
Chapter 14
Radiation of Complex Systems

Antoine Chaigne and Jean Kergomard

Abstract The fundamental properties of the constitutive elements of musical
instruments were presented in the previous chapters: vibrating systems, holes, and
air columns. Some fundamental coupling situations between such elements, as well
as their radiation in free space were also described. In this last chapter, a detailed
presentation of some selected instruments is given (vibraphone, timpani, guitar, and
piano). In the previous approach made on simple systems, one goal was to give a
general view on several order of magnitudes for the involved physical quantities,
in order to identify general laws in terms of time, space, and frequency. Here, a
complementary point of view is adopted: the geometry, material and frequency
range of a given instrument are fixed, and the interaction between its elements is
examined for this particular configuration. The objective is to build a complete
model of an instrument and to study the vibratory and acoustical phenomena
from the initial excitation (mallet impact, struck or plucked string) to the acoustic
radiation. The modeling complexity of these sound sources is due to several causes:
complex structural geometry, coupling between different components with distinct
mechanical properties, broad frequency range, and required accuracy. Finally, the
previous presentation of wind instruments is supplemented here by the analysis of
radiation by both the tone holes and apertures, and by the resulting interferences.
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14.1 Example of the Vibraphone

14.1.1 Introduction

The vibraphone belongs to the family of mallet percussion instruments, as the
xylophone, the marimba, and the glockenspiel [47]. All these instruments work in
a similar way: horizontal beams are excited by the impact of a mallet and radiate
sound. In most cases, a tubular resonator is put under each beam. The function of
such resonators is to capture a fraction of the sound energy radiated by the beam and,
in turn, to radiate again after amplification and filtering of some frequencies. The
instruments of this family differ from each other both by their geometry (size) and
material. A vibraphone is made of metallic beams, whereas marimba and xylophone
beams are usually made of wood. The case of the vibraphone, which is presented
here, can be generalized to the other mallet instruments.

From the point of view of radiation, the vibraphone is a typical example of
interaction between a field radiated by an impacted beam and a tubular resonator
placed in its vicinity (see Fig. 14.1).1
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Fig. 14.1 Left: vibraphone (Courtesy of Rythmes et Sons). Right: schematic representation of a
vibraphone beam and tube. The pressure at point M.r; �/ is the sum of the pressure radiated by the
beam and the pressure radiated by the open end of the tube at a distance rT

1In some instruments, both ends of the tube are open. In the present chapter, the example of a
resonator with an open end on the beam side, and a closed end at the bottom, is investigated.
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In Chap. 1, the flexural equations of motion for an Euler–Bernoulli beam were
presented. The eigenmodes were calculated in Chap. 3, for beams of constant and
variable sections. The damping mechanisms in both the tubes and beam materials
were presented in Chap. 5. Here, the radiation of the complete instrument is
described. According to the usual geometry and materials of the instrument, the
following simplifying assumptions are made:

1. The vibrations of the beam are not affected by the radiated field. It has been
shown in the previous chapters that this assumption is reasonable, as long as the
ratio between air and material density is small and, in addition, for a sufficiently
rigid beam, as it is the case here. This amounts to assuming that the coefficient "
in Eq. (13.67) is small compared to unity.

2. The transverse dimension (width) b of the beam is small compared to the acoustic
wavelength: kb � 1. For a typical beam of width b D 3 cm, this yields an
upper limit of 11 kHz for the frequency. In most mallet instruments, the spectral
energy is below this limit, except for the highest notes of the xylophone. In what
follows, this condition is assumed to be fulfilled, so that some approximations
can be made for calculating the radiated pressure field, according to the results
presented in Chap. 12.

3. The radiation of the tube, at its open end, is not affected by the presence
of the beam. It has been shown experimentally that this assumption remains
valid as long as the end-beam distance remains small: d=b � 1. Otherwise,
the eigenfrequencies of the tube might be modified, due to the change in the
boundary conditions [25].

4. Only the flexural vibrations of the beam contribute to the radiation significantly.
This is almost true in practice, except if the impact is located near the corners. In
this latter case, additional torsional vibrations are generated. These vibrations are
generally unpleasant and unwanted, since they are not in harmonic relationships
with the flexural modes. In what follows, it is thus assumed that the vibraphone is
struck by a talented player who is able to control the impact point of the mallets
with precision! Denoting y0 the distance between the symmetry axis of the beam
and the impact point, the condition y0=b � 1 is assumed (see Fig. 14.2).

5. Finally, it is assumed that the diameter D of the tube is sufficiently small so that
only the longitudinal modes exist. This is true under the condition D=� � 1,
where � is the acoustic wavelength (see Chap. 7). It is also admitted that the
walls of the tube are rigid and do not contribute to the radiation.

b
y0

Fig. 14.2 Excitation of the beam near the symmetry axis, in order to avoid the generation of
torsional waves (y0 � b)
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Fig. 14.3 Physical principles of the vibraphone. The beam radiates due to the impact of the mallet.
A part of the radiated field excites the air column in the tubular resonator. The resonator radiates,
in turn, a sound field where its own eigenfrequencies are dominant in the spectrum. The beam-tube
coupling is efficient only if the tube is tuned so that some of its eigenfrequencies are close to the
eigenfrequencies of the beam (see Fig. 14.4)

The physical behavior of the vibraphone can be summarized as follows (see
Fig. 14.3):

• The impact of the mallet induces flexural vibrations in the beam . The excited
eigenfrequencies are close to those of a beam with free boundary conditions. The
suspension of the beam by a cord can be viewed as a flexible spring, so that the
eigenfrequency of the oscillator made of the complete beam mass and the cord is
equal to a few Hz, and thus is far below the first flexural mode. This rigid-body
mode is very weakly coupled to the flexural modes, and does not radiate sound.

• From the point of view of radiation, the oscillating beam can be viewed as a
linear array of dipoles (see the next section).

• A fraction of the acoustic energy radiated by the beam is captured by the tubular
resonator. This resonator acts as an acoustic filter. Only the spectral components
of the input field which are close to the eigenfrequencies of the tube can persist.
The other components are subject to destructive interferences inside the tube, and
are attenuated progressively.

• A fraction of the acoustic energy stored in the tube is radiated to the external
field through the open end. The resonator thus acts as a secondary source. An
observer in space receives the pressure contributions of both the beam and tube.
The spectral content of the tube pressure is dominated by the eigenfrequencies
of the tube: the amplitude of these components is significant only if some of
the input components (the eigenfrequencies of the beam ) coincide with some
eigenfrequencies of the tube: the tube is then said to be tuned to the beam (see
Fig. 14.4).
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Fig. 14.4 Basic principles of tuning between a beam and a tubular resonator. (a) shows the
spectral content of a tuned beam where the three first flexural modes are tuned to f1, 4f1, and
10f1, respectively. (b) shows the spectrum of a tube closed at one end and open at the other, for
which only the odd harmonics exist. It can be seen on this example that the beam and the tube are
tuned if both fundamental frequencies are equal. The upper harmonics of the beam do not excite
the tube

14.1.2 Radiation of the Beam

If the acoustic wavelength � is large compared to the width b of the beam, then
the reflection of waves radiated by the beam on its surface is negligible. As a
consequence, it has been shown in Chap. 12 that the monopolar terms can be
neglected in the Kirchhoff–Helmholtz integral (12.61). The only remaining terms
are the dipolar terms due to the oscillation of the beam [34]. The total field radiated
by the beam is then the sum of elementary dipoles distributed along its length L. A
discrete formulation of this sum is given below. Each elementary dipole has a width
�x D L=N, where N is the number of elements, length b, and thickness h.x/ (see
Fig. 14.5).

In order to benefit from simple known results, it is convenient to represent
each element of the beam by an equivalent oscillating sphere. This is achieved by
considering each element as a sphere with identical volume. The error made by
using such an approximation becomes noticeable when the acoustic wavelength is
less than or equal to �x, which corresponds here to typically 1–5 mm. The radius
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Fig. 14.5 Decomposition of the beam into an equivalent linear array of elementary oscillating
spheres

a.x/ of the equivalent sphere is given by:

4

3
�a3.x/ D bh.x/�x D �V.x/; (14.1)

where x 2 Œ0;L�. Under the assumptions of far field, as seen in Chap. 12, the field
radiated by each equivalent oscillating sphere is written in the time domain [see
Eq. (12.40)]:

�pŒr.x/; �.x/; t� D 3��V.x/ cos �.x/

8�r.x/

�
�
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r.x/
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�
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�
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@�
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�
x; t � r.x/

c

��
; (14.2)

where � is the beam acceleration at point x, r.x/ and �.x/ are the polar coordinates
of the listening point. In total, the pressure field pB radiated by the beam is written

pB.r; �; t/ D
X

x

�pŒr.x/; �.x/; t�; (14.3)

where the reference coordinates r and � correspond to the location of the listening
point with regard to the center of the beam (see Fig. 14.1). One main property of the
dipole array lies in the pronounced directivity of the radiated pressure along the axis
� D 0 (see also the discussion on the linear arrays in Chap. 12), which is confirmed
experimentally. Another property is that the pressure is zero in the beam plane.

14.1.3 Radiation of the Resonator

The tubular resonator with cross-section ST is oriented along the z-axis (see
Fig. 14.6). v.0; t/ and p.0; t/ are the acoustic velocity and sound pressure at the
open end, respectively, and pT.rT ; t/ is the pressure radiated by the open end at a
given point in space (see Fig. 14.6).
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Fig. 14.6 Tubular resonator
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It is assumed that the pressure radiated by the tube is similar to the one of a
monopole, as long as the diameter of the tube remains smaller than the acoustic
wavelength. In what follows, the diffraction of the tube is also ignored. Using the
results demonstrated in Chap. 12, the pressure radiated by the tube is written

pT.rT ; t/ D �ST

4�rT

@v

@t

�
0; t � rT

c

�
; (14.4)

or, equivalently, using Euler equation:

pT.rT ; t/ D ST

4�rT

@p

@z

�
0; t � rT

c

�
: (14.5)

The pressure can be determined at any point in space provided that the pressure
at the end of the tube is known. This end tube pressure is the sum of both the beam
pressure pB and the tube pressure pT . Such a superposition corresponds to the case
of two tubes explained in Sect. 12.6.3 of Chap. 12.

In the frequency domain, denoting Zr.!/ the radiation impedance of the tube,
and taking further the orientation of the z axis into account, we get

P.0; !/ D �Zr.!/STV.0; !/C PB.!/ : (14.6)

where P.r; !/ is the Fourier transform of p.r; t/. Since the tube is unbaffled and
radiates in the unbounded space, we can use the Levine–Schwinger expression for
the impedance (see Chap. 12).
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Converting Eq. (14.6) into the time domain is not an easy task [26]. One possible
method consists in expressing the impedance under the form of a fraction of two
polynomials in j! of the form:

Zr.!/ D �c

ST

b0 C b1j! C b2.j!/2 C � � �
a0 C a1j! C a2.j!/2 C � � � ; (14.7)

as it has already been done for Eq. (12.132). As a result, a time-domain formulation
of Eq. (14.6) is obtained

�
a0 C a1

@

@t
C a2

@2

@t2

�
.pB.t/ � p.0; t// D �c

�
b0 C b1

@

@t
C b2

@2

@t2

�
v.0; t/ :

(14.8)

Finally, the time-domain evolution of both internal and external tube field can be
obtained by combining the boundary condition (14.8), the boundary condition at
the other end of the tube (either closed end or another open end though without
interaction with beam), and the wave equation inside the tube (1.111). In contrast
with the beam field, the tube field is almost omnidirectional.

Figure 14.7 shows, on the left, an example of recorded pressure waveform
radiated by a vibraphone beam tuned to its resonator and struck by a mallet. The
measurements were made in an anechoic chamber. This waveform is compared
(on the right) with the pressure waveform simulated with the help of the model
presented above, using finite differences [24]. One can see on this figure that the
contribution of the beam reaches first the observation (listening) point, and that
the tube contribution arrives a few milliseconds later. This delay is due to the fact
that the resonator behaves here like an harmonic oscillator forced in the vicinity of
its eigenfrequency. As a consequence (as seen in Chap. 2), a rather slow growth
is observed. Contrary to what is usually thought, this delay is not due to the
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Fig. 14.7 Pressure waveform radiated by a vibraphone beam with a tuned tubular resonator. (Left)
Measurements. (Right) Simulation. One can see an abrupt initial pressure jump due to the beam,
followed by a slow growth due to the resonator and a slow decrease due to damping
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propagation between the beam and the open end. The beam-tube distance is usually
equal to a few centimeters: thus, the propagation delay should be equal to 1 or 2 ms.
This value is about ten times smaller than the observed delay.

From a musical viewpoint, tubular resonators should be used if slowly growing
“aftersound” is wanted. In contrast, the tubes should be (totally or partially) closed
if the purpose is to emphasize the clarity and suddenness of the initial transients.
Finally, it should be noticed that, in the complete instruments, the tubes are very
close to each other and that the differences in tuning are only one semitone. As a
consequence, they often interact together (see also Sect. 4.3), which contribute to
enrich the sound of the instrument.

14.2 Example of the Kettledrum

14.2.1 Introduction

The kettledrums (or timpani), as other drums like the snare drums or the bass drums,
belong to family of membranophones. As indicated in this classification name, these
instruments are made of one (or two) membrane(s) (or head(s)) stretched over a
cavity filled with air and struck by a mallet. Originally, the heads were made of
calfskin. Today, Mylar (polyethylene terephthalate) is the most common material
used for the heads, because of its better homogeneity, tensile strength, and relatively
smaller sensitivity to humidity changes. However, a number of orchestras today
still prefer using timpani with calfskin heads, especially for playing music of the
past centuries, because of their characteristic tone color. One physical property
of calfskin lies in its higher internal damping, compared to Mylar. An interesting
feature of timpani is due to the fact that these instruments together have a decisive
rhythmic function and a well-defined pitch.

The equations of motion for a stretched membrane were presented in Chap. 1.
Their modes of vibration were calculated in Chap. 3 for a homogeneous circular
membrane in vacuo. However, in order to understand the observations and experi-
ments made on timpani, it is necessary to take further the coupling of the membrane
with both external air and cavity into account. One-dimensional examples of
coupling between a vibrating structure and a cavity were presented in Chap. 6. Here,
the example of timpani gives us the opportunity to generalize these results to the case
of a 2-D structure (the membrane) coupled to a 3-D cavity (Fig. 14.8). In Chap. 13
it was shown, in addition, to what extent the vibrations of a structure are modified
by its radiated field. The case of timpani yields a situation where the density, the
rigidity, and thickness of the membrane are relatively small, so that the reaction of
the acoustic field cannot be neglected. One can easily be convinced of this fact by
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Fig. 14.8 Geometry of the
kettledrum, and notations.
The head ˙ is bounded by its
contour @˙ . C is the external
surface of the bowl with
normal vector n. ˝i is the
internal volume delimited by
the bowl and the membrane.
˝e is the external volume
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doing the simple experiments which consist in speaking (or singing!) in front of a
timpani head: by lightly touching the head with the fingers, the vibrations of the
membrane are clearly felt. In addition, the modifications of the tone color due to the
additional sound field of the membrane excited by the speech also are clearly heard.

The joint action of both external and internal (cavity) pressure on the membrane
also contributes to modify its eigenfrequencies compared to the in vacuo case. Since
the membrane oscillates freely after the impact of the mallet, the spectrum of the
emitted sound is composed of the eigenfrequencies of the complete coupled system
(see Fig. 14.15).

It has been shown in Chap. 3 that the eigenfrequencies of a circular membrane
in vacuo are not integer multiples of a fundamental frequency. In contrast, the
spectral content of timpani sounds shows that the eigenfrequencies of timpani
sounds, for an impact excitation close to the edge, are almost integer multiples
of a missing fundamental (2f, 3f, 4f, 5f,. . . ) as shown in Fig. 14.15. This is the
reason why the instrument has a well-defined pitch, though it is a bit less clearly
defined as, for example, the pitch of a violin or of a piano sound.2 A number of
authors have shown that both the external and internal pressure field acting on
the membrane are responsible for these frequency shifts (see, for example, [5]).
However, due to mathematical difficulties, accurate calculations of the coupled
modes of the complete instruments were obtained only recently [44, 45]. In what

2Notice that the perceived pitch rather fits with the frequency of the first partial (at 2f) than with the
missing fundamental (f). This octave ambiguity has several reasons: first, the lowest partial usually
has the highest amplitude and, secondly, the frequency of the missing fundamental is usually low
(less than 100 Hz), and thus the human ear is less sensitive in this frequency domain, from the point
of view of pitch perception.
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follows, emphasis is put on the physical modeling of the kettledrum and on its
corresponding time-domain numerical formulation. Notice that another technique
is possible, based on the use of Green’s functions [18]. However, the use of this
technique is restricted to simple geometrical shapes of the bowl (cylinder or half-
sphere) with standard systems of coordinates.

In the following paragraph, it is also shown, as an interesting application,
how to take advantage of the air-membrane-cavity coupling for determining the
tension of the membrane experimentally. This determination is based on the simple
measurements of the eigenfrequencies, when direct mechanical measurements of
the tension usually are cumbersome and not very precise. Finally, a perturbation
method is briefly presented, whose aim is to obtain a direct approximation of the
eigenfrequencies of the instrument. This method can be viewed as a generalization
of the results presented in Chap. 13.

14.2.2 Presentation of the Physical Model

It is supposed here, as a simplifying assumption, that only the head of the kettledrum
vibrates, consecutive to the impact of the mallet, and not the bowl. In the reality,
vibrations of the bowl can be sometimes observed, especially for light bowls in
fiberglass. A small hole is drilled at the bottom of the cavity (with a diameter
of typically 1–2 cm) in order to equalize the static pressure on both sides of the
membrane. This hole plays the same role as the Eustachian tube in the middle
ear: a difference in static pressure on both sides would restrict the motion of the
membrane [31]. Apart from this function, the hole has no effect on the acoustic
behavior of the instrument, because of its small dimensions compared to the acoustic
wavelengths of the main spectral components. It is currently observed that timpani
spectra do not have significant energy above 1 kHz, which corresponds to an
acoustic wavelength of 34 cm.

Another function of the cavity is to enclose the acoustic wave generated by the
membrane on its back side, as it is observed on other systems like loudspeaker
cabinets, for example. This prevents the system from destructive interferences
between forward and backward sound fields, which would otherwise reduce its
acoustical efficiency.

In what follows, ms D �sh denotes the surface density of the membrane of

density �s and thickness h, and cf D
q

	
ms

is the wave speed of the flexural waves

on the membrane for a tension 	 in N m�1 (see Chap. 1). In timpani, a typical order
of magnitude for cf is 100 m/s, and the surface density of Mylar is 0.1 kg/m2.
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14.2.2.1 Equations of Vibrations

To a first approximation, one can consider that the initial velocity condition for the
displacement 
.t/ of the mallet’s center of gravity reduces to P
.0/ D �V0, where
the origin of time is taken as the mallet just reaches the membrane.3 In addition,
we have 
.0/ D ı, where ı is the thickness of the felt before the compression (see
Fig. 14.9). During the contact phase, the mallet’s head of mass m is subjected to
the compression force F.t/ resulting from its interaction with the membrane which
yields (if we neglect the gravity force):

m
d2


dt2
D F.t/ : (14.9)

F.t/ can be conveniently described by a nonlinear function of the felt compres-
sion of the form (see Chap. 1):

F.t/ D K
�
.ı � 
.t/C W.t//C

	˛
(14.10)

where K is a stiffness coefficient, and ˛ an exponent. Both constants are derived
from experiments by curve-fitting procedures. For typical timpani mallets, ˛ usually

F= 0

W (t)

t = 0

δ

V0

F

W (t)

Compression

z 

t > 0 : contact 

(t)

(t)

Fig. 14.9 Impact of the mallet on the membrane. At time t D 0, the mallet comes in contact
with the membrane with an initial normal velocity V0. At this time, both the compression of the
felt and the interaction force are assumed to be zero. ı denotes the thickness of the felt before its
compression. During the contact phase, this thickness decreases and becomes equal to .W � 
/.t/,
where W is the mean displacement of the membrane on the contact area, and 
 the center of gravity
of the rigid mallet’s head. An interaction force then exists between mallet and membrane

3The negative sign is coherent with the orientation of the vertical z axis.



14 Radiation of Complex Systems 777

lies in the range 2–4 [13]. The symbol “C” in Eq. (14.10) means that the force is zero
in the absence of contact. W.t/ is the mean value of the membrane’s displacement
over the contact area, defined as:

W.t/ D
Z
˙

w.x; y; t/g.x; y/ dS: (14.11)

In (14.11), w.x; y; t/ is the transverse displacement of a given point of the membrane
of surface˙ , and g.x; y/ is a normalized distribution function so that

R
˙

g.x; y/ dS D
1. In practice, a good approximation of the size of g can be obtained experimentally
by measuring the spot drawn on the head by a felt pre-soaked with dark ink.4

Strictly speaking, this function g should vary with time, since the felt does not press
instantaneously on the head. This effect is not taken into account here.5

The model presented below is restricted to the linear transverse vibrations
of a damped membrane without stiffness. The assumption of linearity might be
questionable during the impact since a motion with an amplitude 10–100 times
higher than the thickness of the membrane can be observed as the mallet is in contact
with it. The linear equation of motion is written [45]:

ms
@2w

@t2
D div

�
	r

�
w C �

@w

@t

��
� f .t/g � Œp� j˙; (14.12)

where Œp� j˙ D .pe � pi/˙ is the pressure jump acting on the membrane. In
comparison with the membrane model presented in Chap. 1, notice the introduction
of the force density f .t/which represents the action of the mallet and, in addition, the
viscoelastic damping coefficient � which accounts for the average losses in polymer
(such as the Mylar, commonly used for timpani heads). The viscoelastic term yields
an increase of damping with frequency, as observed experimentally. For nonuniform
membranes, ms and 	 depend on the spatial coordinates. The tension then becomes
a tensor of order 2 (as seen in Chap. 1). The force density f .t/ is related to the
interaction force by the relation:

F.t/ D f .t/
Z
˙

g.x; y/ dS D f .t/ : (14.13)

It is further assumed that the membrane is fixed at its periphery, which implies

w.x; y; t/ D 0 8.x; y/ 2 @˙; 8t > 0 : (14.14)

4The function g is a smooth and normalized version of the indicator function, which is equal to 1
in the contact area, and 0 outside.
5Taking further the flexibility of the mallet’s stick would also contribute to improve the model: this
flexibility certainly has an influence on the contact time.
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The condition (14.14) does not account for the losses at the boundary. This is
probably wrong, since the head of a kettledrum is usually stretched over a dissipative
rubber ring, and should be revisited in future models. In order to calculate the time
evolution of the motion, starting from the membrane at rest, we write the initial
conditions:

w.x; y; 0/ D @w

@t
.x; y; 0/ D 0 8.x; y/ 2 @˙ : (14.15)

14.2.2.2 Acoustic Equations

Both the internal (inside the cavity ˝i) and external acoustic field (in ˝e) are
governed by the basic linear acoustic equations (see Chap. 1):

8̂̂
<
ˆ̂:

@p

@t
D �c2� divvj in ˝j; for j D e; i I

�
@vj

@t
D �gradpj in ˝j; for j D e; i

(14.16)

where vj is the acoustic velocity.
The problem imposes boundary conditions on the surface � of the kettledrum

composed of the membrane ˙ and the bowl C , so that � D ˙ [C . On the surface
˙ (in the plane z D 0) we write the continuity equation for the normal velocity:

vj.x; y; 0; t/:n D @w

@t
.x; y; t/ 8.x; y/ 2 ˙; 8t > 0; for j D e; i: (14.17)

It is supposed, in addition, that the bowl with surface C delimiting the air cavity is
perfectly rigid, which can be considered as justified for copper bowls. However, it is
observed experimentally that fiberglass bowls (used for study instruments) vibrate
significantly, especially during the impact. The assumption made here imposes the
condition:

vj.x; y; z; t/:n D 0 8.x; y; z/ 2 C ; 8t > 0; for j D e; i; (14.18)

where n is the unitary vector normal to C (see the Fig. 14.8). Finally, the following
initial conditions are imposed:

pj.x; y; z; 0/ D 0; vj.x; y; z; 0/ D 0 in ˝j; for j D e; i : (14.19)
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14.2.2.3 Energy Balance

The system of coupled equations presented above has the property that the total
energy decreases with time. Through integration of Eq. (14.9) to Eq. (14.18), it
can be shown that the different contributions of the system to the total energy are
written [44]:

8̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂:

for the mallet W Em.t/ D m

2

�
d


dt

�2
C K

˛ C 1

h
.ı � 
.t/C W.t//C

i˛C1

;

for the undamped membrane W Ew.t/ D 1

2

Z
˙

ms

�
@w

@t

�2
ds C 1

2

Z
˙

	 .grad w/2 ds;

for the air W Ea.t/ D 1

2

Z
R3

�v2d˝ C 1

2

Z
R3

p2

�c2
d˝ :

(14.20)

Adding now a viscoelastic damping term with coefficient � in the membrane
equation, then the total energy E D Em C Ew C Ea is governed by [44]:

dE

dt
.t/ D ��

Z
˙

	

�
grad

@w

@t

�2
ds : (14.21)

In practice, as shown in Fig. 14.10, a slow decrease of the total energy is
observed, starting from the initial value E.0/ D 1

2
mV2

0 . This initial energy is
transferred from the mallet to the air-membrane system. Beyond its physical interest,
this continuous energy balance is a necessary preliminary step for guaranteeing the
stability of the numerical approximation [44].

14.2.3 Eigenfrequencies, Damping Factors, and Tuning
of the Instrument

For an undamped membrane in vacuo, it was shown in Chap. 3 that the eigenfre-
quencies are real solutions of the equation:

� c2f�wmn D !2mnwmn; (14.22)

(with a condition of nullity for the displacement at the edge), and the eigenfrequen-
cies were calculated for a circular membrane, explicitly. In the case of a kettledrum,
the coupling of the membrane with both the external air and cavity has to be taken
into account [18]. As a consequence, the eigenfrequencies become complex, and
their imaginary part represents the time decay of the spectral components. In what
follows, !0 D 2� f0 denotes any eigenfrequency of the undamped membrane in
vacuo, and Q! D ! C j˛ D 2� Qf D 2�.f C j˛=2�/ is the corresponding complex
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Fig. 14.10 Energy balance for the kettledrum. A time evolving energy exchange is observed
between the mallet (dashed line), the membrane (dotted line), and the acoustic field (solid line)
during the first 20 ms of the sound. The total energy of the system (dash-dotted line) is slowly
decreasing with time

frequency when the same membrane is coupled to external air and cavity.6 In order
to characterize the time decay of the eigenmodes, some authors use the quantity
	60 (decay time of a free oscillation corresponding to an attenuation of �60 dB
of the amplitude), whose definition is identical to the reverberation time in room
acoustics [18]. We have

	60 D � ln 10�3

˛
D 6; 9

˛
: (14.23)

In summary, the practical consequences of air coupling are the following:

1. The real part of the eigenfrequencies are modified substantially. In timpani, these
real parts are almost harmonically related (though with a missing fundamental),
whereas it is not the case for in vacuo membranes (see Chap. 3). These
modifications are clearly seen in Table 14.1, which shows that the real parts of
the eigenfrequencies are lowered consecutive to the air loading. In some cases, a
reduction of 50 % can be observed.

2. The radiation of the instruments induces an additional damping (radiation losses)
to the internal losses of the membrane. As shown in Table 14.1, the radiation

6The imaginary part ˛=2� is usually small compared to the real part f (see Table 14.1). Thus the
modulus

ˇ̌Qf ˇ̌ is not very different from f , which explains why the distinction between both quantities
is not always mentioned in the literature.
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yields decay times which do not vary monotonically with the rank of the
partial. This is a consequence of the fact that the radiation losses depend on
the eigenvalue. Notice that a simple structural damping is not able to take such
variations into account. One can see, for example, that the symmetrical modes
01, 02, and 03 with a strong monopolar character radiate quite efficiently and, in
turn, have a smaller decay time than the anti-symmetrical modes 11, 21, 31, 41,
and 51.

Determination of the Eigenfrequencies Using a Perturbation Method

In Table 14.1, the eigenfrequencies were obtained by time-frequency
analysis performed on the simulated pressure based on the time-domain
model described in Sect. 14.2.2. However, it might be also interesting to
calculate these frequencies directly, without the intermediate step of time-
domain computation.

For bowls of simple shapes (cylindrical, hemispherical, parabolic,. . . ), the
eigenfrequencies of the complete system can be obtained with the help of
Green’s functions [18]. Alternatively, a general method based on perturbation
theory is presented here [44].7 As for the nonlinear vibrations shown in
Chap. 8, the leading idea consists in expanding the eigenfrequencies in series
of terms with increasing power of a small dimensionless parameter ". Here,
this parameter is defined as the ratio between air and membrane densities:

" D �

�s
: (14.24)

For Eqs. (14.12) and (14.16), leaving aside the source term due to the action
of the mallet, we search solutions of the form ej Q!t. As a consequence, the
dispersion relation for the membrane loaded on both sides by air and cavity,
respectively, is given by8:

� c2f�w D Q!2w C " Q!2D. Q!/w; (14.25)

(continued)

7Other methods exist, as the one which consists in expressing the system in terms of matrices, and
in calculating the eigenfrequencies by using singular value decomposition (SVD) techniques [30].
8A similar example was given in Chap. 13 for the loaded plate.
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where Q! is complex. D. Q!/ is an operator accounting for the radiation. Both
the eigenshapes and the eigenfrequencies are expanded onto the in vacuo
modes as follows:

8̂<
:̂

Qw"mn D wmn C "
X

kl¤mn

�mn
kl wkl C "2

X
kl¤mn

�mn
kl wkl C o."3/;

Q!"mn D !mn C " Q!a
mn C "2 Q!b

mn C O."3/ :

(14.26)

where we limit ourselves here to the order 2, for simplicity. As mentioned
previously in Chap. 5, the eigenmodes also become complex: therefore, we
write Qw. Inserting (14.26) in (14.25), and taking advantage of the orthogonal-
ity of the in vacuo modes (see the general method in Chaps. 3 and 13), the
coefficients of order 1 of the expansion are given by:

8̂
<̂
ˆ̂:
�mn

kl D !2mn

!2kl � !2mn

hD.!mn/wmn;wkli 8.k; l/ ¤ .m; n/;

!a
mn D �!mn

2
hD.!mn/wmn;wmni;

(14.27)

where the scalar products are indicated by the usual symbol h i. The reader
can refer to [44] for the coefficients of order 2. For the example reported in
Table 14.1, the results of this perturbation method are in excellent agreement
with the values obtained by time-frequency analysis [44].

Application: Experimental Determination of a Timpani Head’s Tension

One interesting application of the dispersion relation of the air-loaded membrane is
the experimental determination of its tension 	 . It is assumed here that the membrane
is uniform.
The direct static measurements of the tension are usually difficult to achieve,
and suffer from insufficient precision. Its main principle is based on the vertical
deflexion � of a weight M put in the center of the membrane. With a the radius of
the membrane and b the radius of the cylindrical mass, we have (see Fig. 14.11) [39]:

�.b/ D Mg

2�	
ln

a

b
: (14.28)

One drawback of the static method is that �must be kept sufficiently small so that
the assumption of linearity is fulfilled and, in turn, that the increase of the tension
due to the vertical deflexion � is negligible (see Chap. 8). In addition, it was shown
that the deflexion must be measured with a precision equal at least to 0:1mm, for a
typical 1% accuracy on the tension [12].
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a

b

F = Mg

Fig. 14.11 Static determination of the tension for a circular membrane. The deflexion � is
measured, consecutive to the action of a mass M put at the center. The size of the mass is assumed
to be small compared to the radius of the membrane

The alternative method presented below is based on a comparison between
the wave velocity on the air-loaded membrane and the wave velocity in vacuo.
The tension can be then estimated from the measurements of the eigenfrequencies
of the air-loaded membrane, which corresponds to the real conditions of use of the
instrument.

The dispersion relation for the infinite membrane loaded by the air on both sides
is written

	 D c2F.!/

2
64ms C 2�

!
q

1

c2F.!/
� 1

c2f

3
75 ; (14.29)

where cF is the flexural wave speed in the presence of fluid, and cf D p
	=ms the

wave speed in vacuo. For typical values of kettledrum’s parameters, the dispersion
curve of the membrane takes the shape shown in Fig. 14.12. One can check
that the fluid–structure coupling primarily affects the wave speed of the lowest
frequencies. As the frequency f increases, the speed cF asymptotically tends to cf

while remaining always smaller. Returning now to (14.29), one can see that the
tension can be estimated from the estimation of cF. One remaining question is to
know to what extent the model of an infinite membrane loaded on both sides can be
applicable to the case of timpani. The answer is given by examining the perturbation
terms calculated in (14.27). These terms show that:

• The presence of the cavity primarily affects the axisymmetrical modes !0n

of the membrane which produces a change of volume in the cavity and, in
turn, a stiffness-like effect. In contrast, the model (14.29) well accounts for the
asymmetrical modes and, in particular, for the modes !m1 (simply denoted m1-
modes hereinafter) which are dominant in the pressure spectrum.

• The coefficients �mn
kl are small for the asymmetrical modes, which means that the

modal shapes are weakly perturbed by the fluid.

As a consequence, provided that only the asymmetrical modes are considered,
the following relation (3.147) obtained in Chap. 3 can be used:
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Fig. 14.12 Dispersion curve for an infinite membrane. The effect of the fluid loading is essentially
pronounced in the low-frequency range

cF.!
"
mn/ D !"mn

ˇmn
; (14.30)

where the coefficients ˇmna are the roots of the Bessel functions, with a the radius
of the membrane.

As shown in Fig. 14.13, it can be seen that an almost constant value of the tension
is derived from the measurements of the asymmetrical modes of the kettledrum.
However, a small increase of the estimate with frequency is to be noted.9

14.2.4 Acoustic and Vibratory Fields: Time-Domain Analysis

14.2.4.1 Vibration of the Head

The fictitious domain method (see Sect. 14.2.6) is a convenient tool for solving
the complete set of equations that govern the kettledrum model (14.9)–(14.18).
The results of these simulation were validated by comparisons with measurements
performed on real instruments [45]. A few representative examples of these

9In practice, comparisons between measurements and simulations using the estimated values of
the tension show that the error made on the determination of the tension with this method is of the
order of 1–3 % [12].
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Fig. 14.13 Estimation of the
tension of a kettledrum’s head
from measurements of its
eigenfrequencies. The
symbols open circle designate
the axisymmetrical modes,
and the symbols asterisk the
asymmetrical modes
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Fig. 14.14 Profile of the timpani’s head during the first 12 ms of the sound. The successive
vibratory states of the displacement are separated by a time interval of 2 ms (increasing time scale
from left to right)

comparisons are described below. These examples illustrate the vibroacoustics of
timpani in the time domain, from the initial impact of the mallet on the head taken
as the origin of time.

Figure 14.14 shows the vibrations of the head during the first 12 ms of the sound.
It is assumed that the head is uniformly stretched, and at rest at the origin of time.
Due to the impact, transversal waves propagate on the membrane and are reflected
at the edge with change of sign. During this period of time, the felt of the mallet is
decompressing, and the mallet’s head is pushed back by the waves returning from
the edge: this succession of stages is similar to the interaction between hammer and
string in a piano (see Chaps. 1 and 3). Here, the interaction between the mallet and
the membrane ends approximately 12 ms after the initial impact (see the picture on
the right in Fig. 14.14). Then, the transverse waves evolve freely on the membrane.
Due to the interferences between outgoing and returning waves, only a few number
of discrete frequencies are present in the vibration (and in the acoustic) spectrum.
The usual bandwidth of the sound radiated by timpani is usually restricted to the
interval [0; 1] kHz, due to the combined effects of excitation spectrum, internal and
radiation damping.

For a uniformly stretched circular membrane, the observed modes are modes
correspond to those listed in Table 14.1. In practice, it is difficult to obtain a
perfectly uniform tension, because this implies to have a perfect control on the
boundary conditions at the edge. As an illustration, Fig. 14.15 shows an example
of heterogeneous tension field obtained on a kettledrum tuned with the help of six
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Fig. 14.15 (a) Heterogeneous distribution of tension of the membrane of a kettledrum. (b)
Simulated spectrum. (c) Measured pressure spectrum radiated by a real kettledrum

screws equally distributed on the edge. In this particular simulated case, two of the
screws were deliberately more tightened than the four others: as a consequence, the
tension field shows a nonuniform tension field, between 3100 N m�1 (in white) and
3317 N m�1 (in dark grey).

Simulating a kettledrum with such a tension distribution yields the spectrum
shown in Fig. 14.15.

• One can check that the simulation yields a spectrum which is very close to the
measured spectrum.

• Here, the membrane is struck close to its edge. In all, the frequencies with the
highest amplitude correspond to the modes m1 (11, 21, 31,. . . ), which is in
accordance with the prediction of small damping factors for these modes (see
Table 14.1). Recall that these modes are characterized by a single nodal circle
(n D 1) at the edge, and m nodal diameters.

• As predicted by the simulation of the air-membrane-cavity coupling, the eigen-
frequencies !m1 form a quasi-harmonic series with a missing fundamental
(around 75 Hz).

• Finally, the heterogeneous tension is reflected in the spectrum by a number
of peak doubling. In the time domain, these peak doubling result in clearly
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audible beats. Systematic and progressive canceling of these beats is one of the
techniques used by the percussionists for tuning their instruments.

14.2.4.2 Internal and External Acoustic Fields

The time-domain evolution of both the internal and external pressure fields are
shown in Fig. 14.16. The successive snapshots are synchronized with the represen-
tations of the membrane vibrations in Fig. 14.14.

• At the time of impact, an overpressure is generated inside the air cavity, due to the
reduction of air volume. As a consequence, a reduction of pressure is generated
outside the bowl.

• Both the internal and external acoustic waves propagate at sound speed c, which
is approximately three times faster than the elastic waves on the membrane. It
can be seen on the second picture from the left (4 ms after the impact), for
example, that the pressure inside the cavity already has reached the other side
of the instrument, while the elastic wave on the membrane did not even reach its
center.

• Due to the rigidity of the bowl, the internal wave is restrained by the shape of
the cavity. Microphone measurements show that the internal pressure field is
significantly more intense than the outside pressure. This property is confirmed
by the representations of the pressure jump in Fig. 14.17.

• Finally, during this transient regime, it is observed that the external radiated field
is subjected to significant and rapid variations of directivity.

Fig. 14.16 Simulated pressure field inside and outside the cavity of the bowl, during the first 12 ms
of the sound

Fig. 14.17 Pressure jump between external air and cavity at the surface of the membrane during
the first 12 ms of the sound
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14.2.5 Spatial Distribution of the Radiated Pressure. Radiation
Efficiency

After the transient regime, only a limited number of modes contribute to the
radiation. Ignoring the damping temporarily, then one can admit that the oscillations
of the membrane are almost stationary. Under this assumption, the method presented
in Chap. 13 for calculating the power radiated by the instrument, and its associated
directivity, can be applied.

As for the finite plates in Chap. 13, we consider first the radiation of a single
isolated mode, assuming that it is decoupled from the others. It is also assumed
hereafter that the observation (listening) point is in the far field, and that the
membrane is inserted in a rigid baffle.10 The radiated pressure is then given by:

P.r; �; ˚; !/ D �� !2 e�jkr

2�r

Z
˙

W.x0; y0; !/ej.kxx0Ckyy0/dx0dy0; (14.31)

with kx D k sin � cos˚ and ky D k sin � sin˚ which yields

P.r; �; ˚; !/ D �!
2�

2�r
e�jkr QW.kx; ky; !/; (14.32)

where QW.kx; ky; !/ is the spatial Fourier transform of the head’s transverse displace-
ment. From these expressions, all the radiation properties of the membrane can be
calculated. One can get, in particular, the radiated pressure per unit solid angle at a
given angular frequency ! [21]:

dhPai.!/
d˝

D r2

2�c
jP.r; �; ˚/j2 D �!4

8�2c

ˇ̌ QW.kx; ky; !/
ˇ̌2
: (14.33)

The radiated pressure then is written

hPai.!/ D �!4

8�2c

Z
˙

ˇ̌ QW.kx; ky; !/
ˇ̌2

sin � d� d˚ : (14.34)

Finally, the radiation efficiency is obtained in a similar way as for the radiating plate
in Chap. 13:

.!/ D hPai.!/
1
2
�chj PWj2i.!/ : (14.35)

10This latter assumption is certainly wrong for the lowest modes of the kettledrum, for which the
acoustic wavelength is larger than the diameter of the membrane. However, in this case, other
methods such as the iterative algorithm presented in Sect. 13.4.4 can be applied.
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Compared to plates, the main difference here is due to the fact that both the air and
membrane are non dispersive media, if the stiffness of the membrane is ignored.
As a consequence, no critical frequency exists, since both dispersion curves do not
cross each other. Following situations can occur:

• The wave speed cF of the flexural waves on the membrane is smaller than the
speed of sound c. This is the most common case for timpani, where cF is of
the order of magnitude of 100 m s�1. In this case, the radiation efficiency is
weak [21]. As for the plate, this follows from the fact that, over a distance
corresponding to one acoustic wavelength, the different spatial contributions of
the membrane (due to each elementary dipole) interfere in a destructive way. The
radiation field is almost omnidirectional.

• cF > c: this case can be observed in some drums, or, more generally, for
instruments with stiff skins and under high tensions. This is a situation of strong
radiation efficiency with  � 1. The instrument radiates in a cone with an half
top angle equal to � D arccos c

cF
[21].

• cF is close to c. Here, the acoustic wavelength is close to the elastic wavelength.
This corresponds to an hyper-radiating case. The radiation efficiency might take
values higher than unity. The radiation field is concentrated in the plane tangent
to the membrane.

For timpani, a compromise must be found between sound power and tone
duration. In particular, the duration must be sufficient (i.e., a sufficiently high
number of oscillations) so that the human ear can attribute a pitch to the tone. This
explains why a weakly radiating case is preferred for this category of instruments.
In such a situation, the radiated energy at each cycle is relatively small so that the
vibrational energy of the flexural waves on the membrane can last longer. For some
other drums (toms, djembe,. . . ) it is either the emergence of the sound over a whole
orchestra which is sought, or the transmission of the sound at a large distance (notice
that the sound of a djembe in free field can be heard at distances up to hundred of
meters). In this latter cases, the head is heavily stretched so that the instrument is
strongly radiating.

14.2.6 Numerical Simulation of the Coupled Problem

The numerical resolution of the coupled system composed of the mallet, the
membrane, the cavity, and the external air might pose a number of practical
difficulties.

1. The first difficulty is due to the size of the problem. Since the wanted accuracy
requires a 3D-modeling, the number of elements rapidly increases with the
considered volume of space and with the refinement of the spatial mesh. In
addition, for a radiation in free space, the required volume increases with the
propagation of the wavefront (theoretically, there is no limit for this!). Then,
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Fig. 14.18 Mesh of the
kettledrum. (Left) Separated
meshes yielding numerical
diffraction. (Right) Fictitious
domains method

in order to restrict the volume, a cube of air of 1 m3 is selected around the
instrument. Absorbing Boundary Conditions (ABC) are simulated on the edges
of the cube, in order to suppress the reflected waves, and thus to simulate a free
field. The size of the mesh inside the cubic domain is directly linked to the
maximum frequency fmax of the calculated variables. With a spatial step equal
to 2.5 cm, and assuming the currently admitted accuracy criterion of 10 points
per wavelength, then fmax D 340=0:25 D 1360Hz. This value is compatible with
timpani sound spectra, which do not contain significant energy above 1 kHz, as
seen in Fig. 14.15.11

2. A second difficulty is due to the approximation made of the shape of the bowl. In
order to keep a regular mesh, defined in a simple system of coordinates (Cartesian
coordinates, for example), one could imagine to use different discretization
schemes for the internal and for the external pressure field, respectively (see
Fig. 14.18).

However, this solution must be rejected because it generates spurious diffraction
effects due to the discontinuous (“staircase”) approximation of the bowl’s shape.
In order to overcome this difficulty, it is preferable to use the fictitious domain
method [32]. In this method (see below) the acoustic variables are calculated in
a unique domain ˝, instead of the two separated domains ˝i and ˝e, thanks to
the introduction of a new “pressure jump” variable across the boundary of the
instrument.

14.2.6.1 Fictitious Domain Method

The fictitious domain method is based on a variational formulation of the problem.
Multiplying Eq. (14.12) by an admissible test function w�, and integrating it over
the surface ˙ of the membrane, we get

d2

dt2

Z
˙

msww�dS D
Z
˙

div

�
	r

�
w C �

d

dt

��
w�dS�

Z
˙

f .t/gw�dS�
Z
˙

Œp�j˙w�dS :

(14.36)

11In the context of musical sound synthesis, one might prefer referring to a dispersion criterion:
since the ear is very sensitive to slight differences in frequency, it is justified to select a mesh
density so that the frequencies can be estimated with an accuracy smaller than 1 % [45].
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Since the test function w� must fulfill the boundary conditions of the problem, this
function vanishes on the edge @˙ of the membrane. It can then be checked that the
integration by parts of (14.36) yields

d2

dt2

Z
˙

msww�dS D
Z
˙

	r
�

w C �
d

dt

�
rw�dS �

Z
˙

f .t/gw�dS �
Z
˙

Œp�j˙w�dS:

(14.37)

A similar method is applied to the acoustic equations (14.16), through introduction
of the test functions p� and v�, for both the pressure and velocity, for which the
boundary conditions are fulfilled. After integration by parts, we get (see [45]):

�
d

dt

Z
˝

vv�dV �
Z
˝

p divv�dV D
Z
�

Œp�j� v�:n dS (14.38)

and

1

�c2
d

dt

Z
˝

pp�dV C
Z
˝

divv p�dV D 0 ; (14.39)

where � D ˙ [ C is the total surface of the kettledrum (membrane + bowl), and
˝ is the complete space R

3. A new variable � D Œp�j� appears in Eq. (14.38). This
variable is the pressure jump across the surface of the instrument with normal vector
n. Thanks to the introduction of this new variable, it is as if the unknown pressures pi

and pe were replaced by the unique variable p and, similarly, the unknown velocities
vi and ve were replaced by the unique velocity field v. The formulation of the
problem is completed by expressing the boundary conditions on the surface � :

8̂
<
:̂
v:n D @w

@t
in ˙;

v:n D 0 in C :

(14.40)

Through integration on � , with the introduction of another test function ��, we get

d

dt

Z
˙

w��dS �
Z
�

v:n��dS D 0 : (14.41)

In summary, the fluid–structure problem corresponding to the acoustics of timpani
is entirely defined by the system of four equations (14.37)–(14.39) and (14.41),
where the four unknowns are the displacement w of the membrane, the pressure p
and the acoustic velocity v in space, and the pressure jump � across the surface of
the instrument. The numerical formulation of this problem is presented later in this
section.
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14.2.6.2 Absorbing Boundary Conditions

The purpose of ABC is to simulate a free space. In this context, the leading
idea consists of inserting artificial absorbing conditions at the border of the
computational domain. The basic principles of this method are presented here, for
the simple case of an half-space. For a cube, additional conditions on the edges and
on the corners are necessary [19]. The posed problem is the following: given the
wave equation

@2p

@t2
� c2

�
@2p

@x2
C @2p

@y2
C @2p

@z2

�
D 0 8.x; y; z/ 2 R

3; (14.42)

the aim is to limit the computation in the half-plane z < 0 by imposing a
perfectly (totally, or transparent) absorbing condition in z D 0 (see Fig. 14.19).
Denoting QP.kx; ky; z; !/ the Fourier transform of the pressure (in time and space),
the conditions amounts to impose:

@ QP
@z

C j
!

c

s
1 � c2.k2x C k2y/

!2
QP D 0 in z D 0 : (14.43)

One drawback of the formulation (14.43) is that it is nonlocal in time and
space (x; y). As a consequence, the ABC cannot be expressed in the time domain
using partial differential equations. In order to overcome this difficulty, the functionp
1 � u (where u D c2.k2x C k2y/=!

2 < 1) is expanded onto a series of rational
functions:

p
1 � u ' 1 �

LX
lD1

ˇl
u

1 � ˛lu
D � �

LX
lD1

ˇl

˛l

1

1 � ˛lu
with � D 1C

LX
lD1

ˇl

˛l
;

(14.44)

Fig. 14.19 Principle of
absorbing boundary
conditions (ABC) on an
half-space

ABC

z

k

z = 0
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where, for stability reasons, the parameters ˛l and ˇl must fulfill the conditions

˛l > 0; ˇl � 0;

LX
lD1

ˇl

1 � ˛l
< 1 : (14.45)

One possible alternative consists of selecting the Padé coefficients defined by:

ˇl D 2

2L C 1
sin2

�
l�

2L C 1

�
and ˛l D cos2

�
l�

2L C 1

�
: (14.46)

Auxiliary variables are the defined:

Q̊ l D !2

!2 � ˛lc2.k2x C k2y/
QP : (14.47)

The ABC can then be rewritten on the form of the following system:

8̂̂
<
ˆ̂:

d QP
dz

C j
!

c

 
� QP �

LX
lD1

ˇl

˛l

Q̊ l

!
D 0

�
!2 � ˛lc
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	 Q̊ l D !2 QP :

(14.48)

Finally, returning back to the time domain through inverse Fourier transform, we
get

8̂̂
ˆ̂<
ˆ̂̂̂:

c
@p

@z
C �

@p

@t
�

LX
lD1

ˇl

˛l

@�l

@t
D 0;

@2�l

@t2
� ˛lc

2

�
@2�l

@x2
C @2�l

@y2

�
D @2p

@t2

ˇ̌
ˇ̌
zD0

for l D 1; : : : ;L :

(14.49)

In practice, approaching the condition of perfect transparency (i.e., no wave
returning from z D 0) as close as possible depends on the order L of the expansion
(the higher the number of auxiliary variables �l, the better the approximation). The
system (14.49) can be seen as a transport equation along z coupled to L 2-D wave
equations in the plane z D 0.

14.2.6.3 Numerical Discretization

The numerical resolution of the timpani model consists of seeking for discrete
approximations (ph; vh;wh; �h; 
h) for the variables of the problem: the pressure p,
the acoustic velocity v, the displacement of the membrane w, the pressure jump
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a b c

Fig. 14.20 Mesh of the different constitutive elements of the kettledrum. (a) Cubic mesh for the
pressure ph and the acoustic velocity vh. (b) Finite elements P1 for the pressure jump �h. (c) Refine
previous P1 mesh for the displacement wh on the membrane

�, and the mallet’s displacement 
 . The index h indicates that we are dealing here
with a spatial discretization obtained from the meshes of the constituting elements
of the the kettledrum coupled to the free space. For these approximations, the finite
element method is used (see Chap. 1).

Figure 14.20 shows the meshes used by Rhaouti [44]. The space˝ is discretized
with a cubic mesh. The pressure ph and the velocity vh are associated with each
elementary cube. For the pressure jump �h, P1 finite elements are used. These
elements can be viewed as a 2-D generalization of the hat functions presented in
Chap. 1. A triangular mesh is selected on the surface of the instrument. Finally, a
triangular mesh and P1 finite elements also are used for the displacement wh of
the membrane. Since the speed of the flexural waves is usually three to four times
smaller than the speed of sound, the elastic wavelength also is three to four times
smaller than the acoustic wavelength, for a given frequency. In order to ensure the
coherence between all numerical schemes, a similar ratio between wavelength and
mesh size must be selected for the variables. For this reason, the size of the mesh
elements on the surface for wh is selected here so that the spatial step is four times
smaller than for the pressure jump �h.

After the space discretization, the equations of the problem are reduce to a matrix
system of time differential equations, similar to the example shown in Chap. 1. We
have
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8̂̂
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(14.50)

where Mw, Rw, Mv , Dv , Bt
v , and A

t
w are matrices, and where G is a vector accounting

for the spatial extent of the mallet’s impact on the membrane. This system can be
discretized in time using finite differences, as seen in Chap. 1.

14.3 Example of the Guitar

14.3.1 Introduction

Various aspects of the acoustics of guitars have been addressed a number of
times in the previous chapters of this book. The vibrations of plucked strings, for
example, were presented in detail in Chap. 3. In Chap. 5, the dissipation mechanisms
encountered in the different constitutive parts of the instruments were analyzed.
The coupling between string and soundboard, and the soundboard-cavity coupling
were studied in Chap. 6. Finally, the general results on the radiation of plates,
and the plate-air interaction studied in Chap. 13 are also applicable to the guitar.
These previous investigations are pursued here where the interaction between air
and soundboard is now extended to the whole spectrum of the instrument (up to
5 kHz) and not only limited to the low-frequency range as in Chap. 6.12 Another new
feature of the model presented here is that the complex interactions between cavity,
soundboard, and the external air are taken into account. This additional feature is
made possible through application of the fictitious domain method (presented in the
previous section devoted to the timpani), which allows to consider the fluid domain
(internal cavity and external space of the guitar) as a whole.

The classical guitar (in contrast to the electric guitars without an air cavity)
has the particularity to show a sound hole in the soundboard. As a consequence,

12Notice that the simplified 2 dof air-plate model presented in Chap. 6 will appear as the low-
frequency limit of the general model presented here.
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the air cavity is not closed, and the acoustic field has no discontinuity between
inside and outside. An appropriate model should account for this specificity. The
average diameter of the sound hole is 10 cm, which corresponds to an half acoustic
wavelength at a frequency of 1.7 kHz. In comparison, the spectrum of guitar sounds
usually shows significant energy up to 5 kHz. Thus, it is not possible to ignore
the presence of this hole, in contrast with the previous case of timpani where the
diameter of the hole was significantly smaller than the smallest acoustic wavelength
of timpani sounds.

As for timpani, we have to consider the interaction between the vibrating parts
of the guitar and the acoustic field. The soundboard is the main radiating part of
the instrument, though, in some circumstances, the back plate also might contribute
to the total sound. The radiation of the other parts will be ignored in this section.
Compared to a membrane, the guitar soundboard is heavier and stiffer. However, as
discussed later, the acoustic pressure can affect its vibratory behavior. It should be
noticed that the pressure inside the cavity can be very high.13

In what follows, a recent guitar model is presented [22]. This presentation is
complemented by considerations on the acoustic intensity radiated by the instrument
[1]. Finally, a summary of power balance between all the constitutive parts of the
instrument is conducted. In this section, the equations of the model that present
similarities with the timpani model are not detailed. We content ourselves with
the presentation of the specificity of the guitar model, and we rather focus on the
significant physical results of the instrument (admittance, intensity, sound power,
damping factors, and decay times) that the model is able to account for. The
relevance of fluid–structure interaction in the case of the guitar is particularly
emphasized. Most of these results can be generalized to other stringed instruments.

14.3.2 Physical Model

In the guitar model presented below, several elements are coupled together:

• The string(s). The flexural motion of the string is assumed to be perpendicular to
the soundboard plane (one polarization). The internal damping is represented by
the association of a viscous (“fluid”) damping term and a viscoelastic term (see
Chap. 5). The excitation of the string by the finger is represented by a idealized
impulse localized in time h.t/ and space g.x/, see Fig. 14.21. The impulse h.t/ is
made of the association of two cosine functions accounting for a slow increase
followed by a fast decrease, and is inspired by experimental results (see [11]).
Is also accounts, to a first approximation, for stick-slip mechanisms between the

13Putting a microphone inside the cavity shows that the sound pressure level can reach 130 dB!
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Fig. 14.21 Idealized force impulse on the string. (Left) Time dependence h.t/. (Right) Spatial
extent g.x/

finger and the string (see Chap. 1). The function g.x/ is here a Gaussian function
(though other smooth functions could be used) and accounts for the finite width
of the finger on the string [23].

• The soundboard. An orthotropic plate model is used for the soundboard (see
Chap. 1). The shape of the plate is that of a standard guitar. The presence of
the bridge and of the ribs is represented by spatial heterogeneities of both the
density �p.x; y/ and thickness h.x; y/. The amount of internal damping depends
on the material, and is derived from experiments. The soundboard is assumed to
be clamped at its periphery, and free on the edge of the sound hole. Considering
the small mean value of the thickness, it is further assumed that the Kirchhoff–
Love model is applicable. The soundboard is excited by the force transmitted by
the string to the bridge, and by the pressure force on its both sides. The other
parts of the instrument are supposed to be perfectly rigid.

• The acoustic field. Here, the model is close to the one presented in Sect. 14.2 for
timpani [see Eq. (14.16)]. A condition of continuity for the velocity normal to the
soundboard is added, as well as a null condition for the normal velocity on the
other constitutive parts of the instrument.

Limitations of the Present Model

The present coupled model shows an additional degree of complexity, compared to
other elementary models where each constitutive part (soundboard, cavity, . . . ) is
treated separately. In this chapter, attention is put on radiation, and thus we focus
on the soundboard-acoustic field coupling. However, with the objective to model a
real instrument more accurately, then several refinements should be added. Without
pretending to be exhaustive, several possible additional features are the following:

(1) As indicated in the previous Chaps. 6 and 8, the motion of the string is complex
and cannot be reduced to a single polarization perpendicular to the soundboard.
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Several factors also induce a parallel component: the motion of the bridge, the
slipping of the string along the fret, and nonlinearities due to large amplitude
motion.

(2) The modal analysis of a guitar shows that one of the lowest modes corresponds
to a flexural mode of the neck (free at one end, and loaded by the body at
the other end). The corresponding eigenfrequency is of the order of magnitude
of a few Hz. As a consequence, this mode does not directly contribute to the
audible radiated acoustic pressure. However, the flexion of the neck induces
fluctuations of length (and, in turn, fluctuations of tension) in the attached
strings. In conclusion, the coupling between the neck and the strings should
be taken into account in a future model.

14.3.3 Specificity of the Numerical Guitar Model

14.3.3.1 Spatial Discretization

A six strings guitar model that couples the soundboard with the air has been solved
numerically with a method similar to the one used for timpani [3]. Both models are
briefly compared and summarized below.

• The main difference between both instruments is due to the presence of a plate
operator for the guitar soundboard, compared to a 2-D wave equation in the case
of timpani membrane. This operator contains fourth-order space derivatives (see
Chaps. 1, 3 and 13). In order to use standard finite elements, the fourth-order
equations are replaced by second-order systems of equations where the new
variables are the velocity and the flexural moment.

• As for the kettledrum, the fluid–structure interaction problem is solved with the
fictitious domain method. For the guitar, this method has two main advantages:
it allows to avoid distinct pressures meshes inside and outside the cavity and, in
addition, it facilitates the treatment of the pressure continuity through the sound
hole. In this context, the present method is more efficient than those where the
cavity is considered separately (see, for example, [46]), or those requiring an
artificial ectoplasm (a massless vibrating element) at the sound hole [6].

Fig. 14.22 Mesh used for the string, the soundboard and the pressure jump
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• The string equation is replaced here by a system of first-order partial differential
equations, where both unknowns (force and velocity) are discretized with finite
elements.

• The acoustic field (inside and outside the cavity) is discretized with the same
scheme as for the kettledrum.

14.3.3.2 Time-Domain Discretization

The time-domain discretization of both the string and acoustic equations is achieved
with second-order centered finite difference schemes, as for the kettledrum. The
main difficulty arises from the soundboard equation.

The stability condition for the plate, with explicit second-order finite differences,
is of the form �t 	 A=h2p, where A is a parameter depending on the material used
for the plate, and hp is the spatial step. This means, for example, that the sampling
frequency must be multiplied by 4, if the spatial mesh is refined by a factor 2. Such a
condition rapidly becomes very cumbersome as soon as the objective is to extend the
spectral domain of the sound to be simulated. By comparison, we have the condition
�tmax / 1=h for the wave (or the string) equation, which is less demanding.

In order to overcome this difficulty, one can use a pseudo-spectral method [22].
The method consists, first, in calculating the in vacuo modes of the soundboard,
using spatial finite elements. This yields a system of decoupled differential equa-
tions where the damping terms can be added separately for each mode. For each
damped oscillator equation, the source term is the projection of the forces exerted
by the string and the pressure on the soundboard. These source terms are updated
at each time step. Notice that the time step for the soundboard must be compatible
with the time steps selected for the other constitutive parts of the instrument (string
and air).

In practice, computing the first 50 modes of the soundboard yields a satisfactory
simulation of the sound field up to 3 kHz. The average distance between consecutive
modes is then�f D 60Hz. As an illustration, Eq. (13.142) in Chap. 13 yields�f D
57Hz with the following data: �p D 350 kg/m3, E1 D 15:109 Pa, E2 D E1=17,
� D 0:3, h D 2:9mm, S D 0:1m2.

14.3.4 Admittance at the Bridge

The admittance at the bridge is a key variable influencing the coupling between the
“engine” of the instrument (the strings) and the resonator (the soundboard coupled
to both the air cavity and external air). Therefore, computing this quantity is an
appropriate means of quantifying the effects of coupling. The following results
were obtained by using Derveaux’s model described in Sect. 14.3.2. The values of
the geometrical and material parameters are extracted from the literature (see, for
example, [28, 29]). One advantage of the model is to compare the behavior of the
guitar successively in vacuo and in air.
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Fig. 14.23 Admittance at the bridge of a guitar at the attachment point of the 6th E-string (83 Hz).
(a) In vacuo soundboard. (b) Soundboard coupled to air and cavity: [0–800] Hz. (c) Soundboard
coupled to air and cavity: [0–3000] Hz. Simulation based on the model by Derveaux et al. [23]

Figure 14.23 shows the simulated admittances at the bridge for a guitar with a
soundboard of thickness 2.9 mm, and a cavity of height 10.4 cm. The two first figures
show a comparison between the simulated admittances between 0 and 800 Hz, at
the point of the bridge corresponding to the position of the lowest E-string (with
fundamental 83 Hz), in vacuo and in air, respectively. One can see that the influence
of both external air and cavity is reflected in a shift of the spectral peaks, and by the
emergence of additional peaks.

Below 250 Hz, the admittance curve in air shows the same shape as for the
simplified low-frequency two-oscillators model presented in Chap. 6 [17]. The
third figure shows the simulated admittance up to 3 kHz. Its general shape is
similar to those observed experimentally (see, for example, [8] or [49]). With the
selected parameters, the mean value of the admittance between 0 and 1 kHz is
approximately 10 dB above its mean value between 1 and 2.5 kHz, which shows
a higher mobility in the low-frequency domain. The peaks are clearly separated
for f < 1 kHz, whereas they overlap more and more with increasing frequency.
This overlapping can be attributed to both the air-structure coupling and damping
phenomena (material damping and radiation). The imbalance between low and high
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Fig. 14.24 Damping factors ˛ (in s�1). (Left) Comparison between the damping factors of the
in vacuo soundboard modes (asterisk symbol), and of the soundboard coupled to external air and
cavity (inverted triangle symbol). (Right) Comparison between the damping factors of the isolated
open E2 string modes (asterisk symbol), the string modes coupled to the in vacuo soundboard
(square symbol), and the string modes coupled to the complete guitar (inverted triangle symbol).
Simulations based on the model by Derveaux et al. [23]

frequency domains is reinforced if the thickness of the soundboard decreases. With
an average thickness divided by a factor of 2 (1.45 mm), the mean value of the
admittance between 0 and 500 Hz is roughly 15 dB below its mean value between
500 and 2500 Hz [23].

14.3.5 Damping Factors

The admittance curves are complemented by the damping factors shown in
Fig. 14.24. These factors are the imaginary parts of the eigenfrequencies which
govern their decay times. The damping factors ˛ of the in vacuo soundboard
(asterisk symbol), and of the soundboard coupled to air and cavity (inverted triangle
symbol), are represented on the left figure. These values are derived from time-
frequency analysis of the impulse responses of the bridge velocity, at the attachment
point of the 6th E-string (83 Hz). Not surprisingly, the curve ˛.f / for the in vacuo
soundboard is in accordance with the linear law selected for the structural damping
in the model. For the soundboard coupled to external air and cavity, the mean
value of the damping factors is higher than in the previous case. However, the
variations from one mode to the next is more erratic. Due to multiple coupling
between soundboard and air modes, some of the modes even show a smaller global
damping factor than the structural damping factor (at the same frequency), whereas
the neighboring frequencies are more damped. It is as if some of the modes receive
energy from their neighboring modes through air-structure coupling.
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Similar conclusions can be drawn for the strings. Figure 14.24 (right) shows a
comparison between the damping factors ˛ of a isolated open E2 string (asterisk
symbol), with fundamental 83 Hz, and of the same string coupled to the in vacuo
soundboard (square symbol) and to a complete guitar (inverted triangle symbol),
successively. The curve ˛.f / is a parabola, which is coherent with the selected
damping model made of the association of a fluid damping term and a viscoelastic
damping term. Due to the coupling of the string with the in vacuo soundboard, the
damping factors globally increase. However, the increase in damping fluctuates from
one mode to the next, depending on the degree of proximity between soundboard
and string modes (see Chap. 6). Finally, the coupling of the soundboard with air and
cavity yields an additional increase of the average damping, though with significant
variations from one mode to the next. Such fluctuations are currently observed on
real guitars [50].

14.3.6 Radiated Sound Field

Figure 14.25 shows five successive snapshots of the pressure field radiated by a
simulated guitar in its symmetry plane, right after the initial plucking of the 1st
open string (E4: fundamental 330 Hz). The delay between consecutive snapshots
is 0.36 ms. At first (snapshots 1 and 2), the pressure field is omnidirectional and
is mainly due to the vibration of the soundboard. In the meantime, the magnitude
of the pressure field inside the cavity increases progressively. From snapshot 3, the
cavity radiates through the sound hole. The internal field is partially in phase with
the motion of the soundboard, and partially in antiphase. On snapshots 4 and 5, the
cavity field progressively becomes in total antiphase with the external field. As a
result, a decrease of pressure followed by an inversion of the outside pressure is
observed. The instantaneous directivity of the pressure field is complex and evolves
rapidly with time. This is a consequence of the large number of excited modes
(between 0 and 3 kHz), where each mode has its own directivity pattern and its own
temporal evolution. As observed in timpani, the global directivity of the instrument
stabilizes after a certain amount of time (typically within one second). At this time,
the sound of the guitar is governed by a relatively low number of string’s partials.

t1 = 0 ms t2 = 0.36 ms t3 = 0.72 ms t4 = 1.08 ms t5 = 1.44 ms

Fig. 14.25 Successive snapshots of the pressure field radiated by the guitar, right after an initial
pluck of the 1st open string (E4: fundamental 330 Hz). Simulations based on the model by
Derveaux et al. [22]
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Fig. 14.26 Acoustic intensity for the guitar mode at 272 Hz. (Left) Plane perpendicular to the
neck. (Middle) Symmetry plane of the guitar. (Right) Horizontal plane, 1 cm above the soundboard.
After [1]

14.3.7 Acoustic Intensity and Power Balance

14.3.7.1 Acoustic Intensity

In the model used in the section for illustrating the acoustics of guitars through
simulations, we take benefit from having at our disposal both the pressure and the
acoustic velocity field to compute the acoustic intensity I D pv. Figure 14.26 shows
an example of the useful information provided by this variable. In this Figure, the
intensity I is shown in three perpendicular planes, successively: the symmetry plane
of the instrument, one horizontal plane close to the soundboard, and one vertical
plane perpendicular to the neck and passing through the box. The acoustic intensity
is here averaged over one period, for a forced sinusoidal excitation close to one
mode of the complete guitar (272 Hz). As shown in Chap. 1, the acoustic intensity is
linked to the energy density through its divergence. As a consequence, the intensity
vectors are oriented towards the regions of space with increasing acoustic energy. A
“source” is characterized by a set of diverging vectors, whereas a “sink” is a region
where the intensity vectors converge. In Fig. 14.26, one can see both the internal
and external sources and the regions of space (above the soundboard, in particular)
where the energy density vanishes, due to opposition of phase between sources.

14.3.7.2 Radiated Power and Acoustical Efficiency

At this point, we are now able to compute the acoustical efficiency of the guitar (see
also Chaps. 2 and 13), defined as:

� D hPai
hPii ; (14.51)
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where Pa is the mean value of the radiated power, and Pi is the mean value
of the total power dissipated in the instrument. For simplicity, only one string is
considered. We have

hPii D hPai C hPci C hPsi (14.52)

where hPci is the mean power dissipated in the string, and hPsi is the mean power
dissipated in the body.

Let us now consider one particular frequency component !n of the string’s
spectrum for which the mean power dissipated over one period Tn D 2�=!n is
calculated. We denote Vn the modal amplitude of the string’s velocity, and rn the
modal resistance corresponding to the internal losses. The quality factor is then
given by Qn D !nmn=rn, where mn is the modal mass [33]. The mean power
dissipated in the string for this partial is written

hPci.!n/ D 1

2
rnV2

n : (14.53)

When the string is coupled to the soundboard (at position x D L), it was shown
in Chap. 6 that the mean power dissipated at the end (or, equivalently, the power
transferred from string to soundboard) is written

hPLi.!n/ D 1

2
Z2c <e fY.!n/g V2

n : (14.54)

In (14.54), Y is the driving point admittance of the bridge at the attachment point,
for the soundboard loaded by the air. hPLi accounts for all acoustic and structural
losses in the loaded body at frequency !n: hPLi D hPai C hPsi. In summary, the
mean power dissipated in the guitar at frequency !n is written

hPii.!n/ D hPci.!n/C hPLi.!n/ : (14.55)

Experimentally, rn can be derived from measurements performed on an isolated
string, or, alternatively, on a guitar where the soundboard is blocked. The quantity
Y.!/ can be obtained from standard admittance measurements (see Chap. 3). Using
finally Eqs. (14.53) and (14.54), one can calculate the efficiency for a given !n.

Table 14.2 shows the values obtained for the acoustical efficiency, at some
particular frequencies, using the guitar model by Derveaux et al. These values are
coherent with measurements performed on real guitars by Boullosa et al. These
authors have shown, among other things, that a link exists between the acoustical
efficiency of the guitar and the subjective evaluation of its quality for both the
players and listeners. From the point of view of the player, the input mechanical
energy that can be transmitted to the guitar is limited in terms of maximum force
and string displacement. Thus, it is essential that a significant part of this energy
can be converted into sound power without excessive effort that would deteriorate
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Table 14.2 Acoustical
efficiency of the guitar

Frequency (Hz) 200 272 289 372 437 508

� (in %) 40.8 3.96 0.9 8.8 7.8 4.09

Simulations based on Derveaux’s model [14]

the sound quality. A noticeable efficiency is necessary so that the guitarist can have
enough dynamic range at its disposal in order to introduce subtleties in the played
music. However, one must keep in mind that other quality factors of the instrument
are essential for playing “good” music, such as the spectral balance between bass
and treble sounds, and the clarity of the attack. Last but not least, the talent of the
player cannot be ignored!

In conclusion, a guitar tone is a free oscillation: the total dissipated power is the
sum of the power dissipated by both the strings and the air-loaded body. The power
dissipated by the soundboard modes takes place during the initial part of the sound,
since their quality factors are significantly smaller than those of the strings (see
Chap. 6). After this transient part, the main part of the radiated power is concentrated
in the partials of the strings. Audibly, a guitar tone is schematically made of a short
“body” sound followed by a long “string” tone.

In this section, attention was mostly paid on classical guitars with nylon strings.
Electric guitars are characterized, in particular, by a more massive body and the
use of steel strings, which induce a significantly different tone quality. For more
information on electric and steel strings guitars, one can refer to [38, 40–42].

14.4 Example of the Piano

14.4.1 General Presentation of the Model

A piano sound is the result of free oscillations, as for guitars and timpani in their
normal use. As the player presses a key, a complex mechanism is activated whose
main effect is to project the hammer against the strings with an impact velocity
that depends on the depression conditions of the key [48]. In what follows, the key
mechanism is ignored. The consecutive vibrations of the hammer shank also are
ignored. A recent study by Chabassier and Duruflé highlights the relevance of these
vibrations [10].

The model starts as the very instant where the hammer hits the strings, taken as
the origin of time. The purpose is to model the succession of vibratory and acoustic
phenomena in hammer, strings, soundboard, and surrounding air.

The strings are set into motion by the blow of the hammer. Their motion is
a combination of transverse and longitudinal waves. These waves are nonlinearly
coupled, due to the variation of the tension with amplitude, as shown in Chap. 8.
These nonlinear phenomena greatly influence the properties of piano sounds: they
are responsible for the presence of pitch glide and phantom partials. In this section,
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Fig. 14.27 General configuration of the piano model

the nonlinear equations of strings presented in Eq. (8.62) will be used. Another
nonlinear feature exists in the hammer–string interaction, due to the compression
of the felt, as seen in Chap. 1. The interaction force is modeled here as a power law,
as for the interaction between a mallet and a timpani head. The main consequence
of this nonlinearity is to widen the excited spectral domain (due to shortening of the
force impulse) as the hammer impact velocity increases.

An orthotropic Reissner–Mindlin (or thick plate) model is selected for the piano
soundboard [9]. Such a model can be viewed as equivalent to the Timoshenko model
for plates, in the sense that it accounts for the shear stresses, so that the transverse
displacement is coupled to the rotation of the cross-sections [43]. Such a model,
which is more complex than the Kirchhoff–Love model used for the guitar, is firstly
justified by the spectral extent of most piano sounds (up to 15 kHz and even more)
and, secondly, because of the presence of bridge and ribs. Due to these elements,
the assumption of thin plate is no longer valid. The ribs and the bridge are taken into
account as heterogeneities in thickness and material properties of the soundboard,
as for the guitar model presented in the previous section. Figure 14.28 illustrates
this method in the case of a grand piano (Steinway D).

The coupling between the soundboard and a string has to be expressed by dual
conditions, in order to conserve the energy: one condition for the force and another
for the velocity. The force exerted by the string is given in Eq. (8.64) in Chap. 8.
Assuming that the motion of the bridge is purely vertical (an assumption that could
eventually be revised), then one has to write a condition of continuity for the vertical
components of both string and bridge velocities, and a condition of nullity for the
horizontal motion of the bridge.

The conditions of coupling between the structure of the piano and the acoustic
field can be written with a similar method as for the guitar and the kettledrum.
The linear acoustic equations in the surrounding air are the same as in Eq. (14.16).
It is supposed here that only the soundboard vibrates, all other parts of the
instrument remaining rigid. Thus, a continuity of the normal velocity is written on
the soundboard, and a condition of nullity of the normal acoustic velocity is written
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Fig. 14.28 Grand piano
soundboard model. The thin
grey stripes indicate the
direction of the fibers. The
ribs (in dark grey) and the
bridge (in black) are treated
as heterogeneities

ex

ey

on the other parts. We are aware of the fact that this is an approximation since, in
reality, one can clearly feel with the fingers that the rim of a grand piano vibrates,
especially when playing notes in the bass range.

The free space is simulated here using perfectly matched layers (PML). The
method consists of simulating a fictitious layer of absorbing material along the
boundaries of the computational domain, in order to limit as much as possible the
reflected waves [2].

An equation of energy conservation can be written for the complete model
composed by the hammer, the strings, the soundboard, and the acoustic field,
as illustrated in Fig. 14.29. This energy conservation is then used for deriving
numerical schemes with the guarantee of stability.

14.4.2 Modal Analysis of the Soundboard

The dynamics of the soundboard is governed by a plate operator. As for the guitar
[23], it is preferable to solve this part of the model in two steps because of the
required accuracy in the calculation of the frequencies (numerical dispersion). In
a first step, a modal analysis is conducted on the undamped soundboard (i.e., the
terms of losses are not considered in the equations). The soundboard equations are
discretized in space, using high-order finite elements. For a grand piano, typically
2400 modes are necessary for predicting accurately the vibrations of the soundboard
between 0 and 10 kHz.



14 Radiation of Complex Systems 809

0.10

0.08

0.06

0.04

0.02

0

Time (s)

0 0.01 0.02 0.03 0.04

0

–2

–4

–6

–8

–10

Time (s)

0 0.01 0.02 0.03 0.04

Fig. 14.29 Temporal evolution of the energy for note C2 (fundamental f D 65:4Hz). Thin
solid line: total energy; dashed line: hammer energy; dash-dotted line: string energy; dotted line:
soundboard energy; thick solid line: air (acoustic) energy. (Left) Linear scale; (Right) logarithmic
scale

Figure 14.30 shows a few calculated modes for a Steinway D soundboard, with
fourth-order finite elements and 450,000 degrees of freedom. Examining the shapes
of the higher modes confirms the results presented in Chap. 3 for an upright piano:
here also, the vibrational energy is localized in relatively narrow areas, frequently
bounded by the ribs and/or the bridge.

In a second step, once the soundboard modes are obtained, each modal amplitude
Xn.t/ associated to the modal frequency fn is governed by a second-order differential
equation, as shown several times in Chap. 3. Then, a convenient way to account for
the observed damping in the soundboard material (wood) is to introduce in these
oscillator equations a damping term whose value is derived either from experiments
or from available data in the literature for the appropriate species. We get

d2Xn

dt2
C ˛.fn/

dXn

dt
C .2� fn/

2 Xn D Fn; (14.56)

where the terms Fn are the modal projections of the source terms. These terms
are composed by both the string forces and acoustic pressure due to the radi-
ated field. Recall that introducing a posteriori damping terms in the decoupled
equations (14.56) is justified as long as the damping factors are reasonably
small compared to the eigenfrequencies (see Chap. 5). Usually, this assumption
of diagonal damping is justified for the wood species of current use for making
the soundboard, for which the damping coefficients are of the order of a few
percents [27].

The damped oscillator equations (14.56) yield analytical solutions which can be
discretized with any time step, without altering the dispersion, and with no risk of
instability. The appropriate selected time step must be synchronized with those used
for the other constitutive parts of the piano (strings and acoustic space).
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Fig. 14.30 Examples of some simulated modes of a grand piano soundboard (Steinway D)

Recent studies on the vibroacoustics of the piano soundboard were made by
Boutillon and Ege [7]. Mamou-Mani et al. investigated the influence of prestress
on the eigenfrequencies of piano soundboards [37].

14.4.3 Results of the Simulations

Figure 14.31 shows the temporal evolution of some simulated variables for the note
C2 (fundamental f D 65:4Hz) during the first milliseconds of the sound, using the
piano model presented above [9].

The transverse displacement of the string is shown on the top of the figures,
the longitudinal displacement is drawn in gray color in the line thickness. It can be
seen that the longitudinal perturbation reaches the end (bridge side) well before the
transverse wave, in accordance with the ratio between the speed of these waves
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Fig. 14.31 Temporal evolution of some simulated variables for the note C2 (fundamental f D
65:4Hz) using a grand piano model (Steinway D). The transverse displacement of the string is
shown on the top of the figures, the longitudinal displacement is drawn in gray color in the line
thickness. The displacement field of the soundboard is shown in the bottom of the figures, and the
pressure field is shown in two planes perpendicular to the soundboard. The snapshots are calculated
at the successive instants of time: (a) 0.4 ms; (b) 1.1 ms; (c) 2.1 ms; (d) 3.1 ms; (e) 4.1 ms; (f)
5.1 ms; (g) 7.1 ms; (h) 8.1 ms; (i) 16.1 ms

(around 14). The displacement field of the soundboard is shown in the bottom
of the figures, and the pressure field is shown in two planes perpendicular to
the soundboard. These planes cross at the attachment point of the string (C2)
on the bridge. It can be seen that the soundboard starts to vibrate in picture (b),
approximately one millisecond after the impact of the hammer: this initial vibration
is due to the longitudinal wave, since the transverse wave has not reached the bridge
at that time. From Fig. 14.31b–f, the longitudinal wave excites the soundboard
modes, which yield a significant contribution to the attack of piano tones. On
the waveforms, this contribution takes the form of the so-called precursor whose
magnitude increases with the loudness of the tone, which is in accordance with the
nonlinear model of the string [15]. This property is illustrated in Fig. 14.32, for the
note D]1.
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Fig. 14.32 (Left) Measurements and (Right) simulations of the acoustic pressure radiated by
a grand piano (Steinway D) for different levels of excitation: (top) forte; (middle) mezzoforte;
(bottom) piano. Note D]1 (fundamental f D 39Hz)

Figure 14.33 shows the spectral analysis of measured and simulated piano tones
for the note D]1 played on a Steinway D, for different levels of attack.

It can be seen first that the domain of excited frequencies increases towards
the high frequencies as the initial velocity of the hammer increases. This is a
consequence of the decrease of the impulse duration due to stiffening of the
hammer’s felt. In each spectrum, the presence of a dense packet of frequencies
between 0 and 800 Hz superimposed to the string’s partials is also observed. This
packet, which remains almost unchanged from one spectrum to another, is made
of the lowest modes of the soundboard. These modes are excited by the strings:
the lowest soundboard modes are less damped than those in the medium and high
range, and this is the reason why they are more visible on the spectra. Although all
soundboard modes are significantly more damped than the strings’ modes, they are
clearly audible during the attack transients. Cutting artificially the first milliseconds
of a piano tone, then a rather poor “string” tone is obtained. Finally, Fig. 14.33 shows
that the spectra are enriched in some specific frequency bands, as the amplitude
increases. In the present case, such an enrichment is visible around 1.2, 1.7, 2.3,
2.8, 3.3, 3.7, and 3.9 kHz. As shown in Chap. 8, these additional peaks are phantom
partials, due to nonlinear combination of both the transverse and longitudinal waves
on the string.
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Fig. 14.33 Spectra of the sound pressure radiated by a Steinway D grand piano for different levels
of excitation: (top) forte; (middle) mezzoforte; (bottom) piano. Note D]1 (fundamental f D 39Hz).
Left: measurements; Right: simulations

14.4.4 Radiation and Directivity of the Piano

In this section, the purpose is to investigate the influence of ribs and bridge on the
radiation of the piano, with special emphasis on the directivity of the instrument in
the medium and high frequency range. This study is related to the localization of
modes presented in Chap. 3 [16].

The problem is illustrated here by simulations of directivity performed on a
model of upright piano soundboard with equally spaced ribs, without the bridge.
Figure 14.34 shows the directivity of the pressure field in two (almost perpendicular)
particular planes in the direction of the ribs, and in the direction of the fibers,
respectively. At frequency f D 2078Hz, the inter-ribs distance corresponds here
exactly to the half of a vibratory wavelength. The sound field is calculated on a
hemisphere with radius r D 3m. Both directivity patterns show a number of narrow
peaks, which means that the radiated energy is concentrated in narrow solid angles.
This is nothing but a particular case of antenna effect, comparable to those seen
in the previous chapters for plates and wind instruments: in all these situations, the
directivity is reinforced for equally spaced arrays of identical sources.

By contrast, Fig. 14.35 shows the directivity patterns obtained from a measured
velocity field on an upright piano soundboard, at a forcing frequency f D 1542Hz.
The real soundboard here has a slightly irregular distribution of ribs and two
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Fig. 14.34 (Top) Calculated displacement field for an upright piano soundboard with equally
spaced ribs, at frequency f D 2078Hz. (Middle) Directivity D(� ) in the direction of the ribs
(X axis). (Bottom) Directivity D( ) in the direction of the fibers (Y axis)

bridges. As a consequence, localized modes, and also localized operating deflexion
shapes (ODS) are observed. Recall that ODS are combination of modes with close
eigenfrequencies, that are currently observed for forced excitation (see Chap. 3).
Due to damping, the modes of a real structure generally cannot be separated beyond
a certain frequency (usually beyond 1–1.2 kHz for piano soundboards), and ODS
are measured. In a recent paper, it was shown that the localization of modes also can
lead to localization of ODS, which corresponds to experiments [16]. As a result of
this localization, the array equivalent to the soundboard is made of a significantly
small number of sources, compared to the case presented in Fig. 14.34. Thus, the
directivity patterns show only one main lobe (along  ) and two main lobes (along
� ). In addition, these calculated patterns are very well predicted by those resulting
from an equivalent array of 4 � 2 monopoles (see Fig. 14.35). In conclusion, one
practical result of mode localization in the piano, which occurs primarily in the
medium and high frequency range, is that the opening of the main lobe is wider as
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Fig. 14.35 (a) Measured velocity field on an upright piano at f D 1542Hz. (b) Array of 4 � 2
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with a regularly spaced ribs pattern. In consequence, the spectral distribution of the
radiated sound is not subjected to strong variations, as the direction of observation
changes around the instrument, which is rather a favorable property. At this stage,
one remaining question is to know whether this interesting effect is really wanted
(and controlled) by the piano makers.

14.5 Radiation of Wind Instruments with Several Orifices

In Chap. 12, we explained that at low frequencies the orifices of wind instruments
radiate as monopoles, because their dimensions are small compared to the wave-
length. This is true, in particular, for woodwinds, even for saxophones which belong
to this category, although these instruments have rather wide orifices. The present
section aims to show how multiple sources can radiate. Two simple examples are
considered: the two orifices of an open flute, which are rather far apart from each
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other, and the lattice of woodwind toneholes, which are close to each other. We add
the problem, which is slightly different in nature, of two tubes having their radiating
ends close to each other; this allows a global understanding of the sound production
and radiation for a self-oscillation instrument.

As mentioned in the introduction of Chap. 12, we do not study the effect of the
room, or even the reflection on the floor, and assume that instruments radiate into
an anechoic room. Indeed it is useful, if only for the sound engineers, to understand
the essentials of the interference fields created by wind instruments, before studying
how they are modified by the rooms.

14.5.1 Open Flute at Low Frequencies

Among woodwinds the flutes are a particular case, because the exciter system
directly radiates. For a Boehm flute, radiation is due at least to two sources.14 We
choose to investigate the particular case of an open flute without toneholes, with
a limitation to low frequencies. In chap. 7 we obtained the amplitude ratio of the
two sources for the mode n [Eq. (7.72)], and here we simplify this ratio. At low
frequencies, it is approximately equal to:

U2

U1

' .�1/nC1: (14.57)

For clarity we deliberately changed the notation: the outgoing flow rates from
the orifices are considered as positive15: for the mouth-hole U1 D �U.0/ and for
the passive end of the instrument U2 D U.`/: We are interested in the playing
frequencies and in their harmonics, assuming that they are very close to the modal
frequencies: as an example, the mth harmonic of the playing frequency n is at the
frequency mn:

• In Chap. 12 (Sect. 12.6.3), we examined the problem of the interaction of orifices
of two tubes, and here we discuss it for the present case by choosing the example
of the passive end, with flow rate U2. The pressure created by this flow rate at this
end is equal to P22 D Z22U2, where Z22 is the (self-)impedance of this source,
while the pressure created by the mouth-hole, which is at the distance `, is given
by P21 D Z21U1. The mutual impedance Z21 is given in Eq. (12.146), with d D `.
The determination of the influence of one source on the other is reduced to the
ratio jZ21=Z22j, because the two flow rates have the same order of magnitude.

14We wish to emphasize different meanings of the word “source”: in Chap. 10, aeroacoustic sources
were defined as the origin of the sound production. Here the considered sources are the orifices,
which are the sources of acoustic radiation.
15Remind that in Chap. 10, we denoted U.0/ D Qm:
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Fig. 14.36 Directivity of a
Boehm flute near the
fundamental frequency of the
lowest note, C4, 261 Hz
(there are two sources only:
the mouth-hole and the open
end). Solid line: theoretical
result; dotted line:
experimental result when
exciting the instrument with a
small loudspeaker at the
location of the head joint
cork. The scale is linear. The
angles � D 180ı and � D 0ı

correspond to the mouth-hole
and the open end, respectively
(Courtesy of R. Caussé)
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This ratio is equal to R=.2:4`/, where R is the tube radius, and therefore it is
small (in general R=` < 10, and it is possible to ignore the interaction between
the two sources).

• In order to calculate the directivity in the far field (the distance being much larger
than the tube length), we can directly use Eq. (12.27), with the following result
(see Fig. 12.6):

U.�/ D .U1 C U2/ cos

�
k`

2
cos �

�
� j.U1 � U2/ sin

�
k`

2
cos �

�
;

or, alternatively, if Eq. (14.57) is used

jU.�/j2 D 2 jU1j2 Œ1 � .�1/n cos .k` cos �/� : (14.58)

Because the distance of the sources is not small compared to the wavelength, the
behavior is very different to that of a simple monopole (for odd n) or dipole (for
even n). Figure 14.36 shows an experimental result, obtained with a loudspeaker
excitation, and the corresponding theoretical result. The interference field created
by an open flute is very complicated, even for the lowest playing frequencies, and
even when the toneholes are closed.

For the lowest playing frequency around k` D � , the radiation is maximum
in the direction which is transverse to the instrument (� D 90ı), and minimum
in the longitudinal direction. Measurements during playing were made for an organ
pipe [20], with an excellent agreement with theory, which shows the very weak
influence of the mean flow at low frequencies.
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14.5.2 Instruments with Toneholes

In order to analyze the radiation by a lattice of toneholes, we first ignore the external
interaction, starting from the approach of Chap. 7, then we show how to state the
numerical problem when interaction is taken into account.

14.5.2.1 Radiation of a Regular Lattice of Toneholes Without External
Interaction

The theory proposed by Benade [4] for a periodic lattice of toneholes allows
showing the behavior difference between the frequency ranges below and above
the cutoff, when the lattice is supposed to be infinite.16 If the lattice is infinite,
all quantities of the cell n (see Fig. 7.27) are proportional to exp.�n� /, where the
propagation constant � .!/ is real in the stop band and purely imaginary in the
pass band [see Eq. (7.193)]. This applies in particular to the flow rate of the holes,
arranged in a regular antenna of monopoles, studied in Chap. 12 (see Fig. 12.7).
We denote the flow rate of the hole n Un D U exp Œ�.n � 1/� �. The pressure
produced is given in Eq. (12.29), with � D j'; in the far field, it is proportional to
U exp Œ.n � 1/.2jk` cos � � � /�, where 2` is the hole interval, and � is the azimuth
of the considered point with respect to the tube axis.

• Below the cutoff, � is real and the flow rates decrease exponentially from the
first open hole. If it is assumed that the distance between two holes is smaller
than the wavelength (2k` << 1), the superposition of the different monopoles
is still a monopole and there is no directivity. Thus the woodwinds (except the
flutes!) radiate in an omnidirectional way at low frequencies. The first open hole
plays the main role: this is consistent with the analysis given in Chap. 7: to a first
approximation, it is if the tube was cut at the first open hole.

• The case of frequencies above cutoff is more complex: Eq. (12.30) can be used
for the directivity pattern:

D.�/ D sin N�

N sin�
where � D k` cos � � '

2
: (14.59)

Therefore there are directivity lobes, corresponding to � D 0; if we write ' D
2`!=v' , where v' is the phase velocity inside the lattice, they are obtained in
particular for17:

16Here we treat the case of reed instruments, in order to separate the problem of tonehole radiation
from that of the flute mouth-hole.
17The relationship between a monopole lattice and an infinite plate has been seen [see the note
after Eq. (13.56)]. Above cutoff the wavenumber k1 D '=2` is equal to

p
k2 � k2c ; it is therefore

smaller than the wavenumber k in free space, and this corresponds to the supersonic case. The
wavenumber tends to k at higher frequencies, thus there is no critical frequency and the subsonic
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cos � D c=v': (14.60)

When the frequency decreases to the cutoff, ' tends to 0 (v' tends to infinity),
and the lobe angle tends to � D �=2 perpendicularly to the tube axis. When
the frequency increases beyond cutoff, it can be shown that the phase velocity
becomes close to the free space sound velocity and that the lobe becomes close
to the tube axis. At very high frequencies, it can be observed that the radiation
mainly occurs from the tube end: this explains why saxophonists, when playing
with amplification, play with a microphone close to the instrument bell in order
to reinforce the highest frequencies.

• In the stop band, the behavior of a finite lattice is rather similar to that of an
infinite lattice, because the amplitude of the growing exponential is significant
near the end only and is often negligible as explained in Chap. 7. Conversely,
above the cutoff, the incoming wave term needs to be added to D.�/, but with a
multiplication factor corresponding to the flow rate reflection coefficient, and an
angle �R D k` cos � C '

2
: Therefore we find lobes that are symmetrical to the

lobes of the outgoing wave with respect to the vertical axis, though with a slightly
smaller amplitude because the modulus of the reflection coefficient is less than
unity.

Figure 14.37 shows an example of result with front and rear lobes. The
discrepancies between theory and experiment can be explained by the difficulty
to obtain an accurate computation at higher frequencies, but the qualitative
agreement between the results is rather satisfactory. However one difference
between theory and experiment is understood: the amplitude difference between
the front and rear lobes is underestimated by the theory, because the external
interaction of the holes is ignored, as explained in the next paragraph.

• Beforehand we notice that the generalization presented in Sect. 7.8.2.5 of Chap. 7
cannot be easily applied to radiation. For a lattice built with cells of different
geometry but with equal cutoff frequency, the input and output quantities
(pressure and flow rate) remain proportional to exp.
n� /; and it can be shown
that this is also true for the pressures at the input of the holes. However, the
relevant quantity for the radiated pressure is the flow rate: it is proportional to
the pressure at the input of a hole divided by the hole impedance, j!mt [see
Eq. (7.196)], and this impedance is not constant in the considered lattice. In the
pass band, the modulus of exp.
n� / D exp.
jn'/ is unity, and the flow rates
therefore are inversely proportional to the total mass of a hole, which decreases
with the hole radius. Consequently the flow rates increase with the hole radius,
and the analysis requires the examination of each particular case. The considered
lattice behaves as a periodic lattice for the internal field of the tube, but not for the
radiated pressure field. Nevertheless we conclude that qualitatively the radiation
structure keeps directivity lobes above the cutoff.

case does not exist. Below cutoff the wavenumber is purely imaginary: this case differs from both
cases supersonic and subsonic, with radiation into the far field.
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Fig. 14.37 Directivity of an
oboe, at f D 2366Hz near the
9th harmonic of one of the
lowest notes (C4,
fundamental 261 Hz): two
holes are open, in addition to
the bell. Solid line: theoretical
calculation. Dotted line:
experiments (which was done
by exciting the instrument
with a small loudspeaker at
its input). The scale is linear.
The angle � D 0ı

corresponds to the instrument
bell (Courtesy of R. Caussé)
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14.5.2.2 Radiation of a Tonehole Lattice with External Interaction

The previous analysis assumes that the holes radiate in separate spaces. A method
of computation of the interaction is given hereafter (see [35]; notice that another
method can be found in [36]). We start by giving the main qualitative results as
obtained by a numerical computation.

• In the stop band, the main attenuation from one hole to the following one is
not exactly exponential because the radiation is inversely proportional to the
hole spacing and comes to compensate the exponential attenuation. Thus, the
attenuation is rather linear and slow.

• In the pass band, there is a reflection at the end of the tube, and therefore there
are maxima and minima (i.e., antinodes and nodes) of flow rate. In other words
there is a non-zero standing wave ratio. A perturbation reasoning is possible:
because of the external interaction the strong flow rates compensate for the weak
flow rates, and the standing wave ratio decreases. This yields a small effective
reflection coefficient. The following phenomena result:

– The input impedance peaks are very attenuated above cutoff. Thus the exper-
imental determination of the cutoff frequency is justified. When interaction
is ignored, it has been seen in Chap. 7 that, on the one hand, the peaks
are very inharmonic above cutoff, and, on the other hand, they are rather
low in amplitude since the attenuation near the walls occurs over the whole
tube length (instead of below the first open hole as in the stop band). When
interaction is considered, the magnitude of the peaks is even lower.

– As the effective reflection coefficient is low because of external interaction,
the rear lobes are smaller than when interaction is ignored. It is a part of the
explanation of the discrepancy between the theory (without interaction) and
the experiments shown in Fig. 14.37.
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Above cutoff, we conclude that there are directivity lobes mainly in the front
direction, and their orientation comes closer to the axis perpendicular to that of the
tube as frequency tends to cutoff. It should be specified that this analysis is linear and
ignores the particular effects existing at high level for narrow holes (see Chap. 8).

Computation Method for the External Interaction of Toneholes
The flow rates of the toneholes are sought with respect to one input reference
quantity, such as the input flow rate, denoted Us0, the subscript s indicating
a source. In order to generalize the calculation, we assume that there is also
a flow rate source Usn, emitting inside the tube at tonehole n (this can be a
small loudspeaker). The principle presented hereafter does not assume any
particular regularity of the holes. We also assume that it is a flute, which
radiates by the mouth with a flow rate U0 (the handling of the reed instrument
case is easy). For the sake of simplicity, we consider each hole as a shunt
admittance, ignoring the effect of the anti-symmetrical masses. For each hole
the flow rate conservation is written as:

Usn D Un C Urn C U`n: (14.61)

Un is the flow rate which radiates from each hole and contributes to the
radiated pressure. Urn and U`n are the flow rates entering the main tube on the
right and on the left, respectively, both defined with the orientation coming
out from the hole. At the output of the main tube, with subscript N, the
radiating flow rate is denoted UN , and UrN D 0. At the input (subscript 0),
we write Ug0 D 0. The flow rates Urn and U`n are related to the pressure
of the corresponding hole and that of the following one, pn and pnC1. Using
(7.119), it can be written

Urn D Ynpn C Y�npnC1: (14.62)

U`n D Y�n�1pn�1 C Y 0
n�1pn: (14.63)

The admittances Y are given in Eq. (7.119) with respect to the coefficients
of the transfer matrix of the main tube between the two holes. A matrix
relationship between flow rate vectors and pressure vectors is derived

Us D U C YP; (14.64)

where the admittance matrix Y of the hole lattice is tridiagonal, including
the known elements Yn, Y�n, and Y 0

n. The dimension is equal to the radiating
element number (mouth, holes, and tube end). It remains to express the
radiation impedance matrix ZR, which generalizes the relationship (12.139)

(continued)
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valid for two orifices:

P D ZRU: (14.65)

In order to take the pressure difference between the input and output of the
holes into account, Eq. (7.188) is used, and the acoustic mass which is denoted
�L3=S3 is added to the diagonal element of the matrix ZR. The solution of the
problem is therefore given by:

U D .I C YZR/
�1US (14.66)

In practice there is a unique source at the input and therefore the vector Us

involves a unique non-zero element. The flow rates at every orifice is deduced
with respect to Us0. The method can be used also when the interaction is
ignored, the matrix ZR being diagonal, but it is less efficient than the transfer
matrix method. Conversely, when interaction is taken into account, the matrix
ZR is full, and a numerical solution is required.

14.5.3 Interaction of Two Tubes

14.5.3.1 Statement of the Problem

The problem of two tubes interacting through radiation is somewhat similar to that
of a vibraphone (see Sect. 14.1). A typical example is that of two juxtaposed organ
pipes, which can have a mutual influence. This complex problem is interesting
because it can help understanding the effect of the interaction on the sound
production itself, thanks to the analysis of the input impedance and the radiation.
In order to simplify the problem, we consider the example of two cylindrical tubes
having a unique opening. One tube is provided with a reed, and the second one
is passive, with a closed extremity (see Fig. 14.38). The distance between the two
orifices is d. In order to calculate the input impedance of the reed tube, we use the
formula of the impedance projected at its input, and the radiation impedance matrix
which is given by Eq. (12.139).

The mutual impedance is assumed to be given in Eq. (12.146). In order to
calculate the impedance at the open end of Tube 1, we simply need the knowledge
of the input impedance of Tube 2:

Z2 D �P2=U2 D j
�c

S2
cot k`2: (14.67)
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Reed U1

1 d

U2

2

Fig. 14.38 Two tubes interacting: one is a reed tube and the other one is passive with a closed end.
The lengths are `1 and `2, the radii r1 and r2, and the spacing of the openings d

The sign � is a consequence of the orientation choice and of the definition of a
passive system impedance (see Sect. 1.3.3.1, Chap. 1). The flow rate ratio and the
radiation impedance of Tube 1 as modified by Tube 2 can be deduced as follows:

U1

U2

D �Z22 C Z2
Z12

I (14.68)

P1
U1

D Z11 � Z212
Z22 C Z2

: (14.69)

If Tube 2 was closed at its input (infinite Z2), Tube 2 would not perturb Tube 1,
because of the assumed approximations in the expression of the mutual impedance,
when ignoring the diffraction effects on the external walls of the tubes. It appears
that Tube 2 influences Tube 1 only if the mutual impedance is large enough,
therefore if the distance d is small enough, and if the impedance Z22 C Z2 is small
enough: this corresponds to the natural frequencies of Tube 2 when open at its input.
The first one is f D c=4.`2 C�`2/; where �`2 is the radiation length correction of
Tube 2. If the natural frequencies of Tube 2 differ from those of Tube 1, the influence
of the passive tube is weak, as it is expected for two tubes of different lengths, and
as it is often the case for two juxtaposed organ pipes.

14.5.3.2 Eigenmodes

The natural frequencies of the set of tubes can be calculated by considering Tube
1 closed at its input. This leads to the impedance seen from the output equal to
P1=U1 D j �c

S1
cot k`1 D �Z1 (if the orientation choice above presented for Tube 2 is

used). Using (14.69), we get

.Z11 C Z1/.Z22 C Z2/ D Z212:

When ignoring losses, the impedances become purely imaginary, and the solution of
this equation is the natural frequencies. The case of two symmetrical tubes (with the
same radius and above all the same length) is especially interesting. The equation is
written in the following form:
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Z11 C Z1 D Z22 C Z2 D ˙Z12:

Thus the natural frequencies are duplicated, with respect to the case where the tubes
are isolated (Z12 D 0/: At low frequencies the mutual impedance can be written as
follows: Z12 D jk�`12�c=S1, with �`12 D r21=4d. The two twin modes have the
following frequencies:

f �
n D .2n C 1/c

4.`1 C�`1 C�`12/
and f C

n D .2n C 1/c

4.`1 C�`1 ��`12/ :

They are very close together and are located on both sides of the non-perturbed
frequencies. Using Eq. (14.68), we find that they correspond to U2=U1 D C1
and U2=U1 D �1, respectively. The first ones correspond to a symmetrical field,
while the second correspond to an anti-symmetrical field, in accordance with the
symmetry of the geometry. The first ones are related to a monopole radiation,
while the second are related to a dipole radiation, which is very weak. This very
weak radiation corresponds to the same phenomenon than the quarter-wavelength
rejection observed when a closed chimney is at its resonance (see Chap. 7).

14.5.3.3 Input Impedance

In order to interpret the theoretical result for the input impedance curve, it is not
necessary to calculate the modes when losses (either visco-thermal or radiation) are
taken into account. We can use the fact that the peaks are inversely proportional to
the power entering the tube. Figure 14.39 shows a case where coupling is important,
because the tube radii are wide, and the distance d between the two openings is
small. It is limited to the first peak, which is split into two peaks. The first (sub-)peak
corresponds to a symmetrical field, with a rather strong radiation, while the second
(sub-)peak corresponds to an anti-symmetrical field, with a very weak radiation.
This explains why the second peak is higher than the first. Moreover it can be noticed
that:

• If Tube 1 does not radiate, the amplitude of the (unique) peak is almost twice
that of the 2nd peak, because when interaction excites Tube 2 the boundary
layer losses are equal in the two tubes. Acoustic power enters Tube 2 in order
to compensate for losses;

• If Tube 1 radiates in the absence of Tube 2, the amplitude of the (unique) peak is
almost twice the one of the first peak, because when interaction excites Tube 2,
the boundary layer losses are equal in both tubes which radiate symmetrically in
the surrounding space. The power entering Tube 2 is the difference between the
compensation for the losses and the radiated power.

In practice, Tube 1 is excited by a reed and produces the frequency of the 2nd
peak, which is the highest peak, and the radiation is weak. But quasi-periodic
regimes can also be expected because of the proximity of both peaks. This example
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Fig. 14.39 Modification of the first impedance peak of a cylindrical tube of length `1 D 0:3m,
radius r1 D 2 cm, put close to another identical tube, which is closed. The extremities are set
at distance d D 5 cm apart. The solid line shows the duplication of the peak. The dotted lines
correspond to the case of Tube 1 with Tube 2 removed: for the higher curve, the radiation is ignored
(the real part of the radiation impedance is zero), while for the lower curve, it is considered. The
effect of the passive tube is very weak far from its natural frequency. The unit of jZj in ordinate is
arbitrary

is particularly simple, and highlights the coupling effect of radiation. For the peaks
of higher frequencies, the phenomenon is more important because the ratio of the
radiated power to boundary layer losses increases and thus the first “sub-peak”
strongly decreases, and might even disappear.
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