
Chapter 12
Elementary Sources and Multipoles

Antoine Chaigne and Jean Kergomard

Abstract Elementary sources, such as monopoles and dipoles, are described in this
chapter in order to introduce the basic concepts of radiation applicable to musical
instruments. In each case, the radiation field is characterized in terms of sound
pressure, directivity, acoustic intensity, and sound power. The dependence of the
pressure amplitude with respect to distance and frequency is highlighted. Pulsating
and oscillating spheres are used as reference examples to illustrate these concepts.
Another interest of the elementary sources follows from the fundamental Kirchhoff–
Helmholtz theorem, which states that any extended source can be represented as a
distribution of elementary sources. This result forms the basis of the calculation
of the acoustic field radiated by a musical instrument with arbitrary geometry.
Particular attention is also paid to the radiation of sound tubes, either isolated or
with mutual influence due to their proximity.

12.1 Introduction: Acoustical Radiation of Musical
Instruments

Musical instruments are primarily designed for radiating sound power: this is a
necessary condition for allowing the audience to listen to music! A good knowledge
on the radiation mechanisms is also essential for the sound engineer, who is in
charge of recording a concert with only a finite number of microphones. The sound
that reaches the listener (or the microphones) not only depends on the properties
of the sources (the musical instruments), but also on the properties of the listening
space, and on the position of the listener (resp. the microphones) in the room.
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In this fourth part of the book, we limit ourselves to the physical description of the
radiation of the instruments, leaving aside the questions linked to the acoustics of the
room and on the psychoacoustical aspects of the sound perceived by the listeners.
However, before starting this study, a rapid overview is made on the parameters to
be considered, alternatively from the point of view of the player, the listener, and
the sound engineer.

An instrument has to be heard. From the point of view of the physicist, this
implies that it can produce sufficient sound power. In an orchestra, or in a chamber
music ensemble, another linked question is the level balance between all sections
of instruments. This, in turn, determines, for example, the total number of violin
players compared to the number of trumpet or clarinet players in an orchestra. We
will not go further into these considerations which, as one can imagine, also largely
depend on aesthetic choices and on the work performed.

The spatial distribution of the radiated sound and the directivity of the instrument
also are important aspects of radiation. During a concert, some instruments, such as
the trumpet or the trombone, for example, radiate in restricted emitting cones. In
what follows, we will see that the directivity of a given instrument strongly depends
on frequency, and thus varies substantially from bass to treble range.

For the player, one important feature of the instrument is the ratio between the
input mechanical power and the acoustical power at the “output.” This determines
the playability of the instrument: in a number of situations, some notes are more
difficult to play than others. As a consequence, the sound level can be very
heterogeneous over the complete frequency range of the instrument. In terms
of physics, attempt will be made to model the relationships between the input
mechanical quantities (blow velocity, plucking force, bow pressure, key velocity,. . . )
and the sound pressure.

These are also central questions for the instrument maker. The physical approach
of the instrument must serve as a guide for the selection of construction parameters
(geometry, materials,. . . ). The function of the developed models is to establish clear
links between these parameters and the sound qualities of the instrument: sound
level, dynamic range, directivity, homogeneity, and playability.

To finish with this preamble, let us add a few words on contemporary music,
with focus on those which make a large use of virtual instruments and synthe-
sizers. In this case, the sound does not result from structural-acoustics coupling
between instrument’s body and air, but is rather obtained by transduction through
loudspeakers. The question of sound level is less critical here, since it is always
possible to amplify the electric signal, within the limits imposed by the linear range
of the transducers. However, the problem of directivity is still present as well as the
question of distribution of these virtual sources in a symphonic orchestra.
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12.1.1 General Problem of Radiation

12.1.1.1 Musical Sound Sources

The radiation mechanisms are specific for each musical instrument. However, three
basic mechanisms (or source types) are present, to a lesser or greater extent, in each
family of instruments [10]:

1. For the sources of type 1, the sound results from the variation with time of a
volume flow. The academic example is the pulsating sphere that can be illustrated
by the oscillations of a air bubble in water. In musical acoustics, the lowest mode
of a kettledrum struck by a mallet in its center, or the radiation at the end of a
tube (below the cut-off frequency), are examples of such sources (see Fig. 12.1).
In this case the continuity equation (1.109), presented in Part I of this book, is
written:

1

c2

@p

@t
C � div v D m; (12.1)

where m D �q represents the mass flow, or, equivalently, the volume and time
density of mass injected in the surrounding fluid.

2. In type 2 sources, the sound results from local variations of forces exerted on the
particles of the fluid, with a zero volume velocity. The standard models of such
sources are the oscillating disk or the oscillating sphere. In musical acoustics,
the lowest flexural mode of a xylophone beam, the 11 mode of a kettledrum or
of a guitar plate are examples of type 2 sources (see the Fig. 12.1). In general,
external force densities are present not only on oscillating sources, but also when
sound waves are reflected on a rigid surface. One example was given in Chap. 10
for the flutes. In the presence of external force density f , the linearized Euler
equation in the fluid becomes

�
@v

@t
C grad p D f : (12.2)
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Fig. 12.1 (Left) Examples of sources of type 1: lowest modes of a kettledrum and of a guitar plate.
(Right) Examples of sources of type 2: oscillating disk, first flexural mode of a xylophone beam,
without its resonator
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where f D �F (F is a mass density of force). Eliminating the acoustic velocity v

between these two equations yields the heterogeneous wave equation (i.e., with
a source term):

1

c2

@2p

@t2
� �p D @m

@t
� div f : (12.3)

In Eq. (12.3), the two types of sources are present in the right-hand side. It can be
seen that the mass term produces sound only if it varies with time. Conversely,
the force term produces some sound under the condition of spatial variation.

3. Finally, sources of type 3 exist in a viscous fluid, and are due to the presence of
shear stresses. The formulation of these source terms is obtained by taking the
viscosity forces and the convective acceleration (nonlinear terms) in the equa-
tions. These terms govern, for example, the origin of jet noise in aeroacoustics
[see Eq. (10.30) and Sect. 10.4 in Chap. 10] [26].

12.2 Elementary Sources

Elementary sources are limiting cases that are often very useful, to a first approxi-
mation, in order to describe complex sources such as musical instruments.

The pulsating sphere is a good archetype of a perfectly omnidirectional source,
which means that the amplitude of the sound pressure only depends on the distance
from the source, and not on the angle of observation. The example of the air bubble
in water was given in the previous paragraph, but it is not very “musical”! In musical
acoustics, the radiation of the guitar soundhole, or of the end of a tube, also can be
considered as omnidirectional, at least in a given frequency range. If the radiation
field is omnidirectional in an half-space (or in the fraction of the acoustic space),
then models of pulsating half-sphere or fractional pulsating spheres can be applied.
In what follows, this simple model will be used to introduce the basic concepts of
acoustic intensity, radiating power and impedance, and to define the concepts of both
near and far fields.

A monopole, or point source, can be viewed as the theoretical limit of a pulsating
sphere, when its radius tends to zero. It is an idealized system which is not feasible in
practice. However, one can build reasonable approximate monopole sources under
the condition that their dimensions are kept small compared to the wavelength
and/or the distance to the observer (listener).

In contrast with the pulsating sphere (source of type 1), the volume of an
oscillating sphere (or of an oscillating disk) does not change during its motion and it
will be seen below in this chapter that it corresponds to a type 2 source. The limiting
case of such sources yields another elementary source called dipole. A dipole is a
directional source. It will be shown that a dipole with the same amplitude as the one
of a monopole radiates the low frequencies less efficiently. In musical acoustics a
xylophone beam, or an oscillating string, can be conveniently described by linear
arrays of dipoles [15].
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One major interest of such point sources lies in the fact that extended sources can
be viewed as distribution of elementary sources. This is one essential result of the
Kirchhoff–Helmholtz theorem that will be demonstrated at the end of the present
chapter. This theorem also forms the theoretical basis of numerical techniques such
that the Boundary Element Method which are of current use for the computation of
acoustic radiation.

In this chapter, the main properties of the elementary acoustic sources are
reviewed, without the details of the mathematical derivations. The reader is invited
to consult the numerous textbooks available on these topics (see, for example, [31]).
Emphasis is put instead on the consequences of these properties in the particular
cases of musical instruments. Most derivations are made in the frequency domain,
although some examples are intentionally treated in the time domain.

12.3 Pulsating Sphere

The most simple example of a “type 1” source is the pulsating sphere. Due to
the spherical symmetry of the problem, the radiation phenomena can be described
analytically with only one spatial coordinate. A sphere with radius a and given radial
velocity Va.!/ along its periphery .S/ is described here in the frequency domain
(Fig. 12.2). The amplitude of the radial motion is supposed to be small compared to
the radius.

12.3.1 Pressure and Velocity Fields

Using the wave equation expressed in spherical coordinates, as seen in Sect. 7.4.1 in
Chap. 7, we get the expression of the radiated pressure field at a distance r from the
center of the sphere. In what follows, the pressure field inside the sphere is ignored
(it might lead to nonlinear effects in the vicinity of the center whose is beyond the

Fig. 12.2 A pulsating sphere
of radius a is vibrating
radially with angular
frequency ! and velocity
Va.!/ along its periphery (S):
the resulting pressure at a
given distance from the center
of the sphere is identical in all
directions

Va (  )

a

(S)
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scope of this book) and we concentrate on the outside pressure in free space. From
the general solution, the pressure at a distance r can be expressed as a function of
the surface pressure P.a/ as follows1:

P.r/ D P.a/
a

r
e�jk.r�a/: (12.4)

Using the specific admittance in a [Eq. (7.79)], we get the pressure P.r/ as a function
of the acoustic velocity which is, by continuity, equal to Va. Introducing the volume
velocity of the sphere U D 4�a2Va, we get

P.r/ D �c

4�a2

a

r
U

jka

1 C jka
e�jk.r�a/ : (12.5)

The first term in this expression is the characteristic acoustical impedance of the
source Zc D �c

4�a2 . The second term a=r characterizes the spherical expansion

in free field (or 1=r law). The term jka
1Cjka governs the frequency dependence of

the pressure. If the characteristic dimension of the sphere (the radius a, here) is
small compared to the acoustical wavelength (ka � 1), then the magnitude of the
sound pressure is of the same order as ka. Conversely, for the “small” wavelengths
(ka � 1), in the “high” frequency range, the magnitude of P becomes independent
of frequency. Finally, the exponential term expresses the delay of propagation
between the vibrating surface of the sphere and the observation point. This delay
takes the form of a phase shift in the frequency domain. Figure 12.3 shows the
variations of the squared pressure modulus as a function of frequency for a given
source at a given fixed point in space.

Fig. 12.3 Squared modulus
of the pressure radiated by a
pulsating sphere as a function
of the dimensionless
frequency ka

0
0 1 2 3 4 5

0.5

1

2
P––––

Pmax( (

ka

1In all the following expressions, the time dependence of the acoustical quantities are omitted, for
simplicity. Thus, P.r; !/ is denoted P.r/.
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Using again the expression of the admittance in r [Eq. (7.79)] now yields

V.r/ D U

4�a2

a2

r2

1 C jkr

1 C jka
e�jk.r�a/ : (12.6)

It can be checked in (12.6) that the continuity condition of the radial velocity is
fulfilled in r D a. When the observation point is located far from the source (kr � 1,
in terms of wavelength), then the modulus of the acoustic velocity decreases
proportionally to 1=r as the sound pressure. In this case P.r/ ' �cV.r/, which
means that the radiated wave at a large distance from the source behaves like a
plane wave. In contrary, if kr � 1 (in the near field of the source), the acoustic
velocity decreases as 1=r2.

These results illustrate different important cases of approximations which are
frequently encountered when studying the radiation of sound sources:

• Approximation at the emission depending on the ratio between the dimensions
of the source and the acoustic wavelength (discussion on the parameter ka in the
case of the pulsating sphere)

• Approximation at the reception depending on the ratio between the source-
receiver distance and the wavelength (discussion on the parameter kr in the case
of the pulsating sphere)

In some case, we might also consider purely geometrical approximations, for a
given wavelength, where a comparison has to be made between the source-receiver
distance and the characteristic dimension of the source. For the pulsating sphere, for
example, this refers to approximations involving the ratio a=r.

12.3.2 Acoustic Intensity and Sound Power

From the expressions of pressure and acoustic velocity in the frequency domain, the
mean value of the acoustic intensity is derived.2 In the case of the pulsating sphere,
the acoustic intensity is radial (as the velocity) and its modulus is equal to:

I.r/ D 1

2
<efP.r/V�.r/g D jUj2

4�r2

�c

2S

k2a2

1 C k2a2
; (12.7)

where S D 4�a2 is the emitting surface.
One can see that the mean acoustic intensity decreases in 1=r2, which is in

accordance with the property of spherical expansion. The mean acoustic power
corresponds to the flow of the acoustic intensity vector through a closed surface
surrounding the source. Taking advantage of the spherical symmetry, the power is
computed on a spherical surface ˙ with radius r, which yields

2In this chapter, capital letters are used for all quantities expressed in the frequency (Fourier)
domain. Recall that the concept of mean power only has a signification in the frequency domain.
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Pr D
Z

˙

I.r/d˙ D 4�r2I.r/ D �c jUj2
2S

k2a2

1 C k2a2
: (12.8)

The quantity Pr is independent of r, which is in accordance with the principle of
energy conservation, since no dissipation has been introduced in the model, neither
on the source, nor during the propagation. The evolution of the acoustic power with
the reduced number ka is identical to the squared modulus of the pressure (see the
Fig. 12.3). For a given volume velocity U, the sound power radiated by the spherical
sphere is proportional to the square of frequency as long as ka � 1, and tends to

the asymptotic limit Pmax D �cjUj2
2S for ka � 1.

12.3.3 Force Exerted by the Fluid on the Sphere:
Radiation Impedance

Let us now examine the different acoustic quantities in the vicinity of the pulsating
sphere. The radiation impedance is defined as the ratio between the surface pressure
and the volume velocity in r D a. We have

Zr D P.a/

SV.a/
D �c

S

jka

1 C jka
D �c

S

�
k2a2

1 C k2a2
C j

ka

1 C k2a2

�
D Rr C jXr : (12.9)

Comparing (12.9) and (12.8), one can see that the acoustic power can be written
equivalently:

Pr D jUj2
2

Rr : (12.10)

In other words, the acoustic power radiated by the sphere is proportional to the real
part of the radiation impedance (or radiation resistance) Rr. The imaginary part of
the radiation impedance (or reactance) Xr is written:

Xr D �c

S

ka

1 C k2a2
: (12.11)

One can see that Xr has the form of an acoustic mass. This mass depends on
frequency, except for ka � 1. In this latter case, the mass is constant and is equal
to �a

S . The reactance corresponds to the inertial forces that are to be overcome by
the sphere during its motion, and to the fluctuating power exchanged between the
source and the near field (see Chap. 1). In summary, the radiation impedance yields
useful information on the radiated sound power and on the reaction of the fluid on
the acoustic source. If the sphere radiates in a finite space (room, cavity), then the
reactance might also contain an elastic term which represents the influence of the
compressibility of the enclosed fluid.
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12.3.4 Concept of Point Source

12.3.4.1 First Approach

Imagine now that the radius of the pulsating sphere vanishes, while keeping a
constant volume velocity U. As a result, we obtain a omnidirectional point source,
centered at point r D 0, called monopole. The pressure (12.5) becomes

P.r/ D j!�UG.r/ with G.r/ D e�jkr

4�r
: (12.12)

The function G.r/ is the Green’s function in free space. More generally, if r0 denotes
the position of the point source and r the one of the observer (r and r0 are vectors),
one writes

G.rjr0/ D G.r0jr/ D e�jkjr�r0j

4�jr � r0j : (12.13)

This expression shows the important reciprocity property of the Green’s function
which means that the expression of the pressure is unchanged through permutation
of the respective coordinates of both the source and receiver.

In the time-domain, the operator j! corresponds to a time derivative, while the
operator exp.�jkr/ corresponds to a delay r=c. As a consequence, the pressure
p.r; t/ generated by the monopole is written:

p.r; t/ D �

4�r

d

dt
u

�
t � r

c

�
: (12.14)

In Eq. (12.14), one can see that an acoustic pressure exists only if the time derivative
of the volume velocity is different from zero. A sphere moving at constant speed, for
example, does not create sound.3 It is also observed that the pressure still decreases
in 1=r. It is finally not surprising to see that the pressure (which is nothing but a
surface force density) is proportional to an acceleration, following Newton’s second
law.

12.3.4.2 Second Approach

The mathematical tool that describes the point source is the Dirac delta distri-
bution ı. Imagine now that a point source with volume velocity u.t/ is placed
at the origin of the axes (in r D 0). In order to establish a link with the wave

3This remark might be surprising and seems to contradict everyday experience where a vehicle
rolling at constant speed creates aerodynamical noise. In fact, this noise is due to the viscous
forces in the fluid, which are not taken into account in the present model.
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equation (12.3), one can write that the mass flow is defined as:

m D � u.t/ ı.r/ : (12.15)

The Helmholtz equation is then written:

�P C k2P D �j!�U.!/ı.r/ : (12.16)

In order to solve (12.16), this equation is integrated on a sphere of radius
" with " ! 0 (see Fig. 12.4). Due to the spherical symmetry, one can write
P.r/ D A

r exp.�jkr/, for r ¤ 0. Denoting V the volume of the sphere around
the source, the integration of (12.16) is written:

A
Z
V

�

�
e�jkr

r

�
dV C A

Z
V

k2 e�jkr

r
dV D �j!�U : (12.17)

After some manipulations, this equation can be transformed as follows:

A
Z

S
grad

�
e�jkr

r

�
:n dS C A

Z "

0

k24�re�jkrdr D �j!�U; (12.18)

where .S/ is the surface of the sphere of radius " and n the normal vector oriented
towards the external field (see Fig. 12.4). As " tends to zero, the first integral in
(12.18) tends to �4� , and the second integral vanishes. One obtains

A D j!�

4�
U and P.r/ D j!�UG.r/ : (12.19)

One find then again the intuitive solution previously obtained for a finite pulsating
sphere as the radius tends to zero. By the way, one shows that if P is a solution
of (12.16), then the Green’s function G.rjr0/ is a solution of the equation:

�G.rjr0/ C k2G.rjr0/ D �ı.r � r0/ : (12.20)

Fig. 12.4 Integration of the
Helmholtz equation with a
point source

n

(S)
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In what follows, the set of both Eqs. (12.16) and (12.20) will be used for calculating
the pressure field radiated by any source.

12.3.4.3 Acoustic Power Radiated by a Monopole

In order to calculate the sound power radiated by a monopole, the acoustic intensity
is integrated over a spherical surface around the source, as it has been done for the
pulsating sphere. Alternatively, one can also use the expression (12.8) and calculate
its limit when ka � 1. In both cases, one gets

Pr D �ck2 jUj2
8�

D �!2 jUj2
8�c

: (12.21)

which indicates, among other things, that the power radiated by a monopole is
proportional to the square of frequency.

12.3.5 Monopole Arrays

In order to extend the results of the previous paragraph, let us now consider a
discrete set of monopoles distributed in space (see Fig. 12.5). This array can be seen
as a cloud of active points. Applying the principle of superposition which is valid in
linear acoustics, one can derive the resulting field at a given point M of coordinates
r just by summing the contributions of the n sources of volume velocities Un:

P.r/ D j!�

4�

X
n

Un
e�jkRn

Rn
D j!�

4�

X
n

Un
e�jkjr�rnj

jr � rnj : (12.22)

This result can be generalized to the case of a continuous distribution of monopoles
with elementary volume velocities UdS distributed over a surface S :

Fig. 12.5 Discrete arrays of
monopoles

U1

U2

Un

O

M

r

r'

|r-r'|
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P.r/ D j!�

4�

Z
S

U.r0/
e�jkjr�r0j

jr � r0j dS ; (12.23)

whose equivalent time-domain formulation is given by:

p.r; t/ D �

4�

d

dt

Z
S

1

jr � r0j u

�
r0; t � jr � r0j

c

�
dS : (12.24)

Important Remark Equation (12.24) is not valid if S corresponds to the
surface of a finite structure with a finite volume. In this latter case, the waves radiated
by the structure are reflected by its own surface, and this phenomenon has to be taken
into account.

12.3.5.1 Large Distance Approximations

let us denote L a characteristic dimension of the monopolar distribution. For r � L,
the pressure at a distance r from the source in (12.24) can be simplified, considering
that jr � r0j ' r. A first level of approximation (we will denote it modulus
approximation) is obtained by simplifying the denominator only:

p.r; t/ D �

4�r

d

dt

Z
S

u

�
r0; t � jr � r0j

c

�
dS : (12.25)

For rapidly varying signals (with significant energy in the “high” frequency range)
the phase terms can be significant and cannot be neglected, even in the case of small
propagation delays between the sources. These delays may alter the waveform at
the receiver substantially. Conversely, for slowly varying signals with a significant
energy level in the “low” frequency range, an higher level of approximation (let us
denote it phase approximation) leads to the expression:

p.r; t/ D �

4�r

d

dt

Z
S

u
�

r0; t � r
c

�
dS : (12.26)

In this case, the pressure is equivalent to the one radiated by a unique monopole
whose total volume velocity is the sum of all elementary volume velocities.
However, one should keep in mind that this equivalence is only valid in restrictive
situations which depend on the assumptions made on the geometry of the source
distribution and on the properties (spectral content) of the emitted signal.



12 Elementary Sources and Multipoles 647

12.3.5.2 Acoustic Power Radiated by a Set of Coherent Monopoles

For a set of sources radiating coherent acoustic signals simultaneously, the acoustic
power radiated by each source is affected by the presence of the other sources (see,
for example, [14]).

One can think, for example, of the simultaneous emission of pressure by the two
main sources of a flute (mouth and open end) for a given note, as seen in Chap. 7.
This phenomenon is now illustrated in a simple case involving two monopoles S1

and S2 separated by a distance d, and with given volume velocities U1 and U2. The
results can be generalized to the case of multiple sources.4

The far field pressure (at point M) can be calculated using an approximation
of the type (12.26). We denote � the angle between the vector OM D r and the
source axis (see the Fig. 12.6). With a first-order expansion (in terms of the ratio
d=r), the distance between the source S1 and the observation point M is jr � r1j '
r C 1

2
d cos � , whereas it is equal to jr � r2j ' r � 1

2
d cos � for the distance between

S2 and M.

P.r/ D j!�

4�r
e�jkrU.�/ where U.�/ D U1e�j kd

2 cos � C U2eCj kd
2 cos � . (12.27)

Fig. 12.6 Two monopoles.
For a dipole: U2 D U D �U1

M

r

U1
d––
2

d––
2

O U2

4For the sake of simplicity, the following derivations are made in the case of given volume
velocities. However, one has to be aware of the fact that, in numerous cases, the two sources
are not independent and are linked together by means of a transfer function. This is, for example,
the case for the side holes of wind instruments interacting through the resonator, or for the volume
velocities of plate and sound hole in stringed instruments that are coupled by the air cavity (see
Chap. 6).
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The far field behavior of these two sources is thus equivalent to the one of a single
monopole, though with a directivity U.�/ depending on the reduced wavenumber
kd. In order to calculate the total acoustic power radiated by both sources, one has
to calculate5 the acoustic intensity on a sphere with radius r. Using the notations
U1;2 D jU1;2j exp.j'1;2/ and ' D '2 � '1, we have

Pr D �ck2

8�

�
jU1j2 C jU2j2 C 2jU1jjU2j sin kd

kd
cos '

�
. (12.28)

The power is always positive, because the free field can be seen as an absorbing
medium at the infinity, and thus the outgoing pressure never comes back to the
source. The term in jU1jjU2j is the interaction term. Let us first consider two sources
of identical amplitudes in the low-frequency range (kd � 1). if the sources are in
phase, the interferences are constructive, and the sound power is equal to four times
the power radiated by a single source (C 6 dB). If these sources are in antiphase
(' D �), the sound power is close to zero. By expanding sin kd to the third order
in kd, we then find the expression of the sound power radiated by a dipole (see the
next section). One well-known illustration is the case of two loudspeaker systems in
antiphase.

Let us now examine how the power is distributed among both sources [14]:
depending on the values taken by ', the sound power due to the presence of the
second monopole can either increase or decrease. Moreover, is the amplitude ratio
jU2=U1j is larger than unity, the power can even become negative, which means that
the second monopole is absorbing part of the acoustic energy: it behaves then like a
sink and not like a source.

Directivity of a Linear Array of Monopoles

One main consequence of linear arrays of monopoles is that the directivity increases
compared to the case of a single monopole. One can take benefit of this property in
electroacoustics: an antenna of microphones is used, for example, if the purpose
is to record a source in a restrictive solid angle. Such a process is very useful in
order to record situated at a large distance from the microphones, since it reduces
the influence of sideways ambient noise considerably. Reciprocally, loudspeakers
arrays are used with the purpose of radiating sound in a restrictive region of space.
The directivity of arrays is a joint property of both sources and receivers.

5On should integrate over the surface r Dconstant W

I.r; �/ D 1

2

k2�c

.4�r/2
jU.�/j2 where jU.�/j2 D jU1j2 C jU2j2 C 2jU1jjU2j cos Œkd cos � C '�

which amounts to calculate the integral 2�r2
R �

0 jU.�/j2 sin �d� . This calculation is straightfor-
ward since sin � is the derivative of the � -function appearing in cos Œkd cos � C '�.
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Fig. 12.7 Linear array of
monopoles

M

O x
d
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Musical instruments do not escape this rule: a slender structure (like a xylophone
bar) vibrating on a high flexural mode can be viewed as a linear array of sources.

Another illustrative example is the association of several regularly distributed
open holes in wind instruments. In order to determine theoretically the directivity
resulting from the association of point sources, we calculate it below for an array
composed by N monopoles with velocities Un, equally distributed on the x axis, with
a distance d between consecutive sources (see Fig. 12.7). It is assumed here that all
sources have the same amplitude, but that there is a constant phase shift between
consecutive sources:

Un D U exp Œ�j.n � 1/'� :

Using a first-order expansion of jr � rnj in (12.22), and defining � as the angle
between the x-axis and the vector r D OM, where M is the observation point, the
pressure is written:

P.r; �/ D j!�0Ue�jkr

4�r

NX
nD1

ej.n�1/.kd cos ��'/ : (12.29)

Denoting then � D .kd cos � � '/, the directivity of the array is given by:

D.�/ D 1

N

e�2jN� � 1

e�2j� � 1
D sin N�

N sin �
: (12.30)

Examining (12.30) shows that the main lobe of the directivity pattern becomes
narrower as N increases (see Fig. 12.8).
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Fig. 12.8 Directivity D.�/ of the array [see Eq. (12.30)] for different numbers N of monopoles:
(left) N D 3; (center) N D 10; (right) N D 20

12.4 Oscillating Sphere

We now turn to the sources with a global zero volume velocity, but which are
subjected to a force density f by the surrounding fluid during their motion. In this
case, the heterogeneous wave equation (12.3) shows that the divergence of the force
density must be different from zero in order to generate sound. An oscillating source
meets these requirements, since its motion creates an overpressure in front and a
decrease of pressure at the back. In total, this produces a spatial heterogeneity of the
force field in the vicinity of the source that creates a nonzero divergence term. At
the same time, the total sum of the volume velocities is zero. In order to compare
the properties of the oscillating sphere with those of the pulsating sphere, the main
results are briefly reviewed below. As done previously, bringing the radius of the
sphere close to zero allows to define a dipole, or elementary oscillating source.

12.4.1 Pressure and Velocity Field

Given v0.t/ the oscillating velocity of a sphere of radius a (see Fig. 12.9), and V0.!/

its Fourier transform. � is the angle between the direction of the oscillation and the
radial velocity at a given point of the sphere surface. The equation of continuity at
the interface between fluid and solid allows to write:

Vr.a/ D V0 cos �: (12.31)

As for the pulsating sphere, the acoustic pressure and velocity fields are obtained
by combining the wave equation with the Euler equation. We find

P.r; �/ D �cV0 cos �
a2

r2

�
jka.1 C jkr/

2 C 2jka � k2a2

�
e�jk.r�a/ : (12.32)

The main difference with the pulsating sphere is the presence here of the
directivity factor cos � in the expression of the pressure (see Fig. 12.10). As a
consequence, the pressure is maximum in the direction of the oscillation, and zero
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Fig. 12.9 A rigid oscillating
sphere creates an
overpressure in front and a
decrease of pressure at the
back, during its motion. In the
median plane, overpressure
and decrease of pressure are
equal and opposite in signs,
and thus the resulting
pressure is equal to zero
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Fig. 12.10 Pressure
directivity of an oscillating
sphere
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in the plane perpendicular to it. A small distances (kr � 1), the pressure varies as
1=r2, and as 1=r for kr � 1. Finally, we have the propagation term exp Œ�jk.r � a/�.

The acoustic velocity vector has now two components, in the directions er and
e� , respectively (see Fig. 12.11):

8̂
ˆ̂<
ˆ̂̂:

Vr.r; �/ D V0 cos �
a3

r3

2 C 2jkr � k2r2

2 C 2jka � k2a2
e�jk.r�a/;

V� .r; �/ D V0 sin �
a3

r3

1 C jkr

2 C 2jka � k2a2
e�jk.r�a/ :

(12.33)

In the near field (kr � 1), both components of the velocity vary as 1=r3. In the
far field (kr � 1), the radial component varies as 1=r. The specific impedance is
equal to �c, and the component along e� varies as 1=r2.

12.4.2 Acoustic Intensity and Radiated Pressure

The e� -component of the intensity is zero. Its radial component is given by:
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Fig. 12.11 Acoustic velocity radiated by an oscillating sphere

Ir.r; �/ D 1

2
Re fPV�

r g D 1

2
�c

a2

r2

k4a4

1 C k4a4
jV0j2 cos2 � : (12.34)

The radiated power is derived:

Pr D
Z

S
Ir.r; �/ dS D �c

2�a2 jV0j2
3

k4a4

1 C k4a4
: (12.35)

If the acoustic wavelength is larger than the dimensions of the source (ka � 1),
then the radiated power is proportional to !4. This means that, for given radius
and velocity magnitude, an oscillating sphere is less efficient for radiating sound
in the low-frequency domain, compared to a pulsating sphere. Using Eqs. (12.8)
and (12.35), it is found that the ratio � between both acoustic powers, for a given
oscillation velocity V0, is given by:

� D .Pr/SO

.Pr/SP
D k2a2

3

1 C k2a2

1 C k4a4
; (12.36)

which yields � ' k2a2=3 for the sources of small dimensions ka � 1.
This reduction of radiated power at low frequencies is the consequence of

destructive interferences between the acoustic waves generated in the front and at
the back, respectively. If the wave at the back is “eliminated” in an absorbing box,
as made in most loudspeaker systems, the radiating properties of the system become
closer to a those of a monopole and is thus more efficient at low frequencies. It is
exactly what happens also in drums (timpani, bass drums,. . . ).
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Fig. 12.12 Elementary
dipole
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12.4.3 Concept of Elementary Dipole

12.4.3.1 First Approach

Bringing the radius of the sphere in (12.32) close to zero yields the expression of
the sound pressure generated by an oscillating point source (or dipole) (Fig. 12.12):

P.r; �/ D j2�a3!�V0

�
jk C 1

r

�
G.r/ cos � : (12.37)

The reader can check that this expression is identical to the one obtained by
calculating the pressure radiated by a set of two monopoles of equal volume velocity
and opposite signs CU= � U, where d D 2a is the distance between them (see
Fig. 12.6) and where

U D
Z

S
V0:n dS D �a2V0 : (12.38)

Defining now Dd D j2a!�U D jk�cUd as the moment of the dipole6 and using
the definition of the Green’s function in free space G.r/ D e�jkr=4�r defined above,
the radiated pressure can be expressed under the form:

P.r; �/ D Dd

�
jk C 1

r

�
G.r/ cos �

D �Dd
@G

@r
cos � : (12.39)

6Notice that some authors define Dd D Ud as the moment of the dipole.
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In the time-domain, the pressure is written:

p.r; �; t/ D cos �

4�r

�
1

r
dd

�
t � r

c

�
C 1

c

d

dt
dd

�
t � r

c

��
: (12.40)

The variable dd has the dimension of an acceleration. The pressure here results from
two terms: one acceleration term and another term proportional to the time deriva-
tive of the acceleration, which corresponds to a third-order time derivative. The
contribution of this second term is dominant for the rapidly varying pressure, such
as those resulting from percussive impacts, for example, for which instantaneous
levels can reach very high values.

Applying the same method as for the sphere, we get the radial intensity:

Ir D 1

2
�c

�
k2 jUj d

4�r

�2

cos2 � : (12.41)

The other components of the intensity vector are zero. The power radiated by the
dipole [a particular case of Eq. (12.28)] is

Pr D �c
k4 jUj2 d2

24�
D �

!4 jUj2 d2

24�c3
: (12.42)

12.4.3.2 Second Approach

As done previously for the monopole, the pressure radiated by a dipole source is
directly derived from the heterogeneous wave equation. For a particle oscillating
with volume velocity U at constant volume between two positions r1 and r2, the fluid
in this region is subjected to a force f0 D j!�U, according to Newton’s second law
of motion (see Fig. 12.13). As a consequence, the spatial derivatives (the divergence
term) yield the Dirac delta functions corresponding to the discontinuities of the force
field in r1 and r2. The heterogeneous equation becomes

1

c2

@2p

@t2
� �p D �div f D f0 Œı.r � r1/ � ı.r � r2/� : (12.43)

In the frequency domain, taking advantage of the properties of the Green’s
function in free space in Eq. (12.20), we derive the pressure:

P.r/ D j!�U

4�

"
e�jkjr�r2j

jr � r2j � e�jkjr�r1j

jr � r1j

#
: (12.44)

We find again the intuitive result obtained as the radius of the oscillating sphere
tends to zero. This shows that the acoustic field generated by an elementary
oscillating source is equivalent to the one radiated by two monopoles of identical
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Fig. 12.13 Forces exerted on an elementary dipole
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Fig. 12.14 Radiation of an isolated vibrating string. The string is stretched along the x-axis and
is assumed to vibrate transversely along the z-axis. The oscillating string can thus be viewed as a
linear array of dipoles oriented in the direction of the z-axis. The observation point M is located in
the vertical plane, at a distance r from the string with an elevation angle � with regard to the z-axis

volume velocity and opposite signs, where the distance between the point sources is
determined by the peak-to-peak amplitude of the oscillation.

12.4.4 Distribution of Dipoles: Example of the Vibrating String

The vibrating string is a good example of a continuous distribution of dipoles.
Before tackling in the next chapters the radiation of a complete stringed instrument,
it is a interesting step to calculate the acoustic power radiated by an isolated string,
not coupled to a soundboard. The examined configuration is shown in Fig. 12.14.
The vector D D j!�Ud is the moment of the elementary dipoles oscillating along
the z-axis and d is the vector oriented from �U to CU. The pressure is calculated
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at point M of coordinates .y; z/ (or, alternatively, .r; �/), with r D p
y2 C z2 and

cos � D y=r. With r1 D r0 � d=2 and r2 D r0 C d=2 in (12.44), one obtains

P.r/ D j!�U

4�

"
e�jkjr�r0Cd=2j

jr � r0 C d=2j � e�jkjr�r0�d=2j

jr � r0 � d=2j

#
: (12.45)

If jdj tends to zero in the previous equation, we get

P.r/ D �j!�Ud:grad

"
e�jkjr�r0j

4�jr � r0j

#
D �D:grad ŒG.rjr0/� : (12.46)

One finds again the expression (12.39) obtained for an oscillating sphere whose
radius tends to zero, and where � is the angle between the vectors D and .r � r0/.

Considering now the vibrating string as a linear distribution of dipoles yields the
radiated pressure:

P.r/ D � 1

4�

@

@z

"Z
L

D.x/
e�jk

p
r2Cx2

p
r2 C x2

dx

#
: (12.47)

In this formula, D.x/ contains the information on the vibratory state of the string.
In general, the integral in Eq. (12.47) cannot be solved analytically. However, in
order to continue the calculation with the objective of highlighting some typical
orders of magnitude for the radiation, two additional assumptions are made:

1. D.x/ D j!�U0d; which corresponds to a uniform oscillation of the string with
diameter d.

2. The string is of infinite length.

In this particular case, Eq. (12.47) becomes

P.r/ D � j!�U0d

4�

@

@z

"Z 1

�1
e�jkr

p
1Cw2

p
1 C w2

dw

#
; (12.48)

with the change of variable w D x=r. It can be shown (see, for example, [31]) that
the pressure is written:

P.r/ D �cU0d

4
k2 H.2/

1 .kr/ cos �; (12.49)
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where H.2/
1 .kr/ is the Hankel function of the second kind of order one7 [2]. Another

strategy for obtaining this result consists in solving the wave equation in cylindrical
coordinates [20].

The acoustic power radiated per unit length of the string is derived from the
calculations of pressure and acoustic velocity:

Pr D �!3 jU0j2 d2

16c2
D ��2!3 jV0j2 d4

16c2
; (12.50)

where U0 D V0�dL with L D 1 m. V0 is the oscillating velocity of the string. We can
check on this expression that the radiated power varies as !3, which means that it
increases rapidly with frequency. The strings of musical instruments generally have
a small diameter (except for the low bass strings of the piano and of the double bass).
According to Eq. (12.50), this means that they usually are very inefficient in terms
of radiation. It is easy to make the experiment that the sound emitted by an isolated
stretched string is almost inaudible, except if the string is put close to the ear.

12.4.5 Quadrupoles

Quadrupolar sources can be viewed as the association of dipoles. A few “musical”
examples of such sources are presented below. The most common quadrupoles are
the following:

• The lateral quadrupole whose plane configuration is shown in Fig. 12.15a. It
corresponds to the association of four monopoles of alternate signs located at
the corners of a square. The pressure radiated by this source in its plane is given
by [14]:

P.r; �/ D �j�cd2k3U
e�jkr

4�r

�
1 C 3

jkr
� 3

k2r2

�
sin � cos � : (12.51)

For a point situated outside its plane, the pressure is (see Fig. 12.16):

P.r; �; 	/ D �j�cd2k3U
e�jkr

4�r

�
1 C 3

jkr
� 3

k2r2

�
sin � cos � cos 	 : (12.52)

The acoustic power radiated by the quadrupole is given by:

Pr D �cd4k6 jUj2
120�

: (12.53)

7The Hankel functions of the first and second kind of order n are defined from the Bessel functions
of the first kind Jn and from the Bessel functions of the second kind Yn through the relation
H.1/

n .z/ D Jn.z/ C jYn.z/ and H.2/
n .z/ D Jn.z/ � jYn.z/.
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Fig. 12.15 (a) Lateral quadrupole. (b) Linear (or longitudinal) quadrupole

Fig. 12.16 Radiation of a
lateral quadrupole: definition
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This power is proportional to !6 which means that, for similar flow rate, this
source is less efficient than a dipole in the low-frequency domain, though it
increases more rapidly with frequency.

• The linear (or longitudinal) quadrupole, composed by two dipoles aligned on the
same axis (see the Fig. 12.15b). The whole set is symmetrical with regard to the
vertical plane, which yields a double flow rate 2U to the monopole in the center.
In this case, the acoustic pressure is written [14]):

P.r; �/ D �j�cd2k3U
e�jkr

4�r

�
cos2 �

�
1 C 3

jkr
� 3

k2r2

�
� 1

jkr
C 1

k2r2

�
:

(12.54)

Applying the same method as for the other elementary sources, the acoustic
power of this quadrupole is derived:

Pr D �cd4k6 jUj2
40�

: (12.55)
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Compared to the lateral quadrupole, the same frequency dependence is observed
(in !6). However, the resulting pressure (for identical flow rates) is three times
higher.

12.4.5.1 Application 1: Acoustic Field Radiated by a Tuning Fork

The tuning fork is an essential device for each musician. We could have model this
device as an example for illustrating the vibrations of beams in Chap. 1, but we
prefer to focus here on its quadrupolar radiation properties. These properties were
investigated by Russel [28]. In this study, the directivity of a tuning fork at a forced
frequency around 440 Hz (note A4), and at different distances r from the source
were investigated. The main results of this study are summarized below.

• At a frequency of 426 Hz (close to the nominal frequency of the fork) and at a
distance r D 5 cm (close to the ear), we have kr D 0:39. On can thus reasonably
consider to be in the near field. For this kr-value, it is not possible to derive from
the simple observation of the directivity pattern whether the fork behaves as a
lateral or as a longitudinal quadrupole, since both patterns are very similar (see
Fig. 12.17). In both cases, four lobes are observed, which can be easily confirmed
audibly by rotating the fork around its axis close to the ear. Notice, however, a
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Fig. 12.17 � - directivities of two quadrupoles for kr D 0:39. Left: (a) lateral quadrupole. Right:
(b) longitudinal quadrupole [28]. The corresponding vibrational modes are displayed on top of
each directivity pattern, as well as the motion of the tines. In the normal use of the fork, both
branches vibrate at a nominal frequency of 440 Hz with the (b)-motion (note A4)
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Fig. 12.18 Directivity along � of quadrupoles for kr D 7:8. Left: lateral quadrupole. Right:
longitudinal quadrupole. After [28]

difference of 5 dB between both models in the direction perpendicular to the axis
of the fork [according to Eqs. (12.51) and (12.54)].

• If now the fork is located at a distance of 1 m from the ear (kr D 7:8), and slowly
put into rotation around its axis, then only two maxima of the sound intensity
are perceived for a complete turn, instead of four. In addition, the differences
between the maximum and the minimum sound intensity level are less clearly
audible than in the previous experiments. In this case, the directivity is clearly
close to the one observed for the longitudinal quadrupole in the far field (see
Fig. 12.18). This is coherent with the motion of the branches in the normal use of
the fork.

• For kr � 1, the first-order approximation of Eq. (12.54) yields

P.r; �/ / k3

r
cos2 � : (12.56)

This approximation accounts for the existence of two directivity lobes. However,
this approximation predicts a zero amplitude in the axis perpendicular to the fork,
which is neither in accordance with the complete model in Eq. (12.54), nor to the
experiments.

In conclusion, these simple, and easy-to-reproduce, experiments illustrate the
fact that the directivity of multipoles not only depend on frequency, but also on the
distance of observation. In addition, it shows that oversimplified models can be not
sufficient (and even wrong) for interpreting the experiments.
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Fig. 12.19 Sliding the edge of a wine glass with a wet finger generates a self-sustained oscillation
comparable to the one of a string excited by a bow. The glass vibrates close to a (2,0) mode (two
nodal diameters) and the directivity of the sound field is similar to the one of a lateral quadrupole

12.4.5.2 Application 2: Radiation of Wine Glasses

Another easy to do experiments consists in sliding a wet finger on the edge of a
glass. Several authors have shown that the main excited shell mode is of the (2; 0)-
type (see Fig. 12.19). Such a mode is also often observed in the vibrations of bells
[11, 27]. The excitation of this system involves typical stick-slip mechanisms, as for
the bowed strings (see Chap. 11). Here, the sound is nearly a pure tone, since almost
only one mode is strongly excited. The instrument called glassharmonica can be
viewed as a generalization of this system. It has been used in the past by Mozart and
other composers [4]. Figure 12.19 shows that the directivity of the sound field for
this mode is analogous to the one of a lateral quadrupole, as verified experimentally
by Russel [28].

12.5 Radiation of a Source with Arbitrary Shape

12.5.1 Kirchhoff–Helmholtz Integral

In this section, we are now dealing with the external field radiation of an extended
acoustic source with arbitrary geometry, where a part of the external surface is
subjected to a vibratory motion (see Fig. 12.20). This situation corresponds to the
one encountered in most stringed and percussive instruments. Our purpose is to
introduce a general formulation of the radiation, known as the Kirchhoff–Helmholtz
integral. Except for very particular geometries, only numerical techniques (such
as the Boundary Element Method, or BEM) can be used for solving such an
integral (see Sect. 12.5.3.6 below). However, some approximations are valid, in
some situations, leading to interesting results in terms of physics. Approximate



662 A. Chaigne and J. Kergomard

Fig. 12.20 In the most
general case, an extended
acoustic source is composed
of both vibrating surfaces (in
grey) and rigid parts (in
black). The rigid parts reflect
the waves emitted by the
vibrating surfaces. The total
resulting pressure field is the
sum of the direct field
radiated by the vibrating
surfaces and the field
reflected by the rigid passive
surfaces

results can also serve as reference solutions when the purpose is to evaluate the
pertinence and consistency of a numerical solution.

The pressure field radiated by an extended source such as the one shown in
Fig. 12.20 is together due to the vibrating surfaces and to the waves reflected by
the rigid parts. As a consequence, it will be shown that the whole source can be
viewed equivalently as the association of a monopole and dipole distributions. This
is one fundamental result of the Kirchhoff–Helmholtz integral. The existence of two
distributions is a consequence of the fact that the Helmholtz equation itself is of the
second order.

12.5.1.1 Green’s Theorem

In order to introduce the Kirchhoff–Helmholtz equation, a mathematical tool is
needed that allows the transformation of a volume integral into a surface integral: the
Green’s theorem. The interest of such a transformation will appear later, especially
for the use of the integral in numerical applications.

Let us select two arbitrary functions G and ˚ , assuming that these functions
have the adequate properties of continuity and derivability for the problem. These
functions are defined in a volume V bounded by a surface S with external normal
vector n. It can be shown that:

Z
V

ŒG�˚�˚�G� dV D
Z
V

div ŒGgrad˚�˚gradG� dV D
Z

S

�
G

@˚

@n
�˚

@G

@n

�
dS :

(12.57)

The main interest of this theorem, which is nothing but a generalization of
the divergence theorem, is the transformation of a volume integral into a surface
integral, thus reducing by one the dimension of the problem. If both functions have
the same impedance boundary condition on S (or on a part of S), the integral is
equal to zero on this surface (or, on the considered part). Recall that the impedance
is defined as the ratio between G and @G=@n.
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Fig. 12.21 Application of
the Green’s theorem to the
calculation of the external
pressure field
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The application of the theorem (12.57) to the calculation of the external pressure
field is illustrated in Fig. 12.21. The volume to consider here is the external volume
denoted Vext bounded by the external surface S of the source, on the one hand and,
on the other hand, by the closed spherical surface ˙ obtained as its radius tends to
infinity:

Z
Vext

ŒG�˚ � ˚�G� dV D �
Z

S

�
G

@˚

@n
� ˚

@G

@n

�
dS C

Z
˙

�
G

@˚

@n˙

� ˚
@G

@n˙

�
d˙ :

(12.58)

On ˙ , the functions G and ˚ fulfill the so-called Sommerfeld condition (see
Sect. 12.5.1.2) and the integral vanishes. The change of sign in front of the first
integral, in the right-hand side of the equation, is a consequence of the fact that the
normal vector n is oriented towards the internal part of the volume Vext.

12.5.1.2 Calculation of the Pressure Radiated Outside the Source
(External Field)

The purpose now is to determine the sound pressure P.r/ radiated by the acoustic
source in the external field. This pressure is governed by the Helmholtz equation
�P.r/ C k2P.r/ D 0. In addition, the Green’s function in free space is given by
Eq. (12.20) where r0 refers to any point on the surface S surrounding the volume V
of the source. From these two equations, one can simply derive:

�P.r/G.rjr0/ � �G.rjr0/P.r/ D P.r/ı.r � r0/ : (12.59)

Taking advantage of the reciprocity properties of the function G, Eq. (12.59)
becomes

�P.r0/G.rjr0/ � �G.rjr0/P.r0/ D P.r0/ı.r � r0/ : (12.60)
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Finally, after integration over Vext and application of the Green’s theorem, we get

Z
Vext

P.r0/ı.rjr0/dV D P.r/ D
Z

S

�
P.r0/

@G.rjr0/
@n

� G.rjr0/
@P.r0/

@n

�
dS.r0/ :

(12.61)

The Kirchhoff–Helmholtz (KH) in (12.61) is valid for the external field. It shows
that the pressure at any point r in the external space is obtained by means of a
surface integral on the bounding surface S of the source.8 This integral involves
a distribution of monopoles (terms in G.rjr0/), and a dipole distribution (terms in
@G.rjr0/

@n ). In the following examples, the physical meaning of both distributions will
be clarified.

Using Euler equation @P=@n D �j!�Vn, where Vn is the normal velocity (with
regard to S), the KH-equation can be transformed into the following form9:

P.r/ D
Z

S

�
�P.r0/

e�jkR

4�R

�
jk C 1

R

�
cos � C e�jkR

4�R
j!�Vn.r0/

�
dS.r0/ : (12.62)

Equation (12.62) shows that, for the calculation of the external pressure, knowledge
of both the surface (parietal) pressure P.r0/ and normal velocity Vn.r0/ are necessary.

Sommerfeld Condition
In order to define a complete problem of radiation, initial and boundary
conditions must be added to the partial differential (wave) equation. Writing
in (12.58) that the integral on ˙ vanishes as the observation distance tends to
infinity corresponds to imposing a boundary condition at the infinity. In the
far field (r0 �! 1), we have jr � r0j ' r0. The integral then vanishes under
the condition:

� 4�r02
"

P.r0/jk
e�jkjr�r0j

4�r0 C e�jkjr�r0j

4�r0
@P.r0/

@r0

#
! 0 : (12.63)

Through permutation of r and r0, this condition becomes

lim
r!1 r

�
@P.r/

@r
C jkP.r/

�
D 0 : (12.64)

(continued)

8Notice that this integral is valid for any Green’s function satisfying (12.20) in the external space,
whatever the boundary conditions. In addition, this integral can be generalized to the case of
multiple sources in the external space, due to the principle of superposition.
9It can be shown that the normal derivative of G is written @G

@n D �G
�
jk C 1

R

	
cos � , where

� D .n; R/.
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This condition is the so-called Sommerfeld condition. Notice that the Green’s
function fulfills this condition. This amounts to assume that there is no
convergent wave reflected back from infinity.

One drawback of the Sommerfeld condition is that it depends on the
geometry. As a consequence, its exact formulation can be known explicitly
only in a limited number of cases. An equivalent method for accounting to
the zero condition at infinity is to consider that the wave is progressively
damped during its propagation. This very “physical” method can be illustrated
in the following 1-D case. Consider the transfer impedance [Eq. (4.29)]: if x2

tends to infinity, the tangent function exhibits zeros and infinite maxima, and
does not converge, which indicates the presence of reflected waves. However,
if the wavenumber k becomes complex, and is written k � j˛, then the
tangent function (of complex angle) tends to unity and the impedance tends
to the characteristic impedance of a progressive wave, due to the absence of
returning wave. In this case, the damping factor ˛ can be imposed as small
as we want. Finally, a Sommerfeld condition is obtained for the plane wave
case: @P=@x C jkP �! 0.

It will be shown in Chap. 14 that, for numerical necessity, another widely
used method for simulating the radiation and propagation of waves in free
space consists in imposing Absorbing Boundary Conditions at the border of a
finite computational domain (such as a “virtual” anechoic chamber) in order
to prevent the propagation of returning waves back to the source.

12.5.1.3 Time-Domain Formulation of the KH Integral

At this stage, a transformation of the KH integral in the time-domain can be
achieved. The operator j! corresponds to a time derivative, while exp.�jkr/
corresponds to a time delay r=c. The pressure is then written:

p.r; t/ D � 1

4�

Z
S

�
1

Rc

@

@t
p

�
r0; t � R

c

�
C 1

R2
p

�
r0; t � R

c

��
cos � dS.r0/

C �0

4�

Z
S

@vn

@t

�
r0; t � R

c

�
dS.r0/ :

(12.65)

Equation (12.65) shows the implicit character of the equation, since the surface
pressure p also appears under the integral. This induces some difficulties in
the resolution. In addition, two terms are present in the first integral, where the
magnitude of the second (in 1=R2) is attenuated more rapidly than the first one
during the propagation. This first integral is of the dipolar type [see Eq. (12.40)].
The second integral is of the monopolar type, as in Eq. (12.14).
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12.5.2 Multipolar Decomposition

Under the condition that the external surface S is sufficiently regular, it can be
shown that the Kirchhoff–Helmholtz integral can be expanded as a convergent series
of multipoles, whatever the size of the source. This approximation is particularly
useful for the sources whose characteristic dimensions are small compared to the
wavelength. Such a decomposition can be obtained using Taylor series expansion of
vector functions f such as [2]:

f .r � r0/ D f .r/ � .r0:grad/f .r/ C 1

2Š
.r0:grad/2f .r/ C � � � (12.66)

Applying this expansion to the function R�1p .r0; t � R=c/, where R D jr � r0j, we
get

p .r0; t � R=c/

R
D

1

r
p



r0; t � R=c

� � .r0:grad/
p .r0; t � R=c/

r
C 1

2Š
.r0:grad/2 p .r0; t � R=c/

r
C � � �
(12.67)

or, equivalently:

p.r0;t� R
c /

R D exp.�r0:grad/
p.r0;t� r

c /
r with

exp.�r0:grad/ D 1 � r0:grad C 1
2 Š

.r0:grad/2 C � � � : (12.68)

Applying this result to both the pressure and velocity in (12.65), the KH integral is
rewritten as follows:

p.r; t/ D � 1
4�

R
S exp.�r0:grad/.n:grad/

p.r0;t�r=c/

r dS.r0/

C �

4�r

R
S exp.�r0:grad/ @vn

@t .r0; t � r=c/ dS.r0/ : (12.69)

Then, defining the following quantities:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

S.t/ D �

4�

Z
S

Pvn.r0; t/ dS;

D.t/ D 1

4�

Z
S

�
� r0 Pvn.r0; t/ C n p.r0; t/

	
dS;

Qij.t/ D 1

8�

Z
S

�
� r0

i r0
j Pvn.r0; t/ C .r0

i nj C r0
j ni/p.r0; t/

	
dS ;

(12.70)
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where the indices i and j refer to the vector components, the radiated pressure is
expressed as follows:

p.r; t/ D S.t � r=c/

r
�grad:

D.t � r=c/

r
C

3X
i;jD1

@2

@xi@xj

Qij.t � r=c/

r
C� � � : (12.71)

In (12.71), S.t/ is the monopolar term, the vector D is the dipole moment, and the
Qij are the quadrupolar components of the source.

12.5.2.1 Spherical Harmonics Expansion

The interest of the multipolar decomposition is to formulate the pressure field
radiated by any source as a sum of elementary fields radiated by point sources of
increasing order. However, from a mathematical point of view, such a decomposition
might be problematic, because the selected basis is not orthogonal. For this reason,
it is often preferred to expand the pressure on a spherical harmonics basis, which is
orthogonal. For the external problem, and assuming no returning wave propagating
towards the source, this expansion is written: [35]:

P.r; �; 	; !/ D
1X

nD0

nX
mD�n

Cmn hn.kr/ Ym
n .�; 	/; (12.72)

where the Cmn are complex coefficients depending on frequency, the hn.kr/ are
Spherical Hankel functions10, and the Ym

n .�; 	/ are the spherical harmonics [2].
These harmonics are written explicitly:

Ym
n .�; 	/ D

s
2n C 1

4�

.n � m/Š

.n C m/Š
Pm

n .cos �/ ejm	; (12.73)

where the Pm
n are the Legendre polynomials.

There is no bijection between the coefficients of the multipolar expansion and the
spherical harmonics. However, it is relatively easy to express the first coefficients
of the multipolar expansion in terms of spherical harmonics. The first spherical
harmonic

Y0
0 .�; 	/ D 1p

4�
(12.74)

10With the time convention selected throughout this book, the spherical Hankel functions here are
of the second kind, defined as h.2/

n .z/ D jn.z/ � jnn.z/, where jn.z/ and nn.z/ are the spherical
Bessel functions of the first and second kinds, respectively. The exponent .2/ is omitted for clarity.
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for example, is a monopolar term. Similarly, the second spherical harmonic

Y0
1 .�; 	/ D

r
3

4�
cos � (12.75)

has the directivity of an axial dipole . One can also show that the directivity of a
longitudinal quadrupole can be derived from the difference Y0

2 � ˛Y0
0 where ˛ is a

constant (see [35]).

Radiated Power

The acoustic power can be obtained through integration of the acoustic intensity on
a sphere ˙ of radius r0 around the source. We obtain

Pr.!/ D 1

2

Z
˙

<e
�
P.r0; �; '; !/V�.r0; �; '; !/

	
r2
0 sin � d� d' : (12.76)

Using Euler equation and the spherical harmonics expansion of the pressure, the
acoustic velocity is written:

V.r0; �; '; !/ D � 1

j�ck

@P

@r
D � 1

j�c

1X
nD0

nX
mD�n

Cmn h0
n.kr0/ Ym

n .�; 	/ : (12.77)

The acoustic power can thus be rewritten as:

Pr.!/ D r2
0

2�c

1X
nD0

nX
mD�n

jC2
mnj<e

�
hn.kr0/h0

n.kr0/�	
: (12.78)

Using one characteristic property of the spherical Hankel functions:

<e
�
hn.kr0/h0

n.kr0/�	 D 1

k2r2
0

; (12.79)

it is found finally that the radiated power can be expressed in terms of the spherical
harmonics under the form:

Pr.!/ D 1

2�ck2

1X
nD0

nX
mD�n

jC2
mnj : (12.80)

This result shows that, due to their orthogonality property, the spherical harmonics
are independent and thus the acoustic power radiated by each component only
depends on the squared modulus jCmnj2 of its magnitude.
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12.5.2.2 A Few Applications of the Spherical Harmonics
in Musical Acoustics

Radiation of a Stringed Instrument with Holes

In the 1980s, Weinreich and Arnold have developed a new technique for measuring
acoustic fields, based on the spherical harmonics expansion of the sound pressure.
This technique was applied with success to the violin [34]. More precisely,
Weinreich and his colleagues made the measurements of the radiativities of a
stringed instrument, such as the violin, defined as the ratio between the so-called
multipolar moments 
mn and the force FB exerted by the string at the bridge [33].
The moments defined by this author are related to the coefficients Cmn of the
expansion in Eq. (12.72) by the relations11:

Cmn D
"

�j!�c
knC2p

4�.2n C 1/

2nnŠ

.2n/Š

#

mn : (12.81)

With this definition, one can show that the moments 
mn for a sphere of radius
a small compared to the wavelength (ka � 1) and subjected to a radial motion
�.r D a; �; '/ are given by:


mn D 4�
p

2n C 1anC2

n C 1

Z 2�

'D0

Z �

�D0

Ym�
n .�; '/ �.a; �; '/ sin � d� d'; (12.82)

due to the orthogonality properties of the spherical harmonics [35]. One can check,
in particular, that for m D n D 0, the monopolar moment is written:


00 D
Z 2�

'D0

Z �

�D0

�.a; �; '/ a2 sin � d� d'; (12.83)

which corresponds to the volume variation of the sphere during its motion.
One interest of the spherical harmonics expansion is due to its rapid convergence

as the order n becomes higher than ka, where a is a characteristic dimension of
the source. Keeping a few terms only in the expansion (12.72) is then sufficient for
obtaining a good estimate of the radiated field. Assuming a characteristic dimension
of the order of 10 cm for the violin, for example, then an expansion up to the second
order yields a good approximation of the radiated field between 0 and 1 kHz.

The radiativities �mn D 
mn=FB are functions of frequency which can be further
expanded on the eigenmodes basis (see Part II of this book):

11This definition by the author of the acoustic multipolar moments is dictated by analogies with
corresponding definitions in electrodynamics. Let us also mention that, in the presently cited paper,
the index n is replaced by the index l and the order of the indices is reversed. As a consequence,
the moment 
mn defined here corresponds to the moment 
lm in Weinreich’s paper.
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�mn.!/ D
X

j

Aj
mn

! � !j
; (12.84)

where the !j are the complex eigenfrequencies of the source (see Sect. 2.2.1 in
Chap. 2), and where the Aj

mn are also complex constants. This expression is also
written:

� �mn.!/ D
X

j

Aj
mn

!j
C !

X
j

Aj
mn

!2
j

C !2
X

j

Aj
mn

!3
j

C � � � : (12.85)

• Back to the physics of the violin. For ! ! 0, the behavior of the instrument in
quasi-static regime is obtained. This corresponds to very low frequencies, where
the air can be considered as incompressible. In other words, applying a vertical
force FB on the soundboard, then the decrease in air volume inside the box is
exactly compensated by the volume of air escaping through the f-holes. As a
consequence, Eq. (12.83) indicates that the monopolar moment 
00 must be zero,
which implies

X
j

Aj
00

!j
D 0 : (12.86)

This result is valid for any musical instrument made of a vibrating shell with
holes (guitar, lute,. . . ). It is the so-called sound hole sum rule.

Neglecting the damping terms yields real eigenfrequencies. In this case, the
radiativities become

�mn.!/ '
X

j

Bj
mn

!2 � !2
j

: (12.87)

These expressions can be expanded as follows12:

� �mn.!/ '
X

j

Bj
mn

!j
C !2

X
j

Bj
mn

!3
j

C !4
X

j

Bj
mn

!5
j

C � � � : (12.88)

It can be seen that the terms of odd exponent in ! are not present in the
expansion (12.88). As mentioned earlier, the constant term vanishes, because of the

12The coefficients in the numerator are denoted Bj
mn, in order to make the difference with the

coefficients Aj
mn. We do not write the relationships between these two families of coefficients

explicitly, since it is not necessary for the present demonstration.
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sound hole sum rule. The first nonzero term is in !2, which corresponds to a dipole
(see, for example, Eq. (12.39). As a consequence, the radiated power is proportional
to !4.

For stringed instruments such as the violin or the guitar, the modal damping
coefficients j (see the definition of these coefficients in Eq. (2.3)) generally are in
average smaller than 0.05 below the lowest mode, so that the approximation (12.88)
is justified. One can conclude that these instruments radiate as dipoles below the
first mode.

Virtual Sources

The reproduction of the acoustic field radiated by a given source is another
growing application of the spherical harmonics. In the music world, the use of
synthesizers and electronic amplification leads to the question of sound diffusion
through loudspeakers. In fact, recording a given instrument (flute, or violin,. . . )
and reproducing it through a standard stereophonic apparatus composed of 3-way
loudspeaker systems, then there is very little probability that the reproduced sound
field will be identical to the one radiated by the original recorded instrument.
Even if the human ear recognizes the type of instrument without ambiguity, the
directivity of the source (and, even, its timbre) might be substantially altered by the
electroacoustic system.

For many years, the research team at IRCAM (Institut de Recherche et Coor-
dination Acoustique-Musique) in Paris have tackled that question [8]. Here again,
they took advantage of the fast convergence of the spherical harmonics expansion
for approximating real sources with an array of loudspeakers. The first step of
the method consists in measuring the directivity D of a given instrument (violin
and upright piano) in free field (anechoic chamber) at a given distance from the
instrument, and for different frequencies. The measured directivity pattern is then
decomposed on a truncated spherical harmonics basis. To a first approximation, this
truncated basis contains the monopolar component and the three dipole components.
This can be written formally:

D ' a1Dm C a2Dd1 C a3Dd2 C a4Dd3; (12.89)

where the ai.!/ are the unknowns of the problem. These coefficients (or filters)
can be estimated by using, for example, least square methods where the goal is to
minimize the distance between measured and approximate directivity.

As soon as the filters ai.!/ are determined, the recorded sound is played through
loudspeaker arrays, where each group of loudspeakers has been first designed
so that its directivity pattern corresponds either to a monopole or to one of
the three dipoleterms, with one dipole oriented in each of the three directions of the
coordinates. In summary, the principles of the diffusion is shown in Fig. 12.22. The
recorded signal is filtered in parallel on the i channels of the expansion. The output



672 A. Chaigne and J. Kergomard

a1 (   ) 

a2 (   ) 

a3 (   ) 

a4 (   ) 

Fig. 12.22 This figure shows the basic principles of sound reproduction of a given instrument
(piano and violin) by a loudspeaker array (here, a dodecahedron), so that the array has a directivity
similar (or close) to the one of the real instrument. For this purpose, the sound radiated by the
instrument is recorded and fed into a filter bank ai.!/. The output signal of each filter is, in turn,
fed into groups of loudspeakers, where each group has either the directivity of a monopole or the
one of a dipole. The sum of all output pressure patterns must fulfills the condition (12.89), which
corresponds to the directivity of the real instrument. After [8]

of each filter ai is fed into the loudspeaker array corresponding to its directivity. The
whole set of loudspeakers is usually grouped into a single extended source (cube,
dodecahedron, . . . ).

12.5.3 Radiation of Sound in a Semi-Infinite Space

12.5.3.1 General Formulation

In the previous sections, it has been shown to what extent the acoustic pressure that
reaches the ear of a listener depends on the velocity profile of the external surface of
the source, and on its geometry. It has been also pointed out that the passive surfaces
(without sources) contribute to the radiation field. This last property is generalized
here where it is shown that the sound field is influenced by the passive surfaces
situated in the vicinity of the sources. The acoustic field radiated by a loudspeaker
located in the corner of a room, for example, is not the same as the one resulting
from the same loudspeaker (playing the same sound) located in the center of the
room. Similarly, recording an instrument (a cello, for example) in a room with
a very reflective floor can be surprising! In this case, the sound that reaches the
microphone is
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R = |r-r'|

SH (infinite)

Fig. 12.23 Source in the vicinity of an infinite plane

the sum of the direct field and the field reflected by the floor. Constructive (or
destructive) interferences can result from this superposition which might alter the
timbre of the instrument substantially, like the well-known “comb-filter” effect. In
order to address this question, we consider the simple situation, shown in Fig. 12.23
where the source is situated in the vicinity of an infinite plane SH with normal
vector nH.

As for S, r0 denotes any point of SH , where the pressure and the acoustic velocity
are denoted P.r0/ and Vn.r0/, respectively. According to the superposition theorem,
Eq. (12.61) becomes

P.r/ D
Z

S

�
P.r0/

@G.rjr0/
@n

� G.rjr0/
@P.r0/

@n

�
dS

C
Z
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�
P.r0/

@G.rjr0/
@nH

� G.rjr0/
@P.r0/
@nH

�
dS : (12.90)

12.5.3.2 Particular Case: Half-Space Delimited by an Infinite Rigid Plane

In the particular case where an infinite plane delimiting the half-space is supposed
to be rigid, then the velocity normal to this plane is supposed to be zero.
Equation (12.90) can be simplified through the use of a new Green’s function GH

which takes the presence of the rigid plane into account. In other words, a function
GH.rjr0/ is searched which fulfills both the Sommerfeld condition and the boundary
condition Vn D 0 on SH . We have

�GH.rjr0/ C k2GH.rjr0/ D �ı.rjr0/ with
@GH

@nH

ˇ̌
ˇ̌
SH

D 0 : (12.91)
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Fig. 12.24 Green’s function
for an half-space bounded by
an infinite plane

Image source

R1

R2

M (r)

z

0

Monopole (r')

It can be easily checked that the function:

GH.rjr0/ D e�jkR1

4�R1

C e�jkR2

4�R2

; (12.92)

where R1 and R2 are the distances defined in Fig. 12.24, fulfills the required
conditions of the problem.

In Cartesian coordinates, these distances are given by:

R1 D �
.x � x0/2 C .y � y0/2 C .z � z0/2

	1=2

R2 D �
.x � x0/2 C .y � y0/2 C .z C z0/2

	1=2
; (12.93)

where R1 is the distance between one point source and the observation point, and R2

is the distance between the image of the source point (with regard to the plane SH)
and the observation point.

On SH , or equivalently for z D 0, we have R1 D R2 D R and @R1

@z C @R2

@z =0. As a
consequence, the expression (12.92) fulfills

@GH

@nH

ˇ̌
ˇ̌
SH

D @GH

@z

ˇ̌
ˇ̌
SH

D 0 : (12.94)

Finally, GH is obtained when the observation point M.r/ tends to the plane SH , and
is equal to:

GHSH D 2
e�jkR

4�R
D 2G : (12.95)

12.5.3.3 Radiation of a Plane Source Fixed in an Infinite Rigid Plane

The determination of the acoustic field is highly simplified in the particular
case of the plane sources, especially in the far field. In this case, and under
certain conditions, the implicit Kirchhoff–Helmholtz integral is transformed into
the simpler explicit Rayleigh integral where the free-field pressure is derived from
the velocity profile of the emitting surface.
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Fig. 12.25 Plane source of
surface S fixed in an infinite
rigid plane (SH). The origin O
is arbitrary. r is the coordinate
vector of the observation
point M. r

0

is the coordinate
vector of a point on the
source S

SH

M

O

r 

r'

S

R = |r–r'|

In musical acoustics, the Rayleigh integral is a convenient tool for computing, for
example, the sound field radiated by a plane soundboard, to a first approximation.
However, in this case, the condition of fixation in an infinite plane is not fulfilled,
which leads to significant discrepancies with measurements, especially in the low-
frequency range, when the acoustic wavelength is larger than the dimensions of the
soundboard. The Rayleigh integral also yields wrong results in the soundboard plane
and behind the source. Therefore, most precise predictive calculations applicable to
real instruments will be presented in Chap. 13.

In this section, the main results for the radiation of a plane source fixed in
an infinite rigid plane are briefly reviewed. More details can be found in many
textbooks.

12.5.3.4 Rayleigh Integral

We consider an extended plane source with surface S fixed in an infinite rigid plane
SH (Fig. 12.25). It has been shown above that the Eq. (12.61) remains valid for any
Green’s function whatever the boundary conditions. We derive

P.r/ D
Z

SH

�
P.r0/

@GH

@nH
� GH

@P.r0/
@nH

�
dSH , (12.96)

By definition, the normal derivative of the Green’s function GH is zero on the
surface SH . The normal derivative of the pressure P.r/ is also zero on SH , except on
S. We get

P.r/ D �
Z

S
GH

@P.r0/
@nH

dS : (12.97)

Writing GH explicitly [Eq. (12.95)], and using Euler equation, we get

P.r/ D j!�

2�

Z
S

Vn.r0/
R

e�jkR dS: (12.98)

This last expression is the so-called Rayleigh integral.
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12.5.3.5 Fresnel and Fraunhofer Approximations

For jrj � jr0j, it is useful to look for approximations of the Rayleigh integral, based
on Taylor series expansion of R, as follows:

R D jr � r0j ' r � r0:m C 1

2r

h
r02 � 


r0:m
�2

i
C � � � ; (12.99)

where m is the unitary vector r=r.
In the so-called Fraunhofer approximation, the expansion (12.99) is truncated to

the first two terms. As a consequence, the Rayleigh integral becomes

P.r/ ' j!�

2�

e�jkr

r

Z
S

Vn.r0/e�jk:r0 dS; (12.100)

where k D km. By definition, the spatial Fourier transform of Vn.r0/ is

QVn.k/ D
Z

S
Vn.r0/e�jk:r0 dS : (12.101)

Finally, we get for the pressure:

P.r/ ' j!�

2�

e�jkr

r
QVn.k/: (12.102)

This result means that the magnitude of the pressure, besides the 1=r dependence,
is fully determined by the spatial Fourier transform of the normal velocity field
of the baffled source. Under the condition of adequate spatial discretization, this
property opens a wide range of efficient methods for the calculation of radiated field,
in view of the existence of numerous fast algorithms dedicated to the computation
of discrete Fourier transforms.

In the Fresnel approximation, the first three terms of the expansion of R are kept.
It is further assumed that the observation point is not too far from the x-axis or,
equivalently, r ' x (see Fig. 12.26). We can then calculate the acoustic field near
the plane source and close to its axis. We have

R D jr � r0j ' x � m:r0 C r02

2x
: (12.103)

Using the same notations as previously, the pressure is written:

P.r/ ' j!�

2�

e�jkx

x

Z
S

Vn.r0/e�jk:r0 e� jkr02

2x dS : (12.104)

This last expression also involves a Fourier transform. However, in the Fresnel case,
the velocity field on the source has to be first multiplied by a phase factor. Denoting
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Vpn this weighted velocity, we have:

Vpn D Vn.r0/ e� jkr02

2x ; (12.105)

and the acoustic pressure becomes

P.r/ ' j!�

2�

e�jkr

r
QVpn.k/ : (12.106)

It can be shown that the limit between the Fresnel and the Fraunhofer zone is located
at position x D L2=4� ' L2f =4c, where L is a characteristic dimension of the
source, and � the acoustic wavelength. This is an alternative way to define a limit
between near and far field.

12.5.3.6 Source with Uniform Velocity Distribution, or “Plane Piston”

In this paragraph, the radiation of a plane circular disk of radius a subjected to
a uniform velocity V0 at frequency ! is considered. This well-known example
is often called a “plane piston” (see Fig. 12.26). In the far field, it is assumed
that the Fraunhofer approximation is valid, so that the pressure can be computed
using (12.102). For the velocity, we have

Vn.r0/ D
(

V0 for 0 � r0 � a;

0 elsewhere :
(12.107)

Fig. 12.26 Geometry of the
plane piston. The circular
disk of radius a is situated in
the plane yOz and subjected
to a uniform velocity V0

oriented along the Ox-axis
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As a consequence, its spatial Fourier transform is written:

QVn.k/ D U0

�
2J1.ka cos �/

ka cos �

�
(12.108)

where � is the angle between the vector r and the source plane (see Fig. 12.26), and
U0 D �a2V0 the volume velocity of the piston. The quantity D.�/ D 2J1.ka cos �/

ka cos �
is

the directivity of the piston. The radiated pressure is written:

P.r; �/ D j!�U0

2�

e�jkr

r
D.�/ : (12.109)

Comparing this result with the pressure field radiated by a pulsating half-sphere
shows that the directivity is more pronounced for an extended source than for a
point source. The directivity increases with frequency. This general result can be
explained as follows: at low frequencies, the different vibrating points of the surface
S yield constructive interferences, whereas, with increasing frequency, the phase
shifts due to the differences in the propagation distances at a given point in space
are more and more pronounced, leading to destructive interferences, especially off-
axis. The power radiated by the piston is equal to:

Pr D �ck2 jU0j2
4�

; (12.110)

which corresponds exactly to twice the sound power radiated by a monopole with
identical volume velocity.13 As a consequence of the source extension, the sound
intensity is not distributed equally in all directions.

One interesting result for the circular plane piston is the calculation of the
pressure on the axis since, in this particular case, an exact calculation of the pressure
can be made without assuming a far field approximation. Figure 12.27 shows some
examples for different values of the source radius a at various frequencies. At a
frequency of 5:525 kHz and for a radius a D 25 cm, for example, it can be seen that
the limit between near and far field is close to 1 m. below this limit, in the vicinity of
the piston, the pressure shows rapid fluctuations. These fluctuations are reduced for
a smaller radius, and at lower frequencies. Such properties are important to know
when recording sound sources in general (including musical instruments), since the
recorded signal is highly sensitive to the location of the microphone in the near field.

13This is due to the fact that the plane piston radiates in an half-space: the volume velocity in the
complete space is U0

0 D 2U0, thus, expressing the power in (12.110) as a function of U0

0 yields a
factor 16 in the denominator. The total power in the two half-spaces is the sum of the power on
each side of the rigid plane, and we find as a result the factor 8 in the denominator as in (12.21).
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Fig. 12.27 Axial pressure field of a circular plane piston for different values of the radius a and
oscillation frequency f . Comparison with the results obtained for a semi-monopole (in grey color).
As a and f increase, more and more important amplitude fluctuations are seen in the vicinity of the
piston. The monopole approximation becomes more and more relevant as both a and f decrease.
However, this approximation is never realistic on the piston itself, since it predicts an infinite
pressure

Boundary Element Method (BEM)
The Kirchhoff–Helmholtz (KH) integral forms the theoretical basis of the
numerical BEM: Boundary Element Method. It mains attracting aspect lies
in the fact that the KH integral is a surface integral (and not a volume
integral) which contributes to reduce the computational burden substantially.
In musical acoustics, this method has been applied to the guitar by Brooke [3]
and Fleischer [32]. This last author also applied the BEM method to timpani.
The main principles and difficulties of this method are briefly summarized
below. The reader may consult specialized textbooks on this topic for more
information [36].

In Eq. (12.61), the expression of P.r/ was given for an observation point
situated in free space outside the external bounding surface S of the source.
For an observation point situated on the surface S, one can show that the
equation becomes

1

2
P.r/ D

Z
S

�
P.r0/

@G.rjr0/
@n

� G.rjr0/
@P.r0/

@n

�
dS.r0/ : (12.111)

The physical meaning of the factor 1=2 can be explained by the fact that, on
the surface, we have to define a Green’s function in 2� steradians, and not in
4� steradians. The use is to group (12.61) and (12.111) in a single expression:

(continued)
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Z
S

�
P.r0/

@G.rjr0/
@n

� G.rjr0/ @P.r0/
@n

�
dS.r0/ D �P.r/ with

8̂
<
:̂

� D 1 for M 2 Vext;

� D 1

2
for M 2 S :

(12.112)

The first level of approximation of the BEM method is of the geometrical type.
It is due to the fact that the discretization of (12.112) requires a subdivision of
the surface (or boundary) S in a number Ne of finite elements, so that:

NeX
jD1

Sj ' S : (12.113)

In (12.113), the symbol “'” means that some fine details of the edges,
and/or of the curvature of the surface, cannot be taken into account by such a
discretization. Equation (12.112) becomes

�P.r/ D
NeX

jD1

Z
Sj

�
P.r0/

@G.rjr0/
@n

� G.rjr0/
@P.r0/

@n

�
dS.r0/ : (12.114)

For approximating the surface, one can use simple elements, such as triangles,
or other geometrical forms of higher order (spline functions). The degree of
accuracy of the approximation increases with the number of elements Ne and
with the order of the surface elements.

The second level of approximation in the BEM method is of the functional
type. This level govern how the variables P and G inside a given surface
element are expressed as functions of their values in a number of fixed points
called nodes. In the simplest case, it is assumed that these variables are
approximated by piecewise constant functions. In this case, Eq. (12.114) is
written:

�P.r/ D
NeX

jD1

P.r0
j/

Z
Sj

@G.rjr0
j/

@n
dS.r0/ �

NeX
jD1

@P.r0
j/

@n

Z
Sj

G.rjr0
j/dS.r0/;

(12.115)
and the number of nodes is equal to the number of elements. The expression
of the pressure at points ri becomes

�P.ri/ D
NeX

jD1

P.r0
j/Mij �

NeX
jD1

@P.r0
j/

@n
Lij (12.116)

(continued)
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or, equivalently, in matrix form:

�P D M PS � L
@PS

@n
: (12.117)

In general, the normal velocity is a given parameter, so that @PS
@n is known.

The unknowns are P in free space and PS on the surface S. In a first step, it
is necessary to determine PS in order to solve Eq. (12.117). This quantity is
obtained as the observation point converges to the surface S, which means that
r tends to r0. Equation (12.117) becomes

ŒM � �I� PS D L
@PS

@n
; (12.118)

where I is the identity matrix. At this stage, one of the main difficulties of the
BEM method is a consequence of the non-uniqueness of the solution observed
for the eigenvalues of the operator ŒM � �I�. A physical meaning for this
eigenvalues is difficult to find, since they result from a purely mathematical
singularity problem. Some methods exist today, such as the CHIEF (or
Combined Helmholtz Integral Equation Formulation), for overcoming such
difficulties [32]: this last method is based on the idea to formulate (12.118)
in the form of a overdetermined system which is solved by means of a least
square method.

12.6 Radiation of Sound Tubes

The complexity of the radiation by wind instruments is mainly due to the existence
of orifices, which can be large compared to the wavelength for brass instruments
or saxophones. Moreover for woodwinds they can have a significant external
interaction. Hereafter we give the main elements (i.e., the radiation impedance,
which represents the effect inside the tube, and directivity of the radiated field
outside) for the end of a tube, and we explain the principle of the interaction of
two orifices. The radiation of instruments with several sources will be investigated
in Chap. 14.
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12.6.1 Radiation Impedances

12.6.1.1 First Approach

In what follows we consider the radiation by tubes without mean flow, in the linear
approximation. An analysis of the flow influence can be found in the literature
[6, 21, 24], and the issue of high levels is treated in Chap. 8 (Sect. 8.4.5) of
the present book. Moreover we consider low Helmholtz number ka, where a is the
tube radius, when only the planar mode propagates.14 Results concerning non-planar
modes of the tube can be found in [13]. We start with a very qualitative approach,
which allows understanding the tube radiation phenomenon, and gives already a
correct value for the real part of the input impedance at low frequencies. Indeed for
a tube radiating into the infinite space, radiation is a particular case of discontinuities
such as those studied in Chap. 7.

• Let us consider an abrupt change in cross section (Fig. 7.20): at low frequencies,
the fluid can be regarded as incompressible (cf. Chap. 1, Sect. 1.5), thus there
is flow rate conservation from one side of the discontinuity to the other side. If
in addition the pressure is uniform in a straight cross section of each duct, the
energy conservation yields

<e.Zleft/ D <e.Zright/: (12.119)

(here the impedances are the acoustic impedances, i.e., a ratio pressure/flow
rate). Close to the discontinuity, the pressure is not uniform, but if the straight
cross sections are chosen at a certain distance of the discontinuity (i.e., one or
two diameters), only the planar mode is present, and this expression is valid.
Otherwise the discontinuity impedance Zd is purely imaginary [see Eq. (7.158)],
and the Expression (12.119) remains valid at the discontinuity. This is exactly
what we need to match the internal and external fields.

If the tube on the right is infinite, the impedance to the right is: �c=Sright, and we
have found a first expression of the real part of the radiation impedance Zleft of the
left tube into an infinite tube. The reflection coefficient R` at the end of this tube is
found to be:

jR`j2 D .RR � 1/2 C X2
R

.RR C 1/2 C X2
R

'
�

RR � 1

RR C 1

�2

;

14This means ka < 1:8 [cf. Eq. (7.147)]. For a clarinet this gives f < 14 kHz, but for tapered
instruments, the limit frequency can be much lower. The following equation can be used up to
ka D 3:8 for the case of a perfect axisymmetry (see Chap. 7), but it is not the case of wind
instruments, because of the exciter geometry and of the existence of toneholes.
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if we denote ZrightSleft=�c D RR C jXR (see Sect. 7.3.2 in Chap. 7). Indeed at low
frequencies the effect XR of the added mass tends to 0. Therefore, the larger the
cross section discontinuity, the stronger the reflection.

• This reasoning can be extended to the case where the left tube is terminated in an
infinite cone (with index b): there is a matching volume, as shown in Fig. 7.13,
where pressure and velocity have complicated profiles, but, at low frequencies,
the flow rate is conserved. The field can be expanded in the cone by using
spherical Bessel functions. The fundamental mode is the mode with a spherical
symmetry. Its characteristic admittance (ratio pressure/flow rate) is given by:

Y D Sb

�c

�
1 C 1

jkrb

�
:

[see Eq. (7.79)]. At low frequencies, this implies

<e.Zright/ D �c

Sb

k2r2
b

1 C k2r2
b

(12.120)

' �c

Sb
k2r2

b D �ck2

2�.1 � cos �b/
. (12.121)

Here, �b is the apex semi-angle of the cone, because the impedance is defined on
a spherical cap.15 When the cone is opened up to become an infinite flange, �b

tends to �=2, and the real part of the radiation impedance decreases down to:

<e.ZR/ D �ck2

2�
: (12.122)

The explanation of the decrease is intuitive, because the discontinuity increases,
thus the reflection coefficient increases and the reflection tends to be total.

• The latter result can be obtained directly if we assume that the tube radiates
with an infinite flange and that waves are spherical far enough from the tube end
(Fig. 12.28). This assumption is confirmed by the fact that the result does not
depend on the radius of the hemisphere. And for an unflanged tube (i.e., with a
zero thickness) the surface where waves are spherical is a sphere,16 and we obtain

<e.ZR/ D �ck2

4�
: (12.123)

15Formula (12.121) is not valid for a cone with weak taper: when rb tends to infinity, the impedance
should tend to �c=Sleft, which is the characteristic impedance of the cylindrical tube. In order to
find this result, we must keep the expression (12.120) with Sgauche D Sb, because the matching
volume tends to zero.
16In fact, we have here a complete sphere reduced by the external cross section of the tube.
Nevertheless, because the radius is small compared to the wavelength, this reduction may be
ignored.
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Fig. 12.28 Radiation of a tube with an infinite flange (left) and of an unflanged tube (right). The
flow rate and power are conserved on a hemisphere and a quasi-complete sphere, respectively. The
radius of the sphere is sufficiently large for waves to be spherical on it

Therefore the previous approach allows determining the real part of the radiation
impedance at low frequencies. It is nothing but that of a monopole radiating into
the infinite space expressed in (12.12). Incidentally we notice that, using the same
argument, the radiation of a diverging conical tube produces a reflection smaller than
the one of a cylinder. In what follows, the formulas are limited to cylindrical tubes,
because there are no known formulas for a cone or a flared bell. As to the termination
of a bell, i.e., the shape of the flange, plays a determinant role on radiation and, as
one can imagine, there are no simple formulas for these cases. The matching of the
field between the bell and the infinite space presents a difficulty of a nature similar to
that of the field analysis inside the bell. The case of the Bessel horns (see Sect. 7.5.1
in Chap. 7) illustrates the fact that the separation between the tube and the flange is
less relevant than for a cylinder.

12.6.1.2 Radiation Impedance of a Cylinder with an Infinite Flange

Now we wholly treat a rather simple case, that of a cylinder radiating with an
infinite flange. It is somewhat academic but interesting, and it can be applied as
a first approximation for a side hole, when the flange is the external surface of the
tube. Then the two cases of a tube without flange and with a finite flange (which
can be the tube thickness) are considered. In a cylinder, where the planar mode only
propagates, evanescent modes can exist near the tube end, but they all are with a
radial symmetry n D 0, which is the symmetry of the problem. The calculation of
the radiation with an infinite flange is done thanks to the Rayleigh integral (12.98)
together with the modal expansion given in Sect. 7.6.3.2 of Chap. 7. Pressure and
velocity are expanded in duct modes (in a vector form), and a matrix radiation
impedance ZR is deduced for the modes with radial symmetry ˚i0.r/ D J0.�i0r/:

P D ZRU where Zij D j!�

2�

1

S2

Z
S

Z
S

˚i0.r/˚j0.r0/
exp.�jk jr � r0j/

jr � r0j dS dS0:
(12.124)
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Similarly to the method used for a cross section discontinuity, it remains to separate
the planar mode .p; u/ from the higher order modes (P0; U0/, then to close the latter
on their characteristic impedance (P0 D �Z

0U0), because the tube end is assumed to
be far from any other discontinuity. Using evident notations, we write

�
p
P0

�
D

�
ZR00

tz
z Z

0
R

� �
u

U0
�

;

where

p D ZRu, with ZR D ZR00 � tz.Z0
R C Z

0/�1z: (12.125)

In this expression the quantity ZR00 is the plane piston approximation, which was
discussed in Sect. 7.6.3.2 of Chap. 7, and is often used since Rayleigh. This author
calculated the ratio of the averaged pressure to the piston velocity starting from
formula (12.98), and obtained a formula where modified Bessel functions, called
Struve functions, intervene. The low-frequency approximation is the following:

ZR00 D �c

S

�
1

2
.ka/2 C j

8

3�
ka

�
C O

�
.ka/3

	
: (12.126)

The imaginary part corresponds to a length correction of �`D8a=.3�/D0:85a (cf.
the analysis of Chap. 4, Sect. 4.6.4), and the real part is that given by Eq. (12.122).

For a tube, several authors made the computation (see, for example, [23]).
At low frequencies, the result is very close to that of the plane piston, but the
length correction is �` D 0:8216a, as calculated by Rayleigh himself. At other
frequencies, the impedance can be written with respect to the complex reflection
coefficient R`:

ZR D �c

S

1 C R`

1 � R`

D j
�c

S
tan

�
k�` C j

2
ln jR`j

�
(12.127)

where R` D � jR`j exp.�2jk�`/ (12.128)

[cf. Eq. (4.43)]. As a consequence, both the length correction �` and the modulus
of the reflection coefficient depend on frequency. Figure 12.29 shows the two results
(the exact formula and the plane piston approximation). The behaviors are different
at lower and higher frequencies, with a transition around ka D 1 or 2. At higher
frequencies, the real part tends to the characteristic impedance, the imaginary part
tends to 0, and the length correction decreases significantly.

An approximate formula was recently obtained [17, 30], by seeking an expansion
ensuring the following properties:

• symmetry Z.!/ D Z�.�!/;
• causality of the reflection function (and of the inverse FT of the impedance);
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Fig. 12.29 Left plot: real and imaginary parts of the radiation impedance for a tube without flange
(gray dashed line), with an infinite flange (gray solid line) and with an infinite flange in the
approximation of the plane piston (dotted line). At higher frequencies, the real part tends to the
characteristic impedance while the imaginary part tends to 0. Right plot: length correction �` with
respect to frequency: with an infinite flange (gray line) and without flange (black line)

• a correct behavior of ZR at low frequencies, with the following notation: ZR D
Zc

�
jıka C 1

2
ˇ.ka/2

	
;

• convergence of ZR to the characteristic impedance at higher frequencies.

This formula is written as follows:

R`D� 1 C n1jka

1 C d1jka C d2.jka/2
, where (12.129)

n1D0:182; d1 D 2ı C n1 D 1:825 ; d2 D 1

2



d2

1 � n2
1

� � 2ˇ D 0:649

(12.130)

ıD0:8236I ˇ D 1

2
: (12.131)

The inverse FT of R`.!/ can be deduced: for t > 0, it is the superposition of two
real decreasing exponentials, because the poles of the polynomial 1 C d1x C d2x2

are real. The corresponding formula for the impedance is

ZR D Zc
jıka C 1

2
d2.jka/2

1 C 1
2
.n1 C d1/jka C 1

2
d2.jka/2

: (12.132)

12.6.1.3 Radiation Impedance of an Unflanged Tube

The calculation for an unflanged tube is significantly more complicated. It
was done by using the analytic continuation in the complex plane (i.e., the
Wiener–Hopf method) by Levine and Schwinger [18]. At low frequencies the
result is the following:
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ZR D �c

S

�
1

4
.ka/2 C 0:6133jka

�
: (12.133)

The real part is that given by Eq. (12.123), and the imaginary part corresponds to a
length correction of �` D 0:6133a. Figure 12.29 shows the comparison between
this result, which is probably the most useful, with that of the previous cases. The
approximate formula (12.129) can be used, with:

n1 D 0:167 ; d1 D 2ı C n1 D 1:393 ; d2 D 1

2



d2

1 � n2
1

� � 2ˇ D 0:457 (12.134)

ı D 0:6133I ˇ D 1

4
: (12.135)

12.6.1.4 Radiation Impedance of a Tube with a Finite Flange

The two above presented cases are extreme cases. Calculations were done for the
case of a tube with a finite flange. The external diameter is denoted 2b. Fit formulas
were obtained for the reflection coefficient, based upon experimental and numerical
results [7]:

R` D R�̀ � 0:43
a.b � a/

b2
sin2

�
kb

1:85 � a=b

�
e�jkbŒ1Ca=b.2:3�a=b�0:3.ka/2/� ;

(12.136)

R�̀ D �e�2jk�`�

�`� D �`�1 C a

b
.�`�

0 � �`�1/

C 0:057
a

b

�
1 �

�a

b

�5
�

a. (12.137)

The quantities �`�
0 and �`�1 are complex length corrections (the indices 0 and 1

correspond to the cases without flange and with infinite flange, respectively), and
are deduced from formulas (12.129) to (12.135) by:

k�`� D k�` C j

2
ln jR`j :

In formula (12.136), the function sin2 evidences oscillations which are due to
reflections on the external edges of the tube. Other geometrical shapes or other
terminations were studied by some authors [7, 12, 24, 29]: as it was above
mentioned, the issue is complicated and cannot be clearly distinguished from that
of the extension of a tube into a small bell. Concerning the radiation by bells, the
case of a conical horn has been treated above. If the plane wave approximation is
accepted, it is consistent to choose the radiation impedance of a cylindrical tube.
However, the frequency limit of validity is rather low, similarly to that of the horn
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equation (cf. Sect. 7.6.3.5, Chap. 7). In order to study this matter in a more precise
way, numerical methods need to be used, such as the Boundary Element Method
(cf. Sect. 12.5.3.6), or experiments can be carried out.

12.6.1.5 Radiation Impedance of a Tonehole

The radiation by a tonehole is another rather complicated problem. When the radius
tends to 0, the radiation is expected to become similar to that with an infinite flange,
and the corresponding formula is in general satisfactory. However, holes are often
provided with keys which are perforated or not and modify the radiation: some
indications can be found on their effect, in particular in Refs. [9, 22].

12.6.2 Field Radiated by a Tube: Directivity

For an unflanged tube Levine and Schwinger [18] gave an approximated formula
for the far field. It can be written in the following form (if � D 0 in the tube axis):

P.r; �/ D j!�U` D.�/ F.�/
e�jkr

4�r
where

D.�/ D 2J1.ka sin �/

ka sin �
and F.�/ D 1 C ZRS

�c
cos �: (12.138)

At the lowest frequencies the radiation is that of a monopole. The directivity
factor D.�/ is that for a plane piston in an infinite baffle.

The factor F.�/, can be interpreted as the result of the superposition of a plane
piston in an infinite baffle and an unflanged piston, which behaves as a dipole with
the directivity factor D.�/ cos � W it can be shown that this superposition corresponds
to a piston radiating without flange from one side only17 [5]. The existence of this
dipole makes the radiation forwardly and rearwardly very asymmetrical (notice that
the result jF.�/j = jF.0/j D jR`j is exact). At higher frequencies, the factor F.�/

tends to .1 C cos �/, which is the directivity of a cardioid.
Figure 12.30 shows the directivity of a tube for different values of ka, and a

comparison with the case of a plane piston in an infinite baffle. The maximum is
obtained for � D 0ı, and the minimum near � D 130ı. For example, for ka D 1,
with respect to � D 0ı, it is found �2:7 dB for � D 90ı, �3:5 dB for � D 131ı,
and �3:3 dB for � D 180ı. At higher frequencies, the formula (12.138) diverges
from the exact value, except for 0ı and 180ı.

17For this case the imaginary part is found to be 2R=� D 0:6366R, and is slightly larger than that
of a unflanged tube: this difference can be compared to that between a tube and a plane piston.
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Fig. 12.30 Directivity, in decibels, of an unflanged tube (left plot), D.�/F.�/, and of a plane piston
in an infinite baffle, D.�/ (right plot). The values of the frequency are, from the outside to the
inside: ka D 0:5; 1; 1; 5; 2

Considering now the argument of the function F.�/, we see that, for small ka,
it is equal to k�` cos � . A geometrical reasoning shows that the acoustic center of
the waves produced by the tube is located at the distance �` from the tube end:
therefore the length correction is also a quantity related to the radiated field.

Finally, Ando [1] showed that the directivity is slightly modified when the tube
thickness is taken into account, and that the acoustic center is no longer located
exactly at a distance equal to the length correction of the tube.

For a bell, experiment shows that the directivity globally increases at higher
frequencies, and is similar to that of a cylinder. Figure 12.31 shows experimental
results, which are obtained by exciting a trombone with a loudspeaker at its input
(the real radiation can be slightly different because of the mean flow). However, as
the opening is wide, the directivity of the bell is significant even at rather low audible
frequencies. This result was confirmed by Martin, who made similar measurements
[19]. Such a phenomenon is very well known by the players, who modify the
orientation of their instrument in order to adjust the perception of higher frequencies
by the listeners.

12.6.3 Radiation by Two Tubes or Two Orifices

When two sources are close together, they have a mutual influence. From the integral
formulation of type (12.61), we can calculate the average pressure on two surfaces
with respect to the flow rate of each of them, and the result can be written in the
general form of a radiation impedance matrix (or an admittance matrix):
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Fig. 12.31 Radiation of a trombone with closed slide excited by a loudspeaker. The directivity is
measured for different harmonics of the note. The corresponding frequencies are 113; 171; 229;
294; 346; 406; 465; 521; 590 Hz. The increase from the lower frequencies to the higher ones is
plotted from the inside to the outside. It can be noticed that the directivity increases with frequency.
(Courtesy of R. Caussé)

P1 D Z11U1 C Z12U2

P2 D Z21U1 C Z22U2: (12.139)

Z11 and Z22 are “self-impedances,” and Z12 D Z21 are mutual impedance, which are
equal because of reciprocity. It can be useful to know them when the ends of two
tubes are close together, or when two orifices of a tube are close together, as it is
the case for open toneholes. We examine this issue in detail at lower frequencies,
and focus on the power balance. A simple approximate formula can be deduced,
together with a validity condition.

The mutual impedances generally are as difficult to calculate as the self-
impedances, which were calculated in the previous section. The literature on this
subject is wide. As an example, we can start with two pistons located in the same
infinite baffle. The formula of the mutual impedances can be then directly deduced
from the Rayleigh integral (12.98):
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Z12 D Z21 D j�c
k

2�

1

S1S2

Z
S1

Z
S2

e�jkjr1�r2j

jr1 � r2j dS1dS2: (12.140)

We consider two elementary sources, separated by a distance d. A series expansion
can be calculated if the quantity k Œd C .a1 C a2/=2� is assumed to be small [25]. We
limit the calculation to the real part, which is the only term involved in the power
balance. The result is

<e.Zii/ D �c
k2

2�

�
1 � k2a2

i

6
C O.k4a4

i /

�
, i D 1; 2 ; (12.141)

<e.Z12/ D �c
k2

2�

�
1 � 1

6
k2

�
d2 C a2

1 C a2
2

2

�
C O



k4d4; k4a4

1; k4a4
2

��
:

(12.142)

The power averaged over a period is written in the following form:

P D 1

2
<e.p1U�

1 / C 1

2
<e.p2U�

2 / or (12.143)

P D 1

2
jU1j2 <e.Z11 � Z12/

C1

2
jU2j2 <e.Z22 � Z12/ C 1

2
jU1 C U2j2 <e.Z12/: (12.144)

For the case of the two pistons, we derive

P D �c
k2

4�
jU1 C U2j2 C �c

k4

24�
jU1j2

�
a2

2 � a2
1

2
C d2

�

C�c
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24�

�
jU2j2

�
a2

1 � a2
2

2
C d2

�

� jU1 C U2j2
�

a2
1 C a2

2

2
C d2

��
: (12.145)

For point sources, it can be checked that the result is the same than Eq. (12.28) by a
factor of two, since the pistons here radiate into a half-space.

Formula (12.145) shows that at low frequencies the radiation is that of a
monopole with flow rate jU1 C U2j2, which is proportional to !2, but if the two
sources have the same amplitude and are opposite in phase, the radiation is that
of a dipole, proportional to !4. This kind of analysis allows understanding why a
vented box loudspeaker18 paradoxically radiates as a dipole at lower frequencies

18The enclosure partially separates the rear face of a loudspeaker; it has several openings, contrary
to a closed box loudspeaker.
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and as a monopole at higher frequencies, because the two sources are linked by
a relationship of kind: U1 D U2.!2=!2

r � 1/, where !r is the Helmholtz angular
resonance frequency of the enclosure. A similar case is that of stringed instruments
with openings: this was analyzed in connection with the sound hole sum rule in
Eq. (12.86).

For two tubes radiating in the same plane and without flange, the approximation
of the plane piston can be used [16]. By applying again the superposition principle,
we obtain for the real part of the mutual impedance the Expression (12.142), divided
by a factor 2. This analysis could be extended, but it is rather academic, because the
two tube ends rarely are in the same plane. This result can be used, for instance for
toneholes, but we can simply use the approximation, and more generally the formula
of a monopole radiation:

Z12 D j�c
k

4�

e�jkd

d
: (12.146)

In summary, the previous analysis allows understanding, at least for a particular
case, under which condition this condition is valid: the distance d needs to be large
compared to the source radii. This very simplified expression will be used in order
to analyze the radiation of complex sources in Chap. 14.
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