
Chapter 8
Nonlinearities

Antoine Chaigne, Joël Gilbert, Jean-Pierre Dalmont, and Cyril Touzé

Abstract In the previous chapters, it was assumed that the amplitude of both air
and structural oscillations in musical instruments were sufficiently small so that
the assumption of linearity for their underlying models was fulfilled. However, this
assumption is no longer valid in a number of situations encountered in musical
acoustics, and a nonlinear approach becomes necessary for describing the observed
phenomena. This chapter starts with the presentation of a simple example of
nonlinear oscillator, the interrupted pendulum, whose aim is to introduce some
fundamental properties of nonlinear systems, such as the dependence of resonance
frequency on amplitude. The generic Duffing equation, which is found in many
areas of nonlinear physics, is then examined. Musical applications are found first
in piano strings, where the transverse-longitudinal coupling and the presence of
additional partials in the spectrum (or “phantom” partials) are the consequence
of nonlinearity due to high amplitude motion (geometric nonlinearity). In brass
instruments, high values of the acoustic pressure induce nonlinear propagation
which, in turn, might give rise to shock waves. In gongs and cymbals, a strong
excitation produces the so-called bifurcations materialized by the emergence of new
frequencies in the spectrum, which ultimately can lead to chaos. Specific methods
are used for characterizing chaotic signals, such as the Lyapunov exponents. New
emerging tools, such as the nonlinear normal modes (NNMs), appear to be very
efficient for describing the dynamics of nonlinear systems with a reduced number of
degrees of freedom. Self-sustained oscillations of reed, flute-like and bowed string
instruments are treated in the three following chapters.
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Most of the concepts on waves and modes presented in Parts I and II imply that the
basic conditions of linearity are fulfilled. This requires first that the perturbations of
the physical quantities involved in the models remain “small”: there will be many
opportunities to clarify what is meant by “small” in the following sections. The
present chapter intends to show how to analyze and model the phenomena observed
when the assumption of linearity is not valid anymore, which implies, in turn, that
the effects of finite amplitude need to be considered (geometric nonlinearity). It is
also important to know whether or not the constitutive equations of the materials
remain linear. When stretching a rubber ribbon, for example, the relation between
stress and strain significantly depends on the amplitude, even for a small tensile
strength. This property is referred to as material nonlinearity.

Finally, and this is fundamental for the physics of musical instruments, the
conditions for maintaining permanent oscillations in bowed stringed and wind
instruments can be fulfilled only if a nonlinear element is introduced in the system
loop. In fact, it would not be possible otherwise to transform a continuous source
of energy, such as a static blowing pressure for the flute player, or a constant bow
velocity for the violin player, into periodic oscillations. In this context, the purpose
of the three following chapters is to give a detailed analysis of the instruments
governed by self-sustained oscillations.

This chapter starts with the illustration of some fundamental concepts of geo-
metric nonlinearity. Usual methods for studying nonlinear equations are introduced,
including harmonic balance, iteration method, and the multiple scales method.
Using simple examples, basic phenomena observed in nonlinear systems are intro-
duced, such as eigenfrequencies depending on the amplitude, jumps, and hysteresis.

8.1 An Example of Asymmetry: The Interrupted Pendulum

First, a simple example of asymmetrical system is studied: the interrupted pendulum
(see Fig. 8.1). The system is composed by a point mass m suspended on a massless
string of length L at rest, attached to a pulley, and subjected to the action of gravity g.
When the pendulum is set into motion, the string length changes over time: it
increases when the weight moves away from the pulley of radius R, and it becomes
shorter in the opposite case, when the string is wrapped around it. This elementary
system illustrates several situations of asymmetry encountered in musical acoustics,
for example, scrolling of the reed on the clarinet mouthpiece, boundary condition
of a string on the tambura,1 or geometric nonlinearity in gongs and cymbals (see
Sect. 8.5). In the latter case, the curvature can be viewed as a stiffness asymmetry,
where the rigid pulley adds some “stiffness” to the system during the time interval
when the string is wrapped around it, compared to the free string case. This example
is not only relevant in musical acoustics but also in other domains of physics.
It has been used, for example, to understand complex nonlinear systems such as
the propagation of compressional waves in rocks [22].

1The tambura is an Indian plucked stringed instrument.
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Fig. 8.1 Interrupted
pendulum (from Denardo
[22]). A point mass m is
suspended to a massless
string, forming a pendulum
with a varying length during
the motion due to the
presence of the pulley which
forms an obstacle

L

R

m

g

θ < 0 

θ > 0 

8.1.1 Equation of Motion

The equation of motion for the interrupted pendulum can be derived from the
Lagrange equations [6]. The main variable is the angle � made between the
pendulum and the vertical axis. The instantaneous kinetic energy of the system is
written Ec D 1

2
m.L � R�/2 P�2. After some calculations, the equation of motion is

found to be

R� C !2
0 sin � D �

d

dt
.� P�/; (8.1)

where !2
o D g=L and � D R=L. As R tends to zero in (8.1), the well-known equation

of a simple pendulum is found where the unique nonlinear term is sin � . The right-
hand side of the equation represents the nonlinearity introduced by the obstacle.
Equation (8.1) is valid for � 2 Œ0; �max� where �max D min .1=�; �=2/. In what
follows, the pendulum is assumed to be released at the initial time (t D 0) from a
position �0 with zero initial velocity.

8.1.2 Solution by a Perturbation Method

For low and medium amplitudes, and with � less than or equal to unity, it is observed
experimentally that the solution is periodic (see Fig. 8.2) and that the period of
the oscillation depends on the amplitude. It is also observed that the oscillation
increasingly departs from the linear sinusoidal reference solution as the amplitude
increases.



398 A. Chaigne et al.

0 2 4 6 8 10

θ 
(r

ad
ia

n
s)

–0.4

–0.2

0.0

0.2

0.4

0.6

t (1/ωo)

Fig. 8.2 Oscillations of the interrupted pendulum (from Denardo [22]). Displacement waveform
of the mass m. Solid line: exact solution. Dashed line: perturbative solution to the third order

These observations incite us to look for solutions under the following form:

(
� D "A cos !t C "2B cos 2!t C "3C cos 3!t C � � � D "�1 C "2�2 C "3�3 C � � � ;

!2 D !2
0 C "!2

1 C "2!2
2 C "3!2

3 C � � �
(8.2)

In Eq. (8.2), the solution is written in terms of a Fourier series where the amplitudes
of the respective coefficients are arranged in increasing powers of the dimensionless
parameter " � 1. Similarly, the oscillation frequency ! is expanded as a series
of terms of increasing powers of " to account for variations with amplitude. The
principle of the calculation consists in substituting the expansion (8.2) into (8.1)
and in calculating the unknowns of the problem (A, B, C, !1, !2, !3) separately
[22]. For the sake of simplicity, the expansion is limited here to the third order in ".
In order to deal with dimensionless equations, the change of variable � D !t is
made.

Since the problem is of the third order, it is justified here to replace the term
in sin � in (8.1) by the first two terms of its Taylor expansion: sin � ' � � �3=6.
Equation (8.1) becomes

!2 d2�

d�2
C !2

0

�
� � �3=6

� D �!2 d

d�

�
�

d�

d�

�
: (8.3)

Inserting (8.2) in (8.3) and making the term " equals to zero, leads to

d2�1

d�2
C �1 D 0; (8.4)
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which has a solution of the form �1 D A cos � , in view of the initial conditions.
Setting the term in "2 to zero, we have

d2�2

d�2
C �2 D !2

1

!2
0

�1 C �
d

d�

�
�1

d�1

d�

�
: (8.5)

By replacing the angular variables by their approximate expressions, one finds that
Eq. (8.5) provides the following relation between the parameters:

� 3B cos 2� D !2
1

!2
0

A cos � � �A2 cos 2�: (8.6)

The basic principle of the method is then to set to zero the respective terms of each
harmonic n� (harmonic balance), which gives here:

!1 D 0 and B D �A2

3
: (8.7)

At this stage, one can check that Eq. (8.1) suggests that the obstacle formed by the
pulley of radius R causes a quadratic nonlinearity since an harmonic of order two is
exhibited. This effect disappears if � D 0, i.e., without any obstacle. However, this
nonlinearity causes no change in the angular frequency, at least at the first order.
Continuing further by eliminating the terms of power 3 in ", we get

d2�3

d�2
C �3 D !2

2

!2
0

�1 C �3
1

6
C �

d2

d�2
.�1�2/: (8.8)

Replacing, as previously, the angular variables by their approximate expressions
in (8.8), and eliminating further the terms in n� , leads to:

C D A3

192

�
36�2 � 1

�
and

!2
2

!2
0

D A2

24

�
4�2 � 3

�
: (8.9)

Finally, defining �10 D "A as the fundamental amplitude of the oscillation, the
solution to the problem is written at the order 3:

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:

� D �10 cos !t C ��2
10

3
cos 2!t C .36�2 � 1/

�3
10

192
cos 3!t;

and

!2 D !2
o

�
1 C �2

10

24

�
4�2 � 3

��
:

(8.10)



400 A. Chaigne et al.

This result suggests the following comments:

• At the third order, the fundamental amplitude is linked to the initial condition by
the relation:

�0 ' �10 C ��2
10

3
C .36�2 � 1/

�3
10

192
: (8.11)

• Figure 8.2 shows that the third-order approximation yields a fair estimation of
the oscillation period and waveform when � is positive, i.e., when the string is
in contact with the obstacle. However, it is necessary to expand the solution to
higher orders in order to account for the observed oscillation when � is negative.

• When � D 0, we have ! ' !0.1 � �2
10=16/, and the term in cos 2!t is equal to

zero. This yields a case of cubic nonlinearity due to gravity, through the term in
sin � . The tension of the string decreases as the amplitude of the motion increases,
and it vanishes when the string reaches the horizontal plane, which corresponds
to a decrease in the overall stiffness of the system.

• For 0 < � <
p

3=2, the frequency decreases with the amplitude of the oscillation.
The oscillator is said to show a softening behavior.

• For � >
p

3=2, the oscillator is of the hardening type. The stiffness provided by
the obstacle becomes larger than the increase in softness due to gravity.

• When � D p
3=2, the period of the oscillation is independent of the amplitude.

This gives the particular case of an isochronous pendulum. This result remains
true to the fourth order, since !2

3 D 0 in the series expansion of !2. Both
softening and hardening effects are compensating one another.

In conclusion, it can be noticed that most nonlinear phenomena exhibited in this
simple example also occur in more complex systems: frequency dependence with
regard to the amplitude, softening or hardening behavior of some structural modes,
etc. The method presented to solve this particular case is also applicable to other
nonlinear systems. Gilbert et al. used a similar approach, for example, to predict the
steady-state amplitude of sound pressure in a clarinet [29]. Before studying specific
nonlinear phenomena of musical acoustics in subsequent sections more closely, the
Duffing equation will first be examined in detail, as it is an equation frequently
encountered in nonlinear dynamics.

8.2 Duffing Equation

Duffing equation is a generic nonlinear equation of an oscillator which includes
a cubic term. It is found in many areas of physics, and therefore it has been the
subject of extensive study. In mechanics, it is a good model for phenomena that
occur for large amplitude oscillations when the elastic restoring force can no longer
be considered as proportional to the displacement. In musical acoustics, this model
is used for explaining the presence of phantom partials in the spectrum of piano
strings, and the enrichment of spectrum due to increasing amplitudes in gongs and
cymbals, as it will be seen later in this chapter.
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The main properties of the Duffing equation will be first illustrated from the
example of the elastic pendulum. This example can be considered as a simplified
case, with one degree of freedom, of the increase in stiffness due to the extension of
length in vibrating strings (see Sect. 8.3).

Another type of nonlinear equation frequently encountered in physics is the Van
der Pol equation. It differs from Duffing equation by the fact that the nonlinearity
is included in the dissipative term, and not in the stiffness term. It can lead to
self-sustained oscillations, which correspond to oscillations that occur without an
oscillating forcing term. The Van der Pol equation is not studied in this chapter, but
it will serve as a basic simplified model of some instruments, such as the clarinet,
and treated in detail in Chap. 9.

8.2.1 Example

Let us now consider the oscillator drawn in Fig. 8.3. The rigid mass M is moved
horizontally apart of a distance x from its initial equilibrium position, under the
effect of a sinusoidal force F cos ˝t. This mass is attached to two springs of stiffness
k, with free length L0. This length becomes equal to L after stretching at rest. We
denote � D L0=L < 1 and y D x=L.

During the motion, the spring length becomes `.y/ D L
p

1 C y2 and the elastic
potential energy stored in each spring is Ep D 1

2
k.` � L0/2. Differentiating this

expression with respect to y, the expression of the elastic restoring force exerted on
the spring is obtained, from which the equation of motion is derived:

M
d2y

dt2
C 2ky

"
1 � �p

1 C y2

#
D F

L
cos ˝t: (8.12)

Under the assumption of “small” displacements (y � 1), and setting !2
0 D 2k=M,

we obtain a first-order approximation:

Fig. 8.3 Elastic pendulum

M

F

x

L
L0
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d2y

dt2
C !2

0.1 � �/y C !2
0�

2
y3 D F

ML
cos ˝t; (8.13)

or, equivalently, in dimensionless form, with � D !t, !2 D !2
0.1 � �/ and � D

˝=!:

d2y

d�2
C y C 	y3 D ˛ cos ��; (8.14)

where 	 D �
2.1��/

and ˛ D F
ML!2 . Equation (8.14) is a Duffing equation with a

forcing term. In the example above, the coefficient 	 is positive. An equation similar
to the case of the interrupted pendulum is obtained (with R D 0 and � small), though
with a change of sign for 	.

8.2.2 Solutions for the Forced Duffing Oscillator

In what follows, both coefficients 	 and ˛ defined in (8.14) are assumed to be small
compared to unity. In addition, 	 is positive (equivalent to � � 1 in the previous
example), which corresponds to the case of an hardening oscillator. The Duffing
equation is solved by the iteration method, whose principle is to look for step-by-
step refined approximations of the solution. Considering the solution obtained in the
case of the linear oscillator (see Chap. 2), the solution y1.t/ D A cos �� is selected as
a starting approximation, where A is the unknown. The coefficient A can be positive
or negative, depending on whether the solution is in phase or in antiphase with the
force. The approximation of order 2 is sought in the form:

y2.�/ D A cos �� C B cos 3��: (8.15)

Now, y2 is inserted in (8.14). Using the trigonometric identity

4 cos3 �� D 3 cos �� C cos 3��; (8.16)

and writing down the condition for which the amplitude of the term cos �� is equal
to zero, we have

.1 � �2/A C 3	A3

4
D ˛: (8.17)

Note To obtain the amplitude B of the term cos 3�� , the calculation must be
continued with an approximation of order 3, and so on.

If the nonlinearity coefficient 	 is equal to zero in (8.17), then the resonance curve
of the linear oscillator in forced oscillations is found: A D ˛

1��2 , or, equivalently,
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Fig. 8.4 Backbone curve for
the Duffing equation with
	 > 0; � D ˝=!
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the result (8.17) will be presented later in this chapter. To plot the resonance curves
in the general case, it is convenient to write (8.17) under the form

�2 � 1 D 3	A2

4
˙ ˛

jAj : (8.18)

• When ˛ D 0, the limiting case (the so-called backbone curve) is obtained (see
Fig. 8.4). In the quarter plane (˝2 > 0; jAj > 0), this curve is parabola with its
concavity facing upwards, which corresponds here to the hardening case, i.e., to
an increase of frequency with amplitude.

• When ˛ ¤ 0, two branches of solution are obtained depending on whether A is
positive or negative. In the first case, the resonance curve is located above the
parabola. In the second case, it is located below.

To find the standard resonance curves, the x-axis and y-axis need to be reversed,
after calculating the square root of ˝2. If 	 < 0, the limiting curve of free
oscillations in the quarter plane (˝2 > 0; jAj > 0) is a parabola of concavity
facing downwards, which corresponds to the case of a softening oscillator, where
the eigenfrequency decreases with amplitude. With ˛ ¤ 0, both branches of the
curve are obtained with (8.18). If a viscous damping is introduced in the Duffing
equation, it can be written in dimensionless form:

d2y

d�2
C ˇ

dy

d�
C y C 	y3 D ˛ cos ��: (8.19)
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Fig. 8.5 (Left) Resonance curves of the damped Duffing equation for different values of the
damping: the bending of the curves is more pronounced for low damping. (Right) Hysteresis loop:
when � increases, the operating point jumps from B to C; when � decreases, the operating point
jumps from D to E

With a similar approach as above, it is found that the resonance curves are governed
by the equation:

�
.1 � �2/A C 3	A3

4

�2

C ˇ2A2 D ˛2 (8.20)

which corresponds to the curves shown in Fig. 8.5.

8.2.2.1 Jump and Hysteresis Phenomena

The resonance curves of the nonlinear Duffing oscillator are bent to the left or to
the right (see Fig. 8.5). As a consequence, a frequency domain exists (delimited by
dotted lines in the figure) where one value of � may correspond to three values of
jAj. Through a rigorous mathematical reasoning, it can be shown that the extreme
values obtained for jAj are stable, while the states corresponding to the middle curve
portion are unstable. In Sect. 8.5.4.1, a general method for determining the stability
of oscillators will be studied. Experimentally, the consequences of these stability
properties are the following:

1. If the frequency increases (resp. decreases) regularly, the intersection point in
the middle curve does not stay fixed, and it “jumps” from one stable curve to the
other as soon as the point on one stable curve reaches its limit (see Fig. 8.5).

2. The closed curve built up by the two jumps and the two stable portions of both
upper and lower curves forms a hysteresis loop.
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8.2.2.2 Secular Terms

Let us now return to the generic Duffing equation under forced oscillations, written
in dimensionless form as follows:

Rq C q C "q3 D F cos ˝t; (8.21)

with

F D "F0; ˝2 D 1 C "!2
1 : (8.22)

Note With these notations, all quantities q (and its derivatives), F, ˝ are
dimensionless. Thus, the eigenfrequency of the linear oscillator is now denoted 1

instead of !0. The dimensionless parameter !1 quantifies the difference between
the oscillator’s eigenfrequency and the forcing frequency. The expressions (8.22)
indicate first that the study is restricted here to forcing frequencies close to the
oscillator’s eigenfrequency and, secondly, that the forcing amplitude is low.

Let us look for solutions in the form of an expansion in ", as in the case of free
oscillations for the interrupted pendulum:

q.t/ D q0.t/ C "q1.t/ C � � � (8.23)

By replacing the quantity q by its first-order expansion, we have

Rq0 C "Rq1 C �
˝2 � "!2

1

�
.q0 C "q1/ C " .q0 C "q1/3 D "F0 cos ˝t: (8.24)

At zero order, this yields immediately

Rq0 C ˝2q0 D 0; (8.25)

from which we derive q0.t/ D A cos ˝t. At the order one, we have

Rq1 C ˝2q1 D
��

!2
1 � 3

4
A2

�
A C F0

�
cos ˝t � 1

4
A3 cos 3˝t: (8.26)

Here, the important point to consider is that an equation is obtained where the
frequency of one forcing term (at the right-hand side) is equal to the oscillator
eigenfrequency ˝. As shown in the first part of this book, this resonance case leads
to an continuous increase of the amplitude of the solution with time, in t cos ˝t.
These terms, called secular terms,2 must be eliminated here, since stationary

2The origin of this denomination is due to the fact that these terms were highlighted as first in
the field of celestial mechanics, where the time scales are of the order of centuries rather than of
milliseconds!
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solutions are sought. The amplitude of the term cos ˝t in the right-hand side is
thus put equal to zero, which leads to the condition

�
!2

1 � 3

4
A2

�
A C F0 D 0; (8.27)

and, in turn, to the relation between amplitude and forcing parameters

3

4
"A3 � A.˝2 � 1/ D F: (8.28)

In conclusion, the result obtained for the forced spring pendulum in Eq. (8.17) is
found again here, though with another method. For a forcing amplitude equal to
zero (F D 0), the case of free oscillations is recognized. With " D 0, we obtain the
linear case.

8.2.3 Generation of Subharmonics

Nonlinear oscillators have the property to generate spectral components which
are not included in the excitation spectrum. This section examines under which
conditions a Duffing oscillator subjected to forced oscillations can generate sub-
harmonics, i.e., spectral components of frequency equal to a submultiple of the
excitation frequency or, equivalently, whose period is a multiple of the forcing
period. Let us consider the forced Duffing equation with a source term of reduced
frequency 3� :

d2y

d�2
C y C 	y3 D ˛ cos 3��; (8.29)

with 	 � 1. We look for the solutions that can be expanded in the form:

y.�/ D y0.�/ C 	y1.�/ with �2 D 1 C 	�2
1 : (8.30)

Inserting the expressions (8.30) in (8.29), and eliminating the terms of order 2 in 	

(and higher), we get

d2y0

d�2
C �2y0 � 	�2

1 y0 C 	
d2y1

d�2
C 	�2y1 C 	y3

0 D ˛ cos 3��: (8.31)

The linear solution (term of order 0) is obtained by setting 	 D 0 in (8.31) which
yields

d2y0

d�2
C �2y0 D ˛ cos 3��; (8.32)
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which, under the additional assumption of zero initial velocity, leads to a solution
of the form y0.�/ D A cos �� C C cos 3�� . Finally, inserting the latter expression
in (8.32) leads to C D � ˛

8�2 .
In the next step, the term in 	 is set to zero in (8.31), to ensure compatibility of

the equation, which provides the term of order 1 of the solution:

d2y1

d�2
C �2y1 D �2

1 y0 � y3
0: (8.33)

Now, by substituting in (8.33) the expression for yo.�/, and after some trigonometric
calculations, it is found that y1.�/ must satisfy the equation:

d2y1

d�2
C �2y1 D A

�
�2

1 � 3

4

�
A2 C 3˛2

64�4
� A˛

8�2

��
cos ��

C terms in 3�; 5�; 7�; 9�:

(8.34)

Equation (8.34) shows that if the forcing amplitude of the � term is not equal to
zero, then we again face a situation where the amplitude of an oscillator, excited
at its eigenfrequency, increases continuously in time. After removing the secular
terms, we get

�2
1 D 3

4

�
A2 C 3˛2

64�4
� A˛

8�2

�
: (8.35)

After some algebraic rearrangement, Eq. (8.35) provides the condition of existence
for subharmonics of order 3 in the form of a relation between the amplitude A and
the reduced frequency � , for a given cubic nonlinearity coefficient 	:

�6 � �4 � 3	

256

�
64A2�4 � 8A˛�2 C 2˛2

� D 0: (8.36)

Finally, let us indicate that any oscillator governed by the Duffing equation may also
exhibit harmonics of higher order. To demonstrate this, the previous calculation
must be carried out again, with an forcing term in � , and with the objective of
obtaining conditions of existence for solutions in 3� (or higher).

8.3 Nonlinear Vibrations of Strings

The models of strings presented in the previous chapters do not take the variations
of tension consecutive to length fluctuations during the motion into account.
This assumption is not justified anymore when the ratio between the transverse
displacement and the string’s length becomes large. In several stringed instruments
(electric guitar, gypsy guitar, double bass played pizzicato,. . . ) such variations of
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tension are responsible for perceptually and musically relevant nonlinear effects:
pitch glide (think of the well-known initial “twang” in the attack!), coupling between
modes, and elliptical polarization of the string. One particular effect of nonlinear
coupling between modes lies in the ability to excite a string at a fraction L=n of
its length without canceling the harmonics of order n, in contradiction with the
linear theory. The elliptical polarization of a string also is a consequence of the
nonlinearity due to variations of tension.

The forced vibrations of an elastic string are examined below for large amplitude
oscillations. These will be focused on two transverse components of the string’s
motion, denoted y.x; t/ and z.x; t/. Torsional vibrations and longitudinal vibrations
are ignored [49, 73]. One may refer to the paper by Watzky for a more complete
description of the nonlinear dynamics of a vibrating string [75].

8.3.1 Simplified Equations of Motion

Let T0 be the initial tension of the string at rest. During the string motion, the relative
increase in length � of a small element of initial length dx is given by:

ds � dx D �dx; (8.37)

where ds is the current length (at time t) of the element (see Fig. 8.6).
For an elastic string of Young’s modulus E and cross-section A (in m2), the

tension at time t during the motion becomes

T D T0 C EA�: (8.38)

x

y

z

dx

dy

dz

ds

Fig. 8.6 Geometry of a nonlinear string element
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It is assumed that the components of the strain tensor (see Chap. 1) remain small
compared to unity so that it can be written that ds D Œdx2 Cdy2 Cdz2�1=2. A second-
order Taylor expansion of this equation gives

ds D dx
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(8.39)
Inserting this expression in (8.38) and assuming also that EA � T0, it can be
shown that the potential energy of the string of length L fixed rigidly at both ends is
written [49]:
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The kinetic energy is written:
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dx: (8.41)

By using the Hamilton’s principle, and considering that a sinusoidal force
f .x/ cos !t is applied to the string in the transverse direction y, the following coupled
equations are obtained (where the subscript letters refer to partial derivatives):
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�
;

(8.42)

where co D p
T0=
 and c1 D p

EA=
 are the transverse and longitudinal velocities
in the linear case, respectively. In Eq. (8.42) the left-hand sides correspond to the
linear case, while nonlinear terms are the terms in brackets on the right-hand
side. These terms can be ignored as long as the gradients yx and zx remain weak.
Otherwise, they are responsible for a coupling between y and z. Thus, a force applied
in the direction y is likely to generate a motion in the perpendicular direction z. This
explains why an initially plane motion of the string does not remain plane during
the motion.3

3Let us recall (see Chap. 6) that the boundary conditions at the bridge are another cause of coupling
between y and z in the linear case. In the general complex case of a real stringed instrument during
normal playing, these two factors coexist and it is often difficult to separate them.
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8.3.2 Forced Vibrations

As a result of the large amplitude displacement of the string, it is usually not justified
to neglect the nonlinear terms in (8.42) close to resonances. In what follows, it is
assumed that the forcing frequency ! is close to one particular eigenfrequency !n D
n�c0

L of the string. It is further assumed, for simplicity, that the mode n is not coupled
to other modes, which is not the case in practice. In fact, if the modes are close
together and/or if there are some algebraic relations between the eigenfrequencies
(see below, Sect. 8.5), then intermodal coupling must be taken into account. To a
first approximation, let us consider the two transverse components of the string for
the mode n:

y.x; t/ D any sin
n�x

L
cos !t and z.x; t/ D anz sin

n�x

L
sin !t: (8.43)

Inserting the expressions (8.43) in (8.42), the amplitudes any and anz satisfy the
following relations:
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(8.44)

where ˛n is the projection of the excitation force on the mode n of the string.

8.3.2.1 Planar Motion

The case of a planar motion is obtained by setting anz D 0 in (8.44). In this case, the
amplitude in the y-direction is governed by the nonlinear equation:

.!2
n � !2/any C 9c2

1

32

�n�

L

	4

a3
ny D ˛n



; (8.45)

which is similar to Eq. (8.17) obtained for a Duffing oscillator under forced
oscillations. Therefore, all results presented in Sect. 8.2.2 for Duffing oscillators of
“hardening” type are valid here, including bending of resonance curves, jumps, and
hysteresis.

8.3.2.2 Out-of-Plane Motion

Eliminating anz between both Eq. (8.44), yields for any:
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: (8.46)
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This expression is similar to (8.45), though the nonlinear term is now multiplied by
a factor 4=3, compared to the case of a planar motion. The second equation becomes
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ny � 16

3
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c2
1

�
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L

�4
any

: (8.47)

It proves that the string is likely to have an elliptical motion at a given point of
abscissa x, under the condition:

any > acrit
ny D

"
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3
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1

�
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L

�4
#1=3

: (8.48)

The condition (8.48) shows that increasing the forcing amplitude facilitates the
emergence of such motion. For plucked, and struck, string instruments, the elliptical
polarization has important consequences on the sound. In fact, each polarization
is “loaded” by a specific impedance at the bridge. Consequently, the detuning
and damping of both polarizations, due to these boundary conditions, are slightly
different. This, in turn, induces beats and complex decay history, which are
particularly sensitive to the attack time, when the amplitude is the largest. In the
spectral domain, these nonlinear phenomena take the form of “double peaks” of
very close frequencies.

In conclusion, it has been shown here that a single nonlinear string shows
some characteristics observed in the case of linear coupled strings in pianos (see
Chap. 6). However, it is important to notice that the underlying physical phenomena
at the origin of these temporal and spectral properties are fundamentally different:
amplitude nonlinearity in the first case, moving end in the linear case. Both
phenomena exist in the vibrations of real piano strings, so that it is sometimes hard
to separate them experimentally.

8.3.3 Transverse-Longitudinal Coupling: Simplified Approach

In the previous section, the coupling between transverse and longitudinal motion
of the string is ignored. However, in many string instruments and, in particular,
in pianos, such coupling is clearly visible and has a perceptual relevance [15].
To illustrate this, Fig. 8.7 shows the recorded acceleration at the bridge of a
piano. It highlights the existence of the so-called precursor, that precedes the
transverse vibration. Spectral analysis of this precursor shows that it is mainly due
to longitudinal vibration of the string, caused by its elongation during the attack [2].

This section is dedicated to the analysis of this coupling. It is restricted to the
description of the coupling between one transverse polarization y.x; t/ and the
longitudinal (or axial) motion �.x; t/. The string is assumed to be homogeneous,
lossless, and rigidly fixed at both ends. Finally, it is assumed that both transverse
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Fig. 8.7 Acceleration at the bridge of a piano. A precursor is clearly visible in the initial part of the
waveform. It is due to the longitudinal vibration of the string struck by the hammer. The duration
of hammer-string contact is indicated by a black rectangle, for comparison. From [2]

and longitudinal modes are integer multiples of their respective fundamentals. The
proposed approach used below is close to the one used by Bank [7], and inspired
by Morse [46]. We start from Eq. (8.38) where the extension ds, for a given axial
displacement �.x; t/, is written:

ds D dx
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from which a first-order expression of string tension is derived
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Thus the longitudinal force exerted on the string element ds is written:
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This yields the equation that governs the longitudinal displacement of the string:
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The equation that governs the transverse string component y is written:
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It should be noticed in Eq. (8.52) that the coupling term due to transverse motion is
quadratic in y, while in (8.53) the coupling term due to longitudinal motion is cubic
in y. Under the assumptions of fixed boundary conditions and homogeneous string,
the transverse motion is expanded in the form:

y.x; t/ D
1X

nD1

yn.t/ sin
n�x

L
: (8.54)

At this step, the goal is to define the conditions of existence for longitudinal motion
of the string and quantify it (this will be referred to as transverse-longitudinal, or TL,
mode coupling). The inverse problem, namely the generation of a transverse motion
induced by a longitudinal motion (longitudinal-transverse, or LT, mode coupling)
is intentionally left aside. Both couplings exist simultaneously in reality, but the
description of the TL coupling is sufficient to bring out the essential principles.
Starting from (8.54), the longitudinal force per unit length of the string is written,
from (8.51)
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Under the assumptions of fixed boundary conditions and no dissipation, the
longitudinal displacement becomes
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�k.t/ sin
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kD1

�k.x; t/: (8.56)

The component �k.x; t/ will be excited under the condition that the projection of fTL

on this component is not equal to zero. This is checked by calculating the scalar
product:

fTL;k.t/ D
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L
dx: (8.57)
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The calculation (8.57) then shows that the only cases where fTL;k ¤ 0 are obtained
under the following conditions:

m C n D k or jm � nj D k: (8.58)

In the first case (or “C” case), we have

f C
TL;k.t/ D �EA�3

8L2

k�1X
nD1

yk�n.t/yn.t/k.k � n/n; (8.59)

and, in the second case (or “�” case):

f �
TL;k.t/ D �EA�3

4L2

1X
nD1

ykCn.t/yn.t/k.k C n/n: (8.60)

From a spectral point of view, the previous equations yield the conditions that
govern the occurrence of frequencies due to longitudinal vibrations of the string.
For harmonic spectra, it can be checked (8.59) and (8.60) that these conditions are
written: (

for f C
TL;k.t/ W fn C fk�n D fk and fn � fk�n D fj2n�kj;

for f �
TL;k.t/ W fn C fkCn D f2nCk and fn � fkCn D fk:

(8.61)

Such selection rules were applied successfully by Valette and Watzky to account
for the generation of longitudinal modes in harpsichord strings [73]. They also
account for “phantom partials” observable in piano sounds [17]. In the case of
the piano, Bank and Sujbert made systematic measurements of real sounds that
helped in enlarging the validity of relations (8.61) to the case of slightly inharmonic
signals [7].

8.3.4 Exact Geometrical Model of Piano Strings
with Intrinsic Stiffness

The general considerations on the nonlinear properties of strings presented in
Sects. 8.3.1–8.3.3 above were based on simplified models of geometric nonlinearity
and, in particular, on first-order approximations of the nonlinear terms in the
wave equations. However, it has recently been demonstrated that the numerical
simulations based on these approximate models can lead to errors, and even to
instabilities [12]. In addition, as mentioned in several chapters of this book, and,
particularly, in Chap. 3, the intrinsic stiffness of strings is an essential property, with
significant audible consequences for the piano [26]. As shown below, the association
of nonlinearity and stiffness is necessary in order to obtain a realistic model of piano
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string. It is also preferable to use a geometrically exact model of string vibrations.
Such a model has recently been developed by Chabassier et al., who write the
nonlinear piano string’s equations [13]:
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(8.62)

In this system, us is the transverse component of the string’s displacement, vs is the
longitudinal component, and 's is the angle of rotation of the cross-sections (see
Fig. 8.8).4 � is the density of the string. For an homogeneous steel string, the string
density is equal to the density of the material �c, where the index “c” means “core.”
Similarly, the area of the cross-section is A D Ac. For the wrapped bass strings,
where the wrapping (usually in copper) is aimed at increasing the mass without
altering too much the stiffness, the density can be written � D �cF, where F is the
wrapping factor defined as [15] :

F D 1 C �wAw

�cAc
: (8.63)

4Strictly speaking, the model should contain an additional horizontal component. In fact, it is
observed experimentally that the polarization of most piano strings changes with time. It is often
almost vertical during the initial transient, due to the action of the hammer, and is then evolving
progressively towards a horizontal motion, even for small amplitudes. It can be demonstrated
mathematically that such a polarization change can only occur if some asymmetry exists in the
system that allows a transfer of energy from one component to the other. If the string is assumed
to be homogeneous and perfectly rectilinear, with ideal boundary conditions (assuming a vertical
motion of the bridge, for example), then the string will keep the initial polarization induced by
the hammer during its motion. In [13], the authors made such assumptions, with a vertical initial
motion of the hammer, and this is the reason why only one transverse component of the string
is considered here. Revisiting the bridge model would be necessary for allowing a horizontal
component.
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Fig. 8.8 Variables for the
nonlinear planar motion of a
stiff string: us is the
transverse component, vs is
the longitudinal component,
and ' is the angle of rotation
of the cross-section due to
shear stress

x

us(x)

js(x)

vs(x)

In this expression, Aw is the cross-sectional area and �w the density of the wrapping.
The other parameters (Young’s modulus E, tension at rest T0, torsional modulus G,
and shear coefficient �) are related to the core. The stiffness model in Eq. (8.62)
is a Timoshenko model. Its main property follows from the coupling between
transverse and shear waves. Accounting for shear yields accurate estimation of the
string’s eigenfrequencies in the audible range. In addition, the Timoshenko model
has desired mathematical properties for the simulations. As shown in Chap. 3, for
example, the transverse velocity in a Timoshenko beam tends to an asymptotic value
as the frequency increases, whereas it tends to infinity for an Euler–Bernoulli beam,
which is unsatisfactory from both a physical and numerical point of view. The
source term S in (8.62) accounts for the action of the hammer. To be complete,
the model must also contain damping terms, which are not written here for the sake
of simplicity.

The motion of the string imparts transverse and longitudinal forces at the bridge
(see Fig. 8.9). These forces are transmitted to the soundboard, as a result of the
particular geometry of the system and, also probably, because of the complex
motion of the bridge. This motion is left aside here, since it is still not completely
understood today, and subjected to some controversy. Considering then the angle
between the string and the horizontal plane, only, then the two components of the
string force at the bridge (in x D L) can be written as:
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(8.64)

The nonlinear string force (8.64) is the exact expression to be used in simulations.
However, it is interesting to examine lower-order expansions of this force for the
purpose of a physical interpretation. We get
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Fig. 8.9 String–soundboard coupling at the bridge, allowing the transmission of the transverse
and longitudinal components of the string force
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In (8.65), the term .T0 C AG�/@xus contains the linear components of higher
magnitude. The following term refers to the shear wave, and has no effect on the
piano sound since the corresponding spectrum is beyond the audible range. The
term .EA � T0/@xus @xvs shows the possible existence of spectral combinations

between transverse and longitudinal modes. The term .EA � T0/
.@xus/

3

2
accounts

for cubic transverse nonlinearities. The term EA @xvs accounts for the longitudinal

components. Finally, the term .EA � T0/
.@xus/

2

2
accounts for quadratic transverse

nonlinearities. This last term is comparable to the one discussed in Sect. 8.3.3.
This shows that the nonlinear expression of the force transmitted from string to
soundboard accounts for the richness of piano sounds. In addition to transverse and
longitudinal partials, which are easily seen on real piano spectra because of their
relative high amplitudes, the spectral analysis of piano tones show many other peaks
due to combinations of order 2 or 3 between all components. These combinations
are nothing but the famous phantom partials, as designated in the literature [16].

The experimental identification of these phenomena is shown in Fig. 8.10. The
transverse partials are the peaks of highest amplitude: they are designated by a single
number. On the top figure, the spectral peaks of smaller amplitude located between
the transverse partials are the result of quadratic nonlinearity: they are designated
by the sum of two numbers. The frequency of the phantom partial “14+16,” for
example, is equal to the exact sum (within 1 Hz, which corresponds to the accuracy
of the spectral analysis) of the respective frequencies of partials 14 and 16. Here,
one can realize the importance of inharmonicity: with a perfect harmonic transverse
series of partials, it would be impossible to detect the phantom partials. In the
previous example, the phantom partial “14+16” would be then superimposed to the
30th harmonic component. As shown in Chap. 3, the inharmonicity (due to stiffness)
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Fig. 8.10 Experimental identification of phantom partials due to quadratic (top) and cubic
(bottom) nonlinearities in the bridge acceleration spectrum, at the attachment point of string C2
(fundamental f D 65:4 Hz) of an upright piano

increases as the square of the partial’s rank. Thus, the 30th transverse partial has a
frequency higher than the “14 C 16” phantom partial. Similar comments can be
made for the bottom figure where the added phantom partials are due to cubic
nonlinearity. As a consequence, their frequencies are the combinations of three
different frequencies of transverse partials. Zooming on other parts of the spectrum
(not shown here) would illustrate other types of combinations, where the frequencies
of some phantom partials are the sum of transverse and longitudinal frequencies, for
example.

The issue of frequency combinations and added partials due to geometric
nonlinearity will be addressed again in Sect. 8.5 devoted to gongs and cymbals. The
mechanisms of instability at the origin of these new frequencies and the conditions
for their existence will be analyzed and discussed.
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8.4 Nonlinearities in Wind Instruments Resonators

In the previous chapters, the propagation of sound in wind instruments was based
on the wave equation (cf. Chap. 1) obtained from basic equations (conservation
equations, adiabatic behavior of ideal gas), through linearization of acoustic quan-
tities with regard to the fluid at rest, considered as a reference state. The so-called
small perturbations hypothesis is no longer justified in situations with high levels
of sound, as the acoustic pressure amplitude inside the tube can reach 1–10 %
of the atmospheric pressure. In this case, the phenomena must be analyzed with
nonlinear propagation equations. The purpose of this section is to present basic
tools of weakly nonlinear acoustics applied to one-dimensional waveguides (case
without source, fluid at rest), and to discuss one particularly impressive wave
distortion phenomenon, the so-called brassy sounds, observed in brass instruments.5

In addition to brassy sounds, the nonlinear localized dissipation found in side-hole
instruments, will also be examined (Sect. 8.4.5).

8.4.1 Nonlinear Propagation

8.4.1.1 From Basic Equations to the Weakly Nonlinear Wave Equation

A criterion for evaluating the relevance of the linear approximation consists in
checking that the (dimensionless) acoustic Mach number M D va=c is small
compared to unity (va is the amplitude of the acoustic velocity, whereas c is the
speed of sound). Reciprocally, in the case of very intense sound level (with M of the
order of unity), which corresponds to highly nonlinear acoustics, the basic equations
cannot be linearized anymore! In fact, even for small acoustic Mach number, it is
possible to observe pronounced nonlinear distortion phenomena. These effects are
negligible on a small spatial scale: for distances small compared to the wavelength,
it is possible to assume p D �cv (as for a simple traveling wave). However, these
effects are cumulative in space, for distances corresponding to a significant number
of wavelengths, and can then generate highly distorted waves, and even shock
waves.6 This area of study is referred to as “weakly nonlinear” acoustics.

Nonlinear Equation of Wave Propagation

In the simple case of 1D linear acoustics, the propagation equation can be put in
the form of two traveling wave equations of order 1, without a source: @p=@t ˙

5For a more detailed study of fundamental nonlinear acoustics, the reader may refer, for example,
to the following authors: [18, 34, 54, 57].
6A shock wave is a pressure field which has an abrupt, and almost discontinuous, transition.
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c@p=@x D 0. To generalize this, one can start from the basic equations of mass
conservation (1.107) and momentum conservation (1.101), so that the quadratic
nonlinear terms appear
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Here, the initial symbols of the basic acoustic equations are used (i.e., before
linearization), where � and P are the density and total pressure, respectively. Under
the assumption of adiabaticity, � depends only on P, or vice versa (adiabaticity is
defined in Chap. 1). In addition, the velocity v is also assumed to be a function of
pressure P. The following system of equations is derived
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(8.67)

It has nontrivial solutions for @P=@t and @P=@x if the determinant associated with
the system of these two equations is equal to zero, which gives
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By definition, we have c2 D dP=d�. This leads to two solutions: “outgoing” and
“incoming” traveling waves, respectively, corresponding to dP=dv D ˙�c. In
the particular case of the outgoing wave, using the first Eq. (8.67), the so-called
nonlinear propagation equation of the simple wave [24] is obtained

@P

@t
C .c C v/

@P

@x
D 0: (8.68)

This equation, obtained without any approximation, is nonlinear. Now, the speed of
sound has to be expressed. In Chap. 5 the following nonlinear state equation was
established in the case of an ideal adiabatic fluid:

P

P0

D
�

�

�0

��

from which c2 D dP

d�
D �

P0

�0

�
�

�0

���1

:

Weakly Nonlinear Acoustics Assumption

Under the assumption of weakly nonlinear acoustics, an approximate version of the
simple wave equation (8.68) is now derived. Restricting the study to quadratic terms,



8 Nonlinearities 421

it is sufficient to write a first-order approximation of the speed of sound as a function
of density, which gives

c ' c0

�
1 C � � 1

2

�0

�0

�
with c2

0 D �
P0

�0

: (8.69)

�0 is still the acoustic density: � D �0C�0. The pressure is also assumed small, using
the following notation (see Chap. 1): P D P0 C p. Thus, we have p=P0 D ��0=�0:

Again to the first order, we have p D �0c0v, which yields

c0

�0

�0

D c0

�

p

P0

D v, and then c D c0 C � � 1

2
v: (8.70)

Finally, the nonlinear equation (8.68) is approximated as follows:

@p

@t
C .c C v/

@p

@x
D @p

@t
C
�

c0 C � C 1

2
v

�
@p

@x
D 0: (8.71)

This wave equation also remains valid, if we replace p by v or �0. In summary,
Eqs. (8.68) and (8.70) account for the causes of nonlinearity present in both the
conservation and the state equations:

• the convection effects (due to flow velocity). For a fixed observer, each point of
the wave, instead of moving at the same speed c0 is moving in fact at speed cCv,
so faster at the maxima of the acoustic velocity, and slower at the minima.

• variations in the sound pressure induce compression and expansion zones that
increase and decrease with temperature, respectively. Since the local speed of
sound c depends on temperature, it is also a function of the acoustic velocity.

As discussed in Sect. 8.4.2, the nonlinear traveling wave equation obtained above
can be solved accurately by the method of Riemann invariants, also called the
method of characteristics. The wave equation can also be established in the general
case (non-traveling wave case), but it cannot be solved accurately. Notice that losses
were not considered in the previous developments. If losses are taken into account,
approximate methods, using perturbation calculus, should be used. Burgers equation
mentioned in the following Sect. 8.4.1.2 is the result of such methods.

8.4.1.2 Burgers Equation

The exact solution of nonlinear acoustics including losses is not possible. An
approximate way to tackle the problem is to use a perturbation method: the method
of “multiple scales”.7 This method is based on the presence in the equation of a

7This method is detailed in Sect. 8.5 devoted to nonlinear vibrations of gongs and cymbals.
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small parameter, compared to unity: in our case, the selected parameter is the Mach
number defined in the vicinity of the acoustic source of the system. This number
serves as a basis for the definition of different scales: a short spatial scale (or “fast”
scale) that describes the wave propagation locally, and a long spatial scale (or “slow”
scale) that represents the cumulative effects of nonlinear distortion and losses. After
some mathematical operations, that will not be detailed here, the weakly nonlinear
lossless wave equation (8.71) is approximated by the following so-called Burgers
equation:

@q

@
� q

@q

@�
D 0; (8.72)

where q is a dimensionless velocity,  is a long spatial quantity, and � is a
dimensionless delayed time quantity. For more details, the reader may consult [57]
or [19]. If the Burgers equation above is valid for the speed of sound, it is also
applicable to other acoustic quantities, such as density and pressure. Equation (8.72)
has an exact solution for  < 1. For the particular case of a sine wave at the input
( D 0), Fubini has obtained the solution [25]:

q.; �/ D 2

1X
nD1

Jn.n/

n
sin.n�/; (8.73)

where Jn is the Bessel function of order n. “Generalized” Burgers equations exist,
that take additional physical phenomena into account. As a consequence, the
nonlinear differential equation that follows has two terms on the right-hand side, the
first corresponding to volume visco-thermal phenomena, and the second to visco-
thermal losses localized near the walls8:

@q

@
� q

@q

@�
D A

@2q

@�2
C B

@1=2q

@�1=2
, (8.74)

where A and B are constants depending on the thermodynamic constants of both
the gas and geometric characteristics of the system under study. In practice, the
volume losses term can be ignored almost everywhere (i.e., outside the shock
zone9) in the “sound pipes” application. Nevertheless, it is possible to separate and
measure the relative influence of all these effects, using dimensional analysis (see,
for example, [44]).

8So far, the volume visco-thermal losses, proportional to !2, were ignored because in a wind
instrument they are very low compared to losses in the boundary layers, proportional to

p
!.

However, volume losses are essential in free space. Equation (8.74) including only the volume loss
term (B D 0) is the equation called “Burgers equation,” referring to the similar nonlinear equation
used by the Dutch physicist J.M. Burgers in his work on turbulence.
9The shock zone is the zone where sudden changes of pressure, acoustic velocity, and temperature
may occur.



8 Nonlinearities 423

8.4.2 Nonlinear Distortion and Shock Waves, Method
of Characteristics

The nonlinearity of Burgers equation allows us to understand the origin of abrupt
changes in pressure, which will be assumed to be discontinuous to a first approxi-
mation, although strictly discontinuous phenomena do not exist in real life.

To build simple analytical solutions to this equation, the mathematical method
known as the method of characteristics (or Riemann invariants method) is used
(however, this method will not be detailed here [34]). In what follows, we restrict
ourselves to a qualitative description. Notice that this method is applicable to other
discontinuous phenomena such as road traffic or the formation of tidal bores.

Losses are ignored in a first step. From the weakly nonlinear equation (8.71), it
is derived that the velocity of a signal point propagating along the x-axis for a fixed
observer is c D c0 C 1

2
.� C 1/v. The maximum of the acoustic wave propagates

faster than the minimum. The wave becomes distorted during the propagation (see
Fig. 8.11). Under the assumption of weak nonlinearity, any signal (plane wave) is
necessarily transformed into a shock wave, even if the sound level at the source is
low, as long as the dissipative phenomena are not taken into account, as is done
here. The higher the amplitude of the wave at the origin, the faster the wave is
distorted, and the shorter is the distance xc where the shock wave grows [54]. Using
the method of characteristics, one can show that this distance is written:

xc D 2�P0c0

.� C 1/ Œdp=dt�max
where Œdp=dt�max at x D 0: (8.75)

From (8.75), it turns out that xc also depends on the shape of the signal, through
the term Œdp=dt�max. Thus, for an initially sinusoidal signal, xc is a decreasing
function of frequency.

position

Velocity
or pressure

(   + 1) vc0+ Δt =

x x+Δx

Δx
1––
2

Fig. 8.11 Wave distortion: evolution of a sinusoidal signal for a traveling plane wave (pressure or
velocity) governed by the weakly nonlinear equation. Each point of the waveform travels with a
given characteristic velocity that depends of the amplitude, which distorts the signal
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Equation (8.68), with (8.70), implies that the acoustic velocity v is constant
over time (dv=dt D 0) along some lines (the so-called characteristics) of slope
c D c0 C 1

2
.� C 1/v in the .x; t/-plane. The method of characteristics illustrates

the “cumulative” effect of the nonlinear distortion during wave propagation. The
intersection of two characteristics in this plane corresponds to two possible values of
sound pressure at the same point simultaneously: this corresponds to the formation
of a shock wave. The first intersection yields an estimation for the shaping distance
of the shock wave xc. Beyond this point, the method of characteristics implies
the existence of multivalued solutions, which is non-physical! It becomes then
necessary to introduce a new condition to describe the shock. This condition is
given by writing the conservation of mass across the shock wave, the so-called law
of equal areas. It follows that the structure of the wave has a “sawtooth” shape, with
a decreasing amplitude in the subsequent propagation. This wave is also called the
“N-wave” (see, e.g., [54]).

The distortion of an initially sinusoidal wave is shown in the frequency domain
as an energy transfer from the fundamental component of the signal to higher order
harmonics [this is illustrated quantitatively by the Fubini equations (8.73)].

8.4.3 Competition Between Nonlinear Effects and Dissipation

In the absence of losses, the model systematically predicts wave distortion and
N-wave formation. The amplitude of this wave decreases, regardless of the intensity
of the source signal (even if it is very low), and whatever the shape of the signal, as
long as the wave propagates far enough! This is in contradiction with experiments
showing that the initial amplitude of the source signal influences the nature of the
produced sound. The model is therefore incomplete.

Taking the losses into account helps in obtaining a model which is closer to
reality. The goal here is to a priori estimate the order of magnitude of competing
phenomena: nonlinear effects and visco-thermal losses. As a consequence, losses
may damp the signal before it has time to distort. In this case, the context of linear
acoustics is sufficient to model the phenomena. For strong nonlinear phenomena, a
possibility exists when the amplitude of the N-wave becomes low enough so that
the dissipative effects are dominant. Since the visco-thermal losses at walls are an
increasing function of frequency, the N-wave is damped and deformed over time
to tend ultimately to a sinusoidal signal of very low amplitude. Notice that, during
the formation of the shock wave, both the volume visco-thermal losses (usually
ignored in the pipe) and visco-thermal losses in the boundary layer describe the
shock wave shape correctly. In practice, the angles of the shock wave are “rounded”
by dissipation.
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8.4.4 Shock Waves and Brassy Sounds

The sound levels inside wind instruments can be very high (about 130–170 dB), and
only a small part of the acoustic energy is transmitted to the external air. One way
to a priori notice the presence, or the absence, of nonlinear phenomena, consists in
estimating the distance of shock formation from the source signal. This procedure
has been used for pressure signals measured inside a trombone mouthpiece [35]. The
measured distance is of the order of magnitude of several meters, which suggests the
presence of spectacular nonlinear effects in the instrument (recall that the length of
the cylindrical part of the trombone, the main slide, is between 2 and 3 m).

Internal acoustic pressures corresponding to a high F (F4—frequency 350 Hz)
were measured at the input of a trombone slide and at the slide end, for various
sound levels (see Fig. 8.12). It is observed that the input signal is slightly distorted
for increasing amplitudes, and that a spectacular distortion is visible on the signal at
the output of the slide. If a note is played at the sixth position (for a slide near
its maximum length, 2.8 m, which enhances the cumulative effect of nonlinear
propagation), the distortion is such that shock waves are visible. The resulting
spectral enrichment of the higher harmonics is also found in the sound radiated
by the instrument. These sounds with a specific tone color are often called “brassy
sounds” by the players.

The question of the propagation in bells is not discussed here (see Chap. 7).
Outside the instrument, the radiated sound looks like a series of pulses generated
at the frequency of the played note (it is calculated in the model by deriving the flow
rate at the output). These high frequencies are totally transmitted to the external
air and do not return to the lips of the player. Thus, they are not involved in the
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Fig. 8.12 Shock waves in a trombone illustrated by pressure signals measured at the input of the
instrument, at the slide output, and 20 cm outside the bell, respectively (from top to bottom on the
figure). The note F4 (350 Hz) is played fortissimo in first (left) and in sixth position (right), the
length of the cylindrical part being 1.80 and 2.80 m, respectively
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self-sustained oscillations. This is an additional argument to justify the use of a
linear propagation model (input impedance) for the analysis of sound production,
which is the topic of the next chapter. In addition, this also justifies the following
simplification currently used for synthesized sounds: in a first step, the synthesized
sounds are obtained from a model of linear resonator, in a second step the sounds
obtained at the input of the instrument propagate nonlinearly and radiate [47, 65, 74].
Such synthesized sounds simulate “brassy sounds” in a very realistic manner.

Only trombone brassy sounds were presented here, but in fact these “brassy
sounds” are characteristics of all brass instruments, including those with predomi-
nantly conical bore. Nevertheless, the nonlinear distortion phenomenon is less
pronounced in cones than in cylinders. We can probably see there an explanation
for the distinction used by musicians between “bright brass” with a preponderant
cylindrical bore (trumpet and trombone), and “soft brass” with a preponderant
conical bore (cornet, flugelhorn, French horn, and tuba) (see Fig. 8.13) [50].
Another distinction between these types of instruments is due to the shape of the
mouthpiece [28].

Woodwind instruments do not produce “brassy sounds,” and it seems also that
they are not subjected to, even small, nonlinear distortion effects [30]. However,
nonlinear phenomena of a different nature can be seen, which are located at open
holes, as it will be discussed in the next section.

Fig. 8.13 Two examples of brass instrument families, each having one cylindrical bore instrument
and another with a conical bore. Left: trumpet (cylindrical) and bugle (cone). Right: trombone
(cylindrical) and low saxhorn (cone)
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8.4.5 Localized Nonlinear Dissipation

When the particle velocity is high, jet separation phenomena at geometric sin-
gularities, like openings, may occur (see, for example, Chap. 10, Sect. 10.3.1.2).
These phenomena, which are standard in fluid mechanics, occur less frequently
in acoustics since they only appear for velocities larger than or equal to nearly
1 m/s, which corresponds to very intense sound levels.10 However, these velocities
correspond to a rather weak acoustic Mach number, which explains why these
separation phenomena, when they occur, are generally more pronounced than the
nonlinearity due to propagation. The phenomenon of jet separation may be of little
consequence if it sticks quickly back to the wall. Otherwise, the interaction of the
jet with the external fluid at rest generates vortices, because of shear effects. Part
of the kinetic energy of the jet is absorbed by the vortices and further dissipated as
heat by friction. This effect will be discussed in the next chapter where the output
jet of a reed canal is examined. Finally, dissipation of acoustic energy exists, and
the nonlinearity can be reasonably modeled as a nonlinear resistance.

8.4.5.1 Simple Quasi-Static Model for the End of a Pipe

Consider the end of a tube, assuming zero impedance, in which a periodic flow
has the form v D v0 sin !t. Assuming that a proportion of the kinetic energy is
dissipated, the required pressure ps to maintain the flow is written:

ps D cd
1

2
�v jvj : (8.76)

In fact there is no reason for the coefficient cd to be independent of speed.
Atig et al. [5], in particular, have shown that this coefficient is larger when v > 0

(outgoing jet) that when v < 0 (incoming jet) and the value of this coefficient
becomes larger as the radius of curvature at the pipe output decreases (see Fig. 8.14).

The same authors have shown elsewhere [4, 10] that considering either cd as
a constant value, or two different values for the outgoing and incoming flows,
respectively, has little influence on the oscillation of a clarinet, the relevant
parameter being the average value of the coefficient. Therefore a model with one
constant parameter, though very approximate, may lead to satisfactory results. In
this case, we have

ps D cd
1

2
�v2

0 sin !t jsin !tj D cd
1

2
�v2

0

8

3�
sin !t; (8.77)

10For a pure traveling plane wave, a particle velocity of 1 m/s corresponds to a level of 400 Pa, or
146 dB SPL.
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Fig. 8.14 Real part of the normalized end impedance Zt=Zc as a function of the velocity v0 at the
output of the pipe, for various radii of curvature r: open circle r D 4 mm; triangle symbol: r D
1 mm; asterisk symbol: r D 0:3 mm; square symbol: r D 0:01 mm. The inclined straight dashed
line corresponds to the model of pressure losses for the outgoing jet with cd D 13=9, and the
two horizontal dashed lines correspond to the linear losses with and without screen, respectively.
From [3]

if only the first term of the Fourier series is kept (first harmonic approximation). The
power dissipated over a period is then:

P D psvS D 2cd

3�
�v3

0S: (8.78)

Within the framework of the first harmonic approximation, assuming that the end
impedance is real, it is found equal to:

Zt D 4cd

3�
MZc; (8.79)

where M D v0=c is the acoustic Mach number. Experiments show that this simple
model reflects the asymptotic behavior of nonlinear impedance fairly well (within
the context of the first harmonic method). In practice, it is valid for high velocities
(typically v0 > 10 m/s, see Fig. 8.14). The definition of impedance in a nonlinear
regime would deserve much more care, but if one satisfies with a perturbation
approach (the linear speed is calculated, and injected in the “nonlinear” impedance
expression), the validity of (8.79) can be assumed. The value of the coefficient cd is
difficult to predict theoretically and it is easier to determine it experimentally.
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8.4.5.2 Side Hole

In the case of a side hole one can expect to see nonlinear resistances both in
series and in parallel branches of the tube model (see Chap. 7). Dalmont et al.
were able to highlight these resistances, however, they also have shown that the
resistance in series could reasonably be neglected when the diameter of the side
hole is significantly smaller than the diameter of the main guide [20]. Again here,
the parameters are highly dependent on the radii of curvature at the junction and
at the output of the hole. The use of nonlinear impedance in a calculation of
input impedance, or of reflection impedance, can be done simply with perturbation
methods.

The influence of high sound level (up to 10 kPa, or nearly 174 dB) on the self-
sustained oscillations of a clarinet type instrument has been investigated ([4], see
Chap. 9, Sect. 9.4.6) for a cylinder. It shows the importance of nonlinear losses at
the end on sound pressure level. One can also show that losses in a side hole reduce
the playing frequency, which is easily understood: if the, even real, impedance of a
side hole, increases notably, it may eventually act as a closed end for the hole! The
conventional calculation of playing frequency that ignores the losses and uses purely
imaginary impedances, shows here an obvious limit. Debut et al. [21] proposed an
approximate formula to account for this.

8.5 Geometric Nonlinearities in Gongs and Cymbals

Gongs and cymbals perfectly illustrate a number of fundamental properties of
nonlinear systems: sensitivity to initial conditions, bifurcations, hysteresis, and
routes to chaos. Geometric nonlinearities are also present in other instruments, such
as the steelpan [45].

By striking an orchestral gong (also called a Chinese tam-tam, see Fig. 8.15)
gently near its center with a mallet, one can clearly hear the excited modes and their
extinction. The vibration is then adequately described by a linear model. If one hits
harder, other frequencies appear, and a simple linear analysis does not account for
them.

The vibration spectrum (and, consequently, that of the produced sound) can
only be explained with the help of nonlinear theories that predict the existence of
combinations of resonances. These combinations contribute to enrich the number of
emitted frequencies considerably.

Finally, if one hits even stronger, this yields a continuous spectrum. In other
words, the excited frequencies are no longer separable from one another. A detailed
analysis performed on the obtained signals shows that chaotic oscillations are
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Fig. 8.15 Orchestral gong,
or Chinese tam-tam. Courtesy
© Rythmes et Sons

obtained (see Fig. 8.16).11 The strict definition of this term will be specified later.
Notice that, although the spectrum of the sound obtained at strong impact is
continuous, it is not that of a random noise.

In this section, the nonlinear phenomena that are the origin of the specific
sounds of those instruments are described. We show, in particular, that they
are due to the geometric nonlinearity caused by large amplitude motion of the
structure, when subjected to a strong impact. To facilitate the understanding, a
simplified mathematical description of a subsystem composed of a small number
of nonlinearly coupled oscillators will be conducted. Finally, the generalization to
nonlinear continuous systems with a large number of degrees of freedom will be
made. Spherical shells subjected to large amplitude oscillations will serve as an
example of a structure for which an analytical description of such phenomena is
possible.12

11The definition of chaos, as well as the method used for analyzing and quantifying such
oscillations, will be presented throughout this chapter (see Sect. 8.6, in particular). Here, we can
see some first properties of chaotic oscillations: irregularity in the time-domain, and a broadband
spectrum where it is not possible to discriminate individual spectral peaks anymore. Sensitivity to
initial conditions is another essential feature of chaotic oscillations, which will be discussed later
in detail.
12An important part of the topics presented in this section are the results of new insights on the
nonlinear vibrations of thin structures which were published during the last 15 years. See, in
particular, the Ph.D. thesis by O. Thomas, and his joint work with colleagues [8, 11, 60, 61, 64, 68].
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Fig. 8.16 Vibration waveforms and spectra of a gong struck with increasing impact force. The
three upper figures show the vibration signals delivered by an accelerometer glued to a gong excited
near its center with a mallet. The three figures at the bottom show the corresponding spectrograms,
which represent the spectral content of these signals over time. The dark lines corresponds to
high level, the light gray lines to low level. For a “soft” impact, the vibration signal is almost
sinusoidal, the spectrum shows an intense spectral line around 90 Hz, and only a few lines at
higher frequencies, at a lower level. For a “medium” impact, the intensity of the 90 Hz component
decreases, whereas the level of higher frequencies increases. Simultaneously, new components
with a significant energy appear in the higher range of the spectrum. For a “strong” impact, the
energy is still increasing in the high frequency range (between 200 and 500 Hz in the spectrogram),
the spectrum becomes continuous, and it is no longer possible to separate the spectral lines. The
waveform loses its periodic nature and becomes chaotic (see Sect. 8.6)

8.5.1 Sinusoidal Forced Excitation

Impact clearly corresponds to the standard use for gongs and cymbals. However, it is
difficult to analyze the phenomena, because of the large bandwidth of the excitation
spectrum. For this reason, it is preferable to observe the phenomena experimentally
with a forced sinusoidal excitation. This procedure has the advantage of presenting
the main phenomena, and thus allowing easier modeling. Nevertheless, recall that,
unlike the case of linear systems, one cannot conclude here that the oscillations
obtained through normal impact are the superposition of the oscillations obtained by
summing the results obtained for each frequency of the excitation spectrum, since
the superposition principle is not anymore valid for nonlinear oscillations.

Figure 8.17 shows an example of experiments where the amplitude of the excita-
tion force gradually increases at a given point of a gong. Similar experiments were
conducted on cymbals. An excitation frequency close to one natural frequency of the
structure is selected, in order to generate high amplitude. The vibration velocity is
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Fig. 8.17 Forced sinusoidal excitation of a gong. (See [60] and Sect. 8.5.1 in the text for a detailed
description of this experiment)
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Fig. 8.18 (Top) Vibration acceleration at a given point of the gong for increasing amplitude of
the sinusoidal excitation force. (Bottom) Corresponding spectrogram. One can see an increasing
distortion of the wave and an enrichment in harmonics in the spectrum over time. For reasons
of clarity, the frequency scale on the spectrogram is intentionally reduced and does not show the
higher harmonics 2˝, 3˝, 4˝,. . . which are nonetheless present in the vibration spectrum

measured at a point on the structure with the help of a laser vibrometer. It is observed
that the obtained waveform is, first, a sine wave. Some harmonics gradually appear
as the amplitude of the excitation further increases (see Fig. 8.18). For a particular
value of this amplitude (or threshold), additional frequencies suddenly appear in the
spectrum and are inserted between the harmonics. A detailed examination of the
values of these frequencies shows that they are algebraically related to the harmonic
excitation. Moreover, they correspond to other eigenmodes of the structure than the
one initially excited (see the next section). The emergence of these new frequencies
is characteristic of what is called a bifurcation. Mathematically, we will see in the
next sections that such a bifurcation corresponds to a loss of stability for the system,
and that the stability domain depends on both the amplitude and frequency of the
excitation.

When the amplitude of the exciting force continues to increase, there is a
new threshold that causes a second bifurcation. For slightly damped systems,
such as metallic percussion instruments, one reaches a chaotic regime on this
second bifurcation. It can be seen in Fig. 8.17 that the vibration spectrum beyond
this threshold is so dense that there it is almost continuous. When listening, the
characteristic shimmering sound of a gong (or a cymbal) is easily recognized,
although the instruments are excited with a single frequency.
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8.5.2 Internal Resonances

To explain these phenomena, a brief return back to the linear case presented in
Chap. 3 is necessary, where it was established that the vibrations of a conservative
finite structure can be represented as a projection onto a eigenmodes basis. In what
follows, we will see that the nonlinear behavior of gongs can be described with
the help of their linear modal properties. As seen in Chap. 3, the linear motion of
a structure, which is assumed to be non dissipative so far, can be written in the
following generic form:

L .�/ C R� D 0

+ boundary conditions; (8.80)

where L is a linear operator involving the displacement field � of the structure and
its spatial derivatives. Then, this motion can be decomposed on the basis of its own
eigenmodes, each mode being characterized by an eigenfrequency and an associated
eigenshape.

Thus, for a given material, geometry (thickness, curvature, size,. . . ) and bound-
ary conditions, the eigenfrequencies and eigenmodes of the structure are fully
determined. If some algebraic relations exist between the eigenfrequencies, such as:

LX
iD1

mi!i D 0; (8.81)

where mi is an integer (positive or negative), the structure is said to have internal
resonances. Some relations of the following types, for example:

!1 C !2 D !3 or 2!3 � !1 D !5: (8.82)

can be exhibited.
In the case of structures with a circular geometry, some other interesting

properties are observed: one can discriminate between the asymmetric modes, and
the axisymmetric modes which show a symmetry with regard to the revolution axis
(see Fig. 8.19).

In fact, the asymmetric modes are grouped by pairs, whose mode shapes
are identical, showing only a phase shift of �=2p, where p is the number of
nodal diameters. If the structure is perfectly homogeneous, the eigenfrequencies,
denoted here, for example, !n1 and !n2, are theoretically identical. In practice,
measurements show that these frequencies differ slightly, as a result of some
unavoidable imperfections in the structure (which may include residual stresses),
and because of the attachment system. For inhomogeneous structures (such as
gongs), one can observe some important differences between both frequencies of
a mode pair. An important subset of the relations (8.81) are those where:

mk!k D mi!i C mj!j with jmij C jmjj D 2; (8.83)

This type of internal resonance is of prime importance in the case of quadratic
nonlinearities, which govern the physical behavior of gongs and cymbals.
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Fig. 8.19 Examples of axisymmetrical modes and asymmetrical modes of a gong

Fig. 8.20 Set of two joint
articulated bars illustrating an
example of geometrical
nonlinearity
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8.5.3 Weakly Nonlinear Regime

Structures such as gongs, cymbals, and thin spherical shells, show an asymmetry due
to curvature. In fact, the transverse motion is easier in the direction of the hollow
side than in the rounded one. This is an example of geometrical nonlinearity, which
is comparable to the case of the interrupted pendulum seen in Sect. 8.1. Another
qualitative interpretation of such a geometrical nonlinearity can be made for a simple
system of two articulated rods oscillating around a position defined by an initial
angle ˛0 that represents the curvature (see Fig. 8.20) [62].

Let E be the Young’s modulus of the rods, A their cross-sectional area, and L0

their length at rest. It can be shown that, under the action of a vertical force with
amplitude F, the transverse displacement y of the joining point of the rods is linked
to the force by the relation:

F D 2EA

(
y

L0

sin2 ˛o C 3

2
sin ˛0

�
y

L0

�2

C 1

2

�
y

L0

�3
)

: (8.84)

Quadratic terms in y2 are seen in Eq. (8.84). This equation also shows the presence
of cubic terms: this result can be generalized to more complex curved structures,
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something that we will admit here without proof.13 Let us now return to the
experiments of the gong excited at its center by a sinusoidal force of frequency
˝ close to the eigenfrequency of one particular axisymmetric mode. As shown in
Fig. 8.18, the increase of the excitation amplitude results in an asymmetry in the
vibration waveform where the oscillations are more distorted for positive values of
the acceleration than for negative values. It is an example of quadratic nonlinearity,
which, in the spectral domain, is characterized by the presence of even harmonics
(2˝, 4˝,. . . ).

Beyond the first bifurcation, a fine frequency analysis shows that the new
frequencies arising in the spectrum are related to the driving frequency by the
following combination rules, also called combination of resonances:

mk˝ D mi!i C mj!j with jmij C jmjj D 2: (8.85)

where mk is a positive integer, and mi and mj positive (or negative) integers. These
combination rules are the result of both the internal resonances of the structure
(particular relationships between eigenfrequencies) and quadratic nonlinearity. One
practical consequence of the excitation of such frequencies is, for example, the
possibility of exciting asymmetric modes with a shaker attached at the center of
symmetry of the structure. This would never be possible in the linear regime (see
Chap. 3) since this point corresponds to a node for asymmetric modes. A nonlinear
coupling only can explain such a phenomenon. An experimental illustration of these
resonances is described in Sect. 8.5.5.

8.5.4 Energy Transfer Through Combination of Resonances

To analyze the phenomena described above, a simple example of nonlinear quadratic
coupling between two discrete oscillators will be used. The method of multiple
scales is used for solving the problem [51]. The system under consideration is the
following:

( Rx1 C !2
1x1 D " Œ�ˇ12x1x2 � 2
1x1� ;

Rx2 C !2
2x2 D "


�ˇ21x2
1 � 2
2x2 C P cos ˝t

�
:

(8.86)

The variables x1 and x2 are the displacements of the oscillators. The frequencies
!1 and !2 are the eigenfrequencies of each oscillator in its linear regime. In the
absence of driving force, damping and nonlinearities, the system (8.86) reduces to
the free oscillations of two independent linear oscillators. The right-hand sides of

13In this example, the terms in y2 and y3, respectively, are comparable as long as ˛o is not supposed
to be small. We will see later that the quadratic terms are predominant in thin shells.
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the differential system (8.86) represent the perturbation terms with regard to this
ideal linear case. The dimensionless quantity " � 1 indicates that these terms are
small. The quadratic nonlinear coupling is ensured by the terms ˇ12x1x2 and ˇ21x2

1.
It can be shown, and this will be assumed here, that these two terms are sufficient for
guaranteeing the generality of quadratic coupling. In other words, it is not necessary
to add a term in x2

2, for instance, in the first equation, since an appropriate change
of variables would yield a formulation similar to (8.86) (see a justification for this
property in Sect. 8.7 devoted to nonlinear normal modes). As an example, a system
with an internal resonance !2 D 2!1 C "1 is studied, where 1 is the parameter
of internal detuning. The driving frequency ˝ is chosen close to !2 so that one can
write ˝ D !2 C "2 where 2 is the parameter of external detuning.

8.5.4.1 Solution by the Method of Multiple Scales

In this section, we want to obtain the expressions of both amplitudes a1 and a2 of
x1 and x2, respectively, as a function of frequency, or, equivalently, in terms of the
external detuning parameter 2. We also want to determine the threshold values for
which bifurcations occur. In the example presented here, this implies, in practice, to
calculate the amplitude of the forcing term for which a subharmonic of order two of
the driving frequency ˝ just appears.

Principle and Main Steps of the Calculation

The example presented here is very rich, since it contains the essential concepts
and methods used in the study of nonlinear oscillators. To assist the reader, we start
by presenting a summary of the main steps of the calculation with their respective
goals.

1. Definition of the time scales, and general form of the solution.
2. Solvability conditions. Elimination of the secular terms.
3. Autonomous system and fixed points.
4. Stability of the system.
5. Amplitudes and phases of the solution.

Time Scales and General Form of the Solution

The time scales are defined as:

Tj D "jt with j � 0; (8.87)
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and the solutions are expanded in increasing power of "

(
x1.t/ D x10.T0; T1/ C "x11.T0; T1/ C O."2/;

x2.t/ D x20.T0; T1/ C "x21.T0; T1/ C O."2/;
(8.88)

In what follows, the expansion is limited to the first order in ". In (8.87), notice that
the differentiation operators with respect to time are such that:

8̂̂̂
<
ˆ̂̂:

@

@t
D @

@T0

C "
@

@T1

;

@2

@t2
D @2

@T2
0

C 2"
@

@T0

@

@T1

:

(8.89)

From here, we use the notation Dj D @
@Tj

. Inserting (8.89) in (8.86), and identifying
the terms of identical power in ", yields

• to order "0 D 1: (
D2

0x10 C !2
1x10 D 0;

D2
0x20 C !2

2x20 D 0;
(8.90)

• to order ":(
D2

0x11 C !2
1x11 D �2D0D1x10 � ˇ12x10x20 � 2
1D0x10;

D2
0x21 C !2

2x21 D �2D0D1x20 � ˇ21x2
10 � 2
2D0x20 C P cos ˝t:

(8.91)

The solutions of the system (8.90) are written in general form:(
x10.t/ D A1.T1/ej!1t C A?

1.T1/e�j!1t;

x20.t/ D A2.T1/ej!2t C A?
2.T1/e�j!2t;

(8.92)

where the exponent .?/ indicates the complex conjugate.

Solvability Conditions

The complex quantities A1.T1/ and A2.T1/ are functions of T1 D "t, and are still
unknown at this stage of the solving. To determine them, the expressions (8.92) are
inserted in (8.91), and we derive the conditions for avoiding secular terms in the
solution. This yields the so-called solvability conditions which are written here:
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8̂̂
<̂
ˆ̂̂:

�2j!1

�
@A1

@T1

C 
1A1

�
� ˇ12A�

1 A2ej1T1 D 0;

�2j!2

�
@A2

@T1

C 
2A2

�
� ˇ21A2

1e�j1T1 C P

2
ej2T1 D 0:

(8.93)

These Eqs. (8.93) are usually solved in the following polar form:

8̂<
:̂

A1.T1/ D a1

2
ej�1 ;

A2.T1/ D a2

2
ej�2 ;

(8.94)

where both the amplitudes ai and phases �i are functions of T1. Substituting these
expressions in (8.93), we get the dynamic system that governs the evolution of
amplitudes and phases of the oscillators at the time scale T1, corresponding to slow
changes in the system. It is written here:

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

@a1

@T1

D �
1a1 � ˇ12a1a2

4!1

sin.1T1 C �2 � 2�1/;

a1

@�1

@T1

D ˇ12a1a2

4!1

cos.1T1 C �2 � 2�1/;

@a2

@T2

D �
2a2 C ˇ21a2
1

4!2

sin.1T1 C �2 � 2�1/ C P

2!2

sin.2T1 � �2/;

a2

@�2

@T2

D ˇ21a2
1

4!2

cos.1T1 C �2 � 2�1/ � P

2!2

cos.2T1 � �2/:

(8.95)

Autonomous System and Fixed Points

In order to determine the conditions for obtaining solutions to the nonlinear coupled
system (8.86), it is necessary to express first Eq. (8.95) as an autonomous system or,
equivalently, in the form PX D F.X/ where the time variable T1 is no longer present
in the right-hand side. In practice, this procedure is equivalent to using the variables
�1 D 2T1 � �2 and �2 D 1T1 C �2 � 2�1, which yields
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8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂:

@a1

@T1

D �
1a1 � ˇ12a1a2

4!1

sin �2;

@�1

@T1

D 2 � ˇ21a2
1

4!2a2

cos �2 C P

2!2a2

cos �1;

@a2

@T2

D �
2a2 C ˇ21a2
1

4!2

sin �2 C P

2!2

sin �1;

@�2

@T2

D 1 � ˇ12a2

2!1

cos �2 C ˇ21a2
1

4!2a2

cos �2 � P

2!2a2

cos �1:

(8.96)

The so-called fixed points are obtained by eliminating the time derivatives in (8.96).
This corresponds to the stationary solutions of the system, i.e., those of interest in
the case of a forced oscillations. We get

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
:̂

a1

�

1 C ˇ12a2

4!1

sin �2

�
D 0;

2 � ˇ21a2
1

4!2a2

cos �2 C P

2!2a2

cos �1 D 0;

�
2a2 C ˇ21a2
1

4!2

sin �2 C P

2!2

sin �1 D 0;

1 C ˇ21a2
1

4!2a2

cos �2 � P

2!2a2

cos �1 � ˇ12a2

2!1

cos �2 D 0:

(8.97)

Note Setting a1 D 0 in (8.97) gives the expression for the amplitude a2 of the
second oscillator:

a2 D P

2!2

q
2

2 C 
2
2

: (8.98)

Recall that 2 is here the difference between the loading frequency and the
oscillator’s frequency, and that 
2 is the “fluid” damping parameter. Thus, the
variation of amplitude with frequency of a forced linear oscillator is obtained (see
Chap. 2).

Stability of the Nonlinear Coupled System

Intuitively, the concept of instability can be represented by a physical system,
slightly pushed aside from its equilibrium position, that continues to increasingly
depart from equilibrium instead of returning back to it. In the case of gongs and
cymbals, it is observed that, under a sufficient level of excitation, new frequencies
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appear and, through a process of instability cascade (previously called nonlinear
coupling), may lead to other components to form the richness of the sound.

From a mathematical point of view, the departures from equilibrium for a system
of equations of several variables similar to (8.97) are calculated from the partial
derivatives of each equation with respect to each variable. This yields what is called
the Jacobian matrix or, more simply, the Jacobian of the system. Let f1; f2; f3; f4 be
the four equations and a1; �1; a2; �2 the four variables of interest. The Jacobian is
written:

J D

2
66666664

@f1
@a1

@f1
@�1

@f1
@a2

@f1
@�2

@f2
@a1

@f2
@�1

@f2
@a2

@f2
@�2

@f3
@a1

@f3
@�1

@f3
@a2

@f3
@�2

@f4
@a1

@f4
@�1

@f4
@a2

@f4
@�2

3
77777775

: (8.99)

Each term of the Jacobian represents a small deviation from equilibrium. In order
to calculate the stability of the equilibrium at point a1 D 0, which corresponds
to the conditions of appearance for oscillator 1, a standard method is used,
where the eigenvalues �i of J are calculated. These eigenvalues are the roots
of the determinant J � �I , where I is the identity matrix. The following four
eigenvalues are found:

8̂<
:̂

�1 D �
2 C j2; �2 D �
2 � j2;

�3 D �ˇ12a2

4!1

sin �2 � 
2; �4 D ˇ12a2

2!1

sin �2:
(8.100)

The system will be unstable if the real part of at least one root is positive, since, in
this case, the general solution includes an exponential term that grows with time.
Notice that �1 and �2 always have a negative real part, due to the presence of
the damping term 
2 > 0 of the oscillator 2. These two roots are independent of
oscillator 1, and correspond to the case of oscillator 2 in linear forced oscillations.
It is therefore natural to have conditions of stability for these two roots. However, if
one calculates the product of the other two roots:

�3�4 D �
2ˇ12a2

2!1

sin �2 � ˇ2
12a2

2

8!2
1

sin2 �2; (8.101)

and considering the first equation in (8.97) we see that some situations may occur
where the product �3�4 is strictly less than 0, i.e., where at least one of these two
(real) roots is positive. A detailed calculation shows that this instability condition is
satisfied if:
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Fig. 8.21 Amplitudes a1 and a2 of two nonlinearly coupled oscillators, as a function of the
external detuning parameter 2. The gray area represents the instability domain. The arrows
indicate the path of the running point when moving on the frequency axis (2) from left to right.
The dashed lines correspond to unstable parts of the resonance curves, and the solid lines to stable
parts

a2 >
2!1

jˇ12j
q

4
2
1 C .1 C 2/2: (8.102)

The instability zone corresponding to (8.102) is shown in gray color in Fig. 8.21.
Notice that the amplitude threshold increases with the damping of oscillator 1, and
as the frequency moves away from !2 (2 D 0).

Amplitudes and Phases of the Solution

After this analysis, we are now able to complete the study by calculating the
amplitudes a1 and a2, and the phases �1 and �2. As a result, the zero-order solution is
obtained, whose general form was specified in (8.92). Combining (8.92) with (8.94),
and considering the definitions of T1, 1, 2 �1 and �2, we get8̂<

:̂
x10 D a1 cos.!1t C �1/ D a1 cos

�
˝

2
t � �1 C �2

2

�
;

x20 D a2 cos.!2t C �2/ D a2 cos .˝t � �1/ :

(8.103)

By solving the system (8.97) corresponding to stationary solutions, the amplitudes
are finally obtained as a function of the input parameters:
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8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

a2 D 2!1

jˇ12j
q

.1 C 2/2 C 4
2
1;

a1 D 2

"
��1 ˙

s
P2

4ˇ2
21

� � 2
2

#1=2

;

with �1 D 2!1!2

ˇ12ˇ21

Œ2
1
2 � 2.1 C 2/� ;

and �2 D 2!1!2

ˇ12ˇ21

Œ2
12 � 
2.1 C 2/� :

(8.104)

The expressions (8.103) show an important result, as expected: for steady-state
oscillations, the frequency of the oscillator 2 is equal to the excitation frequency
˝, and the frequency of the oscillator 1 is exactly ˝=2. This result is in accordance
with the properties of internal resonance of the structure.

Figure 8.21 shows the curves of the amplitudes a1 and a2 of the coupled
oscillators, as a function of the external detuning parameter 2, all other parameters
being assumed to be constant. If the driving frequency increases (from left to right
on the frequency axis), the following phenomena are observed:

1. First, the amplitude a2 of oscillator 2 is examined. As long as the operating point
is below the zone of instability, there is no subharmonic.

2. For the threshold value corresponding to the instability limit given by (8.102), the
oscillator 1 suddenly appears. In the example shown, the amplitude a1 is larger
than a2, and this remains true as long as the running point stays above the limiting
instability curve.

3. As the maximum of the oscillator 1 curve is reached, the running point jumps
back to the oscillator 2 curve, and the oscillation at ˝=2 disappears.

4. If the frequency axis is described in the opposite direction by gradually reducing
the excitation frequency, one observes qualitatively similar phenomena, but, in
this case, the threshold values for which oscillator 1 appears are different. This is
a characteristic hysteresis phenomenon.

8.5.5 Nonlinear Mechanical Model

8.5.5.1 Introduction

The purpose of this section is to show that the fundamental properties of gongs
and cymbals can be described by a set of nonlinearly coupled oscillators, similar to
the above-presented example. To do this, the study starts by examining a nonlinear
model of flexural vibrations for a spherical shallow shell. In fact, almost all gongs
and cymbals show a rotational symmetry, and a more or less pronounced curvature.
A spherical cap has similar properties and is a suitable approximation of real shapes
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observed in gongs and cymbals. Compared to real instruments, some discrepancies
will be observed on modal frequencies and shapes, but the general results will be
preserved. In addition, the spherical shape has the advantage of providing an analytic
reference model.

The case of thin spherical shallow shells is considered here in the context of large
amplitude oscillations. The same notation as in Sect. 3.5.4 of Chap. 3 is used. These
assumptions form the basis of the Von Kármán equations (also called, sometimes,
equations of Marguerre or Koiter in the specialized literature) [1, 63]. Hamdouni
and Millet, in particular, have shown that these equations can be obtained from an
asymptotic method applied to the general equations of elasticity [33]. As in the
linear case (see Sect. 3.5.4 in Chap. 3), the equations of motion are written in polar
coordinates, where (r; �) are the coordinates of one current point of the shell, after
projection on the horizontal plane. These equations are written [63]:

8̂̂<
ˆ̂:

r4w C r2F

R
C �h Rw D L.w; F/ � 
 Pw C p;

r4F � Eh

R
r2w D �Eh

2
L.w; w/;

(8.105)

where F is the Airy stress function, and L a bilinear quadratic operator, written in
polar coordinates:

L.w; F/ D wrr

�
Fr

r
C F��

r2

�
C Frr

�wr

r
C w��

r2

	
� 2

�wr�

r
� w�

r2

	�Fr�

r
� F�

r2

�
:

(8.106)

In Eq. (8.105), F contains both linear and quadratic terms in w. As a consequence,
L.w; F/ contains quadratic terms and cubic terms in w. Finally, the equation of
flexural motion contains linear terms, quadratic terms and cubic terms in w. When
R ! 1, Eq. (8.105) represents the nonlinear flexural vibrations of a flat plate.
In this case, the quadratic terms disappear, and only the cubic terms remain. To
examine the relative significance of the different terms in these equations, it is
necessary to write them in dimensionless form using the following variables [63]:

r D ar ; t D a2
p

�h=Dt ; w D h3=a2w ; F D Eh7=a4F ;


 D Œ2Eh4=Ra2�
p

�h=D
 ; p D Eh7=Ra6p:
(8.107)

Thus Eq. (8.105 ) becomes14

14For the sake of clarity, the overlinings are now removed from the equations.
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8̂<
:̂

r4w C "qr2F C Rw D "cL.w; F/ C "q Œ�
 Pw C p� ;

r4F � a4

Rh3
r2w D �1

2
L.w; w/:

(8.108)

Equations (8.108) contain a quadratic perturbation coefficient "q D 12.1 � �2/h=R
and a cubic perturbation coefficient "c D 12.1 � �2/h4=a4. Within the framework
of “thin shell” approximations, i.e., h � a and hR � a2, one can see that the cubic
terms are significantly smaller than the quadratic terms. In practice, this means that
even a very small curvature of the structure allows the quadratic nonlinearities to
dominate. This may explain why it is extremely difficult, or even impossible, to
experimentally exhibit the phenomena of cubic nonlinearity on a plate: even the
slightest flatness defect has such effect that the cubic nonlinear term is masked by
the quadratic one.

The nonlinear solution is now expanded onto the basis of the eigenmodes, taking
advantage of their orthogonality properties15:

w.r; �; t/ D
X

n

˚n.r; �/qn.t/: (8.109)

As a consequence, all nonlinear terms will appear in the time functions (generalized
displacements). These functions form a system of coupled differential equations:

Rqn C !2
n qn D "q

"
�
X

p

X
q

˛npqqpqq � 
Pq C pn

#
C "c

X
p

X
q

X
r

ˇnpqrqpqqqr;

(8.110)

which highlights the simultaneous existence of cubic and quadratic coupling terms.
For a plate, the coefficients ˛npq are all equal to zero. For a shell, we note a formal
analogy between these results and those obtained for the pendulum (see Sect. 8.1).
The quadratic nonlinearity here results from the asymmetry due to the curvature.

The expansion of the shell motion in terms of eigenmodes is only one possible
way of representing the solution, and this does not imply any linearity of the
problem. In contrast to the linear case, it is not possible to decouple the differential
equations that govern the time functions qn.t/. In addition, this representation does
not imply at all that the deflection shape of the shell for ! D !n is the (linear)
mode shape ˚n.r; �/. This can be seen, for example, by rewriting Eq. (8.110) under
forced oscillations at this frequency. In general, the vibratory motion of the shell
for a given frequency depends on the amplitude. Because of intermodal couplings
(see Sect. 8.5.4), the deflection shape of the shell, for given loading frequency and
amplitude, is a complex combination of several mode shapes (see Fig. 8.24 in the
next section).

15Details on numerical methods for solving the von Kármán plate equations can be found in [8].
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8.5.5.2 Truncation

If the nonlinearities are weak, and if the forcing frequency is close to one particular
eigenfrequency, it is legitimate to truncate the system (8.110) by keeping only the
equations that govern the main excited modes, and those associated with them
through internal resonances. Let us illustrate this by the example of a thin spherical
shell shown in Fig. 8.22. This example shows a situation where the structure is
excited at its center with frequency f ' f3 D 224 Hz, corresponding to the

Fig. 8.22 Examples of some particular modes of a spherical shell subjected to internal resonance
(see also [64])
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symmetric mode (0,1).16 For this particular shell, it turns out that the frequency
of the mode (0,1) corresponds to twice the asymmetric modal frequencies (6,0),
approximatively: f1 D 111 Hz and f2 D 112 Hz.

In order to observe the phenomena caused by a forcing in the vicinity of f01, then
it can be assumed that the displacement is written in the approximated form:

w.r; �; t/ ' ˚60.r/ Œq1.t/ cos 6� C q2.t/ sin 6�� C ˚01.r/q3.t/: (8.111)

where q1 and q2 are the generalized displacements corresponding to the two
configurations in quadrature for the asymmetric modes (6,0), and where q3 governs
the temporal evolution of the axisymmetric mode (0,1). As a consequence of the
modal truncation, the system (8.110) is written in reduced form as follows:

8̂̂
<
ˆ̂:

Rq1 C !2
1q1 D "q Œ�ˇ13q1q3 � 2
1 Pq1� ;

Rq2 C !2
2q2 D "q Œ�ˇ23q2q3 � 2
2 Pq2� ;

Rq3 C !2
3q3 D "q


�ˇ11q2
1 � ˇ22q2

2 � 2
3 Pq3 C P3.t/
�

:

(8.112)

where P3.t/ represents the forcing term, and where terms of modal damping of
the form �2
i Pqi are added. The cubic terms are ignored because of the “thin
shell” assumptions, as discussed previously. The intermodal coupling coefficients
ˇij depend on both the geometrical and material properties of the shell. These
parameters can be calculated explicitly [63]. The resolution of the nonlinear
system (8.112) can be made using the method of multiple scales presented in
Sect. 8.5.4.

Figure 8.23 shows the stability curve obtained for the truncated system (8.112).
The theoretical results are represented by solid lines (where the states are stable) or
dotted lines (when unstable). The experimental points are represented by triangles
and circles. One sees at the center of the figure the classical resonance curve of a
forced isolated oscillator close to its eigenfrequency. This is the curve that would
have been obtained for an isolated oscillator (0,1), with no internal resonances
related to other modes. By changing the driving frequency, one obtains different
coupling situations of this mode with one configuration of the two asymmetric
modes (6,0). Figure 8.24 illustrates these nonlinear couplings for a spherical shell
excited at its center: in each case, one can see the simultaneous contributions of the
axisymmetric mode and an asymmetric mode.

16As shown in Chap. 3 for the circular membrane (see Fig. 3.32), a mode .n; m/ of a structure with a
circular geometry is characterized by n nodal diameters and m nodal circles. However, in contrast
to the case of stretched membranes described in Chap. 3, the outer edge of the spherical shells
considered here are free, so that the lowest number of nodal circles is zero.
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Fig. 8.23 Stability curve for a thin spherical shell excited close to the frequency of mode (0,1).
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Fig. 8.24 Examples of large amplitude deflection shapes of a spherical shell driven at its center.
This figure shows two situations of coupling between the axisymmetric mode (0,1) and one
configuration of the asymmetric modes (6,0) shown in Fig. 8.22. See also [64]

8.5.5.3 Generalization and Musical Interest

The previous section allows us to understand a key aspect of sound generation
in gongs and cymbals where the spectrum shows new components above a given
threshold of amplitude, as a consequence of geometric nonlinearity. At the end of
the Sect. 8.5.5 the presentation was deliberately focused on the interaction between a
small number of modes. However, these results can be quantitatively generalized to
a non-sinusoidal periodic forcing, which is coherent with the reality as one observes
in practice the distortion of the response even for low excitations (see Sect. 8.5.1).
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In this case, the enrichment of the spectrum is due to combinations of modes around
each harmonic of the driving signal. Sound synthesis of gongs and cymbals based
on these methods were made by Ducceschi and Touzé [23].

As said earlier, the normal excitation of a cymbal or a gong is a force impulse,
communicated to the structure by the impact of a mallet (or a stick). The spectrum of
the impact force is analogous to that of a low pass filter, whose bandwidth increases
with the hardness of the mallet’s head. For a pulse excitation, the system (8.112)
can only be solved numerically, since the nonlinearities do not obey the principle of
superposition. At this stage, one can imagine that each component of the excitation
spectrum gives rise to a local spectral broadening and that, in total, there is an energy
transfer to the high frequencies, beyond the initial spectrum. That is what is audibly
observed, and confirmed by experiments.

8.6 Chaotic Regime

Let us now return to the fundamental experience described in Fig. 8.17. In the
previous sections, the phenomena observed between the two bifurcations were
studied. Beyond the second bifurcation, the observed acceleration of the gong (or
of the cymbal) shows a broadband spectrum where it is no longer possible to
discriminate between the discrete frequency peaks. The Fourier transform is not
the right tool to describe the dynamics of the system properly, and other methods of
analysis must be considered. Details of the transition to chaos in thin structures can
be found in [69].

Among the possible strategies, observing the signal in the phase space is an
effective and recognized method for analyzing the dynamics of nonlinear systems
[27, 48]. Starting from a given time series s.t/, the phase space trajectory is obtained
by representing the set of points with coordinates [x1 D s.t/; x2 D s.tCT/] where T
is a time delay whose value obeys selection criteria that are beyond the scope of the
present book. One can remember that a widely used method consists of choosing
T as equal to the first zero of the autocorrelation function of the signal. Another
possibility is to select the first minimum of the mutual information function. The
reader interested in these questions can see for instance [40].

Figure 8.25 shows a comparison between a standard spectral representation and
a phase space representation, for a cymbal vibration signal, where the instrument is
excited by a sinusoidal force, for three different forcing amplitude, successively. As
long as the amplitude remains weak, the spectrum is harmonic, and the trajectory
takes the form of a closed curve. When the forcing amplitude increases, one can
see an inharmonic spectrum due to the multiple combinations of resonances whose
origin has been described earlier in this chapter. Here, the phase space trajectory
shows typical foldings, which are known to indicate a possible route to chaos.
Finally, after a second bifurcation, the spectrum is almost continuous, and the phase
space representation takes the form of a blurring structure, which is difficult to
analyze visually. We will see below how to draw valuable information from this
signal.
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Fig. 8.25 Phase space and spectrum of a sound for a cymbal under sinusoidal forcing excitation
at 440 Hz. Top line: quasi-linear oscillations. Medium line: weakly nonlinear oscillations. Bottom
line: chaotic regime

8.6.1 Degrees of Freedom

The erratic structure of the cymbal vibrations at the bottom of Fig. 8.25 looks like a
random signal. However, random signals are characterized by a lack of correlation
between successive time windows of the signal. Therefore, it is of interest to check
whether or not such a correlation exists here. For this purpose, the signal s.t/ is
sampled at regular intervals tn D nTe (where n is a positive integer), and the obtained
time series is denoted s.n/. N indicates the length of s.n/. Then, a set of vectors y.n/

is built, defined by:

y.n/ D Œs.n/; s.n C nT/; s.n C 2nT/; : : : ; s.n C .d � 1/nT/�

with n D 1; : : : ; N � .d � 1/nT ;
(8.113)

where the parameter d is called the embedding dimension of the vectors y.n/, and
where the index nT corresponds to the time delay T used for representing the signal
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and P are neighbors in dimension 2, but are no longer neighbors in dimension 3. (Right) Percentage
of false neighbors as a function of the dimension d of the space for cymbal vibrations, at different
excitation frequencies

in phase space. In total, the length of s.n/ required for the construction of each
vector y is equal to dnT . If we want to explore s.n/ entirely, it is necessary to make
n varying within the interval 1 to N � .d � 1/nT . Figure 8.26 illustrates the partition
of the initial series s.n/.

This partition might seem arbitrary at first sight. In practice, it will be used to
check whether s.n/ is random or deterministic. We will also derive a first estimate
of the number of degrees of freedom of the underlying mechanical system from this
analysis.

A first method is presented, called method of false nearest neighbors. To illustrate
it, let us examine the case d D 2. This corresponds to the case of the phase space
shown in Fig. 8.25, where the components of vector y.n/ are s.n/ and s.n C nT/.
These components are the coordinates of a point M on the trajectory (see Fig. 8.27).
Let us consider this point and another neighbor point P on the same trajectory.
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Imagine now that we examine the case d D 3: for that purpose, the cymbal motion
is now represented in a three-dimensional space, where the vector y.n/ has three
components s.n/, s.nCnT/, and s.nC2nT/. One can see this procedure as unrolling a
2-D “ball of wool” into 3D! The central question is to know if, during this operation,
M and P will remain close neighbors or not. In the case of a random signals, it can
be shown that close neighbors in dimension d never stay close in dimension d C 1.
This is a property of false nearest neighbors. With a deterministic signal, similar to
those we are interested in here, the number of false neighbors regularly decreases as
d increases (see Fig. 8.27).

Figure 8.27 shows that the percentage of false neighbors is practically zero
beyond a certain value of d (d D 8 here). This means that, for this dimension,
the trajectory is completely unrolled, and that the projection into a space of higher
dimension does not provide any additional information: for d > 8, all neighbors
are “true neighbors” which stay close if d increases. This is also the case for a
mechanical system of finite dimension m: if one attempts to use m C 1 variables to
describe this system, it necessarily leads to a set of equations where one variable is
expressed as a function of the m others, and we have only m independent equations.
To sum up, the method of false nearest neighbors described here gives an upper
boundary for the dimension of the system from which the time series s.n/ was
extracted. According to this estimation, we would derived here m � 8 for the cymbal
dynamics.

An estimation of the lower boundary of m can be obtained by calculating the
correlation dimension. This is obtained by determining the number of pairs of points
whose mutual distance is smaller than a certain quantity ". For a series of points N,
the discrete formulation of the correlation integral is written:

C."/ D 1

N.N � 1/

X
i¤j

H ." � ky.i/ � y.j/k/ ; (8.114)

where the vectors y of dimension d are calculated like as the method of false
neighbors described above. H is the Heaviside function.

Figure 8.28b represents, in logarithmic coordinates, the correlation integral C."/

depending on " for increasing values of the dimension d, in the case of cymbal
vibrations. It can be seen that the slope of this curve increases, and tends to a limiting
value from a given value of d (around d D 6 in this figure). This is a general result,
which is also valid for other dynamical systems [31]. This property means that,
beyond this limiting value, the number of pairs of points increases exponentially
with a constant exponent dc (C."/ 	 "dc ), regardless of the value of d. This also
means that the relative increase ddC=C is proportional to the relative increase of the
“radius” dd"=". The asymptotic value dc of the slope is the correlation dimension
of the system.

This behavior characterizes a deterministic dynamical system with a finite
number of degrees of freedom. In the case of a random signal, a white noise, for
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example, we would observe that the slope of ln ŒC."/� continues to increase with
increasing values of d. This would mean, in practice, that the relative increase in the
number of pairs of neighboring points within a hypersphere of radius " continues
to grow faster than the relative increase of the radius when the signal is observed in
spaces of increasing dimensions.

Figure 8.29 shows a range of estimates of dc obtained from multiple vibration
recordings of the same cymbal, for various forcing frequencies and excitation
positions. We note that the correlation dimension converges for all signals, which is
a clear indication of a deterministic process governed by a small number of degrees
of freedom (DOF). However, we note that dc is not identical in all cases, suggesting
that the number of DOF depends on both the driving frequency and excitation
position. This result is in accordance with the mechanical analysis of the problem
made earlier in this chapter.

In conclusion, is has been shown in this section that some analysis tools exist
for extracting information from signals governed by highly nonlinear process, for
which conventional spectral analysis is no more applicable. From a practical point
of view, the quality of the estimates can be rapidly affected if the signal is corrupted
by noise. In addition, it is often necessary to analyze signals of long duration (N
large) in order to obtain results with a sufficient accuracy. In any case, the estimation
of the dimensions should be connected to a physical analysis of the phenomena, in
order to avoid hazardous interpretations.
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8.6.2 Characterization of Chaos: Lyapunov Exponents

In the previous sections, the term “chaotic” was used to characterize the vibratory
oscillations of cymbals and gongs subjected to strong nonlinear oscillations. This
concept will be now made clearer and a method will be presented for quantifying
the chaos.

A chaotic system is mainly characterized by its sensitivity with regard to
the initial conditions. For a deterministic system, one can exactly reproduce the
temporal variations of a variable, provided that the same initial conditions are given.
With a chaotic system, even a small perturbation of these conditions is sufficient for
the system to operate on a completely different trajectory in the phase space. The
Lyapunov exponents, which are calculated from measured samples of a time series
s.n/ (see the next section), are quantities that measure the divergence rate of small
perturbations around a given trajectory in phase space accurately, and are recognized
as pertinent to quantify the chaos. Only one positive exponent is sufficient for the
trajectory to diverge, which proves the sensitivity of the system to initial conditions.

8.6.2.1 Calculation of the Lyapunov Exponents

The presentation below is inspired by Manneville [43]. As for the estimation of
dimensions discussed above, we start from a time series s.n/ (with n D 1; : : : :; N)
from which a set of vectors y.n/ is constructed, using the procedure described
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in (8.113). At a future time TF D nFTe, which is assumed to be small, the vectors
y.n/ are transformed into another set y.n C nF/. The calculation of the Lyapunov
exponents is then made on the function F which characterizes the evolution of y.n/

to y.n C nF/, which can be written symbolically17:

y.n C nF/ D F fy.n/g : (8.115)

As an illustration, let us consider the simple case of a single variable with initial
condition y0. First, we choose nF D 1. Introducing a small initial perturbation, we
obtain the adjacent trajectory Qy0 D y0 C ıy0. From (8.115) it gives

Qy1 D y1 C ıy1 D F.Qy0 D y0 C ıy0/

D F.y0/ C F
0

.y0/ıy0:
(8.116)

Thus, the distance jıy1j between two trajectories is given by jıy1j D jF0

.y0/jjıy0j.
Pursuing the same calculation to the next iteration gives

jıy2j D jF0

.y1/jjF0

.y0/jjıy0j: (8.117)

Finally, after nF iterations, we get

jıynF j D
 

kDnF�1Y
kD0

jF0

.yk/j
!

jıy0j: (8.118)

It can be seen in (8.118) that the required quantity is obtained, namely a measure
of the evolution of the perturbation. This evolution can be quantified by a global
coefficient � defined as follows:

�nF D jıynF j
jıy0j : (8.119)

Finally, the Lyapunov exponent � is defined as the logarithm of � , which yields

� D ln.�/ D 1

nF

nF�1X
kD0

ln jF0

.yk/j (8.120)

for an estimation on nF iterations. If the exponent � defined in (8.120) is positive,
this means that, for different initial conditions, the trajectories diverge as e�n, or,
equivalently, as e�t using the dimensional quantities.

17The choice of TF determines the accuracy of the estimated Lyapunov exponents. These very
technical considerations will not be detailed here, and we invite the interested reader to refer to the
specialized literature [40, 43]. We simply recommend to choose T=2 � TF < T , where T is the
time interval chosen for the construction of the vectors y [see Eq. (8.113)].
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The previous calculus can be generalized to higher values of the dimension d
(dimension of vectors y) without any difficulties. In this case, several Lyapunov
exponents are obtained. This is known as the Lyapunov spectrum. These exponents
are calculated from the Jacobian of the transformation F [43, 67]. Only one
Lyapunov exponent needs to be positive for the trajectories to diverge, and one can
then conclude that the system is chaotic. Such properties are observed in the case
of cymbals and gongs, and this result comes in addition to other analysis methods
(mechanical model, phase space, bifurcations,. . . ) to explain the scenario of routes
to chaos for these instruments, subjected to large amplitude oscillations [14].

Finally, since the transformation for vibrations to acoustic waves is linear for
percussion instruments, all nonlinearities are contained in the vibrations. In other
words, the considerations presented in this chapter remain valid to explain the
observations made on the sounds of cymbals and gongs. On the experimental point
of view, it is preferable to perform the analysis on the vibration of one particular
point of the structure rather than on the radiated sound. In fact, the combinations
of modes and the number of degrees of freedom vary from one point to another
of the structure. As the sound pressure results from an integration over the whole
geometry, it is understandable that the corresponding signals are therefore more
difficult to analyze.

8.7 Nonlinear Normal Modes

8.7.1 Introduction

As soon as the nonlinearities are considered in a physical problem, then the
evolution equations of the variables are coupled together. This has been seen on
several occasions in this chapter, as, for example, in Eq. (8.110) for gongs and
cymbals. The superposition theorem, which enables us to solve several simple
problems independently, and then to reconstruct the overall response by summing
individual responses, is no longer valid. As a consequence, it becomes also difficult,
or even impossible, to make truncations in the system. Terms that would be
otherwise neglected could be responsible for major changes in the evolution of
the system, whereas such simplifications are perfectly justified in the linear case.
Direct solving of nonlinear problems is often impossible analytically. It thus implies
long and heavy numerical calculations, which are very demanding in terms of
computational resources. However, in many situations, the dynamics observed in
real cases seem to be relatively simple. This is, for example, the case for a structure
forced near its resonance frequency, at moderate amplitudes. Even if nonlinearity
is present, yielding higher harmonics and bending of resonance curves like those
shown in Sect. 8.2, the dynamic behavior remains rather simple to describe.

In order to propose effective methods to reduce the nonlinear dynamics in
specific cases, the concept of nonlinear normal mode, or NNM, was introduced.
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This concept is briefly presented below, for the particular case of a vibrating
structure under large amplitude, i.e., for geometric nonlinearities. It is assumed that
the modes of the system were calculated in a previous step, and that the equation of
motion was projected onto these modes, so that the starting point of this presentation
is a dynamical system of the form shown in (8.110), i.e., an infinite number of
nonlinearly coupled oscillators. Damping and forcing terms are left aside in this
presentation.

8.7.2 First Approach of Nonlinear Normal Modes

To make the reader understand the interest of NNMs, we will present this concept on
a simple case. The selected example is the dynamics of a mass subjected to elastic
restoring forces by two springs whose extensions are not considered as small, so
that linear approximations are not justified here (Fig. 8.30).

l0 is the length of the springs at rest. The coordinates of the point mass m at
time t are l0 C x1 and l0 C x2, respectively. The problem is expressed in terms of
the dimensionless variables X1 D x1=l0 and X2 D x2=l0. We denote !2

1 D k1=m
and !2

2 D k2=m the square of the natural angular frequencies of the system,
corresponding to purely horizontal and vertical motions in the physical space
(X1; X2), respectively. The elastic potential energy W of the system is given by:

W D m

�
1

2
!2

1

�
X1 C 1

2

�
X2

1 C X2
2

��C 1

2
!2

2

�
X2 C 1

2

�
X2

1 C X2
2

��
: (8.121)

The equations of motion are then obtained by:

m RXi C @W

@Xi
D 0; for i D 1; 2: (8.122)

Fig. 8.30 A point mass m is
fixed at two springs of
stiffness k1 and k2,
respectively. Each spring is
rigidly fixed to the other end
of the walls, which are
perpendicular to each other
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Finally, the equations governing the dynamics of the system are written:

RX1 C !2
1X1 C !2

1

2
.3X2

1 C X2
2/ C !2

2X1X2 C !2
1 C !2

2

2
X1.X2

1 C X2
2/ D 0;

RX2 C !2
2X2 C !2

2

2
.3X2

2 C X2
1/ C !2

1X1X2 C !2
1 C !2

2

2
X2.X2

1 C X2
2/ D 0:

(8.123)

Notice that both equations are decoupled in the linear regime, which is due to the
fact that the modal variables, X1 and X2 were chosen to describe the system.

Truncation problems mentioned in the previous section can be easily illustrated
with these equations. Suppose that we want to study the motion of the first mode,
simplifying the system (8.123) by writing X2 D 0. The dynamical problem that
governs X1 then yields an inconsistent result. In fact, if X1 ¤ 0, the term in X2

1 of
the second equation of (8.123) yields energy to the second oscillator, so that we no
longer have X2 D 0 !

However, if the system is linear, a motion initiated with the first eigenmode,
taking as initial conditions X1 ¤ 0 and X2 D 0, is such that X2 remains equal to
zero. This is the property of invariance of eigenmodes for a linear system. This is
no longer true for nonlinear systems, because of the presence of terms such as X2

1 in
the second equation of (8.123). We are now able to define NNMs more accurately,
but before that we need to specify the general framework.

8.7.3 Invariant Manifolds

Consider the dynamics of the system in phase space. For that purpose, the
system (8.123) is written in first order, by using the velocities Y1 D PX1 and Y2 D PX2

as additional independent variables. The phase space thus is four-dimensional, and
the dynamics can be rewritten as:

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
:̂

PX1 D Y1;

PY1 D f1.X1; Y1; X2; Y2/;

PX2 D Y2;

PY2 D f2.X1; Y1; X2; Y2/:

(8.124)

The eigenmodes correspond to two hyperplanes defined by: X2 D Y2 D 0 for the
first mode, X1 D Y1 D 0 for the second mode. These are two-dimensional subspaces
of the phase space. These subspaces are not invariant (see the end of the previous
section), this property being true if the dynamics is linear, only. This is illustrated
in Fig. 8.31, where the system (8.123) is solved numerically for three different
initial conditions on the first eigenmode, respectively: X1 D 0:01, X1 D 0:025,
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and X1 D 0:05, respectively (all other coordinates being equal to zero), and for an
integration time T corresponding to 12 times the period T1 D 2�=!1 of the first
oscillator.

It is found that the first orbit (or periodic solution) is almost included in the plane
defined by the first eigenmode. This trajectory was calculated for a small amplitude,
X1 D 0:01, the nonlinearities do not appear and the loss of invariance is almost not
visible. This is not the case for the other two orbits, which are no longer included
in the plane. The significant contribution that can be observed on the coordinate X2

is entirely due to the coupling term in X2
1 on the second equation that induces an

energy transfer from the first to the second mode.
Let us now observe the computed trajectories for other initial conditions, selected

at well-chosen locations in phase space. Figure 8.32 shows three trajectories,
computed for the same observation time T , and which initial conditions are:
.X1; X2/=(0.01,0) ; (0.025, 2:3
10�5) and (0.05, 1:8
10�4), respectively. Selected
values of X2 are small compared to those of X1, and appear as small corrections
brought for recovering out closed periodic orbits. These initial conditions have been
selected onto the first NNM, and this allows us to define the NNM by two equivalent
formulations. First, they can be defined as the family of periodic orbits existing in
the vicinity of the origin. Existence of these periodic orbits are guaranteed by a
theorem due to Lyapunov [42], and one can see in Figs. 8.31 and 8.32 that they
are not confined into the linear eigenspaces but are slightly aside. This definition is
however limited to the conservative case, as periodic orbits are no longer solutions
of the dynamical system as soon as dissipation comes into play. To overcome
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initial conditions were taken (numbered 1, 2, and 3), for X1 D 0:01, X1 D 0:025, and X1 D 0:05.
We see that the corresponding trajectories are located out of the plane defining the first eigenmode.
The figure on the right shows the motion of the mass in the physical space .X1; X2/. Here, we have:
!1 D 1, !2 D p

2
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Fig. 8.32 First nonlinear normal mode. On the left: representation in phase space, showing the
invariance property of the nonlinear normal mode. For three different initial conditions (numbered
1, 2, and 3) taken on the manifold, the periodic orbits are entirely contained within the nonlinear
normal mode. On the right: representation of the mass motion in the physical space .X1; X2/. The
consequence of the invariance is that the motion of the mass occurs along a line and not on a
blurred trajectory

this limitation, an NNM can be defined as the set of initial conditions giving
rise to trajectories that are contained in a two-dimensional surface, or manifold
in mathematical terms. By doing so, one introduces the fundamental notion of
invariance. For a conservative system, the NNM can be viewed as the manifold
generated by all the periodic orbits. This manifold is invariant because any initial
condition taken on it will give rise to a trajectory that will stay on the manifold, for
any time. This definition in terms of invariant manifold is more general and will be
retained in the following.

We are now able to define an NNM:

Definition. An NNM is an invariant manifold (a surface) in the phase space, which
is tangent to the corresponding eigenspace at the origin (corresponding to the
position at rest). This definition ensures the following properties:

• Imposing that the manifolds be tangent at the origin to the eigenmode can help
in recovering the linear results. The nonlinear modes are thus defined as an
extension of the eigenmodes, where the invariance property is retained.

• The invariant manifolds are in fact minimal surfaces that allow us to capture
existing trajectories of the phase space: making projections on these surfaces is
therefore a priori the best possible reduction, which is their fundamental interest.

• With this notion, we are able to compute reduced-order models that retain the
essential properties of the observed dynamics. We thus find the issue raised in
the introduction: the apparent complexity of the equations, which needs to retain
a large number of oscillators, is included in the curved geometry of the manifold.
Now, the dynamics of that manifold is relatively simple, since it is governed by
a single oscillator, that we will specify in the next section.
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8.7.4 Calculation of Nonlinear Normal Modes

Several methods exist to calculate the NNMs. In this presentation, two of them
are selected, that use powerful mathematical tools (encountered elsewhere in many
other areas of physics) and that fully exploit the notions of invariance. The first
work introducing the concept of NNM is due to Rosenberg [56], although without
the more general interpretation in terms of invariant manifolds that was introduced
here.

One first approach consists in calculating the geometry of the invariant manifold
in the phase space, and then to project the equations of motion onto the manifold.
To do this, a very general theorem of dynamical systems is used: the center
manifold theorem. The results given by this theorem are of great significance,
since it provides the best means of reducing nonlinear dynamics. The basic idea
is to separate the very damped modes, which have a very short lifetime and have
therefore little influence on long-term dynamics, from the lightly damped modes,
which are primarily responsible for the dynamics over long duration. Once these
two families are separated, it is shown that the center manifold of the phase space,
which contains the amplitudes of the master (lightly damped) modes only, exists.
The theorem then provides an explicit method for calculating it [32, 43]. Applying
this method to vibrating systems with nonlinear geometries is discussed in numerous
papers [9, 38, 39, 53, 58, 59]. In the conservative case considered here, one can use
the center manifold reduction method without making references to slightly and
little damped variables. We then simply choose an eigenmode for which we want to
extend the invariance property to the nonlinear regime.

Let us now examine the first NNM of the system (8.124): .X1; Y1/ is chosen
arbitrarily as the pair of master variables, while .X2; Y2/ is the so-called pair of
slave variables. The equation that defines the geometry of the manifold in phase
space is obtained through a functional link between master and slave variables. We
therefore write:

X2 D u.X1; Y1/;

Y2 D v.X1; Y1/;
(8.125)

where u.X1; Y1/ and v.X1; Y1/ are the unknown functions to be determined. Equa-
tion (8.125) defines a two-dimensional manifold in phase space, and the invariance
is ensured by expressing X2 and Y2 as functions of X1 and Y1. To find the unknowns
u and v, Eq. (8.125) is differentiated with respect to time:

PX2 D @u

@X1

PX1 C @u

@Y1

PY1;

PY2 D @v

@X1

PX1 C @v

@Y1

PY1:

(8.126)



462 A. Chaigne et al.

Finally, all time derivatives in (8.126) are replaced by their expressions given
in (8.124). This leads to a nonlinear equation where the time variable has been
removed, and which describes the geometry of the first NNM in phase space:

v.X1; Y1/ D @u

@X1

Y1 C @u

@Y1

f1.X1; Y1; u.X1; Y1/; v.X1; Y1//;

f2.X1; Y1; u.X1; Y1/; v.X1; Y1// D @v

@X1

Y1 C @v

@Y1

f1.X1; Y1; u.X1; Y1/; v.X1; Y1//:

(8.127)

Solving these two partial differential equations yields u.X1; Y1/ and v.X1; Y1/, and
thus the position of the invariant manifold. The major issue is that the analytical
solution of these equations is never known in the general case. Thus, asymptotic or
numerical methods are used to determine u and v. The dynamics on the manifold is
given by replacing u and v by their expressions in (8.124). It can be written with a
single oscillator equation, hence giving rise to a reduced-order model. The efficiency
of the method might seem relatively insignificant in the particular example treated
here, where the reduction of complexity is of only one equation. However, this
method yields appreciable results if dynamical systems with a large number N of
oscillators can be reduced to one, which is the case when dealing with continuous
structures.

The second method is based on the normal forms theory. Again, the mathematical
tool that is used is very powerful, and is used in almost all branches of physics.
The basic ideas of normal forms were developed by Henri Poincaré [55]. The
goal is to simplify the dynamics of a system as much as possible, using a well-
chosen nonlinear change of variables. In fact, one can show that some nonlinear
terms of a dynamical system are essential for obtaining the main features of the
dynamics (number and nature of the fixed points, bifurcations), while others can
be eliminated without changing its characteristics. These terms, or the so-called
non-resonant terms, can be thus eliminated with an appropriate change of variables.
Finally, the normal form of the system is obtained, that contains the resonant terms
only.18 Returning to our example, we therefore look for a change of variables of the
form:

X1 D R1 C P1.R1; S1; R2; S2/;

Y1 D S1 C Q1.R1; S1; R2; S2/;

X2 D R2 C P2.R1; S1; R2; S2/;

Y2 D S2 C Q2.R1; S1; R2; S2/:

(8.128)

.R1; R2; S1; S2/ are the new variables, having dimensions of displacements and
velocities, respectively. The change of variables is chosen as tangent to the identity:

18New results on the use of normal form theory can be found in [41].
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the first term indicates that, for small displacements, R1 D X1, R2 D X2, S1 D Y1,
and S2 D Y2, which allows the recovery of the linear results. P1;Q1;P2;Q2 are
unknown functions that are determined iteratively: these quantities are expressed
as polynomial functions with unknowns .R1; S1; R2; S2/, whose coefficients are
found at each iteration, by eliminating non-resonant terms [37, 66, 70, 71]. Replac-
ing (8.128) in (8.123), one obtains the dynamics expressed in .R1; S1; R2; S2/, i.e.,
in a curved reference frame generated by the invariant manifolds. In the next step,
the appropriate truncations can be made since the invariance is recovered. To study
the first NNM, for example, the coordinates corresponding to the second NNM are
set equal to zero: R2 D S2 D 0. After substitution into the last two equations
of (8.128), the geometry of the first invariant manifold in phase space is found,
which corresponds to Eq. (8.125). Finally, it is found that the dynamics of the first
NNM, up to order three, is governed by:

RR1 C !2
1R1 C

�
!2

1 C !2
2

2
C A1

�
R3

1 C B1R1
PR2

1 D 0; (8.129)

where A1 and B1 arise from the elimination of the non-resonant terms. These
coefficients account for the effect of the second linear mode that would have been
otherwise abruptly neglected by imposing X2 D 0 in (8.123). These two coefficients
are written explicitly:

A1 D �3!2
1

2
C !2

2.2!2
1 � !2

2/

2.!2
2 � 4!2

1/
;

B1 D �3 C !2
2

!2
2 � 4!2

1

:

(8.130)

In total, the nonlinear dynamics is described by a single oscillator, which is able to
predict the behavior of the entire system with a good accuracy. It can be shown,
for example, that the hardening, resp. softening, behavior of the system, (i.e.,
the dependence of the frequency with amplitude), is correctly predicted by the
dynamics on the manifold (8.129), whereas an erroneous result is obtained if the
system (8.123) is simplified in a crude manner by putting X2 D 0 [70].

8.7.5 Conclusion

The derivations presented here with the help of a simple system with two degrees
of freedom naturally extend to N degrees of freedom, with N arbitrarily large. The
influence of damping terms has not been treated, but this question is addressed,
for example, in [39, 59] and [66]. Taking also external forces for the calculation
of invariant manifolds into account is a more difficult problem, since the invariant
manifold then depends on time. One can find an example of such cases in [39].
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A nonlinear normal mode (NNM) was defined as an invariant manifold of phase
space, tangent at the origin to the corresponding eigenmode, which allows us to
consider it as an extension of the eigenmode for which the invariance property is
maintained. This property is a key point to adequately reduce nonlinear dynamics.
Using NNMs, one can derive reduced-order models, with a small number of degrees
of freedom, that contain the main properties of the original dynamics. These
methods can be applied to the sound synthesis of nonlinear percussion instruments,
in particular. Notice also that the computation of NNMs with application to self-
sustained oscillations of the clarinet was made by Noreland et al. [52].

Finally, recent results show that the dynamics of nonlinear thin structures can
gain in being examined in light of the wave turbulence theory [36, 72].
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