because we ignore the
losses, as for the clarinet, and in addition we assume the length x1 to be small
compared to the wavelength (notice that this is wrong for higher harmonics). But
many phenomena can be explained thanks to this simplified model,35 that was
proposed for the first time by Gokhshtein [59].36

Thus we seek a periodic solution of period T D 2L=c, where L D ` C x1.
The pressure and the flow rate have the frequencies fn D nc=2L as only possible
components, and they satisfy sin kL D 0 (this can include the dc component). We
will now investigate a particular solution, the Helmholtz motion. Beforehand we
propose an analysis of the different possible solutions, for the interested reader.

35With this model, a clarinet is not analogous to a bowed string, because this should imply an
infinite value for x1. However, if a cylinder is excited at its middle, the two ends of the tubes play
the same role, thus a clarinet is equivalent to a cylinder of double length, excited at its middle and
having a half cross section. This can be checked by using Eq. (9.106) with ` D x1:
36Dalmont [31] showed that a step cone built with N cylindrical pipe segments of equal length x1

and cross section sn D n.n C 1/=2 (where the integer n is the rank order of the cylindrical segment
and sn its cross-section area) has the same admittance [Eq. (9.106)] as a cylindrical saxophone of
cross-section area S1 D s1=2 when ` D Nx1. Their realization is easier than that of a cylindrical
saxophone, but is limited to the condition of integer `=x1. It is the reason why these instruments
allow studying the Helmholtz motion in a precise way [90, 91]. It is noticeable that bamboo
“saxophones” exist with a geometry approaching that of such step cones.
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Different Possible Solutions
In order to study the different possible solutions, we rewrite Eq. (9.106) in the
form:

U.!/ sin kx1 sin k` D P.!/ sin kL.

The inverse Fourier Transform of this expression is Eq. (4.65), if the analogy
between stringed instruments and reed instruments is used. For frequencies fn,
equations sin kL D 0 and sin k` D �.�1/n sin kx1 are valid. It is deduced that
the corresponding components of the flow rate vanish, except if sin kx1 D 0,
i.e., for fm D mc=2x1, where m is another integer. Now fm can belong to
frequencies fn, thus x1=L D m=n (all integer values of m are not possible).
This implies

• either the ratio ˇ D x1=L is a rational number, and the flow rate can
have non-zero components for frequencies mc=2x1 such as m D nˇ. For
instance if ˇ D 2=5, the pairs .m; n/ D .2; 5/; .4; 10/, etc. are possible.

• or m D n D 0, and a priori the dc component of the flow rate does not
vanish whether ˇ is rational or not. If ˇ is irrational, the dc component of
the flow rate is the only non-zero component.

For the pressure, the component fn vanishes if sin kx1 D 0: this can happen
only if ˇ is rational, or if n D 0: As a summary:

• ˇ is irrational, and the pressure involves all harmonics fn, except the
continuous component; the flow rate is continuous (in particular when it
vanishes at every time, i.e., when the reed beats!).

• ˇ is rational, and the pressure has all harmonics fn except harmonics fm
(they are called “missing harmonics”) and among the harmonics fn the flow
rate has the harmonics fm only. Then the flow rate is periodic with the
period 2x1=c or a submultiple which remains compatible with the period
of the solution, 2c=L (if a signal is periodic with period T , it is also periodic
with period pT , where p is any integer).

Therefore numerous solutions to our problem exist. A simple particular case
is that where the solution has two states only. For instance the pressure has
a negative value pS during a time TS D Q̌T , and a positive value pL during
a time TL D .1 � Q̌/T . The flow rate also has two states, because its values
are related to those of the pressure through the nonlinear reed characteristics.
If we subtract the dc component, the flow rate is proportional to the pressure,
and its spectrum is proportional to the pressure spectrum. It has been seen that
if ˇ is irrational, the flow rate is continuous, with two equal states, similarly
to the behavior of a clarinet. Conversely if ˇ is rational, both the flow rate and
the pressure have harmonics fn except harmonics fm; but the flow rate cannot

(continued)
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have other harmonics than fm, thus in this case it is continuous as well. A
more straightforward proof of this result is the following: the mean pressure
vanishes, thus Q̌pSC.1� Q̌/pL D 0 (remind that the indices L and S correspond
to long and short, respectively); on the other hand because the losses are
ignored, the injected power needs to vanish, thus: Q̌pSuSC.1� Q̌/pLuL D 0 and
uS D uL. We still need to find the possible values of Q̌, for a stable or unstable
solution. If ˇ is irrational, any value is possible, but if ˇ is rational, there is
a limitation because the harmonics fm are absent of the spectrum: we need to
choose a value of Q̌ which suppresses these frequencies in the spectrum. This
topic has been investigated by several authors [28, 119].

9.4.8.3 The Particular Case of the Helmholtz Motion

A particular solution was discovered by Helmholtz. It is called “Helmholtz motion”
(HM), which describes the motion of a bowed string that players normally seek. In
this case the division Q̌ D Ts=T of the period is equal to the division ˇ D x1=L of
the length of the instrument, either a bowed string or a cylindrical saxophone. This
case is shown in Fig. 9.20. Because the flow rate is constant, the two states of the
pressure satisfy

F.pL/ D F.pS/; (9.107)

ˇpS C .1 � ˇ/pL D 0: (9.108)

We choose the function given by Eq. (9.31). When the reed does not beat, we have

F2.p/ D F2
0 C A2p C B2p2 C C2p3, where F0 D �.1 � �/

p
� ; (9.109)

A2 D �2.1 � �/.3� � 1/I B2 D �2.3� � 2/I C2 D ��2: (9.110)

(it can be noticed that B2
2 D �4 C 3A2C2/: In the useful range of mouth pressure

� A2 is either positive or negative, and B2 and C2 are negative. The flow rate being
constant, we find

A2.pL � pS/ C B2.p2
L � p2

S/ C C2.p3
L � p3

S/ D 0: (9.111)
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The solution pL D pS is trivial: it is the static regime, because Eq. (9.108) implies
pL D pS D 0. The final result for the oscillating solutions is the following37:

pL̇ D 2ˇ

1 C 3�2

�
.2 � 3�/� ˙

p
�2 C .1 � �/.3� � 1/

�
(9.114)

pṠ D �2.1 � ˇ/

1 C 3�2

�
.2 � 3�/� ˙

p
�2 C .1 � �/.3� � 1/

�
(9.115)

where � D TL � TS

TL C TS
D pS C pL

pS � pL
D 1 � 2ˇ: (9.116)

The parameter � does not intervene: it intervenes in the value of the flow rate only.
Thus there are two different oscillating solutions: one with a pressure pL, which
increases with the blowing pressure � (sign C), the other one with a decreasing
pressure (exponent �). An important value of � is what it is called the subcritical
threshold �sc for which the two values pL̇ are equal, as well as the values pṠ (the
argument of the square root vanishes):

�sc D 2

3

h
1 �

p
1 � 3ˇ C 3ˇ2

i
' ˇ

�
1 � ˇ

4
C O.ˇ2/

	
: (9.117)

These results are valid when the reed does not beat. When it beats, the flow rate
needs to vanish for two different values of the pressure, therefore one is � and the
other one is lower than ��1: Using (9.108), and the signs C and � for the increasing
and decreasing functions of pL, we obtain

if pC
L D � , pC

s D �.1 � ˇ/�=ˇ; this implies: � > ˇ (9.118)

if p�
s D � , p�

L D �ˇ�=.1 � ˇ/; this implies: � > 1 � ˇ: (9.119)

Figure 9.21 shows the solutions pL for different values of ˇ. Some comments can be
added

37Starting from (9.111) for pL ¤ pS, the solutions satisfy

A2 C B2.pL C pS/ C C2

�
3

4
.pL C pS/2 C 1

4
.pL � pS/2

�
D 0: (9.112)

This equation is solved for the unknown  D pL C pS, then, because pL D �ˇ=�, it is found:

p˙

L D � 2ˇ

C2

1

1 C 3�2

�
�B2� ˙

q
�2.B2

2 � 3A2C2/ � A2C2

	
: (9.113)

For the polynomial function (9.55), the expression is exactly the same, if the subscript 2 is
suppressed in the coefficients, and the above result can be easily used in both cases.
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• For the clarinet, � vanishes, and the result becomes very simple [Eq. (9.62) is
found].

• For conical instruments, ˇ is small and the subcritical threshold (9.117) is very
close to the beating reed threshold ˇ: such instruments are expected to function
mainly with a beating reed.

• This is true for positive values of pL: the solution is the standard HM, analogous
to the usual solution for bowed strings, and an inverse bifurcation prevails. The
result of the previous section is confirmed.

• For negative values of pL, the HM is “inverse.” It seems to be produced with a
direct bifurcation, but this issue is very delicate, because the losses differentiate
the thresholds (Y1 and Y2 are different). The problem is rather simple if Y2 is
larger than Y1, but the difficulty increases when the number of impedance peaks
having an amplitude larger than that of the first peak increases. The analysis of a
system with two peaks was done [33] for the different regimes (standard, inverse
and octave; the latter case appears when the second peak is larger than the first).
A more detailed study of the general case with N peaks (for small values of ˇ)
remains to be performed.

• A signal close to the inverted HM was obtained by experiment for saxophone-
like instruments, but was not observed for bowed strings. The mouth pressure
was strong, probably for pressure beyond the saturation threshold of the standard
HM.

• The stability was studied for the case ˇ D 1=3 [91]: the ab initio solution
[Eq. (4.65)] can be used, by considering a small deviation from the sought
solution, but difficulties can occur when two stable regimes are very close
together. When 1=ˇ is an integer, another method is the Floquet method, which
generalizes what we did in Sect. 9.3.3.5, but the recurrence relationships become
longer.38

• The bifurcation point of the static regime is obtained for pL D pS D 0. This
implies A2 D 0, i.e., � D 1 or 1=3. The value 1 for � corresponds to a closed
reed, after Eqs. (9.118) and (9.119), and the bifurcation occurs at � D 1=3

independently of ˇ. The interpretation is easy: when the equations are derived
assuming small oscillations (see the previous section), the solution is quasi
sinusoidal at the threshold limit, and the equation for the first harmonic (9.77)
applies in all cases. Therefore the threshold is A D 0 when losses are ignored.
Notice that the first harmonic approximation cannot distinguish the two HMs,
because it does not provide the sign of P1. In order to distinguish the two regimes,
we have to calculate more harmonics, and this is necessary also for the distinction
between square and rectangle signals.

38The period needs to be split into 1=ˇ points, and high order matrices need to be studied for the
position of eigenvalues with respect to unity. This issue was investigated in numerous articles about
bowed strings [122].



9 Reed Instruments 533

9.4.8.4 Considerations About the Spectrum of Conical Instruments

The question of the relation between the conical shape and the sound spectrum
remains largely open, in particular for the radiated sound. The simplification of
the signal shape shown in Fig. 9.20 obviously yields the suppression of higher
frequencies in the spectrum. However, for a clarinet we have seen that the simplified
square signal yields relevant results for the signal amplitudes, the oscillation
regimes, and the amplitude of the first odd harmonics far from the oscillations
threshold. This simplification corresponds to a model with losses independent of
frequency, or lossless. For a conical instrument, a supplementary approximation was
needed. The hypothesis that it is equivalent to a cylindrical saxophone is only valid
over a limited frequency range, because the length of the missing cone, denoted x1,
is assumed to be small compared to the wavelength39 We have seen that the pressure
signal when the reed is beating is common to the different notes, and we can suppose
that:

• Characteristic frequencies common to different notes exist in the spectrum,
including higher frequencies, and a consequence is the apparition of formants
or anti-formants;

• For the lowest ones, the common frequencies are the same as those of a
cylindrical saxophone

Internal Spectrum

Let us consider first the spectrum of the internal pressure at low frequencies. We
can imagine without rigorous proof that the maximum of this spectrum is linked
to that of the input impedance. The latter can be determined by using Eq. (7.105),
which describes the envelope curve of the impedance peaks of a truncated cone. The
envelope is proportional for all notes to the following function:

1

1 C 1

k2x2
1

1p
kx1

:

A simple calculation gives a rough estimation for the position of this maximum:
kx1 D p

3: A formant can be found around the corresponding frequency. For
instance, for a soprano saxophone, it is 670 Hz. For the lowest notes of an
instrument, there are few low harmonics (1 and 2) in the spectrum because of the
shape of the input impedance curve.

• At higher frequency, we examine first the case of a cylindrical saxophone.
The first characteristics of the spectrum is necessarily the absence of a certain

39Thanks to the choice of the mouthpiece dimensions and instrument input, this limit can be put
off rather high, see Chap. 7. For instance, let us assume that the limit is around kx1 D 1.
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category of harmonics, similarly to the absence of even harmonics for the
clarinet. When the ratio ˇ (D x1=L) is the inverse of an integer, the harmonics
m=ˇ should be absent. Because the fundamental of the first register is c=2L;

this corresponds to frequencies mc=2x1, which are the natural frequencies of a
pipe of length x1. As they do not depend on the played note, an anti-formant is
expected at these frequencies, which are such that kx1 D m� . The anti-formant
can exists also if ˇ is irrational, but they are less pronounced because there are
no harmonics at exactly these frequencies.

• What happens for a conical instrument? Obviously if the quantity kx1 is of order
of � or larger, the use of a cylindrical saxophone model becomes meaningless.
Nevertheless it is possible to find frequencies which are independent of the notes
and for which the input impedance is minimum (and other frequencies for which
the input impedance is maximum). We start from Eq. (9.105), and ignore the
losses. As we have seen, an excellent approximation for the frequency of the
first maximum at the mouthpiece input is c=2.` C x1/. Hence k.` C x1/ D � .
We know that it is not exactly the playing frequency, because the latter depends
on the excitation level, but we assume that it is valid. The harmonics of this
frequency are not necessarily resonance frequencies, because they do not satisfy
the condition kx1 � 1. However, the harmonic n satisfies

k.` C x1/ D n� thus cot k` D cot.n� � kx1/ D � cot kx1: (9.120)

In other words, for a given frequency which exists in the spectrum, the input
admittance of the truncated cone (and therefore the admittance at the input of
the mouthpiece) does not depend on the fingering, i.e., on the played note. These
admittances exhibit extrema which are common to the different notes, as shown
in Fig. 9.22. Hence in the spectrum of the internal pressure formants and anti-
formants are expected. They are the elements common to the different notes that
we mentioned above. They can be calculated for a given shape of the mouthpiece,
but here we do not discuss this matter further. The first anti-formant is slightly
higher than that of a cylindrical saxophone (kx1 D �). But these formants and
anti-formants are less accentuated than those of a cylindrical saxophone, because
losses make their presence less obvious.

External Spectrum

The previous analysis was focusing on the internal spectrum. What happens for
the radiated pressure? For the lowest frequencies the previous reasoning can be
extended by straightforward use of the shape of the input impedance curve. The
scarcity of the lowest frequencies in the spectrum of the internal pressure is
accentuated by the fact that the radiated pressure is the time derivative of the output
flow rate. This is clearly observed, e.g., in the spectrogram of bassoon (see Fig. 7.26
of Chap. 7).



9 Reed Instruments 535

0 1 000 2 000 3 000 4 000

R
ed

u
ce

d 
im

pe
da

n
ce

 

Frequency (Hz)

−20

−15

−10

−5

0

5

10

15

20

25

30

Fig. 9.22 Input impedance for 100 values of ` linearly distributed on one octave. The visco-
thermal losses are taken into account. The points indicate the impedance modulus for the
fundamental frequency and its harmonics for the notes corresponding to each length value. Above
500 Hz, extrema common to the different notes are clearly observed. Minima are found around 800,
1800, 2900 Hz. The dimensions are those of a tenor saxophone with a mouthpiece. The toneholes
are ignored (the change of note is obtained thanks to a modification of `). Courtesy of S. Karkar

Unfortunately for the higher frequencies we do not have much insight. Formants
and anti-formants exist, but they are less pronounced and their position differs from
that observed in the spectrum of the internal pressure. We saw that for a cylindrical
instrument the issue of the relative amplitude of the even and odd harmonics is
subtle. We imagine that this subtlety is similar for a cylindrical saxophone for the
main harmonics versus the missing ones. The problem becomes even more intricate
for a conical instrument.40

What is clear is that the level difference between formants and anti-formants is
much smaller than for the internal pressure, as for the difference between even and
odd harmonics of the clarinet.41 Nevertheless, contrary to some possible hypotheses,
the position of the formants is not directly linked to the length x1 of the missing cone
or to the mouthpiece shape.

The previous analysis shows that if the length x1 of the missing cone is reduced,
and then if for a given length, the apex angle is increased, the first characteristic
frequencies increase. Observing the increase of the taper from the first saxophones
of Adolphe Sax to modern saxophones, it is possible to explain this increase by the
aim to enrich the timbre [74], as probably requested by jazz music. In comparison
to a violin, this would correspond to a play closer to the bridge. It is well known

40Remember that this discussion ignores the existence of toneholes, which strongly complicate
the sound analysis above the cutoff frequency (see Chap. 14). Moreover the reed dynamic also is
ignored.
41This is due to the difference between the input impedance and the pressure transfer function: the
first function of the frequency has poles and zeros, while the second has poles only.
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that the timbre is richer in harmonics because the first missing harmonic becomes
higher (similarly to what happens when playing a guitar close to the bridge).

Finally we mention the study by Benade and Lutgen [13], who measured the
external spectrum averaged in a room and showed for the highest frequencies
the existence of a frequency above which the amplitude of the pressure spectrum
decreases as f 3: this frequency would be linked to the cutoff frequency of the
toneholes lattice. Moreover they showed that minima exist in the spectrum of a
given note, and that this is related to the reed beating. To our mind many issues
require further studies in this matter.

9.5 Behavior of the 3-Equation Model with Reed Dynamics
(Non-beating Reed)

9.5.1 Introduction

Synthetic sounds show that what instrumentalists call “squeaks” for single reed
instruments are sounds with a frequency close to that of the (first) reed resonance.
A beginner has to learn how to avoid them, by intuitively controlling the reed
damping with his lower lip. The 3-equation model (9.26)–(9.28) can explain the
relevance of this intuition. Two parameters need to be added to the study of Sects. 9.3
and 9.4: the damping factor and natural frequency of the reed, because the reed is
assumed to be a single-degree-of-freedom oscillator. At the same time it is possible
to study what happens when the playing frequency is close to the reed natural
frequency. It is the case for reed instrument for notes belonging to the high part
of the compass. It is also the case for reed organ pipes for which the reed resonance
determines the playing frequency and the resonator role is limited to a coloring
of the sound: these pipes are tuned by modifying a tuning spring. It can be said
that the corresponding regime is the “reed regime,” as opposed to the “resonator
regime”: this opposition was largely explored by Bouasse [17]. The case of lip-reed
instruments is an intermediate case because the natural frequency of the reed (i.e.,
of the lips) needs to be very close to that of the resonator, yielding a strong coupling.

In order to solve the three dimensionless equations (9.26)–(9.28), the assumption
of square signals is no more suitable, because the reed resonance modifies the
spectrum. Notwithstanding some approximations remain possible. We start by
focusing our attention on the instability threshold of the static regime, by using
the characteristic equation (see Sect. 9.4.2) and supposing that the reed does not
beat, because the amplitudes are extremely small near the threshold. To this end we
base our study on the work by Wilson and Beavers [121], noted as WB, which is
an important milestone in the research on reed instruments.42 We first consider an

42What is the most important for the determination of the pitch? Is it the reed or the resonator?
Historically it was one of the most important subjects of musical acoustics. We can cite Weber
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inward-striking reed, later an outward-striking one. The latter was not considered up
to now because they cannot function for frequencies which are very low compared
to the reed natural frequency.

9.5.2 Oscillation Threshold for an Inward-Striking Reed

The previous presentation needs to be completed. Actually, two effects of the reed
need to be distinguished: (1) the reed dynamics, and (2) the volume flow rate
created by the reed displacement, which modifies the equation of the resonator [see
Eq. (9.18)]. The distinction between these two effects is rather subtle, as this will be
explained in the present section. The historical development can be summarized as
follows:

Effect of the Reed Displacement

Helmholtz [68] and many authors tried to understand the effect of the flow rate in
order to compare instruments such as clarinets with instruments such organ reed
pipes. For the first type, the parameter defined as the ratio of the pipe resonance
frequency to the reed resonance frequency is small, and the reed has a small
influence on the playing frequency. Conversely for the latter type, the same ratio
is large, and the playing frequency is close to the reed resonance frequency. For this
study, a linear theory is used, assuming that the playing frequency is the resonance
frequency of a composite resonator, i.e., the air column coupled to the reed. The
reed dynamics is ignored, and therefore the reed acts as a simple spring. This leads
to a simple transcendental equation, which describes the transition of the playing
frequency from the pipe resonance to the reed resonance, when the pipe resonance
frequency increases up to the reed resonance frequency.

Effect of the Reed Dynamics

How is it possible to proof that, when the reed dynamics is ignored, the playing
frequency is the resonance of the composite resonator? Actually, this is true at
the threshold of oscillation, as shown by the characteristic equation (9.78) which
has been written in Sect. 9.4.2. It involves the input admittance of the composite
resonator. It is obtained by linearizing the nonlinear equation of the excitor, and

[118], Helmholtz [68], and Bouasse [17], who performed a thorough literature review. He discussed
all works of his time with many experimental results, which remain to be studied in detail. Works
on valves with weak coupling of two resonators can also be cited [49, 108] (for us one of the
resonators would be the vocal tract).
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yields the value of both the operating (or playing) frequency, and the mouth
pressure. For the nonlinear model proposed in this chapter, the latter is found to
be equal to the third of the closure pressure pM , whatever the ratio pipe-resonance
frequency/reed-resonance frequency.43

One century after Helmholtz, Wilson, and Beavers were the first authors to
propose a model based on the Bernoulli equation. They tried to take the reed
dynamics into account, considering a single-degree-of-freedom oscillator. However,
they ignored the effect of the reed flow. The solving is based anew on the derivation
of the characteristic equation, which is much more complicated than when ignoring
the reed dynamics. Concerning the dependence of the playing frequency with
respect to the ratio pipe frequency/reed frequency, it seems to be similar to that
found for the other effect (no reed dynamics, but the reed flow is considered).
However, the deviation from the pipe resonance frequency is much smaller than
that found for the reed flow effect. Moreover, when taken into account both effects,
the effect of the reed flow appears to be dominant (this has been explained in [101]).
Conversely the effect of the reed dynamics on the mouth-pressure threshold can be
dominant, and is strongly influenced by the quality factor of the reed. For a strongly
damped reed (for instance the clarinet reed, which is strongly damped by the player
lip), the pressure threshold is close to pM=3. However, for a slightly damped reed,
the pressure threshold is largely lowered, and this explains why squeaks are obtained
with a clarinet when the reed is insufficiently damped by the lip.

The present section considers first the two effects together.

9.5.2.1 Characteristic Equation, Real Frequency Solution
for the Thresholds

We start from the three equations (9.26)–(9.28), by slightly modifying them. The
two first equations can be written in the frequency domain44:

U D YP C j!X�`=c (9.121)

X D DP where D.!/ D
�
1 C j!qr

!r
� !2

!2
r

��1

: (9.122)

As WB did [121], we derive the characteristic equation, but we wish also to
investigate the effect of the reed displacement flow rate, which is proportional to

43Notice that these results are valid if the threshold of oscillation is equal to the threshold of
instability of the static regime, i.e., if the bifurcation is direct. This is the case for a clarinet or
an organ reed pipe.
44Remind the notations: U is the volume flow rate, P is the pressure at the resonator inlet, X the
reed displacement, Y the admittance at the resonator inlet. � is the mouth pressure, � is the reed
parameter. All quantities are dimensionless (see Sect. 9.2.5.3). �` is the length associated to the
reed flow rate, !r the reed angular frequency, and q�1

r its quality factor.
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�`, and was ignored by these authors. We linearize Eq. (9.28) around the static
regime (p D x D 0), assuming again the zero frequency impedance to be zero:

u D �
p

�.1 � �/

�
1 C x

1 � �
� p

2�

�
: (9.123)

Writing this equation in the frequency domain and limiting it to a single harmonic,
using the two linear equations (9.121) and (9.122), and finally dividing the two sides
of the equation by P1; we find the characteristic equation:

Y C Dj!
�`

c
D �

p
�

�
D � 1 � �

2�

�
: (9.124)

This equation generalizes the relation Y D A that we obtained in Sect. 9.4.2: this
can be checked by writing �` D 0: and D D 1. We determine the thresholds by
solving this equation for a real frequency !. We assumed that we are around a static,
non-beating regime and have linearized the nonlinear equation: the quantities x and
p being small, the non-beating reed condition for the static regime is simply45 as
� < 1: Thus results such with � > 1 are not relevant, even if in certain cases the
following analysis can lead to such values.

9.5.2.2 Results of Wilson and Beavers for a Cylinder

We present hereafter the experimental result of WB and compare them with
numerical solutions of Eq. (9.124) (see [101]). The latter slightly differs from those
of WB, especially because we take into account the reed displacement flow rate.
Then analytical approximate results are provided.

• The results shown in Fig. 9.23 correspond to a weak damping of the reed (of type
metallic organ reed, qr D 0:008). The abscissa is the product kr`. For a given
reed frequency (here fr D 700 Hz/, it is proportional to the length. Thus these
curves are obtained when the tube length varies, e.g., with a slide. For a given
length, several solutions, which correspond to different tube modes, are possible.
Only the oscillation frequency with the lowest pressure threshold is indicated.
The reed parameters were measured using different techniques. The thresholds
were measured by increasing the blowing pressure until a sound is produced (in
this study the bifurcation is assumed to be direct).

It can be observed that the threshold frequencies are always lower than the
natural frequencies of both the reed and the resonator. The latter are given by
decreasing hyperbolas (in dotted lines) by cot k` D 0, or k` D .2n � 1/�=2,

45It would be tedious to go beyond this value for solving the complete equation (9.30): indeed if for
p D 0, the function F.p/ is regarded as a function of � , its derivative is not continuous in � D 1.
Moreover we know that the model slightly disagrees with experiment.
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Fig. 9.23 Thresholds of frequency � and of mouth pressure � for a weakly damped reed. qr D
0:008; � D 0:1; fr D 700 Hz ; r D 6:4 mm: Solid line: theoretical results [101] without reed
displacement flow rate, corresponding to the calculation by Wilson and Beavers [121]; dashed
line: theoretical results with the reed displacement flow rate (�` D 5 mm); dotted line: hyperbolas
of the natural frequencies of the resonator. The squares are the experimental results by WB

i.e., � D !=!r D .kr`/�1.2n � 1/�=2: When the length increases initially
the frequencies of the first regime are obtained, then those of the second one,
followed by the third one, etc. The pressure thresholds differ drastically much
from the value predicted by the model without losses and reed dynamics, � D
1=3. They can reach values smaller than 1=20, because the reed greatly favors
the oscillation when !=!r is close to unity. But when kr` approaches the values
n� from below, the functioning is very similar to the functioning without reed
dynamics, i.e., the playing frequency corresponds to a tube resonance, with a
pressure threshold close to 1=3. Then suddenly the solution corresponding to the
following regime appears, because its threshold is much lower, and the playing
frequency is close to the reed natural frequency. Consequently for a long tube
the reed favors either “squeaks” when kr` is close to n� , or approaches acoustic
resonance frequencies when kr` is far from these values.

• Now let us look at Fig. 9.24, for which the reed damping is strong, qr D 0:4 (the
reed is of clarinet-type). The variation of the playing frequencies is qualitatively
similar to that for a weak damping but squeaks cannot be obtained, because the
pressure thresholds would be very high. These thresholds are much closer to
the thresholds that we have calculated without reed dynamics [Eq. (9.69)]. And
the thresholds of the higher order regimes become higher than those of the first
regime. This allows keeping the first acoustic regime for any length, and prevents
the production of the other regimes. Because the reed is more damped than in the
previous case, its role is weaker in the variation of the pressure thresholds and
the resonator acoustic losses play a much greater role.46

46Notice that it is easy for a clarinet to obtain squeaks by driving the mouthpiece in the mouth in
order to suppress the damping by the lip.
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Fig. 9.24 Thresholds of frequency � and of mouth pressure � for a strongly damped reed. qr D
0:4 ; � D 0:13; fr D 750 Hz; r D 6:4 mm: Solid line: theoretical results [101] without reed
flow rate, corresponding to the calculation by Wilson and Beavers [121]; dashed line: theoretical
results with reed flow rate (�` D 12 mm); dotted line: hyperbolas of the natural frequencies of the
resonator. The squares are the experimental results by WB

9.5.2.3 Analysis of Threshold Frequencies

For the analysis we simplify the problem by ignoring (for the moment) both the reed
displacement flow rate and the acoustic losses in the resonator. The admittance Y is
purely imaginary. For a cylinder of length `, =m.Y/ D � cot k`. For a resonator of
arbitrary shape, we reduce the admittance to one mode, of subscript n, and even to
one “single” mode, of positive frequency (see Chap. 2). This implies that we search
for a frequency that is not too far from the natural frequency of the resonator. We
rewrite Eq. (9.66) in the following form (see Chap. 2):

Y ' 2jF�1
n .! � !C

n / where !C
n D !n C j!n=.2Qn/; thus (9.125)

=m.Y/ ' 2F�1
n .! � !n/ (9.126)

(remind that for a cylinder, 2F�1
n D `=c). If <e.Y/ D 0 and �` D 0, the separation

of the real and imaginary parts of the characteristic equation yields

1 � �

2�
D <e.D/ D 1

�
: (9.127)

=m.Y/ D =m.D/�
p

� D � �
p

��qr

�.1 � �2/
, (9.128)

where:

� D !

!r
and � D 1

<e.D/
D 1 � �2 C q2

r �2

1 � �2
: (9.129)
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The parameters �, qr, !r, and those of the resonator are fixed, thus two unknowns
remain for the characterization of the threshold: the threshold frequency � and the
mouth pressure � (for the sake of simplicity, the subscript th has been omitted).
The calculation seems to be tedious, but some results are surprisingly simple and
informative. We first retrieve the results obtained without reed dynamic (� D 0/:
because in such a case � D 1, � D 1=3 and =m.Y/ D 0. Then Eq. (9.127) yields

� D �

2 C �
. (9.130)

This can be brought in Eq. (9.128), therefore, for a cylinder, the following result is
obtained

� =m.Y/ D cot k` D cot kr`� D �F.�/ (9.131)

where F.�/ D qr�
�
.1 � �2/2 C q2

r �2
��1=2 �

.3 � �2/.1 � �2/ C q2
r �2

��1=2
:

Equation (9.131) has only one unknown, !, or � D k`=kr` when kr` is fixed. Up
to � D 0:8, the function F.�/ has a nearly linear variation with respect to qr� , thus it
is proportional to qr: A numerical calculation shows that the increase is monotonous
from 0 to 1=qr when � varies from 0 to 1 (see Fig. 9.25). Thus for two different
values of qr, the curves intersect very close to � D 1. Because F.�/ is positive,
the cotangent function is always positive and the solutions are always below the
hyperbolas cot k` D 0, whose solutions are � D .kr`/�1.2n � 1/�=2 (see Figs. 9.23
and 9.24): For a one-mode resonator, a similar result can be obtained: following
Eq. (9.125), the solutions are smaller than the natural frequencies of the resonator:

! D �!r D !n � 1

2
�FnF.�/: (9.132)

The previous explanation is not a rigorous proof because the unknown ! is included
in F.�/, but it is undoubtedly correct when � is not too large.47

• For the case of a strongly damped reed, the quantity �F.�/ is rather large except
near � D 1, where there is no solution. Thus the threshold frequencies are rather
far from the resonator natural frequencies, roots of cot k` D 0 (i.e., k` D .2n �
1/�=2): it should be remembered that a weak relative difference can be important
from the musical point of view, because one semitone corresponds to 6 % in the
frequency. In order to calculate the threshold frequencies with a good accuracy, it
is possible to use perturbations, bringing into the second member of Eq. (9.132),

47We know that the results with � > 1 are not relevant, because they correspond to a complete
closure of the mouthpiece. According to Eq. (9.127), this corresponds to � < 0 and therefore to
� > 1: With this theory we cannot know determine whether the playing frequency can exceed the
reed resonance or not.
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Fig. 9.25 Comparison of the function cot kr`� for kr` D 8 (thin line) and the function �F.�/ for
the two cases shown in Figs. 9.23 (solid line 1a) and 9.24 (solid line 2a). It is observed that the
playing frequencies are smaller than the natural frequencies of the tube which cancel the cotangent
function F0.�/, [Eq. (9.138)]. The latter represents the effect of the reed displacement flow rate,
which is predominant near the reed resonance for both cases

the values of k we found with � D k=kr: The variation of frequency due to
damping can be written in the form of a length correction, equal to:

�` D �F.�/=k D �F.�/=.�kr/:

Then, because in this case � is small compared to unity, the square roots involved
in F.�/ can be simplified by ignoring the terms in qr� , giving:

�` D qr�

kr.1 � �2
n /3=2.3 � �2

n /1=2
; (9.133)

where �n D .2n � 1/�=.2kr`/: Hence this length correction is positive. It
is proportional to the reed damping and inversely proportional to the reed
frequency. This was expected, because the correction needs to vanish when the
latter tends to infinity. For a sufficiently high reed frequency, the denominator
simplifies to kr

p
3:

• The case of a weakly damped reed is not very different regarding frequencies:
however, the quantity �F.�/, which is �=qr for � D 1, can be very large near
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this value of �; thus the frequencies are far from the tube natural frequencies.
The quasi horizontal portion of the frequency curve starting from the values
kr` D n� is longer than in the case of a strong damping. This seems to be
obvious because when there is no damping the reed dynamic plays a more
important role, and the threshold frequencies are more distant from the tube
natural frequencies. However, for small values of the solutions � , they are closer
to the tube frequencies than for a strongly damped reed.

9.5.2.4 Threshold Pressures

For the threshold pressure, the main result is shown in Fig. 9.23: its variation is rather
strong with the tube length or the reed natural frequency (parameter kr`). When the
playing frequency approaches the tube frequencies, the quantity � becomes close to
unity, corresponding to a threshold pressure close to 1=3 [in fact its value is slightly
higher, because of the tube losses, see Eq. (9.69)].

The minima of threshold pressure can be easily determined because � is a
monotonously increasing function of �. The study of the function �.�/ [Eq. (9.129)]
shows that it has one minimum, for �2

c D 1 � qr. Its value is �min D qr.2 � qr/, and,
using Eq. (9.130) the minimum of � is

�min D qr.2 � qr/

2 C qr.2 � qr/
: (9.134)

For a weak damping qr, this expression simplifies in �min ' qr.1 � 3qr=2/. For a
strong damping, the minima �min are higher. However, we did not take into account
the tube losses, and this expression cannot explain why the second minimum is
higher than the first (see Fig. 9.24). Therefore this analysis should be refined further,
because such a difference can be responsible for the jump to the second register
(twelfth register), even without register hole, and consequently is important from a
musical point of view.

The search for the value of .kr`/min at which there is a minimum of threshold
pressure can be done using Eq. (9.132). The first order approximation � ' 1 � qr=2

yields

F.�/ D 1 � 3qr=4

2
p

qr
, and !n D !r

h
1 � qr

2

i
C �Fn

4
p

qr

�
1 � 3qr

4

�
: (9.135)

For a cylinder:

kr` D .2n � 1/
�

2

h
1 C qr

2

i
� �

2
p

qr

h
1 � qr

4

i
: (9.136)
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For a strong damping, the second term remains small and the order of magnitude
is given by .kr`/min D .2n � 1/�=2; when the damping decreases, the values of
.kr`/min decrease significantly.48

What is the influence of resonator losses, that we have ignored up to now? A
general idea can guide us: if reactive phenomena have a great influence on the
frequencies, it is not the case of dissipative phenomena. However, the latter have an
influence on the threshold pressure and need to be considered. A detailed calculation
can be found in [101], and gives the following result:

�min D �0

�
1 C 2Ymn

p
�0=�

�
: (9.137)

�0 is the value when tube losses are ignored [Eq. (9.134)], and Ymn D 1=ZMn

[see Eq. (9.66)] is the minimum admittance of the tube, equal to ˛` for a cylinder
(where ˛ is the loss coefficient of the tube). As expected it appears that the minimum
increases when the length increases, and that it is larger for the second register than
for the first one.

9.5.2.5 Effect of the Reed Displacement Flow Rate

Figures 9.23 and 9.24 show that near the reed resonance, the effect of the reed
displacement flow rate on the threshold frequencies is more important than that of
damping. A complete calculation is difficult, therefore we limit the study to the
threshold frequencies by ignoring the reed dynamic, in order to compare the two
effects separately. Equation (9.124) shows that the reed displacement flow inter-
venes as a simple (reactive) modification of the input admittance of the resonator.
If qr D 0, the left member of (9.124) is imaginary and determines the frequencies,
while the right member is real and imposes the pressure. Equation (9.131) leads to
the definition of a new function, F0.�/:

� =m.Y/ D k�`
1

1 � �2
D F0.�/ where F0.�/ D kr�`

�

1 � �2
: (9.138)

The quantity kr�` is small.49 For small values of � , the right members of
Eqs. (9.138) and (9.131) have the same order of magnitude. However, close to the

48Above the values .kr`/min, Fig. 9.24 shows also the growth of the three branches of the curve
�.kr`/. The second branch growths slower than the first, and the third growths slower than the
second, because the frequencies are less and less remote from the reed resonance (� does not take
small values for the branches corresponding to higher regimes). Below the values .kr`/min, the
growth is very fast, because between �c and � D 1, � increases from �min to a value close to 1

(infinite �).
49The order of magnitude of �` can be estimated to 1 cm, by measuring the playing frequencies
when they are close to the resonance frequencies of the tube [32]. From the data of Figs. 9.23 and
9.24, the following values are obtained, respectively: kr�` D 0:06 and 0:16:
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reed resonance (� D 1), the reed displacement flow term becomes much larger than
the reed dynamics one. This is shown in Fig. 9.25. Indeed the function �=.1 � �2/ is
increasing from 0 to infinity when � increases from 0 to 1 (it resembles the function
F.�/, but the latter is limited to a finite value, 1=qr).

In order to solve Eq. (9.138) in the case of a one-mode resonator, Eq. (9.126) is
used

� D �n � 1

2

�Fn�`

c.1 � �2/
where �n D !n

!r
. (9.139)

For a cylinder, in the limit of small � , the reed displacement flow effect is reduced to
a simple length correction, as explained when defining �` [see Eq. (9.17)]. Indeed

the result is f D .2n � 1/c
4.` C �`/

: Obviously this can be improved by a perturbation

calculation [75]. Nevertheless the problem is more complicated close to the reed
resonance: if � tends to unity, =m.Y/ tends to infinity, and we approach the anti-
resonances of the tube. For certain lengths of the tube, when kr` corresponds to a
tube anti-resonance, the playing frequency is the reed natural frequency. If � is close
to unity, the solution can be sought in the form � D 1 � ", writing �n D 1 � "n, and
this leads to a quadratic equation in ":

2"." � "n/ D ˇ.1 C O."//;

where ˇ D 1
2
Fn�`=c is small (it is equal to �`=` for a cylinder). Therefore:

" D "n

2

"

1 C
s

1 C 2ˇ

"2
n

#

: (9.140)

The square root comes typically from mode coupling. This explains why, as soon
as we are interested in more complicated problems, it is extremely difficult to find
analytical solutions. The principle of this study should be emphasized: we sought
the playing frequencies at the threshold by calculating the frequencies for which the
imaginary part of the passive resonator admittance vanishes. The passive resonator
consists of the tube and the reed, while the effect of the flow coming from the
mouth is totally ignored. Historically this approach was used by many authors (see,
e.g., [83]) and give often interesting results, because the reed displacement flow
has an effect preponderant over the reed dynamic. The theoretical curves of the
playing frequencies can be fitted with experimental results, and a reasonable value
of the reed displacement flow rate is obtained. This allows predicting threshold
frequencies, but the measurement of the threshold pressure remains difficult.
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9.5.3 Oscillation Threshold for an Outward-Striking Reed

9.5.3.1 Characteristic Equation

We now investigate an outward-striking reed, which is the elementary model for
lip reeds. There is a major difference with respect to the previous case: the closure
pressure is negative, therefore the mouth pressure is always far from this pressure.
Using a 3-equation model, we will show that the playing frequency is higher than
that of the reed: a functioning in square signals is not possible, and we need to take
into account the reed dynamic (in order to get square signals, it would be mandatory
to inhale).

Using Eqs. (9.37)–(9.39), we obtain the characteristic equation, which is the
counterpart of (9.124):

Y C Dj!
�`

c
D �

p
�

�
�D � 1 C �

2�

�
: (9.141)

We ignore the reed displacement flow rate, although its potential importance was
not studied yet, and we ignore the losses in the tube. As a result:

� D � �

2 C �
; (9.142)

=m.Y/ D �
p

��qr

�.1 � �2/
: (9.143)

9.5.3.2 Threshold Frequencies

Because of the sign of the second member of (9.143), the quantity �.1��2/ is always
positive, and the playing frequencies are always higher than the natural frequencies
of the tube (see Fig. 9.26). They are also higher than those of the reed, because
positive � implies negative �. Then, by bringing Eq. (9.142) into Eq. (9.143), we
obtain an equation similar to Eq. (9.131):

=m.Y/ D �G.�/ (9.144)

where G.�/ D qr�
�
.1 � �2/2 C q2

r �2
��1=2 ��.3 � �2/.1 � �2/ � q2

r �2
��1=2

:

This implies

.3 � �2/.1 � �2/ C q2
r �2 < 0: (9.145)

This inequality is satisfied between the two roots �1 and �2 of a second order
equation. As qr is sufficiently small: �1 ' 1 C q2

r =4 and �2 ' p
3.1 � q2

r =4/:
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Fig. 9.26 Frequency and mouth-pressure thresholds for an outward-striking reed for different
values of the reed damping

For inward-striking reeds, the value � D 1 can be reached from below. Here it
cannot be reached, but � can be rather close to unity. For the two extreme values,
the tube would function at anti-resonances, but we will see that they cannot be
reached. We do not write the equivalent of Sect. 9.5.2.5, but because the threshold
frequency is higher than the reed frequency, the reed displacement flow produces
again a cumulative effect with that of the reed dynamic. Indeed the reed flow term
in Eq. (9.138) remains unchanged, but with � > 1. It increases the shift of threshold
frequencies compared to the reed frequency or to the tube natural frequencies.

9.5.3.3 Threshold Pressure

Because � > 1, the quantity � C 2 needs to be positive [see Eq. (9.145)]. Thus �

lies between �2 and 0. For the two limit values �1 and �2, for which � D �2, the
threshold � is infinite; therefore it is not possible, in practice, to play close to these
values. For a fixed reed frequency, the interval which can be reached by changing
the resonator length is significantly smaller than

p
3 (one sixth). Experimentally

an interval of one third was found [29]. This enlightens the interest for brass
instruments to have a reed with variable characteristics, that the player adapts to
the tube length. This behavior greatly differs from that of an inward-striking reed,
for which � can vary from 0 to 1! The minima of � can be calculated similarly to
what was done in Sect. 9.5.2.4: according to Eq. (9.142), they correspond to maxima
of �, thus to � 02

c D 1 C qr, i.e., � 0
c ' 1 C qr=2, and they are:
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�min D qr.2 C qr/

2 C qr.2 C qr/
. (9.146)

For a weak damping, this becomes � ' qr.1 � qr=2/, and is found to be slightly
higher than for an inward-striking reed with the same parameters. Because the value
� 02

c D 1 C qr=2 is quite close to �1, we observe that for a cylinder the curves of
threshold pressure with respect to the parameter kr` display a strong asymmetry
relative to the minimum (see Fig. 9.26). This result is in agreement with those
of [29].

9.5.4 Modal Approach of the Dynamical System

In what follows we consider the analysis of the linearized system in terms of modes.
An approximation of the characteristic equation (9.124) or (9.141) is obtained by
expanding the input impedance in a modal series, similar to (9.66), and by truncating
the series to the first mode of the resonator, as we did in Sect. 9.3.4. Considering the
expression of D.!/, we obtain an equation of the fourth order in s D j!, which has
real coefficients. This implies that if s is a solution, its conjugate s� is a solution as
well. Thus the four solutions are: s1, s�

1 , s2, s�
2 .

The characteristic equation is a polynomial, and p.t/ is the sum of exponentials
of type exp.st/: If the real part of both s1 and s2 are negative, the exponentials are
decreasing, and the static solution P1 D 0 is stable. It becomes unstable when one
of the two real parts become positive. In other words if one real part is positive and
the other vanishes, we get an instability threshold of the static regime. If the two
real parts become positive, we have the sum of two increasing exponentials with
different frequencies, which correspond to the imaginary parts of s1 and s2. It should
be remembered that we do not know anything about the existence of oscillating
solutions, because the nonlinear terms were suppressed, and obviously we do not
know anything about their stability!

An approximation of the fourth order equation is obtained by ignoring the
negative frequencies. This results in a quadratic equation. For the function D.!/

defined by Eq. (9.122), a treatment similar to that we did for the function Y.!/ [see
Eq. (9.125)] can be done, with the following result:

D�1.!/ ' � 2

!r
.! � !C

r / where !C
r D !r C j!rqr=2: (9.147)

For an inward-striking reed, the characteristic equation (9.124) becomes

.! � !C
r /.! � Q!C

n / D !rFn

4

�
j�

p
� C !�`

c

�

with Q!C
n D !C

n C j
Fn

4
�

1 � �p
�

: (9.148)
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It exhibits two modes coupled by the flow from the mouth and the reed
displacement flow. However, the mode of the tube itself is modified by the mouth
flow, with an increase of the losses (as � is lower than unity): this effect corresponds
to the resistance due to the flow if the reed is prevented from vibrating around its
average position, which is determined by the blowing pressure (x D 0). Therefore
these two modes are passive (the imaginary parts of !C

r and Q!C
n are positive). This

approximation of the characteristic equation assumes that the playing frequency and
the frequencies of both the tube and the reed do not differ much. The sum of the roots
of this equation is

!1 C !2 D !C
r C Q!C

n :

Thus if one root, for example, !1; is real, the other root will have a positive
imaginary part because the two modes are passive. In other words, when one of
the exponentials which is decreasing becomes increasing, the other one is always
decreasing. The thresholds we studied in Sect. 9.5.2.1 are instability thresholds
of the static regime.50 Similarly to what was done in Chap. 6 about piano strings
(Sect. 6.3.2), it would be possible to discuss approximate solutions. A similar
analysis can easily be done for an outward-striking reed.

9.5.5 Discussion of the Results

In the present section the role of the reed resonance has been examined together
with the use of the damping for the control of the regimes for a cylindrical tube.
For certain lengths of tubes, the effect of damping can be very important. This
explains why it is not possible to have toneholes very close to the mouthpiece
on a clarinet, because the tuning and the timbre would depend too much on the
reed. The present section has been limited to the instability threshold of the static
regime, for a cylindrical tube or a single-mode resonator. Implicitly the bifurcation
has been assumed to be direct, while this is wrong in many cases, such as that
of conical tubes. Consequently our study has drastic limitations. In addition the
reduction of the reed vibration to a single mode is a supplementary limitation at
higher frequencies, especially for brass instruments. No results have been obtained
concerning the spectrum: the reader can refer to [110] or [54] (for results of the
harmonic balance). Indeed the theoretical approach becomes much more difficult
at higher frequencies, because the tube resonances become weaker and many other

50This does not demonstrate that considering an infinity of modes for the resonator this result would
remain valid, but it is a reasonable hypothesis. Moreover we do not forget that the bifurcation can
become inverse when a second mode is added to the resonator model, as it was seen for conical
reed instruments, and maybe also if a second mode is added to the reed model (a reed with two
modes seems to be necessary to model some behaviors of the excitor of brass instruments, see
Fig. 9.3).
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phenomena intervene: for instance the higher modes of the reed or the vocal tract
can become important, and the radiation becomes more complicated, as it will be
seen in the fourth part. However, thanks to this complexity, the playing of the higher
notes is more flexible for the instrumentalist.

In the present section the addition of the two parameters of the reed dynamics
implies complicated consequences on the effect of the main parameters on the
playing frequency, the sound level or the spectrum. One aspect is the effect of
inharmonicity of the excitation pressure (see Sect. 9.4.5), but few theoretical results
has been published (see also [75]). Recently some advanced experimental studies
has been published for reed instruments [4, 14, 19, 61, 62] and for brass instruments
[42, 51].

The previous study gives us some insight on the free reeds (either without
resonator, such as that of the accordion and harmonica, or weakly coupled to a
resonator, such as organ reeds [48, 49, 84, 95, 108]). For these instruments, the
playing frequencies are expected to be linked mainly to the reed resonance, and
indeed the organ makers tune the reed tubes by moving the tuning spring (who
plays the role of the lower lip of the clarinettists). Nevertheless they can choose a
resonator with a resonance close to that of the reed. For a free reed, the damping is
weak, and it can be accepted that the radiation impedance plays the role of a very
short tube, and we expect that the thresholds correspond to very small values of kr`

(see Fig. 9.23). Obviously this view is schematic, and this subject deserves longer
developments.

Concerning brass instruments, it has been seen in Chap. 7 that the absence of
toneholes implies the existence of a great number of significant modes for the
resonator. The study of the regimes is a complex task, especially if two modes of the
reed are taken into account. However, general ideas were already given by Benade
[10]. The harmonicity of the impedance peaks 2, 3, 4, etc. allows playing notes
without change in pitch related to the excitation level. The frequency of these notes
corresponds to an impedance peak, and the harmonics to other peaks (for instance,
consider peak 2, and peaks 4, 6, 8, etc. which are almost harmonically related).
Moreover it is possible to play “pedal” sounds, whose harmonics correspond to a
peak, except the fundamental. The theoretical study of the existence and stability of
these regimes requires long computation, which is tedious but possible today.

Finally a general conclusion can be drawn concerning the influence of losses of
every kind on the playing frequencies. Ignoring the losses leads to a first assessment
of the frequencies, and with this approximation, the nonlinear excitation has no
effect on the playing frequencies. This justifies the basic, fruitful approach (since
Bernoulli): the playing frequencies were assumed to be the natural frequencies of
the linear resonator. However, we have seen that for the examination of the transition
between the “resonator regime” and the “reed regime,” the reed damping needs
to be considered and the parameters of the linearized excitation play a role [see
Eq. (9.131)].
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