Chapter 2
Single-Degree-of-Freedom Oscillator

Antoine Chaigne and Jean Kergomard

Abstract Single-degree-of-freedom oscillators are often found as such in musical
acoustics. It is important to understand their behavior because they are elementary
building blocks of more complicated (discrete or continuous) systems in the context
of the modal theory. In this chapter, a number of basic results are summarized.
Fundamental methods, based on the use of Green’s functions, are introduced and
applied to the harmonic oscillator. Their relevance and efficiency for treating more
complex systems will appear throughout this book. Whenever possible, conclusions
are drawn concerning practical examples. Two important notions, that are not
always intuitively well understood by musicians, are addressed: resonance and
reverberation. In addition, three different definitions of the quality factor are given,
and the analysis of the harmonic oscillator in terms of energetic quantities is
emphasized.

2.1 Introduction

For this introductory chapter, the most common example of a standard mechanical
oscillator is chosen. We have seen how to switch from mechanical to acoustical
resonators by means of analogies (see Table 1.1). The example of the Helmholtz
resonator without dissipation, in particular, has been studied in Chap. 1 (Sect. 1.5).
Consider a mechanical oscillator of mass M, stiffness K, and with a viscous damping
coefficient R, driven by a force f(¢) and whose moving part has a velocity v(f) (see
Fig. 2.1). The motion of this oscillator is described by the differential equation:

d
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Fig. 2.1
Single-degree-of-freedom f l
mechanical oscillator

M

which can be written equivalently with respect to displacement y(r) (v(f) =
dy(t)/dt) and usual scaled parameters:

d*y dy 5 f
- 2 - = —, 2.2
ar TG T Ty ¢
where
K wo R
a)g = and oy = fowo = Z_Qo =5 (2.3)

The resonance angular frequency is denoted by wy, which, because of the
damping coefficient R, is not necessarily equal to the eigen (or natural) angular
frequency: both angular frequencies will be defined later in this chapter. Qg is
the second basic parameter describing the sharpness of the resonance: it is called
“quality factor,” and plays an essential role in several properties of the oscillator.
One should remember that its limit is infinite when damping approaches zero. It
may appear cumbersome to define three quantities to express damping, &, ¢,, and
Qo. However, each quantity has its own meaning and use, as it will be seen later.

The damping model has not been discussed yet. In Chap.5 it will be shown
that damping often depends on frequency, which of course strongly modifies the
time-domain equation (2.2). It is assumed that it is not the case here. Similarly, the
damping coefficient is chosen positive so that free oscillations decrease exponen-
tially: in fact, for self-oscillating instruments (see Part III), the sound starts with an
exponential growth, because the energy source is proportional to the term R, which
can be either positive or negative.



2 Single-Degree-of-Freedom Oscillator 79

2.2  Solution With and Without a Source: Green’s Function

2.2.1 Solution Without a Source; Eigenfrequency

The first step is to write the solutions of Eq.(2.2) without source terms, i.e.,
after the extinction (f(r) = 0). This corresponds therefore to the case of free
oscillations. Complex solutions in the form Ae/®’ are sought, where o is the angular
eigenfrequency.' The equation to be solved is derived from Eq. (2.2):

[a)ir 1 o
2l =2 _1=0, (2.4)

o Qo wo

and the solutions are given by:

1
wif = jao + w, where w, = oy, with 8§ = /1 -2 = [1— i (2.5)
\ 0

If ¢y is greater or equal to unity, i.e., if Qg is lower or equal to 1/2, the two
solutions a)oi are purely imaginary, and there is no oscillations. Discarding this
case, two complex eigenfrequencies are found, which have the same real part
wp, in absolute value. The real part is often called (angular) eigenfrequency of
the oscillator, even if the signal is pseudo-periodic, when it is attenuated. In the
following, the term “eigenfrequency” will be used for a)(;F and w; as well as for

w),, because there is generally no ambiguity. The general solution is written as:
y(t) = e ' [AT™ + ATe '] or y(t) = Ae"*' sin(wpt + @). (2.6)

The first expression involves two complex coefficients, A*, but only the real part
is of interest for us. The second expression involves two real coefficients: A and ¢.
The signal has a pseudo-period 7 = 2m/w,, and is exponentially attenuated, the
exponent being proportional to {y. During a pseudo-period, the amplitude of the
signal is divided by a factor:

'What does “eigen” mean? The German word eigen can be translated as “own,” or “natural.” For
a physicist, it means that the eigenfrequency is characteristic of the oscillator, thus independent of
external excitation. For a mathematician, it is linked to the eigenvalues of an operator. Thus, if (2.2)

is written as:
d y _ 0 1 y
dr \dy/dt) — \ —wg —2a0 ) \dy/dt )"

The operator is a usual matrix and it can be shown that its eigenvalues are ja)ojE and its

. 1
eigenvectors | . .
(] a)(ft )
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Table 2.1 Some typical values of the quality factor Q in musical

acoustics
Instrument Frequency domain | Q-factor
Clarinet 150 Hz-3 kHz 10-50
Wooden guitar soundboard 50Hz-5kHz 10-100
Acoustic modes of a violin sound box | 100 Hz—10 kHz 50-150
Kettledrum drumhead 50Hz-1kHz 10-300
Guitar string (Nylon) 100 Hz—5 kHz 100-1000
Piano string 20Hz-15kHz 102-10*
Metal harpsichord string 20Hz-20kHz 103-10*

To a first approximation, each resonance can be viewed as a single
resonator with its own Q-factor (see Chap. 3). The Q-factors are usually
decreasing with frequency, but this decrease is not monotonous in
general

er = exp |:— z—né’o] = exp [—L:| . 2.7)
So Qoo

The larger the quality factor, the longer the oscillation. If it is large enough
(6o >~ 1), an approximate definition for the oscillation to decrease by a factor
e = 2.7 is given by the number of pseudo-periods, divided by 7. Table 2.1 gives
some typical values of quality factors encountered in some musical instruments.

The coefficients A and ¢ in (2.6) can be found provided that initial values of
the function y(¢) and its first derivative v(¢) are known. The following results are
obtained by setting t = 0 in Eq. (2.6) and in the corresponding expression for dy/dt:

y(t) = e |:a% [v(0) + 0py(0)] sin w,t + y(0) cos a)pti| , (2.8)
p
and
(1) = e " [v(0) cos w,t — 8" [£ov(0) + woy(0)] sinwyt] . (2.9)

A special case of initial conditions, which is important for future considerations,
is the case where the oscillator is released without initial velocity and with an initial
displacement y(0). This means that a force f~(¢) = F~ = Ky(0) was applied during
negative time. The velocity (see Fig.2.2) is expressed by:

F
t) = ———e Y sin(wpyt). 2.10
v(r) wae sin(wpt) ( )



2 Single-Degree-of-Freedom Oscillator 81

T T T T T T 20() T T T T T T
1.0 B -
150 B
08 _1 1
0.6 | ] 100 _
04 E 50 + i
o 02} 4 ~
N E 0f -
B {5 0 ]
-0.2} e =50 | b
-04 1 ~100 _
-0.6 | . )
08} . -150F 7
! ! ! ! 1 1 ~200 1 1 1 1 1 1
0 02 04 06 08 1.0 1.2 0 02 04 06 08 10 12
t t

Fig. 2.2 Oscillator released at + = 0 without initial velocity. On the left the displacement and on
the right the velocity. y(0) = 1;fy = 30Hz ; Qp = 18.85. In this case it takes 6 pseudo-periods
for the oscillation to decrease by a factor e

and the displacement:

O,

= cos(wyt + @) (2.11)
8o

y(1) = y(0)e [cos(wpt) + g_o sin(a)pt):|
0

where tanp = —y /8y (or cos ¢ = §).

2.2.2 Solution with an Elementary Source: Green’s Function

Expression (2.11) is a first illustration of an oscillator with a source switched off at
t = ty. Looking also at negative times, it can be written as a solution of the following
equation, with a source term:

d d
Y @

—
- - F gy = oH - 1), (2.12)

where H(t) is the Heaviside step function. The velocity is a solution of the following
equation:

» _
cjl_t;) + 2(10% + wév = —%8(1‘— to)-

It is therefore, to within the multiplicative factor —F~ /M, a solution of the
equation with an elementary source §(f—1;). The solution is called Green’s function.
This function and its first derivative are assumed to be equal to zero at time ¢ < f.
It allows expressing a solution for any source (see the following section). The
Green’s function is denoted g(¢|ty), and is a solution of the following equation:
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d? d
| 5+ 200 + 08 i) =8t @13)

and, according to (2.10), is equal to:

1
g(tltg) = w—H(r — t9)e” ) sinw, (1 — 1p)]. (2.14)
P

to is the pulse emission time, and ¢ is the observation time. Note that the Green’s
function is a function of (¢ — fy): it does not change if the emission time # is
changed to —¢, and the observation time from ¢ to —#,. This is the property of
temporal reciprocity.” Except for a multiplying factor, its shape is that of the velocity
in Fig.2.2,if tp = 0.

A direct solution of Eq.(2.13) is now shown. To simplify the problem it is
assumed that #; is zero. The method is similar to the one developed for the solution
without a source (2.8), by matching solutions at + = 0. It is known that, for t > 0,
the solution has the form (2.6). Both coefficients A and ¢ are found by matching
this solution to the solution for negative time, which is equal to zero, as it is the case
for its first derivative. It can be shown, and at least it can be a posteriori checked,
that the presence of the Dirac delta function in Eq. (2.13) implies the continuity of
the solution at ¢+ = 0, hence ¢ = 0, and the discontinuity of its first derivative. By
integrating Eq. (2.13) between ¢ — ¢ and ¢ + ¢, the following results are obtained:

d t+e 1
|:—g(t, 0):| =1 hence A= —,
dt t—e Wp

and Eq. (2.14) is obtained again for #, = 0.

2.2.3 General Solution with a Source Term
2.2.3.1 Solution by Fourier Transform

From the Green’s function, the general equation (2.2) can be solved. We first
derive the Fourier transforms of the equation with y(#) and of the Green’s function
equation:

[~0* + 2a0jw + oy | = (2.15)

F
M

2Notice that the Green’s function does not have the dimension of a mechanical quantity but only
of a time [the dimension of the Dirac delta function is the inverse of a time, which can be seen
immediately when integrating the 2nd term of Eq. (2.13)]. An equation with physical meaning is
obtained by multiplying the source term by a factor with the right dimensions.
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[—0® + 2apjo + 05| G = 1 (2.16)

where % (w), F(w), and G(w) are the Fourier transforms of y(¢), f(z), and g(|0).
Calculating the ratio of the two previous equations yields

F(w)

V() = — =G(). (2.17)

Therefore, by returning to the time domain, and considering that the convolution
product is the inverse Fourier transform of the ordinary product in the frequency
domain, we get

+o00

l +00 jwt 1 A / /
() = 271_M[_ F(0)G(w)d“dow = i f()g(t—1)|0)dl,

+o0 1

or ) = 5 [ r@eina = o [ gt e.18)

M J_

In fact, because the Green’s function g(¢|') is a function of (r—¢’), the convolution
becomes a simple product, and the Green’s function is equal to zero for ' > t.

2.2.3.2 Solving by Laplace Transform

For a source starting at a given time, the force can be written (1) = H(f)f(¢), and
the previous result (2.18) is applicable. But it is often more convenient to use the
Fourier transform of the product rather than the convolution product. It is then easier
to use the Laplace transform, which involves the initial conditions [see Eq. (1.118)].
Equation (2.17) is replaced by:

X (s) = G(s) [F(s)/M + (s + 20)y(0) + v(0)] (2.19)

and the integral equation (2.18) becomes

dg(tIO).

o (2.20)

1 t
o = /0 F(@)g(tl)dt + [200y(0) + v(0)] g(1]0) + y(0)

If there is no source f(¢), the solution without a source (2.8) is found again, which
can be verified.?

3This is the standard form of an integral equation which makes use of an elementary solution such
as the Green’s function. If the initial conditions are identical to those of the Green’s function, only
the integral term remains. This kind of equations can be generalized to a problem with variables
depending on both space and time, but the initial conditions can be chosen for the Green’s function:
if it satisfies the same initial conditions as the unknown, there will be no terms linked to these
conditions, which would not be the case otherwise.
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2.3 Examples of Free and Forced Oscillations

This section aims at studying some examples of solutions, in the case of a steady-
state excitation, or for an excitation which is either starting or stopping at a given
time. One can easily imagine a vibrating string, acting as an oscillating source for a
sound box that would have a single-degree-of-freedom: the starting and stopping of
the sound box’s vibration is of great interest, even if the present study will provide
qualitative results only. Similarly one can easily transpose these simple situations to
any instrument producing a sound in a room: it also acts as an oscillating source.
This illustration implies that the oscillation produced is not influenced by the room
itself; this is reasonable, except maybe in the case of an organ (because of the size
of the pipes).

2.3.1 Displacement of a System from Equilibrium

We first treat the case of the displacement of a system from equilibrium, because
it is very simple and complementary to the case of a system released without
initial velocity [Eq. (2.11)]. Let the force be f(f) = FjH(z), the system being at
equilibrium at ¢+ = 0: y(0) and v(0) are zero. We do not discuss the method for
producing such a force. We can use the linearity of the problem, and therefore the
superposition principle, and observe that f(t) + f~(t) = Fy, if f~ () = FyH(—1),
which is a case we have already described in Eq.(2.11). Now the solution for
f(#) = Fy (constant) is known: itis y(f) = Fj;/Mw. Subtracting the solution (2.11)
from this result, we obtain the complete solution:

|:1 — e ! (cos(a)pt) + g_o sin(wpt))] . (2.21)
0

¥ = 24

Muw;

The expected initial conditions are satisfied. However, we find that it was not
needed to use them for this new problem! In fact all the information is contained
in the evolution of the force from t = —oo to +00: f(f) = FyH(t). The important
fact is that a sudden change of excitation in one direction or the other produces
a free oscillation which is attenuated exponentially, in addition to the steady term
Fy/Ma? (see Fig. 2.3).

2.3.2 Excitation (Forced) by a Steady Sinusoidal Force

Consider, for example, f(tf) = Fj coswt. The solution is the real part of the
solution for f(f) = Fye/®'. For steady forced oscillations, the solution can be
sought in the form A(w)e/®!. The derivatives are then derived in a straightforward
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way. The oscillating response has the same frequency as the excitation. Now, the
eigenfrequency intervenes in the amplitude only: this point will be discussed in
detail later. Using Eq. (2.16), one obtains

y(t) = FyM~'G(w)e". (2.22)
Taking the real part of this result yields

e _ Fy
—w? + 2jagw + @ ] MDV2(w)

y(t) = FﬁMERe |: sin(wt + ¢)  (2.23)

where
D(w) = [(@* — w))* + daj’] ; tang = (-0 + w])/200w.  (2.24)
The velocity is given by:

a)FM

v(t) = Acos(wt + ¢) where A = m

(2.25)

2.3.3 Excitation by a Sinusoidal Force Starting att = ()

Consider now the particular case when the starting time of the source is taken
into account. Let us roughly suppose that it starts abruptly: the force is, for
example, f(t) = FyH(t) cos wt. We now calculate the velocity by using the Laplace
Transform. The transform of the force is F(s) = Fys/(s*> + ®?), and that of the
derivative is Fy;s?/(s*> + w?) —f(07) = —Fyw? /(s> + »?). Since the initial velocity
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and the acceleration are zero (velocity is zero for all negative times), the transform
of the velocity is

FM 602
M (s + w?)(s? + 2005 + )

V(s) = (2.26)

The standard method for calculating the inverse transform is the partial fractions
expansion in terms of the form (s —s,) ", which leads to simple poles. It is actually
more efficient to group the conjugate poles (we expect to find the combination of two
signals of angular frequency w and w,). We are therefore looking to write V(s) as:

as+b as+b
2+ 52 + 2005 + wf

(2.27)

The result is obtained, after identification and inverse transform, but the calcula-
tion remains heavy. A lighter approach is based on the observation that, given the
form of Eq. (2.27), the solution is of the type:

v(t) = H(1) [Acos(wt + ¢) + Ape " cos(wyt + @) ] . (2.28)

and thus only the first term remains when time goes to infinity. In other words, the
first term is equal to the solution (2.25), multiplied by H(¢). To find the other two
parameters, we can simply use the initial conditions (zero velocity and acceleration),
which gives

wtang = oy + wptang, ; Acos@ = —A, cos gp,

and, after some calculations, A, = Aw / wy.

The second term in the right-hand side of (2.28) is not negligible compared to
the first as long as the observation period is small compared to the characteristic
damping time o, !, For some weakly damped structural modes of musical instru-
ments, this characteristic time can be of the order of magnitude of 0.1 ms or higher.
Therefore, assuming that the exponential becomes negligible after a time of five to
ten times larger, it appears that this second term cannot be neglected for 0.5 to 1s
after the excitation has started, if we want to correctly estimate the average power
dissipated.

2.3.4 Excitation by a Sinusoidal Force Stopping att = ()

What happens for a force stopping at t = 0, i.e., f(t) = FyH(—t) cos wt ? One can
use the Fourier Transform, with the necessary precautions concerning the function
H(—1), but a simpler method exists. We use the principle of superposition applied
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to the previous problem, which gives a sinusoidal steady source, and we derive by
simple subtraction between (2.25) and (2.28):

v(t) = AH(—1) cos(wt + ¢) — A,H(1)e™ ™" cos(wyt + ¢p). (2.29)

The form (2.29) is interesting because it exhibits the reverberation: after the
pulsation source w stops, the oscillator vibrates at its eigenfrequency, with free
oscillations. The phenomenon that occurs when the source starts [see Eq. (2.28)] can
also be called reverberation: however, it overlaps with the oscillation produced by
the source. The reverberation is a phenomenon triggered by the non-stationarity of a
source: it is an oscillation whose frequency is the eigenfrequency of the system, and
which decreases because of damping. These results are qualitatively very general,
since they can be extended to any vibrating system with several degrees of freedom
(DOF). The only phenomenon that cannot occur with a single DOF (i.e., a single
mode) is the phenomenon of echo, due to delays: in a room, there is a very
large number of modes (or DOF), which combine together and produce successive
reflections on the walls. In Chap. 4 the relationship between modes and waves will
be presented.

2.4 Forced Oscillations: Frequency Response

Forced sinusoidal motions are often used in experimental devices, in order to
estimate the mechanical losses of a structure, in particular. It is therefore necessary
to understand their main aspects and their theoretical limitations. In a steady
sinusoidal regime, it is convenient to use the complex notation, what we adopt
hereafter. We wish to study the response of the displacement (Eq. 2.15), and, above
all, the velocity due to a sinusoidal force f(f) = Fy exp(jwt), since the product of
force by velocity determines the power. We must therefore consider the response,
called mechanical admittance, when the frequency varies

V(w 1 j
Y(w) = —F( L > z 5 (2.30)
(0) M —0?+2jway + o]

the Fourier Transform of f(z) being F(w') = Fyd(w’ — w). A function of @ of
this form is often called “Lorentzian.” We are interested in the quantities: modulus,
argument (which is a phase difference), real and imaginary parts of the admittance,
for which the evolution versus frequency can be seen in Figs.2.4 and 2.5. We
limit the study to the response in velocity, because in musical acoustics the input
admittance (or impedance) is the most useful response. However the responses in
displacement or in acceleration are interesting too, and show other variations with
frequency.

It will be shown in Chap. 3 that for any discrete or continuous system, under
certain conditions, the response is simply the sum of quantities of the type (2.30),
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Fig. 2.4 Oscillator’s admittance modulus and argument versus frequency, for Oy = 18.85; fy =
30Hz, M =1

Fig. 2.5 Real (dotted line)
and imaginary part (solid
line) of the oscillator’s
admittance versus frequency,
for Qy = 18.85; fy =30Hz,
M=1
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each corresponding to a mode. For forced oscillations, we are interested in the
maximum of this quantity; for self-sustained oscillations, our interest is in the zeros
of the imaginary part (this will be explained in Chap. 9), the two kinds of frequencies
being very close. For the present case (single mode), they are identical.

To study the admittance variation versus frequency, the easiest way is to start by
considering the inverse quantity, i.e., the impedance

. K
Z(w) = joM + R+ — = Mw, |: (2.31)
jo

o o ] }
J——i— :
wo "o Qo

Z is real when @ = @y, which implies that the admittance also is real. For o >
o, the leading term is the mass term, otherwise it is the stiffness term Ma)g Jjo.
The real parts of Z and Y are always positive for a passive system, as explained in
Chap. 1. The imaginary part is either positive or negative.
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The modulus Z is minimum when @ = wy, the so-called resonance angular
frequency. For a given amplitude of excitation F' (the cause), it corresponds to
the angular frequency for which the amplitude of the response V (the effect) is
maximum.* It differs from the angular eigenfrequency w,, unless the damping is
low [large Qo, see Eq. (2.5)]. If Qy is large, impedance and admittance are almost
purely imaginary at any frequency, except very close to the resonance.

Two other frequencies are interesting®: these are those for which the imaginary
part is equal or opposite to the real part (the argument of Z is then £7/4). This gives
the following values:

S

i _ 1+1il—1i1+0(1) (2.32)
wo 408 200 20 o5/ -

For very large Qy, they are very close to the resonance frequency. It is easy to show
that they correspond to extrema of the imaginary part of admittance, which can be
written as:

1 1 —junQo O

where p = — — — (2.33)
w

Y =
Maw, 01 =+ /,LZQ% wo

At these frequencies, the modulus of Y is thus equal to its value at the resonance
(u = 0), divided by +/2. We note that

of—om 1,1 (2.34)
wo Qo 405 '
This quantity is the relative width of the peak of the quantity |Y|2 at half maximum:
for large Q,, it is close to 1/Qy. This is a second definition of the quality factor, the
first one being the decay rate by period for free oscillations [see (2.7)]. However the
two definitions only coincide at the third order of Q. We still have to examine the
variation of the real part of the admittance: Equation (2.33) shows that it reaches a

maximum at the resonance, and it is then equal to:

1
Re(Y) = |¥] = M%O)O = (2.35)

4wy is also the angular eigenfrequency of the undamped system, obtained for R = 0.

SThey are called quadrantal frequencies.
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Im(Y)

Fig. 2.6 Imaginary part of the admittance when Q, tends to infinity: there is no zero-crossing. The
dotted curve represents the case Qp = 18.85. The two curves merge far from resonances

2.4.1 Remarks on the Determination of the Resonance
Frequency

We notice that the resonance frequency wy does not depend on the quality factor.
This is why in the case where we are only interested in resonance frequencies, the
quality factor can be taken to be infinite, i.e., the damping equal to zero. We then
have a purely imaginary admittance, which approaches oo when the frequency
approaches the resonance. In this case, the shape of the curve of the imaginary part
of Y becomes very different, since the two extrema are infinite, and it does not cross
0 (Fig.2.6). If we consider Eq. (2.33), we see that the limit of the imaginary part
of Y when Qy —> o0 is not straightforward for small p. On the other hand, the
modulus of the impedance Z shows little change.

It turns out that the imaginary part of the impedance is a very good candidate for
determining the resonance frequency by interpolation. A simple calculation shows
that if Im(Z) is known at two angular frequencies w; and w,, the resonance is
given by:

w2 [02Sm(Zy) — w1Sm(Z)]
w1 «(\Sm(Z1) — a)zfsm(Zz)

w} = (2.36)

This method can be used even if other modes are present, since the admittance
is then the sum of terms of type (2.33). In the presence of modes, some of
them may have an amplitude such that the imaginary part of ¥ does not vanish
anymore. Nevertheless if we ignore the damping terms, each term goes to infinity at
resonance, and this problem does not arise. Ignoring damping to find the resonance
frequencies is therefore very usual and this approximation is very useful in musical
acoustics, regardless of the number of modes. Finally, what happens when damping,
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and therefore the quality factor depends on frequency (in this case, the initial
time-domain equation can be greatly modified)? If we look at the cancelation of
the imaginary part, the resonance frequency remains independent of the variation
of damping with frequency, as seen in the expression of the impedance (2.31).
Conversely if we look at the maximum of the modulus of Y for forced oscillations,
it is a bit more complicated but it can be shown that the variation of Qy(w) leads
to a variation of magnitude 1/ Q(z) only, for both the resonance frequency and the
maximum.

Simplification of the response around the resonance: “simple” modes
We saw in Sect.2.2.1 that a single-degree-of-freedom oscillator has two
complex eigenfrequencies denoted a)gE [Eq. (2.5)]. These frequencies are the
(simple) poles of the admittance (2.30). We have

o — jowy/Q — of = (© — o ) (@ — wy).

Hence if Y30 = Qo/Mwy is the maximum of the modulus of Y:

Y=— — =

1 jw _J Yuo wy wy
M 0§ — ? + jow/Qo 2000 | w—w ©—wo

(2.37)

Each term can be seen as a mode that we will call “simple mode.”® Around
® = wy, we can ignore the term of negative eigenfrequency (more specifically
the term with a negative real part), which gives, if Z,0 = 1/Y)yy is the
minimum of the impedance:

w—wf 1 w—woby
Z=1/Y ~ 2j0080Z 0 |=— L,P+z ]
/ jO000 0|: oF :| 157/ (20080) 0 jQo o

(2.38)

If the quality factor Q is large enough, this reduces to:

® — w—

Z >~ Zmo |:1 + 2jQ0 i| >~ 2jZ,,000 (2.39)

o

(continued)

6 4+
One can also write sy = jow, = (jw; )™

Y:_iﬁ&{;&f_ S0 ]
2 00do Ljw —s0  jo—s5 ]’

hence Y(—w) = Y*(w) for w real.



92 A. Chaigne and J. Kergomard

This highlights that such an approximation is convenient for representing a
Lorentz resonance near its maximum, at the cost of a first-order approximation
in 1/Qp. A more direct approximation method is to write ® = wo(1 + &)
in Eq.(2.37) and expand it to the first order in &. This approximation is
justified as well as the truncation of a modal series to a single mode, under
the condition that the frequency is close to the resonance of this mode, with a
high quality factor.

2.5 Energy, Power, and Efficiency

2.5.1 Energy and Power

The instantaneous mechanical power p,,(t) of the oscillator is given by the scalar
product of f and v (see Chap. 1), which leads to:

dfr. , 1 _, 2
Pm = o [ZMU + 2Ky :| + Rv” . (2.40)
The three terms on the right-hand side of (2.40) represent the temporal variations
of the kinetic energy of mass M, the elastic energy of spring K, and the power
dissipated in the resistance R, respectively.

In most applications, the time average of p,,(t), i.e., its slow fluctuations, is more
interesting than its fine details and rapid evolution in time. In audible acoustics, for
instance, the human ear is sensitive to the sound level which is well correlated to the
average value of the sound power, after integration over a period of 50 ms. This is
typically the kind of information that can be read on a sound level meter. In room
acoustics, the reverberation time is defined in the same way as the decay of the slow
fluctuations of the energy density in the room after the excitation has stopped.

We define below an integration time 7" whose selection criteria will be discussed
later. Using Eq. (2.40) we calculate the average mechanical power £, (T):

T
P, (T) = % [Mv*(T) + Ky*(T) — Mv*(0) — Ky*(0)] + % /0 Rv*(r)dr .

(2.41)
For free oscillations the average power £2,,(T) is zero. We derive

% [MV*(T) + KX (T)] =

| =

T
[Mv?(0) + Ky*(0)] — [ Rv*(r)dt, (2.42)
0
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which quantifies the average power Z(T) = fOT Rv?(t)dt dissipated during the
given time interval 7. This power & (T) is also the power needed by the system
to ensure a periodic motion of period 7. We notice, in this case, that the quantity
between brackets in (2.41) vanishes.

2.5.1.1 Special Case: Steady Sinusoidal Movement

For an excitation force f(f) = F); cos wt, it has been shown in Eq. (2.25) that the
velocity is given by v(t) = V), cos(wt + ¢). Therefore, the average power is written
as follows:

1 T
P (T) = ?/0 FyVy cos wt cos(wt + ¢)dt (2.43)

The oscillation period is denoted T = %’ The integration time is then given by
T = nt + 1, where n is a positive integer. The average power becomes

FuV,
MM [sinQot, + @) —sing] . (2.44)

1
gm(T) = EFMVMCOS§0 + m

Discussion

* Equation (2.44) shows that the average power £,,(T) is approximately equal
to %FMVM cos @ only if the average integration period involves a sufficiently
large number n of oscillation periods. For the special case where T equals ,
the equality is strict. In what follows, we consider that this condition is satisfied,
so that the dependence of the terms of the average power on the integration period
is suppressed.

» For a given force, the expression of the velocity was found (see Sect.2.3.2). The
average power can be written using complex quantities:

P, = %‘he [F(v* (0] = %Fiﬂ“e(Y)- (245

This result, which is consistent with Eq. (1.131), confirms the well-known result
that the maximum of dissipated power is obtained when the excitation frequency
is equal to the resonance frequency of the oscillator, namely for @ = wq. Then,
following Eq. (2.35) we can write:

Fiy

Max {(Z,} = . (2.46)

As a consequence, from Eq. (2.46), if F); is known, we can easily derive R by
power measurements.
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» For forced oscillations with angular frequency w, the calculation of the power
P, exhibits terms in w + wpdp and |w — wdy|, where &y is defined in Eq. (2.5).
Consequently, the average power exhibits low frequency variations before the
steady state emerges (see Fig. 2.7). Experimentally, this transient state may take
some time if w is close to @y, which might pose some difficulty for practical
measurements of the average power.

2.5.1.2 Third Definition of the Quality Factor

Itis possible to link the average power supplied to the energy of the system, averaged
over a period, through the quality factor Q. The total energy, which is the sum of
kinetic energy and potential energy, is given in Eq. (2.40). Using complex quantities
for force and velocity, we have f(f) = Fy exp(jwt) and v(f) = Vyexp(jot + ¢).
Using the results of Chap. 1, the power and the total energy averaged over a period
are given by:

1 1
P = R|oP eté =~ [M|v|2+K|y|2] .
2 4
We get the ratio
& o MPP+Kh Qo 1+a)2
TS, 4r  R|? C 4Am W}l

This shows that at the resonance, it is equal to Qy/2m. This definition comple-
ments the definitions based on the decay rate (2.7) and on the relative width of the
resonance peak (2.34). These three definitions coincide for small damping values
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Fig. 2.8 Mechanical
single-degree-of-freedom
oscillator loaded by air P c
o Y
5
M

only. When a more general response is considered, expressed as the sum of several
modes, the situation becomes even more complicated. Finally, at the resonance, the
average energy is equally distributed between potential and kinetic energy.

2.5.2 Mechanical Air Loaded Oscillator

The following example is the simplest model of acoustic radiation by a structure
with a single-degree-of-freedom. As in the previous paragraph, we examine its
properties in terms of energy, and we define its efficiency in terms of power.

To illustrate the model, imagine a mechanical single-degree-of-freedom oscil-
lator loaded by a semi-infinite tube of cross section S, filled with air of density p
and where the sound speed is denoted ¢ (see Fig.2.8). A wave travels in the tube
whose specific characteristic impedance pc was found in Chap. 1 (Sect. 1.2.4). The
pressure force is simply proportional to velocity. The equation of this oscillator is
written as:

d
f:M% Y RU4+K / vdt + Rev with R, = pcS. (2.47)
The instantaneous power supplied to the system is written as follows:
(1) d 1M2+1K2 + (R + R )V? (2.48)
m = — | =-Mv — V. .
P dr |2 2™ “

Hence the average power (per period) is

T T
P (T) = % /O Rv*(t)dt + % [0 RV (t)dt = P(T) + Z,(T), (2.49)
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where 2,(T) is the average acoustic power radiated into the tube. We define the
acoustical efficiency by:

_ P(T) Po(T) R
- 2T P+ Z(T) R+R,

(2.50)

This last result requires some comments.

* We observe in (2.50) that the efficiency is independent of 7.

* Although the form of n here appears to be very simple, its experimental deter-
mination is not straightforward because it requires to estimate R, for example,
through measurements in vacuo.

* In the academic example presented above, R, is obtained analytically, which
is rarely the case for structures with complex materials and geometry such as
musical instruments. In the general case, &2,(T) is obtained experimentally (or
numerically) by computing the flow of the acoustic intensity vector over a closed
surface surrounding the source.

* In general, the efficiency may depend on frequency, which is not the case here,
but when there are no losses (this corresponds here to setting R = 0) it is always,
by definition, equal to unity! Conversely, we have seen that the response of a
resonant system always depends on frequency, especially when the losses are
small (see, for example, Fig. 2.4). Efficiency and response are therefore quantities
whose physical meaning is very different.

2.5.2.1 Link Between Radiated Power and Damping Factor

For a radiating single-degree-of-freedom system, it is possible to estimate the sound
power from the measurement (or numerical simulation) of the damping factor, in
free oscillations. In Chap. 13, we will examine the conditions for extending this
result to systems with multiple DOF. The equation of the mechanical oscillator
loaded by air can be written in a reduced form:

d’y R+R,
o +2§a)0 +a)0y—0 with ¢ = Moy’

2.51)

for which it is known that the solution is written as (assuming ¢ < 1):

y(t) = exp(—Lwot) |:cos(a)o\/1 — %) + sin(wp/1 — §2t):| . (2.52)

g
io
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Equation (2.52) shows that the damping factor (equal to the inverse of the time
constant) is equal to:

R+R,
o=0{wy=———. 2.53
Swo M (2.53)
In conclusion, considering the definition (2.3), we note that, for the simple case
of a single-degree-of-freedom oscillator, the acoustical efficiency can be estimated
in the time domain by using the expression:

a — Q0

n= (2.54)
o

Note It should, however, be emphasized that one of the damping effects is to
slightly modify the frequency of the oscillator, compared to the in vacuo case. This
effect has no consequence here because, concerning a “monochromatic” signal, the
determination of « from the exponential envelope is independent of the oscillation
frequency. Furthermore, in the present example, the air load is considered as purely
resistive. If, however, we are in a situation where the fluid load also includes a mass
or elastic component, we could not obtain the efficiency from a formula as simple
as Eq. (2.54). This point of view will be developed in more detail in Chap. 13.
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