
Chapter 13
Radiation of Vibrating Structures

Antoine Chaigne

Abstract This chapter deals with the radiation of vibrating structures in air, with
application to stringed and percussive instruments. Basic notions are first presented
with the help of an introductory example of a beam coupled to an air column. The
important concept of critical frequency is then introduced through the example
of an infinite thin plate radiating in air. The radiation models of finite plates
and their results can be applied to real musical instruments. Recent methods are
then presented for calculating the radiation of unbaffled plates, structural volumes,
and nonplanar sources. Finally, the questions relative to the appropriate choice of
material, and to the compromise between radiation efficiency and tone duration, are
illustrated on several stringed instruments.

13.1 Introduction

For a number of musical instruments, the sound results from the vibration of
structures. This is the case, for example, for stringed and percussive instruments.
Structural acoustics (or vibroacoustics) is that subdomain of acoustics dealing with
the interaction phenomena between a vibrating structure and the sound field in the
adjacent fluid. In what follows, the air is the considered light fluid interacting with
the structures. The concept of light and heavy fluid will be defined more formally in
this chapter.

The structures used in the making of instrument are most often thin structures,
which means that their thickness is small compared to the other dimensions.
Different types of elastic waves can propagate in these structures. Among them,
the flexural waves are those which show the lowest characteristic mechanical
impedance. As a consequence, these waves also are those which are the most excited
by an impact, and/or by the vibrations of strings coupled to them. The normal
velocity and, in turn, the acoustic pressure field, are directly linked to the mechanical
vibratory field of the structure.
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Fig. 13.1 Transverse vibrations of a plate at a frequency close to one on its eigenmodes

In musical acoustics, the most common vibrating structures are plates (guitar,
harp, piano soundboards, etc.) or shells (soundboards of bowed strings instruments,
bells, gongs, cymbals, etc.). The beams (xylophone, vibraphone, marimba, glock-
enspiel, etc.) can be considered as limiting cases of plates whose width is small
compared to the length. The particular case of the membranes (timpani, drums, etc.)
will be treated in detail in Chap. 14.

In contrast with the case of the plane piston seen in Chap. 12, where the surface
velocity field is uniform, the vibrations of shells and plates are characterized by the
juxtaposition of zones with velocity fields of alternate signs, which can be seen as
the 2-D association of dipoles (pairs of monopoles of opposite signs) (see Fig. 13.1).
The main effect of this situation is to globally reduce the compression of the fluid
(compared to the plane piston), and thus to limit the efficiency of the radiation
to the far field. Intuitively, one can feel that the dipoles will produce destructive
interferences if kd � 1, where k is the wavenumber and d the distance between
two consecutive “monopoles” on the plate or on the shell. Conversely, if kd � 1,
the monopoles radiate more independently and the radiation efficiency is improved
(see also Chap. 12).

As seen in Chap. 3, flexural waves are dispersive, where the phase and group
velocities vary with frequency. It will be shown in Sect. 13.3 that the so-called
critical (or coincidence) frequency fc exists, for which the acoustic wavelength in the
fluid is equal to the elastic wavelength in the structure. For the frequencies smaller
than fc, the sound power radiated by an infinite flat plate is zero, and is very weak
for a finite plate. For the shells, and, more generally, for complex structures (such as
ribbed plates, for example), the radiation properties depend on the elastic dispersion
curve. The phase velocity increases by imposing a curvature to a flat plate: as a
consequence, shells are generally more efficient in terms of radiation than plates of
similar external surface and thickness, and made of the same material. However, this
general tendency needs to be clarified for each particular geometry: in Sect. 13.5, it
will be seen on a simple example that the curvature also affects the bandwidth and
the directivity of the source.

13.2 Basic Concepts in Structural Acoustics

This chapter starts with the presentation of a simple 1-D example whose aim is
to introduce the basic concepts in structural–acoustic coupling. The purpose is to
highlight the following properties:



13 Radiation of Vibrating Structures 697

• Both the real and imaginary parts of the eigenfrequencies are modified by the
acoustic radiation of a structure. In this section, a method is shown for calculating
these modifications. In addition, approximations are presented which are justified
in case of weak coupling between the structure and the fluid, as it is often the case
for the air.

• Expanding the general solution of a coupled system in terms of the structural
in vacuo modes shows that intermodal coupling results from the radiation. In
practice, this means that if one particular mode is excited then, in turn, other
coupled modes are excited. These phenomena are currently observed in stringed
instruments. For a formal point of view, this coupling is indicated through the fact
that the differential equations that govern the generalized displacements are not
independent from each other anymore. These properties are analogous to those
demonstrated in Chap. 5 for the nonproportional damping.1

• For a forced excitation at a given frequency !, it is generally not possible to
excite only one mode, as a consequence of the intermodal coupling. Thus, the
concept of Operating Deflexion Shape (or ODS) needs to be introduced.

• The structural and radiation resistance matrices are introduced by means of an
energy analysis of the coupled system. The radiation efficiency is derived from
these definitions.

13.2.1 Vibrating Beam Coupled to an Infinite Fluid Medium:
Modal Approach

A typical situation involving a vibrating structure radiating sound energy in free
space is analyzed here. The simple selected system is composed of a finite elastic
beam vibrating longitudinally and loaded at one end by a semi-infinite tube filled
with air. This problem shows some analogies with the example of the string with
dissipative end studied in Chap. 5.

The system shown in Fig. 13.2 is considered. It is composed of an elastic
longitudinally vibrating 1-D beam with density �s, section S, length L, and Young’s
modulus E. �.x; t/ is the longitudinal displacement of a current point at position x
along the bar (with 0 < x < L). This beam is coupled at one end (x D L) with a
semi-infinite tube filled with air, and clamped at the other (x D 0). The motion of
the beam induces a pressure p.x; t/ inside the tube. This pressure reacts on the beam
at point x D L. cL D p

E=�s is the longitudinal wave speed. The coupled system is
governed by the equations:

1In reality, the modes of the coupled system are complex, and we could think of applying the
rigorous theory of complex modes presented in Chap. 5. However, since the air coupling can be
most often considered as weak in musical acoustics, the method of projection on the in vacuo
modes is preferred here, which corresponds to current practice.
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Fig. 13.2 Longitudinally vibrating beam coupled to a semi-infinite tube. In x D L, the cross-
section of the bar is subjected to the sound pressure �p n, where n is the unitary vector normal to
the beam
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The system (13.1) is solved by expanding the sought solution �.x; t/ in terms of
the in vacuo modes �n.x/ of the beam:

�.x; t/ D
X

n

�n.x/qn.t/; (13.2)

where the qn.t/ are the generalized displacements. The system (13.1) is then
integrated over the length of the beam (from 0 to L), after multiplication by any
eigenfunction �n. This gives
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Equation (13.3) expresses the energetic balance between the internal stresses inside
the beam, the inertial forces, and the pressure forces applied to the beam by the
exterior medium. Due to the orthogonality properties of the in vacuo modes �n, the
only nonzero terms remaining in (13.3) are those for which m D n. Introducing
further the modal mass:
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it is found that the generalized displacements qn.t/ are solutions of the coupled
system:

mn Rqn.t/ C mn!2
n qn.t/ D �Ra�n.L/

X

m

�m.L/Pqm.t/; (13.6)

where Ra D �cS is the radiation resistance. It is observed that one effect of the
radiation is to couple together the in vacuo modes of the beam. However, under
some restrictive assumptions, it will be allowed to replace the system (13.6) by an
approximate uncoupled system.

After determining the generalized displacements qn, the displacement � is
derived from (13.2), and this allows to calculate both the velocity and the pressure
field. In conclusion, all variables of the problem are known. This justifies to focus
primarily on the qn in what follows.

13.2.1.1 Systems Having a Few Number of Degrees of Freedom (dof)

In this section, coupled systems of small dimensions are examined, in order to better
understand their physical meaning.

Single dof System

Let us suppose that, for various reasons, the beam can be reduced to a single mode.
In this case (13.6) reduces to:

Rq1.t/ C Ra�2
1.L/

m1

Pq1.t/ C !2
1q1.t/ D 0: (13.7)

This is simply the equation of a damped oscillator (see Chap. 2) where the
dimensionless damping factor �1 is

2�1!1 D Ra�2
1.L/

m1

: (13.8)

Thus, for a single dof system loaded by a semi-infinite tube, the acoustic coupling
adds a radiation damping to the structure.

2-dof System

Let us now truncate the continuous beam to its two lowest modes. In this case, (13.6)
becomes

8
<

:

Rq1.t/ C !2
1q1.t/ D � Ra�1.L/

m1
Œ�1.L/Pq1.t/ C �2.L/Pq2.t/�;

Rq2.t/ C !2
2q2.t/ D � Ra�2.L/

m2
Œ�1.L/Pq1.t/ C �2.L/Pq2.t/�:

(13.9)
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Equation (13.9) can be rewritten as:

8
<

:

Rq1 C 2�1!1 Pq1 C !2
1q1 D � Ra�1.L/�2.L/

m1
Pq2 D C12 Pq2;

Rq2 C 2�2!2 Pq2 C !2
2q2 D � Ra�2.L/�1.L/

m2
Pq1 D C21 Pq1;

(13.10)

where �m1C12 D �m2C21 D Ra�2.L/�1.L/.
Several conclusions can be drawn from this result:

• Due to the acoustic radiation, damping terms 2�i!i Pqi are introduced in both
equations.

• The generalized displacements are coupled.
• In the absence of any other damping phenomena, the coupling coefficients C12

and C21 are linked by the property2:

C12C21 D 4�1�2!1!2:

The eigenfrequencies of the system are the roots of the characteristic equation:

.s2 C 2�1!1s C !2
1/.s2 C 2�2!2s C !2

2/ � 4�1�2!1!2s2 D 0; (13.11)

This equation shows that the structural-acoustic coupling modifies the complex
eigenfrequencies. In general, this equation can only be solved numerically. How-
ever, under the assumption of weak damping (�1 � 1 and �2 � 1), first-order
approximations can be found [8].

13.2.1.2 Generalization

For a continuous system with a large number of dof, the differential system (13.6)
is written:

Rqn C 2�n!n Pqn C !2
n qn D

X

m¤n

Cnm Pqm; (13.12)

where

2�n!n D Ra�2
n.L/

mn
and Cnm D �Ra�n.L/�m.L/

mn
: (13.13)

This expression shows the two main effects of the elasto-acoustic coupling seen in
Fig. 13.2:

2Notice that this property is no longer valid if there is another structural damping inside the beam.
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Fig. 13.3 Comparison between two velocity waveforms at a given point on a guitar soundboard
(synthesis). (Left) Isolated mode in vacuo. (Right) Coupled modes due to air-soundboard coupling

1. modal damping due to radiation
2. modification of the eigenfrequencies due to intermodal coupling.

The 1-D model presented here can be further generalized to more complex
systems. Figure 13.3 shows, for example, the case of a synthesized guitar tone.
The picture on the left shows the time decay of an isolated mode, assuming only
a modal damping in the in vacuo soundboard. The picture on the right shows the
time evolution of the generalized displacement, in case of a coupling with external
air and cavity. It can be seen that several other modes are excited, as a consequence
of the air-structure coupling.

13.2.1.3 Reactive Effects

Imagine now that the free end of the beam subjected to longitudinal vibrations is
now inserted in an infinite plane baffle, as in the case of the plane piston seen in
Chap. 12. The radiation impedance now contains a real part Ra, and an imaginary
part Xa.

The imaginary part corresponds to an inertial load by the fluid3 which was not
present in the case of the beam loaded by the semi-infinite tube. The main effect of
Xa is to lower the eigenmodes of the structure compared to the in vacuo case.

3Such an effect can be taken into account as a length correction in tubes.
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Fig. 13.4 Elastic beam
vibrating longitudinally and
inserted in an infinite plane
baffle

13.2.2 Forced Regime

As for the harmonic oscillator in Chap. 2, the case of a forced excitation is now
considered. A force F.t/ is applied at point x D x0 with x0 < L. This situation
corresponds in practice to stringed instruments, where the soundboard is excited
at the bridge by the vibration of a string. For a violin, the force is due to self-
sustained oscillations. For a guitar or a piano, the decay times of the strings’
vibrations are usually long compared to those of the soundboard, so that the
excitation can be viewed as quasi-stationary. In the presence of an excitation, the
energy balance (13.3) becomes
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which leads to the equations governing the generalized displacements:

Rqn C 2�n!n Pqn C !2
n qn D

X

m¤n

Cnm Pqm C F.x0; t/
�n.x0/

mn
; (13.15)

or, equivalently, using the Laplace transform:

Qqn.s/ D Hn.s/ QF.x0; s/ C
X

m¤n

Knm.s/Qqm.s/; (13.16)
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with

Hn.s/ D �n.x0/

mn.s2 C 2�n!ns C !2
n/

and Knm.s/ D sCnm

s2 C 2�n!ns C !2
n

: (13.17)

In summary, the displacement is written:

Q�.x; s/ D
X

n

Qqn.s/�n.x/ D QF.x0; s/
X

n

�n.x/Hn.s/ C
X

n
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X
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(13.18)
In matrix form, the system (13.16) is written4:
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4

D1 �sC12 : : : �sC1n

�sC21 D2 : : : �sC2n

: : : : : : : : : : : :

�sCn1 �sCn2 : : : Dn
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: : :
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5 D F
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4

ˇ1

ˇ2

: : :

ˇn

3

77
5 (13.19)

where ˇn D �n.x0/

mn
and Dn D s2 C 2�n!ns C !2

n . It is convenient to put this equation
in the following form:

CQ D Fˇ; (13.20)

where the displacement thus becomes

� D t�Q where Q D .C�1ˇ/F: (13.21)

Notice that, due to the sound–structure coupling, the matrix C is not diagonal.
However, in the case of radiation in air, this coupling is generally weak and it will
be justified to use approximate formulations.

13.2.2.1 Light Fluid Approximation

Several methods exist for addressing the problem of elasto-acoustic coupling in light
fluid. In the method retained below, dimensionless intermodal coupling coefficients
are viewed as perturbation terms, compared to the reference in vacuo case. A simple
expression is then derived for the structural shapes. As previously, the presentation
starts with a simple 2-dof system.

4In what follows, the symbols “Q” will be omitted for clarity.
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2-dof System

For a 2-dof system, the matrix C is written:

C D
�

D1 �sC12

�sC21 D2

�
: (13.22)

In order to test to what extent this matrix is different from the diagonal case, we look
for the diagonal matrix D built with the eigenvalues �1 and �2 which are solutions
of the characteristic equation:

ˇ̌
ˇ
ˇ
D1 � � �sC12

�sC21 D2 � �

ˇ̌
ˇ
ˇ D .D2 � �/.D1 � �/ � s2C12C21 D 0: (13.23)

Denoting ei the corresponding eigenvectors, and T D Œe1 e2�, the classical matrix
relationships are obtained

TD D CT , D D T
�1
CT; (13.24)

where it is assumed that C is reversible. In the general case (without approxima-
tions), the eigenvalues of C are given by:

�1;2 D 1

2

h
D1 C D2 ˙

p
.D1 � D2/2 C 4s2C12C21

i
: (13.25)

At this stage, the following dimensionless coupling coefficient is defined5

" D C12C21

D2 � D1

D C12C21

!2
2 � !2

1 C 2s.�2!2 � �1!1/
; (13.26)

so that, for " � 1, the eigenvalues of C can be written to first-order approximation:

�1 D D1 � "s2 I �2 D D2 C "s2: (13.27)

Discussion At this stage, we make the approximation of “light fluid,” i.e., we
assume that the coefficients Cij and �i are small in (13.26). As a consequence, it
can be seen that the coupling parameter " is small only under the condition that the
in vacuo frequencies of the structure are sufficiently far apart from each other. If this
latter condition is not fulfilled, a strong coupling can be observed, even for a light
fluid. Such a situation occurs, for example, in the coupling between the fundamental
mode of a head, and the lowest mode of the cavity in timpani (see Chap. 14).

5See also the definition of a coupling coefficient in Sect. 6.4 of Chap. 6.
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Generalization

For a system with n dof, it can be shown that the first-order approximations of the
eigenvalues �i can be written as:

�i D Di C "is
2 with "i D

X

j

CijCji

Di � Dj
and 1 � j � n and j ¤ i:

(13.28)

In summary, n intermodal coupling coefficients are defined, one for each pair of
modes. The conditions of weak coupling are generalized: light fluid and sufficient
distance between the values of the eigenfrequencies.

13.2.2.2 Operating Deflexion Shapes

Forced excitation is often used for measurements purpose on musical instruments. In
case of uncoupled modes, a forced excitation close to one particular eigenfrequency
of the structure yields the corresponding modal shape. However for coupled modes,
as in the case examined in this section, the observed deflexion cannot be reduced to
a single modal shape. They are usually referred to as ODS.

In what follows, we content ourselves with a simplified presentation with two
dof. The results can be generalized to any number n of dof. We start by writing the
displacement field of the structure in vacuo:

�0 D �10q10 C �20q20: (13.29)

For the same structure vibrating in air, and using an expansion of the displacement
on the in vacuo modes, we get

� D �10q1 C �20q2: (13.30)

Based on the results obtained in the previous section, we can write to the first-order:

� D �10

�
q10 C sC12

D1

q20

�
C �20

�
q20 C q10

sC21

D2

�
; (13.31)

or, equivalently, by grouping the terms corresponding to each generalized
displacement:

� D q10

�
�10 C sC21

D2

�20

�
C q20

�
�20 C �10

sC12

D1

�
with qi0 D �i0

miDi
F:

(13.32)
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Let us now examine typical experimental situations where a sinusoidal force F.t/ D
F0H.t/ sin !t6 is applied suddenly at time t D 0 and at point x0.

(1) In the particular case where both the frequency and excitation point are selected
so that q20 is negligible compared to q10, the displacement becomes

�1 D �10 C �20

sC21

D2

: (13.33)

After a certain amount of time, the second term in (13.33) tends to zero, and the
observed deflexion corresponds to the first mode.

(2) However, in the general case, Eq. (13.32) shows that both modes are simul-
taneously excited. After the transient regime, the stationary solution for the
displacement is given by:

�.!; x/ D
�

�10ˇ1

D1.j!/
C �20ˇ2

D2.j!/

�
: (13.34)

The quantity enclosed in square brackets is the ODS of the structure at
frequency !.

13.2.3 Energy Approach

In the previous sections, the internal losses inside the material of the structure were
not considered. However, if we take the example of a stringed instrument, only a
part of the mechanical power transmitted by the string to the body is transformed
into acoustic power. The difference is essentially due to dissipation in the material.

The energy balance and the acoustical efficiency of a single dof oscillator loaded
by a tube filled with air were determined in Chap. 2. This example is generalized
here to a structural system with multiple dof coupled to a fluid. For a better
comprehension, we start with a 2-dof system. The losses in the structure itself are
represented by two mechanical resistances r1 and r2. The resistances ra1 and ra2

account for the radiation losses. One goal is to compare the dissipated power in the
structure and in air, respectively.

13.2.3.1 Structural and Acoustic Resistance Matrix

The illustrating example is still the case of a longitudinally vibrating beam radiating
at one end (x D L) in a semi-infinite tube (see Fig. 13.2). The excitation force F is
applied at point x D x0. The radiation coupling coefficients are defined in (13.13).

6Recall that H.t/ is the Heaviside function.
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The system is truncated to the first two modes of the beam, for simplicity. The
system of equations governing the system is

(
m1 Rq1 C .r1 C ra1/Pq1 C k1q1 C � Pq2 D �1.x0/F;

m2 Rq2 C .r2 C ra2/Pq2 C k1q2 C � Pq1 D �2.x0/F;
(13.35)

where � D �C12m1 D �C21m2. The following notations are used

8
<

:

2�1!1 D r1Cra1

m1
I 2�10!1 D r1

m1
I !2

1 D k1

m1
;

2�2!2 D r2Cra2

m1
I 2�20!2 D r2

m2
I !2

2 D k2

m2
:

(13.36)

The instantaneous mechanical power imparted to the beam is

pm.t/ D F
d�

dt
.x0; t/ D F Œ�1.x0/Pq1 C �2.x0/Pq2�

D m1 Rq1 Pq1 C .r1 C ra1/Pq2
1 C k1q1 Pq1 C 2� Pq1 Pq2

Cm2 Rq2 Pq2 C .r2 C ra2/Pq2
2 C k2q2 Pq2: (13.37)

In case of a periodic motion with period T , the mean value of this power is:

Pm.T/ D 1

T

Z T

0

.r1 C ra1/Pq2
1 C .r2 C ra2/Pq2

2 C 2� Pq2 Pq1 dt; (13.38)

It is composed of three terms:

• The mean power dissipate in the structure (material) Ps.T/ D 1
T

Z T

0

r1 Pq2
1 C

r2 Pq2
2 dt,

• The mean radiated acoustic power Pa.T/ D 1
T

Z T

0

ra1 Pq2
1 C ra2 Pq2

2 dt,

• The mean coupling power Pc.T/ D 2
T

Z T

0

� Pq2 Pq1 dt reflecting the energy

exchange between the modes.

In the particular case of sinusoidal excitation, we get

Pm D 1

2

�
.r1 C ra1/jPq1j2 C .r2 C ra2/jPq2j2 C 2� jPq2jjPq1j� : (13.39)

In vacuo, this expression reduces to:

Pmo D 1

2

�
r1jPq10j2 C r2jPq20j2� : (13.40)
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In what follows, it is convenient to write these results in matrix form. Introducing

the notations: PQ D
�Pq1

Pq2

�
, Rs D

�
r1 0

0 r2

�
and Ra D

�
ra1 �

� ra2

�
, we get

Pm D PQH ŒRs C Ra� PQ; (13.41)

where PQH is the Hermitian conjugate (conjugate transpose) of PQ. Rs is the matrix
of the structural resistances. For the sake of simplicity, it is written here in diagonal
form. However, it is not the case for all causes of damping (see Chap. 5). Finally, Ra

is the radiation resistance matrix of the beam coupled to the fluid.

13.2.3.2 Generalization and Acoustical Efficiency

Generalizing the previous results to the n dof of the beam, we find

Pm.T/ D 1

T

Z T

0

2

4
nX

iD1

.ri C rai/Pq2
i C

nX

iD1

nX

j¤iD1

�ij Pqi Pqj

3

5 dt où �ij D �miCij:

(13.42)
The resistance matrix becomes

Rs C Ra D

2

6
666666
66
4

r1 C ra1 : : : �1i : : : �1j : : : �1n

: : : : : : : : : : : : : : : : : : : : :

�i1 : : : ri C rai : : : �ij : : : �in

: : : : : : : : : : : : : : : : : : : : :

�j1 : : : �ji : : : rj C raj : : : �jn

: : : : : : : : : : : : : : : : : : : : :

�n1 : : : �ni : : : �nj : : : rn C ran:

3

7
777777
77
5

(13.43)

The radiated acoustic power is given by:

Pa D PQH
Ra PQ: (13.44)

In conclusion, for an elastic-acoustic system where the modes are coupled by the
radiation, the acoustical efficiency is written:

	m D
PQH ŒRa� PQ

PQH ŒRs C Ra� PQ : (13.45)

Equation (13.45) is thus the generalization of the result obtained in Chap. 2 for a
single oscillator coupled to the air.

Measurements conducted on a number of classical guitars have shown that the
order of magnitude of the acoustical efficiency is nearly 10 % between 100 and
1000 Hz, and 5 % between 1 and 8 kHz. However, for some particular frequencies,
the efficiency can reach 20 % [5].



13 Radiation of Vibrating Structures 709

13.3 Radiation of an Infinite Thin Plate

13.3.1 Elastic Equation

The radiation properties of a plane surface with uniform velocity profile were
studied in Chap. 12. This theory is valid for the structures subjected to rigid body
motion. It can also be applied to the radiation of a hole (as the soundhole of a guitar,
for example), as long as the normal acoustic velocity remains constant over the
cross-section.

As soon as the frequency increases, which causes in turn that the vibratory wave-
length becomes comparable to (or smaller than) the dimensions of the structure, then
one has to consider the propagation phenomena inside the structure. To illustrate this
point, the case of flexural motion of thin plates is treated below.

The presentation starts with the case of an “infinite” plate, which amounts to
neglecting the reflection of waves at the edges. The particular case of an isotropic
plate subjected to a transverse velocity V.x; !/ D V0.!/e�jkBx along the x-axis is
studied in the frequency domain. kB D 2
=�B is the flexural wavenumber (see
Fig. 13.5). For a given frequency !, the phase velocity of the elastic wave in the
plate is given by cB D !=kB.

At this stage, the internal losses in the plate, and the reaction of the acoustic
pressure on it, are left temporarily aside. These features will be progressively
introduced later. �p is the density of the plate, E its Young’s modulus, � its Poisson’s
coefficient, and h its thickness. In the context of the Kirchhoff–Love assumptions,
it has been shown in Chap. 1 that the governing equation of motion for the plate is
given by:

� !2�phW C D
d4W

dx4
D 0 with D D Eh3

12.1 � �2/
; (13.46)

where W.x; !/ is the transverse displacement.

M

λB

y

x

p (x, y, t)

Fig. 13.5 Radiation of an infinite plate subjected to transverse flexural vibrations. The elastic
flexural wavelength is �B. The objective is to determine the pressure p radiated by this plate in
free space. For simplicity, the case of a “1D” plate (equivalent to a beam) is considered. As a
consequence, the pressure only depends on two spatial coordinates: x and y
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13.3.2 Acoustic Equations

The Helmholtz equation governing the sound pressure P.x; y; !/ is written:

@2P

@x2
C @2P

@y2
C k2P D 0: (13.47)

The elasto-acoustic interaction between the plate and the air (with density �) is
ensured by the continuity equation for the normal velocities:

@P

@y

ˇ̌
ˇ
ˇ
yD0

D �j!�V0e�jkBx: (13.48)

13.3.3 Dispersion Equations and Critical Frequency

For any progressive flexural wave of the form ej.!t�kBx/ injected in Eq. (13.46), we
get the dispersion relationship between frequency and wavenumber in the plate:

! D
s

D

�ph
k2

B: (13.49)

Due to the linearity of the problem, the same frequency is found in the acoustic field,
which yields the acoustic dispersion relation:

! D kc: (13.50)

where c is the speed of sound in air. Plotting both dispersion relationships (13.49)
and (13.50) on the same figure (see Fig. 13.6) shows that a particular frequency
exists for which the wavenumber in the plate is equal to the wavenumber in air. This
so-called critical (or coincidence) frequency is given by:

fc D !c

2

D c2

2


r
�ph

D
D c2


h

r
3�p.1 � �2/

E
: (13.51)

The critical frequency fc plays a major role in elasto-acoustic coupling. In
Sect. 13.3.4, it will be shown that this two distinct frequency domains are defined
by this frequency: below fc, the radiation efficiency is weak, whereas it becomes
significant for frequencies higher than fc. A maximum is obtained for the particular
case fD fc. This result is due to the particular shape (parabolic, here) of the plate
dispersion. By contrast, for ideal membranes, the dispersion relationship is linear,
and no critical frequency can be exhibited. There is only one particular case where
both wave speed in air and in the membrane are equal (see the next paragraph).
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Fig. 13.6 Equations of
dispersion in plate and air.
The critical (or coincidence)
frequency is given by the
intersection of both curves

Pl
at

e

Air

Wavenumber

c

For other structures (for some shells, for example) some situations can also be
observed where there are no intersections between the air and structures dispersion
relationships. These features will be studied in more details in Sect. 13.5.

In Eq. (13.51), it can be seen that the critical frequency depends on the thickness
of the plate and on the material properties. In summary, the critical frequency
decreases as the plate becomes thicker, more dense, and more rigid.

Transposing these results to stringed instruments, one can derive that, for similar
thickness and density, replacing a given material by a more rigid one contributes to
lower the critical frequency which, in turn, should enhance the radiation efficiency
of the lowest notes. In this context, gluing some ribs on the soundboard contributes
to increase its stiffness and its mean thickness, which is coherent with a decrease of
the critical frequency. However, one must be careful before concluding that these
modifications will, in fact, lead to an increase in sound power. One has first to
consider (and estimate) the change of velocity profile of the soundboard due to the
attachment of ribs.

Critical Domain for Orthotropic Materials

For orthotropic materials (such as the wood species used for stringed instruments),
the calculation (13.51) can be conducted again in the two limiting cases correspond-
ing to the stiffer and to the more flexible directions, respectively. Two dispersion
curves are then obtained from which the critical domain Œ!c1; !c2� is derived (see
Fig. 13.7). It has been shown in Chap. 3 that, for a finite orthotropic plate, all
eigenfrequencies are situated between the two dispersion curves. Among these
eigenfrequencies, those situated in the critical interval will have a particularly high
radiation efficiency.
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Fig. 13.7 Critical domain for
the orthotropic materials. The
straight line accounts for the
air dispersion. The direction
of maximal rigidity
determines the frequency !c1,
whereas the less stiff
direction determines !c2. The
“critical domain” is given by
the interval Œ!c1; !c2�

c1

c2

Wavenumber

Air

Critical Frequency for Stiff Membranes and Prestressed Plates

The flexural motion of ideal membranes (with no damping and stiffness terms) is
governed by a wave equation. As a consequence, their dispersion equation is of the
form ! D kcm, where cm D p

�=�mh is the transverse wave speed (see Chap. 1).
In timpani membranes, the tension and density are such that usually we have cm <

c. In practice, the wave speed is of the order of 100 m s�1 for timpani.
As a consequence, the dispersion curve of the membrane is a straight line with

a lower slope than for the air, and there is no intersection between both curves (see
Fig. 13.8). In practice, however, timpani heads (like nylon guitar strings) have a
nonzero elasticity modulus. Therefore, the dispersion equation is written:

! D
s

Dk4 C �k2

�mh
; (13.52)

and it becomes possible to define a critical frequency. The dispersion equation for a
prestressed plate is written in the form similar to (13.52). If the plate is subjected to
a compression (� < 0), then its critical frequency increases. Conversely, if the plate
is subjected to a tension (� > 0), its critical frequency decreases. In conclusion, it
is checked on this example that introducing any kind of stiffening effect in the plate
globally contributes to yield favorable conditions for the radiation.

13.3.4 Pressure, Velocity, and Acoustic Power

In order to show the relevance of the critical frequency on the radiation efficiency,
for the infinite plane plate in air, both the pressure and acoustic velocity in the fluid
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Fig. 13.8 Dispersion curves for stiff membranes and prestressed plates. Dashed line:
air dispersion. Dash-dotted line: dispersion curve of an ideal membrane with density
�m = 1.05 � 103 kg m�3, thickness h = 0.25 mm, and tension � = 3325 N m�1. Solid line: dispersion
of the same membrane taking the Young’s modulus E = 3 � 109 N m�2 and the Poisson’s coefficient
� D 0:4 into account. Notice that, in this latter case, a critical frequency exists though it has a
rather high frequency (127 kHz)

need to be calculated explicitly. This, in turn, will allow the calculation of sound
intensity and acoustic power.

We look for a pressure field of the form P.x; y/ D P0e�j.kxx C kyy/. The Helmholtz
equation (13.47) then yields k2 D k2

x C k2
y . In addition, the condition of continuity

on the plate (13.48) imposes kx D kB, so that:

k2
y D k2 � k2

B and P0 D �cV0

k

ky
: (13.53)

As a consequence, the pressure and velocity fields are written:
8
ˆ̂̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂̂
:

P.x; y; !/ D �cV0

k

ky
e�j.kxxCkyy/;

Vx.x; y; !/ D � 1

j!�

@P

@x
D V0

kB

ky
e�j.kxxCkyy/;

Vy.x; y; !/ D � 1

j!�

@P

@y
D V0e�j.kxxCkyy/:

(13.54)

The first equation in (13.53) shows that the ky component of the wavenumber is real
if k > kB, and purely imaginary otherwise.

For a given frequency, the first so-called supersonic case is obtained when the
acoustic wavelength � D 2
=k is less than the elastic wavelength �B D 2
=kB.
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Figure 13.6 shows that this situation is obtained when the frequency of vibration of
the plate is higher than its critical frequency. In terms of wave speed, this amounts to
saying that cB D !=kB > c D !=k, which justifies the designation of supersonic.
Conversely, when the acoustic wavelength � D 2
=k is higher than the elastic
wavelength in the plate �B D 2
=kB or, equivalently, when the driving frequency
is less than the critical frequency, the elastic wave speed is lower than the speed of
sound, and this corresponds to the so-called subsonic case. These two situations are
now examined with more details.

13.3.4.1 Supersonic Case

The supersonic case is illustrated in Fig. 13.9. With ky D
q

k2 � k2
B, the pressure is

written:

P.x; y/ D �cV0

k
q

k2 � k2
B

e�j.kBxC
p

k2�k2
By/: (13.55)

The wave vector (indication the direction of propagation) is given by the angle 


defined by:

sin 
 D kB

k
D
r

!c

!
: (13.56)

As the frequency increases, the angle 
 between the direction of propagation and
the vector normal to the plate decreases. The direction of propagation then tends

x

λB

λ

y

ky

kx

k

Fig. 13.9 Supersonic case. When the acoustic wavelength � is less than the elastic wavelength �B

in the plate, the acoustic wave radiated by the plate propagates in the direction 
 . As the frequency
increases, the angle 
 decreases, and thus the propagation tends to be more and more perpendicular
to the plate
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Fig. 13.10 Radiation of a plate excited by an impact in its center. (Left) simulation. (Right)
measurements. The plate is perpendicular to the plane of the figure. The angle 
 between the
direction of propagation and the vector normal to the plate decreases from the center to the edges,
consecutive to the increase of propagation speed with frequency. See also the insert on the “optical
measurements of sound fields” in the next section. After [32]

to become progressively perpendicular to the plate. In contrast, as the vibration
frequency decreases and tends to the critical frequency of the plate (with f � fc),
then the acoustic wave progressively tends to be confined to the plate plane.7

This property is clearly visible in Fig. 13.10 which shows a comparison between
measurements and simulation for a plate excited by an impact in its center. As a

7Here, an interesting link can be made with the linear array of monopoles shown in Fig. 12.7. It
was shown in the previous chapter that, as the number N of monopoles tend to infinity, then the
direction of radiation tends to � D 0, which is equivalent to kd cos 
 D '. This can only occur
under the condition j'j < kd. In the present example of the plate, the definition of the angle 
 is
modified, so that we must here convert the cos 
 of the monopole array in sin 
 , which yields

sin 
 D '

kd
:

For the plate, the phase shift ' between two consecutive “monopoles” is given here by kBd D '.
As d tends to zero, we find Eq. (13.56) again. This shows that the linear array of monopoles is of
the supersonic type. We can further add that if a condition such as j'j > kd would have been
obtained as N tends to infinity, then no radiation would have exist in the far field, because � could
not be zero. This remark will be useful in Chap. 14 to understand why there is no critical frequency
in wind instruments.
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result of the impact force, flexural waves propagate from the center to the edges.
According to the elastic dispersion relationship, the high frequencies propagate
faster than the low frequencies. For this reason, the angle 
 between the vector
normal to the plate and the direction of propagation decreases from the impact point
to the edge.

The mean value of the acoustic power radiated per unit area is obtained by a
classical method:

hPai D 1

2
RefPV?

y g D 1

2
�cV2

0

k
q

k2 � k2
B

D 1

2
�cV2

0

1
q

1 � !c
!

: (13.57)

The radiation efficiency �.!/ is defined as the ratio between the mean value of
the power radiated by the plate and the power obtained for an identical plate with
the same area vibrating with a uniform velocity V0. Here, we have (see Fig. 13.11):

� D hPai
1
2
�cV2

0

D k
q

k2 � k2
B

D 1
q

1 � !c
!

: (13.58)

In summary, it has been shown that the infinite plate can radiate acoustic energy
for the frequencies above the critical frequency. As the frequency f > fc becomes
closer to the critical frequency, then the radiation efficiency increases and the
direction of propagation tends to the plate plane. Notice that the simple theory
presented here predicts that hPai can tend to infinity. In the reality, the acoustic
power is bounded both by the internal losses and by the finite size of the plate, as
shown in the next sections.

Fig. 13.11 Radiation
efficiency of the infinite plate
as a function of frequency
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Fig. 13.12 Subsonic case.
The trajectories of the air
particles are elliptic, with
axes decreasing exponentially
with the distance from the
plate plane

y

x

λB

Air particle trajectories

13.3.4.2 Subsonic Case

The subsonic case corresponds to the situation shown in Fig. 13.12. In this case, we

have ky D �j
q

k2
B � k2, and the acoustic variables are written:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
ˆ̂̂
:̂

P.x; y/ D j�cV0

k
q

k2
B � k2

e�jkBxe�
p

k2
B�k2y;

Vx.x; y/ D jV0

kBq
k2

B � k2

e�jkBxe�
p

k2
B�k2y;

Vy.x; y/ D V0e�jkBxe�
p

k2
B�k2y:

(13.59)

The pressure modulus decreases exponentially with the distance y. The exponent
increases with the ratio between the acoustic wavelength and the elastic wavelength.
From a physical point of view, this means that there is destructive interferences
between the neighboring “dipoles” of the plate over one given acoustic wave-
length �.

Examining now the acoustic velocity sheds useful light on the underlying physics
of the subsonic case. It is seen in Eq. (13.59) that both components of the velocity
vector are in quadrature and, in general, with different amplitudes. As a consequence
the trajectories of the particles are elliptic. The motion is then confined locally
and there is no transmission of energy from plane to plane as in the propagative
case. In addition, the area of the ellipses decrease exponentially with the distance

to the plate. The quantity 1=

q
k2

B � k2 gives a measure of the “thickness” of this
evanescent field. It can be seen that this thickness decreases as the two wavelengths
(elastic and acoustic) are more and more apart from each other. Finally, one can
easily check that the mean value of the acoustic power hPai is zero in the subsonic
case, since the product PV?

y is purely imaginary.
Let us now conclude this paragraph with the description of an experiment. It

can be observed that if a second plate made of porous (absorbing) material is
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placed close to the first vibrating plate, then the radiation losses increase, which
induces an increase of damping for the elastic vibrations in the first plate. In
order to demonstrate this phenomenon in a rigorous manner, the reader is invited
to reconsider the previous mathematical derivations with a complex structural
wavenumber kB [10]. In short, this additional damping is due to the fact that, close to
the plate, the energy contained in the elliptic motion of the particles is transformed
into heat in the porous material. Benefit of this well-known phenomenon was taken,
for example, in the plate reverberators used in the past in the recording studio for
adding artificial reverberation effects [2].

Optical Measurements of Sound Fields

The figure shown in Fig. 13.10-(right) was obtained by means of optical
measurements of the acoustic pressure [32]. A first instantaneous image of
the sound field is made with a laser, for the air at rest. In this case, the optical
index is n0. A rubber bullet then hits the plate: as a result a transient sound
pressure p is generated in the vicinity of the plate. A second image is recorded
with the same laser, at a very short time t after the impact. In accordance
with the Gladstone–Dale law, the optical index field is then governed by the
equation:

n � 1 D K�; (13.60)

where K is the Gladstone constant, and � the density of the fluid. The density
is linked to the sound pressure by the adiabatic equation of state (see Chap. 1).
Due to the index variation consecutive to the propagation of the sound wave,
the optical path in the z-direction (the plane of Fig. 13.10) is modified by the
quantity:

�L D
Z

Œn.x; y; z/ � n0� dz: (13.61)

As a consequence, the phase shift undergone by the laser beam with
wavenumber kl is �˚ D kl�L. The superposition of both images generates
the fringes of interference shown in Fig. 13.10.

13.3.5 Acoustic Loading of the Plate

As for the pulsating sphere in the previous chapter, the radiation impedance (or
acoustic loading impedance) per unit area of the plate is defined by the ratio of the
pressure divided by the normal acoustic velocity in the plate plane (in y D 0). For
the supersonic case, Eq. (13.55) yields
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Z.x; 0/ D �c
k

q
k2 � k2

B

D �c
1

q
1 � !c

!

; (13.62)

Since k is larger than kB, the radiation impedance is purely resistive and equal
to Ra D �c�.!/. This radiation resistance is thus proportional to the radiation
efficiency. Conversely, in the subsonic case, a purely imaginary radiation impedance
is obtained

Z.x; 0/ D �c
jk

q
k2

B � k2

D j�!
1

q
k2

B � k2

: (13.63)

which corresponds to an acoustic mass of the form:

Ma D �
1

q
k2

B � k2

; (13.64)

This result quantifies the inertial loading of the fluid on the plate.

Remark. In this paragraph, only the radiation on one side of the plate was
considered, in the positive half-space. In reality, notice that the infinite plate also
radiates another sound field, in opposite phase, in the negative half-space.

13.3.6 Dispersion Equation for the Acoustically Loaded Plate

In order to evaluate and quantify the influence of the acoustic field on the plate,
its flexural equation of motion needs to be modified through introduction of the
pressure forces on each side of the plate, as follows:

� !2�phW C D
d4W

dx4
D �P.x; 0C; !/ C P.x; 0�; !/: (13.65)

As previously, the pressure terms are governed by the Helmholtz equation, and the
continuity of the normal velocity is expressed by means of the Euler equation. These
classical derivations are not detailed here. It is assumed that the plate radiates in the
air on both sides.

The demonstration is conducted in the case of a forcing frequency !. The
unknown is the flexural wave number, denoted �B in order to make a distinction
with the case presented in Sect. 13.3.4 where the acoustic loading was ignored.
According to the results obtained in Eq. (13.54), the equation of dispersion becomes

D.�B; !/ D � 2j�
q

k2 � �2
B

C �ph

�
1 � D�4

B

�ph!2

�
D 0: (13.66)
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The first term in Eq. (13.66) accounts for the acoustic loading of the fluid. If the plate
radiates in a light fluid (which is usually the case for a fluid with a “small” density
� compared to the density of the plate), then we have �B ' kB (see Sect. 13.3.3).

It is often of interest to write the equation of dispersion (13.66) in a dimensionless
form, using the following reduced variables:

˝ D !

!c
I � D

s
c2

c2
b

� 1 I " D 2�c

!c�ph
; (13.67)

where cb D !=�B is the speed of the flexural waves for the acoustically loaded
plated. After some derivations, the following equation is obtained [21]:

�5 C 2�3 C �
1 � ˝�2

	
� � "˝�3 D 0: (13.68)

It can be shown that Eq. (13.68) has five roots. Only two of them are physically
relevant for the radiation of the loaded plate. Compared to the supersonic case
presented in Sect. 13.3.4, these roots are complex, with a positive imaginary part.
This means that the elastic wave is damped in the plate, due to the radiation losses.

For stringed instruments, the order of magnitude for the physical parameters are
the following: fc D 1 kHz, �p D 103 kg/m3, h D 1 mm, � D 1:2 kg/m3, and
c D 340 m/s. As a consequence, the parameter " which quantifies the acoustic
loading is equal to 0.15.

13.3.7 Radiation of a Point-Excited Plate

13.3.7.1 One Step Backwards: Back to the Plate Vibrations, Ignoring
the Acoustic Loading

The particular case of an infinite point-excited plate is examined below. This is a
very pertinent example in musical acoustics, since it accounts well for the practical
situation of a soundboard excited by a string, at least during the time interval before
the first reflections at the boundaries.

The geometry of the problem is shown in Fig. 13.13. For convenience, the
problem is solved in polar coordinates, taking advantage of the axial symmetry.
In the Fourier domain, the flexural equation of motion is written:

D

�
d2

dr2
C 1

r

d

dr

�2

W � �ph!2W D Q.r/; (13.69)

where the source term Q.r/ has the dimension of a surface density of force and is
defined by:

Z 2


0

Z 1

0

Q.r/rdrd
 D F0; (13.70)
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Fig. 13.13 Point-excited
vibrating plate
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which yields

Q.r/ D F0ı.r/

2
r
: (13.71)

This class of axisymmetrical problem can be solved with the Hankel transform of
zero-order, defined as:

Of .�/ D
Z 1

0

f .r/rJ0.�r/dr; (13.72)

where J0 is the zero-order Bessel function of the first kind [1]. Applying this
transform to the equation of motion of the plate (13.69) yields the Hankel function
of the displacement:

OW.�/ D F0

2


1

D
�
�4 � k4

B

	 with k4
B D �ph!2

D
: (13.73)

The plate displacement is derived from the inverse Hankel transform:

W.r/ D
Z 1

0

OW.�/�J0.�r/d�; (13.74)

which yields, finally:

W.r/ D F0

2
D

Z 1

0

J0.�r/

�4 � k4
B

�d�: (13.75)

The integral in (13.75) yields: (see [21, 31, 40]):

W.r/ D jF0

8!
p

�phD

�
H.2/

0 .kBr/ � 2j



K0.kBr/

�
; (13.76)
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Fig. 13.14 Point-excited
infinite plate at constant
frequency. Modulus of the
plate velocity V as a function
of the distance from the
excitation point. Dotted line:
approximate solution, valid
for kBr > 4. V0 D jj!W.0/j
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where H.2/
0 is the zero-order Hankel function of the second kind defined by:

H.2/
0 .x/ D J0.x/ � jY0.x/: (13.77)

In this expression, Y0.x/ is the zero-order Bessel function of the second kind, and
K0.x/ is the modified zero-order Hankel function [1].

Figure 13.14 shows the modulus V D j!W of the plate velocity as a function of
the normalized distance kBr, and the approximate solution:

V ' F0p
�phD

s
2


kBr
; (13.78)

which is valid for kBr > 4.
At the excitation point, the term between square brackets in Eq. (13.76) is equal

to one. The driving impedance is defined by the fraction:

Zp.0/ D F0

j!W.0/
D 8

p
�phD D 4h2

s
�pE

3.1 � �2/
: (13.79)

The remarkable result here is that this impedance is real and does not depend on
frequency. It depends on the thickness and on the material properties of the plate,
only. Notice, however, that this result is only true for a thin plate (Kirchhoff–Love
model). The driving admittance (or mobility) is given by Yp.0/ D 1=Zp.0/.

The expression (13.79) can be used for validating measurements of driving
impedance (or admittance) of finite damped isotropic thin plates, in the high
frequency range. In general, the losses increase with frequency, so that the returning
waves reflected at the boundaries can be neglected. Equation (13.79) can then be
viewed as an asymptotic limit. Benefit will be taken from this expression at the end
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of the chapter for defining a “merit index” for stringed instruments, whose interest
is to help in the selection of appropriate materials for the soundboard.

A similar expression can be found for anisotropic plates [4, 7]. For an orthotropic
plate, for example, the following approximation is usually admitted:

Zp.0/ ' 4h2

s
�pŒE1E2�1=2

3.1 � �2/
; (13.80)

where E1 is the Young’s modulus in the direction of the fibers, and E2 the modulus
perpendicular to the fibers [19].8

Taking further the structural losses into account, then the Young’s modulus
becomes complex of the form EŒ1 C j	.!/�. For most materials used in instrument
making, 	 increases with frequency. As a consequence, the modulus jZ.!/j
increases and the admittance jY.!/j decreases with frequency.

Most soundboards of musical instruments are not homogeneous, due to the
presence of ribs glued on one side. The driving-point mobility of isotropic plates
reinforced by periodic ribs was investigated by Nightingale and Bosmans [28].
One conclusion of this study is that the measured mobility greatly depends on
the distance between the driving point and the closest rib, as long as this distance
is small compared to the flexural wavelength. For a driving-point close to a rib,
the measured real part of Yp.0/ corresponds to the mobility of the rib (beam).
As soon as the rib-driving-point distance becomes larger than the wavelength,
then the measured mobility tends to the theoretical value obtained for a plate with
constant thickness. These results are of interest for understanding and interpreting
the driving-point mobility measurements performed on a piano, for example.

Impulse Excitation

For a given load q.r; t/ in the time domain, the governing equation for the
plate displacement w.r; t/ is

D

�
@2

@r2
C 1

r

@

@r

�2

w C �ph
@2w

@t2
D q.r; t/: (13.81)

Let us assume that the plate is initially at rest (w.r; 0/ D Pw.r; 0/ D 0).
Denoting b2 D D=�ph, the particular case of an impulse excitation of the
form:

(continued)

8In this expression, it is assumed that the Poisson’s coefficients are identical in both directions.
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q.r; t/ D 8b�phf .r/ı.t/; where
Z

1

0

2
rf .r/dr D 1 so that f .r/ D ı.r/

2
r
:

(13.82)

is examined. The full calculation was done by Graff [17]. The following
solution is obtained

w.r; t/ D 2




Z t

0

u

t � u
sin

�
r2

4b.t � u/

�
du: (13.83)

The displacement can be rewritten in the form:

w.r; t/ D 1 � 2



Si

�
r2

4bt

�
where Si.x/ D

Z x

0

sin z

z
dz; (13.84)

and where Si.x/ denotes the sine integral function.
Figure 13.15 shows the motion of the plate at a given fixed time t0, and the

temporal evolution of one particular point. It shows, among other things, the
presence of a precursor where the most rapid oscillations arrive first, due to
the properties of the dispersion equation.

13.3.7.2 Fluid-Loaded Plate

The purpose of this paragraph is to evaluate the influence of the fluid (acoustic
field) on the plate for a harmonic excitation on a single point. The results presented
below should be compared to those obtained for a plate in vacuo (see Sect. 13.3.7.1).
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Fig. 13.15 Impulse excitation of a plate. (Left) Global motion of the plate at a fixed time t D t0.
(Right) Temporal evolution of the plate displacement at a given point r D r0
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Taking now the radiated pressure exerted on both sides of the plate into account, the
equation of motion is modified as follows:

D

�
d2

dr2
C 1

r

d

dr

�2

W � �ph!2W D F0ı.r/

2
r
� P.r; z D 0C/ C P.r; z D 0�/;

(13.85)

where the z-axis is perpendicular to the plate. The plate is located in the plane
z D 0. As in Sect. 13.3.7.1, this equation can be solved by means of the Hankel
transform [17, 40]. Denoting OP.�; 0/ the Hankel transform of the pressure, and OW.�/

the transform of the displacement, we get

D
�
�4 � k4

B

	 OW.�/ D �OP.�; 0C/ C OP.�; 0�/ C F0

2

: (13.86)

Noticing that the first term in the left-hand side of Eq. (13.86) has the dimension of
a pressure, the Hankel transform of the driving-point impedance of the plate can be
defined as:

OZp.�/ D D
�
�4 � k4

B

	

j!
: (13.87)

According to (13.62), the pressure is written:

OP.�; 0/ D j! OZa.�/ OW with OZa.�/ D �
!

p
k2 � �2

: (13.88)

Equation (13.86) becomes

j! OW.�/ D F0

2


1

OZp.�/ C 2 OZa.�/
: (13.89)

Through inverse Hankel transform, the displacement of the plate is derived

W.r/ D F0

j2
!

Z 1

0

�J0.�r/
OZp.�/ C 2 OZa.�/

d�: (13.90)

This last equation can be solved using contour integration in the complex plane, or
numerically [21]. The Hankel transform of the radiated pressure is obtained through
the Helmholtz equation combined with the continuity of the normal velocities on
the plate, as in Sect. 13.3.4. These derivations are not detailed further here. Finally,
we obtain

for z > 0 OP.�; z/ D j! OZa.�/ OW.�/e�jz
p

k2��2
; (13.91)
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which yields, in turn:

P.r; z/ D F0

2


Z 1

0

OZa.�/

OZp.�/ C OZa.�/
�J0.�r/e�jz

p
k2��2

d�: (13.92)

The far field pressure P.r; z/ can be derived by using the method of stationary
phase [21]. With the change of coordinates r D R sin 
 and z D R cos 
 , the
following expression is obtained for the half-plane z > 0, and for kR � 1:

P.R; 
/ D jkF0e�jkR

2
R

cos 


1 C jkh �p

�
cos 


h
1 � !2

!2
c

sin4 

i : (13.93)

Discussion

A few remarks can be made with regard to the expression of the far field pressure
calculated in (13.93):

• In the direction perpendicular to the plate (
 D 0), the pressure reduces to:

P.R; 0/ D jkF0e�jkR

2
R

1

1 C jkh �p

�

: (13.94)

This result shows that, due to the loading, the pressure is multiplied by a
correcting factor which depends on the surface density �ph of the plate only
(in particular, this factor does not depend on the plate rigidity D). In other words,
the far field pressure of a plate is similar to the one radiated by a membrane with
the same surface density.

• In addition, if the plate can be considered as sufficiently thin or, equivalently, that
the frequency is sufficiently small so that one can assume that kh �p

�
� 1, then

we have

P.R; 0/lim � jkF0e�jkR

2
R
: (13.95)

Under these assumptions, it can be seen that the pressure is equivalent to the one
radiated by a point source with imposed force F0.

• For frequencies below the critical frequency, P.R; 0/ is the maximum of the
pressure. In contrast, in the supersonic range, pressure maxima can exist with
larger amplitudes than P.R; 0/ in some particular directions 
c defined by the
condition:


c D sin�1

!c

!

�1=2

: (13.96)
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θ = 0°

Fig. 13.16 Pressure field radiated by a thin isotropic plate loaded by the air. (Left) f D 0:4fc;
(Center) f D 1:2fc; (Right) f D 2:0fc. The horizontal arrow is perpendicular to the plate plane
and corresponds to the direction 
 D 0. The light-gray zones (for f > fc, middle and right figures)
indicate the directions of maximum pressure. For f < fc (left figure), there are no preferential
directions, and the directivity pattern is close to the radiation pattern of a dipole [31]

Figure 13.16 shows the sound pressure radiated by an isotropic plate, for different
frequencies (below and above the critical frequency of the plate).

• In practice, the magnitude of the pressure is limited by the internal damping
inside the plate. This is particularly true in the supersonic range, above the critical
frequency.

13.4 Radiation from Finite Plates

In a number of past studies, it has been shown that finite plates are relevant to
account for the radiation of stringed instruments, at least to a first approximation
(see Fig. 13.17) [11]. In fact, it is plain that guitar, violin or piano soundboards
cannot be strictly modeled as plates. Other components such as the ribs, the sound
holes and the bridge, for example, and geometrical factors such as the curvature
contribute to add perturbations in the model [15, 16]. However, the finite plate model
is a good reference for presenting the basic principles that govern the structural
acoustics of stringed and percussive instruments. It also yields interesting reference
solutions which might be helpful in case of numerical approach. This explains why
the radiation of finite plates is presented in detail below. The application of the
results to real instruments, as well as the study of some particular modifying features
will be examined later in this section.
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Fig. 13.17 Relevance of the plate model in the case of violin plates. A few low-order modal shapes
of violin back plates are presented. These shapes are very similar to those of a metallic plate of
comparable dimensions. The Chladni patterns were obtained in a similar way as for the guitar
modes in Chap. 3. After [41]

13.4.1 Spatial Fourier Transform

The purpose of this section is to calculate the acoustic field radiated by a thin
rectangular isotropic vibrating plate, simply supported along its edges. The vibratory
properties of such a plate were presented in Chap. 3. It is assumed that the plate
is inserted in an infinite rigid baffle, so that the Rayleigh formula presented in
Chap. 12 can be used. It is also assumed that the observation point is located
at a sufficiently large distance from the plate, in order to take advantage of the
Fraunhofer approximation defined in the same chapter. The geometry of the problem
is shown in Fig. 13.18. W denotes the flexural displacement of the plate. Cartesian
coordinates are used. All derivations are made for an harmonic excitation of the
plate with frequency !. The radiated pressure is written:

P.r; !/ D �!2�

2
r

Z

S
W.x0; y0; !/e�jkjr�r0jdS.r0/; (13.97)
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Fig. 13.18 Geometry used for calculating the radiation of a rectangular plate inserted in an infinite
baffle. kx D k sin 
 cos ˚ and ky D k sin 
 sin ˚

which can be written, equivalently:

P.r; 
; ˚; !/ D �!2�

2
r
e�jkr

Z

S
W.x0; y0; !/eCj.kxx0Ckyy0/dx0dy0; (13.98)

with kx D k sin 
 cos ˚ and ky D k sin 
 sin ˚ . A fundamental result is found
in Eq. (13.98): if the distance between the observation point and the plate is large
compared to the dimensions of the plate, then the radiated pressure is proportional
to the spatial Fourier transform of the plate displacement:

P.r; 
; ˚; !/ D �!2�

2
r
e�jkr QW.kx; ky; !/: (13.99)

This property can be viewed as a generalization of the previously obtained result for
the plane piston in Chap. 12.

13.4.2 Contribution of the Vibrating Modes to the Radiated
Pressure

In what follows, the internal damping in the plate material and the reaction of the
acoustic field against the plate are left temporarily aside. The displacement field if
the plate is projected onto the its eigenmodes basis:

W.x; y; !/ D
1X

mD1

1X

nD1

Amn.!/�mn.x; y/: (13.100)
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Fig. 13.19 Modal shape of a
simply supported rectangular
plate for (m D 4, n D 3).
The respective quantities �m

and �n determine the spatial
periodicity along the x and y
axis

λn = 2 Ly/n

λm = 2 Lx/m

For a simply supported plate of length Lx and width Ly, the eigenmodes are written:

�mn.x; y/ D 2
p

LxLy
sin

�
m


Lx
x

�
sin

�
n


Ly
y

�
(13.101)

where the normalization factor has been selected so that
R

S �2
mndS D 1. An example

of modal shape is shown in Fig. 13.19.
The contribution Pmn of the mode .m; n/ to the total sound pressure is defined by:

Pmn.r; 
; ˚/ D �!2�

2
r
e�jkrAmn Q�mn.kx; ky; !/: (13.102)

Thus, the problem reduces to calculating the spatial Fourier transform of the modal
shape �mn.x; y/. This calculation is rather tedious by hand, though it becomes
straightforward with currently available numerical tools. The result in the simple
case presented here is written [40]:

Pmn.r; 
; ˚; !/

D �!2�

r
e�jkrAmn 
mn

p
LxLy

�
.�1/meCjkxLx � 1

.kxLx/2 � m2
2

� �
.�1/neCjkyLy � 1

.kyLy/2 � n2
2

�
:

(13.103)

For a given angular frequency !, Eq. (13.103) shows that particular directions exist
in space where the modal contribution Pmn is high. These directions fulfill the
conditions kxLx � m
 and kyLy � n
 .9 The corresponding directions 
mn and
˚mn (also called directions of spatial coincidence) are given by:

9These values correspond to the maxima of the functions
ˇ
ˇ̌ .�1/meCjkxLx �1

.kxLx/2
�m2
2

ˇ
ˇ̌

and
ˇ
ˇ̌ .�1/neCjkyLy

�1

.kyLy/2
�n2
2

ˇ
ˇ̌
.

Except for the lowest values of m and n, these maxima are close to m
 and n
 .
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Fig. 13.20 Examples of spatial coincidence for the plate mode m D 4; n D 3, at a frequency of
1 kHz. Lx D 1 m; Ly D 0:6 m

k sin 
mn cos ˚mn D km D m


Lx
and k sin 
mn sin ˚mn D kn D n


Ly
: (13.104)

Examples of spatial coincidence are shown in Fig. 13.20. In addition, the pressure
components Pmn are subjected to frequency coincidence through the expression of
the modal amplitudes Amn. In Chap. 3, it was shown that, for a plate excited with a
force F at point .x0; y0/, this amplitude is

Amn D F

�ph

�mn.x0; y0/

!2
mn � !2 C 2j�mn!!mn

; (13.105)

where the !mn are the eigenfrequencies of the plate, and �mn the modal damping
factors which are assumed to be small compared to unity. For simply supported
rectangular plates, the eigenfrequencies are given by:

!mn D
s

D

�ph

"
m2
2

L2
x

C n2
2

L2
y

#

D
s

D

�ph

�
k2

m C k2
n

�
: (13.106)

In summary, situations may occur where a plate mode is vibrating with high
amplitude (frequency coincidence), although the corresponding sound pressure is
low, if the condition of spatial coincidence is not fulfilled. In other words, resonant
modes might not be always efficient in terms of radiated power. Different particular
cases are now examined.
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13.4.2.1 Radiated Sound Pressure

• For large wavelengths, i.e., for k ! 0 in (13.103), the pressure becomes

Pmn ! Bmn
e�jkr

r
; (13.107)

where Bmn depends only on !. This means that the directivity index is constant.
The pressure is similar to the one radiated by a pulsating sphere.

• In Eq. (13.104), one can see that the coincidence angles exist only if kn < k and
km < k, since the sine and cosine functions are bounded by one. In terms of
wavelengths, this means that the acoustic wavelength � has to be smaller than
�m D 2Lx=m and �n D 2Ly=n (see Fig. 13.19). For subsequent discussion, it
is convenient to introduce the structural wavenumber kmn D p

k2
m C k2

n. From
Eq. (13.104), the directions 
mn are given by:


mn D sin�1 kmn

k
: (13.108)

This shows that 
mn exist under the additional condition kmn < k, i.e., when the
acoustic wavelength is smaller than the elastic wavelength in the plate. This is a
generalization of the result obtained for an infinite plate. This condition can occur
only for frequencies beyond the critical frequency defined in (13.51). It can be
also checked that:

˚mn D tan�1 kn

km
: (13.109)

Examples of two cases (kn < k with km < k and kmn > k, part; kn < k with
km < k and kmn < k) are shown in Fig. 13.21.

• Some intermediate configurations also exist, corresponding to the cases where
kn < k and km > k, or kn > k and km < k. In these cases, there are no
maxima for ˚ . However, one can observe maxima for the angles 
 which fulfill
the conditions:

8
ˆ̂̂
<

ˆ̂
:̂

for kn < k and km > k W 
n D sin�1

�
kn

k cos ˚

�
;

for km < k and kn > k W 
m D sin�1

�
km

k cos ˚

�
:

(13.110)
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Fig. 13.21 Pressure radiated by some particular modes .m; n/ of a simply supported rectangular
plate. (Left) kn < k and km < k and kmn > k: the pressure vanishes in some directions (˚) of the
horizontal plane, but not in the vertical plane (
 ). (Right) kn < k and km < k and kmn < k: the
pressure vanishes for some particular directions in both the horizontal and vertical planes

13.4.2.2 Intermodal Radiation Impedances

Using the spatial Fourier transform of the displacement, the radiated pressure
can be written alternatively [26]:

P.x; y; z; !// D j
�!2

4
2

Z C1

�1

Z C1

�1

QW.kx; ky/

kz
e�jkzzej.kxxCCkyy/ dkxdky;

where kz D
q

k2 � k2
x � k2

y :

(13.111)
Based on the modal expansion of the displacement (13.100), one can derive

the surface pressure (in the plate plane z D 0):

P.x; y; 0; !/ D
X

m;n

X

r;s

j!Amn.!/Zmnrs.!/�rs.x; y/; (13.112)

(continued)
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where the Zmnrs are the intermodal radiation impedance given by:

Zmnrs.!/ D �!

4
2

Z C1

�1

Z C1

�1
Q�mn.kx; ky/ Q�rs.�kx; �ky/ dkxdky: (13.113)

The real part of the Zmnrs corresponds to the dissipated acoustic power. The
imaginary part accounts for the fluid loading. In free field, the imaginary part
is positive and, in turn, the eigenfrequencies of the plate decrease compared to
the in vacuo case. These expressions generalize the result obtained in Chap. 12
in the case of the plane piston. For “light” fluids, the reactive effects are often
negligible, except for light and flexible structures (see Chap. 14).

In this section the comparison between acoustic and elastic wavenumber pre-
sented in Sect. 13.3 for infinite plates has been generalized to finite plates. The main
difference between both cases is due to the fact that the elastic wavenumber can
take only discrete values for finite plates. In addition, as a consequence of the spatial
periodicity of the vibratory field on the plate, the magnitude of the pressure field is
subjected to strong variations with regard to the direction of propagation in the air
in the supersonic range. These directions vary a lot with the geometry of the mode.
During normal playing of an instrument, different modes are excited successively.
Consequently, the directivity of the instrument changes continuously.

13.4.3 Radiated Acoustic Power

13.4.3.1 Single Modal Contribution

The radiated acoustic power is calculated by integration of the flow of the acoustic
intensity vector through a closed surface at a given distance r from the plate. The
calculation is simple for a spherical surface in the far field. We get

hPajmn.!/i D 1

2�c

Z 2


0

Z 
=2

0

jPmn.r; 
; ˚; !/j2 r2 sin 
d
d˚; (13.114)

where Pmn is given by (13.103). As for the infinite plate, the radiation efficiency is
defined by the ratio:

�mn.!/ D hPajmn.!/i
1
2
�cLxLyhj PWmnj2i ; (13.115)

where hj PWmnj2i is the mean quadratic velocity defined as:



13 Radiation of Vibrating Structures 735

hj PWmnj2i D 1

LxLy

Z Lx

0

Z Ly

0

j PWmn.x; y; !/j2 dxdy: (13.116)

The efficiency �mn is proportional to the radiation resistance of the mode mn:

Ramn.!/ D hPajmn.!/i
1
2
hj PWmnj2i D �cLxLy�mn.!/: (13.117)

In the particular case of the simply supported rectangular plate, the calculation based
on (13.103) leads to the expression:

�mn.!/ D 16k2LxLy


6m2n2

Z 2


0

Z 
=2

0

0

BBB
@

�
cos
sin



kxLx

2

�
cos
sin



kyLy

2

h� kxLx
m


	2 � 1
i �


kyLy

m


�2 � 1

�

1

CCC
A

2

sin 
d
d�:

(13.118)
In (13.118), the cosine function is used for odd values of m (resp. n), and the sine
function is used for even values of these indices.

Figure 13.22 shows some examples of radiation efficiencies of a rectangular plate
[38], as a function of the ratio:

� D k=kmn D k
r


m

Lx

�2 C



n

Ly

�2

For k > kmn, the modal efficiencies tend to unity, as for the limiting case of the
infinite plate.

For k < kmn, �mn is weak but nonzero (as it was the case for infinite plates: see
Fig. 13.11). Close examination shows that, depending on the values taken by m and
n, two different situations may occur, depending whether the plate radiates by the
edges or by the corners, as shown in the next section.

13.4.3.2 Edge and Corner Radiation

Figure 13.23 (left) shows a typical situation of corner radiation. This corresponds
to the vibration of the plate at a frequency ! so that the following conditions are
fulfilled:

k < kmn; km D m


Lx
> k and kn D n


Ly
> k:

In the case presented in Fig. 13.23, the contributions of the elementary “dipoles”
on the plate to the radiated power are close to zero (see Chap. 12), except for the
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Fig. 13.22 Examples of
modal radiation efficiencies
�mn as a function of
� D k=kmn for a rectangular
plate, after Wallace [38]. For
� < 1, the modes (1; 12),
(1; 11), and (2; 12) are
radiating only by the edges,
whereas the modes (12; 12)
(11; 11), and (11; 12) are
radiating by the corners
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Fig. 13.23 (Left) Corner radiation of a rectangular plate: � > �m (k < km) and � > �n (k <

kn). (Right) Edge radiation of a rectangular plate: � < �m (k > km) and � > �n (k < kn). Only
the gray zones are efficient in terms of radiation. The radiation efficiency is close to zero in the
other parts of the plate, since the distance between the centers of the zones (with opposite signs) is
less than one wavelength. This is a consequence of the dipole properties demonstrated in Chap. 12

four zones at the corners since, in this latter case, the distance between the zones is
larger than an acoustic wavelength. Similarly, the edge radiation corresponds to the
conditions:
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Fig. 13.24 Surface, edge, and corner radiation

k < kmn and
�

kmD m


Lx
< k and kn D n


Ly
> k

�
or

�
km D m


Lx
> k and kn D n


Ly
< k

�
:

Here a similar situation as for the corner radiation is obtained, along the y axis only.
The radiation efficiency only results from the gray zones situated close to the edges
in y D 0 and y D Ly. In the case shown in Fig. 13.23, the acoustic wavelength �

is smaller than the spatial periodicity �m D 2Lx=m of the mode along the x axis
and, as a consequence, the different contributions to the radiation do not cancel each
other in this direction.

A summary of all possible situations is shown in Fig. 13.24. In addition to the
cases of edge and corner radiation, the third case corresponds to the conditions

kmn < k; km D m


Lx
< k and kn D n


Ly
< k;

where the whole surface contributes to the radiation. The corresponding zone in the
k-plane is inside the quarter circle of radius k.

The dark gray zone located between the quarter circle of radius k and the
square of side k corresponds to particular edge modes where the periphery of
the whole surface contributes to the radiation efficiently. The width of the radiating
zone increases progressively as the operating point comes closer to the quarter circle
(see Fig. 13.25).
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Fig. 13.25 Edge radiation in
x and y directions
simultaneously, or
“incomplete” surface modes.
� < �m (k > km) and
� < �n (k > kn) and
k < kmn

+ – +
– + –
+ – +
– + –
+ – +
– + –

In summary, surface modes are the most efficient in terms of radiation, followed
by the edge, and then by the corner modes.

13.4.3.3 Forced Excitation of a Rectangular Plate

In the previous paragraph, the different possible situations governing the radiation
of finite rectangular plates were presented. This allows us now to address the case of
the forced excitation of a plate at a given frequency !. Such situation is close to the
real case of a guitar or piano string excited by a particular frequency component of
the string’s vibration. In fact, the decay time of plucked and struck strings is usually
much larger than the one of the body, and thus, to a first approximation, the string
excitation can be considered as “forced.”

Subsonic Case

Figure 13.26, inspired by Williams [40] shows an example where the excitation
frequency is less than the critical frequency of the plate (subsonic case), which
corresponds to the condition kB > k in terms of wavenumber (see Fig. 13.6).
In this figure, the bullets “�” indicate the eigenmodes of the plate in terms of
wavenumber.

• For a given frequency !, the geometric locus of kB is a “structural” quarter circle
with radius larger than the “acoustic” quarter circle of radius k D !=c.

• Considering the modal vibration amplitudes Amn [see Eq. (13.105)], one can
derive that all modes close to the “structural” quarter circle are likely to be
excited, which corresponds to the condition ! � !mn. This region of modal
excitation is shown as a gray zone in Fig. 13.26. The width of this zone increases
with the modal damping, which means that the resonance peaks are wider.

• As a consequence of the spreading of this zone, three family of modes can be
excited by the forcing frequency !: edge, corner, and surface modes. The surface
modes (which are the most efficient in terms of radiation) correspond to the
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Fig. 13.26 Subsonic forced excitation of a rectangular plate. After Williams [40]

smallest values of the wavenumber in the zone (m and n such as kmn < k). As
a result, even if the vibratory magnitude Amn of these surface modes is smaller
than the one of the corner and edge mode at this forcing frequency, because of
the distance between !mn and !, their acoustical efficiency is higher since kmn

are closer to k.

For the instruments for which a plate radiation model is pertinent (piano or guitar
soundboard, for example), the immediate practical consequence of the property
presented above is that, in the subsonic case, the lowest modes may contribute to the
radiation significantly, even if the excitation frequencies of the strings are relatively
well apart from the corresponding modal frequencies of these modes.

Supersonic Case

In view of the usual order of magnitude for the soundboard materials and geometry
used in stringed instruments, the elasto-acoustic interaction can be considered as
subsonic below 1–5 kHz, depending on the practical case. As a consequence, almost
all fundamental frequencies belong to this interval. However, it is not the case for
the higher partials of the notes, which can have frequencies up to 20 kHz (and even
more, in the case of the cembalo, for example). Thus, for these higher partials, the
supersonic case also has to be examined.

Both the structural and acoustic wavelengths decrease as the forcing frequency
increases. Because of the dispersion properties of the plate, the acoustic wavelength
decreases faster, and thus, above the so-called critical frequency (see Sect. 13.3),
the acoustic wavelength becomes smaller than the structural one. It has been shown
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Fig. 13.27 Forced
supersonic excitation of a
rectangular plate
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previously in this chapter that we are then in the case of a supersonic regime where
the complete surface of the plate radiates efficiently. In terms of wavenumber, this
case is shown in Fig. 13.27. The modes inside the gray ring in the vicinity of the
quarter circle of radius kB are together highly resonating (! close to !mn) and
radiating modes (kmn < k).

The radiation efficiency defined in (13.115) is close to unity for all surface
modes (see Fig. 13.22). recall that this quantity is normalized by the quadratic mean
velocity hj PWmnj2i, and thus, in turn, by the square of the modal amplitude Amn.
For stringed instruments, these amplitudes are rapidly decaying with the rank of
the partial, so that, to a certain extent, one can say that the radiation efficiency
compensates the reduction of magnitude due to the vibration.

Finally, we should bear in mind that, due to the spatial coincidences, the radiated
acoustic energy is concentrated in narrow directivity lobes in the supersonic case.

13.4.3.4 Generalization to Multimode Systems

In Sect. 13.4.3.1, the radiated power was calculated for a single mode. We consider
now a general motion of the plate expanded onto its in vacuo eigenmodes basis, and
written in the form:

W.x; y; !/ D
1X

mD1

1X

nD1

Amn.!/�mn.x; y/ D tA.!/�.x; y/: (13.119)
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In what follows, it is assumed that the far field conditions are valid, so that the spatial
Fourier transform can be used. Advantage will be taken, in particular, of Parseval’s
theorem which states that the mean radiated power hPa.!/i can be calculated in
the wavenumber space as follows [40]:

hPa.!/i D 1

8
2

Z

Sr

Re
n QP.kx; ky; !/ PQW?.kx; ky; !/

o
dkxdky; (13.120)

where the “?” symbol designates the conjugate of a variable. For simplicity, the
calculation of the power in (13.120) is restricted here to a summation over the
quarter circle Sr, which corresponds to the surface modes. In practice, this means
that the power radiated by the edge and corner modes are neglected. Using Euler
equation, hPa.!/i can be expressed in terms of pressure:

hPa.!/i D 1

8!�
2

Z

Sr

j QP.kx; ky; !/j2 kz dkxdky; (13.121)

where kz D
q

k2 � k2
x � k2

y .

Radiation Resistances Matrix

The radiated power can also be expressed in terms of plate velocity:

hPa.!/i D !�

8
2

Z

Sr

j PQW.kx; ky; !/j2
kz

dkxdky: (13.122)

Using the modal expansion (13.119), the square modulus of the velocity is written
equivalently:

j PQW.kx; ky; !/j2 D jt PA.!/ Q�.kx; ky/j2 D PAH
.!/ Q�?.kx; ky/

et�.kx; ky/ PA.!/;

(13.123)

where the exponent “H” accounts for the Hermitian (conjugate transpose) operator.
Finally, we get the (supersonic) radiated acoustic power:

hPa.!/i D PAH
.!/Ra.!/ PA.!/; (13.124)

where Ra.!/ is the radiation resistance matrix defined as:

Ra.!/ D !�

8
2

Z

Sr

Q�?.kx; ky/ et�.kx; ky/q
k2 � k2

x � k2
y

dkxdky: (13.125)

Notice that this expression is similar to the one obtained in Sect. 13.2.3 for the
elementary case of a beam coupled to a semi-infinite tube.
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Each term .Ra/ij D .Ra/mn;m0n0 of the matrix Ra quantifies the mutual radiation
resistance resulting from the interference between the sound fields created by the
modes .m; n/ and .m0; n0/. For .m; n/=.m0; n0/, the eigen radiation resistance are
obtained, which are identical to those obtained for isolated modes, and which form
the diagonal of the matrix Ra.

For a simply supported rectangular plate, it can be shown that [21]:

.Ra/mn;m0n0 D mm0nn0!�
2

8L2
xL2

y

	
Z

Sr

fmm0 .kxLx/ fnn0.kyLy/dkxdky

Œk2
x � .m
=Lx/2/�Œk2

x � .m0
=Lx/2�Œk2
y � .n
=Ly/2/�Œk2

y � .n0
=Ly/2�
;

(13.126)

where the functions fmm0.kxLx/ are equal to:

fmm0.kxLx/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

2.1 � cos kxLx/ for m even; m0 evenI
2.1 C cos kxLx/ for m odd; m0 oddI
2 sin kxLx for m odd; m0 evenI
2 sin kxLx for m even; m0 odd:

(13.127)

Recall that, so far, the action of the sound field on the plate is ignored. This
assumption is justified for a light fluid. However, as seen for the infinite plate, the
dispersion equation of the plate is otherwise modified (as for a thin and flexible
plate, for example). This, in turn, modifies the real and imaginary part of the
wavenumbers, due to both the inertia of the fluid and radiation losses. In Chap. 14,
the action of the sound field on timpani membranes will be presented, showing
substantial modifications of the eigenmodes, compared to the in vacuo case.

13.4.3.5 Radiation Modes of a Plane Plate

The radiation matrix Ra.!/ defined in Eq. (13.125) contains the eigenresistances
of each structural mode on its diagonal and, on both sides, the mutual radiation
resistances. As a consequence, it is not possible to control the power radiated by
each structural mode independently from the others, because of the intermodal
coupling. The problem of the vibratory and acoustic control of musical instruments
is a rapidly evolving field [18], and thus it is worth to take time for addressing this
question. In addition, this problem yields important theoretical results.

The goal is to determine whether velocity distributions exist on the plate so that
the power radiated by each of them is independent from the others. These velocity
distributions are the radiation modes of the plate [12]. Since Ra.!/ is symmetrical,
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definite and positive, it can be decomposed as follows:

Ra D t
PLP; (13.128)

where L is a diagonal matrix whose elements on its diagonal are the eigenvalues
of Ra. The matrix P is the transfer matrix (the matrix of the eigenvectors).
Following (13.124), the radiated acoustic power can be rewritten as follows:

hPa.!/i D bH
Lb where b D P PA: (13.129)

One can check that Eq. (13.129) is written explicitly:

hPai D
X

n

Lnjbnj2; (13.130)

which shows that the radiating modes bn are independent from each other. Ln is the
radiation efficiency associated to the n-th radiated mode.

One difficulty in the use of the radiation modes is due to the dependence of Ra

with frequency. This means that the calculation of these variables has to be made
again for each frequency of interest. However, several authors have shown that, for
ka � 1 where a is a characteristic dimension of the plate, the radiation modes are
reasonably well independent of frequency. Figure 13.28 shows the six first radiation
modes of a baffled plane plate, calculated by Elliott and Johnson [12]. The first
mode is identical to the mode of a plane piston. It corresponds to the monopole
component of the plate whose flow rate is given by the product of the surface by the
mean velocity. The detailed calculation of the eigenvalues and eigenvectors show
that this lowest mode contains the main part of the radiated power. The radiation
efficiency of the higher-order radiation modes is much lower.

(1)

(4)

(2)

(5)

(3)

(6)

Fig. 13.28 First radiation modes for a rectangular baffled plate. kL � 0:1. After [12]
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Fig. 13.29 Decomposition of a volume with plane walls into several planar sources. After [24]

13.4.4 Radiation of Unbaffled Plates and Structural Volumes

To a first approximation, stringed musical instruments can be viewed as structural
volumes with one (or more) vibrating sides. For simplicity, it is assumed here
that the vibrating parts of the volume are plane surfaces. Figure 13.29 shows a
particular case where only the upper surface of the volume vibrates, all other
surfaces remaining at rest. This simplified model is close to the case of a guitar
where the vibrations of neck, sides, and back plate would be neglected compared to
the vibrations of the soundboard.

The radiation of a volume composed of planar walls can be decomposed into two
parts: a baffled plate part and an unbaffled plate part. As seen in Chap. 12, a baffled
source has a condition of zero velocity on the rigid baffle containing the source,
and thus the system is equivalent to two moving plates with symmetrically opposite
velocities on both sides of the baffle. In contrast, an oscillating unbaffled source can
be viewed as the association of two plates moving in phase. As a consequence, as
shown in Fig. 13.29, the pressure radiated by a volume with one moving plane wall
is the sum of two contributions: one pressure pb generated by the baffled component,
and a pressure pu radiated by the unbaffled component. This property incited us to
study first the radiation of unbaffled plates, for which the direct use of the Rayleigh
integral is not valid anymore.
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Baffled case

Unbaffled case

ε < εmin

ε > εmin

 p is kept

p(z = 0) kept on (S) and p (z = 0) = 0 imposed on (Sext)

Calculation of p (z = 0) using FFT

Error calculation  ε =˙Ôv1 − v0˙Ô

v = v0 on (S) and v = 0 else (Sext)

Calculation of  v = v1 using FFT–1

Fig. 13.30 Iterative algorithm for the calculation of the pressure radiated by an unbaffled plane
plate. After [39]

13.4.4.1 Radiation of an Unbaffled Source: Iterative Algorithm

The method presented below was developed in the 1980s by Williams and Maynard
[39]. This method takes advantage of the spatial Fourier transform presented in
Sect. 13.4, which means that it is restricted to the prediction of far field radiation. In
practice, the Fourier transforms are calculated numerically on a discrete mesh of the
structure and, in turn, on a discrete set of wavenumbers. Using rapid and appropriate
tools, such as the Fast Fourier Transform (FFT), a good estimate of the pressure can
be rapidly obtained, even in the case of complex vibration patterns. The successive
steps of the iterative algorithm used for the computation of the sound field are shown
schematically in Fig. 13.30.

(1) Let us denote v0 the velocity imposed on the baffled plate. The remaining part
of the infinite plane (baffle) is supposed to be perfectly rigid (v D 0). In a first
step, the radiated pressure field p0 in the space is then calculated by means of
the Rayleigh integral (using, for example, the FFT).

(2) In a second step, the pressure field p0 is retained, except on the baffle, where the
condition p D 0 is imposed. Through inverse Fourier transform, the velocity
field v1 is calculated corresponding to this modified pressure distribution.

(3) The velocity field v1 is compared to the initial (given) velocity profile v0. If the
relative error " between these two velocity fields is larger than an arbitrarily
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Fig. 13.31 Iterative calculation of the pressure radiated by an unbaffled plane piston of radius a,
for ka D 4. After Le Pichon [24]

imposed limit "min, then another iteration occurs. Otherwise, it is considered that
the result corresponds to the imposed boundary conditions, and the calculation
stops.

In practice, it is observed that the algorithm converges rapidly for ka > 1, where
a is a characteristic dimension of the plate. Figure 13.31 shows, for example, the
results obtained for a unbaffled plane piston for ka D 4.

13.4.4.2 Application to the Guitar

The previous method was successfully applied to the guitar by Le Pichon [25].
First, the velocity profile of both the soundboard and back plate of the instrument
were measured. For each of these two vibrating surfaces, the radiated sound field
was calculated by summing two contributions: the first (for the baffled component)
with the Rayleigh integral, and the second (unbaffled component) by means of the
iterative algorithm presented above.
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Fig. 13.32 Comparison between measurements and prediction of guitar directivity patterns at two
frequencies: 420 and 549 Hz. The measured velocity profiles of soundboard and back plates are
shown in (a) and (b). The corresponding directivity patterns are shown in (c) and (d). On these
two diagrams, the directivity predicted by the Rayleigh integral applied to the soundboard only
is represented with a dashed line. The directivity patterns predicted by the volume model, taking
both plates into account are drawn with solid lines. Finally, the directivity patterns measured in an
anechoic chamber are in dotted lines. After [25]

Figure 13.32 shows the calculated directivity patterns, and the comparison with
measurements performed in an anechoic chamber. It can be seen, among other
things, that the baffled plate model (Rayleigh integral) yields erroneous predictions,
especially on the back of the instrument. In contrast, the measured directivity is
well predicted by the volume model. In accordance with the properties of the
iterative algorithm, the results obtained with this method are deteriorated in the low
frequency range (for ka < 1). For a guitar, the typical frequency limit is around
60 Hz. Also recall that the method is not applicable in the near field.

13.5 Radiation of an Axisymmetrical Nonplanar Source

For a number of instruments, the radiating body is not a plate but a shell which
is, by definition, a nonplanar source. Such a shape is justified by several reasons.
It was shown, for example, in Chap. 8 that the curvature of gongs and cymbals is
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the prime origin of the quadratic nonlinearities observed in the sounds of these
instruments, in case of large amplitude motion. In bowed strings instruments, the
curvature of the soundboard allows the conversion of the vertical static loading due
to the tension of the strings into a “membrane-like” prestress in the soundboard.
As a consequence, the soundboard is more rigid, which contributes to increase the
radiation efficiency, and, in addition, this geometry yields a better contact between
the bridge and the strings. Finally, in wind instruments, several authors have shown
that, in some situations, a coupling exists between the sound field and the structure
[13, 14, 22, 27, 29]. In this case, the tubular geometry of the tubes also is described
by a shell model.10

In this section, the influence of the curvature on the radiation properties of
a source are examined, and the differences with the case of planar sources are
highlighted. First, some simple rules are derived from the dispersion curves, which
show the effect of the curvature on the radiation efficiency. In a second step, it
is shown to what extent the curvature modifies the radiated pressure, compared
to the case of a plate. A simplified model is presented, in case of shallow shells,
which can be used for many instruments. Based on a modal approach, the notion of
Spatial impulse response is presented. The general concepts are illustrated on the
particular case of the spherical shallow shell, which is typical example of practical
use in many percussive instruments, and which can also account for the radiation of
some loudspeakers and stringed instruments. The effect of the curvature on both the
directivity of the source and cutoff frequency are particularly emphasized.

13.5.1 Dispersion Curves for Shells and Critical Frequency

Figure 13.33 shows an example of spherical shell with radius of curvature R, and the
associated dispersion curve. For thin shallow shells, the dispersion relation is given
by [34]:

�sh!2 D Dk4 C Eh

R2
; (13.131)

where �s is the density of the shell, and h its thickness. It can be seen in Fig. 13.33
that the dispersion curve is shifted up, compared to the case of plates [Eq. (13.49)].
The shift of the curve increases when R decreases. The curvature tends to make
the structure stiffer. As a consequence, the critical frequency decreases, which is
shown by the position of the intersection point between both dispersion curves. In
addition, due to the presence of a constant term in (13.131), another intersection
point appears near the origin of the axes. This indicates that the second effect of the

10The issue of the material choice for wind instruments is a very intricate and controversy matter.
Two different materials handled by the same tool do not produce the same geometry, and the nature
of the material intervenes also by its porosity, the state of its surface, its heat capacity, etc.
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Fig. 13.33 Spherical cap and its associated dispersion curve. The straight line in the (!; k)-
diagram accounts for the air dispersion. The numerical values selected for this example are:
E D 2 � 1011 N m�2, �s D 7:8 kg m�3, R D 0:8 m, h D 2 mm, and � D 0:3

curvature is to enhance the radiation efficiency in the low-frequency range. For a
small radius of curvature, a situation may occur where the dispersion curve of the
shell is completely above the dispersion curve of the air: in this case, there is no
critical frequency anymore and all structural modes are radiating.

Similar results are obtained for thin cylindrical shallow shells, such as the
one shown in Fig. 13.34, where a is the radius of curvature. Denoting !p the
corresponding plate modes (obtained in the limiting case of an infinite radius of
curvature), it can be shown that the cylindrical shell modes fulfill the relation [34]:

!2
s D !2

p C E

a2�s.1 � �2/
: (13.132)

As a consequence, similar conclusions as for the spherical shell can be drawn
here. In particular, all modes will be radiating when the dispersion curve of the
cylindrical shell is located above the air dispersion curve, which can occur for a
small radius of curvature.

13.5.2 Radiated Pressure

Let us now turn to the exact calculation of the pressure radiated by shells. For
simplicity, we limit ourselves here to axisymmetrical shells. Figure 13.35 shows
that, by contrast to the case of plane plates, the structural velocity might not be
normal to the structure. In the general case, we have to take both the normal vn and
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Fig. 13.34 Cylindrical shell and its associated dispersion curve. E D 2 � 1011 N m�2, �s D
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the tangential vt velocity into account. The complete calculation of the Kirchhoff–
Helmholtz integral in this case was done by Hu and Wu [20]. These authors show
that the pressure is then given by the sum of four terms:

p.r; t/ D Mn.r; t/ C Mt.r; t/ C Dn.r; t/ C Dt.r; t/; (13.133)

where Mn and Dn are the monopole and dipole contributions of the normal velocity,
respectively, whereas Mt and Dt are the monopole and dipole contributions of the
tangential velocity. For a shallow shell inserted in an infinite baffle, this sum reduces
to the first term, which is of the Rayleigh type, though with a nonplanar integration
surface. This term is written in the time-domain:

p.r; t/ D ��

Z t

0

Z

S
g.r; r0; t; �/

@vn.r0; �/

@�
dSr0d�; (13.134)

where g.r; r0; t; �/ is the space-time Green’s function. For a known (imposed)
normal velocity vn, the problem reduces to the appropriate determination of the
Green’s function g. This function is here different from the one defined in Chap. 12
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Fig. 13.36 Construction of the Green’s function for a spherical cap

for the plane piston, because of the curvature of the source. Figure 13.36 shows a
example of graphical construction of a Green’s function for a spherical cap, using
the method of images.

For a shell inserted in an infinite rigid baffle, the condition of zero velocity on
the baffle imposes

g.r; r0; t; �/ D g1.r; r0; t; �/ C g2.r; r0; t; �/

D ı.t � � � jr � r0
1j=c/

4
jr � r0
1j C ı.t � � � jr � r0

2j=c/

4
jr � r0
2j ; (13.135)

where the first term g1 is the contribution of the direct sound, while the second term
g2 is the contribution of the reflection from the source. Once the Green’s function
is known, the calculation continues by using a modal approach. The transverse
displacement w of the shell is expanded onto its in vacuo eigenmodes basis. We
write

w.r; t/ D
1X

pD0

˚p.r/qp.t/; (13.136)

where qp.t/ are the generalized displacements. The modal decomposition of the
pressure is derived

p.r; t/ D ��

1X

pD0

Z t

0

Z

S
g.r; r0; t; �/˚p.r0/Rq.�/ ez:dSr0 d�; (13.137)
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Fig. 13.37 Spatial impulse response for the planar piston (left) and a convex spherical cap (right)

in the particular case of a velocity profile of the shell oriented in the direction ez of
the shell axis (see Fig. 13.35). One main interest of the expression (13.137) is that
it remains valid even for nonlinear vibrations, which is usually the case for gongs
and cymbals, as shown in Chap. 8 [30]. This property results from the fact that no
particular condition is given above on the displacements q.t/. Another interesting
property results from the grouping of the terms g and ˚ under the integral, which
yields, after integration, to the following transformation:

p.r; t/ D ��

1X

pD0

Z t

0

Hp.r; �/Rq.�/d�: (13.138)

This method was originally developed by Stepanishen [35]. The function Hp was
called Spatial Impulse Response, or SIR for the mode p by the author. This function
contains together the information on the modal shape for the mode p and on the
observation point r, for a given shell profile.

Figure 13.37 shows a comparison between two spatial impulse responses, for
the plane piston and a convex spherical cap. These plots show the spreading of the
response over time when the observer moves in a vertical plane at a fixed distance
from the source plane (baffle). One can see, in particular, that this spreading is more
pronounced for the spherical cap than for the plane piston, which, as we will show
in the next paragraph, implies that the cutoff frequency of the pressure spectrum is
lower for the cap, compared to a piston of the same size.

13.5.3 Influence of the Source Shape

The shape of a source influences both the directivity and bandwidth of its radiated
sound pressure. These effects can easily be shown in the frequency domain, through
calculation of the Fourier transform of the spatial impulse response. Figure 13.38
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shows, for example, the frequency response of the far field pressure on the axis
(at a distance equal to 100 times the radius of the source) for a spherical cap with
different radii of curvature. One can see that the cutoff frequency of the response
decreases as the radius of curvature increases.11 Another feature to notice is that a
kind of comb filter effect appears in the attenuated band.12

In contrast, Fig. 13.39 shows that the directivity in the far field is less pronounced
for convex spherical caps, at a given frequency, as the radius of curvature decreases.
The convexity of the source thus spreads the acoustic pressure more uniformly
in space, the price to pay being a reduction of the pressure magnitude with
frequency. These properties have direct consequences from the point of view of
sound distribution and sound reproduction in a room: a source with a curvature
seems to be more appropriate if the purpose to insonify a zone for a large audience.

11By analogy with the electric filters, this cutoff frequency can be defined as the value for which
the pressure is reduced by a factor of �3 dB compared to its low-frequency asymptotic value (see
Fig. 13.38).
12Similar results were obtained by Suzuki and Tichy [37], using the theory of spherical harmonics
for expanding the pressure (see Chap. 12). These authors report that, due the diffraction effects, an
attenuation of the order of �5 dB between ka D 0:4 and ka D 4 is obtained for the convex caps,
whereas an amplification of 4 dB is obtained for the concave case.
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13.6 Application to Stringed Instruments

In this section, the purpose is to show how some fundamental results of vibroacous-
tics can be applied to stringed instruments. The presentation starts by specifying to
what extent the concepts of critical frequency and modal density, together with the
mechanical impedance of the soundboard, are of help in selecting the appropriate
materials for enhancing the acoustical efficiency of the instrument. It is followed
by the experimental analysis of a piano soundboard which illustrates the analytical
results on efficiency and radiation resistance. Finally, the necessary compromise that
is to be found between loudness and tone duration for free oscillations systems, such
as the piano or the guitar, is discussed.
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13.6.1 Selection of Materials and Merit Index

The addressed question here is how to select the appropriate material for building
stringed instruments. The demonstration below is inspired from the work by Barlow
[4]. First, we focus on the acoustical efficiency of stringed instruments. The
underlying idea is to show under which conditions the mechanical power transmitted
by the strings to the bridge can be usefully converted into acoustical power. This
imposes to lower the critical frequency while keeping the real part of the admittance
at the bridge as high as possible. In Sect. 13.3.3, the critical frequency was calculated
in the case of an isotropic material [see Eq. (13.51)], and the usually admitted
approximate formula for orthotropic materials also was indicated

fc � c2


h

s
3�p.1 � �2/

ŒE1E2�1=2
: (13.139)

In Sect. 13.3.7.1, the driving-point impedance was calculated for an infinite isotropic
plate, and the approximate expression for an orthotropic plate also was given. In
terms of admittance (or mobility), this quantity is written:

Yp � 1

4h2

s
3.1 � �2/

�pŒE1E2�1=2
: (13.140)

Recall that Eq. (13.140) also corresponds to the mean (and asymptotic) value of
the admittance for a finite plate [33] and this is the reason why it is well adapted to
our problem. Assuming further that the Poisson’s coefficients have a minor effect
on the admittance, one can see that both quantities in Eqs. (13.139) and (13.140)
basically depend on the thickness h and density �, and on the Young’s moduli of the
plate.

First of all, it is reasonable to consider that the thickness h of the soundboard
is selected in such a manner that the spectral domains of strings and soundboard,
respectively, coincide. Otherwise, the instrument would not have the possibility
to enhance the vibrations of the strings. Once the thickness has been fixed, then
only the two parameters of the soundboard material remain to be optimized. By
eliminating h between both quantities Yp and fc, a merit index is obtained

Me D Yp

f 2
c

D 
2

4c2
p

3.1 � �2/

ŒE1E2�1=4

�p
3=2

: (13.141)

Equation (13.141) shows that, in order to maximize the acoustical power radiated
by the plate, the quantity ŒE1E2�1=2=�3

p needs to be maximized also. For an isotropic
plate, this quantity reduces to E=�3

p. One convenient strategy to make the most of
this result is to use the well-known Ashby diagram [3] shown in Fig. 13.40.
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Fig. 13.40 Ashby diagram. After [3]

In this diagram, the density is represented on the horizontal axis, while the
Young’s modulus is shown on the vertical axis, in logarithmic coordinates, for
a large class of materials. For the purpose of the demonstration, a zone called
mean wood is added on the diagram, where the elastic moduli are the mean values
Emoy D ŒE1E2�1=2 of the usual wood species used in lutherie. Imagine now a line
of constant slope E=�p

3 translating on this diagram. It can be seen that this quantity
is maximized in the region of the diagram corresponding to low density and high
moduli: as a conclusion the best candidate to build an instrument . . . is the wood !

Examining the Ashby diagram more closely shows that the “winner,” for this
merit index, is the balsa wood. However, this result needs to be tempered, since
other criteria have to be considered in instrument making. The yield strength, in
particular, imposes maximal values for the stresses in the structure in terms of
traction, compression and shear. Other Ashby materials are available where such
a criterion is taken into account. In practice, breakable wood species, such as
balsa wood, are not appropriate for soundboard, in view of the usual static loading
they have to withstand. For more information on the properties of wood in string
instruments, one can refer to [6].
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Function of the Modal Density

In the previous paragraph, the selection of materials for stringed instruments was
based on the critical frequency. Another alternative for the reasoning is to use the
concept of modal density, which yields another appropriate criterion in the case
of finite plates. In Chap. 3, it was shown that the radiated acoustical power is
proportional to the real part of the admittance and, in turn, to the modal density of the
plate. For an orthotropic rectangular plate of surface S, the following approximate
formula was obtained

D.f / � S

h

s
3�p.1 � �2/

ŒE1E2�1=2
; (13.142)

which is proportional to the critical frequency. Bringing together Eqs. (13.140)
and (13.142), we get

D.f / D 4YpSh�p D 4YpMtot; (13.143)

where Mtot is the total mass of the plate. For a finite plate, Yp should be here
considered as the (real) asymptotic value of the admittance in the high frequency
range or, equivalently, as the mean value of the admittance over the frequency range
of interest radiated by the plate [33].

In Chap. 6, it was shown that the power transmitted from the strings to the
soundboard to the real part of the admittance, for a given transverse force.
Equation (13.143) shows, in addition, that this admittance’s real part is proportional
to the modal density and inversely proportional to the total mass of the plate.

13.6.2 Example of the Piano Soundboard

The concepts of radiated power, radiation resistance, and acoustical efficiency are
now illustrated by using the piano soundboard as an example. We take advantage
here of the experimental results obtained by Suzuki [36].

Figure 13.41 shows the results of measurements conducted with wideband
excitation. The mean radiated power was calculated by means of the flow of the
acoustic intensity vector through a surface S of the soundboard I D 1=2Re fPV?g.
In these experiments, the pressure is measured in the near field, close to the
soundboard, and the acoustic velocity V is derived from the measurements of the
soundboard velocity. The excitation force is normalized to 1 N. Between 50 and
500 Hz, the radiated power is weak, except at some frequencies corresponding to the
eigenmodes of the soundboard. The power increases progressively between 500 and
2000 Hz, with a maximum in the range 1800–2000 Hz. The power remains constant
above 2 kHz. It is interesting to compare the power to the radiation efficiency shown
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Fig. 13.41 Measurements of the acoustical power radiated by a soundboard, in four different
frequency bands. After [36]

in Fig. 13.42. Recall that the efficiency is defined as the ratio between acoustical
power and the mechanical power at the input. Some differences exist between
both curves, although the general tendency is comparable. The efficiency is almost
constant above 1.4 kHz, and decreases slightly above 3.5 kHz. By comparison
with the theoretical results, one can reasonably estimate on these figures that the
critical zone is approximately situated between 1.2 and 1.6 kHz. In addition, an
estimation based on typical values, such as E D 1:4 	 1010 N/m2 for the mean
Young’s modulus, �p D 400 kg/m3 for the density, and a mean thickness equal
to 9 mm yields a critical frequency equal to 1.2 kHz, which is coherent. One can
assume, in addition, that the internal losses in the wood increase above 3.5 kHz,
thus contributing to reduce the efficiency in this range. Another explanation given
by the author is based on the experimental conditions, as a result of the distance
(a few centimeters) between the measurements points of velocity and pressure,
respectively.

The Suzuki paper also shows the input power versus frequency (not shown here).
This shows, in particular, that the input power is high around the eigenmodes of
the soundboard, especially in the low-frequency range. One can remark that this
situation is rather fortunate since, in this range, the rather high level of vibration is
compensated by a smaller efficiency, compared to the high frequency range (above
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Fig. 13.42 Measurements of the radiation efficiency of a piano soundboard in the same frequency
range as in Fig. 13.41. After Suzuki [36]

the critical frequency). As a result, the sound power in the complete range of the
piano tends to be rather uniform. At this stage, one must add that one of the main
difficulty for piano makers is to obtain a sufficiently high acoustic level for the
highest notes of the instrument. The limitations here can be due to three possible
phenomena: first, the mechanical energy imparted to the string is usually weak in
this range. Second, the coupling between string and bridge is strong thus reducing
the tone duration (see the next paragraph below). Third, the zone of effective
vibration of the soundboard is restricted to a small area (see the paragraphs dealing
with the localization of modes in Chap. 3).

Finally, as seen in Eq. (13.117), the normalized radiation resistance Ra=�c is
defined as the product of the radiation efficiency by the radiating area. This quantity
then yields useful information on the radiation efficiency for a given vibrating part of
the instrument. In the cited Suzuki paper, the resistance Ra of the piano is presented
for the area corresponding to the medium and high frequency range of the instrument
(see Fig. 13.43). In this figure, the increase of Ra between 0.6 and 1.8 kHz is seen
more clearly than on the complete instrument. Again, a clear negative slope is seen
beyond 3.5 kHz.
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Fig. 13.43 Measurement of the radiation resistance of a piano soundboard, in the restricted area
corresponding to the medium and high range of the instrument. After Suzuki [36]

Numerical methods are necessary to calculate the radiation efficiency of a piano
accurately (see Chap. 14). However, it has been shown here that qualitative results
and relevant trends can be obtained from general considerations based on simple
plate models.

13.6.3 Compromise Between Loudness and Tone Duration

In the foregoing, simple criteria were established as guidelines for the selection of
materials used for soundboards. These criteria are based on the following quan-
tities: critical frequency, driving-point admittance at the coupling point between
soundboard and strings, modal density of the soundboard. The calculations were
made with the underlying goal to maximize the radiated power. In the reality, this
objective has to be more flexible for free oscillations instruments, such as the piano,
the cembalo, or the guitar, for example. This follows from the fact that the tone
duration decreases as the radiated power increases, since the radiation damping
factor of the soundboard is proportional to the radiated power (see Chap. 6). This
situation might, or might not, be desirable, depending on the musical context.
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Let us take the example of the piano again. In Chap. 6, it was shown that the
damping factor of an isolated string with tension T and length L loaded at one end
by an admittance Y.!/ was given by:

˛.!/ D 1

�
D T

L
RefY.!/g: (13.144)

In the upper range of a grand piano, the tension T is almost constant and equal to
800 N (see [9]). As a consequence, the damping factor increases if the string’s length
is reduced, for a given admittance. To compensate this phenomenon, the driving-
point mobility should be reduced. This means, for example, in practice that, for
a given material, and according to (13.140), the thickness and the rigidity of the
soundboard increase near the coupling point. Such an achievement needs a special
design, and attention must be paid to the fact that these modifications do not induce
other unwanted and unanticipated effects.

In a real instrument, the tone duration is governed by additional phenomena. It
was shown in Chap. 6, for example, that both the vertical and horizontal motion
of the string are coupled by the motion of the bridge. The input admittance
corresponding to the horizontal motion is significantly smaller than the one of the
vertical motion (see, for example, [23]). As a consequence, the decay time of the
horizontal component of the string is higher that the one of the vertical component,
which contributes to increase the tone duration. Other coupling phenomena, such as
the coupling of the triplets of strings of a given piano note, influence the duration of
a tone significantly.
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